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Editor's 
Introduction 

This past spring when we surveyed 
Journal subscribers, readers took the 
time to comment on the particular 
value of the issues featuring Digital's 
64-bit Alpha technology. The engi­
neering described in those two issues 
continues, with ever higher levels of 
performance in Alpha microproces­
sors, servers, clusters, and systems 
software. This issue presents recent 
developments: a log-structured file 
system, called Spiralog; the Open VMS 
operating system extended to take full 
advantage of64-bit addressing; high­
performance computing software for 
Alpha clusters; and speech recognition 
software for Alpha workstations. 

Spiralog is a wholly new clusterwide 
file system integrated with the new 
64-bit Open VMS version 7.0 operat­
ing system and is designed for high 
data availability and high performance. 
The first of four papers about Spiralog 
is written by Jim Johnson and Bill 
Laing, who introduce log-structured 
file (LFS) concepts, the university 
research behind the design, and design 
innovations. 

The advantages ofLFS technology 
over conventional "update-in-place" 
technology are explained by Chris 
Whitaker, Stuart Bayley, and Rod 
Widdowson. In their paper about the 
file server design, they compare the 
Spiralog implementation of the LFS 
technology with others and describe 
the novel combination of the technol­
ogy with a B-tree mapping mechanism 
to provide the system with needed 
data recovery guarantees. 

A third paper about Spiralog, 
written by Russ Green, Alasdair 
Baird, and Chris Davies, addresses 
a critical customer requirement­
fast, application-consistent, on-line 
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backup. Exploiting the features of 
log-structured storage, designers 
were able to combine the flexibility 
of file-based backup and the high 
performance of physically oriented 
backup. Consistent copies of the file 
system are created while applications 
modify data. 

The Spiralog integration into the 
Open VMS file system required that 
existing applications be able to run 
unchanged. Mark Howell and Julian 
Palmer describe the integration of the 
write-back caching used in Spiralog 
into the write-through environment 
used in the existing Files-11 file system. 

The importance of compatibility 
for existing 32-bit applications in 
a 64-bit environment js stressed 
again in the set of three papers about 
the latest step in the evolution of the 
Open VMS operating system. Digital 
first ported the 32-bit Open VMS 
operating system to the Alpha archi­
tecture in 1992. The extension of 
the system to exploit 64-bit virtual 
addressing is presented by Mike 
Harvey and Lenny Szubowicz. 
Their discussion includes the team's 
solution to significant scaling issues 
that involved a new approach to 
page-table residency. 

The Open VMS team anticipated 
that applications would mix 32- and 
64-bit addresses, or pointers, in the 
new environment. Tom Benson, 
Karen Noel, and Rich Peterson 
explain why this mixing of pointer 
sizes is expected and the DEC C 
compiler solution they developed to 
support the practice. In a related dis­
cussion, Duane Smith's paper reviews 
new techniques the team used to 
analyze and modify the C run-time 
library interfaces that accommodate 
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applications using 32-bit, 64-bit, or 
both address sizes. 

Designed for scientific users, 
the parallel-programming tool 
next described does not run on the 
Open VMS Alpha system but instead 
on UNIX clusters connected with 
MEMORY CHANNEL technology. 
Jim Lawton, John Brosnan, Morgan 
Doyle, Seosamh 6 Riordain, and 
Tim Reddin review the challenges in 
designing the TruCluster MEMORY 
CHANNEL Software product, which 
is a message-passing system intended 
for builders of parallel software 
libraries and implementers of parallel 
compilers. The product reduces 
communications latency to less than 
10 µs in shared memory systems. 

Finally, Bernie Rozmovits presents 
the design of user interfaces for the 
Digital Speech Recognition Software 
(DSRS) product. Although DSRS 
is targeted for Digital's Alpha work­
stations running UNIX, the imple­
mentation issues examined and the 
team's efforts to ensure the prod­
uct's ease-of-use can be generally 
applied to speech recognition prod­
uct development. 

Coming up are papers on a variety 
of topics, including the internet 
protocol, collaborative software for 
the internet, and high-performance 
servers. These topics reflect areas of 
interestjournal readers rated near 
the top in last spring's survey. Our 
sincere thanks go to everyone who 
responded to that survey. 

Jane C. Blake 
Managing Editor 



Foreword 

Rich Marcello 
Vice President, Open vMS Systems 
Software Group 

The papers you will read in this issue 
of the Journal describe how we in the 
Open VMS engineering community 
set out to bring the Open VMS oper­
ating system and our loyal customer 
base into the twenty-first century. 
The papers present both the develop­
ment issues and the technical chal­
lenges faced by the engineers who 
delivered the Open VMS operating 
system version 7.0 and the Spiralog 
file system, a new log-structured file 
system for Open VMS. 

We are extremely proud of the 
results of these efforts. In December 
1995 at U.S. Fall DECUS (Digital 
Equipment Computer Users Society), 
Digital announced Open VMS version 
7.0 and the Spiralog file system as part 
of a first wave of product deliveries for 
the Open VMS Windows NT Affinity 
Program. Open VMS version 7.0 pro­
vides the "unlimited high end" on 
which our customers can build their 
distributed computing environments 
and move toward the next millennium. 

The release of Open VMS version 
7 .0 in January ofthis year represents 
the most significant engineering 
enhancement to the Open VMS oper­
ating system since Digital released 
the VAXcluster system in 1983. 
Open VMS version 7.0 extends the 
32-bit architecture of Open VMS 
to a 64-bit architecture, allowing 
Open VMS Alpha users to fully exploit 
the 64-bit virtual address capacity of 
the Alpha architecture. As you will 
read in some of the papers in this 
issue, however, our design goal for 
Open VMS version 7.0 went beyond 
just delivering 64-bit virtual address 
capability to Open VMS users. It was 

essential to us that Open VMS users 
be able to upgrade to version 7.0 
with full compatibility for their exist­
ing 32-bit applications. 

In addition to achieving the sig­
nificant goals of 64-bit addressing 
and compatibility for 32-bit applica­
tions, version 7.0 includes very large 
memory (VLM), very large database 
(VLDB), fast I/0, fast path, and 
symmetric multiprocessing (SMP) 
enhancements. These new features 
recently combined with the power 
of the Alpha architecture to earn 
Open VMS a world record for perform­
ance. In May of this year, Open VMS 
version 7.0 on an AlphaServer 8400 
system configured with eight pro­
cessors and 8 gigabytes of memory, 
running Oracle's Rdb7 database 
and using the ACMS transaction 
processing monitor, set a new world 
record for TPC-C performance on 
a single SMP system. Audited per­
formance was 14,227 tpmC at $269 
per tpm C. Just this past August, the 
combination of Open VMS version 
7.0, Oracle's Rdb7 database, the 
ACMS monitor, and the AlphaServer 
4100 system achieved world-record 
departmental server performance. 
The new world record was set on 
an AlphaServer 4100 5 / 400 system 
configured with four processors and 
4 gigabytes of memory. In audited 
benchmarks, the performance results 
were 7,985 tpmC at $173 per tpmC. 

