
PROGRAMMING LANGUAGES & TOOLS

Volume 10 Number 1
1998

Bigital
Technical
Journal

mDfflDD ·D™

I

Editorial
jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Hden L. Patterson, Editor

Circulation
Kristine M. Lowe, Administrator

Production
Christa W. Jessica, Production Editor
Elizabeth McGrail, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Thomas F. Gannon, Chairman (Acting)
Scott E. Cutler
Donald Z. Harbert
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robcrt M. Supnik

Cover Design
This special issue of the jounw/ focuses on
Programming Languages & Tools, specifi­
cally on compiler software. For the cover,
wc have chosen the alchemist who trans­
forms common elements into precious gold
to represent the compiler developer who
transforms code to extract the highest per­
formance possible for software applications.

The cover was designed by Lucinda O'Neill
of the Compaq Industria! and Graphic
Design Group.

The Digital Technicaljoumalis a refereed
journal published quarterly by Compaq
Computer Corporation, 550 King Street,
LKGI-2jW7, Littleton, MA 01460-1289.

Hard-copy subscriptions can be ordered by
sending a check in U.S. funds (made payable
to Compaq Computer Corporation) to the
published-by address. General subscription
rates arc $40.00 (non-U.S. $60) for four issues
and $75.00 (non-U.S. $1 15) for eight issues.
University and college professors and Ph.D.
students in the elecu·icaJ engineering and com­
puter science fields receive complimentary sub­
scriptions upon request. Compaq customers
may qualify tor gift subscriptions and arc encour­
aged to contact tl1eir sales representatives.

Electronic subscriptions are available at
no charge by accessing URL
http:jjwww.digital.com/subscription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues can be ordered
by sending tl1e requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each to tl1e published-by address. Recent
issues arc also available on me Internet at
http://www.digital.com/ dtj.

Compaq employees may order subscrip­
tions through Readers Choice at URL
http://web rc.das.dec.com.

Inquiries, address changes, and compli­
mentary subscription orders can be sent
to the Dlj!,ital Technica/Joumal at tl1e
published-by address or tl1e electronic
mail address, ctj@compaq.com. Inquiries
can also be made by calling U1e.fournal
office at 978-506-6858.

Comments on the content of any paper and
requests to contact autl1ors are welcomed
and may be sent to tl1e managing editor at
tl1e published-by or electronic mail address.

Copyright© 1998 Compaq Computer
Corporation. Copying wimout fee is per­
mitted provided that such copies are made
f·or usc in educational institutions by faculty
members and are not distributed for com­
mercial advantage. Absu·acting with credit
of Compaq Computer Corporation's author­
ship is permitted.

The information in tl1e journal is subject
to change without notice and should not
be construed as a commitment by Compaq
Computer Corporation or by the compa­
nies herein represented. Compaq Computer
Corporation assumes no responsibility for
any errors that may appear in t11e./OII/'I/Cii.

ISSN 0898-90IX

Documentation Number EC-P9706-I8

Book production was done by Quantic
Communications, Inc.

AlphaServer, Compaq, tl1e Compaq logo,
DEC, DIGITAL, tl1e DIGITAL logo,
ULTIUX, VAX, and VMS are registered
in the U.S. Patent and Trademark Office.

DIGITAL UNIX, FX132, and Open VMS
arc trademarks of Compaq Computer
Corporation.

Intel and Pentium are registered u·ademarks
of Intel Corporation.

I lUX is a registered trademark of Silicon
Graphics, Inc.

Microsoft, Visual C++, Windows, and
Windows NT are registered trademarks
of Microsoft Corporation.

MIPS is a registered trademark of MIPS
Technologies, Inc.

NULLSTONE is a trademark ofNullstonc
Corporation.

Roque Wave and .h++ are registered trade­
marks of Roque Wave Software, Inc.

RS/6000 is a registered trademark of
International Business Machines C01voration.

Solaris is a registered trademark of Sun
Microsysrems, Inc.

SPARC is a registered trademark of SPARC
International, Inc.

SPEC and SPECint are registered trademarks
of Standard Performance Evaluation
Corporation.

UNIX is a registered trademark in the United
States and in other countries, licensed exclu­
sively through X/Open Company Ltd.

Other product and company names mentioned
herein may be trademarks and/or registered
trademarks of their respective owners.

December 1998

A letter to readers of the Digital Technical Journal

This issue is the last Digital Tecbnicaljournal to be published. Since 1985, the

journal has been privileged to publish information about significant engineering

accomplishments for DIGITAL, including standards-setting network and storage

technologies, industry-leading VAX systems, record-breaking Alpha microproces­

sors and semiconductor technologies, and advanced application software and

performance tools. The journal has been rewarded by continual growth in

the number of readers and by their expressions of appreciation for the quality

of content and presentation.

The editors thank the engineers who somehow made the time to write, the engi­

neering managers who supported them, the consulting engineers and professors

who reviewed manuscripts and made the process a learning experience for all of

us, and, of course, the readers who are the reason the Journal came into existence

13 years ago.

With kind regards,

Jane Blake

Managing Editor

Kathleen Stetson

Editor

Helen Patterson

Editor

Digital Technical Journal
Volume 10 Number 1

Contents

Introduction

Foreword

Tracing and Characterization of Windows NT-based
System Workloads

Automatic Template Instantiation in DIGITAL C++

Measurement and Analysis of C and C++ Performance

Alias Analysis in the DEC C and DIGITAL C++ Compilers

Compiler Optimization for Superscalar Systems:
Global Instruction Scheduling without Copies

Maximizing Multiprocessor Performance
with the SUIF Compiler

Debugging Optimized Code: Concepts and
Implementation on DIGITAL Alpha Systems

Differential Testing for Software

C. Robert Morgan, Guest Editor 2

William C. Blake 4

Jason P. Casmira, David P. Hunter, 6
and David R. Kaeli

Avrum E. Itzkowitz and Lois D. Foltan 22

Hemant G. Rotithor, Kevin W. Harris, 32
and Mark W. Davis

August G. Reinig 48

Philip H. Sweany, Steven M. Carr, 58
and Brett L. Huber

Mary W. Hall, Jennifer M. Anderson, 71
Saman P. Amarasinghe, Brian R. Murphy,
Shih-Wei Liao, Eduoard Bugnion, and Monica S. Lam

Ronald F. Brender, Jeffrey E. Nelson, 81
and Mark E. Arsenault

William M. McKeeman 100

2

Introduction

C. Robert Morgan
Senior Consulting Engineer and
Technical Program Manager,
Core Technology Group

Digital Technical Journal

The complexity of high-performance
systems and the need for ever-increased
performance to be gained from those
systems creates a challenge for engi­
neers, one that requires both experience
and innovation in the development
of software tools. The papers in this
issue of the Journal are a few selected
examples of the work performed
within Compaq and by researchers
worldwide to advance the state of the
art. In fact, Compaq supports rele­
vant research in programming lan­
guages and tools.

Compaq has been developing
high-performance tools for more
than thirty years, starting with the
Fortran compiler for the DIGITAL
PDP-10, introduced in 1967. Later
compilers and tools for VAX com -
puter systems, introduced in 1977,
made the VAX system one of the most
usable in history. The compilers and
debugger for VAX/VMS are exem­
plary. With the introduction of the
VAX successor in 1992, the 64-bit
RISC Alpha systems, Compaq has
continued the tradition of developing
advanced tools that accelerate appli­
cation performance and usability for
system users. The papers, however,
represent not only the work of
Compaq engineers but also that of
researchers and academics who are
working on problems and advanced
techniques of interest to Compaq.

The paper on characterization of
system workloads by Casmira, Hunter,
and Kaeli addresses the capture of
basic data needed for the development
of tools and high-performance appli­
cations. The authors' work focuses
on generating accurate profile and
trace data on machines running the
Windows NT operating system.

Vol. 10 No. 1 1998

Profiling describes the point in the
program that is most frequently
executed. Tracing describes the
commonly executed sequence of
instructions. In addition to helping
developers build more efficient
applications, this information assists
designers and implementers of future
Windows NT systems.

Every compiler consists of two
components: the front end, which
analyzes the specific language, and
the back end, which generates opti­
mized instructions for the target
machine. An efficient compiler is a
balance of both components. As lan­
guages such as C++ evolve, the com -
piler front end must also evolve to
keep pace. C++ has now been stan­
dardized, so evolutionary changes
will lessen. However, compiler devel­
opers must continue to improve
front-end techniques for implement­
ing the language to ensure ever better
application performance. An impor­
tant feature ofC++ compiler develop­
ment is C++ templates. Templates
may be implemented in multiple
ways, with varying effects on appli­
cation programs. The paper by
Itzkowitz and Foltan describes
Compaq's efficient implementation
of templates. On a related subject,
Rotithor, Harris, and Davis describe
a systematic approach Compaq has
developed for monitoring and
improving C++ compiler perfor­
mance to minimize cost and maxi­
mize function and reliability.

Improved optimization techniques
for compiler back ends are presented
in three papers. In the first of these,
Reinig addresses the requirement in
an optimizing compiler for an accu -
rate description of the variables and

fields that may be changed by an
assignment operation, and describes
an efficient technique used in the
C/C++ compilers for gathering this
information. Sweany, Carr, and Huber
describe techniques for increasing
execution speed in processors like
the Alpha that issue multiple instruc­
tions simultaneously. The technique
reorders the instructions in the pro­
gram to increase the number of
instructions that are simultaneously
issued. Maximizing the performance
of multiprocessor systems is the sub­
ject of the paper by Hall et al., which
was previously published in IEEE
Computer and updated with an
addendum for this issue. The authors
describe the SUIF compiler, which
represents some of the best research
in this area and has become the basis
of one part of the ARPA compiler
infrastructure project. Compaq
assisted researchers by providing the
DIGITAL Fortran compiler front end
and an AlphaServer 8400 system.

As compilers become more effec­
tive in increasing application program
performance, the ability to debug
the programs becomes more difficult.
The difficulty arises because the
compiler gains efficiency by reorder­
ing and eliminating instructions.
Consequently, the instructions for
an application program are not easily
identifiable as part of any particular
statement. The debugger cannot
always report to the application pro­
gram where variables are stored or
what statement is currently being
executed. Application programmers
have two choices: Debug an unopti­
mized version of the program or find
some other technique for determining
the state of the program. The paper

by Brender, Nelson, and Arsenault
reports an advanced development
project at Compaq to provide tech­
niques for the debugger to discover
a more accurate image of the state of
the program. These techniques are
currently being added to Compaq
debuggers.

One of the problems that tool
developers face is increasing tool reli­
ability. Tool developers, therefore,
test the code. However, developers
are often biased; they know how their
programs operate, and they test cer­
tain aspects of the code but not oth­
ers. The paper by McKeeman describes
a technique called differential testing
that generates correct random tests of
tools such as compilers. The random
nature of the tests removes the devel­
opers' bias. The tool can be used for
two purposes: to improve existing
tools and to compare the reliability
of competitive tools.

The High Performance Technical
Computing Group and the Core
Technology Group within Compaq
are pleased to help develop this issue
of the Journal. Studying the work
performed within Compaq and by
other researchers worldwide is one
way that we remain at the cutting
edge of technology of programming
language, compiler, and program­
ming tool research.

Digital Technical Journal Vol. 10 No. 1 1998 3

4

Foreword

William C. Blake
Director, High Performance
Technical Computing and
Core Technology Groups

Digital Technical Journal

You might think that the cover of this
issue of the Digital Technical Journal
is a bit odd. After all, what could be
the relevance of those ancient alchemists
in the drawing to the computer-age
topic of programming languages and
tools? Certainly, both alchemists and
programmers work busily on new
tools. An even more interesting
metaphorical connection is the
alchemist and the compiler software
developer as creators of tools that
transform (transmute, in the strict
sense of alchemy) the base into the
precious. The metaphor does, how­
ever, break down. Unlike the myth
and folklore of alchemy, the science
and technology of compiler software
development is a real and important
part of processing a new solution or
algorithm into the correct and high­
est performance set of actual machine
instructions. This issue of the Journal
addresses current, state-of-the-art
work at Compaq Computer Corp­
oration on programming languages
and tools.

Gone are the days when program­
mers plied their craft "close to the
machine," that is, working in detailed
machine instructions. Today, system
designers and application developers,
driven by the pressures of time to
market and technical complexity,
must express their solutions in terms
"close to the programmer" because
people think best in ways that are
abstract, language dependent, and
machine independent. Enhancing
the characteristics of an abstract
high-level language, however, con­
flicts with the need for lower level
optimizations that make the code
run fastest. Computers still require
detailed machine instructions, and

Vol. 10 No. 1 1998

the high-level programs close to the
programmer must be correctly com -
piled into those instructions. This
semantic gap between programming
languages and machine instructions is
central to the evolution of compilers
and to microprocessor architectures
as well. The compiler developer's role
is to help close the gap by preserving
the correctness of the compilation
and at the same time resolving the
trade-offs between the optimizations
needed for improvements "close to
the programmer" and those needed
"close to the machine."

To put the work described in this
Journal into context, it is helpful to
think about the changes in compiler
requirements over the past 15 years.
It was in the early 1980s that the direc­
tion of future computer architectures
changed from increasingly complex
instruction sets, CISC, that supported
high-level languages to computer
architectures with much simpler,
reduced instruction sets, RISC. Three
key research efforts led the way: the
Berkeley RISC processor, the IBM
801 RISC processor, and the Stanford
MIPS processor. All three approaches
dramatically reduced the instruction
set and increased the clock rate. The
RISC approach promised improve­
ments up to a factor of five compared
with CISC machines using the same
manufacturing technology. Compaq's
transition from the VAX to the Alpha
64-bit RISC architecture was a direct
result of the new architectural trend.

As a consequence of these major
architectural changes, compilers and
their associated tools became signifi­
cantly more important. New, much
more complex compilers for RISC
machines eliminated the need for the

large, microcoded CISC machines.
The complexities of high-level lan­
guage processing moved from the
petrified software of CISC micro­
processors to a whole new generation
of optimizing compilers. This move
caused some to claim that RISC really
stands for "Relegate Important Stuff
to Compilers."

The introduction of the third-gen­
eration Alpha microprocessor, the
21264, demonstrates that the shift to
RISC and Alpha system implementa­
tions and compilers served Compaq
customers well by producing reliable,
accurate, and high-performance com­
puters. In fact, Alpha systems, which
have the ability to process over a bil­
lion 64-bit floating-point numbers
per second, perform at levels formerly
attained only by specialized super­
computers. It is not surprising that
the Alpha microprocessor is the most
frequently used microprocessor in the
top 500 largest supercomputing sites
in the world.

After reading through the papers
in this issue, you may wonder what is
next for compilers and tools. As phys­
ical limits curtail the shrinking of sili­
con feature sizes, there is not likely to
be a repeat of the performance gains
at the microprocessor level, so atten­
tion will turn to compiler technology
and computer architecture to deliver
the next thousandfold increase in sus­
tained application performance. The
two principal laws that affect dramatic
application performance improve­
ments are Moore's Law and Amdahl's
Law. Moore's Law states that perfor­
mance will double each 18 months
due to semiconductor process scaling;
and Amdahl's Law expresses the
diminishing returns of various system

speedup enhancements. In the next
15 years, Moore's Law may be stopped
by the physical realities of scaling lim­
its. But Amdahl's Law will be broken
as well, as improvements in parallel
language, tool development, and new
methods of achieving parallelism will
positively affect the future of compil­
ers and hence application performance.
As you will see in papers in this issue,
there is a new emphasis on increasing
execution speed by exploiting the
multiple instruction issue capability of
Alpha microprocessors. Improvements
in execution speed will accelerate dra -
matically as future compilers exploit
performance improvement techniques
using new capabilities evolved in Alpha.
Compilers will deliver new ways of
hiding instruction latency (reducing
the performance gap between vector
processors and RISC superscalar
machines), improved unrolling and
optimization ofloops, instruction
reordering and scheduling, and ways
of dealing with parallel decomposi­
tion and data layout in nonuniform
memory architectures. The challenges
to compiler and tool developers will
undoubtedly increase over time.

By not relying on hardware
improvements to deliver all the
increases in performance, compiler
wizards are making their own contri­
butions - always watchful of correct­
ness first, then run-time performance,
and, finally, speed and efficiency of the
software development process itself.

Digital Technical Journal Vol. 10 No. 1 1998 5

6

Tracing and
Characterization of
Windows NT-based
System Workloads

To optimize the design of pipelines, branch pre­
dictors, and cache memories, computer archi­
tects study the characteristics of benchmark
programs by examining traces, i.e., samples of
program execution. Since commercial desktop
applications are increasingly dependent on ser­
vices and application programming interfaces
provided by the host operating system, the
authors argue that traces from benchmark exe­
cution must capture operating system execution
in addition to native application execution.
Common benchmark-based workloads, how­
ever, lack operating system execution. This
paper discusses the ongoing joint efforts of the
Northeastern University Computer Architecture
Research Laboratory and Compaq Computer
Corporation's Advanced and Emerging Tech­
nologies Advanced Development Group to cap­
ture operating system-rich traces on Alpha­
based machines running the Windows NT oper­
ating system. The authors describe the latest
PatchWrx software toolset and demonstrate its
trace-generating capabilities by characterizing
numerous applications. Included is a discussion
of the fundamental differences between using
traces captured from common benchmark pro­
grams and using those captured on commercial
desktop applications. The data presented
demonstrates that operating system execution
can dominate the overall execution time of
desktop applications such as Microsoft Word,
Microsoft Visual CIC++, and Microsoft Internet
Explorer and that the characteristics of the
operating system instruction stream can be
quite different from those typically found in
benchmarking workloads.

Digital Technical Journal Vol. 10 No. 1 1998

I
Jason P. Casmira
David P. Hunter
David R. Kaeli

The computer architecture research community com­
monly uses trace-driven simulation in pursuing
answers to a variety of design issues. Architects spend a
significant amount of time studying the characteristics
of benchmark programs by examining traces, i.e., sam­
ples taken from program execution. Popular bench­
mark programs include the SPEC and the BYTEmark2

benchmark test suites. Since the underlying assump­
tion is that these programs generate workloads that
represent user applications, today's computer designs
have been optimized based on the characteristics of
these benchmark programs.

Although the authors of popular benchmarks are
well intentioned, the resulting workloads lack operat­
ing system execution and consequently do not repre­
sent some of the most prevalent desktop applications,
e.g., Microsoft Word , Microsoft Visual C/C++, and
Microsoft Internet Explorer. Such applications make
heavy use of application programming interfaces
(APis), which in turn execute many instructions in the
operating system. As a result, the overall performance
of many desktop applications depends on efficient
operating system interaction. Clearly operating system
overhead can greatly reduce the benefits of a new
computer design feature. Past architectural studies,
however, have generally ignored operating system
interaction because few tools can generate operating
system-rich traces.

This paper discusses the ongoing joint efforts of
Northeastern University and Compaq Computer
Corporation to capture operating system-rich traces on
DIGITAL Alpha-based machines running the Microsoft
Wmdows NT operating system. We argue that for traces
of today's workloads to be accurate, they must capture
the operating system execution as well as the native appli­
cation execution. This need to capture complete pro­
gram trace information has been a driving force behind
the development and use of software tools such as the
PatchWrx dynamic execution-tracing toolset, which we
describe in this paper.

The Patch Wrx toolset was originally developed by
Sites and Perl at Digital Equipment Corporation's
Systems Research Center. They described PatchWrx, as
developed for Windows NT version 3.5, in "Studies of

Windows NT Performance Using Dynamic Execution
Traces."3 The Northeastern University Computer
Architecture Research Laboratory and Compaq's
Advanced and Emerging Technologies Advanced
Development Group continue to develop the toolset.
We have updated the framework to operate under
Windows NT version 4.0, added the ability to trace
programs that have code sections larger than 4 mega­
bytes (MB), added multiple trace buffer sizes, and
developed additional postprocessing tools.

After briefly discussing related tracing tools, we
describe the PatchWrx toolset and specify the new
features we have added. We then analyze PatchWrx
traces captured on Windows NT version 4 .0, demon­
strating the capabilities of the tool while illustrating
the importance of capturing operating system-rich
traces. In the final section, we summarize the paper,
discuss the current limitations of the toolset, and sug­
gest new directions for development and study.

Trace Generation Tools

Trace-driven simulation has been the method of
choice for evaluating the merits of various architec­
tural trade-offs.4

•
5 Traces captured from the system

under test are recorded and replayed through a model
of the proposed design. Computer architecture
researchers have proposed methodologies that capture
both application and operating system references.
These tools include hardware-based6--10 and software­
based11-15 methods. Some of the issues involved in cap­
turing operating system-rich traces are

1. Tracing overhead (system slowdown)

2. Accuracy (perturbation of the memory address space)

3. Completeness (capturing all desired information,
e.g., the operating system reference stream)

Table 1 contains a list of 10 tracing tools that have
been developed over the past 10 to 15 years. Although

Table 1
Sample of Tracing Tools

far from complete, this list provides a sample of the
tools that have been used to generate input to a variety
of trace-driven simulation studies. We have character­
ized each tool in terms of the three issues (criteria) pre­
viously mentioned. Table I lists the target platform(s)
for each tracing tool.

Note that many of these tools cannot capture oper­
ating system activity. For those that can, their associ­
ated slowdown can significantly affect the accuracy of
the captured trace. Of the tools that provide this capa­
bility, Patch Wrx introduces the least amount of slow­
down yet maintains the integrity of the address space.
The next section discusses the PatchWrx toolset.

PatchWrx

PatchWrx is a dynamic execution-tracing toolset
developed for use on the Alpha-based Microsoft
Windows NT operating system. The toolset utilizes
the Privileged Architecture Library (PAL) facility, also
referred to as PALcode, of the Alpha microprocessor
to perform tracing with minimal overhead.22 PatchWrx
can instrument, i.e., patch, all Windows NT applica­
tion and system binary images, including the kernel,
operating system services, drivers, and shared libraries.
The PAL facility is a set of architected functions and
instructions that provides a consistent interface to a set
of complex system functions. These routines provide
primitives for memory management, context switch­
ing, interrupts, and exceptions.

PatchWrx and the Alpha PAL Routines
The PatchWrx software tool is made possible through
the PAL used by DIGITAL Alpha microprocessors.
PAL routines have access to physical memory and
internal hardware registers and operate with interrupts
disabled. PALcode is loaded from disk at system boot
time. We modified and extended the shrink-wrapped
Alpha PALcode on a DIGITAL Alpha 21064- based
system to support the PatchWrx operations. The mod-

Average Address Operating
Name Slowdown Perturbation System Activity Platform

ATOM" 10Xto 100X No Yes DIGITAL Alpha UNIX

ATUM'" 20X No Yes DIGITAL VAX OpenVMS

EEL" 10Xto 100X Yes No SPARC Solaris

Etch'" 35X Yes No Intel x86 Microsoft Windows NT V4.0

NT-Atom19 10Xto 100X No No DIGITAL Alpha Microsoft Windows NT V4.0

PatchWrx' 4X No Yes DIGITAL Alpha Microsoft Windows NT V4.0

Pixie' 0 10Xto 100X Yes No DIGITAL MIPS ULTRIX

QPT'' 10X to 100X Yes No SPARC Solaris, DIGITAL ULTRIX

Shade" 6X No No SPARC Solaris

SimOS14 1 OX to 50,000X No Yes DIGITAL Alpha UNIX, SGI IRIX, SPARC Solaris

Digital Technical Journal Vol. 10 No. 1 1998 7

8

ified PatchWrx PAL routines serve two major pur­
poses: (1) to reserve the trace buffer at system boot
time and (2) to log trace entries at trace time.

One way that Patch Wrx maintains a low operating
overhead is to store the captured trace in a physical
memory buffer, which is reserved at boot time. The
size of the buffer can be varied depending on the
amount of physical memory installed on the system.
Since we use PAL routines to reserve this memory, the
operating system is not aware that the memory exists
because the PALcode performs all low-level system ini­
tialization before the operating system is started.

PatchWrx logs all trace entries in this buffer. Writing
trace entries directly to physical memory has several
advantages. First, writing to memory is much faster
than writing to disk or to tape. Second, using physical
memory allows tracing of the lowest levels of the oper­
ating system (i.e., the page fault handler) without gen­
erating page faults. Third, using physical memory
allows tracing across multiple threads running in mul­
tiple address spaces regardless of which address space is
currently running.

To enable PatchWrx to operate under Windows NT
versions 3.51 and 4.0, we started with the PAL rou­
tines modified by Sites and PerP and made additional
modifications as required by the operating system ver­
sions. These modifications were concentrated in the
process data structures. The PatchWrx-specific PAL
routines are listed in Table 2. The first three routines
are used for reading the trace entries from the buffer
and for turning tracing on and off. The remaining five
routines are used to log trace entries based on the type
of instruction instrumented.

PatchWrx Image Instrumentation
Next we describe how we use PatchWrx to instrument
Microsoft Windows NT images. Patching the operat­
ing system involves the instrumentation of all the
binary images, including applications, operating sys­
tem executables, libraries, and kernel. Once patching
is complete, trace entries are logged by means of PAL
routines as images execute.

Table 2
PatchWrx-specific PAL Routines

PAL Routines Function

We define a patched instruction as an instruction
within an image's code section that is overwritten with
an unconditional branch (BR) to a patch. The target of
the BR contains the patch section. The patch section
includes the trap (CALL_pAL) to the appropriate PAL
routine that logs a trace entry corresponding to the
type of instruction patched and the return branch to
the original target.

Patch Wrx does not modify the original binary
images; instead, it generates new images that contain
patches. This operation preserves the original images
on the system in case they need to be restored.
Instrumentation involves replacing all branching
instructions of type unconditional branch, conditional
branch (e.g., branch if equal to zero [BEQ]), branch
to subroutine (BSR), function return (RET), jump
(JMP), and jump to subroutine (JSR) within an
image's code section with unconditional branches to
a patch section. If loads and stores are also traced,
PatchWrx replaces these instructions (e.g., load sign­
extended longword [LDL]) with unconditional
branches to the patch section, where the original load
or store instruction is copied. A return branch is also
needed to return control flow to the instruction subse­
quent to the original load. When PatchWrx encoun­
ters this patch, the tool records the register value of the
original load or store instruction in the trace log. The
patch section contains all the patches for the image
and is added to the rewritten image. Figure 1 shows
examples of patched instructions. PatchWrx replaces
only branch instructions within an image to reduce the
type and number of entries logged in the trace buffer.
Using these traced branches, the tool can later recon­
struct the basic blocks they represent.

As shown in Figure 1, PatchWrx replaces BR and
JMP instructions with BR instructions that transfer
control to the patch section. The original BR or JMP
instruction is repeated in the patch section for the pur­
pose of recording the value of the target register (if
necessary) into the trace buffer when the patched
image is executed. This register value is necessary for
reconstructing the traced instruction stream. PatchWrx

PWRDENT

PWPEEK

PWCTRL

PWBSR

PW JSR

PWLDST

PWBRT

PWBRF

Read a trace entry from trace memory

Read an arbitrary location (for debug)

Initialize, turn tracing on/off

Digital Technical Journal

Record a branch to subroutine

Record a jump/call/return

Record a load/store base register value

Record a conditional branch taken bit

Record a conditional branch fall-through bit

Vol. 10 No. 1 1998

ORIGINAL CODE

EXAMPLE 1 JMP ZERO, (Rl9)

EXAMPLE2 JSR R26, (Rl9)

EXAMPLE 3 BEQ R3 , TARGET . 003

EXAMPLE 4 LDL R20,4(Rl6)

Figure 1
Instruction Patch Examples

replaces JSR and BSR instructions with BSR patches.
This replacement preserves the return address (RA)
register field value, which contains the return address
for the subroutine. Again, the original instruction is
repeated in the patch section for register value record­
ing during tracing to help facilitate reconstruction.

Conditional branches have a larger and more com­
plex patch than the other branch types because the
original condition is duplicated and resolved within
the patch. The taken or fall-through path generates a
bit value when logged within the taken or fall-through
trace entry. The return branch in the patch section is a
replica of the original conditional branch.

As explained earlier, for all patches, PatchWrx replaces
the original branch with a patch unconditional branch.
Since Alpha instructions are equal in size, this replace­
ment process allows patching without increasing the
code size within the image. Although the code size
remains unchanged, the image size will increase in
proportion to the number of patches added. This

PATCHED CODE

JHP ZERO, (Rl9) BR PATCH.001

PATCH.001: CALL_PAL PWJSR
JMP ZERO, (R19)

JSR R26, (R19) BSR R26,PATCH.002

PATCH.002: CALL_PAL PWJSR
JMP ZERO, (Rl9)

BEQ RJ.~ARSE~ . 992 BR PATCH.003
BACK.003

PATCH.003: BEQ R2,PATCH.003T
CALL_PAL PWBRF

PATCH.003T :

BR BACK.003

CALL_PAL PWBRT
BR TARGET.003

LDL R29,4(Rl6) BR PATCH.004
BACK.004

PATCH.004: CALL_PAL PWLDST
LDL R20,4(Rl6)
BR BACK.004

image size change becomes an issue for dynamically
linked library (DLL) images.

Patching Dynamic Link Libraries
The Microsoft Windows NT operating system pro­
vides a memory management system that allows shar­
ing between processes.23 For example, two processes
that edit text files can share the text editor application
image that has been mapped into memory. When the
first process invokes the editor, the operating system
loads the application into memory and maps the
process's virtual address space to it. When the second
process invokes the editor, rather than load another
editor image, the operating system maps the second
process's virtual address space to the physical pages
that contain the editor. Of course, both processes con­
tain local storage for private data.

DLLs are loaded into memory and shared in this
manner. When patches are added to a DLL, the size of
the image increases. When this image is mapped to

Digital Technical Journal Vol. 10 No. 1 1998 9

physical memory (as per its preferred base load
address), the larger image may overlap with another
image having a base address within the new range.
This image overlap can prevent the operating system
from booting properly: some environment DLLs will
conflict in memory because they perform calls directly
into other DLLs at fixed offsets. To resolve this issue,
we rebase24 the preferred base load addresses of the
patched DLLs, which modifies the base load addresses
of each patched DLL to eliminate conflicts. Rebasing
affects the address accuracy of the patched system,
though we are able to readjust the addresses during
reconstruction. An increase in the paging activity may
also be observed since the additional code may cross
page boundaries.

The original version of the PatchWrx toolset was
developed on Microsoft Windows NT version 3.5.
When versions 3.51 and 4.0 were released, several mod­
ifications were made to the image format. In complet­
ing the 3. 51- and 4.0-compatible versions of Patch Wrx,
we had to address this issue. One change that affected
how we patch was the placement of the Import Address
Table (IAT) into the front of the initial code section of
executable binary images. This table is used to look up
the addresses ofDLL procedures used (i.e., imported)
by the executable binary. In developing the current gen­
eration of PatchWrx, we had to make modifications to
use image header fields that had previously remained
unused or reserved, indicating the executable code sec­
tions that contained data areas.

Another issue that we addressed in the recent modi­
fications to PatchWrx was long branches. The original
version of PatchWrx replaces all branch, jump, call,
and return instructions with either BR or BSR instruc­
tions to the patch section. Since the PatchWrx tool has
no information about machine state during the patch­
ing phase, it is impossible to utilize other branching
instructions (e.g., JMP or JSR instructions) to provide
this branch-to-patch transition. Register and register­
indirect branching instructions would require per­
turbing the machine state. Therefore, the developers
could use only program counter (PC)-based offset
branching instructions.

As discussed previously, in replacing a control flow
instruction with a patch branch, PatchWrx uses a BR
or BSR instruction in which the offset field is set to
branch to the corresponding patch within the image's
patch section. The Alpha architecture branching
instructions use the format shown in Figure 2 .

I OPCODE I REG I 21-BIT DISPLACEMENT

31 2625 21 20 0

Figure 2
Alpha Branch Instruction Format

l O Digital Technical Journal Vol. 10 No. 1 1998

The branch target virtual address computation for
this format is newPC = (oldPC + 4) + (4 * sign­
extended(21-bit branch displacement)). The register
field holds the return address for BSRs. With this
branch format and target virtual address computation,
the Alpha architecture provides a branch target range
of 4 MB from an instruction's current PC.

Several applications that run today on Microsoft
Windows NT version 4.0 are sufficiently large that the
displacement between a control flow instruction to be
patched and the patch location within the patch section
exceeds this 4-MB limit. (Recall that since we want to
avoid moving code or data sections, the patch section is
placed at the end of the image.) To address this problem,
we developed two new branch instructions for use with
PatchWrx. These new branches were not implemented
in the instruction set architecture of the Alpha architec­
ture. Instead, we used PALcode to implement them. The
two new branches are designated long branch (LBR) and
long branch subroutine (LBSR). Figure 3 illustrates the
format of these two instructions.

The computation of the target virtual address is
newPC = (oldPC + 4) + (4 * sign-extended(25-bit
branch displacement)) for LBR branches and new PC =

(oldPC + 4) + (32 * zero-extended(20-bit branch dis­
placement)) for LBSR branches. PatchWrx uses LBRs
when patching any control flow instruction that has
a displacement greater than 4 MB. PatchWrx uses
LBSRs similarly for control flow instructions that must
preserve the register field value.

When an LBR or LBSR instruction is executed
within the image code section, a trap to PALcode
occurs. Normally, CALL_PAL instructions have one of
several defined function fields that cause a correspond­
ing PAL routine to be executed. The two long branch
instructions have function fields that do not belong to
any of the defined CALL_PAL instructions and there­
fore force an illegal instruction exception within the
PALcode. This PALcode flow has been modified to
detect if a long branch has been encountered.

I OPCODE I 000000
25-BIT DISPLACEMENT H

31 26 25 1 0

LBR INSTRUCTION FORMAT

REG 20-BIT DISPLACEMENT

31 26 25 21 20 1 0

LBSR INSTRUCTION FORMAT

Figure 3
PALcode Long Branch Instruction Formats

As shown in Figure 3, both long branch types have
the same PALcode operation code (opcode) value of
000000. To distinguish between the two types, the least
significant bit in the instruction word is set to O for LBRs
and to 1 for LBSRs. This bit is not included as a usable
bit for the displacement fields of either branch type.
Consequently, each LBRhas a 25-bit displacement field
and each LBSR has a 20-bit field. With a 25-bit usable
displacement field, the PALcode performs the LBR tar­
get address computation, allowing a ±64-MB range.

Since each LBSR instruction has a 20-bit displace­
ment field, whereas the original Alpha architecture
branch displacement field is 21 bits, the target instruc­
tion address computation for LBSRinstructions is per­
formed differently than for standard branches within
the PALcode. As shown in the address computation
equation, the 20-bit displacement is multiplied by 32
rather than by 4 (as for the LBR branch). Notice that
the 20-bit displacement is always zero extended. The
computation provides the LBSRinstruction with a dis­
placement of +32 MB.

This computation procedure has two implications.
First, LBSR instructions can only be used to branch
from an image code section to an image's patch sec­
tion. Second, branches into the patch section are
either BR or BSR instructions (or their long displace­
ment counterparts). PatchWrx uses only BR or LBR
instructions to return from the patch section to the
original branch target within a code section; BSR and
LBSR instructions are never used. Therefore, restrict­
ing LBSR instructions to use positive displacements
does not present a problem.

The LBSR displacement multiplier value of 32 does
present some restrictions, however. The multiplier
value of 4 used in the original Alpha instruction set
architecture represents the instruction word length
of 4 bytes. Thus, normal branch instruction target
addresses must be aligned on a 4-byte boundary. By
using the multiplier value of 32 for LBSR instructions,
LBSR target addresses are restricted to align on a 32-
byte (i.e., eight-instruction) boundary. Since all LBSR
targets reside within the patch section, this restriction
does not pose a problem. If an LBSR is to be inserted
into the image code section and the next available
patch target address is not aligned properly, Patch Wrx
can insert no operation (NOP) instruction words and
advance the next available patch target address until
the necessary alignment is achieved. PatchWrx never
executes the NOPs; they are inserted for alignment
purposes only. Although inserting these NOP instruc­
tions increases the image size, we have implemented
several optimizations into the instrumentation algo­
rithm to minimize this increase. For example, a queue
is used to hold LBSRs that do not align. As LBR
patches are committed, Patch Wrx probes the queue to
determine if any LBSRs align from their origin to the
newly available patch target offiet.

Trace Capture
The PatchWrx toolset allows the user to turn tracing on
and off and thus capture any portion of workload execu -
tion. The tracing tool is also responsible for copying trace
entries from the physical memory buffer to disk. Copying
the trace buff er to disk is performed after tracing has
stopped so that the time required to perform the copy
does not introduce any overhead during trace capture.

PatchWrx logs a trace entry for each patch encoun­
tered during program execution. As it executes instruc­
tions within the code section, PatchWrx encounters an
unconditional Patch Wrx branch. Instead of branching to
the original target, the patched branch transfers control
to the image's patch section. Within the patch section, a
Patch Wrx PALcall traps to the PAL routine correspond­
ing to the patch type and logs a trace entry to the trace
buffer. The PAL routine then returns to the instruction
following the CALL_PAL instruction. PatchWrx uses an
unconditional branch to transfer control from the patch
section back to the original target within an image code
section. During the execution of the PatchWrx PAL rou­
tine, necessary machine state information is recorded
and logged in the trace buffer. This allows for the capture
of register contents, process ID information, etc., which
are used later during trace reconstruction.

The trace capture facility captures the dynamic execu­
tion of a workload running on the system. To recon­
struct the trace after it has been captured, the tracing
tool must also capture a snapshot of the base load
addresses of all active images on the system. This snap­
shot serves as the virtual address map used in recon -
structing the trace. Each active process and its associated
libraries is loaded into a separate address space, which
may be different than the preferred load address as spec­
ified statically in the image header. If each image was
loaded into memory at its preferred base address, the
virtual address map would not be necessary to perform
reconstruction. Instead, PatchWrx could map target
addresses from the trace buffer using the base address
values contained in the static image headers.

The type of trace record that PatchWrx logs into the
trace buffer depends on the type of branch or low-level
PAL function being traced. Figure 4 shows the trace
record formats. The fust three trace entry formats
consist of an 8-bit opcode and a 24-bit time stamp.
The time stamp is the low-order 24 bits of the CPU
cycle counter. The 32-bit field of these three formats
depends on the type of trace entry logged. The fust
format is used for target virtual addresses for all
unconditional direct and indirect branches, jumps,
calls, returns, interrupts, and returns from interrupts.
The 32-bit field of the second format is used to record
the base register value for traced load and store
instructions and stack pointer values that are flushed
into the trace buffer during system calls and returns.
The 32-bit field of the third format is used for logging
the current active process ID at a context swap.

Digital Technical Journal Vol. 10 No. 1 1998 11

OPCODE TIME STAMP TARGET PC

8 24 32

OPCODE TIME STAMP BASE REGISTER VALUE

8 24 32

OPCODE TIME STAMP NEW PROCESS ID

8 24 32

OPCODE
START BIT

VECTOR OF 60 TAKEN/FALL-THROUGH TWO-WAY BRANCH BITS

3 1

Figure4
Trace Entry Formats

The fourth trace entry type is used for tracing con -
ditional branches. It uses a 3-bit opcode and up to 60
taken/fall-through bits. A start bit is used to deter­
mine how many bits are active. The start bit is set to
1 if a conditional branch is taken and to O if the branch
is not taken. This recording scheme allows a compact
encoding of conditional branch trace entries. During
trace reconstruction, PatchWrx uses conditional branch
trace entries to reconstruct the correct instruction
flow when conditional branches are encountered and
to provide concise information about when to deliver
interrupts in loops.

Trace Reconstruction
The reconstruction phase is the final step in generating
a full instruction stream of traced system activity. As
shown in Figure 5, trace reconstruction requires sev­
eral resources in order to generate an accurate instruc­
tion stream of all traced system activity.

Trace reconstruction reads and initializes the head­
ing of the captured trace, which includes a time stamp,
the name of the user who captured the trace, and any
important system configuration information, e.g., the
operating system version number. Next, reconstruc­
tion reads the first four raw trace records, which are
automatically entered whenever tracing is turned on.
These records contain the first target virtual address,
the active process ID, the value of the stack pointer,
and the first taken/ fall-through record to be used
(such records always precede the branches they repre­
sent). PatchWrx uses this information to initialize the
necessary data structures of the reconstruction process.

12 Digital Technical Journal Vol. 10 No. 1 1998

60

Using the first target virtual address and process ID
pair from the captured trace, trace reconstruction con­
sults the virtual address map to determine in which
image the instruction falls (based on its dynamic base
load address) and where that image is physically
located on the system. The tool consults the patched
image to determine the actual instruction at the target
address, records this instruction, and then reads the
next instruction from the patched image. This process
continues until reconstruction encounters either a
conditional branch or an unconditional branch. A
conditional branch causes the tool to check the first
active bit of the current taken/fall-through entry to
determine subsequent control flow; the process then
continues at that address. If an unconditional branch is
encountered, reconstruction records the entry and
checks it against the next captured trace entry. If the
two entries match, the tool outputs the recorded
instructions to an instruction stream file, consults the
captured trace entry for the next target instruction vir­
tual address, and repeats the procedure until the entire
captured trace has been processed.

Since Patch Wrx captures interrupts and other low­
level system activities (e.g., page faults) in the trace,
these activities must also be reconstructed. When
PatchWrx logs an interrupt into the trace buffer, the
corresponding target virtual address in the captured
record represents the address of the first instruction
not executed when the interrupt was taken. Patch Wrx
flushes the currently active taken/ fall-through entry
to the memory buffer and initializes a new taken/fall­
through entry. This new entry will be responsible for

PATCHED PATCHED
IMAGE IMAGE

PATCHED
IMAGE

,------ I

RECONSTRUCTED
INSTRUCTION
STREAM

CAPTURED RECONSTRUCTION
RAW TOOL
TRACE

VIRTUAL
ADDRESS
MAP

Figure 5
Instruction Stream Reconstruction Resources

the conditional branches encountered beginning with
the interrupt service routine. The address of the first
instruction within the interrupt service routine is then
logged in the trace.

During reconstruction, the reconstruction tool looks
for the interrupt's first unexecuted instruction address
to know which instruction to stop at when recon­
structing the instruction stream. The tool then begins
reconstructing the instruction stream, including the
interrupt handler stream. If the unexecuted instruc­
tion is within a loop, trace reconstruction utilizes the
taken/fall-through entry convention. On taking the
interrupt, the active taken/full-through record is flushed
and another record is started. This process allows the
tool to continue to reconstruct iterations of the loop
until all the taken/fall-through bits are exhausted.

Operating System-Rich Workload
Characterization

As presented in the study by Lee et al .!8 desktop appli­
cations and benchmarks share some workload charac­
teristics, but applications alone do not represent full
system behavior. To investigate and address system
design issues, computer architects should use operat­
ing system-rich traces.

To illustrate this point, we present a sample of the
various workload characteristics that exist in a set of
benchmark and desktop applications specially selected
to study the differences in the use of the operating sys­
tem and related services. The first characteristic we dis­
cuss is the amount of time each benchmark or desktop
application spends within three domains:

1. Application-only domain (e.g., winword.exe and
excel.exe)

2. DLL domain-Win32 user (e.g., kernel32.dll,
user32.dll, and ntdll.dll)

3. Operating system domain-Win32 kernel, kernel,
system processes, system idle process (e.g.,
Win32Ksys, ntoskrnl.exe, drivers, and the spooler)

Examining these times provides insight into a work-
load's use of each domain. We also examine DLL and
system service usage on an image basis for each work­
load. This breakdown helps us more clearly identify the
dependence between the workload and the system ser­
vices provided by the Windows NT operating system.

We also present the instruction mix of each workload
with and without the inclusion of the operating system
execution. Understanding the differences in instruc­
tion composition in the presence of system activity fur­
ther highlights the behavior lacking in application-only
traces, such as increases in branch and memory instruc­
tions, when compared to application-only workloads.
We present the average basic block lengths for each
domain of execution (application-only, DLL, operating
system) separately and then in combination. This met­
ric reveals which workload domain dominates the
branching behavior. Casmira's work provides a more
complete description of these differences across a wider
set of workload characteristics. 25

Workload Descriptions
We performed all the experiments reported on in this
paper on a DIGITAL Alpha platform running the
Microsoft Windows NT version 4.0 operating system.
We captured the traces on a 150-megahertz Alpha
21064 processor. The system configuration included
80 MB of physical memory. Table 3 lists the workloads
we examined.

Digital Technical Journal Vol. 10 No. l 1998 13

Table 3
Workload Description

Workload Description

fourier

neural

go

BYTEmark benchmark; a numerical analysis routine for calculating series approximations of waveforms

BYTEmark benchmark; a small, functional back-propagation network simulator

SPEC95 Go! game benchmark

SPEC95 Lisp interpreter benchmark

Microsoft CD Player playing a music CD

Ii

cdplay

fx!32

ie

DIGITAL FX!32 V1 .1 interpreting/translating included OpenGL sample x86 application

Microsoft Internet Explorer V2.0 following a series of web page links

vc50

word

Microsoft Visual CIC++ V5.0 compiling a 3,000-line C program

Microsoft Word97 V7.0, spell-checking a 15-page document

The fourier and neural workloads are from the
BYTEmark benchmark test suite: the neural workload
is a small array-based floating-point test; the fourier
workload is designed to measure transcendental and
trigonometric floating-point unit performance.

The go and Ii workloads are from the SPEC95 integer
benchmark suite: the go workload is a simulation of the
game Go!, with the computer playing against itself; the Ii
workload is a Lisp interpreter. All the workloads use the
standard inputs provided with the benchmarks and are
compiled with the default optimization level using the
native Alpha version of Microsoft C/C++ version 5.0.

