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Editor's 
Introduction 

Just 40 years ago, a machine called the 
TX-0-a successor to Whirlwind­
was built at MIT's Lincoln Laboratory 
to find out, among other things, if a 
core memory as large as 64 Kwords 
could be built. Over the years mem­
ory sizes have grown so large that, 
in the '90s, the industry has felt the 
need to characterize memory in big 
machines as very large. At five orders 
of magnitude greater in size than the 
TX-0 memory, the AlphaServer 4100 
8-gigabyte memory is indeed very 
large, even by today's standards. Whole 
databases can be designed to reside in 
memory. Very large memory technol­
ogy, or VLM, is a key to the system 
and application performance iliscussed 
in this issue of the journal, which fea­
tures the AlphaServer 4100 system, 
database enhancements from Oracle 
Corporation and from Sybase, Inc., and 
extensions to the Alpha architecture. 

The AlphaServer 4100 is a mid­
range, symmetric multiprocessing 
system designed for industry-leailing 
performance at a low cost. The sys­
tem accommodates up to four 64-bit 
Alpha 21164 microprocessors operat­
ing at 400 megahertz, four 64-bit PCI 
bus bridges, and 8 gigabytes of main 
memory. Opening the section about 
the 4100 system, Zarka Cvetanovic 
and Darrel Donaldson describe the 
project team's performance characteri­
zation of different AlphaServer 4100 
models under technical and commer­
cial workloads. Both the process and 
the finilings are of interest. As one 
example set of data demonstrates, 
the model 5/300 is not only faster 
than its DIGITAL predecessors but 
30 to 60 percent faster than a com­
parative industry platform when run­
ning memory-intensive workloads 
from the SPECfj,95 benchmark. 

The four papers that follow exam­
ine areas of the system that challenged 
designers to keep costs low and at the 
same time deliver high performance. 

Digital Technical Journal 

The AlphaServer 4100 cached pro­
cessor module design is presented by 
Mo Steinman, George Harris, Andrej 
Kocev, Ginny Lamere, and Roger 
Pannell. Built around the Alpha 21164 
64-bit RISC microprocessor, the 
module is the first from DIGITAL 
to employ a high-performance, cost­
effective synchronous cache rather 
than a trailitional asynchronous cache. 
Next, Roger Dame reviews the clock 
ilistribution system, the use of off­
the-shelf phase-locked loop circuits 
as the basic buililing block to keep 
costs low, and the signal integrity 
techniques developed to optimize 
performance of the clock ilistribution 
system for a worst-case clock skew of 
2.2 nanoseconds, a goal which the 
team far exceeded. A unique memory 
architecture for the model 5/300E is 
the subject of Glenn Herdeg's paper. 
This memory design incorporates a 
processor module that has no external 
cache and instead takes advantage 
of the multiple-issue feature of the 
Alpha 21164 microprocessor. Closing 
the section on the 4100 design is the 
1/0 subsystem's contribution to the 
system goals oflow latency and high 
memory and 1/0 bandwidth. Sam 
Duncan, Craig Keefer, and Tom 
McLaughlin present several innova­
tive techniques developed for the sys­
tem bus-to-PCI bus bridge design, 
incluiling partial cache line writes, 
peer-to-peer transactions across PCI 
bridges, and support for large bursts 
of data. 

All efforts to make the hardware 
run faster are for the benefit of the 
applications that run on those sys­
tems. A paper from Oracle Corpora­
tion and another from Sybase, Inc., 
examine ways in which their respec­
tive database systems take advantage 
of VLM. Vipin Gokhale describes 
the 64 Bit Option implementation 
for the Oracle? relational database 
system. A primary project goal was to 
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demonstrate a clear performance ben­
efit for decision support systems and 
online transaction processing. The 
author summarizes data that show 
a clear benefit for a database with the 
64 Bit Option enabled running on 
the AlphaServer 8400 with 8 gigabytes 
of memory; in some cases, the perfor­
mance increase was 200 times that 
of the standard configuration. Sybase 
engineers T.K Rengarajan, Max 
Berenson, Ganesan Gopal, Bruce 
McCready, Sapan Panigrahi, Srikant 
Subramaniam, and Marc Sugiyama 
examine the technology of the 
System 11 SQL Server that was spe­
cifically designed for VLM systems. 
In adilition to achieving record results 
with the SQL Server running on the 
AlphaServer 8400, the engineers have 
laid the groundwork for future main 
memory database systems. 

Recently, byte and word instruc­
tions were added to DIGITAL's 
64-bit Alpha architecture. Dave 
Hunter and Eric Betts describe the 
process of analyzing how these adili­
tions affect the performance of a 
commercial database. For testing, 
the team used prototype hardware, 
rebuilt Microsoft Corporation's SQL 
Server to use the new instructions, 
and ran the TPC-B benchmark. 

The eilitors thank Darrel Donaldson 
of the AlphaServer 4100 team and 
Kuk Chung of the Database Applica­
tion Partners group for their efforts 
to acquire the papers presented in this 
issue. Our upcoming issue will feature 
CMOS-6 process technologies. 

Jane C. Blake 
Managing Editor 



AlphaServer 4100 
Performance 
Characterization 

The Alpha Server 4100 is the newest four­

processor symmetric multiprocessing addition 

to DIGITAL's line of midrange Alpha servers. 

The DIGITAL Alpha Server 4100 family, which 

consists of models 5/300E, 5/300, and 5/400, 

has major platform performance advantages 

as compared to previous-generation Alpha plat­

forms and leading industry midrange systems. 

The primary performance strengths are low 

memory latency, high bandwidth, low-latency 

1/0, and very large memory (VLM) technology. 

Evaluating the characteristics of both technical 

and commercial workloads against each family 

member yielded recommendations for the best 

application match for each model. The perfor­

mance of the model with no module-level cache 

and the advantages of using 2- and 4-megabyte 

module-level caches are quantified. The profiles 

based on the built-in performance monitors are 

used to evaluate cycles per instruction, stall time, 

multiple-issuing benefits, instruction frequen­

cies, and the effect of cache misses, branch 

mis predictions, and replay traps. The authors 

propose a time allocation-based model for 

evaluating the performance effects of various 

stall components and for predicting future per­

formance trends. 

I 
Zarka Cvetanovic 
Darrel D. Donaldson 

The AlphaServer 4100 is DIGITAL's latest four­
processor symmetric multiprocessing (SMP) midrange 
Alpha server. This paper characterizes the performance 
of the AlphaServer 4100 family, which consists of 
three models: 1

-
5 

l. AlphaServer 4100 model 5/300E, which has up to 

four 300-megahertz (MHz) Alpha 21164 micro­
processors, each without a module-level, third­
level, write-back cache (B-cache) ( a design referred 
to as uncacbed in this paper) 

2. AlphaServer 4100 model 5/300, which has up to 
four 300-MHz Alpha 211 64 microprocessors, each 
with a 2-megabyte (MB) B-cache 

3. AlphaServer 4100 model 5/400, which has up to 
four 400-MHz Alpha 21164 microprocessors, each 
with a 4-MB B-cache 

The performance analysis undertaken examined 
a number of workloads with different character­
istics, including the SPEC95 benchmark suites 
(floating-point and integer), the UNPACK bench­
mark, AIM Suite VII (UNIX multiuser benchmark), 
the TPC-C transaction processing benchmark, image 
rendering, and memory latency and bandwidth 
tests.6--15 Note that both commercial (AIM and TPC-C) 
and technical/scientific (SPEC, UNPACK, and image 
rendering) classes of workloads were included in 
this analysis. 

The results of the analysis indicate that the major 
AlphaServer 4100 performance advantages result 
from the following server features: 

• Significantly higher bandwidth (up to 2.6 times) 
and lower latency compared to the previous­
generation midrange AlphaServer platforms and 
leading industry midrange systems. These improve­
ments benefit the large, multistream applica­
tions that do not fit in the B-cache. For example, 
the AlphaServer 4100 5/300 is 30 to 60 percent 
faster than the HP 9000 K420 server in the 
memory-intensive workloads from the SPECfp95 
benchmark suite. (Note that all competitive per­
formance data presented in this paper is valid as 
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of the submission of this paper in July 1996. The 
references cited refer the reader to the literature 
and the appropriate Web sites for the latest perfor­
mance information.) 

• An expanded very large memory (VLM). The max­
imum memory size increased from 2 gigabytes 
(GB) to 8 GB without sacrificing CPU slots. This 
increase in memory size benefits primarily the com­
mercial, multistream applications. For example, the 
AlphaServer 4100 5/300 server achieves approxi­
mately twice the throughput of the Compaq 
ProLiant 4500 server and 1.4 times the throughput 
of the AlphaServer 2100 on the AIM Suite VII 
benchmark tests. 

• A 4-MB B-cache and a clock speed of 400 MHz 
in the AlphaServer 4100 5/ 400 system. The larger 
B-cache size and 33 percent faster clock resulted in 
a 30 to 40 percent performance improvement over 
the AlphaServer 4100 5 /300 system. 

The performance improvement from the larger 
B-cache increases with the number of CPUs. For 
example, the AlphaServer 4100 5/300 system with 
its 2-MB B-cache design performs 5 to 20 percent 
faster with one CPU and 30 to 50 percent faster 
with four CPUs than the uncached 5/300£ system. 
The majority of workloads included in this analysis 
benefit from the B-cache; however, the uncached sys­
tem outperforms the cached implementation by 10 to 
20 percent for large applications that do not fit in 
the 2-MB B-cache. 

The performance counter profiles, based on the 
built-in hardware monitors, indicate that the major­
ity of issuing time is spent on single and dual issuing 
and that a small number of floating-point workloads 
take advantage of triple and quad issuing. The 
load/store instructions make up 30 to 40 percent of 
all instructions issued. The stall time associated with 
waiting for data that missed in the various levels of 
cache hierarchy accounts for the most significant por­
tion of the time the server spends processing com­
mercial workloads. 

Memory Latency 

Memory latency and bandwidth have been recog­
nized as important performance factors in the early 
Alpha-based implementations.16

•
11 Since CPU speed is 

increasing at a much higher rate than memory speed, 
the "memory wall" limitation is expected to become 
even more important in the future . Therefore, reduc­
ing memory latency and increasing bandwidth have 
been major design goals for the AlphaServer 4100 
platform. 1 The AlphaServer 4100 achieved the lowest 
memory latency of all DIGITAL products based on 
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the Alpha 21164 microprocessor and all multiproces­
sor products by leading industry vendors. The major 
benefits come from the simpler interface, the use of 
synchronous dynamic random-access memory 
(DRAM ) chips (i.e., synchronous memory), and the 
lower fill time.1

•
2 Figure 1 shows the measured mem­

ory load latency using the lmbench benchmark with 
a 512-byte stride. 10 In this benchmark, each load 
depends on the result from the previous load, and 
therefore latency is not a good measure of perfor­
mance for systems that can have multiple outstanding 
loads. (AlphaServer 4100 systems can have up to 
two outstanding requests per CPU on the bus.) 
The lmbench benchmark data indicates that the 
AlphaServer 4100 has the lowest memory latency of 
all industry-leading reduced-instruction set comput­
ing (RISC) vendors' servers. 

As shown in Figure 2, using a slightly different 
workload where there is no dependency between 
consecutive loads, the AlphaServer 4100 achieves even 
lower per-load latency, since the latency for the two 
consecutive loads can be overlapped. The plateaus 
in Figure 2 show the load latency at each of the follow­
ing levels of cache/memory hierarchy: 8-kilobyte 
(KB) on-chip data cache (D-cache), 96-KB on-chip 
secondary instruction/data cache (S-cache), 2- and 
4-MB off-chip B-caches (except for model 5/300£), 
and memory. The uncached AlphaServer 4100 
5/300£ achieves an 85 percent lower memory load 
latency than the previous-generation AlphaServer 
2100. The AlphaServer 4100 5/300, with its 2-MB 
B-cache, increases memory latency 30 percent for 
load operations and 6 percent for store operations 
compared to the uncached 5/300£ system because of 
the time spent checking for data in the B-cache. The 
synchronous memory shows one cycle lower latency 
than the asynchronous extended data out ( EDO) 
DRAM (i.e., asynchronous memory), which results in 
9 percent faster load operations and 5 percent faster 
store operations. Note that the cached AlphaServer 
4100 and AlphaServer 8200 systems, which have 
the same clock speeds of 300 MHz, achieve com­
parable B-cache latency, while the memory latency 
for all AlphaServer 4100 systems is significantly 
lower than on both the AlphaServer 8200 and the 
AlphaServer 2100 systems. The latency to the B-cache 
in this test is lower on the AlphaServer 2100 than 
on the other AlphaServer systems due to 32-byte 
blocks (compared to 64-byte blocks in the 4100 and 
8200 systems). Although not shown in this test, many 
applications can benefit from the larger cache block 
size. The 400-MHz AlphaServer 4100 system uses 
a 33 percent faster CPU and achieves 11 percent 
reduction in B-cache and memory latency compared 
to the 300-MHz AlphaServer 4100 system. 
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Memory Bandwidth 

The AlphaServer 4100 system bus achieves a peak 
bandwidth of 1.06 gigabytes per second ( GB/s ). The 
STREAM McCalpin benchmark measures sustainable 
memory bandwidth in megabytes per second (MB/s) 
across four vector kernels: Copy, Scale, Sum, and 
SAXPY.11 Figure 3 shows measured memory band­
width using the Copy kernel from the STREAM 
benchmark. Note that the STREAM bandwidth is 
33 percent lower than the actual bandwidth observed 
on the AlphaServer 4100 bus because the bus data 
cycles are allocated for three transactions: read 
source, read destination, and write destination. The 
AlphaServer 4100 shows the best memory bandwidth 
of all multiprocessor platforms designed to support up 
to four CPUs. The platforms designed to support 
more than four CPUs (i.e., the AlphaServer 8400, the 
Silicon Graphics POWER CHALLENGE RlOOOO, and 
the Sun Ultra Enterprise 6000 systems) show a higher 
bandwidth for four CPUs than the AlphaServer 4100. 
The STREAM bandwidth on the AlphaServer 4100 
5/300 is 2.2 times higher than on the previous­
generation AlphaServer 2100 5/250 (2.6 times higher 

with the AlphaServer 4100 5/400). The uncached 
AlphaServer 4100 model shows 22 percent higher 
memory bandwidth than the cached model 5/300. 

The AlphaServer 4100 memory bandwidth 
improvement from synchronous memory compared 
to EDO ranges from 8 to 12 percent. The synchro­
nous memory benefit increases with the number of 
CPUs, as shown in Table 1. 

Low memory latency and high bandwidth have 
a significant effect on the performance of workloads 
that do not fit in 2- to 4-MB B-caches. For example, 
the majority of the SPECfj:>95 benchmarks do not fit 
in the 2-MB cache. (Figure 20, which appears later in 
this paper, shows the cache misses.) The SPECfj:>95 
performance comparison presented in Figure 4 shows 
that the uncached AlphaServer 4100 5/300E system 
outperforms the 2-MB B-cache model 5/300 in the 
benchmarks with the highest number of B-cache 
misses (tomcatv, swim, applu, and hydro2d). The per­
formance of the uncached model 5 /300E is compar­
able to that of the 4-MB B-cache model 5/400 for the 
swim benchmark. However, the benchmarks that fit 
better in the 4-MB cache ( apsi and waveS) run signifi­
cantly slower on the 5/300E than on the 5/400. 
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Table 1 
Bandwidth Improvement from Synchronous Memory 
to Asynchronous Memory 

Bandwidth 
improvement 8% 

Number of CPUs 

2 3 

8% 9% 

4 

12% 

Figure 4 shows that the AlphaServer 4100 5 /300 
system has a significant ( up to two times) performance 

. advantage over the previous-generation AlphaServer 
2100 system in the SPECfp95 benchmark tests with 
the highest number ofB-cache misses. The SPECfp95 
tests indicate that the 300-MHz AlphaServer 4100 is 
more than 50 percent faster than the HP 9000 K420 
server, and the 400-MHz AlphaServer4100 is twice as 
fast as the HP 9000 K420 in the SPECfp95 bench­
marks that stress the memory subsystem. 

SPEC95 Benchmarks 

The SPEC95 benchmarks provide a measure of pro­
cessor, memory hierarchy, and compiler performance. 
These benchmarks do not stress graphics, network, 
or I/0 performance. The integer SPEC95 suite 

SPECFP95 

SPECFP95 !!!!~~-
146.WAVE5 !!!!!~;.-
145.FPPPP !!!!!~~~~~----• 

141.APSI !!!!~~·· 

0 5 10 
KEY: 

• HP 9000 K420 
• ALPHASERVER 2100 5/300 
• ALPHASERVER 4100 5/400 
D ALPHASERVER 4100 5/300 
D ALPHASERVER 4100 5/300E 

Figure4 

15 20 25 

SPECfp95 Benchmarks Performance Comparison 

30 35 

(CINT95 ) contains eight compute-intensive integer 
benchmarks written in C and includes the benchmarks 
shown in Table 2.6

'
12 

The floating-point SPEC95 suite ( CFP95) contains 
10 compute-intensive floating-point benchmarks writ­
ten in FORTRAN and includes the benchmarks shown 
in Table 3.6

•
12 

The SPEC Homogeneous Capacity Method 
(SPEC95 rate) measures how fast an SMP system can 
perform multiple CINT95 or CFP95 copies (tasks). 
The SPEC95 rate metric measures the throughput of 
the system running a number of tasks and is used for 
evaluating multiprocessor system performance. 

Table 2 
CINT95 Benchmarks (SPECint95) 

Benchmark 

099.go 

124.m88ksim 

126.gcc 

129.compress 

130.li 
132.ijpeg 

134.perl 

147.vortex 

Table 3 

Description 

Artificial intelligence, plays the 
game of Go 
A Motorola 88100 microprocessor 
simulator 
A GNU C compiler that generates 
SPARC assembly code 
A program that compresses large 
text files (about 16 MB) 
A LISP interpreter 
A program that compresses/ 
decompresses an image 
A Perl interpreter that performs 
text and numeric manipulations 
A database program that builds and 
manipulates three interrelational 
databases 

CFP95 Benchmarks (SPECfp95) 

Benchmark 

101.tomcatv 

102.swim 

103.su2cor 

104.hydro2d 

107.mgrid 

110.applu 

125.turb3d 

141.apsi 

145.fpppp 

146.waveS 

Description 

A fluid dynamics mesh generation 
program 

A weather prediction shallow water 
model 

A quantum physics particle mass 
computation (Monte Carlo) 

An astrophysics hydrodynamical 
Navier-Stokes equation 

A multigrid solver in a 3-D potential 
field (electromagnet ism) 

Parabolidelliptic partial differential 
equations (fluid dynamics) 

A program that simulates 
turbulence in a cube 
A program that simulates tempera­
ture, wind, velocity, and pollutants 
(weather prediction) 

A quantum chemistry program that 
performs multielectron derivatives 

A solver of Maxwell's equations on 
a Cartesian mesh (electromagnetics) 

Digital Technical Journal Vol. 8 No. 4 1996 7 



8 

Figure 5 compares the SPEC95 performance of 
the AlphaServer 4100 systems to that of the other 
industry-leading vendors using published results as 
ofJuly 1996. Figure 6 shows the same comparison in 
the multistream SPEC95 rates. 12 Note that all the 
SPEC95 comparisons in this paper are based on the 
peak results that include extensive compiler optimiza -
tions. 12 Figure 5 indicates that even the uncached 
AlphaServer 4100 5/300E performs better than the 
HP 9000 K420 system, and the AlphaServer 4100 
5/ 400 shows approximately a two times performance 
advantage over the HP system. The AlphaServer 4100 
5/300 SPECint95 performance exceeds that of the 
Intel Pentium Pro system, and the AlphaServer 4100 
5/300 SPECfp95 performance is double that of 
the Pentium Pro. The AlphaServer 4100 5/ 400 is 
1.5 times (SPECint95 ) and 2.5 times (SPECfp95 ) 
faster than the Pentium Pro system. The multiple­
processor SPECfp95 on the AlphaServer 4100 is 
obtained by decomposing benchmarks using the KAP 
preprocessor from Kuck & Associates. Note that the 
cached four-CPU AlphaServer 4100 5/300 outper­
forms the Sun Ultra Enterprise 3000 with six CPUs in 
the SPECfp95 parallel test. The performance benefit 
of the cached versus the uncached AlphaServer 4100 
is greater in multiprocessor configurations than in uni­
processor configurations. 

SPEC95 Multistream Performance Scaling 

Figures 7 and 8 show SPEC95 multistream perfor­
mance as the number of CPUs increases. The SMP 
scaling on the AlphaServer 4100 is comparable to that 
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Figure 6 
SPEC95 Throughput Results (SPEC95 Rates) 
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Figure 5 
SPEC95 Speed Results 
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Figures 
SPECfp_ratc95 Performance Scaling 

on the AlphaServer 2100 for integer workloads 
(that fit in the 5/300 2-MB B-cache). Note that 
SPECint_rate95 scales proportionally to the number 
of CPUs in the majority of systems, since these work­
loads do not stress the memory subsystem. The SMP 
scaling in SPECfp_rate95 is lower, since the majority 
of these workloads do not fit in 1- to 4-MB caches. 

In the majority of applications, the AlphaServer 
4100 5/300 and 5/400 systems improve SMP scaling 
compared to the uncached AlphaServer 4100 5 /300E 
by reducing the bus traffic (from fewer B-cache 
misses) and by taking advantage of the duplicate tag 
store (DTAG) to reduce the number of S-cache 
probes. The cached 5/300 scaling, however, is 
lower than the uncached 5/300E scaling in memory 
bandwidth-intensive applications ( e.g., tomcatv and 
swim). The analysis of traces collected by the logic 
analyzer that monitors system bus traffic indicates that 
the lower scaling is caused by ( 1) SetDirty overhead, 
where SetDirty is a cache coherency operation used to 
mark data as modified in the initiating CPU's cache; 
(2) stall cycles on the memory bus; and (3) memory 
bank conflicts.2

•
3 

Symmetric Multiprocessing Performance Scaling 
for Parallel Workloads 

Parallel workloads have higher data sharing and lower 
memory bandwidth requirements than multistream 
workloads. As shown in Figures 9 and 10, the 
AlphaServer 4100 models with module-level caches 
improve the SMP scaling compared to the uncached 
AlphaServer 4100 model in the UNPACK 1000 X 

1000 (million floating-point operations per second 
[MFLOPS]) and the parallel SPECfp95 benchmarks 
that benefit from 2- and 4-MB B-caches. Figure 9 
indicates that the AlphaServer 4100 5 / 400 outper­
forms the SGI Origin 2000 system in the UNPACK 
1000 X 1000 benchmark by 40 percent. Figure 10 
indicates that the four-CPU AlphaServer 4100 5/ 400 
shows better scaling than any other system in its class 
and outperforms the six-CPU Sun Ultra Enterprise 
3000 system by more than 70 percent. 

Very Large Memory Advantage: 
Commercial Performance 

As shown in Figures 11 and 12, the AlphaServer 4100 
performs well in the commercial benchmarks TPC-C 
and AIM Suite VII. 13

•
1
• In addition to the low memory 

and 1/0 latency, the AlphaServer 4100 takes advan­
tage of the VLM design in these 1/0-intensive work­
loads: with four CPUs, the platform can support up to 
8 GB of memory compared to 1 GB of memory on the 
AlphaServer 2100 system with four CPUs and 2 GB 
with three CPUs. 
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Parallel SPECfp95 Performance Scaling 
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Figure 11 
Transaction Processing Performance (TPC-C Using an Oracle Database) 
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Figure 12 
AIM Suite VII Multiuser/Shared UNIX Mix Performance 

Figures 11 and 12 show the AlphaServer 4100 sys­
tem's TPC-C performance (using an Oracle database) 
and AIM Suite VII throughput performance as com­
pared to other industry-leading vendors. Note that the 
performance of the uncached AlphaServer 4100 
5/300E is comparable to that of the 300-MHz 
AlphaServer 2100. (The AlphaServer 2100 system 
used in this test had three CPUs and 2 GB of memory, 
whereas the AlphaServer 4100 system had four CPUs 
and 2 GB of memory. ) 

With its 2-MB B-cache, the AlphaServer 4100 
5/300 improves throughput by 40 percent in the 
AIM Suite VII benchmark tests as compared to 
the uncached AlphaServer 4100 5/300E. The 
AlphaServer 4100 5/400, with its 4-MB B-cache, 
benefits from its 33 percent faster clock and two times 
larger B-cache and provides 40 percent improvement 
over the AlphaServer 4100 5/300. Note that the 
AlphaServer 4100 5/300 and 5/300E results were 
obtained through internal testing and have not been 
AIM certified. The AlphaServer 5 / 400 results have 
AIM certification. 

Compared to the best published industry AIM Suite 
VII performance, the AlphaServer 4100 5/300 
throughput is almost twice that of the Compaq 
ProLiant 4500 server, and the AlphaServer 4100 
5/ 400 throughput is more than 50 percent higher 
than that of the Compaq ProLiant 5000 server. 14 At 

the October 1996 UNIX Expo, the AlphaServer 4100 
family won three AIM Hot Iron Awards: for the best 
performance on the Windows NT operating system 
(for systems priced at more than $50,000) and for 
the best price/ performance in two UNIX mixes­
multiuser shared and file system (for systems priced at 
more than $150,000).14 

Cache Improvement on the 
Alpha Server 4100 System 

Figures 13 and 14 show the percentage performance 
improvement provided by the 2-MB B-cache in 
the AlphaServer 4100 5 /300 as compared to the 
uncached AlphaServer 4100 5/ 300E. Figure 13 
shows the improvement across a variety of workloads; 
Figure 14 shows the improvement in individual 
SPEC95 benchmarks for one and four CPUs. 

As shown in Figure 13, the 2-MB B-cache in the 
AlphaServer 4100 5 /300 improves the performance by 
5 to 20 percent for one CPU and 25 to 40 percent for 
four CPUs as compared to the uncached AlphaServer 
4100 5 /300E system. The benefits derived from having 
larger caches are significantly greater for four CPUs 
compared to one CPU, since large caches help alleviate 
bus traffic in multiprocessor systems. 

The workloads that do not fit in the 2- to 4-MB 
B-cache (i.e., tomcatv, swim, applu) in Figure 14 
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Figure 13 
Performance Improvement across Various Workloads from a 2-MB B-Cache 

run faster on the uncached AlphaServer 4100 than 
on the cached AlphaServer 4100 (up to 10 percent 
faster on one CPU and 20 percent faster on four 
CPUs) due to the overhead for probing the B-cache 
and the increase in SetDirty bandwidth. The majority 
of the other workloads benefit from larger caches. 

The AlphaServer 4100 5 / 400 further improves 
the performance by increasing the size of the B-cache 
from 2 MB to 4 MB. In addition, the CPU clock 
improvement of 33 percent, B-cache improvement of 
7 percent in latency and 11 percent in bandwidth, and 
the memory bus speed improvement of 11 percent 
together yield an overall 30 to 40 percent improve­
ment in the AlphaServer 4100 model 5 / 400 perfor­
mance as compared to that of the AlphaServer 4100 
model 5/300. 

Large Scientific Applications: Sparse UNPACK 

The Sparse UNPACK benchmark solves a large, sparse 
symmetric system of linear equations using the con­
jugate gradient (CG) iterative method. The bench­
mark has three cases, each with a different type of 
preconditioner. Cases 1 and 2 use the incomplete 
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Cholesky (IC) factorization as the preconditioner, 
whereas Case 3 uses the diagonal preconditioner. 

This workload is representative of large scientific 
applications that do not fit in megabyte-size caches. 
The workload is important in large applications, 
e.g., models of electrical networks, economic systems, 
diffusion, radiation, and elasticity. It was decomposed 
to run on multiprocessor systems using the KAP 
preprocessor. 

Figure 15 shows that the uncached AlphaServer 
4100 5/300E outperforms the AlphaServer 8400 by 
41 percent for one CPU and by 9 percent for two CPUs 
because of higher delivered system bus bandwidth. 
However, the AlphaServer 4100 5/300E falls behind 
with three and four CPUs, as it does in the McCalpin 
memory bandwidth tests shown in Figure 3. Note that 
with one CPU, the 300-MHz uncached AlphaServer 
4100 performs at the same level as the 400-MHz 
cached AlphaServer 4100 and performs 18 percent 
better than the 300-MHz cached AlphaServer 4100. 
This is an example of the type of application for 
which the cache diminishes the performance. The 
AlphaServer 4100 5/300E is a better match for this 
class of applications than the cached systems. 
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Figure 14 
SPEC95 Performance Improvement from a 2-MB B-Cache 

Image Rendering 

The AlphaServer 4100 shows significant performance 
advantage in image rendering applications compared to 
the other industry-leading vendors. Figure 16 shows 
that the AlphaServer 4100 5/400 system is approxi­
mately 4 times faster than the Sun SPARC system that 
was used in the movie Toy Story, as measured in 
RenderMarks.15 The AlphaServer 4100 is 2.6 times 
faster than the Silicon Graphics POWER CHALLENGE 
system and 2.4 times faster than the HP /Convex 
Exemplar SPP-1200 system on the Mental Ray image 
rendering application from Mental Images. These 
image rendering applications take advantage of larger 
caches, and the performance improves as the cache size 
increases, particularly with four CPUs. 

Performance Counter Profiles 

The figures in this section, Figures 17 through 22, 
show the performance statistics collected using 
the built-in Alpha 21164 performance counters on the 
AlphaServer 4100 5/400 system. These hardware 
monitors collect various events, including the number 
and type of instructions issued, multiple issues, single 

issues, branch mispred.ictions, stall components, and 
cache misses.3

•
16

•
17 These statistics are useful for analyz­

ing the system behavior under various workloads. 
The results of this analysis can be used by computer 
architects to drive hardware design trade-offs in future 
system designs. 

The SPEC95 cycles per instruction (CPI) data 
presented in Figure 17 shows lower CPI values for 
the integer benchmarks (CPI values of 0.9 to 1.5) 
than for the floating-point benchmarks ( CPI values 
of 0.9 to 2.2). The CPI in commercial workloads 
(e.g., TPC-C) is higher than in the SPEC bench­
marks, primarily because commercial workloads have 
a higher stall time, as shown in Figure 18. Note 
that the performance counter statistics were collected 
with four CPUs running TPC-C (with a Sybase data­
base), while SPEC95 statistics were collected on a 
single CPU. 

The Alpha 21164 has two integer and two floating­
point pipelines and is capable of issuing up to four 
instructions simultaneously. The integer pipeline O 
executes arithmetic, logical, load/ store, and shift 
operations. The integer pipeline 1 executes arithmetic, 
logical, load, and branch/ jump operations. The 
floating-point pipeline O executes add, subtract, 
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Figure 16 
Image Rendering Performance 

compare, and floating-point branch instructions. The 
floating-point pipeline 1 executes multiply instruc­
tions. The time distribution illustrated in Figure 18 
indicates that most of the issuing time is spent in single 
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and dual issuing. Triple and quad issuing is noticeable 
in several floating-point benchmarks, but, on average, 
only 3 percent of the time is spent on triple and quad 
issuing in the SPECfp95 benchmarks. 
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The stall time (dry plus frozen stalls in Figure 18) 
is higher in the floating-point benchmarks than in 
the integer benchmarks and higher in the TPC-C 
benchmarks than in the SPEC95 benchmarks. Dry 
stalls include instruction stream (I-stream) stalls 
caused by the branch mispredictions, program counter 
(PC) mispredictions, replay traps, I-stream cache 
misses, and exception drain. Frozen stalls include data 
stream (D-stream) stalls caused by D-stream cache 
misses as well as register conflicts and unit busy. Dry 
stalls are higher in SPECint95 and TPC-C (mainly 
because of I-stream cache misses and replay traps), 
whereas frozen stalls are higher in SPECfp95 and 
TPC-C (mainly because of D-stream cache misses ). 

The Alpha 21164 microprocessor reduces the per­
formance penalty due to cache misses by implement­
ing a large, 96-KB on-chip S-cache,3,4 This cache is 
three-way set associative and contains both instruc­
tions and data. The four-entry prefetch buffer allows 
prefetching of the next four consecutive cache blocks 
on an instruction cache (I-cache) miss. This reduces 
the penalty for I-stream stalls. The six-entry miss 
address file (MAF) merges loads in the same 32-byte 
block and allows servicing multiple load misses with 
one data fill. A six-entry write buffer is used to reduce 
the store bus traffic and to aggregate stores into 
32-byte blocks,3,4 

Figure 19 shows the instruction mix in SPEC95. 
The Alpha instructions are grouped into the following 
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SPEC95 Instruction Profiles 
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categories: load (both floating-point and integer), 
store (both floating-point and integer), integer ( all 
integer instructions, excluding ones with only R3 l or 
literal as operands), branch ( all branch instructions 
including unconditional), and floating-point (except 
floating-point load and store instructions). Figure 19 
shows the percentage of instructions in each category 
relative to the total number of instructions executed. 
Note that load/store instructions account for 30 to 
40 percent of all instructions issued. Integer instruc­
tions are present in both integer and floating-point 
benchmarks, but no floating-point instructions exist in 
the SPECint95 and commercial TPC-C workloads. 
The integer and commercial workloads execute more 
branches, while the branch instructions make up only 
a few percent of all instructions issued in the floating­
point workloads. 

The cache misses shown in Figure 20 are higher 
in the floating-point benchmarks than in the inte­
ger benchmarks. The I-cache misses are low in the 
floating-point benchmarks ( except for fpppp) and 
higher in the SPECint95 benchmarks and the TPC-C 
benchmark. The D-cache misses are high in the major­
ity of the benchmarks, which indicates that a larger D­
cache would reduce D-stream misses. The TPC-C 
benchmark would benefit from a larger S-cache and 
faster B-cache, since the number of S-cache misses is 
high. The B-cache misses are negligible in the 
SPECint95 benchmarks and higher in the majority of 
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Cache Misses 

the SPECfj,95 TPC-C benchmarks. This data indicates 
that complex commercial workloads, such as TPC-C, 
are more profoundly affected by the cache design than 
simpler workloads, such as SPEC95. 

The replay traps are generally caused by ( 1) full 
write-buffer (WB) traps (a full write buffer when a 
store instruction is executed) and full miss address file 
( MAF) traps ( a full MAF when a load instruction is 
executed); and (2) load traps (speculative execution of 
an instruction that depends on a load instruction, and 
the load misses in the D-cache) and load-after-store 
traps ( a load following a store that hits in the D-cache, 
and both access the same location).3 The replay traps 
and branch/PC mispredictions shown in Figure 21 
are not the major reason for the high stall time in the 
commercial workloads (TPC-C), since traps and mis­
predictions are higher in some of the SPECint95 
benchmarks than in TPC-C. Instead, a high number of 
cache misses ( see Figure 20) correlates well with the 
high stall time and CPI ( see Figure 17) in TPC-C. 

Figure 22 shows the estimated stall components in 
SPEC95 and TPC-C. A time-allocation model is used to 
analyze the performance effect of different stall compo­
nents. The total execution time is divided into two com­
ponents: the compute component (where the CPU is 
issuing instructions) and the stall component (where 

the CPU is not issuing instructions). The stall compo­
nent is further divided into the dry and frozen stalls: 

time = compute + stall 
compute = single + dual + triple + quad issuing 
stall = dry + frozen 

dry = branch mispredictions + PC mispredictions 
+ replay traps + I -stream cache misses 
+ exception drain stalls 

frozen = D-stream cache misses 
+ register conflicts and unit busy 

The branch and PC mispredictions affect the per­
formance of SPECint95 workloads ( 6 percent of the 
time is spent in branch and PC mispredictions in 
SPECint95) and have little effect on the performance 
of SPECfp95 workloads (less than 1 percent of the 
time) and the TPC-C benchmark (1.4 percent of 
the time). The SPECint95 workloads are affected pri­
marily by the load traps, whereas the SPECfj,95 
benchmarks are affected by both load and WB/ MAF 
traps. Note that the time spent on a load replay trap 
is overlapped with the load-miss time. 

The S-cache and B-cache stalls are high in the 
SPECfp95 and TPC-C benchmarks, where the stall 
time is dominated by the B-cache and memory laten­
cies. Note the high stall time resulting from waiting for 
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data from memory ( close to 40 percent) in several of 
the SPECfp95 benchmarks that do not fit in a 4-MB 
cache. Although it contributes to the high SPECfp95 
stall time, the memory component has a negligible 
effect on SPECint95 performance, since these bench­
marks generate only a small number ofB-cache misses 
(see Figure 20). Figure 22 indicates that stalls caused 
by cache misses are the largest component of the total 
stall time; therefore, reducing cache misses and 
improving cache and memory latencies would yield 
the largest performance benefit. 

Once calibrated and validated with measurements, 
this model is an effective tool for evaluating the perfor­
mance impact of various components on the overall 
system design. System architects can vary parameters, 
like the cache or memory access times or cache size, 
and adjust the appropriate stall component to predict 
performance of alternative designs without carrying 
out detailed and often time-consuming architectural 
simulations. 

Conclusion 

Using several performance metrics and a variety of 
workloads, we have demonstrated that the DIGITAL 
AlphaServer 4100 family of midrange servers provides 
significant performance improvements over the 
previous-generation AlphaServer platform and pro­
vides performance leadership compared to the leading 
industry vendors' platforms. The major AlphaServer 
4100 performance strengths are the low memory and 
I/0 latency and high memory bandwidth, the large­
memory support (VLM), and the fast Alpha 21164 
microprocessor. The work described in this paper has 
led to design changes that are expected to be imple­
mented in future versions of the AlphaServer 4100 
platform. The anticipated performance benefits will 
come from a faster CPU, faster and larger caches, faster 
memory, and improved memory bandwidth. 
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The AlphaServer 4100 
Cached Processor Module 
Architecture and Design 

The DIGITAL AlphaServer 4100 processor module 
uses the Alpha 21164 microprocessor series com­
bined with a large, module-level backup cache 

(B-cache). The cache uses synchronous cache 
memory chips and includes a duplicate tag store 
that allows CPU modules to monitor the state 
of each other's cache memories with minimal 
disturbance to the microprocessor. The synchro­

nous 8-cache, which can be easily synchronized 
with the system bus, permits short 8-cache 
access times for the DIGITAL Alpha Server 4100 
system. It also provides a smooth transition 
from accessing the 8-cache to transferring data 
to or from main memory, without the need for 
re-synchronization or data buffering. 

I 
Maurice B. Steinman 
George J. Harris 
Andrej Kocev 
Virginia C. Lamere 
Roger D. Pannell 

The DIGITALAlphaServer4100 series of servers repre­
sents the third generation of Alpha microprocessor­
based, mid-range computer systems. Among the 
technical goals achieved in the system design were the 
use of four CPU modules, 8 gigabytes (GB) of memory, 
and partial block writes to improve 1/0 performance. 