Such outstanding results are achiev­
able in a full 64-bit environment­
hardware architecture, operating 
systems, and applications such as 
Oracle's Rdb database. No other 
vendor today can deliver this power. 
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In fact, Digital has two 64-bit oper­
ating systems with this power: the 
Open VMS and the Digital UNIX 
operating systems. 

As noted above, Digital introduced 
the Open VMS operating system with 
support for full 64-bit virtual address­
ing at the same time it introduced the 
Spiralog file system, in December 
199 5. The Spiralog design is based 
on the Sprite log-structured file sys­
tem from the University of California, 
Berkeley. With its use of this log­
structured approach, Spiralog offers 
major new performance features, 
including fast, application-consistent, 
on-line backup. Further, it is fully 
compatible with customers' existing 
Files-11 file systems, and applications 
that run on Files-11 will run on 
Spiralog with no modification. To 
deliver all of the features we felt were 
essential to meet the needs of our 
loyal customer base, the Spiralog team 
examined and resolved a number of 
technical issues. The papers in this 
issue describe some of the challenges 
they faced, including the decision to 
design a Files-11 file system emulation. 

The delivery of the Open VMS 
version 7.0 operating system and 
the Spiralog file system are part of 
Digital's continued commitment to 
the Open VMS customer base. These 
products represent the work of dedi­
cated, talented engineering teams 
that have deployed state-of-the-art 
technology in products that will help 
our customers remain competitive 
for years to come. 

In the Open VMS group as else­
where in Digital, we are committed 
to excellence in the development and 
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delivery of business computing solu­
tions. We will continue to maintain 
and enhance a product portfolio that 
meets our customers' need for true 
24-hour by 365-day access to their 
data, full integration with Microsoft 
Windows NT environments, and the 
full complement of network solutions 
and application software for today 
and well into the next millennium. 
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Overview of the Spiralog 
File System 

The Open VMS Alpha environment requires a 

file system that supports its full 64-bit capabili­

ties. The Spiralog file system was developed to 

increase the capabilities of Digital's Files-11 file 

system for OpenVMS. It incorporates ideas from 

a log-structured file system and an ordered write­

back model. The Spiralog file system provides 

improvements in data availability, scaling of the 

amount of storage easily managed, support for 

very large volume sizes, support for applications 

that are either write-operation or file-system­

operation intensive, and support for heteroge­

neous file system client types. The Spiralog 

technology, which matches or exceeds the relia­

bility and device independence of the Files-11 

system, was then integrated into the OpenVMS 

operating system. 

I 
James E. Johnson 
William A. Laing 

Digital's Spiralog product is a log-structured, cluster­
wide file system with integrated, on-line backup and 
restore capability and support for multiple file sys­
tem personalities. It incorporates a number of recent 
ideas from the research community, including the 
log-structured file system (LFS) from the Sprite file 
system and the ordered write back from the Echo 
file system.1

•
2 

The Spiralog file system is fully integrated into the 
Open VMS operating system, providing compatibility 
with the current Open VMS file system, Files-I 1. It 
supports a coherent, clusterwide write-behind cache 
and provides high-performance, on-line backup and 
per-file and per-volume restore functions. 

In this paper, we first discuss the evolution of file 
systems and the requirements for many of the basic 
designs in the Spiralog file system. Next we describe 
the overall architecture of the Spiralog file system, 
identifying its major components and outlining their 
designs. Then we discuss the project's results: what 
worked well and what did not work so well. Finally, we 
present some conclusions and ideas for future work. 

Some of the major components, i.e., the backup 
and restore facility, the LFS server, and Open VMS 
integration, are described in greater detail in compan­
ion papers in this issue.3-5 

The Evolution of File Systems 

File systems have existed throughout much of the his­
tory of computing. The need for libraries or services 
that help to manage the collection of data on long­
term storage devices was recognized many years ago. 
The early support libraries have evolved into the file 
systems of today. During their evolution, they have 
responded to the industry's improved hardware capa­
bilities and to users' increased expectations. Hardware 
has continued to decrease in price and improve in its 
price/performance ratio. Consequently, ever larger 
amounts of data are stored and manipulated by users 
in ever more sophisticated ways. As more and more 
data are stored on-line, the need to access that data 24 
hours a day, 365 days a year has also escalated. 
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Significant improvements to file systems have been 
made in the following areas: 

• Directory structures to ease locating data 

• Device independence of data access through the file 
system 

• Accessibility of the data to users on other systems 

• Availability of the data, despite either planned or 
unplanned service outages 

• Reliability of the stored data and the performance 
of the data access 

Requirements of the Open VMS File System 

Since 1977, the OpenVMS operating system has 
offered a stable, robust file system known as Files-11. 
This file system is considered to be very successful in 
the areas of reliability and device independence. 
Recent customer feedback, however, indicated that 
the areas of data availability, scaling of the amount of 
storage easily managed, support for very large volume 
sizes, and support for heterogeneous file system client 
types were in need ofimprovement. 

The Spiralog project was initiated in response to 
customers' needs. We designed the Spiralog file system 
to match or somewhat exceed the Files-11 system in 
its reliability and device independence. The focus of 
the Spiralog project was on those areas that were due 
for improvement, notably: 

• Data availability, especially during planned opera­
tions, such as backup. 

If the storage device needs to be taken off-line 
to perform a backup, even at a very high backup 
rate of 20 megabytes per second (MB/s), almost 
14 hours are needed to back up 1 terabyte. This 
length of service outage is clearly unacceptable. 
More typical backup rates of 1 to 2 MB/scan take 
several days, which, of course, is not acceptable. 

• Greatly increased scaling in total amount of on-line 
storage, without greatly increasing the cost to man­
age that storage. 

For example, 1 terabyte of disk storage currently 
costs approximately $250,000, which is well within 
the budget of many large computing centers. 
However, the cost in staff and time to manage such 
amounts of storage can be many times that of the 
storage.6 The cost of storage continues to fall, while 
the cost of managing it continues to rise. 

• Effective scaling as more processing and storage 
resources become available. 

For example, Open VMS Cluster systems allow pro­
cessing power and storage capacity to be added 
incrementally. It is crucial that the software support-
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ing the file system scale as the processing power, 
bandwidth to storage, and storage capacity increase. 

• Improved performance for applications that are 
either write-operation or file-system-operation 
intensive. 

As file system caches in main memory have 
increased in capacity, data reads and file system read 
operations have become satisfied more and more 
from the cache. At the same time, many applica­
tions write large amounts of data or create and 
manipulate large numbers of files. The use of 
redundant arrays of inexpensive disks (RAID) stor­
age has increased the available bandwidth for data 
writes and file system writes. Most file system oper­
ations, on the other hand, are small writes and are 
spread across the disk at random, often negating 
the benefits of RAID storage. 

• Improved ability to transparently access the stored 
data across several dissimilar client types. 