The cdplay workload is the Microsoft CD Player
application included in Microsoft Windows NT ver­
sion 4.0. The device was traced while playing a music
CD using default playing options (e.g., playing all the
songs in order).

The fx!32 workload is the DIGITAL FX! 32 version 1.1
emulator/translator provided by Compaq's DIGITAL
Alpha Migration Tools Group.2

• We ran the robot arm
OpenGL sample Intel-based application in the fore­
ground during trace capture.

The ie workload is the standard Microsoft Internet
Explorer version 2.0 workload included in Microsoft
Windows NT version 4.0. The ie workload was traced
while traversing four links through the Sony home
web page, arriving finally at the Sony PlayStation Store
web page. The trace was captured on May 4, 1998;
pages may have changed since this date. The history
cache and the web link cache were both empty when
the trace was captured.

The vc50 workload is the Microsoft C/C++ version
5.0 compiler compiling a 3,000-line C source code file.
We used the command line interface, and we used the
default optimization levels and other parameters, which
best represented the common usage of the compiler.

The word workload is Microsoft Word from the
Microsoft Office97 desktop application suite for the
Alpha processor used to capture a manual spell check
of a 15-page Microsoft Word document. The standard
Microsoft Word dictionary was employed.

14 Digital Technical Journal Vol. 10 No. 1 1998

To provide a clear and representative comparison
of workload behavior, we captured several traces. For
all scenarios, full traces of each workload captured
approximately 5 to 10 seconds of execution, filling the
45-MB trace buffer. To characterize workload behav­
ior, each experiment was run with the benchmark or
application as the only activity on the system. Each
workload was run in the foreground.

To ensure that the traces captured were representa­
tive of the overall workload behavior, we captured
multiple traces. We chose different points during exe­
cution for tracing to allow comparison between differ­
ent portions of the selected scenarios. To investigate
the variability present in selected workloads, we traced
additional scenarios. A second Microsoft Word trace
was captured with the application performing an auto­
format operation of the same document used in the
first trace of the spell-check operation, and we cap­
tured a second Microsoft Internet Explorer trace,
repeating the Sony links but with the links cached. We
captured a second trace of FX! 32 using the included
boggle sample game (for comparison against using the
OpenGL application input). Additionally, the FX!32
translator was traced while it optimized a native Intel
x86 application's profile. To condense the number of
memory pages occupied by an image, Microsoft
designed the new linker to allow data to reside within
the code regions. Hookway and Herdeg2

• provide an
explanation of the DIGITAL FX!32 emulation and
translation/optimization procedures. Casmira discusses
these scenarios and others .25

Domain Mix
To illustrate the inherent differences between bench­
mark and desktop application behavior, we break
down the captured trace in terms of three mutually
exclusive domains. These domains are (1) application,
(2) DLL, and (3) operating system. The application
domain represents the set of executed instructions that
are within the traced application's executable image.

The DLL domain represents the instructions executed
by the application of interest's process but excludes
the application's executable image. This domain is
made up of the DLLs, system services, and drivers that
the application may access during execution. The
operating system domain includes instructions exe­
cuted by the kernel or other system support service
executable images, and all associated DLL and driver
images. These are the processes, images, and libraries
that are always present and running on the system.
Figure 6 displays the breakdown of instructions into
these three domains. The x-axis lists the workloads,
and the y-axis presents the percent composition of the
captured trace. Note that the four benchmarks, i.e.,
fourier, neural, go, Ii, spend at least 95 percent of their
execution within their application image. Both the
fourier and the neural benchmarks spend about
99 percent of their execution within their application
image. The go and Ii benchmarks do exhibit some
operating system activity, but this activity is due to the
I/0 generated as go displays output as it progresses
and as Ii reads input from its standard input file.

The operating system dominates the execution in
the cdplay workload. The Microsoft CD Player appli­
cation is I/0 bow1d, relying heavily on the necessary
services provided by the operating system and the
DLLs to access the CD hardware. While waiting for
I/Os to complete, the system activity is composed

100

90

80

70
i=' z
w
~ 60
w
e:.
t5 50
i==
1ii
0
~ 40
0
l)

30

20

10

0

almost completely of the kernel idle loop performing
busy waiting (recall that each workload investigated is
the only application running on the system, so there is
no other work to be done during these periods).

The fx!32 workload spends nearly all its execution
time operating within DLLs. The robot arm Intel x86
OpenGL sample that the DIGITAL FX!32 application
is interpreting heavily exercises the graphics display
libraries and console display services.

The ie workload is more evenly distributed across
the three domains. The moderate amount of operating
system activity is due to the network and screen display
I/0 and also to the Microsoft Internet Explorer's
caching of the pages it touches to local disk files . The
DLL activity is generated by operating system services
for screen and file I/0 and by network service library
routines. The application image coordinates the usage
of these routines, and network and display I/0, which
is frequently encountered during the operations of
selecting and opening web links. This coordination
accounts for the high percentage of application domain
execution exhibited by ie, as shown in Figure 6.

The vc50 workload spends nearly all its execution
time within its application image. This phase of the
compiler is responsible for performing the parsing and
lexical analysis of the source code file. There is some
use ofDLLs through invoking library routines to load
included header files. The operating system activity,

KEY:

APP
DLL
OS

FOURIER NEURAL GO LI CDPLAY FX!32 IE VC50 WORD

WORKLOAD

Figure 6
Domain Execution Mix

Digital Technical Journal Vol. 10 No. 1 1998 15

although small, is present; all l/0 must be accessed by
means of a system service.

The Microsoft Word spell-checking service is pro­
vided by means of a DLL included with the application.
Thus for the word workload, this DLL handles both the
search through the document and the successive diction­
ary lookups. Operating system services are required for
accessing portions of the file residing on disk (not in
memory pages), for displaying the search and compare
results to the user, and for performing the user-driven
I/0 associated with accepting/rejecting word replace­
ment choices (prompted by the spell-checking tool).

Figure 6 shows the consistent pattern of instruction
domains that the four benchmarks follow in contrast to
the variability in the instruction mix domain of the desktop
application workloads. Even though there is slight operat­
ing system activity for go and Ii (atnibutable to I/0 ser­
vices), the benchmarks spend practically all their execution
within their application images; no DLL use is visible.
Clearly these benchmarks do not utilize system services to
the level observed in the commercial desktop workloads.
With the exception of the CD player, the commercial
desktop applications examined use DLLs more heavily
than they do operating system services. 'This is especially
true in the fx! 32 and word workloads, which carry out the
tasks captured in the trace by means ofDLL routines.

Characterization of Image Usage

To investigate the domains present in the trace at the
image level, we identified the top five most heavily
used images, based on the number of instructions exe­
cuted in each image. First, an explanation of some of
the more frequently used system executables and
DLLs is in order. Table 4 lists the names of the com­
monly used images and a brief description of each.

We present the image usage of the nine traces. This
characterization includes all the images (e.g., executa­
bles, DLLs, services, and drivers) listed in Table 5. The
data helps demonstrate several points. First, commercial
desktop workloads spend a lot more time in DLLs than
benchmarks do. Consequently, we can project that the

Table 4
Common System Images

Name Description

Windows NT operating system kernel core

number of procedure calls in desktop applications will
be higher than the number of calls in benchmarks.
Second, real applications depend not only on system
DLLs but also on their local DLLs. We see this behavior
explicitly with the Microsoft Word application.

Instruction Mix
Although understanding the domain mix and image
usage helps identify differences between benchmarks
and desktop applications, we would like to look deeper
within each domain to see inherent differences that
affect design decisions. Figure 7 shows the application­
only instruction mix (i.e., the instruction mix for only
the application and application-specific DLLs) for each
workload. Each entry in the legend represents a class
of instructions found within the application domain.
The y-axis denotes the percent composition of the
trace; the workloads are displayed on the x-axis.

Note that the instruction mix for the fx!32 workload
is zero. This value is a result of the lack of execution
within the application image itself. Referring back to
Table 5 and the domain instruction mix, note that
nearly all the workload execution is within DLLs (some
execution is within ntoskrnl.exe). The remaining work­
loads consist mainly of!oad, store, conditional branch,
and arithmetic and logic unit (ALU) logic operations.
No overriding characteristic differentiates benchmarks
and desktop applications. Note the significant variabil­
ity in the instruction mix among the different bench­
marks and among the different desktop applications.

Figure 8 shows the instruction mix of the entire
trace. The first and most noticeable difference between
the application domain and full-trace instruction mix
figures is the increase in instruction types present in
the trace. Nine instruction classes were present in the
application domain instruction mixes, while 17 are
present in the full-system traces. Worth noting is the
presence of 6 CALL_PAL instruction types (all use the
same opcode, but invoke 6 different PAL routines)
in the full traces. Since each executed CALL_PAL
instruction causes a trap that takes on the order of tens
of cycles to complete, we can conclude that this is a

ntoskrnl.exe
hal.dll
kernel32.dll
win32k.sys
gdi32.dll
ntdll.dll
MSVCRT.dll
s3.dll

Hardware Abstraction Library (HAL), which is responsible for the underlying hardware interface
Main kernel library

qv.dll

Kernel-mode device driver
Graphics display interface library
Library routines provided to each client process on the Windows NT system
Microsoft ac++ run-t ime library
Graphics adapter library for the test platform
Graphics adapter library for the test platform

16 Digital Technical Journal Vol. 10 No. 1 1998

Table 5
The Five Most Frequently Used Images in Each Application or Benchmark

Image Name
Workload (Percentage of Total Number of Instructions Executed within the Image)

fourier bytecpu.exe winsrv.dll win32k.sys ntoskrnl.exe user32.dll Other
(99.5%) (0.2%) (0.1 %) (0.1%) (0.02%) (0.08%)

neural bytecpu.exe winsrv.dll ntoskrnl.exe win32k.sys ntdll.dll Other
(99.7%) (0.2%) (0.03%) (0.03%) (0.02%) (0.02%)

go go.exe win32k.sys ntoskrnl.exe hal.dll qv.dll Other
(95.5%) (2.0%) (1.0%) (0.4%) (0.1 %) (1.0%)

Ii li.exe win32k.sys ntoskrnl.exe user32.dll qv.dll Other
(97.7%) (1.0%) (0.6%) (0.1 %) (0.1 %) (0.5%)

cdplay ntoskrnl.exe hal.dll win32k.sys tcpip.sys winsrv.dll Other
(81.8%) (14.7%) (1.1 %) (0.4%) (0.3%) (1.7%)

fx!32 hal.dll s3.dll OPENGL32.DLL MSVCRT.dll GLU32.dll Other
(42.5%) (24.6%) (12.2%) (11.7%) (2.7%) (6.3%)

ie iexplore.exe win32k.sys ntoskrnl.exe Fastfat.sys ntdll.dll Other
(37.2%) (19.3%) (17.5%) (6.1 %) (6.0%) (13.9%)

vc50 c1.exe ntoskrnl.exe MSVCRT.dll Ntfs.sys win32k.sys Other
(83.1 %) (10.5%) (2.8%) (1.2%) (1.1 %) (1.3%)

word MSSP232.DLL MSGREN32.DLL ntoskrnl.exe win32k.sys hal.dll Other
(36.4%) (34.0%) (10.2%) (7.7%) (4.0%) (7.7%)

significant insight into the system's inherent run-time
latency, not visible with application-only workloads.

Next note the striking similarities in instruction
mix for the four benchmarks in Figures 7 and 8.
Benchmarks do not interact with the operating system
in any significant manner. The desktop application
workloads, however, show significant differences
between the application domain and the complete
trace instruction mixes.

The number of store instructions for the cdplay
workload decreases from about 11 percent to approxi­
mately 1 percent. The number of BSR instructions
increases from 1 percent to about 6 percent. Most
interesting for this application is the decrease in the
number of ALU operations from almost 30 percent to
about 2 percent, while the number of CALL_PAL
instructions increases from O to 21 percent. Referring to
Figure 6, the domain execution mix plots clearly show
why the differences for this workload are so large when
the system activity is included-more than 95 percent
of the workload trace is operating system execution.

Considering the latency incurred by executing
CALL_PAL instructions, clearly an optimization that
concentrates on improving ALU operations based on
the application domain instruction mixes would have a
much smaller impact on the true system performance.
The measured difference in instruction mix under­
scores the importance not only of using real workloads
for trace-driven simulations but also of including the
operating system behavior in order to see the full picture.

The fx! 32 complete trace instruction mix is, of
course, completely different from the application
instruction mix of Figure 7, in which no instructions

were executed within the fx! 32 application image. Both
the ie and the word workloads introduce CALL_PAL
instructions when including the operating system. The
ie instruction mix shows an increase in jumps, calls, and
returns, which most likely reflects the increase in sub­
routine calls for system services. The word instruction
mix experiences a reduction in load instructions from
approximately 52 percent to 35 percent. This decrease
can be attributed to the increase in ALU operations pre­
sent when operating system activity is included.

The results presented in Figures 7 and 8 reinforce
the points that benchmarks do not represent true desk­
top workloads and that the desktop workloads display
significantly different characteristics when viewed in the
presence of system activity.

Average Basic Block Length
Including the operating system activity in our traces yields
an overall increase in the percentage of control flow
instructions present. Figure 9 shows a consequence of
this fact. In this figure, we present the average basic block
length for each workload, on a per-domain basis. The
ALL bar is the average basic block length across all
domains; OS denotes the operating system insmictions
only; DLL denotes the workload's DLL instructions
only; APPDLL denotes the combined application and
DLL instructions; and APP denotes the application
instructions only.

Inspecting the four benchmarks, we notice little dif­
ference between the application-only basic block
length and the overall basic block length. Referring to
our domain instruction mix figure, recall that the
benchmarks spend about 95 percent of their execution

Digital Technical Journal Vol. 10 No. 1 1998 17

18

100

90

80

i=' 70
z
w
~ 60
w
e:.
~ 50
j::
cii
0
a.. 40
:?
0
()

30

20

10

Figure 7

FOURIER NEURAL GO

Application-only Instruction Mix

100

90

80

70

~
~ 60
a:
w
e:.
z
0 50
j::
cii
0 a..
~ 40
()

30

20

10

Figure 8

FOURIER NEURAL GO

Complete Trace Instruction Mix

LI CDPLA Y FX!32

WORKLOAD

LI CDPLA Y FX!32

WORKLOAD

Digital Technical Journal Vol. 10 No. 1 1998

KEY:

IE VC50 WORD

KEY:

IE VC50 WORD

ALU LOG
JSR
RET

LD
ST
BRXX
BR
BSR
JMP

ALU LOG

PMISC

SWAPIRQL

RETSYS

RDTHREAD

RDTEB

CALLSYS

MB

TRAPS

BSR

BR

BRXX

ST

LD

RET

JSR

JMP

25

20

10

5

FOURIER NEURAL GO LI

Figure 9
Average Basic Block Length

within their executable images. Therefore, including
any operating system activity into a basic block length
average has a minimal effect.

However, considering the large amount of operat­
ing system execution present in the cdplay trace, the
overall basic block length is significantly less than the
application-only length. The overall and operating
system length values are almost the same. Not only
does including the system activity in the trace influ -
ence the overall basic block length but the amount
of system activity determines to what degree the length
is affected.

In a similar fashion, the overall basic block length of
the fx!32 trace tracks that of its DLl.s. The length is
directly proportional to the amount of time the work­
load spends in its DLL domain. The execution of the ie
workload is more evenly distributed among the three
domains, which affects the overall basic block length,
producing a more evenly weighted average of all its
domain basic block lengths (no one domain dominates).

KEY:

ALL

OS

DLL

APPDLL

APP

CDPLA Y FX!32 IE VC50 WORD

WORKLOAD

The vc50 workload spends a significant amount of
time within its own executable image, which leads to
an overall average basic block length similar to the
application-only value. The word workload is similar,
but the DLL behavior dominates. The cdplay and ie
workloads experience a 50 percent decrease in average
basic block length. This decrease can be attributed to
an increase in the number of branches in the presence
of operating system activity. With this increase in con­
trol flow instructions, we expect increased pressure to
be placed upon the branch prediction hardware.

As observed in other characteristic categories, the
four benchmarks do not exhibit noticeable deviations
from application-only behavior when the operating
system activity is introduced. Again this explains why
simulation results using benchmark traces usually track
the actual performance when the benchmarks are run
on the real system. In contrast, four of the five desktop
applications exhibit significantly different behavior in
the presence of the operating system.

Digital Technical Journal Vol. 10 No. 1 1998 19

Summary

In this paper we described the PatchWrx toolset. We
compared it to existing tools and demonstrated the
need for operating system-rich traces by showing the
amount of the total execution spent in the kernel and
the DLLs. In addition, we showed that existing desk­
top benchmarks do not exercise the kernel and the
DLL sufficiently to provide meaningful indicators of
desktop performance.

These results have reinforced our argument that
researchers need to use traces with both application
and operating system information, especially as new
applications spend more time executing within the
operating system. The goal is for computer architects
to use operating system-rich traces of applications that
dominate the desktop market.

We have recently finished modifications to the PAL
to enable PatchWrx to run on the Alpha 21164 plat­
form. We plan to study a wider range of desktop appli­
cations, including database and server applications.
Future plans also include migrating the toolset to the
Windows 2000 operating system.

Acknowledgments

We would like to acknowledge the help and advice of
the following people: Richard Sites of Adobe Systems;
Sharon Smith, Geoff Lowney, Joel Erner, Steve
Thierauf, Tom Wenners, Paul Delvy, and Dan
Lambalot, all from Compaq Computer Corporation;
and Robert Davidson from Microsoft Research. Jason
Casmira and David Kaeli have been supported by a
National Science Foundation CAREER grant.

References and Notes

1. SPEC Newsletter(September 1995).

2. Information about the BYTEmark benchmark suite is
available from BYIE Magazine at http:/ /www.byte.
com/bmark/bmark.htm.

3. S. Perl and R. Sites, "Studies ofWindows NT Perfor­
mance Using Dynamic Execution Traces," Proceed­
ings of the Second USENIX Symposium on Operating
System Design and Implementation (October 1996):
169-183.

4. D. Kadi, "Issues in Trace-Driven Simulation," Lecture
Notes in Computer Science, No. 729, Performance
Evaluation of Computer and Communication
Systems, L. Donatiello and R. Nelson, eds. (Springer­
Verlag, 1993): 224-244.

5. R. Uhlig and T. Mudge, "Trace-Driven Memory Sim­
ulation: A Survey," ACM Computing Surveys, vol. 29,
no. 2 (June 1997): 128-170.

20 Digital Technical Journal Vol. 10 No. 1 1998

6. J. Erner and D. Clark, "A Characterization of Proces­
sor Performance in the VAX 11-780," Proceedings of
the Eleventh Symposium on Computer Architecture
(June 1994): 126-135.

7. K. Flanagan, J. Archibald, B. Nelson, and K. Grim­
srud, "BACH: BYU Address Collection Hardware;
The Collection of Complete Traces," Proceedings of
the Sixth International Conference on Modeling Tech­
niques and Tools for Computer Evaluation (1992):
51--65.

8. D. Kadi, 0. La.Maire, W. White, P. Rennet, and W.
Starke, "Real-Time Trace Generation," International
Journal on Computer Simulation, vol. 6, no. 1 (1996):
53--68.

9. D. Kadi, L. Fong, D. Renfrew, K. Imming, and
R. Booth, "Performance Analysis on a CC-NUMA
Prototype," IBM Journal of Research and Develop­
ment, Special Issue on Performance Tools, vol. 41,
no. 3 (May 1997): 205-214.

10. D. Nagle, R. Uhlig, and T. Mudge, "Monster: A Tool
for Analyzing the Interaction Between Operating Sys­
tems and Computer Architectures," Technical Report,
CSE-TR-147-92, UniversityofMichigan, 1992.

11. B. Chen and B. Bershad, "The Impact of Operating
System Structure on Memory System Performance,"
Operating Systems Review, vol. 27, no. 5 (December
1993): 120-133.

12. J. Larus, "Abstract Execution: A Technique for Effi­
ciently Tracing Programs," Technical Report, CS-TR-
90-912, University ofWisconsin-Madison, 1990.

13. A. Srivastava and A. Eustace, "ATOM: A System
for Building Customized Program Analysis Tools,"
Proceedings of the ACM SIGPLAN'94 Conference on
Programming Ianguage Design and Implementation,
Orlando, Fla. (June 1994): 196--205.

14. M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta,
"Complete Computer System Simulation: The SimOS
Approach," IEEE Journal of Parallel and Distributed
Technology, 1998, forthcoming.

15. M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod,
"Using the SimOS Machine Simulator to Study Com­
plex Computer Systems," ACM Transactions on Mod­
eling and Simulation, vol. 7, no. 1 (January 1997):
78-103.

16. A. Agarwal, Analysis of Cache Performance for Oper­
ating Systems and Multiprogramming (Kluwer Acade­
mic Publisher, 1989).

17. J. Larus and E. Schnarr, "EEL: Rewriting Executable
Files to Measure Program Behavior," Proceedings of
the ACM SIGPLAN'95 Conference on Programming
Ianguage Design and Implementation, La Jolla, Calif.
(June 1995): 291-300.

18. D. Lee, P. Crowley, J.-L. Baer, T. Anderson, and
B. Bershad, "Execution Characteristics of Desktop
Applications on Windows NT," Proceedings of the
Twenty-fifth International Symposium on Computer
Architecture, Barcelona, Spain (June 1998).

19. E. Betts, D. Hunter, and S. Smith, "Moving ATOM to
Windows NT for Alpha," Digital Technical journal,
vol. 10, no. 2, accepted for publication.

20. M. Smith, "Tracing with Pixie," Technical Report,
CSL-TR-91-497, Stanford University, November
1991.

21. R. Cmelik and D. Keppel, "Shade: A Fast Instruction­
Set Simulator for Execution Profiling," Proceedings of
ACM Sigmetrics(May 1994): 128-137.

22. Alpha AXP Architecture Handbook, Order No. EC­
QD2KA-TE (Maynard, Mass.: Digital Equipment
Corporation, October 1994).

23. H. Custer, Inside Windows NT (Redmond, Wash.:
Microsoft Press, 1993).

24. Microsoft Software Developer's Toolkit. This toolkit is
available at http://msdn.microsoft.com/developer/
sdk/platform.htm.

25. J. Casmira, "Operating System Rich Workload Char­
acterization," Master's thesis, ECE-CEG-98-018,
Northeastern University, May 1998.

26. R. Hookway and M. Herdeg, "DIGITAL FX!32:
Combining Emulation and Binary Translation,"
Digital Technicaljournal, vol. 9, no. 1 (1997): 3-12.

Biographies

Jason P. Casmira
Jason Casmira received B.S. and M.S. degrees in electrical
engineering from Northeastern University in 1996 and
1998, respectively, and is pursuing a Ph.D. degree in com­
puter science at the University of Colorado, Boulder. For
the past two years, Jason was a member of the Northeastern
University Computer Architecture Research Laboratory
(NU CAR), where he focused on developing the current
version of the PatchWrx tracing toolset. He also investi­
gated issues related to studying operating system-rich
traces. While at NUCAR, Jason was supported by a grant
from the National Science Foundation. He has published
seven papers and is a member of the IEEE and the Eta
Kappa Nu honor society.

David P. Hunter
David Hunter is the engineering manager of Compaq
Computer Corporation's Advanced and Emerging
Technologies Group. Prior to that he was the manager
ofDIGITAL's Software Partner Engineering Advanced
Development Group, where he was involved in performance
investigations of databases and their interactions with the
UNIX and Windows NT operating systems. He has held
positions in the Alpha Migration Organization, the ISV
Porting Group, and the Government Group's Technical
Program Management Office. David joined DIGITAL's
Laboratory Data Products Group in 1983, where he devel­
oped the VAX!ab User Management System. He was the
project leader of the advanced development project, ITS, an
executive information system, for which he designed hard­
ware and software components. David has two patent appli­
cations pending in the area of software engineering. He
holds a degree in electrical and computer engineering from
Northeastern University in Boston, Massachusetts, and a
diploma in National Security and Strategic Studies from the
United States Naval War College in Newport, Rhode Island.

David R. Kadi
David Kaeli received Ph.D. (1992) and B.S. (1981) degrees in
electrical engineering from Rutgers University and an M.S.
degree in computer engineering from Syracuse University
in 1985. He joined the electrical and computer engineering
faculty at Northeastern University in 1993 after spending
12 years at IBM, the last 7 of which were at the IBM T. J.
Watson Research Center in Yorktown Heights, New York.
David is the director of the Northeastern University
Computer Architecture Research Laboratory (NUCAR),
where he investigates the performance and design ofhigh­
performance computer systems and software. His current
research topics include 1/0 workload characterization,
branch prediction studies, memory hierarchy design, object­
oriented code execution performance, 3-D microelectronics,
and back-end compiler design. He frequently gives tutorials
on the subject of trace-driven characterization and simula­
tion. In 1995, David received the prestigious National
Science Foundation CAREERAward. His research has
been supported by the Office of Naval Research, Kopin
Corporation, Digital Equipment Corporation, EMC, Data
General, Microsoft Research, I-Tech Corporation, IEEE
DAC, and IBM Research. David is a member of the ACM,
IEEE, and the Eta Kappa Nu and Sigma Xi honor societies.

Digital Technical Journal Vol. 10 No. 1 1998 21

Automatic Template
Instantiation In
DIGITALC++

Automatic template instantiation in DIGITAL C++

version 6.0 employs a compile-time scheme that

generates instantiation object files into a reposi­

tory. This paper provides an overview of the C++

template facility and the template instantiation

process, including manual and automatic instan­

tiation techniques. It reviews the features of

template instantiation in DIGITAL C++ and

focuses on the development and implemen­

tation of automatic template instantiation in

DIGITAL C++ version 6.0.

22 Digital Technical Journal Vol. 10 No. 1 1998

I
Avrom E. Itzkowitz
Lois D. Foltan

The template facility within the C++ language allows
the user to provide a template for a class or function
and then apply specific arguments to the template
to specify a type or function. The process of applying
arguments to a template, referred to as template instan­
tiation, causes specific code to be generated to imple­
ment the functions and static data members of the
instantiated template as needed by the program.
Automatic template instantiation relieves the user of
determining which template entities need to be instan­
tiated and where they should be instantiated.

In this paper, we review the C++ template facility and
describe approaches to implementing automatic tem­
plate instantiation. We follow that with a discussion of
the facilities, rationale, and experience of the DIGITAL
C++ automatic template instantiation support. We
then describe the design of the DIGITAL C++ version
6.0 automatic template instantiation facility and indi­
cate areas to be explored for further improvement.

C++ Template Facility

The C++ language provides a template facility that
allows the user to create a family of classes or functions
that are parameterized by type. 1.2 For example, a user
may provide a Stack template, which defines a stack
class for its argument type. Consider the following
template declaration:

template <class T> class Stack {
T *top_of_stack;

public:

} ;

void push(T arg);
void pop(T& arg) ;

The act of applying the arguments to the template
is referred to as template instantiation. An instantia­
tion of a template creates a new type or function that
is defined for the specified types. Stack<int> creates
a class that provides a stack of the type int.
Stack<user_class> creates a class that provides a stack
ofuser_class. The types int and user_class are the argu­
ments for the template Stack.

In general, a template needs to be instantiated when
it is referenced. When a class template is instantiated,
only those member functions and static data members
that are referenced are also instantiated. In the Stack
example, the member function Push of the class
Stack<int> needs to be instantiated only if it is used.
Template functions and static data members have
global scope; therefore, only one instantiation of each
should be in a user's application. Since source files are
compiled separately and combined later at link time to
produce an executable, the compiler alone is not able
to ensure that one and only one instance of a specific
template is efficiently generated for any given exe­
cutable. That is, the compiler by itself is not able to
know whether the function or variable definition for a
specific template is satisfied by code generated in
another object module.

The C++ Standard provides facilities for the user to
specify where a template entity should be instantiated.'
When the user explicitly specifies template instantia -
tion, the user then becomes responsible for ensuring
that there is only one instantiation of the template
function or static data member per application. This
responsibility can necessitate a considerable amount of
work. However, the compiler and linker working
together can provide effective template instantiation
without specific user direction.

In the following section, we present the various
approaches that can be used for template instantiation.

Template Instantiation Techniques

Template instantiation techniques can be broadly cat­
egorized as either manual or automatic. With manual
instantiation, the compilation system responds to user
directives to instantiate template entities. These direc­
tives can be in the source program, or they may be
command-line options. With automatic instantiation,
the compilation system, including the linker, decides
which instantiations are required and attempts to pro­
vide them for the user's application.

Manual Instantiation
Manual template instantiation is the act of manually
specifying that a template should be instantiated in the
file that is being compiled. This instantiation is given
global external linkage, so that references to the
instantiation that are made in other files resolve to this
template instantiation. Manual template instantiation
includes explicit instantiation requests and pragmas as
well as command-line options.

Explicit Instantiation Requests and Pragmas T he
compilation system instantiates those template entities
that the user specifies for instantiation. The specification
can be made using the C++ explicit template instantia­
tion syntax or may be made using implementation-

defined directives or pragmas. Since instantiations are
given global external linkage, the user must ensure
that the specified template instantiations appear only
once throughout all the modules that compose the
program. When only this mode of instantiation is
used, the user also must ensure that all required tem­
plate instantiations are specified to avoid unresolved
symbols at link time.

Command-line Instantiation Command-line options
can be used to specify template instantiation. They are
similar in operation to the explicit instantiation requests,
except they indicate groups of templates that should be
instantiated, rather than naming specific templates to be
instantiated. The command-line options include

• Instantiate All Templates. A command-line option
can direct the compiler to instantiate all template
entities whose definitions are known during compi­
lation and whose argument types are specified. This
has the advantage of specifying many template
instantiations at once. The user must still ensure
that no template instantiation happens more than
once in the program and that all required instantia­
tions are satisfied. Due to these requirements, the
user cannot usually specify this option on more than
one source-file compilation in the program. This
option can also cause the instantiation of templates
that are not used by the program.

• Instantiate Used Templates. A command-line option
can be used to direct the compiler to instantiate
only those template entities that are used by the
source code and whose definitions are known at
compilation. As in the previous technique, the user
must ensure that no template instantiation happens
more than once in the program and that all required
instantiations are satisfied. Due to these require­
ments, the user cannot usually specify this option
on more than one source-file compilation in the
program.

• Instantiate Used Templates Locally. This command­
line option works like the instantiate used templates
option, except that it defines each template instan -
tiation locally in the current compilation. This option
has the advantage of providing complete template
instantiation coverage for the program, as long as
the definitions of the used templates are available in
each module. Since all template instantiations are
given local scope, there is no potential problem
with multiply defined instantiations when the
program is linked. The major problem with this
technique is that the user's application can be
unnecessarily large, since the same template instan­
tiations could appear within multiple object files
used to link the application. This technique will fail
if the instantiations must have global scope such as
a class's static data members.

Digital Technical Journal Vol. 10 No. 1 1998 23

Figure 1 shows an example of a template function,
template_func, that contains a locally defined static
variable. As shown in the figure, the object files of both
A and B contain local copies oftemplate_func instanti­
ated with int. Each instance of template_func<int>
defines its own version of static variable x. In this case,
directing the compiler to instantiate used templates
locally yields a different result than instantiating all or
used templates globally.

If we give the static data members global scope and
ensure that they are properly defined and initialized by
executable code rather than by static initialization, we
can solve the static data members problem. The appli­
cation, however, remains unnecessarily large, because
multiple copies of the instantiated templates can be
present in the executable.

Automatic Instantiation
Automatic template instantiation relieves the user of
the burden of determining which templates must be
instantiated and where in the application those instanti­
ations should take place. Automatic template instantia­
tion can be divided into two categories: compile-time
instantiation, whereby the decision about what should
be instantiated is made at compile time, and link-time
instantiation, whereby decisions about template instan­
tiation are made when the user's application is linked.
In both cases, specific link-time support is needed to
select the required instantiations for the executable.

Compile-time Instantiation Two major techniques
can be used to perform automatic template instantia­
tion at compile time. The choice between the two
depends upon the facilities available in the linker.
Microsoft Visual C++ instantiates templates at compile
time using a strategy similar to the instantiate used
templates command-line option described previously.3

lltemplate.hxx
#include <iostream.h>

Each instantiation is placed in the communal data sec­
tion (COMDAT) of the current compilation's object
file. Each object file contains a copy of every template
instantiation needed by that compilation unit.
COMDATs are sections that have an attribute that tells
the linker to accept, without issuing a warning, multi­
ple definitions of a symbol defined in the section. 4 If
more than one object file defines that symbol, only the
section from one object file is linked into the image
and the rest are discarded, along with all symbols in
the symbol table defined in the discarded section con­
tribution. At link time, the linker resolves an instantia­
tion reference by choosing one of the instantiations
defined in an individual object file's COMDAT. The
resulting user's application executable has a single
copy of each requested instantiation.

When such linker support is not available, another
mechanism must be used to control compile-time
instantiation. One such approach is to use a repository
to contain the generated instantiations. The compiler
creates the instantiations in the repository instead of
the current compilation's object file. At link time, the
linker includes any requested instantiations from the
repository. As a performance improvement, the com­
piler can also decide whether an instantiation needs to
be generated from the state of the repository. If the
requested instantiation is in the repository and can be
determined to be up to date, the compiler does not
need to regenerate the instantiation.

Link-time Instantiation The decision to instantiate can
be left until link time. The linker can find the instantia­
tions that are needed and direct the compiler to generate
those instantiations. McCluskey describes one link-time
instantiation scheme.5

•
6 The compiler logs every class,

union, struct, or en urn in a name-mapping file in a repos­
itory. Every declared template is also logged in the name-

template <Class T> void template_func (T p)
{

Figure 1

static T x = O;
cout << x + p;
x++;

IIA.cxx
#include "template.hxx"
extern void b_func();
int main ()
{

template_func(lO);
b_func ();
return O;

Template Function Containing a Locally Defined Static Variable

24 Digital Technical Journal Vol. 10 No. 1 1998

IIB.cxx
#include " template . hxx"
void b_func(void)
{

I I . ..
template_func(20);
I I . . .

mapping file. At link time, a prelinker determines which
template instantiations are required. The prelinker builds
temporary instantiation source files in the repository to
satisfy the referenced instantiations, compiles them, and
adds the resulting object files to the linker input.
Consider the example in Figure 2.

During the compilation of main.cxx, a name­
mapping file is built in the repository and the location
of the user-defined class C and the function template,
perform_some_function, are recorded. From the infor­
mation stored in the name-mapping file, an instan­
tiation source file is then created in the repository.
Figure 3 shows the contents of the instantiation source
file created to satisfy perform_some_function<C>.

The prelinker then compiles the instantiation source
file by invoking the compiler in a special directed mode,
which directs the compiler to generate code only for
specific template instantiations that are listed on the
command line. The compiler then generates the defin­
ition of perform_some_function<C> in the resulting
object file. The resulting object now satisfies the
instantiation request and is included as part of the
application's final link. To build the instantiation
source files easily, the implementation of this scheme
generally requires that template declarations, template
definitions, and any argument types used to instantiate
a class or function template must appear in separate,
related header files.

The Edison Design Group has developed another
approach to link-time instantiation.7 In this approach,
the compiler records where template instantiations are
used and where they can be instantiated. At link time,
a prelinker assigns template instantiations by recording
the assignments in a specially generated file that corre-

IIC_class.hxx
class C {
public :

I I .. .
} ;

lltemplate.hxx

I* perform_some_function(C&) * I
#include "template. hxx"
#include •template. cxx•
#include "C_class . h "

Figure 3
Example of an Instantiation Source File

sponds to the particular source file that can success­
fully instantiate the user's request. Compiling and pre­
linking the program used in Figure 2 generates an
instantiation assignment file for main.cxx. This file
contains information concerning the command-line
options specified, the user's current working directory,
and a list of instantiations that should be instantiated.
Main.cxx now owns the responsibility of instantiating
perform_some_function<C>. The prelinker recompiles
the source files, such as main.cxx, that have changes in
their template instantiation assignments. The process
is repeated until there are no changes made to the
instantiation assignments. Then the final link can be
completed.

This approach has the advantage of requiring no
special file structure to support automatic template
instantiation. It is generally faster and simpler than
McCluskey's approach, because fewer files are com­
piled in the generation of the needed instantiations
and the instantiations are generated in the context of
the user's source code. In addition, the assignment of
instantiations to source files can be preserved between
recompilations of the source code, so that unless the
structure of the application changes, the needed instanti­
ations will be available without additional recompilation.

template <class T> void perform_some_function(T ¶m) ;

lltemplate . cxx
template <class T> void perform_ some_function(T ¶m) {

Figure2

llmain.cxx
#include "C_c lass . hxx"
#include •template.hxx"

int main ()
{

cc;
perform_some_ function(c);
return O;

Example of a Link-time Instantiation Scheme (McCluskey)

Digital Technical Journal Vol. 10 No. 1 1998 25

Comparison of Manual and Automatic Instantiation
Techniques
The manual instantiation techniques require planning
on the part of the user to ensure that needed instantia­
tions are present, that no extraneous instantiations are
generated, and that each needed instantiation appears
exactly once within the application. With manual
instantiation, the user has the advantage of gaining
explicit control over all template instantiations.
Although the strategy of instantiating used templates
locally requires less planning, it does so at the cost of
object file size and the restricted use of templates when
static data members are present or when static data is
defined locally within a function template instantiation.

Automatic template instantiation provides template
instantiation with no explicit action on the part of the
user. Compile-time instantiation requires either spe­
cific linker support to select a single template instanti­
ation from potentially many candidates, or support by
the compiler to generate instantiations in separate
object files while compiling the user's source code.
Relying on linker support allows the compiler to effi­
ciently generate instantiations at the cost of larger
object files; however, the user loses control over which
instantiation is used in the executable file. Although
the use of separate instantiation object files usually
takes more time at compilation than the linker-support
method, it results in more compact object files and can
provide the user with more control over which instan­
tiation is used in the executable file.

Link-time instantiation provides template instan­
tiation that is tailored to the needs of the executable
file. The primary cost is link-time performance, since
generation of instantiations occurs at link time.
Another disadvantage oflink-time instantiation can be
observed when building object-code libraries. Either
the library must contain all the instantiations that it
requires, or the user who wants to link with the library
must have access to all the machinery to create instan­
tiations. Creating a library's instantiations involves
extra steps during library construction. All the object
files to be included in the library must be prelinked,
so that the needed instantiations are generated. If
instantiations are included in the individual object
files in the library, as in the Edison Design Group
approach, unintended modules may be linked from
the library to provide the needed instantiations.
Consider the following scenario, in which object
files A and B are included in the library. Both files
require the instantiation ofperform_some_function<int>.
When these files are prelinked, the instantiation of
perform_some_function<int> is assigned to one of
the files, say A. If an application that is being linked
against the library requires that the object file B be
linked into the executable, then the object file A is also
linked. Here the instantiation needed by B was instan-

26 Digital Technical Journal Vol. 10 No. 1 1998

tiated in A even though the executable never refer­
enced anything explicitly defined in file A. This can
yield an unnecessarily large executable.

In the next section, we review the template instan -
tiation support in earlier versions of DIGITAL C++
and then discuss the rationale and design of the auto­
matic template instantiation facility in version 6.0 of
DIGITAL C++.

DIGITAL C++ Template Instantiation Experience

As the use of C++ templates has grown, DIGITAL
C++ has been enhanced to support the need for
improved instantiation techniques. The initial release
of DIGITAL C++ occurred before the C++ standard­
ization process had matured, so that the language sup­
ported was based on The Annotated C++ Reference
Manual, referred to as the ARM.8 The ARM defined
template functionality, but it did not provide guidance
for either manual or automatic template instantiation.
Thus it was necessary to provide a DIGITAL C++­
specific mechanism for template instantiation.

DIGITAL C++ Manual Template Instantiation
The #pragma define_template directive and the instan­
tiate all command-line option, -define_templates, have
been supported since the initial release of DIGITAL
C++.

In Figure 4, the define_template pragma directs the
compiler to instantiate class template, C, with type int.
When the compiler detects the use of the pragma, it
creates an internal C<int> type node and traverses the
list of static data members and member functions
defined within the class. If the definitions of these
members are present at the point the pragma is speci­
fied, the compiler materializes each with type int.

As the C++ language developed and template usage
increased, users found manual template instantiation
to be very labor intensive and requested an automated
method.

DIGITAL C++ Version 5.3 Automatic Template
Instantiation
Automatic template instantiation capability became a
serious issue during the planning stages of DIGITAL
C++ version 5.3. The use of templates was increasing
rapidly, and many new third-party libraries, such as
Rogue Wave Software's Tools.h++, contained a signif­
icant use of templates. Due to this growing need, the
requirements were straightforward. The support had
to be easy to use, have a short design phase, be quickly
implementable on both the DIGITAL UNIX and the
Open VMS platforms, and provide reasonable perfor­
mance. Because McCluskey's approach had been used
in several implementations, it presented itself as our
best option.

template <class T> class C {
public:

} ;

void mem_funcl(T pl;
void mem_func2(T p);

template <class T> void C<T> : :mem_funcl(T p)
template <class T> void C<T>: :mem_func2(T p)

I I ... }
I I . .. }

#pragma define_template C<int>

Figure 4
The define_template Pragma

DIGITAL made two major changes to McCluskey's
approach to take advantage of the DIGITAL C++
compiler design. First, we allowed instantiation
source files to be created at compile time instead of
link time. This eliminated the need for McCluskey's
name-mapping file and simplified the prelinking
process considerably. Since the needed source files
existed in the repository, there was no need to decon -
struct the required template instantiations to deter­
mine their arguments and types.

The second change addressed the transitive closure
problem. Figure 5 shows an example of the class tem­
plate Buffer being instantiated with the user-defined type
C. After compilation of app.cxx with the McCluskey

approach, the name-mapping file contained definition
locations of class B and class C. However, it did not con­
tain any indication that class C had a data member that
relied on the definition of class B. From the information
in the name-mapping file, the prelinker then created an
instantiation source file that included only C_class.hxx,
Buffer.hxx, and Buffer.cxx. When this instantiation
source file was compiled, an error resulted complaining
that B is an undefined type whose size is unknown.

We solved this problem in DIGITAL C++ version
5.3 by including all the top-level header files included
by the current compilation unit in any instantiation
source files created. This ensured that B_class.hxx
would be included in the generated instantiation file.

IIB_class.hxx
class B { I I ... l ;

IIC_class .hxx
class C {

Figure 5

IIBuffer.hxx
template <class T> class Buffer {

T *buffer;
int num_of_items;

public:

} ;

void add_item(T *);
I I . . .

llapp.cxx
#include "B_class.hxx"
#include "C_class .hxx"
#include "Buffer.hxx•

void f (void)
{

Cc ;
Buffer<C> c_buffer;
c_buffer.add_item(&c);

Instantiation of the Class Template Buffer

B data_mem;
public:

I I ...
} ;

IIBuffer .cxx
template <class T>

void Buffer<T>::add_item(T *p) { }

Digital Technical Journal Vol. 10 No. 1 1998 27

Despite the fact that this type of automatic link.­
time instantiation scheme was being widely used
in the industry, the results of using a modified
McCluskey approach were mixed. Stroustrup has
described the general problems with McCluskey's
approach.9 We found that our implementation suf­
fered particularly from poor link-time performance
and so did not satisfy our users' needs.

DIGITAL C++ Version 6.0 Automatic Template
Instantiation

DIGITAL C++ version 6 .0 is a complete reimplemen­
tation of DIGITAL C++, with emphasis on ANSI C++
conformance. It is implemented using a completely
new code base, which includes the industry-standard
C++ front end from the Edison Design Group and a
standard class library from Rogue Wave.

From our experience with template instantiation
in DIGITAL C++ versions 5.3 through 5.6, we con­
cluded that the most important issue that should
be addressed in the design and implementation of
the automatic template instantiation facility was the
compile- and link-time performance. The primary
goal was to have the performance of automatic tem­
plate instantiation substantially exceed the perfor­
mance of version 5.6. Another important goal was
to remove the restriction of template declaration and
definition placement in header files. In addition, the
automatic template instantiation facility in version 6.0
had to be culturally compatible with the previous
implementation. The user had to be able to move
sources and objects to different directories, easily
build archived and shared libraries, share instantia­
tions between various applications, and have error
diagnostics reported at the earliest possible moment in
the instantiation process.

Design and Implementation We decided to use a
compile-time instantiation model as the basis for our
implementation. Since we were using the Edison
Design Group's front end, we seriously considered
using their link-time model. However, the compile­
time model seemed advantageous for several reasons.
First, there are significant complications (as described
in the section Comparison of Manual and Automatic
Instantiation Techniques) when trying to build
libraries with a compiler that uses the Edison Design
Group link-time model. In addition, the link-time
model requires recompilations that limit performance
in many typical cases of template use. We recognized
that the link-time model could provide better perfor­
mance in some cases, but these would be in the minor­
ity. Finally, the implementation of the link-time model
would require substantially more implementation
effort on the OpenVMS platform. The version of the
Edison Design Group front end being used to build
DIGITAL C++ version 6.0 required tools to scan a

28 Digital Technical Journal Vol. 10 No. 1 1998

user's object files for information concerning which
modules could instantiate requested templates. Similar
functionality would need to be implemented for the
Open VMS platform.