Unlike the previous generation of mid-range servers, 
the AlphaServer 4100 series can accommodate four 
processor modules, while retaining the maximum 
memory capacity. Using multiple CPUs to share the 
workload is known as symmetric multiprocessing 
(SMP). As more CPUs are added, the performance 
of an SMP system increases. This ability to increase 
performance by adding CPUs is known as scalability. 
To achieve perfect scalability, the performance of four 
CPUs would have to be exactly four times that of a sin­
gle CPU system. One of the goals of the design was to 
keep scalability as high as possible yet consistent with 
low cost. For example, the AlphaServer 4 100 system 
achieves a scalability factor of 3.33 on the Linpack 
1000 X 1000, a large, parallel scientific benchmark. 
The same benchmark achieved 3.05 scalability on the 
previous-generation platform. 1 

The 8-GB memory in the AlphaServer 4 100 system 
represents a factor of four improvement compared with 
the previous generation of mid-range servers. 2 The new 
memory is also faster in terms of the data volume flow­
ing over the bus (bandwidth) and data access time 
(latency). Again, compared with the previous genera­
tion, available memory bandwidth is improved by a fac­
tor of2.7 and latency is reduced by a factor of0.6. 

In systems of this class, memory is usually addressed 
in large blocks of 32 to 64 bytes. This can be ineffi­
cient when one or two bytes need to be modified 
because the entire block might have to be read out 
from memory, modified, and then written back into 
memory to achieve this minor modification. The abil­
ity to modify a small fraction of the block without hav­
ing to extract the entire block from memory results in 
partial block writes. This capability also represents an 
advance over the previous generation of servers. 

To take full advantage of the Alpha 21164 series of 
microprocessors, a new system bus was needed. The bus 
used in the previous generation of servers was not fast 
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enough, and the cost and size of the bus used in high­
end servers was not adaptable to mid-range servers. 

Three separate teams worked on the project. One 
team defined the system architecture and the system 
bus, and designed the bus control logic and the mem­
ory modules. 3 The second team designed the periph­
eral interface (I/0 ), which consists of the Peripheral 
Component Interconnect (PCI) and the Extended 
Industry Standard Architecture (EISA) buses, and its 
interface to the system bus (I/0 bridge).• The third 
team designed the CPU module. The remainder of 
this paper describes the CPU module design in detail. 
Before delving into the discussion of the CPU module, 
however, it is necessary to briefly describe how the sys­
tem bus functions. 

The system bus consists of 128 data bits, 16 check 
bits with the capability of correcting single-bit errors, 
36 address bits, and some 30 control signals. As many 
as 4 CPU modules, 8 memory modules, and 1 I/0 
module plug into the bus. The bus is 10 inches long 
and, with all modules in place, occupies a space of 
11 by 13 by 9 inches. With power supplies and the 
console, the entire system fits into an enclosure that is 
26 by 12 by 17.5 inches in dimension. 

CPU Module 

The CPU module is built around the Alpha 21164 
microprocessor. The module's main function is to 
provide an extended cache memory for the micro­
processor and to allow it to access the system bus. 

The microprocessor has its own internal cache 
memory consisting of a separate primary data cache 
(D-cache), a primary instruction cache (I-cache), and 
a second-level data and instruction cache (S-cache). 
These internal caches are relatively small, ranging in 
size from 8 kilobytes (KB) for the primary caches to 
96 KB for the secondary cache. Although the internal 
cache operates at microprocessor speeds in the 400-
megahertz (MHz) range, its small size would limit 
performance in most applications. To remedy this, the 
microprocessor has the controls for an optional exter­
nal cache as large as 64 megabytes (MB) in size. As 
implemented on the CPU module, the external cache, 
also known as the backup cache or B-cache, ranges 
from 2 MB to 4 MB in size, depending on the size 
of the memory chips used. In this paper, all references 
to the cache assume the 4-MB implementation. 

The cache is organized as a physical, direct-mapped, 
write-back cache with a 144-bit-wide data bus consist­
ing of 128 data bits and 16 check bits, which matches 
the system bus. The check bits protect data integrity 
by providing a means for single-bit-error correction 
and double-bit-error detection. A physical cache is one 
in which the address used to address the cache mem­
ory is translated by a table inside the microprocessor 
that converts software addresses to physical memory 
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locations. Direct-mapped refers to the way the cache 
memory is addressed, in which a subset of the physical 
address bits is used to uniquely place a main memory 
location at a particular location in the cache. When the 
microprocessor modifies data in a write-back cache, it 
only updates its local cache. Main memory is updated 
later, when the cache block needs to be used for a dif­
ferent memory address. When the microprocessor 
needs to access data not stored in the cache, it performs 
a system bus transaction (fill) that brings a 64-byte 
block of data from main memory into the cache. Thus 
the cache is said to have a 64-byte block size. 

Two types of cache chips are in common use in 
modern computers: synchronous and asynchronous. 
The synchronous memory chips accept and deliver 
data at discrete times linked to an external clock. The 
asynchronous memory elements respond to input 
signals as they are received, without regard to a clock. 
Clocked cache memory is easier to interface to the 
dock-based system bus. As a result, all transactions 
involving data flowing from the bus to the cache ( fill 
transactions) and from the cache to the bus (write 
microprocessor-based system transactions) are easier 
to implement and faster to execute. 

Across the industry, personal computer and server 
vendors have moved from the traditional asynchro­
nous cache designs to the higher-performing synchro­
nous solutions. Small synchronous caches provide 
a cost-effective performance boost to personal com­
puter designs. Server vendors push synchronous­
memory technology to its limit to achieve data rates 
as high as 200 MHz; that is, the cache provides new 
data to the microprocessor every 5 nanoseconds.5

•
6 

The AlphaServer 4100 server is DIGITAL's first prod­
uct to employ a synchronous module-level cache. 

At power-up, the cache contains no useful data, 
so the first memory access the microprocessor 
makes results in a miss. In the block diagram shown 
in Figure 1, the microprocessor sends the address out 
on two sets oflines: the index lines connected to the 
cache and the address lines connected to the system 
bus address transceivers. One of the cache chips, called 
the TAG, is not used for data but instead contains 
a table of valid cache-block addresses, each of which is 
associated with a valid bit. When the microprocessor 
addresses the cache, a subset of the high-order bits 
addresses the tag table. A miss occurs when either of 
the following conditions has been met. 

1. The addressed valid bit is clear, i.e., there is no valid 
data at that cache location. 

2. The addressed valid bit is set, but the block address 
stored at that location does not match the address 
requested by the microprocessor. 

Upon detection of a miss, the microprocessor 
asserts the READ MISS command on a set of fo ur 
command lines. This starts a sequence of events 
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that results in the address being sent to the system bus. 
The memory receives this address and after a delay 
(memory latency), it sends the data on the system bus. 
Data transceivers on the CPU module receive the 
data and start a cache fill transaction that results in 
64 bytes ( a cache block) being written into the cache 
as four consecutive 128-bit words with their associated 
check bits. 

In an SMP system, two or more CPUs may have the 
same data in their cache memories. Such data is known 
as shared, and the shared bit is set in the TAG for that 
address. The cache protocol used in the AlphaServer 
4100 series of servers allows each CPU to modify entries 
in its own cache. Such modified data is known as dirty, 
and the dirty bit is set in the TAG. If the data about to be 
modified is shared, however, the microprocessor resets 
the shared bit, and other CPUs invalidate that data in 
their own caches. The need is thus apparent for a way 
to let all CPUs keep track of data in other caches. This 
is accomplished by the process known as snooping, 
aided by several dedicated bus signals. 

To facilitate snooping, a separate copy of the TAG is 
maintained in a dedicated cache chip, called duplicate 
tag or DTAG. DTAG is controlled by an application­
specific integrated circuit (ASIC) called VCTY. VCTY 
and DTAG are located next to each other and in close 
proximity to the address transceivers. Their timing is 
tied to the system bus so that the address associated 
with a bus transaction can easily be applied to the 
DTAG, which is a synchronous memory device, and 
the state of the cache at that address can be read out. 
If that cache location is valid and the address that is 
stored in the DTAG matches that of the system bus 

t 

command (a hit in DTAG), the signal MC_SHARED 
may be asserted on the system bus by VCTY. If that 
location has been modified by the microprocessor, 
then MC_DIRTY is asserted. Thus each CPU is aware 
of the state of all the caches on the system. Other 
actions also take place on the module as part of this 
process, which is explained in greater detail in the sec­
tion dealing specifically with the VCTY. 

Because of the write-back cache organization, a spe­
cial type of miss transaction occurs when new data 
needs to be stored in a cache location that is occupied 
by dirty data. The old data needs to be put back into 
the main memory; otherwise, the changes that the 
microprocessor made will be lost. The process of 
returning that data to memory is called a victim write­
back transaction, and the cache location is said to be 
victimized. This process involves moving data out of 
the cache, through the system bus, and into the main 
memory, followed by new data moving from the main 
memory into the cache as in an ordinary fill transac­
tion. Completing this fill quickly reduces the time that 
the microprocessor is waiting for the data. To speed up 
this process, a hardware data buffer on the module is 
used for storing the old data while the new data is 
being loaded into the cache. This buffer is physically 
a part of the data transceiver since each bit of the trans­
ceiver is a shift register four bits long. One hundred 
twenty-eight shift registers can hold the entire cache 
block ( 512 bits) of victim data while the new data is 
being read in through the bus receiver portion of the 
data transceiver chip. In this manner, the microproces­
sor does not have to wait until the victim data is trans­
ferred along the system bus and into the main memory 
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before the fill portion of the transaction can take place. 
When the fill is completed, the victim data is shifted 
out of the victim buffer and into the main memory. 
This is known as an exchange, since the victim write­
back and fill transactions execute on the system bus in 
reverse of the order that was initiated by the micro­
processor. The transceiver has a signal called BYPASS; 
when asserted, it causes three of the four bits of the 
victim shift register to be bypassed. Consequently, for 
ordinary block write transactions, the transceiver oper­
ates without involving the victim buffer. 

B-Cache Design 

As previously mentioned, the B-cache uses synchro­
nous random-access memory (RAM) devices. Each 
device requires a clock that loads signal inputs into 
a register. The RAM operates in the registered input, 
flow-through output mode. This means that an input 
flip-flop captures addresses, write enables, and write 
data, but the internal RAM array drives read output 
data directly as soon as it becomes available, without 
regard to the clock. The output enable signal activates 
RAM output drivers asynchronously, independently of 
the clock. 

One of the fundamental properties of clocked logic 
is the requirement for the data to be present for some 
defined time ( setup time) before the clock edge, and to 
remain unchanged for another interval following the 
clock edge (hold time). Obviously, to meet the setup 
time, the clock must arrive at the RAM some time after 
the data or other signals needed by the RAM. To help 
the module designer meet this requirement, the micro­
processor may delay the RAM clock by one internal 
microprocessor cycle time ( approximately 2. 5 nanosec­
onds). A programmable register in the microprocessor 
controls whether or not this delay is invoked. This 
delay is used in the AlphaServer 4100 series CPU mod­
ules, and it eliminates the need for external delay lines. 

For increased data bandwidth, the cache chips used 
on CPU modules are designed to overlap portions of 
successive data accesses. The first data block becomes 
available at the microprocessor input after a delay 
equal to the BC_READ_SPEED parameter, which is 
preset at power-up. The following data blocks are 
latched after a shorter delay, BC_READ_SPEED­
WAVE. The BC_READ_SPEED is set at 10 micro­
processor cycles and the WAVE value is set to 4, so that 
BC_READ_SPEED-WAVE is 6. Thus, after the first 
delay of 10 microprocessor cycles, successive data 
blocks are delivered every 6 microprocessor cycles. 
Figure 2 illustrates these concepts. 

In Figure 2, the RAM clock at the microprocessor is 
delayed by one microprocessor cycle. The RAM clock 
at the RAM device is further delayed by clock buffer 
and network delays on the module. The address at the 
microprocessor is driven where the clock would have 
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occurred had it not been delayed by one microproces­
sor cycle, and the address at the RAM is further delayed 
by index buffer and network delays. Index setup at the 
RAM satisfies the minimum setup time required by the 
chip, and so does address hold. Data is shown as 
appearing after data access time ( a chip property), and 
data setup at the microprocessor is also illustrated. 

VCTY 

As described earlier, a duplicate copy of the micro­
processor's primary TAG is maintained in the DTAG 
RAM. If DTAG were not present, each bus address 
would have to be applied by the microprocessor to the 
TAG to decide if the data at this address is present in 
the B-cache. This activity would impose a very large 
load on the microprocessor, thus reducing the amount 
of useful work it could perform. The main purpose of 
the DTAG and its supporting logic contained in the 
VCTY is to relieve the microprocessor from having to 
examine each address presented by the system bus. 
The microprocessor is only interrupted when its pri­
mary TAG must be updated or when data must be 
provided to satisfy the bus request. 

VCTY Operation 
The VCTY contains a system bus interface consisting of 
the system bus command and address signals, as well as 
some system bus control signals required for the VCTY 
to monitor each system bus transaction. There is also 
an interface to the microprocessor so that the VCTY 
can send commands to the microprocessor (system-to­
CPU commands) and monitor the commands and 
addresses issued by the microprocessor. Last but not 
least, a bidirectional interface between the VCTY and 
the DTAG allows only those system bus addresses that 
require action to reach the microprocessor. 

While monitoring the system bus for commands 
from other nodes, the VCTY checks for matches 
between the received system bus address and the data 
from the DTAG lookup. A DTAG lookup is initiated 
anytime a valid system bus address is received by the 
module. The DTAG location for the lookup is selected 
by using system bus Address<2 l :6> as the index into 
the DTAG. If the DTAG location had previously been 
marked valid, and there is a match between the 
received system bus Address<38:22> and the data 
from the DTAG lookup, then the block is present in 
the microprocessor's cache. This scenario is called a 
cache hit. 

In parallel with this, the VCTY decodes the received 
system bus command to determine the appropriate 
update to the DTAG and determine the correct system 
bus response and CPU command needed to maintain 
system-wide cache coherency. A few cases are illus­
trated here, without any attempt at a comprehensive 
discussion of all possible transactions. 
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Figure 2 
Cache Read Transaction Showing Timing 

Assume that the DTAG shared bit is found to be set 
at this address, the dirty bit is not set, and the bus 
command indicates a write transaction. The DTAG 
valid bit is then reset by the VClY, and the micro­
processor is interrupted to do the same in the TAG. 

If the dirty bit is found to be set, and the command 
is a read, the MC_DIRTI_EN signal is asserted on the 
system bus to tell the other CPU that the location it is 
trying to access is in cache and has been modified by 
this CPU. At the same time, a signal is sent to the 
microprocessor requesting it to supply the modified 
data to the bus so the other CPU can get an up-to-date 
version of the data. 

If the address being examined by the VCTI was 
not shared in the DT AG and the transaction was a 
write, the valid bit is reset in the DTAG, and no bus 
signals are generated. The microprocessor is requested 
to reset the valid bit in the TAG. However, if the trans­
action was not a write, then shared is set in the DTAG, 
MC_SHARED is asserted on the bus, and a signal is 
sent to the microprocessor to set shared in the TAG. 

From these examples, it becomes obvious that only 
transactions that change the state of the valid, shared, or 
dirty TAG bits require any action on the part of the 

. . . . . . . . . .. . 

microprocessor. Since these transactions are relatively 
infrequent, the DTAG saves a great deal of microproces­
sor time and improves overall system performance. 

If the VCTI detects that the command originated 
from the microprocessor co-resident on the module, 
then the block is not checked for a hit, but the com­
mand is decoded so that the DTAG block is updated 
(if already valid) or allocated (i.e., marked valid, if not 
already valid). In the latter case, a fill transaction fol­
lows and the VClY writes the valid bit into the TAG at 
that time. The fill transaction is the only one for which 
the VClY writes directly into the TAG. 

All cycles of a system bus transaction are numbered, 
with cycle 1 being the cycle in which the system bus 
address and command are valid on the bus. The con­
trollers internal to VCTI rely on the cycle numbering 
scheme to remain synchronized with the system bus. 
By remaining synchronized with the system bus, all 
accesses to the DTAG and accesses from the VCTI to 
the microprocessor occur in fixed cycles relative to the 
system bus transaction in progress. 

The index used for lookups to the DTAG is pre­
sented to the DTAG in cycle 1 of the system bus trans­
action. In the event of a hit requiring an update of the 
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DTAG and primary TAG, the microprocessor interface 
signal, EV _ABUS_REQ, is asserted in cycles 5 and 6 of 
that system bus transaction, with the appropriate 
system-to-CPU command being driven in cycle 6. The 
actual update to the DTAG occurs in cycle 7, as does 
the allocation of blocks in the DTAG. 

Figure 3 shows the timing relationship of a system 
bus command to the update of the DTAG, including 
the sending of a system-to-CPU command to the 
microprocessor. The numbers along the top of the 
diagram indicate the cycle numbering. In cycle 1, 
when the signal MC_CA_L goes low, the system bus 
address is valid and is presented to the DTAG as the 
DTAG_INDEX bits. By the end of cycle 2, the DTAG 
data is valid and is clocked into the VCTI where it is 
checked for good parity and a match with the upper 
received system bus address bits. In the event of a hit, as 
is the case in this example, the microprocessor interface 
signal EV _ABUS_REQ is asserted in cycle 5 to indicate 
that the VCTI will be driving the microprocessor com­
mand and address bus in the next cycle. In cycle 6, the 
address that was received from the system bus is driven 
to the microprocessor along with the SETSHARED 
command. The microprocessor uses this command 
and address to update the primary tag control bits for 
that block. In cycle 7, the control signals DTAG_OE_L 
and DTAG_WEl_L are asserted low to update the con­
trol bits in the DTAG, thus indicating that the block is 
now shared by another module. 

SYSTEM BUS 
CYCLE NUMBER 

MC_CLK 

2 3 4 

DTAG Initialization 
Another important feature built into the VCTI design 
is a cursory self-test and initialization of the DTAG. 
After system reset, the VC1Ywrites all locations of the 
DTAG with a unique data pattern, and then reads the 
entire DTAG, comparing the data read versus what 
was written and checking the parity. A second write­
read-compare pass is made using the inverted data pat­
tern. This inversion ensures that all DTAG data bits are 
written and checked as both a I and a 0. In addition, 
the second pass of the initialization leaves each block 
of the DTAG marked as invalid (not present in the 
B-cache) and with good parity. The entire initializa­
tion sequence takes approximately 1 millisecond per 
megabyte of cache and finishes before the micro­
processor completes its self-test, avoiding special han­
dling by firmware. 

Logic Synthesis 
The VCTI ASIC was designed using the Verilog 
Hardware Description Language (HDL). The use of 
HDL enabled the design team to begin behavioral 
simulations quickly to start the debug process. 

In parallel with this, the Verilog code was loaded 
into the Synopsys Design Compiler, which synthe­
sized the behavioral equations into a gate-level design. 
The use ofHDL and the Design Compiler enabled the 
designers to maintain a single set of behavioral models 
for the ASIC, without the need to manually enter 
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Figure 3 
DTAG Operation 
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schematics to represent the gate-level design. The syn­
thesis process is shown in a flowchart form in Figure 4. 
Logic verification is an integral part of this process, 
and the flowchart depicts both the synthesis and verifi­
cation, and their interaction. 

Only the synthesis is explained at this time. The ver­
ification process depicted on the right side of the flow­
chart is covered in a later section of this paper. 

As shown on the left side of the flowchart, the logic 
synthesis process consists of multiple phases, in which 
the Design Compiler is invoked repeatedly on each 
sub block of the design, feeding back the results from 
the previous phase. The Synopsys Design Compiler 
was supplied with timing, loading, and area constraints 
to synthesize the VC1Y into a physical design that met 
technology and cycle-time requirements. Since the 
ASIC is a small design compared to technology capa­
bilities, the Design Compiler was run without an area 
constraint to facilitate timing optimization. 

The process requires the designer to supply timing 
constraints only to the periphery of the ASIC (i.e., the 

I/0 pins). The initial phase of the synthesis process cal­
culates the timing constraints for internal networks that 
connect between subblocks by invoking the Design 
Compiler with a gross target cycle time oflOO nanosec­
onds (actual cycle time of the ASIC is 15 nanoseconds). 
At the completion of this phase, the process analyzes 
all paths that traverse multiple hierarchical subblocks 
within the design to determine the percentage of time 
spent in each block. The process then scales this data 
using the actual cycle time of 15 nanoseconds and 
assigns the timing constraints for internal networks at 
subblock boundaries. Multiple iterations may be 
required to ensure that each subblock is mapped to 
logic gates with the best timing optimization. 

Once the Design Compiler completes the subblock 
optimization phase, an industry-standard electronic 
design interchange format (EDIF) file is output. The 
EDIF file is postprocessed by the SPIDER tool to gen­
erate files that are read into a timing analyzer, Topaz. A 
variety of industry-standard file formats can be input 
into SPIDER to process the data. Output files can then 
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be generated and easily read by internal CAD tools 
such as the DECSIM logic simulator and the Topaz 
timing analyzer. 

Topaz uses information contained in the ASIC tech­
nology library to analyze the timing of the design as it 
was mapped by the Design Compiler. This analysis 
results in output data files that are used to constrain 
the ASIC layout process and obtain the optimal layout. 
Logic paths are prioritized for placement of the gates 
and routing of the connections based on the timing 
margins as determined by Topaz. Those paths with the 
least timing margin are given the highest priority in 
the layout process. 

Logic Verification 

This section of the paper discusses logic verification 
and focuses on the use ofbehavioral model simulation. 
It should also be noted that once the Design Compiler 
had mapped the design to gates, SPIDER was also 
used to postprocess the EDIF file so that DECSIM 
simulation could be run on the structural design. This 
process allowed for the verification of the actual gates 
as they would be built in the ASIC. 

The right-hand side of Figure 4 illustrates the logic 
verification process using a behavioral simulation 
model. To verify the logic, the system must be per­
forming transactions that exercise all or most of its 
logic. Ideally, the same software used in physical sys­
tems should be run on the design, but this is not prac­
tical because of the long run times that would be 
required. Therefore, specialized software tools are used 
that can accomplish the task in a shorter time. The ver­
ification team developed two such tools: the Random 
Exerciser and the Functional Checker. They are 
described in detail in this section. 

Random Exerciser 
Verification strategy is crucial to the success of the 
design. There are two approaches to verification test­
ing, directed and random. Directed or focused tests 
require short run times and target specific parts of the 
design. To fully test a complex design using directed 
tests requires a very large number of tests, which take 
a long time to write and to run. Moreover, a directed 
test strategy assumes that the designer can foresee 
every possible system interaction and is able to write 
a test that will adequately exercise it. For these reasons, 
random testing has become the preferred methodol­
ogy in modern logic designs.7 Directed tests were not 
completely abandoned, but they compose only a small 
portion of the test suite. 

Random tests rely on a random sequence of events 
to create the failing conditions. The goal of the 
Random Exerciser was to create a framework that 
would allow the verification team to create random 
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tests quickly and efficiently without sacrificing flexibil­
ity and portability. It consisted of three parts: the test 
generator, the exerciser code, and the bus monitor. 

Test Generator This collection of DECSIM commands 
randomly generates the test data consisting of addresses 
(both 1/0 space and memory space) and data patterns. 
The user controls the test data generator by setting test 
parameters. For example, to limit the range of working 
address space to the uppermost 2 MB of a 4-MB mem­
ory space, the working address space parameter is 
defined as [200000, 400000]. It tells the test generator 
to choose addresses within that range only-greater 
than 2 MB and less than 4 MB. 

Exerciser Code This code is a collection of routines or 
sequences of Alpha macrocode instructions to be exe­
cuted by the microprocessors. Each routine performs 
a unique task using one of the addresses supplied by 
the test generator. For example, routine 1 performs 
a read-verify-modify-write sequence. Routine 2 is sim­
ilar to routine 1, but it reads another address that is 
8 MB away from the original address, before writing 
to the cache. Since the B-cache is one-way associative, 
the original address is then evicted from the cache. 
Lastly, routine 3 performs a lock operation. 

Most routines were of the type described above; 
they used simple load and store instructions. A few 
routines were of a special type: one generated inter­
processor interrupts, others serviced interrupts, 
another routine generated errors ( using addresses to 
nonexistent memory and 1/0 space) and checked that 
the errors were handled properly, and another routine 
exercised lock-type instructions more heavily. 

The activity on the system bus generated by the 
CPUs was not enough to verify the logic. Two addi­
tional system bus agents ( models of system bus devices) 
simulating the 1/0 were needed to simulate a full 
system-level environment. The 1/0 was modeled using 
so-called commander models. These are not HDL or 
D ECSIM behavioral models of the logic but are written 
in a high-level language, such as C. From the perspec­
tive of the CPU, the commander models behave like 
real logic and therefore are adequate for the purpose of 
verifying the CPU module. There were several reasons 
for using a commander model instead of a logic/ 
behavioral model. A complete 1/0 model was not yet 
available when the CPU module design began. The 
commander model was an evolution of a model used in 
a previous project, and it offered much needed flexibil­
ity. It could be configured to act as either an I/0 inter­
face or a CPU module and was easily programmable to 
flood the system bus with even more activity: memory 
reads and writes; interrupts to the CPUs by randomly 
inserting stall cycles in the pipeline; and assertion of 
system bus signals at random times. 



Bus Monitor The bus monitor is a collection of 
DECSIM simulation watches that monitor the system 
bus and the CPU internal bus. The watches also report 
when various bus signals are being asserted and 
deasserted and have the ability to halt simulation if 
they encounter cache incoherency or a violation. 

Cache incoherency is a data inconsistency, for exam­
ple, a piece of nondirty data residing in the B-cache 
and differing from data residing in main memory. 
A data inconsistency can occur among the CPU mod­
ules: for example, two CPU modules may have differ­
ent data in their caches at the same memory address. 
Data inconsistencies are detected by the CPU. Each 
one maintains an exclusive (nonshared) copy of its 
data that it uses to compare with the data it reads from 
the test addresses. If the two copies differ, the CPU 
signals to the bus monitor to stop the simulation and 
report an error. 

The bus monitor also detects other violations: 

1. No activity on the system bus for 1,000 consecutive 
cycles 

2. Stalled system bus for 100 cycles 

3. Illegal commands on the system bus and CPU 
internal bus 

4. Catastrophic system error (machine check) 

The combination of random CPU and 1/0 activity 
flooded the system bus with heavy traffic. With the 
help of the bus monitor, this technique exposed bugs 
quickly. 

As mentioned, a few directed tests were also written. 
Directed tests were used to re-create a situation that 
occurred in random tests. If a bug was uncovered using 
a random test that ran three days, a directed test was 
written to re-create the same failing scenario. Then, 
after the bug was fixed, a quick run of the directed test 
confirmed that the problem was indeed corrected. 

Functional Checker 
During the initial design stages, the verification team 
developed the Functional Checker (FC) for the fol­
lowing purposes: 

• To functionally verify the HDL models of all AS I Cs 
in the AlphaServer 4100 system 

• To assess the test coverage 

The FC tool consists of three applications: the 
parser, the analyzer, and the report generator. The 
right-hand side of Figure 4 illustrates how the FC was 
used to aid in the functional verification process. 

Parser Since DECSIM was the chosen logic simula­
tor, the first step was to translate all HDL code to 
BDS, a DECSIM behavior language. This task was 

performed using a tool called V2BDS. The parser's 
task was to postprocess a BDS file: extract information 
and generate a modified version ofit. The information 
extracted was a list of control signals and logic state­
ments (such as logical expressions, if-then-else state­
ments, case statements, and loop constructs). This 
information was later supplied to the analyzer. The 
modified BDS was functionally equivalent to the origi­
nal code, but it contained some embedded calls to 
routines whose task was to monitor the activity of the 
control signals in the context of the logic statements. 

Analyzer Written in C, the analyzer is a collection of 
monitoring routines. Along with the modified BDS 
code, the analyzer is compiled and linked to form the 
simulation model. During simulation, the analyzer 
is invoked and the routines begin to monitor the activ­
ity of the control signals. It keeps a record of all con­
trol signals that form a logic statement. For example, 
assume the following statement was recognized by the 
parser as one to be monitored. 

(A XOR B) AND C 

The analyzer created a table of all possible combina­
tions oflogic values for A, B, and C; it then recorded 
which ones were achieved. At the start of simulation, 
there was zero coverage achieved. 

ABC Achieved 
000 No 
001 No 
010 No 
011 No 
100 No 
101 No 
110 No 
111 No 

Achieved coverage = 0 percent 

Further assume that during one of the simulation 
tests generated by the Random Exerciser, A assumed 
both O and I logic states, while B and C remained con­
stantly at 0. At the end of simulation, the state of the 
table would be the following: 

ABC Achieved 
000 Yes 
001 No 
010 No 
011 No 
100 Yes 
101 No 
110 No 
111 No 

Achieved coverage= 25 percent 
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Report Generator The report generator application 
gathered all tables created by the analyzer and gener­
ated a report file indicating which combinations were 
not achieved. The report file was then reviewed by the 
verification team and by the logic design team. 

The report pointed out deficiencies in the verifica­
tion tests. The verification team created more tests 
that would increase the "yes" count in the "Achieved" 
column. For the example shown above, new tests 
might be created that would make signals B and C 
assume both O and 1 logic states. 

The report also pointed out faults in the design, 
such as redundant logic. In the example shown, the 
logic that produces signal B might be the same as the 
logic that produces signal C, a case of redundant logic. 

The FC tool proved to be an invaluable aid to the 
verification process. It was a transparent addition to the 
simulation environment. With FC, the incurred degra­
dation in compilation and simulation time was negligi­
ble. It performed two types of coverage analysis: 
exhaustive combinatorial analysis (as was described 
above) and bit-toggle analysis, which was used for vec­
tored signals such as data and address buses. Perhaps 
the most valuable feature of the tool was the fact that it 
replaced the time-consuming and compute-intensive 
process of fault grading the physical design to verify test 
coverage. FC established a new measure of test cover­
age, the percentage of achieved coverage. In the above 
example, the calculated coverage would be two out of 
eight possible achievable combinations, or 25 percent. 

For the verification of the cached CPU module, the 
FC tool achieved a final test coverage of95.3 percent. 

Module Design Process 

As the first step in the module design process, we used 
the Powerview schematic editor, part of the Viewlogic 
CAD tool suite, for schematic capture. An internally 
developed tool, V2LD, converted the schematic to a 
form that could be simulated by DECSIM. This process 
was repeated until DECSIM ran without errors. 

During this time, the printed circuit (PC) layout of 
the module was proceeding independently, using the 
ALLEGRO CAD tools. The layout process was partly 
manual and partly automated with the CCT router, 
which was effective in following the layout engineer's 
design rules contained in the DO files. 

Each version of the completed layout was translated 
to a format suitable for signal integrity modeling, 
using the internally developed tools ADSconvert and 
MODULEX. The MODULEX tool was used to extract 
a module's electrical parameters from its physical 
description. Signal integrity modeling was performed 
with the HSPICE analog simulator. We selected 
HSPICE because of its universal acceptance by the 
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industry. Virtually all component vendors will, on 
request, supply HSPICE models of their products. 
Problems detected by HSPICE were corrected either 
by layout modifications or by schematic changes. The 
module design process flow is depicted in Figure 5. 

Software Tools and Models 
Three internally developed tools were of great value. 
One was MSPG, which was used to display the 
HSPICE plots; another was MODULEX, which auto­
matically generated HSPICE subcircuits from PC 
layout files and performed cross-talk calculations. 
Cross-talk amplitude violations were reported by 
MODULEX, and the offending PC traces were moved 
to reduce coupling. Finally, SALT, a visual PC display 
tool, was used to verify that signal routing and branch­
ing conformed to the design requirements. 

One of the important successes was in data line 
modeling, where the signal lengths from the RAMs 
to the microprocessor and the transceivers were very 
critical. By using the HSPICE .ALTER statement and 
MODULEX subcircuit generator command, we could 
configure a single HSPICE deck to simulate as many as 
36 data lines. As a result, the entire data line group 
could be simulated in only four HSPICE runs. In an 
excellent example of synergy between tools, the script 
capability of the MSPG plotting tool was used to 
extract, annotate, and create PostScript files of wave­
form plots directly from the simulation results, with­
out having to manually display each waveform on the 
screen. A mass printing command was then used to 
print all stored PostScript files. 

Another useful HSPICE statement was .MEASURE, 
which measured signal delays at the specified threshold 
levels and sent the results to a file. From this, a separate 
program extracted clean delay values and calculated the 
maximum and minimum delays, tabulating the results 
in a separate file. Reflections crossing the threshold 
levels caused incorrect results to be reported by 
the .MEASURE statement, which were easily seen in 
the tabulation. We then simply looked at the waveform 
printout to see where the reflections were occurring. 
The layout engineer was then asked to modify those 
signals by changing the PC trace lengths to either the 
microprocessor or the transceiver. The modified signals 
were then resimulated to verify the changes. 

Timing Verification 

Overall cache timing was verified with the Timing 
Designer timing analyzer from Chronology Corpor­
ation. Relevant timing diagrams were drawn using 
the waveform plotting facility, and delay values and 
controlling parameters such as the microprocessor 
cycle interval, read speed, wave, and other constants 
were entered into the associated spreadsheet. All 
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delays were expressed in terms ofHSPICE-simulated 
values and those constants, as appropriate. This 
method simplified changing parameters to try various 
"what if" strategies. The timing analyzer would 
instantly recalculate the delays and the resulting mar­
gins and report all constraint violations. This tool was 
also used to check timing elsewhere on the module, 
outside of the cache area, and it provided a reasonable 
level of confidence that the design did not contain any 
timing violations. 

Signal Integrity 
In high-speed designs, where signal propagation times 
are a significant portion of the clock-to-clock interval, 
reflections due to impedance mismatches can degrade 
the signal quality to such an extent that the system will 
fail. For this reason, signal integrity (SI) analysis is an 
important part of the design process. Electrical con­
nections on a module can be made following a direct 

point-to-point path, but in high-speed designs, many 
signals must be routed in more complicated patterns. 
The most common pattern involves bringing a signal 
to a point where it branches out in several directions, 
and each branch is connected to one or more 
receivers. This method is referred to as treeing. 

The SI design of this module was based on the 
principle that component placement and proper sig­
nal treeing are the two most important elements of 
a good SI design. However, ideal component place­
ment is not always achievable due to overriding factors 
other than SI. This section describes how successful 
design was achieved in spite ofless than ideal compo­
nent placement. 

Data Line Length Optimization 
Most of the SI work was directed to optimizing the 
B-cache, which presented a difficult challenge because 
of long data paths. The placement of major module 

Digital Technical Journal Vol. 8 No. 4 1996 31 



32 

data bus components (microprocessor and data trans­
ceivers) was dictated by the enclosure requirements 
and the need to fit four CPUs and eight memory mod­
ules into the system box. Rather than allowing the 
microprocessor heat-sink height to dictate module 
spacing, the system designers opted for fitting smaller 
memory modules next to the CPUs, filling the space 
that would have been left empty if module spacing 
were uniform. As a consequence, the microprocessor 
and data transceivers had to be placed on opposite 
ends of the module, which made the data bus exceed 
11 inches in length. Figure 6 shows the placement of 
the major components. 

Each cache data line is connected to four compo­
nents: the microprocessor chip, two RAMs, and the 
bus transceiver. As shown in Table 1, any one of these 
components can act as the driver, depending on the 
transaction in progress. 

The goal of data line design was to obtain clean sig­
nals at the receivers. Assuming that the microproces­
sor, RAMs, and the transceiver are all located in-line 
without branching, with the distance between the two 
RAMs near zero, and since the positions of the micro­
processor and the transceivers are fixed, the only vari­
able is the location of the two RAMs on the data line. 
As shown in the waveform plots of Figures 7 and 8, 
the quality of the received signals is strongly affected 
by this variable. In Figure 7, the reflections are so large 
that they exceed threshold levels. By contrast, the 
reflections in Figure 8 are very small, and their wave­
forms show signs of cancellation. From this it can 
be inferred that optimum PC trace lengths cause the 
reflections to cancel. A range of acceptable RAM posi­
tions was found through HSPICE simulation. The 
results of these simulations are summarized in Table 2. 

INDEX BUFFERS DATA RAMS 
(THREE MORE ON (EIGHT MORE ON 

THE OTHER SIDE) ~-----l THE OTHER SIDE) 

MICRO- ii DD D 

PROCESSOR MICRO- D D 
CLOCK PROCESSOR 

[JfUITRY D D D 

D ~[:JjDD D DJ;PROGRAMMABLE 
~ ASIC DD 11 LOGIC 

Ll D DATA TRANSCEIVERS 

Figure 6 

PROGRAMMABLE 
LOGIC 

Placement of Major Components 

Table 1 
Data Line Components 

Transaction 

Private cache read 

Private cache write 

Cache fill 

Cache miss with victim 

Write block 

Digital Technical Journal 

ODD DDDDDDDDD 

ADDRESJ-N-D_C_O_M_M_A_N_D-----~ SYSTEM BUS 

TRANSCEIVERS CONNECTOR 

Driver 

RAM 

Microprocessor 

Transceiver 

RAM 

Microprocessor 

Vol. 8 No. 4 1996 

Receiver 

Microprocessor 

RAM 

RAM and microprocessor 

Transceiver 

RAM and transceiver 



4.0 

3.0 

2.0 

~ 
51.0 
> 

0.0 

-1 .0 

-2.0 
40 

Figure 7 

45 50 55 60 65 
NANOSECONDS 

70 75 

Private Cache Read Showing Large Reflections Due to 
Unfavorable Trace Length Ratios 

4.0 

3.0 

2.0 

~ 
51 .0 
> 

0.0 

-1.0 

80 

-2.0 .__ _ _.__ _ _._ _ _.__ _ __._ _ __,, __ L-_ _.__ _ _.__ 

40 45 50 

Figure 8 

55 60 65 

NANOSECONDS 

70 75 

Private Cache Read Showing Reduced Reflections with 
Optimized Trace Lengths 

Table 2 

80 

In the series of simulations given in Table 2, the 
threshold levels were set at 1.1 and 1.8 volts. This was 
justified by the use of perfect transmission lines. The 
lines were lossless, had no vias, and were at the lowest 
impedance level theoretically possible on the module 
(55 ohms). The entries labeled SR in Table 2 indicate 
unacceptably large delays caused by signal reflections 
recrossing the threshold levels. Discarding these 
entries leaves only those with microprocessor-to­
RAM distance of 3 or more inches and the RAM­
to-transceiver distance of at least 6 inches, with the total 
microprocessor-to-transceiver distance not exceeding 
11 inches. The layout was done within this range, and 
all data lines were then simulated using the network 
subcircuits generated by MODULEX with threshold 
levels set at 0.8 and 2.0 volts. These subcircuits 
included the effect of vias and PC traces run on several 
signal planes. That simulation showed that all but 
12 of the 144 data- and check-bit lines had good sig­
nal integrity and did not recross any threshold levels. 
The failing lines were recrossing the 0.8-volt thresh­
old at the transceiver. Increasing the length of the 
RAM-to-transceiver segment by 0.5 inches corrected 
this problem and kept signal delays within accept­
able limits. 