Computing environments have become increas­
ingly heterogeneous. Different client systems, such 
as the Windows or the UNIX operating system, 
store their files on and share their files with server 
systems such as the OpenVMS server. It has 
become necessary to support the syntax and seman­
tics of several different file system personalities on 
a common file server. 

These needs were central to many design decisions we 
made for the Spiralog file system. 

The members of the Spiralog project evaluated 
much of the ongoing work in file systems, databases, 
and storage architectures. RAID storage makes high 
bandwidth available to disk storage, but it requires 
large writes to be effective. Databases have exploited 
logs and the grouping of writes together to minimize 
the number of disk I/Os and disk seeks required. 
Databases and transaction systems have also exploited 
the technique of copying the tail of the log to effect 
backups or data replication. The Sprite project at 
Berkeley had brought together a log-structured file 
system and RAID storage to good effect. 1 

By drawing from the above ideas, particularly the 
insight of how a log structure could support on-line, 
high-performance backup, we began our development 
effort. We designed and built a distributed file system 
that made extensive use of the processor and memory 
near the application and used log-structured storage in 
the server. 

Spiralog File System Design 

The main execution stack of the Spiralog file system 
consists of three distinct layers. Figure 1 shows the 
overall structure. At the top, nearest the user, is the file 
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Figure 1 
Spiralog Structure Overview 

system client layer. It consists of a number of file 
system personalities and the underlying personality­
independent services, which we call the VPI. 

Two file system personalities dominate the Spiralog 
design. The F64 personality is an emulation of the 
Files-11 file system. The file system library (FSLIB) 
personality is an implementation of Microsoft's New 
Technology Advanced Server (NTAS) file services for 
use by the PATHWORKS for Open VMS file server. 

The next layer, present on all systems, is the clerk 
layer. It supports a distributed cache and ordered write 
back to the LFS server, giving single-system semantics 
in a cluster configuration. 

The LFS server, the third layer, is present on all des­
ignated server systems. This component is responsible 
for maintaining the on-disk log structure; it includes 
the cleaner, and it is accessed by multiple clerks. Disks 
can be connected to more than one LFS server, but 
they are served only by one LFS server at a time. Trans­
parent fail over, from the point of view of the file sys­
tem client layer, is achieved by cooperation between 
the clerks and the surviving LFS servers. 

The backup engine is present on a system with an 
active LFS server. It uses the LFS server to access the 
on-disk data, and it interfaces to the clerk to ensure 
that the backup or restore operations are consistent 
with the clerk's cache. 

Figure 2 shows a typical Spiralog cluster configura­
tion. In this cluster, the clerks on nodes A and B are 
accessing the Spiralog volumes. Normally, they use the 
LFS server on node C to access their data. If node C 
should fail, the LFS server on node D would immedi­
ately provide access to the volumes. The clerks on 
nodes A and B would use the LFS server on node D, 
retrying all their outstanding operations. Neither user 
application would detect any failure. Once node C had 
recovered, it would become the standby LFS server. 

ACTIVE LFS SERVER STANDBY LFS SERVER 

NODEC NODED 

SPIRALOG VOLUMES 

Figure 2 
Spiralog Cluster Configuration 

File System Client Design 
The file system client is responsible for the traditional 
file system functions. This layer provides files, directo­
ries, access arbitration, and file naming rules. It also 
provides the services that the user calls to access the file 
system. 

VPI Services Layer The VPI layer provides an underly­
ing primitive file system interface, based on the UNIX 
VFS switch. The VPI layer has two overall goals: 

1. To support multiple file system personalities 

2. To effectively scale to very large volumes of data 
and very large numbers of files 

To meet the first goal, the VPI layer provides 

• File names of 256 Unicode characters, with no 
reserved characters 

• No restriction on directory depth 

• Up to 255 sparse data streams per file, each with 
64-bit addressing 

• Attributes with 255 Unicode character names, con­
taining values of up to 1,024 bytes 

• Files and directories that are freely shared among 
file system personality modules 

To meet the second goal, the VPI layer provides 

• File identifiers stored as 64-bit integers 

• Directories through a B-tree, rather than a simple 
linear structure, for log(n) file name lookup time 

The VPI layer is only a base for file system personali­
ties. Therefore it requires that such personalities are 
trusted components of the operating system. 
Moreover, it requires them to implement file access 
security (although there is a convention for storing 
access control list information) and to perform all nec­
essary cleanup when a process or image terminates. 
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F64 File System Personality As previously stated, the 
Spiralog product includes two file system personalities, 
F64 and FSLIB. The F64 personality provides a service 
that emulates the Files-11 file system.5 Its functions, 
services, available file attributes, and execution 
behaviors are similar to those in the Files-11 file sys­
tem. Minor differences are isolated into areas that 
receive little use from most applications. 

For instance, the Spiralog file system supports the 
various Files-11 queued 1/0 ($QIO) parameters for 
returning file attribute information, because they are 
used implicitly or explicitly by most user applications. 
On the other hand, the Files-11 method of reading 
the file header information directly through a file 
called INDEXF.SYS is not commonly used by applica­
tions and is not supported. 

The F64 file system personality demonstrates that 
the VPI layer contains sufficient flexibility to support 
a complex file system interface. In a number of cases, 
however, several VPI calls are needed to implement 
a single, complex Files-11 operation. For instance, to 
do a file open operation, the F64 personality performs 
the tasks listed below. The items that end with (VPI) 
are tasks that use VPI service calls to complete. 

• Access the file's parent directory (VPI ) 

• Read the directory's file attributes (VPI) 

• Verify authorization to read the directory 

• Loop, searching for the file name, by 
- Reading some directory entries (VPI) 
- Searching the directory buffer for the file name 
- Exiting the loop, if the match is found 

• Access the target file (VPI ) 

• Read the file's attributes (VPI ) 

• Audit the file open attempt 

FSLIB File System Personality The FSLIB file system 
personality is a specialized file system to support the 
PATHWORKS for Open VMS file server. Its two major 
goals are to support the file names, attributes, and 
behaviors found in Microsoft's NTAS file access proto­
cols, and to provide low run-time cost for processing 
NTAS file system requests. 

The PATHWORKS server implements a file service 
for personal computer (PC) clients layered on top of 
the Files-11 file system services. When NTAS service 
behaviors or attributes do not match those ofFiles-11, 
the PATHWORKS server has to emulate them. This 
can lead to checking security access permissions twice, 
mapping file names, and emulating file attributes. 

Many of these problems can be avoided if the VPI 
interface is used directly. For instance, because the 
FSLIB personality does not layer on top of a Files-11 
personality, security access checks do not need to be 
performed twice. Furthermore, in a straightforward 
design, there is no need to map across different file 
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naming or attribute rules. For reasons we describe 
later, in the VPI Results section, we chose not to pur­
sue this design to its conclusion. 

Clerk Design 
The clerks are responsible for managing the caches, 
determining the order of writes out of the cache to the 
LFS server, and maintaining cache coherency within 
a cluster. The caches are write behind in a manner that 
preserves the order of dependent operations. 

