

Editorial
Jane C. Blake, Matugin�; Editor
Kathleen ,vi. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Manager
Kristine M. Lowe, Administrator

Production
Christa W. Jessico, Production Editor
Elit.aberh McGrail, Tvpographer
Pctct· R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Scott E. Cutler
Thomas F Gannon
Donald Z. Harbert
William t\. bing
Richard F. Lary
Alan G. Nemeth
Robcn M. Supnik

Cover Design
Recent advances in physical technology
have signiticanrly impmved the capabilities
of paral lel SCSI in three parameters: speed ,
interconnect density, and contiguration
expansion (device count, length , topology,
control). On the cover, the graphs reprc·
sent three systems with different sets of
parameter values, rhar is, three unique
points in the spced-sizc-contiguration
space. Hot plugging of devices and bus
segments and dynamic speed changes can
decrease or increase the p;1tamercr values
without system disruption. The opening
paper in this issue ckscribes these advances
in paral lel SCSI tec hnology.

The cover design is by Lucind;t O'Neill
of the DIGITAL Industrial and Graphic
Design (;roup. The ed itors ti1Jnk .1uthor·
Bill H,,m for his help in developing the
cover concept.

The LJ(�ita/ Techllical.fourna/ is a rete reed
journ.tl published quarrerlv bv Digital
Equipment Corporation, 50 Nagog Park,

AK02-3/IB, Acton, MA 01720-9843.

Hard -cop'' subscriptions can be ordered bv
sending a check in U.S. funds (made pavabk
to Digit;1 1 Equipment Corporation) to the
publishcd-bv address. General subscription
tJtcs are $40.00 (non- U.S. $60) for four i>'ucs

and $75.00 (non· U.S. S liS) for eight issues.
Uni,-ersirv <tnd college prokssors and Ph.D.
sn1dents in the elecuical engineering and com­
puter science fields rccei,·c complimenran· sub·
sniptium upon request. DIGITAL customers
may qualif\· tor gili: subscriptions and are encour·
aged to conracr their account represenratiH�S.

Electronic subscriptions are a\·ailabk at
no clurgc bv accessing U RL
http://www.digital.com/info/subscription.
This service will send an electronic mail
notiticc1tion when a new issue is available
on the Internet.

Single copies and back issues can be ordered
bv sending the requested issue's volume and
number and a check tor $16.00 (non-U.S.
$18) each to rJ1e published-by address. Recent
issues arc also available on the Internet at
http://www.digital.com/info/dtj.

DIGITAL employees may order subscrip·
tions through Readers Choice <H U.IU,
http://webrc.das.dec.corn.

Inquiries, address changes, and compli­
mentary subscription orders can be sent

to rhc Digital Technical.fournal at the
published-by address or the electronic
mail address, dtj@digital.com. fnquiries
can also be made by calling the Journal
office at 978-264-7556.

Comments on the content of anv paper and
requests ro (Onracr Juthors .1re welcomed
.md mav be sent to the managing editor at
the published-bv or electronic mail address.

Copyright 1998 Digital Equip ment
Corpor;uion . Cop,·ing without tee is per­
mined provided tlur such copies .tre made
for use in educational instimtions b,· facult\·
members and arc nor distributed for com­
mercial ad,·antage. Abstracting with credit
of Digital Equipment Corporation's author­
ship is permitted.

The information in the.fourna/is subject
ro ch;�ngc without notice and should not
be construed as a commitment bv Digital
Equipment Corporation or by the corn pan·
ies herein represented. Digital Equipment
Corporation assumes no responsibility for
anv errors that rnav appear in the Journal.
fSSN 0898-901X

Document;ttion Number EC-P8826-20

Book production was done b)' Quantic
Communications, Inc.

The f(JIIowing arc trademarks of Digital
Equipment Corporation: AlphaScn·er,
AJ phaStation, Cl. DC:Cnct, DECNfS,
DIGITAL, the DIGITAL logo, DIGITAl .
UNIX, and PowcrSrorm.

fkum.n is ,1 rr.Hkm.1rk ot"Son�· Corpor.nion.

CRAY is .1 regrstcrcd tro1eicmark of Crow
Research , lnc.

Dircct3D is a rradcm;ukof31)bbs, lnc.l.td.

Microsoli:, Visual C++, Windows, \Vindo"·s 95,
and \Vind ows l'\T .nc n.:gi�rtrt:d rr.H.kllLlrks

and Neti\lcering is J rr.tdemark of J\'(icrosor·r
Corporation.

Nctscapc Communicaror is :1 rr:hkm.trk or·
!\lcrscape Communications Corporation.

Pro/E'\GI'\ELR is a registered trademark
of Par.1mct ric Tcchtl<)lot,�· Corporario11.

Total View is a trademark of Dolphin
Interconnect Systems, Jnc.

UNIX is a registered tradcm;uk in the United

States and other counrries,liccnscd I.:'X(lusivdy
through X /Opcn Company l.td.

Winfrarnc is a registered trademark ofCitrix
Systems, Inc

Contents

Foreword

Recent Advances in Basic Physical Technology for
Parallel SCSI: UltraSCSI, Expanders, Interconnect,
and Hot Plugging

Development of Router Clusters to Provide Fast Failover
in IP Networks

Shared Desktop: A Collaborative Tool for Sharing 3-D
Applications among Different Window Systems

Challenges in Designing an HPF Debugger

Richard Lary 3

William E. Ham 6

Peter L. Higginson and Michael C. Shand 32

Lawrence G. Palmer and Ricky S. Palmer 42

David C. P. Lafrance-Linden 50

Digital Technical Journal Vol. 9 No. 3 1997

2

Editor's
Introduction

This issue of the Digital Technical
Journal presents papers on a range
of computing subjects, beginning
with recent advances in storage tech­
nologies, followed by network router
cluster enhancements, new desktop
software for sharing 3-D applications
across platforms, and an experimental
High Performance Fortran debugger.

DIGITAL's storage engineers have
been leaders in the definition of the
parallel small computer system inter­
face (SCSI) ANSI standards and in
related technology improvements.
Bill Ham's paper focuses on four
advances in the physical features of
SCSI that resulted in major increases
in SCSI capabilities and minor distur­
bances when incorporated in existing
installations. The discussion spans
developments from SCSI -2 through
UltraSCSI, including speed increases
in the synchronous data phase; longer,
more complex configurations enabled
by bus expanders; physical versatility
inherent in a decreased size of the
interconnect; and dynamic removal
and replacement of devices on an
active bus (hot plugging).

The subject of our next paper is
networks, and the emphasis of the
engineering is on customer require­
ments for reliability and availability.
Router clusters, described here by
Peter Higginson and Mike Shand,
were developed to provide fast fail­
over response in IP networks and are
defined as a group of routers on the
same local area network (LAN) pro­
viding mutual backup. New router
cluster protocols and mechanisms
restrict the loss of service that results
from a failure on the network, speci-

Digital Technical Journal

fically on networks requiring high
availability, such as telecommunica­
tion and stock exchange networks.
The authors analyze failure cases and
present the solutions that reduced
service-loss time from approximately
30 to 45 seconds to 5 seconds in both
LAN and WAN environments.

Collaboration software for desk­
top systems can be broadly defined
to encompass a range of capabilities,
from a simple transfer of data between
users, such as e-mail sent over a net­
work, to real-time sharing of text,
graphics, and audio and video data.
Larry and Ricky Palmer have designed
a software product, called Shared
Desktop, for users who want to share
three-dimensional graphics applica­
tions and audio across networks.
Notably, the design differentiates
itself by supporting multiple operat­
ing systems, currently enabling real­
time interoperation among Windows
and UNIX systems. The authors dis­
cuss the decision to create a "view­
port;' which is a part of the desktop
screen, and issues they addressed dur­
ing implementation, including proto­
col splitting, screen capture and data
handling, and dissimilar frame buffers.
They conclude with ideas for possible
enhancement of the product in the
future.

In a previous issue of the Journal
featuring technical computing topics
(vol. 7 no. 3), Jonathan Harris et al.
described DIGITAL's Fortran 90
compiler that implements High
Performance Fortran version 1.1,
a language for writing parallel pro­
grams. An outgrowth of that work
is an experimental debugger, code-

Vol. 9 No. 3 1997

named Aardvark, that "reconstructs"
for the HPF programmer a single
source-level view, even though the
program has several flows of control
and the data are distributed. David
LaFrance-Linden discusses the chal­
lenges faced in creating the debugger
and describes useful techniques and
concepts, such as logical entities, that
can be generally applied to debugger
design.

Readers interested in past issues
of the Journal are invited to visit the
JournalWeb site at http:/ /www.
digital.com/info/dtj/. Our next
issue will address such topics as opti­
mization of NT executables on Alpha,
a new graphics program, and VLM.
A Special Issue on programming lan­
guages and tools is being developed
for publication in the fall ofl998.

Jane C. Blake
Managing Editor

Foreword

Richard Lary
DIGITAL Storage Technical Director

Welcome to the winter 1997-98 issue
of the Digital Technicaljournal. This
issue does not have a single theme;
it contains a potpourri of papers on
a wide range of technical topics. This
provides the foreword writer with a
small gift and a not-so-small headache.

The gift is the opportunity to tout
the continuing fecundity ofDIGITAL's
engineering community. All the
papers in this issue of the Journal
come from product development
groups in DIGITAL, and all the tech­
nology described herein is directly
applicable to the problems of using
computers in the real world. The
papers themselves cover a wide range
of topics: designing storage buses
and their infrastructure; building IP
routers that reduce network delays
caused by link or router failure; sharing
3-D graphical and audio data across
networks of computers with different
windowing systems; and debugging
programs written in languages that
incorporate data parallelism.

The headache, of course, stems
from this very diversity. Any attempt
to derive some set of common under­
lying principles other than "make
better stuff" from this collection is
doomed to sophistry. And my techni­
cal background is too narrow to pro­
vide any significant embellishment to
any of the papers outside the domain
of storage systems. So, with apologies
to the other authors, I am forced to
restrict my comments to what I know
-the background and impact of Bill
Ham's work on advances in parallel
SCSI which are presented in his paper
in this journal.

Bill Ham's paper not only describes
a significant technical achievement; it
illustrates DIGITAL's shift from engi-

neering proprietary storage systems
to engineering open storage systems.

The SCSI bus was developed dur­
ing the early 1980s as one of many
attempts to standardize the interface
to storage devices. It succeeded beyond
the expectations of its developers,
largely because it supported a device
model that was abstract enough to be
extensible but inexpensive enough to
be implemented in the technology of
the time. For all its advantages, how­
ever, SCSI suffered from poor engi­
neering at the physical level. This was
a direct result of the way it was devel­
oped. The diverse corporate repre­
sentatives that defined SCSI did not
have the time or money to specify and
build custom bus infrastructure com­
ponents (transceivers, cables, termi­
nators, etc.), so they used commonly
available parts. A lack of sophistica­
tion in specifying physical interface
parameters resulted in a specification
that allowed too much component
variation. As a result, it was difficult
to build reliable, multi-box systems
using SCSI.

DIGITAL's attitude towards SCSI
during this period was to ignore it
and hope it would go away. We had
designed our own proprietary Digital
Storage Architecture (DSA), which
utilized an abstract and extensible
device model and also incorporated
many large system features, including
a robust physical interconnect. We
controlled the design and manufac­
ture of all DSA components and
could thus guarantee that they all
met tight architectural specifications.
Moreover, DSA was a key enabling
technology for VMS Clusters, the
individual DSA components were
competitive with their counterparts

Digital Technical Journal Vol. 9 No. 3 1997 3

4

from the proprietary storage architec­
tures of other large systems compa -
nies, our customers were happy, and
the storage business was profitable.
We were feeling quite pleased with
ourselves-and we were profoundly
ignorant of the power of a successful
open market standard, since one had
never existed in the storage world.

During the latter half of the 1980s,
SCSI grew steadily in popularity until
it dominated the workstation and
small-server markets. These systems
had at most a few disk drives on
them, and SCSl's signal integrity
problems were manageable in that
context. They were not manageable
in the larger and more demanding
data center systems, and so SCSI was
not used there. The SCSI standards
group was aware of the bus's deficien­
cies, however, and as the decade pro­
gressed, the group made amendments
to the standard to eliminate many of
them. By the turn of the decade, sev­
eral independent subsystem vendors
were selling subsystems utilizing SCSI
devices as storage for large DIGITAL
systems. These subsystems did not,
in general, have the features, perfor­
mance, or robustness of our subsys­
tems, but they were significantly
cheaper and improving all the time.
By 1991, it had become obvious to
us that we would not be able to com­
pete with these systems in the long
run. They were leveraging an entire
industry's investment and talent and
were reaping the cost benefits of
high-volume manufacturing; whereas
we had to design and manufacture (at
relatively low volume) every component
of every DSA system ourselves.

Digital Technical Journal

Our position was untenable. We had
to change our strategy and embrace the
bus that we had so studiously ignored.

We designed a modular packaging
architecture for SCSI devices (known
commercially as StorageWorks) and
a set of storage array controllers that
interfaced these devices to our sys­
tems (and systems from other major
vendors as well). We also became
active participants in the SCSI stan­
dards process. Where DIGITAL had
previously sent one or two engineers
to SCSI standards meetings strictly to
gather information, we started to send
up to half-a -dozen engineers to listen,
learn, participate in debate, help
with the grunt work of the standards
process, and make proposals to amend
or extend the standard in directions
useful to us and our customers.

Our new modular packaging
design allowed our customers to
install and remove storage devices
themselves and to migrate storage
devices between systems, even
between systems built by different
system vendors. This modularity
proved to be a very valuable feature
to our customers. However, it
required us to build a physical infra -
structure for the SCSI bus that had
the robustness needed by our large
systems and that could accommodate
a great deal of variability in configura­
tion, and to use a bus that was known
to have residual signal integrity prob­
lems in its physical interconnect. We
were understandably worried about
this, worried enough to charter a
small group of engineers as a SCSI
Bus Technical Office (SBTO) within
the storage group, and to develop

Vol. 9 No. 3 1997

short-term configuration guidelines
for our packaging architecture and
long-term technical proposals for the
SCSI physical bus architecture. Bill
Ham has been the head ofSBTO
since its inception and has also been
our representative to the SCSI com­
mittee on all matters relating to the
physical bus interconnect.

In the summer ofl993, Bill com­
pleted a study of the signal integrity
issues surrounding parallel SCSI. H is
conclusions were startling. The SCSI
standards committee had, over the
years, made enough improvements in
the basic transmission line characteris­
tics of the SCSI bus that most of the
remaining signal integrity problems
were due to the variations in compo­
nent parameters allowed by the SCSI
specification. Exercising tighter con­
trol over component variation­
through building selected compo­
nents or through purchase specifica­
tions with our suppliers-would not
only produce excellent signal integrity
in our packaging but would allow the
maximum clock rate of the bus to be
doubled while maintaining excellent
signal integrity and backwards com­
patibility with existing SCSI devices.
Bill's results also indicated that the
maximum clock rate could be increased
even further, with more work.

This discovery came at a critical
time in the evolution of the SCSI
standard. Much of the SCSI standard
committee's effort in the early part of
the 1990s was being spent in modify­
ing the SCSI standard so that serial
buses could carry the higher level
SCSI bus protocols. The committee
had started this work under the

assumption that parallel SCSI was
"out of gas" in performance, and
the new serial bus variants would
supplant it by mid-decade. However,
by 1993 not only was the definition
and implementation of the serial bus
going slower than expected, but there
were three independent and incom­
patible serial bus proposals, each with
unique useful features and unique
drawbacks, each with a cadre of sup­
porters among the industry represen­
tatives. The market would ultimately
choose which serial buses would
thrive; but it was highly unlikely that
all three would thrive. Storage ven­
dors that made the wrong bus choice
would suffer for it. Most galling to
the technophiles among us, the mar­
ket's choice could not be predicted
from the technical merits of the con­
tenders. Ifit could, we'd all have
Betamax VCRs in our homes today.

So, DIGITAL decided to have Bill
present his results to the SCSI com­
mittee at its November 1993 meeting
and recommend that the committee
extend the SCSI specification to allow
the bus to run at up to twice its old

maximum clock rate if the components
in the physical interconnect met the
tighter specifications. Our motive in
doing this was purely selfish: we were
not ready to choose among the serial
bus proposals, yet we would soon
need more performance than parallel
SCSI could offer. A higher perfor­
mance parallel SCSI would allow us
to improve our storage subsystem
performance without having to stake
our fortunes on a potential Betamax.

Bill's presentation at the SCSI
committee meeting was met with
enthusiastic approval. It turned out­
surprise!-that other system vendors
were feeling as uneasy as we were
about the serial SCSI buses. The pro­
posal, christened UltraSCSI, was
adopted as an extension to the parallel
SCSI standard. Bill Ham and the
SBTO then worked with component
vendors and the SCSI committee to
develop the thinner cables, smaller
connectors, and SCSI expander cir­
cuits described in his paper, all with
the aim of keeping parallel SCSI as a
desirable alternative to the serial SCSI
buses. Today, four years after its com-

mittee debut, UltraSCSI is solidly
entrenched in the storage market. In
fact, storage market analysts are now
projecting that the combined volume
of devices on all serial SCSI buses
(yes, there are still three, but the
market has already picked one, Fibre
Channel, as the winner) will not
exceed parallel SCSI device volumes
until early in the next century. And
the SCSI committee has finished
extending the parallel SCSI specifi­
cation to achieve a second doubling
of maximum bus clock and is in the
midst of defining a third doubling.

Without hyperbole it can be said
that the technology embodied in Bill
Ham's paper has directly affected the
course of the computer storage indus­
try, and it continues to affect posi­
tively DIGITAL's position in that
industry. Enjoy reading the paper
and those that follow it in this issue.

Digital Technical Journal Vol. 9 No. 3 1997 5

6

Recent Advances in Basic
Physical Technology for
Parallel SCSI: UltraSCSI,
Expanders, Interconnect,
and Hot Plugging

DIGITAL uses SCSI technology in most of its
storage products and consequently has led
major standards and industry bodies to improve
the technology in the following areas: increased
synchronous data phase speed beyond fast SCSI;
longer, more complex electrical configurations
by means of expander circuits; versatile and
more manageable connectivity through a
smaller, improved physical interconnect; and
dynamic device insertion and removal. Data
phase transmission rate extension is achieved
through understanding and controlling silicon
chip timing and transmission media parameters.
Using expander devices to confine transmission
line effects to shorter segments allows large
increases in the maximum distance between
devices and in the device population within the
same SCSI domain. Expanders enable complex,
hublike configurations to be created without
changing existing SCSI devices or software.
The use of 0.8-millimeter connector technology
and consideration of cable losses has reduced
the physical size of the external shielded inter­
connect by approximately two thirds, decreased
the number of parts required to support com­
plex configurations by a factor of 10, and
increased the interconnect density to the same
level used in serial SCSI. Finally, the mating and
demating events that occur during device inser­
tion and removal produce a spectrum of small,
undetectable, electrical disturbances on the
active bus that appear to be limited by the
physics of the media and device capacitance.

Digital Technical Journal Vol. 9 No. 3 1997

I
William E. H am

Introduction

Parallel Small Computer System Interface (SCSI) is the
workhorse technology for most of the storage applica­
tions in DIGITAL products today. This device and
interconnect technology spans all system offerings
from the simplest to the most complex. SCSI was intro­
duced to the higher-end products in the early 1990s as
the open systems follow-on to the DIGITAL propri­
etary Digital Storage System Interconnect (DSSI) and
Computer Interconnect (CI) technologies.

As system demands have increased, SCSI has evolved
to meet the needs. DIGITAL has made considerable
contributions to the technology and led the effort to
achieve industry standardization. This paper details the
most significant developments in the physical features
of parallel SCSI technology over the last several years
that have allowed it to continue to serve DIGITAL cus­
tomers in an effective, competitive way. The discussion
targets the following four important areas:

l. Speed increases in the synchronous data phase,
which resulted in the ANSI definition ofUltraSCSI
(Fast-20 SCSI) technology1

2. Development of software-invisible circuits, gener­
ally called expanders, that enable segmentation of
SCSI domains into easily managed pieces

3. New connector and cable technology, namely the
Very High Density Cabled Interconnect (VHDCI)
device, that decreases the interconnect size and
complexity by many fold2

4. Dynamic removal and replacement of devices on an
active bus, which is referred to as hot plugging

DIGITAL made substantial contributions in the
four areas. This work included creating the expander
and interconnect standards projects; leading the work­
ing groups that defined the Fast-20, expander, and
interconnect standards; providing data for the Fast-20
and hot-plugging projects; and proposing and gaining
approval for the hot-plugging standard.

The author has taken a phenomenological approach
throughout, because in most cases there are too many
unknowns to achieve a rigorous analytical result. This

paper focuses on developments from SCSI -2 through
UltraSCSI and specifically does not address the new
Low Voltage Differential (LVD) technology being
introduced for the highest-speed applications.

Pedigree
SCSI is defined in several ANSI standards1

•
3

•
4 and in the

material that was developed to create these standards.5•
6

The standards were generated over the last decade
through a cooperative effort of approximately 60 major
companies in the computer and computer support
industry. As a result of this pedigree, the prime directive
for SCSI technology is interoperability of devices
designed and manufactured by different companies.

The details of the physical designs used to implement
SCSI may not be visible to users and researchers; these
details contain much of the marketing and technical
differentiation between the products of the participat­
ing companies and are therefore hidden in the silicon
design. The behavior at the device connector pervades
the SCSI specifications. The basic assumption is that as
long as the properties are compatible at these connec­
tors, device substitution is possible. Thus, SCSI devices
may be both interoperable and of different designs.

Basic Architecture
This section reviews the basic architecture of parallel
SCSI. The SCSI bus is a parallel, multidrop, wired-OR
configuration.

Signal Multiplexing and Phases The parallel signal
construction of the bus allows multiplexing of some
signals during different phases of communication so
that the same signal lines may have very different func­
tions in different phases. The physical behavior of sig­
nals is usually limited by the phase during which the
shortest pulses are used and the demands for signal
integrity are the highest. The limiting SCSI phase is
the data phase (payload phase) that is executed with
the highest synchronous rate. For UltraSCSI, this peak

Table 1
Terminology for Data Phase Speeds

Data Phase Speed Name

Asynchronous
Slow (synchronous)
Fast (synchronous)
Ultra (synchronous)2

Ultra2 (synchronous)3

Ultra3 (synchronous)4

Maximum Transfer
Rate (Million
transfers/second)1

Unspecified
5

10
20
40

80to 100

repetition rate is 20 megahertz (MHz). Table 1 con­
tains the generally accepted terminology related to
data phase speeds.

Because of the wired-OR property, each signal in
the bus must be driven to a known state even if no
SCSI device is actually driving the signal. SCSI uses the
logical O state (negated state) as the undriven state and
uses the bus terminators to drive the signal to this state
in the absence of any driving devices. The device signal
drivers must overcome this terminator-driven logic
state of O in order to send a logical 1 (asserted state)
onto the signal line.

SCSI signals must support all frequencies, from stat­
ically driven by the terminators only (DC) to the third
harmonic of the fastest signal edge in the synchronous
data phase. In many cases, the same wire must support
all these frequencies at different times during the SCSI
protocol.

The highest signal edge slew rates for UltraSCSI
are approximately 500 millivolts per nanosecond
(mV /ns). A 2-volt (V) transition requires approxi­
mately 4 ns/5.4 ns/meter (m) = 0.74 m for a signal
edge (assuming 5.4 ns/m as the propagation velocity
of the signal edge). Therefore, some relief exists
because the connectors and cable assembly termina­
tions are much smaller than the signal edge length; the
connectors and terminations do not need to have care­
fully controlled characteristic impedance properties.
This allows the use of the technology available in the
connector and cable assembly industry to optimize
the interconnect properties without the considerable
design, manufacturing, and test burden imposed by
controlled impedance requirements.

Transmission Modes The transmission mode of a
SCSI bus is determined by the properties of the
terminators that, by definition, constitute the ends of
the bus. Terminators also supply most of the energy
required to operate the single-ended transmission-mode
devices and additionally provide the required matching

Maximum Byte
Rate (Narrow)
(Megabytes/second)

Typically- 3
5

10
20
40

80to 100

Maximum Byte
Rate (Wide)
(Megabytes/second)

Typically- 6
10
20
40
80

160to200

10ne transfer is 1 byte in narrow mode and 2 bytes in wide mode; 1 byte equals 8 data bits plus 1 parity bit.
2Ultra is synonymous with Ultra1 and Fast-20.
3Ultra2 is synonymous with Fast-40.
4Rates not yet finalized; Ultra3 is synonymous with Fast-80 or Fast-100.

Digital Technical Journal Vol. 9 No. 3 1997 7

8

to the characteristic impedance of the transmission line.
In differential SCSI, the terminators provide a small
portion of the overall energy required to operate the
bus; the differential drivers supply the remainder of
the energy.

Drivers that want to transmit an asserted state
must overcome the biasing provided by the termina­
tors. The drivers operate locally on the bus and alter
the state in their immediate vicinity when they switch
on and off. For single-ended SCSI, the O state is
approximately 2.5 V and the 1 state is approximately
0.5 V. For high-voltage differential SCSI, the O state
is approximately -1 V to -2 V, and the 1 state is
approximately 2 V. (The difference between a state
1 and a state O is higher with differential-typically,
approximately 4 V.)

For single-ended transmissions, the drivers operate
on energy previously stored in the bus by the termina -
tors. This energy is mostly electrostatic energy in the
charge stored in the capacitance of the transmission line
for negated states and electromagnetic energy in the
current flowing through the inductance of the trans­
mission line for asserted states. Ultimately, the termina­
tors will set the state back to negated after the drivers
cease to source or sink current; however, this only hap­
pens after the round-trip propagation delay from the
driver to the farthest terminator if the bus does not
have matched characteristic impedance properties.

Approximately the same energy transformations
occur for differential SCSI, but significant current is
supplied by the drivers for both the asserted and the
negated states.

Multidrop Requirements The multidrop architecture
requires a continuous low-resistance path called the
bus path between the terminators and allows devices
to be attached to this path. The number and proper­
ties of these attached devices vary widely because of
many factors including the speed of operation, the
overall length of the bus, and the transmission mode.
Attached devices always disturb the transmission line
properties of the bus path; the key to successful opera­
tion is in the management of the magnitude of these
disturbances.

Generally, the more capacitance or electrical length
the device has, the more disruptive it is. Placing devices
too close together along the bus path can cause them
to appear electrically as a single super disruptive device.
Placing them too far apart can result in an overall bus
length that is too long.

Wired-OR Glitches During the arbitration phase,
when the SCSI devices decide which devices will be
sending payload data to or from each other, multiple
devices may assert the same control line (BSY) at the
same time. Each device that wishes to communicate
asserts both the BSY line and its respective device

Digital Technical Journal Vol. 9 No. 3 1997

identification (ID) line. After examining the asserted
ID lines to determine which device has the highest ID,
all but the device with the highest ID release the BSY
line. This leaves only one device, the winner, asserting
the BSY line. While the current in the BSY line is read­
justing itself from a multiple-driver asserted condition
to a single-driver asserted condition, noise pulses (called
wired-0 R glitches) propagate throughout the length of
the signal line and may be detected collectively as an
erroneous phase. Therefore, one of the architectural
limits for parallel SCSI is the time required for these
wired-OR glitches to settle. This bus settle time is set by
protocol at 400 ns and must be interpreted as a round­
trip propagation time when using a simple SCSI bus.
Allowing some time for propagation through driver and
receiver chips yields a maximum physical length for a
simple bus of25 meters.

Areas of Improvement
Thus, the opportunities for improving SCSI derive
from appropriately managing the transmission lines,
taking advantage of the multidrop architecture offered
by a parallel wired-OR structure, using state-of-the-art
technology from the interconnect and silicon industry,
and making innovative use of the time required for the
wired-OR glitches to settle. These techniques are the
basis of the development by DIGITAL in the four areas
addressed in this paper.

Speed increases in the synchronous data phase are
based primarily on increasing the timing precision
in the silicon transceivers by using newer silicon tech­
nology. The interconnect properties remain largely
unchanged from those used for fast SCSI.