Approaches other than placing the components 
in-line were investigated but discarded. Extra signal 
lengths require additional signal layers and increase 
the cost of the module and its thickness. 

RAM Clock Design 
We selected Texas Instruments' CDC2351 clock drivers 
to handle the RAM clock distribution network. The 
CDC2351 device has a well-controlled input-to-output 
delay (3.8 to 4.8 nanoseconds) and 10 drivers in each 
package that are controlled from one input. The fairly 

Acceptable RAM Positions Found with HSPICE Simulations 

PC Trace Length Write Delay Read Delay 
(Inches) (Nanoseconds) (Nanoseconds) 

Microprocessor RAM to Microprocessor RAM to RAM to 
to RAM Transceiver to RAM Microprocessor Transceiver 

Rise Fall Rise Fall Rise Fall 

2 7 0.7 2.3 0.9 SR 1.1 1.4 
2 8 0.7 2.7 SR SR 1.5 1.4 
2 9 0.6 3.1 SR SR 1.7 1.5 
3 6 0.9 2.1 1.2 1.1 0.9 1.0 
3 7 0.9 2.4 1.0 1.1 1.4 1.3 
3 8 0.9 2.9 1.0 1.3 1.5 1.3 
4 5 1.1 1.8 1.2 1.4 0.9 SR 
4 6 1.3 2.2 1.4 1.4 0.9 1.0 
4 .1 1.2 2.6 1.3 1.4 1.2 1.2 
5 4 1.5 1.7 1.5 1.7 SR SR 
5 5 1.4 2.1 1.8 1.7 SR SR 
5 6 1.6 2.4 1.7 1.4 0.9 1.2 

Note: Signal reflections recrossing the threshold levels caused unacceptable delays; these entries were discarded. 
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long delay through the part was beneficial because, 
as shown in Figure 2, clock delay is needed to achieve 
adequate setup times. Two CDC2351 clock drivers, 
mounted back to back on both sides of the PC board, 
were required to deliver clock signals to the 17 RAMs. 

The RAMs were divided into seven groups based on 
their physical proximity. As shown in Figure 9, there 
are four groups of three, two groups of two, and a sin­
gle RAM. Each of the first six groups was driven by 
two clock driver sections connected in parallel through 
resistors in series with each driver to achieve good load 
sharing. The seventh group has only one load, and one 
CDC2351 section was sufficient to drive it. HSPICE 
simulation showed that multiple drivers were needed 
to adequately drive the transmission line and the load. 
The load connections were made by short equal 
branches of fewer than two inches each. The length of 
the branches was critical for achieving good signal 
integrity at the RAMs. 

Data Line Damping 
In the ideal world, all signals switch only once per clock 
interval, allowing plenty of setup and hold time. In the 
real world, however, narrow pulses often precede valid 
data transitions. These tend to create multiple reflec­
tions superimposed on the edges of valid signals. The 
reflections can recross the threshold levels and increase 
the effective delay, thus causing data errors. 

Anticipating these phenomena, and having seen 
their effects in previous designs, designers included 
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series-damping resistors in each cache data line, as 
shown in Figure 10. Automatic component placement 
machines and availability of resistors in small packages 
made mounting 288 resistors on the module a painless 
task, and the payoff was huge: nearly perfect signals 
even in the presence of spurious data transitions 
caused by the microprocessor's architectural features 
and RAM characteristics. Figure 11 illustrates the han­
dling of some of the more difficult waveforms. 

Performance Features 

This section discusses the performance of the 
AlphaServer 4100 system derived from the physical 
aspects of the CPU module design and the effects of 
the duplicate TAG store. 

Physical Aspects of the Design 
As previously mentioned, the synchronous cache was 
chosen primarily for performance reasons. The archi­
tecture of the Alpha 21164 microprocessor is such that 
its data bus is used for transfers to and from main mem­
ory ( fills and writes ) as well as its B-cache. 8 As system 
cycle times decrease, it becomes a challenge to manage 
memory transactions without requiring wait cycles 
using asynchronous cache RAM devices. For example, 
a transfer from the B-cache to main memory (victim 
transaction) has the following delay components: 

1. The microprocessor drives the address off-chip. 

2. The address is fanned out to the RAM devices. 

3. The RAMs retrieve data. 

4. The RAMs drive data to the bus interface device. 

5. The bus interface device requires a setup time. 

Worst-case delay values for the above items might 
be the following: 

1. 2.6 nanoseconds8 

2. 5.0 nanoseconds 

3. 9.0 nanoseconds 

4. 2.0 nanoseconds 

5. 1.0 nanoseconds 

Total: 19.6 nanoseconds 

Thus, for system cycle times that are significantly 
shorter than 20 nanoseconds, it becomes impossible 
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Figure 10 
RAM Driving the Microprocessor and Transceiver through 
10-ohm Series Resistors 



Figure 11 
Handling of Difficult Waveforms 

to access the RAM without using multiple cycles per 
read operation, and since the full transfer involving 
memory comprises four of these operations, the 
penalty mounts considerably. Due to pipelining, the 
synchronous cache enables this type of read operation 
to occur at a rate of one per system cycle, which is 
15 nanoseconds in the AlphaServer 4100 system, 
greatly increasing the bandwidth for data transfers to 
and from memory. Since the synchronous RAM is 
a pipeline stage, rather than a delay element, the win -
dow of valid data available to be captured at the bus 
interface is large. By driving the RAMs with a delayed 
copy of the system clock, delay components 1 and 2 
are hidden, allowing faster cycling of the B-cache. 

When an asynchronous cache communicates with 
the system bus, all data read out from the cache must 
be synchronized with the bus clock, which can add 
as many as two clock cycles to the transaction. The 
synchronous B-cache avoids this performance penalty 
by cycling at the same rate as the system bus.2 

In addition, the choice of synchronous RAMs pro­
vides a strategic benefit; other microprocessor vendors 
are moving toward synchronous caches. For example, 
numerous Intel Pentium microprocessor-based sys­
tems employ pipeline-burst, module-level caches using 
synchronous RAM devices. The popularity of these 
systems has a large bearing on the RAM industry.9 It is 
in DIGITAL's best interest to follow the synchronous 
RAM trend of the industry, even for Alpha-based 
systems, since the vendor base will be larger. These 
vendors will also be likely to put their efforts into 
improving the speeds and densities of the best-selling 
synchronous RAM products, which will facilitate 
improving the cache performance in future variants of 
the processor modules. 

Effect of Duplicate Tag Store (DTAG) 
As mentioned previously, the DTAG provides a mech­
anism to filter irrelevant bus transactions from the 

DATA LINE SCALE: 
1.00 VOLT/DIVISION, 
OFFSET 2.000 VOL TS, 
INPUT DC 50 OHMS 

TIME BASE SCALE: 
10.0 NANOSECONDS/ 
DIVISION 

Alpha 21164 microprocessor. In addition, it provides 
an opportunity to speed up memory writes by the I/0 
bridge when they modify an amount of data that is 
smaller than the cache block size of 64 bytes (partial 
block writes). 

The AlphaServer 4100 I/0 subsystem consists of 
a PCI mother board and a bridge. The PCI mother 
board accepts I/0 adapters such as network interfaces, 
disk controllers, or video controllers. The bridge pro­
vides the interface between PCI devices and between 
the CPUs and system memory. The I/0 bridge reads 
and writes memory in much the same way as the CPUs, 
but special extensions are built into the system bus pro­
tocol to handle the requirements of the I/0 bridge. 

Typically, writes by the I/0 bridge that are smaller 
than the cache block size require a read-modify-write 
sequence on the system bus to merge the new data 
with data from main memory or a processor's cache. 
The AlphaServer 4100 memory system typically trans­
fers data in 64-byte blocks; however, it has the ability 
to accept writes to aligned 16-byte locations when the 
I/0 bridge is sourcing the data. When such a partial 
block write occurs, the processor module checks the 
DTAG to determine if the address hits in the Alpha 
21164 cache hierarchy. If it misses, the partial write is 
permitted to complete unhindered. If there is a hit, 
and the processor module contains the most recently 
modified copy of the data, the I/0 bridge is alerted 
to replay the partial write as a read-modify-write 
sequence. This feature enhances DMA write perfor­
mance for transfers smaller than 64 bytes since most of 
these references do not hit in the processor cache.• 

Conclusions 

The synchronous B-cache allows the CPU modules 
to provide high performance with a simple architec­
ture, achieving the price and performance goals of 
the AlphaServer 4100 system. The AlphaServer 4100 
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CPU design team pioneered the use of synchronous 
RAMs in an Alpha microprocessor-based system 
design, and the knowledge gained in bringing a design 
from conception to volume shipment will benefit 
future upgrades in the AlphaServer 4100 server family, 
as well as products in other platforms. 
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The Alpha Server 4100 
Low-cost Clock 
Distribution System 

High-performance server systems generally 
require expensive custom clock distribution 
systems to meet tight timing constraints. 
These clock systems typically have expensive, 
application-specific integrated circuits for 
the bus interface and require controlled etch 
impedance for the clock distribution on each 
module in the server system. The DIGITAL 
AlphaServer 4100 system utilizes phase-locked 
loop circuits, clock treeing, and termination 
techniques to provide a cost-effective, low­
skew clock distribution system. This system 
provides multiple copies of the clock, which 
allows off-the-shelf components to be used 
for the bus interface, which in turn results in 
lower costs and a quicker system power-up. 
Component placement and network com­
pensation eliminated the need for controlled­
impedance circuit boards. The clock system 
design makes it possible to upgrade servers 
with faster processor options and bus speeds 
without changing components. 
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Every digital computer system needs a clock distribu­
tion system to synchronize electronic communication. 
The primary metric used to quantify the performance 
of a clock distribution system is clock skew. Synch­
ronous systems require multiple copies (outputs) of 
the same clock, and clock skew is the unwanted delay 
between any two of the copies. In general, the lower 
the skew, the better the clock system. Clock skew is one 
of several parameters that affect bus speed. Bus length, 
bus loading, driver and receiver technology, and bus 
signal voltage swing also affect bus speed. If problems 
arise that jeopardize meeting timing goals, though, 
these additional parameters are difficult to change 
because of physical and architectural constraints. 

The DIGITAL AlphaServer 4100 clock distribution 
system is a compact, low-cost solution for a high­
performance midrange server. The clock system pro­
vides more copies of the clock than machines in the 
same class typically need. The distribution system 
allows expansion on those module designs where 
more copies of the clock are needed with minimal 
skew. The system is based on a low-cost, off-the-shelf 
phase-locked loop (PLL) as the basic building block. 
The simple application of the PLL alone would not 
provide low clock skew, though. Signal integrity tech­
niques and trade-offs were needed to manage skew 
throughout the system. The technical challenges were 
to design a low-cost system that would ( 1) require 
only a small area on the printed wiring boards (PWBs), 
(2) be adaptable to various speed grades (options) of 
CPUs, and (3) have good performance, i.e., low skew. 
This paper discusses the techniques used to optimize 
the performance of an off-the-shelf PLL-based clock 
distribution system. 

Design Goals 

Based on its experience with previous platform designs, 
the design team considered a clock skew under 10 per­
cent of the bus cycle time a reasonable target for a 
midrange server system. The cycle time design target of 
the AlphaServer 4100 system was 15 nanoseconds ( ns ); 
consequently, the skew goal was 1.5 ns or less. This 
goal would allow a total of 13.5 ns for clock to out­
put of the transmitting module (Teo) ( the time the 



transmitting module needs to drive data to a stable 
state from a clock edge); setup and hold time require­
ments for the receiving module ( the minimum time 
that data needs to be stable at the receiver [flop] before 
and after the local clock edge); and bus settling time. 
The following is a breakdown of the timing based on 
the selection of components for the bus interface: 

Bus cycle 
Transmitting module (Teo) 
Setup and hold time for the 

receiving module 
Clock skew 
Time allocated for bus settling 

15.0 ns 
5.1 ns 

1.5 ns 
1.5 ns 
6.9 ns 

The selection of components was based on availabil­
ity, speed, cost, and size. The goal was to eliminate the 
need for costly application-specific integrated circuits 
(ASICs) and still meet the critical timing performance. 

The AlphaServer 4100 bus is a simple distributed 
bus, 305 millimeters (mm) long, with 10 loads (mod­
ules) and parallel termination at both ends. The first­
order estimate of bus settling time assumed one full 
reflection or twice the loaded velocity of propagation 
delay end to end. The estimate took into account bus 
timing optimization, which is discussed later in this 
paper. It was also estimated that 25 copies of the clock 
would be required for the processor modules, and 
46 copies of the clock would be required for certain 
memory modules (synchronous dynamic random­
access memory [SDRAM]-based designs). Only the 
rising edge of the clock could be used for critical rim -
ing. If the falling edge were used for latches, then 
clock skew would dramatically increase because of the 
duty cycle distortion associated with PLLs. The mem­
ory module design allowed very little space for clock 
circuitry and needed more copies of the clock than any 
other module design in the system. Further, the physi­
cal size of the memory module determined the actual 
size of the server box. Trade-offs had to be made in 
the design and timing to make the off-the-shelf solu -
tion work. The key goal was to optimize the solution 
to get the worst-case skew as close as possible to the 
1.5 ns estimated goal and to find system trade-offs to 
allow higher module-to-module skew for a 15 ns bus. 

A survey of custom clock circuits available within 
DIGITAL and off-the-shelf, commercially available 
PLLs suggested that a custom circuit was required. 
Unfortunately, the circuits that would be available 
within our project schedule were costly, consumed far 
too much circuit board area, required emitter-coupled 
logic (ECL) or positive emitter-coupled logic (PECL) 
inputs, and dissipated substantial power. The best off­
the-shelf solution was cost-effective, required less 
space than custom circuits, and provided adequate 
fan-out. The skew performance, however, ranged 
from 2 ns to 4 ns, which exceeded the design goal. 
Given the project time constraints and the design 

benefits of the off-the-shelf solution, it was paramount 
that we make the off-the-shelf solution work. 

Bus Trade-offs 

The design philosophy of using stock components for 
the bus interface allowed some latitude in the bus 
design. Typical bus interfaces use large ASICs, each 
handling up to 50 percent of the data bits. Such a 
design results in a relatively long dispersion etch from 
the connector to the ASIC. These devices can range 
in size from 200 to 400 pins and can require up to 
38 mm of etch from the ASIC to the connector. SPICE 
simulations demonstrated that the length of each 
module's dispersion etch or bus "stubbing" had a pro­
found effect on bus settling time. 1 Figure 1 shows bus 
settling time (worst-case driver-receiver combination) 
as a function of module dispersion etch. The bus trunk 
length was fixed at 305 mm. 

The designers used an 18-bit-wide transceiver in 
a low-profile surface mount package with a pin pitch 
of 0.5 mm. The location of the 1/0 pins for the bus 
connections on the interface transceiver (located on 
the same side of the package, which allows the device 
to be placed very close to the bus connector) and the 
connector pitch facilitated short dispersion etch (less 
than 13 mm). This design decreased by 1 ns the set­
tling time typically found on ASIC-based interfaces 
with comparable trunk lengths and loading. 

Bus termination is another parameter that designers 
can manipulate to further improve settling time. We 
used parallel terminators at both ends of the bus on the 
AlphaServer 4100 system. The bus protocol has two 
features that allow aggressive termination, approaching 
the unloaded impedance of the trunk. We placed an 
anticontention cycle between the module that relin­
quishes the bus and the module that begins to drive the 
bus. This arrangement reduces the possibility for driver 
contention (stress) as well as the possibility of generat­
ing ringing on the bus caused by large changes in cur­
rent after contention. The bus "parking" feature forces 
the last driving module to continue driving the bus to 

Figure 1 
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a logic state during long idle times until another module 
wants to use the bus. Without this feature, the bus 
would settle at the terminator Thevenin voltage if no 
modules were driving the bus. Both protocols allow for 
Thevenin voltage to be close to the thresholds of the 
receivers. Normally this is avoided if the bus is left idle, 
because the receivers can go metastable, i.e., arrive at 
the unstable condition where its input voltage is 
between its specified logic O and logic 1 voltage levels, 
resulting in uncontrolled oscillation. Centering the 
Thevenin voltage in the normal full voltage swing had 
two advantages: (1) it balanced the settling time for 
both transitions, and ( 2) it reduced the driver current. 
The reduced driver current allowed for a lower 
Thevenin resistance, which brought the terminators 
closer to the unloaded ( no modules) impedance of the 
bus, thus ensuring that the bus would settle within 6 ns. 

The Basic Building Block 

Texas Instruments' CDC586 clock distribution circuit 
was chosen as the basic building block for the system 
because of its low cost and functionality. The device has 
a fan-out ofl2 outputs with a single compensation loop 
and a frequency range of25 megahertz (MHz) to 100 
MHz, and is a 3.3-volt (V) bipolar complementary 
metal-oxide semiconductor (BiCMOS) part. Process 
skew is 1 ns between any two parts with the same ref­
erence input clock, and root mean square (RMS) jitter 
is 25 picoseconds (ps). 2 The CDC586 has a built-in 
loop filter, which reduces the number of support com­
ponents. Unlike custom clock circuits with multiple, 
independent compensation loops, the simple, single 
loop design required critical attention to the layout of 
each module design to ensure the best possible skew 
performance. The circuit board layout designer had 
to determine the maximum etch length from the PLL 
to the receiver. All copies of the clock had to be pre­
cisely matched in length to the maximum length 
found, and routed on the same etch layer with 
0.51 mm (20 mil) spacing to other etches and mini­
mum etch crossovers from other etch layers on dual 
strip-line lay-ups. Typical strip-line etch in multilayer 
PWBs is a signal layer that has reference planes, usually 
assigned to power or ground, in the layer above and 
the layer below. This design allows better impedance 
control and eliminates cross talk from other signal 
layers. PWB thickness and cost constraints often result 
in modified forms on the inner layers, however. Dual 
strip-line etch is often used in these cases. This design 
consists of two signal layers sandwiched between refer­
ence planes in the layers above and below. Generally 
the dielectric thickness between the two signal layers is 
greater than the dielectric thickness between either 
signal layer and its related (nearest) reference plane to 
minimize cross talk between the two signal layers. 
Figure 2 ill ustrates a typical application. 
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Typical Phase-locked Loop Connection 

Etch Layout 
The PWB lay-ups used on various modules in the 
AlphaServer 4100 system contain microstrip etch 
(surface etch) and dual strip-line etch. Ideally, single 
strip-line etch would be optimum for clock etch; how­
ever, it requires more layers at higher cost for PWB 
material. One drawback to dual strip-line lay-ups is 
etch crossover. A crossover is a point along an etch 
trace where another etch, one on a different layer not 
separated by a reference plane, crosses. The crossover 
forms small capacitance patches, which can load the 
clock etch and affect its impedance and velocity of 
propagation. The result is additional skew from clock 
etch to clock etch. Designers avoided crossovers on all 
clock etch, and the design does not permit parallel 
etch on the other layer within the dual strip-line, 
which could induce cross talk. 

Figure 2 shows matched etch lengths Li, L2 , and L3. 
On some module designs, this etch can be fairly long. 
The layout designers would generally "serpentine" 
or "trombone" these long etch runs to comply with 
the aforementioned layout rules. Spacing between 
the loops on the same etch run in the serpentine or 
trombone is critical. If the spacing is too close, then 
coupling will occur, thus changing the velocity of 
propagation as well as signal quality. Designers used 
simulation to determine a minimum etch-to-etch 
spacing for each PWB lay-up. The maximum allowable 
cross-talk noise level for any minimum spacing was 
400 millivolts (mV). This level is within the maximum 
transistor-transistor logic (TTL) low-state level of 
800 m V. Larger spacings were used where no other 
layout rules would be affected. 

The Use of External Series Terminating Resistors 
External series terminating resistors ( also called termi­
nators), denoted by R, are used at the source ( see 
Figure 2 ). Although Texas Instruments offers another 
version of the PLL, namely CDC2586, which has 



built-in series tenninators, the AlphaServer 4100 design­
ers did not use this variation for the following reasons: 

• Some forms of clock treeing ( a method of connect­
ing multiple receivers to the same clock output) 
require multiple source terminators. 

• The nominal value for the internal series terminator 
was not optimum for the target impedance of the 
PWBs. 

• The tolerance of the internal series terminators 
over the process range of the part could be as high 
as 20 percent compared to 1 percent for external 
resistors. 

Local Power Decoupling 
PLL5 are analog components and are susceptible to 
power supply noise. One major point source for noise 
is the PLL itsel( Most applications require all 12 out­
puts to drive substantial loads, which generates local 
noise. A substantial number oflocal decoupling capac­
itors ( one for every four output pins) and short, wide 
dispersion etch on the power and ground pins of 
the PLL were required to help counter the noise. 
Designers also used tangential vias to minimize para -
sitic inductance, which can severely reduce the effec­
tiveness of the decoupling capacitors. Typical surface 
mount components have dispersion etch, which con­
nects the surface pad to a via. Tangential vias attach 
directly to the pad and eliminate any surface etch that 
can act like inductance at high frequency. The PLL5 
were also located away from other potential noise 
sources such as the Alpha microprocessor chip. 

Analog Power Supply Filter 
The most important external circuit to the PLL is the 
low-pass filter on the analog power pins. Typically, PLL 
designs have separate analog and digital power and 
ground pins. This allows the use of a low-pass filter to 
prevent local switching noise from entering the analog 
core of the PLL (primarily the voltage-controlled oscil­
lator [VCO ]). If a filter is not used, then large edge-to­
edge jitter will develop and will greatly increase clock 
skew. Most PLL vendors suggest filter designs and 
PWB layout patterns to help reduce the noise entering 
the analog core. The CDC586 PLL was introduced at 
the beginning of the AlphaServer 4100 design, and the 
vendor had not yet specified a filter for the analog 
power input. It is important to note that if any new 
PLL is considered and preliminary vendor specifica­
tions do not include details about the analog power, 
the designer should contact the vendor for details. 

Two forms oflow-pass filters were considered: L-C 
and R-C. The L-C filter consists of a series inductor L 
from the power source to the analog power pins of 
the PLL and a capacitor C from the same power pins 
to ground. The R-C filter consists of a series resistor 
R from the power source to the analog power pins of 

the PLL and a capacitor C from the same power pins 
to ground. 

The L-C filter can be implemented in two ways: 
( 1) by using a surface mount inductor and ( 2) by using 
a length of etch for the inductor. In either case, the Q 
of the circuit has to be kept low to prevent oscillation. 
Q is a dimensionless number referred to as the quality 
factor and is computed from the inductance L and 
resistance R (in this case the inductor's resistance) of 
a resonant circuit using the formula Q = wl/ R, where 
w equals 27r/, and/ is the frequency. A low-value resis­
tor in series with the inductor can help. Extreme care 
should be taken if the length-of-etch ( used to generate 
inductance) implementation is considered. The etch 
must be strip-line-etch isolated from any other adja­
cent etch or etch on other layers not separated by 
power or ground planes. A two-dimensional (2-D) 
modeling tool should be used to calculate the length 
of etch needed to get the proper inductance value for 
the filter. Simple rules of thumb for inductance will 
not work with reference planes (i.e., power and 
ground planes). 

The R-C filter is limited to PLL5 with moderately 
low current draw on the analog power pins. The cur­
rent generates an IR drop (the voltage drop caused by 
the current through the resistor) across the resistor R. 
Typical PLL analog power inputs require less than 
1 milliamp (mA), which would allow a reasonable 
value resistor R. Two capacitors should be used in the 
R-C type filter: a bulk capacitor for basic filter response 
and a radio frequency (RF) capacitor to filter higher 
frequencies. Bulk capacitors are any electrolytic-style 
capacitor 1 microfarad (µF) or greater. These capaci­
tors have intrinsic parasitics that keep them from 
responding to high-frequency noise. The benefit of 
the L-C filter is that, although a single capacitor can be 
used (two are still suggested with this style filter), the 
reactance of the inductor increases with frequency and 
helps block noise. Both filter styles were used in the 
AlphaServer 4100 system. 

System Distribution Description 

The AlphaServer motherboard has four CPU slots, 
eight memory slots, and an 1/0 bridge module slot. 
Each module in the system, including the mother­
board, has at least one PLL. The starting point of the 
system is the CPU that plugs into CPU slot 0. Each 
CPU module has an oscillator and a buffer to drive the 
main system distribution, but the CPU that plugs into 
slot O actually drives the system distribution. A PLL on 
the motherboard receives the clock source generated 
by the CPU in slot O and distributes low skew copies of 
the clock to each module slot in the system. Each 
module in the system has one and in some cases two 
PLL5 to supply the required copies of the clock locally. 
Figure 3 shows the basic system flow of clocks. 

Digital Technical Journal Vol. 8 No. 4 1996 41 



MOTHERBOARD 
CONTROL 
LOGIC 

MOTHERBOARD 

PRIMARY 
DISTRIBUTION 

Figure 3 
System Clock Flow Diagram 

MEMORY7 

MEMORYO 

CPU 3 

CPU O 

1/0 
BRIDGE 

The Alpha microprocessor used on all CPU options 
for the AlphaServer 4100 system has its own local 
clock circuitry. The microprocessor uses a built-in 
digital PLL that allows it to lock to an external refer­
ence clock at a multiple of its internal clock. 3 In the 
context of the AlphaServer 4100 system, the reference 
clock is generated by the local clock distribution sys­
tem. The AlphaServer 4100 is fully synchronous. 

Each CPU in the system has two clock sources: 
one for the bus distribution (system cycle time) and 
one for the microprocessor. This design may appear to 
be a costly one, but this approach is extremely cost­
effective when field upgrades are considered. When 
new, faster versions of the Alpha microprocessor 
become available, new CPU options will be intro­
duced. To remain synchronous, the Alpha micro­
processor internal clocks need to run at a multiple of 
the system cycle time. Although the system cycle time 
goal is 15 ns, the cycle time needs to be adjusted to the 
speed of the CPU option used. Placing the bus oscilla­
tor, which drives the primary PLL for the clock system 
( cycle time), on the CPU module and designing the 
clock distribution system to function over a wide fre­
quency range makes field upgrades as simple as replac­
ing the CPU modules. The motherboard does not 
need to be changed. 
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Skew Management Techniques 

The AlphaServer 4100 system had four design teams. 
Each team was assigned a portion of the system. Signal 
integrity techniques had to be developed to keep the 
skew across the system as low as possible. These tech­
niques were structured into a set of design rules that 
each team had to apply to their portion of the design. 
To develop these rules, designers explored several 
areas, including impedance range, termination, tree­
ing, PLL placement, and compensation. 

Impedance Range 
Controlled impedance ( + /-10 percent from a target 
impedance) raises the PWB cost by 10 percent to 
20 percent, depending on board size. Each raw PWB 
has to be tested and documented by the PWB sup­
pliers, which results in a fixed charge for each PWB, 
regardless of size. Therefore, smaller PWBs have the 
highest cost burden. The AlphaServer 4100 uses rela­
tively small daughter cards. Since low system cost was 
a primary goal, noncontrolled impedance PWBs had 
to be considered. Unfortunately, allowing the PWB 
impedance range ( over process) to spread to greater 
than + / - 10 percent makes the task of keeping clock 
skew low more difficult. Specification of mechanical 
dimensions with tolerances was the only way to 
provide some control of the impedance range with 
no additional costs. 

Table 1 contains the results of simulations per­
formed using SIMPEST, a 2-D modeling tool devel­
oped by DIGITAL, for a six-layer PWB used on one of 
the AlphaServer 4100 modules. The PWB din1ensions 
and tolerances specified to the vendors were used in 
the simulations. The dielectric constant, the only para­
meter not specified to the vendor, ranged from 3.8 to 
5.2, which overlaps the typical industry-published 
range of4.0 to 5.0 for FR4-type material (epoxy-glass 
PWB).4 Since our PWB material acceptance with the 
vendor is based on meeting dimension tolerances, we 
used the 6CT impedance range on all SPICE simula­
tions, thus ensuring that all acceptable PWB material 
would work electrically. 

Table 2 shows the impedance range for a controlled 
impedance PWB for the target impedance reported in 

Table 1 
Vendor Impedance Ranges Specifying 
Dimensions Only 

Mean target 
impedance 

Impedance 
range 

40' Yield 

71 ohms 

62 ohms to 
83 ohms 

6CT Yield 

71 ohms 

57 ohms to 
89 ohms 



Table 2 
Vendor Impedance Range for an Impedance 
Tolerance of + / - 10 Percent 

Mean target 
Impedance 

Impedance range 

+/-10 Specification Range 

71 ohms 

64 ohms to 78 ohms 

Table 1. The difference in impedance range between 
specifying dimensions and impedance is - 7 ohms to 
11 ohms. The simulations suggested that the range 
differences have a minor impact on signal behavior. 

The target impedance was based on nominal 
dimensions and dielectric constant. The target of 
71 ohms was chosen to optimize routing density and 
to keep the layer count down for most designs. 
Another advantage was that keeping the minimum 
impedance above 50 ohms would minimize loading. 
The impedance range covers the full mechanical 
dimensions and dielectric constant ranges. Properly 
implemented, the PLLs would effectively eliminate 
local etch delay module to module over the full 
process range of the PWBs. The main challenge was 
to adequately terminate without sacrificing skew 
performance at the extreme process range ( 6cr) of 
the PWB material. 

Termination 
The designers used series termination on all clocks in 
the system. Parallel terminators would have exceeded 
the drive capability of the CDC586. Diode clamping 
was not practical when so many copies of the clock 
were required because of PWB surface area con­
straints. Normally, the optimal termination value is 
one that provides critical damping for the case where 
the driver's impedance is the lowest and the etch 
impedance is the highest. Designers can then make 
adjustments at the other extreme corner ( high driver 
impedance and low etch impedance) to avoid nonmo­
notonic behavior such as plateaus. This generally 
introduces slope delay uncertainty at the slow corner 
(high driver impedance and low etch impedance), 
which can be substantial. To minimize this effect, 
designers selected terminator values that allow over­
shoot and some bounce-away from the threshold 
region at the extreme process corner. Overshoot can 
reach the maximum specified alternating current (AC) 
input of the receivers over the worst-case process 
range. Some receivers have built-in diode clamping to 
their power supply rails as a result of ESD circuits in 
their input structures (ESD circuits are used for static 
discharge protection). In these cases, the clock signal is 
clamped, which in turn dampens bounce. The injec­
tion currents caused by clamping would be tested in 
SPICE simulations to be sure that the parts were not 

stressed. If the tests indicated stressed parts, designers 
would adjust the terminator value accordingly. 

Treeing 
Treeing is a method of distributing clocks from a 
single source driver to many receivers. This practice, 
which is well known to memory designers, was used 
on the AlphaServer 4100 memory modules, bus inter­
face logic, and primary distribution clocks on the 
motherboard. The designers used two basic forms of 
treeing: the balanced H tree and the shared output 
tree. The balanced H tree is best suited for fixed loads 
(receivers) of the same type (i.e., memories, trans­
ceivers, etc. ). A single, series-terminated clock output 
feeds a trunk line to a via and then branches to each 
load. Each branch is equal in length. The total com­
pensated path includes the pre-terminator stub, the 
main trunk, and the branch extending to the load. 
Figure 4 illustrates the clock treeing topology. The 
shared output tree was used where various module 
configurations could alter clock loading. Specifically, 
the distribution on the motherboard is restricted to 
one PLL to keep the clock skew low. Consequently, 
some outputs needed to drive more than one slot. 
A single output driver drove two terminators-one 
for each load. The low driver impedance isolated 
reflections from perturbing a module when a module 
slot was left open. 

PLL Placement 
Placement of the PLL on each module is critical. Figure 
5 is a simplified view of the primary distribution up to 
and including the PLL on a module. The AlphaServer 
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4100 system has two types of module connectors: 
a Metral connector (Futurebus+-style connector) is 
used on the CPU modules and the J/0 bridge module, 
and an Extended Industry Standard Architecture 
(EISA) connector is used on the memory modules. 
Intrinsic delay on these connectors could differ sub­
stantially depending on pinning and the signal-to­
return ratio in the application. The Metral connector is 
a right-angle, two-piece connector with four rows of 
pins: rows A, B, C, and D. The row A pins are the 
shortest, and the row D pins are the longest. The EISA 
connector is an edge connector with two rows of pins 
with minor length differences pin to pin on either side 
of the connector. Designers had to balance the pinning 
of these connectors for the clock circuits in such a way 
that the module-to-module skew would not be 
affected. The Metral connector was pinned to replicate 
the loop inductance of the EISA connector. 

Dispersion etch is required on each module to con­
nect the PLL to the connector. This etch can have dif­
ferent impedance and velocity of propagation from 
module to module as a result of PWB process range, 
which translates into additional module-to-module 
clock skew. Designers can deal with this problem in 
two ways. 

First, adding the same dispersion length L3 (see 
Figure 5) to the compensation loop L2 nulls this error. 
This becomes obvious if you look at the PLL's basic 
function. The insertion delay Yjd from the clock-in pin 
of the PLL to the input pin of the receiver is approxi­
mately O ns if L1 = L2 , or 

CLOCK IN 

MOTHERBOARD 
PRIMARY 
DISTRIBUTION 

FROMCPUO R 

Yid = Cli.. + 1i) - Ti.2· 
For Ti., = Ti,

2 
( equal etch lengths), 'lid = Ti_3• 

Adding Ti,
3 
to the compensation path yields 

Yid = ( 72. + 7;_3) - ( 722 + 7;_). 
For 7;_1 = 7;_2 ( etch equal lengths), 'lid = 0 ns, 

where 

'lid = the insertion delay from the connector 
pin to the receiver input 

7;_1 = the etch delay from the PLL output 
to the receiver input 

7;_2 = the etch delay of the PLL 
compensation loop 

7;_3 = the dispersion etch delay connector 
to the clock-in of the PLL. 

One drawback to this method is that the etch lengths 
could get fairly large, which would result in edge rate 
degradation. AlphaServer 4100 designers did not use 
this placement method on the current set of modules; 
however, they will consider using it on new designs that 
require a different location for the PLL. 

The second way of dealing with the dispersion etch 
from the module connector to the clock-in pin of the 
PLL is to make the dispersion etch very short and to 
take a skew penalty over the PWB process. Placement 
studies on the various module designs suggest that 
a 25-mm dispersion etch would allow reasonable 
placement of PLLs. The additional skew is just under 
50 ps, based on a velocity of propagation range of 
5.59 ps/ mm to 7.36 ps/mm. 
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Compensation 
Some modules have a wide variety of circuits receiving 
clocks that, because of input loading, do not balance 
well with the various treeing methods. Designers 
used dummy capacitor loading to help balance the 
treeing. This approach was particularly useful on 
memory modules, which could be depopulated to 
provide different options using the same etch. Surface­
mount pads were added to the etch such that if the 
depopulated version were built, a capacitor could be 
added to replicate the missing load on the tree, thus 
keeping it in balance. The CPU modules have a wide 
variety of clock needs, which results in two forms 
of skew: (1) load-to-load skew at the module and 
(2) control logic-to-CPU skew, for control logic 
located on the motherboard. The local load-to­
load skew is acceptable because only one PLL is 
used and the output-to-output skew is only 500 ps. 
Motherboard-to-CPU control logic skew, though, is 
critical because of timing constraints. 

Dummy capacitor loading at each lightly loaded 
receiver would have reduced the skew, but to compen­
sate for just one heavily loaded receiver would have 
required many capacitors. PWB surface area and the 
requirement of simplicity dictated the need for an 
alternative. The solution was to keep the clock edges 
as fast as possible (by adjusting the series terminators) 
and to add a compensation capacitor at the input (the 
feedback [FB]) of the PLL's compensation loop. This 
effectively reduced the skew from the slowest load on 
the CPU to the control logic on the motherboard. 
Figure 6 shows the disparity between light and heavy 
loading from 1j to 7'i. Without feedback compensa­
tion, the PLL self-adjusts to the lightly loaded receiver. 
This adjustment results in skew 1j to Ti from the 
heavy load to the control logic on the motherboard. 
A capacitor on the FB input of the PLL split the dif­
ference between ~ to Ti and T3 to 1j and minimized 
the perceived skew. 

Skew Target 

Designers generated the worst-case module-to-module 
clock skew specification for the AlphaServer 4100 
from vendor specifications, SPICE simulations, and 
bench tests using the techniques discussed in this 
paper. The worst-case skew goal is 2.2 ns and is sum­
marized in Table 3. 

The reader will note that eight times the vendor's 
specification may appear to be a rather conservative 
specification. The use of this value was based on two 
concerns: ( 1) the PLL was new at the time, and experi­
ence suggested that the vendor's specification was 
aggressive; and (2) some level of padding was required 
if the exception to the rules was needed. Actual system 
testing bore out these concerns. The vendor had 
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CAPACITOR 
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Figure 6 
Feedback Loop Compensation 

to relax the jitter specification from 25 ps to 70 ps 
RMS, and there were some difficulties getting good 
load balance. The specification did not change, how­
ever. Reassessing the allocated bus settling time yields 
the following: 

Bus cycle 
Transmitting module (Teo) 
Setup and hold time for the 

receiving module 
Clock skew 
Time allocated for bus settling 

15.0 ns 
5.1 ns 

1.5 ns 
2.2 ns 
6.2 ns 

SPICE simulations for a fully loaded bus with the 
worst possible driver receiver position yielded a bus 
settling time of 5.7 ns. The relaxed skew of 2.2 ns 
maximum was acceptable for the design. 

Comparative Analysis 

A comparison of clock distribution systems between 
two other platforms best summarizes the AlphaServer 
4100 system. The AlphaServer 4100 has a price and 
performance target between those of the AlphaServer 
2100 and the AlphaServer 8400 systems. Table 4 com­
pares the basic differences among these systems relat­
ing to clock distribution for a CPU module from each 
platform. 