The clerk-server protocol controls the transfer of 
data to and from stable storage. Data can be sent as 
a multiblock atomic write, and operations that change 
multiple data items such as a file rename can be made 
atomically. If a server fails during a request, the clerk 
treats the request as if it were lost and retries the 
request. 

The clerk-server protocol is idempotent. Idem­
potent operations can be applied repeatedly with no 
effects other than the desired one. Thus, after any 
number of server failures or server failovers, it is always 
safe to reissue an operation. Clerk-to-server write 
operations always leave the file system state consistent. 

The clerk-clerk protocol protects the user data and 
file system metadata cached by the clerks. Cache 
coherency information, rather than data, is passed 
directly between clerks. 

The file system caches are kept in the clerks. Mul­
tiple clerks can have copies of stabilized data, i.e., data 
that has been written to the server with the write 
acknowledged. Only one clerk can have unstabilized, 
volatile data. Data is exchanged between clerks by 
stabilizing it. When a clerk needs to write a block of 
data to the server from its cache, it uses a token inter­
face that is layered on the clerk-clerk protocol. 

The writes from the cache to the server are deferred 
as long as possible within the constraints of the cache 
protocol and the dependency guarantees. 

Dirty data remains in the cache as long as 30 sec­
onds. During that time, overwrites are combined 
within the constraints of the dependency guarantees. 
Furthermore, operations that are known to offset one 
another, such as freeing a file identifier and allocating 
a file identifier, are fully combined within the cache. 

Eventually, some trigger causes the dirty data to be 
written to the server. At this point, several writes are 
grouped together. Write operations to adjacent, or 
overlapping, file locations are combined to form 
a smaller number oflarger writes. The resulting write 
operations are then grouped into messages to the 
LFS server. 

The clerks perform write behind for four reasons: 

• To spread the 1/0 load over time 

• To remove occluded data, which can result from 
repeated overwrites of a data block, from being 
transferred to the server 



• To avoid writing data that is quickly deleted such as 
temporary files 

• To combine multiple small writes into larger transfers 

The clerks order dependent writes from the cache 
to the server; consequently, other clerks never see 
"impossible" states, and related writes never overtake 
each other. For instance, the deletion of a file cannot 
happen before a rename that was previously issued to 

the same file. Related data writes are caused by a partial 
overwrite, or an explicit linking of operations passed 
into the clerk by the VPI layer, or an implicit linking 
due to the clerk-clerk coherency protocol. 

The ordering between writes is kept as a directed 
graph. As the clerks traverse these graphs, they issue 
the writes in order or collapse the graph when writes 
can be safely combined or eliminated. 

LFS Server Design 
The Spiralog file system uses a log-structured, on-disk 
format for storing data within a volume, yet presents 
a traditional, update-in-place file system to its users. 

! USER I/Os 

FILE HEADER FILE VIRTUAL BLOCKS 

NAMED CELL 

I I I I I I I I I I 
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Figure 3 
Spiralog Address Mapping 

Recently, log-structured file systems, such as Sprite, 
have been an area of active research.1 

Within the LFS server, support is provided for the 
log-structured, on-disk format and for mapping that 
format to an update-in-place model. Specifically, this 
component is responsible for 

• Mapping the incoming read and write operations 
from their simple address space to positions in an 
open-ended log 

• Mapping the open-ended log onto a finite amount 
of disk space 

• Reclaiming disk space by cleaning (garbage collect­
ing) the obsolete (overwritten) sections of the log 

Figure 3 shows the various mapping layers in the 
Spiralog file system, including those handled by the 
LFS server. 

Incoming read and write operations are based on a 
single, large address space. Initially, the LFS server trans­
forms the address ranges in the incoming operations 
into equivalent address ranges in an open-ended log. 
This log supports a very large, write-once address space. 
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A read operation looks up its location in the open­
ended log and proceeds. On the other hand, a write 
operation makes obsolete its current address range 
and appends its new value to the tail of the log. 

In turn, locations in the open-ended log are then 
mapped into locations on the (finite-sized) disk. This 
additional mapping allows disk blocks to be reused 
once their original contents have become obsolete. 

Physically, the log is divided into log segments, each 
of which is 256 kilobytes (KB) in length. The log seg­
ment is used as the transfer unit for the backup engine. 
It is also used by the cleaner for reclaiming obsolete 
log space. 

More information about the LFS server can be 
found in this issue.4 

On-line Backup Design 
The design goals for the backup engine arose from 
higher storage management costs and greater data avail­
ability needs. Investigations with a number of customers 
revealed their requirements for a backup engine: 

• Consistent save operations without stopping any 
applications or locking out data modifications 

• Very fast save operations 

• Both full and incremental save operations 

• Restores of a full volume and of individual files 

Our response to these needs influenced many deci­
sions concerning the Spiralog file system design. The 
need for a high-performance, on-line backup led to 
a search for an on-disk structure that could support 
it. Again, we chose the log-structured design as the 
most suitable one. 

A log-structured organization allows the backup 
facility to easily demarcate snapshots of the file system 
at any point in time, simply by marking a point in the 
log. Such a mark represents a version of the file system 
and prevents disk blocks that compose that version 
from being cleaned. In turn, this allows the backup to 
run against a low level of the file system, that of the 
logical log, and therefore to operate close to the spiral 
transfer rate of the underlying disk. 

The difference between a partial, or incremental, 
and a full save operation is only the starting point in 
the log. An incremental save need not copy data back 
to the beginning of the log. Therefore, both incre­
mental and full save operations transfer data at very 
high speed. 

By implementing these features in the Spiralog file 
system, we fulfilled our customers' requirements for 
high-performance, on-line backup save operations. 
We also met their needs for per-file and per-volume 
restores and an ongoing need for simplicity and reduc­
tion in operating costs. 
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To provide per-file restore capabilities, the backup 
utility and the LFS server ensure that the appropriate 
file header information is stored during the save oper­
ation. The saved file system data, including file head­
ers, log mapping information, and user data, are 
stored in a file known as a saveset. Each · saveset, 
regardless of the number of tapes it requires, repre­
sents a single save operation. 

To reduce the complexity of file restore operations, 
the Spiralog file system provides an off-line saveset 
merge feature. This allows the system manager to 
merge several savesets, either full or incremental, to 
form a new, single saveset. With this feature, system 
managers can have a workable backup save plan that 
never calls for an on-line full backup, thus further 
reducing the load on their production systems. Also, 
this feature can be used to ensure that file restore oper­
ations can be accomplished with a small, bounded set 
of savesets. 

The Spiralog backup facility is described in detail in 
this issue.3 

Project Results 

The Spiralog file system contains a number of innova­
tions in the areas of on-line backup, log-structured 
storage, clusterwide ordered write-behind caching, 
and multiple-file-system client support. 