Circuits that enable segmentation of SCSI domains
into easily managed pieces are based on systematic
isolation of transmission line properties and use of
wired-OR noise pulse properties. No software, inter­
connect, or device changes needed to use these circuits.

New connector and cable technology is based on
an innovative 0.8-millimeter (mm) ribbon-style con­
nector technology that optimizes the total SCSI elec­
trical requirements with the capabilities of cable and
connector design.

Dynamic removal and replacement of devices on an
active bus, i.e., hot plugging, is based on the multidrop
architecture, which enables devices to be added or
replaced without affecting continuity between other
devices. Hot plugging depends on understanding and
managing the electrical disturbances created during
the insertion or removal.

The remainder of this paper provides details of these
four areas of improvement. The end result of these
extensions to the basic physical architecture of parallel
SCSI is a major increase in its capabilities, accompa­
nied by only a very minor disturbance to the installed
base, especially the software.

Increasing the Synchronous Data Phase Speed

Beginning with the SCSI-2 standard, the synchronous
transmission mode is available for transferring payload
data between SCSI devices. The devices select this
mode by mutual agreement before any synchronous
data is passed. The agreement is achieved by using the
asynchronous transmission mode, which is slow but
usually reliable.

The synchronous data phase uses the DATA and
PARITY bit lines for the data and either the REQ or
the ACK control line as a signal that the receiver uses
for capturing the data. The term synchronous derives
from a specified timing relationship between the bit
line signal edges and the REQ or ACK signal edges.
(The falling edge of the ACK signal is used when the
data phase transmission originates from the SCSI ini­
tiator, and the falling edge of the REQ signal is used
when the transmission originates from the target.)
There is no synchronous relationship between the
internal timing references on different SCSI devices, so
the receiver must buffer the received data before intro­
ducing the data into its internal data management
structure. This buffering is usually accomplished by
means of a first in first out (FIFO) circuit that uses the
REQ or the ACK signal as the latching signal for the
incoming data. For convenience, in this paper we only
refer to the ACK signal, with the understanding that
the same discussion applies to the REQ signal when it
is used as the data-latching signal.

Since only the falling edge of the ACK signal is used
in the presently specified SCSI versions and an ACK sig­
nal is required for every data transfer, it follows that the
ACK signal cycles at least twice as fast as the data bits.
When a continuous stream of transfers is transmitted,
the ACK signal is a regularly repeating signal, nomi­
nally, a square wave. An alternating 1/0 pattern pro­
duces the highest fundamental frequency for the data
bits at half the frequency of the ACK signal. Therefore,
the ACK signal requires careful attention since it is the
most demanding on the transmission process.

The focus of this section is to examine how the
speed of the synchronous data phase was increased by
a factor of two to achieve the Fast-20 (UltraSCSI)
specification.

Status before UltraSCS/
In 1993, the SCSI-2 standard3 had been in place
for two years, and a follow-on standard called SCSI-3
Parallel Interface (SPI)4 was technically stable. SPI had
been created largely because the specifications in the
SCSI-2 standard were not effective in implementing
the single-ended version of the synchronous transmis­
sion (10 megatransfers per second). The differential
version specified in SCSI-2 worked well but was much
more expensive in cost, power, and space than the

single-ended version. Therefore, most of the interest
was in making the fast single-ended version work
adequately.

Taking single-ended SCSI from asynchronous and
slow synchronous (5 megatransfers per second) to the
fast synchronous technology was difficult. The prevail­
ing opinion was that the SPI standard represented
the final improvement to parallel SCSI. This view
set the stage for a number of alternate physical techno­
logies based on the serial point-to-point transmission
schemes used in communications technologies, e.g.,
Fiber Distributed Data Interface (FDDI) and Ethernet,
to be used for higher-performance storage applications.

DIGITAL's Storage Bus Technical Office had seen
many instances of difficult implementations that were
the result of less-than-optimal understanding and
management of the specification margins. No credible
study had been presented on the margins available in
SCSI, so the thrust was to create baseline characteris­
tics of multidrop parallel SCSI to determine where
unused margin might exist.

Little data was available on the precise reasons why
specific implementations of fast synchronous SCSI did
not work. The system would hang or report various
error messages with almost no indication of the basic
causes. A method that could report margin to failure
and mechanism of failure was needed to unravel this
situation. Therefore, the approach DIGITAL took was
to step back from full SCSI implementations and to
examine the pieces without the encumbrance of the
SCSI protocol.

One of the most mysterious areas was the behavior
of SCSI receivers. The SCSI-2 and SPI specifications
used bipolar transistor-transistor logic (TTL) levels as
the basic receiver input levels. Almost all SCSI devices
were being designed with complementary metal-oxide
semiconductor (CMOS) technology, so the differ­
ences between the receiver properties presented a key
opportunity for hidden margin. Other unknown areas
were jitter, cross talk, skew, ground offset, effects of
stubs, and worst-case configurations.

DIGITAL built a special test environment to sys­
tematically examine each piece of parallel SCSI. The
environment was named the PBDIT, an acronym for
parallel bus data integrity tester. This test environment
made it possible to systematically examine the real
margins to failure for the key pieces and to develop the
confidence that SCSI could be used at elevated speeds
and be made highly robust at the slower speeds.

Special Test Environment
The test environment was built to allow known data
patterns to be transmitted across a SCSI device, into
SCSI transmission media, and then into another SCSI
device. The same data pattern is loaded into both sides
so the receiver knows exactly what data it is supposed

Digital Technical Journal Vol. 9 No. 3 1997 9

to receive. The transmitting side is called the exciter,
and the receiving side is called the comparator.
Received data is committed to the comparator by
using one bit line as the latching ACK signal in a man­
ner exactly like that specified in synchronous SCSI
transmissions. The test environment allows the posi­
tion of the ACK signal to be adjusted with respect to
the data signal edges.

Since the comparator knows the data pattern that is
transmitted, it is possible to isolate the precise data bit
that caused the transmission error. This kind of error­
directed methodology has found widespread use in
the integrated circuit industry.

Other features of this test environment include
detachable load boards that contain the SCSI drivers,
terminators, receivers, connectors, or any other physi­
cal media-dependent components. The minimum
requirements for a load board are that the exciter con­
tain the SCSI driver and a connector and that the com­
parator contain the SCSI receiver and a connector.
Other components may be placed between the load
boards for different test conditions. The SCSI driver
must have accessible points for the exciter logic, and
similarly, the SCSI receiver must have output points to
drive the comparator. These requirements eliminate
drivers and receivers that are imbedded within chips
with other functions. Fortunately, separate SCSI dri­
vers are available for both single-ended and differential
versions. (The differential versions normally use sepa­
rate chips, but only a few choices are presently avail­
able for the separate single-ended versions.)

The test environment is useful for developing the
understanding of operating mechanisms and for mea­
suring the margins for specific hardware configurations.
This environment is not useful for deriving specifica­
tions, since the performance at the specified interfaces,
i.e., the device c01mectors, is not directly observable.

SCSI
INTERCONNECT
SYSTEM \

EXCITER BOARD

Oscilloscope measurements provide the basis for setting
compliance specifications, since these measurements
can be performed at the connectors. The basic question
that needed an answer was, Can parallel SCSI be oper­
ated at elevated speeds with reasonable margin to fail­
ure? DIGITAL optimized the special test environment
to answer this question. Other specifications that would
be necessary to ensure interoperable operation between
UltraSCSI devices could be derived ifit appeared possi­
ble to achieve the end result.

The data pattern loading and digital control of the
exciter and the comparator were achieved through opti­
cally coupled means. This allowed the ground offset volt­
age to be adjusted between the driver and the receiver
without compromising the operation of the logic.

The data flows only from the exciter to the
comparator. If bidirectional information is desired,
the physical connections between the exciter and
comparator have to be reversed. This scheme leaves
untested the cross-talk effects on the REQ signal that
is traveling in the opposite direction to the ACK signal
(if ACK is synchronized with the data as in a write
operation). Separate measurements are necessary to
examine this issue. Cross talk into other control lines is
addressed by holding these lines constant in the data
pattern transmitted.

The SCSI standard deals with the REQ cross-talk
issue by requiring that the data lines be physically sep­
arated from the REQ and ACK lines in the transmis­
sion media. Measurements not reported in this paper
have confirmed negligible speed-related cross talk into
the REQ line.

Up to 27 pairs of3-byte-wide lines (wide SCSI uses
only 18 pairs for high-speed transmissions) can be
tested with the special test environment. Figure 1 is a
functional diagram of the test environment. The SCSI
terminators are shown as separate from the load

TERMINATOR

COMPARATOR
BOARD

OPTICAL
ISOLATOR

GROUND OFFSET
GENERATOR OPTICAL

ISOLATOR

Figure 1
Special Test Environment

10 Digital Technical Journal

ACK TIMING
REFERENCE

COMPUTER SYSTEM

Vol. 9 No. 3 1997

boards in this case. A key feature of this kind of testing
is that the test does not necessarily stop when an error
is detected. In fact, the environment may detect errors
100 percent of the time. This acceptable behavior
allows mapping of the complete bit-error response of
the system.

Sample Data from the Special Test Environment The
test environment allows a multitude of tests to be per­
formed. The test scheme described in this section is
the one that was used to establish the basic timing
margins available from normal SCSI silicon, cables,
connectors, and terminators.

A random repeating data pattern with 16 thousand
different bit combinations was used as the basic data
pattern. This pattern was transmitted over a period of
time, and the number of errors detected was recorded.
In this test, an error is defined as one or more bits in the
received data transfer that do not match the transmitted
bit. To acquire a new error rate data point, the transmis­
sion test is repeated by using exactly the same number of
transfers in the same time period with the same data pat­
tern but with some test parameter changed.

Virtually any parameter can be varied for different
tests. For a given physical configuration, the most use­
ful parameter for determining the timing margin is the
position of the ACK pulse with respect to the data
edges. The basic data then becomes the number of
errors detected and the position of the ACK pulse edge.

There are two basic random variables operating in
this scheme: the data pattern and the jitter induced by
non-data-dependent sources. It is easy to separate these
two variables by using extremes in the data pattern:
very few transitions and the maximum number of tran­
sitions (every data edge has a transition, i.e., alternating
1/0 pattern). Although this level of precision is avail­
able, we will see that we really do not need to bother
for parallel SCSI at the maximum UltraSCSI rate.

(/)
cc
w
LL
(/)
z
<(
cc
I­
LL
0
cc
w
al
~
:::,
z

10,000,000,000
(1010)

100,000,000
(108)

1,000,000
(108)

10,000
(104)

100
(102)

Figure 2 shows a typical error rate plot from a sim­
ple single-ended configuration made from ordinary
SCSI interconnect hardware and transceivers being
tested at the maximum UltraSCSI rate. Each data
point represents a 3-second sample (60 million trans­
fers) at each ACK position. The ACK position is incre­
mented in 0.1-ns steps for a total of240 independent
tests in the plot. To minimize the testing time, we
tested only the time ranges from -3 to 9 ns and 44 to
56 ns. The individual data points are not distinguish­
able in this presentation, and there is very little scatter
between neighboring points. In Figure 2, the error rate
of 1 is used to indicate that no errors were detected,
since the log ofO is not easy to plot.

Examination of the raw data reveals that the plot is
monotonic in detected error rate to the fourth decimal
place. This indicates an extremely predictable situation
as far as behavior of the same set of hardware is con·
cerned. That is, there is virtually no Gaussian jitter pre­
sent, and a SCSI system could be designed to be quite
reliable and stable at the maximum UltraSCSI rate.

Extending the sample period to 5 minutes made no
difference in the position of the key features. Using the
3-second sampling time, the entire data set could be
acquired automatically in approximately 12 minutes.

The onset of errors is extremely sharp as the ACK
position approaches the critical position. One hundred
picoseconds changes the observation from O to 864
errors near the 8-ns position. On the other end, the
50.1-ns time produced 7 errors, and the 50.2-ns time
produced 425 errors. No errors were detected at any
of the times between 50.1 ns and 7.9 ns. This data
shows that there are no strange effects that prevent
SCSI from operating at the maximum UltraSCSI rate.

As the ACK position proceeds into the region of
more errors, a condition is finally reached in which all
the transfers have errors. On the one hand, the proba­
bility that one transfer has the same data content as its

I
I
I
I
I
I
I
I
I
I
I 1

(1~)'--~~...__~ ~-----~------~---~~ ~ ~---L-

- 10 0 10 20 30 40 50 60
ACK EDGE POSITION (NANOSECONDS)

KEY:

- - - GOOD TRANSFERS
-- TRANSFERS WITH AT LEAST ONE BIT ERROR

Figure 2
Typical UltraSCSI Error Rate Plot

Digital Technical Journal Vol. 9 No. 3 1997 11

neighbor's is very small with this random data pattern.
On the other hand, since a random data pattern is
being used, there is a reasonable chance that a bit will
actually match that transmitted in one state but not in
the other state. The random data pattern tends to
spread out the time between the first error and the last
good transfer. In the limit, for perfectly random data,
this time is a measure of the total timing imprecision in
the system.

This imprecision includes skew in the exciter and
comparator boards, in the SCSI drivers and receivers,
and in the cable transmission media (including loads, if
any), and all forms of jitter. For the test conditions shown
in Figure 2, the total difference is 3.6 ns near the 5-ns
point and 5.4 ns near the 52-ns point. This shows that
the skew specifications in the SCSI standard are over­
specified as compared to actual hardware performance.

The data shown in Figure 2 is representative of a
large variety of configurations up to approximately 3
meters long and loaded or up to much longer point­
to-point lengths (20 meters or more [see Figure 6]) .
The error-free window can be made to collapse by
adding too many loads or by using the wrong imped­
ance cable, improper terminators, receivers with the
wrong threshold voltages, or other bus component
and configuration parameters. However, the details of
the actual hardware and configuration do not affect
the basic conclusion derived from Figure 2, namely,
that a great deal of timing margin is available at the
maximum UltraSCSI rate when ordinary SCSI hard­
ware is used.

To put this into perspective, basic gigabit-per-second
serial transmissions with approximately twice the basic
bandwidth of UltraSCSI have bit times of about 1 ns
and timing margins of a few hundred picoseconds.
UltraSCSI has an effective margin window of a few tens
of nanoseconds. This represents two orders of magni­
tude more margin for the parallel SCSI application.

10,000.000.000
(1010)

en
a: 100.000.000 UJ --------u. (108) en I z
<(1,000,000 I
a: (106) -I- I
u. I
0 10,000 I
a: (104) I
UJ I C!l
:::!: 100 I
::, (102) I z I

1 I
(100)

-10 0 10

\

The initial errors usually originate from the same
bit. This bit is the one with the most unfavorable tim­
ing skew with respect to the ACK signal. The cliff is
not perfectly sharp because there is a 50 percent
chance that the data transmitted is the same as that
expected even under the error case and, more impor­
tantly, because there is some level of jitter present. It is
this jitter that softens the cliff. Thus, the first errors
detected happen when the skew of the weakest bit
adds to the tail of the jitter distribution. Only a few
errors are present because only a small part of the jitter
population extends far enough to trigger the error.
SCSI systems will experience virtually no errors
because of these mechanisms in service if one operates
1 ns or more away from an error cliff.

Note that these results from the special test environ­
ment almost always yield margins higher than those
calculated from a set of interoperability specifications.
This is because the interoperability specifications must
allow margin for each piece, and the special test envi­
ronment reports the integrated result from many
pieces in the complete SCSI connection.

Higher Speeds The main effect of further increasing
the transfer rate above the maximum UltraSCSI rate
in the same set of hardware is to change the time posi­
tion of the onset of nonzero error rates and to narrow
the error-free region. Figure 3 shows an example of
data from Fast-40 transmissions using separate high­
voltage differential transceivers on each bit. (This data
was acquired by DIGITAL's Storage Bus Technical
Office in 1994.)

The error-free zone has narrowed to approximately
15 ns, and the time between first error and 100 per­
cent errors has widened on both sides, but still no
uncontrolled regions exist. This strongly suggests
that at least Fast-40 transfer is possible with no major
technology changes in the interconnect.

\
\

\
I
I
I
I
I
I
I

20 30 40 50 60
ACK EDGE POSITION (NANOSECONDS)

KEY:

- - - GOOD TRANSFERS

-- TRANSFERS WITH AT LEAST ONE BIT ERROR

Figure 3
Fast-40 Error Rate Plot

12 Digital Technical Journal Vol. 9 No. 3 1997

Additional Tests Other tests that are useful with the
special test environment are ground offset effects, ter­
minator power effects, correlation of time domain
plots on the signals with error rate distributions, hot­
plugging testing (which results in good error detec­
tion), and comparison of the impact of different cables
and transceivers. Test results of this nature are not
included in this paper because the impact of these vari­
ations depends on many parameters and the results
may not be generally applicable.

Timing Specification Methodology
With the increased emphasis on timing precision for
UltraSCSI technology, it was necessary to introduce
better specifications for the measurement of timing
parameters than those in the SCSl-2 and SPI stan­
dards. Figure 4 shows the precise measurement points
and features used for the specification of single-ended
UltraSCSI signals.

The effects of the finite slew rate on the signal edges
are accounted for largely by specifying the voltage levels
that coincide with the receiver input levels. Thus, the
setup time ends when the receiver is able to detect an

REQ or ACK

1.9 V

asserted state at 1.3 V, and the asserted period begins
when the asserted state has been detected. On the nega­
tion side, the signal must rise to at least 1.6 V before the
receiver can detect a negated state, and a negated state
must be detected if the input signal reaches 1.9 V. In the
SCSI-2 and SPI standards, any point between 0.8 V and
2.0 V could be used as the timing measurement.

Sample UltraSCSI Signals
Numerous variations on the details of the signals can
be produced in UltraSCSI configurations. This section
shows two types of signals as representative examples
that validate UltraSCSI as viable under certain condi­
tions. The first case explores a configuration that actu­
ally exceeds the recommended specifications. This is a
complex cabled environment with a cluster ofloads on
one end and some distributed loads on the other end.
The second case shows the signals over a 25-meter,
single-ended point-to-point bus.

Complex Loads Figure 5 specifies a complex con­
figuration and the single-ended SCSI signals that
result at various positions along the bus. The logic

(JSHALL BE
, DETECTED

1.6 V

IV MAY BE
,,,. DETECTED ------------------------------ --------------- ----- -~--------------------- ------

Figure4

1.3 V

1.0 V

DATA
BUS

1.9 V

1.6 V

1.3 V

1.0V

MAY BE : :
.,I/If: DETECTED : :

-------------------------------- --------------- -- -i--,---------------------- -- ----

: J SHALL BE : : :
: , DETECTED : : : --------------------------------i- ------------- ---r-~-----------------------1- --
• I I I I
I I I I I
I I I I I

I l : l : i :
I I I I I I I

~SETUP ~ *- HOLDTIME ~ :

i !.ASSERTION ...l ~ NEGATION -----.;
: : PERIOD : : PERIOD :
I I I I I
I I I , I

DATA BUS VALID

Single-ended UltraSCSI Timing Measurements

Digital Technical Journal Vol. 9 No. 3 1997 13

signal that is driving the SCSI driver chip is the
first trace at the top; it provides a common timing
reference for all the signals. The weakest signal is at
device position 4, just after a relatively long run with
no loads. This signal is below the 1-V level but has a
very slow assertion slew rate that causes considerable
loss of asserted state pulse width. This complex con­
figuration works with the receivers used but does
not have the timing margin required by the Fast-20
standard.

By varying the position of the loads so that there are
no loads between the driver and the first load (not
shown), the signal at the first load device is degraded
even more than at position 4 in Figure 5. This is
one reason that the overall length of single-ended
UltraSCSI with many loads is restricted to 1.5 meters

and that the total number of loads is limited to 8. 1

UltraSCSI devices connected to backplanes may be
especially sensitive to attached cables that extend the
total bus length more than 6 to 8 centimeters (cm)
beyond the backplane. This reduced bus length is
rather severe when compared to that allowed at the
maximum fast SCSI transfer rate (a total of 3 meters).4
In the section Small, Improved Interconnect, we show
how to overcome this 1.5-meter, 8-device limit by
using an active SCSI interconnect.

Applying the timing measurement methods shown
in Figure 4 to the waveforms in Figure 5 illustrates
that more careful timing specification methods do
indeed help significantly to keep the timing margin
high enough to use.

3 METERS (10 FEET) OVERALL LENGTH
(INDIVIDUAL MEASUREMENTS IN CENTIMETERS)

Figure 5

TERMINATOR
7 .62 30.48 30.48

THREE 12.45-CM STUBS,
25 pf EACH

DRIVER

210.82 10.16 10.16 10.16 10.16 10.1 6 TERMINATOR

FIVE 7.37-CM STUBS,
25 pf EACH

DEVICE 7 6 5 4 3 2 0
POSITION

DEVICE
POSITION

7

6

5

4

0

ACK SIGNALS

6 DRIVER INPUT

4

2

0

4

2

0 DRIVER OUTPUT @ 7

DRIVER INPUT:=@=::5=== ====""

:~
:~

10 NANOSECONDS PER DIVISION

LOGIC SIGNAL
DRIVING SCSI
DRIVER

UltraSCSI Signals in a Complex Bus

14 Digital Technical Journal Vol. 9 No. 3 1997

Point-to-point Configuration If loads are present
only at the ends of the bus, the transmission line
between SCSI devices improves electrically. This
occurs simply because the loads significantly disrupt
the characteristic impedance and cause reflections and
attenuation. The point-to-point signal at 25 meters
has better amplitude and timing margins than signals
in much shorter buses with closely spaced loads.
Figure 6 shows a typical example of a point-to-point
UltraSCSI signal. The format used in Figure 6 is the
same format used in Figure 5.

Differential UltraSCSI
Differential UltraSCSI uses the same configuration rules
as fast SCSI (25-meter total length, 20-cm [8-inch]
stubs, 16-device load)1 and uses the same timing values
as single-ended UltraSCSI. The larger signal amplitudes
and the common mode rejection property of differen­
tial transmissions help overcome the transmission line
weaknesses in heavily loaded and long buses. As with
any high-voltage differential system the costs-in terms
of money, power, and space-are higher.

Other Requirements for UltraSCSI
The Fast-20 standard1 contains a number of detailed
requirements on the components used in UltraSCSI
configurations. Included are slight modifications to
the cable impedance, active negation requirements for
drivers, special length limits for certain loading condi­
tions, restrictions regarding the kinds of single-ended
terminators to use, and timing budgets.

Summary of Developments in the Area of Increased
Synchronous Data Phase Speed
The UltraSCSI (Fast-20) speed increase can be attrib­
uted to a systematic examination of the margins present
in actual SCSI hardware and to the elimination of the
excess margins. Advances in the integrated circuit indus­
try enabled silicon designs to be specified with tighter
controls on the driver and receiver timing and threshold
properties than were possible when the SCSI-2 or SPI
standards were developed. All the important changes
needed for SCSI devices are contained in the silicon
designs for the drivers and receivers. As a result, the user
sees no difference between the appearance ofUltraSCSI
and that of ordinary SCSI.

The system integrator must use a more restrictive
set of configuration rules than required for fast and
slow SCSI. Also, the only impact on software is the
addition of a new speed agreement code for the rates
uniquely supported by UltraSCSI. This negotiation
is done precisely the same way for UltraSCSI as for
any other form of SCSI. Finally, UltraSCSI devices
are 100 percent backward compatible with fast and
slow devices. Although a device may be capable of
the maximum UltraSCSI rate, it may be needed in a
configuration that does not support UltraSCSI. In
such a case, the UltraSCSI device would be used in
the fast or slow mode and would have more margin
at those slower speeds than it would if it were not
UltraSCSI capable.

25 METERS (82 FEET) OVERALL LENGTH

TERMINATOR ---------------------TERMINATOR

Figure6

DRIVER ONLY END LOADS FOR THIS TEST RECEIVER
SHIELDED 34·PAIR EXTERNAL CABLE

DRIVER INPUT
6

4~~--~

2

0

ACK SIGNAL

RECEIVER INPUT AFTER 25 M

10 NANOSECONDS PER DIVISION

Point-to-point UltraSCSI Signals

Digital Technical Journal Vol. 9 No. 3 1997 15

Bus Expanders

As noted previously in the discussion of complex loads,
there are rather severe limits on the configurations that
can be achieved with single-ended UltraSCSI when
implemented in a single bus. The extension to parallel
SCSI architecture that overcomes this constraint
involves using active circuits that connect SCSI buses
electrically but isolating them from each other in a
transmission line sense. These circuits have the general
name expanders, since they expand the configuration
capabilities of parallel SCSI.

Each individual bus has two terminators and its own
transmission mode (single ended or differential) and
obeys transmission line-based configuration rules as if
it were the only bus in the system. When used with
expanders, these individual buses are called bus seg­
ments. The collection of SCSI devices in all the bus
segments that are electrically connected together is
called the SCSI domain. One example of a SCSI
domain using expanders is shown in Figure 7. Note
that when using expanders, it is possible to have bus
segments that do not have any SCSI initiators or tar­
gets but only serve to form an electrical interconnect
between other bus segments.

Expander Properties
Expanders are available in two basic types: simple and
bridging. Bridging expanders behave as a SCSI initia­
tor or target, whereas simple expanders have a set of
properties that make them look like a piece of wire
with delay to the protocol. Simple expanders

• Cannot initiate SCSI IDs and arbitrations and can­
not originate messages, although the expanders can
read messages sent from initiators and targets

• Allow minimal arbitration propagation delay

• Yield a retransmitted signal timing skew (both
delay and high/low) no worse than from valid SCSI
initiators or targets

• Do not interfere with the REQ/ ACK offset count

• Allow min/max pulse widths to be maintained

• Require the filtering of the SCSI RESET line

• Allow arbitrary placement of the initiator and the
targets

• Require that terminator power not be connected
between the segments being coupled

• Do not need to know the negotiated data phase
speed or any other variable property of a transaction

• Require that there be no electrical or logical connec­
tion of the DIFFSENS line (a single-ended signal
that indicates the transmission mode being used on
the bus segment) between segments being coupled

• Issue a SCSI bus RESET signal on one segment on
detecting transmission mode (single-ended/LVD,
etc.) changes on the other segment

Simple expanders are becoming available from several
sources in the industry for use with UltraSCSI.

Domain Rules Using Simple Expanders
When using only simple expanders in a domain, six
rules must be observed:

1. All bus segments in the domain must comply with
their individual bus segment length limits and other
segment-related requirements.

2. Any segment between two other segments must
support the highest performance level that can be
negotiated between the two other segments. For
example, two wide UltraSCSI segments must not
be separated by a segment that does not support
both wide SCSI and UltraSCSI.

3. The maximum propagation delay between any
two devices in the domain cannot exceed 400 ns.
A special case exists for devices that use extremely
long times for responding to BUS FREE (the
so-called BUS SET DELAY)-the one-way propa­
gation limit is 300 ns instead of 400 ns.

4. The number of addressable devices cannot exceed
16 unless the domain contains bridging expanders.

5. A branch/leaf architecture must be observed; loops
are not allowed.

6. The REQ/ ACK offset negotiated between any
two devices must be large enough to ensure that
adequate offset and buffering is available to accom­
modate the round-trip time between the devices.
For the maximum UltraSCSI rate with a 400-ns
maximum one-way domain propagation time, the

BUS SEGMENT BUS SEGMENT BUS SEGMENT

Figure 7

TWO-PORT
EXPANDER

TWO-PORT
EXPANDER

SCSI Domain Built Using Expanders

16 Digital Technical Journal Vol. 9 No. 3 1997

BUS
SEGMENT

THREE-PORT
EXPANDER

BUS
SEGMENT

minimum offset is 18. (This offset level is derived
by considering a maximum round-trip time of 800
ns at 50 ns per transfer [800/50 = 16] and some­
what arbitrarily adding two transfers to account for
some additional delay due to the processing time in
the silicon.)

Achieving the 400-ns one-way domain delay
requires expanders that will not pass the wired-OR
glitch (noted earlier in the introduction) between bus
segments. This filtering of the glitch allows the bus
segments to settle individually.