Both the AlphaServer 2100 and the AlphaServer 
8400 systems have large custom ASICs for their mod­
ule's bus interface. The AlphaServer 4100 and the 
AlphaServer 8400 systems have bus termination; the 
AlphaServer 2100 system does not. Allowing a bus to 
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Table 3 
Worst-case Clock Skew 

Stage 

Motherboard 

Inputs to modules 

Module to module 

Inputs to receivers 

Inputs to receivers 

Total clock skew 

Table4 

Source 

Out-to-out skew 

Load mismatch 

PLL process 

Load mismatch 

PLLjitter 

Clock Distribution Comparison of Three Platforms 

Bus width 

Bus speed 

Clock skew 

Inputs requiring clocks 

Clock drivers used 

Number of clock phases 

AlphaServer 2100 System 

128 + ECC 

24ns 

1.5 ns 

10 

12 

4 

settle naturally (with no termination), as in the case of 
the AlphaServer 2100 system, requires a tighter skew 
budget from the clock system. The trade-off is higher 
cost, power, and PWB area for lower bus speed. 
Higher performance systems, such as the AlphaServer 
8400 and AlphaServer 4100 systems, generally require 
faster bus speeds with terminators. The AlphaServer 
4100 has shorter bus stubbing (module transceiver to 
connector dispersion etch) and slower bus speed than 
the AlphaServer 8400, which allows larger skew (as 
a percentage of the bus speed). 

Table 5 is a comparison of board area needed and 
cost for the clock system. Designers analyzed an entry­
level system consisting of one CPU module, one mem­
ory module, and one 1/0 bridge or interface module. 
The board area shows the space required by the active 
components only (the digital phase-locked loops, 
PLLs, drivers, etc. ). 

Both Tables 4 and 5 show that the clock system 
design for the AlphaServer 4100 system requires only 
one-third the space of either the AlphaServer 2100 
system or the AlphaServer 8400 system at a fraction of 
the cost and distributes more copies of the clock. 

Table 5 
Board Utilization and Cost Comparison 

Board area used* 

Normalized cost 

AlphaServer 2100 System 

352.8 square centimeters 

1.00 

Skew Component 

500 ps (vendor specification)' 

100 ps (simulat ion/bench test) 

1,000 ps (vendor specification)' 

200 ps (simulation/bench test) 

400 ps (eight times the vendor specification)' 

2,200 ps = 2.2 ns 

AlphaServer 4100 System AlphaServer 8400 System 

128 + ECC 

15 ns 

2.2 ns (max.) 

25 

13 

Conclusions 

256 + ECC 

10 ns 

1.1 ns (max.) 

14 

11 

An effective, low-cost, high-performance clock distri­
bution system can be designed using an off-the-shelf 
component as the basic building block. DIGITAL 
AlphaServer 4100 system designers accomplished this 
by optimizing the bus and developing simple tech­
niques structured in the form of design rules. These 
rules are 

• Use positive edges for critical clocking. 

• Match delay through different connectors using 
appropriate pinning. 

• Use a fixed dispersion etch length from the connec­
tor to the PLL. 

• Route and balance all clock nets on the same PWB 
layer. 

• Minimize adjacent-layer crossovers and maximize 
spacings. 

• Use minimum value terminators. 

• Use tree and loop compensation where needed. 

• Use conservative local decoupling and a low-pass 
filter on the PLL ( analog power). 

AlphaServer 4100 System AlphaServer 8400 System 

111.4 square centimeters 

0.46 

371.3 square centimeters 

4.40 

*Note that these measurements do not include decoupl ing capacitors and terminators. 
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The worst-case lab measurement of clock skew 
between any two modules in a fully configured system 
was 1.1 ns, which is well within the 2.2 ns calculated 
maximum skew. 
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Design and Implementation 
of the Alpha Server 4100 CPU 
and Memory Architecture 

The DIGITAL AlphaServer 4100 system is Digital 

Equipment Corporation's newest four-processor 

midrange server product. The server design is 
based on the Alpha 21164 CPU, DIGITAL's latest 
64-bit microprocessor, operating at speeds of 
up to 400 megahertz and beyond. The memory 
architecture was designed to interconnect up 
to four Alpha 21164 CPU chips and up to four 
64-bit PCI bus bridges (the AlphaServer 4100 

supports up to two buses) to as much as 8 giga­
bytes of main memory. The performance goal 
for the Alpha Server 4100 memory interconnect 
was to deliver a four-multiprocessor server with 
the lowest memory latency and highest mem­
ory bandwidth in the industry by the end of 
June 1996. These goals were met by the time the 

AlphaServer 4100 system was introduced in May 
1996. The memory interconnect design enables 
the server system to achieve a minimum mem­
ory latency of 120 nanoseconds and a maximum 

memory bandwidth of 1 gigabyte per second by 
using off-the-shelf data path and address com­

ponents and programmable logic between the 
CPU and the main memory, which is based on 

the new synchronous dynamic random-access 
memory technology. 
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I 
Glenn A. Herdeg 

The DIGITAL AlphaServer 4100 system is a symmet­
ric multiprocessing (SMP) midrange server that sup­
ports up to four Alpha 21164 microprocessors. 
A single Alpha 21164 CPU chip may simultaneously 
issue multiple external accesses to main memory. The 
AlphaServer 4100 memory interconnect was designed 
to maximize this multiple-issue feature of the Alpha 
21164 CPU chip and to take advantage of the perfor­
mance benefits of the new family of memory chips 
called synchronous dynamic random-access memories 
(SDRAMs). To meet the best-in-industry latency and 
bandwidth performance goals, DIGITAL developed 
a simple memory interconnect architecture that com­
bines the existing Alpha 21164 CPU memory inter­
face with the industry-standard SDRAM interface . 

Throughout this paper the term latency refers to the 
time required to return data from the memory chips to 
the CPU chips-the lower the latency, the better the 
performance. The AlphaServer 4100 system achieves 
a minimum latency ofl20 nanoseconds (ns) from the 
time the address appears at the pins of the Alpha 21164 
CPU to the time the CPU internally receives the corre­
sponding data from any address in main memory. The 
term bandwidth refers to the amount of data, i.e., the 
number of bytes, transferred between the memory 
chips and the CPU chips per unit of time-the higher 
the bandwidth, the better the performance. The 
AlphaServer 4100 delivers a maximum memory band­
width of 1 gigabyte per second (GB/s). 

Before introducing the DIGITALAlphaServer4100 
product in May 1996, the development team con­
ducted an extensive performance comparison of 
the top servers in the industry. The benchmark 
tests showed that the AlphaServer 4100 delivered the 
lowest memory latency and the highest McCalpin 
memory bandwidth of all the two- to four-processor 
systems in the industry. A companion paper in 
this issue of the Journal, "AlphaServer 4100 Per­
formance Characterization," contains the comparative 
information .1 

This paper focuses on the architecture and design of 
the three core modules that were developed concur­
rently to optimize the performance of the entire 



memory architecture. These three modules-the 
motherboard, the synchronous memory module, and 
the no-external-cache processor module-are shown 
in Figure 1. 

Motherboard 

The motherboard contains connectors for up to four 
processor modules, up to four memory module pairs, 
up to two 1/0 interface modules ( four peripheral 
component interconnect [PCI] bus bridge chips 
total), memory address multiplexers/ drivers, and 
logic for memory control and arbitration.2 All con­
trol logic on the motherboard is implemented using 
simple 5-ns 28-pin programmable array logic (PAL) 
devices and more complex 90-megahertz (MHz) 
44-pin programmable logic devices ( PLDs) clocked at 
66 MHz. Several motherboards have been produced 
to support various numbers of processor modules, 
memory modules, and 1/0 interface modules. The 
AlphaServer 4100 supports one to four processor 
modules, one to four memory module pairs (8-GB 
maximum memory), and one 1/0 interface module 
(up to two PCI buses).3 

Synchronous Memory Module 

The synchronous memory modules are custom -
designed, 72-bit-wide plug-in cards installed in 
pairs to cover the full width of the 144-bit memory 
data bus. Synchronous memory modules that provide 
32 megabytes (MB) to 256 MB per pair were designed 
using 16-megabit (Mb) SD RAM chips. These 
memory modules contain nine, eighteen, thirty-six, 
or seventy-two 100-MHz SDRAM chips clocked at 
66 MHz, four 18-bit clocked data transceivers, address 
fan-out buffers, and control provided by 5-ns 28-pin 
PALs. To increase the maximum amount of memory 
in the system, a family of plug-in compatible memory 
modules was designed, providing up to 2 GB per pair 
using 64-Mb extended data out dynamic random­
access memory (EDO DRAM) chips. These modules 
contain 72 or 144 EDO DRAM chips controlled by 
two custom application-specific integrated circuits 
(ASICs) providing data multiplexing and control, four 
18-bit clocked data transceivers, and address fan-out 
buffers. Consequently, the AlphaServer 4100 memory 
architecture provides main memory capacities of 
32 MB to 8 GB with a minimum latency of 120 ns to 
any address. This paper concentrates on the imple­
mentation of the synchronous memory modules, 
although the EDO memory modules are functionally 
compatible. The reconfigurability description later in 
this paper provides more details of the implementation 
of the EDO memory modules. 

No-External-Cache Processor Module 

The no-external-cache processor module is a plug-in 
card with a 144-bit memory interface that contains 
one Alpha 21164 CPU chip, eight 18-bit clocked data 
transceivers, four 12-bit bidirectional address latches, 
and control provided by 5-ns 28-pin PALs and 
90-MHz 44-pin PLDs clocked at 66 MHz. The Alpha 
21164 CPU chip is programmed to operate at a syn­
chronous memory interface cycle time of 66 MHz 
(15 ns) to match the speed of the SDRAM chips on the 
memory modules. Although there are no external 
cache random-access memory (RAM) chips on the 
module, the Alpha 21164 itself contains two levels of 
on-chip caches: a primary 8-kilobyte (KB) data cache 
and a primary 8-KB instruction cache, and a second­
level 96-KB three-way set-associative data and instruc­
tion cache. The no-external-cache processor module 
was designed to take advantage of the multiple-issue 
feature of the Alpha 21164 CPU. By keeping the 
latency to main memory low and by issuing multiple 
references from the Alpha 21164 CPU to main mem­
ory at the same time to increase memory bandwidth, 
the performance of many applications actually exceeds 
the performance of a processor module with a third­
level external cache.1 Numerous applications perform 
better, however, with a large on-board cache. For this 
reason, the AlphaServer 4 100 offers several variants of 
plug-in compatible processor modules containing a 
2-MB, 4-MB, or greater module-level cache. The paper 
"The AlphaServer 4100 Cached Processor Module 
Architecture and Design," which appears in this issue 
of the journal, contains more related information.4 

The three components of the core module set were 
designed concurrently to address five issues: 

1. Simple design 

2. Quick design time 

3. Low memory latency 

4. High memory bandwidth 

5. Reconfigurability 

Simple Design 

The Alpha 21164 CPU chip is based on a reduced 
instruction set computing (RISC) architecture, which 
has a small, simple set of instructions operating as fast 
as possible. AlphaServer 4100 designers set the same 
goal of simplicity for the rest of the server system. 

The AlphaServer 4100 interconnect between the 
CPU and main memory was optimized for the Alpha 
21164 chip and the SDRAM chip. To keep the design 
simple, only off-the-shelf data path and address com­
ponents and reprogrammable control logic devices 
were placed between the Alpha 21164 and SDRAM 
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Note that the AlphaServer 4000 system contains the same CPU-to-memory interface as the AlphaServer 4100 
but supports half the number of processors and memory modules and twice the number of PCI bridges. The 
AlphaServer 4000 motherboard was designed at the same time as the AlphaServer 4100 motherboard but was 
not produced until after the AlphaServer 4100 motherboard was available. 

AlphaServer 4 100 Memory Interconnect 
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chips. The designers removed excess logic and hard­
ware features, minimized the "glue" logic between the 
CPU chip and main memory, reduced memory laten­
cies as much as possible, and used custom ASICs only 
when necessary. 

Data Path between the CPU and Memory 
The external interface of the Alpha 21164 chip pro­
vides 128 bits of data plus 16 bits of error-correcting 
code (ECC), thus enabling single-bit error correction 
and multiple-bit error detection over the full width of 
the data path, which is shown in Figure 2. These 144 
signals are connected to eight 18-bit bidirectional 
transceivers on the processor module. As illustrated 
in Figure 1, the motherboard connects up to four 
processor modules and up to four memory mod­
ule pairs. Each memory module contains 72 bits of 
information; therefore, a pair of memory modules 
is required to provide the necessary 144 data sig­
nals. Each pair of memory modules contains eight 
additional 18-bit bidirectional transceivers that are 
connected directly to a number of SDRAM chips. 
The data transceiver used on the processor module 
and on the memory module is the 56-pin Philips 
ALVC162601 in a 14-millimeter (mm)-long package 
with 0.5-mm pitch pins. Error detection and correc­
tion using the 16 ECC bits is performed inside the 
Alpha 21164 chip on all read transactions. Data path 
errors are checked by the PCI bridge chips on all trans­
actions, including read and write transactions between 
each CPU and memory, and any errors are reported 
to the operating system. 

The data path is clocked at each stage by a copy of 
a single-phase clock. The clock is provided by a low­
skew clock distribution system built from the 52-pin 
CDC586 phase-locked loop clock driver.5 The clock 
cycle is controlled by an oscillator on the processor 
module and runs as fast as 66 MHz (15-ns minimum 
cycle time) while delivering less than a 2-ns worst-case 
skew (i.e., the difference in the rising edge of the clock) 
between any two components, including the Alpha 
21164, SDRAMs, and any transceiver on any module. 

Read transaction data is returned from the pins 
of the SDRAMs to the pins of the Alpha 21164 in 
two clock cycles ( 30 ns ), as shown in Table 1. The no­
external-cache processor has no module-level data 
cache, so data is clocked directly into the Alpha 21164 
from the transceiver. In Table 1, read data that corre­
sponds to transactions Rdl and Rd2 is returned from 
the same set of SDRAM chips in consecutive cycles. 
Read data that corresponds to transaction Rd.3 is 
returned from a different set of SDRAM chips with a 
one-cycle gap to allow the data path drivers from trans­
action Rd2 to be turned off before the data path drivers 
for transaction Rd3 can be turned on. This process pre­
vents tri-state overlap. As a result, consecutive read 
transactions have address bus commands either four or 
five cycles apart. Note that the Alpha 21164 data, com­
mand, and address signals are shown for only one 
processor (CPUl ), which issues transaction Rdl. The 
other transactions are issued by other processors. 

Write transaction data is also transferred from the 
pins of the Alpha 21164 CPU to the pins of the 
SD RAMs in two clock cycles (see Table 2 ). Write data 
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Figure 2 
Data Path between the CPU and Memory 

Table 1 
CPU Read Memory Data Timing 

Cycle ( 15 ns) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Address Bus Command Rd1 Rd2 Rd3 Rd4 

SDRAM Data 1 1 1 1 2 2 2 2 3 3 3 3 

Motherboard Data 1 1 1 1 2 2 2 2 3 3 3 

CPU 1: A lpha 21164 Data 1 1 1 1 -
CPU 1: Alpha 21164 Command Rd 1 

CPU1 : A lpha 21164Address Addr1 
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Table2 
CPU Write Memory Data Timing 

Cycle (15 ns) 1 2 3 4 5 6 

Address Bus Command Wr1 Wr2 

SDRAM Data 1 1 1 1 

M otherboard Data 1 1 1 1 

Alpha 21164 Data 1 1 1 1 2 

always incurs a one-cycle gap between transactions. 
As a result, all but the first two consecutive write trans­
actions have address bus commands five cycles apart. 

Since the AlphaServer 4100 interconnect between 
the CPU and main memory was optimized for the 
SDRAM memory chip, the transaction timing, as 
shown in Tables 1 and 2, was designed to provide data 
in the correct cycles for the SD RAMs without the need 
for custom ASICs to buffer the data between the 
motherboard and SDRAM chips. This design works 
well for an infinite stream of all reads or all writes 
because of the SD RAM pipelined interface; however, 
when a write transaction immediately follows a read 
transaction, a gap or "bubble" must be inserted in the 
data stream to account for the fact that read data is 
returned later in the transaction than write data. As a 
result, every write transaction that immediately follows 
a read transaction produces a five -cycle gap in the 
command pipeline. Table 3 shows the read/ write 
transaction timing. 

Address Path between the CPU and Memory 
The Alpha 21164 provides 36 address signals (byte 
address <39:4>, i.e., bits 4 through 39), 5 command 
bits, and 1 bit of parity protection. These 42 signals are 
connected directly to four 12-bit bidirectional latched 
transceivers on the processor module, as illustrated in 

Table 3 
CPU Read/Write Memory Data Timing 

Cycle (15 ns) 1 2 3 4 5 6 

Address Bus Command Rd1 Wr2 

SDRAM Data 1 1 

Motherboard Data 1 

7 

2 

2 

7 

1 

1 

8 9 10 11 12 13 14 15 16 17 18 

Wr3 Wr4 

2 2 2 2 3 3 3 3 4 

2 2 2 3 3 3 3 4 4 

2 2 3 3 3 3 4 4 4 

Figure 3. The motherboard latches the full address 
and drives first the row and then the column portion 
of the address to the memory modules. Each synch­
ronous memory module buffers the row / column 
address and fans out a copy to each of the SD RAM 
chips using four 24-bit buffers. Similar to traditional 
dynamic random-access memory (DRAM) chips, 
SDRAM chips use the row address on their pins to 
access the page in their memory arrays and the column 
address that appears later on the same pins to read or 
write the desired location within the page. Conse­
quently, there is no need to provide the entire 36-bit­
wide address to the memory modules. All address 
components used for transceivers, latches, multi ­
plexers, and drivers on the no-external-cache proces­
sor module, the motherboard, and the synchronous 
memory module consist of the 56-pin ALVC16260 or 
the ALVC162260, which is the same part with internal 
output resistors. Address parity is checked by the PCI 
bridge chips on all transactions, and any errors are 
reported to the operating system. 

The address path uses flow-through latches for the 
first half of the address transfer (i.e. , the row address) 
from the Alpha 21164 to the SDRAMs. When the 
address appears at the pins of the Alpha 21164, 
the latched transceiver on the processor module, the 
multiplexed row address driver on the motherboard, 
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Figure 3 
Address Path between the CPU and Memory 
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and the fan-out buffers on the memory modules are all 
open and turned on, enabling the address information 
to propagate directly from the Alpha 21164 pins to 
the SD RAM pins in two cycles. The motherboard then 
switches the multiplexer and drives the column 
address to the memory modules to complete the 
transaction ( see Table 4). Back-to-back memory trans­
actions are pipelined to deliver a ne:w address to the 
SDRAM chips every four cycles. The full memory 
address is driven to the motherboard in two cycles 
(cycles 0-1, 4-5, 8-9), whereas additional informa­
tion about the corresponding transaction (which is 
used only by the processor and the 1/0 modules) 
follows in a third cycle (cycles 2, 6, 10). To avoid tri­
state overlap, the fourth cycle is allocated as a dead 
cycle, which allows the address drivers of the current 
transaction to be turned off before the address drivers 
for the next transaction can be turned on ( cycles 3, 7, 
11 ). These four cycles constitute the address transfer 
that is repeated every four or five cycles for consecutive 
transactions. Note that the one-cycle gap inserted 
between transactions Rd3 and Rd4 for reasons indi­
cated earlier in the read data timing description causes 
the row address for transaction Rd4 to appear at the 
pins of the SD RAMs for three cycles instead of two. 

Control Path between the CPU and Memory 
The Alpha 21164 provides five command bits (four 
Alpha 21164 CMD signals plus the Alpha 21164 
Victim_Pending signal) that indicate the operation 
being requested by the Alpha 21164 external inter­
face.6 These five command bits are included in the 42 
command/address (CA) signals indicated in Figure 3 

Table4 
CPU Read Memory Address Timing 

Cycle (15 ns) 0 1 2 3 4 5 

Address Bus Command Rd1 Rd2 

SDRAM Address Row Addr1 Col Addr1 RowAddr2 

Motherboard Address MemAddr1 lnfo1 MemAddr2 

Alpha 21164 Address Addr1 Addr2 Addr3 

6 

and are driven directly and unmodified through the 
latched address transceivers on the processor module 
to become the motherboard command/address. Since 
the AlphaServer 4100 interconnect between the CPU 
and main memory was optimized for the Alpha 21164 
CPU chip, the Alpha 21164 external CMD signals map 
directly into the 6-bit encoding of the memory inter­
connect command used on the motherboard, thus 
avoiding the need for custom ASICs to manipulate the 
commands between the CPU and motherboard. 

Prudently chosen encodings of the Alpha 21164 
external CMD signals resulted in only two command 
bits (to determine a read or a write transaction) and 
one address bit (to determine the memory bank) 
being used by a 5-ns PAL on the processor module to 
directly assert a Request signal to the motherboard to 

use the memory interconnect. Figure 4 shows the 
control path between the CPU and memory. If the 
central arbiter is ready to allow a new transaction by 
the processor module asserting a Request signal (i.e., if 
the memory interconnect is not in use), then a 5-ns 
PAL on the motherboard asserts the control signal 
Row_CS to each of the memory modules in the fol­
lowing cycle. At the same time, another 5-ns PAL on 
the motherboard decodes 7 bits of the address and 
drives the Sckl:0> signal to all memory modules to 
indicate which of the four memory module pairs is 
being selected by the transaction. Each synchronous 
memory module uses another 5-ns PAL to immedi­
ately send the corresponding chip select (CS) signal to 
the requested SD RAM chips on one of the CS<3:0> 
signals when the Row_CS control signal is asserted if 
selected by the value encoded on Sckl:0>, as shown 
in Figure 4. 
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Table 5 shows the control signals between the 
processor modules, the memory modules, and the 
central arbiter on the motherboard for multiple 
processor modules issuing single read transactions. 
The central arbiter receives one or more Request<n> 
signals from the processor modules and asserts a 
unique Grant<n> signal to the processor module that 
currently owns the bus. The arbiter then drives a copy 
of the CA signal to every processor module along with 
the identical Row_CS signal to every memory module 
to mark cycle 1 of a new transaction. Note that the 
cycle counter begins at cycle 1 with each new 
CA/Row_CS assertion and may stall for one or more 
cycles when gaps appear on the memory interconnect. 
Two transactions may be pipelined at the same time. 
For simplicity of implementation in programmable 
logic devices, the cycle counter of each transaction is 
always exactly four cycles from the other. 

Table 6 shows a single processor module issuing 
two consecutive read transactions (dual-issue) fol­
lowed by a third read transaction at a later time. 
Normally, the node issuing the transaction on the bus 
deasserts the Request signal in cycle 2. If a node con­
tinues to assert the Request signal, the central arbiter 
continues to assert the Grant signal to that node to 
allow guaranteed back-to-back transactions to occur. 
Note that the first CA cycle occurs three cycles after 
the assertion of the Request signal because of the delay 
within the central arbiter to switch the Grant signal 

Table 5 
Multiple CPU Read Memory Control Timing 

Cycle Counter 
(15-ns cycle) 

Request<n> 1234 1234 24 24 24 24 

Grant<n> 1 1 1 1 2 2 

CA, Row_CS (New transaction) I x I Ix 

Address/Command Bus Addr/Rd1 lnfo11 Addr/Rd2 

SDRAM CMD (RAS,CAS,WE) ACT1 Read 1 ACT2 

SDRAM CS Ix Ix I x 

Table6 
Single CPU Read Memory Control Timing 

Cycle Counter 

I 
1 2 3 4 

(15-ns cycle) 

Request<n> 1 1 1 1 1 1 1 

Grant<n> 2 2 1 1 1 1 1 

CA, Row_CS (New transaction) I x 

between processors. The third CA cycle occurs only 
one cycle after the node asserts the Request signal, 
however, because of bus parking. Bus parking is an 
arbitration feature that causes the central arbiter to 
assert the Grant signal to the last node to use the bus 
when the bus is idle ( following cycle 7 of transaction 
Rd2 ). Consequently, if the same processor wishes to 

use the bus again, the assertion of CA and Row_CS 
signals occurs two cycles earlier than it would without 
the bus parking feature. 

Data Transfers between Two CPU Chips 
(Dirty Read Data) 
The Alpha 21164 CPU chips contain internal write­
back caches. When a CPU writes to a block of data, the 
modified data is held locally in the write-back cache 
until it is written back to main memory at a later time. 
The modified (dirty) copy of the block of data must 
be returned in place of the unmodified (stale) copy 
from main memory when another CPU issues a read 
transaction on the memory interconnect. The mem­
ory modules return the stale data at the normal time 
on the memory interconnect, and the dirty data is 
returned by the processor module containing the 
modified copy in the cycles that follow. The processor 
module issuing the read transaction ignores the stale 
data from memory. 

Therefore, to maintain cache coherency between 
the write-back caches contained in multiple Alpha 
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21164 CPU chips, each read transaction that appears 
on the memory interconnect causes a cache probe 
(snoop) to occur at all other CPU chips to determine if 
a modified (dirty) copy of the requested data is found 
in one of the internal caches of another Alpha 21164 
CPU chip. Ifit is, then the appropriate processor mod­
ule asserts the signal Dirty_Enable<n> for a minimum 
of five cycles to allow the memory module to finish 
driving the old data. The processor module deasserts 
the signal when the dirty data has been fetched from 
one of the internal caches and is ready to be driven 
onto the motherboard data bus. Table 7 shows read 
data corresponding to transaction Rdl being returned 
from CPU2 to CPUl five cycles later than the data 
from memory, which is ignored by CPUl. Note the 
one-cycle gap in cycles 10 and 15 to avoid tri-state 
overlap between the memory module and processor 
module data path drivers. 

As discussed earlier in this section, the AlphaServer 
4100 system implements memory address decoding 
and memory control without using custom ASICs 
on the motherboard, synchronous memory, or no­
external-cache processor modules. Using PALs allows 
the address decode function and the fan-out buffering 
to the large number of SDRAMs to be performed at 
the same time, thus reducing the component count 
and the access time to main memory. All the necessary 
glue logic between the Alpha 21164 CPU and the 
SDRAMs, including the central arbiter on the mother­
board, was implemented using 5-ns 28-pin program­
mable PALs or 90-MHz 44-pin ispLSI 1016 in-circuit 
reprogrammable PLDs produced by Lattice Semicon­
ductor. These devices can be reprogrammed directly 
on the module using the parallel port of a laptop per­
sonal computer. Each no-external-cache processor 
module uses five PALs and four PLDs; the mother-

Table 7 
Dirty Read Data Timing 

Cycle (15 ns) 0 1 2 3 4 5 

Address Bus Command Rd1 Rd2 

SDRAM CS x x x 
SDRAM CMD (RAS,CAS,WE) ACT1 Read1 ACT2 

SDRAM Data 1 

Motherboard Data 

CPU1 : Alpha 21164 Command Rd1 Rd3 

6 

... 
1 

1 

Snp2 

CPU1: Alpha 21164Address Addr1 Addr3 Addr2 

CPU1 : Alpha 21164 Response 

CPU1 : Alpha 21164 Data 

CPU2: Alpha 21164 Command Rd2 Snp1 Rd4 

CPU2: Alpha 21164 Address Addr2 Addr1 Addr4 

CPU2: Alpha 21164 Response Dirty1 

CPU2: Alpha 21164 Data 

Dirty_Enable<n> Dirty 

board (arbiter and memory control) uses eight PALs 
and three PLDs; and each synchronous memory mod­
ule uses three PALs. 

As shown in Table 1, the minimum memory read 
latency (read data access time) is eight cycles (120 ns) 
from the time a new command and address arrive at 
the pins of the Alpha 21164 chip to the time the first 
data arrives back at the pins. The SDRAMs are pro­
grammed for a burst of four data cycles, so data is 
returned in four consecutive 15-ns cycles. Two trans­
actions at a time are interleaved on the memory inter­
connect ( one to each of the two memory banks), 
which allows data to be continuously driven in every 
bus cycle. This results in the maximum memory read 
bandwidth ofl GB/s. 

Trade-offs Made to Reduce Complexity 
The Alpha 21164 external interface contains many 
commands required exclusively to support an external 
cache. By not including a module-level cache on the 
no-external-cache processor module, only Read, 
Write, and Fetch commands are generated by the 
Alpha 21164 external interface; the Lock, MB, 
SetDirty, WriteBlockLock, BCacheVictim, and 
ReadMissModSTC commands are not used.6

•
7 This 

design allows the logic on the processor module that is 
asserting the Request signal to the central arbiter to be 
implemented simply in a small 28-pin PAL because 
only two of the Alpha 21164 CMD signals are 
required to encode a Read or a Write command. 
Similarly, allowing a maximum of two memory banks 
in the system, independent of the number of memory 
modules installed, enables the Request logic to the 
central arbiter to be implemented in the 28-pin PAL, 
since only one address bit (byte address <6>) is 
required to determine the memory bank. 
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To decode memory addresses in 28-pin PAL., the 
AlphaServer 4100 system uses the concept of memory 
holes. The memory interconnect architecture and con­
sole code support seven different sizes of memory 
modules and up to four pairs of memory modules per 
system for a total system memory capacity of 32 MB to 
8 GB. Any mix of memory module pairs is supported as 
long as the largest memory pair is placed in the lowest­
numbered memory slot. The physical memory address 
range for each of the four memory slots is assigned as 
if all four memory module pairs are the same size. 
Consequently, if two additional memory pairs that are 
smaller than the pair in the lowest-numbered slot 
are installed in the upper memory slots, there will be a 
gap or "hole" in the physical memory space between 
the two smaller memory pairs (see Table 8). Rather 
than require each memory module to compare the full 
memory address to a base address and size register to 
determine ifit should respond to the memory transac­
tion, the 28-pin PAL driving Sek 1 :0> on the mother­
board (see Figure 4) uses the seven address bits 
Addrd2:26> and the size of the memory module in 
the lowest-numbered slot to encode the memory slot 
number of the selected memory module pair. Console 
code detects any memory holes at power-up and tells 
the operating systems that these are unusable physical 
memory addresses. 

Another simplification that the AlphaServer 4100 
system uses is to remove I/0 space registers from the 
data path of the processor and memory modules. 
Because there are no custom ASICs on these modules, 
reading and writing control registers would have 
required additional data path components. Since all 
the error checking is performed by either the 21164 
CPU chip or the PCI bridge chips and since there are 
no address decoding control registers required on the 
memory modules, there was no need for more than 
a few bits of control information to be accessed by 
software on the processor or memory modules. The 
FC bus (slow serial bus) already present in the I/0 
subsystem was used for transferring this small amount 
of information. 

Furthermore, in the process of removing the I/0 
space data path from the motherboard and processor 
modules, the firmware (i.e., the console code, Alpha 

Table 8 
Memory Hole Example 

Memory Slot 1 2-GB M odule Pa ir 

Memory Slot 2 2-GB Module Pa ir 

M emory Slot 3 1-GB M odu le Pair 
Memory Hole 

Memory Slot 4 1-GB M odule Pair 
Unused Memory 
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21164 PAL code, and diagnostic software), which is 
often placed in read-only memories (ROMs) on the 
processor module or motherboard, was moved to the 
I/0 subsystem. Only a small 8- KB single-bit serial 
ROM (SROM) was placed on each processor module 
that would initialize the Alpha 21164 chip on power­
up and instruct the Alpha 21164 to access the rest of 
the firmware code from the I/0 subsystem. 

Quick Design Time 

To provide stable CPU and memory hardware for I/0 
subsystem hardware debug and operating system soft­
ware debug and thus allow the DIGITAL AlphaServer 
4100 to be introduced on schedule in May 1996, the 
core module set was designed and powered on in less 
than six months. This primary goal of the AlphaServer 
4100 project was achieved by keeping the design team 
small, by using only programmable logic and existing 
data path components, and by keeping the amount of 
documentation of design interfaces to a minimum. 

The design team for the motherboard, no-external­
cache processor module, and synchronous memory 
module consisted of one design engineer, one 
schematic/layout assistant, one signal integrity engi­
neer, and two simulation engineers. The team also 
enlisted the help of members of the other AlphaServer 
4100 design teams. 

The architecture and actual final logic design of the 
core module set were developed at the same time. By 
using programmable logic and off-the-shelf address 
and data path components, the logic was written in 
ABL code (a language used to describe the logic func­
tions of programmable devices) and compiled imme­
diately into the PAL; and PLDs while the architecture 
was being specified. If the desired functionality did not 
fit into the programmable devices, the architecture 
was modified until the logic did fit. All three modules 
were designed by the same engineer at the same time, 
so there was no need for interface specifications to be 
written for each module. Furthermore, modifications 
and enhancements could be made in parallel to each 
design to optimize performance and reduce complex­
ity across all three modules. 

000000000 - 07FFFFFFF 

080000000 - OFFFFFFFF 

100000000 - 13FFFFFFF 
140000000 - 17FFFFFFF 

180000000 - 1 BFFFFFFF 
1 COOOOOOO - 1 FFFFFFFF 



Because the design did not incorporate any custom 
ASICs, the core system was powered on as soon as the 
modules were built. Any last-minute logic changes 
required to fix problems identified by simulation 
could be made directly to the reprogrammable logic 
devices installed on the modules in the laboratory. In 
particular, the reset and power sequencing logic on the 
motherboard was not even simulated before power-on 
and was developed directly on actual hardware. 

Since the I/0 subsystem was not available when the 
core module set was first powered on, the software that 
ran on the core hardware was loaded from the serial 
port of a laptop personal computer and through the 
Alpha 21164 serial port, and then written directly into 
main memory. Diagnostic programs that had been 
developed for simulation were loaded into the memory 
of actual hardware and run to test a four-processor, fully 
loaded memory configuration. This testing enabled 
signal integrity fixes to be made on the hardware at full 
speed before the I/0 subsystem was available. When 
the I/0 subsystem was powered on, the core module 
set was operating bug free at full speed, allowing the 
AlphaServer 4100 to ship in volume six months later. 

As mentioned in the section Simple Design, the 
central arbiter logic on the motherboard was imple­
mented in programmable logic. Consequently, by 
quickly changing to the reprogrammable logic on the 
motherboard instead of performing a lengthy redesign 
of a custom ASIC, designers were able to avoid several 
logic design bugs that were found later in the custom 
ASICs ofother AlphaServer4100 processor and mem­
ory modules. 

Low Memory Latency 

Minimizing the access time of data being returned to 
the CPU on a read transaction was a major design goal 
for the core module set. The core module set design was 
optimized to deliver the Addr and CS signals to the 
SDRAMs in two cycles (30 ns) from the pins of 
the Alpha 21164 CPU and to return the data from the 
SD RAMs to the Alpha 21164 pins in another two cycles 
(30 ns). With the SDRAMs operating at a two-cycle 
internal row access and a two-cycle internal column 
access to the first data (60 ns total internal SDRAM 
access time), the main memory latency is 120 ns. 

The low latency was accomplished in four ways: 

1. By removing custom ASICs and error checking 
from the data path between the pins of the Alpha 
21164 CPU chip and main memory 

2. By combining the SDRAM row/column address 
multiplexer with address fan-out buffering on the 
motherboard 

3. By simplifying the memory address decode and 
memory interconnect request logic 

4. By using bus parking 

Many multiprocessor servers share a common 
command/address bus by issuing a request to use the 
bus in one cycle, by either waiting for a grant to be 
returned from a central arbiter or performing local arbi­
tration in the next cycle, and by driving the command/ 
address on the bus in the cycle that follows. This 
sequence occurs for all transactions, even when the 
memory bus is not being used by other nodes. The 
AlphaServer 4100 memory interconnect implements 
bus parking, which allows a module to turn on its 
address drivers even though it is not currently using 
the bus. If the Alpha 21164 on that module initiates a 
new transaction, the command/address flows directly 
to memory in two less cycles than it would take to per­
form a costly arbitration sequence. Transaction Rd3 in 
Table 6 shows an example of the effects ofbus parking. 

High Memory Bandwidth 

One of the most important features of the SD RAM 
chip is that a single chip can provide or consume data 
in every cycle for long burst lengths. The AlphaServer 
4100 operates the SD RAMs with a burst length of four 
cycles for both reads and writes. Each SDRAM chip 
contains two banks determined by Addr<6>, which 
selects consecutive memory blocks. If accesses are 
made to alternating banks, then a single SDRAM can 
continuously drive read data in every cycle. The arbi­
tration of the AlphaServer 4100 memory interconnect 
supports only two memory banks, so the smallest 
memory module, which consists of one set of 
SDRAMs, can provide the same 1-GB/s maximum 
read bandwidth as a fully populated memory configu­
ration, i.e., a system configured with the minimum 
amount of memory can perform as well as a fully con­
figured system. 

To increase the single-processor memory bandwidth, 
the arbitration allows two simultaneous read trans­
actions to be issued from a single processor module. As 
Jong as the arbitration memory bank restrictions and 
arbitration fairness restrictions are obeyed, it is possible 
to issue back-to-back read transactions to memory from 
a single CPU with read data being returned to the Alpha 
21164 CPU in eight consecutive cycles instead of the 
usual four (see Tables 1 and 6). This dual-issue feature 
and the other low memory latency and high memory 
bandwidth features of the AlphaServer 4100 architec­
ture enabled the AlphaServer 4100 system to meet the 
best-in-industry performance goals for McCalpin mem­
ory bandwidth.1 

As discussed in the section Simple Design and illus­
trated in Figure 3, to avoid tri-state overlap, whenever 
read data is returned by a different set of SD RAMs 
(on the same memory module or on a different mem­
ory module), a dead cycle is placed between bursts 
of four data cycles to allow one driver to turn off 
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before the next driver turns on. By keeping the lower­
order address bits connected to all SDRAMs, i.e., by 
not interleaving additional banks of memory chips on 
low-order address bits, consecutive accesses to alter­
nating memory banks such as large direct memory 
access (DMA) sequences can potentially achieve the 
full 1-GB/s read bandwidth of the data bus. With the 
dead cycle inserted, the read bandwidth of the mem­
ory interconnect is reduced by 20 percent. 

The data bus connecting the processor, memory, 
and 1/0 modules was implemented as a traditional 
shared 3.3-volt tri-state bus with a single-phase syn­
chronous clock at all modules. As a result, the bus 
becomes saturated as more processors are added and 
bus traffic increases. To keep the design time as short 
as possible, the AlphaServer 4100 designers chose not 
to explore the concept of a switched bus, on which 
more than one private transfer may occur at a time 
between multiple pairs of nodes. Clearly, the 
AlphaServer 4100 system has reached the practical 
upper limit of bus bandwidth using the traditional tri­
state bus approach. 

Reconfigurability 

The AlphaServer 4100 hardware modules were 
designed to allow enhancements to be made in the 
future without having to redesign every element in 
the system. 