We preserved the concept of the template reposi­
tory as a directory that contains the individual tem­
plate instantiation object files. The repository stores
one object file for each template function, member
function, static data member, and virtual table that is
generated by automatic template instantiation. T he
file name of the instantiation object file is derived from
the name of the instantiation's external name. At com­
pile time, the front end generates intermediate code
for all templates that are needed in the compilation
unit and can be instantiated. A tree walk is performed
over the intermediate code to find all entities that are
needed by each generated template instantiation. T he
code generator is called to generate code for the user­
specified object file and is then called repeatedly for
each template instantiation to generate the instantia­
tion object files in the repository.

The compiler generally considers an instantiation to
be needed when it is referenced from a context that is
itself needed, such as in a function with global visibility or
by the initialization of a variable that is needed. Vrrtual
member functions are needed when a constructor for
the class is needed. Thus, all virtual function definitions
should be visible in a compilation unit that requires a
constructor for the class. Each instantiation that is gener­
ated with automatic instantiation is marked as potentially
being in its own object file in the repository.

The intermediate representation of each generated
instantiation is walked to determine what other entities
it references. At this point, the instantiation is a candi­
date to be generated in its own object file, but it can
sometimes be generated as part of the user-specified
object file. If the instantiation references an entity that
is local to the compilation unit, such as a static func­
tion, and that local entity is nonconstant and statically
initialized, the instantiation is merged into the user­
specified object file rather than generated in its own
object file. As an alternative, we could have chosen to
change the local entity into a global entity with a
unique name and generate the instantiation in its own
object file. We chose not to do this in order to make it
easier to share a repository between applications. With
this alternative, the instantiation in the repository
requires the object file containing the local entity's def­
inition, which may be in another application. Note that
any application that contains more than one definition
of the same instantiation that references a nonconstant
local entity is a nonstandard-conforming application.
This is a violation of the one definition rule. 10 Consider
the following code fragment:

static int j ;
template <class T> int func (T arg) { return j; }
int var= func(2.5);

The reference to the static variable j in the template
function, func, prevents the template from being gen­
erated into its own object file in the repository.

When the individual instantiations are walked, we
mark each global entity that is defined in the compila­
tion unit so that the definition is replaced by an exter­
nal reference when the instantiation object file is
generated. Consider the following code fragment:

void print_count(const char* s, int ivar)
{

cout<< s <<":• << ivar;

template <class T> void func (T arg)
{

static int count= O;
print_count("count•, count++);

The function, print_count, is defined in the source
file and generated as a defined function in the user­
specified object file. The template function, func, refer­
ences the function, print_count. When the code for
func is generated in its own object file, the reference to
print_count must be changed from a reference ~o a
defined function to a reference to an external funcnon.

By default, each needed instantiation is generated by
every compilation that requires the instantiation. This
is the safe default because it ensures that instantiations
in the repository are up to date. However, there will
probably be some compilation overhead from regener­
ating instantiations that may already be up to date. We
believed that the overhead of regenerating instantia­
tions would typically be relatively small. For applica­
tions with a high overhead of instantiation, such as a
large number of source files using the same large num -
ber of template instantiations, we provided a compila­
tion option to control the generation of template
instantiations to improve compile-time performance.

The generation of instantiation object files only
when they are actually required is a difficult problem.
Fine-grain dependency information would have to be
kept for each instantiation object file. Such depen­
dency information would need to reflect ~ose fil~s t!1at
are required to successfully generate the mstannano~
and record which command-line options the user speci­
fied to the compiler. We suspected that the overhead
involved with gathering and checking the information
might be an appreciable percentage of the time it wo~d
take to do the instantiation, and thus it would not give
us the performance improvement that we wanted.

Instead, we decided to provide an option that allows
the user to decide when instantiations are generated.
We refer to this as the template time-stamp option,
-ttimestamp. When using the time-stamp option, the
compiler looks in the repository for a file named
TIMESTAMP. If the file is not found, it is created. The
modification time of this file is referred to as the time

stamp. When generating an instantiation, the compiler
looks in the repository to see if the instantiation object
file exists. If it does not exist, it is generated. If the file
already exists, its modification time is compared to the
time stamp. If the modification time is later than the
time stamp, the instantiation is assumed to be up to
date and is not regenerated. Otherwise, the instantia­
tion is generated. The user can control the generation
of instantiation object files by changing the modifica­
tion time of the TIMESTAMP file.

The time-stamp option would typically be used in
a makefile or a shell script that compiles and builds
an entire application. Before invoking make or the
shell script, the user would make certain that n?
TIMESTAMP file resided in the repository. This
would ensure that each needed instantiation would be
generated exactly once during all the compilations
done by the build procedure.

Much of the C++ linker support in version 5 .6 was
reused with only minor modifications for version
6.0. The compiler is presented with a single repository
into which the instantiation object files are written.
Multiple repositories can be specified at link time, and
each can be searched for instantiations that are needed
by the executable file . The linker is used in a trial link
mode to generate a list of all the unresolved external
references. This list is then used to search the reposito­
ries to find the needed instantiation files, and the
process is repeated until no more instantiations are
needed or can be satisfied from the repository. The
link then proceeds as any normal link, adding the list
of instantiation object files to the list of object files
and libraries as specified by the user.

If a vendor is creating a library rather than an exe­
cutable file, the instantiations needed by the modules
in the library can be provided in either of two ways: (1)
The library vendor can put the needed instantiations
in the library by adding the files in the repository to
the library file . (2) The library vendor can provide the
repository with the library and require that library
users link with the repository as well. Note that instan­
tiations placed in the library are fixed when the library
is created. Since the library is included in the trial link
of an application, any instantiation in the library takes
precedence over the same named instantiation in a
repository.

Results In a number of tests, DIGITAL C++ version
6.0 showed improved performance over version 5.6.
We tested a variety of user code samples that use tem­
plates to varying degrees and found that build times for
version 6.0 decreased substantially compared to the
version 5 .6 compiler. Examples of two typical C++
applications used in our tests are the publicly available
EON ray-tracing benchmark and a subset of tests from
our Standard Template Library (STL) test suite. For

Digital Technical Journal Vol. 10 No. 1 1998 29

the EON benchmark, the build time for version 6.0 was
reduced to 28 percent of the build time for version 5.6.
For the STL tests, the build time for version 6.0 was
reduced to 19 percent of the build time for version 5.6.
The number of files in the repository also decreased
significantly because version 6.0 generates only instan­
tiation object files instead of the instantiation source,
command, dependency, and object files of version 5.6.
For EON, the version 6.0 repository contained 88 files
compared to 260 files in version 5.6.

Using the time-stamp option, build time for the
EON benchmark was reduced by only 5 percent com­
pared to the default instantiation strategy. The real
benefit of the time-stamp option comes with applica­
tions that use the same template instantiations in many
compilation units. For example, in one user's test case,
build times dropped from roughly 18 hours with the
default instantiation to 3 hours when using the time­
stamp option.

In the next section, we conclude our paper with a dis­
cussion of further work that can improve the perfor­
mance and usability of automatic template instantiation.

Future Research

We continue to investigate approaches and techniques
to improve the usability and performance of the auto­
matic template instantiation facility. Optimal usability
and performance would seem to require a development
environment completely integrated for C++. This envi­
ronment would keep track of all entity definitions and
usage and would be able to limit all instantiation gener­
ation to the minimum needed. This approach would
require a great deal of development work and might be
difficult to integrate with existing customer develop­
ment methodologies. Therefore, we focus on more
modest techniques that approximate the optimal case.

We are exploring ways to improve both performance
and usability in the management of dependency infor­
mation. We continue to look at approaches for using
dependencies that can be reliable, automatic, and fast.
We also continue to investigate ways to gather and check
fine-grained dependency information for the instanti­
ation object files, though performance is a concern.
One approximation to the fine-grain dependency
information that we are investigating is a larger grain
dependency scheme. This technique creates a time
stamp from the latest creation time of any source file
included during compilation of a given module. Any
instantiation object file in the repository whose modi­
fication time is later than this time stamp would not be
regenerated. This approach is more automatic and can
potentially yield better performance than our current
time-stamp option, but it would not be sensitive to
changes on the command line or changes to the struc-

30 Digital Technical Journal Vol. 10 No. 1 1998

ture of the files used to generate the instantiation. For
example, if the user specified an include directory
of old_include on the initial compilation and later
specified an include directory of new_include, this
approach would not recognize that different files were
being included.

Another approach to improving application build
performance is to support a build facility that can
make use of template information in determining
dependency. Currently, each user-specified object file
is dependent on all the included files necessary to
create instantiation object files for template requests.
When a change is made to a template definition, all the
sources that reference the template need to be recom­
piled. A build facility designed to be sensitive totem­
plate instantiation could detect that a change in the
template definition was limited to the instantiation
object file. It could then instruct the compiler to sup­
press the regeneration of object files for source files
that are only being recompiled due to the change in
the template instantiation. Such a facility could also
suppress the recompilation of any source file that
would only reproduce the changes to instantiations
that were already regenerated.

Because we recognize that link-time instantiation
can perform better in some cases than the compile-time
approach, we are investigating the link-time instantia­
tion model as a user option.

Finally, we continue to look at ways to reduce the
cost of generating each instantiation. For example, by
default the compiler compresses the generated object
files. Although most instantiation object files are small,
many of them are potentially generated in a single com­
pilation. As a result, the time to compress all the instan­
tiation object files can be significant. Improvements
such as not compressing small object files and/or
improving the algorithm of the object file compression
implementation itself could yield significant perfor­
mance improvement. In addition to improvements
that would reduce the overhead of generating instanti­
ations, we are also researching ways to reduce the num­
ber of instantiation object files. For example, we might
combine all the virtual functions of a class into a single
instantiation object file in the repository.

Summary

As with most engineering problems, no single approach
to the automatic instantiation of templates is optimal for
all potential uses of templates. Based on our experience
with providing template support in DIGITAL C++, we
chose to implement a compile-time automatic template
instantiation scheme for version 6.0 that generates
instantiation object files into a repository. This choice
allows users to better control when template instantia-

tion occurs. In addition, it provides a substantial
improvement in performance of template instantiation
over version 5.6 and reduces the restrictions on the
location of template declarations and definitions. We
continue to investigate the template-instantiation imple­
mentation to further improve compile- and link-time
performance and ease of use.

Acknowledgment

The authors wish to acknowledge Bevin Brett, who
contributed substantially to the design and implemen­
tation of the needed walk and instantiation object file
generation for DIGITAL C++ version 6.0, and
Hemant Rotithor, who provided the performance
measurements for DIGITAL C++ version 6.0 versus
version 5.6. The authors also wish to acknowledge
Charlie Mitchell, Coleen Phillimore, Rich Phillips, and
Harold Seigel for their contributions to the design and
implementation of the DIGITAL C++ automatic tem­
plate instantiation.

References

1. ISO/IEC Standard 14882, Programming Language
C++, 1998.

2. B. Stroustrup, Tbe C++ Programming Language,
Third Edition (Reading, Mass.: Addison-Wesley,
1997).

3. Microsoft Visual C++ 5.0, On-line Help, "Templates,
C++."

4. Microsoft Corporation, "Microsoft Portable Exe­
cutable and Common Object File Format Specifica­
tion," Revision 5.0, Section 5.5.6, Microsoft
Developer's Network(October 1997).

5. G. McCluskey, "An Environment for Template Instan­
tiation," Tbe C++ Report, vol. 4, no. 2 (1992).

6. G. McCluskey and R. Murray, "Template Instantiation
for C++," Sigplan Notices, vol. 27, no. 12 (1992):
47-56.

7. Edison Design Group, "Template Instantiation in the
EDG C++ Front End," Note to the ANSI C++ Com­
mittee, X3J16/95-0163, WG21/N0763.

8. M. Ellis and B. Stroustrup, Tbe Annotated C++ Refer­
ence Manual (Reading, Mass.: Addison-Wesley,
1990).

9. B. Stroustrup, Tbe Design and Evolution of C++
(Reading, Mass.: Addison-Wesley, 1994): 366.

10. B. Stroustrup, Tbe C++ Programming Language,
Third Edition (Reading, Mass.: Addison-Wesley,
1997): 203-205.

Biographies

Avrum E . Itzkowitz
Avrum Itzkowitz was a contractor/consultant at DIGITAL
from September 1995 through December 1997. During
that time, he worked as part of the DIGITAL C++ develop­
ment team, designing and implementing much of the sup­
port for the automatic template instantiation facility in
DIGITAL C++ version 6.0. Avrum also designed and
implemented template instantiation tests. He is currently a
senior software architect engineer at GTE Intemetworking.
He holds a B .S. (1972) in electrical engineering from
Northwestern University and M.S. (1976) and Ph.D.
(1979) degrees in computer science from the University
oflllinois. Avrum is a member of the ACM, the IEEE­
Computer Society, and SIGPLAN.

Lois D. Foltan
Lois Foltan is a principal software engineer at Compaq.
Her areas of expertise include support for C++ automatic
template instantiation and the DIGITAL C++ object
model. She was a member of the DEC C/C++ compiler
team for eight years. During that time, she contributed
to the first GEM-based DEC C and DEC C++ compilers.
Recently, she joined the Digital Java team. Lois received a
B.S. in computer science from the University ofVermont
in 1988.

Digital Technical Journal Vol. 10 No. 1 1998 31

Measurement and
Analysis of C and C++
Performance

As computer languages and architectures
evolve, many more challenges are being pre­
sented to compilers. Dealing with these issues
in the context of the Alpha Architecture and the
C and C++ languages has led Compaq's C and
C++ compiler and engineering teams to develop
a systematic approach to monitor and improve
compiler performance at both run time and
compile time. This approach takes into account
five major aspects of product quality: function,
reliability, performance, time to market, and
cost. The measurement framework defines a
controlled test environment, criteria for select­
ing benchmarks, measurement frequency, and
a method for discovering and prioritizing oppor­
tunities for improvement. Three case studies
demonstrate the methodology, the use of mea­
surement and analysis tools, and the resulting
performance improvements.

32 Digital Technical Journal Vol. 10 No. 1 1998

I
Herna.nt G. Rotithor
Kevin W. Harris
Mark W. Davis

Optimizing compilers are becoming ever more complex
as languages, target architectures, and product features
evolve. Languages contribute to compiler complexity
with their increasing use of abstraction, modularity,
delayed binding, polymorphism, and source reuse,
especially when these attributes are used in combina­
tion. Modern processor architectures are evolving ever
greater levels of internal parallelism in each successive
generation of processor design. In addition, product
feature demands such as support for fast threads and
other forms of external parallelism, integration with
smart debuggers, memory use analyzers, performance
analyzers, smart editors, incremental builders, and feed­
back systems continue to add complexity. At the same
time, traditional compiler requirements such as stan­
dards conformance, compatibility with previous ver­
sions and competitors' products, good compile speed,
and reliability have not diminished.

All these issues arise in the engineering of Compaq's
C and C++ compilers for the Alpha Architecture.
Dealing with them requires a disciplined approach to
performance measurement, analysis, and engineering of
the compiler and libraries if consistent improvements in
out-of-the-box and peak performance on Alpha proces­
sors are to be achieved. In response, several engineering
groups working on Alpha software have established
procedures for feature support, performance measure­
ment, analysis, and regression testing.

The operating system groups measure and improve
overall system performance by providing system-level
tuning features and a variety of performance analysis
tools. The Digital Products Division (DPD) Performance
Analysis Group is responsible for providing official
performance statistics for each new processor mea­
sured against industry-standard benchmarks, such as
SPECmarks published by the Standard Performance
Evaluation Corporation and the TPC series of transac­
tion processing benchmarks from the Transaction
Processing Performance Council. The DPD Performance
Analysis Group has established rigorous methods for
analyzing these benchmarks and provides perfor­
mance regression testing for new software versions.

Similarly, the Alpha compiler back-end development
group (GEM) has established performance improve­
ment and regression testing procedures for SPECmarks;
it also performs extensive run-time performance analy­
sis of new processors, in conjunction with refining and
developing new optimization techniques. Finally, con­
sultants working with independent software vendors
(ISVs) help the ISVs port and tune their applications
to work well on Alpha systems.

Although the effort from these groups does con­
tribute to competitive performance, especially on
industry-standard benchmarks, the DEC C and C++
compiler engineering teams have found it necessary to
independently monitor and improve both run-time
and compile-time performance. In many cases, ISV
support consultants have discovered that their applica­
tions do not achieve the performance levels expected
based on industry-standard benchmarks. We have seen
a variety of causes: New language constructs and prod­
uct features are slow to appear in industry bench­
marks, thus these optimizations have not received
sufficient attention. Obsolete or obsolescent source
code remaining in the bulk of existing applications
causes default options/switches to be selected that
inhibit optimizations. Many of the most important
optimizations used for exploiting internal parallelism
make assumptions about code behavior that prove to
be wrong. Bad experiences with compiler bugs induce
users to avoid optimizations entirely. Configuration
and source-code changes made just before a product is
released can interfere with important optimizations.

For all these reasons, we have used a systematic
approach to monitor, improve, and trade off five
major aspects of product quality in the DEC C and
DIGITAL C++ compilers. These aspects are function,
reliability, performance, time to market, and cost.
Each aspect is chosen because it is important in isola­
tion and because it trades off against each of the other
aspects. The objective of this paper is to show how the
one characteristic of performance can be improved
while minimizing the impact on the other four aspects
of product quality.

In this paper, we do not discuss any individual opti­
mization methods in detail; there is a plethora of liter­
ature devoted to these topics, including a paper
published in thisjourna/.1 Nor do we discuss specific
compiler product features needed for competitive sup­
port on individual platforms. Instead, we show how
the efforts to measure, monitor, and improve perfor­
mance are organized to minimize cost and time to
market while maximizing function and reliability.
Since all these product aspects are managed in the con­
text of a series of product releases rather than a single
release, our goals are frequently expressed in terms of
relationships between old and new product versions.

For example, for the performance aspects, goals along
the following lines are common:

• Optimizations should not impose a compile-speed
penalty on programs for which they do not apply.

• The use of unrelated compiler features should not
degrade optimizations.

• New optimizations should not degrade reliability.

• New optimizations should not degrade perfor­
mance in any applications.

• Optimizations should not impose any nonlinear
compile-speed penalty.

• No application should experience run-time speed
regressions.

• Specific benchmarks or applications should achieve
specific run-time speed improvements.

• The use of specific new language features should not
introduce compile-speed or run-time regressions.

In the context of performance, the term measure­
ment usually refers to crude metrics collected during
an automated script, such as compile time, run time,
or memory usage. The term analysis, in contrast,
refers to the process of breaking down the crude mea­
surement into components and discovering how the
measurement responds to changing conditions. For
example, we analyze how compile speed responds to
an increase in available physical memory. Often, a
comprehensive analysis of a particular issue may
require a large number of crude measurements. The
goal is usually to identify a particular product feature
or optimization algorithm that is failing to obey one of
the product goals, such as those listed above, and
repair it, replace it, or amend the goal as appropriate.
As always, individual instances of this approach are
interesting in themselves, but the goal is to maximize
the overall performance while minimizing the devel­
opment cost, new feature availability, reliability, and
time to market for the new version.

Although some literaturel-4 discusses specific aspects
of analyzing and improving performance of C and C++
compilers, a comprehensive discussion of the practical
issues involved in the measurement and analysis of
compiler performance has not been presented in the
literature to our knowledge. In this paper, we provide a
concrete background for a practitioner in the field of
compilation-related performance analysis.

In the next section, we describe the metrics associ­
ated with the compiler's performance. Following that,
we discuss an environment for obtaining stable perfor­
mance results, including appropriate benchmarks,
measurement frequency, and management of the results.
Finally, we discuss the tools used for performance mea­
surement and analysis and give examples of the use of
those tools to solve real problems.

Digital Technical Journal Vol. 10 No. 1 1998 33

Performance Metrics

In our experience, ISVs and end users are most inter­
ested in the following performance metrics:

• Function. Although function is not usually consid­
ered an aspect of performance, new language and
product features are entirely appropriate to consider
among potential performance improvements when
trading off development resources. From the point
of view of a user who needs a particular feature, the
absence of that feature is indistinguishable from an
unacceptably slow implementation of that feature.

• Reliability. Academic papers on performance sel­
dom discuss reliability, but it is crucial. Not only is
an unreliable optimization useless, often it preju­
dices programmers against using any optimiza­
tions, thus degrading rather than enhancing overall
performance.

• Application absolute run time. Typically, the absolute
run time of an application is measured for a bench­
mark with specific input data. It is important to real­
ize, however, that a user-supplied benchmark is often
only a surrogate for the maximum application size.

• Maximum application size. Often, the end user is
not trying to solve a specific input set in the shortest
time; instead, the user is trying to solve the largest
possible real-world problem within a specific time.
Thus, trends (e.g., memory bandwidth) are often
more important than absolute timings. This also
implies that specific benchmarks must be retired or
upgraded when processor improvements moot their
original rationale.

• Price/Performance ratio. Often, the most effective
competitor is not the one who can match our
product's performance, but the one who can give
acceptable performance (see above) with the cheapest
solution. Since compiler developers do not contribute
directly to server or workstation pricing decisions,
they must use the previous metrics as surrogates.

• Compile speed. This aspect is primarily of interest to
application developers rather than end users.
Compile speed is often given secondary considera­
tion in academic papers on optimization; however, it
can make or break the decision of an ISV consider­
ing a platform or a development environment. Also,
for C++, there is an important distinction between
ab initio build speed and incremental build speed,
due to the need for template instantiation.

• Result file size. Both the object file and executable
file sizes are important. This aspect was not a partic­
ular problem with C, but several language features
of C++ and its optimizations can lead to explosive
growth in result file size. The most obvious prob­
lems are the need for extensive function inlining

34 Digital Technical Journal Vol. 10 No. 1 1998

and for instantiation of templates. In addition, for
debug versions of the result files, it is essential to
find a way to suppress repeated descriptions of the
type information for variables in multiple modules.

• Compiler dynamic memory use. Peak usage, aver­
age usage, and pattern of usage must be regulated
to keep the cost of a minimum development con -
figuration low. In addition, it is important to ensure
that specific compiler algorithms or combinations
of them do not violate the usage assumptions built
into the paging system, which can make the system
unusable during large compilations.

Crude measurements can be made for all or most of
these metrics in a single script. When attempting to
make a significant improvement in one or more met­
rics, however, the change often necessarily degrades
others. This is acceptable, as long as the only cases that
pay a penalty (e.g., in larger dynamic memory use) are
the compilations that benefit from the improved run­
time performance.

As the list of performance metrics indicates, the most
important distinction is made between compile-time
and run-time metrics. In practice, we use automated
scripts to measure compile-time and run-time perfor­
mance on a fairly frequent (daily or weekly during
development) basis.

Compile-Time Performance Metrics
To measure compile-time performance, we use four
metrics: compilation time, size of the generated objects,
dynamic memory usage during compilation, and tem­
plate instantiation time for C++.

Compilation Time The compilation time is measured
as the time it takes to compile a given set of sources,
typically excluding the link time. The link time is
excluded so that only compiler performance is mea­
sured. This metric is important because it directly
affects the productivity of a developer. In the C++ case,
performance is measured ab initio, because our prod­
uct set does not support incremental compilation
below the granularity of a whole module. When opti­
mization of the entire program is attempted, this may
become a more interesting issue. The UNIX shell tim­
ing tools make a distinction between user and system
time, but this is not a meaningful distinction for a com­
piler user. Since compilation is typically CPU intensive
and system time is usually modest, tracking the sum of
both the user and the system time gives the most realis­
tic result. Slow compilation times can be caused by the
use of O (n 2

) algorithms in the optimization phases,
but they can also be frequently caused by excessive
layering or modularity due to code reuse or excessive
growth of the in-memory representation of the pro­
gram during compilation (e.g., due to inlining).

Size of Generated Objects Excessive size of generated
objects is a direct contributor to slow compile and
link times. In addition to the obvious issues of inlin­
ing and template instantiation, duplication of the type
and naming information in the symbolic debugging
support has been a particular problem with C++.
Compression is possible and helps with disk space, but
this increases link time and memory use even more.
The current solution is to eliminate duplicate informa­
tion present in multiple modules of an application.
This work requires significant support in both the
linker and the debugger. As a result, the implementa­
tion has been difficult.

Dynamic Memory Usage during Compilation Usually
modern compilers have a multiphase design whereby
the program is represented in several different forms in
dynamic memory during the compilation process. For
C and C++ optimized compilations, this involves at
least the following processes:

• Retrieving the entire source code for a module
from its various headers

• Preprocessing the source according to the C/C++
rules

• Parsing the source code and representing it in an
abstract form with semantic information embedded

• For C++, expanding template classes and functions
into their individual instances

• Simplifying high-level language constructs into a
form acceptable to the optimization phases

• Converting the abstract representation to a differ­
ent abstract form acceptable to an optimizer, usu­
ally called an intermediate language (IL)

• Expanding some low-level functions inline into the
context of their callers

• Performing multiple optimization passes involving
annotation and transformation of the IL

• Converting the IL to a form symbolically represent­
ing the target machine language, usually called code
generation

• Performing scheduling and other optimizations on
the symbolic machine language

• Converting the symbolic machine language to actual
object code and writing it onto disk

In modern C and C++ compilers, these various inter­
mediate forms are kept entirely in dynamic memory.
Although some of these operations can be performed
on a function-by-function basis within a module, it is
sometimes necessary for at least one intermediate form
of the module to reside in dynamic memory in its
entirety. In some instances, it is necessary to keep mul­
tiple forms of the whole module simultaneously.

This presents a difficult design challenge: how do we
compile large programs using an acceptable amount of
virtual and physical memory? Trade-offs change con­
stantly as memory prices decline and paging algorithms
of operating systems change. Some optimizations even
have the potential to expand one of the intermediate
representations into a form that grows faster than the
size of the program (O(n x log(n)), or even 0(n2

)). In
these cases, optimization designers often limit the
scope of the transformation to a subset of an individual
function (e.g., a loop nest) or use some other means to
artificially limit the dynamic memory and computation
requirements. To allow additional headroom, upstream
compiler phases are designed to eliminate unnecessary
portions of the module as early as possible.

In addition, the memory management systems are
designed to allow internal memory reuse as effi­
ciently as possible. For this reason, compiler design­
ers at Compaq have generally preferred a zone-based
memory management approach rather than either a
malloc-based or a garbage-collection approach. A
zoned memory approach typically allows allocation
of varying amounts of memory into one of a set of
identified zones, followed by deallocation of the
entire zone when all the individual allocations are no
longer needed. Since the source program is repre­
sented by a succession of internal representations
in an optimizing compiler, a zoned-based memory
management system is very appropriate.

The main goals of the design are to keep the peak
memory use below any artificial limits on the virtual
memory available for all the actual source modules
that users care about, and to avoid algorithms that
access memory in a way that causes excessive cache
misses or page faults.

Template Instantiation Time for C++ Templates are a
major new feature of the C++ language and are heavily
used in the new Standard Library. Instantiation of
templates can dominate the compile time of the mod­
ules that use them. For this reason, template instantia­
tion is undergoing active study and improvement,
both when compiling a module for the first time and
when recompiling in response to a source change. An
improved technique, now widely adopted, retains pre­
compiled instantiations in a library to be used across
compilations of multiple modules.

Template instantiation may be done at either com­
pile time or during link time, or some combination.5

DIGITAL C++ has recently changed from a link-time
to a compile-time model for improved instantiation
performance. The instantiation time is generally pro­
portional to the number of templates instantiated,
which is based on a command-line switch specification
and the time required to instantiate a typical template.

Digital Technical Journal Vol. 10 No. 1 1998 35

Run-Time Performance Metrics
We use automated scripts to measure run-time perfor­
mance for generated code, the debug image size, the pro­
duction image size, and specific optimizations triggered.

Run Time for Generated Code The run time for gen­
erated code is measured as the sum of user and system
time on UNIX required to run an executable image.
This is the primary metric for the quality of generated
code. Code correctness is also validated. Comparing
run times for slightly differing versions of synthetic
benchmarks allows us to test support for specific opti­
mizations. Performance regression testing on both
synthetic benchmarks and user applications, however,
is the most cost-effective method of preventing per­
formance degradations. Tracing a performance regres­
sion to a specific compiler change is often difficult, but
the earlier a regression is detected, the easier and
cheaper it is to correct.

Debug Image Size The size of an image compiled
with the debug option selected during compilation is
measured in bytes. It is a constant struggle to avoid
bloat caused by unnecessary or redundant information
required for symbolic debugging support.

Production Image Size The size of a production
(optimized, with no debug information) application
image is measured in bytes. The use of optimization
techniques has historically made this size smaller, but
modern RISC processors such as the Alpha micro­
processor require optimizations that can increase code
size substantially and can lead to excessive image sizes
if the techniques are used indiscriminately. Heuristics
used in the optimization algorithms limit this size
impact; however, subtle changes in one part of the
optimizer can trigger unexpected size increases that
affect I-cache performance.

Specific Optimizations Triggered In a multiphase
optimizing compiler, a specific optimization usually
requires preparatory contributions from several
upstream phases and cleanup from several down­
stream phases, in addition to the actual transforma­
tion. In this environment, an unrelated change in one
of the upstream or downstream phases may interfere
with a data structure or violate an assumption
exploited by a downstream phase and thus generate
bad code or suppress the optimizations. The genera­
tion of bad code can be detected quickly with auto­
mated testing, but optimization regressions are much
harder to find.

For some optimizations, however, it is possible to
write test programs that are clearly representative
and can show, either by some kind of dumping or
by comparative performance tests, when an imple­
mented optimization fails to work as expected. One

36 Digital Technical Journal Vol. 10 No. 1 1998

commercially available test suite is called NULLSTONE,6

and custom-written tests are used as well.
In a collection of such tests, the total number of opti­

mizations implemented as a percentage of the total
tests can provide a useful metric. This metric can indi­
cate if successive compiler versions have improved and
can help in comparing optimizations implemented in
compilers from different vendors. The optimizations
that are indicated as not implemented provide useful
data for guiding future development effort.

The application developer must always consider the
compile-time versus run-time trade-off. In a well­
designed optimizing compiler, longer compile times
are exchanged for shorter run times. This relationship,
however, is far from Linear and depends on the impor­
tance of performance to the application and the phase
of development.

During the initial code-development stage, a shorter
compile time is useful because the code is compiled
often. During the production stage, a shorter run time
is more important because the code is run often.
Although most of the above metrics can be directly
measured, dynamic memory use can only be indirectly
observed, for example, from the peak stack use and the
peak heap use. As a result, our tests include bench­
marks that potentially make heavy use of dynamic
memory. Any degradation in a newer compiler version
can be deduced from observing the compilation of
such test cases.

Environment for Performance Measurement

In this section, we describe our testing environment,
including hardware and software requirements, crite­
ria for selecting benchmarks, frequency of perfor­
mance measurement, and tracking the results of our
performance measurements.

Compiler performance analysis and measurement
give the most reliable and consistent results in a
controlled environment. A number of factors other
than the compiler performance have the potential of
affecting the observed results, and the effect of such
perturbations must be minimized. The hardware and
software components of the test environment used are
discussed below.

Experience has shown that it helps to have a dedi­
cated machine for performance analysis and measure­
ment, because the results obtained on the same
machine tend to be consistent and can be meaning­
fully compared with successive runs. In addition, the
external influences can be closely controlled, and ver­
sions of system software, compilers, and benchmarks
can be controlled without impacting other users.

Several aspects of the hardware configuration on the
test machine can affect the resulting measurements.
Even within a single family of CPU architectures at
comparable clock speeds, differences in specific imple-

mentations can cause significant performance changes.
The number of levels and the sizes of the on-chip and
board-level caches can have a strong effect on perfor­
mance in a way that depends on algorithms of the
application and the size of the input data set. The size
and the access speed of the main memory strongly
affect performance, especially when the application
code or data does not fit into the cache. The activity on
a network connected to the test system can have an
effect on performance; for example, if the test sources
and the executable image are located on a remote disk
and are fetched over a network. Variations in the
observed performance may be divided into two parts:
(1) system-to-system variations in measurement when
running the same benchmark and (2) run-to-run varia­
tion on the same system running the same benchmark.

Variation due to hardware resource differences
between systems is addressed by using a dedicated
machine for performance measurement as indicated
above. Variation due to network activity can be mini­
mized by closing all the applications that make use of
the network before the performance tests are started
and by using a disk system local to the machine under
test. The variations due to cache and main memory
system effects can be kept consistent between runs by
using similar setups for successive runs of performance
measurement.

In addition to the hardware components of the
setup described above, several aspects of the software
environment can affect performance. The operating
system version used on the test machine should corre­
spond to the version that the users are likely to use on
their machines, so that the users see comparable per­
formance. The libraries used with the compiler are
usually shipped with the operating system. Using dif­
ferent libraries can affect performance because newer
libraries may have better optimizations or new fea­
tures. The compiler switches used while compiling test
sources can result in different optimization trade-offs.
Due to the large number of compiler options sup­
ported on a modern compiler, it is impractical to test
performance with all possible combinations.

To meet our requirements, we used the following
small set of switch combinations:

1. Default Mode. The default mode represents the
default combination of switches selected for the com­
piler when no user-selectable options are specified.
The compiler designer chooses the default combina­
tion to provide a reasonable trade-off between com­
pile speed and run speed. The use of this mode is very
common, especially by novices, and thus is important
to measure.

2. Debug Mode. In the debug mode, we test the option
combination that the programmer would select when
debugging. Optimizations are typically turned off,
and full symbolic information is generated about the

types and addresses of program variables. This mode
is commonly specified during code development.

3. Optimize/Production Mode. In the optimize/
production mode, we select the option combina­
tion for generating optimized code (-0 compiler
option) for a production image. This mode is most
likely to be used in compiling applications before
shipping to customers.

We prefer to measure compile speed for debug mode,
run speed for production mode, and both speeds for
the default mode. The default mode is expected to lose
only modest run speed over optimize mode, have good
compile speed, and provide usable debug information.

Criteria for Selecting Benchmarks
Specific benchmarks are selected for measuring perfor­
mance based on the ease of measuring interesting
properties and the relevance to the user community.
The desirable characteristics of useful benchmarks are

• It should be possible to measure individual opti­
mizations implemented in the compiler.

• It should be possible to test performance for com­
monly used language features.

• At least some of the benchmarks should be repre­
sentative of widely used applications.

• The benchmarks should provide consistent results,
and the correctness of a run should be verifiable.

• The benchmarks should be scalable to newer
machines. As newer and faster machines are devel­
oped, the benchmark execution times diminish. It
should be possible to scale the benchmarks on the
machines, so that useful results can still be obtained
without significant error in measurement.

To meet these diverse requirements, we selected a set
of benchmarks, each of which meets some of the
requirements. We grouped our benchmarks in accor­
dance with the performance metrics, that is, as compile­
time and run-time benchmarks. This distinction is
necessary because it allows us to fine-tune the contents
of the benchmarks under each category. The compile­
time and run-time benchmarks may be further classified
as (1) synthetic benchmarks for testing the performance
of specific features or (2) real applications that indicate
typical performance and combine the specific features.

Compile-Time Benchmarks Examples of synthetic
compile-time benchmarks include the #define inten­
sive preprocessing test, the array intensive test, the
comment intensive test, the declaration processing
intensive test, the hierarchical #include intensive test,
the printf intensive test, the empty #include intensive
test, the arithmetic intensive test, the function defini­
tion intensive test (needs a large memory), and the
instantiation intensive test.

Digital Technical Journal Vol. 10 No. 1 1998 37

Real applications used as compile-time bench­
marks include selected sources from the C compiler,
the DIGITAL UNIX operating system, UNIX utilities
such as awk, the X window interface, and C++ class
inheritance.

Run-Time Benchmarks Synthetic run-time bench­
marks contain tests for individual optimizations for
different data type, storage types, and operators. One
run-time suite called NUL1.STONE6 contains tests for
C and C++ compiler optimizations; another test suite
called Bench++7 has tests for C++ features such as vir­
tual function calls, exception handling, and abstraction
penalty (the Haney kernels test, the Stepanov bench­
mark, and the OOPACK benchmark8

).

Run-time benchmarks of real applications for the C
language include some of the SPEC tests that are closely
tracked by the DPD Performance Group. For C++, the
tests consist of the groff word processor processing a set
of documents, the EON ray tracing benchmark, the
Odbsim-a database simulator from the University of
Colorado, and tests that call functions from a search
class library.

Acquiring and Maintaining Benchmarks
We have established methods of acquiring, maintain­
ing, and updating benchmarks. Once the desirable
characteristics of the benchmarks have been identified,
useful benchmarks may be obtained from several
sources, notably a standards organization such as
SPEC or a vendor such as Nullstone Corporation. The
public domain can provide benchmarks such as EON,
groff, and Bench++. The use of a public-domain
benchmark may require some level of porting to make
the benchmark usable on the test platform if the origi­
nal application was developed for use with a different
language dialect, e. g., GNU's gee.

Sometimes, customers encounter performance prob­
lems with a specific feature usage pattern not anticipated
by the compiler developers. Customers can provide
extracts of code that a vendor can use to reproduce
these performance problems. These code extracts can
form good benchmarks for use in future testing to avoid
reoccurrence of the problem.

Application code such as extracts from the compiler
sources can be acquired from within the organization.
Code may also be obtained from other software devel­
opment groups, e. g., the class library group, the
debugger group, and the operating system group.

If none of these sources can yield a benchmark with
a desirable characteristic, then one may be written
solely to test the specific feature or combination.

In our tests of the DIGITAL C++ compiler, we
needed to use all the sources discussed above to obtain
C++ benchmarks that test the major features of the
language. The public-domain benchmarks sometimes
required a significant porting effort because of com-

38 Digital Technical Journal Vol. 10 No. 1 1998

patibility issues between different C++ dialects. We
also reviewed the results published by other C++ com­
piler vendors.

Maintaining a good set of performance measurement
benchmarks is necessary for evolving languages such as
C and C++. New standards are being developed for
these languages, and standards compatibility may make
some of a benchmark's features obsolete. Updating the
database of benchmarks used in testing involves

• Changing the source of existing benchmarks to
accommodate system header and default behavior
changes

• Adding new benchmarks to the set when new com­
piler features and optimizations are implemented

• Deleting outdated benchmarks that do not scale
well to newer machines

In the following subsection, we discuss the fre­
quency of our performance measurement.

Measurement Frequency

When deciding how often to measure compiler per­
formance, we consider two major factors:

• It is costly to track down a specific performance
regression amid a large number of changes. In fact,
it sometimes becomes more economical to address
a new opportunity instead.

• In spite of automation, it is still costly to run a suite
of performance tests. In addition to the actual run
time and the evaluation time, and even with signifi­
cant efforts to filter out noise, the normal run-to­
run variability can show phantom regressions or
improvements.

These considerations naturally lead to two obvious
approaches to test frequency:

• Measuring at regular intervals. During active devel­
opment, measuring at regular intervals is the most
appropriate policy. It allows pinpointing specific
performance regressions most cheaply and permits
easy scheduling and cost management. The interval
selected depends on the amount of development
(number of developers and frequency of new code
check-ins) and the cost of the testing. In our tests,
the intervals have been as frequent as three days and
as infrequent as 30 days.

• Measuring on demand. Measurement is performed
on demand when significant changes occur, for
example, the delivery of a major new version of a
component or a new version of the operating system.
A full performance test is warranted to establish a
new baseline when a competitor's product is released
or to ensure that a problem has been corrected.

Both strategies, if implemented purely, have problems.
Frequent measurement can catch problems early but is

resource intensive, whereas an on-demand strategy
may not catch problems early enough and may not
allow sufficient time to address discovered problems.
In retrospect, we discovered that the time devoted to
more frequent runs of existing tests could be better
used to develop new tests or analyze known results
more fully.

We concluded that a combination strategy is the best
approach. In our case all the performance tests are run
prior to product releases and after major component
deliveries. Periodic testing is done during active devel­
opment periods. The measurements can be used for
analyzing existing problems, analyzing and comparing
performance with a competing product, and finding
new opportunities for performance improvement.

Managing Performance Measurement Results
Typically, the first time a new test or analysis method is
used, a few obvious improvement opportunities are
revealed that can be cheaply addressed. Long-term
improvement, however, can only be achieved by going
beyond this initial success and addressing the remain­
ing issues, which are either costly to implement or
which occur infrequently enough to make the effort
seem unworthy. This effort involves systematically
tracking the performance issues uncovered by the
analysis and judging the trends to decide which
improvement efforts are most worthwhile.

Our experience shows that rigorously tracking all
the performance issues resulting from the analyses
provides a long list of opportunities for improvement,
far more than can be addressed during the develop­
ment of a single release. It thus became obvious that,
to deploy our development resources most effectively,
we needed to devise a good prioritization scheme.

For each performance opportunity on our list, we
keep crude estimates of three criteria: usage frequency,
payoff from implementation, and difficulty of imple­
mentation. We then use the three criteria to divide the
space of performance issues into equivalence classes.
We define our criteria and estimates as follows:

• Usage frequency. The usage frequency is said to be
common if the language feature or code pattern
appears in a large fraction of source modules or
uncommon if it appears in only a few modules.
When the language feature or code pattern appears
in most modules for a particular application domain
predominantly, the usage frequency is said to be
skewed. The classic example of skewed usage is the
complex data type.

• Payoff from implementation. Improvement in an
implementation is estimated as high, moderate, or
small. A high improvement would be the elimina­
tion of the language construct (e.g., removal of
unnecessary constructors in C++) or a significant
fraction of their overhead (e.g., inlining small func-

tions) . A moderate improvement would be a 10 to
50 percent increase in the speed of a language fea­
ture. A small improvement such as loop unrolling
is worthwhile because it is common.

• Difficulty of implementation. We estimate the
resource cost for implementing the suggested
optimization as difficult, straightforward, or easy.
Items are classified based on the complexity of
design issues, total code required, level of risk, or
number and size of testing requirements. An easy
improvement requires little up-front design and
no new programmer or user interfaces, introduces
little breakage risk for existing code, and is typically
limited to a single compiler phase, even ifit involves
a substantial amount of new code. A straightfor­
ward improvement would typically require a sub­
stantial design component with multiple options
and a substantial amount of new coding and testing
but would introduce little risk. A difficult improve­
ment would be one that introduces substantial risk
regardless of the design chosen, involves a new user
interface, or requires substantial new coordination
between components provided by different groups.

For each candidate improvement on our list, we
assign a triple representing its priority, which is a
Cartesian product of the three components above:

Priority= (frequency) x (payoff) x (difficulty)

This classification scheme, though crude and subjec­
tive, provides a useful base for resource allocation.
Opportunities classified as common, high, and easy are
likely to provide the best resource use, whereas those
issues classified as uncommon, small, and difficult are
the least attractive. This scheme also allows manage­
ment to prioritize performance opportunities against
functional improvements when allocating resources
and schedule for a product release.

Further classification requires more judgment and
consideration of external forces such as usage trends,
hardware design trends, resource availability, and
expertise in a given code base. Issues classified as com­
mon and high but difficult are appropriate for a major
achievement of a given release, whereas an opportu­
nity that is uncommon and moderate but easy might
be an appropriate task for a novice compiler developer.

So-called "nonsense optimizations" are often con­
troversial. These are opportunities that are almost
nonexistent in human-written source code, for exam­
ple, extensive operations on constants. Ordinarily they
would be considered unattractive candidates; how­
ever, they can appear in hidden forms such as the result
of macro expansion or as the result of optimizations
performed by earlier phases. In addition, they often
have high per-use payoff and are easy to implement, so
it is usually worthwhile to implement new nonsense
optimizations when they are discovered.

Digital Technical Journal Vol. 10 No. I 1998 39

Management control and resource allocation issues
can arise when common, high, or easy opportunities
involve software owned by groups not under the
direct control of the compiler developers, such as
headers or libraries.

Tools and Methodology

We begin this section with a discussion of performance
evaluation tools and their application to problems. We
then briefly present the results of three case studies.

Tools and Their Application to Problems
Tools for performance evaluation are used for either
measurement or analysis. Tools for measurement are
designed mainly for accurate, absolute timing. Low
overhead, reproducibility, and stability are more
important than high resolution. Measurement tools
are primarily used in regression testing to identify the
existence of new performance problems. Tools for
analysis, on the other hand, are used to isolate the
source code responsible for the problem. High, rela­
tive accuracy is more important than low overhead or
stability here. Analysis tools tend to be intrusive: they
add instrumentation to either the sources or the exe­
cutable image in some manner, so that enough infor­
mation about the execution can be captured to
provide a detailed profile.

We have constructed adequate automated measure­
ment tools using scripts layered over standard operating
system timing packages. For compile-time measure­
ment, a driver reads the compile commands from a file
and, after compiling the source the specified number
of times, writes the resulting timings to a file. Post­
processing scripts evaluate the usability of the results
(average times, deviations, and file sizes) and compare
the new results against a set of reference results. For
compile-time measurement, the default, debug, and
optimize compilation modes are all tested, as previ­
ously discussed.

These summarized results indicate if the test version
has suffered performance regressions, the magnitude
of these regressions, and which benchmark source is
exhibiting a regression. Analysis of the problem can
then begin.

The tools we use for compile-speed and run-time
analysis are considerably more sophisticated than the
measurement tools. They are generally provided by
the CPU design or operating system tools develop­
ment groups and are widely used for application tun -
ing as well as compiler improvements. We have used
the following compile-speed analysis tools:

• The compiler's internal -show statistics feature
gives a crude measure of the time required for each
compiler phase.