The propagation delay through an expander
directly subtracts from the physical distance between
devices. It is therefore desirable to use expanders
with small delays. For a single-ended-to-single-ended
application, the delay can be as low as 10 ns. For a
single-ended-to-differential application, the delay is
typically around 100 ns, which is another significant
penalty to using differential bus segments.

More detail concerning these rules and other prop­
erties is available in the draft ANSI document: SCSI

Enhanced Parallel Interface, 5 which was edited by the
author of this paper.

Summary of Improvements Related to Bus Expanders
The use of simple expanders dramatically extends the
utility of single-ended UltraSCSI. The most obvious
example is the ability to introduce point-to-point
segments where additional length is needed. A less obvi­
ous example is the ability to create star or hub configu­
rations by clustering simple expanders into a local
physical area. An example of a three-port SCSI hub
is shown in Figure 7. Note the three simple expander
circuits internally connected within the hub. Simple
expanders also make it possible to mix single-ended and
differential SCSI devices in the same domain, to achieve
the full 16-device count, to add and remove bus seg­
ments without shutting down the entire domain, and to
achieve differential performance without incurring the
extra cost of differential. Bridging expanders offer the
same transmission isolation as simple expanders and
may allow increasing the number of devices in the
domain to as high as 946,5 but bridging expanders are
not as well developed as simple expanders and will not
be explored in depth in this paper.

Note that the improvement in signal integrity is dra­
matic when using expanders with backplane applica­
tions. Therefore, it is good practice to use an expander
whenever connecting a SCSI cable to a backplane that
contains SCSI devices.

Smaller, Improved Interconnect

Another recent development in parallel SCSI technol­
ogy is the introduction of much smaller external phys­
ical interconnects and more capable internal device
interconnects. The SCSI connectors and shielded

cables have historically been large, bulky, and generally
difficult to manage.

Spearheaded by activities that began in 1995 in the
SFF (formerly Small Form Factor) industry group,
standardization is under way of two new connector
families that offer unprecedented levels of functionality
and true multisourcing of complete connectors for
parallel SCSI. These families are the Very High Density
Cabled Interconnect (VHDCI)2 shielded connectors
that reduce the overall size of an external connector by
two thirds and the Single Connector Attachment-2
(SCA-2)7 unshielded connectors that integrate into
a single connector all the functions needed to run a
peripheral. The VHDCI family revolutionizes the
external SCSI interconnect and the controller parts of
the internal SCSI interconnect; the SCA-2 family does
the same for the internal device interface.

For the first time, complete connectors-not just
the mating interface-are being standardized. This
feature is essential to achieving interchangeability and
second sourcing for connectors with the same style of
termination-side contact. The VHDCI family is speci­
fied in 26 different forms, all with exactly the same
mating interface, so that virtually any kind of device
or cable assembly design can be accommodated.
Interestingly, this array of choices for the connectors
does not increase the complexity of the interconnect
but rather opens up new ways for product developers
to design products while maintaining a simple and
physically interoperable separable connector interface.
In fact, this ability to accommodate a variety of prod­
uct design requirements without changing the separa­
ble interface is one reason that SCSI is becoming less
complicated.

Similarly, the family of SCA-2 connectors for SCSI
internal devices and cables is following the VHDCI
standardization model, with a significant number of
intermatable forms being standardized. These connec­
tors offer the ability to bring all the SCSI signals, all the
power and ground connections, and all the optional
signals, such as IDs, spindle sync, and power fail, out of
the device through a single unshielded connector. This
feature dramatically shrinks the cost and complexity of
interconnecting an array of SCSI devices.

Using an SCA-2 connector, the device may be
inserted into a backplane without using cables. If the
SCA-2 and backplane combination is not used, a SCSI
cable (SO-pin or 68-pin conductor), a four-lead power
cable for ground and power (5-V and 12-V), and one
or more smaller cables for the IDs etc., are required for
every device in the system. Each of these cables is
routed differently, has different current carrying and
other electrical requirements, and has very different
connectors. Although this cabled option is flexible and
offers significant advantages in some systems, it is usu­
ally not the best solution in the device array and mod­
ular packaging applications that are required for the

Digital Technical Journal Vol. 9 No. 3 1997 17

higher-end applications. Therefore, the SCA-2 is a sig­
nificant factor in the dramatic reduction in complexity
of higher-end SCSI device applications.

VHDCI Connectors
The physical size of the VHDCI connectors is much
smaller than the earlier versions, as seen in Figure 8.
Because of its low profile, the VHDCI 68-pin family is
approximately half the height and twice the width of the
latest Fibre Channel external connector, the High­
Speed Serial Data Connector (HSSDC). Figure 9 shows
a comparison of the VHDCI and HSSDC connectors.
The same panel space is required for either technology.

The VHDCI connectors shown in Figure 9 are
closely spaced, but the orientation of the polarizing
shield connection is 180 degrees different between the
upper and lower connectors. This arrangement allows
an offset cable assembly to be used where one side is flat.
This same cable assembly may be used on both the

SCSl-1 LOW-DENSITY

NARROW (50 PINS)

SCSl-3 HIGH-DENSITY

WIDE OR NARROW (68 PINS)

upper and lower connectors without interference. The
specifications of the VHDCI interface ensure that
neighboring PC option slots will not have interference
even if all the SCSI ports have cable assemblies attached.

The VHDCI connector is useful for multiport appli­
cations such as RAID (redundant array of inexpensive
disks) controllers. Figure 10 shows examples in which
the wide version of the connector family has allowed at
least a doubling of the number of ports possible in a
single controller form factor. As illustrated in Figure
10, the device design enables up to four wide SCSI
ports on a single PC option card cutout.

The VHDCI retention scheme is also significantly
simplified by introducing a three-way retention post
for the bulkhead connector. This post accepts (1) the
conventional jackscrews, (2) a squeeze-to-release clip
for positive retention with rapid release, or (3) a detent
ring retention that requires a stronger pull than that
required with no retention but no action other than

VHDCI WIDE OR

NARROW (68 PINS)
- ----- -

. -
' l lll' u I n · , ,, , - ,
----~~~ -~-

VHDCI NARROW

(36-40 PINS) MICRO SCSI

1--1.Bcm~

Figure 8
External SCSI Connectors

Figure 9
Comparison of the 68-Pin VHDCI and Fibre Channel HSSDC Connectors

18 Digital Technical Journal Vol. 9 No. 3 1997

Figure 10

FOUR WIDE SCSI PORTS ON A SINGLE
PC OPTION CARD

Four Wide SCSI Ports on a Single PC Option Card

pulling or pushing. The choice of retention type is
made in the cable assembly. All 68-pin VHDCI cable
assemblies that comply with the SFF specifications
work on all 68-pin VHDCI mating connectors.

Figure 11 shows the details of the 68-pin VHDCI
system. The lip in the jack post provides the securing
point for squeeze-to-release clips and for split-ring
detent retention. The center of the jack post is threaded
for use with jackscrews.

Although smaller than the high-density connector,
the VHDCI connector is durable. It has no pins that
can bend; its retention scheme uses the same-size
jackscrew thread as the high-density wide connector;

... ...

Figure 11
Overall View of the 68-pin VHDCI System

EISNISA CARD
0

and its contacts are imbedded in the housing where
they cannot move or become distorted.

SCA-2 Connectors
The SCA family uses an SO-position, leaf-style contact
to interface all active SCSI lines, three power voltages,
and device control signals. This connector is consider­
ably smaller than the collection of the three different
connectors used for power, options, and SCSI bus in a
cabled system. There are two basic versions of SCA
connectors: SCA-1 and SCA-2. Both versions are
unshielded and useful only within shielded enclosures.
The SCA-1 has 80 positions with all contacts designed

Digital Technical Journal

DEVICE SIDE

THREE-WAY
RETENTION

Vol. 9 No. 3 1997 19

to be the same length. The SCA-2 can be mated to the
SCA-1 but has advanced grounding contacts and
sequenced signal and power contacts for supporting
hot plugging and blind mating (no visual feedback
during mating). Both versions are available in many
styles, which differ by the termination-side structure
and overall orientations.

The SCA-1 is not a documented standard and is
being replaced by the SCA-2. The SCA-2 connector
was introduced to SFF in 19957 as the first step toward
formal standardization.

Two special features exist in the SCA-2 connector.
First, two contacts, one on each side of the connector,
provide the first make/last break for the ground con­
nection. This design ensures that a common electrical
ground is established between the device and the sys­
tem before any power or signal connections are made
on device insertion. Upon removal, these contacts
ensure that the ground stays intact throughout the
disengagement of the signal and power pins.

The second feature allows the special long power
contacts to precharge bypass capacitors before the
main power contacts make. This reduces the distur­
bance to the power distribution system and eliminates
any arcing on the service power pins. Two pins at the
extreme ends of the connector indicate that the con­
nector is fully mated. The overall view of the SCA-2
system is shown in Figure 12.

The size of the connectors in the SCA family has not
decreased dramatically. The connectors need to main­
tain enough size to achieve blind mating alignment,
and, for backplane applications, there is little advan­
tage in having a connector that is smaller than the
device. With 89-mm (3.5-inch [in]) or the newly pro­
posed 76-mm (3-in) form factor devices, the SCA con­
nector comfortably fits within the device boundaries.

The use of backplanes for direct device attachment
is possible because all the electrical connections for the
device are available in one connector on the device.
This design eliminates the cables used to attach the
device and the space required for the connectors, thus
significantly shrinking the size required to package
multiple devices.

External SCSI Cable
The external cable for SCSI is shrinking also, through
the use of smaller-gauge wire, better dielectrics, and
less jacketing material, as illustrated in Figure 13.
Formerly, wide SCSI required a cable of approximately
12.70 mm (0.50 in) in diameter (a 126.677-mm2

[0.196-in2
] cross section) with 28-gauge wire. Today,

wide SCSI cables with 30-gauge wire are shipping
with diameters of 9.40 mm (0.37 in) (69.398-mm2

[0.107-in2
] cross sections). Cables with 7.62-mm

(0.30-in) diameters (45.61-mm2 [0.07-in2
] cross

sections) are possible with 32-gauge wire and inexpen­
sive dielectrics for wide SCSI. Cables with 6.35-mm
(0.25-in) diameters (4.987-mm2 [0.049-in2

] cross sec­
tions) for narrow SCSI (45.61-mm2 [0.07-in2

] cross
sections) are flexible and manageable-similar in size
and flexibility to a desktop computer power cord and
smaller than many serial cables. When used with active
single-ended, LVD, or HVD terminators, the 32-gauge
wire is adequate for distributing terminator power and
SCSI signals in most applications. Long cables should
not be used for terminator power distribution.

Further reductions in the connector and cable sizes
need to be weighed against the ease of handling, the
need for sufficient strength to survive normal service
stresses, and the cost increases at very small sizes. The
combination of the VHDCI connector and 30 /32-
gauge wire sizes is a good optimization.

,~ ADVANCED

DEVICE SIDE ./ , / ~)7 GROUNDING
.,, ./ / "'~- CONTACTS

~"'/.,,
"'.,, /;/
"'/

/

ADVANCED ~ GROUNDING
CONTACTS

,

CABLE/BACKPLANE SIDE

Figure 12
Overall View of the SCA-2 Connector System

20 Digital Technical Journal Vol. 9 No. 3 1997

12.70 MM
(68 CONDUCTOR)

28-GAUGE WIDE

7.62 MM
(50 CONDUCTOR)

30/32-GAUGE NARROW

Figure 13
External SCSI Cable Diameters

Summary of the Benefits Derived from a Smaller,
Improved Interconnect
The VHDCI connector and smaller cables combine
to offer a robust yet user-friendly revolution in SCSI
interconnect. The leaf-style contact of the SCA con­
nector eliminates problems with bent pins that fre­
quently bedevil the older wide SCSI connector.
The ability to use up to four wide UltraSCSI ports in
a single PCI option slot increases the SCSI connec­
tivity per PCI slot to 60 devices (from 15 devices).
By using multiple PCI slots, hundreds of SCSI devices
can be connected to a single PC or workstation.
In addition, the SCA-2 connector implements the
essential contact sequencing required to perform SCSI
device hot plugging.

Device Insertion and Removal Bus Transients

The multidrop feature of the SCSI bus allows device
removal and replacement without disturbing the commu­
nications between other SCSI devices, if the electrical dis­
turbances caused by the device being added or removed
are not detected by any other SCSI devices. Thus, it is
architecturally possible to dynamically reconfigure the
device population without interrupting existing data
transmission processes between operational devices.

The transients involved with device insertion and
removal include mechanical vibrations, power distrib­
ution instabilities, SCSI terminator power noise, elec­
trostatic discharge (radiation and induced current),
and SCSI signal line noise. All except the SCSI signal
line noise and the terminator power noise are handled
by the storage system design and therefore are not

9.40 MM
(68 CONDUCTOR)

30-GAUGE WIDE WITH
IMPROVED DIELECTRIC

32-GAUGE NARROW
(MICRO SCSI)

directly part of the advancements in parallel SCSI.
The SCSI terminator power noise is determined by
the size of the decoupling used on the SCSI termina­
tors and the size of the capacitance on the device
being inserted. This noise is easily controlled by
ensuring that these sizes meet the values specified in
the SPI standard.<

The delicate case is when the SCSI signal lines are
involved, which is the subject of this section. To deter­
mine the nature and magnitude of these signal line dis­
turbances, one must understand the following three
mechanisms: (1) the overall sequence of events, (2)
the electrical dynamics of connector contacts when
used in the SCSI application, and (3) the electrical
consequences on the bus when the device makes/
breaks contact with the SCSI signal line.

There are two sequences of interest: insertion and
removal. The removal process is easy to grasp after the
insertion process is understood.

Single-ended Device Insertion
The initial conditions considered for SCSI device
insertion assume a SCSI device with its ground solidly
and continuously connected to the ground of the
SCSI bus. This connection is easily accomplished, for
example, by using sequenced contacts where the
device ground makes connection well before any
signal connection. In this state, the SCSI device pins
present a maximum fully discharged capacitance of
approximately 25 picofarads (pF). After the device
signal pin contacts the bus, this capacitance becomes
charged (by extracting charge from the bus) to the
voltage on the signal line at the time of the insertion.

Digital Technical Journal Vol. 9 No. 3 1997 21

These values range from approximately 3 V for
negated lines to nearly O V for asserted lines.

Since the SCSI device being inserted is logically off
(i.e., there is no driver current), the only current that
needs to flow is that required to charge the 25-pF
capacitance. This is sharply different from many con­
nections in electronics in which current flows
through the contact after an electrical contact has
been established.

In the case where no bus voltage changes occur
except as a result of the device insertion, the insertion
transient begins with the initial contact and ends when
there is no further bus voltage change with time (the
steady state voltage). Once the device pin voltage
reaches the steady state bus voltage, no further current
flows through the contact.

Therefore, once the device capacitance becomes
charged to the steady state signal line voltage, no further
disturbances to the signal line voltage will occur even if
the contact opens momentarily during a chattering
event. The voltage on the device capacitance changes
during the transient from a discharged state (zero volt­
age) to the steady state signal line voltage, with the cur­
rent always flowing into the device capacitance.

If the signal line voltage changes after the insertion
transient is completed (because of events such as being
driven by other devices, by noise, or by the inserting
device beginning to use its own driver), then current
will again begin to flow through the contact. This is a
normal SCSI condition for contacts in service. If the
signal line voltage changes during the insertion tran­
sient because of events other than the connector con­
tact effects (e.g., signals changing because of being
driven by other devices, other noise), then it is more
difficult to determine exactly where the insertion tran­
sient ends. The beginning of the insertion transient
will still be marked by a charging of the device capaci­
tance. Examples presented later in this paper show
both insertion events and driving events from other
devices occurring at the same time.

The time required for complete contact mating on
all SCSI signals in the bus is up to six orders of magni­
tude greater than the time required for a SCSI signal to
change state. Therefore, signal level changes are likely
during the insertion process. The electrical behavior of
the contact as it continues wiping (sliding after initial
contact is made) from its initial contact point to its
final resting position becomes a critical part of the
process. The following subsections explore this behav­
ior in detail.

Connector Insertion Dynamics The data presented in
this section were derived from a DIGITAL DSSI bus in
1990. The DSSI bus is nearly identical to the SCSI bus,
and many of the results apply without modification
to SCSI. Similar data have been observed on the SCSI
bus, but the complete set of data presented in this

22 Digital Technical Journal Vol. 9 No. 3 1997

paper is not presently available from actual SCSI hard­
ware. The disturbances in the DSSI bus are larger than
those seen in the SCSI bus, because the DSSI voltages
are slightly higher (3.5 V for DSSI compared to 2 .8 V
for single-ended SCSI), and the instrumentation
capacitance (-10 pF) adds significantly to the device
capacitance because of the state of the art for scope
probing in 1990. Numerous tests with modern scope
probes (0 .6 pF or less) of SCSI hardware have shown
that the SCSI disturbances are indeed qualitatively the
same but significantly less in size than those shown
here from the DSSI hardware.

The mechanisms described apply to any system in
which the insertion transient is caused by the charging
of a small capacitance. Figure 14 shows the basic test
setup. A device is inserted into a connector with scope
probes attached on either side of the mating interface
and \vith an additional probe attached to the bus some
distance from the connector. The voltage on the
device side of the connector is used as the trigger
signal into a digital storage scope so that the events
before, during, and after the mating event can be
examined. This is clearly a single-event type of mea­
surement, so a high sampling rate (1 billion samples
per second) and significant scope memory is required
to capture the waveforms. The scope probes used have
a 1-megohm input resistance.

The connector used for the tests in this section has
multiple parallel pins that all mate and demate in the
same general time period. There is no intentional
difference in the pin lengths. The time relationship
between the mating events on two neighboring pins
was explored first. By choosing neighboring pins, the
differences between the pins is kept to a minimum
so the time differences observed should represent the
best pin-to-pin synchronization in a mating event.

For this test, a probe was attached to each of two
pins, and the connector alone (not part of a device)
was mated to the bus segment connector. Figure 15
shows the results.

Both pins appear to show instantaneous transitions
between the charged and discharged states on the time
scale that was required to capture both events on the
same plot. The mating events are separated by approx­
imately 19 milliseconds, and there is no evidence of
any discharging after the initial charging has occurred .
Since the scope probes have a 1-megohm input resis­
tance, any lack of contact during the wipe portion of
the mating will allow the capacitance to discharge
through the probe with a time constant of approxi­
mately RC, where R is the scope probe resistance and
C is the sum of the connector pin and probe capaci­
tances. Assuming a total of 10 pF, this gives a decay
time constant oflO microseconds.

Figure 16 shows another mating event on pin 1 at
a 500 times more sensitive time scale. In this case,
some evidence of momentary opens is seen with the

TERMINATOR BUS SEGMENT TERMINATOR

Figure 14
Test Setup for Insertion/ Removal Transients

4

3

00 ;;: 2
~ -
O Cl.

G

- MATING EVENT

-- MATING EVENT

5 MILLISECONDS PER DIVISION

Figure 15
Time Relationship between Mating Events for Two Pins in the Same Connector

3

00 ~ 2
z

~ 0::
0
G
w 0
(!)

~
_J

3
0
> "' 2 z z
0:: 0::

0

10 MICROSECONDS PER DIVISION

Figure 16
Contact Bounce Events

expected decay dynamics. The actual time constant is a
bit longer than 10 microseconds because of some
capacitance in the connector pin. This bounce behav­
ior may or may not be present during the initial stages
of the event shown in Figure 15, but clearly the behav­
ior is not visible in the figure. To observe the suite of
transients that exist in the mating process, one must
examine the transients at several different time scales.
In general, this requires repeating the mating events,
since the dynamic range of the scopes used was insuffi­
cient to capture all the detail in a single event.

The initial mating event on pin 1 still appears to be
instantaneous on the time scale used in Figure 16, but
some slope is visible in the second bounce event. Also,
during the second decay period, a shelf in the decay
indicates that a partial, high-resistance contact was
briefly experienced. Pin 2 is not close to making a con­
tact at the time range shown in Figure 16. The figure
shows a small amount of cross talk in the pin 2 voltage
waveform caused by the pin 1 transients.

This data clearly shows that the details of the mat­
ing process are highly complicated and intrinsically

Digital Technical Journal Vol. 9 No. 3 1997 23

unpredictable. Therefore, the best we can hope for is
to establish some limiting cases for the important
parameters. The limiting features shown in Figure 16
are the extremely rapid initial mating event and the
decay times. We examine these rapid transients in
detail later in this section. The decay times are deter­
mined by the actual contact resistance and the resis­
tance of the leakage path to local ground. For normal
SCSI devices, there is very little leakage to ground on
the device pin so the opens produced by the bounce
have no effect.

Some cases observed indicate much more complex
bounce structures. Figure 17 shows a case in which the
mating connection is not established until more than
700 microseconds have passed.

The data in Figures 15 through 17 were all acquired
from the same connector contact during separate mating
processes. Typically, the details of the mating event are
very different even under nominally identical conditions.

Another type of mating event is shown in Figure 18.
This event requires approximately 10 microseconds to
make the transition from uncharged to charged, and
there is no bounce. This particular event produces

4

almost no cross talk into pin 2. Events with these char­
acteristics are somewhat rare and are called gradual
transients in this paper.

Figure 19 shows a closer look at the rapid transient
type of mating event. In this figure, we have added a
device capacitance of approximately 20 pF to the scope
probe for a total of approximately 30 pF. Notice that
the transient requires 2 to 3 ns to substantially com­
plete its charging. There is a ratio of nearly 107 between
the mating events on different pins in the same connec­
tor and the rapid transient of a single contact.

Limiting Parameters for the Rapid Transient The
question of whether the rapid transient shown in
Figure 19 is the worst case needs to be explored
because the duration of the transient affects the distur­
bance on the bus. Some bounding features and some
implications of the observed behavior of the rapid
transient are noted in this subsection.

Assuming that the transient event occurs in 2 ns and
that the velocity of impingement just prior to the first
mating event is 1 meter per second, then the distance
traveled by the contact would be 2 nanometers (nm).

3 ~.~:: .·~=--\ ·.·· ~--... -·.-.

;: \Y~:.,

0

Figure 17
Extended Mating Bounce Events

Figure 18

4

LJ.J

~
~

0

3

Z "'2
CL z

CL 1

'

100 MICROSECONDS PER DIVISION

,/-
/

/ '

/ --------- MATING EVENT

/

10 MICROSECONDS PER DIVISION

Gradual Mating Event, No Bounce

24 Digital Technical Journal Vol. 9 No. 3 1997

-3 en
:;
0
>
~2
(!l

MATING EVENT~ :.

;
0
> 1
z
c::

5 NANOSECONDS PER DIVISION

Figure 19
Detailed Structure of the Rapid Transient

This distance is equivalent to a few atomic distances.
The distance traveled during the gradual transient
shown in Figure 18 would be approximately 10
microns, and during the extended bouncy case shown
in Figure 17, approximately 1 mm. The velocity for the
latter two cases would likely be somewhat reduced
because of the mechanical interference between
the pins, and the actual distance traveled is probably
significantly less. There is little opportunity, however,
for the velocity to be reduced for the rapid transient,
and this distance of 2 nm is probably at least the
correct order of magnitude.

The following calculation shows the total current
levels required to charge the capacitance in 2 ns.

Q= CV= 30 x 10-12 pF x 3.5 V
= 10.5 x 10-11 coulombs,

where Q represents the total charge, C is the capaci­
tance, and V is the voltage. Since this charge is trans­
ferred in a time t of2 ns, the average current is

Q/t= 10.5 x 10-11 coulombs/(2 x 10-9 ns)
= 52.5 milliamperes (mA).

For a gradual transient that takes 10 microseconds,
the average current is approximately 10 microamps.
These calculations show that the most severe ampli­
tude disruption to the signal on the bus occurs with
the rapid transients, since relatively large current must
be supplied in a short time to charge the capacitor.

The next item to be examined is the current density
that must exist during the transient. Since the contacts
move only 2 nm and the surface finish of actual con -
tacts is not nearly this smooth, it is reasonable to
assume a square 2-nm contact. Clearly, this assump­
tion is not rigorously defensible and could be the sub­
ject of an entire study area in its own right; however,
there is no basis for assuming that the lateral contact
region would be any different than the contact area in
the mating direction. The basic conclusions would not
be affected even if we assumed a hundredfold lateral

increase in contact area. Attempts to use scanning
electron microscopy to examine the actual contact
area were not fruitful in establishing the actual initial
physical contact area because of the severe physical dis­
ruption that occurs on the microscopic level and
because of the small sizes involved.

Under these assumptions, the physical contact area
is assumed to be (2 nm)2 or 4 x 10-14 cm2 in the follow­
ing calculations. The current density to support the
50-mA rapid transient current is therefore approxi­
mately 1012 A/cm2

• Typical current densities in copper
and other metals are less than 106 A/cm2

• The electro­
migration onset current is of this same order. The cur­
rent density in the rapid SCSI transient is a million
times greater than that which metal can support.

To support the massive current density, the actual
contact area must be much larger than the initial phys­
ical contact area assumed in the above calculations.
The author believes that this can be explained by a
micromolten metal-to-metal joint that is formed upon
initial contact and that the front of the melt propagates
(probably through phonon interaction) at approxi­
mately the speed of sound in the metal. This process
would create crudely a thousandfold increase in the
effective insertion velocity and would result in a mil­
lionfold increase in contact area, since the melt would
propagate in all directions.

This mechanism would produce reasonable current
densities and would form an intimate metal-to-metal
interface with both contacts that would aid in reduc­
ing the contact resistance. The micromelt size becomes
rapidly self-limiting, with the expanding contact area
causing decreased current density, which in turn, causes
decreased melt temperature.

As discussed in the next section, the actual contact
resistance during the rapid transient cannot be large.
If this resistance is large, as in the case of the gradual
transient, the mating event is much less disruptive.

Many variations on the mating transients can be
observed, but we do not attempt to show all of them

Digital Technical Journal Vol. 9 No. 3 1997 25

in this paper. One special variation, however, is worth
noting-the combination of rapid and gradual tran­
sients in the same mating process. Sometimes the mat­
ing process starts with a gradual transient and then
shifts to a rapid transient. Figure 20 shows a complex
mating process in which (1) a gradual transient initi­
ates, (2) a rapid transient starts but does not complete,
(3) the rapid transient ends, (4) another gradual tran­
sient process starts, and (5) another rapid transient
finishes the charging process.

This observation is consistent with several possible
microprocesses during which the initial rapid transient
extinguishes before completion.

• The micromelt becomes physically torn apart by
the advancing motion of the contacts. (This process
is unlikely because of the excessively slow physical
motion.)

• The micromelt explodes. (This process is likely.)

• The micromelt becomes resistive through the cont­
amination of the melt with insulating material.

• The micromelt front reaches a thin region and
opens because of the lack of material.

• The micromelt front reaches an insulating region.

On further movement of the contacts, a new rapid
transient condition is encountered between different
metallic peaks of the contacts, and a new rapid tran­
sient begins. Figure 21 shows a conceptual representa­
tion of this process.

Gradual transients appear to be associated with nor­
mal current densities (i.e., 106 A/cm2

) and much
higher contact resistance than rapid transients. In cases
where a micromelt is not initiated, the low contact
resistance associated with the liquid metal-to-solid
metal interface and the expanded contact area are not
present. Therefore, one way to eliminate the mating
disturbance caused by the rapid transients is to ensure
that a micromelting process is not possible.

00 3

~
0
~
w 2

;
~ 1
z
0::

0

PARTIAL RAPID
TRANSIENTS

In the process shown in Figure 20, it is probable that
a gradual-type contact is being maintained somewhere
else in the contact, since no voltage decay is evident
when the rapid transient ends. Indeed, it is to be
expected that the rapid transient mechanism would
not operate after the capacitance is charged to a certain
level, since there would not be enough energy differ­
ence to initiate and sustain a rapid transient. Therefore,
the gradual transient is the behavior derived from an
extrapolation of the normal mechanisms that produce
contact resistance. This detailed discussion is pursued
because we must understand the basic physical mecha­
nisms to gain confidence that we are considering the
worst-case disturbances.