The use of log structuring as an on-disk format is 
very effective in supporting high-performance, on-line 
backup. The Spiralog file system retains the previously 
documented benefits ofLFS, such as fast write perfor­
mance that scales with the disk size and throughput 
that increases as large read caches are used to offset 
disk reads. 1 

It should also be noted that the Files-11 file system 
sets a high standard for data reliability and robustness. 
The Spiralog technology met this challenge very well: 
as a result of the idempotent protocol, the cluster 
failover design, and the recover capability of the log, 
we encountered few data reliability problems during 
development. 

In any large, complex project, many technical deci­
sions are necessary to convert research technology 
into a product. In this section, we discuss why certain 
decisions were made during the development of the 
Spiralog subsystems. 

VP/Results 
The VPI file system was generally successful in pro­
viding the underlying support necessary for different 
file system personalities. We found that it was possi­
ble to construct a set of primitive operations that 
could be used to build complex, user-level, file system 
operations. 



By using these pnnutives, the Spiralog project 
members were able to successfully design two dis­
tinctly different personality modules. Neither was a 
functional superset of the other, and neither was lay­
ered on top of the other. However, there was an 
important second-order problem. 

The FSLIB file system personality did not have a full 
mapping to the Files-11 file system. As a consequence, 
file management was rather difficult, because all the 
data management tools on the OpenVMS operating 
system assumed compliance with a Files-I 1, rather 
than a VPI, file system. 

This problem led to the decision not to proceed 
with the original design for the FSLIB personality in 
version 1.0 of Spiralog. Instead, we developed an 
FSLIB file system personality that was fully compatible 
with the F64 personality, even when that compatibility 
forced us to accept an additional execution cost. 

We also found an execution cost to the primitive 
VPI operations. Generally, there was little overhead 
for data read and write operations. However, for 
operations such as opening a file, searching for a file 
name, and deleting a file, we found too high an over­
head from the number of calls into the VPI services 
and the resulting calls into the cache manager. We 
called this the "fan-out" problem: one high-level 
operation would turn into several VPI operations, each 
of which would turn into several cache manager calls. 
Table 1 gives the details of the fan-out problem. 

We believe that it would be worthwhile to provide 
slightly more complex VPI services in order to com­
bine calls that always appear in the same sequence. 

Table 1 
Call Fan-out by Level 

Revised 
F64 VPI Clerk Clerk 

Operation Calls Calls Calls Calls 

Create f ile 4 18 29 24 
Open file 1 6 18 14 
Read block 1 1 3 3 
Write block 2 4 7 6 
Close file 1 4 13 10 

Clerk Results 

The clerk met a number of our design goals. First, the 
use of idempotent operations allowed fai1over to 
standby LFS servers to occur with no loss of service to 
the file system clients, and with little additional com -
plexity within the clerk. 

Second, the ordered write behind proved to be 
effective at ordering dependent, metadata file system 

operations, thus supporting the ability to construct 
complex file system operations out of simpler elements. 

Third, the clerk was able to manage large physical 
caches. It is very effective at making use of unused 
pages when the memory demand from the Open VMS 
operating system is low, and at quickly shrinking the 
cache when memory demands increase. Although 
certain parameters can be used to limit the size of a 
clerk's cache, the caches are normally self-tuning. 

Fourth, the clerks reduce the number of operations 
and messages sent to the LFS server, with a subsequent 
reduction to the number of messages and operations 
waiting to be processed. For the COPY command, the 
number of operations sent to the server was typically 
reduced by a factor of 3. By using transient files with 
lifetimes of fewer than 30 seconds, we saw a reduction 
of operations by a factor of 100 or more, as long as the 
temporary file fit into the clerk's cache. 

In general, the code complexity and CPU path 
length within the clerk were greater than we had origi­
nally planned, and they will need further work. Two 
aspects of the services offered by the clerk com -
pounded the cost in CPU path length. First, the clerk 
has a simple interface that supports reads and writes 
into a single, large address space only. This interface 
requires a number of clerk operations for a number of 
the VPI calls, further expanding the call fan-out issues. 
Second, a concurrency control model allows the clerk 
to unilaterally drop locks. This requires the VPI layer 
to revalidate its internal state with each call. 

Either a change to the clerk and VPI service inter­
faces to support notification oflock invalidation, or a 
change to the concurrency control model to disallow 
locks that could be unilaterally invalidated, would 
reduce the number of calls made. We believe such 
changes would produce the results given in the last 
column of Table 1. 

LFS Server Results 

The LFS server provides a highly available, robust file 
system server. Under heavy write loads, it provides the 
ability to group together multiple requests and reduce 
the number of disk I/Os. In a cluster configuration, 
it supports failover to a standby server. 

In normal operation, the cleaner was successful in 
minimizing overhead, typically adding only a few per­
cent to the elapsed time. The cleaner operated in a lazy 
manner, cleaning only when there was an immediate 
shortage of space. The cleaner operations were further 
lessened by the tendency for normal file overwrites to 
free up recently filled log segments for reuse. 

Although this produced a cleaner that operated 
with little overhead, it also brought about two unusual 
interactions with the backup facility. In the first place, 
the log often contains a number of obsolete areas that 
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are eligible for cleaning but have not yet been 
processed. These obsolete areas are also saved by the 
backup engine. Although they have no effect on the 
logical state of the log, they do require the backup 
engine to move more data to backup storage than 
might otherwise be necessary. 

Second, the design initially prohibited the cleaner 
from running against a log with snapshots. Conse­
quently, the cleaner was disabled during a save opera­
tion, which had the following effects: ( 1) The amount 
of available free space in the log was artificially 
depressed during a backup. (2 ) Once the backup was 
finished, the activated cleaner would discover that 
a great number oflog segments were now eligible for 
cleaning. As a result, the cleaner underwent a sudden 
surge in cleaning activity soon after the backup had 
completed. 

We addressed this problem by reducing the area of 
the log that was off-limits to the cleaner to only the 
part that the backup engine would read. This limited 
snapshot window allowed more segments to remain 
eligible for cleaning, thus greatly alleviating the short­
age of cleanable space during the backup and eliminat­
ing the postbackup cleaning surge. For an 8-gigabyte 
time-sharing volume, this change typically reduced the 
period of high cleaner activity from 40 seconds to less 
than one-half of a second. 

We have not yet experimented with different cleaner 
algorithms. More work needs to be done in this area 
to see if the cleaning efficiency, cost, and interactions 
with backup can be improved. 

The current mapping transformation from the 
incoming operation address space to locations in the 
open-ended log is more expensive in CPU time than 
we would like. More work is needed to optimize the 
code path. 

Finally, the LFS server is generally successful at pro­
viding the appearance of a traditional, update-in-place 
file system. However, as the unused space in a volume 
nears zero, the ability to behave with semantics that 
meet users' expectations in a log-structured file system 
proved more difficult than we had anticipated and 
required significant effort to correct. 