40 Digital Technical Journal Vol. 10 No. 1 1998

• The gprof and hiprof tools are supplied in the
development suites for DIGITAL UNIX. Both
operate by building an instrumented version of the
test software (the compiler itself in our case). The
gproftool works with the compiler, the linker, and
the loader; it is available from several UNIX ven­
dors. Hiprof is an Atom tool 9-ll available only on
DIGITAL UNIX; it does not require compiler or
linker support.

The benchmark exhibiting the performance prob­
lem can then be compiled with the profiling version
of the compiler, and the compilation profile can be
captured. Using the display facilities of the tool, we
can analyze the relevant portions of the execution
profile. We can then compare this profile with that
of the reference version to localize the problem to a
specific area of compiler source. Once this informa­
tion is available, a specific edit can be identified as
the cause and a solution can be identified and
implemented. Another round of measurement is
needed to verify the repair is effective, similar to the
procedure for addressing a functional regression.

• When the problem needs to be pinpointed more
accurately than is possible with these profiling
tools, we use the !PROBE tool, which can provide
instruction-by-instruction details about the execu­
tion of a function. 1

•

We have used the following tools or processes for
run-time analysis:

• We apply hiprof and gprof in combination, and
the !PROBE tool as described above, to the
run-time behavior of the test program rather than
to its compilation.

• We analyze the NULLSTONE results by examining
the detailed log file. This log identifies the problem
and the machine code generated. This analysis is usu­
ally adequate since the tests are generally quite simple.

• If more detailed analysis is needed, e.g., to pin­
point cache misses, we use the highly detailed
results generated by the Digital Continuous
Profiling Infrastructure (DCPI) tool. 12

•
13 DCPI can

display detailed (average) hardware behavior on an
instruction-by-instruction basis. Any scheduling
problems that may be responsible for frequent
cache misses can be identified from the DCPI out­
put, whereas they may not always be obvious from
casually observing the machine code.

• Finally, we use the estimated schedule dump and
statistical data optionally generated by the GEM
back end. 1 This dump tells us how instructions are
scheduled and issued based on the processor archi­
tecture selected. It may also provide information
about ways to improve the schedule.

In the rest of this section, we discuss three examples
of applying analysis tools to problems identified by the
performance measurement scripts.

Compile-Ttme Test Case
Compile-time regression occurred after a new opti­
mization called base components was added to the
GEM back end to improve the run-time performance
of structure references. Table 1 gives compile-time test
results that compare the ratios of compile times using
the new optimized back end to those obtained with
the older back end. The results for the iostream test
indicate a significant degradation of 25 percent in the
compile speed for optimize mode, whereas the perfor­
mance in the other two modes is unchanged.

To analyze this problem, we built hiprofversions of
the two compilers and compiled the iostream bench­
mark to obtain its compilation profile. Figures la and
1 b show the top contributions in the flat hiprof pro­
files from the two compilers. These profiles indicate
that the number of calls made to cse and gem_il_peep
in the new version is greater than that of the old one
and that these calls are responsible for performance
degradation. Figures 2a and 2b show the call graph
profiles for cse for the two compilers and show the calls
made by cse and the contributions of each component

Table 1

called by cse. Since these components are included in
the GEM back end, the problem was fixed there.

Run-Ttme Test Cases
For the run-time analysis, we used two different test
environments, the Haney kernels benchmark and the
NULLSTONE test run against gee.

Haney Kernels The Haney kernels benchmark is a
synthetic test written to examine the performance of
specific C++ language features . In this run-time test
case, an older C++ compiler (version 5.5) was com­
pared with a new compiler under development (version
6.0). The Haney kernels results showed that the ver­
sion 6.0 development compiler experienced an overall
performance regression of 40 percent. We isolated the
problem to the real matrix multiplication function.
Figure 3 shows the execution profile for this function.

We then used the DCPI tool to analyze perfor­
mance of the inner loop instructions exercised on ver­
sion 6.0 and version 5.5 of the C++ compiler. The
resulting counts in Figures 4a and 4b show that the
version 6.0 development compiler suffered a code
scheduling regression. The leftmost column shows the
average cycle counts for each instruction executed.
The reason for this regression proved to be that a test

Ratios of CPU (User and System) Compile Times (Seconds) of the New Compiler to Those of the Old Compiler

File Name Debug Mode Default Mode Optimize Mode

Options -00 -g - o4 - go

a1amch2 0.970 0.970 0.930
collevol 0.910 0.780 0.740
d_inh 0.970 0.960 0.960
e_rvirt_yes 0.970 0.980 0.960
interfaceparticle 0.880 0.790 0.730
iostream 0.990 0.980 1.250
pi stream 0.890 0.760 0.790
t202 0.970 0.970 1.130
t300 0.980 0.960 1.040
t601 1.010 1.020 1.010
t606 1.000 1.020 1.020
t643 1.020 1.010 1.000
test_complex_excepti 0.960 0.890 0.830
test_complex_math 0.970 0.950 0.950
test_demo 0.950 0.830 0.780
test_generic 1.000 1.020 1.100
test_task_queue6 0.970 0.920 0.960
test_task_rand 1 0.950 0.890 0.890
test_ vector 0.970 0.920 1.120
vectorf 0.890 0.790 0.850

Averages 0.961 0.920 0.952

Digital Technical Journal Vol.10 No. I 1998 41

42

granularity : cycles; units: seconds; total: 48.96 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
2.8 1. 37 1. 37 10195 0 .13 0 .13 cse [12]
2.6 2.66 1.29 219607 0.01 0 . 01 gem_il_peep [31]
2 . 6 3 . 93 1.27 515566 0 . 00 0 . 00 gem_fi_ud_access_resource [67]
2 . 4 5 . 09 1.17 481891 0 . 00 0 . 00 gem_vrn_get_nz [37]
2 . 3 6 . 23 1.14 713176 0 . 00 0 . 00 _OtsZero [75]

(a) Hiprof Profile Showing Instructions Executed with the New Compiler

granularity : cycles ; units: seconds; total: 27 . 49 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name

3 . 0 0 . 83 0 . 83 143483 0 . 01 0 . 01 gem_il_peep [40]
2 . 7 1. 58 0.75 614350 0.00 0 . 00 _OtsZero [64]
2 . 5 2 . 26 0.68 8664 0 . 08 0 . 08 cse [16]
1. 7 2 . 71 0.45 4 65634 0 . 00 0 . 00 gem_fi_ud_access_resource [86]
1. 6 3 . 14 0.43 423144 0.00 0 . 00 gem_vrn_get_nz [36]

(b) Hiprof Profile Showing Instructions Executed with the Old Compiler

Figure 1
Hi prof Profiles of Compilers

for pointer disambiguation outside the loop code was
not performed properly in the version 6.0 compiler.
The test would have ensured that the pointers a and t
were not overlapping.

We traced the origin of this regression back to the
intermediate code generated by the two compilers.
Here we found that the version 6.0 compiler used a
more modern form of array address computation in
the intermediate language for which the scheduler had
not yet been tuned properly. The problem was fixed in
the scheduler, and the regression was eliminated.

Initial NULLSTONE Test Run against gee We measured
the performance of the DEC C compiler in compiling
the NULLSTONE tests and repeated the performance
measurement of the gee 2.7.2 compiler and libraries
on the same tests. Figures 5a and 5b show the results
of our tests. This comparison is of interest because gee
is in the public domain and is widely used, being the
primary compiler available on the public-domain
Linux operating system. Figure 5a shows the tests in
which the DEC C compiler performs at least 10 per­
cent better than gee. Figure 5b indicates the optirniza-

[12] 14.1 1.37 5.55
2.63
0.63
0.59
0.34
0.32

10195+9395
134485/134485
134485/134485
102760/102760
121243/121243

cse [12]
test_for_cse [42]
update_operands [92]
test_for_induction [97]
gem_df_move [136]
push_effect [149] 12127/12127

(a) Hierarchical Profile for cse with the New Compiler

[16] 10.5 0.68 2.19 8664+7593 cse [16]
1. 04 96554/96554 test_for_cse [56]
0.30 66850/66850 test_for_induction [104]
0.29 96554/96554 update_operands [106]
0.12 87176/87176 move [215]
0.09 7863/7863 pop_effect [267]

(b) Hierarchical Profile for cse with the O Id Compiler

Figure 2
Hierarchical Call Graph Profiles for cse

Digital Technical Journal Vol. 10 No. 1 1998

void rmatMulHC(Real * t,
canst Real * a ,
canst Real * b,
canst int M, canst int N, canst int K)

int i, j , k;
Real temp ;

memset(t , 0, M * N * sizeof(Real)) ;

for (j = l ; j <= N; j++)
{

Figure 3

for (k = l ; k <= K; k++)
{

temp= b[k - 1 + K * (j - l)] ;
if (temp != 0 .0)

{

for (i = l ; i <= M; i++)
t[i - 1 + M * (j - 1)] +=
temp * a[i - 1 + M * (k - l)] ;

Haney Loop for Real Matrix Multiplication

tion tests in which the DEC C compiler shows 10 per­
cent or more regression compared to gee.

We investigated the individual regressions by look­
ing at the detailed log of the run and then examining
the machine code generated for those test cases. In this
case, the alias optimization portion showed that the
regressions were caused by the use of an outmoded
standard15 as the default language dialect (- stdO) for
DEC C in the DIGITAL UNIX environment. After we
retested with the -ansi_alias option, these regres­
sions disappeared.

We also investigated and fixed regressions in
instruction combining and if optimizations. Other
regressions, which were too difficult to fix within the
existing schedule for the current release, were added
to the issues list with appropriate priorities.

Conclusions

The measurement and analysis of compiler performance
has become an important and demanding field. The
increasing complexity of CPU architectures and the
addition of new features to languages require the devel­
opment and implementation of new strategies for test­
ing the performance of C and C++ compilers. By
employing enhanced measurement and analysis tech­
niques, tools, and benchmarks, we were able to address
these challenges. Our systematic framework for com­
piler performance measurement, analysis, and prioriti­
zation of improvement opportunities should serve as an
excellent starting point for the practitioner in a situation
in which similar requirements are imposed.

References and Notes

1. D. Blickstein et al., "The GEM Optimizing Compiler
System," Digital Technical Journal, vol. 4, no. 4
(Special issue, 1992): 121-136.

2. B. Calder, D. Grunwald, and B. Zorn, "Quantifying
Behavioral Differences Between C and C++ Programs,"
Journal of Programming Ianguages, 2 (1994):
313-351.

3. D. Detlefs, A. Dosser, and B. Zorn, "Memory Alloca­
tion Costs in Large C and C++ Programs," Software
Practice and F.xperience, vol. 24, no. 6 (1994):
527-542.

4. P. Wu and F. Wang, "On the Efficiency and Optimiza­
tion ofC++ Programs," Software PracticeandF.xperi­
ence, vol. 26, no. 4 (1996): 453-465.

5. A. Itzkowitz and L. Foltan, "Automatic Template
Instantiation in DIGITAL C++," Digital Technical
Journal, vol. 10, no. 1 (this issue, 1998): 22-31.

6. NULLSTONE Optimization Categories, URL:
http:/ /www.nullstone.com/htmls/category.htm,
Nullstone Corporation, 1990-1998.

7. J. Orost, "The Bench++ Benchmark Suite," December
12, 1995. A draft paper is available at http://www
.research.att.com/-orost/bench_plus_plus/paper.html.

8. C++ Benchmarks, Comparing Compiler Performance,
URL: htrp:/ /www.kai.com/index.html, Kuck and
Associates, Inc. (KAI), 1998.

9. ATOM: User Manual (Maynard, Mass.: Digital Equip­
ment Corporation, 1995).

10. A. Eustace and A. Srivastava, "ATOM: A Flexible
Interface for Building High Performance Program
Analysis Tools," Western Research Lab Technical Note
TN-44, Digital Equipment Corporation, July 1994.

11. A. Eustace, "Using Atom in Computer Architecture
Teaching and Research," Computer Architecture
Technical Committee Newsletter, IEEE Computer
Society, Spring 1995: 28-35.

12. J. Anderson et al., "Continuous Profiling: Where Have
All the Cycles Gone?" SRC Technical Note 1997-016,
Digital Equipment Corporation, July 1997; also in
ACM Transactions on Computer Systems, vol. 15, no.
4 (1997): 357-390.

13. J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G.
Chrysos, "ProfileMe: Hardware Support for Instruction­
Level Profiling on Out-of-Order Processors," 30th Sym­
posium on Microarchitecture (Micro-30), Raleigh, N.C.,
December 1997.

14. Guide to !PROBE, Installing and Using (Maynard,
Mass.: Digital Equipment Corporation, 1994).

15. B. Kerninghan and D. Richie, Tbe C Programming
Language (Englewood Cliffs, N.J.: Prentice-Hall,
1978).

Digital Technical Journal Vol. 10 No. 1 1998 43

rrnatMulHC~XPfPCfPCfiii:

3181 Ox120014894 0:88270000 lds $fL O(t6)
70 Ox120014898 O:a3e70080 ldl zero, 128(t6)

6204 Ox12001489c 0:89460000 lds $fl0, O(t5)
3396 Ox1200148a0 0: 58011041 rnuls $f0,$fl,$fl

13 Ox1200148a4 0:47e60412 bis zero, t5, a2
0 Ox1200148a8 0:40a09005 addl t4, Ox4 , t4

3058 Ox1200148ac 0:20c60010 lda t5, 16(t5)
3157 Ox1200148b0 0:40a80db4 crnple t4, t7, a4

0 Ox1200148b4 0:20e70010 lda t6, 16(t6)
7265 Ox1200148b8 0: 59411001 adds $f10, $fl. $fl

12784 Ox1200148bc 0:9826fff0 sts $fl, -16(t5)
3207 Ox1200148c0 0:8967fff4 lds $fll, -12(t6)

0 Ox1200148c4 0:8986fff4 lds $fl2, -12 (t5)
6604 Ox1200148c8 0:580b104b rnuls $f0,$fll,$fll

13054 Ox1200148cc 0:598b100b adds $f12, $flL $fll
13188 Ox1200148d0 0:9966fff4 sts $fll, -12(t5)

3205 Ox1200148d4 0:89a7fff8 lds $fl3, -8(t6)
0 Ox1200148d8 0:89c6fff8 lds $f14, -8(t5)

6388 Ox1200148dc 0:580d104d rnuls $f0,$fl3 , $fl3
12862 Ox1200148e0 0 : 59cd100d adds $fl4, $fl3, $fl3
12687 Ox1200148e4 0:99a6fff8 sts $fl3, -8(t5)

3134 Ox1200148e8 0:89e7fffc lds $fl5, -4(t6)
0 Ox1200148ec 0:8a06fffc lds $f16, -4(t5)

6357 Ox1200148f0 0: 580fl04f rnuls $f0,$fl5,$fl5
12705 Ox1200148f4 0: 5a0fl00f adds $fl6,$fl5,$fl5
12748 Ox1200148f8 0:99f2000c sts $fl5, 12 (a2)

(a) DCPI Profile for This Execution with Version 6.0

rrnatMulHC~XPfPCfPCfCiCiCi :

6351 Ox1200194d0 0 : 88270000 lds $fl, 0 (t6)
0 Ox1200194d4 0 : 40a09005 addl t4, Ox4, t4

3131 Ox1200194d8 0 : 89460000 lds $fl0, O(t5)
0 Ox1200194dc 0:40a80db4 crnple t4, t7, a4

3215 Ox1200194e0 0:20e70010 lda t6, 16(t6)
17968 Ox1200194e4 0: 58011041 rnuls $f0,$fl,$fl

0 Ox1200194e8 0:20c60010 lda t5, 16(t5)
12870 Ox1200194ec 0: 59411001 adds $f10,$fl,$fl
12727 Ox1200194f0 0 : 9826fff0 sts $fl, -16(t5)

3228 Ox1200194f4 0:8967fff4 lds $fll, -12(t6)
0 Ox1200194f8 0:8987fff8 lds $f12, -8(t6)

6233 Ox1200194fc 0:89a7fffc lds $f13, -4(t6)
3209 Ox120019500 0:580b104b rnuls $f0,$fll , $fll

0 Ox120019504 0 : 89c6fff4 lds $f14, -12(t5)
3127 Ox120019508 0 : 580c104c rnuls $f0,$f12 , $f12

0 Ox12001950c 0:89e6fff8 lds $f15, -8(t5)
3174 Ox120019510 0 : 580d104d rnuls $f0,$f13,$fl3

0 Ox120019514 0:8a06fffc lds $f16, -4(t5)
6791 Ox120019518 0:59cb100b adds $f14, $fll, $fll
3168 Ox12001951c 0:59ec100c adds $f15,$fl2,$fl2
3066 Ox120019520 0:5a0d100d adds $f16, $f13, $f13
6258 Ox120019524 0:9966fff4 sts $fll, -12 (t5)
3134 Ox120019528 0:9986fff8 sts $f12, -8(t5)
3200 Ox12001952c 0:99a6fffc sts $f13, -4(t5)
3168 Ox120019530 O:f69fffe7 bne a4, Ox1200194d0

(b) DCPI Profile with Counts with Version 5.5

Figure4
DCPI Profiles of the Inner Loop

44 Digital Technical Journal Vol. 10 No. 1 1998

Figure Sa

NULLSTONE SUMMARY PERFORMANCE IMPROVEMENT REPORT
Nullstone Release 3.9b2

+--- ------ ---+
I Threshold : Nullstone Ratio Increased by at least 10%
+------------------+----------- ------------------+-----------------------------+

Baseline Compiler Comparison Compiler
+---- ---- ----------+-----------------------------+-----------------------------+

Compiler

Architecture
Model

GCC 2 . 7 . 2

DEC Alpha
3000/300

DEC Alpha C 5 . 7-123 bl36
no restrict
DEC Alpha
3000/300

+----- -------------+-----------------------------+-----------------------------+
Optimization I Sample Size I Improvements I

+--+------ --------+--------------+
Alias Optimization (by type) 102 tests 6 tests
Alias Optimization (canst-qualified) 11 tests 0 tests
Alias Optimization (by address) 52 tests 19 tests
Bitfield Optimization 3 tests 3 tests
Branch Elimination 15 tests 15 tests
Instruction Combining 2510 tests 2026 tests
Cons tant Folding 56 tests 56 tests
Constant Propagation 15 tests 8 tests
CSE Elimination 2600 tests 2353 tests
Dead Code Elimination 306 tests 278 tests
Integer Divide Optimization 92 tests 15 tests
Expression Simplification 181 tests 120 tests
If Optimization 69 tests 13 tests
Function Inlining 39 tests 39 tests
Induction Variable Elimination 4 tests 3 tests
Strength Reduction 2 tests 1 tests
Hoisting 38 tests 18 tests
Loop Unrolling 16 tests 11 tests
Loop Collapsing 3 tests 3 tests
Loop Fusion 2 tests 2 tests
Unswitching 2 tests 1 tests
Block Merging 1 tests 1 tests
Cross Jumping 4 tests 2 tests
Integer Modulus Optimization 92 tests 26 tests
Integer Multiply Optimization 99 tests 3 tests
Address Optimization 26 tests 20 tests
Pointer Optimization 15 tests 9 tests
Printf Optimization 3 tests 3 tests
Forward Store 3 tests 3 tests
Value Range Optimization 30 tests 0 tests
Tail Recursion 4 tests 2 tests
Register Allocation 4 tests 1 tests
Narrowing 3 tests 0 tests
SPEC Conformance 2 t ests 0 tests
Static Declarations 1 tests 1 tests
String Optimization 4 tests 4 tests
Volatile Conformance 90 tests 0 tests

+----- -------------+----------- --- ---------------+-----------------------------+
I Total Performance Improvements>= 10% 6499 tests I 5065 tests I

NULL.STONE Results Comparing gee with DEC C Compiler, Showing All Improvements of Magnitude 10% or More

Digital Technical Journal Vol. 10 No. 1 1998 45

46

Figure Sb

NULLSTONE SUMMARY PERFORMANCE REGRESSION REPORT
Nullstone Release 3.9b2

+--+
I Threshold: Nullstone Ratio Decreased by at least ' l0%
+------------------+-----------------------------+-----------------------------+
I Baseline Compiler Comparison Compiler
+------------------+-----------------------------+-----------------------------+
I Compiler GCC 2.7.2 DEC Alpha C 5.7-123 bl36

Architecture
Model

DEC Alpha
3000/300

no restrict
DEC Alpha
3000/300

+------------------+-----------------------------+-----------------------------+
I Optimization I Sample Size I Regressions
+--+--------------+--------------+

Alias Optimization (by type) 102 tests 64 tests
Alias Optimization (const-qualified) 11 tests 9 tests
Alias Optimization (by address) 52 tests 7 tests
Instruction Combining 2510 tests 204 tests
Constant Propagation 15 tests 1 tests
CSE Elimination 2600 tests 32 tests
Integer Divide Optimization 92 tests 32 tests
Expression Simplification 181 tests 34 tests
If Optimization 69 tests 14 tests
Hoisting 38 tests 4 tests
Unswitching 2 tests 1 tests
Integer Modulus Optimization 92 tests 40 tests
Integer Multiply Optimization 99 tests 95 tests
Pointer Optimization 15 tests 1 tests
Tail Recursion 4 tests 2 tests
Narrowing 3 tests 2 tests

+------------------+-----------------------------+-----------------------------+
I Total Performance Regressions>= 10% 6499 tests I 542 tests I

NULLSTONE Results Comparing gee with DEC C Compiler, Showing All Regressions of 10% or Worse

Biographies

Hemant G. Rotithor
Hemant Rotithor received B. S., M. S., and Ph.D. degrees
in electrical engineering in 1979, 1981, and 1989, respec­
tively. He worked on C and C++ compiler performance
issues in the Core Technology Group at Digital Equipment
Corporation for three years. Prior to that, he was an assis­
tant professor at Worcester Polytechnic Institute and a
development engineer at Philips. Hemant is a member
of the program committee of The 10th International
Conference on Parallel and Distributed Computing and
Systems (PDCS '98). He is a senior member of the IEEE
and a member of Eta Kappa Nu, Tau Beta Pi, and Sigma
Xi. His interests include computer architecture, perfor­
mance analysis, digital design, and networking. Hemant
is currently employed at Intel Corporation.

Digital Technical Journal Vol. 10 No. 1 1998

Kevin W. Harris
Kevin Harris is a consulting software engineer at Compaq,
currently working in the DEC C and C++ Development
Group. He has 21 years of experience working on high­
performance compilers, optimization, and parallel pro­
cessing. Kevin graduated Phi Beta Kappa in mathematics
from the University of Maryland and joined Digital
Equipment Corporation after earning an M.S. in computer
science from the Pennsylvania State University. He has
made major contributions to the DIGITAL Fortran, C,
and C++ product families. He holds patents for techniques
for exploiting performance of shared memory multiproces­
sors and register allocation. He is currently responsible for
performance issues in the DEC C and DIGITAL C++
product families. He is interested in CPU architecture,
compiler design, large- and small-scale parallelism and its
exploitation, and software quality issues.

Mark W. Davis
Mark Davis is a senior consulting engineer in the Core
Technology Group at Compaq. He is a member of Compaq's
GEM Compiler Back End team, focusing on performance
issues. He also chairs the DIGITAL Unix Calling Standard
Committee. He joined Digital Equipment Corporation in
1991 after working as Director of Compilers at Stardent
Computer Corporation. Mark graduated Phi Beta Kappa in
mathematics from Amherst College and earned a Ph. D. in
computer science from Harvard University. He is co-inventor
on a pending patent concerning 64-bit software on
Open VMS.

Digital Technical Journal Vol. 10 No. 1 1998 47

Alias Analysis in the
DEC C and DIGITAL C++
Compilers

During alias analysis, the DEC C and DIGITAL C++
compilers use source-level type information to
improve t he quality of code generated. Without
the use of type information, the compilers
would have to assume that any assignment
through a pointer expression could modify any
pointer-aliased object. In contrast through the
use of type information, the compilers can
assume that such an assignment can modify
only those objects whose type matches that
referenced by the pointer.

48 Digital Technical Journal Vol. 10 No. 1 1998

I
August G. Reinig

When two or more address expressions reference the
same memory location, these address expressions are
aliases for each other. A compiler performs alias analy­
sis to detect which address expressions do not refer­
ence the same memory locations. Good alias analysis is
essential to the generation of efficient code. Code
motion out ofloops, common subexpression elimina­
tion, allocation of variables to registers, and detection
of uninitialized variables all depend upon the compiler
knowing which objects a load or a store operation
could reference.

Address expressions may be symbol expressions
or pointer expressions. In the C and C++ languages,
a compiler always knows what object a symbol expres­
sion references. The same is not true with pointer
expressions. Determining which objects a pointer
expression may reference is an ongoing topic of
research.

Most of the research in this area focuses on the use
of techniques that track which object a pointer expres­
sion might point to. 1.2 When these techniques cannot
make this determination, they assume that the pointer
expression points to any object whose address has
been taken. These techniques generally ignore the
type information available to the source program. The
best techniques perform interprocedural analysis to
improve their accuracy. Although effective, the cost of
analyzing a complete program can make this analysis
impractical.

In contrast, the DEC C and DIGITAL C++ compil­
ers use high-level type information as they perform
alias analysis on a routine-by-routine basis. limiting alias
analysis to within a routine reduces its cost, albeit at
the cost of reducing its effectiveness.

The use of this type information results in slight
improvements in the performance of some standard­
conforming C and C++ programs. These improve­
ments come at little expense in terms of compilation
time. There is, however, a risk that the use of this type
information on nonstandard-conforming C or C++
programs may result in the compiler producing code
that exhibits unexpected behavior.

The C and C++ Type Systems

Research available on the use of type information dur­
ing alias analysis involves languages other than C and
C++.3 Traditionally, C is a weakly typed language. A
pointer that references one type may actually point to
an object of a different type. For this reason, most
alias-analysis techniques ignore type information when
analyzing programs written in C.

The ISO Standard for C defines a much stronger
typing system.4 In ISO Standard C, a pointer expres­
sion can access an object only if the type referenced by
the pointer meets the following criteria:

• It is compatible with the type of the object, ignor­
ing type qualifiers and signedness.

• It is compatible with the type of a member of an
aggregate or union or submembers thereof, ignor­
ing type qualifiers and signedness.

• It is the char type.

Thus, in Figure 1, the pointer p can point to A, B,
C, or S (through S.sub.m) but not to Tor F. The
pointer q, being a pointer to char, can refer to any of
A, B, C, S, T, or F.

The proposed ISO Standard for C++ defines a simi­
lar typing system for C++.5 The strength of the
Standard C and C++ type systems allows the DEC C
and DIGITAL C++ compilers to use type information
during alias analysis.

Many existing C applications do not conform to the
Standard C typing rules. They use cast expressions to

circumvent the Standard C type system. To support
these applications, the DEC C compiler has a mode
whereby it ignores type information during alias analy­
sis. The DIGITAL C++ compiler also has such a mode.
This mode exists to support those C++ programmers
who circumvent the C++ type system.

Figure 1

int A;
signed int const B;
unsigned int volatile C;
struct {

struct {
int m;

} sub;
S ;

struct {
short z;

} T ;
float F;

int *p;
char *q;

Code Fragment Associated with the Explanation of the
Standard C Aliasing Rules

The Side-effects Package

The DEC C and DIGITAL C++ compilers are GEM
compilers. 0 The GEM compiler system includes a
highly optimizing back end. This back end uses the
GEM data access model to determine which objects a
load or a store may access. GEM compiler front ends
augment the GEM data access model with a side­
effects package, i.e., an alias-analysis package. The
side-effects package provides the GEM optimizer
additional information about loads and stores using
language-specific information otherwise unavailable
to the GEM optimizer.

The DEC C and DIGITAL C++ compilers share a
common side-effects package. The DEC C and C++
side-effects package

• Determines which symbols, types, and parts thereof
a routine references

• Determines the possible side effects of these references

• Answers queries from the GEM optimizer regarding
the effects and dependencies of memory accesses

Preserving Memory Reference Information
The DEC C and DIGITAL C++ front ends perform
lexical analysis and parsing of the source program,
generating a GEM intermediate language (GEM IL)
graph representation of the source program.6 A tuple
is a node in the GEM IL and represents an operation in
the source program.

As the DEC C and DIGITAL C++ front ends gener­
ate GEM IL, they annotate each fetch (read) and store
(write) tuple with information describing the object
being read or written. The front ends annotate fetches
and stores of symbols with information about the sym­
bol. They annotate fetches and stores through pointers
with information about the type the pointer references.
The annotation information includes information
describing exactly which bytes of the symbol or type
the tuple accesses. This allows the side-effects package
to differentiate between access to two different mem­
bers of a structure.

Arrays Neither the DEC C nor the DIGITAL C++
front end differentiates between accesses to different
elements of an array. Both assume that all array accesses
are to the first element of the array. The GEM optimizer
does extensive analysis of array references.7 Being flow
insensitive, the DEC C and C++ side-effects package
can, at best, differentiate between two array references
that both use constant indices. The GEM optimizer can
do much more.

What the GEM optimizer cannot do, however, is
determine that an assignment through a pointer to an
int does not change any value in an array of doubles.
This is the purpose of the DEC C and C++ side-effects
package. Mapping all array accesses to access the first

Digital Technical Journal Vol. 10 No. 1 1998 49

element of an array does not hinder this purpose and
simplifies alias analysis of arrays.

Tuple Annotation Example For the program fragment
in Figure 2, the DEC C and DIGITAL C++ front ends
generate the annotated tuples displayed in Table 1.

lntraprocedural Effects Analysis
The GEM optimizer makes several optimization passes
over a routine. During each optimization pass, the
DEC C and C++ side-effects package provides alias
analysis information to the GEM optimizer by means
of the following procedures:

• Examining each tuple within the routine that refer­
ences (reads or writes) memory, allocating effects
classes that represent the memory that the tuple
references

• Performing type-based alias analysis

• Responding to alias-analysis queries from the GEM
optimizer

To determine the possible side effects of a memory
access, the side-effects package partitions memory into
effects classes. An effects class represents all or part of

Figure 2

struct S (
int x;
int y;

} vl, v2;
inti;
double d[3];
s truct S *p;

p->X = 3;
vl.y = 3;
v2 = vl ;
d[il = d[DJ;

Code Fragment Associated with Tuple Annotation
Example

Table 1
Tuple Annotations

CIC++ Source Annotation
Expression Tuple Symbol

Fetch p p

p->X= 3; Store p->x none

v1 .y = 3 Store v1.y v1

Fetch v1 v1

V2 = V1 Store v2 v2

Fetch d[O] d

d[i] =d[O] Fetch i

Store d[i] d

50 Digital Technical Journal Vol. 10 No. l 1998

an object. To minimize the number of effects classes
under consideration, the side-effects package creates
effects classes for only those object regions referenced
within the current routine.

Having created effects classes for each referenced
object region within the current routine, the side­
effects package then associates a signature with each
effects class. The signature for an effects class records
the possible side effects of referencing the effects class.
The side-effects package uses this signature to respond
to queries from the GEM optimizer about the effects
and dependencies of tuples and symbols within the
current routine.

Allocating Effects Classes There are two kinds of
effects classes. The first kind represents a region of an
individual object. The second kind represents a region
of all allocated objects of a particular type. Allocated
objects are those created by the rnalloc () function
and its relatives or the C++ new operator.

As it processes the tuples within a routine, the side­
effects package examines the memory reference infor­
mation associated with the tuple. The side-effects
package creates an effects class for each different set of
memory reference information it encounters. Two sets
of memory reference information are different if they
contain different start- or end-offset information or
different symbol information.

Two sets of memory reference information that
contain different type information are different only if
the two types are not effects equivalent. Two types are
effects equivalent if they differ only in their signedness
or their type qualifiers. The signed int type and the
volatile unsigned int type are effects equivalent. An
assignment through a pointer to a signed int may
change the value of a volatile unsigned int.

Typically, an effects class represents a complete
object or an individual member of a structure. An
effects class may represent a subregion of the region
represented by another effects class. This occurs when­
ever code references a whole structure as well as indi­
vidual members of the structure. In the case of unions,

Annotation
Type Start Byte End Byte

struct S * 0 7

struct S 0 3

struct S 4 7

struct S 0 7

struct S 0 7

double 0 7

int 0 3

double 0 7

if two members occupy exactly the same memory loca­
tions, a single effects class represents both members.

For the program fragment in Figure 3, the side­
effects package creates the effects classes displayed in
Table 2.

There is only one effects class for *uip and *ip since
uip and ip may point to the same object. There are no
effects classes for bytes O through 3 of s and struct S as
there are no references to s.x or sp->x. By allocating
effects classes for only those object regions referenced
within the routine, the side-effects package greatly
reduces both the number of effects classes and the
time required to perform alias analysis.

In the traditional C type system, a pointer expres­
sion may point to anything, regardless of type. To rep­
resent this, the side-effects package creates exactly one
effects class to represent allocated objects. It ignores
the type and the start- and end-offset information.

struct S {
int x;
struct T

int y;
float z;

} t;
s;

struct S *s p;
signed int *ip;
unsigned int *uip;
float *fp ;

*uip = *ip;
*fp = 2;
sp->t = s.t;
sp->t.y = 2;
s = *sp;

Figure3
Code Fragment Associated with Allocating Effects Classes

Table2
Effects Classes Using t he Standard C Type Rules

Type or
Effects Class Symbol Start Offset

1 s 0

2 s 4

3 sp 0

4 fp 0

5 ip 0

6 uip 0

7 st ruct S 0

8 struct S 4

9 struct S 4

10 float 0

11 int 0

Using the traditional C type system, for the program
fragment shown in Figure 3, the side-effects package
creates the effects classes displayed in Table 3. Here,
effects class 7 replaces effects classes 7 through 11 in
Table 2. All the differentiation by types disappears.

Effects-class Signatures Having created the effects
classes, the side-effects package associates a signature
with each effects class. In addition, it associates an
effects-class signature with each tuple within the rou­
tine and each symbol referenced within the routine.

An effects-class signature records the possible side
effects of referencing an effects class. A reference to
one effects class may reference another effects class.
The effects class for a load through a pointer to an int
indicates that the load references an allocated int
object. The pointer to an int may actually reference a
pointer-aliased int symbol or an int member of a struc­
ture or union.

An effects-class signature is a subset of all the effects
classes that might be referenced by a tuple. There is
only one requirement for an effects-class signature: If
two tuples may refer to the same part of memory, the
intersection of their respective effects-class signatures
must be non-null. If two tuples cannot refer to the
same part of memory, it is desirable that the intersec­
tion of their effects-class signatures is null. An empty
intersection leads to more optimization opportunities.

The most obvious rule for building an effects-class
signature is to include in it all the effects classes that
might be touched by a reference to the effects class.
This leads to suboptimal code in cases such as that
shown in Figure 4.

There are three effects classes for this code, s<0,3>,
s<4,7>, and s<0,7>, generated by references to s.x, s.y,
and s, respectively. If the effects-class signature for
s<0,3> includes both s<0,3> and s<0,7> and the
effects-class signature for s<4,7> includes both s<4,7>
and s<0,7>, then the intersection of these two effects-

Source Generating
End Offset Effects Class

11 s
11 s.t
7 sp
7 fp
7 ip
7 uip

11 *sp
11 sp->t
7 sp->t.y
3 *fp
3 *uip and *ip

Digital Technical Journal Vol. 10 No. 1 1998 51

Table 3
Effects Classes Using the Traditional C Type Rules

Effects Class Type or Symbol Start Offset

1 s 0
2 s 4
3 sp 0
4 fp 0
5 ip 0

6 uip 0
7 char 0

class signatures is non-null. This falsely indicates that
s.x and s.y may refer to the same memory location. This
forces GEM to generate code that stores s.y after stor­
ing to s.x.

The DEC C and C++ side-effects package uses more
effective rules for building effects-class signatures. These
rules offer more optimization opportunities while pre­
serving necessary dependency information.

Effects-class Signatures for Symbols If an effects class
represents a region A of a symbol, its signature includes
itself Its signature also includes all effects classes repre­
senting regions of the symbol wholly contained within
A. Finally, it includes any effects class representing a
region of the symbol that partially overlaps A. It does
not include effects classes representing regions of the
symbol that do not overlap A or that wholly contain A.

Table 4 gives the symbol effects-class signatures for
the three effects classes under discussion.

The inclusion of subregions in an effects-class signa­
ture means that references to symbols interfere with
references to members therein and vice versa. Excluding
super-regions in an effects-class signature means that

Figure4

struct S {
int x;
int y;

} s;
s.x = .•• ;
s.y = ••• ;

returns;

Example of Problematic Code for the NaYve Rule for
Building Effects-class Signatures

Table4
Symbol Effects-class Signatures

Effects Class

S<0,3>
S<4,7>
S<0,7>

Effects-class Signature

S<0,3>
S<4,7>
<0,3>, S<4,7>, S<0,7>

52 Digital Technical Journal Vol. 10 No. 1 1998

End Offset Source Generating Effects Class

11

11

7
7
7
7

s
s.t
sp
fp
ip
uip
*sp, sp->t, *uip, sp->t.y, *fp, *ip

references to two separate members of a symbol do
not interfere with each other. In Table 4, the effects­
class signatures for s<0,3> and s<4,7> do not interfere
with each other. Both signatures interfere with the
effects-class signature for s<0,7>.

The inclusion of effects classes representing partially
overlapping regions of a symbol allows for the correct
representation of the side effects of referencing sub­
mem bers of complex unions.

Effects-class Signatures for Types If an effects class
represents a region of a type, the contents of its signa­
ture depends upon the type. If the type is the char type,
the effects-class signature contains all the effects classes
representing regions of other types or pointer-aliased
symbols. This reflects the C and C++ type rules, which
state that a pointer to a char can point to anything.

If the type is some type T other than char, the effects­
class signature contains effects classes representing:

• Those regions ofT that overlap the region ofT the
effects class represents, using the same overlap rules
as for symbols

• Any region of a pointer-aliased symbol whose type
is compatible to T, ignoring type qualifiers and
signedness

• A region of a pointer-aliased aggregate or union
symbol that contains a member or submember
whose type is compatible to T, ignoring type quali­
fiers and signedness

• A region of an aggregate or union type that con­
tains a member or submember whose type is com­
patible to T, ignoring type qualifiers and signedness

Table 5 gives the signatures for the effects classes in
Table 2, assuming that the symbols is pointer aliased.

Including the effects classes of symbols in the effects­
class signatures of types records the interference of
references through pointers with references to pointer­
aliased symbols. In Figure 3, the pointer uip points to
an unsigned int. The member.s.t.y has type int. Thus,
uip may point to s.t.y. The member s.t contains s.t .y.
Thus, the signature for the effects-class int<0,3> con-

Table 5
Type Effects-class Signatures

Number Effects Class Effects-class Signature

1 s<O, 11> 1, 2
2 S<4, 11> 2
3 sp<0,7> 3
4 fp<0,7> 4
5 ip<0,7> 5
6 uip<0,7> 6

7 struct S<O, 11 > 1, 2, 7, 8, 9
8 struct 5<4, 11 > 1, 2, 8, 9
9 struct 5<4, 7> 1, 2, 9

10 float<0,3> 1, 2, 7, 8, 10
11 int<0,3> 1,2,7,8,9,11

tains the effects-class s<4,l l>. This means that the
load ofs.t depends upon the store through uip.

Including the effects classes of types in the signa­
tures of the effects classes of other types records the
interference of references through a pointer with ref­
erences through pointers to other types. In Figure 3,
the pointer fp points to a float object. The member
sp->t.z has type float. Thus, fp may point to sp->t.z.
The member sp->t contains sp->t.z. Thus, the signa­
ture for the effects-class float<0,3> contains the effects­
class struct S<4,ll>. This reflects the fact that the
~tor~ to sp->t.y depends upon the store through fp,
1.e., 1t must occur after the store through fp.

Even though the signature for the effects-class
float<0,3> contains the effects-class struct S<4 11 > ,
(sp->t), it does not contain the effects-class struct
S<4,7> (sp->t.y). There is no float member of struct
S whose position within struct S overlaps bytes 4
through 7 of struct S. There is a float member of struct
S, namely z, whose position within struct S overlaps
bytes 4 through 11 of struct S. The signature for the
effects-class float<0,3> would not contain the effects­
class s<0,3> if it existed. There is no float member of s
whose position overlaps bytes O through 3 of s.

Additional Effects-class Signatures The side-effects
package creates a special effects-class signature repre­
senting the side effects of a call. A called procedure
may reference the following:

• Any pointer-aliased symbol (by means of a refer­
ence through a pointer)

• Any allocated object (by means of a reference
through a pointer)

• Any nonlocal symbol (by means of direct access)

• Any local static symbol (by means of recursion)

The effects signature for a call includes all the effects
classes representing these objects.

Responding to Optimizer Queries During optimiza­
tion, the optimizer makes two types of queries to the
side-effects analysis routines: dominator-based queries
and nondominator-based queries.

When doing nondominator-based optimizations, the
optimizer uses a bit vector to represent those objects a
write may change (its effects). A similar bit vector repre­
sents those objects whose value a read may fetch (its
dependencies). Each bit in the bit vector represents an
effects class. If a tuple's effects-class signature contains
an effects class, that effects class's bit is set in the tuple's
bit vector. The optimizer uses the union of the bit vec­
tors associated with a set of tuples to represent the com­
bined effects or dependencies of those tuples.

Dominator-based queries involve finding the near­
est dominating tuple that might write to the same
memory location as the tuple in question. Tuple A
dominates tuple B if every path from the start of the
routine to B goes through A.8 If both tuples A and C
dominate B, tuple A is the nearer dominator if C dom­
inates A.
. When doing dominator-based optimizations, the

side-effects package represents the tuples in the cur­
rent dominator chain as a stack, adding and removing
tuples from the stack as GEM moves from one path
in ~e routine's dominator tree to another. Searching
a smgle stack for the nearest dominating tuple that
might write the same memory as the tuple in question
~eferences could lead to O(N2) performance, where N
1s the number of tuples in the dominator chain. This
worst-case behavior occurs when none of the tuples in
a dominator chain affects any subsequent tuple in the
chain. Each time the side-effects package searches the
stack, it examines all the tuples in the stack.

To avoid this, the DEC C and C++ side-effects pack­
age creates a stack for each effects class. When pushing
a tuple, the side-effects package pushes the tuple on
each stack associated with an effects class in the tuple's
effects-class signature. When the GEM optimizer tells
the side-effects package to find the nearest dominating
write for a tuple, the side-effects package need only
choose the nearest of those tuples that are on the top
of the stacks associated with the tuple's effects-class
signature. It need only look at the top of each stack,
because a tuple would not be in the stack unless it
might affect objects in the effects class associated with
the stack.

The multistack worst-case behavior is O(NC). There
are C separate stacks, one for each effects class. The
effects-class signature for each effects class may con­
tain all the other effects classes. This would mean that
each of the N tuples in the dominator chain would
appear in each of the stacks.

Although the worst-case behavior for the multistack
case is no better than the single-stack case (C may be
e~u~ to N), in practice there are often more tuples
withm a routine than effects classes. Furthermore,

Digital Technical Journal Vol. 10 No. 1 1998 53

effects-class signatures often contain a small number
of effects classes. A small number of effects classes in
an effects-class signature means that there are a small
number of stacks to consider. Choosing the nearest
dominator from among the top tuples on these stacks
requires examining only a small number of tuples.

Cost of Using Type Information

When compiling all of the SPECint95 test suite9 using
high optimization, alias analysis accounts for approxi­
mately 5 percent of the compilation time. The use of
Standard C type rules during alias analysis increases
compilation time by less than 0.2 percent (time mea­
sured in number of cycles consumed by the compiler
as reported by Digital Continuous Profiling Infra­
structure [DCPI]1°). The increase in compilation time
varies from program to program but never exceeds
0.5 percent. Handling the extra effects classes gener­
ated by using Standard C type aliasing information
accounted for most of the increase.

Potentially, the cost of including type-aliasing infor­
mation could be huge. Calculating which effects classes
a reference through a char * pointer could touch is
straightforward as shown by the algorithm in Figure 5.

A much more complicated process is required to
calculate which effects classes could be touched by a
reference through a pointer to a type other than char.
The algorithm in Figure 6 performs this process.

Fortunately, the innermost section of this loop is
rarely executed. The innermost section executes only
if a routine references a structure either through a
pointer or a pointer-aliased symbol, that structure
contains a substructure, and the routine references the
substructure through a pointer.

foreach pointer a liased symbol

Effectiveness

The benchmark programs from the SPECint95 suite
offer some convenient test cases for measuring the
effectiveness of type-based alias analysis. The sources are
readily available and portable. The programs conform
to alias rules established by the American National
Standards Institute (ANSI) and are compute intensive.
Unfortunately, they do not contain floating-point cal­
culations. This reduces the number of different types
used in the programs. Type-based alias analysis works
best when there are many different types in use.

Three of the SPECint95 programs show no improve­
ment when compiled using the Standard C typing rules
as opposed to using the traditional C typing rules.
These programs, namely compress, go, and li, do not
use many different types and pointers to them. When
all the pointers in a program are pointers to ints (go),
there is only one effects class for all pointer accesses.
Because the compiler has no way to differentiate
among the objects touched by a dereference of a
pointer expression, it generates identical code for these
programs, regardless of the type rules used. The gen­
erated code for li differs only slightly and only for
infrequently executed routines.