Single-ended Device Removal
During the process of removal, the device pin separates
from the bus. Since both the bus and the device are at
the same voltage just before the separation, no current
is flowing unless the bus voltage changes when the con­
tact is in the process of separating. Therefore, in most
cases the separation process causes no disturbance.

Bounce can occasionally be observed during the
demating process when there is a leakage-to-ground
path present on the device side. Of course, if a voltage
decay occurs and the contacts re-connect, the mecha -
nisms are essentially the same as for the insertion tran­
sient. The key point is that no additional mechanisms
have been noted for device removal that could be
more disruptive than those operating during the inser­
tion process. In the limit, the removal process could
produce as much disruption as the insertion process.

Figure 22 shows two examples of demating. The
demating events shown in Figure 22a have only approxi­
mately a 60-microsecond separation. This separation is
exceptionally small, and it is theoretically possible to have
coincidental contact-to-contact events (within the preci­
sion of the instrumentation). The demating event with
bounce shown in Figure 22b was acquired on exactly the

1 MICROSECOND PER DIVISION

Figure 20
Gradual and Rapid Transients in the Same Mating Process

26 Digital Technical Journal Vol. 9 No. 3 1997

TIMEA:

FIRST MICROMELT
STARTS BETWEEN
ASPERITIES ON
THE SURFACES

TIMES:

FIRST MICROMELT
OPENS BEFORE
CAPACITANCE IS
FULLY CHARGED
(CONTACTS HAVE
NOT MOVED
SIGNIFICANTLY)

TIMEC:

CONTACTS MOVE
TO SECOND PEAK
AND START THE
SECOND MICROMELT
THAT COMPLETES
THE CHARGING

KEY:

MATING SURFACE 1

MICROMELT

MATING SURFACE 2

MATING SURFACE 1

OPEN--

MATING SURFACE 2

MATING SURFACE 1

MICROMELT

MATING SURFACE 2

- DIRECTION OF MOTION

Q, MOLTEN AND PASSING CURRENT

• RESOLIDIFIED AND NOT PASSING CURRENT

Figure 21
Architecture of Combination Gradual/Rapid Mating Event

same pins in exactly the same connector used for the
events in the top of the figure, and there is no evidence of
any activity on pin 2. Pin 2 demated long before any
activity was seen on pin 1. Again, this underscores the
unpredictability of the details of any given event.

Impact of Device Insertion and Removal on Bus Signals
This section contains several examples of the noise
produced on the bus side of the connector. Actual
devices with approximately 25 pF of capacitance were
used to obtain the data. This capacitance value is
increased by the probe capacitance. On the bus side,
there is also some increased capacitance caused by the
probe used to acquire the bus side signal. Figure 23
shows the basic impact of a rapid transient on the bus
side of the connector and the time relationship of the

bus disturbance to the voltage on the device side. The
bus voltage is reduced while it supplies the necessary
charge to the device pin. After the device capacitance is
charged, the bus resumes its voltage level before the
insertion transient (more or less).

In this test, the bus pulse is approximately 3-ns wide
at its midpoint; its peak amplitude is approximately
1.25 V. This pulse is significantly larger in amplitude
than that produced from a device alone.

One of the more interesting features of the signals
in Figure 23 is the lack of commonality or tracking in
the signals after the rapid transient has passed. In the
simplest interpretation, one would expect both sides
of the connector to have nearly the same voltage
(at the least to be within the accuracy of the 0.1-ns
propagation time between the probes). The following
discussion addresses the author's current thinking on
the reasons for this lack of tracking.

Instrumentation effects, such as resonance or differ­
ences in probe properties, were ruled out by using
both probes on the same signal and noting that there
was little difference in the signals reported from each
channel. Later, typically after a few microseconds, the
voltages do become effectively the same.

Because a significant voltage difference is present for
relatively long times, there must be a significant voltage
source between the contacts to support this observed
difference. In the initial stages, the difference between
the pin voltages is approximately 3 V. If the current is
the one calculated in the section Limiting Parameters
for the Rapid Transient, that is, approximately 50 mA,
then the current-limiting impedance must be at least
3/0.05 = 60 ohms. This impedance, coupled with the
parasitic capacitances and inductances, serves to blunt
the instantaneous electrical energy transfers that would
be implied by a very low source impedance. If the
source impedance were very low, then both sides
would have to track shortly after the initial contact.

Part of this limiting impedance is the loaded or local
transmission line impedance of the bus. The characteris­
tic impedance is nominally approximately 100 ohms for
an unloaded bus. Since the bus connector is attached to
the middle of the line, both sides are available to supply
charge and the effective charging impedance would
be approximately 50 ohms. A 30-pF capacitance would
have a charging time constant ofl.5 ns. This time con­
stant fits the observations well during the rapid transient
itself but does not fit the timing parameters of the volt­
age differences observed well after the rapid transient.

Elevated local temperatures are almost certainly pre­
sent during the rapid transient (near the melting point
of the metals!), so it seems plausible that the mystery
voltage source is basically thermal electromotive force
(EMF) between the pins. Allowing a few microseconds
to achieve thermal equilibrium and subsequent loss
of the thermal EMF also seems quite plausible. These
details are inviting further detailed investigation but

Digital Technical Journal Vol. 9 No. 3 1997 27

4

3

0

:: --DEMATING EVENT

·\--DEMATING EVENT

100 MICROSECONDS PER DIVISION

(a) Demating Event with 60-microsecond Separation

4

3
vi -
~ z 2

:·. DEMATING EVENT
.· :--WITH BOUNCE

~ a:
~ 1
(!)

;
0
>
z
a:

0

;

\

100 MICROSECONDS PER DIVISION

(b) Demating Event with Bounce

Figure 22
Demating Events

\ /

;: ~ DEVICE SIDE

5 NANOSECONDS PER DIVISION

Figure 23
Most Severe Noise Pulse Observed

do not affect the practical conclusions as applied to
parallel SCSI.

As added evidence for thermal effects, experiments
with early LVD SCSI devices that use a 1.2-V bus level
instead of the 3.5-V bus level shown in Figure 23
transfer much less energy and have a much shorter
settling time before both sides of the contact track.
These LVD results will be reported separately.

28 Digital Technical Journal Vol. 9 No. 3 1997

The point extracted from these charging-impedance
and settling-time observations is simply that the over­
all energy transfer rate is limited by the microphysics
of the process. This means that Figure 23 almost cer­
tainly illustrates the worst-case disturbances.

It has been noted that the bus pulse is similar to that pro­
duced by a stub on the bus and a signal with a fast rise/ fall
time. In a sense, we really are charging a stub in either case,

and in both cases the loaded or local characteristic imped­
ance of the bus limits the extent of the disturbance.

To more accurately measure the noise pulse pro­
duced when a device is added to the bus, measurements
were performed without a scope probe attached to the
device pin. To do so required triggering the scope from
the noise pulse on the bus side. Consequently, it was
not possible to see the device-side charging dynamics.
Figure 24 shows the measured pulse near the device
connector and at a point 2 meters away.

The pulse measured in Figure 24 has approximately
half the amplitude of the pulse in Figure 23. This is
more reduction in amplitude than one would expect
from the removal of 10 pF from the effective device
capacitance, and this difference, while not completely
explained, is in the favorable direction. The noise pulse
that reached the next device (where it could be
detected as an error) would be even smaller, because of
the dispersion and attenuation in the bus and because
the neighboring device would need to have its 25-pF
capacitance charged also. The signal at the measure­
ment point 2 meters away in Figure 24 indicates
the intensity of the attenuation and dispersion to be
expected in the rapid transient bus pulses. The details

3.5
ui
~
0
2:- 2.5
UJ
(!)
<(
I-
...J
0 3.5 >
Cl) \
::::i
!II \

of the attenuation and dispersion depend somewhat
on the bus media used.

The rapid transient bus pulses are shown on actual
data pulses in Figure 25. The top trace in the figure
shows a rapid transient pulse on a negated part of a
single-ended SCSI signal. There is a scope probe on this
device, but the device capacitance is only approximately
15 pF so the total with the probe is approximately 25 pF.
Note that the noise pulse is approximately 0.8 V and
does not take the signal into the receiver detection
range below 2 V. This negated state is a bit higher than
usually found, so the bus pulse is starting from a higher
point. If the pulse had started from a lower point, for
example about 2.5 V, the pulse amplitude would not
have been as large. Further discussion of the receiver
detection range appears later in this section.

The signals in Figure 25 were pwposely chosen
to have broad falling edges of approximately 15 ns.
Normal SCSI signals are 5 ns or faster. The broad edges
maximize the chance that the bus pulse will produce a
signal slope reversal of the type that can produce mul­
tiple edges. The bottom trace in Figure 25 shows a bus
pulse in the most sensitive part of the falling edge. This
pulse produces almost no slope reversal because by the

---------------\
2 METERS AWAY

2.5
AT CONNECTOR

5 NANOSECONDS PER DIVISION

Figure 24
Bus Pulses with No Scope Probe Attached to the Device

4

Figure 25
Bus Pulses on Actual Signals

.- --~ .. -~--~--~
.""' BUS PULSE ON ',,,"----.._

NEGATED STATE

BUS PULSE ON
·. ----- SIGNAL EDGE -~

20 NANOSECONDS PER DIVISION

Digital Technical Journal Vol. 9 No. 3 1997 29

time it is ready to become positive-going, the data sig­
nal has fallen so much that there is no voltage source
to drive the signal more positive. At the beginning of
the falling edge, the slew rate is increased by the bus
pulse; in the middle, the edge is extended and conse­
quently the overall time required for the falling edge is
almost exactly the same as for the falling edge that has
no bus pulse (see the top trace).

Therefore, the main effect of rapid transient pulses
occurs when they intersect the signal edges (where a
state change is expected anyway), and the effect is
movement of the position of the edge by no more
than 2 ns from the normal position. This movement is
already accounted for in the SCSI standard as pulse
distortion skew, so there is no important effect.

If the mating event happens while the bus signal is
in the asserted state, there is little effect since little
charge is transferred. If the event happens in the rising
edge, there may not be enough voltage difference to
start a rapid transient-again, there is little effect. If a
rapid transient is initiated on a rising edge, the impact
is still a small shift in the position of the edge. In
any arbitrary combination of signal level and type of
transient, the bus disturbance will not be greater than
those shown in Figure 24 and Figure 25.

Differential
For differential SCSI systems, essentially the same
behavior occurs as for the single-ended case except that
the relationship between two contacts instead of just
one must be considered. If insertion transients on the
positive signal differential line are occurring at the same
time as transients on the negative signal line, we must
examine the difference between these transients to
see what impact they have on the differential signals.
Based on the time required between mating events on
neighboring connector pins presented in the section
Connector Insertion Dynamics and in Figure 15, it is
evident that the differential case is almost always two
independent and isolated single-ended cases. This is
because the difference in the time required for different
pins in the same connector to begin the mating process
vastly exceeds the actual transient time on either signal.

In SCSI differential systems, both the positive and
the negative signals are normally positive with respect
to the local grounds. This means that the transients
will be the same polarity on both signals.

In the very rare cases in which some overlap exists
between the transient times on both signals, the rapid
transient disturbances would usually be seen as com­
mon mode events that reduce the effective differential
transient signal. These events are not seen if common
mode noise exists where the signals have opposite
polarity with respect to local grounds during the
transients. In this case, it is theoretically possible to
produce anticommon mode differential transients.

30 Digital Technical Journal Vol. 9 No. 3 1997

However, the anticommon mode case will always have
the positive and negative signal lines within a differen­
tial logical voltage level of ground, and the transients
will therefore be small. Even in the anticommon mode
case, the effect is at most a slight shift in the time when
the differential state change is observed, since the tran­
sient disturbances are so small.

In the pathological differential case, large common
mode levels exist on both the positive and the negative
signals. The insertion transient will be larger because
the bus voltage is larger. This case is even more rare since
it requires both coincidental pin mating and coinci­
dental large common mode.

The other case considered that can have a unique
effect on differential systems is that of extended bounce.
This case extends the effective mating time to the point
when some overlap between the transient activity on the
pins is more likely. Recall that the extended bounce case
was only visible when a leakage mechanism was available
to discharge the incoming device capacitance. In actual
devices, no significant leakage occurs so a bounce event
does not produce disturbances after this first contact.

The differential signal seen by the incoming device
may be seriously affected by extended bounce if there
is bus activity during this bounce. Consider, for exam­
ple, a case in which the positive signal contact opened
because of a bounce event after achieving a full charge.
While it is still open, the negative signal changes state.
Now both the positive and negative signals are at the
same nominal potential, which is an indeterminate dif­
ferential condition. Fortunately, this condition is not a
problem because the only device that sees this condi­
tion is the device being inserted or removed and it is
not in an operational state.

Summary of the Handling of Device Insertion and
Removal Transients
After a complex, yet self-consistent, set of experimental
data and interpretations, the concluding results are that
the worst-case SCSI bus transients resulting from proper
insertion and removal processes should not cause errors
in the SCSI bus as presently specified in the SPI and
Fast-20 (UltraSCSI) standards. The proper processes
include pregrounding prior to insertion, avoiding
excessive device capacitance, and using SCSI drivers and
receivers that meet all of the SCSI requirements. 4

As of this writing, all reports of device insertion/
removal errors have been traced back to failure to use
proper procedures or designs. The most common errors
are lack of pregrounding, devices that do not maintain
the high-impedance input state during power cycling,
and power distribution or mechanical transient effects
unrelated to SCSI proper.

The mechanisms that operate span a time spectrum
from picoseconds in rapid transients to seconds in con­
tact wipe and other macro connector operations.

The worst-case differential transients occur when
one treats the differential system as two independent
single-ended SCSI buses-one for the positive signal
and one for the negative signal.

The rapid transient becomes more and more
detectable as bus speeds increase and the receivers and
timing margins become more sensitive. Schemes to
encourage the gradual transient are the best protec­
tion against the ultimate problems caused by rapid
transients. The best-known method for producing
reliable gradual transients is to avoid a metal-to-metal
contact during the initial contact and until the device
capacitance is charged. At this time, no such connector
system exists for SCSI applications.

Overall Summary

Evolution in four significant hardware technologies
in the recent past has enabled parallel SCSI to break
through the barriers that were preventing it from
delivering excellent value, flexibility, and growth to the
computer data storage industry. Application of more
scientific methods, use of the latest silicon technology,
and developments in the interconnect technology pro­
vided the foundation for these improvements. DIGITAL
provided most of the basic data and led important stan­
dards and industry bodies to accomplish this.

Acknowledgments

Fee Lee, Keith Childs, Chuck Bagg, Pak Seto, and
Jonathan Salles were instrumental in developing the
special test environment and for acquiring much of
the data presented in this paper. The author gratefully
acknowledges the management and technical support
from Pete Karee, Mike Chamberlain, Bob Passmore,
Richie Lary, Ken Chester, Bob Rennick, Laura
Woodburn, and Ellen Lary.

References

1. ANSI)(3.277-1996: Information Technology
X3T9.2/375R SCSI-3 Fast-20, X3Tl0/ 1071D (New
York: American National Standards Institute, 1996).
Available from Global Engineering, 15 Inverness Way
East, Englewood, CO 80112-5704, tel. (800) 854-
7159 or (303) 792-2181, fax (303) 792-2192.

2. Very High Density Cabled Interconnect (VHDCI)
Specification, SFF-8441. Available from the SFF Com­
mittee, 14426 Black Walnut Court, Saratoga, CA
95070, voice fax-back service (408) 741-1600, tel.
(408) 867-6630 ext. 303, fax (408) 867-2115.

3. ANSI X.3. 131-1994: Information Systems-Small
Computer System Interface-2 (SCSI-2), X3T9.2/375R
(New York: American National Standards Institute,
1994). Available from Global Engineering, 15 Inverness
Way East, Englewood, CO 80112-5704, tel. (800) 854-
7159 or (303) 792-2181, fax (303) 792-2192.

4. ANSI)(3.253-1995: Information Technology-SCSI-3
Parallel Interface (SP!), X3Tl0/855D (New York:
American National Standards Institute, 1995). Available
from Global Engineering, 15 Inverness Way East, Engle­
wood, CO 80112-5704, tel. (800) 854-7159 or (303)
792-2181, fax (303) 792-2192.

5. SCSI Enhanced Parallel Interface (BPI), X3Tl0/
1143D (New York: American National Standards Insti­
tute, 1997). Available from Global Engineering, 15 Inver­
ness Way East, Englewood, CO 80112-5704, tel. (800)
854-7159 or (303) 792-2181, fax (303) 792-2192.

6. Information about 1/0 interfaces is available at the TlO
home page at http:/ /www.symbios.com/tlO.

7. Single Connector Attachment-2 (SCA-2) Specifications:
SFF-8015, SFF-8046, SSF-8048, SSF-8066, and SSF-
8451. Available from the SFF Committee, 14426 Black
Walnut Court, Saratoga, CA 95070, voice fax-back ser­
vice (408) 741-1600, tel. (408) 867-6630 ext. 303,
fax (408) 867-2115.

Biography

William E. Ham
Bill Ham joined DIGITAL in 1983 and has been working
in storage technology since 1990 as the manager of the
Storage Bus Technical Office (SBTO). The SBTO group
represents DIGITAL at most of the important standards
and industry bodies that are involved with the transmission
of storage data. Presently, these groups are SCSI, STA,
Fibre Channel, and SFF. The SBTO group also creates
information from actual laboratory testing and was respon­
sible for introducing Fast-20 technology to ANSI in 1993
and hot-plugging technology to SCSI in 1992. Bill has a
Ph.D. in electrical engineering from Southern Methodist
University in Dallas, Texas, and has been active in the elec­
tronics industry in a variety of technologies since 1970. He
has held significant positions in silicon chip, printed circuit
board, multichip module technology, and storage bus tech­
nology. In addition, he is the past technical editor of the
SSA physical standards, past editor of the new SPI-2 SCSI
standard, editor of the entire family of SFF connector
documents, editor of the new Enhanced Parallel Interface
ANSI project for SCSI, and secretary for the Fibre Channel
physical standards group (Tl 1.2).

Digital Technical Journal Vol. 9 No. 3 1997 31

Development of Router
Clusters to Provide Fast
Failover in IP Networks

IP networks do not normally provide fast

failover mechanisms when IP routers fail or

when links between hosts and routers break.

In response to a customer request, a DIGITAL

engineering team developed new protocols

and mechanisms, as well as improvements to

the DECNIS implementation, to provide a fast

failover feature. The project achieved loss-of­

service times below five seconds in response

to any single failure while still allowing traffic

to be shared between routers when there are

no failures.

32 Digital Technical Journal Vol. 9 No. 3 1997

I
Peter L. Higginson
Michael C. Shand

A DIGITAL router engineering team has refined and
extended routing protocols to guarantee a five-second
maximum loss-of-service time during a single failure in
an Internet Protocol (IP) network. We use the term
router cluster to describe our improved implementa­
tion. A router cluster is defined as a group of routers
on the same local area network (LAN), providing
mutual backup. Router clusters have been in service
since mid-1995.

Background

The Digital Equipment Corporation Network Integration
Server (DECNIS) bridge/router is a midrange to
high-end product designed and built by a DIGITAL
Networks Product Business Group in Reading, U .K.1

The DECNIS performs high-speed routing of IP,
DECnet, and OSI (open system interconnection) pro­
tocols and can have the following network interfaces:
Ethernet, FDDI (fiber distributed data interface),
ATM (asynchronous transfer mode), HSSI (High­
Speed Serial Interface), Tl/El (digital transmission
schemes), and lower-speed WAN (wide area network)
interfaces. The DECNIS bridge/router is designed
around a Futurebus backplane, with a number of
semi-autonomous line cards, a hardware based address
lookup engine, and a central control processor respon­
sible for the control protocols and route calculation.
Data packets are normally handled completely by the
line cards and go to the central processor only in
exception cases.

The DECNIS routers run a number of high-profile,
high-availability, wide-area data networks for tele­
phone service providers, stock exchanges, and chemi­
cal companies, as well as forming the backbone of
DIGITAL's internal network.

Typically, the DECNIS routers are deployed in
redundant groups with diverse interconnections, to
provide very high availability. A common requirement
is never to take the network down (i.e., during mainte­
nance periods, connectivity is preserved but redun­
dancy is reduced).

Overview

IP is the most widely used protocol for communication
between hosts. Routers (or gateways) are used to link
hosts that are not directly connected. When IP was
originally designed, duplication of WAN links was com­
mon but duplication of gateways for hosts was rare, and
no mechanisms for avoiding failed routers or broken
links between hosts and routers were developed.

In 1994, we began a project to restrict loss-of­
service times to below five seconds in response to any
single failure; for example, failure of a router or its
electrical supply, failure of a link between routers, or
failure of the connection between the router and the
LAN on which the host resides. In contrast, existing
routing protocols have recovery times in the 30- to
45-second range, and bridging protocols are no bet­
ter. Providing fast failover in IP networks required
enhancements to many areas of the router's design to
cover all the possible failure cases. It also required the
invention of new protocols to support the host-router
interaction under IP. This was achieved without
requiring any changes to the host IP code.

In this paper, we start by discussing our targets and
the behavior of existing routing or bridging protocols
and follow this with a detailed analysis of the different
failure cases. We then show how we have modified the
behavior of the routing control protocols to achieve
the desired failover times on links between routers or
in response to the failure of intermediate routers.
Finally, we describe the new IP Standby Protocol and
the mechanisms we developed to achieve fast recovery
from failures on the LANs local to the end hosts. This
part of the problem is the most challenging because
the hosts are of many types and have IP implementa­
tions that cannot realistically be changed. Thus all
changes have to be made in the routers.

Our secondary aims were to allow the use of router
clusters in any existing network configuration, not to
constrain failover to simple pairs of routers, to be able
to share traffic between available routers, and to con­
tinue to use the Internet Control Message Protocol
(ICMP) redirect mechanism for optimum choice of
router by hosts on a per destination basis. A common
problem of hosts is that they do not time out redirects.
This problem is avoided by the adoption mechanism
within the router cluster. Having met these aims, as
well as fast failover, we can justifiably call the result
router clusters.

The Customer Challenge

A particular customer, a telecommunications service
provider, has an Intelligent Services Network applica­
tion by which voice calls can be transferred to another
operator at a different location. The data network

manages the transferral and passes information about
the call. The application uses User Datagram Protocol
(UDP) packets in IP with retransmission from the
application itself.

Because this application requires a high level of data
network availability, network designers planned a
duplicate network with many paired links and some
mesh connections. Particular problems arise when the
human initiator becomes impatient if there are delays;
however, the more critical requirement was one over
which the network designers had no control. The
source of the calls is another system that makes a single
high-level retransmission after five seconds. If that
retransmission does not receive a response, the whole
system at the site is assumed to have failed. This leads
to new calls being routed to other service sites or sup­
pliers, and manual intervention is required.

To resolve this issue, the customer requested a
networking system that would recover from a single
failure in any link, interface, or router within a five­
second period. The standard test (which both the cus­
tomer and we use) is to start a once-per-second ping,
and to expect to drop no more than four consecutive
ping packets (or their responses) upon any event. The
five-second maximum break also has to apply to any
disruption when the failed component recovers.

To meet the customer challenge, the router group
in Reading developed the router cluster implementa­
tion on the DECNIS. In the next two sections, we dis­
cuss the bridging and routing protocols in use at the
start of our project and relate our analysis of the cus­
tomer's network problems.

Bridging and Routing Default Recovery Times

In a large network, a routing control protocol is essen­
tial in order to dynamically determine the topology of
the network and to detect failing links. Bridging con­
trol protocols may be used similarly in smaller net­
works or may be used in combination with routing.

Bridging and routing control protocols often have
failure recovery times in the order of a minute or more.
A typical recovery consists of a detect time during
which adjacent routers learn about the failure; a distrib­
ution time during which the knowledge is shared, pos­
sibly throughout the whole network; and a route
recalculation time during which a new set of routes is
calculated and passed to the forwarding engine.

Detection times are in the order of tens of seconds;
for example, 30 seconds is a common default. The two
most popular link-state routing control protocols
in large IP networks are Open Shortest Path First
(OSPF)2 and Integrated Intermediate System-to­
Intermediate System (Integrated IS-IS).3 These proto­
cols have distribution "hold downs" (to limit the
impact of route flaps) to prevent the generation of a

Digital Technical Journal Vol. 9 No. 3 1997 33

new control message within some interval (typically 5
or 30 seconds) of a previous one. The distribution of
the new information is rapid (typically less than one
second), depending primarily on link speeds and
network diameter; however, the distribution may be
adversely affected by transmission errors which require
retransmission. The default retransmission times after
packet loss vary between 2 and 10 seconds. The route
recalculation typically takes less than one second.
These values result in total recovery times after failures
(for routing protocols with default settings) in the
45- to 90-second range.

Distance vector routing protocols, such as the
Routing Information Protocol (RIP),4 typically take
even longer to recover, partly because the route com­
putation process is inherently distributed and requires
multiple protocol exchanges to reach convergence,
and partly because their timer settings tend to be fixed
at relatively long settings. Consequently, their use is
not further considered in this paper.

Similarly, bridging protocols, as standard, use a 15-
second timer; one of the worst-case recovery situations
requires three timeouts, making 45 seconds in all.
Another bridging recovery case requires an unsolicited
data packet from a host and this results in an indeter­
minate time, although a timeout will cause flooding
after a period.

In IP protocols, there is no simple way for a host to
detect the failure of its gateway; nor is it simple for a
router to detect the failure to communicate with a
host. In the former case, several minutes may pass
before an Address Resolution Protocol (ARP) entry
times out and an alternative gateway is chosen; for
some implementations, recovery may be impossible
without manual intervention. Failure to communicate
with a host may be the result of failure of the host
itself, which is outside the scope of this project.
Alternatively, it may be due to failure of the LAN, or
the router's LAN interface. In this case, there exists an
alternative route to the LAN through another router,
but the routing protocols will not make use ofit unless
the subnet(s) on the LAN are declared unreachable.
This requires either manual intervention or timely
detection of the LAN failure by the router.

Analysis of the Failure Cases

The first task in meeting the customer's challenge was
to analyze the various failure and recovery modes and
determine which existing management parameters
could be tuned to improve recovery times. After that,
new protocols and mechanisms could be designed to
fill the remaining shortcomings.

A typical network con.figuration is shown in Figure 1.
The target network is similar but has more sites and
many more hosts on each LAN. Many of the site

34 Digital Technical Journal Vol. 9 No. 3 1997

HOST A

ROUTER1 ----------

ROUTER CLOUD

ROUTER 3 ---------- ROUTER 4

HOSTS

KEY:

- - - - - POSSIBLE MANAGEMENT LAN
ALSO PROVIDING REDUNDANT PATH

Figure 1
Typical Configuration for Router Cluster Use

routers are DECNIS 500 routers with one or two
WAN links and two Ethernets. The second Ethernet is
used as a management rail and as a redundant local
path between routers one and two (Rl-R2) and
between routers three and four (R3- R4).

In the original plans for the customer network, the
router cloud consisted of groups of routers at two or
three central sites and pairs of links to the host sites. In
designing our solution, however, we tried to allow any
number ofrouters on each LAN, interconnected by a
general mesh network. For test purposes, both we and
the customer used this set-up with direct Rl-R3 and
R2- R4 Tl links as the network cloud.

We have to consider what happens to packets travel­
ing in each direction during a failure: there is little gain
in delivering the data and losing the acknowledg­
ments. Since the direction of data flow does not give
rise to additional complications in the network cloud,
there are just two failure cases:

l . Failure of a router in the network cloud

2. Failure of a link in the network cloud

We keep these cases distinct because the failure and
recovery mechanisms are slightly different.