The LFS server is described in much more detail in 
this issue.• 

Table 2 

Backup Performance Results 
We took a new approach to the backup design in the 
Spiralog system, resulting in a very fast and very low 
impact backup that can be used to create consistent 
copies of the file system while applications are actively 
modifying data. We achieved this degree of success 
without compromising such functionality as incre­
mental backup or fast, selective restore. 

The performance improvements of the Spiralog 
save operation are particularly noticeable with the 
large numbers of transient or active files that are typi­
cally found on user volumes or on mail server volumes. 
In the following tables, we compare the Spiralog 
and the file-based Files-11 backup operations on a 
DEC 3000 Model 500 workstation with a 260-MB 
volume, containing 21,682 files in 401 directories and 
a TZ877 tape. 

Table 2 gives the results of two save operations, 
which are the average of five operations. Although its 
saveset size is somewhat larger, the Spiralog save 
operation completes nearly twice as fast as the Files-11 
save operation. 

Table 3 gives the results from restoring a single file 
to the target volume. In this case, the Spiralog file 
restore operation executes more than three times as 
fast as the Files-11 system. 

The performance advantage of the Spiralog backup 
and restore facility increases further for large, multi­
tape savesets. In these cases, the Spiralog system is able 
to omit tapes that are not needed for the file restore; 
the Files-11 system does not have this capability. 

Observations and Conclusions 

Overall, we believe that the significant innovation and 
real success of the Spiralog project was the integration 
of high-performance, on-line backup with the log­
structured file system model. The Spiralog file system 
delivers an on-line backup engine that can run near 
device speeds, with li ttle impact on concurrently run­
ning applications. Many file operations are signifi­
cantly faster in elapsed time as a result of the reduction 
in I/Os due to the cache and the grouping of write 
operations. Although the code paths for a number 
of operations are longer than we had planned, their 

Performance Comparison of the Backup Save Operation 

File System 

Spira log 
Files-11 

12 Digital Technical Journal 

Elapsed Time 
(Minutes:Seconds) 

05:20 
10:14 

Vol. 8 No. 2 1996 

Saveset Size (MB) 

339 
297 

Throughput (MB/s) 

1.05 
0.48 



Table 3 
Performance Comparison of the Individual File 
Restore Operation 

Elapsed Time 
File System (Minutes:Seconds) 

Spiralog 
Files-11 

01:06 
03:35 

length is mitigated by continuing improvements in 
processor performance. 

We learned a great deal during the Spiralog project 
and made the following observations: 

• Volume full semantics and fine-tuning the cleaner 
were more complex than we anticipated and will 
require future refinement. 

• A heavily layered architecture extends the CPU 
path length and the fan-out of procedure calls. We 
focused too much attention on reducing I/Os and 
not enough attention on reducing the resource 
usage of some critical code paths. 

• Although elegant, the memory abstraction for the 
interface to the cache was not as good a fit to file 
system operations as we had expected. Further­
more, a block abstraction for the data space would 
have been more suitable. 

In summary, the project team delivered a new 
file system for the OpenVMS operating system. The 
Spiralog file system offers single-system semantics in 
a cluster, is compatible with the current OpenVMS 
file system, and supports on-line backup. 

Future Work 

During the Spiralog version 1.0 project, we pursued a 
number of new technologies and found four areas that 
warrant future work: 

• Support is needed from storage and file­
management tools for multiple, dissimilar file 
system personalities. 

• The cleaner represents another area of ongoing 
innovation and complex dynamics. We believe a 
better understanding of these dynamics is needed, 
and design alternatives should be studied. 

• The on-line backup engine, coupled with the log­
structured file system technology, offers many areas 
for potential development. For instance, one area 
for investigation is continuous backup operation, 
either to a local backup device or to a remote 
replica. 

• Finally, we do not believe the higher-than-expected 
code path length is intrinsic to the basic file system 

design. We expect to be working on this resource 
usage in the near future. 
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Design of the Server for 
the Spiralog File System 

The Spiralog file system uses a log-structured, 

on-disk format inspired by the Sprite log­

structured file system (LFS) from the University 

of California, Berkeley. Log-structured file sys­

tems promise a number of performance and 

functional benefits over conventional, update­

in-place file systems, such as the Files-11 file 

system developed for the OpenVMS operating 

system or the FFS file system on the UNIX oper­

ating system. The Spiralog server combines log­

structured technology with more traditional 

B-tree technology to provide a general server 

abstraction. The B-tree mapping mechanism 

uses write-ahead logging to give stability and 

recoverability guarantees. By combining write­

ahead logging with a log-structured, on-disk 

format, the Spiralog server merges file system 

data and recovery log records into a single, 

sequential write stream. 

I 
Christopher Whitaker 
J. Stuart Bayley 
Rod D. W. Widdowson 

The goal of the Spiralog file system project team was 
to produce a high-performance, highly available, and 
robust file system with a high-performance, on-line 
backup capability for the Open VMS Alpha operating 
system. The server component of the Spiralog file sys­
tem is responsible for reading data from and writing 
data to persistent storage. It must provide fast write 
performance, scalability, and rapid recovery from sys­
tem failures. In addition, the server must allow an 
on-line backup utility to copy a consistent snapshot of 
the file system to another location, while allowing nor­
mal file system operations to continue in parallel. 

In this paper, we describe the log-structured file sys­
tem (LFS) technology and its particular implementation 
in the Spiralog file system. We also describe the novel 
way in which the Spiralog server maps the log to pro­
vide a rich address space in which files and directories are 
constructed. Finally, we review some of the opportuni­
ties and challenges presented by the design we chose. 

Background 

All file systems must trade off performance against 
availability in different ways to provide the throughput 
required during normal operations and to protect data 
from corruption during system failures. Traditionally, 
file systems fall into two categories, careful write and 
check on recovery. 

• Careful writing policies are designed to provide a 
fail-safe mechanism for the file system structures in 
the event of a system failure; however, they suffer 
from the need to serialize several I/Os during file 
system operations. 

• Some file systems forego the need to serialize file 
system updates. After a system failure, however, 
they require a complete disk scan to reconstruct a 
consistent file system. This requirement becomes 
a problem as disk sizes increase. 