Changes in generated code for the remaining five
benchmarks are more prevalent. Two benchmarks,
ijpeg and perl, show a small reduction in the number
ofloads executed but no meaningful reduction in the
total number of instructions executed. The other
three SPECint95 benchmarks show varying degrees
of reduction in both the number of loads executed
(see Table 6) and the total number of instructions
executed (see Table 7).

foreach effects class representing a region of t h e symbol
a dd that effects class to t h e eff ects class signature for char

Figure 5
Calculation of the Effects-class Signature of the Type char *

Figure 6

foreach pointer aliased s ymbol or type referenced through a pointer
foreach member therein

if t h e member ' s type is referenc ed through pointer
foreach effects c l ass representing a region of the member's type

foreach effects class representing a r egion of the symbol or type
referenced through a pointer

if the two effects class regions overlap
add the symbol's or pointer's effects class to the effects

c lass signature associated with the effect class
representing the member ' s type

Calculation of the Effects-class Signature for Types Other Than char

54 Digital Technical Journal Vol. 10 No. 1 1998

Table6
Number of Loads Executed by the Select SPECint95 Benchmarks

Millions of Loads Millions of Loads
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gee 10,268 10,365 0.9

ijpeg 16,853 16,888 0.2

m88ksim 13,889 14, 157 1.9

per I 11,260 11,296 0.3

vortex 18,994 19,207 1.1

Table 7
Number of Instructions Executed by the Select SPECint95 Benchmarks

Millions of Instructions Millions of Instructions
SPEC Benchmark Using Type Information without Type Information Percent Reduction

gee 42,830 42,935

ijpeg 82,844 82,834

m88ksim 72,490 73, 155

perl 45,219 45,252

vortex 80,093 80,607

The load and instruction counts are those reported
by using Atom's pixie tool on the SPECint95 binaries
to generate pixstat data. 11

•
12 The compiler used was a

development C compiler. All compilations used the
following switches: -fast, -04, -arch ev56 , and
-inline speed. The compilations using the
Standard C type system used the -ansi_alias
switch. The compilations using the traditional C type
system used the -noansi_alias switch. The bench­
mark binaries were run using the reference data set.

DCPI1° measurements of the reduction in the num­
ber of cycles consumed by these SPECint95 bench­
marks showed no consistent reductions. Run-to-run
variability in the data collected swamped any cycle­
time reductions that might have occurred. Similarly,
measurements of gains in SPECint959 results due to
the use of type information during alias analysis showed
no significant changes.

Changes in Generated Code

The code-generation changes one sees in the SPECint95
benchmarks are exactly what one would expect.

The use of type information during alias analysis
reduces the number of redundant loads. An example
of this occurs in ijpeg, which contains the code sequence:

main->rowgroup_ctr
= (JDIMENSION) (cinfo- >min_DCT_scaled_size + 1) ;

main- >rowgroups_avail
= (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);

in process_data_context. Using the traditional C type
system, the compiler must assume that main->row
group_ctr is an alias for cinfo->min_DCT_scaled_size.

0.2

0.0

0.9

0.1

0.6

Thus, it must generate code that loads cinfo->min_
DCT _scaled_size twice. The Standard C type system
allows the compiler to generate only one load of
cinfo-> min_DCT _scaled_size.

Several of the benchmarks contain code similar to
the following from conversion_recipe in gee:

curr . next->list- >opcode = -1 ;
curr.next- >list- >to = from;
curr.next->list->cost = O;
curr.next->list->prev = O;

Using traditional C type rules, the compiler must gen­
erate four loads of curr.next->list. The compiler must
assume that the pointer curr.next->list may point to
itself, making curr.next->list->member an alias for
curr.next->list. The Standard C type rules allow the
compiler to assume that curr.next->list does not point
to itself. This allows the compiler to generate code that
reuses the result of the first load of curr.next->list,
eliminating three redundan t loads.

In another example in gee, the use of Standard C
type rules allows the compiler to move a load outside a
loop. The following loop occurs in fixup_gotos:

for (; lists ; lists = TREE_CHAIN (lists))
if (TREE_CHAIN (lists)

== thisblock->data . block . outer_cleanups)
TREE_ADDRESSABLE (lists) = 1

Standard C type rules tell the compiler that the store
generated by TREE_ADDRESSABLE (lists) = 1
cannot modify thisblock->data.block.outer_cleanups.
This allows the compiler to generate code that fetches
thisblock->data.block.outer_cleanups once before
entering the loop. Using traditional C type rules,
the compiler must generate code that fetches

Digital Technical Journal Vol. 10 No. 1 1998 55

thisblock->data.block.outer_cleanups each time it
traverses the loop.

Not only can type information reduce the number
of redundant loads, it can reduce the number of redun­
dant stores. In m88ksim, there are many routines simi­
lar to the following:

int ffirst(struct instruction *and, union opcode *ptr)

ptr->9en.opcl = Ox3d;
ptr->9en.dest = operands.value[OJ;
ptr->9en.opc2 = cmd->opc.rrr;
ptr->9en.src2 = operands.value[l);
return(O) ;

where opcl, dest, opc2, and src2 are bit fields sharing
the same 32 bits (longword). Using traditional C typ­
ing rules, ptr->gen and cmd->opc may be aliases for
each other. Thus to implement the above routine, the
compiler must generate code that performs the fol­
lowing actions:

• Load ptr->gen

• Update bit fields ptr->gen.opcl and ptr->gen.dest

• Store ptr->gen

• Load cmd->opc.rrr

• Update bit fields ptr->gen.opc2 and ptr->gen.src2

• Store ptr->gen

Using Standard C typing rules, the compiler does not
have to generate the first store ofptr->gen. The assign­
ments to ptr->gen.opcl and ptr->gen.dest cannot
change cmd->opc.rrr. In this case, alias analysis that is
not type based would have a difficult time detecting
that ptr->gen and cmd->opc do not alias each other.
M88ksim never calls ffirst directly. It calls it by means
of an array-indexed function pointer.

A Note of Caution

Many C programs do not adhere to the Standard C
aliasing rules. Through the use of explicit casting and
implicit casting, they access objects of one type by means
of pointers to other types. More aggressive optimization
by GEM combined with more detailed alias-analysis
information from the DEC C and C++ side-effects
package increasingly results in these programs exhibit­
ing unexpected behavior when the compiler uses
Standard C aliasing rules.

Passing a pointer to one type to a routine that
expects a pointer to another type works as expected,
until the GEM optimizer inlines the called procedure.
If the procedure is not inlined, the DEC C and C++
side-effects package must assume that the call conflicts
with all pointer accesses before and after the call. Once
GEM inlines the routine, the side-effects package is
free to assume that references using the inlined pointer
do not conflict with references using the pointer at the
call site. The two pointers point to two different types.

56 Digital Technical Journal Vol. 10 No. 1 1998

A recent example of this problem occurred in the
gee program in the SPECint95 benchmark suite. All
programs in this suite are supposed to conform to the
Standard C type-aliasing rules. Because of an improve­
ment to the GEM optimizer, this benchmark started
to give unexpected results. In rtx_alloc, gee clears a
structure by treating it as an array of ints, assigning
zero to each element of the array. Subsequent to zero­
ing this structure, gee assigns a value to one of the
fields in the structure. Through a series of valid opti­
mizations (given the incorrect type information), the
resulting code did not clear all the fields in the struc­
ture. This left uninitialized data in the structure,
resulting in gee behaving in an unexpected manner.

To avoid potential problems, the DEC C compiler,
by default, does not use the Standard C type rules
when performing alias analysis. The user of the com­
piler has to explicitly assert that the program does fol­
low the Standard C type rules through the use of a
command-line switch.

The DIGITAL C++ compiler does assume that the
C++ program it is compiling adheres to the Standard
C++ type rules. A user of the DIGITAL C++ compiler
can use a command-line switch to inform the compiler
that it should use traditional C type rules when per­
forming alias analysis.

Summary

Using Standard C type information during alias analysis
does improve the generated code for some C and C++
programs. The compilation cost of using type informa­
tion is small. Except for rare cases, performance gains
resulting from these code improvements are small. Any
programs compiled using type information during alias
analysis must strictly adhere to the Standard C and C++
aliasing rules. If not, the optimizer may generate code
that produces unexpected results.

Acknowledgments

The author would like to thank Dave Blickstein, Mark
Davis, Neil Faiman, Steve Hobbs, and Bill Noyce of
the GEM team for their advice and reviews of this
work. Dave Blickstein and Neil Faiman also did work
in the GEM optimizer to ensure that the DEC C and
C++ side-effects package had all the information it
needed to do alias analysis correctly and to ensure that
the GEM optimizer effectively used the information
the side-effects package provided. Thanks also to John
Henning of the CSD Performance Group and Jeannie
Lieb of the GEM team for their help using the
SPECint95 benchmark suite. A final word of thanks
goes to Bob Morgan for suggesting that I write this
paper and to my management for supporting my
doing so.

References and Notes

1. R. Wilson and M. Lam, "Efficient Context-Sensitive
Pointer Analysis for C Programs," Proceedings of the
ACM SIGPLAN '95 Conference on Programming Lan­
guage Design and Implementation, La Jolla, Calif.
(June 1995): 1- 12.

2. D. Coutant, "Retargetable High-Level Alias Analysis,"
Proceedings of the 13th Annual Symposium on Prin­
ciples of Programming Languages, St. Petersburg
Beach, Fla. (January 1986): 110-118.

3. A. Diwan et al., "Type-Based Alias Analysis," Proceed­
ings of the 1998 ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation,
Montreal, Canada (June 1998): 106-117.

4. Joint Technical Committee ISO/IEC JTC 1, "The C
Programming Language," International Standard
ISOIJEC 9899: 1990, section 6.3 Expressions.

5. "Working Paper for Draft Proposed International
Standard for Information Systems-Programming
Language C++," WG21/Nll46, November 1997,
section 3.10.

6. D. Blickstein et al., "The GEM Optimizing Compiler
System," Digital Technical journal, vol. 4, no. 4 (Spe­
cial Issue, 1992): 121- 136.

7. R. Crowell et al., "The GEM Loop Transformer,"
Digital Technical journal, vol. 10, no. 2, accepted for
publication.

8. A. Aho, R. Sethi, and J. Ullman, Compilers Principles,
Techniques, and Tools (Reading, Mass: Addison­
Wesley, 1986): 104.

9. Information about the SPEC benchmarks is available
from the Standard Performance Evaluation Corpora­
tion at http:/ /www.specbench.org/.

10. J. Anderson et al., "Continuous Profiling: Where Have
All the Cycles Gone?" Proceedings of the Sixteenth
ACM Symposium on Operating System Principles, Sait­
Malo, France (October 1997): 15- 26.

11. A. Srivastava and A. Eustace, "ATOM: A System for
Building Customized Program Analysis Tools," Pro­
ceedings of the ACM SI GP LAN '94 Conference on Pro­
gramming Language Design and Implementation,
Orlando, Fla. (June 1994): 196-205.

12. UMIPS-V Reference Manual (pixie and pixstats)
(Sunnyvale, Calif.: MIPS Computer Systems, 1990).

Biography

August G. Reinig
August Reinig is a principal software engineer, currently
working on debugger support in the DIGITAL C++
compiler. In addition to his work on the DEC C and C++
side-effects package, August implemented a Java-based
distributed test system for the DEC C and DIGITAL C++
compilers and a parallel build system for the DEC C and
DIGITAL C++ compilers. The distributed test system
simultaneously runs multiple tests on different machines
and is fault tolerant. Before joining the DEC C and C++
team, he contributed to an advanced development incre­
mental compiler project, which led to two patents,
"Method and Apparatus for Software Testing Using a
Testing Technique to Test Compilers" and "Method
and Apparatus for Testing Software." He earned a B.S. in
mathematics (magna cum laude) from Dartmouth College
in 1980 and an M.S. in computer science from Harvard
University in 1997. He is a member of Phi Beta Kappa.

Digital Technical Journal Vol. 10 No. 1 1998 57

Compiler Optimization
for Superscalar Systems:
Global Instruction
Scheduling without
Copies

The performance of instruction-level parallel
systems can be improved by compiler programs
that order machine operations to increase
system parallelism and reduce execution time.
The optimization, called instruction scheduling,
is typically classified as local scheduling if only
basic-block context is considered, or as global
scheduling if a larger context is used. Global
scheduling is generally thought to give better
results. One global method, dominator-path
scheduling, schedules paths in a function's
dominator tree. Unlike many other global
scheduling methods, dominator-path schedul­
ing does not require copying of operations
to preserve program semantics, making this
method attractive for superscalar architectures
that provide a limited amount of instruction­
level parallelism. In a small test suite for the
Alpha 21164 superscalar architecture, dominator­
path scheduling produced schedules requiring
7.3 percent less execution time than those pro­
duced by local scheduling alone.

58 Digital Technical Journal Vol. 10 No. 1 1998

I
Philip H . Sweany
Steven M. Carr
Brett L. Huber

Many of today's computer applications require compu­
tation power not easily achieved by computer architec­
tures that provide little or no parallelism. A promising
alternative is the parallel architecture, more specifically,
the instruction-level parallel (ILP) architecture, which
increases computation during each machine cycle. ILP
computers allow parallel computation of the lowest
level machine operations within a single instruction
cycle, including such operations as memory loads and
stores, integer additions, and floating-point multiplica­
tions. ILP architectures, like conventional architectures,
contain multiple functional units and pipelined func­
tional units; but, they have a single program counter
and operate on a single instruction stream. Compaq
Computer Corporation's AlphaServer system, based on
the Alpha 21164 microprocessor, is an example of an
ILP machine.

To effectively use parallel hardware and obtain
performance advantages, compiler programs must
identify the appropriate level of parallelism. For ILP
architectures, the compiler must order the single
instruction stream such that multiple, low-level opera­
tions execute simultaneously whenever possible. This
ordering by the compiler of machine operations to
effectively use an ILP architecture's increased paral­
lelism is called instruction scheduling. It is an opti­
mization not usually found in compilers for non-ILP
architectures.

Instruction scheduling is classified as local if it
considers code only within a basic block and global if
it schedules code across multiple basic blocks. A dis­
advantage to local instruction scheduling is its inability
to consider context from surrounding blocks. While
local scheduling can find parallelism within a basic
block, it can do nothing to exploit parallelism between
basic blocks. Generally, global scheduling is preferred
because it can take advantage of added program paral­
lelism available when the compiler is allowed to move
code across basic block boundaries. Tjaden and Flynn,1
for example, found parallelism within a basic block
quite limited. Using a test suite of scientific programs,
they measured an average parallelism of 1.8 within
basic blocks. In similar experiments on scientific pro-

grams in which the compiler moved code across basic
block boundaries, Nicolau and Fisher2 found paral­
lelism that ranged from 4 to a virtually unlimited num­
ber, with an average of90 for the entire test suite.

Trace scbeduling3
•
4 is a global scheduling technique

that attempts to optimize frequently executed paths of
a program, possibly at the expense of less frequently
executed paths. Trace scheduling exploits parallelism
within sequential code by allowing massive migration of
?perations across basic block boundaries during schedul­
rng: By addressing this larger scheduling context (many
basic blocks), trace scheduling can produce better sched­
ules than techniques that address the smaller context of a
single block. To ensure the program semantics are not
changed by interblock motion, trace scheduling inserts
copies of operations that move across block boundaries.
Such copies, necessary to ensure program semantics, are
called compensation copies.

The research described here is driven by a desire to
develop a global instruction scheduling technique
that, like trace scheduling, allows operations to cross
block boundaries to find good schedules and that
unlike trace scheduling, does not require insertion of
compensation copies. Like trace scheduling, DPS first
defines a multiblock context for scheduling and then
uses a local instruction scheduler to treat the larger
context like a single basic block. Such a technique pro­
vides effective schedules and avoids the performance
cost of executing compensation copies. The global
scheduling technique described here is based on the
dominator relation* among the basic blocks of a func­
tion and is called dominator-path scheduling (DPS).

Local Instruction Scheduling

Since DPS relies on a local instruction scheduler we
begin with a brief discussion of the local schedttling
problem. As the name implies, local instruction sched­
uling attempts to maximize parallelism within each
basic block of a function's control flow graph. In gen­
eral, this optimization problem is NP-complete.5

However, in practice, heuristics achieve good results.
(Landskov et al.6 give a good survey of early instruction
scheduling algorithms. Allan et al .7 describe how one
might build a retargetable local instruction scheduler.)

List scbeduling 8 is a general method often used for
local instruction scheduling. Briefly, list scheduling
typically requires two phases. The first phase builds
a directed acyclic graph (DAG), called the data depen­
dence DAG (DDD), for each basic block in the
function. DDD nodes represent operations to be
scheduled. The DDD's directed edges indicate that a
node X preceding a node Y constrains X to occur no

• A basic block, D, dominates another block, B, if every path from
the root of the control-flow graph for a function to B must pass
through D.

later than Y. These DDD edges are based on the formal­
ism of data dependence analysis. There are three basic
types of data dependence, as described by Padua et al.9

• Flow dependence, also called true dependence or
data dependence. A DDD node M2 is flow depen­
dent on DDD node M1 ifM1 executes before M2 and
M1 writes to some memory location read by M2.

• Antidependence, also called false dependence. A
DDD node M2 is antidependent on DDD node M 1
if M 1 executes before M2 and M2 writes to a mem­
ory location read by M1, thereby destroying the
value needed by M1.

• Output dependence. A DDD node M2 is output
dependent on DDD node M1 ifM1 executes before
M2 and M2 and M1 both write to the same location.

To facilitate determination and manipulation of
data dependence, the compiler maintains, for each
DDD node, a set of all memory locations used (read)
and all memory locations defined (written) by that
particular DDD node.

Once the DDD is constructed, the second phase
~egins when list scheduling orders the graph's nodes
mto the shortest sequence of instructions, subject to
(1) the constraints in the graph, and (2) the resource
limitations in the machine (i.e., a machine is typically
limited to holding only a single value at any time). In
general list scheduling, an ordered list of tasks, called a
priority list, is constructed. The priority list takes its
name from the fact that tasks are ranked such that those
with the highest priority are chosen first. In the context
oflocal instruction scheduling, the priority list contains
DDD nodes, all of whose predecessors have already
been included in the schedule being constructed.

Expressions, Statements, and Operations

Within the context of this paper, we discuss algorithms
for code motion. Before going further, we need to
ensure common understanding among our readers for
our use of terms such as expressions, statements, and
operations. To start, we consider a computer program
to be a list of operations, each of which (possibly)
computes a right-hand side (rhs) value and assigns the
rhs value to a memory location represented by a left­
hand side (lhs) variable. This can be expressed as

Af-E

where A represents a single memory location and E
represents an expression with one or more operators
and an appropriate number of operands. During dif­
ferent phases of a compiler, operations might be repre­
sented as

• Source code, a high-level language such as C

• Intermediate statements, a linear form of three­
address code such as quads or n-tuples10

Digital Technical Journal Vol. 10 No. 1 1998 59

• DDD nodes, nodes in a DDD, ready to be sched­
uJed by the instruction scheduler

Important to note about operations, whether repre­
sented as intermediate statements, source code, or
DDD nodes, is that operations include both a set of
definitions and a set of uses.

Expressions, in contrast, represent the rhs of an
operation and, as such, include uses but not defini­
tions. Throughout this paper, we use the terms state­
ment, intermediate statement, operation, and DDD
node interchangeably, because they all represent an
operation, with both uses and definitions, albeit gen -
erally at different stages of the compilation process.
When we use the term expression, however, we mean
an rhs with uses only and no definition.

Dominator Analysis Used in Code Motion

In order to determine which operations can move
across basic block boundaries, we need to analyze the
source program. Although there are some choices
as to the exact analysis to perform, dominator-path
scheduling is based upon a formalism first described by
Reif and Tarjan. 11 We summarize Reif and Tarjan's
work here and then discuss the enhancements needed
to allow interblock movement of operations.

In their 1981 paper, Reif and Tarjan provide a fast
algorithm for determining the approximate birthpoints
of expressions in a program's flow graph. An expres­
sion's birthpoint is the first block in the control flow
graph at which the expression can be computed, and
the value computed is guaranteed to be the same as in
the original program. Their technique is based upon
fast computation of the idef set for each basic block of
the control flow graph. The idef set for a block B is
that set of variables defined on a path between B's
immediate dominator and B. Given that the domina­
tor relation for the basic blocks of a function can be
represented as a dominator tree, the immediate domi­
nator, IDOM, of a basic block B is B's parent in the
dominator tree.

Expression birthpoints are not sufficient to allow us
to safely move entire operations from a block to one of
its dominators because birthpoints address only the
movement of expressions, not definitions. Operations
in general include not only a computation of some
expression but the assignment of the value computed
to a program variable. Ensuring a "safe" motion for an
expression requires only that no expression operand
move above_ any possible definition of that operand,
thus changmg the program semantics. A similar
requirement is necessary, but not sufficient for the
variable to which the value is being assigned.,In addi­
tion to not moving A above any previous definition of
A, A cannot move above any possible use of A.
Otherwise, we run the risk of changing A's value for

60 Digital Technical Journal Vol. 10 No. 1 1998

that previous use. Thus, dominator analysis computes
the iuse set for each basic block and for the idef set.
The iuse set for a block, B, is that set of variables used
on some path between B's immediate dominator and
B. Using the ide/and iuse sets, dominator analysis com­
putes an approximate birthpoint for each operation.

In this paper, we use the term dominator analysis
to mean the analysis necessary to allow code motion of
oper_a?ons while disallowing compensation copies.
Addinonally, we use the term dominator motion for
the general optimization of code motion based upon
dominator analysis.

Enhancing the Reif and Tarjan Algorithm
By enhancing Reif and Tarjan's algorithm to compute
birthpoints of operations instead of expressions, we
make several issues important that previously had no
effect upon Reif and Tarjan's algorithm. This section
motivates and describes the information needed to
allow dominator motion, including the use, def, iuse,
and idef sets for each basic block. An algorithmic
description of this dominator analysis information is
included in the section Overview of Dominator-Path
Scheduling and the Algorithm for Interblock Motion.

When we allow code motion to move intermediate
statements (or just expressions) from a block to one of
its dominators, we run the risk that the statement
(expression) will be executed a different number of
times in the dominator block than it wouJd have been
in its original location. When we move only expres­
sions, the risk is acceptable (although it may not be
efficient to move a statement into a loop) since the
value needed at the original point of computation is
preserved. Relative to program semantics, the number
of times the same value is computed has no effect as
long as the correct value is computed the last time.
This accuracy is guaranteed by expression birthpoints.
. Consider also the consequences of moving an expres­

sion _from a block that is never executed for some partic­
uJar mput data. Again, it may not be efficient to compute
a value never used, but the computation does not alter
program semantics. When dominator motion moves
entire statements, however, the issue becomes more
complex. If the statement moved assigns a new value to
an induction variable, as in the following example,

n= n+ 1

dominator motion would change n's final value if it
moved the statement to a block where the execution
frequency differed from that of its original block. We
could alleviate this problem by prohibiting motion of
any statement for which the use and def sets are not
disjoint, but the possibility remains that a statement
may define a variable based indirectly upon that vari­
able's previous value. To remedy the more general
problem, we disallow motion of any statement, S,

whose def set intersects with those variables that are
used-before-defined in the basic block in which S resides.

Suppose the optimizer moves an intermediate state­
ment that defines a global variable from a block that
may never be executed for some set of input data into
a dominator block that is executed at least once for
the same input data. Then the optimized version has
defined a variable that the unoptimized function did
not, possibly changing program semantics. We can be
sure that such motion does not change the semantics
of that function being compiled; but there is no mech­
anism, short ofcompiling the entire program as a sin­
gle unit, to ensure that defining a global variable in this
function will not change the value used in another
function. Thus, to be conservative and ensure that
it does not change program semantics, dominator
motion prohibits interblock movement of any state­
ment that defines a global variable. At first glance, it
may seem that this prohibition cripples dominator
motion's ability to move any intermediate statements
at all; but we shall see that such is not the case.

One final addition to Reif and Tarjan information is
required to take care of a subtle problem. As discussed
above, dominator analysis uses the idef and iuse sets to
prevent illegal code motion. The use of these sets was
assumed to be sufficient to ensure the legality of code
motion into a dominator block; unfortunately, this is
not the case. The problem is that a definition might
pass through the immediate dominator ofB to reach
a use in a sibling of B in the dominator tree. If there
were a definition of this variable in B, but the variable
was not defined on any path from the immediate dom­
inator, there would be nothing in dominator analysis
to prevent the definition from being moved into the
dominator. But that would change the program's
semantics. Figure 1 shows the control-flow graph for a
function called findmax(), with only the statements
referring to register r7. Register r7 is defined in blocks
B3 and B7, and referenced in B9. This means that r7
is live-out of BS and live-in to BS, but not live-in to
B7; there is a definition of r7 in B3 that reaches BS.
Because there is no definition or use between B7 and
its immediate dominator BS, the idef and iuse sets of
B7 are empty; thus, dominator analysis, as described
above, would allow the assignment of r7 to move
upward to block BS. This motion is illegal; it changes
the definition in B3. Moving the operation from B7 to
BS changes the conditional assignment of r7 to an
unconditional one.

To prevent this from happening, we can insert the
variable into the iuse set of the block B, in which we
wish the statement to remain. We do not, however,
want to add to the iuse set unnecessarily. The solution
is to add each variable, V, that is live-in to any of B's
siblings in the dominator tree, but not into B, or to B's

I
84

I
I

t •
85 qJ 7

' 87 G r7 =

I_J 88

Figure 1
Control Flow Graph for the Function findmax()

iuse set. This will prevent any definition of V that
might exist in B from moving up. If there is a defini­
tion of Vin B, but Vis live-in to B, there must be some
use ofV in B before the definition, so it could not move
upward in any case.

Measurement of Dominator Motion
To measure the motion possible in C programs,
Sweany12 defined dominator motion as the movement
of each intermediate statement to its birthpoint as
defined by dominator analysis and by the number of
dominator blocks each statement jumps during such
movement. Sweany's choice of intermediate state­
ments (as contrasted with source code, assembly lan­
guage, or DDD nodes) is attributed to the lack of
machine resource constraints at that level of program
abstraction. He envisioned dominator motion as an
upper bound on the motion available in C programs
when compensation copies are included. In the test
suite of 12 C programs compiled, more than 25 per­
cent of all intermediate statements moved at least one
dominator block upwards toward the root of the dom­
inator tree. One function allowed more than 50 per­
cent of the statements to be hoisted an average of
nearly eight dominator blocks. The considerable
amount of motion (without copies) available at the
intermediate statement level of program abstraction

Digital Technical Journal Vol. 10 No. 1 1998 61

provided us with the motivation to use similar analysis
techniques to facilitate global instruction scheduling.

Overview of Dominator-path Scheduling and the
Algorithm for lnterblock Motion

Since experiments show that dominator analysis allows
considerable code motion without copies, we chose to
use dominator analysis as the basis for the instruction
scheduling algorithm described here, namely dominator­
path scheduling. As noted above, DPS is a glo~al
instruction scheduling method that does not reqmre
copies of operations that move from one basic block to
another. DPS performs global instruction scheduling by
treating a group of basic blocks found on a dominator
tree path as a single block, scheduling the group as a
whole. In this regard, it resembles trace scheduling,
which schedules adjacent basic blocks as a single block.
DPS's foundation is scheduling instructions while mov­
ing operations among blocks according to both the
opportunities provided by and the restrictions imposed
by dominator analysis.

The question arises as to how to exploit dominator
analysis information to permit code motion at the
instruction level during scheduling. DPS is based on
the observation that we can use idef and iuse sets to
allow operations to move from a block to one of its
dominators during instruction scheduling. Instruction
scheduling can then choose the most advantageous
position for an operation that is placed in any one of
several blocks. Because machine operations are incor­
porated in nodes of the DDD used in scheduling and,
like intermediate statements, DDD nodes are repre­
sented by def and use sets, the same analysis performed
on intermediate statements can also be applied to a
basic block's DDD nodes.

The same motivation that drives trace scheduling­
namely that scheduling one large block allows better use
of machine resources than scheduling the same code as
several smaller blocks-also applies to DPS. In contrast
to trace scheduling, DPS does not allow motion of
DDD nodes when a copy of a node is required and does
not incur the code explosion due to copying that trace
scheduling can potentially produce. For architectures
with moderate instruction-level parallelism, DPS may
produce better results than trace scheduling, because
the more limited motion may be sufficient to make
good use of machine resources, and unlike trace sch~d­
uling, no machine resources are devoted to execunng
semantic-preserving operation copies.

Much like traces,* the dominator path's blocks can
be chosen by any of several methods. One method is a
heuristic choice of a path based on length, nesting
depth, or some other program characteristic. Another
is programmer specification of the most important

*groups of blocks to be scheduled together in trace scheduling

62 Digital Technical Journal Vol. 10 No. 1 1998

paths. A third is actual profiling of the ~unning p~o­
gram. We visit this issue again in the secnon Cho~smg
Dominator Paths. First, however, we need to discuss
the algorithmic details ofDPS. .

Once DPS selects a dominator path to schedule, it
requires a method to combine the blocks' DDDs into
a single DDD for the entire dominator path. In our
compiler, this task is performed by a DDD coupler,13

which is designed for the purpose. Given the DDD
coupler, DPS proceeds by repeatedly

• Choosing a dominator path to schedule

• Using the DDD coupler to combine each block's
DDD on the chosen dominator path

• Scheduling the combined DDD as a single block

The dominator-path scheduling algorithm, detailed
in this section, is summarized in Figures 2 and 3.

A significant aspect of the DPS process is to ensure
"appropriate" interblock motion of DDD nodes and
to prohibit "illegal" motion. As noted earlier, the
combined DDD for a dominator path includes control
flow. Therefore, when DPS schedules a group of
blocks represented by a single DDD, it needs a mecha­
nism to map correctly the scheduled instructions to
the basic blocks. The mechanism is easily accom­
plished by the addition of two special nodes to each
block's DDD. Called BlockStart and BlockEnd, these
special nodes represent the basic block boundaries.
Since dominator-path scheduling does not allow
branches to move across block boundaries, each
BlockStart and BlockEnd node is initially "tied" (with
DDD arcs) to the branch statement of the block, if any.
Because BlockStart and BlockEnd are nodes in the
eventually combined DDD, they are scheduled lik~ all
other nodes of the combined DDD. After scheduling,
all instructions between the instruction containing the
BlockStart node for a block and the instruction con­
taining the BlockEnd node for that block are consid­
ered instructions for that block. Next, DPS must
ensure that the BlockStart and BlockEnd DDD nodes
remain ordered (in the scheduled instructions) relative
to one another and to the BlockStart and BlockEnd
nodes for any other block. To do so, DPS adds use and
def information to the nodes to represent a pseudore­
source, BlockBoundary. Because each BlockStart
node defines BlockBoundary and each BlockEnd
node uses BlockBoundary, no BlockEnd node can be
scheduled ahead of its associated BlockStart node
(because of flow dependence.) Also, a BlockStart node
cannot be scheduled before its dominator block's
BlockEnd node (because of antidependence). By
establishing these imaginary dependencies, DPS
ensures that the DDD coupler adds arcs between all
BlockStart and BlockEnd nodes.

Algorithm Dominator-Path Scheduling
Input:

Output:

Function Control Flow Graph
Dominator Tree
Post-Dominator Tree

Scheduled instructions for the function

Algorithm:
While at least one Basic Block is unscheduled

Heuristically choose a path B1, B2, ... , B" in the Dominator Tree that includes
only unscheduled Basic Blocks.

Perform dominator analysis to compute !Def and !Use sets

/* Build one DDD for the entire dominator path * /
CombinedDDD = B1
For i= 2 ton

T = InitializeTransitionDDD (B,-1, B,)
CombinedDDD = Couple(CombinedDDD,T)
CombinedDDD = Couple (CombinedDDD, B,)

Perform list scheduling on CombinedDDD
Mark each block ofDP scheduled
Copy scheduled instructions to the Blocks of the path (instructions between the
BlockStart and BlockEnd nodes for a Block are "written" to that Block)

End While

Figure 2
Dominator-path Scheduling Algorithm

Looking back to dominator analysis, we see that
interblock motion is prohibited if the operation being
moved

• Defines something that is included in either the
idef or iuse set

• Uses something included in the idef set for the
block in which the operation currently resides

To obtain the same prohibitions in the combined
DDD, we add the idefset for a basic block, B, to the
def set B's BlockStart node. Similarly, we add the iuse
set for B to the use set of B's BlockStart node. Thus we
enforce the same restriction on movement that domi­
nator analysis imposed upon intermediate statements
and ensure that any interblock motion preserves pro­
gram semantics. In a similar manner, DPS includes the
restrictions on movement of operations that define
either global variables or induction variables. Figure 3
gives an algorithmic description of the process of
"doping" the BlockStart and BlockEnd nodes to pre­
vent disallowed code motion.

DPS is complicated by factors not relevant for dom­
inator motion of intermediate statements. Foremost is
the complexity imposed by the bidirectional motion of

operations that instruction scheduling allows. In dom­
inator motion, intermediate statements move in only
one direction, i.e., toward the top of the function's
control flow graph, not from a dominator block to a
dominated one. This one-directional motion is rea­
sonable when attempting to move intermediate state­
ments because one statement's movement will likely
open possibilities for more motion in the same direc­
tion by other statements. When statements move in
different directions, one statement's motion might
inhibit another's movement in the opposite direction.
The goal of dominator motion is to move statements as
far as possible in the control flow graph. In contrast, the
goal of DPS is not to maximize code motion, but rather
to find, for each operation, 0, that location for O that
will yield the shortest schedule. Thus our goal has
changed from that of dominator motion. To gain the
full benefit from DPS, we wish to allow operations to
move past block boundaries in either direction. To per­
mit bidirectional motion, we use the post-dominator
relation, which says that a basic block, PD, is a post­
dominator of a basic block B if all paths from B to the
function's exit must pass through PD. Using this strat­
egy, we similarly define post-idef and post-iuse sets. In

Digital Technical Journal Vol. 10 No. 1 1998 63

Figure 3

Algorithm InitializeTransitionDDD(B1, B2)
Input:

Output:

A Transition DDD templates, with a Dummy DDDNode
for B 1 's block end and one for B2 's block start
Two basic blocks, B, and B2 that we wish to couple
Dominator Tree
Post-Dominator Tree
The following dataflow information

Def, Use, !Def, and !Use sets for B1 and B2
Used-Before-Defined set for B2
Post-IDef, and Post-IUse sets for B, and B2
B2 's "sibling" set, defined to include any variable

live-in to a dominator-tree sibling ofB2, but not
live-in to B2

A basic block DDD for each ofB, and B2

An initialized Transition DDD, T
Algorithm:

T = TransitionDDD
/* "Fix" set for global and induction variables. * /
Add set of global variables to Bi's !Use
Add Bi's Used-Before-Defined to Bi's !Use
Add Bi's sibling set to Bi's !Use

IfB2 does not post-dominate B,

Else

Add B, 's Use set to T's BlockEnd Def set
Add B, 's Def set to T's BlockEnd Use set

Add B, 's Post-IDef set to T's BlockEnd Def set
Add B,'s Post-IUse set to T's BlockEnd Use set

Add Bi's !Def set to T's BlockStart Def set
Add Bi's !Use set to T's BlockStart Use set
Return T

Initialize Transition DDD Algorithm

fact, it is not difficult to compute all these quantities
for a function. The simplest way is to logically reverse
the direction of all the control flow graph arcs and per­
form dominator analysis on the resulting graph.
Having computed the post-dominator tree, DPS
chooses dominator paths such that the dominated
node is a post-dominator of its immediate predecessor
in a dominator path. This choice allows operations to
move "freely" in both directions. Of course, this may
be too limiting on the choice of dominator paths. To
allow for the possibility that nodes in a dominator path
will not form a post-dominator relation, DPS needs a
mechanism to limit bidirectional motion when
needed. Again, we rely on the technique of adding
dependencies to the combined DDD. In this case
(assuming that DPS is scheduling paths in the forward
dominator tree), for any basic block, B, whose succes-

64 Digital Technical Journal Vol. 10 No. 1 1998

sor, S, in the forward dominator path does not post­
dominate B, DPS adds B's def set to the use set of the
BlockEnd node associated with B. In similar fashion,
we add B's use set to B's BlockEnd node's def set.
This technique prevents any DDD node originally in
B from moving downward in the dominator path.

Choosing Dominator Paths

DPS allows code movement along any dominator
path, but there are many ways to select these paths. An
investigation of the effects of dominator-path choice
on the efficiency of generated schedules tells us that
the choice of path is too important to be left to arbi­
trary selection; twice the average percent speedup* for
several functions can often be achieved with a simple,

* (unoptimized_speed - optimized_speed)/ unoptimized_speed

well-chosen heuristic. Some functions have a potential
percent speedup almost four times the average. Thus,
it is important to find a good, generally applicable
heuristic to select the dominator paths.

Unfortunately, it is not practical to schedule all of
the possible partitionings for large functions. If we
allow a basic block to be included in only one domina­
tor path, the formula for the number of distinct parti­
tionings of the dominator tree is

II [outdeg(n) + l]
nEN

where N is the set of nodes of the dominator tree. 14

Although the number of possible paths is not prohibi­
tive for small dominator trees, larger trees have a pro­
hibitively large number. For example, whetstone's
main(), with 49 basic blocks, has almost two trillion
distinct partitionings.

To evaluate differences in dominator-path choices,
we scheduled a group of small functions with DPS
using every possible choice of dominator path. The
target architecture for this study was a hypothetical
6-wide long-instruction-word (LIW) machine, which
was simulated and in which it was assumed that all
cache accesses were hits.

The results of exhaustive dominator-path testing
show, as expected, that varying the choice of domina­
tor paths significantly affects the performance of
scheduling. For all functions of at least two basic
blocks, DPS showed improvement over local schedul­
ing for at least one of the possible choices of domina -
tor paths. Table 1 shows the best, average, and worst
percent speedup over local scheduling found for all
functions that had a "best" speedup of over 2 percent;
it also shows the speedup of the original implementa-

Table 1

tion of DPS and the number of distinct dominator tree
partitionings. The original implementation of DPS
included a single, simple heuristic to choose domina -
tor paths. More specifically, to choose dominator paths
within a group, G, of contiguous blocks at the same
nesting level, the compiler continues to choose a
block, B, to "expand." Expansion ofB initializes a new
dominator path to include B and adds B's dominators
until no more can be added. The algorithm then starts
another dominator path by expanding another (as yet
unexpanded) block ofG. The first block ofG chosen
to expand is the tail block, T, in an attempt to obtain as
long a dominator path as possible.

Unfortunately, not all functions are small enough to
be tested by performing DPS for each possible parti­
tioning of the dominator tree. Therefore, we defined
37 different heuristic methods of choosing dominator
trees, based upon groupings of six key heuristic factors.

The maximum path lengths of the basic guidelines
were adjusted to produce actual heuristics. We used
the heuristic factors from which the individual heuris­
tics were constructed; each seemed likely either to
mimic the observed characteristics of the best path
selection or to allow more freedom of code motion
and, therefore, more flexibility in filling "gaps."

• One nesting level-Group blocks from the same
nesting level of a loop. Each block is in the same
strongly connected component, so the blocks tend
to have similar restrictions to code motion. For a
group of blocks to be a strongly connected compo­
nent, there must be some path in the control flow
graph from each node in the component to all the
other nodes in the component. Since the function
will probably repeat the loop, it seems likely that
the scheduler will be able to overlap blocks in it.

Percent of Function Speedup Improvement Using DPS Path Choices over Local Scheduling

Percent Speedup

No. Dominator
Function Name Best Average Worst Original Tree Partitions

bubble 39.2 10.6 -0.1 11.7 72

readm 32.5 9.3 -0.2 32.5 48

solve 27.8 9.9 -0.2 27.8 96
queens 25.4 8.3 -0.4 -0.4 96
swap row 23.1 5.8 -3.7 19.5 24

print(g) 22.0 9.1 -0.2 22.0 8
find max 21.3 6.2 -0.3 8.7 18

copycol 18.5 5.6 -5.0 19.9 8

elim 14.3 2.3 -3.8 10.2 576

mult 13.7 2.1 -3.8 10.3 96
subst 12.9 2.4 -4.9 4.9 96
print(8) 12.5 6.2 0.0 12.5 8

Digital Technical Journal Vol.10 No. I 1998 65

• Longest path--Schedule the longest available path.
This heuristic class allows the maximum distance
for code motion.

• Postdominator-Follow the postdominator relation
in the dominator tree. When a dominator block, P, is
succeeded by a non-postdominator block, S, our
compiler adds P's def set to the use set of P's
BlockEnd node and the use set to the def set to
prevent any code motion from P to S. If Pis instead
succeeded by its postdominator block, no such mod­
ification is necessary, and code would be allowed to
move in both directions. Intuitively, the postdomina­
tor relation is the exact inverse of the dominator rela­
tion, so code can move down, into a postdominator,
as it moves up into a dominator. Further, the simple
act of adding nodes to the DDD will complicate list
scheduling, making it harder for the scheduler to

generate the most efficient schedule.

• Non-postdominator-Follow a non-postdominator
in the dominator tree. This heuristic class generally
means adding loop body blocks to the path. Notice
that this seems at odds with the previous heuristic
class. The previous class was suggested by intuition
about the scheduler, and this one by observation of
path behavior.

• idefsize-Group by idef set size. The larger the
idef size, the more interference there is to code
motion. A small idef size will probably allow more
code motion, so we try to add blocks with small
idefsizes.

• Density-Group by operation density. We define
the density of each basic block as the number of
nodes in the DDD divided by the number of instruc­
tions required for local scheduling. A dense block
already has close to its maximum number of opera­
tions; adding or removing operations will probably
not improve the schedule. For this reason, we want
to avoid scheduling dense blocks together. Two
methods are tried: scheduling dense blocks with
sparse blocks and putting sparse blocks together.

The heuristic factors were used to make individual
heuristics by changing the limit on the possible num­
ber of blocks in a path. It was reasonable to set limits
for four factors: postdominator, non-postdominator,
idef size, and density. We tried path length limits in
blocks of 2, 3, 4, 5, and unlimited, making a total of
five heuristics from each heuristic factor.

Running DPS using each of the heuristic methods
and comparing the efficiency of the resulting code
leads to several conclusions about effective heuristics
for choosing DPS's dominator paths. For some heuris­
tics, we can achieve the best schedules for DPS by
using paths that rarely exceed three blocks. For any
particular class of heuristics, we can achieve the best
schedule with paths limited to five blocks or fewer.

66 Digital Technical Journal Vol. lO No. l 1998

Consequently, path lengths can be limited without
lowering the efficiency of generated code, and longer
paths, which increase scheduling time, can be avoided.

Since no one heuristic performed well for all func­
tions, we advise using a combination of heuristics, i.e.,
schedule by using each of three heuristics and taking
the best schedule. The "combined" heuristic includes
the following:

• Instruction density, limit to five blocks

• One nesting level on path, limit to five blocks

• Non-postdominator, unlimited length

Frequency-based List Scheduling

Llke some other global schedulers, DPS uses a local
scheduling algorithm (list scheduling) on a global con­
text, namely the meta-blocks built by DPS. This algo­
rithm raises the possibility of moving code from less
frequently executed blocks to more frequently executed
blocks. Ar. first glance, this practice seems to be a bad idea.

In theory, to best schedule any meta-block, an
instruction scheduler must account for the differing
cost of the instructions within the meta-block. If a sin­
gle meta-block includes multiple nesting levels, the
scheduler must recognize that instructions added to
blocks with higher nesting levels are more costly than
those added to blocks with lower nesting levels. Even
within a loop, there exists the potential for consider­
able variation in the execution frequencies of different
blocks in the meta-block due to control flow. Of
course variable execution frequency is not an issue in
traditional local scheduling because, within the con­
text of a single basic block, each DDD node is exe­
cuted the same number of times, namely, once each
time execution enters the block.

To address the issue of differing execution frequen­
cies within meta-blocks scheduled as a single block by
DPS, we investigated frequency-based list scheduling
(FBLS),1s an extension of list scheduling that provides
an answer to this difficulty by considering that execu­
tion frequencies differ within sections of the meta­
blocks. FBLS uses a greedy method to place DDD nodes
in the lowest-cost instruction possible. FBLS amends
the basic list-scheduling algorithm by revising only the
DDD node placement policy in an attempt to reduce
the run-time cycles required to execute a meta-block.

Unfortunately, although FBLS makes intuitive sense,
we found that DPS produced worse schedules with
FBLS than it produced with a naive local scheduling
algorithm that ignored frequency differences within
DPS's meta-blocks. Therefore, the current imple­
mentation of DPS ignores the execution frequency
differences between basic blocks, both in choosing
dominator paths to schedule and in scheduling those
dominator-path meta-blocks.

Evaluation of Dominator-path Scheduling

To measure the potential of DPS to generate more
efficient schedules than local scheduling for commer­
cial superscalar architectures, we ran a small test suite
ofC programs on an Alpha 21164 server. The Alpha
server is a superscalar architecture capable of issuing
two integer and two floating-point instructions each
cycle. Our compiler estimates the effectiveness of a
schedule by modeling the 21164 as an LIW architec­
ture with all operation latencies known at compile
time. Of course this model was used only within the
compiler itself. Our results measured changes in
21164 execution time (measured with the UNIX
"time" command) required for each program.