Motherboard Options 
The AlphaServer 4100 motherboard contains four 
dedicated processor slots, eight dedicated memory 
slots (four memory pairs), and one slot for an 
1/0 module with two PCI bus bridges. Designed at 
the same time but not produced until after the 
AlphaServer 4100 motherboard was available, 
the AlphaServer 4000 motherboard contains only two 
processor slots, four memory slots ( two memory 
pairs), and slots for two 1/0 modules allowing four 
PCI bus bridges. Since module hardware verification 
in the laboratory is a lengthy process, the AlphaServer 
4000 motherboard was designed to use the same logic 
as the AlphaServer 4100 except for the programmable 
arbitration logic, which had a different algorithm 
because of the extra 1/0 module. When the signals on 
the AlphaServer 4000 motherboard were routed, all 
nets were kept shorter than the corresponding nets on 
the AlphaServer 4100 motherboard so that every sig­
nal did not need to be reexamined. Only those signals 
that were uniquely different were subject to the full 
signal integrity verification process. 

Memory Options 
The synchronous memory modules available for the 
AlphaServer4100 are all based on the 16-Mb SDRAM. 
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Using this size chip allowed designers to build synchro­
nous memory modules that contain 9, 18, 36, and 
72 SDRAMs and provide, respectively, 32 MB, 64 MB, 
128 MB, and 256 MB of main memory per pair. The 
memory architecture supports synchronous memory 
modules that contain up to 1 GB of main memory per 
pair (up to 4 GB per system) by using the 64-Mb 
SDRAMs; however, when the AlphaServer 4100 sys­
tem was introduced, the pricing and availability of the 
64-Mb SD RAM did not allow these larger capacity syn­
chronous memory modules to be built. 

At the same time the synchronous memory modules 
were being designed, a family of plug-in compatible 
memory modules built with EDO DRAMs was 
designed and built. The memory architecture supports 
EDO memory modules containing up to 2 GB of main 
memory per pair ( up to 8 GB per system) by using the 
64-Mb EDO DRAM. When theAlphaServer4100 sys­
tem was introduced, the 64-Mb EDO DRAM was 
available and EDO memory modules containing 72 or 
144 EDO D RAMs were built providing 1 GB and 2 GB 
of main memory per pair. To round out the range of 
memory capacities and to provide an alternative to the 
synchronous memory modules in case there was a cost 
or design problem with the new 16-Mb SD RAM chips, 
a family ofEDO memory modules was also built using 
16-Mb and 4-Mb EDO DRAMs, providing 64 MB, 
256 MB, and 512 MB of main memory per pair. 

Although EDO DRAMs can provide data at a higher 
bandwidth than standard DRAMs, a single EDO 
DRAM cannot return data in four consecutive 15-ns 
cycles like the single SD RAM used on the synchronous 
memory modules. Therefore, a custom ASIC was used 
on the EDO memory module to access 288 bits of 
data every 30 ns from the EDO DRAMs and multiplex 
the data onto the 144-bit memory interconnect every 
15 ns. To imitate the two-bank feature of a single 
SD RAM, a second bank of EDO DRAMs is required. 
Consequently, the minimum number of memory 
chips per EDO memory module is 72 four-bit-wide 
EDO DRAM chips, whereas the minimum number 
of memory chips per synchronous memory module 
is only 18 four-bit-wide SDRAM chips or as few as 
9 eight-bit-wide SD RAM chips. 

When the AlphaServer 4100 system was introduced, 
the fastest EDO DRAM available that met the pricing 
requirements was the 60-ns version. When this chip 
is used on the EDO memory module, data cannot 
be returned to the motherboard as fast as data can be 
returned from the synchronous memory modules. To 
support the 60-ns EDO DRAMs, a one-cycle (15 ns ) 
increase in the access time to main memory is required. 
Support for this extra cycle oflatency was designed into 
the memory interconnect by placing a one-cycle gap 
between cycles 2 and 3 ( see Table 1) of any read trans­
action accessing a 60-ns EDO memory module. Con­
sequently, the read memory latency is one cycle longer 



and the maximum read bandwidth is 20 percent less 
when using EDO memory modules built with 60-ns 
EDO DRAMs. Note that it is possible to have a mixture 
of EDO memory modules and synchronous memory 
modules in the same system. In such a case, only the 
memory read transactions to the 60-ns EDO memory 
module would result in a loss of performance. 

New versions of the EDO memory modules that 
contain 50-ns EDO DRAMs providing up to 8 GB of 
total system memory are scheduled to be introduced 
within a year after the introduction of the AlphaServer 
4100. These modules will not require the adcfjtional 
cycle oflatency, and as a result they will have identical 
performance to the synchronous memory modules. 

Processor Options 
The no-external-cache processor module was designed 
to support either a 300-MHz Alpha 21164 CPU chip 
with a 60-MHz (16.6-ns) synchronous memory inter­
connect or a 400-MHz Alpha 21164 CPU chip with 
a 66 MHz (15-ns) synchronous memory interconnect. 
As previously mentioned, the Alpha 21164 itself 
contains a primary 8-KB data cache, a primary 8-KB 
instruction cache, and a second-level 96-KB three­
way set-associative data and instruction cache. The 
no-external-cache processor module contains no third­
level cache, but by keeping the latency to main mem­
ory low and by issuing multiple references from the 
same Alpha 21164 to main memory at the same time 
to increase memory bandwidth, the performance of 
many applications is better than that of a processor 
module containing a third-level external cache.1 

Applications that are small enough to fit in a large 
third-level cache perform better with an external 
cache, however, so the AlphaServer 4100 offers several 
variants of plug-in compatible processor modules con­
taining a 2-MB, 4-MB, or greater module-level cache. 
In addition, cached processor modules are being 
designed to support Alpha 21164 CPU chips that run 
faster than 400 MHz while still maintaining the maxi­
mum 66-MHz synchronous memory interconnect. 
The architecture of the cached processor module 
was developed in parallel with the core module set, 
and several enhancements were made to the CPU and 
memory architecture to support the module-level 
cache. See the companion paper "The AlphaServer 
4100 Cached Processor Module Architecture and 
Design" for more information.4 

Versions of the Alpha 21164 chip that operate 
at 400 MHz and faster require 2-volt power, while 
slower versions of the Alpha 21164 require only 
3.3 volts. The AlphaServer 4100 motherboard does 
not provide 2 volts of power to the processor module 
connectors; consequently, a 3.3-to-2-volt converter 
card is used on the higher-speed processor modules 
to provide this unique voltage. Each new version of 

processor module is plug-in compatible, and systems 
can be upgraded without changing the motherboard. 
This is true even if the frequency of the synchronous 
memory interconnect changes, although all processor 
modules in the system must be configured to operate 
at the same speed. The oscillators for both the high­
speed internal CPU clock and the memory intercon­
nect bus clock are located on the processor modules 
to allow processor upgrades to be made without mod­
ifying the motherboard. 

Summary 

The high-performance DIGITAL AlphaServer 4100 
SMP server, which supports up to four Alpha 21164 
CPUs, was designed simply and quickly using off-the­
shelf components and programmable logic. When the 
AlphaServer 4100 system was introduced in May 
1996, the memory interconnect design enabled the 
server to achieve a minimum memory latency of 
120 nanoseconds and a maximum memory band­
width ofl gigabyte per second. This industry-leacfjng 
performance was achieved by using off-the-shelf data 
path and address components and programmable 
logic between the CPU and the SDRAM-based main 
memory. The motherboard, the synchronous memory 
module, and the no-external-cache processor module 
were developed concurrently to optimize the perfor­
mance of the memory architecture. These core mod­
ules were operating successfully within six months of 
the start of the design. The AlphaServer 4100 hard­
ware modules were designed to allow future enhance­
ments without redesigning the system. 
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High Performance 1/0 
Design in the AlphaServer 
4100 Symmetric 
Multiprocessing System 

The DIGITAL Alpha Server 4100 symmetric multi­
processing system is based on the Alpha 64-bit 
RISC microprocessor and is designed for fast 
CPU performance, low memory latency, and 
high memory and 1/0 bandwidth. The server's 
1/0 subsystem contributes to the achievement 
of these goals by implementing several innova­
tive design techniques, primarily in the system 
bus-to-PCI bus bridge. A partial cache line write 
technique for small transactions reduces traffic 
on the system bus and improves memory latency. 
A design for deadlock-free peer-to-peer transac­
tions across multiple 64-bit PCI bus bridges reduces 
system bus, PCI bus, and CPU utilization by as 
much as 70 percent when measured in DIGITAL 
AlphaServer 4100 MEMORY CHANNEL clusters. 
Prefetch logic and buffering supports very large 
bursts of data without stalls, yielding a system 
that can amortize overhead and deliver perfor­
mance limited only by the PCI devices used in 
the system. 

I 
Samuel H. Duncan 
Craig D. Keefer 
Thomas A. McLaughlin 

The AlphaServer 4100 is a symmetric multiprocess­
ing system based on the Alpha 21164 64-bit RISC 
microprocessor. This midrange system supports one 
to four CPUs, one to four 64-bit-wide peer bridges to 
the peripheral component interconnect (PCI), and 
one to four logical memory slots. The goals for the 
AlphaServer 4100 system were fast CPU performance, 
low memory latency, and high memory and I/0 
bandwidth. One measure of success in achieving these 
goals is the AIM benchmark multiprocessor perfor­
mance results. The AlphaServer 4 100 system was 
audited at 3,337 peak jobs per minute, with a sus­
tained number of3,018 user loads, and won the AIM 
Hot Iron price/performance award in October 1996.1 

The subject of this paper is the contribution of the 
I/0 subsystem to these high-performance goals. In an 
in-house test, I/0 performance of an AlphaServer 
4100 system based on a 300-megahertz (MHz) 
processor shows a 10 to 19 percent improvement in 
I/0 when compared with a previous-generation 
midrange Alpha system based on a 350-MHz proces­
sor. Reduction in CPU utilization is particularly bene­
ficial for applications that use small transfers, e.g., 
transaction processing. 

1/0 Subsystem Goals 

The goal for the AlphaServer 4100 I/0 subsystem was 
to increase overall system performance by 

• Reducing CPU and system bus utilization for all 
applications 

• Delivering full I/0 bandwidth, specifically, a band­
width limited only by the PCI standard protocol, 
which is 266 megabytes per second (MB/s) on 
64-bit option cards and 133 MB/ s on 32-bit 
option cards 

• Minimizing latency for all direct memory access 
(DMA) and programmed I/0 (PIO) transactions 

Our discussion focuses on several innovative 
techniques used in the design of the I/0 subsystem 
64-bit-wide peer host bus bridges that dramatically 
reduce CPU and bus utilization and deliver full PCI 
bandwidth: 
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• A partial cache line write technique for coherent 
DMA writes. This technique permits an I/0 device 
to insert data that is smaller than a cache line, or 
block, into the cache-coherent domain without first 
obtaining ownership of the cache block and per­
forming a read-modify-write operation. Partial 
cache line writes reduce traffic on the system bus 
and improve latency, particularly for messages 
passed in a MEMORY CHANNEL cluster.2 

• Support for device-initiated transactions that target 
other devices (peers) across multiple (peer) PCI 
buses. Peer-to-peer transactions reduce system 
bus utilization, PCI bus utilization, and CPU uti­
lization by as much as 70 percent when measured in 
MEMORY CHANNEL clusters. In testing, we ran 
a MEMORY CHANNEL application without peer­
to-peer DMA, and observed 85 percent CPU 
utilization; running the same application with peer­
to-peer DMA enabled, we observed 15 percent 
CPU utilization. The peer-to-peer technique is 
successfully implemented on the AlphaServer 4100 
system without causing deadlocks. 

• Large bursts of PCI-device-initiated DMA data to 
or from :,ystem memory. I/0 subsystem support 
for large bursts ofDMA data enables efficient PCI 
bus utilization because fixed bus latency can be 
amortized over these large transactions. 

• Prefetched read data and posted write data buffer­
ing designed to keep up with the highest perfor­
mance PCI devices. When used in combination 
with the PCI delayed-read protocol, the buffering 
and prefetching approach allows the system to 
avoid PCI bus stalls introduced by the bridge dur­
ing PCI-device-initiated transactions. 

The following overview of the system concentrates 
on the areas in which these techniques are used to 
enhance performance, that is, efficiency in the system 
bus and in the PCI bus bridge. In subsequent sections, 
we describe in greater detail the performance issues, 
other possible approaches to resolving the issues, and 
the techniques we developed. We conclude the paper 
with performance results. 

AlphaServer 4100 System Overview 

The AlphaServer 4100 system shown in Figure 1 
includes four CPUs connected to the system bus, 
which comprises the data and error correction code 
(ECC) and the command and address lines. Also 
connected to the system bus are main memory and 
a single module with two independent peer PCI bus 
bridges. The single module, the PCI bridge module, 
provides the physical and the logical bridge between 
the system bus and the PCI buses. Each independent 
peer PCI bus bridge is constructed of a set of three 
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application-specific integrated circuit (ASIC) chips, 
one control chip, and two sliced data path chips. 

The two independent PCI bus bridges are the inter­
faces between the system bus and their respective PCI 
buses. A PCI bus is 64 or 32 bits wide, transferring 
data at a peak of266 MB/s or 133 MB/s, respectively. 
In the AlphaServer 4 100 system, the PCI buses are 
64 bits wide. 

The PCI buses connect to a PCI backplane module 
with a number of expansion slots and a bridge to the 
Extended Industry Standard Architecture (EISA) bus. 
In Figure 1, each PCI bus is shown to support up to 
four devices in option slots. 

The AlphaServer 4000 series also supports a config­
uration in which two of the CPU cards are replaced 
with two additional independent peer PCI bus 
bridges. In the quad PCI bus configuration, there are 
16 option slots available for PCI devices, at the cost 
of bounding the system to a maximum of two CPUs 
and two logical memory slots. This quad PCI bus con­
figuration is shown in Figure 2. 

Most of the techniques described in this paper are 
implemented in the PCI bus bridge. The partial cache 
line write technique, presented next, is also designed 
into the protocol on the system bus and into the CPU 
cards. 

Improvements in CPU and System Bus Utilization 
through Use of Partial Cache Line Writes 

Inefficient use of system resources can limit perfor­
mance on heavily loaded systems. System designers 
must be attentive to potential performance bottle­
necks beyond the commonly addressed CPU speed, 
cache loop time, and CPU memory latency. Our focus 
in the I/0 subsystem design was to balance system 
performance in the face of a wide range of I/0 device 
behaviors. We therefore implemented techniques that 
minimize the load on the PCI bus, the system bus, and 
the CPUs. The technique described in this section­
partial cache line writes-reduces the load on the sys· 
tern bus and improves overall system performance. 

Many first- and second-generation PCI controller 
devices were designed to operate in platforms that 
support 32-byte cache lines and 16-byte write buffers. 
It is common for an older PCI device to limit the 
amount ofDMA data it reads or writes to match this 
characteristic of computers that were on the market at 
the time those devices were designed. Some classes of 
devices will, by their nature, always limit the amount 
of data in a burst transaction. 

As do most Alpha platforms, the AlphaServer 4100 
system supports a 64-byte cache line that is twice that 
of other common systems. When a PCI device per­
forms a memory write of less than a complete cache 
line, the system must merge the data into a cache line 
while maintaining a consistent (coherent) view of 
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memory for all CPUs on the system bus. This merging 
of write data into the cache-coherent domain is typi­
cally done on the PCI bus bridge, which reads the 
cache line, merges the new bytes, and writes the cache 
line back out to memory. The read-modify-write must 
be performed as an atomic operation to maintain 
memory consistency. For the duration of the atomic 
read-modify-write operation, the system bus is busy. 
Consequently, a write of less than a cache line results 
in a read-modify-write that takes at least three times as 
many cycles on the system bus as a simple 64-byte­
aligned cache line write. 

For example, if we had used an earlier DIGITAL 
implementation of a system bus protocol on the 
AlphaServer 4100 system, an 1/0 device operation 
on the PCI that performed a single 16-byte-aligned 
memory write would have consumed system bus 
bandwidth that could have moved 256 bytes of data, 
or 16 times the amount of data. We therefore had to 
find a more efficient approach to writing subblocks 
into the cache-coherent domain. 

We first examined opportunities for efficiency gains 
in the memory system.3 The AlphaServer 4100 mem­
ory system interface is 16 bytes wide; a 64-byte cache 
line read or write takes four cycles on the system bus. 
The memory modules themselves can be designed to 
mask one or more of the writes and allow aligned 
blocks that are multiples of 16 bytes to be written to 
memory in a single system bus transaction. The prob­
lem with permitting a less than complete cache line 
write, i.e., less than 64 bytes, is that the write goes to 
main memory, but the only up-to-date/complete 
copy of a cache line may be in a CPU card's cache. 

To permit the more efficient partial cache line 
write operations, we modified the system bus cache­
coherency protocol. When a PCI bus bridge issues 
a partial cache line write on the system bus, each CPU 
card performs a cache lookup to see if the target of 
the write is dirty. In the event that the target cache 
block is dirty, the CPU signals the PCI bus bridge 
before the end of the partial write. On dirty partial 
cache line write transactions, the bridge simply per­
forms a second transaction as a read-modify-write. If 
the target cache block is not dirty, the operation com­
pletes in a single system bus transaction. 

Address traces taken during product development 
were simulated to determine the frequency of dirty 
cache blocks that are targets ofDMA writes. Our sim­
ulations showed that, for the address trace we used, 
frequency was extremely rare. Measurement taken 
from several applications and benchmarks confirmed 
that a dirty cache block is almost never asserted with 
a partial cache line write. 

The DMA transfer of blocks that are aligned 
multiples of 16 bytes but less than a cache line is four 
times more efficient in the 4100 system than in earlier 
DIGITAL implementations. 
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Movement of blocks of less than 64 bytes is 
important to application performance because there 
are high-performance devices that move less than 
64 bytes. One example is DIGITAL's MEMORY 
CHANNEL adapter, which moves 32-byte blocks in a 
burst.2 As MEMORY CHANNEL adapters move large 
numbers of blocks that are all less than a cache line of 
data, the 1/0 subsystem partial cache line write feature 
improves system bus utilization and eliminates the 
system bus as a bottleneck. Message latency across the 
fabric ofanAlphaServer4100 MEMORY CHANNEL 
cluster (version 1.0) is approximately 6 microseconds 
(µs ). There are two DMA writes in the message: the 
first is a message, and the second is a flag to validate the 
message. These DMA writes on the targetAlphaServer 
4100 contribute to message latency. The improve­
ment in latency provided by the partial cache line write 
feature is approximately 0.5 µs per write. With two 
writes per message, latency is reduced by approxi­
mately 15 percent over an AlphaServer 4100 system 
with the partial cache line write feature. With version 
1.5 of MEMORY CHANNEL adapters, net latency 
will improve by about 3 µs, and the effect of partial 
cache line writes will approach a 30 percent improve­
ment in message latency. 

In summary, the challenge is to efficiently move a 
block of data of a common size ( multiple of 16 bytes) 
that is smaller than a cache line into the cache-coherent 
domain. Without any further improvement, the tech­
nique reduces system bus utilization by as much as a 
factor of four. This technique allows subblocks to be 
merged without incurring the overhead of read-modify­
write, yet maintains cache coherency. The only draw­
back to the technique is some increased complexity in 
the CPU cache controller to support this mode. We 
considered the alternative of adding a small cache to the 
PCI bridge. Writes into the same memory region that 
occur within a short period of time could merge directly 
into a cache. This approach adds significant complexity 
and increases performance only if transactions that tar­
get the same cache line are very close together in time. 

Peer-to-Peer Transaction Support 

System bus and PCI bus utilization can be optimized 
for certain applications by limiting the number of times 
the same block of data moves through the system. 
As noted in the section AlphaServer 4100 System 
Overview, the PCI subsystem can contain two or four 
independent PCI bus bridges. Our design allows exter­
nal devices connected to these separate peer PCI bus 
bridges to share data without accessing main memory 
and by using a minimal amount of host bus bandwidth. 
In other words, external devices can effect direct access 
to data on a peer-to-peer basis. 



In conventional systems, a data file on a disk that is 
requested by a client node is transferred by DMA from 
the disk, across the PCI and the system bus, and into 
main memory. Once the data is in main memory, a net­
work device can read the data directly in memory and 
send it across the network to the client node. In a 4100 
system, device peer-to-peer transaction circumvents 
the transfer to main memory. However, peer-to-peer 
transaction requires that the target device have certain 
properties. The essential property is that the device tar­
get appear to the source device as ifit is main memory. 

The balance of this section explains how conven­
tional DMA reads and writes are performed on the 
AlphaServer 4100 system, how the infrastructure for 
conventional DMA can be used for peer-to-peer trans­
actions, and how deadlock avoidance is accomplished. 

Conventional DMA 
We extended the features of conventional DMA on the 
AlphaServer 4100 system to support peer-to-peer 
transaction. Conventional DMA in the 4100 system 
works as follows. 

Address space on the Alpha processor is 2 ~ or 1 tera­
byte; the AlphaServer 4100 system supports up to 
8 gigabytes (GB) of main memory. To directly address 
all of memory without using memory management 
hardware, an address must be 33 bits. (Eight GB is 
equivalent to 233 bytes.) 

Because the amount of memory is large compared to 
address space available on the PCI, some sort of mem­
ory management hardware and software is needed to 
make memory directly addressable by PCI devices. 
Most PCI devices use 32-bit DMA addresses. To pro­
vide direct access for every PCI device to all of the sys­
tem address space, the PCI bus bridge has memory 
management hardware similar to that which is used on 

a CPU daughter card. Each PCI bridge to the system 
bus has a translation look-aside buffer (TLB) that con­
verts PCI addresses into system bus addresses. The use 
of a TLB permits hardware to make all of physical 
memory visible through a relatively small region of 
address space that we call a DMA window. 

A DMA window can be specified as "direct 
mapped" or "scatter-gather mapped." A direct­
mapped DMA window adds an offset to the PCI 
address and passes it on to the system bus. A scatter­
gather mapped DMA window uses the TLB to look up 
the system bus address. 

Figure 3 is an example of how PCI memory address 
space might be allocated for DMA windows and for 
PCI device control status registers (CSRs) and memory. 

A PCI device initiates a DMA write by driving an 
address on the bus. In Figure 4, data from PCI devices 
O and 1 are sent to the scatter-gather DMA windows; 
data from PCI device 2 are sent to the direct-mapped 
DMA window. When an address hits in one of the 
DMA windows, the PCI bus bridge acknowledges 
the address and immediately begins to accept write 
data. While consuming write data in a buffer, the PCI 
bus bridge translates the PCI address into a system 
address. The bridge then arbitrates for the system bus 
and, using the translated address, completes the write 
transaction. The write transaction completes on the 
PCI before it completes on the system bus. 

A DMA read transaction has a longer latency than 
a DMA write because the PCI bus bridge must first 
translate the PCI address into a system bus address and 
fetch the data before completing the transaction. That 
is to say, the read transaction completes on the system 
bus before it can complete on the PCI. 

Figure 5 shows the address path through the PCI 
bus bridge. All DMA writes and reads are ordered 
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t 

through the outgoing queue ( OQ) en route to the sys­
tem bus. DMA read data is passed through an incom­
ing queue (IQ) bypass by way of a DMA fill data buffer 
en route to the PCI. 

Note that the IQ orders CPU-initiated PIO transac­
tions. The IQ bypass is necessary for correct, dead­
lock-free operation of peer-to-peer transactions, which 
are explained in the next section. 
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Following is an example of how a conventional 
"bounce" DMA operation is used to move a file from a 
local storage device to a network device. The example 
illustrates how data is written into memory by one 
device where it is temporarily stored. Later the data is 
read by another DMA device. This operation is called 
a "bounce I/0" because the data "bounces" off 



memory and out a network port, a common operation 
for a network file server application. 

Assume PCI device A is a storage controller and PCI 
device Bis a network device: 

l. The storage controller, PCI device A, writes the file 
into a buffer on the PCI bus bridge using an 
address that hits a DMA window. 

2. The PCI bridge translates the PCI memory address 
into a system bus address and writes the data into 
memory. 

3. The CPU passes the network device a PCI memory 
space address that corresponds to the system bus 
address of the data in memory. 

4. The network controller, PCI device B, reads the file 
in main memory using a DMA window and sends 
the data across the network. 

If both controllers are on the same PCI bus segment 
and if the storage controller (PCI device A) could 
write directly to the network controller (PCI device 
B ), no traffic would be introduced on the system bus. 
Traffic on the system bus is reduced by saving one 
DMA write, possibly one copy operation, and one 
DMA read. On the PCI bus, traffic is also reduced 
because there is one transaction rather than two. 
When the target of a transaction is a device other than 
main memory, the transaction is called a peer-to-peer. 
Peer-to-peer transactions on a single-bus system are 
simple, bordering on trivial; but deadlock-free support 
on a system with multiple peer PCI buses is quite a bit 
more difficult. 

This section has presented a high-level description 
of how a PCI device DMA address is translated into 
a system bus address and data are moved to or from 
main memory. In the next section, we show how the 
same mechanism is used to support device peer-to­
peer transactions and how traffic is managed for dead­
lock avoidance. 

A Peer-to-Peer Link Mechanism 
For direct peer-to-peer transactions to work, the target 
device must behave as if it is main memory; that is, 
it must have a target address in prefetchable PCI mem­
ory space.• The PCI specification further states that 
devices are not allowed to depend on completion of 
a transaction as master.5 Two devices supported by 
the DIGITAL UNIX operating system meet these 
criteria today with some restrictions; these are the 
MEMORY CHANNEL adapter noted earlier and 
the Prestoserve NVRAM, a nonvolatile memory stor­
age device used as an accelerator for transaction 
processing. The PNVRAM was part of the configura­
tion in which the AIM benchmark results cited in the 
introduction were achieved. 

Both conventional DMA and peer-to-peer trans­
actions work the same way from the perspective of 

the PCI master: The device driver provides the master 
device with a target address, size of the transfer, and 
identification of data to be moved. In the case in which 
a data file is to be read from a disk, the device driver 
software gives the PCI device that controls the disk a 
"handle," which is an identifier for the data file and the 
PCI target address to which the file should be written. 
To reiterate, in a conventional DMA transaction, the 
target address is in one of the PCI bus bridge DMA 
windows. The DMA window logic translates the 
address into a main memory address on the system bus. 
In a peer-to-peer transaction, the target address is 
translated to an address assigned to another PCI device. 

Any PCI device capable ofDMA can perform peer­
to-peer transactions on the AlphaServer 4100 system. 
For example, in Figure 6, PCI device A can transfer 
data to or from PCI device B without using any 
resources or facilities in the system bus bridge. The use 
of a peer-to-peer transaction is controlled entirely by 
software: The device driver passes a target address to 
PCI device A, and device A uses the address as the 
DMA data source or destination. 

If the target of the transaction is PCI device C, then 
system services software allocates a region in a scatter­
gather map and specifies a translation that maps the 
scatter-gather-mapped address on PCI bus O to a sys­
tem bus address that maps to PCI device C. This 
address translation is placed in the scatter-gather map. 
When PCI device A initiates a transaction, the address 
matches one of the DMA windows that has been ini­
tialized for scatter-gather. The PCI bus bridge accepts 
the transaction, looks up the translation in the scatter­
gather map, and uses a system address that maps 
through PCI bus bridge 1 to hit PCI device C. The 
transaction on the system bus is between the two PCI 
bridges, with no involvement by memory or CPUs. In 
this transaction, the system bus is utilized, but the data 
is not stored in main memory. This eliminates the 
intermediate steps and overhead associated with con -
ventional DMA, traditionally done by the "bounce" of 
the data through main memory. 

The features that allow software to make a device on 
one PCI bus segment visible to a device on another are 
all implicit in the scatter-gather mapping TLB. For 
peer-to-peer transaction support, we extended the 
range of translated addresses to include memory space 
on peer PCI buses. This allows address space on one 
independent PCI bus segment to appear in a window 
of address space on a second independent peer PCI 
bus segment. On the system bus, the peer transaction 
hits in the address space of the other PCI bridge. 

Deadlock Avoidance in Device Peer-to-Peer Transactions 
The definition of deadlock, as it is solved in this 
design, is the state in which no progress can be made 
on any transaction across a bridge because the queues 
are filled with transactions that will never complete. 
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A deadlock situation is analogous to highway gridlock 
in which two lines of automobiles face each other on 
a single-lane road; there is no room to pass and no way 
to back up. Rules for deadlock avoidance are analo­
gous to the rules for directing vehicle traffic on a nar­
row bridge. 

An example of peer-to-peer deadlock is one in 
which two PCI devices are dependent on the comple­
tion of a write as masters before they will accept writes 
as targets. When these two devices target one another, 
the result is deadlock; each device responds with 
RETRY to every write in which it is the target, and 
each device is unable to complete its current write 
transaction because it is being retried. 

A device that does not depend on completion of a 
transaction as master before accepting a transaction as 
target may also cause deadlocks in a bridged environ­
ment. Situations can occur on a bridge in which multi­
ple outstanding posted transactions must be kept in 
order. Careful design is required to avoid the potential 
for deadlock. 

The design for deadlock-free peer-to-peer transaction 
support in the AlphaServer 4100 system includes the 

• Implementation of PCI delayed-read transactions 

• Use of bypass paths in the IQ and in read-return 
data 
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This section assumes that the reader is familiar with 
the PCI protocol and ordering rules.• 

Figure 6 shows the data paths through two PCI 
bus bridges. Transactions pass through these bridges 
as follows: 

• CPU software-initiated PIO reads and PIO writes 
are entries in the IQ. 

• Device peer-to-peer transactions targeting devices 
on peer PCI segments also use the IQ. 

• PCI-device-initiated reads and writes (DMA or 
peer-to-peer), interrupts, and PIO fill data are 
entries in the OQ. 

• The multiplexer selecting entries in the IQ allows 
writes (PIO or peer-to-peer) to bypass delayed 
(pended) reads (PIO or peer-to-peer). 

• The read prefetch address register permits read­
return in the OQ data to bypass PCI delayed reads. 

The two bypass paths around the IQ and OQ are 
required to avoid deadlocks that may occur during 
device peer-to-peer transactions. All PCI ordering rules 
are satisfied from the point of view of any single device 
in the system. The following example demonstrates 
deadlock avoidance in a device peer-to-peer write and 
a device peer-to-peer read, referencing Figure 7. 



The configuration in the example is an AlphaServer 
4100 system with four CPUs and two PCI bus bridges. 
Devices A and C are simple master-capable DMA 
controllers, and devices B and D are simple targets, 
e.g., video RAMs, network controllers, PNVRAM, or 
any device with prefetchable memory as defined in the 
PCI standard. 

Example of device peer-to-peer write block comple­
tion of pended PIO read-return data: 

1. PCI device A initiates a peer-to-peer burst write 
targeting PCI device D. 

2. Write data enters the OQ on bridge 0, filling three 
posted write buffers. 

3. The target bridge, bridge 1, writes data from 
bridge 0. 

4. When the IQ on bridge 1 hits a threshold, it 
uses the system bus flow-control to hold off the 
next write. 

5. As each 64-byte block of write data is retired out 
of the IQ on bridge 1, an additional 64-byte 
( cache line size) write of data is allowed to move 
from the OQ on bridge O to the IQ on bridge 1. 

6. If the OQ on bridge O is full, bridge O will discon­
nect from the current PCI transaction and will 
retry all transactions on PCI O until an OQ slot 
becomes available. 

7. PCI device C initiates a peer-to-peer burst write, 
targeting PCI device B; the same scenario follows 
as steps 1 through 6 above but in the opposite 
direction. 

8. CPU O posts a read of PCI memory space on PCI 
device E. 

9. CPU 1 posts a read of PCI memory space on PCI 
device G. 

10. CPU 2 posts a read of PCI memory space on PCI 
device F. 

11. CPU 3 posts a read of PCI memory space on PCI 
device H. 

12. Deadlock: 

- Both OQs are stalled waiting for the corre­
sponding IQ to complete an earlier posted write. 

-The design has two PIO read-return data (fill) 
buffers; each is full. 

- The PIO read-return data must stay behind the 
posted writes to satisfy PCI-specified posted 
write buffer flushing rules. 

-A third read is at the bottom of each IQ, and it 
cannot complete because there is no fill buffer 
available in which to put the data. 

To avoid this deadlock, posted writes are allowed 
to bypass delayed (pended) reads in the IQ, as 

shown in Figure 6. In the AlphaServer 4100 deadlock· 
avoidance design, the IQ will always empty, which in 
turn allows the OQ to empty. 

Note that the IQ bypass logic implemented for 
deadlock avoidance on the AlphaServer 4100 system 
may appear to violate General Rule 5 from the PCI 
specification, Appendix E: 

A read transaction must push ahead ofit through 
the bridge any posted writes originating on 
the same side of the bridge and posted before the 
read. Before the read transaction can complete on 
its originating bus, it must pull out of the bridge 
any posted writes that originated on the opposite 
side and were posted before the read command 
completes on the read-destination bus.4 

In fact, because of the characteristics of the CPUs 
and the flow-control mechanism on the system bus, all 
rules are followed as observed from any single CPU or 
PCI device in the system. Because reads that target 
a PCI address are always split into separate request and 
response transactions, the appropriate ordering rule 
for this case is PCI Specification Delayed Transaction 
Rule 7 in Section 3.3.3.3 of the PCI specification: 

Delayed Requests and Delayed Completions 
have no ordering requirements with respect to 
themselves or each other. Only a Delayed Write 
Completion can pass a Posted Memory Write. A 
Posted Memory Write must be given an oppor­
tunity to pass everything except another Posted 
Memory Write.4 

Also note that, as shown in Figure 6, the DMA fill 
data buffers bypass the IQ, apparently violating 
General Rule 5. The purpose of General Rule 5 is to 
provide a mechanism in a device on one side of a bridge 
to ensure that all posted writes have completed. This 
rule is required because interrupts on PCI are side­
band signals that may bypass all posted data and signal 
completion of a transaction before the transaction has 
actually completed. In the AlphaServer 4100 system, 
all writes to or from PCI devices are strictly ordered, 
and there is no side-band signal notifying a PCI device 
of an event. These system characteristics allow the PCI 
bus bridge to permit DMA fill data (in PCI lexicon, this 
could be a delayed-read completion, or read data in a 
connected transaction) to bypass posted memory 
writes in the IQ. This bypass is necessary to limit PCI 
target latency on DMA read transactions. 

We have presented two IQ bypass paths in the 
AlphaServer 4100 design. We describe one IQ bypass 
as a required feature for deadlock avoidance in peer­
to-peer transactions between devices on different 
buses. The second bypass is required for performance 
reasons and is discussed in the section 1/0 Bandwidth 
and Efficiency. 
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Block Diagram Showing Deadlock Case without IQ Bypass Path 

Required Characteristics for Deadlock-free Peer-to-Peer 
Target Devices 
PCI devices must follow all PCI standard ordering 
rules for deadlock-free peer-to-peer transaction. The 
specific rule relevant to the AlphaServer 4100 design 
for peer-to-peer transaction support is Delayed 
Transaction Rule 6, which guarantees that the IQ will 
always empty: 

A target must accept all memory writes 
addressed to it while completing a request using 
Delayed Transaction termination: 

Our design includes a link mechanism using scatter­
gather TLBs to create a logical connection between two 
PCI devices. It includes a set of rules for bypassing data 
that ensures deadlock-free operation when all partici­
pants in a peer-to-peer transaction follow the ordering 
rules in the PCI standard. The link mechanism provides 
a logical path for peer-to-peer transactions and the 
bypassing rules guarantee the IQ will always drain. 
The key feature , then, is a guarantee that the IQ will 
always drain, thus ensuring deadlock-free operation. 
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1/0 Bandwidth and Efficiency 

With overall system performance as our goal, we 
selected two design approaches to deliver full PCI 
bandwidth without bus stalls. These were support for 
large bursts of PCI-device-initiated DMA, and suffi­
cient buffering and prefetching logic to keep up with 
the PCI and avoid introducing stalls. We open this sec­
tion with a review of the bandwidth and latency issues 
we examined in our efforts to achieve greater band­
width efficiency. 

The bandwidth available on a platform is dependent 
on the efficiency of the design and on the type of 
transactions performed. Bandwidth is measured in 
millions of bytes per second (MB/s). On a 32-bit 
PCI, the available bandwidth is efficiency multiplied 
by 133 MB/ s; on a 64-bit PCI, available bandwidth is 
efficiency multiplied by 266 MB/ s. By efficiency, we 
mean the amount of time spent actually transferring 
data as compared with total transaction time. 

Both parties in a transaction contribute to efficiency 
on the bus. The AlphaServer 4100 I/0 design keeps 
the overhead introduced by the system to a minimum 
and supports large burst sizes over which the per­
transaction overhead can be amortized. 



Support for Large Burst Sizes 

To predict the efficiency of a given design, one must 
break a transaction into its constituent parts. For exam­
ple, when an 1/0 device initiates a transaction it must 

• Arbitrate for the bus 

• Connect to the bus (by driving the address of the 
transaction target) 

• Transfer data ( one or more bytes move in one or 
more bus cycles) 

• Disconnect from the bus 

Time actually spent in an 1/0 transaction is the 
sum of arbitration, connection, data transfer, and 
disconnection. 

The period of time before any data is transferred 
is typically called latency. With small burst sizes, band­
width is limited regardless of latency. Latency of 
arbitration, connection, and disconnection is fairly 
constant, but the amount of data moved per unit of 
time can increase by making the 1/0 bus wider. The 
AlphaServer 4100 PCI buses are 64 bits wide, yielding 
( efficiency X 266 MB/ s) of available bandwidth. 

As shown in Figure 8, efficiency improves as burst 
size increases and overhead (i.e., latency plus stall 
time) decreases. Overhead introduced by the 
AlphaServer 4100 is fairly constant. As discussed ear­
lier, a DMA write can complete on the PCI before it 
completes on the system bus. As a consequence, we 
were able to keep overhead introduced by the plat­
form to a minimum for DMA writes. Recognizing that 
efficiency improves with burst size, we used a queuing 
model of the system to predict how many posted write 
buffers were needed to sustain DMA write bursts with­
out stalling the PCI bus. Based on a simulation model 
of the configurations shown in Figures 1 and 2, we 
determined that three 64-byte buffers were sufficient 
to stream DMA writes from the (266 MB/s) PCI bus 
to the (1 GB/s) system bus. 

Later in this paper, we present measured perfor­
mance ofDMA write bandwidth that matches the sim­
ulation model results and, with large burst sizes, 
actually exceeds 9 5 percent efficiency. 