We also need to consider a failure local to one of the
LANs on which the hosts are attached. A failure here
has two consequences: (1) The packets originated by
the host must be sent to a different router, and (2) The
response packets from the other host through the net­
work cloud must also be sent to a different router, so

that it can send them to the host. We break down this
type of failure into the following three cases:

3. Packets from the host to a failed or disconnected
router

4. Packets to the host when the router fails

5. Packets to the host when the router interface fails

Note that we are using the term router interface
failure to include cases in which the connector falls
out or some failure occurs in the LAN local to the
router (such that the router can detect it). In practice,
failure of an interface is rare. (Removing the plug is
not particularly common in real networks but is easy
to test.) Figure 2 shows these failure cases; this con­
figuration was also used for some of the testing.

Recovery of a link that previously failed causes no
problems because the routers will not attempt to use it
until after it has been detected as being available. Prior
to that, they have alternate paths available. Recovery
of a failed router can cause problems because the
router may receive traffic before it has acquired suffi­
cient network topology to forward the traffic cor­
rectly. Recovery of a router is discussed more fully in
the section on Interface Delay.

Can Existing Bridging or Routing Protocols Achieve
5-Second Failover in a Network Cloud?
In this section, we discuss the failure of a router and the
failure of a link in the network cloud (cases 1 and 2).

FAILURE 1
CASE5 --

FAILURE j
CASE4 --

FAILURE CASE 3

FAILURE CASES
1. Failure of a router in the network cloud
2. Failure of a link in the network cloud

The customer requested enhanced routing, and the
existing network was a large routed WAN, so enhanc­
ing bridging was never seriously considered. Our expe­
rience has shown that the 15-second bridge timers can
be reduced only in small, tightly controlled networks
and not in large WANs. Consequently, bridging is
unsuitable for fast failover in large networks.

For link-state routing control protocols such as
OSPF and Integrated IS-IS, once a failure has been
detected recovery takes place in two overlapping
phases: a flood phase in which information about the
failure is distributed to all routers, and a route calcula­
tion phase in which each router works out the new
routes. The protocols have been designed so that only
local failures have to be detected and manageable para­
meters control the speed of detection.

Detection offailure is achieved by exchanging Hello
messages on a regular basis with neighboring routers.
Since the connections are usually LAN or Point-to­
Point Protocol (PPP) (i.e., with no link-layer acknowl­
edgments), a number of messages must be missed
before the adjacency to the neighbor is lost. The mes­
sages used to maintain the adjacency are independent
of other traffic (and in a design like the DECNIS may
be the only traffic that the control processor sees).
Typical default values are messages at three-second
intervals and 10 lost for a failure, but it is possible to
reduce these.

HOST A

HOST B

FAILURE
.__..------- CASE 1

FAILURE
CASE2

3. Packets from the host to a failed or disconnected router
4. Packets to the host when the router fails
5. Packets to the host when the router interface fails

Figure 2
Diagram of Failure Cases Targeted for Recovery

Digital Technical Journal Vol. 9 No. 3 1997 35

Decreasing the Routing Timers
The default timer values are chosen to reduce over­
heads, to cover short outages, and to ensure that it is
not possible for long packets to cause the adjacency to
expire accidentally by blocking Hello transmission.
(Note transmission of a 4,500-byte packet on a 64
kilobit-per-second link takes half a second, and queu­
ing would normally require more than a packet time.)
However, with high-quality Tl or higher link speeds
in the target network and priority queuing of Hellos in
the DECNIS, it is acceptable to send the Hellos at one­
second intervals and count three missed as a failure.
(Although we have successfully tested counts of two,
we do not recommend that value for customers on
WAN links because a single link error combined with a
delay due to a long data packet would cause a spurious
failure to be detected.) The settings of one second and
three repeats were within the existing permitted
ranges for the routing protocols.

When these shorter timers are used, it is important
that any LANs in the network should not be over­
loaded to the extent that transmissions are delayed.
The network managers should monitor WAN links
and disable any links that have high error rates. Given
the duplication of routes, it is better to disable and ini­
tiate repairs to a bad link than to continue a poor ser­
vice. Many customers, with less controlled networks
and less aggressive recovery targets, have adopted the
router cluster system but kept to more conservative
timers (such as 1 second and 10 repeats).

Implementation and Testing Issues
In some cases, a failed link may be detected at a lower
level (e.g., modem signals or FDDI station manage­
ment) well before the routing protocol realizes that it
has stopped getting Hellos and declares the adjacency
lost. (This can lead to good results during testing, but
it is essential also to test link-failure modes that are not
detected by lower levels.) In the worst case, however,
both the detection of a failed router or the detection of
a failed link rely on the adjacency loss and so have the
same timings.

Loss of an adjacency causes a router to issue a
revised (set of) link-state messages reflecting its new
view of the local topology. These link-state messages
are flooded throughout the network and cause every
router in the network to recalculate its route tables.
However, because the two or more routers will nor­
mally time out the adjacency at different times, one
message arrives first and causes a premature recalcula­
tion of the tables. Therefore it may require a subse­
quent recalculation of the route tables before a new
two-way path can be utilized. We had to tune the
router implementation to make sure that subsequent
recalculations were done in a speedy manner.

During initial testing of these parameters, we discov­
ered that fail ure of certain routers represented a more

36 Digital Technical Journal Vol. 9 No. 3 1997

serious case. However discussion of this is deferred to
the later section The Designated Router Problem.

Our target five seconds is made up of three seconds
for the failure to be detected, leaving two seconds for
the information about the failure to be flooded to all
routers and for them to recalculate their routes.
Within the segment of the network where the recov­
ery is required, this has been achieved (with some tun­
ing of the software) .

Recovery from Failures on the LANs Local to the
End Hosts

The previous section shows that we can deal with router
failure and link failure in the network cloud (cases 1 and
2). Here we consider cases 3, 4, and 5, those that deal
with failures on the LANs local to the end hosts.

From the point of view of other routers, a failed
router on a LAN (case 4) is identical to a failed router in
the network cloud (case 1): a router has died, and the
other routers need to route around it. Failure case 4
therefore is remedied by the timer adjustments
described in the previous section. Note that these timer
adjustments are an integral part of the LAN solution,
because they allow the returning traffic to be re-routed.
These timer adjustments cannot work properly if the
LAN parts of router clusters are using an inappropriate
routing control protocol such as R1P4, which takes up
to 90 seconds to recover from failures.

Detecting LAN Failure at the Router
A solution to case 5-packets to the host when the
router interface fails-for IP requires that the router
can detect a failure of its interface (for example, that
the plug has been removed). If the LAN is an FDDI,
this is trivial and virtually instantaneous because con­
tinuous signals on the ring indicate that it is working
and the interface directly signals failure. For Ethernet,
we faced a number of problems, partly due to our imple­
mentation and partly due to the nature of Ethernet itsel£
We formed a small team to work on this problem alone.

Because of the variety ofEthemet interfaces that might
be attached, there is no direct indication of failure: only an
indirect one by failure to successfully transmit a packet
within a one-second interval. For maximum speed, the
DECNIS implementation queues a ring of eight buffers
on the transmit interface and does not check for errors
until a ring slot is about to be reused. This means that an
error is only detected some time after it has occurred, con­
suming much of our five-second budget.

The control software in the DECNIS management
processor has no direct knowledge of data traffic
because it passes directly between the line cards.
Therefore it sends test packets at regular intervals to
find out if the interface has failed. By sending large test
packets occupying many buffers, it ensures that the
ring circulates and errors are detected. Initially, we

reduced the timers and increased the frequency of test
packets to be able to detect interface failure within
three seconds. (The test packets have the sender as
destination so that no one receives them and, as usual,
more than one failure to transmit is required before
the interface is declared unusable.)

This initial solution caused several problems when it
was deployed to a wider customer group; we had more
complaints than previously about the bandwidth con­
sumed by the test messages and, more seriously, a
number of instances of previously working networks
being reported as unusable. These problem networks
were either exceptionally busy or had some otherwise
undetected hardware problem. Over time, the net­
works with hardware problems were fixed, and we
modified the timers to avoid false triggering on very
busy networks. Clearly, the three-second target
required more thought.

Several enhancements have since been made. First,
the timers are user configurable so that the network
managers can trade off between aggressive recovery
times, bandwidth used, and false detection. Second,
the test packet generator takes into account other
packets sent by the control processor such that they
are only sent to the size and extent required for the
total traffic to cause the ring to circulate. This is a sig­
nificant improvement because the aggressive routing
timers discussed previously cause Hello packets to be
sent at one-second intervals, which is often sufficient
not to require extra test packets. Third, the line card
provides extra feedback to the control program about
packets received and the transmission of packets not
originated by the control processor. This feedback
gives an indication of successful operation even if some
transmits are failing.

Re-routing Host Traffic When a Router or Router
Connection Fails
Case 3 was by far the most difficult problem to solve.
IP does not provide a standard mechanism to re-route
host traffic when a router fails, and the only method
in common use (snooping RIP messages in the
hosts) is both "deprecated" by the RFCs and has fixed
45-second timers that exceed our recovery target.
Customers have a wide range of IP implementations
on their hosts, and reliance on nonstandard features is
difficult. The particular target application for this work
ran on personal computer systems with a third-party
IP stack, and we obtained a copy for testing. Such IP
stacks sometimes do not have sophisticated recovery
schemes and discussion with various experts led us to
believe that we should not rely on any co-operation
from the hosts.

Among other objectives, we wanted to be inde­
pendent of the routing control protocol in use (if any),
to permit both a mesh style of networking and more

than two routers in a cluster, and to continue to route
traffic by reasonably optimal routes. In addition, we
wished to not confuse network management protocols
about the true identity of the routers involved and,
if possible, to share traffic over the WAN links where
appropriate.

Electing a Primary Router
In our solution, the first requirement is for other
routers on the LAN to detect that a router has failed or
become disconnected, and to have a primary router
elected to organize recovery. This is achieved by all
routers broadcasting packets (called IP Standby
Hellos) to other routers on the LAN every second.
The highest priority (with the highest IP address
breaking ties) router becomes the primary router, and
failure to receive IP Standby Hellos from another
router for n seconds (three is the default) causes it to

be regarded as disconnected. This condition may
cause the selection of a new primary router, which
would then initiate recovery to take traffic on behalf of
the disconnected router.

The IP Standby Hellos are sent as "all routers multi­
casts" and therefore do not add additional load to
hosts. They are UDP datagrarns5 to a port we regis­
tered for this purpose (digital-vrc; see the Internet
Assigned Numbers Authority [IANA] on-line list).
The routers are manually configured with a list of all
routers in the cluster. To make configuration easier
and less error prone, the list on each router includes
itself, and hence an identical set of configuration para­
meters can be used for all the routers in a cluster.
Automatic configuration was rejected because of the
problem of knowing which other routers should exist.

Function of the Primary Router in ARP Mode
Our first attempt (called ARP Mode) uses a fake IP
address (one per subnet for a LAN with multiple sub­
nets), which the current primary router adopts and the
hosts have configured as their default router. The pri­
mary router returns its own media access control
(MAC) address when the host broadcasts an ARP
request (using the standard ARP protocol6

) for the
fake IP address and thus takes the traffic from the host.
After a failure, a newly elected primary router broad­
casts an ARP request containing the information that
the fake IP address is now associated with the new pri­
mary router's MAC address. This causes the host to
update its tables and to forward all traffic to the new
primary router.

The sending of ICMP redirects7 by the routers has to
be disabled in ARP mode. Redirects sent by a router
would cause hosts to send traffic to an IP address other
than the fake IP address controlled by the cluster, and
recovery from failure of that router would then be
impossible. Disabling redirects causes an additional

Digital Technical Journal Vol. 9 No. 3 1997 37

problem. If the primary router's WAN link fails, all the
packets have to be inefficiently forwarded back over the
IAN to other routers. To avoid this problem, we intro­
duced the concept of monitored circuits, whereby the
priority of a router to become the primary depends on
the state of the WAN link. Thus, the primary router
changes when the WAN link fails (or all the links fail if
there are several), and the hosts send the packets to the
new primary (whose WAN link is still intact).

ARP mode has a number of disadvantages. It does
not necessarily use an optimum route when the WAN
links form a mesh rather than the simple pair case,
because redirects have to be disabled. The monitored
circuit concept works only on the first hop from the
router; more distant failures cannot change the IP
Standby priority and may result in inefficient routing.
Most seriously, the rules for hosts acting on information
in ARP requests have only a "suggested implementa­
tion" status in the RFCs, and we found several hosts that
did not change when requested or were very slow in
doing so. (Note that we did consider broadcasting an
ARP response, but there is no allowance in the specifica­
tions for this message to be a broadcast packet, whereas
an ARP request is normally a broadcast packet.)

MAC Mode IP Standby (to Re-route Host Traffic)
To solve these problems, we looked for a mechanism
that did not rely on any host participation. The result
was what we termed MAC mode. Here, each router
uses its own IP address (or addresses for multiple sub­
nets) but answers ARP requests with one of a group of
special MAC addresses, configured for each router as
part of the router cluster configuration. When a router
fails or becomes disconnected, the primary (or the
newly elected primary) router adopts the failed router.
By adopt, we mean it responds to ARP requests for the
failed router's IP address with the failed router's spe­
cial MAC address, and it receives and forwards all
packets sent to the failed router's special MAC address
(in addition to traffic sent to the primary router's own
special MAC address and those of any other failed
routers it has adopted).

The immediate advantages of MAC mode are that
ICMP redirects can continue to be used, and, provid­
ing the redirects are to routers in the cluster, the fast
failover will continue to protect against further fail­
ures. The mechanism is completely transparent to the
host. In a cluster with more than two routers, the pri­
mary router will use redirects to cause traffic (resulting
from failure) to use other routers in the cluster if they
have better routes to specific destinations. Thus multi­
ple routers in a cluster and mesh networks are sup­
ported. This also solves the problem of hosts not
timing out redirects (an omission common to many IP
implementations derived from BSD), because the redi­
rected address has been adopted.

38 Digital Technical Journal Vol. 9 No. 3 1997

In MAC mode, the hosts are configured with the IP
address of any router in the cluster as the default gate­
way. (The concept that it does not matter which router
is chosen is one of the hardest for users to accept.)
Some load sharing can be achieved by setting different
addresses in different hosts.

Since the DECNIS is a bridge router, it has the capa­
bility to receive all packets on Ethernet and many MAC
addresses on FDDI; thus all packets on all the special
MAC addresses are seen by all routers in the cluster,
and its own and those of any adopted routers are for­
warded. The special MAC addresses used are those
associated with the unused DECnet area 0. They are
ideal because they are part of the locally administered
group and have implementation efficiencies in the
DECNIS because the DECnethi-ord (AA-00-04-00) is
already decoded, and they are 16 addresses differing in
one nibble only (i.e., AA-00-04-00-0x-OO, where xis
the hexadecimal index of the router in the cluster).
Note that ARP requests sent by the router must also
contain the special MAC address in the source hard­
ware address field of the ARP packet, otherwise the
hosts' ARP tables may be updated to contain the wrong
MAC address.

MAC mode has minor disadvantages. Initially, it is
easy to spread the load over a number of routers; how­
ever, this can be lost after redirects. In addition, a small
chance of packet duplication exists during recovery
because there may be a short period when both
routers are receiving on the same special MAC address
(which does not happen in ARP mode because the
host changes the MAC address it is using). This is
preferable to a period when no router is receiving on
that address.

Interface Delay
Recently, we added an interface delay option to ame­
liorate a situation more likely to occur in large net­
works. In this situation, a router, rebooting after a
power loss, a reboot, or a crash, reacquires its special
MAC address before it has received all of the routing
updates from neighboring routers and thus drops
packets sent to it (and worse, returns "unreachable" to
the host). Typically, the main IAN initialization would
be delayed for 30 seconds while routing table updates
were received over the WAN interfaces and any other
IAN interfaces. The backup continues to operate dur­
ing this 30 seconds. (Note that with Integrated IS-IS,
we could have delayed IP on the whole router, but we
did not do this because it would not have worked for
OSPF, which requires IP to do the updates.) We use a
fixed configurable time rather than attempting to
detect the end of updating, because determining com­
pletion is difficult if the network is in a state of flux or
the router's WAN links are down.

Redirects and Hosts That Ignore Them
When a router issues an ICMP redirect, the RFCs state
that it must include its own IP address in the redirect
packet. A host is required to ignore a redirect received
from a router whose IP address is not the host's next
hop address for the particular destination address.
Therefore, it is necessary to ensure that the address of
the failed router is correctly included when issuing a
redirect on its behalf. In the DECNIS implementation,
because the destination MAC address of a received
packet is not available to the control processor, the pri­
mary router cannot tell whether a redirect has to be
issued on behalf ofitself or one of the adopted routers.
The primary router therefore issues multiple redi­
rects-one for each adopted router (in addition to its
own). Since redirects are rare, this is not a problem,
but they could be avoided by passing the MAC desti­
nation address of the original packet (or just five bits to
flag a special MAC address and say which it is) to the
control processor.

It is contrary to the basic IP rules for hosts to ignore
redirects.8 Despite the rules, some hosts do ignore
redirects and continue sending traffic which has to be
sent back over the same LAN. These cause problems in
all networks because of the load, and, in the DECNIS
implementation, because every time the line card rec­
ognizes a redirect opportunity, it signals the control
processor to consider sending a redirect. This may
happen at data packet rates and is a severe load on the
control processor, which slows down processing of
routing updates and might then cause our five-second
recovery target to be exceeded.

To reduce the problems caused by hosts ignoring
redirects, we improved the implementation to rate­
limit the generation of redirect opportunity messages
by the line cards. We also recommend in the docu­
mentation that, where it is known that hosts ignore
redirects (or their generation is not desired), the
routers be connected by a lower-cost LAN than the
main service LAN (such as the management LANs
shown in Figure 1). Normally, this would mean link­
ing (just) the routers by a second Ethernet and setting
its routing metric so that it is preferred to the main
LAN for packets that would otherwise traverse back on
the main LAN to the other router. This has two advan­
tages. Such packets do not consume double band­
width and cause congestion on the main LAN, and
they pass only through the fast-path parts of the
router, which are well able to handle full Ethernet
bandwidth.

In MAC mode, it is also possible to define a router
that does not actually exist (but has an IP address and
a special MAC address) and is adopted by another
router, depending on the state of monitored WAN cir­
cuits. Setting this as the default gateway is another way
of coping with hosts that ignore redirects.

Special Considerations for Bridges
We do not recommend putting a bridge or layer 2
switch between members of a router cluster, because
during failover, action would be required from the
bridge in order for the primary router to receive pack­
ets that previously were not present on its side of the
bridge. We cannot rely on this being the case, so we
must have a way of allowing bridges to learn where the
special MAC addresses currently are. More impor­
tantly, if bridges do not know where the special MAC
addresses are, they often use much less efficient (flood­
ing) mechanisms.

For greater traceability (and simpler implementa­
tion), we use the router's real MAC address as the
source address in data packets that it sources or for­
wards. We use the special MAC address as the source
address in the IP Standby Hellos. Since the Hello is
sent out as an IP multicast, it is seen by all bridges or
switches in the local bridged network and causes them
to learn the location of the address (whereas data pack­
ets might not be seen by non-local bridges). Since we
are sending the Hellos every one second anyway, there
is no extra overhead.

When a primary router has adopted routers, it cycles
the source MAC address used for sending its Hello
between its own special MAC address and those of the
adopted routers. We also send out an additional Hello
immediately when we adopt a router to speed up
recognition of the change.

Since the same set of special MAC addresses is used
by all router clusters, we were concerned that a bridge
that was set up to bridge a non-IP protocol (e.g., local
area transport [IAT]) but not to bridge IP, might be
confused to see the same special MAC address on
more than one port. (This has been observed to hap­
pen accidentally, and the resultant meltdown has led
us to avoid any risk, however slight, of this happen­
ing.) Hence we make 16 special MAC addresses avail­
able and recommend to users that they allocate them
uniquely within a bridged domain, or at least use dis­
joint sets on either side of a bridge.

The Designated Router Problem

While testing router failures, we discovered additional
delays during recovery due to the way in which link­
state protocols operated on LANs. In these cases, the
failure of routers not handling the data packets can
also result in interruption of service due to the control
mechanisms used.

For efficiency reasons in link-state routing proto­
cols, when several routers are connected to a LAN,
they elect a designated router and the routing proto­
cols treat the LAN as having a single point-to-point
connection between each real router and a pseudo
router maintained by the designated router (rather

Digital Technical Journal Vol. 9 No. 3 1997 39

than connections between all the routers). The desig­
nated router issues link-state packets on behalf of the
pseudo router, showing it as having connections to

each real router on the local LAN, and each router
issues a link-state packet showing connection to the
pseudo router. This mechanism operates in a broadly
similar way in both Integrated IS-IS and OSPF; the
primary difference being that the OSPF election
exhibits hysteresis, thus minimizing unnecessary des­
ignated router changes.

For routing table calculations, a transit path over the
LAN is taken from a router to the pseudo router and
then to another router on the LAN. Hence any change
in pseudo router status disrupts calculation of the net­
work map.

When a designated router fails, a slew of updates
occurs; each router on the LAN loses the adjacency to
the old designated router and issues a new link-state
packet. Next, the new designated router is elected
(or in the case ofOSPF, the backup designated router
takes over), and each router issues a link-state packet
showing a link to it. In parallel, the new designated
router issues a set of link-state packets showing its
connections. This is a new router on the network as
far as the other routers are concerned; the old desig­
nated router stays, disconnected, in the tables for as
long as 20 minutes to an hour. This happens at level 1
and at level 2 in Integrated IS-IS, resulting in twice
as many updates. The interactions are complex; in
general, they result in the sending of multiple, new
link-state messages.

Apart from the pure distribution and processing
problem of these updates and new link-state packets,
there are deliberate delays added. A minor one is that
updates in Integrated IS-IS are rate-limited on LANs
(to minimize the possibility of message loss). A major
one is that a particular link-state packet cannot be
updated within a holding time from a previous update
(to limit the number of messages actually generated).
The default holding time is 30 seconds in Integrated
IS-IS; it can be reduced to 1 second in the event we
found that the best solution was to allow as many as 10
updates in a 10-second period. The reason for this is
that the first update usually contains information
about the disconnection and it is highly desirable to
get the update with the connection out as fast as possi­
ble. In addition, in the wider network, an update can
overtake and replace a previous one.

With OSPF, the protocol defines a minimum hold­
ing time of five seconds, which limits the recovery time
when the designated router fails. The target cus­
tomer's network was using Integrated IS-IS, and so we
were able to achieve the five-second recovery even
when the designated router failed. (Note that with
two routers, one must be the designated router so it is

40 Digital Technical Journal Vol. 9 No. 3 1997

not a rare case.) We have not, so far, felt that it is
worthwhile to break the rules by allowing a shorter
holding time for OSPF.

Conclusions

We successfully designed and implemented router
clusters for the DECNIS router with shared workload
and interruptions after failures ofless than five seconds
in both LAN and WAN environments. This capability
has been deployed in the product since the middle of
1995. An Internet Engineering Task Force (IETF)
group is currently attempting to produce a standard
protocol to meet this need.9

Acknowledgments

Various members of the router engineering team in
Reading, U .K assisted with ideas for this work. In par­
ticular, we must mention Dave Forster who imple­
mented the high-level IP changes, Chris Szmidt who
implemented the line card forwarding, and John
Rigby who implemented the bit in-between and the
Ethernet cable-out detection.

References

1. D. Brash and S. Bryant, "The DECNIS 500/600 Multi­
protocol Bridge Router and Gateway," Digital Tecbni­
cal]ournal, vol. 5, no. 1 (Winter 1993): 84- 98.

2. J. Moy, "OSPF Version 2," Internet Engineering Task
Force, RFC 1583 (March 1994).

3. R . Callon, "Use of OSI IS-IS for Routing in TCP / IP
and Dual Environments," Internet Engineering Task
Force, RFC 1195 (December 1990).

4. C . Hedrick, "Routing Information Protocol," Inter­
net Engineering Task Force, RFC 1058 (June 1988).

5. J. Postel, "User Datagram Protocol," SRI Network
Information Center, Menlo Park, Calif., RFC 768
(August 1980).

6. D. Plummer, "Ethernet Address Resolution Protocol,"
Internet Engineering Task Force, RFC 826 (November
1982).

7. J. Postel, "Internet Control Message Protocol," Internet
Engineering Task Force, RFC 792 (September 1981).

8 . R . Braden, "Requirements for Internet Hosts-Com­
munication Layers," Network Information Center,
RFC 1122 (October 1989).

9 . R . Hinden, S. Knight, D. Weaver, D. Whipple,
D . Mitzel, P. Hunt, P. Higginson, and M. Shand,
"Virtual Router Redundancy Protocol," Internet
Drafts <draft-ietf-vrrp-spec-03 .txt> (October 1997).

Biographies

Peter L. Higginson
Peter Higginson manages the advanced development
work on router products for DIGITAL's Intemetworking
Products Engineering Group in Reading U.K. (IPEG­
Europe). His responsibilities include improving commu­
nications on customers' large networks. Most recently, he
contributed to the corporate Web gateway strategy and
future router products. Peter was issued one patent on
efficient ATM cell synchronization and has applied for
several other patents related to networks. He has published
many papers, including one on a PDP-9 for DECUS in
1971. Before joining DIGITAL in 1990, Peter was the
software director for UltraNet Ltd. (now part of the Anite
Group), a maker ofX.25 equipment. For 12 years before
that, he was a lecturer in the Department of Computer
Science, University College London. He received an M.Sc.
in computer science from University of London in 1970
and a B.Sc. (honours) in mathematics from University
College London in 1969. Peter connected the first non­
U.S. host to the Arpanet in 1973.

Michael C. Shand
Mike Shand is a consulting software engineer with
DIGITAL's Network Products Business in Reading,
U.K He is currently involved in the design ofIP routing
algorithms and the system-level design of networking
products. Formerly, Mike was a member of the NAC
(Networks and Communications) Architecture Group
where he designed DECnet OSI, Phase V routing archi­
tecture. Before joining DIGITAL in 1985, Mike was the
assistant director (systems) of the Computing Centre at
Kingston University. He earned an M.A. in the natural
sciences from the University of Cambridge in 1971 and a
Ph.D. in surface chemistry from Kingston University in
197 4. He was awarded six patents (and has filed another)
in various aspects of networking.

Digital Technical Journal Vol. 9 No. 3 1997 41

Shared Desktop: A
Collaborative Tool for
Sharing 3-D Applications
among Different
Window Systems

The DIGITAL Workstations Group has designed a

software application that supports the sharing

of three-dimensional graphics and audio across

the network. The Shared Desktop application

enables the collaborative use of any application

over local and long-distance networks, as well

as interoperation among Windows- and UNIX­

based computers. Its simple user interface

employs screen capture and data compression

techniques and a high-level protocol to transmit

packets using TCP/IP over the Internet.

42 Digital Technical Journal Vol. 9 No. 3 1997

I
Lawrence G. Palmer
Ricky S. Palmer

An advanced product development effort undertaken
by graphics engineers in the DIGITAL Workstations
Group led to the creation of a new software application
called Shared Desktop. One project goal was to enable
collaboration among users of three-dimensional (3-D)
graphics workstations that run either the UNIX or the
Windows NT operating system. Another goal was to
allow these users to access the high-performance 3-D
capabilities of their office workstations from their
laptop computers or home-based personal computers
(PCs) that run the Windows 95 system and do not
have 3-D graphics hardware. This goal necessitated
a cross-operating-system application that could effi­
ciently and effectively handle 3-D graphics in real time
and share these graphics with machines such as laptop
computers and PCs.

In this paper, we begin with a discussion of the software
currently available for computer collaboration. We then
discuss the development of the Shared Desktop applica­
tion, focusing on the user interface, protocol splitting,
screen capture and data handling, and dissimilar frame
buffers. We conclude with sections on additional uses and
future directions of the Shared Desktop product.