Our test suite of 14 C programs includes 8 programs
that use integer computation only and 6 programs that
include floating-point computation. We separated
those groups because we see dramatic differences in
DPS's performance when viewing integer and floating­
point programs. To choose dominator paths, we used
the combined heuristic recommended by Huber.14

Table 2 summarizes the results of tests we con­
ducted to compare the execution times of programs
using DPS scheduling with those using local schedul­
ing only. The table lists the programs used in the test
suite and the percent improvement in execution times
for DPS-scheduled programs. The execution time

Table2
Percent DPS Scheduling Improvements over Local
Scheduling of Programs

Percent Execution
Program Time Improvement

8-Queens 7.3
SymbolTable 7.3
BubbleSort 5.0
Nsieve 6.1
Heapsort 6.0
Killcache 2.6
TSP 2.4
Dhrystone 0.7

C integer average 4.7

Dice 3.7
Whetstone 5.4
Matrix Multiply 16.2
Gauss 12.3
Finite Difference 17.6
Livermore 9.3

C floating-point average 10.8

Overall average 7.3

measurements were made on an Alpha 21164 server
running at 250 megahertz with data cache sizes of 8
kilobytes, 96 kilobytes, and 4 megabytes.

Looking at Table 2, we see that, in general, DPS
improved the integer programs Jess than it improved
the floating-point programs. The range of improve­
ments for integer programs was from 0.7 percent for
Dhrystone to 7.3 percent each for 8-Queens and for
SymbolTable. Summing all the improvements and
dividing by eight (the number of integer programs)
gives an "average" of 4. 7 percent improvement for the
integer programs. DPS improved some of the floating­
point programs even more significantly than the inte­
ger programs. The range of improvements for the six
floating-point programs was from 3.7 percent for Dice
(a simulation ofrolling a pair of dice 10,000,000 times
using a uniform random number generator) to 17.6
percent improvement for the finite difference pro­
gram. The average for the six floating-point programs
was 10.8 percent. This suggests, not surprisingly, that
the Alpha 21164 provides more opportunities for
global scheduling improvement when floating-point
programs are being compiled.

Even within the six floating-point programs, how­
ever, we see a distinct bi-modal behavior in terms of
execution-time improvement. Three of the programs
range from 12.3 percent to 17.6 percent improve­
ment, whereas three are below 10 percent (and two of
those significantly below 10 percent). A reason for this
wide range is the use of global variables. Remember
that DPS forbids the motion of global variable defini­
tions across block boundaries. This is necessary to
ensure correct program semantics. It is hardly a coinci­
dence that both Dice and Whetstone include only
global floating-point variables, whereas Livermore's
floating-point variables are mixed about half local
and half global, and the three better performers use
almost no global variables. Thus we conclude that, for
floating-point programs with few global variables, we
can expect improvements ofroughly 12 to 15 percent
in execution time. Inclusion of global variables and
exclusion of floating-point values will, however,
decrease DPS's ability to improve execution time for
the Alpha 21164.

Related Work

As we have discussed, local instruction scheduling can
find parallelism within a basic block but cannot exploit
parallelism between basic blocks. Several global sched­
uling techniques are available, however, that extract
parallelism from a program by moving operations
across block boundaries and subsequently inserting
compensation copies to maintain program semantics.
Trace scheduling3 was the first of these techniques to
be defined. As previously mentioned, trace scheduling

Digital Technical Journal Vol. 10 No. 1 1998 67

requires compensation copies. Other "early" global
scheduling algorithms that require compenstation
copies include Nicolau's percolation scheduling 16

•
17

and Gupta's region scheduling. 18 A recent and quite
popular extension of trace scheduling is Hwu's
SuperBlock scheduling. 19

•
20 In addition to these more

general, global scheduling methods, significant results
have been obtained by software pipelining, which is a
technique that overlaps iterations of loops to exploit
available ILP. Allan et al.21 provide a good summary,
and Rau22 provides an excellent tutorial on how modulo
scheduling, a popular software pipelining technique,
should be implemented. Promising recent techniques
have focused on defining a meta-environment, which
includes both global scheduling and software pipelin­
ing. Moon and Ebcioglu23 present an aggressive tech­
nique that combines software pipelining and global
code motion (with copies) into a single framework.
Novak and Nicolau24 describe a sophisticated schedul­
ing framework in which to place software pipelining,
including alternatives to modulo scheduling. While
providing a significant number of excellent global
scheduling alternatives, none of these techniques pro­
vides global scheduling without the possibility of code
expansion (copy code) as DPS does.

To address the issue of producing schedules without
operation copies, Bernstein25

-
27 defined a technique he

calls global instruction scheduling (GPS) that allows
movement of instructions beyond block boundaries
based upon the program dependence graph (PDG).28 In
a test suite of four programs run on IBM's RS/6000,
Bernstein's method showed improvement of roughly
7 percent over local scheduling for two of the programs,
with no significant difference for the others.

Comparing DPS to Bernstein's method, we see that
both allow for interblock motion without copies.
Bernstein also allows for interblock movement requir­
ing duplicates that DPS does not. Interestingly,
Bernstein's later work27 does not make use of this abil­
ity to allow motion that requires duplication of opera­
tions, suggesting that, to date, he has not found such
motion advisable for the RS/ 6000 architecture to
which his techniques have been applied. Bernstein
allows operation movement in only one direction,
whereas DPS allows operations to move from a domi­
nator block to a postdominator. This added flexibility is
an advantage to DPS. Of possibly greater significance,
DPS uses the local instruction scheduler to place opera­
tions. Bernstein uses a separate set of heuristics to move
operations in the PDG and then uses a subsequent local
scheduling pass to order operations within each block.
Fisher' argues that incorporating movement of opera­
tions with the scheduling phase itself provides better
scheduling than dividing the interblock motion and
scheduling phases. Based on that criterion alone, DPS
has some advantages over Bernestein's method.

68 Digital Technical Journal Vol. 10 No. 1 1998

Conclusions

It is commonly accepted that to exploit the perfor­
mance benefits ofILP, global instruction scheduling is
required. Several varieties of global instruction sched­
uling exist, most requiring compensation copies to
ensure proper program semantics when operations
cross block boundaries during instruction scheduling.
Although such global scheduling with compensation
copies may be an effective strategy for architectures
with large degrees of ILP, another approach seems
reasonable for more limited architectures, such as cur­
rently available superscalar computers.

This paper outlines DPS, a global instruction sched­
uling technique that does not require compensation
copies. Based on the fact that more than 25 percent of
intermediate statements can be moved upward at least
one dominator block in the control flow graph with­
out changing program semantics, DPS schedules paths
in a function's dominator tree as meta-blocks, making
use of an extended local instruction scheduler to
schedule dominator paths.

Experimental evidence shows that DPS does indeed
produce more efficient schedules than local schedul­
ing for Compaq's Alpha 21164 server system, particu­
larly for floating-point programs that avoid the use of
global variables. This work has demonstrated that con­
siderable flexibility in placement of code is possible
even when compensation copies are not allowed.
Although more research is required to look into
possible uses for this flexibility, the global instruction
scheduling method described here (DPS) shows
promise for ILP architectures.

Acknowledgments

This research was supported in part by an External
Research Program grant from Digital Equipment
Corporation and by the National Science Foundation
under grant CCR-9308348.

References

1. G. Tjaden and M. Flynn, " Detection of Parallel Exe­
cution of Independent Instructions," IEEE Transac­
tions on Computers, C-19(10) (October 1970):
889- 895.

2 . A. Nicolau and J. Fisher, "Measuring the Parallelism
Available for Very Long Instruction Word Architec­
tures," IEEE Transactions on Computers, 33(11)
(November 1984): 968-976.

3. J. Fisher, "Trace Scheduling: A Technique for Global
Microcode Compaction," IEEE Transactions on Com­
puters, C-30(7) (July 1981): 478-490.

4. J. Ellis, Bulldog: A Compiler for VLlW Architectures
(Cambridge, MA: MIT Press, 1985), Ph.D. thesis,
Yale University (1984).

5. D. DeWitt, "AMachine-IndependentApproach to the
Production of Optimal Horizontal Microcode," Ph.D.
thesis, University of Michigan, Ann Arbor, Mich.
(1976).

6. D. Landskov, S. Davidson, B. Shriver, and P. Mallett,
"Local Microcode Compaction Techniques," ACM
Computing Suroeys, 12(3) (September 1980):
261-294.

7. V. Allan, S. Beaty, B. Su, and P. Sweany, "Building a
Retargetable Local Instruction Scheduler," Software­
Practice& Fxperience, 28(3) (March 1998): 249-284.

8. E. Coffman, Computer and Job-Shop Scheduling
Theory (New York: John Wiley & Sons, 1976).

9. D. Padua, D. Kuck, and D. Lawrie, "High-Speed Mul­
tiprocessors and Compilation Techniques," IEEE Trans­
actions on Computers, C-29(9) (September 1980):
763-776.

10. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools (Reading, MA: Addison­
Wesley, 1986).

11. H. Reif and R. Tarjan, "Symbolic Program Analysis in
Almost-Linear Time," Journal of Computing, 11 (1)
(February 1981): 81-93.

12. P. Sweany, "lnterblock Code Motion without Copies,"
Ph.D. thesis, Computer Science Department, Col­
orado State University (1992).

13. R. Mueller, M. Duda, P. Sweany, and J. Walicki,
"Horizon: A Retargetable Compiler for Horizontal
Microarchitectures," IEEE Transactions on Software
Engineering: Special Issue on Microprogramming,
14(5) (May 1998): 575- 583.

14. B. Huber, "Path-Selection Heuristics for Dominator­
Path Scheduling," Master's thesis, Department of Com­
puter Science, Michigan Technological University
(1995).

15. M. Bourke, P. Sweany, and S. Beaty, "Extending List
Scheduling to Consider Execution Frequency," Pro­
ceedings of the 28th Hawaii International Conference
on System Sciences (January 1996).

16. A. Nicolau, "Percolation Scheduling: A Parallel Com­
pilation Technique," Technical Report TR85-678,
Department of Computer Science, Cornell University
(May 1985).

17. A. Aiken and A. Nicolau, "A Development Environ­
ment for Horizontal Microcode," IEEE Transactions
on Software Engineering, 14(5) (May 1988):
584-594.

18. R. Gupta and M. Soffa, "Region Scheduling: An
Approach for Detecting and Redistributing Paral­
lelism," IEEE Transactions on Software Engineering,
16(4) (April 1990): 421-431.

19. S. Mahlke, W. Chen, W.-M. Hwu, B. Rao, and M.
Schlansker, "Sentinel Scheduling for VLIW and Super­
scalar Processors," Proceedings of the 5th Interna­
tional Conference on Architectural Support for
Programming Languages and Operating Systems,
Boston, Mass. (October 1992): 238-247.

20. C. Chekuri, R . Johnson, R. Motwani, B. Natarajan, B.
Rau, and M. Schlansker, "Profile-Driven Instruction­
Level-Parallel Scheduling with Application to Super
Blocks," Proceedings of the 29th International Sym­
posium on Microarchitecture (MICR0-29), Paris,
France (December 1996): 58-67.

21. V. Allan, R. Jones, R. Lee, and S. Allan, "Software
Pipelining," ACM Computing Suroeys, 27(3) (Septem­
ber 1995).

22. B. Rau, "Iterative Modulo Scheduling: An Algorithm
for Software Pipelining Loops," Proceedings of the
27th International Symposium on Microarchitecture
(MICR0-27),SanJose, Calif. (December 1994): 63-74.

23. S.-M. Moon and K. Ebcioglu, "Parallelizing Nonnu­
merical Code with Selective Scheduling and Software
Pipelining," ACM Transactions on Programming
Languages and Systems, 18(6) (November 1997):
853-898.

24. S. Novak and A. Nicolau, "An Efficient Global Resource­
Directed Approach to Exploiting Instruction-Level Paral­
lelism," Proceedings of the 1996 Internationm Conference
on Parallel Architectures and Compiler Techniques
(PACT96), Boston, Mass. (October 1996): 87-96.

25. D. Bernstein and M. Rodeh, "Global Instruction
Scheduling for Superscalar Machines," Proceedings of
the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, Toronto,
Canada (June 1991): 241- 255.

26. D. Bernstein, D. Cohen, and H. Krawczyk, "Code
Duplication: An Assist for Global Instruction Schedul­
ing," Proceedings of the 24th International Symposium
on Microarchitecture (MICR0-24), Albuquerque,
N. Mex. (November 1991): 103-113.

27. D. Bernstein, D. Cohen, Y. Lavon, and V. Rainish,
"Performance Evaluation of Instruction Scheduling
on the IBM RS/ 6000," Proceedings of the 25th Inter­
national Symposium on Microarchitecture (MICR0-
25), Portland, Oreg. (December 1992): 226-235.

28. J. Ferrante, K. Ottenstein, and J. Warren, "The Pro­
gram Dependence Graph and Its Use in Optimiza­
tion," ACM Transactions on Programming Languages
and Systems, 9(3) (July 1987): 319-349.

Digital Technical Journal Vol. 10 No. 1 1998 69

70

Biographies

Philip H. Sweany
Associate Professor Phil Sweany has been a member of
Michigan Technological University's Computer Science
faculty since 1991. He has been investigating compiler
techniques for instruction-level parallel (ILP) architectures,
~a-authoring several papers on instruction scheduling, reg­
ister assignment, and the interaction between these two
optimizations. Phil has been the primary designer and
implementer of Rocket, a highly optimizing compiler that
is easily retargetable for a wide range ofILP architectures.
His research has been significantly assisted by grants from
Digital Equipment Corporation and the National Science
Foundation. Phil received a B.S. in computer science in
1983 from Washington State University, and M.S. and
Ph.D. degrees in computer science from Colorado State
University in 1986 and 1992, respectively.

Steven M. Carr
Steve Carr is an assistant professor in the Department of
Computer Science at Michigan Technological University.
The focus of his research at the university is memory­
hierarchy management and optimization ofinstruction­
level parallel architectures. Steve's research has been sup­
ported by both the National Science Foundation and
Digital Equipment Corporation. He received a B.S. in
computer science from Michigan Technological University
in 1987 and M.S. and Ph.D. degrees from Rice University
in 1990 and 1993,respectively. Steve isa member of ACM
and an IEEE Computer Society Affiliate.

Digital Technical Journal Vol. 10 No. 1 1998

Brett L. Huber
Raised in Hope, Michigan, Brett earned B.S. and M.S.
degrees in computer science at Michigan Technological
University in Michigan's historic Keweenaw Peninsula. He
is an engineer in the Software Development Systems group
at Texas Instruments, Inc., and is currently developing an
optimizing compiler for the TMS320C6x family ofVLIW
digital signal processors. Brett is a member of the ACM
and an IEEE Computer Society Affiliate.

Maximizing
Multiprocessor
Performance with
the SUIF Compiler

Parallelizing compilers for multiprocessors face
many hurdles. However, SUI F's robust analysis

and memory optimization techniques enabled
speedups on three fourths of the NAS and
SPECfp95 benchmark programs.

© 1996 IEEE. Reprinted, with permission, from Computer,
December 1996, pages 84-89. This paper has been modified for
publication here with the addition of the section The Status and
Future of SUIF.

I
MaryW.Hall
Jennifer M. Anderson
Saman P. Amarasinghe
Brian R. Murphy
Shih-Wei Liao
Edouard Bugnion
Monica S. Lam

The affordability of shared memory multiprocessors
offers the potential of supercomputer-class performance
to the general public. Typically used in a multiprogram­
ming mode, these machines increase throughput by
running several independent applications in parallel.
But multiple processors can also work together to
speed up single applications. This requires that ordinary
sequential programs be rewritten to take advantage of
the extra processors. H Automatic parallelization with a
compiler offers a way to do this.

Parallelizing compilers face more difficult challenges
from multiprocessors than from vector machines, which
were their initial target. Using a vector architecture effec­
tively involves parallelizing repeated arithmetic opera­
tions on large data streams-for example, the innermost
loops in array-oriented programs. On a multiprocessor,
however, this approach typically does not provide suffi­
cient granularity of parallelism: Not enough work is
performed in parallel to overcome processor synch­
ronization and communication overhead. To use a
multiprocessor effectively, the compiler must exploit
coarse-grain parallelism, locating large computations
that can execute independently in parallel.

Locating parallelism is just the first step in produc­
ing efficient multiprocessor code. Achieving high per­
formance also requires effective use of the memory
hierarchy, and multiprocessor systems have more com­
plex memory hierarchies than typical vector machines:
They contain not only shared memory but also multi­
ple levels of cache memory.

These added challenges often limited the effectiveness
of early parallelizing compilers for multiprocessors, so
programmers developed their applications from scratch,
without assistance from tools. But explicitly managing an
application's parallelism and memory use requires a great
deal of programming knowledge, and the work is tedious
and error-prone. Moreover, the resulting programs are
optimized for only a specific machine. Thus, the effort
required to develop efficient parallel programs restricts
the user base for multiprocessors.

This article describes automatic parallelization tech­
niques in the SUIF (Stanford University Intermediate

Digital Technical Journal Vol. 10 No. 1 1998 71

Format) compiler that result in good multiprocessor
performance for array-based numerical programs. We
provide SUIF performance measurements for the com­
plete NAS and SPECfp95 benchmark suites. Overall, the
results for these scientific programs are promising. The
compiler yields speedups on three fourths of the pro­
grams and has obtained the highest ever performance on
the SPECfp95 benchmark, indicating that the compiler
can also achieve efficient absolute performance.

Finding Coarse-grain Parallelism

Multiprocessors work best when the individual proces­
sors have large units of independent computation, but
it is not easy to find such coarse-grain parallelism. First
the compiler must find available parallelism across pro­
cedure boundaries. Furthermore, the original compu­
tations may not be parallelizable as given and may first
require some transformations. For example, experience
in parallelizing by hand suggests that we must often
replace global arrays with private versions on different
processors. In other cases, the computation may
need to be restructured-for example, we may have to
replace a sequential accumulation with a parallel reduc­
tion operation.

It takes a large suite of robust analysis techniques to
successfully locate coarse-grain parallelism. General
and uniform frameworks helped us manage the com­
plexity involved in building such a system into SUIF.
We automated the analysis to privatize arrays and to
recognize reductions to both scalar and array variables.
Our compiler's analysis techniques all operate seam­
lessly across procedure boundaries.

Scalar Analyses
An initial phase analyzes scalar variables in the programs.
It uses techniques such as data dependence analysis,
scalar privatization analysis, and reduction recognition
to detect parallelism among operations with scalar vari­
ables. It also derives symbolic information on these scalar
variables that is useful in the array analysis phase. Such
information includes constant propagation, induction
variable recognition and elimination, recognition of
loop-invariant computations, and symbolic relation
propagation.5

•
6

Array Analyses
An array analysis phase uses a unified mathematical
framework based on linear algebra and integer linear
programming.3 The analysis applies the basic data
dependence test to determine if accesses to an array
can refer to the same location. To support array priva­
tization, it also finds array dataflow information that
determines whether array elements used in an iteration
refer to the values produced in a previous iteration.

72 Digital Technical Journal Vol. 10 No. 1 1998

Moreover, it recognizes commutative operations on
sections of an array and transforms them into parallel
reductions. The reduction analysis is powerful enough
to recognize commutative updates of even indirectly
accessed array locations, allowing parallelization of
sparse computations.

All these analyses are formulated in terms of integer
programming problems on systems oflinear inequali­
ties that represent the data accessed. These inequalities
are derived from loop bounds and array access func­
tions. Implementing optimizations to speed up com­
mon cases reduces the compilation time.

lnterprocedural Analysis Framework
All the analyses are implemented using a uniform
interprocedural analysis framework, which helps man­
age the software engineering complexity. The frame­
work uses interprocedural dataflow analysis; which is
more efficient than the more common technique of
inline substitution. 1 Inline substitution replaces each
procedure call with a copy of the called procedure,
then analyzes the expanded code in the usual intrapro­
cedural manner. Inline substitution is not practical for
large programs, because it can make the program too
large to analyze.

Our technique analyzes only a single copy of each
procedure, capturing its side effects in a function. This
function is then applied at each call site to produce
precise results. When different calling contexts make it
necessary, the algorithm selectively clones a procedure
so that code can be analyzed and possibly parallelized
under different calling contexts (as when different
constant values are passed to the same formal parame­
ter). In this way the full advantages of inlining are
achieved without expanding the code indiscriminately.

In Figure 1 the boxes represent procedure bodies,
and the lines connecting them represent procedure
calls. The main computation is a series of four loops to
compute three-dimensional fast Fourier transforms.
Using interprocedural scalar and array analyses, the
SUIF compiler determines that these loops are paral­
lelizable. Each loop contains more than 500 lines of
code spanning up to nine procedures with up to 42
procedure calls. If this program had been fully inlined,
the loops presented to the compiler for analysis would
have each contained more than 86,000 lines of code.

Memory Optimization

Numerical applications on high-performance micro­
processors are often memory bound. Even with one or
more levels of cache to bridge the gap between proces­
sor and memory speeds, a processor may still waste half
its time stalled on memory accesses because it frequently
references an item not in the cache (a cache miss). This

Figure 1
The compiler discovers parallelism through interprocedural array analysis. Each of the four parallelized loops at left consists of
more than 500 lines of code spanning up to nine procedures (boxes) with up to 42 procedure calls (lines).

memory bottleneck is further exacerbated on multi­
processors by their greater need for memory traffic,
resulting in more contention on the memory bus.

An effective compiler must address four issues that
affect cache behavior:

• Communication: Processors in a multiprocessor
system communicate through accesses to the same
memory location. Coherent caches typically keep
the data consistent by causing accesses to data writ­
ten by another processor to miss in the cache. Such
misses are called true sharing misses.

• Limited capacity: Numeric applications tend to have
large working sets, which typically exceed cache
capacity. These applications often stream through
large amounts of data before reusing any of it,
resulting in poor temporal locality and numerous
capacity misses.

• Limited associativity: Caches typically have a small
set associativity; that is, each memory location can
map to only one or just a few locations in the cache.
Conflict misses-when an item is discarded and
later retrieved-can occur even when the applica­
tion's working set is smaller than the cache, if the
data are mapped to the same cache locations.

• Large line size: Data in a cache are transferred in
fixed-size units called cache lines. Applications that
do not use all the data in a cache line incur more
misses and are said to have poor spatial locality. On
a multiprocessor, large cache lines can also lead to
cache misses when different processors use differ-

ent parts of the same cache line. Such misses are
called f a/se sharing misses.

The compiler tries to eliminate as many cache misses as
possible, then minimize the impact of any that remain by

• ensuring that processors reuse the same data as
many times as possible and

• making the data accessed by each processor con -
tiguous in the shared address space.

Techniques for addressing each of these subproblems
are discussed below. Finally, to tolerate the latency of
remaining cache misses, the compiler uses compiler­
inserted pre/etching to move data into the cache before
it is needed.

Improving Processor Data Reuse
The compiler reorganizes the computation so that each
processor reuses data to the greatest possible extent.7

-9

This reduces the working set on each processor,
thereby minimizing capacity misses. It also reduces
interprocessor communication and thus minimizes
true sharing misses. To achieve optimal reuse, the com­
piler uses affine partitioning. This technique analyzes
reference patterns in the program to derive an affine
mapping (linear transformation plus an offset) of the
computation of the data to the processors. The affine
mappings are chosen to maximize a processor's reuse
of data while maintaining sufficient parallelism to keep
all processors busy. The compiler also uses loop block­
ing to reorder the computation executed on a single
processor so that data is reused in the cache.

Digital Technical Journal Vol. 10 No. 1 1998 73

Making Processor Data Contiguous
The compiler tries to arrange the data to make a
processor's accesses contiguous in the shared address
space. This improves spatial locality while reducing
conflict misses and false sharing. SUIF can manage
data placement within a single array and across multi­
ple arrays. The data-to-processor mappings computed
by the affine partitioning analysis are used to deter­
mine the data being accessed by each processor.

Figure 2 shows how the compiler's use of data per­
mutation and data strip-mining10 can make contiguous
the data within a single array that is accessed by one
processor. Data permutation interchanges the dimen­
sions of the array-for example, transposing a two­
dimensional array. Data strip-mining changes an
array's dimensionality so that all data accessed by the
same processor are in the same plane of the array.

To make data across multiple arrays accessed by the
same processor contiguous, we use a technique called
compiler-directed page coloring. 11 The compiler uses

y

y

x

y

y

x

STRIP-MINING

Figure2

its knowledge of the access patterns to direct the oper­
ating system's page allocation policy to make each
processor's data contiguous in the physical address
space. The operating system uses these hints to deter­
mine the virtual-to-physical page mapping at page
allocation time.

Experimental Results

We conducted a series of performance evaluations to
demonstrate the impact of SUIF's analyses and opti­
mizations. We obtained measurements on a Digital
AlphaServer 8400 with eight 21164 processors, each
with two levels of on-chip cache and a 4-Mbyte exter­
nal cache. Because speedups are harder to obtain on
machines with fast processors, our use of a state-of­
the-art machine makes the results more meaningful
and applicable to future systems.

We used two complete standard benchmark suites
to evaluate our compiler. We present results for the 10

y

z

y

z

x

PERMUTATION

Data transformations can make the data accessed by each processor contiguous in the shared address space. In the two
examples above, the original arrays are two-dimensional; the axes are identified to show that elements along the first axis
are contiguous. First the affine partitioning analysis determines which data elements are accessed by the same processor
(the shaded elements are accessed by the first processor.) Second, data strip-mining turns the 2D array into a 3D array,
with the shaded elements in the same plane. Finally, applying data permutation rotates the array, making data accessed
by each processor contiguous.

74 Digital Technical Journal Vol. 10 No. 1 1998

programs in the SPECfp95 benchmark suite, which is
commonly used for benchmarking uniprocessors. We
also used the eight official benchmark programs from
the NAS parallel-system benchmark suite, except for
embar; here we used a slightly modified version from
Applied Parallel Research.

Figure 3 shows the SPECfp95 and NAS speedups,
measured on up to eight processors on a 300-MHz
AlphaServer. We calculated the speedups over the best
sequential execution time from either officially reported
results or our own measurements. Note that mgrid and
applu appear in both benchmark suites (the program
source and data set sizes differ slightly).

To measure the effects of the different compiler
techniques, we broke down the performance obtained
on eight processors into three components. In Figure
4, baseline shows the speedup obtained with paral­
lelization using only intraprocedural data dependence
analysis, scalar privatization, and scalar reduction
transformations. Coarse grain includes the baseline

16

15 swim

14

13

12

11

10 tomcatv

~ 9
a
UJ

~ 8
U)

7 mg rid
applu

6 turb3d
hydro2d

5

su2cor
4

3

2
waves
fpppp , , a psi , ,

0 2 3 4 5 6 7 8
PROCESSORS

(a) SPECfp95

Figure3

techniques as well as techniques for locating coarse­
grain parallel loops-for example, array privatization
and reduction transformations, and full interproce­
dural analysis of both scalar and array variables.
Memory includes the coarse-grain techniques as well
as the multiprocessor memory optimizations we
described earlier.

Figure 3 shows that of the 18 programs, 13 show good
parallel speedup and can thus take advantage of additional
processors. SUIF's coarse-grain techniques and memory
optimizations significantly affect the performance ofhalf
the programs. The swim and tomcatv programs show
superlinear speedups because the compiler eliminates
almost all cache misses and their 14 Mbyte working sets
fit into the multiprocessor's aggregate cache.

For most of the programs that did not speed up, the
compiler found much of their computation to be par­
allelizable, but the granularity is too fine to yield good
multiprocessor performance on machines with fast
processors. Only two applications, fpppp and buk, have

8 , , embar ,
/

/.

7 /.
/.

6
appbt

c.. 5
applu

::::) cgm
a appsp
UJ
UJ 4
c..
U) mg rid

3

2

buk , fftpde , , ,
0 2 3 4 5 6 7 8

PROCESSORS

(b) NAS Parallel Benchmarks

SUIF compiler speedups over the best sequential time achieved on the (a) SPECfp95 and (b) NAS parallel benclunarks.

Digital Technical Journal Vol. 10 No. l 1998 75

Figure4

16

14

12

a. 10
:::)

fil 8
UJ
Q.
en 6

4

2

0

KEY:

D
D •

~ E 0 "O "O :::,
<U 3 '-' N '§, ci.
'-' C\I e a.
E (/) ::, "O E <U

.9
(/) >,

.c:

MEMORY OPTIMIZATION

COARSE-GRAIN PARALLELISM

BASELINE

"O "iii a. "' "' a. a. Q)

-e <U a. ili .a .9- 3:

The speedup achieved on eight processors is broken down into three components to show how SUIF's memory optimization
and discovery of coarse-grain parallelism affected performance.

no statically analyzable loop-level parallelism, so they
are not amenable to our techniques.

Table 1 shows the times and SPEC ratios obtained
on an eight-processor, 440-MHz Digital AlphaServer
8400, testifying to our compiler's high absolute per­
formance. The SPEC ratios compare machine perfor­
mance with that of a reference machine. (These are
not official SPEC ratings, which among other things

Table 1

require that the software be generally available. The
ratios we obtained are nevertheless valid in assessing
our compiler's performance.) The geometric mean of
the SPEC ratios improves over the uniprocessor execu­
tion by a factor of 3 with four processors and by a fac­
tor of 4.3 with eight processors. Our eight-processor
ratio of 63.9 represents a 50 percent improvement
over the highest number reported to date. 12

Absolute Performance for the SPECfp95 Benchmarks Measured on a 440-MHz Digital AlphaServer Using One
Processor, Four Processors, and Eight Processors

Execution Time (secs) SPEC Ratio

Benchmark 1P 4P SP 1P 4P SP

tomcatv 219.1 30.3 18.5 16.9 122.1 200.0
swim 297.9 33.5 17.2 28.9 256.7 500.0
su2cor 155.0 44.9 31.0 9.0 31.2 45.2
hydro2d 249.4 61.1 40.7 9.6 39.3 59.0
mg rid 185.3 42.0 27.0 13.5 59.5 92.6
applu 296.1 85.5 39.5 7.4 25.7 55.7
turb3d 267.7 73.6 43.5 15.3 55.7 94.3
a psi 137.5 141.2 143.2 15.3 14.9 14.7
fpppp 331.6 331.6 331.6 29.0 29.0 29.0
waves 151.8 141.9 147.4 19.8 21.1 20.4
Geometric Mean 15.0 44.4 63.9

7 6 Digital Technical Journal Vol. 10 No. 1 1998

Acknowledgments

This research was supported in part by the Air Force
Materiel Command and ARPA contracts F30602-95-
C-0098, DABT63-95-C-0118, and DABT63-94-C-
0054; a Digital Equipment Corporation grant; an
NSF Young Investigator Award; an NSF CISE post­
doctoral fellowship; and fellowships from AT&T Bell
Laboratories, DEC Western Research Laboratory,
Intel Corp., and the National Science Foundation.

References

I. J.M. Anderson, S.P. Amarasinghe, and M.S. Lam,
"Data and Computation Transformations for Multi­
processors," Proc. Fifth ACM SIGP/an Symp. Princi­
ples and Practice of Parallel Programming, ACM
Press, New York, 1995, pp. 166-178.

2. J.M. Anderson and M.S. Lam, "Global Optimizations
for Parallelism and Locality on Scalable Parallel
Machines," Proc. SIGP/an '93 Conj Programming
Language Design and Implementation, ACM Press,
New York, 1993,pp.112-125.

3. P. Banerjee et al., "The Paradigm Compiler for
Distributed-Memory Multicomputers," Computer,
Oct. 1995, pp. 37- 47.

4. W. Blume et al., "Effective Automatic Parallelization
with Polaris," Int'/.]. Parallel Programming, May
1995.

5. E. Bugnion et al., "Compiler-Directed Page Coloring
for Multiprocessors," Proc. Seventh Int'/ Conj Archi­
tectural Support for Programming Languages and
Operating Systems, ACM Press, New York, 1996, pp.
244-257.

6. K. Cooper et al., "The ParaScope Parallel Program­
ming Environment," Proc. IEEE, Feb. 1993, pp.
244-263.

7. Standard Performance Evaluation Corp., "Digital
Equipment Corporation AlphaServer 8400 5/440
SPEC CFP95 Results," SPEC Newsletter, Oct. 1996.

8. M. Haghighat and C. Polychronopolous, "Symbolic
Analysis for Parallelizing Compilers," ACM Trans. Pro­
gramming Languages and Systems, July 1996, pp.
477-518.

9. M.W. Hall et al., "Detecting Coarse-Grain Parallelism
Using an Interprocedural Parallelizing Compiler,"
Proc. Supercomputing '95, IEEE CS Press, Los Alami­
tos, Calif., 1995 (CD-ROM only).

10. P. Havlak, lnterprocedura/ Symbolic Analysis, PhD
thesis, Dept. of Computer Science, Rice Univ., May
1994.

11. F. Irigoin, P. Jouvelot, and R . Triolet, "Semantical
Interprocedural Parallelization: An Overview of the
PIPS Project," Proc. 1991 ACM Int'/ Conj Supercom­
puting, ACM Press, New York, 1991, pp. 244- 251.

12. K. Kennedy and U. Kremer, "Automatic Data Layout
for High Performance Fortran," Proc. Supercomput­
ing '95, IEEE CS Press, Los Alamitos, Calif., 1995
(CD-ROM only).

Editors' Note: With the following section, the authors
provide an update on the status of the SUJF compiler
since the publication of their paper in Computer in
December 1996.

Addendum: The Status and Future of SUIF

Public Availability of SUIF-paral/elized Benchmarks
The SUIF-parallelized versions of the SPECfp95
benchmarks used for the experiments described in this
paper have been released to the SPEC committee and
are available to any license holders of SPEC (see
http://www.specbench.org/osg/cpu95/par-research).
This benchmark distribution contains the SUIF out­
put (C and FORTRAN code), along with the source
code for the accompanying run-time libraries. We expect
these benchmarks will be useful for two purposes:
(1) for technology transfer, providing insight into how
the compiler transforms the applications to yield the
reported results; and (2) for further experimentation,
such as in architecture-simulation studies.

The SUIF compiler system itself is available from the
SUIF web site at http:/ /www-suif.stanford.edu. This
system includes only the standard parallelization analy­
ses that were used to obtain our baseline results.

New Parallelization Analyses in SUIF
Overall, the results of automatic parallelization reported
in this paper are impressive; however, a few applica­
tions either do not speed up at all or achieve limited
speedup at best. The question arises as to whether
SUIF is exploiting all the available parallelism in these
applications. Recently, an experiment to answer this
question was performed in which loops left unparal­
lelized by SUIF were instrumented with run-time tests
to determine whether opportunities for increasing the
effectiveness of automatic parallelization remained in
these programs. 1 Run -time testing determined that
eight of the programs from the NAS and SPEC95fp
benchmarks had additional parallel loops, for a total of
69 additional parallelizable loops, which is less than 5%
of the total number of loops in these programs. Of
these 69 loops, the remaining parallelism had a signifi­
cant effect on coverage (the percentage of the pro­
gram that is parallelizable) or granularity (the size of
the parallel regions) in only four of the programs: apsi,
su2cor, waves, and fftpde.

We found that almost all the significant loops in
these four programs could potentially be parallelized
using a new approach that associates predicates with
array data-flow values.2 Instead of producing conserv-

Digital Technical Journal Vol. 10 No. 1 1998 77

ative results that hold for all control-flow paths and all
possible program inputs, predicated array data-flow
analysis can derive optimistic results guarded by predi­
cates. Predicated array data-flow analysis can lead to
more effective automatic parallelization in three ways:
(1) It improves compile-time analysis by ruling out
infeasible control-flow paths. (2) It provides a frame­
work for the compiler to introduce predicates that, if
proven true, would guarantee safety for desirable data­
flow values. (3) It enables the compiler to derive low-cost
run-time parallelization tests based on the predicates
associated with desirable data-flow values.

SU/F and Compaq's GEM Compiler
The GEM compiler system is the technology Compaq
has been using to build compiler products for a variety
of languages and hardware/software platforms.3

Within Compaq, work has been done to connect SUIF
with the GEM compiler. SUIF's intermediate repre­
sentation was converted into GEM's intermediate rep­
resentation, so that SUIF code can be passed directly
to GEM's optimizing back end. This eliminates the
loss of information suffered when SUIF code is trans­
lated to C/FORTRAN source before it is passed to
GEM. It also enables us to generate more efficient
code for Alpha-microprocessor systems.

SUIF and the National Compiler Infrastructure
The SUIF compiler system was recently chosen to be
part of the National Compiler Infrastructure (NCI)
project funded by the Defense Advanced Research
Projects Agency (DARPA) and the National Science
Foundation (NSF). The goal of the project is to
develop a common compiler platform for researchers
and to facilitate technology transfer to industry. The

FRONT
ENDS

FORTRAN77
(COMPAQ)

CIC++ (EDISON
DESIGN GROUP)

INTERPROCEDURAL ANALYSIS
PARALLELIZATION

LOCALITY OPTIMIZATIONS
OBJECT-ORIENTED OPTIMIZATIONS

SCALAR OPTIMIZATIONS

SUIF component of the NCI project is the result of the
collaboration among researchers in five universities
(Harvard University, Massachusetts Institute of
Technology, Rice University, Stanford University,
University of California at Santa Barbara) and one
industrial partner, Portland Group Inc. Compaq is a
corporate sponsor of the project and is providing the
FORTRAN front end.

A revised version of the SUIF infrastructure (SUIF
2.0) is being released as part of the SUIF NCI project
(a preliminary version of SUIF 2.0 is available at the
SUIF web site). The completed system will be
enhanced to support parallelization, interprocedural
analysis, memory hierarchy optimizations, objected­
oriented programming, scalar optimizations, and
machine-dependent optimizations. An overview of
the SUIF NCI system is shown in Figure Al. See
www-suif.stanford.edu/suif/NCI/suif.htrnl for more
information about SUIF and the NCI project, includ­
ing a complete list of optimizations and a schedule.

References

1. B. So, S. Moon, and M. Hall, "Measuring the Effective­
ness of Automatic Parallelization in SUIF," Proceedings
of the International Conference on Supercomputing
'98, July 1998.

2. S. Moon, M. Hall, and B. Murphy, "Predicated Array
Data-Flow Analysis for Run-Time Parallelization," Pro­
ceedings of the International Conference on Supercom­
puting '98, July 1998.

3. D. Blickstein et al., "The GEM Optimizing Compiler
System," Digital Technical journal, vol. 4, no. 4 (Special
Issue, 1992): 121-136.

SUIF

CIC++ (IBM) JAVA

SCHEDULING
REGISTER ALLOCATION

TARGET
LANGUAGES

ALPHA ___ x_s_6 __ ... 1 I CIFORTRAN

Figure A1
The SUIF Compiler Infrastructure

78 Digital Technical Journal Vol. 10 No. 1 1998

Biographies

MaryW. Hall
Mary Hall is jointly a research assistant professor and project
leader at the University of Southern California, Department
of Computer Science and at USC's Information Sciences
Institute, where she has been since 1996. Her research
interests focus on compiler support for high-performance
computing, particularly interprocedural analysis and auto­
matic parallelization. She graduated magna cum laude with
a B.A. in computer science and mathematical sciences in
1985 and received an M.S. and a Ph.D . in computer science
in 1989 and 1991, respectively, all from Rice University.
Prior to joining USC/ISi, she was a visiting assistant pro­
fessor and senior research fellow in the Department of
Computer Science at Caltech. In earlier positions, she was
a research scientist at Stanford University, working with
the SUIF Compiler group, and in the Center for Research
on Parallel Computation at Rice University.

Jennifer M. Anderson
Jennifer Anderson is a research staff member at Compaq's
Western Research Laboratory where she has worked on the
Digital Continuous Profiling Infrastructure (DCPI) proj­
ect. Her research interests include compiler algorithms,
programming languages and environments, profiling sys­
tems, and parallel and distributed systems software. She
earned a B.S. in information and computer science from
the University of California at Irvine and received M.S.
and Ph.D. degrees in computer science from Stanford
University.

Saman P. Amarasinghe
Saman Amarasinghe is an assistant professor of computer
science and engineering at the Massachusetts Institute of
Technology and a member of the Laboratory for Computer
Science. His research interests include compilers and com­
puter architecture. He received a B.S. in electrical engineer­
ing and computer science from Cornell University and M.S.
and Ph.D. degrees in electrical engineering from Stanford
University.

Brian R. Murphy
A doctoral can,didate in computer science at Stanford Uni­
versity, Brian Murphy is currently working on advanced pro­
gram analysis under SUIF as part of the National Compiler
Infrastructure Project. He received a B.S. in computer sci­
ence and engineering and an M.S. in electrical engineering
and computer science from the Massachusetts Institute of
Technology. His master's thesis work on program analysis
was carried out with the Functional Languages group at
the IBM Almaden Research Center. Brian was elected to
the Tau Beta Pi and Eta Kappa Nu honor societies.

Shih-Wei Liao
Shih-Wei Liao is a doctoral candidate at the Stanford
University Computer Systems Laboratory. His research
interests include compiler algorithms and design, pro­
gramming environments, and computer architectures.
He received a B.S. in computer science from National
Taiwan University in 1991 and an M.S. in electrical
engineering from Stanford University in 1994.

Edouard Bugnion
Ed Bugnion holds a Diplom in engineering from the Swiss
Federal Institute of Technology (ETH), Zurich (1994)
and an M.S. from Stanford University (1996), where he is a
doctoral candidate in computer science. His research inter­
ests include operating systems, computer architecture, and
machine simulation. From 1996 to 1997, Ed was also a
research consultant to Compaq's Western Research
Laboratory. He is the recipient of a National Science
Foundation Graduate Research Fellowship.

Digital Technical Journal Vol. 10 No. 1 1998 79

80

Monica S. Lam
Monica Lam is an associate professor in the Computer
Science Department at Stanford University. She leads the
SUIF project, which is aimed at developing a common
infrastructure to support research in compilers for
advanced languages and architectures. Her research inter­
ests are compilers and computer architecture. Monica
earned a B.S. from the University of British Columbia in
1980 and a Ph.D. in computer science from Carnegie
Mellon University in 1987. She received the National
Science Foundation Young Investigator award in 1992.

Digital Technical Journal Vol. 10 No. 1 1998

Debugging Optimized
Code: Concepts and
Implementation on
DIGITAL Alpha Systems

Effective user debugging of optimized code has

been a topic of theoretical and practical interest

in the software development community for

almost two decades, yet today the state of the

art is still highly uneven. We present a brief sur­

vey of the literature and current practice that

leads to the identification of three aspects of

debugging optimized code that seem to be

critical as well as tractable without extraordi­

nary efforts. These aspects are (1) split lifetime

support for variables whose allocation varies

within a program combined with definition

point reporting for currency determination,

(2) stepping and setting breakpoints based on

a semantic event characterization of program
behavior, and (3) treatment of in lined routine

calls in a manner that makes inlining largely

transparent. We describe the realization of

these capabilities as part of Compaq's GEM

back-end compiler technology and the debug­

ging component of the Open VMS Alpha oper­

ating system.

I
Ronald F. Brender
Jeffrey E. Nelson
Mark E . Arsenault

Introduction

In software development, it is common practice to
debug a program that has been compiled with little or
no optimization applied. The generated code closely
corresponds to the source and is readily described by a
simple and straightforward debugging symbol table. A
debugger can interpret and control execution of the
code in a fashion close to the user's source-level view
of the program.

Sometimes, however, developers find it necessary or
desirable to debug an optimized version of the pro­
gram. For instance, a bug-whether a compiler bug or
incorrect source code-may only reveal itself when
optimization is applied. In other cases, the resource
constraints may not allow the unoptimized form to be
used because the code is too big and/or too slow. Or,
the developer may need to start analysis using the
remains, such as a core file, of the failed program,
whether or not this code has been optimized. Whatever
the reason, debugging optimized code is harder than
debugging unoptimized code-much harder-because
optimization can greatly complicate the relationship
between the source program and the generated code.

Zellweger1 introduced the terms expected behavior
and truthful behavior when referring to debugging
optimized code. A debugger provides expected behav­
ior if it provides the behavior a user would experience
when debugging an unoptimized version of a pro­
gram. Since achieving that behavior is often not possi­
ble, a secondary goal is to provide at least truthful
behavior, that is, to never lie to or mislead a user. In
our experience, even truthful behavior can be chal­
lenging to achieve, but it can be closely approached.

This paper describes three improvements made to
Compaq's GEM back-end compiler system and to
Open VMS DEBUG, the debugging component of the
Open VMS Alpha operating system. These improve­
ments address

1. Split lifetime variables and currency determination

2. Semantic events

3. Inlining

Digital Technical Journal Vol. 10 No. 1 1998 81

Before presenting the details of this work, we dis­
cuss the alternative approaches to debugging optimized
code that we considered, the state of the art, and the
operating strategies we adopted.

Alternative Approaches
Various approaches have been explored to improve
the ability to debug optimized code. They include
the following:

• Enhance debugger analysis

• Limit optimization

• Limit debugging to preplanned locations

• Dynamically deoptimize as needed

• Exploit an associated program database

We touch on these approaches in turn.
In probably the oldest theoretical analysis that

supports debugging optimized code, Hennessy2 stud­
ies whether the value displayed for a variable is current,
that is, the expected value for that variable at a given
point in the program. The value displayed might not
be current because, for example, assignment of a later
value has been moved forward or the relevant assign­
ment has been delayed or omitted. Hennessy postu­
lates that a flow graph description of a program is
communicated to the debugger, which then solves
certain flow analysis equations in response to debug
commands to determine currency as needed.
Copperman3 takes a similar though much more gen­
eral approach. Conversely, commercial implementa­
tions have favored more complete preprocessing of
information in the compiler to enable simpler debug­
ger mechanisms.4

-
6

If optimization is the "problem," then one approach
to solving the problem is to limit optimization to only
those kinds that are actually supported in an available
debugger. Zurawski7 develops the notion of a recovery
function that matches each kind of optimization. As an
optimization is applied during compilation, the com­
pensating recovery function is also created and made
available for later use by a debugger. If such a recovery
function cannot be created, then the optimization is
omitted. Unfortunately, code-motion-related optimi­
zations generally lack recovery functions and so must
be foregone. Taking this approach to the extreme
converges with traditional practice, which is simply to
disable all optimization and debug a completely unop­
timized program.