Prefetch Logic 
DMA writes complete on the PCI before they com­
plete on the system bus, but DMA reads must wait for 
data fetched from memory or from a peer on another 
PCI. As such, latency for DMA reads is always worse 
than it is for writes. PC! Local Bus Specification 
Revision 2. 1 provides a delayed-transaction mechanism 
for devices with latencies that exceed the PCI initial­
latency requirement! The initial-latency requirement 
on host bus bridges is 32 PCI cycles, which is the max­
imum overhead that may be introduced before the 
first data cycle. The AlphaServer 4100 initial latency 
for memory DMA reads is between 18 and 20 PCI 
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cycles. Peer-to-peer reads of devices on different bus 
segments are always converted to delayed-read trans­
actions because the best-case initial latency will be 
longer than 32 PCI cycles. 

PCI initial latency for DMA reads on the 
AlphaServer 4100 system is commensurate with 
expectations for current generation quad-processor 
SMP systems. To maximize efficiency, we designed 
prefetching logic to stream data to a 64-bit PCI device 
without stalls after the initial-latency penalty has been 
paid. To make sure the design could keep up with an 
uninterrupted 64-bit DMA read, we used the queuing 
model and analysis of the system bus protocol and 
decided that three cache-line-size prefetch buffers 
would be sufficient. The algorithm for prefetching 
uses the advanced PCI commands as hints to deter­
mine how far memory data prefetching should stay 
ahead of the PCI bus: 

• Memory Read (MR): Fetch a single 64-byte cache 
line. 

• Memory Read Line (MRL): Fetch two 64-byte 
cache lines. 

• Memory Read Multiple (MRM): Fetch two 
64-byte cache lines, and then fetch one line at 
a time to keep the pipeline full. 

After the PCI bus bridge responds to an MRM com­
mand by fetching two 64-byte cache lines and the sec­
ond line is returned, the bridge posts another read; as 
the oldest buffer is unloaded, new reads are posted, 
keeping one buffer ahead of the PCI. The third 
prefetch buffer is reserved for the case in which a DMA 
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MRM completes while there are still prefetch reads 
outstanding. Reservation of this buffer accomplishes 
two things: ( 1) it eliminates a time-delay bubble that 
would appear between consecutive DMA read trans­
actions, and (2 ) it maintains a resource to fetch a 
scatter-gather translation in the event that the next 
transaction address is not in the TLB. Measured DMA 
bandwidth is presented later in this paper. 

The point at which the design stops pref etching is on 
page boundaries. As the DMA window scatter-gather 
map is partitioned into 8-KB pages, the interface is 
designed to disconnect on 8-KB-aligned addresses. 

The advantage of prefetching reads and absorbing 
posted writes on this system is that the burst size can 
be as large as 8 KB. With large burst size, the overhead 
of connecting and disconnecting from the bus is 
amortized and approaches a negligible penalty. 

DMA and PIO Performance Results 

We have discussed the relationship between burst size, 
initial latency, and bandwidth and described several 
techniques we used in the AlphaServer 4100 PCI bus 
bridge design to meet the goals for high-bandwidth 
1/0. This section presents the performance delivered 
by the 4100 1/0 subsystem design, which has been 
measured using a high-performance PCI transaction 
generator. 

We collected performance data under the UNIX 
operating system with a reconfigurable interface card 
developed at DIGITAL, called PCI Pamette. It is a 
64-bit PCI option with a Xilinx FPGA interface to 
PCI. The board was configured as a programmable 
PCI transaction generator. In this configuration, the 
board can generate burst lengths of 1 to 512 cycles. 
D MA either runs to a fixed count of words transferred 
or runs continuously (software selected). The DMA 
engine runs at a fixed cadence ( delay between bursts) 
of O to 15 cycles in the case of a fixed count and at O to 
63 cycles when run continuously. 

The source of the DMA is a combination of a free­
running counter that is clocked using the PCI clock 
and a PCI transaction count. The free-running counter 
time-stamps successive words and detects wait states 
and delays between transactions. The transaction count 
identifies retries as well as transaction boundaries. 

As the target of PIO read or write, the board can 
accept arbitrarily large bursts of either 32 or 64 bits. It 
is a medium decode device and always operates with 
zero wait states. 

DMA Write Efficiency and Performance 
Figure 9 shows the close comparison between the 
AlphaServer 4100 system and a nearly perfect PCI 
design in measured DMA write bandwidth. As 
explained above, to sustain large bursts of DMA 
writes, we implemented three 64-byte posted write 
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buffers. Simulation predicted that this number of 
buffers would be sufficient to sustain full bandwidth 
DMA writes- even when the system bus is extremely 
busy- because the bridges to the PCI are on a shared 
system bus that has roughly 1 GB/s available band­
width. The PCI bus bridges arbitrate for the shared 
system bus at a priority higher than the CPUs, but the 
bridges are permitted to execute only a single transac­
tion each time they win the system bus. Therefore, in 
the worst case, a PCI bus bridge will wait behind three 
other PCI bus bridges for a slot on the bus, and each 
bridge will have at least one quarter of the available 
system bus bandwidth. With 250 MB/s available but 
with potential delay in accessing the bus, three posted 
write buffers are sufficient to maintain full PCI band­
width for memory writes. 

The ideal PCI system is represented by calculated 
performance data for comparison purposes. It is a sys­
tem that has three cycles of target latency for writes. 
Three cycles is the best possible for a medium decode 
device. The goal for DMA writes was to deliver perfor­
mance limited only by the PCI device itself, and this 
goal was achieved. Figure 9 demonstrates that mea­
sured DMA write performance on the AlphaServer 
4100 system approaches theoretical maximums. The 
combination of optimizations and innovations used 
on this platform yielded an implementation that meets 
the goal for DMA writes. 

DMA Read Efficiency and Performance 

As noted in the section Prefetch Logic, bandwidth 
performance ofDMA reads will be lower than the per­
formance ofDMA writes on all systems because there 
is delay in fetching the read data from memory. For 
this reason, we included three cache-line- size prefetch 
buffers in the design. 



Figure 10 compares DMA read bandwidth mea­
sured on the AlphaServer 4100 system with a PCI sys­
tem that has 8 cycles of initial latency in delivering 
DMA read data. This figure shows that delivered 
bandwidth improves on the AlphaServer 4100 system 
as burst size increases, and that the effect of initial 
latency on measured performance is diminished with 
larger DMA bursts. 

The ideal PCI system used calculated performance 
data for comparison, assuming a read target latency of 
8 cycles; 2 cycles are for medium decode of the 
address, and 6 cycles are for memory latency of 180 
nanoseconds (ns ). This represents about the best per­
formance that can be achieved today. 

Figure 10 shows memory read and memory read 
line commands with burst sizes limited to what is 
expected from these commands. As explained else­
where in this paper, memory read is used for bursts of 
less than a cache line; memory read line is used for 
transactions that cross one cache line boundary but are 
less than two cache lines; and memory read multiple 
is for transactions that cross two or more cache line 
boundaries. 

The efficiency of memory read and memory 
read line does not improve with larger bursts because 
there is no prefetching beyond the first or second 
cache line respectively. This shows that large bursts 
and use of the appropriate PCI commands are both 
necessary for efficiency. 

Performance of PIO Operations 
PIO transactions are initiated by a CPU. AlphaServer 
4100 PIO performance has been measured on a 
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system with a single CPU, and the results are pre­
sented in Figure 11. The pended protocol for flow 
control on the system bus limits the number of read 
transactions that can be outstanding from a single 
CPU. A single CPU issuing reads will stall waiting for 
read-return data and cannot issue enough reads to 
approach the bandwidth limit of the bridge. Measured 
read performance is quite a bit lower than the theoret­
ical limit. A system with multiple CPUs doing PIO 
reads-or peer-to-peer reads-will deliver PIO read 
bandwidth that approaches the predicted performance 
of the PCI bus bridge. PIO writes are posted and the 
CPU stalls only when the writes reach the IQ thresh­
old. Figure 11 shows that PIO writes approach the 
theoretical limit of the host bus bridge. 

PIO bursts are limited by the size of the 1/0 read 
and write merge buffers on the CPU. A single 
AlphaServer 4100 CPU is capable of bursts up to 
32 bytes. PIO writes are posted; therefore, to avoid 
stalling the system with system bus flow control, in the 
maximum configuration (see Figure 2), we provide a 
minimum of three posted write buffers that may be 
filled before flow control is used. Configurations with 
fewer than the maximum number of CPUs can post 
more PIO writes before encountering flow control. 

Summary 

The DIGITALAlphaServer 4100 system incorporates 
design innovations in the PCI bus bridge that provide 
a highly efficient interface to 1/0 devices. Partial 
cache line writes improve the efficiency of small writes 
to memory. The peer link mechanism uses TLBs to 
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map device address space on independent peer PCI 
buses to permit direct peer transactions. Reordering of 
transactions in queues on the PCI bridge, combined 
with the use of PCI delayed transactions, provides a 
deadlock-free design for peer transactions. Buffers and 
prefetch logic that support very large bursts without 
stalls yield a system that can amortize overhead and 
deliver performance limited only by the PCI devices 
used in the system. 

In summary, this system meets and exceeds the per­
formance goals established for the 1/0 subsystem. 
Notably, 1/0 subsystem support for partial cache line 
writes and for direct peer-to-peer transactions signifi­
cantly improves efficiency of operation in a MEMORY 
CHANNEL cluster system. 
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Design of the 64-bit 
Option for the Oracle 7 
Relational Database 
Management System 

Like most database management systems, the 
Oracle7 database server uses memory to cache 
data in disk files and improve the performance. 
In general, larger memory caches result in better 
performance. Until recently, the practical limit 
on the amount of memory the Oracle7 server 
could use was well under 3 gigabytes on most 
32-bit system platforms. Digital Equipment 
Corporation's combination of the 64-bit Alpha 
system and the DIGITAL UNIX operating system 
differentiates itself from the rest of the com­
puter industry by being the first standards­
compliant UNIX implementation to support 
linear 64-bit memory addressing and 64-bit 
application programming interfaces, allowing 
high-performance applications to directly access 
memory in excess of 4 gigabytes. The Oracle7 
database server is the first commercial data­
base product in the industry to exploit the per­
formance potential of the very large memory 
configurations provided by DIGITAL. This paper 
explores aspects of the design and implementa­
tion of the Oracle 64 Bit Option. 
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I 
Vipin V. Gokhale 

Introduction 

Historically, the limiting factor for the Oracle? rela­
tional database management system (RDBMS) perfor­
mance on any given platform has been"the amount of 
computational and I/0 resources available on a single 
node. Although CPUs have become faster by an order 
of magnitude over the last several years, I/0 speeds 
have not improved commensurately. For instance, the 
Alpha CPU clock speed alone has increased four times 
since its introduction; during the same time period, 
disk access times have improved by a factor of two at 
best. The overall throughput of database software is 
critically dependent on the speed of access to data. 

To overcome the I/0 speed limitation and to maxi­
mize performance, the standard Oracle? database server 
already utilizes and is optimized for various paralleliza­
tion techniques in software ( e.g., intelligent caching, 
data prefetching, and parallel query execution) and in 
hardware (e.g., symmetric multiprocessing [SMP] sys­
tems, clusters, and massively parallel processing [MPP] 
systems). Given the disparity in latency for data access 
between memory ( a few tens of nanoseconds) and disk 
( a few milliseconds), a common technique for maximiz­
ing performance is to minimize disk I/0. Our project 
originated as an investigation into possible additional 
performance improvements in the Oracle? database 
server in the context of increased memory addressability 
and execution speed provided by the AlphaServer and 
DIGITAL UNIX system. Work done as part of this proj­
ect subsequently became the foundation for product 
development of the Oracle 64 Bit Option. 

Of the memory resource that the Oracle? database 
uses, the largest portion is used to cache the most fre­
quently used data blocks. With hardware and operat­
ing system support for 64-bit memory addresses, new 
possibilities have opened up for high-performance 
application software to take advantage oflarge mem­
ory configurations. 

Two of the concepts utilized are hardly new in data­
base development, i.e., improving database server per­
formance by caching more data in memory and 
improving I/0 subsystem throughput by increasing 
data transfer sizes. However, various conflicting fac­
tors contribute to the practical upper bounds on 



performance improvement. These factors include 
CPU architectures; memory addressability; operating 
system features; cost; and product requirements for 
portability, compatibility, and time-to-market. An 
additional design challenge for the Oracle 64 Bit 
Option project was a requirement for significant per­
formance increases for a broad class of existing data­
base applications that use an open, general-purpose 
operating system and database software. 

This paper provides an overview of the Oracle 64 
Bit Option, factors that influenced its design and 
implementation, and performance implications for 
some database application areas. In-depth information 
on Oracle7 RDBMS architecture, administrative com­
mands, and tuning guidelines can be found in the 
Oracle7 Sewer Documentation Set. 1 Detailed analysis, 
database server, and application-tuning issues are 
deferred to the references cited. Overall observations 
and conclusions from experiments, rather than specific 
details and data points, are used in this paper except 
where such data is publicly available. 

Oracle 64 Bit Option Goals 

The goals for the Oracle 64 Bit Option project were as 
follows: 

• Demonstrate a clearly identifiable performance 
increase for Oracle7 running on DIGITAL UNIX 
systems across two commonly used classes of data -
base applications: decision support systems (DSS) 
and online transaction processing (OLTP). 

• Ensure that 64-bit addressability and large memory 
configurations are the only two control variables 
that influence overall application performance. 

• Break the 1- to 2-GB barrier on the amount 
of directly accessible memory that can practically 
be used for typical Oracle7 database cache 
implementations. 

• Add scalability and performance features that com­
plement, rather than replace, current Oracle7 
server SMP and cluster offerings. 

• Implement all of the above goals without signifi­
cantly rewriting Oracle7 code or introducing appli­
cation incompatibilities across any of the other 
platforms on which the Oracle7 system runs. 

Oracle 64 Bit Option Components 

Two major components make up the Oracle 64 Bit 
Option: big Oracle blocks (BOB) and large shared 
global area (LSGA). They are briefly described in this 
section. 

The BOB component takes advantage of large 
memory by making individual database blocks larger 
than those on 32-bit platforms. A database block is a 

basic unit for 1/0 and disk space allocation in the 
Oracle7 RDBMS. Large block sizes mean greater den­
sity in the rows per block for the data and indexes, and 
typically benefit decision-support applications. Large 
blocks are also useful to applications that require long, 
contiguous rows, for example, applications that store 
multimedia data such as images and sound. Rows that 
span multiple blocks in Oracle7 require proportion­
ately more 1/0 transactions to read all the pieces, 
resulting in performance degradation. Most platforms 
that run the Oracle7 system support a maximum data­
base block size of 8 kilobytes (KB); the DIGITAL 
UNIX system supports block sizes of up to 32 KB. 

The shared global area ( SGA) is that area of memory 
used by Oracle7 processes to hold critical shared data 
structures such as process state, structured query lan­
guage (SQL)-level caches, session and transaction 
states, and redo buffers. The bulk of the SGA in terms 
of size, however, is the database buffer (or block) 
cache. Use of the buffer cache means that costly disk 
1/0 is avoided; therefore, the performance of the 
Oracle7 database server relates directly to the amount 
of data cached in the buffer cache. LSGA seeks to use 
as much memory as possible to cache database blocks. 
Ideally, an entire database can be cached in memory 
(an "in-memory" database) and avoid almost all 1/0 
during normal operation. 

A transaction whose data request is satisfied from 
the database buffer cache executes an order of magni­
tude faster than a transaction that must read its data 
from disk. The difference in performance is a direct 
consequence of the disparity in access times for main 
memory and disk storage. A database block found in 
the buffer cache is termed a "cache hit." A cache miss, 
in contrast, is the single largest contributor to degra­
dation in transaction latency. Both BOB and LSGA use 
memory to avoid cache misses. The Oracle7 buffer 
cache implementation is the same as that of a typical 
write- back cache. As such, a cache miss, in addition to 
resulting in a costly disk 1/0, can have secondary 
effects. For instance, one or more of the least recently 
used buffers may be evicted from the buffer cache if no 
free buffers are available, and additional 1/0 transac­
tions may be incurred if the evicted block has been 
modified since the last time it was read from the disk. 
Oracle7 buffer cache management algorithms already 
implement aggressive and intelligent caching schemes 
and seek to avoid disk 1/0. Although cache-miss 
penalties apply with or without the 64-bit option, 
"cache thrashing" that results from constrained cache 
sizes and large data sets can be reduced with the 
option to the benefit of many existing applications. 

The Oracle7 buffer cache is specifically designed 
and optimized for Oracle's multi-versioning read­
consistency transactional model. (Oracle7 buffer 
cache is independent of the DIGITAL UNIX unified 
buffer cache, or UBC.) Since Oracle7 can manage its 
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own buffer cache more effectively than file system 
buffer caches, it is often recommended that the file 
system cache size be reduced in favor of a larger 
Oracle? buffer cache when the database resides on 
a file system. Reducing file system cache size also mini­
mizes redundant caching of data at the file system 
level. For this reason, we rejected early on the obvious 
design solution of using the DIGITAL UNIX file sys­
tem as a large cache for taking advantage of large 
memory configurations-even though it had the 
appeal of complete transparency and no code changes 
to the Oracle? system. 

Background and Rationale for Design Decisions 

The primary impetus for this project was to evaluate 
the impact on the Oracle? database server of emerging 
64-bit platforms, such as the AlphaServer system and 
DIGITAL UNIX operating system. Goals set forth 
for this project and subsequent design considerations 
therefore excluded any performance and functionality 
enhancements in the Oracle? RDBMS that could not 
be attributed to the benefits offered by a typical 64-bit 
platform or otherwise encapsulated within platform­
specific layers of the database server code or the oper­
ating system itself 

Common areas of potential benefit for a typical 
64-bit platform (when compared to its 32-bit coun­
terpart) are (a) increased direct memory addressability, 
and (b) the potential for configuring systems with 
greater than 4 GB of memory. As noted above, appli­
cation performance of the Oracle? database server 
depends on whether or not data are found in the data­
base buffer cache. A 64-bit platform provides the 
opportunity to expand the database buffer cache in 
Oracle? to sizes well beyond those of a 32-bit plat­
form. BOB and LSGA reflect the only logical design 
choices available in Oracle? to take advantage of this 
extended addressability and meet the project goals. 
Implementation of these components focused on 
ensuring scalability and maximizing the effectiveness 
of available memory resources. 

BOB: Decisions Relevant to On-disk Database Size 
Larger database blocks consume proportionately 
larger amounts of memory when the data contained in 
those blocks are read from the disk into the database 
buffer cache. Consequently, the size of the buffer 
cache itself must be increased if an application requires 
a greater number of these larger blocks to be cached. 
For any given size of database buffer cache, Oracle? 
database administrators of 32-bit platforms have 
had to choose between the size of each database block 
and the number of database blocks that must be in 
the cache to minimize disk 1/0 , the choice depending 
on data access patterns of the applications. Memory 
available for the database buffer cache is further con-
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strained by the fact that this resource is also shared by 
many other critical data structures in the SGA besides 
the buffer cache and the memory needed by the oper­
ating system. By eliminating the need to choose 
between the size of the database blocks and buffer 
cache, Oracle? on a 64-bit platform can run a greater 
application mix without sacrificing performance. 

Despite the codependency and the common goal 
of reducing costly disk 1/0, BOB and LSGA address 
two different dimensions of database scalability: BOB 
addresses on-disk database size, and the LSGA addresses 
in-memory database size. Application developers and 
database administrators have complete flexibility to 
favor one over the other or to use them in combination. 

In Oracle?, the on-disk data structures that locate 
a row of data in the database use a block-address­
byte-offset tuple. The data block address (DBA) is a 
32-bit quantity, which is further broken up into file 
number and block offset within that file. The byte off­
set within a block is a 16-bit quantity. Although the 
number of bits in the DBA used for file number and 
block offset are platform dependent ( 10 bits for the file 
number and 22 bits for the block offset is a common 
format), there exists a theoretical upper limit to the 
size of an Oracle? database. With some exceptions, 
most 32-bit platforms support a maximum data block 
size of 8 KB, with 2 KB as the default. For example, 
using a 2-KB block size, the upper limit for the size 
of the database on DIGITAL UNIX is slightly under 
8 terabytes (TB); whereas a 32-KB block size raises 
that limit to slightly under 128 TB. The ability to sup­
port buffer cache sizes well beyond those of 32-bit 
platforms was a critical prerequisite to enabling larger 
sized data blocks and consequently larger sized data­
bases. Some 32-bit platforms are also constrained by 
the fact that each data file cannot exceed a size of 4 GB 
( especially if the data file is a file system managed 
object) and therefore may not be able to use all of the 
available block offset range in the existing DBA for­
mat. The largest database size that can be supported in 
such a case is even smaller. Addressing the perceived 
limits on the size of an Oracle? database was an impor­
tant consideration. Design alternatives that required 
changes to the layout or an interpretation ofDBA for­
mat were rejected, at least in this project, because such 
changes would have introduced incompatibilities in 
on-disk data structures. 

It should be pointed out that on current Alpha 
processors using an 8-KB page size, a 32-KB data 
block spans four memory pages, and 1/0 code paths 
in the operating system need to lock/ unlock four 
times as many pages when performing an 1/0 trans­
action. The larger transfer size also adds to the total 
time taken to perform an 1/ 0. For instance, four 
pages of memory that contain the 32-KB data block 
may not be physically contiguous, and a scatter-gather 
operation may be required. Although the Oracle? 



database supports row-level locking for maximum 
concurrency in cases where unrelated transactions may 
be accessing different rows within a given data block, 
access to the data block is serialized as each individual 
change ( a transaction-level change is broken down 
into multiple, smaller units of change) is applied to the 
data block. Larger data blocks accommodate more 
rows of data and consequently increase the probability 
of contention at the data block level if applications 
change ( insert, update, delete) data and have a locality 
of reference. Experiments have shown, however, that 
this added cost is only marginal relative to the overall 
performance gains and can be offset easily by carefully 
tuning the application. Moreover, applications that 
mostly query the data rather than modify it ( e.g., DSS 
applications) greatly benefit from larger block sizes 
since in this case access to the data block need not be 
serialized. Subtle costs such as the ones mentioned 
above nevertheless help explain why some applications 
may not necessarily see, for example, a fourfold per­
formance increase when the change is made from an 
8-KB block size to a 32-KB block size. 

As with Oracle7 implementations on other platforms, 
database block size with the 64-bit option is determined 
at database creation time using db_block_size con­
figuration parameter.1 It cannot be changed dynamically 
at a later time. 

LSGA: Decisions Relevant to In-memory Database Size 
The focus for the LSGA effort was to identify and elim­
inate any constraints in Oracle7 on the sizes to which 
the database buffer cache could grow. DIGITAL UNIX 
memory allocation application programming interfaces 
(APis) and process address space layout make it fairly 
straightforward to allocate and manage System V 
shared memory segments. Although the size of each 
shared memory segment is limited to a maximum of 
2 GB ( due to the requirement to comply with UNIX 
standards), multiple segments can be used to work 
around this restriction. The memory management 
layer in Oracle7 code therefore was the initial area of 
focus. Much of the Oracle7 code is written and archi­
tected to make it highly portable across a diverse range 
of platforms, including memory-constrained 16-bit 
desktop platforms. A particularly interesting aspect of 
16-bit platforms with respect to memory management 
is that these platforms cannot support contiguous 
memory allocations beyond 64 KB. Users are forced 
to resort to a segmented memory model such that 
each individual segment does not exceed 64 KB in 
size. Although such restrictions are somewhat con­
straining (and perhaps irrelevant) for most 32-bit 
platforms-more so for 64-bit platforms-which can 
easily handle contiguous memory allocations well 
in excess of 64 KB, memory management layers in 
Oracle7 code are designed to be sensitive and cautious 
about large contiguous memory allocations and 

would use segmented allocations if the size of 
the memory allocation request exceeds a platform­
dependent threshold. In particular, the size in bytes 
for each memory allocation request (a platform­
dependent value) was assumed to be well under 4 GB, 
which was a correct assumption for all 32-bit plat­
forms (and even for a 64-bit platform without LSGA). 
Internal data structures used 32-bit integers to repre­
sent the size of a memory allocation request. 

For each buffer in the buffer cache, SGA also 
contains an additional data structure (buffer header) 
to hold all the metadata associated with that buf­
fer. Although memory for the buffer cache itself was 
allocated using a special interface into the memory 
management layer, memory allocation for buffer 
headers used conventional interfaces. A different 
allocation scheme was needed to allocate memory 
for buffer headers. The buffer header is the only 
major data structure in Oracle7 code whose size 
requirements are directly dependent on the number of 
buffers in the buffer cache. Existing memory man­
agement interfaces and algorithms used prior to LSGA 
work were adequate until the number of buffers in 
the buffer cache exceeded approximately 700,000 
(or buffer cache size of approximately 6.5 GB). Minor 
code changes were necessary in memory manage­
ment algorithms to accommodate bigger allocation 
requests possible with existing high-end and future 
AlphaServer configurations. 

The AlphaServer 8400 platform can support mem­
ory configurations ranging from 2 to 14 GB, using 
2-GB memory modules. Some existing 32-bit plat­
forms can support physical memory configurations 
that exceed their 4-GB addressing limit by way of seg­
mentation, such that only 4 GB of that memory is 
directly accessible at any time. Programming complex­
ity associated with such segmented memory models 
precluded any serious consideration in the design 
process to extend LSGA work to such platforms. 
Significantly rewriting the Oracle7 code was specifi­
cally identified as a goal not to be pursued by this proj­
ect. The Alpha processor and DIGITAL UNIX system 
provides a flat 64-bit virtual address space model to 
the applications. DIGITAL UNIX extends standard 
UNIX APis into a 64-bit programming environment. 
Our choice of the AlphaServer and DI GIT AL UNIX as 
a development platform for this project was a fairly 
simple one from a time-to-market perspective because 
it allowed us to keep code changes to a minimum. 

Efficiently managing a buffer cache of, for example, 
8 or 10 GB in size was an interesting challenge. More 
than five million buffers can be accommodated in a 
10-GB cache, with a 2-KB block size. That number of 
buffers is already an order of magnitude greater than 
what we were able to experiment with prior to the 
LSGA work. The Oracle7 buffer cache is organized as 
an associative write-back cache. The mechanism for 
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locating a data block of interest in this cache is supported 
by common algorithms and data structures such as hash 
functions and Jinked lists. In many cases, traversing criti­
cal Jinked lists is serialized among contending threads of 
execution to maintain the integrity of the lists themselves 
and secondary data structures managed by these lists. As 
a result, the size of such critical lists, for example, has an 
impact on overall concurrency. The larger buffer count 
now possible in LSGA configurations had the net effect 
of reduced concurrency because the size of these lists is 
proportionately larger. LSGA provided a framework to 
test contributions from other unrelated projects that 
addressed such potential bottlenecks to concurrency, as 
it could realistically simulate relatively more stringent 
boundary conditions than before. 

Scalability Issues 
Engineering teams at Oracle have worked very closely 
with their counterparts in the DIGITAL UNIX operat­
ing system group throughout this project. The data 
collected in the course of the project was useful in ana­
lyzing and addressing the scalability issues in the base 
operating system as well as in the Oracle7 product. 
Examples of this work are in the base operating system 
granularity hint regions and in the shared page tables. 2•

3 

For every page of physical and virtual memory, an 
operating system must maintain various data structures 
such as page tables, data structures to track regions of 
memory with certain attributes ( such as System V shared 
memory regions, or text and data segments), or data 
structures that track processes which have references to 
these memory regions. Ancillary operating system data 
structures such as page tables grow in size pro­
portionately to the size of physical memory. Changes 
to page table management associated with System V 
shared memory regions were made such that processes 
that mapped the shared memory regions could share 
page tables in addition to the data pages themselves. 
Prior to this change, each process mapping the shared 
memory region used a copy of associated page tables. 
A change like this reduced physical memory consump­
tion by the operating system. For example, on an Alpha 
CPU supporting an 8-KB page size, it would take 8 KB 
in page table entries to map 8 MB of physical memory. 
For an SGA of8 GB, it would take 1 MB in page table 
entries. It is not uncommon in the Oracle7 system for 
hundreds of processes to connect to the database, and 
therefore map the 8 GB ofSGA. Without shared page 
tables, 100 such processes would have consumed 100 
MB of physical memory by maintaining a per-process 
copy of page tables. 

A granularity hint region is a region of physically con­
tiguous pages of memory that share virtual and physical 
mappings between all the processes that map them. 
Such a memory layout allows DIGITAL UNIX to take 
advantage of the granularity hint feature supported by 
Alpha processors. Granularity hint bits in a page table 
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entry allow the Alpha CPU to use a single translation 
look-aside buffer (TLB) entry to map a 512K physical 
memory space. Using one TLB entry to map larger 
physical memory has the potential to reduce processor 
stalls during TLB misses and refills. Also, because of the 
requirement that the granularity hint region be both 
virtually and physically contiguous, it is allocated at sys­
tem startup time and is not subject to normal virtual 
memory management; for example, it is never paged in 
or out, and subsequently the cost of a page fault is mini­
mal. Since pages in granularity hint regions are physi­
cally contiguous, any 1/0 done from this region of 
memory is relatively more efficient because it need not 
go through the scatter-gather phase. 

Summary of Test Results 

One of the project goals was to demonstrate clear 
performance benefits for two common classes of data­
base applications, DSS and OLTP. The Transaction 
Processing Council (TPC) provides an industry­
standard benchmark suite for both applications, that 
is, TPC-C for OLTP and TPC-D for DSS. An industry­
standard benchmark would have been a logical choice 
for a workload that would demonstrate performance 
benefits. However, the enormous time, resources, and 
effort required to stage an audited TPC benchmark 
and the strict guidelines for any direct comparison of 
published benchmark results were major factors in 
the decision to develop a workload for this project 
that matched the spirit of the TPC benchmark but not 
necessarily the letter. 

In late 1995, Oracle Corporation ran a series of per­
formance tests for a DSS-class workload of the Oracle7 
system, with and without the 64-bit option on the 
AlphaServer 8400 system running the DIGITAL UNIX 
operating system with 8 GB of physical memory. A 
detailed report on this test is published and available 
from Oracle Corporation.4 These results, shown in 
Figure 1, clearly demonstrate the benefits of a large 
amount of physical memory in a configuration with 
the 64-bit option. A summary of the tests conducted is 
presented here along with some data points and key 
observations. 

(Readers interested in performance characteristics of 
an audited industry-standard OLTP benchmark are 
referred to the Digital Technical Journal, Volume 8, 
Number 3. Two papers present performance character­
istics of0racle7 Parallel Server release 7.3 using 5.0 GB 
SGA, and a TPC-C workload on a four-node cluster.5) 

The test database consisted of five tables, represent­
ing approximately 6 GB of data. The tests included 
two separate configurations: 

• A "standard" configuration with a 128-MB SGA 
with a 2-KB database block size 

• A 64-bit option-enabled configuration with a 7-GB 
SGA and 32-KB database block size 
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The evaluation included running six separate trans­
action types against these two configurations: 

1. Full table scan against a table with 42 million rows 
( without the Parallel Query Option) 

2. Full table scan against a table with 42 million rows 
(with the Parallel Query Option) 

3. Set of ad hoc queries against a table with 
42 million rows 

4. Set of ad hoc queries involving a JOin against 
three tables with 10.5 million, 1.4 million, and 
42 million rows, respectively 

5. Set of ad hoc queries involving a join against four 
tables with 1 million, 10.5 million, 1.4 million, and 
42 million rows, respectively 

6. Set of ad hoc queries involving a join against 
five tables with 70,000, 1 million, 10.5 million, 
1. 4 million, and 42 million rows, respectively 

Each bar in Figure 1 represents a ratio of execution 
time (elapsed) between a large SGA (64-bit option) 
and a small SGA ("standard" configuration) for each 
of the six transaction types. In every case, the configu­
ration with the 64-bit option enabled consistently out­
performed a "standard" configuration. In some cases, 
the performance increase with the option enabled was 
over 200 times that of the standard configuration. 

The transaction mix chosen for this test represents 
database operations commonly used in DSS-class 
applications (e.g., full table scans, sort/merge, and 
joins). The test also uses a characteristically large data 
set. Transaction types 1 and 2 are identical except for the 
use of the Parallel Query Option. The Parallel Query 
Option in Oracle? breaks up some database operations 
such as table scans and sorts/merge into smaller work 
units, and executes them concurrently. By default, these 
operations are executed serially, using only one thread 
of execution. The Parallel Query Option (independent 

of the 64-bit option) is a standard offering in the 
Oracle? database server product since release 7.1. Use 
of parallel query in this test illustrates the effect of the 
64-bit option enhancements on preexisting mecha­
nisms for database performance improvement. 

All other things being equal, if the only difference 
between a standard configuration and a 64-bit­
option-enabled configuration is that the entire data set 
is cached in memory in the latter configuration and that 
typical times for main memory accesses are a few tens of 
nanoseconds whereas times for disk accesses are a few 
milliseconds, only the six to seven times performance 
increase in transaction type 1 would seem far below 
expectation. For a full table scan operation, the Oracle? 
server is already optimized to use aggressive data 
prefetch. Before the server begins processing data in 
a given data block, it launches a read operation for 
the next block. This technique significantly reduces 
application-visible disk access latencies by overlapping 
computation and 1/0. Disparity in access time for main 
memory and disk is still large enough to cause the com­
putation to stall while waiting for the read-ahead 1/0 to 
finish. When data is cached in memory, this remaining 
stall point in the query processing is eliminated. 

It is also important to note that a full table scan 
operation tends to access the disk sequentially. It is 
typical for disk access times to be better by a factor of 
at least two in sequential access as compared with ran­
dom access. Keeping block size and disk and main 
memory access times the same as before in this equa­
tion, a faster Alpha CPU would yield better ratios in 
this test because it would finish computation propor­
tionately faster and would wait longer for the read­
ahead 1/0 to finish. Follow-on tests with faster CPUs 
supported this observation. Overlapping computation 
and 1/0 as in a table scan operation may not be possi­
ble in an index lookup operation. The sequence of 
operations for accessing a row of data using a B-tree 
index, in the best case, involves an 1/0 to read the 
index block matching the key value first, followed by 
another 1/0 to read the data block; a second 1/0 can­
not be launched until the first finishes because the 
address of the data block to be read can only be deter­
mined by examining the contents of the index block 
read in the previous operation. Unlike table scans, 
these I/Os are nonsequential. Latencies of the disk 
1/0 for an index lookup, as seen from the application 
perspective, are consequently greater than latencies for 
a table scan. Minimizing or eliminating I/Os in the 
index lookup, therefore, has the potential for even 
greater increases in speed. Index lookups are typical in 
OLTP workloads. 

The test using transaction type 2 illustrates a cumu­
lative effect because performance benefits for a single 
thread of execution extend to all the threads when the 
workload is parallelized. 
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Unlike full table scans, the sort/merge operation 
generates intermediate results. Depending on the size 
of these partial results, they may be stored in main 
memory if an adequate amount of memory is avail­
able; or they may be written back to temporary storage 
space in the database. The latter operation results in 
additional I/Os, proportionately more in number as 
inputs to the sort/merge grow in size or count. The 
64-bit option makes it possible to eliminate these I/Os 
as well, as illustrated in transaction types 4 through 6. 
Performance improvements are greater as the com­
plexity of queries increases. 

Conclusion 

The disparity between memory speeds and disk speeds 
is likely to continue for the foreseeable future. Large 
memory configurations represent an opportunity to 
overcome this disparity and to increase application 
performance by caching a large amount of data in 
memory. Even though the Oracle 64 Bit Option 
improves database performance-two orders of mag­
nitude in some cases-specific application characteris­
tics must be evaluated to determine the best means for 
maximizing overall performance and to balance the 
significant increase in hardware cost for the large 
amount of memory. The Oracle 64 Bit Option com­
plements existing Oracle7 features and functionality. 
The exact extent of the increases in speed with the 
64-bit option varies based on the type of database 
operation. Faster CPUs and denser memory allow 
for even more performance improvements than have 
been demonstrated. Factors of importance to new 
or existing applications, particularly those sensitive to 
response time, are an order of magnitude performance 
in terms of speed increases and the ability to utilize 
memory configurations much larger than previously 
possible in Oracle7 or for applications that use 
moderate-size data sets. With sufficient physical mem­
ory, the databases used by these response-time­
sensitive applications can now be entirely cached in 
memory, eliminating virtually all disk I/0, which is 
often a major constraint to response time. In-memory 
( or fully cached) Oracle7 databases do not compro­
mise transactional integrity in any way; nor do such 
configurations require special hardware ( for example, 
nonvolatile random access memory [RAM]). 

Because a 64-bit AlphaServer and DIGITAL UNIX 
operating system transparently extends existing 32-bit 
APis into a 64-bit programming model, applications 
can take advantage of added addressability without 
using specialized APis or making significant code 
changes. Performance levels equal to or better than 
previously possible with specialized hardware and soft­
ware can now be achieved with industry-standard, 
open, general-purpose platforms. 
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VLM Capabilities of 
the Sybase System 11 
SQLServer 

Software applications must be enhanced to 

take advantage of very large memory (VLM) 

system capabilities. The System 11 SQL Server 

from Sybase, Inc. has expanded the semantics 

of database tables for better use of memory 

on DIGITAL 64-bit Alpha microprocessor-based 

systems. Database memory management for 

the Sybase System 11 SQL Server includes the 

ability to partition the physical memory avail­

able to database buffers into multiple caches 

and subdivide the named caches into multiple 

buffer pools for various 1/0 sizes. The database 

management system can bind a database or 

one table in a database to any cache. A new 

facility on the SQL Server engine provides 

nonintrusive checkpoints in a VLM system. 
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The advent of the System 11 SQL Server from Sybase, 
Inc. coincided with the widespread availability and 
use of very large memory (VLM) technology on 
DIGITAL's Alpha microprocessor-based computer 
systems. Technological features of the System 11 SQL 
Server were used to achieve record results of 14,176 
transactions-per-minute C (tpmC) at $198/tpmC 
on the DIGITAL AlphaServer 8400 server product. 1 

One of these features, the Logical Memory Manager, 
provides the ability to fine-tune memory manage­
ment. It is the first step in exploiting the semantics of 
database tables for better use of memory in VLM sys­
tems. To partition memory, a database administrator 
(DBA) creates multiple named buffer caches. The 
DBA then subdivides each named cache into multiple 
buffer pools for various 1/0 sizes. The D BA can bind a 
database or one table in a database to any cache. 
A new thread in the SQL Server engine, called the 
Housekeeper, uses idle cycles to provide free (non­
intrusive) checkpoints in a large memory system. 

In this paper, we briefly discuss VLM technology. 
Then we describe the capabilities of the Sybase System 
11 SQL Server that address the issues of fast access, 
checkpoint, and recovery ofVLM systems, namely, the 
Logical Memory Manager, a VLM query optimizer, 
the Housekeeper, and fuzzy checkpoint. 