Modern file systems such as Cedar, Episode, 
Microsoft's New Technology File System (NTFS), 
and Digital's POLYCENTER Advanced File System 
use logging to overcome the problems inherent in 
these two approaches.1

•
2 Logging file system metadata 

removes the need to serialize I/Os and allows a simple 
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and bounded mechanism for reconstructing the file 
system after a failure. Researchers at the University of 
California, Berkeley, took this process one stage fur­
ther and treated the whole disk as a single, sequential 
log where all file system modifications are appended to 
the tail of the log. 3 

Log-structured file system technology is particularly 
appropriate to the Spiralog file system, because it is 
designed as a clusterwide file system. The server must 
support a large number of file system clerks, each of 
which may be reading and writing data to the disk. The 
clerks use large write-back caches to reduce the need to 
read data from the server. The caches also allow the 
clerks to buffer write requests destined for the server. 
A log-structured design allows multiple concurrent 
writes to be grouped together into large, sequential 
I/Os to the disk. This 1/0 pattern reduces disk head 
movement during writing and allows the size of the 
writes to be matched to characteristics of the underlying 
disk. This is particularly beneficial for storage devices 
with redundant arrays of inexpensive disks (RAID): 

The use of a log-structured, on-disk format greatly 
simplifies the implementation of an on-line backup 
capability. Here, the challenge is to provide a consis­
tent snapshot of the file system that can be copied to 
the backup media while normal operations continue 
to modify the file system. Because an LFS appends all 
data to the tail of a log, all data writes within the log 
are temporally ordered. A complete snapshot of the 
file system corresponds to the contents of the sequen­
tial log up to the point in time that the snapshot was 
created. By extension, an incremental backup corre­
sponds to the section of the sequential log created 
since the last backup was taken. The Spiralog backup 
utility uses these features to provide a fast, on-line, full 
and incremental backup scheme.5 

We have taken a number of features from the exist­
ing log-structured file system implementations, in par­
ticular, the idea of dividing the log into fixed-sized 
segments as the basis for space allocation and clean­
ing.• Fundamentally, however, existing log-structured 
file systems have been built by using the main body of 
an existing file system and layering on top of an under­
lying, log-structured containerY This design has been 
taken to the logical extreme with the implementation 
of a log-structured disk.~ For the Spiralog file system, 
we have chosen to use the sequential log capability 
provided by the log-structured, on-disk format through­
out the file system. The Spiralog server combines log­
structured technology with more traditional B-tree 
technology to provide a general server abstraction. 
The B-tree mapping mechanism uses write-ahead log­
ging to give stability and recoverability guarantees.9 By 
combining write-ahead logging with a log-structured 
on-disk format, the Spiralog server merges file system 
data and recovery log records into a single, sequential 
write stream. 
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The Spiralog file system differs from existing log­
structured implementations in a number of other 
important ways, in particular, the mechanisms that we 
have chosen to use for the cleaner. In subsequent sec­
tions of this paper, we compare these differences with 
existing implementations where appropriate. 

Spiralog File System Server Architecture 

The Spiralog file system employs a client-server archi­
tecture. Each node in the cluster that mounts a 
Spiralog volume runs a file system clerk. The term 
clerk is used in this paper to distinguish the client com­
ponent of the file system from clients of the file system 
as a whole. Clerks implement all the file functions asso­
ciated with maintaining the file system state with the 
exception of persistent storage of file system and user 
data. This latter responsibility falls on the Spiralog 
server. There is exactly one server for each volume, 
which must run on a node that has a direct connection 
to the disk containing the volume. This distribution of 
function, where the majority of file system processing 
takes place on the clerk, is similar to that of the Echo 
file system.10 The reasons for choosing this architecture 
are described in more detail in the paper "Overview of 
the Spiralog File System," elsewhere in this issue. 11 

Spiralog clerks build files and directories in a struc­
tured address space called the file address space. This 
address space is internal to the file system and is only 
loosely related to that perceived by clients of the file 
system. The server provides an interface that allows 
the clerks to persistently map to file space addresses. 
Internally, the server uses a logically infinite log struc­
ture, built on top of a physical disk, to store the file 
system data and the structures necessary to locate 
the data. Figure 1 shows the relationship between the 
clerks and the server and the relationships among 
the major components within the server. 

I CLERK 11 CLERK 11 CLERK I 
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Figure 1 
Server Architecture 



The mapping layer is responsible for maintaining 
the mapping between the file address space used by 
the clerks to the address space of the log. The server 
directly supports the file address space so that it can 
make use of information about the relative perfor­
mance sensitivity of parts of the address space that is 
implicit within its structure. Although this results in 
the mapping layer being relatively complex, it reduces 
the complexity of the clerks and aids performance. 
The mapping layer is the primary point of contact with 
the server. Here, read and write requests from clerks 
are received and translated into operations on the log 
address space. 

The log driver (LD) creates the illusion of an infinite 
log on top of the physical disk. The LD transforms read 
and write requests from the mapping layer that are cast 
in terms of a location in the log address space into read 
and write requests to physical addresses on the underly­
ing disk. Hiding the implementation of the log from 
the mapping layer allows the organization of the log to 
be altered transparently to the mapping layer. For 
example, parts of the log can be migrated to other 
physical devices without involving the mapping layer. 

! USER I/Os 

FILE HEADER FILE VIRTUAL BLOCKS 
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Figure 2 
Address Translation 

Although the log exported by the LD layer is con­
ceptually infinite, disks have a finite size. The cleaner 
is responsible for garbage collecting or coalescing free 
space within the log. 

Figure 2 shows the relationship between the various 
address spaces making up the Spiralog file system. In 
the next three sections, we examine each of the com­
ponents of the server. 

Mapping Layer 

The mapping layer implements the mapping between 
the file address space used by the file system clerks 
and the log address space maintained by the LD. 
It exports an interface to the clerks that they use to 
read data from locations in the file address space, 
to write new data to the file address space, and to spec­
ify which previously written data is no longer required. 
The interface also allows clerks to group sets of depen­
dent writes into units that succeed or fail as if they 
were a single write. In this section, we introduce the 
file address space and describe the data structure used 
to map it. Then we explain the method used to handle 
clerk requests to modify the address space. 
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File Address Space 

The file address space is a structured address space. At 
its highest level it is divided into objects, each of which 
has a numeric object identifier (OID). An object may 
have any number of named cells associated with it and 
up to 2 16

- l streams. A named cell may contain a vari­
able amount of data, but it is read and written as a sin­
gle unit. A stream is a sequence of bytes that are 
addressed by their offset from the start of the stream, 
up to a maximum of264

- l. Fundamentally, there are 
two forms of addresses defined by the file address 
space: Named addresses of the form 

<OID, name> 

specify an individual named cell within an object, and 
numeric addresses of the form 

<OID, stre am-id, stream-offset, Length> 

specify a sequence of length contiguous bytes in an 
individual stream belonging to an object. 

The clerks use named cells and streams to build files 
and directories. In the Spiralog file system version 1.0, 
a file is represented by an object, a named cell contain­
ing its attributes, and a single stream that is used 
to store the file's data. A directory is represented by 
an object that contains a number of named cells. 
Each named cell represents a link in that directory and 
contains what a traditional file system refers to as a 
directory entry. Figure 3 shows how data files and 
directories are built from named cells and streams. 

The mapping layer provides three principal opera­
tions for manipulating the file address space: read, 
write, and clear. The read operation allows a clerk to 
read the contents of a named cell, a contiguous range 
of bytes from a stream, or all the named cells for a par­
ticular object that fall into a specified search range. The 
write operation allows a clerk to write to a contiguous 
range of bytes in a stream or an individual named cell. 
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The clear operation allows a clerk to remove a named 
cell or a number ofbytes from an object. 