If full debugger functionality need only be provided
at some locations, then some debugger capabilities can
be provided more easily. Zurawski7 also employed this
idea to make it easier to construct appropriate recov­
ery functions. This approach builds on a language­
dependent concept of inspection points, which

82 Digital Technical Journal Vol. 10 No. 1 1998

generally must include all call sites and may corre­
spond to most statement boundaries. His experience
suggests, however, that even limiting inspection points
to statement boundaries severely limits almost all kinds
of optimization.

Holzle et al.8 describe techniques to dynamically
deoptimize part of a program (replace optimized code
with its unoptimized equivalent) during debugging to
enable a debugger to perform requested actions. They
make the technique more tractable, in part by delaying
asynchronous events to well-defined interruption
points, generally backward branches and calls. Opti­
mization between interruption points is unrestricted.
However, even this choice of interruption points
severely limits most code motion and many other
global optimizations.

Pollock and others9
•
10 use a different kind of deopti­

mization, which might be called preplanned, incre­
mental deoptimization. During a debugging session,
any debugging requests that cannot be honored
because of optimization effects are remembered so
that a subsequent compilation can create an exe­
cutable that can honor these requests. This scheme is
supported by an incremental optimizer that uses a pro­
gram database to provide rapid and smooth forward
information flow to subsequent debugging sessions.

Feiler11 uses a program database to achieve the bene­
fits of interactive debugging while applying as much
static compilation technology as possible. He describes
techniques for maintaining consistency between the
primary tree-based representation and a derivative
compiled form of the program in the face of both
debugging actions and program modifications on-the­
fly. While he appears to demonstrate that more is possi­
ble than might be expected, substantial limitations still
exist on debugging capability, optimization, or both.

A comprehensive introduction and overview to these
and other approaches can be found in Copperman3 and
Adl-Tabatabi. 12 In addition, "An Annotated Biblio­
graphy on Debugging Optimized Code" is available
separately on the Digital Technical journal web site at
http://www.digital.com/info/DTJ. This bibliography
cites and summarizes the entire literature on debugging
optimized code as best we know it.

State of the Art
When we began our work in early 1994, we assessed
the level of support for debugging optimized code
that was available with competitive compilers. Because
we have not updated this assessment, it is not appro­
priate for us to report the results here in detail. We do
however summarize the methodology used and the
main results, which we believe remain generally valid.

We created a series of example programs that pro­
vide opportunities for optimization of a particular kind

or ofrelated kinds, and which could lead a traditional
debugger to deviate from expected behavior. We com­
piled and executed these programs under the control
of each system's debugger and recorded how the sys­
tem handled the various kinds of optimization. The
range of observed behaviors was diverse.

At one extreme were compilers that automatically
disable all optimization if a debugging symbol table is
requested (or, equivalently for our purposes, give an
error if both optimization and a debugging symbol
table are requested). For these compilers, the whole
exercise becomes moot; that is, attempting to debug
optimized code is not allowed.

Some compiler/debugger combinations appeared
to usefully support some of our test cases, although
none handled all of them correctly. In particular, none
seemed able to show a traceback of subroutine calls
that compensated for inlining of routine calls and all
seemed to produce a lot of jitter when stepping by line
on systems where code is highly scheduled.

The worst example that we found allowed compila­
tion using optimization but produced a debugging
symbol table that did not reflect the results of that opti­
mization. For example, local variables were described
as allocated on the stack even though the generated
code clearly used registers for these variables and never
accessed any stack locations. At debug time, a request
to examine such a variable resulted in the display of the
irrelevant and never-accessed stack locations.

The bottom line from this analysis was very clear:
the state of the art for support of debugging opti­
mized code was generally quite poor. DIGITAL's
debuggers, including OpenVMS DEBUG, were not
unusual in this regard. The analysis did indicate some
good examples, though. Both the CONVEX CXdb•·5

and the HP 9000 DOC0 systems provide many valu -
able capabilities.

Biases and Goals
Early in our work, we adopted the following strategies:

• Do not limit or compromise optimization in any way.

• Stay within the framework of the traditional edit­
compile-link-debug cycle.

• Keep the burden of analysis within the compiler.

The prime directive for Compaq's GEM-based
compilers is to achieve the highest possible perfor­
mance from the Alpha architecture and chip technol­
ogy. Any improvements in debugging such optimized
code should be useful in the face of the best that a
compiler has to offer. Conversely, if a programmer has
the luxury of preparing a less optimized version for
debugging purposes, there is little or no reason for
that version to be anything other than completely

unoptimized. There seems to be no particular benefit
to creating a special intermediate level of combined
debugger/ optimization support.

Pragmatically, we did not have the time or staffing
to develop a new optimization framework, for exam­
ple, based on some kind of program database. Nor
were we interested in intruding into those parts of the
GEM compiler that performed optimization to create
more complicated options and variations, which might
be needed for dynamic deoptimization or recovery
function creation.

Finally, it seemed sensible to perform most analysis
activities within the compiler, where the most complete
information about the program is already available. It is
conceivable that passing additional information from
the compiler to the debugger using the object file
debugging symbol table might eventually tip the bal­
ance toward performing more analysis in the debugger
proper. The available size data (presented later in this
paper in Table 3) do not indicate this.

We identified three areas in which we felt enhanced
capabilities would significantly improve support for
debugging optimized code. These areas are

1. The handling of split lifetime variables and currency
determination

2. The process of stepping though the program

3. The handling of procedure inlining

In the following sections we present the capabilities we
developed in each of these areas together with insight
into the implementation techniques employed.

First, we review the GEM and Open VMS DEBUG
framework in which we worked. The next three sec­
tions address the new capabilities in turn. The last
major section explores the resource costs (compile­
time size and performance, and object and image
sizes) needed to realize these capabilities.

Starting Framework

Compaq's GEM compiler system and the Open VMS
DEBUG component of the OpenVMS operating
system provide the framework for our work. A brief
description of each follows.

GEM
The GEM compiler system 13 is the technology
Compaq is using to build state-of-the-art compiler
products for a variety of languages and hardware and
software platforms. The GEM system supports a range
of languages (C, C++, FORTRAN including HPF,
Pascal, Ada, COBOL, BLISS, and others) and has been
successfully retargeted and rehosted for the Alpha,
MIPS, and Intel IA-32 architectures and for the

Digital Technical Journal Vol. IO No. 1 1998 83

OpenVMS, DIGITAL UNIX, Windows NT, and
Windows 95 operating systems.

The major components of a GEM compiler are the
front end, the optimizer, the code generator, the final
code stream optimizer, and the compiler shell.

• The front end performs lexical analysis and parsing
of the source program. The primary outputs are
intermediate language (IL) graphs and symbol
tables. Front ends for all source languages translate
to the same common representation.

• The optimizer transforms the IL generated by the
front end into a semantically equivalent form that
will execute faster on the target machine. A signifi­
cant technical achievement is that a single optimizer
is used for all languages and target platforms.

• The code generator translates the IL into a list of
code cells, each of which represents one machine
instruction for the target hardware. Virtually all the
target machine instruction-specific code is encapsu­
lated in the code generator.

• The final phase performs pattern-based peephole
optimizations followed by instruction scheduling.

• The shell is a portable interface to the external envi­
ronment in which the compiler is used. It provides
common compiler functions such as listing genera­
tors, object file emitters, and command line proces­
sors in a form that allows the other components to
remain independent of the operating system.

The bulk of the GEM implementation work described
in this paper occurs at the boundary between the final
phase and the object file output portion of the shell. A
new debugging optimized code analysis phase exam­
ines the generated code stream representation of the
program, together with the compiler symbol table, to
extract the information necessary to pass on to a
debugger through the debugging symbol table. Most
of the implementation is readily adapted to different
target architectures by means of the same instruction
property tables that are used in the code generator and
final optimizer.

OpenVMS DEBUG
The Open VMS Alpha debugger, originally developed
for the OpenVMS VAX system,14 is a full-function,
source-level, symbolic debugger. It supports symbolic
debugging of programs written in BLISS, MACR0-32,
MACR0-64, FORTRAN, Ada, C, C++, Pascal, PL/1,
BASIC, and COBOL. The debugger allows the user to
control the execution and to examine the state of a
program. Users can

• Set breakpoints to stop at certain points in the program

• Step through the execution of the program a line at
a time

84 Digital Technical Journal Vol. 10 No. 1 1998

• Display the source-level view of the program's exe­
cution using either a graphical user interface or a
character-based user interface

• Examine user variables and hardware registers

• Display a stack traceback showing the current call
stack

• Set watch points

• Perform many other functions' 5

Split Lifetime Variables and Currency
Determination

Displaying (printing) the value of a program variable is
one of the most basic services that a debugger can pro­
vide. For unoptimized code and traditional debug­
gers, the mechanisms for doing this are generally
based on several assumptions.

1. A variable has a single allocation that remains fixed
throughout its lifetime. For a local or a stack-allocated
variable that means throughout the lifetime of the
scope in which the variable is declared.

2. Definitions and uses of the values of user variables
occur in the same order in the generated code as
they do in the original program source.

3. The set ofinstructions that belong to a given scope
(which may be a routine body) can be described by
a single contiguous range of addresses.

The first and second assumptions are of interest in this
discussion because many GEM optimizations make
them inappropriate. Split lifetime optimization (dis­
cussed later in this section) leads to violation of the first
assumption. Code motion optimization leads to viola­
tion of the second assumption and thereby creates the
so-called currency problem. We treat both of these prob­
lems together, and we refer to them collectively as split
lifetime support. Statement and instruction scheduling
optimization leads to violation of the third assumption.
This topic is addressed later, in the section Inlining.

Split Lifetime Variable Definition
A variable is said to have split lifetimes if the set of
fetches and stores of the variable can be partitioned
such that none of the values stored in one subset are
ever fetched in another subset. When such a partition
exists, the variable can be "split" into several indepen­
dent "child" variables, each corresponding to a parti­
tion. As independent variables, the child variables can
be allocated independently. The effect is that the
original variable can be thought to reside in different
locations at different points in time-sometimes in a
register, sometimes in memory, and sometimes
nowhere at all. Indeed, it is even possible for the differ­
ent child variables to be active simultaneously.

Split Lifetime Example A simple example of a split
lifetime variable can be seen in the following straight­
line code fragment:

A =

B =

A =

c =

.• • A • .. ;

.. . A . . . ;

Define (assign value to) A

Use definition (value of) A
Define A again

Use latter definition A

In this example, the first value assigned to variable A is
used later in the assignment to variable B and then
never used again. A new value is assigned to A and
used in the assignment to variable C.

Without changing the meaning of this fragment, we
can rewrite the code as

Al = ... ;

B = ••• Al. .. ;
A2 = .•. ;

C = ... A2 ... ;

Define Al

Use Al
Define A2

Use A2

where variables Al and A2 are split child variables of A.
Because Al and A2 are independent, the following

is also an equivalent fragment:

Al - ... ,

A2 - ... ,
B = .•. Al. .. ;

C = ... A2 ... ;

Define Al

Define A2
Use Al

Use A2

Here, we see that the value of A2 is assigned while the
value of Al is still alive. That is, the split children of a
single variable have overlapping lifetimes.

This example illustrates that split lifetime optimi­
zation is possible even in simple straight-line code.
Moreover, other optimizations can create opportuni­
ties for split lifetime optimization that may not be
apparent from casual examination of the original
source. In particular, loop unrolling (in which the
body of a loop is replicated several times in a row)
can create loop bodies for which split lifetime opti­
mization is feasible and desirable.

Variables of Interest Our implementation deals only
with scalar variables and parameters. This includes
Alpha's extended precision floating-point (128-bit

Line Unoptimized
1 A . . . , Define A
2 B •. . A ..• ; Use A

X_Floating) variables as well as variables of any of the
complex types (see Sites16

) . These latter variables are
referred to as two-part variables because each requires
two registers to hold its value.

Currency Definition
The value of a variable in an optimized program is cur­
rent with respect to a given position in the source pro­
gram if the variable holds the value that would be
expected in an unoptimized version of the program.
Several kinds of optimization can lead to noncurrent
variables. Consider the currency example in Figure 1.

As shown in Figure 1, the optimizing compiler has
chosen to change the order of operations so that line 4
is executed prior to line 3. Now suppose that execu­
tion has stopped at the instruction in line 3 of the
unoptimized code, the line that assigns a value to vari­
able C.

Given a request to display (print) the value of A,
a traditional debugger will display whatever value
happens to be contained in the location of A, which
here, in the optimized code, happens to be the result
of the second assignment to A. This displayed value
of A is a correct value, but it is not the expected
value that should be displayed at line 3. This scenario
might easily mislead a user into a frustrating and
fruitless attempt to determine how the assignment
in line 1 is computing and assigning the wrong
value. The problem occurs because the compiler has
moved the second assignment so that it is early rela­
tive to line 3.

Another currency example can be seen in the frag­
ment (taken from Copperman3

) that appears in Figure
2. In this case, the optimizing compiler has chosen to
omit the second assignment to variable A and to assign
that value directly into the actual parameter location
used for the call of routine FOO. Suppose that the
debugger is stopped at the call of routine FOO. Given
a request to display A, a traditional debugger is likely
to display the result of the first assignment to A. Again,
this value is an actual value of A, but it is not the
expected value.

Alternatively, it is possible that prior to reaching the
call, the optimizing compiler has decided to reuse the

Optimized
A ... ,

B = • .. A ... ;
3 c ... , C does not depend on A A

c 4 A = ... , Define A
5 D = .A .. ., Use second definition of A D ... A . . . ;

Figure 1
Currency Example 1

Digital Technical Journal Vol. 10 No. 1 1998 85

Line Unoptimized
1 A = expressionl;
2 B = .. . A ... ; Use
3 A = expression2;
4 FOO(A); use

Figure 2
Currency Example 2

location that originally held the first value of A for
another purpose. In this case, no value of A is available
to display at the call of routine FOO.

Finally, consider the example shown in Figure 3,
which illustrates that the currency of a variable is not a
property that is invariant over time. Suppose that exe­
cution is stopped at line 5, inside the loop. In this case,
A is not current during the first time through the loop
body because the actual value comes from line 3
(moved from inside the loop); it should come from
line 1. On subsequent times through the loop, the
value from line 3 is the expected value, and the value of
A is current.

As discussed earlier, most approaches to currency
determination involve making certain kinds of flow
graph and compiler optimization information avail­
able to the debugger so that it can report when a dis­
played value is not current. However, we wanted to
avoid adding major new kinds of analysis capability to
DIGITAL's debuggers.

More fundamentally, as the degree of optimization
increases, the notion of current position in the program
itself becomes increasingly ambiguous. Even when the
particular instruction at which execution is pending can
be clearly and unequivocally related to a particular source
location, this location is not automatically the best one to
use for currency determination. Nevertheless, the source
location (or set oflocations) where a displayed value was
assigned can be reliably reported without needing to
establish the current position.

Accordingly, we use an approach different than
those considered in the literature. We use a straight­
forward flow analysis formulation to determine what

Line
1
2
3
4
5

Unoptimized
A = ••• ;
... A ... ;

while (.. .)

1st

2nd

Optimized
A = expressionl;

def. of A B = •.. A .•. ;

def. of A FOO(expression2);

locations hold values of user variables at any given
point in the program and combine this with the set of
definition locations that provide those values. Because
there may be more than one source location, the user
is given the basic information to determine where in
the source the value of a variable may have originated.
Consequently, the user can determine whether the
value displayed is appropriate for his or her purpose.

Compiler Processing
A compiler performs most split lifetime analysis on a
routine-by-routine basis. A preliminary walk over the
entire symbol table identifies the variable symbols that
are of interest for further analysis. Then, for each rou­
tine, the compiler performs the following steps:

• Code cell prepass

• Flow graph construction

• Basic block processing

• Parameter processing

• Backward propagation

• Forward propagation

• Information promotion and cleanup

After the compiler completes this processing for
all routines, a symbol table postwalk performs final
cleanup tasks. The following contains a brief discus­
sion of these steps.

In this summary, we highlight only the main charac­
teristics of general interest. In particular, we assume that
each location, such as a register, is independent of all
other locations. This assumption is not appropriate to
locations on the stack because variables of different sizes

Optimized
A = ••• ;
..• A .•• ;
A = ••• ;
while (...)

6 A - ... ' II A is loop invariant
7 }

Figure 3
Currency Example 3

86 Digital Technical Journal Vol. 10 No. 1 1998

may overlay each other. The complexity of dealing with
overlapping allocations is beyond the scope of this paper.

Of special importance in this processing is the fact
that each operand of every instruction includes a base
symbol field that refers to the compiler's symbol table
entry for the entity that is involved.

Symbol Table Prewalk The symbol table prewalk
identifies the variables of interest for analysis. As dis­
cussed, we are interested in scalars corresponding to
user variables (not compiler-created temporaries),
including Alpha's extended precision floating-point
(128-bit X_Floating) and complex values.

DIGITAL's FORTRAN implementations pass para­
meters using a by-reference mechanism with bind
(rather than copy-in/copy-out) semantics. GEM treats
the hidden reference value as a variable that is subject
to split lifetime optimization. Since the reference vari­
able must be available to effect operations on the logi­
cal parameter variable, it follows that both the abstract
parameter and its reference value must be treated as
interesting variables.

Code Cell Prepass The code cell prepass performs a
single walk over all code cells to determine

• The maximum and minimum offsets in the stack
frame that hold any interesting variables

• The highest numbered register that is actually refer­
enced by the code

• Whether the stack frame uses a frame pointer that is
separate from the stack pointer

The compiler uses these characteristics to preallocate
various working storage areas.

Flow Graph Construction A flow graph is built, in
which each basic block is a node of the graph.

Basic Block Processing Basic block processing per­
forms a kind of symbolic execution of the instructions
of each block, keeping track of the effect on machine
state as execution progresses.

When an instruction operand writes to a location
with a base symbol that indicates an interesting vari­
able, the compiler updates the location description to
indicate that the variable is now known to reside in
that location- this begins a lifetime segment. The
instruction that assigned the value is also recorded
with the lifetime segment.

If there was previously a known variable in that loca­
tion, that lifetime segment is ended (even if it was for
the same variable). The beginning and ending instruc­
tions for that segment are then recorded with the vari­
able in the symbol table.

When an instruction reads an operand with a base
symbol that indicates an interesting variable, some
more unusual processing applies.

If the variable being read is already known to
occupy that location, then no further processing is
required. This is the most common case.

If the location already contains some other known
variable, then the variable being read is added to the
set of variables for that location. This situation can
arise when there is an assignment of one variable to
another and the register allocator arranges to allocate
them both to the same location. As a result, the assign­
ment happens implicitly.

If the location does not contain a known variable
but there is a write operation to that location earlier in
the same block (a fact that is available from the loca­
tion description), the prior write is retroactively
treated as though it did write that variable at the earlier
instruction. This situation can arise when the result of
a function call is assigned to a variable and the register
allocator arranges to allocate that variable in the regis­
ter where the call returns its value. The code cell repre­
sentation for the call contains nothing that indicates a
write to the variable; all that is known is that the return
value location is written as a result of the call. Only
when a later code cell indicates that it is using the value
of a known variable from that location can we infer
more of what actually happened.

If the location does not contain a known variable and
there is no write to that same location earlier in this
same basic block, then the defining instruction cannot
be immediately determined. A location description is
created for the beginning of the basic block indicating
that the given variable or set of variables must have
been defined in some predecessor block. Of course, the
contents known as a result of the read operation can
also propagate forward toward the end of the block,
just as for any other read or write operation.

Special care is needed to deal with a two-part variable.
Such a variable does not become defined until both
instructions that assign the value have been encoun­
tered. Similarly, any reuse of either of the two locations
ends the lifetime segment of the variable as a whole.

At the end of basic block processing, location
descriptions specify what is known about the contents
of each location as a result of read and write operations
that occurred in the block. This description indicates
the set of variables that occupy the location, or that the
location was last written by some value that is not the
value of a user variable, or that the location does not
change during execution of the block.

Parameter Processing The compiler models parame­
ters as locations that are defined with the contents of a
known variable at the entry point of a routine.

Digital Technical Journal Vol. IO No. 1 1998 87

Backward Propagation Backward propagation iter­
ates over the flow graph and uses the locations with
known contents at the beginning of a block to work
backward to predecessor blocks looking for instruc­
tions that write to that location. For each variable in
each input location, any such prior write instruction is
retroactively made to look like a definition of the vari­
able. Note that this propagation is not a flow algo­
rithm because no convergence criteria is involved; it is
simply a kind of spanning walk.

Forward Propagation Forward propagation iterates
over the flow graph and uses the locations with known
contents at the end of each block to work forward to
successor blocks to provide known contents at the
beginning of other blocks. This is a classic "reaching
definitions" flow algorithm, in which the input state of
a location for a block is the intersection of the known
contents from the predecessors.

In our case, the compiler also propagates definition
points, which are the addresses of the instructions that
begin the lifetime segments. For those variables that are
known to occupy a location, the set of definitions is the
union of all the definitions that flow into that location.

Information Promotion and Cleanup The final step of
compiler processing is to combine information for adja­
cent blocks where possible. This action saves space in the
debugging symbol table but does not affect the accuracy
of the description. Descriptions for by-reference bind
parameters are next merged with the descriptions for the
associated reference variables. Finally, lifetime segment
information not already associated with symbol table
entries is copied back.

Object File Representation
The object file debugging symbol table representation
for split lifetime variables is actually quite simple.
Instead of a single address for a variable, there is a
sequence of lifetime segment descriptions. Each life­
time segment consists of

• The range of addresses over which the child loca­
tion applies

• The location (in a register, at a certain offset in the
current stack frame, indirect through a register or
stack location, etc.)

• The set of addresses that provide definitions for this
lifetime segment

By convention, the last segment in the sequence can
have the address range O to FFFFFFFF (hex). This
address range is used for a static variable, for example
in a FORTRAN COMMON block, that has a default allo­
cation that applies whenever no active children exist.

88 Digital Technical Journal Vol. 10 No. 1 1998

Debugger Processing
Name resolution, that is, binding a textual name to the
appropriate entry in the debug symbol table, is in no
way affected by whether or not a variable has split life­
time segments. After the symbol table entry is found,
any sequence of lifetime segments is searched for one
that includes the current point of execution indicated
by the program counter (PC). If found, the location of
the value is taken from that segment. Otherwise, the
value of the variable is not available.

Usage Example
To illustrate how a user sees the results of this processing,
consider the small C program in Figure 4. Note that the
numbers in the left column are listing line numbers.

When DOCT8 is compiled, linked, and executed
under debugger control, the dialogue shown in Figure 5
appears. The figure also includes interpretive comments.

Known Limitations
The following limitations apply to the existing split
lifetime support.

Multiple Active Split Children While the compiler
analysis correctly determines multiple active split child
variables and the debug symbol table correctly describes
them, OpenVMS DEBUG does not currently support
multiple active child variables. When searching a sym­
bol's lifetime segments for one that includes the current
PC, the first match is taken as the only match.

Two-part Variables Support for two-part variables
(those occupying two registers) assumes that a com -
plete definition will occur within a single basic block.

385
386
387
388
389
390
391
392

doct8 ()

int

i
j
k

{

i, j. k;

l;
2;
3;

393 if (foo(i))
394 j = 17;
395 }
396 else {
397 k = 18;
398 }
399
400 printf("%d, %d, %d\n", i, j, k);
401
402

Figure4
C Example Routine DOCT8 (Source with Listing Line
Numbers)

$ run doctB
OpenVMS Alpha Debug64 Version T? . 2-001

%I, language is C, module set to DOCTB
DBG> step/into
stepped to DOCT8\doct8\%LINE 391

391 : k = 3;
DBG> examine i , j, k
%W, entity ' i' was not allocated in memory {was optimized away)
%W , entity 'j' does not have a value at the current PC
%W , entity 'k' does not have a value at the current PC

Note the difference in the message for variable i compared to the messages for variables j and k. We
see that variable i was not allocated in memory (registers or otherwise), so there is no point in ever
trying to examine its value again. Variables j and k, however, do not have a value "at the current PC."
Somewhere later in the program they will have a value, but not here.

The dialogue continues as follows:

DBG> step 6
stepped to DOCT8\doct8\%LINE 391

391 : k = 3;
DBG> step
stepped to DOCT8\doct8\%LINE 393

3 9 3 : if { foo { i)) {

DBG> examine j, k
%W, entity 'j' does not have a value at the current PC
DOCT8\doct8\k : 3

value defined at DOCT8\doct8\%LINE 391

Here we see that j is still undefined but know has a value, namely 3, which was assigned at line 391.
The source indicates that jwas assigned a value at line 390, before the assignment to k, but j's assign­
ment has yet to occur.

Skipping ahead in the dialogue to the print statement at line 400, we see the following:

DBG> set break %line 400
DBG> go
break at DOCT8\doct8\%LINE 400

400 : printf{"%d, %d, %d\n" , i, j, k);
DBG> examine j
DOCTB\doctB\j: 2

value defined at DOCT8\doct8\%LINE 390
value defined at DOCT8\doct8\%LINE 394

DBG> examine k
DOCTB\doctB\k: 18

value defined at DOCT8\doct8\%LINE 397+4
value defined at DOCT8\doct8\%LINE 391

This portion of the message shows that more than one definition location is given for both j and k.
Which of each pair applies depends on which path was taken in the if statement. If a variable has an
apparently inappropriate value, this mechanism provides a means to take a closer look at those places,
and only those places, from which that value might have come.

Figure 5
Dialogue Resulting from Running DOCT8

That is, at the end of a basic block, if the second part of
a definition is missing then the initial part is discarded
and forgotten.

Consider the following FORTRAN fragment:

COMPLEX X, Y

x
Y = X + (1.0, 0.0)

Suppose that the last use of variable X occurs in the
assignment to variable Y so that X and Y can be and are
allocated in the same location, in particular, the same
register pair. In this case, the definition of Y requires
only one instruction, which adds I. 0 to the real part of
the location shared by X and Y. Because there is no sec­
ond instruction to indicate completion of the defini­
tion, the definition will be lost by our implementation.

Digital Technical Journal Vol. 10 No. 1 1998 89

Semantic Stepping

A major problem with stepping by line though opti­
mized code is that the apparent source program loca­
tion "bounces" back and forth, with the same line
often appearing again and again. In large part this
bouncing is due to a compiler optimization called
code scheduling, in which instructions that arise from
the same source line are scheduled, that is, reordered
and intermixed with other instructions, for better exe­
cution performance.

Open VMS DEBUG, like most debuggers, interprets
the STEP /LINE (step by line) command to mean that
the program should execute until the line number
changes. Line numbers change more frequently in
scheduled code than in unoptimized code.

For example, in sample programs from the SPEC95
Benchmark Suite, the average number ofinstructions
in sequence that share the same line number is typi­
cally between 2 and 3-and typically 50 to 70 percent
of those sequences consist of just 1 instruction! In
contrast, if only instruction-level scheduling is dis­
abled, then the average number of instructions is
between 4 and 6, with 20 to 30 percent consisting of
one instruction. In a compilation with no optimiza­
tion, there are 8 to 12 instructions in a sequence, with
roughly 5 percent consisting of a single instruction.

A second problem with stepping by line through an
optimized program is that, because of the behavior of
revisiting the same line again and again, the user is
never quite sure when the line has finished executing.
It is unclear when an assignment actually occurs or a
control flow decision is about to be made.

In unoptimized code, when a user requests a break­
point on a certain line, the user expects execution to
stop just before that line, hence before the line is car­
ried out. In optimized code, however, there is no well­
defined location that is "before the line is carried out,"
because the code for that line is typically scattered
about, intermixed, and even combined with the code
for various other lines. It is usually possible, however,
to identify the instruction that actually carries out the
effect of the line.

Semantic Event Concept
We introduce a new kind of stepping mode called
semantic stepping to address these problems. Semantic
stepping allows the program to execute up to, but not
including, an instruction that causes a semantic effect.
Instructions that cause semantic effects are instructions
that

• Assign a value to a user variable

• Make a control flow decision

• Make a routine call

90 Digital Technical Journal Vol. 10 No. 1 1998

Not all such instructions are appropriate, however.
We start with an initial set of candidate instructions
and refine it. The following sections describe the
heuristics that are currently in use.

Assignment The candidates for assignment events
are the instructions that assign a value to a variable (or
to one ofits split children). The second instruction in
an assignment to a two-part variable is excluded.
Stopping between the two assignments is inadvisable
because at that point the variable no longer has the
complete old state and does not yet have the complete
new state.

Branches There are two kinds of branch: uncondi­
tional and conditional. An unconditional branch may
have a known destination or an unknown destination.
Unconditional branches with known destinations
most often arise as part of some larger semantic con­
struct such as an if-then-else or a loop. For example,
code for an if-then-else construct generally has an
implicit join that occurs at the end of the statement.
The join takes the form of a jump from the end of one
alternative to the location just past the last instruction
of the other (which has no explicit jump and falls
through into the next statement). This jump turns the
inherently symmetric join at the source level into an
asymmetric construction at the code stream level.

Unconditional jumps almost never define interest­
ing semantic events-some related instruction usually
provides a more useful event point, such as the termi­
nation test in the case of a loop. One exception is a
simple goto statement, but these are very often opti­
mized away in any case. Consequently, unconditional
branches with known destinations are not treated as
semantic events.

Unconditional branches with unknown destina­
tions are really conditional branches: they arise from
constructs such as a C switch statement implemented
as a table dispatch or a FORTRAN assigned GO TO state­
ment. These branches definitely are interesting points
at which to allow user interaction before the new
direction is taken. Thus, the compiler retains uncon­
ditional branches as semantic events.

Similarly, in general, conditional branches to known
destinations are important semantic event points. Often
more than one branch instruction is generated for a sin­
gle high-level source construct, for example, a decision
tree of tests and branches used to implement a small
C switch statement. In this case, only the first in the
execution sequence is used as the semantic event point.

Calls Most calls are visible to a user and constitute
semantically interesting events. However, calls to
some run-time library routines are usually not interest-

ing because these calls are perceived to be merely soft­
ware implementations of primitive operations, such as
integer division in the case of the Alpha architecture.
GEM internally marks calls to all its own run-time sup­
port routines as not semantically interesting. Compiler
front ends accomplish this where appropriate for their
own set of run-time support routines by setting a flag
on the associated entry symbol node.

Compiler Processing
In most cases, the compiler can identify semantic event
locations by simple predicates on each instruction.
The exceptions are

• The second of the two instructions that assign val­
ues to a two-part variable is identified during split
lifetime analysis.

• Conditional branches that are part of a larger con­
struct are identified during a simple pass over the
flow graph.

Object Module Representation
The object module debugging semantic event repre­
sentation contains a sequence of address and event
kind pairs, in ascending address order.

Debugger Processing
Semantic stepping in the debugger involves a new
algorithm for determining the range of instructions to
execute. This algorithm is built on a debugger primi­
tive mechanism that supports full-speed execution of
user instructions within a given range of addresses but
traps any transfer out of that range, whether by reach­
ing the end or by executing any kind of branch or call
instruction.

Semantic stepping works as follows. Starting with
the current program counter address, Open VMS
DEBUG finds the next higher address that is a seman­
tic event point; this is the target event point.
OpenVMS DEBUG executes instructions in the
address range that starts at the address of the current
instruction and ends at the instruction that precedes
the target event point. The range execution terminates
in the following two cases:

1. If the next instruction to execute is the target event
point, then execution reached the end of target
range and the step operation is complete.

2. If the next instruction to execute is not the target
event point, then the next address becomes the cur­
rent address and the process repeats (silently).

Note that, unlike the algorithm that determines the
range for stepping by line, the new algorithm does not
require an explicit test for the kind of instruction, in
particular, to test ifit is a kind of branch. The compiler

already marks branches with the semantic event
attribute, if appropriate. Also unlike the traditional
stepping-by-line algorithm, the new algorithm does
not consider the source line number.

Visible Effect
With semantic stepping, a user's perception offorward
progress through the code is no longer dominated by
the side effects of code scheduling, that is, stopping
every few instructions regardless of what is happening.
Rather, this perception is much more closely related to
the actual semantic behavior, that is, stopping every
statement or so, independent of how many instruc­
tions from disparate statements may have executed.

Note that jumping forward and backward in the
source may still occur, for example, when code motions
have changed the order in which semantic actions are
performed. Nothing about semantic event handling
attempts to hide such reordering.

In lining

Procedure call inlining can be confusing when using a
traditional debugger. For example, if routine INNER
is inlined into routine CALLER and the current point
of execution is within INNER, should the debugger
report the current source location as at a location in
the caller routine or in the called routine? Neither is
completely satisfactory by itself. If the current line is
reported as at the location within INNER, then that
information will appear to conflict with information
from a call stack traceback, which would not show
routine INNER. If the current line is reported as
though in CALLER, then relevant location informa­
tion from the callee will be obscured or suppressed.
Worse yet, in the case of nested inlining, potentially
crucial information about the intermediate call path
may not be available in any form.

The problem of dealing with inlining was solved
long ago by Zellweger1-at least the topic has not
been treated again since. Zellweger's approach adds
additional information to an otherwise traditional table
that maps from instruction addresses to the corre­
sponding source line numbers. Our approach is differ­
ent: it includes additional information in the scope
description of the debugging symbol table.

A key underpinning for inline support is the ability
to accurately describe scopes that consist of multiple
discontiguous ranges of instruction addresses, rather
than the traditional single range. This capability is
quite independent of inlining as such. However,
because code from an inlined routine is freely sched­
uled with other code from the calling context, dealing
accurately with the resulting disjoint scopes is an
essential building block for effective support.

Digital Technical Journal Vol. 10 No. 1 1998 91

Goals for Debugger Support
Our overall goal is to support debugging of inlined
code with expected behavior, that is, as though the
inlining has not occurred. More specifically, we seek to
provide the ability to

• Report the source location corresponding to the
current position in the code

• Display parameters and local variables of an inlined
routine

• Show a traceback that includes call frames corre­
sponding to inlined routines

• Set a breakpoint at a given routine entry

• Set a breakpoint at a given line number (from
within an inlined routine)

• Call an inlined routine

We have achieved these goals to a substantial extent.

GEM Locators
Before describing the mechanisms for inlining, we
introduce the GEM notion of a locator. A locator
describes a place in the source text. The simplest kinds
oflocator describe a point in the source, including the
name of the file, the line within that file, and the col­
umn within that line; they even describe the point at
which that file was included by another file (as for a C
or C++ #include directive), ifapplicable.

A crucial characteristic oflocators is that they are all
of a uniform fixed size that is no larger than an integer
or pointer. (How this is achieved is beyond the scope
of this paper.) In particular, locators are small enough
that every tuple node in the intermediate language
(IL) and every code cell in the generated code stream
contains one. Moreover, GEM as a whole is quite
meticulous about maintaining and propagating high­
quality locator information throughout its optimiza­
tion and code generation.

An additional kind of locator was introduced for
inlining support. This in/ine locator encodes a pair
that consists of a locator (which may also be an inline
locator) and the address of an associated scope node in
the GEM symbol table.

Compiler Processing
Debugging optimized code support for inlining gen­
erally builds on and is a minor enhancement of the
GEM inlining mechanism. Inlining occurs during an
early part of the GEM optimizer phase.

Inlining is implemented in GEM as follows:

• Within the scope that contains the call site, an inline
scope block is introduced. This scope represents the
result of the inlining operation. It is populated with
local variable declarations that correspond one-to­
one with the formal parameters of the inlined routine.

92 Digital Technical Journal Vol. 10 No. 1 1998

• The actual arguments of the call are transformed
into assignments that initialize the values of the sur­
rogate parameter variables.

• The inline scope is also made to contain a body
scope, which is a copy of the body of the inlined
routine, including a copy ofits local variables.

• The original call is replaced with a jump to a copy of
the IL for the body of the routine, in which refer­
ences to declarations or parameters of the routine
are replaced with references to their corresponding
copied declarations. In addition, returns from the
routine are replaced with jumps back to the tuple
following the original call.

• Similar "boundary adjustments" are made to deal
with function results, output parameters, choice of
entry point (when there is more than one, as might
occur for FORTRAN alternate entry statements),
etc. (The bookkeeping is a bit intricate, but it is
conceptually straightforward.)

The calling routine, which now incorporates a copy
of the inlined routine, is then further processed as a
normal (though larger) routine.

lnlining Annotations for Debugging The main changes
introduced for debugging optimized code support are
as follows.

• The newly created inline scope block is annotated
with additional information, namely,

- A pointer to the routine declaration being inlined.

- The locator from the call that is replaced. In a sim-
ple call with no arguments, there may be nothing
left in the IL from the original call after inlining is
completed; this locator captures the original call
location for possible later use, for example, as a
supplement to the information that maps instruc­
tion addresses to source line numbers.

• As the code list of the original inlined routine is
copied, each locator from the original is replaced by
a new inline locator that records

- The original locator.

- The newly created inline scope into which it is
being copied.

As a result of these steps, every inlined instruction can
be related back to the scope into which it was inlined
and hence to the routine from which it was inlined,
regardless of how it may be modified or moved as a
result of subsequent optimization.

Note that these additional steps are an exception to
the general assertion that debugging optimized code
support occurs after code generation and just prior to
object code emission. These steps in no way influence
the generated code-only the debugging symbol table
that is output.

Prologue and Epilogue Sets The prologue of a rou­
tine generally consists of those instructions at the
beginning of the routine that establish the routine
stack frame (for example, allocate stack and save the
return address and other preserved registers) and that
must be executed before a debugger can usefully inter­
pret the state of the routine. For this reason, setting a
breakpoint at the beginning of a routine is usually
(transparently) implemented by setting a breakpoint
after the prologue of that routine is completed.

Conversely, the epilogue of a routine consists of
those instructions at the end of a routine that tear
down the stack frame, reestablish the caller's context,
and make the return value, if any, available to the
caller. For this reason, stopping at the end of a routine
is usually (transparently) implemented by setting a
breakpoint before the epilogue of that routine begins.

One benefit of inlining is that most prologue and
epilogue code is avoided; however, there may still be
some scope management associated with scope entry
and exit. Also, some programming language-related
environment management associated with the scope
may exist and should be treated in a manner analogous
to traditional prologue and epilogue code. The prob­
lem is how to identify it, because most of the tradi­
tional compiler code generation hooks do not apply.

The model we chose takes advantage of the seman­
tic event information that we describe in the section
Semantic Stepping. In particular, we define the first
semantic event that can be executed within the inlined
routine to be the end of the prologue. For reasons dis­
cussed later, we define the last instruction (not the last
semantic event) of the inlined code as the beginning of
the epilogue. As a result of unrelated optimization
effects, each of these may turn out to be a set of
instructions. Determination of inline prologue and
epilogue sets occurs after split lifetime and semantic
event determination is completed so that the results of
those analyses can be used.

To determine the set of prologue instructions, for each
inline instance, GEM starts with every possible entry
block and scans forward through the flow graph looking
for the first semantic event instruction that can be reached
from that entry. The set of such instructions constitutes
the prologue set for that instance of the inlined routine.

This is a spanning walk forward from the routine
entry (or entries) that stops either when a block is
found to contain an instruction from the given inline
instance or when the block has already been encoun­
tered (each block is considered at most once). Note
that there may be execution paths that include one or
more instructions from an inlining, none of which is a
semantic event instruction.

The set of epilogue instructions is determined using
an inverse of the prologue algorithm. The process
starts with each possible exit block and scans backward

through the flow graph looking for the last instruction
(that is, the instruction closest to the routine exit) of
an inline instance that can reach an exit.

Note that prologue and epilogue sets are not strictly
symmetric: prologue sets consist of only instructions that
are also semantic events, whereas epilogue sets include
instructions that may or may not be semantic events.

Object Module Representation
To describe any inlining that may have occurred dur­
ing compilation, we include three new kinds of infor­
mation in the debugging symbol table.

If the instructions contained in a scope do not form a
single contiguous range, then the description of the
scope is augmented with a discontiguous range descrip­
tion. This description consists of a sequence of ranges.
(The scope itself indicates the traditional approximate
range description to provide backward compatibility
with older versions of Open VMS DEBUG). This aug­
mented description applies to all scopes, whether or not
they are the result ofinlining.

For a scope that results from inlining a call, the
description of the scope is augmented with a record
that refers to the routine that was inlined as well as the
line number of the call. Each scope also contains two
entries that consist of the sequence of prologue and
epilogue addresses, respectively.

Backward compatibility is fully maintained. An older
version of Open VMS DEBUG that does not recognize
the new kinds of information will simply ignore it.

Debugger Processing
As the debugger reads the debugging symbol table of
a module, it constructs a list of the inlined instances for
each routine. This process makes it possible to find all
instances of a given routine. Note, however, that if every
call of the routine is expanded inline and the routine
cannot otherwise be called from outside that module,
then GEM does not create a noninlined (closed-form)
version of the routine.

Report Source Location It is a simple process to report
the source location that corresponds to the current code
address. When stopped inside the code resulting from
an inlined routine, the program counter maps directly
to a source line within the inlined routine.

Display Parameters and Local Variables As is the case
for a noninlined routine, the scope description for an
inlined routine contains copies of the parameters and
the local variables. No special processing is required to
perform name binding for such entities.

Include lnlined Calls in Traceback The debugger pre­
sents inlined routines as if they are real routine calls. A
stack frame whose current code address corresponds

Digital Technical Journal Vol. 10 No. 1 1998 93

to an inlined routine instance is described with two or
more virtual stack frames: one or more for the inlined
instance(s) and one for the ultimate caller. (An exam­
ple is shown later in Figure 7.)

Set Breakpoints at lnlined Routine Instances The
strategy for setting breakpoints at inlined routines is
based on a generalization of processing that previously
existed for C++ member functions. Compilation of
C++ modules can result in code for a given member
function being compiled every time the class or tern -
plate definition that contains the member function is
compiled. We refer to all these compilations as clones.
(It is not necessary to distinguish which of them is the
original.) In our generalization, an inlined routine call
instance is treated like a clone. To set a breakpoint at a
routine, the debugger sets breakpoints at all the end­
of-prologue addresses of every clone of the given rou­
tine in all the currently active modules.

Set Breakpoints at lnlined Line Number Instances The
strategy for setting breakpoints on line numbers shares
some features of setting breakpoints on routines, with
additional complications. Compiler-reported line num­
bers on Open VMS systems are unique across all the
files included in a compilation. It follows that the same
file included in more than one compilation may have
different associated line numbers.

To set a breakpoint at a particular line number,
that line number needs to be first normalized relative
to the containing file. This normalized line number
value is then compared to normalized line numbers
for that same file that are included in other compila­
tions. (If different versions of the same named file
occur in different compilations, the versions are
treated as unrelated.) The original line number is
converted into the set of address ranges that corre­
spond to it in all modules, taking into account inlin­
ing and cloning.

Call a Routine That Is lnlined If the compiler creates a
closed-form version of a routine, then the debugger
can call that routine independent of whether there
may also be inlined instances of the routine. If no such
version of the routine exists, then the debugger cannot
call the routine.

Usage Example
Inlining support has many aspects, but we will illus­
trate only one-a call traceback that includes inlined
calls. Consider the sample program shown in Figure 6.
This program has four routines: three are combined in
a single file (enabling the GEM FORTRAN compiler
to perform inline optimizations), and the last is in a
separate file. To help correlate the lines of code in

94 Digital Technical Journal Vol. 10 No. 1 1998

Line+++++ File DOCFJ-INLINE-2.FOR

1 c Main routine
2 c
3 INTEGER A, c
4 TYPE *, A(3 , C(O}}
5 END
6 c
7 FUNCTION A(I, L)
8 INTEGER A, B
9 A = B(5, I} + 2*L
10 RETURN
11 END
12 c
13 FUNCTION B(J, K}
14 INTEGER B, c
15 B = C(9) + J + K
16 END

+++++ File DOCFJ-INLINE-2A.FOR
1 c
2 FUNCTION C (I)
3 INTEGER C
4 C = 2*I
5 RETURN
6 END

Figure 6
Program to Illustrate Inlining Support

these two files with those in Figure 7, we added line
numbers to the left of the code. Note that these num­
bers are not part of the program.

If we compile, link, and run this program using the
OpenVMS DEBUG option, we can step to a place in
routine B that is just before the call to routine C and
then request a traceback of the call stack. This dialogue
is shown in Figure 7.

Figure 7 shows that pseudo stack frames are reported
for routines A and B, even though the call of routine B
has been inlined into routine A and the call of routine A
has been inlined into the main program. The main dif­
ference from a real stack frame is the extra line that
reports that the "above routine is inlined."

Limitations
In a real stack frame, it is possible to examine (and
even deposit into) the real machine registers, rather
than examine the variables that happen to be allocated
in machine registers. In an inlined stack frame, this
operation is not well defined and consequently not
supported. In a noninlined stack frame, these opera­
tions are still allowed.

An attractive feature that would round out the
expected behavior of inlined routine calls would be to
support stepping into or over the inlined call in the
same way that is possible for noninlined calls. This fea­
ture is not currently supported--execution always
steps into the call.