VLM Technology 

The term very large memory is subjective, and its 
widespread meaning changes with time. By VLM, we 
mean systems with more than 4 gigabytes (GB) of 
memory. In late 1996, personal computer servers with 
4 GB of memory appeared in the marketplace. At $10 
per megabyte (MB), 4 GB of memory becomes afford­
able ($40,000) at the departmental level for corpora­
tions. We expect that most of the mid-range and 
high-end systems will be built with more memory in 
1997. Growth in the amount of system memory is an 
ongoing trend. Growth beyond 4 GB, however, is a 
significant expansion; 32-bit systems run out of mem­
ory after 4 GB. 

DIGITAL developed 64-bit computing with its 
Alpha line of microprocessors. Digital is now 
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well-positioned to facilitate the transition from 32-bit 
to 64-bit systems. Sybase, Inc. provided one of the first 
relational database management systems to use VLM 
technology. The Sybase System 11 SQL Server pro­
vides full, native support of 64-bit Alpha microproces­
sors and the 64-bit DIGITAL UNIX operating system. 
DIGITAL UNIX is the first operating system to provide 
a 64-bit address space for all processes. The System 11 
SQL Server uses this large address space primarily to 
cache large portions of the database in memory. 

VLM technology is appropriate for use with applica­
tions that have stringent response time requirements. 
With these applications, for example, call-routing, it 
becomes necessary to fit the entire database in mem­
ory.2·3 The use of VLM systems can also be beneficial 
when the price/performance is improved by adding 
more memory.• 

Main Memory Database Systems 

The widespread availability of VLM systems raises 
the possibility of building main memory database 
(MMDB) systems. Several techniques to improve the 
performance of MMDB systems have been discussed 
in the database literature. Reference 5 provides an 
excellent, detailed survey. We provide a brief discus­
sion in this section. 

Lock contention is low in MMDB systems since the 
data resides in memory. Hence, the granularity of con­
currency control can be increased to minimize the 
overhead of lock operations. The lock manager data 
structures can be combined with the database objects 
to reduce memory usage. Specialized, stable memory 
hardware can be used to minimize latency oflogging. 
Early release of transaction locks and group commit 
during commit processing can be used to increase 
concurrency and throughput. Since random access is 
fast in MMDBs, access methods can be developed with 
no key values in the index but only pointers to data 
rows in memory.6 Query optimizers need to consider 
CPU costs, not 1/0 costs, when comparing various 
alternative plans for a query. In an MMDB, check­
pointing and failure recovery are the only reasons for 
performing disk operations. A checkpoint process can 
be made "fuzzy" with low impact on transaction 
throughput. After a system failure, incremental recov­
ery processing allows transaction processing to resume 
before the recovery is complete.7 

As memory sizes increase with VLM systems, data­
base sizes are also increasing. In general, we expect 
that databases will not fit in memory in the next 
decade. Therefore, for most of the databases, MMDB 
techniques can be exploited only for those pans of the 
database that do fit in memory.5 

In addition to the capability of caching the entire 
database in buffers, the Sybase System 11 SQL Server 
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provides technological advances that take advantage of 
VLM systems. These are the Logical Memory 
Manager, VLM query optimization, the Housekeeper 
thread, and fuzzy checkpoints. We discuss the signifi­
cance of these advances in the remaining sections of 
this paper. 

Logical Memory Manager 

The Sybase SQL Server consists of several DIGITAL 
UNIX processes, called engines. The DEA configures 
the number of engines. As shown in Figure 1, each 
engine is permanently dedicated to one CPU of a sym­
metric multiprocessing (SMP) machine. The Sybase 
engines share virtual memory, which has been sized to 
include the SQL Server executable. The virtual mem­
ory is locked to physical memory. As a result, there is 
never any operating system paging for the Sybase 
memory. This shared memory region also uses large 
operating system pages to minimize translation look­
aside buffer (TLB ) entries for the CPU.8 The shared 
memory holds the database buffers, stored procedure 
cache, sort buffers, and other dynamic memory. This 
memory is managed exclusively by the SQL Server. 
One SQL Server usually processes transactions on 
multiple databases. Each database has its own log. 
Transactions can span databases using two-phase com­
mit. For further details on the SQL Server architec­
ture, please see reference 9. 

The Logical Memory Manager (LMM) provides the 
ability for a DBA to partition the physical memory 
available to database buffers. The DBA can partition 
the memory used for the database buffers into multi­
ple caches. The DBA needs to specify a size and a name 
for each cache. After all named caches have been 
defined, the system defines the remaining memory as 
the default cache. Once the DBA partitions the mem­
ory, it can then bind database entities to a particular 
cache. The database entity is one of the following: an 
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entire database, one table in a database, or one index 
on one table in a database. There is no limit to the 
number of such entities that can be bound to a cache. 
This cache binding directs the SQ L Server to use only 
that cache for the pages that belong to the entity. 
Thus, the DBA can bind a small database to one cache . 
In a VLM system, if the cache were sized to be larger 
than the database, an MMDB would result. 

Figure 2 shows the table bindings to named caches 
with the LMM. The procedure cache is used only 
for keeping compiled stored procedures in memory 
and is shown for completeness. The item cache is a 
small cache of 1 GB in size and is used for storing 
a small read-only table (item) in memory. The default 
cache holds the remaining tables. Figure 2 shows one 
table bound to the item cache and the other tables 
bound to the default cache. By being able to partition 
the use of memory for the item table separately, the 
SQL Server is now able to take advantage of MMDB 
techniques for only the item cache. 

Each named cache can be larger than 4 GB. The size 
is limited only by the amount of memory present in 
the system. Although we do not expect such a need, 
it is also possible to have hundreds of named caches; 
64-bit pointers are used throughout the SQL Server 
to address large memory spaces. 

The LMM enables the DBA to fine-tune the use of 
memory. The LMM also allows for the introduction 
of specific MMDB algorithms in the SQL Server based 
on the semantics of database entities and the size of 
named caches. For example, in the future, it becomes 
possible for a DBA to express the fact that most of one 
table fits in one named cache in memory, so that SQL 
Server can use clock buffer replacement. 

VLM Query Optimization 

The SQL Server query optimizer computes the cost 
of query plans in terms of CPU as well as I/0. Both 
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costs are reduced to an estimate of time. Since the 
number ofl/0 operations depends on the amount of 
memory available, the optimizer uses the size of the 
cache in the cost calculations. With LMM, the opti­
mizer uses the size of the named cache to which a cer­
tain table is bound. Therefore, in the case of a database 
that completely fits in memory in a VLM system, the 
optimizer choices are made purely on the basis of CPU 
cost. In particular, the I/0 cost is zero, when a table 
or an index fits in a named cache. 

The Sybase System 11 SQL Server introduced the 
notion of the fetch-and-discard buffer replacement 
policy. This strategy indicates that a buffer read from 
disk will not be used in the near future and hence is 
a good candidate to be replaced from the cache. The 
buffer management algorithms leave this buffer close 
to the least-recently-used end of the buffer chain. In 
the simplest example, a sequential scan of a table uses 
this strategy. With VLM, this strategy is turned off 
if the table can be completely cached in memory. The 
fetch-and-discard strategy can also be tuned by appli­
cation developers and DBAs if necessary. 

Housekeeper 

One of the motivations for developing VLM was the 
extremely quick response time requirements for trans­
actions. These environments also require high avail­
ability of systems. A key component in achieving high 
availability is the recovery time. Database systems 
write dirty pages to disk primarily for page replace­
ment. The checkpoint procedure writes dirty pages to 
disk to minimize recovery time. 

The Sybase System 11 SQL Server introduces a new 
thread called the Housekeeper that runs only at idle 
time for the system and does useful work. This thread 
is the basis for lazy processing in the SQL Server for 
now and the future. In System 11, the Housekeeper 
writes dirty pages to disk. At first, it writes pages to 
disk from the least-recently-used buffer. In this sense, 
it helps page replacement. In addition to ensuring that 
there are enough clean buffers, the Housekeeper also 
attempts to minimize both the checkpoint time and 
the recovery time. If the system becomes idle at any 
time during transaction processing, even for a few mil­
liseconds, the Housekeeper keeps the disks ( as many as 
possible) busy by writing dirty pages to disk. It also 
makes sure that none of the disks is overloaded, thus 
preventing an undue delay if transaction processing 
resumes. In the best case, the Housekeeper automati­
cally generates a free checkpoint for the system, 
thereby reducing the performance impact of the 
checkpoint during transaction processing. In steady 
state, the Housekeeper continuously writes dirty pages 
to disk, while minimizing the number of extra writes 
incurred by premature writes to disk. 10 
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Checkpoint and Recovery 

As the size of memory increases, the following two 
factors increase as well: ( 1) the number of writes to 
disk during the checkpoint and (2) the number of 
disk I/Os to be done during recovery. The Sybase 
System 11 SQL Server allows the DBA to tune the 
amount of buffers that will be kept clean all the time. 
This is called the wash region. In essence, the wash 
region represents the amount of memory that is always 
clean ( or strictly, in the process of being written to 
disk). For example, if the total amount of memory for 
database buffers is 6 GB and the wash region is 2 GB, 
then at any time, only 4 GB of memory can be in an 
updated state (dirty). The ability to tune the wash 
region reduces the load on the checkpoint procedure, 
as well as recovery. 

The Sybase System 11 SQL Server has implemented 
a fuzzy checkpoint that allows transactions to proceed 
even during a checkpoint operation. Transactions 
are stalled only when they try to update a database 
page that is being written to disk by the checkpoint. 
Even in that case, the stall lasts only for the time 
it takes the disk write to complete. In addition, in 
the SQL Server, the checkpoint process can keep mul­
tiple disks busy by issuing a large number of asynchro­
nous writes one after another. During the time of 
the checkpoint, the Housekeeper often becomes 
active due to extra idle time created by the checkpoint. 
The Housekeeper is self-pacing; it does not swamp the 
storage system with writes. 

Commit Processing 

The SQL Server uses the group commit algorithm to 
improve throughput.8

•
11 The group commit algorithm 

collects the log records of multiple transactions and 
writes them to the disk in one 1/0. This allows higher 
transaction throughput due to the amortization of 
disk 1/0 costs, as well as committing more and more 
transactions in each disk write to the log file. The SQL 
Server does not use a timer, however, to improve the 
grouping of transactions. Instead, the duration of the 
previous log 1/0 is used to collect transactions to be 
committed in the next batch. The size of the batch is 
determined by the number of transactions that reach 
commit processing during one rotation of the log 
disk. This self-tuning algorithm adapts itself to various 
speeds of disks. For the same transaction processing 
system, the grouping occurs more often with slower 
disks than with faster disks. 

Consider, for example, a system performing 1,000 
transactions per second. Let us assume the log disk is 
rated at 7,200 rpm. Each rotation of the disk takes 
8 milliseconds. Within this duration, we expect ( on 
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the average) 8 transactions to complete, assuming uni­
form arrival rates at commit point. This indicates a nat­
ural grouping of 8 transactions per log write. For the 
same system, if the log disk is rated at 3,600 rpm, the 
same calculation yields 16 transactions per log write. 

The group commit algorithm used by the SQL 
Server also takes advantage of disk arrays by initiating 
multiple asynchronous writes to different members of 
the disk array. The SQL Server is also able to issue up 
to 16 kilobytes in one write to a single disk. Together, 
the group commit algorithm, large writes, and the 
ability to drive multiple disks in a disk array eliminate 
the log bottleneck for high-throughput systems. 

Future Work 

When a VLM system fails, the large number of data­
base buffers in memory that are dirty need to be 
recovered. Therefore, database recovery time grows 
with the size of memory in the VLM system, at least 
for all database systems that use log-based recovery. 
In addition, since there are a large number of dirty 
buffers in memory, the performance impact of check­
point on transactions also increases with memory size. 
To minimize the recovery time, one may increase the 
checkpoint frequency. The checkpoints have a higher 
impact, however, and need to be done infrequently. 
These conflicting requirements need to be addressed 
for VLM systems. 

When a database fits in memory, the buffer replace­
ment algorithm can be eliminated. For example, for 
a single table that fits in one named cache, this opti­
mization can be done with the LMM. In addition, if 
a table is read-only, it is possible to minimize the syn­
chronization necessary to access the buffers in mem­
ory. These optimizations require syntax for the DBA 
to specify properties ( for example, read-only) of tables, 
as well as properties of named caches ( for example, 
buffer replacement algorithms). 

These two areas as well as other MMDB techniques 
will be explored by the SQL Server developers for 
incorporation in future releases. 

Summary 

The Sybase System 11 SQL Server supports VLM 
systems built and sold by DIGITAL. The SQL Server 
can completely cache parts of a database in memory. 
It can also cache the entire database in memory if 
the database size is smaller than the amount of mem­
ory. System 11 has facilities that address issues of 
fast access, checkpoint, and recovery ofVLM systems; 
these facilities are the Logical Memory Manager, the 
VLM query optimizer, the Housekeeper, and fuzzy 
checkpoint. The SQL Server product achieved 



SMP TPC performance of 14,176 tpmC at 
$198/tpmC on a DIGITAL VLM system. The tech­
nology developed in System 11 lays the groundwork 
for further implementation of MMDB techniques in 
the SQL Server. 
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Measured Effects of 
Adding Byte and Word 
Instructions to the Alpha 
Architecture 

The performance of an application can be 

expressed as the product of three variables: 

(1) the number of instructions executed, (2) the 

average number of machine cycles required to 

execute a single instruction, and (3) the cycle 

time of the machine. The recent decision to 

add byte and word manipulation instructions 

to the DIGITAL Alpha Architecture has an effect 

upon the first of these variables. The perfor­

mance of a commercial database running on 

the Windows NT operating system has been 

analyzed to determine the effect of the addition 

of the new byte and word instructions. Static 

and dynamic analysis of the new instructions' 

effect on instruction counts, function calls, and 

instruction distribution have been conducted. 

Test measurements indicate an increase in per­

formance of 5 percent and a decrease of 4 to 

7 percent in instructions executed. The use of 

prototype Alpha 21164 microprocessor-based 

hardware and instruction tracing tools showed 

that these two measurements are due to the 

use of the Alpha Architecture's new instructions 

within the application. 

I 
David P. Hunter 
Eric B. Betts 

The Alpha Architecture and its initial implementations 
were limited in their ability to manipulate data values 
at the byte and word granularity. Instead of allowing 
single instructions to manipulate byte and word val­
ues, the original Alpha Architecture required as many 
as sixteen instructions. Recently, DIGITAL extended 
the Alpha Architecture to manipulate byte and word 
data values with a single instruction. The second gen­
eration of the Alpha 21164 microprocessor, operating 
at 400 megahertz (MHz) or greater, is the first imple­
mentation to include the new instructions. 

This paper presents the results of an analysis of 
the effects that the new instructions in the Alpha 
Architecture have on the performance, code size, and 
dynamic instruction distribution of a consistent execu­
tion path through a commercial database. To exercise 
the database, we modified the Transaction Processing 
Performance Council's (TPC) obsolete TPC-B bench­
mark. Although it is no longer a valid TPC bench­
mark, the TPC-B benchmark, along with other TPC 
benchmarks, has been widely used to study database 
performance. 1- 5 

We began our project by rebuilding Microsoft 
Corporation's SQL Server product to use the new 
Alpha instructions. We proceeded to conduct a static 
code analysis of the resulting images and dynamic link 
libraries (DLLs). The focus of the study was to investi­
gate the impact that the new instructions had upon a 
large application and not their impact upon the oper­
ating system. To this end, we did not rebuild the 
Windows NT operating system to use the new byte 
and word instructions. 

We measured the dynamic effects by gathering 
instruction and function traces with several profiling 
and image analysis tools. The results indicate that 
the Microsoft SQL Server product benefits from the 
additional byte and word instructions to the Alpha 
microprocessor. Our measurements of the images and 
DLLs show a decrease in code size, ranging from neg­
ligible to almost 9 percent. For the cached TPC-B 
transactions, the number of instructions executed 
per transaction decreased from 111,288 to 106,521 
(a 4 percent reduction). For the scaled TPC-B trans­
actions, the number of instructions executed per 
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transaction decreased from 115,895 to 107,854 
(a 7 percent reduction). 

The rest of this paper is divided as follows: we begin 
with a brief overview of the Alpha Architecture and its 
introduction of the new byte and word manipulation 
instructions. Next, we describe the hardware, software, 
and tools used in our experiments. Lastly, we provide 
an analysis of the instruction distribution and count. 

Alpha Architecture 

The Alpha Architecture is a 64-bit, load and store, 
reduced instruction set computer (RISC) architecture 
that was designed with high performance and longev­
ity in mind. Its major areas of concentration are 
the processor clock speed, the multiple instruction 
issue, and multiple processor implementations. For a 
detailed account of the Alpha Architecture, its major 
design choices, and overall benefits, see the paper 
by R. Sites.6 The original architecture did not define 
the capability to manipulate byte- and word-level 
data with a single instruction. As a result, the first 
three implementations of the Alpha Architecture, the 
21064, the 21064A, and the 21164 microprocessors, 
were forced to use as many as sixteen additional 
instructions to accomplish this task. The Alpha 
Architecture was recently extended to include six new 
instructions for manipulating data at byte and word 
boundaries. The second implementation of the 21164 
family of microprocessors includes these extensions. 

The first implementation of the Alpha Archi­
tecture, the 21064 microprocessor, was intro­
duced in November 1992. It was fabricated in a 
0.75-micrometer (µm) complementary metal-oxide 
semiconductor (CMOS) process and operated at 
speeds up to 200 MHz. It had both an 8-kilobyte 
(KB), direct-mapped, write-through, 32-byte line 
instruction cache (I-cache) and data cache (D-cache). 
The 21064 microprocessor was able to issue two 
instructions per clock cycle to a 7-stage integer 
pipeline or a IO-stage floating-point pipeline.7 The 
second implementation of the 21064 generation was 
the Alpha 21064A microprocessor, introduced in 
October 1993. It was manufactured in a 0.5-µm 
CMOS process and operated at speeds of233 MHz to 
275 MHz. This implementation increased the size of 
the I -cache and D-cache to 16 KB. Various other dif­
ferences exist between the two implementations and 
are outlined in the product data sheet.8 

The Alpha 21164 microprocessor was the second­
generation implementation of the Alpha Architecture 
and was introduced in October 1994. It was manu­
factured in a 0.5-µm CMOS technology and has the 
ability to issue four instructions per clock cycle. It 
contains a 64-entry data translation buffer (DTB ) and 
a 48-entry instruction translation buffer (ITB) com­
pared to the 21064A microprocessor's 32-entry DTB 
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and 12-entry ITB. The chip contains three on-chip 
caches. The level one (Ll) caches include an 8- KB, 
direct-mapped I-cache and an 8-KB, dual-ported, 
direct-mapped, write-through D-cache. A third 
on-chip cache is a 96-KB, three-way set-associative, 
write-back mixed instruction and data cache. The 
floating-point pipeline was reduced to nine stages, and 
the CPU has two integer units and two floating-point 
execution units.9 

The Exclusion of Byte and Word Instructions 

The original Alpha Architecture intended that opera­
tions involved in loading or storing aligned bytes and 
words would involve sequences as given in Tables 1 
and 2. 10 As many as 16 additional instructions are 
required to accomplish these operations on unaligned 
data. These same operations in the MIPS Architecture 
involve only a single instruction: LB, LW, SB, and 
SW.11 The MIPS Architecture also includes single 
instructions to do the same for unaligned data. Given 
a situation in which all other factors are consistent, this 
would appear to give the MIPS Architecture an advan­
tage in its ability to reduce the number of instructions 
executed per workload. 

Sites has presented several key Alpha Architecture 
design decisions.6 Among them is the decision not to 
include byte load and store instructions. Key design 
assumptions related to the exclusion of these features 
include the following: 

• The majority of operations would involve naturally 
aligned data elements. 

Table 1 
Loading Aligned Bytes and Words on Alpha 

LDL 

EXTBL 

Load and Sign Extend a Byte 

R1, D.lw(Rx) 

R1 , #D.mod, R1 

Load and Zero Extend a Byte 

LDL R1, D.lw(Rx) 

SLL R1, #56-B*D.mod, R1 

SRA R1, #56, R1 

Load and Sign Extend a Word 

LDL R1, D.lw(Rx) 

EXTWL R1, #D.mod, R1 

Load and Zero Extend a Word 

LDL R1, D.lw(Rx) 

SLL R1, #48-B*D.mod, R1 

SRA R1, #48, R1 



Table 2 
Storing Aligned Bytes and Words on Alpha 

Store a Byte 

LDL R1, D.lw(Rx) 

INSBL R5,#D.mod, R3 

MSKBL R1, #D.mod, R1 

BIS R3, R1, R1 

STL R1, D.1w(Rx) 

Store a Word 

LDL R1, D.lw(Rx) 

INSWL R5,#D.mod, R3 

MSKWL R1, #D.mod, R1 

BIS R3, R1, R1 

STL R1, D.1w(Rx) 

• In the best possible scheme for multiple instruction 
issue, single byte and write instructions to memory 
are not allowed. 

• The addition of byte and write instructions would 
require an additional byte shifter in the load and 
store path. 

These factors indicated that the exclusion of specific 
instructions to manipulate bytes and words would be 
advantageous to the performance of the Alpha 
Architecture. 

The decision not to include byte and word manipu­
lation instructions is not without precedents. The 
original MIPS Architecture developed at Stanford 
University did not have byte instructions. 12 Hennessy 
et al. have discussed a series of hardware and software 
trade-offs for performance with respect to the MIPS 
processor. 13 Among those trade-offs are reasons for 
not including the ability to do byte addressing opera­
tions. Hennessy et al. argue that the additional cost 
of including the mechanisms to do byte addressing 
was not justified. Their studies showed that word ref­
erences occur more frequently in applications than do 
byte references. Hennessy et al. conclude that to make 
a word-addressed machine feasible, special instruc­
tions are required for inserting and extracting bytes. 
These instructions are available in both the MIPS and 
the Alpha Architectures. 

Reversing the Byte and Word Instructions Decision 

During the development of the Alpha Architecture, 
DIGITAL supported two operating systems, Open VMS 
and ULTRIX. The developers had as a goal the ability 
to maintain both customer bases and to facilitate their 
transitions to the new Alpha microprocessor-based 
machines. In 1991, Microsoft and DIGITAL began 
work on porting Microsoft's new operating system, 

Windows NT, to the Alpha platform. The Windows 
NT operating system had strong links to the Intel x86 
and the MIPS Architectures, both of which included 
instructions for single byte and word manipulation. 14 

This strong connection influenced the Microsoft devel­
opers and independent software vendors (ISVs) to 
favor those architectures over the Alpha design. 

Another factor contributed to this issue: the major­
ity of code being run on the new operating system 
came from the Microsoft Windows and MS-DOS envi­
ronments. In designing software applications for these 
two environments, the manipulation of data at the 
byte and word boundary is prevalent. With the Alpha 
microprocessor's inability to accomplish this manipu­
lation in a single instruction, it suffered an average of 
3:1 and 4:1 instructions per workload on load and 
store operations, respectively, compared to those 
architectures with single instructions for byte and 
word manipulation. 

To assist in running the ISV applications under the 
Windows NT operating system, a new technology was 
needed that would allow 16-bit applications to run as 
if they were on the older operating system. Microsoft 
developed the Virtual DOS Machine (VDM) environ­
ment for the Intel Architecture and the Windows­
on-Windows (WOW) environment to allow 16-bit 
Windows applications to work. For non-Intel architec­
tures, Insignia developed a VDM environment that 
emulated an Intel 80286 microprocessor-based com­
puter. Upon examining this emulator more closely, 
DIGITAL found opportunities for improving perfor­
mance if the Alpha Architecture had single byte and 
word instructions. 

Based upon this information and other factors, a 
corporate task force was commissioned in March 1994 
to investigate improving the general performance of 
Windows NT running on Alpha machines. The further 
DIGITAL studied the issues, the more convincing the 
argument became to extend the Alpha Architecture to 
include single byte and word instructions. 

This reversal in position on byte and word instruc­
tions was also seen in the evolution of the MIPS 
Architecture. In the original MIPS Architecture devel­
oped at Stanford University, there were no load or 
store byte instructions. 12 However, for the first com­
mercially produced chip of the MIPS Architecture, the 
MIPS R2000 RISC processor, developers added 
instructions for the loading and storing ofbytes. 11 One 
reason for this choice stemmed from the challenges 
posed by the UNIX operating system. Many implicit 
byte assumptions inside the UNIX kernel caused per­
formance problems. Since the operating system being 
implemented was UNIX, it made sense to add the byte 
instructions to the MIPS Architecture. 15 

In June 1994, one of the coarchitects of the Alpha 
Architecture, Richard Sites, submitted an Engineering 
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Change Order (ECO) for the extension of the archi­
tecture to include byte and word instructions. It was 
speculated at the time that an increase of as much as 
4 percent in overall performance would be achieved 
using the new instructions. In June 1995, six new 
instructions were added to the Alpha Architecture. 
The new instructions are outlined in Table 3. The first 
implementation to include support for the new 
instructions was the second generation of the Alpha 
21164 microprocessor series. This reimplementation 
of the first Alpha 21164 design was manufactured 
in a 0.35-µ.m CMOS process and was introduced in 
October 1995. 

Testing Environment 
We set up tests to measure the performance of equip­
ment with and without the new instructions. To con­
duct our experiments, we used prototype hardware 
that included the second-generation Alpha 21164 
microprocessor, and we devised a method to enable 
and disable the new instructions in hardware. At the 
same time, we investigated the projected performance 
of the software emulation mechanism to execute the 
new instructions on older processors. Finally, we built 
two separate versions of the Microsoft SQL Server 
application, one that used the new instructions and 
one that did not. For the purposes of discussing the 
different scenarios under study, we summarize the 
three execution schemes in Table 4 . We use the associ­
ated nomenclature given there in the rest of this paper. 
In the remainder of this section, we describe each of 
the hardware, software, compiler, and analysis tools. 

Prototype Hardware 
As previously mentioned, our machine was capable 
of operating with and without the new instructions. 
By using the same machine, we were able to mini­
mize effects that could be introduced from variations 
in machine designs or processor families that could 
cause an increase in the executed code path through 
the operating system. All experiments were run 

Table 3 
New Byte and Word Manipulation Instructions 

Mnemonic Opcode Function 

stb OE Store byte from register 
to memory 

stw OD Store word from register 
to memory 

ldbu OA Load zero-extended byte 
from memory to register 

ldwu oc Load zero-extended word 
from memory to register 

sextb 1C.OOOO Sign extend byte 

sextw 1 C.0001 Sign extend word 
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Table4 
Three Methods for Execution of t he New Instructions 

Nomenclature 

Original 

Byte/Word 

Emulation 

Description 

Compiled with instructions 
that can execute on all Alpha 
implementations 
Compiled using the new 
instructions that will execute 
on second-generation 21164 
implementations at full speed 

Compiled with new instructions 
and emulated through software 

on a prototype of the AlphaStation 500 work­
station that was based upon the second-generation 
21164 microprocessor operating at 400 MHz. (The 
AlphaStation 500 is a family of high-performance, 
mid-range graphics workstations.) The prototype was 
configured with 128 megabytes (MB ) of memory and 
a single, 4-gigabyte (GB ) fast-wide-differential (FWD) 
small computer systems interface (SCSI-2 ) disk. 

New firmware allowed us to alternate between 
direct hardware execution and software emulation of 
the new byte and word instructions. We modified the 
Advanced RISC Consortium (ARC) code to allow us 
to switch between the two firmware versions through 
a simple power-cycle utility, called the fail-safe loader. 16 

When the machine is powered on, it loads code from 
a serial read-only memory (SROM) storage device. 
This code then loads the ARC firmware from non­
volatile flash ROM. The fail-safe loader allowed the 
ARC firmware to be loaded into physical memory and 
not into the flash ROM. The new firmware was initial­
ized by a reset of the processor and was executed as 
if it were loaded from the flash ROM. When the 
machine was turned off and then back on, the version 
of firmware that was stored in nonvolatile memory was 
loaded and executed. 

Operating System 
We used a beta copy of the Microsoft Windows NT 
version 4.0 operating system. We chose this operating 
system for its capability to allow us to examine the 
impact of emulating the new byte and word instruc­
tions in the operating system. 

By default, version 4.0 of the Windows NT operat­
ing system disables the trap and emulation capability 
for the new instructions. This approach is similar to 
the one Windows NT provides for the Alpha micro­
processor to handle unaligned data references. For 
testing purposes, we enabled and disabled the trap and 
emulation capability of the new instructions. When 
this option is enabled, the operating system treats each 
new instruction listed in Table 3 as an illegal instruc­
tion and emulates the instruction. The trap and emu­
late strategy takes approximately 5 to 7 microseconds 



per emulated instruction. When it is disabled or not 
present, the action taken depends upon the hardware 
support for the new instructions. If disabled in hard­
ware, the instruction is treated as an illegal instruction; 
if enabled, it is executed like any other instruction. 

Microsoft SQL Server 

To observe the effects of the new instructions, we 
chose the Microsoft SQL Server, a relational database 
management system (RDBMS) for the Windows NT 
operating system. Microsoft SQL Server was engi­
neered to be a scalable, multiplatform, multithreaded 
RDBMS, supporting symmetric multiprocessing 
(SMP) systems. It was designed specifically for distrib­
uted client-server computing, data warehousing, and 
database applications on the Internet. 

In an earlier investigation, Sites and Perl present a 
profile of the Microsoft SQL Server running the TPC-B 
benchmark.4 They identify the executables and DLLs 
that are involved in running the benchmark and break 
down the percentage of time that each contributes to 
the benchmark. Their results, summarized in Figure 1, 
show that only a few SQL Server executables and 
DLLs were heavily exercised during the benchmark. 
After verifying these results with the SQL Server devel­
opment group at Microsoft, we decided to rebuild 
only the images and DLLs identified in Figure 1 to use 
the new byte and word instructions. 

Table 5 lists the executables and DLLs that we modi­
fied and their correlation to the ones identified by Sites 
and Perl. The variations exist because of name changes 
ofDLLs or the use of a different network protocol. We 
changed network protocols for performance reasons. 
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Sites and Perl used an early version of the Microsoft 
SQL Server version 6.0, in which the fastest network 
transport available at that time was Named Pipes. In 
the final release of SQL Server version 6.0 and sub­
sequent versions of the product, the Transmission 
Control Protocol/Internet Protocol (TCP /IP) 
replaced Named Pipes in this category. Based upon 
this, we rebuilt the libraries associated with TCP /IP 
instead of those associated with Named Pipes. Other 
networking libraries, such as those for DECnet and 
Internetwork Packet Exchange/Sequenced Packet 
Exchange (IPX/SPX), were not rebuilt. 

Table 5 
Images and DLLs Modified for the Microsoft SQL 
Server 

Sites V6.0 Function 
DLL/EXE DLL/EXE 

sqlserver.exe sqlservr.exe SQL Server Main 
Executable 

ntwdblib.dll ntwdblib.dll Network 
Communications 
Library 

opends50.dll opends60.dll Open Data Services 
Networking Library 

dbnmpntw.dll N/A V4.21A Client Side 
Named Pipes Library 

ssnmpntw.dll N/A V4.21A Named Pipes 
Library 

N/A dbmssocn.dll V6.5 Client Side 
TCP/IP Library 

N/A ssmsso60.dll V6.5 Netlibs TCP/IP 
Library 
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Compiling Microsoft SQL Server to 
Use the New Instructions 

Our goal was to measure only the effects introduced 
by using the new instructions and not effects intro­
duced by different versions or generations of compil­
ers. Therefore, we needed to find a way to use the same 
version of a compiler that differed only in its use or 
nonuse of the new instructions. To do this, we used 
a compiler option available on the Microsoft Visual 
C++ compiler. This switch, available on all RISC plat­
forms that support Visual C++, allows the generation 
of optimized code for a specific processor within a 
processor family while maintaining binary compatibil­
ity with all processors in the processor family. Processor 
optimizations are accomplished by a combination of 
specific code-pattern selection and code scheduling. 
The default action of the compiler is to use a blended 
model, resulting in code that executes equally well 
across all processors within a platform family. 

Using this compiler option, we built two versions 
of the aforementioned images within the SQL 
Server application, varying only their use of the code­
generation switch. The first version, referred to as the 
Original build, was built without specifying an argu­
ment for the code-generation switch. The second one, 
referred to as Byte/Word, set the switch to generate 
code patterns using the new byte and word manipula­
tion instructions. All other required files came from the 
SQL Server version 6.5 Beta II distribution CD-ROM. 

The Benchmark 
The benchmark we chose was derived from the TPC-B 
benchmark. As previously mentioned, the TPC-B 
benchmark is now obsolete; however, it is still useful 
for stressing a database and its interaction with a com­
puter system. The TPC-B benchmark is relatively 
easy to set up and scales readily. It has been used by 
both database vendors and computer manufacturers 
to measure the performance of either the computer 
system or the actual database. We did not include all 
the required metrics of the TPC-B benchmark; there­
fore, it is not in full compliance with published guide­
lines of the TPC. We refer to it henceforth simply as 
the application benchmark. 

The application benchmark is characterized by sig­
nificant disk 1/0 activity, moderate system and applica­
tion execution time, and transaction integrity. The 
application benchmark exercises and measures the effi­
ciency of the processor, 1/0 architecture, and RDBMS. 
The results measure performance by indicating how 
many simulated banking transactions can be com -
pleted per second. This is defined as transactions per 
second (tps) and is the total number of committed 
transactions that were started and completed during 
the measurement interval. 
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The application benchmark can be run in two dif­
ferent modes: cached and scaled. The cached, or in­
memory mode, is used to estimate the system's 
maximum performance in this benchmark environ­
ment. This is accomplished by bLLilding a small database 
that resides completely in the database cache, which in 
turn fits within the system's physical random-access 
memory (RAM). Since the entire database resides in 
memory, all 1/0 activity is eliminated with the excep­
tion of log writes. Consequently, the benchmark only 
performs one disk 1/0 for each transaction, once the 
entire database is read off the disk and into the database 
cache. The result is a representation of the maximum 
number of tps that the system is capable of sustaining. 

The scaled mode is run using a bigger database with 
a larger amount of disk 1/0 activity. The increase in 
disk 1/0 is a result of the need to read and write data to 
locations that are not within the database cache. These 
additional reads and writes add extra disk I/Os. The 
result is normally characterized as having to do one 
read and one write to the database and a single write to 
the transaction log for each transaction. The combina­
tion of a larger database and additional 1/0 activity 
decreases the tps value from the cached version. Based 
upon our previous experience running this benchmark, 
the scaled benchmark can be expected to reach approx­
imately 80 percent of the cached performance. 

For the scaled tests, we built a database sized to 
accommodate SO tps. This was less than 80 percent 
of the maximum tps produced by the cached results. 
We chose this size because we were concentrating 
on isolating a single scaled transaction under a moder­
ate load and not under the maximum scaled perfor­
mance possible. 

Image Tracing and Analysis Tools 
Collecting only static measurements of the executables 
and DLLs affected was insufficient to determine the 
applicability of the new instructions. We collected the 
actual instruction traces of SQL Server while it exe­
cuted the application benchmark. Furthermore, we 
decided that the ability to trace the actual instructions 
being executed was more desirable than developing or 
extending a simulator. To obtain the traces, we needed 
a tool that would allow us to 

• Collect both system- and user-mode code. 

• Collect function traces, which would allow us to 
align the starting and stopping points of different 
benchmark runs. 

• Work without modifying either the application or 
the operating system. 

In the past, the only tool that would provide 
instruction traces under the Windows NT operating 
system was the debugger running in single-step mode. 



Obtaining traces through either the ntsd or the 
windbg debugger is quite limited due to the following 
problems: 

• The tracing rate is only about 500 instructions per 
second. This is far too slow to trace anything other 
than isolated pieces of code. 

• The trace fails across system calls. 

• The trace loops infinitely in critical section code. 

• Register contents are not easily displayed for each 
instruction. 

• Real-time analysis of instruction usage and cache 
misses are not possible. 

Instruction traces can also be obtained using the 
PatchWrks trace analysis tool! Although this tool 
operates with near real-time performance and can 
trace instructions executing in kernel mode, it has the 
following limitations: 

• It operates only on a DIGITAL Alpha AXP personal 
computer. 

• It requires an extra 40 MB of memory. 

• All images to be traced must be patched, thus 
slightly distorting text addresses and function sizes. 

• Successive runs of application code are not repeat­
able due to unpredictable kernel interrupt behavior 
(the traces are too accurate). 

The solution was Ntstep, a tool that can trace user­
mode instruction execution of any image in the 
Windows NT/ Alpha environment through an innov­
ative combination of breakpointing and "Alpha-on­
Alpha" emulation. It has the ability to trace a 
program's execution at rates approaching a million 
instructions per second. Ntstep can trace individual 
instructions, loads, stores, function calls, I-cache and 
D-cache misses, unaligned data accesses, and anything 
else that can be observed when given access to each 
instruction as it is being executed. It produces sum­
mary reports of the instruction distribution, cache line 
usage, page usage (working set), and cache simulation 
statistics for a variety of Alpha systems. 

Ntstep acts like a debugger that can execute single­
step instructions except that it executes instructions 
using emulation instead of single-step breakpoints 
whenever possible. In practice, emulation accounts for 
the majority of instructions executed within Ntstep. 
Since a single-step execution of an instruction with 
breakpoints takes approximately 2 milliseconds and 
emulation of an Alpha instruction requires only l or 2 
microseconds, Ntstep can trace approximately 1,000 
times faster than a debugger. Unlike most emulators, 
the application executes normally in its own address 
space and environment. 

Results 

We collected data on three different experiments. In 
the first investigation, we looked at the relative perfor­
mance of the three different versions of the Microsoft 
SQL Server outlined in Table 4. We compared the 
three variations using the cached version of the appli­
cation benchmark. 

In the second experiment, we observed how the 
new instructions affect the instruction distribution in 
the static images and DLLs that we rebuilt. We com­
pared the Byte/Word versions to the Original versions 
of the images and DLLs. We also attempted to link the 
differences in instruction counts to the use of the new 
instructions. 

Lastly, we investigated the variation between the 
Original and the Byte/Word versions with respect to 
instruction distribution on the scaled version of the 
benchmark. This comparison was based upon the code 
path executed by a single transaction. 