Current Collaboration Software

Computer collaboration may be defined as the interac­
tion between computers and their human users over a
local or long-distance network. In general, it involves a
transfer of textual, graphical, audible, and visual infor­
mation from one collaborator to another. The parti­
cipants share control information either by means
of computer-generated synchronization events or by
human voice and visual movement. 1

Specifically, computer collaboration involves com­
municating and sharing data among participants who
can be located anywhere in a building, a city, a country,
or the world. Each participant has either a PC, a work­
station, or a laptop computer. Some machines contain
3-D graphics adapters with hardware acceleration.
(Computer-aided design/computer-assisted manu­
facturing [CAD/CAM] applications like Parametric
Technology Corporation's [PTC] Pro/ENGINEER
use hardware accelerators through OpenGL2 or

Direct3D3 programming protocols.) Other computers
do not contain 3-D accelerator boards and provide 3-D
capabilities through software-only routines on two­
dimensional (2-D) hardware. In a typical collaboration,
a person wanting to share a specific 3-D graphical dis­
play of a part or model telephones others to discuss the
design in progress. After the initial contact, the collab­
orators may continue the telephone call or switch to
the audio function of the application. The graphics part
appears on each participant's screen along with associ­
ated keyboard and mouse events. As the collaborators
discuss the work, they may each interact with the dis­
play to highlight, rotate, and change the look or design
of the 3-D part. In this way, even though the partici­
pants are separated by some distance, they may interact
as if they were all sitting around a table working, con­
versing, and designing the 3-D part.

Current software that facilitates computer-based
collaboration runs through a range of capabilities from
the earliest forms of electronic mail to the most recent
offerings of complete collaborative sharing of the
computer. Examples include WinFrame technology
from Citrix Systems, Inc., NetMeeting from Microsoft
Corporation, Netscape Communicator from Netscape
Communications Corporation, and other products
from Sun Microsystems, Hewlett-Packard, and Silicon
Graphics Inc. These packages offer levels of computer
sharing and collaboration from videoconferencing and
file sharing to full application sharing. Each implemen­
tation runs on specific operating systems. Although
they use various underlying communication protocols,
most recent designs work over local area and wide area
networks (LANsjWANs), including the Internet. For
example, the NetMeeting product provides confer­
encing tools like chat, whiteboard, file transfer, audio
and videoconferencing, and non-real-time, selected­
window 2-D application sharing over Tl20 protocols
layered on the Transmission Control Protocol/
Internet Protocol (TCP/IP).4 NetMeeting runs only
on Microsoft platforms (Windows 95 and Windows
NT operating systems). The current products are defi­
cient, however, in that they do not support multiple
operating systems, do not operate in real time, and do
not share 3-D graphics.

User Interlace

In this section, we describe our choice of a simple user
interface for the sharing area of a desktop and our
design of the Shared Desktop Manager for client­
server computing.

Many collaboration tools for sharing computer
information (graphical desktop, keyboard, mouse, and
audio of a given computer) were complete systems and
required too much effort on the part of the users just
to learn how to share information. A focus on learning
collaboration tools often requires users to become

experts in the collaboration software rather than in the
applications that they may share. Since the various 3-D
graphics packages that needed to be shared were com­
plicated in themselves, we decided to implement a
simple user interface in the Shared Desktop applica­
tion that nearly all audiences could easily learn and use.

In the Shared Desktop design, we designated part
of the desktop screen as a sharing area. Graphics
objects such as icons and applications located within
the sharing area can be accessed by all conference
participants. To share a new application, a participant
moves the application into the sharing area. To
remove an application, a participant moves it outside
the sharing area. If the sharing area encompasses the
entire desktop of the initiating participant, all applica­
tions are shared. We used standard pull-down menus
and widgets provided by either the UNIX X Motif
toolkit or the Microsoft Windows libraries. We named
the sharing area the "viewport"; it is viewed on the
desktop as a user-defined area of rectangular size and
location. Any graphical object placed into the view­
port is marked as shareable with client users in a col­
laboration. We designed the viewport so that it is
always on the bottom of a given stack of windows on a
desktop. Thus, when Shared Desktop is minimized, so
is its viewport. The objects that had been within the
viewport are returned to the initiator's desktop and are
no longer shared. With a quick minimization, the
server collaborator can pause any sharing that was in
progress without disconnecting from the client users.

Figure 1 illustrates a UNIX server with a Shared
Desktop viewport connected to several client systems.
The server's viewport contains no shared objects
within its confines, and each client screen shows a
viewport received from the server.

The viewport can be set to represent the entire visi­
ble desktop, or it can be set to equal only the size of a
given application on the screen. Accordingly, a user
who is acting as the server can determine how much of
a given desktop to share among the client collabora­
tors. The concept of a viewport is valuable because the
principal collaborator (at the server) can quickly glance
at the screen and determine what to capture and send
to other participants. (The objects and applications
sent from the server are designated by solid lines in
Figure 1.) The Shared Desktop application requires no
further action to set up an application for sharing.

Each client sends keyboard and mouse events to the
server to control any application present in the view­
port (remote control is shown as dashed lines in
Figure 1). Server and clients synchronize cursor move­
ments so that any conference member can watch
as others make changes to a shared application. This
allows the cursor to become a pointer during a session.
Shared Desktop implements an "anarchy" form of
remote control, with all mice and keyboards active
simultaneously.

Digital Technical Journal Vol. 9 No. 3 1997 43

SERVER
DIGITAL UNIX MACHINE

i------------11-;!-11 ~-----------1
: " ~ : I I

: . :
I I
I I

,-~..:......:'~....... ,-~-· ~~

CLIENT 1
DIGITAL UNIX MACHINE

CLIENT2
WINDOWS 95 MACHINE

CLIENT3
WINDOWS NT MACHINE

KEY:

-- GRAPHICS, AUDIO, AND MOUSE
- - - - AUDIO, KEYBOARD, AND MOUSE

Figure 1
Server Desktop with Viewport and Clients

"When a user initiates a collaboration, the audio is off
by default but remains integral to a session as a conve­
nience (as opposed to using the telephone). Through
a pull-down menu operation, the server enables audio
for all participants in one operation. The usual audio
management tools used to set microphone recording
levels and speaker/ headset play-back levels are avail­
able. As Figure 1 indicates, the UNIX machine collects
audio and distributes it to the three client collabora­
tors. Likewise, the three clients collect audio and send
it back to the server for mixing. In this way, all partici­
pants can hear one another and interact with whatever
objects appear in the viewport on the server's screen.

Figure 2 shows the Shared Desktop Manager from the
initiator's viewport running on the UNIX server. A par­
ticipant may use a Session pull-down menu to control the
viewport and to connect and disconnect other confer­
ence members. The Options menu allows for audio,
remote cursor, and call-back control. The application's
Help pull-down menu provides the usual help informa­
tion similar to a Wmdows help facility or a Web browser's
help. The window lists the status of attached clients.

~ ession .Qptions l:! elp

clientl (99.0.5.10) - Connected
client2 (99.0.10.11) - Connected
client3 (99.0.5.11) - Connected

Figure 2
Shared Desktop Manager

44 Digital Technical Journal Vol. 9 No. 3 1997

Upon connection, participants can hear and interact
with the server. The resultant audio dialogue combined
with the graphics, keyboard, and mouse interactions
facilitate a collaboration environment in which partici­
pants share an application. Since each user can operate
a separate mouse and keyboard, the audio channel acts
as a synchronization mechanism to indicate which col­
laborator controls the shared applications at any given
moment. The participants communicate their actions
verbally, interacting in much the same way as people
who are sitting around a table and working.

Design Features

For our implementation, we concentrated on three
principal areas: protocol splitting, screen capture and
data handling, and dissimilar frame buffers. In this sec­
tion, we discuss our investigation into using a protocol
splitter and our decision to rely on screen capture and
data handling. We also discuss dissimilar frame buffers.

Protocol Splitting
We looked for a way to distribute 3-D graphics among
workstations and PCs that would be independent of
the application, graphics protocol, architecture, operat­
ing system, and windowing system. On UNIX, we
found application sharing provided by distributed win­
dows protocols. For example, the X Protocol5 allows a
user to send an application to a nonlocal display and to
send X applications protocol messages to several
screens simultaneously. A protocol splitter, however,
has disadvantages due to its requirements for band­
width, programming, and latency.

Protocol splitters require distribution of graphics
commands and display lists by means of a network.
Three-dimensional models often contain megabytes of
graphical information that describe specific screen
operations. When displaying a model locally, these
graphics operations move quickly and easily over sys­
tem buses that are capable of handling hundreds of
megabytes per second. However, when these same
graphics objects are copied over computer networks,
the amount of information can overload even the
highest-speed networks. For example, using a 100-
megabyte (MB) Pro/ENGINEER truck assembly, a
current generation 3-D workstation can load, display,
and rotate the truck once in approximately 2 minutes.
The same operation between two identical 3-D work­
stations takes 20 minutes when performed by a distrib­
uted protocol, and the rotation of the truck does not
appear fluid to the user. If the same data or application
is duplicated on every machine, only updates with syn­
chronizing events are distributed, but this requires that
all machines have the same graphics hardware.

The programming software needed for interopera­
tion among dissimilar operating and windowing
systems using protocol splitting is quite involved.
The ability to support Xll desktops, Windows 95
desktops, and Windows NT desktops while using mul­
tiple 3-D protocols like OpenGL and Direct3D would
require that these protocols exist on all platforms.

Latency requirements for 3-D are very stringent.
Thus, any network jitter makes even the best network
link create breakup (visual distortions) when rotating
3-D objects. Network jitter also causes delays in send­
ing window protocol messages; as a delay increases,
the window events may no longer be useful. For exam­
ple, when rotating a 3-D object, the delayed events
must propagate as the network permits although this
may once again congest the network since the events
may no longer be needed. The object has now rotated
to a new view. The ability to drop some protocol mes­
sages in a time-critical way is a requirement for collab­
orating with 3-D objects, and the protocol splitter
approach to sharing has no solution for this problem.

Screen Capture and Data Handling
To overcome these issues, we investigated capturing the
screen display, the final bitmap result of the interaction
of graphics hardware and software that the viewer sees.
Capturing the screen is in itself nothing new; it has been
used for some time to include screen visuals in docu -
ment preparation. Initially, we were skeptical that cap­
turing the screen display could be a useful mechanism
since the amount of data on a screen can be prodigious.
Screen graphics depth and resolution can make the
amount of data in any given graphics object very large.
For example, for a 24-plane frame buffer with a 1,280
by 1,024 resolution, the total amount of data to capture
would be (24x l,280x 1,024)/8 orabout4MB. Using

the computational power of the Alpha microprocessor
for reducing the data, we continued our investigation.
We found that this approach requires the windowing
system to perform screen capture by means of a non­
CPU-intensive routine (direct memory access [DMA]
as opposed to programmed 1/0). Based on our tests,
we concluded that screen capture technology would be
easier to implement than a protocol splitter, would
have better latency for 3-D operations than a protocol
splitter, and would be easily adaptable to the various
windowing systems and 3-D protocols we wished to
have interoperate.

Graphics Compression The screen capture approach
requires a number of steps to efficiently prepare the
data for transmission. First, the contents of a viewport
are captured, and the sample is saved for comparison
with successive samples. Second, the captured viewport
samples are differenced to find screen pixels that have
not been changed and delta values for those that have
been changed. Third, the resultant array of values is
compressed by a fast, run-length encoding (RLE) of
the array of difference samples. A more CPU-intensive
compression may now be applied. The fourth step is to
apply LZ77 compression that reduces the remaining
RLE data to its smallest form. In step four, the original
data has been reduced while retaining its characteristics
so that it can be restored (uncompressed) without loss
on a receiving computer. This final lossless stage of
compression occurs only if it reduces the amount of
data and if the network was busy during a previous
transmission. Lossless compression is important for the
nondestructive transfer of data from the server's screen
to the clients' screens and has application in industry.
As an example, consider a doctor who is sharing an
x-ray with an out-of-town colleague. If the graphics
were compromised by a lossy compressor, the collabo­
rators could not be guaranteed that the transmitted
x-ray was identical to the one sent. With the Shared
Desktop application, the doctor who is sending the
x-ray is guaranteed that the original graphics are
restored on the colleague's display. In some forms of
compression, data is thrown out by the algorithm and
never restored, so that the final screen data may not
accurately reflect the original graphics. Figure 3 shows
the steps in the capture and compression sequence.

On the Alpha architecture, these compression steps
are performed as 64-bit operations, both in the data
manipulation and the compression algorithms. The
Alpha architecture lends itself to a fast and efficient
implementation of the algorithms, so that the capture
of the viewport and the multistage compression of the
data can be accomplished in real time. Approximately
half of the number of instructions is used on a proces­
sor that is twice as fast as a 32-bit architecture. In addi­
tion to its 64-bit routine, the RLE is implemented as a
32-bit routine and as a comparison routine.

Digital Technical Journal Vol. 9 No. 3 1997 45

fr.::::::::::::::::!:i. DIFFERENCE--------,

CAPTURED
VIEWPORTS

CAPTURE RAW
AUDIO SAMPLES

ARRAY 64-BIT
RUN-LENGTH
ENCODING

CONVERT TO
AD PCM

LZ77 COMPRESS

ADD NETWORK
HEADERS

TRANSMIT TO
ALL CLIENTS

ADD NETWORK
HEADERS

TRANSMIT TO
ALL CLIENTS

Figure 3
Graphics and Audio Compression Data Flow Diagram

Audio Compression Similar to the graphics compres­
sion described, the audio compression in Shared
Desktop involves several steps. First, the audio samples
are captured through a microphone and sound card
combination. These samples are compared with the
background noise level (determined prior to beginning
a conference) to see if the samples are useful. Samples
below the background noise level are not transferred.
This implements a silence detection method whereby
only useful samples will advance to the next level
of compression. Second, the next compression uses
G.711 or other similar audio compression standards
and converts adaptive differential pulse code modula­
tion (ADPCM) samples at 64 kilobits per second into
16 kilobits per second (4:1 lossy compression).6 Third,
this data is then ready for transfer to a receiving com­
puter so that it may be decompressed and output to a
speaker or a headset. The audio stream resulting from
these steps generates at most 16 kilobits per second
when someone is speaking, and no output when it is
silent. Figure 3 also shows the audio compression steps.

Data Transmission After the graphics and audio data
are collected and compressed, they are combined and
transmitted across the network by a patented, higher­
level protocol that ensures timely delivery of each
packet.7 All packets are sent using TCP /IP over the
Internet. Although the higher-level protocol does not
guarantee true real-time characteristics, the patented
protocol allows for coherent audio, synchronization
of graphics and cursor events, and near real-time
graphics animation.

As an example, the screen capture shown in Figure 4
displays a 100-MB Pro/ENGINEER assembly being
shared through the Shared Desktop application. The
Shared Desktop Manager system (system where the

46 Digital Technical Journal Vol. 9 No. 3 1997

assembly database resides) is an AlphaStation 500
workstation running the DIGITAL UNIX operating
system with a PowerStorm 4D60 graphics controller.
In this example, an 800- by 600-pixel by 24-bit Shared
Desktop viewport is being captured, compressed, and
transmitted to the Shared Desktop client system at
about five updates per second. The update rate is
determined by the capture viewport size, the extent of
detail changes between captures, the amount of pro­
cessing power needed by the application to make
changes to the model, and the speed of the network.
In this example, when rotating the truck assembly, a
compressed stream of 400 to 500 kilobytes per second
is generated and represents the five updates per second
mentioned. A simple assembly might be able to do a
rotation with Shared Desktop capturing and transmit­
ting 15 updates per second, and a more complicated
model (like the truck assembly shown) would receive
fewer updates per second.

Dissimilar Frame Buffers
To complete the requirements of our implementation,
we needed to share graphics information across dis­
similar hardware, i.e., machines with different graphic
frame buffer depths. The frame buffer depth refers to
the amount of storage the graphics adapter gives to
each displayed pixel on the screen. A 16-bit-deep dis­
play assigns each pixel a 16-bit value to represent the
pixel. This representation is usually the color informa­
tion for the pixel, i.e., what color the user sees for a
given pixel. 8 The frame buffer depths are a necessary
reality since different graphics devices have widely
varying screen depths, ranging from 4 planes (4 bits
per pixel) to 32 planes (32 bits per pixel). Typically,
higher-end graphics devices have higher-depth graph­
ics outputs, especially for 3-D graphics, and the lower-

Figure 4
Screen Capture of the Windows Shared Desktop Client Sharing Pro/ENGINEER with a UNIX Shared Desktop Server

depth displays are usually found on less-capable, 2-D
graphics platforms. Most laptop computers have low
bit depth (8 to 16) displays and no 3-D capabilities.
Commodity PCs also typically have 8- or 16-plane
depths. Graphics devices that support 3-D graphics
provide deeper display types such as 24-bit or 32-bit.
Some devices support a mix of several or all the bit
depths listed in the matrix (below) either concurrently
or for the entire screen at one time.

We defined a matrix of screen depths and proceeded
to fill in the various combinations so that the applica­
tion would work effectively across different platforms
and graphics hardware capabilities. The matrix enables
computers without 3-D capability to display the out­
put from 3-D-capable graphics devices. The matrix of
screen-depth combinations follows.

Output
Bitmap Input Screen or Visual Type Depth
Depth 4 8 12 15 16 24 32

4 x md md d d d d
8 e mx md d d d d

12 n n n n n n n
15 e me me x d d d
16 e me me e x d d

24 e me me e e x d
32 e me me e e e x

The matrix shows input screen or visual type depth
across the top row and delineates output bitmap depth
on the left column. Bitmap depths of 4, 8, 15, 16, 24,
and 32 are used in Windows systems, and depths of 4,
8, 12, 24, and 32 are used in Xll. The x in the matrix
requires no conversion and is captured and displayed
without the need for additional conversion. The e
shows bitmap depths that can be expanded to the out­
put format by using a colormap or by shifting pixels
into the correct format. The d shows that information
must be dithered to match the output. Dithering can
result in a minimal loss of information, but we have
developed a very good and efficient method of doing
this conversion. The m (mix mode) marks those visual
types on Xll that can exist on the screen when the
root depth is 24 or 32; i.e., an 8-bit window can be
present on a 24-bit display. The mix mode requires a
different interpretation of the 24-bit pixels prior to
compression and transmission. Since no 12-bit output
displays exist, n marks inapplicable transformations.
Alternate formats of 24 pixels (3 bytes per pixel and
blue/green/ red [BGR] triples) are supported as well
as 8-bit pseudocolor and 8-bit true color.

Sample Uses

Like other collaboration software, the Shared Desktop
application can be used in remote situations to help

Digital Technical Journal Vol. 9 No. 3 1997 47

people communicate and share data. These uses include
telecommuting, debugging/support, and education.

Telecommuting
One feature we built into Shared Desktop is the ability
to originate a sharing session from a remote location.
Our intent was to allow an individual to work outside
the office environment on a home PC or a laptop com­
puter. In the telecommuting scenario, a workstation
with high-end graphics functions and applications
located in the office would call back the home user's
low-end system and present the user with his work
environment. For example, consider a user of PTC's
Pro/ENGINEER who is working on a 3-D assembly
with a 100-MB database and must make a change to
the part from home. Prior to the Shared Desktop
application, the only options were either to mimic the
work environment at home or drive to the office to
make the change. To mimic a work environment, the
equipment at home must support Pro/ENGINEER
software and might require 3-D hardware. In addi­
tion, the user would have to retrieve a recent version of
the 100-MB database over the telephone lines, which
would take many hours to copy. With the Shared
Desktop application, the user can access the 100-MB
part using the low-end computer over standard tele­
phone lines. The changes to the assembly then occur
on the system and to the large database at the office.

Remote Debugging/Support
Another use of the Shared Desktop application is for
customer support or remote debugging. Consider the
user of a 3-D design application who discovers a bug
in a new version of the software. A complex model
often causes a bug that requires software support to
obtain the database to re-create the problem. Using
Shared Desktop, a user could show a support repre­
sentative the problem on the running application, as
opposed to filing a problem report.

Off-site Training
A remote training scenario provides a final example of
collaboration using computers. The Shared Desktop
application facilitates remote training by connecting
students in a sharing session. Each student's desktop
displays a lesson composed of the course material
installed on the instructor's desktop. Students interact
with the teacher by audio, mouse, and keyboard
actions on objects in the screen viewport. In essence,
the teacher uses the synchronized cursors to highlight
or point to objects on the screen.

Conclusion and Future Directions

The Shared Desktop collaboration software employs
a simple user interface that emphasizes ease of 3-D
application sharing and audio conferencing. Compared

48 Digital Technical Journal Vol. 9 No. 3 1997

to application sharing based on a protocol splitter, the
Shared Desktop application offers easier interoper­
ability and better latency during 3-D operations. With
a protocol splitter approach, it is difficult to decide
which, if any, graphics events to drop when network
jitter or network bandwidth delays occur. Our
approach is synchronized to the last screen capture.
When the network is no longer congested, the current
screen capture can be sent, thus minimizing the per­
ceived effect of the network delay. The only disadvan­
tage to bitmap sharing is its requirement that the
windowing system and display driver implement a
DMA screen capture function and not programmed
1/0. DMA screen capture requests have a minimal
load on the windowing system.

We are planning a number of improvements to the
advanced development version of Shared Desktop.
In our initial work, we made no changes to the win­
dowing systems. Ideally, the product version might
have a mechanism that notifies an application when
and where another application has made changes to
the screen. With the added ability to capture only
those areas of the screen that have changed since the
last notification, the windowing system could perform
the first two steps in the capture process.

Although the compression scheme we implemented
works for most cases, some graphics may not compress
well using the combination ofRLE and LZ77. Instead,
content-specific compression or adaptive compression
techniques might be better applied. This is an area of
study we hope to pursue.

The current graphical user interface (GUI) lacks
some conferencing features. The product version will
be packaged with other applications to provide video,
chat, whiteboard, file transfer, and user locator/
directory services.

Finally, the sharing model we implemented for the
Shared Desktop application is easily ported to other
systems. Thus the application could be available for
widespread use.

References

1. A. Hopper, "Pandora-An Experimental System for Mul­
timedia Applications," Operating Systems Review, vol. 24,
no.2(1990): 19-35.

2. J. Neider, T. Davis, and M. Woo, OpenGL Programming
Guide(Reading, Mass.: Addison-Wesley Publishing Com­
pany, 1993).

3. Visual C++ VEmion 4.0 SDK Programmer's Guide RISC
Edition (Redmond, Wash.: Microsoft Corporation, 1995).

4. Multipoint Still Image and Annotation Protocol, ITU-T
Recommendation T.126 (Draft) (Geneva: International
Telegraph and Telephone Consultative Committee, 1997).

5. R. Scheifler, J. Gettys, R. Newman, A. Mento, and
A. Wojtas, X Window System: C Library and Protocol
Re/erence(Burlington, Mass.: Digital Press, 1990).

6. Pulse Code Modulation (PCM) of Voice Frequencies,
CCITI Recommendation G.711 (Geneva: International
Telecommunications Union, 1972).

7. R. Palmer and L. Palmer, "Video Teleconferencing for
Networked Workstations," United States Patent no.
5,375,068 (1994).

8. P. Heckbert, "Color Image Quantization for Frame Buffer
Display," ComputerGraphics, vol.16,no. 3 (1982).

Biographies

Lawrence G. Palmer
Larry Palmer is a consulting engineer in Workstations
Graphics Development. He joined DIGITAL in 1984
and currently co-leads the Shared Desktop project. He
holds a B.S. in chemistry (summa cum laude) from the
University of Oklahoma and belongs to Phi Beta Kappa.
He is co-inventor for nine patents on enabling software
technology for audio-video teleconferencing.

Ricky S. Palmer
Ricky Palmer is a consulting engineer in Workstations
Graphics Development. He joined DIGITAL in 1984 and
currently co-leads the Shared Desktop project. He holds a
B.S. in physics (magna cum laude), a B.S. in mathematics,
and an M.S. in physics from the University of Oklahoma.
He is co-inventor for nine patents on enabling software
technology for audio-video teleconferencing.

Digital Technical Journal Vol. 9 No. 3 1997 49

Challenges in Designing
an HPF Debugger

High Performance Fortran (HPF) provides
directive-based data-parallel extensions to
Fortran 90. To achieve parallelism, DIGITAL's HPF
compiler transforms a user's program to run as
several intercommunicating processes. The ulti­
mate goal of an HPF debugger is to present the
user with a single source-level view of the pro­
gram at the control flow and data levels. Since
pieces of the program are running in several dif­
ferent processes, the task is to reconstruct the
single control and data views. This paper pre­
sents several of the challenges involved and
how an experimental debugging technology,
code-named Aardvark, successfully addresses
many of them.

50 Digital Technical Journal Vol. 9 No. 3 1997

I
David C. P. LaFrance-Linden

As we learn better ways to express our thoughts in the
form of computer programs and to take better advan­
tage of hardware resources, we incorporate these ideas
and paradigms into the programming languages we
use. Fortran 901

.2 provides mechanisms to operate
directly on arrays, e.g., A= 2 * A to double each element
of A independent of rank, rather than requiring the
programmer to operate on individual elements within
nested DO loops. Many of these mechanisms are natu­
rally data parallel. High Performance Fortran (HPF)3

•
4

extends Fortran 90 with data distribution directives to
facilitate computations done in parallel. Debuggers, in
turn, need to be enhanced to keep pace with new fea­
tures of the languages. The fundamental user require­
ment, however, remains the same: Present the control
fl.ow of the program and its data in terms of the original
source, independent of what the compiler has done or
what is happening in the run-time support. Since HPF
compilers automatically distribute data and computa­
tion, thereby widening the gap between actual execu -
tion and original source, meeting this requirement is
both more important and more difficult.

This paper describes several of the challenges HPF
creates for a debugger and how an experimental debug­
ging technology, internally code-named Aardvark, suc­
cessfully addresses many of them using techniques that
have applicability beyond HPF. For example, program­
ming paradigms common to explicit message-passing
systems such as the Message Passing Interface (MPI)5

-
7

can benefit from Aardvark's methods.
The H PF compiler and run time used is DIGITAL's

HPF compiler,8 which produces an executable that
uses the run-time support of DIGITAL's Parallel
Software Environment.9 DIGITAL's HPF compiler
transforms a program to run as several intercommuni­
cating processes. The fundamental requirement, then,
is to give the appearance of a single control fl.ow and a
single data space, even though there are several indi­
vidual control flows and the data has been distributed.
In the paper, I introduce the concept oflogical entities
and show how they address many of the control fl.ow
challenges. A discussion of a rich and flexible data
model that easily handles distributed data follows. I
then point out difficulties imposed on user interfaces,
especially when the program is not in a completely

consistent state, and indicate how they can be over­
come. Sections on related work and the applicability of
logical entities to other areas conclude the paper.

Logical Entities

From the programmer's perspective, an HPF program
is a single process/thread with a single control flow
represented by a single call stack consisting of single
stack frames. A debugger should strive to present the
program in terms of these single entities. A key
enabling concept in the Aardvark debugger is the defi­
nition oflogical entities in addition to traditional phys­
ical entities. Generally, a logical entity collects several
physical entities into a single entity. Many parts of
Aardvark are unaware of whether or not an entity is
logical or physical, and a debugger's user interface uses
logical entities to present program state.

A physical entity is something that exists some­
where outside the debugger. A physical process exists
within the operating system and has memory that can
be read and written. A physical thread has registers
and (through registers and process memory) a call
stack. A physical stack frame has a program counter, a
caller stack frame, and a callee stack frame. Each of
these has a representation within the debugger, but
the actual entity exists outside the debugger.

A logical entity is an abstraction that exists within the
debugger. Logical entities generally group together
several related physical entities and synthesize a single
behavior from them. In C++ terms, a process is an
abstract base class; physical and logical processes are
derived classes. A logical process contains as data mem­
bers a set of other (probably physical) processes. The
methods of a logical process, e.g., to set a breakpoint,
bring about the desired operations using logical algo­
rithms rather than physical algorithms. The logical
algorithms often work by invoking the same operation
on the physical entities and constructing a logical entity
from the physical pieces. This implies that some opera­
tions on physical entities can be done in isolation from
their logical containers. Aardvark makes a stronger
statement: Physical entities are the building blocks for
logical entities and are first-class objects in their own
right. This allows physical entities to be used for tradi­
tional debugging without any additional structure. 10

A positive consequence of this object-oriented design
is that a user interface can often be unaware of the physi­
cal or logical nature of the entities it is managing. For
example, it can set a breakpoint in a process or navigate a
thread's stack by calling virtual methods declared on the
base classes.