GEMEVN$ run DOCFJ-INLINE-2
OpenVMS Alpha Debug64 Version T7.2-001

%I, Language : FORTRAN, Module : DOCFJ-INLINE-2$MAIN

DBG> step/semantic
stepped to DOCFJ-INLINE-2$MAIN\A\B\%LINE 15+8

15: B = C(9) + J + K
DBG> show calls

module name routine name line
*DOCFJ-INLINE-2$MAIN

B 15
----- above routine is inlined
*DOCFJ-INLINE-2$MAIN

A 9
----- above routine is inlined
*DOCFJ-INLINE-2$MAIN

rel PC abs PC

OOOOOOOOOOOOOOlC 000000000002006C

0000000000000004 0000000000020054

DOCFJ-INLINE-2$MAIN
4 0000000000000038 0000000000020038

0000000000000000 FFFFFFFF8590716C

Figure 7
Open VMS DEBUG Dialogue to Illustrate Inlining Support

Performance and Resource Usage

We gathered a number of statistics to determine typi­
cal resource requirements for using the enhanced
debugging optimized code capability compared to the
traditional practice of debugging unoptimized code. A
short summary of the findings follows.

• All metrics tend to show wide variance from pro­
gram to program, especially small ones.

• Generating traditional debugging symbol information
increases the size of object modules typically by 50 to
100 percent on the Open VMS system. Executable
image sizes show similar but smaller size increases.

• Generating enhanced symbol table information
adds about 2 to 5 percent to the typical compilation
time, although higher percentages have been seen
for unusually large programs.

• Generating enhanced symbol table information
uses significant memory during compilation but
does not affect the peak memory requirement of a
compilation.

• Generating enhanced symbol table information
further increases the size of the symbol table infor­
mation compared to that for an unoptimized com­
pilation. On the Open VMS system, this adds 100 to
200 percent to the debugging symbol table of
object modules and perhaps 50 to 100 percent for
executable images.

• Compiling with full optimization reduces the
resulting image size. Total net image size increases
typically by 50 to 80 percent.

A more detailed presentation of findings follows.
Tables 1 through 3 present data collected using pro­
duction OpenVMS Alpha native compilers built in
December 1996. In developing these results, we used
five combinations of compilation options as follows:

Sl: no optimization (noopt), no debugging infor­
mation (nodebug, nodbgopt)

S2: no optimization (noopt), normal debugging
information (debug, nodbgopt)

S4: full (default) optimization (opt), no debugging
information (nodebug, nodbgopt)

SS: full optimization (opt), normal debugging
information only (debug, nodbgopt)

SS: full optimization (opt), enhanced debugging
information (debug, dbgopt)

Note that the option combination numbering sys­
tem is historical; we retained the system to help keep
data logs consistent over time.

Compile-time Speed
The incremental compile-time cost of creating enhanced
symbol table information is presented in Table 1 for a
sampling of BLISS, C, and FORTRAN modules. The
data in this table can be summarized as follows:

• Traditional debugging (column 1) increases the
total compilation time by about 1 percent.

• Enhanced debugging (column 2) increases the
compilation time by about 4 percent. The largest
component of that time, approximately 3 percent,
is attributed to the flow analysis involved in han -
dling split lifetime variables (column 3).

• Debugging tends to increase as a percentage of
time in larger modules, which suggests that pro­
cessing time is slightly nonlinear in program size;
however, this increase does not seem to be excessive
even in very large modules.

Compile-time Space
The compile-time memory usage during the creation of
enhanced symbol information is presented in Table 2.

Digital Technical Journal Vol. 10 No. 1 1998 95

Table 1
Percent of Compilation Time Used to Create/Out put Debugging Information

Module
52 (noopt, debug,
nodbgopt)

58 (opt, debug,
dbgopt)

(Split Lifetime
Analysis Only)

BLISS CODE
GEM_AN 0.3% 1.1% 0.7%
GEM_DB 0.9 1.8 1.3
GEM_DF 0.8 5.2 4.4
GEM_FB 0.7 3.5 2.7
GEM_IL_PEEP 0.6 14.4 13.9

C CODE
(_M ETRIC 1.5 5.2 4.1
GRAM 0.5 2.9 2.2
INTERP 1.2 4.5 3.2

FORTRAN CODE
MATRIX300X nm nm nm
NAGL 1.4 13.0 11.9
SPICE_V07 3.0 6.4 4.7
WAVEX 2.5 6.3 4.8

Average 1.2% 4.3% 3.2%
Typical range (0.5%-1.5%) (3.0%-7 .0%) (2.0%-5.0%)

Note: "nm" represents "not meaningful," that is, too small to be accurately measured.

Table 2
Key Dynamic Memory Zone Sizes during BLISS GEM Compilations

Peak SYMBOL Ell CODE OM % % %
File Total ZONE ZONE ZONE ZONE Peak Larg Ell

BLISS CODE
GEM_AN 2,507 130 85 184 15 6% 8% 18%
GEM_DF 11,305 836 1,672 2,056 1, 180 10 57 71
GEM_FB 4,694 316 522 457 304 6 58 58
GEM_IL_PEEP 40,419 1,606 17,666 4,411 14, 143 34 80 80

C CODE
(_METRIC 7,381 1, 115 494 2,563 167 2 6 34
GRAM 3,031 82 815 211 267 9 33 33
INTERP 3,563 354 308 688 131 4 20 43

FORTRAN CODE
MATRIX300X 934 143 227 101 58 6 26 26
NAGL 6,267 1,520 1,791 1,742 68 11 38 38
SPICE_V07 6,234 1,051 3,256 885 459 7 14 14
WAVEX 12,812 4,676 3, 119 3,482 68 5 14 22

Average 9% 32% 40%
Note: All numbers to the left of the vertical bar are thousands of bytes, not multiples of 1,024.

Column Key:
Column Description

Peak Total The peak dynamic memory allocated in all zones during the compilation
SYMBOL ZONE The zone that holds t he GEM symbol table
Ell ZONE The zone that holds the largest Ell ZONE (used for the expanded intermediate representation)
CODE ZONE The zone that holds the GEM generated code list
OM ZONE The zone that holds split lifetime and other working data
%Peak The OM ZONE size as a percentage of the Peak Total size
o/olarg The OM ZONE size as a percentage of the largest single zone in the compi lation
%Ell The OM ZONE size as a percentage of the Ell ZONE size

96 Digital Technical Journal Vol. 10 No. l 1998

The following is a summary of the data, where OM
ZONE refers to the temporary working virtual mem­
ory zone used for split lifetime analysis:

• The OM ZONE size averages about 10 percent of
the peak compilation size.

• The OM ZONE size is one-quarter to one-half of the
EIL ZONE size. (The latter is well known for typi­
cally being the largest zone in a GEM compilation.)

• Since the OM ZONE is created and destroyed after all
EIL ZONEs are destroyed, the OM ZONE does not
contribute to establishing the peak total size.

Object Module Size
The increased size of enhanced symbol table informa­
tion for both object files and executable image files is
shown in Table 3.

In Table 3, the application or group of modules is iden­
tified in the first column. The columns labeled Sl, S2, etc.
give the resulting size for the combination of compilation
options described earlier. Object module and executable
image data is presented in successive rows.

Three ratios of particular interest are computed.

S2/Sl: This ratio shows the object or image size
with traditional debugging information compared
to a base compilation without any debugging infor­
mation. This ratio indicates the additional cost, in
terms of increased object and image file size, associ­
ated with doing traditional symbolic debugging.

(S8-S5)/(S2-Sl): This ratio shows the increase in
debugging symbol table size (exclusive of base object,

Table 3

image text, etc.) due to the inclusion of enhanced infor­
mation compared to the traditional symbol table size.

S8/S2: This ratio shows the object or image size
with enhanced debugging information with opti­
mization compared to the traditional debugging
size without optimization.

The last ratio, S8/S2, is especially interesting because
it combines two effects: (1) the reduction in size as a
result of compiler optimization, and (2) the increase in
size because the larger debugging symbol table needed
to describe the result of the optimization. The result­
ing net increase is reasonably modest.

Summary and Conclusions

There exists a small but significant literature regarding
the debugging of optimized code, yet very few debug­
gers take advantage of what is known. In this paper we
describe the new capabilities for debugging optimized
code that are now supported in the GEM compiler sys­
tem and the Open VMS DEBUG component of the
Open VMS Alpha operating system. These capabilities
deal with split lifetime variables and currency determi­
nation, semantic stepping, and procedure inlining. For
each case, we describe the problem addressed and then
present an overview of GEM compiler and Open VMS
DEBUG processing and the object module represen­
tation that mediates between them. All but the inlin­
ing support are included in Open VMS DEBUG V7.0
and in GEM-based compilers for Alpha systems that
have been shipping since 1996. The inlining support is

Object/Executable (.OBJ/.EXE) File Sizes (in Number of Blocks) for Various OpenVMS Components

51 52 54 55 58
noopt noopt opt opt opt (58-55)/
nodebug debug 52/51 node bug debug debug (52-51) 58/52

File nodbgopt nodbgopt Ratio nodbdopt nodbgopt dbgopt Ratio Ratio

BLISS CODE
GEM_ * .OBJ 31,477 51,069 1.62 27,483 47,031 68,728 1.11 1.35
GEM_*.EXE 12, 160 29,543 2.43 10,373 27,755 32,288 0.26 1.09

CCODE
(_METRIC.OBJ 436 653 1.50 478 733 1,680 4.36 2.57
(_METRIC.EXE 250 348 1.39 250 385 581 2.00 1.67
GRAM.OBJ 102 120 1.19 100 117 224 5.94 1.87
GRAM.EXE 60 70 1.17 58 69 91 2.20 1.30
INTERP.OBJ 140 207 1.48 134 205 450 3.66 2.17
INTERP.EXE 80 113 1.41 75 113 167 1.64 1.47

FORTRAN CODE
MATRIX300X.OBJ 20 34 1.70 16 29 71 3.00 2.08
MATRIX300X. EXE 19 29 1.53 15 25 34 0.90 1.17
NAGL.OBJ 42 63 1.51 288 509 1, 178 3.11 1.84
NAGL.EXE 289 388 1.34 187 333 469 1.37 1.21
SPICE.OBJ 1,652 3, 117 1.89 1,073 2,571 4,916 1.60 1.58
SPICE.EXE 1,031 1,660 1.61 549 1,318 1,803 0.77 1.09
WAVEX.OBJ 555 1,639 2.95 393 1,556 2,949 1.29 1.80
WAVEX.EXE 634 1, 190 1.88 490 1, 167 1,437 0.49 1.21

Digital Technical Journal Vol. IO No. l 1998 97

currently in field test. Work is under way to provide
similar capabilities in the lade bug debugger17

•
18 compo­

nent of the DIGITAL UNIX operating system.
There are and will always be more opportunities and

new challenges to improve the ability to debug opti­
mized code. Perhaps the biggest problem of all is to fig­
ure out where best to focus future attention. It is easy to
see how the capabilities described in this paper provide
major benefits. We find it much harder to see what capa­
bility could provide the next major increment in debug­
ging effectiveness when working with optimized code.

References

1. P. Zellweger, "Interactive Source-Level Debugging of
Optimized Programs," Ph.D. Dissertation, University
of California, Xerox PARC CSL-84-5 (May 1984).

2. J. Hennessy, "Symbolic Debugging of Optimized Code,"
ACM Transactions on Programming Languages and
Systems, vol. 4, no. 3 (July 1982): 323-344.

3. M. Copperman, "Debugging Optimized Code With­
out Being Misled," Ph.D. Dissertation, University of
California at Santa Cruz, UCSC Technical Report
UCSC-CRL-93-21 (June 11, 1993).

4. G. Brooks, G. Hansen, and S. Simmons, "A New
Approach to Debugging Optimized Code," ACM SIG­
PLAN '92 Conference on Programming Language
Design and Implementation, SIGPLAN Notices, vol. 27,
no. 7 (July 1992): 1-11.

5. Convex Computer Corporation, CONVEX CXdb Con­
cepts (Richardson, Tex.: Convex Press, Order No.
DSW-471, May 1991).

6. D. Coutant, S. Meloy, and M. Ruscetta, "DOC: A Prac­
tical Approach to Source-Level Debugging of Globally
Optimized Code," Proceedings of the SIGPLAN '88 Con­
ference on Programming Language Design and Imple­
mentation, Atlanta, Ga. (June 22-24, 1988): 125-134.

7. L. Zurawski, "Source-Level Debugging of Globally Opti­
mized Code with Expected Behavior," Ph.D. Disserta­
tion, University of Illinois at Urbana-Champaign (1989).

8. U. Holzle, C. Chambers, and D. Ungar, "Debugging
Optimized Code with Dynamic Deoptimization,"
ACM SIGPIAN '92 Conference on Programming Lan­
guage Design and Implementation, San Francisco,
Calif. (June 17-19, 1992) and SIGPLAN Notices, vol.
27, no. 7 (July 1992): 32-43.

9. L. Pollock and M. Soffa, "High-level Debugging with
the Aid of an Incremental Optimizer," Proceedings of
the 21st Hawaii International Conference on System
Sciences (January 1988): 524-532.

10. L. Pollock, M. Bivens, and M. Soffa, "Debugging
Optimized Code via Tailoring," International Sympo­
sium on Software Testing andAnarysis(August 1994).

11. P. Feiler, "A Language-Oriented Interactive Program­
ming Environment Based on Compilation Technol­
ogy," Ph.D. Dissertation, Carnegie-Mellon University,
CMU-CS-82-117 (May 1982).

98 Digital Technical Journal Vol. 10 No. 1 1998

12. A. Adl-Tabatabi, "Source-Level Debugging of Glob­
ally Optimized Code," Ph.D. Dissertation, Carnegie
Mellon University, CMU-CS-96-133 (June 1996).

13. D. Blickstein et al., "The GEM Optimizing Compiler
System," Digital Technical journal, vol. 4, no. 4 (Spe­
cial Issue 1992): 121-136.

14. B. Beander, "VAX DEBUG: An Interactive, Symbolic,
Multilingual Debugger," ACM SIGSOFT/SIGPLAN Soft­
ware Engineering Symposium on High-Level Debug­
ging, ACM SIGPLAN Notices, vol. 18, no. 8 (August
1983): 173-179.

15. Open VMS Debugger Manual, Order No. AA-QSBJB­
TE (Maynard, Mass.: Digital Equipment Corporation,
November 1996).

16. R. Sites, ed., Alpha Architecture Reference Manual,
3d ed. (Woburn, Mass.: Digital Press, 1998).

17. T. Bingham, N. Hobbs, and D. Husson, "Experiences
Developing and Using an Object-Oriented Library for
Program Manipulation," OOPS/A Conference Pro­
ceedings, ACM SIGPIAN Notices, vol. 12, no. 10
(October 1993): 83-89.

18. Digital UNIX Ladebug Debugger Manual, Order No.
AA-PZ7EE-TlTE (Maynard, Mass.: Digital Equipment
Corporation, March 1996).

Biographies

Ronald F. Brender
Ronald F. Brender is a senior consultant software engineer
in Compaq's Core Technology Group, where he is working
on both the GEM compiler and the UNIX ladebug pro­
jects. During his career, Ron has worked in advanced
development and product development roles for BLISS,
FORTRAN,Ada,andmultilanguagedebuggingonDIGITAL's
DECsystem-IO, PDP-11, VAX, and Alpha computer systems.
He served as a representative on the ANSI and ISO standards
committees for FORTRAN 77 and later for Ada 83, also serv­
ing as a U.S. Department of Defense invited Distinguished
Reviewer and a member of the Ada Board and the Ada
Language Maintenance Committee for more than eight
years. Ron joined Digital Equipment Corporation in 1970,
after earning the degrees of B .S .E. (engineering sciences),
M.S. (applied mathematics), and Ph.D. (computer and
communication sciences) in 1965, 1968, and 1969, respec­
tively, all from the University of Michigan. He is a member
of the Association for Computing Machinery and the IEEE
Computer Society. Ron holds seven patents and has published
several papers in the area of programming language design
and implementation.

Jeffrey E. Nelson
Jeffrey E. Nelson is a senior software developer at Candle
Corporation in Minneapolis, Minnesota. He currently
develops message broker software for Roma BSP, Candle's
middleware framework for integrating business applications.
Previously at DIGITAL, Jeff was a principal software engineer
on the Open VMS and lade bug debugger projects. He spe­
cialized in debug symbol table formats, run-time language
support, and computer architecture support. He contributed
to porting the Open VMS debugger from the VAX to the
Alpha platform. He represented DIGITAL on the industry­
wide Pl.SIG committee that developed the DWARF debug­
ging symbol table format. Jeff holds an M.S. degree in
computer science and applications from Vrrginia Polytechnic
Institute and State University and a B.S. degree in computer
science from the University ofWisconsin-LaCrosse. Jeff is
an alumnus of the Graduate Engineering Education Program
(GEEP), has been awarded one patent, and has previously
published and presented work in the area of real-time, object­
oriented garbage collection.

Mark E. Arsenault
Mark E. Arsenault is a principal software engineer in
Compaq's Open VMS Engineering Group working on
the Open VMS debugger. Mark has implemented support in
the debugger for 64-bit addressing, C++, and inlining. He
joined DIGITAL in 1981 and has worked on several soft­
ware development tools, including the BLISS compiler and
the Source Code Analyzer. Mark holds two patents, one each
for the Heap Analyzer and for the Correlation Facility. He
received a BA. in physics from Boston University in 1981.

Digital Technical Journal Vol. IO No. I 1998 99

Differential Testing
for Software

Differential testing, a form of random testing,

is a component of a mature testing technology

for large software systems. It complements

regression testing based on commercial test

suites and tests locally developed during prod­

uct development and deployment. Differential

testing requires that two or more comparable

systems be available to the tester. These sys­

tems are presented with an exhaustive series

of mechanically generated test cases. If (we

might say when) the results differ or one of

the systems loops indefinitely or crashes, the

tester has a candidate for a bug-exposing test.

Implementing differential testing is an interest­

ing technical problem. Getting it into use is an

even more interesting social challenge. This

paper is derived from experience in differential

testing of compilers and run-time systems at

DIGITAL over the last few years and recently

at Compaq. A working prototype for testing

C compilers is available on the web.

100 Digital Technical Journal Vol. 10 No. I 1998

I
William M. McKeeman

The Testing Problem

Successful commercial computer systems contain tens
of millions of lines of handwritten software, all of
which is subject to change as competitive pressures
motivate the addition of new features in each release.
As a practical matter, quality is not a question of cor­
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the software is
deteriorating.

Quality
Testing is a major contributor to quality-it is the last
chance for the development organization to reduce
the number of bugs delivered to customers. Typically,
developers build a suite of tests that the software must
pass to advance to a new release. Three major sources
of such tests are the development engineers, who
know where to probe the weak points; commercial test
suites, which are the arbiters of conformance; and cus­
tomer complaints, which developers must address to
win customer loyalty. All three types of test cases are
relevant to customer satisfaction and therefore have
value to the developers. The resultant test suite for the
software under test becomes intellectual property,
encapsulates the accumulated experience of problem
fixes, and can contain more lines of code than the soft­
ware itself

Testing is always incomplete. The simplest measure
of completeness is statement coverage. Instrumentation
can be added to the software before it is tested. When
a test is run, the instrumentation generates a report
detailing which statements are actually executed.
Obviously, code that is not executed was not tested.
Random testing is a way to make testing more com­
plete. One value of random testing is introducing the
unexpected test-1,000 monkeys on the keyboard can
produce some surprising and even amusing input! The
traditional approach to acquiring such input is to let
university students use the software.

Testing software is an active field of endeavor.
Interesting starting points for gathering background

information and references are the web site main­
tained by Software Research, Inc.1 and the book
Software Testing and Quality Assurance.2

Developer Distaste
A development team with a substantial bug backlog
does not find it helpful to have an automatic bug
finder continually increasing the backlog. The team
priority is to address customer complaints before deal­
ing with bugs detected by a robot. Engineers argue
that the randomly produced tests do not uncover
errors that are likely to bother customers. "Nobody
would do that," "That error is not important," and
"Don't waste our time; we have plenty of real errors
to fix" are typical developer retorts.

The complaints have a substantial basis. During a visit
to our development group, Professor C. A. R. Hoare of
Oxford University succinctly summarized one class of
complaints: "You cannot fix an infinite number of bugs
one at a time." Some software needs a stronger remedy
than a stream of bug reports. Moreover, a stream of bug
reports may consume the energy that could be applied
in more general and productive ways.

The developer pushback just described indicates that
a differential testing effort must be based on a per­
ceived need for better testing from within the product
development team. Performing the testing is pointless
if the developers cannot or will not use the results.

Differential testing is most easily applicable to soft­
ware whose quality is already under control, that is,
software for which there are few known outstanding
errors. Running a very large number of tests and
expending team effort only when an error is found
becomes an attractive alternative. Team members'
morale increases when the software passes millions of
hard tests and test coverage of their code expands.

The technology should be important for applica­
tions for which there is a high premium on correct­
ness. In particular, product differentiation can be
achieved for software that has few failures in compari­
son to the competition. Differential testing is designed
to provide such comparisons.

The technology should also be important for appli­
cations for which there is a high premium on indepen­
dently duplicating the behavior of some existing
application. Identical behavior is important when old
software is being retired in favor of a new implementa­
tion, or when the new software is challenging a domi­
nant competitor.

Seeking an Oracle
The ugliest problem in testing is evaluating the result
of a test. A regression harness can automatically check
that a result has not changed, but this information
serves no purpose unless the result is known to be cor-

rect. The very complexity of modern software that
drives us to construct tests makes it impractical to pro­
vide a priori knowledge of the expected results. The
problem is worse for randomly generated tests. There
is not likely to be a higher level of reasoning that can
be applied, which forces the tester to instead follow
the tedious steps that the computer will carry out dur­
ing the test run. An oracle is needed.

One class of results is easy to evaluate: program
crashes. A crash is never the right answer. In the triage
that drives a maintenance effort, crashes are assigned to
the top priority category. Although this paper does not
contain an in-depth discussion of crashes, all crashes
caused by differential testing are reported and consti­
tute a substantial portion of the discovered bugs.

Differential testing, which is covered in the following
section, provides part of the solution to the problem of
needing an oracle. The remainder of the solution is dis­
cussed in the section entitled Test Reduction.

Differential Testing

Differential testing addresses a specific problem-the
cost of evaluating test results. Every test yields some
result. If a single test is fed to several comparable pro­
grams (for example, several C compilers), and one pro­
gram gives a different result, a bug may have been
exposed. For usable software, very few generated tests
will result in differences. Because it is feasible to gener­
ate millions of tests, even a few differences can result in
a substantial stream of detected bugs. The trade-off is
to use many computer cycles instead of human effort to
design and evaluate tests. Particle physicists use the
same paradigm: they examine millions of mostly boring
events to find a few high-interest particle interactions.

Several issues must be addressed to make differen­
tial testing effective. The first issue concerns the qual­
ity of the test. Any random string fed to a C compiler
yields some result- most likely a diagnostic. Feeding
random strings to the compiler soon becomes unpro­
ductive, however, because these tests provide only
shallow coverage of the compiler logic. Developers
must devise tests that drive deep into the tested com­
piler. The second issue relates to false positives. The
results of two tested programs may differ and yet
still be correct, depending on the requirements. For
example, a C compiler may freely choose among alter­
natives for unspecified, undefined, or implementation­
defined constructs as detailed in the C Standard.3

Similarly, even for required diagnostics, the form of
the diagnostic is unspecified and therefore difficult to
compare across systems. The third issue deals with the
amount of noise in the generated test case. Given a
successful random test, there is likely to be a much
shorter test that exposes the same bug. The developer

Digital Technical Journal Vol. 10 No. 1 1998 101

who is seeking to fix the bug strongly prefers to use the
shorter test. The fourth issue concerns comparing pro­
grams that must run on different platforms. Differential
testing is easily adapted to distributed testing.

Test Case Quality

Writing good tests requires a deep knowledge of the
system under test. Writing a good test generator
requires embedding that same knowledge in the gen­
erator. This section presents the testing of C compilers
as an example.

Testing C Compilers
For a C compiler, we constructed sample C source files
at several levels of increasing quality.

1. Sequence of ASCII characters

2. Sequence of words, separators, and white space

3. Syntactically correct C program

4. Type-correct C program

5. Statically conforming C program

6. Dynamically conforming C program

7. Model-conforming C program

Given a test case selected from any level, we con­
structed additional nearby test cases by randomly
adding or deleting some character or word from the
given test case. An altered test case is more likely to
cause the compilers to issue a diagnostic or to crash.
Both the selected and the altered test cases are valuable.

One of the more entertaining testing papers reports
the results of feeding random noise to the C run-time
library.4 A typical library function crashed or hung on 30
percent of the test cases. C compilers should do better,
but this hypothesis is worth checking. Only rarely
would a tested compiler faced with level 1 input execute
any code deeper than the lexer and its diagnostics. One
test at this level caused the compiler to crash because an
input line was too long for the compiler's buffer.

At level 2, given lexically correct text, parser error
detection and diagnostics are tested, and at the same
time the lexer is more thoroughly covered. The C
Standard describes the form ofC tokens and C ''white­
space" (blanks and comments). It is relatively easy to
write a lexeme generator that will eventually produce
every correct token and white-space. What surprised us
was the kind of bugs that the testing revealed at this

level. One compiler could not handle OxOOOOO 1 if
there were too many leading zeros in the hexadecimal
number. Another compiler crashed when faced with
the floating-point constant lElOOO. Many compilers
failed to properly process digraphs and trigraphs.

Stochastic Grammar
A vocabulary is a set of two kinds of symbols: terminal
and nonterminal. The terminal symbols are what one
can write down. The nonterminal symbols are names
for higher level language structures. For example, the
symbol "+" is a terminal symbol, and the symbol
"additive-expression" is a nonterminal symbol of the
C programming language. A grammar is a set of rules
for describing a language. A rule has a left side and a
right side. The left side is always a nonterminal sym­
bol. The right side is a sequence of symbols. The rule
gives one definition for the structure named by the left
side. For example, the rule shown in Figure 1 defines
the use of"+" for addition in C. This rule is recursive,
defining additive-expression in terms ofitsel£

There is one special nonterminal symbol called the
start symbol. At any time, a nonterminal symbol can be
replaced by the right side of a rule for which it is the left
side. Beginning with the start symbol, nonterminals
can be replaced until there are no more nonterminal
symbols. The result of many replacements is a sequence
of terminal symbols. If the grammar describes C, the
sequence of terminal symbols will form a syntactically
correct C program. Randomly generated white-space
can be inserted during or after generation.

A stochastic grammar associates a probability with
each grammar rule.

For level 2, we wrote a stochastic grammar for lex­
emes and a Tel script to interpret the grammar,5

•
6 per­

forming the replacements just described. Whenever a
nonterminal is to be expanded, a new random number
is compared with the fixed rule probabilities to direct
the choice of right side.

In either case, at this level and at levels 3 through 7,
setting the many fixed choice probabilities permits
some control of the distribution of output values.
Not all assignments of probabilities make sense. The
probabilities for the right sides that define a specific
nonterminal must add up to 1.0. The probability of
expanding recursive rules must be weighted toward a
nonrecursive alternative to avoid a recursion loop in
the generator. A system of linear equations can be
solved for the expected lengths of strings generated by

additive-expression additive-expression+ multiplicative-expression

Figure 1
Rule That Defines the Use of "+" for Addition in C

102 Digital Technical Journal Vol. 10 No. 1 1998

r

each nonterminal. If, for some set of probabilities, all
the expected lengths are finite and nonnegative, this
set of probabilities ensures that the generator does not
often run away.

Increasing Test Quality
At level 3, given syntactically correct text, one would
expect to see declaration diagnostics while more thor­
oughly covering the code in the parser. At this level,
the generator is unlikely to produce a test program
that will compile. Nevertheless, compiler errors were
detected. For example, one parser refused the expres­
sion l==l==l.

The syntax of C is given in the C Standard. Using
the concept of stochastic grammar, it is easy to write a
generator that will eventually produce every syntacti­
cally correct C translation-unit. In fact, we extended
our Tel lexer grammar to all of C.

At level 4, given a syntactically correct generated
program in which every identifier is declared and all
expressions are type correct, the lexer, the parser, and a
good deal of the semantic logic of the compiler are
covered. Some generated test programs compile and
execute, giving the first interesting differential testing
results. Achieving level 4 is not easy but is relatively
straightforward for an experienced compiler writer. A
symbol table must be built and the identifier use lim­
ited to those identifiers that are already declared. The
requirements for combining arithmetic types in C
(in t , short, char, float , double with long
and/or unsigned) were expressed grammatically.
Grammar rules defining, for example, int-additive­
expression replaced the rules defining additive-expres­
sion. The replacements were done systematically for all
combinations of arithmetic types and operators. To
avoid introducing typographical errors in the defining
grammar, much of the grammar itself was generated
by auxiliary Tel programs. The Tel grammar inter­
preter did not need to be changed to accommodate
this more accurate and voluminous grammatical data.
We extended the generator to implement declare-

before-use and to provide the derived types of C
(struct , uni on, pointer) . These necessary
improvements led to thousands of lines of tricky
implementation detail in Tel. At this point, Tel, a
nearly structureless language, was reaching its limits
as an implementation language.

At level 5, where the static semantics of the C
Standard have been factored into the generator, most
generated programs compile and run.

Figure 2 contains a fragment of a generated C test
program from level 5.

A large percentage of level 5 programs terminate
abnormally, typically on a divide-by-zero operation. A
peculiarity of C is that many operators produce a
Boolean value ofO or 1. Consequently, a lot of expres­
sion results are 0, so it is likely for a division operation
to have a zero denominator. Such tests are wasted. The
number of wasted tests can be reduced somewhat by
setting low probabilities for using divide, for creating
Boolean values, or for using Boolean values as divisors.

Regarding level 6, dynamic standards violations can­
not be avoided at generation time without a priori
choosing not to generate some valid C, so instead we
implement post-run analysis. For every discovered dif­
ference (potential bug), we regenerate the same test case,
replacing each arithmetic operator with a function call,
inside which there is a check for standards violations.

The following is a function that checks for "integer
shift out of range." (If we were testing C++, we could
have used overloading to avoid having to include the
type signature in the name of the checking function.)

int
int_shl_int_int(int val , int amt) {

assert(amt >= 0 && amt< sizeof(int) * B);
return val<< amt;

For example, the generated text

a<< b

is replaced upon regeneration by the text

int_shl_int_int(a , b)

++ ullS + - - ui8 * ++ ull6 - (uil7 + ++ ui20 * (sl21 & (argc << =
cl4) ? (us23) < ++ argc <= ++ sl22 : - - ((* & * & sl24)) ==
0160030347u < ++ (t5u7) . sit5m6 & 1731044438u * ++ ui25 * (
unsigned int) ++ (ld26)) & (((0761) * 2137167721L * sl27 ?
ul28 & dl2 * ++ d9 * DBL_EPSILON * 7e+4 * ++ dll + ++ dlO * dl2 * (
++ ld31 * .4L * 9.1 - ld32 * ++ f33 - - . 7392E-6L * ++ ld34 + 22.82L
+ 1.91 * -- ld35 >= ++ ld37) == 9.F + (++ f38) + ++ f39 *f40 > (
float) ++ f41 * f42 >= cl4 ++ : sc43 & ss44) 'ucl3 & .9309L - (
uilB * 007101U * uil9? sc46 -- ? -- ld47 + ld48 : ++ ld49 - ld48 *
++ ldSO : ++ ld51) >= 239.611) ' - ++ argc (int signed) argc -
++ ui 54)- ++ ul57 >= ++ ul58 * argc - 9ul * ++ * & ul 59 * ++ ul60;

Figure 2
Generated C Expression

Digital Technical Journal Vol. 10 No. l 1998 103

If, on being rerun, the regenerated test case asserts a
standards violation (for example, a shift of more than
the word length), the test is discarded and testing con­
tinues with the next case.

Two problems with the generator remain: (1) obtain­
ing enough output from the generated programs so
that differences are visible and (2) ensuring that the
generated programs resemble real-world programs so
that the developers are interested in the test results.
Solving these two problems brings the quality of test
input to level 7. The trick here is to begin generating the
program not from the C grammar nonterminal symbol
translation-unit but rather from a model program
described by a more elaborate string in which some of
the program is already fully generated. As a simple
example, suppose you want to generate a number of
print statements at the end of the test program. The
starting string of the generating grammar might be

define P(v) printf(#v " =lx\\n", v)

int main() {
declaration-list
statement-list
print-list
exit(O) ;

where the grammatical definition of print-list is
given by

print-list P (identifier) ;
print-list print-list P (identifier) ;

In the starting string above there are three nonter­
minals for the three lists instead of just one for the
standard C start symbol translation-unit. Programs
generated from this starting string will cause output
just before exit. Because differences caused by round­
ing error were uninteresting to us, we modified this
print macro for types float and double to print only
a few significant digits. With a little more effort, the
expansion of print-list can be forced to print each
variable exactly once.

Alternatively, suppose a test designer receives a bug
report from the field, analyzes the report, and fixes the
bug. Instead of simply putting the bug-causing case in
the regression suite, the test designer can generalize it
in the manner just presented so that many similar test
cases can be used to explore for other nearby bugs.

The effect oflevel 7 is to augment the probabilities
in the stochastic grammar with more precise and direct
means of control.

Forgotten Inputs
The elaborate command-line flags, config files, and
environment variables that condition the behavior of
programs are also input. Such input can also be gener­
ated using the same toolset that is used to generate the
test programs. The very first test on the very first run

104 Digi tal Technical Journal Vol. 10 No. 1 1998

with generated compiler directive flags revealed a bug
in a compiler under test-it could not even compile its
own header files.

Results
Table 1 indicates the kinds of bugs we discovered dur­
ing the testing. Only those results that are exhibited by
very short text are shown. Some of the results derive
from hand generalization of a problem that originally
surfaced through random testing.

There was a reason for each result. For example, the
server crash occurred when the tested compiler got a
stack overflow on a heavily loaded machine with a very
large memory. The operating system attempted to
dump a gigabyte of compiler stack, which caused all
the other active users to thrash, and many of them also
dumped for lack of memory. The many disk drives on
the server began a dance of the lights that sopped up
the remaining free resources, causing the operators to
boot the server to recover. Excellent testing can make
you unpopular with almost everyone.

Test Distribution

Each tested or comparison program must be executed
where it is supported. This may mean different hard­
ware, operating system, and even physical location.

There are numerous ways to utilize a network
to distribute tests and then gather the results. One par­
ticularly simple way is to use continuously running
watcher programs. Each watcher program periodically
examines a common file system for the existence of
some particular files upon which the program can act.
If no files exist, the watcher program sleeps for a while
and tries again. On most operating systems, watcher
programs can be implemented as command scripts.

There is a test master and a number of test beds.
The test master generates the test cases, assigns them
to the test beds, and later analyzes the results. Each
test bed runs its assigned tests. The test master and test
beds share a file space, perhaps via a network. For each
test bed there is a test input directory and a test output
directory.

A watcher program called the test driver waits until
all the (possibly remote) test input directories are
empty. The test driver then writes its latest generated
test case into each of the test input directories and
returns to its watch-sleep cycle. For each test bed there
is a test watcher program that waits until there is a file
in its test input directory. When a test watcher finds a
file to test, the test watcher runs the new test, puts the
results in its test output directory, and returns to the
watch-sleep cycle. Another watcher program called
the test analyzer waits until all the test output directo­
ries contain results. Then the results, both input and

Table 1
Results of Testing C Compilers

Source Code Resulting Problem

if(1 .1)

1 ? 1 : 1/0

O.OF/0.0F

Constant float expression evaluated false

Several compiler crashes

Compiler crash

x != 0 ? xix: 1 Incorrect answer

1 == 1 == 1 Spurious syntax error

Spurious type error -!O

OxOOOOOOOOOOOOOOO

Ox80000000

1E1000

Spurious constant out of range message

Incorrect constant conversion

Compiler crash

1 » INT_MAX

'ab'

Twenty-minute compile time

Inconsistent byte order

int i=sizeof(i=1);

LDBL_MAX

(++n,O)? -- n: 1

Compiler crash

Incorrect value

Operator ++ ignored

if (sizeof(char)+d) f(d)

i=(unsigned)-1.0F;

Illegal instruction in code generator

Random value

int f(register()); Compiler crash or spurious diagnostic

int(... (x) ...); Enough nested parentheses to kill the compiler

Spurious diagnostic (10 parentheses)

Compiler crash (100 parentheses)

Server crash (10,000 parentheses)

Spurious error messages digraphs(<:<% etc.)

a/b The famous Pentium divide bug (we did not catch it

but we could have)

output, are collected for analysis, and all the files are
deleted from every test input and output directory,
thus enabling another cycle to begin.

Using the file system for synchronization is adequate
for computations on the scale of a compile-and-execute
sequence. Because of the many sleep periods, this distri­
bution system runs efficiently but not fast. If through­
put becomes a problem, the test system designer can
provide more sophisticated remote execution. The dis­
tribution solution as described is neither robust against
crashes and loops nor easy to start. It is possible to elab­
orate the watcher programs to respond to a reasonable
number of additional requirements.

Test Analysis

The test analyzer can compare the output in various
ways. The goal is to discover likely bugs in the com­
piler under test. The initial step is to distinguish the
test results by failure category, using corresponding
directories to hold the results. If the compiler under
test crashes, the test analyzer writes the test data to the
crash directory. If the compiler under test enters an

endless loop, the test analyzer writes the test data to
the loop directory. If one of the comparison compilers
crashes or enters an endless loop, the test analyzer dis­
cards the test, since reporting the bugs of a compari­
son compiler is not a testing objective. If some, but
not all, of the test case executions terminate abnor­
mally, the test case is written to the abend directory. If
all the test cases run to completion but the output dif­
fers, the case is written to the test diff directory.
Otherwise, the test case is discarded.

Test Reduction
A tester must examine each filed test case to determine
ifit exposes a fault in the compiler under test. The first
step is to reduce the test to the shortest version that
qualifies for examination.

A watcher called the crash analyzer examines the
crash directory for files and moves found files to a
working directory. The crash analyzer then applies a
shortening transformation to the source of the test
case and reruns the test. If the compiler under test still
crashes, the original test case is replaced by the short­
ened test case. Otherwise, the change is backed out

Digital Technical Journal Vol. 10 No. 1 1998 105

and a new transformation is tried. We used 23 heuris­
tic transformations, including

• Remove a statement

• Remove a declaration

• Change a constant to 1

• Change an identifier to 1

• Delete a pair of matching braces

• Delete an if clause

When all the transformations have been systematically
tried once, the process is started over again. The
process is repeated until a whole cycle leaves the
source of the test unchanged. A similar process is used
for the loop, abend, and cliff directories.

The typical result of the test reduction process is to
reduce generated C test programs of 500 to 600 lines
to equally useful C programs of only a few lines. It is
not unusual to use 10,000 or more compile opera­
tions during test reduction. The trade-off is using
many computer cycles instead of human effort to ana­
lyze the ugly generated test case.

Test Presentation
After the shortest form of the test case is ready, the test
analyzer wraps it in a command script that

1. Reports environmental information (compiler ver­
sion, compiler flags, name of the test platform, time
of test, etc.)

2. Reports the test output or crash information

3. Reruns the test (the test input is embedded in the
script)

The test analyzer writes the command scripts to a
results directory.

Test Evaluation and Report
The person who is managing the differential testing
setup periodically runs scripts that have accumulated in
the results directory to determine which ones expose a
problem of interest to the development team. One
problem peculiar to random testing is that once a bug
is found, it will be found again and again until it is
fixed. This argues the case for giving high priority to
the bugs exposed by differential testing. Uninteresting
and duplicate tests are manually discarded, and the rest
are entered into the development team bug queue.

Summary and Directions

Differential testing, suitably tuned to the tested
program, complements traditional software testing
processes. It finds faults that would otherwise remain
undetected. It is cost-effective. It is applicable to a
wide range oflarge software. It has proven unpopular
with the developers of the tested software.

106 Digital Technical Journal Vol. 10 No. 1 1998

This technology exposed new bugs in C compilers
each day during its use at DIGITAL. Most of the bugs
were in the comparison compilers, but a significant
number of bugs in DIGITAL code were found and
corrected.

Numerous special-purpose differential testing har­
nesses were put into use at DIGITAL, each testing
some small part of a large program. For example, the
C preprocessor, multidimensional Fortran arrays,
optimizer constant folding, and a new printf func­
tion each were tested by ad hoc differential testers.

The Java API (run-time library) is a large body of
relatively new code that runs on a wide variety of plat­
forms. Since "Write once, run anywhere" is the Java
motto, the standard for conformance is high; however,
experience has shown that the standard is difficult to
achieve. Differential testing should help. What needs
to be done is to generate a sequence of calls into the
API on various Java platforms, comparing the results
and reporting differences. Technically, this procedure
is much simpler than testing C compilers. Chris Rohrs,
an MIT intern at DIGITAL, wrote a system entirely in
Java, gathering method signature information directly
out of the binary class files. This API tester may be
used when the quality of the Java API reaches the
point where the implementors are not buried in bug
reports and when there are more independent imple­
mentations of the Java run time.

Differential testing can be used to increase test cov­
erage. Using the coverage data taken from running
the standard regression suite as a baseline, the devel­
opers can run random tests to see if coverage can
be increased. Developers can freely add coverage­
increasing tests to the test suite using the test output as
an initial oracle. No harm is done because even if the
recorded result is wrong, the compiler is no worse off
for it. If at a later time a regression is observed on the
generated test, either the new or the old version was
wrong. The developers are alerted and can react. John
Parks and John Hale applied this technology to
DIGITAL's C compilers.

The problem of retiring an old compiler in favor of a
new one requires the new one to duplicate old behavior
so as not to upset the installed base. Differential testing
can compare the old and the new, flagging all new
results (corrector not) that disagree with the old results.

Differential testing can be used to measure quality.
Supposing that the majority rules, a million tests can
be run on a set of competing compilers. The metric is
failed tests per million runs. The authors of the failed
compilers can either fix the bugs or prove the majority
wrong. In any case, quality improves.

At Compaq, differential testing opportunities arise
regularly and are often satisfied by testing systems that
are less elaborate than the original C testing system,
which has been retired.

Acknowledgments

This work was begun in the Digital Cambridge
Research Laboratory by Andy Payne based on his ear­
lier experience in testing DIGITAL Alpha hardware.
The author and August Reinig continued the develop­
ment as an advanced development project in the com­
piler product group in Nashua, New Hampshire.
Steve Rogers and Christine Gregowske contributed to
the work, and Steve eventually placed a free working
prototype on the web.7 Bruce Foster managed and
encouraged the project, giving the implementors ideas
faster than they could be used.

References and Notes

1. Information on testing is available at http:/ /www.testworks.
comjlnstitute/HotList/

2. B. Beizer, Software Testing and Quality Assurance (New
York: Van Nostrand Reinhold, 1984).

3. ISO!IEC 9899: 1990, Programming Languages- C, 1st
ed. (Geneva, Switzerland: International Organization
for Standardization, 1990).

4. B. Miller, "An Empirical Study of Reliability," CACM,
vol. 33, no. 12 (December 1990): 32-44.

5. Information on Tcl/Tk is available at
http:/ /sunscript.sun.com/

6. J. Ousterhout, Tel and the Tk Too/kit(Reading, Mass.:
Addison-Wesley, 1994).

7. Information on DDT distribution is available at
http:/ /steve-rogers.com/projects/ddt/

General Reference

W. McKeeman, A. Reinig, and A. Payne, "Method
and Apparatus for Software Testing Using a
Differential Testing Technique to Test Compilers,"
U.S. Patent 5,754,860 (May 1998).

Biography

William M. McKeeman
William McKeeman develops system software for Compaq
Computer Corporation. He is a senior consulting engineer
in the Core Technology Group. His work encompasses
fast-turnaround compilers, unit testing, differential testing,
physics simulation, and the Java compiler. Bill came to
DIGITAL in 1988 after more than 20 years in academia
and research. Most recently, he was a research professor at
the Aiken Computation Laboratory of Harvard University,
visiting from the Wang Institute Masters in Software
Engineering program, where he served as Professor and
Chair of the Faculty. He has served on the faculties of the
University of California at Santa Cruz and Stanford
University and on various state and university computer
advisory committees. In addition, he has been an ACM and
IEEE National Lecturer and chairman of the 4th Annual
Workshop in Microprogramming and is a member of the
IFIP Working Group 2.3 on Programming Methodology.
Bill founded the Summer Institute in Computer Science
programs at Santa Cruz and Stanford and was technical
advisor to Boston University for the Wang Institute 1988
Summer Institute. He received a Ph.D. in computer sci­
ence from Stanford University, an MA. in mathematics
from The George Washington University, a B.A. in mathe­
matics from University of California at Berkeley, and pilot
wings from the U.S. Navy. Bill has coauthored 16 patents,
3 books, and numerous published papers in the areas of
compilers, programming language design, and program­
ming methodology.

Digital Technical Journal Vol. 10 No. 1 1998 107

ISSN 0898-901X

Printed in U.S.A. EC-P9706-18/98 12 19 1.0 Copyright © Compaq Computer Corporation

..

	Front cover
	A letter to readers of the Digital Technical Journal
	Contents
	Introduction
	Foreword
	Tracing and Characterization of Windows NT-based System Workloads
	Automatic Template Instantiation In DIGITAL C++
	Measurement and Analysis of C and C++ Performance
	Alias Analysis in the DEC C and DIGITAL C++ Compilers
	Compiler Optimization for Superscalar Systems: Global Instruction Scheduling without Copies
	Maximizing Multiprocessor Performance with the SUIF Compiler
	Debugging Optimized Code: Concepts and Implementation on DIGITAL Alpha Systems
	Differential Testing for Software
	Back cover