Cached Performance 
In the first experiments, we compared the relative per­
formance impact of using the new instructions. We 
chose to measure performance of only the cached ver­
sion of the application benchmark because the 1/0 
subsystem available on the prototype of the 
AlphaStation 500 was not adequate for a full-scaled 
measurement. We ensured that the database was fully 
cached by using a ramp-up period of 60 seconds and a 
ramp-down period of 30 seconds. This was verified as 
steady state by observing that the SQL Server buffer 
cache hit ratio remained at or above 95 percent. The 
measurement period for the benchmark was 60 sec­
onds. We ran the benchmark several times and took 
the average tps for each of the three variations outlined 
in Table 4. 

The results of the three schemes are as follows: 444 
tps for the Original version, 460 tps for the Byte/ 
Word version, and 116 tps for the Emulation ver­
sion. The new instructions contributed a 3.5 percent 
gain in performance. The impact of emulating the 
instructions is a loss of 73.9 percent of the potential 
performance. 

Static Instruction Counts 
To analyze the mixture of instructions in the images 
and DLLs, we disassembled each image and DLL in 
the Original and Byte/Word versions. We then looked 
at only those instructions that exhibited a difference 
between the two versions within the images or DLLs. 
The variations in instruction counts of these are shown 
in Table 6. 

To examine the images more closely, we disassem­
bled each image and DLL and collected counts of code 
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Table 6 
Instruction Deltas (Normal Minus Byte/Word) for the SOL Server Images and DLLs 

Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservr.exe ssmsso60.dll 

Ida 0 -3 - 247 -8524 -4 
ldah 0 0 - 27 18-18 0 
ldl -9 -11 -597 - 13133 -46 
ldq 0 0 - 29 -2980 0 
ldq_l 0 0 0 -9 0 
ldq_u -10 -2 -311 -8529 - 18 
stl -5 - 11 -278 - 7932 - 11 
stb +3 + 1 +216 +3969 + 7 
stw +2 +5 +59 +2798 +3 
stq 0 0 -4 - 53 0 
stq_c 0 0 0 - 9 0 
beq 0 5 + 1 - 1236 0 
bge 0 0 0 +8 0 
bgt 0 0 0 +3 0 
blbc 0 0 - 1 - 19 0 
bibs 0 0 0 -4 0 
bit 0 0 0 0 0 
bne 0 0 + 1 + 24 0 
br 0 - 4 + 1 - 1120 0 
bsr 0 0 0 -6 0 
ret 0 0 +4 + 15 0 
cmpeq 0 0 0 +9 0 
cm pit 0 0 0 + 15 0 
cm pie 0 0 0 +5 0 
cmpult 0 0 - 1 1- 1 0 
cm pule 0 - 5 -2 1183-1183 0 
and -2 - 6 - 364 - 6435 - 8 
bic - 3 -11 -287 - 7242 -8 
bis -4 -7 -208 - 7097 -9 
ornot 0 0 0 +4 0 

size, the number of functions, the number and type of 
new byte and word instructions, and lastly, nop and 
trapb instructions. The results are presented in Tables 
7 through 10. 

We expected that the instructions used to manipulate 
bytes and words in the original Alpha Architecture 
(Tables 1 and 2) would decrease proportionally to the 
usage of the new instructions. These assumptions held 
true for all the images and DLLs that used the new 
instructions. For example, in the original Alpha 
Architecture, the instructions MSKBL and MSKWL are 
used to store a byte and word, respectively. In the 
sqlservr.exe image, these two instructions showed a 
decrease of 3,647 and 1,604 instructions, respectively. 
Compare this with the corresponding addition of3,969 
STB and 2,798 S1W instructions in the same image. 
Looking further into the sqlservr.exe image, we also saw 
that 10,231 LDBU instructions were used and the 
usage of the EXTBL instruction was reduced by 10,656. 
Although these numbers do not correlate on a one-for­
one basis, we believe this is due to other usage of these 
instructions. Other usage might include the compiler 
scheme for introducing the new instructions in places 
where it used an LDL or an LDQ in the Original image. 
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Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservr.exe ssmsso60.dll 

xor 0 0 -2 + 119 0 
sll 0 0 +2 -2359 0 
sra 0 0 -15 -3534 -4 
srl 0 0 0 -295 0 
cmpbge 0 0 -1 - 18 0 
mskbl -3 - 1 - 196 -3647 -8 
mskwl 0 -5 -41 - 1604 0 
zapnot - 5 0 -115 -2135 -33 
add I 0 0 0 -8 0 
addq 0 0 0 +3 0 
s4addl 0 0 0 - 4 0 
cmovge 0 0 0 + 1 0 
cmovne 0 0 0 +2 0 
cmovlt 0 0 0 - 1 0 
cmovlbc 0 0 0 -2 0 
callsys 0 0 0 0 0 
extqh 0 0 - 14 -426 -4 
ldwu +4 0 + 193 +6320 + 35 
ldbu +9 +3 +464 +1 0231 + 18 
mull 0 0 0 + 1 0 
subl 0 0 + 1 +6 0 
subq 0 0 0 +3 0 
insll 0 0 0 1-1 0 
inswl -2 -3 - 54 -2647 - 3 
call_pal +2 + 1 + 1 + 161 0 
extlh 0 0 0 - 14 0 
insbl -2 - 1 - 135 - 3163 - 6 
extll 0 0 0 -20 0 
extbl - 10 -6 -367 - 10656 - 14 
extwl - 1 0 - 84 - 324 -1 

Of the rebuilt images and DLLs, sqlservr.exe and 
opends60.dll showed the most variations, with the new 
instructions making up 3.73 percent and 3.9 percent 
of these files. The most frequently occurring new 
instruction was ldbu, followed by ldwu. The least­
used instructions were sextb and sextw. The size of 
the images was reduced in three out of five images. 
The image size reduction ranged from negligible to 
just over 4 percent. In all cases, the size of the code 
section was reduced and ranged from insignificant 
to approximately 8.5 percent. There was no change in 
the number of functions in any of the files. 

Dynamic Instruction Counts 
We gathered data from the application benchmark 
running in both cached and scaled modes. We ran at 
least one iteration of the benchmark test prior to gath­
ering trace data to allow both the Windows NT oper­
ating system and the Microsoft SQL Server database to 
reach a steady state of operation on the system under 
test (SUT). Steady state was achieved when the SQL 
Server cache-hit ratio reached 95 percent or greater, 
the number of transactions per second was constant, 
and the CPU utilization was as close to 100 percent as 
possible. The traces were gathered over a sufficient 
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period of time to ensure that we captured several 
transactions. The traces were then edited into separate 
individual transactions. The geometric mean was 
taken from the resulting traces and used for all subse­
quent analysis. 

We used Ntstep to gather complete instruction and 
function traces of both versions of the SQL Server data­
base while it executed the application benchmark. 
Figure 2 shows an example output for an instruction 

trace, and Figure 3 shows an example output for a 
function trace from Ntstep. Since Ntstep can attach to 
a running process, we allowed the application bench­
mark to achieve steady state prior to data collection. 
This approach ensured that we did not see the effects of 
warming up either the machine caches or the SQL 
Server database cache. Each instruction trace consisted 
of approximately one million instructions, which was 
sufficient to cover multiple transactions. The data was 

0 ** Breakpoint CPid Oxd1, Tid Oxb2) SQLSERVR.EXE pc 77f39b34 
0 ** Trace begins at 242698 

opends60!FetchNextCommand 
1 00242698: 23deffb0 Lda sp, -50Csp) II sp now 72bff00 
2 0024269c: b53e0000 stq sO, OCsp) II @072bf fOO = 148440 
3 002426a0: b55e0008 stq s1, 8Csp) II @072bf f08 = 0 
4 002426a4: b57e0010 stq s2, 10Csp) II @072bff10 = 5 
5 002426a8: b59e0018 stq s3, 18Csp) II @072bff18 = 1476a8 
6 002426ac: b5be0020 stq s4, 20Csp) II @072bf f20 = 2c4 
7 002426b0: b5de0028 stq s5, 28Csp) II @072bff28 = 41 
8 002426b4: b5fe0030 stq f P, 30Csp) II @072bff30 = 0 
9 002426b8: b75e0038 stq ra, 38Csp) II @072bff38 = 242398 

10 002426bc: 47f00409 b is zero, aO, sO II sO now 148440 
11 002426c0: 47f1040a bis zero, a1, s1 II s1 now 72bffa0 
12 002426c4: 4 7f2040b bis zero, a2, s2 II s2 now 72bffa8 
1 3 002426c8: d3404e67 bsr ra, 00256068 II ra now 2426cc 

opends60!netIOReadData 
14 00256068: 23deffa0 Lda sp, -60Csp) II sp now 72bfea0 
1 5 0025606c: 43f10002 addl zero, a1, t 1 II t 1 now 72bffa0 
16 00256070: b53e0000 stq so, OCsp) II @072bfea0 = 148440 
17 00256074: b5 5e0 008 stq s1, 8Csp) II @072bfea8 = 72 bffa0 
18 00256078: b57e0010 stq s2, 10Csp) II @072bfeb0 = 72bffa8 
19 0025607c: b59e0018 stq s3, 18Csp) II @072bfeb8 = 1476a8 
20 00256080: b5be0020 stq s4, 20Csp) II @072bfec0 = 2c4 
21 00256084: b5de0028 stq s5, 28Csp) II @072bfec8 = 41 
22 00256088: b5fe0030 stq fp, 30Csp) II @072bfed0 = 0 
23 0025608c: b75e0038 stq ra, 38Csp) II @072bfed8 = 2426cc 
24 00256090: a1d01140 Ldl s5, 1140Ca0) II @00149580 1479e8 
25 00256094: 47f00409 bis zero, aO, sO II sO now 148440 
26 00256098: a1f001d0 Ldl fp, 1d0Ca0) II @00148610 dbbaO 
27 0025609c: 47e0340d bis zero, 111, s4 II s4 now 1 
28 002560a0: a0620000 Ldl t2, O Ct 1 > II @072bffa0 155c58 
29 002560a4: b23e004c stl a1, 4cCsp) II @072bfeec = 72bffa0 
30 002560a8: b25e0050 stl a2, 50Csp) II @072bfef0 = 72bf fa 8 
31 002560ac: b27e0054 stl a3, 54Csp) II @072bfef4 = 1476a8 
32 002560b0: e460001d beq t2, 00256128 II Ct2 i s 155c58) 
33 002560b4: 220303e0 Lda aO, 3e0Ct2) II aO now 156038 
34 002560b8: 47f00404 bis zero, aO, t3 II t3 now 156038 
35 002560bc: 63ff4000 mb II 
36 002560c0: 47e03400 bis zero, 111, vO II vO now 1 
37 002560c4: a8240000 L d L L - tO, 0Ct3) II @00156038 0 
38 002560c8: b8040000 stl c - vO, 0Ct3) II @00156038 = 1 
39 002560cc: e40000b6 beq vO, 002563a8 II CvO is 1 ) 
40 002560d0: 63ff4000 mb II 
41 002560d4: e4200001 beq tO, 002560dc II CtO is 0) 

opends60!netIOReadData+Ox74: 
42 002560dc: a1be004c Ldl s4, 4cCsp) II @072bfeec 72bffa0 
43 002560e0: aOOdOOOO Ldl vO, 0Cs4) II @072bffa0 155c58 
44 002560e4: a04003dc Ldl t1, 3dcCv0) II @00156034 0 
45 002560e8: 20800404 Lda t3, 404Cv0) II t3 now 15605c 
46 002560ec: 405f05a2 cmpeq t1, zero, t 1 II t 1 now 1 
47 002560f0: e4400003 beq t1, 00256100 II Ct 1 is 1 ) 
48 002560f4: a0600404 Ldl t2, 404Cv0) II @0015605c 15605c 
49 002560f8: 406405a3 cmpeq t2, t3, t2 II t2 now 1 
50 002560fc: 47e30402 bis zero, t2, t 1 II t 1 now 1 
51 00256100: 47e2040d bis z ero, t1, s4 II s4 now 1 

Figure 2 
Example oflnstruction Trace Output from Ntstep 
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52 00256104: e4400005 beq t1, 0025611 c II Ct 1 is 1) 

53 00256108: aOaOOOOO l d l t4, OCvO> II @00155c58 204200 
54 0025610c: 24df0080 ldah t5, 80Czero> II t5 now 800000 
55 00256110: 48a07625 zapnot t 4 , #3, t4 II t4 now 4200 
56 00256114: 40a60005 addl t 4, t5, t4 II t4 now 804200 
57 00256118 : bOaOOOOO st l t4, OCvO> II @00155c58 = 804200 
58 0025611c: a0fe004c ldl t6, 4c(sp) II @072bfeec 72bf faO 
59 00256120: a0e70000 ldl t6, 0Ct6> II @072bf faO 155c58 
60 00256124: b3e703e0 st l zero, 3e0Ct6) II @00156038 = 0 
61 00256128: e5a00061 beq s4, 002562b0 II Cs4 is 1) 

62 0025612c: 25710026 ldah s 2, 26Czero> II s2 now 260000 
63 00256130 : 216b62f8 lda s2, 62f8Cs2> II s2 now 2662f8 
64 00256134: 5fff041f cpys f31, f31, f31 II 
65 002 56138: a21e0054 ldl aO, 54Csp) II @072bfe f 4 1 476a8 
66 0025613c: 225e0040 lda a2, 40Csp) II a2 now 72bfee0 
67 00256140: aOObOOOO ldl vO, 0Cs2> II @002662 f 8 77e985a0 
68 00256144: 227e0048 l da a3, 48Csp) II a3 now 72bfee8 
69 00256148: a23e0050 l d l a1, 50Csp) II @072bfef0 72bffa8 
70 0025614c: 47ef0414 b i s zero, fp, a4 II a4 now dbbaO 
71 00256150: a2100000 ldl aO, OCaO> II @001476a8 2c0 
72 00256154: 6b404000 j s r ra, Cv0),0 II ra now 256158 

KERNEL32!GetQueuedComp l etionSta t u s : 
73 77e985a0 : 23deffc0 l da s p, -40C s p) II sp n o w 72bfe60 
74 77e985a4 : b53e0000 s t q s O, OCsp) II @072bfe60 = 148440 
75 77e985a8: b55e0008 stq s 1, 8Csp) ll@072bfe68 = 72bffa0 
76 77e985ac: b57e0010 stq s2, 10(sp) II @072bfe70 = 2662f8 
77 77e985b0: b59e0018 stq s3, 18Csp ) II @072bfe78 = 1476a8 
78 77e985b4: b75e0020 stq ra, 20Csp) II @072b f e80 = 256158 
79 7('e985b8 : 47100409 b i s z e r o, a 0, so II sO now 2c0 
80 77e985bc: 47f1040a b i s zero, a1, s1 II s1 now 72bffa8 
81 77e985c0: 47f2040b b is z e r o, a2 , s2 II s2 now 72bfee0 
82 77e985c4: 47 f 3040c b is z ero, a3, s3 II s3 now 72bfee8 
83 77e985c8: 47 f 4041 1 b is z ero, a 4, a1 II a1 now dbbaO 
84 77e985cc: 221e0038 ld a aO, 38Csp) II aO now 72bfe98 
85 77e985d0: d3405893 bsr r a, 

Figure 2 (continued) 
Example oflnstruction Trace Output from Ntstep 

then reduced to a series of single transactions and ana­
lyzed for instruction distribution. For both the cached­
and the scaled-transaction instruction counts, we com­
bined at least three separate transactions and took the 
geometric mean of the instructions executed, which 
caused slight variations in the instruction counts. All 
resulting instruction counts were within an acceptable 
standard deviation as compared to individual transac­
tion instruction counts. 

We collected the function traces in a similar fashion. 
Once the application benchmark was at a steady state, 
we began collecting the function call tree. Based on 
previous work with the SQL Server database and con­
sultation with Microsoft engineers, we could pinpoint 
the beginning of a single transaction. We then began 
collecting samples for both traces at the same instant, 
using an Ntstep feature that allowed us to start or stop 
sample collection based upon a particular address. 

The dynamic instruction counts for both the scaled 
and the cached transactions are given in Tables 11 and 
12. We also show the variation and percentage varia­
tion between the Original and the Byte/Word versions 
of the SQL Server. Two of the six new instructions, 
sextb and sextw, are not present in the Byte/Word 

77eae820 II r a now 77e985d4 

trace. The remauung four instructions combine to 
make up 2.6 percent and 2.7 percent of the instruc­
tions executed per scaled and cached transaction, 
respectively. Other observations include the following: 

• The number of instructions executed decreased 
7 percent for scaled and 4 percent for cached 
transactions. 

• The number of ldl_l/stl_c sequences decreased 
3 percent for scaled transactions. 

• All the instructions that are identified in Tables I 
and 2 show a decrease in usage. Not surprisingly, 
the instructions mskwl and mskbl completely disap­
peared. The inswl and insbl instructions decreased 
by 47 percent and 90 percent, respectively. The sll 
instruction decreased by 38 percent, and the sra 
instruction usage decreased by 53 percent. These 
reductions hold true within I to 2 percent for both 
scaled and cached transactions. 

• The instructions ldq_u and Ida, which are used 
in unaligned load and store operations, show a 
decrease in the range of20 to 22 percent and 15 to 
16 percent, respectively. 
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0 ** 
0 ** 
0 ** 

13 ** 
72 ** 
85 ** 
99 ** 

129 ** 
272 ** 
285 ** 
290 ** 
318 ** 
348 ** 
399 ** 
412 ** 
417 ** 
423 ** 
509 ** 
560 ** 
665 ** 
682 ** 
749 ** 
762 ** 
802 ** 
864 ** 
911 ** 
937 ** 
950 ** 

1024 ** 
1038 ** 
1055 ** 
1173 ** 
1208 ** 
1227 ** 
1263 ** 
1313 ** 
1365 ** 
1405 ** 
1437 ** 
1500 ** 
1577 ** 
1580 ** 
1612 ** 
1777 ** 
1808 ** 
2115 ** 
21 31 ** 
2183 ** 
2252 ** 
2319 ** 
2546 ** 
2559 ** 
2597 ** 
2642 ** 
2673 ** 
2979 ** 
3010 ** 
3323 ** 
3363 ** 
3493 ** 
3510 ** 
3658 ** 
3668 ** 
3703 ** 
3764 ** 
3799 ** 
3857 ** 
3901 ** 
3978 ** 
4064 ** 
4109 ** 
4170 ** 
4331 ** 
5323 ** 
5436 ** 
5550 ** 

Figure 3 

Breakpoint (Pid Oxd7, Tid Oxdb) SQLSERVR.EXE pc 77f39b34 
Trace begins at 00242698 

opends60!FetchNextCommand 
opends60!netIOReadData 
. KERNEL32!GetQueuedCompletionStatus 
.. KERNEL32!BaseformatTimeOut 
.. ntdll!NtRemoveloCompletion 
. opends60!netIOCompletionRoutine 
opends60!netIORequestRead 

KERNEL32!ResetEvent 
. ntdll!NtClearEvent 
SSNMPN60!*0x06a131f0* 

KERNEL32!Readfile 
ntdl l !NtReadfi le 

. KERNEL32!BaseSetlastNTError 

.. ntdll!Rtl NtStatusToDosError 

... ntdll!RtlNtStatusToDosErrorNoTeb 
KERNEL32!GetlastError 

opends60!get_client_event 
. opends60!processRPC 
.. opends60!unpack_rpc 
opends60!execute_event 

opends60!execute_ sqlserver_event 
opends60!unpack_rpc 
SQLSERVR!execrpc 

KERNEL32!WaitforSingleObjectEx 
. KERNEL32!BaseformatTimeOut 
. ntdll!NtWaitforSingleObject 
SQLSERVR!UserPerfStats 
. KERNEL32!GetThreadTimes 
.. ntdll!NtQuerylnformationThread 
SQLSERVR!init recvbuf 
SQLSERVR!init=sendbuf 
SQLSERVR!port_ex_handle 
SQLSERVR!_Otssetjmp3 
SQLSERVR!memalloc 
. SQLSERVR! OtsZero 
SQLSERVR!recvhost 
. SQLSERVR!_OtsMove 
SQLSERVR!memalloc 
SQLSERVR!rn char 
. SQLSERVR!recvhost 
.. SQLSERVR!_OtsMove 
SQLSERVR!parse_name 
. SQLSERVR!dbcs strnchr 
SQLSERVR!rpcprot 

SQLSERVR!memalloc 
. SQLSERVR ' OtsZero 
SQLSERVR!getprocid 

SQLSERVR!procrelink+Ox1250 
. SQLSERVR!_OtsRemainder32 
. SQLSERVR!_OtsDivide32+0x94 
SQLSERVR!opentable 

SQLSERVR!parse_name 
. SQLSERVR!dbcs_strnchr 
SQLSERVR!parse_name 
. SQLSERVR!dbcs strnchr 
SQLSERVR!opentabid 
. SQLSERVR!getdes 
. SQLSERVR!GetRunidfromDefid+Ox40 
.. SQLSERVR!_OtsZero 
SQLSERVR!initarg 
SQLSERVR!setarg 
. SQLSERVR!_Otsfieldlnsert 
SQLSERVR!setarg 
. SQLSERVR!_Otsfieldlnsert 
SQLSERVR!startscan 

SQLSERVR!getindex2 
SQLSERVR!getkeepslot 
SQLSERVR!rowoffset 
SQLSERVR!rowoffset 
SQLSERVR! OtsMove 
SQLSERVR!iemcmp 
SQLSERVR!bufunhold 

SQLSERVR!prepscan 
. SQLSERVR!match_sargs_to_index 

Example of Function Trace Output from Ntstep 
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5828 ** 
5895 ** 
5942 ** 
5976 ** 
5985 ** 
6090 ** 
6356 ** 
6539 ** 
6720 ** 
6912 ** 
7309 ** 
7728 ** 
8125 ** 
8522 ** 
8919 ** 
9410 ** 
9465 ** 
9641 ** 
9661 ** 
9809 ** 

10212 ** 
10616 ** 
10702 ** 
10769 ** 
10822 ** 
10838 ** 
10885 ** 
10919 ** 
10928 ** 
11033 ** 
11359 ** 
11489 ** 
11557 ** 
11675 ** 
11853 ** 
11907 ** 
12044 ** 
12103 ** 
12138 ** 
12291 ** 
12464 ** 
12524 ** 
12661 ** 
12729 ** 
12756 ** 
12792 ** 
12845 ** 
12887 ** 
12958 ** 
13025 ** 
13077 ** 
13127 ** 
13179 ** 
13263 ** 
13267 ** 
13299 ** 
13369 ** 
13401 ** 
13477 ** 
13509 ** 
13562 ** 
13594 ** 
13670 ** 
1 3702 ** 
13755 ** 
13787 ** 
13847 ** 
13895 ** 
13921 ** 
14046 ** 
14098 ** 
14157 ** 
14161 ** 
14193 ** 

Figure 3 (continued) 

SQLSERVR!srchindex 
SQLSERVR!getpage 

SQLSERVR!bufget 
SQLSERVR! OtsDivide 
SQLSERVR!=OtsDivide32+0x94 
SQLSERVR!getkeepslot 

SQLSERVR!bufrlockwait 
SQLSERVR!srchpage 

SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 

SQLSERVR!index_beforesleep+Ox100 
SQLSERVR!bufrunlock 

SQLSERVR!trim_sqoff+OxfO 
SQLSERVR!qualpage 

SQLSERVR!nc~sqlh i lo+Ox8b0 
SQLSERVR!nc~sqlhilo+Ox8b0 
SQLSERVR!rowoffset 

SQLSERVR!getnext 
SQLSERVR!_OtsFieldlnsert 
SQ LSERVR!getrow2 

SQLSERVR!getpage 
SQLSERVR!bufget 

SQLSERVR! OtsDivide 
SQLSERVR!-OtsDivide32+0x94 
SQLSERVR!getkeepslot 

SQLSERVR!_OtsMove 
SQLSERVR!endscan 

SQLSERVR!bufunkeep 
SQLSERVR!bufunkeep 

SQLSERVR!closetable 
SQLSERVR!endscan 

• SQLSERVR!get_spinlock 
SQLSERVR!opentabid 

SQLSERVR!getdes 
SQLSERVR!_OtsZero 

SQLSERVR!closetable 
SQLSERVR!endscan 

• SQLSERVR!get_spinlock 
SQLSERVR!p r otect 

SQLSERVR!port_ex_handle 
SQLSERVR! _ Otssetjmp3 
SQLSERVR!prot_search 

SQLSERVR!dbtblfind 
SQLSERVR!check_protect 

SQLSERVR!memalloc 
SQLSERVR!_OtsZero 

SQLSERVR!memalloc 
SQLSERVR! _ OtsZero 

SQLSERVR!rn_i2 
SQLSERVR!recvhost 

SQLSERVR! OtsMove 
SQLSERVR!recvhost 

SQLSERVR!_OtsMove 
SQLSERVR!recvhost 

SQLSERVR! _ OtsMove 
SQLSERVR!re cvhost 

SQLSERVR!_OtsMove 
SQLSERVR!recvhost 
• SQLSERVR!_OtsMove 
SQLSERVR!recvhost 

SQLSERVR!_OtsMove 
SQLSERVR!bcon s t 

SQLSERVR!mkconstant 
SQLSERVR!memalloc 

• SQLSERVR!memalloc 
SQLSERVR!_OtsZero 

SQLSERVR!rn_ i4 
SQLSERVR! r ecvhost 

SQLSERVR!_OtsMove 

Example of Function Trace Output from Ntstep 
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Table 11 
Instruction Count and Variations for Scaled Transaction 

Instruction Original Byte/Word Delta % Delta 

stb 0 174 + 174 N/A 
stw 0 219 + 219 N/A 
ldwu 0 1215 + 1215 N/A 
ldbu 0 1216 + 1216 N/A 
cmpbge 2 0 - 2 -100% 
cmovlbs 2 2 0 0% 
addt 3 3 0 0% 
cmovlbc 5 4 - 1 - 20% 
cmovle 5 5 0 0% 
insqh 6 6 0 0% 
cmovgt 13 13 0 0% 
callsys 18 14 -4 - 22% 
mulq 13 13 0 0% 
s8subq 17 17 0 0% 
cmovlt 16 16 0 0% 
ldt 25 25 0 0% 
zap 34 33 - 1 - 3% 
umulh 35 35 0 0% 
mull 60 62 + 2 + 3% 
ornot 52 52 0 0% 
cmpeq 64 61 -3 - 5% 
insql 61 61 0 0% 
bibs 69 69 0 0% 
s8addl 71 74 + 3 +4% 
mskwl 74 0 - 74 - 100% 
jsr 98 89 -9 -9% 
cpys 104 41 -63 -61% 
mskqh 155 153 - 2 - 1% 
cmovne 147 141 -6 -4% 
mskbl 163 0 - 163 - 100% 
cmoveq 183 173 - 10 - 5% 
insbl 182 19 - 163 -90% 
extwh 196 196 0 0% 
trapb 203 215 + 12 +6% 
mskql 204 202 - 2 - 1% 
jmp 208 200 -8 -4% 
cmovge 291 287 -4 - 1% 
blbc 249 249 0 0% 
bgt 331 328 - 3 - 1% 
ldl_l 344 335 -9 - 3% 
stl_c 344 335 -9 - 3% 
extql 329 327 - 2 -1% 

For the scaled transaction, a decrease in 58 out of 
81 instructions types occurred. Of the remaining 25 
instructions, 21 had no change and only 4 instructions, 
mull, s8addl, trapb, and subl, showed an increase. For 
cached transactions, 22 instruction counts decreased, 
29 increased, and 22 remained unchanged. 

The performance gain of 3.5 percent measured for 
the cached version of the application benchmark cor­
relates closely to the decrease in the number of 
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Instruction Original Byte/Word Delta % Delta 

stt 334 334 0 0% 
cm pie 368 358 10 -3% 
inswl 390 207 183 -47% 
srl 457 398 59 -13% 
extqh 441 317 124 -28% 
cm pule 468 450 18 -4% 
cmpult 563 518 45 - 8% 
cm pit 565 534 31 - 5% 
rdteb 604 597 7 - 1% 
extwl 660 345 315 -48% 
stq_u 688 688 0 0% 
bit 784 771 13 - 2% 
bic 771 347 424 -55% 
ext II 789 761 28 -4% 
extlh 789 761 28 -4% 
bge 828 819 9 - 1% 
mb 961 941 20 -2% 
sll 949 590 359 - 38% 
sub I 1052 1061 (9) + 1% 
br 1160 1080 80 - 7% 
sra 1211 562 649 - 54% 
bsr 1203 1191 12 - 1% 
s4addl 1176 1166 10 - 1% 
ret 1282 1264 18 - 1% 
zap not 1262 910 352 -28% 
addq 1704 1685 19 - 1% 
subq 2159 2140 19 - 1% 
ldah 2793 2746 47 - 2% 
ext bl 2902 1668 1234 -43% 
xor 3426 3380 46 -1% 
and 3402 2969 433 -13% 
bne 4537 4440 97 - 2% 
add I 4897 4855 42 - 1% 
ldq_u 5046 3933 1113 -22% 
stl 5753 5301 452 -8% 
Ida 6496 5435 1061 - 16% 
stq 6778 6713 65 - 1% 
ldq 7018 6519 -499 + 7% 
beq 7607 7455 152 - 2% 
bis 11284 10707 577 - 5% 
ldl 15962 14260 1702 - 11% 
Totals 115895 107854 8042 - 7% 

instructions per transaction measured in Table 13. If 
this correlation holds true, we would expect to see an 
increase in performance of approximately 7 percent 
for scaled transactions runs. 

Dynamic Instruction Distribution 
The performance of the Alpha microprocessor using 
technical and commercial workloads has been evalu -
ated. 1 The commercial workload used was debit-



Table 12 
Instruction Count and Variations for Cached Transaction 

Instruction Original Byte/Word Delta % Delta 

stb 0 174 + 174 N/A 
stw 0 217 + 217 N/A 
ldwu 0 1189 + 1189 N/A 
ldbu 0 1333 + 1333 N/A 
cmpbge 2 0 -2 - 100% 
cmovlbs 2 2 0 0% 
addt 3 3 0 0% 
cmovlbc 4 5 + 1 + 25% 
cmovle 5 5 0 0% 
insqh 6 6 0 0% 
cmovgt 13 13 0 0% 
callsys 15 16 + 1 + 7% 
mulq 13 13 0 0% 
s8subq 13 14 + 1 +8% 
cmovlt 16 16 0 0% 
ldt 25 25 0 0% 
zap 26 27 + 1 +4% 
umulh 32 32 0 0% 
mull 46 48 +2 +4% 
ornot 46 46 0 0% 
cmpeq 53 53 0 0% 
insql 61 61 0 0% 
bibs 63 63 0 0% 
s8addl 69 70 + 1 + 1% 
mskwl 73 0 -73 -100% 
jsr 90 92 + 2 + 2% 
cpys 87 41 -46 - 53% 
mskqh 152 157 + 5 + 3% 
cmovne 160 165 + 5 + 3% 
mskbl 163 0 -163 -100% 
cmoveq 182 190 +8 +4% 
insbl 182 19 -163 -90% 
extwh 195 196 + 1 + 1% 
trapb 210 211 + 1 0% 
mskql 201 203 + 2 +1% 
jmp 209 215 +6 +3% 
cmovge 226 236 + 10 +4% 
blbc 238 238 0 0% 
bgt 292 302 + 10 + 3% 
ldl_l 314 320 +6 +2% 
stl_c 314 320 +6 + 2% 
extql 326 329 + 3 + 1% 

credit, which is similar to the TPC-A benchmark. The 
TPC-B benchmark is similar to the TPC-A, differing 
only in its method of execution. Cvetanovic and 
Bhandarkar presented an instruction distribution 
matrix for the debit-credit workload. The Alpha 
instruction type mix is dominated by the integer class, 
followed by other, load, branch, and store instructions, 
in descending order.17 We took a similar approach 
but divided the instructions into more groups to 
achieve a finer detailed distribution. Table 13 gives the 

Instruction Original Byte/Word Delta % Delta 

stt 334 334 0 0% 
cm pie 367 374 +7 + 2% 
inswl 381 203 - 178 -47% 
srl 433 383 - 50 - 12% 
extqh 434 314 -120 -28% 
cm pule 450 440 - 10 -2% 
cmpult 550 572 + 22 +4% 
cm pit 561 585 + 24 +4% 
rdteb 587 590 + 3 + 1% 
extwl 654 340 -314 -48% 
stq_u 689 687 -2 0% 
bit 751 770 + 19 + 3% 
bic 759 346 -413 - 54% 
extll 784 805 + 21 + 3% 
extlh 784 805 + 21 + 3% 
bge 813 831 + 18 + 2% 
mb 883 901 + 18 + 2% 
sll 899 569 - 330 - 37% 
sub I 983 995 + 12 + 1% 
br 1130 1100 -30 -3% 
sra 1134 528 -606 -53% 
bsr 1158 1165 + 7 + 1% 
s4addl 1160 1170 + 10 + 1% 
ret 1232 1239 + 7 + 1% 
zap not 1247 911 -336 -27% 
addq 1589 1631 +42 + 3% 
subq 1994 2046 + 52 + 3% 
ldah 2684 2691 + 7 +0% 
ext bl 2921 1682 -1239 -42% 
xor 3278 3332 +54 +2% 
and 3361 2990 -371 -11% 
bne 4328 4376 +48 + 1% 
add I 4734 4856 + 122 + 3% 
ldq_u 5061 4046 - 1015 -20% 
stl 5418 5052 -366 -7% 
Ida 6289 5344 -945 - 15% 
stq 6464 6588 + 124 + 2% 
ldq 6685 6359 - 326 - 5% 
beq 7355 7466 + 111 +2% 
bis 10890 10668 -222 -2% 
ldl 14964 13772 - 1192 -8% 
Totals 111288 106521 -4767 -4% 

instruction makeup of each group. Figure 4 shows the 
percentage of instructions in each group for the four 
alternatives we studied. In all four cases, INTEGER 
LOADs make up 32 percent of the instructions exe­
cuted. In the scaled Byte/Word category, the new 
ldbu and ldwu instructions compose 1 percent of the 
integer instructions, and the new stb and stw instruc­
tions accounted for 18 percent of the integer store 
instructions executed. 
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Table 13 
Instruction Groupings 

Instruction 
Group Group Members 

Integer loads ldwu, ldbu, ldl_l, ldah, ldq_u, 
Ida, ldq, ldl 

Integer stores stb, stw, stl_c, stq_u, stl, stq 

Integer control bibs, jsr, jmp, blbc, bgt, bit, bge, 
br, bsr, ret, bne, beg 

Integer arithmetic cmpbge, s8subq, umulh, mull, 
cmpeq, s8addl, cm pie, cmpu le, 
cmpult, cmplt, subl, s4addl, 
addq, subq, addl 

Logical shift cmovlbs, cmovlbc, cmovle, 
cmovgt, cmovlt, ornot, cmovne, 
cmoveq, cmovge, srl, bic, sll, sra, 
xor, and, bis 

Byte man ipu lation insll, inslh, mskll, mskhl, insqh, 
zap, insql, mskwl, mskqh, mskbl, 
insbl, extwh, insbl, extwh, mskql, 
extql, inswl, extqh, extwl, extll, 
extlh, zapnot, extbl 

Other addt, ldt, stt, mulq, cal lsys, cpys, 
trapb, rdteb, mb 

During the scaled transactions, each instruction 
group showed a decrease in the number of instruc­
tions executed, ranging from negligible to as much as 
54 percent. In addition, the number of byte manipula­
tion and logical shift instructions decreased, because 

Figure4 
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the method of loading or storing bytes and words 
on the original Alpha Architecture made heavy use of 
these types ofinstructions. 

In our last examination, we looked at the instruc­
tion variation between a scaled and a cached trans­
action. The major difference between the two 
transactions is the additional 1/0 required by the 
scaled version of the benchmark. Table 14 gives the 
results. The Original version of the SQL Server data­
base executed an extra 4,596 instructions during the 
cached transaction as compared to the scaled trans­
action. For the Byte/ Word version, only an additional 
1,334 instructions were executed. 

Conclusions 

The introduction of the new single byte and word 
manipulation instructions in the Alpha Architecture 
improved the performance of the Microsoft SQL 
Server database. We observed a decrease in the num­
ber of instructions executed per transaction, the 
elimination of some instructions in the workload, a 
redistribution of the instruction mix, and an increase 
in relative performance. The results are in line with 
expectations when the addition of the new instruc­
tions was proposed. 

We limited our investigation to a single commercial 
workload and operating system. Testing a workload 
with more 1/0, such as the TPC-C benchmark, would 

50 

PERCENT 
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Table 14 
Instruction Variations (Scaled Minus Cached Transactions) 

Instruction Original Byte/Word Instruction Original Byte/Word Instruction Original Byte/Word 

stw 0 -2 cm pit 
ldwu 0 -26 rdteb 
ldbu 0 +117 extwl 
cmovlbc -1 +1 stq_u 
callsys -3 +2 bit 
s8subq -4 - 3 bic 
zap -8 -6 ext II 
umulh -3 -3 extlh 
mull -14 -14 bge 
ornot -6 -6 mb 
cmpeq -11 -8 sll 
bibs -6 -6 cmovge 
s8addl -2 -4 blbc 
mskwl -1 0 bgt 
jsr -8 +3 ldl_l 
cpys -17 0 stl_c 
mskqh -3 +4 extql 
cmovne +13 +24 cm pie 
cmoveq -1 +17 inswl 
extwh -1 0 srl 
trapb +7 -4 extqh 
mskql -3 +1 cmpule 
jmp +1 +15 cmpult 

produce a different set of results and would merit 
investigation. The use of another database, such as the 
Oracle RDBMS, which makes greater use of byte oper­
ations, would possibly result in an even greater perfor­
mance impact. Lastly, rebuilding the entire operating 
system to use the new instructions would make an 
interesting and worthwhile study. 
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-4 +51 sub I -69 -66 
- 17 -7 br -30 + 20 
-6 -5 sra -77 -34 
+ 1 - 1 bsr -45 -26 

- 33 -1 s4addl -16 +4 
-12 -1 ret -50 -25 
-5 +44 zap not -15 +1 
- 5 +44 addq -115 -54 

- 15 + 12 subq -165 -94 
- 78 -40 ldah - 109 -55 
-50 -21 extbl + 19 +14 
-65 -51 xor -148 -48 
-11 -1 1 and -41 + 21 
-39 - 26 bne -209 -64 
-30 -15 add I -163 +1 
-30 -15 ldq_u +15 +113 
-3 +2 stl -335 -249 
-1 +16 Ida -207 -91 
-9 -4 stq -314 -125 

-24 -15 ldq -333 -160 
-7 -3 beq -252 +11 

-18 -10 bis -394 -39 
-13 +54 ldl -998 -488 

Totals - 4596 - 1334 
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