Some interesting design questions arise: What is a
process? What is a thread? What is a stack frame? What
operations are expected to work on all kinds of processes
but actually only work on physical processes? Experience
to date is inconclusive. Aardvark currently defines the

base classes and methods for logical entities to include
many things that are probably specific to physical enti­
ties. This design was done largely for convenience.

Sometimes a logical entity is little more than a con­
tainer of physical entities. A logical stack frame for
threads that are in unrelated functions simply collects
the unrelated physical stack frames. Nevertheless, logi­
cal stack frames provide a consistent mechanism for
collecting physical stack frames, and variants of logical
stack frames can discriminate how coordinated the
physical threads are. The concept of logical entities
does not apply to all cases, though. Variables have val­
ues, and there does not seem to be anything logical or
physical about values. Yet, if a replicated variable's val­
ues on different processors are different, there is no
single value and some mechanism is needed. Rather
than define logical values, Aardvark provides a differ­
ing values mechanism, which is discussed in a later sec­
tion of the same name.

Controlling an HPF Process

Users want to be able to start and stop HPF programs,
set breakpoints, and single step. From a user interface
and the higher levels of Aardvark, these tasks are sim­
ple to accomplish-ask the process or thread, which
happens to be logical, to perform the operation.
Within the logical process or thread, however, the
complexity varies, depending on the operation.

Starting and Stopping
Starting and stopping a logical thread is straightfor­
ward: Start or stop each component physical thread.
Some race conditions require care in coding, though.
For example, starting a logical thread theoretically starts
all the corresponding physical threads simultaneously.
In practice, Aardvark serializes the physical threads. In
Figure 1, when all the physical threads stop, the logical
thread is declared to be stopped. Aardvark then starts
the logical thread at time "+" and proceeds to start each
physical thread. Suppose the first physical thread (thread
0) stops immediately, at time "*." It might appear that
the logical thread is now stopped because each physical
thread is stopped. This scenario does not take into
account that the other physical threads have not yet
been started. Timestamping execution state transitions,
i.e., ordering the events as observed by Aardvark, works
well; a logical thread becomes stopped only when all its
physical threads have stopped after the time that the
logical thread was started. An added complexity is that
some reasons for stopping a physical thread should stop
the other physical threads and the logical thread. In this
case, pending starts should be cancelled.

Breakpoints
Setting a breakpoint in a logical process sets a break­
point in each physical process and collects the physical

Digital Technical Journal Vol. 9 No. 3 1997 51

EXECUTION STATES:

LOGICAL RUNNING \ I \
PHYSICAL RUNNING , , , , n 1 11 \\\

STOPPED -1-3-2-0-L-L-0-0-1-2-3--213-L-

KEY:

+ LOGICAL THREAD L STARTS.
* PHYSICAL THREAD O STOPPED.

Figure 1
Determining When a Logical Thread Stops

breakpoint representations into a logical breakpoint.
For HPF, any action or conditional expression is
associated with the logical breakpoint, not with the
physical breakpoints. Consider the expression
ARR A Y C 3, 4 > • LT . 5 . Even if the element is stored in
only one process, the entire HPF process needs to stop
before the expression is evaluated; otherwise, there is
the potential for incorrect data to be read or for
processes to continue running when they should not.
This requires each physical process to reach its physical
breakpoint before the expression can be evaluated.
Once evaluated, the process remains stopped or con­
tinues, depending on the result. For HPF, a break­
point in a logical process implies a global barrier of the
physical processes.

Recognizing and processing a thread reaching a
logical breakpoint is somewhat involved. Aardvark's
general mechanism for breakpoint determination is to
ask the thread's operating system model if the initial
stop reason could be a breakpoint. If this is the case,
the operating system model provides a comparison key
for further processing.

For physical DIGITAL UNIX threads, a SIG TRAP

signal could be a breakpoint, with the comparison key
being the program counter address of the potential
breakpoint instruction. This comparison key is then
used to search the breakpoints installed in the physical
process to determine which (if any) breakpoint was
reached. If a breakpoint was reached, the stop reason is
updated to be "stopped at breakpoint." All this physi­
cal processing happens before the logical algorithms
have a chance to notice that the physical thread has
stopped. Therefore, by the time Aardvark determines
that a logical thread has stopped, any physical threads
that are stopped at a breakpoint have had their stop
reasons updated.

For a logical thread, the initial (logical) stop reason
could be a breakpoint if each of the physical threads is
stopped at a breakpoint, as shown in Figure 2. The
comparison key in this case is the logical stop reason
itself The breakpoints of the component stop reasons
are then compared to the component breakpoints of
the installed logical breakpoints to determine if a logi­
cal breakpoint was reached. If there is a match, the
logical thread's stop reason is updated.

52 Digital Technical Journal Vol. 9 No. 3 1997

+ *
TIME

Aardvark achieves the flexibility of vastly different
types of comparison keys (machine addresses and logi­
cal stop reasons) by having the comparison key type be
the most basic Aardvark base class, which is the equiv­
alent of Java's Object class, and by using run-time
typing as necessary.

Single Stepping
Single stepping a logical thread is accomplished by
single stepping the physical threads. It is not sufficient
to single step the first thread, wait for it to stop, and
then proceed with the other threads. If the program
statement requires communication, then the entire
HPF program needs to be running to bring about the
communication. This implies that single stepping is a
two-part process- initiate and wait-and that the ini­
tiation mechanism must be part of the exposed inter­
face of threads.

As background, running a thread in Aardvark
involves continuing the thread with a run reason. The

INITIAL LOGICAL STOP REASON

STOPPED AT COLLECTION
PO: STOPPED AT
P1 : STOPPED AT
P2: STOPPED AT -

PROCESSED STOP REASON

I STOPPED AT I

LOGICAL
PROCESS'
LOGICAL • BREAKPOINTS • •

Figure 2
Logical Breakpoint Determination

PHYSICAL PROCESSES
AND THEIR BREAKPOINTS

-~a
--~a

B

run reason is empowered to take the actions (e.g., set­
ting or enabling temporary breakpoints) necessary to
carry out its task. In this paper, the word empowered
means that the reason has a method that will be called
to do reason-specific actions to accomplish the rea­
son's semantics. This relieves user interfaces and other
clients from figuring out how to accomplish tasks. As a
result, Aardvark defines a "get single-stepping run rea­
son" method for threads. Clients use the resulting run
reason to continue the thread, thereby initiating the
single-step operation.

Therefore, single stepping a logical thread in
Aardvark involves calling the (logical) thread's "get
single-stepping run reason" method, continuing the
thread with the result, and waiting for the thread to
stop. The "get single-stepping run reason" method for
a logical thread in turn calls the "get single-stepping
run reason" method of the component (physical)
threads and collects the (physical) results into a logical
single-stepping run reason. When invoked, the logical
reason continues each physical thread with its corre­
sponding physical reason.

Single stepping dramatically demonstrates the
autonomy of the physical entities. When continuing
a (logical) thread with a (logical) single-stepping run
reason, the physical threads can start, stop, and be
continued asynchronously to each other and without
any intervention from a user interface, the logical enti­
ties, or other clients. This is especially true if the thread
was stopped at a breakpoint. In this case, continuing
a physical thread involves replacing the original
instruction, machine single stepping, putting back the
breakpoint instruction, and then continuing with the
original run reason. Empowering run reasons (and
stop reasons) to effect the necessary state transitions
enables physical entities to be autonomous, thus
relieving the logical algorithms from enormous poten­
tial complexity.

Coordinating Physical Entities
The previous discussion describes some logical algo­
rithms. The section "Starting and Stopping" describes
using timestamps to determine when a logical thread
becomes stopped (see Figure 1), and the section
"Breakpoints" describes a logical thread possibly
reaching a breakpoint (see Figure 2). The physical
entities need to be coordinated so that the logical
algorithms can be run. In Aardvark, this is done with a
process change handler. A process change handler is a
set of callbacks that a client registers with a process and
its threads, allowing the client to be notified of state
changes. For example, if a user interface is notified that
a thread has stopped and that the reason is a UNIX
signal, the user interface can look up the signal in a
table to determine if it should continue the thread
(possibly discarding the actual signal) or if it should
keep the thread stopped.

In the context of HPF, a user interface registers its
process change handler with the logical HPF process.
During construction of the logical process, Aardvark
registers a physical-to-logical process change handler
with the physical processes. It is this physical-to-logical
handler that coordinates the physical entities. When the
first physical thread stops, as at time"*" in Figure 1, the
handler is notified but notices that the timestamps do
not indicate that the logical thread should be considered
to have stopped. When the last physical thread stops,
the handler then synthesizes a "stopped at collection"
logical stop reason, as in Figure 2, and informs the
(logical) thread that it has stopped.

Aardvark defines some callbacks in process change
handlers that are for HPF and other logical paradigms.
These callbacks allow a user interface to implement
policies when a thread or process goes into an interme­
diate state. For example, at time "*" in Figure 1 a
physical thread has stopped but the logical thread is
not yet stopped. Whenever a physical thread stops, the
handler's "component thread stopped" callback is
invoked. A possible user interface policy is11

• If the component thread stopped for a nasty rea­
son, such as an arithmetic error, try to stop all the
other component threads immediately in order to
minimize divergence among the physical entities.

• If this is the first component thread that stopped for
a nice reason, such as reaching a breakpoint, start a
timer to wait for the other component threads to
stop. If the timer goes off before all the other com­
ponent threads have stopped, try to stop them
because it looks like they are not going to stop on
their own.

• If this is the last component thread, cancel any timers.

The user interface can provide the means for the user
to define the timer interval, as well as other attributes
of policies. These policies and their control mecha­
nisms are not the responsibility of the debug engine.

Examining an HPF Call Stack

When an HPF program stops, the user wants to see a
call stack that appears to be a single thread of control.
Sometimes this is not possible, but even in those cases, a
debugger can offer a fair amount of assistance. The HPF
language provides some mechanisms that also need to
be considered. The EXTRI NSIC (HPF_LOCAL) proce­
dure type allows procedures written in Fortran 90 to
operate on the local portion of distributed data. This
type is useful for computational kernels that cannot be
expressed in a data-parallel fashion and do not require
communication. The EXT RI NS I c (Hp F _s ER I AL)

procedure type allows data to be mapped to a single
process that runs the procedure. This type is useful for
calling inherently serial code, including user interfaces,

Digital Technical Journal Vol. 9 No. 3 1997 53

which may not be written in Fortran. DIGITAL's HPF
compiler also supports twinning, which allows serial
code to call parallel HPF code. All these mechanisms
affect the call stack or how a user navigates the call
stack. They require underlying support from the
debugger as well as user interface support.

Logical Stack Frames
Aardvark's logical entity model applies to stack frames:
logical stack frames collect several physical stack frames
and present a synthesized view of the (logical) call
stack. Currently, Aardvark defines four types oflogical
stack frames to represent different scenarios that can
be encountered:

1. Scalar, in which only one physical thread is semanti­
cally active

2. Synchronized, in which all the threads are at the
same place in the same function

3. Unsynchronized, in which all the threads are in the
same function but at different places

4. Multi, in which no discernible relationship exists
between the corresponding physical threads

Aardvark's task is to discover the proper alignment
of the physical frames of the physical threads, deter­
mine which variant oflogical frame to use in each case,
and link them together into a call stack. Ideally, all log­
ical frames are synchronized, which means that the
program is in a well-defined state. This is true most of
the time with HPF; the Single Program Multiple Data
(SPMD) nature ofHPF causes all threads to make the
same procedure calls from the same place, and break­
points are barriers causing the threads to stop at the
same place.

Aardvark's alignment process starts at the outer­
most stack frames of the physical threads (the ones
near the Fortran PROG RAM unit) and then progres­
sively examines the callees (toward where the program
stopped). Starting from the innermost frames is an
error-prone approach. If the innermost frames are in
different functions, Aardvark might construct a multi­
frame when the frames are actually misaligned because
the physical stacks have different depths. As discussed
in the section on twinning, depth is not a reliable
alignment mechanism either. Starting at the outer­
most frames follows the temporal order of calls and
also correctly handles recursive procedures. The dis­
advantage of starting at the outermost frames is that
each physical thread's entire stack must be determined
before the logical stack can be constructed. Usually
the programmer only wants the innermost few frames,
so time delays in the construction process can reduce
the ease of use of the debugger.12

Much of the time, the physical stack frames are at
the same place because the SPMD nature of HPF
causes the physical threads to have the same control

54 Digital Technical Journal Vol. 9 No. 3 1997

flow. When a procedure is called, each thread executes
the call and executes it from the same place. A logical
breakpoint is reached when the physical threads are
stopped at the same place at the corresponding physi­
cal breakpoints. These cases lead to synchronized
frames. The most common cause of an unsynchronized
frame is interrupting the program during a computa­
tion. Even in this case, the divergence is usually not very
large. One reason for a multifrarne is the interruption of
the program while it is communicating data between
processes. In this case, the code paths can easily diverge,
depending on which threads are sending, which are
receiving, and how much data needs to be moved.
Scalar frames are created because of the semantic flow of
the program: the main program unit is written in either
a serial language or an HPF procedure called an
EXTR I NS I c (HP F _s ERIAL) procedure type.

The result of the alignment algorithm is a set of
frames collected into a call stack. The normal naviga­
tion operations (e.g., up and down) apply. Variable
lookup and expression evaluation work as expected,
also. Variable lookup works best for synchronized
frames and, for HPF, works for unsynchronized frames
as well. For multiframes, variable lookup generally fai ls
because a variable name v AR may resolve to different
program variables in the corresponding physical
frames or may not resolve to anything at all in some
frames. This failure is not because of a lack of informa­
tion from the compiler but rather because multiframes
are generally not a context in which a string VAR has a
well-defined semantic.

Experience to date suggests that multiframes are of
interest largely to the people developing the run-time
support for data motion. Nevertheless, the point of
transition from synchronized to unsynchronized to
multi tells the user where control flows diverged, and
this information can be very valuable.

Narrowing Focus
Using the previously mentioned techniques sometimes
results in a cluttered view of the state of the entire pro­
gram and difficulty in finding relevant information.
Aardvark provides two ways to help. The first aid is a
Booleanfocusmask that selects a subset of the processes
and then re-applies the logical algorithms. For properly
chosen subsets, this can turn a stack trace with many mul­
tiframes into a stack trace with synchronized frames.
A narrowed focus can also look behind the scenes of the
twinning mechanism described in the next paragraph.
The second aid is to view a single physical process in
isolation, effectively turning off the parallel debugging
algorithms. This technique is useful for debugging
EXTRINSIC(HP F_LOCAL)andEXTRINSIC(HP F_SERIAL)
procedures. The ability to retrieve the physical processes
from a logical process is the major item that enables view­
ing a process in isolation; as mentioned before, physical
entities are first-class objects.

Twinning
DIGITAL's HPF provides a feature called twinning

in which a scalar procedure can call a parallel HPF
procedure. This allows, for example, the main pro­
gram consisting of a user interface and associated
graphics to be written in C and have Fortran/HPF
do the numerical computations. The feature is called
twinning because each Fortran procedure is com­
piled twice. The scalar twin is called from scalar code
on a designated process. Its duties include instruct­
ing the other processes to call the scalar twin, distrib­
uting its scalar arguments according to the HPF
directives, calling the HPF twin from all processes,
distributing the parallel data back onto the desig­
nated process after the HPF twin returns, and finally
returning to its caller. The HPF twin is called on all
processes with distributed data and executes the
user-supplied body of the procedure.

At the run-time level, the program's entry point is
normally called on a designated process (process 0),
and the other processes enter a dispatch loop waiting
for instructions. Conceptually, such a program starts
in scalar mode and at some point transitions into paral­
lel mode. An HPF debugger should represent this
transition. Aardvark accomplishes this by having
knowledge of the HPF twinning mechanism. When it
notices physical threads entering the dispatch loop,
Aardvark creates a scalar logical frame corresponding
to the physical frame on process 0. It then processes
procedure calls on process O only, creating more scalar
frames, until it notices that the program transitions
from scalar to parallel. This transition happens when
all processes call the same (scalar twin) procedure:
process O does so as a result of normal procedure calls;
processes other than O do so from their dispatch loops.
At this point, a logical frame is constructed that will
likely be synchronized, and the frame processing
described previously applies. The result is the one
desired: a scalar program transitions to a parallel one.

DIGITAL's HPF goes a step further: it allows
Ex T R I N s I c (Hp F _ s E R I AL) procedures to call HPF
code by means of the twinning mechanism. When an
Ex TR IN s I c (Hp F _s ER I AL) procedure is called,
processes other than O call the dispatch loop. When
the scalar code on process O calls the scalar twin, the
other processes are in the necessary dispatch loop.
Aardvark tracks these calls in the same way as in the
previous paragraph, noticing that processes other than
O have called the dispatch loop and eventually call a
scalar twin.

User Interface Implications

User interfaces and other clients must be keenly aware
of the concept oflogical frames and the different types
of logical frames. Depending on the type of frame,
some operations, such as obtaining the function name

or the line number, may not be valid. Nevertheless, a
user interface can provide useful information about
the state of the program. The program used fo r the
following discussion has a serial user interface written
in C and uses twinning to call a parallel HPF procedure
named HP F _FI L L_IN_DA TA (see Figure 3). The
HPF procedure uses a function named MAND EL_ v AL

as a non-data-parallel computational kernel. The pro­
gram was run on five processes. (Twinning is a DIGITAL
extension. Most HPF programs are written entirely in
HPF. This example, which uses twinning, was chosen
to demonstrate the broader problem.)

Figure 4 shows the program interrupted during
computation. Line 2 of the figure contains a single
function name, MAN DE L_ v AL. Line 3 contains the
function's source file name but lists five line numbers,
implying that this is an unsynchronized frame. In fact,
the user interface discovered that Aardvark created an
unsynchronized logical frame. Instead of trying to get
a single line number, the user interface retrieved the
set of line numbers and presented them. In lines 4
through 10, the user interface also presented the range
of source lines encompassing the lines of all the com­
ponent processes. This user interface's up command
(line 21) navigates to the calling frame. In this exam­
ple, the frame is synchronized, causing the user inter­
face to present the function's source file and single line
number (line 26), followed by the single source file
line (line 27).

Figure 5 shows a summary of the program's call stack
when it was interrupted during computation. The sum­
mary is a mix of unsynchronized, synchronized, and
scalar frames. Frame #0 (line 2) is unsynchronized, and
the various line numbers are presented. Its caller, frame
#1 (line 3), is synchronized with a single line number.
All this is consistent with the previous discussion. Frame
1 is the HPF twin of the scalar twin in frame #2. The
scalar twin of frame #2 is expected to be called by scalar
code, confirmed by frames #3 and #4. Frame #5 is part
of the twinning mechanism; process O is at line 499,
while the other processors are all at line 506.

Narrowing the focus to exclude process O shows a
different call stack summary (lines 9 through 16 of
Figure 5). The new frame #0 (line 11) continues to be
unsynchronized, but all the other frames are synchro­
nized. The twinning dispatch loop (line 14) replaces
the scalar frames of the global focus (lines 5 and 6).
This replacement causes the new call stack, corre­
sponding more closely to the physical threads, to have
fewer frames than the global call stack.

Interrupting the program while idle within the user
interface shows more about twinning and also shows a
multiframe (see Figure 6). Most of the frames are
scalar except for the twinning mechanism (frame #7,
line 9) and the initial run-time frame (frame #8, line
10). Narrowing the focus to exclude process O shows
the twinning mechanism while waiting. The twinning

Digital Technical Journal Vol. 9 No. 3 1997 55

56

subroutine hpf_fill_in_data(target, w, h, ccr, cci, cstep, nmin, nmax)
integer, intent(in) .. w, h
byte, intent(out) :: target(w,h)
real*8, intent(in) :: ccr, cci, cstep
integer, intent(in) :: nmin, nmax

!hpf$ distribute target(*, cyclic)

integer :: ex, cy
ex w/2
cy = h/2

forall(ix = 1:w, iy = 1:h) &
target(ix,iy) = mandel_val(CMPLX(ccr + ((ix-cx)*cstep), &

cci + ((iy-cx)*cstep), &
KIND=KIND(D.DDO)), &

nmin, nmax)

contains

pure byte function mandel_val(x, nmin, nmax)
complex(KIND=KIND(O.O DO)), intent(in) x
integer, intent(in) :: nmin, nmax

integer : : n

real(kind=KIND(O.ODO)) .. xorgr, xorgi, xr, xi, xr2, xi2, rad2
logical .. keepgoing

n = -1
xorgr = REAL(x)
xorgi = AIMAG(x)
xr xorgr
xi = xorgi

do
n = n + 1
xr2 xr*xr
xi2 xi*xi
xi = 2*(xr*xi) + xorgi
keepgoing = n < nmax
rad2 = xr2 + xi2
xr = xr2 - xi2 + xorgr
if (keepgoing .AND. (rad2 <= 4.0)) cycle
exit

end do

if (n >= nmax> then
mandel_val nmax-nmin

else
mandel_val MOD(n, nmax-nmin)

end if

end function mandel_val

end subroutine hpf_fill_in_data

Figure 3
HP F _ F I LL_ I N_D AT A Procedure (Source Code for Figures 4 and 5)

mechanism at frames #5 and #6 (lines 23 and 24) is
similar to the mechanism at frames #3 and #4 (lines 14
and 15) of Figure 5. In Figure 6, they do not call a
scalar twin but rather call the messaging library to
receive instructions from process 0. The messaging
library, however, is often not synchronized among the
peers, and frame #2 (line 15) shows a multiframe. This
user interface shows a multiframe as a collection of
one-line summaries of the physical frames (lines 16
through 20).

Digital Technical Journal Vol. 9 No. 3 1997

Examining HPF Data

Examining data generally involves determining where
the data is stored, fetching the data, and then present­
ing it. HPF presents difficulties in all three areas.
Determining where data is stored requires rich and
flexible data-location representations and associated
operations. Fetching small amounts of data can be
done naively, one element at a time, but for large
amounts of data, e.g., data used for visualization, faster

1 Thread is interrupted.
2 #0: MANDEL_VAL(X = <<differing COMPLEX(KIND=8) values>>, NMIN 255, NMAX 510)
3 at mb.hpf.f90:45,44,45,40,39
4 39 xr2 = xr*xr
5 40 xi2 = xi*xi
6 41 xi = 2*(xr*xi) + xorgi
7 42 keepgoi ng = n < nmax
8 43 rad2 = xr2 + xi2
9 44 xr = xr2 - xi2 + xorgr

10 45 if (keepgoing .AND. (rad2 <= 4.0» cycle
11
12 debugger> print x
13 $1 = #<DIFFERING-VALUES
14 #0: (-0.66200000000000003,-0. 114)
15 #1: (-0. 59599999999999997 ,-0 .11 3 >
16 #2: (-0.65300000000000002,-0.112)
17 #3: (-0.93799999999999994,-0.10600000000000001)
18 #4: (-0.56600000000000006,-0.11)
19 >
20
21 debugger> up
22 #1: hpfShpf_fill_in_data_(TARGET = <<non-atomic= INTEGER(KIND=1), DIMENSION(1:400, 1:400)>>,
23 W = 400, H = 400,
24 CCR= -0.76000000000000001, CCI= -0.02, CSTEP = 0.001,
25 NMIN = 255, NMAX = 510)
26 at mb.hpf.f90:14
27 14 forall(ix = 1:w, iy = 1:h) &
28
29 debugger> info address target
30 #<locative_to_hpf_section 5 peers of type INTEGER(KIND=1), DIMENSION(1:400,1:400) >
31 type INTEGER(KIND=1), DIMENSION(1:400,1:400)
32 phys_count 5
33 addresses
34 O: Ox11fff71f0
35 1: Ox11fff7000
36 2: Ox 11 ff f 7000
37 3: Ox11fff7000
38 4: Ox11 ff f7000

a rank 2
trank 2

39
40
41
42
43
44

diminfos dlower dupper plower
0 1 400 1

1 400 1

45 debugger> info address target(100,100)
46 #<locative_in_peer in peer 4 ... >
47 type INTEGER(KIND=1)
48 peernum 4

pupper dist -k
400 col lap

80 cyclic

49 locative #<locative_to_memory at dmem address Ox11 fff8e13 of type INTEGERCKIND=1) >

Figure4
Program Interrupted during Computation

methods are needed. Displaying data can usually use
the techniques inherited from the underlying Fortran
90 support, but some mechanism and corresponding
user interface handling is needed when replicated data
has different values.

Data-Location Representations
Representing where data is stored is relatively easy
to do in languages such as C and Fortran 77: the data
is in a register or in a contiguous block of memory.
Fortran 90 introduced assumed-shape and deferred­
shape arrays,13 where successive array elements are not
necessarily adjacent in memory. HPF allows the array

to be distributed so that successive array elements are
not necessarily stored in a single process or address
space. These lead to data that can be stored discon­
tiguously in memory as well as in different memories.

Fortran 90 also introduced array sections, vector­
valued subscripts, and field-of-array operations,t•
which further complicate the notion of where data is
stored. Although evaluating an expression involving
an array can be accomplished by reading the entire
array and performing the operations in the debugger,
this approach is inefficient, especially for a result that is
sparse compared to the entire array. A standard tech­
nique is to perform address arithmetic and fetch only

Digital Technical Journal Vol. 9 No. 3 1997 57

58

1 de bugger> where
2 > #O(unsync) MANDEL_VAL at mb.hpf.f90:45,44,45,40,39
3 #1Csynchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
4 #2Csynchr) hpf_fill_in_data_ at mb.hpf.f90:1
5 #3Cscalar) mb_fill_in_data at mb.hpf.c:45
6 #4Cscalar) main at mb.c:421
7 #5Cunsync) _hpf_twinning_main_usurper at [... J/libhpf/hpf_twin.c:499,506,506,506,506
8 #6Csynchr) start at [... J/alpha/crtO.s:361
9 debugger> focus 1-4

10 debugger> where
11 > #O(unsync) MA NDEL_VAL at mb.hpf.f90:<none>,44,45,40,39
12 #1Csynchr) hpf$hpf_fill_in_data_ at mb.hpf.f90:14
13 #2Csynchr) hpf_fill_in_data_ at mb.hpf.f90:1
14 #3Csynchr) _hpf_non_peer_O_to_dispatch_loop at [•.. J/libhpf/hpf_twin.c:575
15 #4Csynchr) _hpf_twinning_main_usurper at [..• J/libhpf/hpf_twin.c:506
16 #5Csynchr) ~start at [... J/alpha/crtO.s:361

Figure 5
Control Flow of a Twinned Program Interrupted during Computation

1 de bug ger> where
2 > #OCscalar) __poll at <<unknown name>>:41
3 #1Cscalar) <<disembodied>> at <<unknown>>:459
4 #2Cscalar) _XRead at <<unknown name>>: 1110
5 #3Cscalar) _XReadEvents at <<unknown name>>:950
6 #4Cscalar) XNextEvent at <<unknown name>>:37
7 #5Cscalar) HandleXlnput at mb.c:58
8 #6Cscalar) main at mb.c:452
9 #7Cunsync) _hpf_twinning_main_usurper at [... J/libhpf/hpf_twin.c:499,506,506,506,506

10 #8Csynchr) start at [... J/alpha/crtO.s:361
11 debugger> focus 1-4
12 debugger> where
13 > #O(unsync) ~select at <<unknown name>>:<none>,41,<none>,41,41
14 #1Cunsync) TCP_MsgRead at [..• J/libhpf/msgtcp.c:<none>,1057,<none>,1057,1057
15 #2Cmulti)
16 <none>
17 _TCP_RecvAvail at [•.. J/libhpf/msgtcp.c:1400
18 swtch_pri at <<unknown name>>:118
19 _TCP_RecvAvail at [... J/libhpf/msgtcp.c:1400
20 _TCP_RecvAvail at [... J/libhpf/msgtcp.c:1400
21 #3Cunsync) _hpf_Recv at [... J/libhpf/msgmsg.c:<none>,434 , 488,434,434
22 #4Csynchr) _hpf_RecvDir at [... J/libhpf/msgmsg.c:509
23 #5Csynchr) _hpf_non_peer_O_to_dispatc h_loop at [...]/Libhpf/hpf_twin.c:563
24 #6Csynchr) _hpf_twinning_main_usurper at [..• J/libhpf/hpf_twin.c:506
25 #7Csynchr) ~start at [... J/alpha/crtO.s:361

Figure 6
Control Flow of a Twinned Program Interrupted While Idle in Scalar Mode

the actual data result at the end of the operation. The
usual notion of an address, however, is that it describes
the start of a contiguous block of memory.

Richer data-location representations are necessary.
These representations can include registers and con­
tiguous memory, but they also need to include discon­
tiguous memory and data distributed among multiple
processes. The representations should also include the
results of expressions involving array sections, vector­
valued subscripts, and field-of-array operations,
thereby extending address arithmetic to data-location
arithmetic. Aardvark defines a locative base class that
has a virtual method to fetch the data. A variety of

Digital Technical Journal Vol. 9 No. 3 1997

derived classes implement the data-location represen­
tations needed.

DIGITAL's Fortran 90 implements assumed-shape
and deferred-shape arrays using descriptors that con­
tain run-time information about the memory address
of the first element, the bounds, and per-dimension
inter-element spacing.15 Aardvark models these types
of arrays almost directly with a derivation of the loca -
rive class that holds the same information as the
descriptor. Performing expression operations is rela­
tively easy. An array section expression adjusts the
bounds and the inter-element spacing. A field-of-array
operation offsets the address to point to the compo-

nent field and changes the element type to that of the
field. A vector-valued subscript expression requires
additional support; the representation for each dimen­
sion can be a vector of memory offsets instead of
bounds and inter-element spacing.

All arrays in HPF are qualified, explicitly or implic­
itly, with A LI G N, TE MP LA TE, and DI s TRIBUTE direc­
tives.16 DIGITAL's HPF uses a superset of the Fortran
90 descriptors to encode this information. Aardvark
models HPF arrays with another derivation of the
locative class that holds information similar to the HPF
descriptors. The most pronounced difference is that
Aardvark uses a single locative to encode the descrip­
tors from the set of processes. Aardvark knows that the
local memory addresses are potentially different on
each process and maintains them as a vector, but cur­
rently assumes that processor-independent informa­
tion is the same on all processes and only encodes that
information once.

Referring again to Figure 4, line 22 shows that the
argument TARGET is an array, and line 29 is a request
for information about the location ofits data. (See also
Figure 3 for the full source, including the declaration
and distribution of TARGET .) Figure 4, line 32 shows
that there are five processes, and lines 34 through 38
show the base address within each process. The
addresses for processes 1 through 4 happen to be the
same, but the address for process O is different. Lines
39 and 40 show that the rank of the array (a r a n k) and
the rank of the template (t ran k) are both 2. Lines 42
and 43 show the dimension information for the array.
The declared bounds are 1 : 4 O O, 1 : 4 O O, but the local
physical bounds are 1: 400, 1: 80 and the distribu­
tion is < *, c Y c LI c >. This is all accurate; distributing
the second dimension on five processes causes the
local physical size for that dimension (80) to be one­
fifth the declared bound (400).

Performing expression operations on HPF-based
locatives is more involved than for Fortran 90.
Processing a scalar subscript not only offsets the base
memory address but also restricts the set of processors
determined by the dimension's distribution information.
Processing a subscript triplet, e.g., from : to : st r i de,
involves adjusting the declared bounds and the align­
ment; it does not adjust the template or the physical lay­
out. As in Fortran 90, processing a vector-valued
subscript in HPF requires the locative to represent the
effect of the vector. For HPF, the representation is pairs
of memory offsets and processor set restrictions.
Processing a field-of-array operation adjusts the element
type and offsets each memory address.

When selecting a single array element by providing
scalar subscripts, another type oflocative is useful. This
locative describes on which process the data is stored
and a locative relative to that selected process. For
example, line 45 of Figure 4 requests the location
information of a single array element. The result

shows that it is on process 4 at the memory address
indicated by the contained locative.

Fetching HPF Data

As just mentioned, locatives provide a method to fetch
the data described by the locative. For a locative that
describes a single distributed array element (e.g.,
Figure 4, lines 45 through 49), the method extracts
the appropriate physical thread from the logical thread
and uses the contained locative to fetch the data rela­
tive to the extracted physical thread. For a locative that
describes an HPF array, Aardvark currently iterates
over the valid subscript space, determines the physical
process number and memory offset for each element,
and fetches the element from the selected physical
process. For small numbers of elements, on the order
of a few dozen, this technique has acceptable per­
formance. For large numbers of elements, e.g., for
visualization or reduction operations, the cumulative
processing and communication delay to retrieve each
individual element is unacceptable. This performance
issue also exists for locatives that describe discontigu­
ous Fortran 90 arrays. The threshold is higher because
there is no computation to determine the process for
an element, and the process is usually local rather than
remote, eliminating communication delays.

The primary bottleneck is issuing many small data
retrieval requests to each (remote) process. This
involves many communication delays and many delays
related to retrieving each element. What is needed is to
issue a smaller number oflarger requests. The smaller
number reduces the number of communication trans­
actions and associated delays. Larger requests allow
analysis of a request to make more efficient use of
the operating system's mechanisms to access process
memory. For example, a sufficiently dense request can
read the encompassing memory in a single call to the
operating system and then extract the desired ele­
ments once the data is within the debugger.

Although not implemented, the best solution, in
my opinion, is to provide a "read (multidimensional)
memory section" method on a process in addition to
the common "read (contiguous) memory" method. If
the process is remote, as it usually is with HPF, the
method would be forwarded to a remote debug server
controlling the remote process. The implementation
of the method that interacts with the operating system
would know the trade-offs to determine how to ana­
lyze the request for maximum efficiency.

Converting a locative describing a Fortran 90 array
section to a "read memory section" method should be
easy: they represent nearly the same thing. For a loca­
tive that describes a distributed HPF array, Aardvark
would need to build (physical) memory section
descriptions for each physical process. This can be
done by iterating over the physical processes and
building the memory section for each process. It is

Digital Technical Journal Vol. 9 No. 3 1997 59

also possible to build the memory sections for all the
processes during a single pass through the locative, but
the performance gains may not be large enough to
warrant the added complexity.

Differing Values
Using HPF to distribute an array often partitions its
elements among the processes. Scalars, however, are
generally replicated and may be expected to have the
same value in each process. There are cases, though,
where seemingly replicated scalars may not have the
same value. Do loops that do not require data to be
communicated between processes do not have syn­
chronization points and can become out of phase,
resulting in their indexes and other privatized variables
having different values. Functions called within a
F o RALL construct often run independently of each
other, causing the arguments and local variables in
one process to be different from those in another.
A debugger should be aware that values might differ
and adjust the presentation of such values accordingly.

Aardvark's approach is to define a new kind of value
object called differing values to represent a value from
a semantically single source that does not have the
same value from all its actual sources. A user interface
can detect this kind of value and display it in different
ways, for example, based on context and/ or the size of
the data.

Referring again to Figure 4, the program was inter­
rupted while each process was executing the function
MANDE L_VA L called within a FORALL. Line 2 shows
that the argument X was determined to have differing
values. This user interface does not show all the values
at this point; a large number of values could distract
the user from the current objective of discovering
where the process stopped. Instead, it shows an indica­
tion that the values are different along with the type of
the variable. Notice that the other two arguments,
NM I N and NM Ax , are presented as integers; they have
the same value in all processes. Line 12 requests to see
the value of x. Line 13 again shows that the values are
different, and Jines 14 through 18 show the process
number and the value from the process.

To build a differing values object, Aardvark reads
the values for a replicated scalar from each process. If
all the values are bit-wise equal, they are considered to
be the same and a standard (single) value object is
returned. Otherwise, a differing values object is con­
structed from the several values. For numeric data, this
approach seems reasonable. If the value of a scalar inte­
ger variable I NT v AR is 4 on all the processes, then 4 is
a reasonable (single) value for INT VAR . If the value of
I NT v AR is 4 on some processors and 5 on others, no
single value is reasonable. For nonnumeric data and
pointers, there is the possibility of false positives and
false negatives. The ideal for user-defined types is to
compare the fields recursively. Pointers that are seman-

60 Digital Technical Journal Vol. 9 No . 3 1997

tically the same can point to targets located at different
memory addresses for unrelated reasons, leading to
different memory address values and therefore a false
positive. To correctly dereference the pointers, though,
Aardvark needs the different memory address values.
In short, it is reasonable to test numeric data and cre­
ate a single value object or a differing values object,
and it appears reasonable to do the same for nonnu­
meric data, despite the possibility of a technically false
kind of value object.

Currently, differing values do not participate in arith­
metic. That is, the expression I NT v AR • LT • 5 is valid if
INT v AR is a single value but causes an error to be sig­
naled if I NT v AR is a differing value. Many cases could
be made to work, but some cases defy resolution. In the
I NT VA R • LT • 5 case, if all values of I NT VAR are less than
5 or all are greater than or equal to 5, then it is reason­
able to collapse the result into a single value, . TR u E • or
• FA Ls E • , respectively. If some values are Jess than 5
and some are not, it also seems reasonable to create a
differing values object that holds the differing results.
What if I NT VAR . LT. 5 is used as the condition of a
breakpoint and some values of I NT v AR are less than 5
and some are not? The breakpoint should probably
cause the process (and all the physical processes) to
remain stopped. It is unclear whether arithmetic on
differing values would be useful to users or if it would
lead to more confusion than it would clear up.

Unmet Challenges

HPF presents a variety of challenges that Aardvark
does not yet address. Some of these challenges are not
in common practice, giving them low priority. Some
are recent with HPF Version 2.0 and are being used
with increasing frequency. Some of the challenges, for
example, a debugger-initiated call of an HPF proce­
dure, are tedious to address correctly.

Mapped Scalars
It is possible to distribute a scalar so that the scalar is not
fully replicated.17 The compiler would need to emit suffi­
cient debugging information, which would probably be
a virtual array descriptor with an array rank of O and a
nonzero template rank. Aardvark would probably model
it using its existing locative for HPF arrays, also with an
array rank ofO and appropriate template information.

Replicated Arrays
Unless otherwise specified, DIGITAL's HPF compiler
replicates arrays. It is possible to replicate arrays explic­
itly and to align arrays (and scalars) so that they are
partially replicated. Currently, Aardvark does not
detect a replicated array, despite the symbol table or
run-time descriptor indicating that it is replicated. As a
result, Aardvark determines a single process from
which to fetch each array element. For fully replicated

arrays, Aardvark should read the array from each
process and process them with the differing values
algorithms. Correctly processing arrays that are par­
tially replicated is not as easy as processing unrepli­
cated or fully replicated arrays. If the odd columns are
on processes O and 1, while the even columns are on
processes 2 and 3, no single process contains the entire
array. The differing values object would need to be
extended to index the values by a processor set rather
than a single process.

Update of Distributed and Replicated Objects
Aardvark currently supports limited modification of
data. It supports updating a scalar object (scalar vari­
able or single array element) with a scalar value, even if
the object is distributed or replicated. Even this can be
incorrect at times. Assigning a scalar value to a repli­
cated object sets each copy, which is undesirable if the
object has differing values. Assigning a value that is a
differing values object is not supported. More impor­
tantly (and more subtly), Aardvark is not aware of
shadow or halo copies of data that are stored in multi­
ple processes, so updating a distributed object updates
only the primary location.

Distributed Array Pointers
HPF Version 2.0 allows array pointers in user-defined
types to be distributed and allows fully replicated
arrays of such types. For example, in

type utype
integer, pointer :: compptr(:)
!hpf$ distribute compptr(block)

end type

type (utype) :: scalar, array(20)

the component field comp pt r is a distributed array
pointer. Aardvark does not currently process the array
descriptor(s) for s ca L a r r. comp pt r at the right place
and as a result does not recognize the expression as
an array. As mentioned earlier, Aardvark reads a repli­
cated array element from a single process. To process
array C 1 > r. com p pt r, all the descriptors are needed,
e.g., for the base memory addresses in the physical
processes. The use of this relatively new construct is
growing rapidly, elevating the importance of being
supported by debuggers.

Ensuring a Consistent View
A program can have its physical threads stop at the
same place but be in different iterations of a loop.
Aardvark mistakenly presents this state as syn­
chronized and presents data as if it were consistent.
This is what is happening in Figures 4 and 5;
h p f $ h p f _ f i L L _ i n_ d a t a (frame # 1) is in different
iterations of the F o RA L l. With compiler assistance, it
is possible to annotate each thread's location with iter­
ation counts in addition to traditional line numbers. 18

The resulting set of locations can be compared to a
location in the conceptually serial program to deter­
mine which threads have already reached (and perhaps
passed) the serial location and which have not yet
reached it. A debugger could automatically, or under
user control, advance each thread to a consistent serial
location. For now, Aardvark's differing values mecha­
nism is the clue to the user that program state might
not be consistent.

Calling an HPF Procedure
Having a debugger initiate a call to a Fortran 90 pro­
cedure is difficult in the general case. One difficulty is
that copy-in/copy-out (making a temporary copy of
array arguments and copying the temporary back to its
origin after the call returns) may be necessary. HPF
adds two more difficulties. First, the data may need to
be redistributed, which amounts to a distributed copy­
in/ copy-out and entails a lot of tedious (but hopefully
straightforward) bookkeeping. Second, an HPF
thread's state is much more complex than a collection
of physical thread states. When a debugger initiates a
uniprocessor procedure call, it generally saves the reg­
isters, sets up the registers and stack according to the
calling convention, lets the process run until the call
returns, extracts the result, and finally restores the
registers. The registers are generally the state that is
preserved across a debugger-initiated procedure call.
For HPF, and in general for other paradigms that use
message passing, it may be necessary to preserve the
run-time state of the messaging subsystem in each
process. This preservation probably amounts to mak­
ing uniprocessor calls to messaging-supplied save/
restore entry points, allowing the messaging sub­
system to define what its state is and how it should
be saved and restored. Although logical entities would
be used to coordinate the physical details, this is a lot
of work and has not been prototyped.

Related Work

DIGITAL's representative to the first meeting of
the HPF User Group reported a general lament
among users about the lack of debugger support. 19•

20

Browsing the World Wide Web reveals little on the
topic of HPF debugging, although some efforts have
provided various degrees of sophistication.

Multiple Serial Debuggers
A simplistic approach to debugging support is to start
a traditional serial debugger on each component pro­
cess, perhaps providing a separate window for each
and providing some command broadcast capability.
Although this approach provides basic debugging, it
does not address any of the interesting challenges of
HPF debugging.

Digital Technical Journal Vol. 9 No. 3 1997 61

Prism
The Prism debugger (versions dating from 1992), for­
merly from Thinking Machines Corporation, provides
debugging support for CM Fortran.21.2

2 The run-time
model of CM Fortran is essentially single instruction,
multiple data (SIMD), which considerably simplifies
managing the program. The program gets compiled
into an executable that broadcasts macroinstructions
to the parallel machine, even on the CM-5 synchro­
nized multiple instruction, multiple data (MIMD)
machine. Prism primarily debugs the single program
doing the broadcasting. Therefore, operations such as
starting, stopping, and setting breakpoints can use the
traditional uniprocessor debugging techniques. Prism
is aware of distributed data. When visualizing a distrib­
uted array, however, it presents each process's local
portion and conceptually augments the rank of the
array to include a process axis. For example, a two­
dimensional 400 x 400 array distributed < *, c Y c LI c >
on five processes is presented as a 400 x 80 x 5 array.
For explicit message sending programs, Prism controls
the target processes and provides a "where graph,"
which has some of the visual cues that Aardvark's logi­
cal frames provide.

Tota/View
Recent (1997) versions of the TotalView debugger,
from Dolphin Interconnect Solutions, Inc., provide
some support for the HPF compiler from The Portland
Group, Inc.23·24 TotalView provides "process groups,"
which are treated more like sets for set-wide operations
than like a synthesis into a single logical entity. As a
result, no unified view of the call stacks exists. TotalView
can "dive" into a distributed HPF array and present it as
a single array in terms of the original source. Distributed
data is not currently integrated into the expression
system, however, so a conditional breakpoint such as
A C 3, 4 > • LT • 5 does not work. TotalView is being
actively developed; future versions will likely provide
more complete support for HPF.

Applicability to Other Areas

Many of the techniques that Aardvark incorporates can
apply to other areas, including the single program,
multiple data (SPMD) paradigm, debugging optimized
code, and interpreted languages.

Single Program, Multiple Data
Logical entities can be used to manage and examine
programs that use the SPMD paradigm. This is true for
process-level SPMD, which is commonly used with
explicit message sending such as MPI,5·6 and for
thread-level SPMD such as directed decomposi­
tion.25-27 Aardvark's twinning algorithms can be used
in both cases. Process-level SPMD is similar to

62 Digital Technical Journal Vol. 9 No. 3 1997

DIGITAL's HPF; the equivalent of twinning requires a
stylistic way of coding and declaring a dispatch loop.
Thread-level SPMD usually has a pool of threads wait­
ing in a dispatch loop, requiring Aardvark to know
some mechanics of the run-time support.

The differing values mechanism can apply to data in
SPMD paradigms. DIGITAL's recent introduction of
Thread Local Storage (TLS),28 modeled on the Thread
Local Storage facility of Microsoft Visual C++29 with
similarities to TA s Kc o MM o N of Cray Fortran, 30 provides
another source of the same variable having potentially
differing values in different thread contexts.

Debugging Optimized Code
Aardvark's flexible locative subsystem and its aware­
ness of nonsingular values (i.e., differing values) can be
the basis for "split-lifetime variables." In optimized
code, a variable can have several simultaneous lifetimes
(e.g., the result ofloop unrolling) or no active lifetime
(e.g., between a usage and the next assignment). New
derivations of the locative class can describe the multi­
ple homes or the nonexistent home of a variable.
Fetching by means of such a locative creates new kinds
of values that hold all the values or an indication that
there is no value. User interfaces become aware of
these new kinds of values in ways similar to their
awareness of differing values.

Aardvark's method of asking a thread for a single­
stepping run reason and empowering the reason to
accomplish its mission can be the basis for single step­
ping optimized code. Optimized code generally inter­
leaves instructions from different source lines, rendering
the standard "execute instructions until the source line
number changes" method of single stepping useless.
If instead the compiler emits information about the
semantic events of a source line, Aardvark can construct
a single-stepping run reason based on semantic events
rather than line numbers. Single stepping an optimized
HPF program immediately reaps the benefits since logi­
cal stepping is built on physical stepping.

Interpreted Languages
Logical entities can be used to support debugging
interpreted languages such as Java31 and Tcl.32 In this
case, the physical process is the operating system's
process (the Java Virtual Machine or the Tel inter­
preter), and the logical process is the user-level view
of the program. A logical stack frame encodes a pro­
cedure call of the source language. This is accom­
plished by examining virtual stack information in
physical memory and/ or by examining physical
stack frames, depending on how the interpreter is
implemented. Variable lookup within the context of
a logical frame would use the interpreter-managed
symbol tables rather than the symbol tables of the
physical process.

Summary

HPF presents a variety of challenges to a debugger,
including controlling the program, examining its call
stack, and examining its data, and user interface impli­
cations in each area. The concept oflogical entities can
be used to manage much of the control complexity,
and a rich data-location model can manage HPF arrays
and expressions involving arrays. Many of these ideas
can apply to other debugging situations. On the sur­
face, debugging HPF can appear to be a daunting task.
Aardvark breaks down the task into pieces and attacks
them using powerful extensions to familiar ideas.

Acknowledgments

I am grateful to Ed Benson and Jonathan Harris for
their unwavering support of my work on Aardvark.
I also thank Jonathan's HPF compiler team and Ed's
Parallel Software Environment run-time team for
providing the compiler and run-time products that
allowed me to test my ideas.

References and Notes

1. Programming Language Fortran 90, ANSI X3.198-
1992 (New York, N .Y.: American National Standards
Institute, 1992).

2. J. Adams, W. Brainerd, J. Martin, B. Smith, and
J. Wagener, Fortran 90 Handbook (New York, N .Y. :
McGraw-Hill, 1992).

3. High Performance Fortran Forum, High Performance
Fortran Language Specification, V=ion 2.0. This
specification is available by anonymous ftp from soft­
lib.rice.edu in the directory pub/HPF. Version 2.0 is
the file hpf-v20.ps.gz.

4. C. Koelbel, D. Loveman, R . Schreiber, G. Steele, Jr.,
and M. Zosel, The High Performance Fortran Hand­
book (Cambridge, Mass.: MIT Press, 1994).

5. MPI Forum, "MPI-2: Extensions to the Message-Passing
Interface," available at http:/ /www.mpi-forum.org/
docs/ mpi-20-html/mpi2-report.html or via the Forum's
documentation page http://www.mpi-forum.org/docs/
docs.html.

6. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI- The Complete Reference (Cambridge,
Mass.: MIT Press, 1995).

7. W. Gropp, E. Lusk, and A. Skjellum, Using MP!
(Cambridge, Mass.: MIT Press, 1994).

8. J. Harris et al., "Compiling High Performance Fortran
for Distributed-memory Systems," Digital Technical
Journal, vol. 7, no. 3 (1995): 5- 23.

9. E. Benson et al., "Design ofDigital's Parallel Software
Environment," Digital Technical journal, vol. 7, no. 3
(1995): 24-38.

10. It is possible to always use logical entities, but some­
times it is easier to work with the building blocks when
additional structure might be cumbersome. In a simi­
lar vein, Fortran could eliminate scalars in favor of
arrays of rank 0, but Fortran chooses to retain scalars
because of their ease of use.

11. In this policy, nasty and nice are generic names for
categories. Which particular stop reasons fall into
which category is a separate design question. Once the
category is determined, the policy presented can be
performed.

12. Debuggers often build a (physical) call stack from
innermost frame to outermost frame, interleaving con­
struction with presentation. The interleaving gives the
appearance of progress even if there are occasional
delays between frames. The total time required to
reach the outermost frames of each physical thread,
which must occur before construction of a logical call
stack can begin and before any presentation is possible,
could be noticeable to the user.

13. An assumed shape array is a procedure array argument
in which each dimension optionally specifies the lower
bound and does not specify the upper bound. For
example,

REAL:: ARRAY_ARG_2DC:,4:)

A deferred shape array has either the ALL o c AT ABLE or
Po INTER attribute, specifies neither the lower nor
upper bound, and often contains local procedure vari­
ables or module data. For example,

REAL, ALLOCATABLE:: ALLOC_1DC:)
REAL, POINTER:: PTR_3DC:,:,:)

14. An array section occurs when some subscript specifies
more than one element. This can be done with a sub­
script-triplet, which optionally specifies the lower and
upper extents and a stride, and/ or with an integer vec­
tor, for example,

ARRAY_3DCROW1:ROWN, COL1::COL_STRIDE, PLANE_VEC)

A field-of-array operation specifies the array formed
by a field of each structure element of an array, for
example,

TYPE (TREE) :: TREESCNTRESS)
REAL:: TREE_HEIGHTSCNTREES)
TREE_HEIGHTS = TREES%HEIGHT

In general, each of these specifies discontiguous
memory.

15. "DEC Fortran 90 Descriptor Format," DEC Fortran
90 User Manual (Maynard, Mass. : Digital Equipment
Corporation, June 1994).

16. The HPF array descriptor for the variable AR RAY in the
HPF fragment

!HPFS TEMPLATE TCNROWS,NCOLS)
!HPFS DISTRIBUTE TCCYCLIC,BLOCK)
REAL:: ARRAYCNCOLS/2,NROWS)
!HPFS ALIGN ARRAYCI,J) WITH TCJ,I*2-1)

Digital Technical Journal Vol. 9 No. 3 1997 63

64

contains components corresponding to each of the
ALIGN, TEMPLATE, and DISTRIBUTE directives. Often
an array is distributed directly, causing the ALIGN and
TEMPLATE directives to be implicit, for example,

REAL:: MATRIX(NROWS,NCOLS)
!HPFS DISTRIBUTE MATRIX(BLOCK,BLOCK)

17. The variable s c ALAR in

!HPF$ TEMPLATE T(4,4)
!HPF$ DISTRIBUTE T(CYCLIC,CYCLIC)
!HPFS ALIGN SCALAR WITH T(*,2)

is partially replicated and will be stored on the same
processors that the logical second column of the tem­
plate T is stored.

18. R. Cohn, Source-Level Debugging of Automatically
Parallelized Programs, Ph.D. Thesis, Carnegie Mel­
lon University (October 1992).

19. HPF User Group, February 23-26, 1997, Santa Fe,
New Mexico. Information about the meeting is avail­
able at http://www.lanl.gov/HPF/.

20. In a trip report, DIGITAL's representative Carl Offner
reported the following: "Many people complained
about the lack of good debugging support for HPF.
Those who had seen our (Aardvark-based] debugger
liked it a lot (An industrial HPF user] complained
emphatically about the lack of good debugging sup­
port [Another industrial HPF user's] biggest con­
cern is the lack of good debugging facilities."

21. Prism User's Guide (Cambridge, Mass.: Thinking
Machines Corporation, 1992).

22. CM Fortran Programming Guide (Cambridge, Mass.:
Thinking Machines Corporation, 1992).

23. Tota/View: User's Guide (Dolphin Interconnect Solu­
tions, Inc., 1997). This guide is available via anony­
mous ftp from fi:p.dolphinics.com in the totalview /
DOCUMENTATION directory. At the time of writing
the file is TV-3.7.5-USERS-MANUAL.ps.Z.

24. PGHPF User's Guide (Wilsonville, Ore.: The Portland
Group, Inc., 1997).

25 . KAP Fortran 90 for Digital UNIX (Maynard, Mass.:
Digital Equipment Corporation, October 1995).

26. "Fine-Tuning Power Fortran," MIPSpro POWER For­
tran 77 Programmer's Guide (Mountain View, Calif.:
Silicon Graphics Inc, 1994-1996).

27. "Compilation Control Statements and Compiler
Directives," DEC Fortran 90 User Manual (Maynard,
Mass.: Digital Equipment Corporation, forthcoming
inl998).

28. ReleaseNotesfor[DigitalUNIX] Version V4.0D(May­
nard, Mass.: Digital Equipment Corporation, 1997).

29. "The Thread Attribute," in Microsoft Visual C++: C++
Language Reference (Version 2.0) (Redmond, Wash.:
Microsoft Press, 1994): 389-391.

Digital Technical Journal Vol. 9 No. 3 1997

30. CF90 Commands and Directives Reference Manual
(Eagan, Minn.: Cray Research, Inc., 1993, 1997).

31. J. Gosling and H. McGilton, Tbejava Language Envi­
ronment: A White Paper (May 1996). This paper is
available at http://www.javasoft.com/docs/white/
langenv / or via anonymous ftp from ftp.javasoft.com
in the directory docs/papers, for example, the file
whitepaper.ps.tar.Z.

32. J. Ousterhout, Tel and the Tk Toolkit (Reading, Mass:
Addison-Wesley, 1994).

Biography

David C. P. LaFrance-Linden
David Lafrance-Linden is a principal software engineer
in DIGITAL's High Performance Technical Computing
group. Since joining DIGITAL in 1991, he has worked
on tools for parallel processing, including the HPF-capable
debugger described in this paper. He has also contributed
to the implementation of the Parallel Software Environment
and to the compile-time performance of the HPF compiler.
Prior to joining DIGITAL, David worked at Symbolics,
Inc. on front-end support, networks, operating system
software, performance, and CPU architecture. He received
a B.S. in mathematics from M.I.T. in 1982.

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Recent Advances in Basic Physical Technology for Parallel SCSI: UltraSCSI, Expanders, Interconnect, and Hot Plugging
	Development of Router Clusters to Provide Fast Failover in IP Networks
	Shared Desktop: A Collaborative Tool for Sharing 3-D Applications among Different Window Systems
	Challenges in Designing an HPF Debugger
	Back cover