Mapping the File Address Space 
We looked at a variety of indexing structures for mapping 
the file address space onto the log address space.1

• 
12 We 

chose a derivative of the B-tree for the following reasons. 
For a uniform address space, B-trees provide predictable 
worst-case access times because the tree is balanced 
across all the keys it maps. A B-tree scales well as the 
number of keys mapped increases. In other words, as 
more keys are added, the B-tree grows in width and in 
depth. Deep B-trees carry an obvious performance 
penalty, particularly when the B-tree grows too large to 
be held in memory. As described above, directory entries, 
file attributes, and file data are all addresses, or keys, in 
the file address space. Treating these keys as equals and 
balancing the mapping B-tree across all these keys intro­
duces the possibility that a single directory with many 
entries, or a file with many extents, may have an impact 
on the access times for all the files stored in the log. 

To solve this problem, we limited the keys for an 
object to a single B-tree leaf node. With this restric­
tion, several small files can be accommodated in a sin­
gle leaf node. Files with a large number of extents ( or 
large directories) are supported by allowing individual 
streams to be spawned into subtrees. The subtrees are 
balanced across the keys within the subtree. An object 
can never span more than a single leaf node of the 
main B-tree; therefore, nonleaf nodes of the main 
B-tree only need to contain OIDs. This allows the 
main B-tree to be very compact. Figure 4 shows the 
relationship between the main B-tree and its subtrees. 
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Figure 4 
Mapping B-tree Structure 



To reduce the time required to open a file, data for 
small extents and small named cells are stored directly in 
the leaf node that maps them. For larger extents (greater 
than one disk block in size in the current implementa­
tion), the data item is written into the log and a pointer 
to it is stored in the node. This pointer is an address in 
the log address space. Figure 5 illustrates how the B-tree 
maps a small file and a file with several large extents. 

Processing Read Requests 
The clerks submit read requests that may be for a 
sequence of bytes from a stream (reading a data from a 
file), a single named cell (reading a file's attributes), or 
a set of named cells (reading directory contents). To 
fulfill a given read request, the server must consult the 
B-tree to translate from the address in the file address 
space supplied by the clerk to the position in the log 
address space where the data is stored. The extents 
making up a stream are created when the file data 
is written. If an application writes 8 kilobytes (KB) 
of data in 1-KB chunks, the B-tree would contain 
8 extents, one for each 1-KB write. The server may 
need to collect data from several different parts of the 
log address space to fulfill a single read request. 

Read requests share access to the B-tree in much 
the same way as processes share access to the CPU of 
a multiprocessing computer system. Read requests 

KEY: 
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Mapping B-tree Detail 

DATA IN LOG DATA IN LOG 

B-TREE INDEX RECORD 
MAPPING OID 35 ... 

RECORD CONTAINING FILE 
DATA: OID 42, STREAM 1, 
START OFFSET 0, LENGTH 50 

arriving from clerks are placed in a first in first out 
(FIFO) work queue and are started in order of their 
arrival. All operations on the B-tree are performed by 
a single worker thread in each volume. This avoids 
the need for heavyweight locking on individual 
nodes in the B-tree, which significantly reduces the 
complexity of the tree manipulation algorithms and 
removes the potential for deadlocks on tree nodes. 
This reduction in complexity comes at the cost of 
the design not scaling with the number of processors 
in a symmetric multiprocessing (SMP) system. So far 
we have no evidence to show that this design deci­
sion represents a major performance limitation on 
the server. 

The worker thread takes a request from the head 
of the work queue and traverses the B-tree until it 
reaches a leaf node that maps the address range of 
the read request. Upon reaching a leaf node, it may 
discover that the node contains 

• Records that map part or all of the address of the 
read request to locations in the log, and/or 

• Records that map part or all of the address of the 
read request to data stored directly in the node, 
and/or 

• No records mapping part or all of the address of the 
read request 
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Data that is stored in the node is simply copied 
to the output buffer. When data is stored in the Jog, 
the worker thread issues requests to the LO to read the 
data into the output buffer. Once all the reads have 
been issued, the original request is placed on a pend­
ing queue until they complete; then the results are 
returned to the clerk. When no data is stored for all or 
part of the read request, the server zero-fills the corre­
sponding part of the output bufler. 

The process described above is complicated by the 
fact that the B-tree is itself stored in the log. The map­
ping layer contains a node cache that ensures that com­
monly referenced nodes are normally found in memory. 
When the worker thread needs to traverse through a 
tree node that is not in memory, it must arrange for the 
node to be read into the cache. The address of the node 
in the log is the value of the pointer to it from its parent 
node. The worker thread uses this to issue a request to 
the LO to read the node into a cache buffer. While the 
node read request is in progress, the original clerk oper­
ation is placed on a pending queue and the worker 
thread proceeds to the next request 011 the work queue. 
When the node is resident in memory, the pending read 
request is placed back on the work queue to be 
restarted. In this way, multiple read requests can be in 
progress at any given time. 

Processing Write Requests 
Write requests received by the server arrive in groups 
consisting of a number of data items corresponding to 
updates to noncontiguous addresses in the file address 
space. Each group must be written as a single failure 
atomic unit, which means that all the parts of the write 
request must be made stable or none of them must 
become stable. Such groups of writes are called wun­
ners and are used by the clerk to encapsulate complex 
file system operations. 11 

Before the server can complete a wunner, that 
is, before an acknowledgment can be sent back to 
the clerk indicating that the wunner was successful, 
the server must make two guarantees: 

I. All parts of the wunner are stably stored in the log 
so that the entire wunner is persistent in the event 
of a system failure. 

2. All data items described by the wunner are visible to 
subsequent read requests. 

The wunner is made persistent by writing each data 
item to the log. Each data item is tagged with a log 
record that identifies its corresponding file space 
address. This allows the data to be recovered in the 
event of a system failure. All individual writes are made 
as part of a single compound atomic operation (CAO). 
This method is provided by the LO layer to bracket 
a set of writes that must be recovered as an atomic 
unit. Once all the writes for the wunner have been 
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issued to the log, the mapping layer instructs the LO 
layer to end (or commit) the CAO. 

The wunner can be made visible to subsequent read 
operations by updating the B-tree to reflect the loca­
tion of the new data. Unfortunately, this would cause 
writes to incur a significant latency since updating the 
B-tree involves traversing the B-tree and potentially 
reading B-tree nodes into memory from the log. 
Instead, the server completes a write operation before 
the B-tree is updated. By doing this, however, it must 
take additional steps to ensure that the data is visible to 
subsequent read requests. 

Before completing the wunner, the mapping layer 
queues the B-tree updates resulting from writing the 
wunner to the same FIFO work queue as read requests. 
All items are queued atomically, that is, no other read 
or write operation can be interleaved with the individ­
ual wunner updates. In this way, the ordering between 
the writes making up the wunner and subsequent read 
or write operations is maintained. Work cannot begin 
on a subsequent read request until work has started 011 

the 8-tree updates ahead ofit in the queue. 
Once the B-tree updates have been queued to the 

server work queue and the mapping layer has been 
notified that the CAO for the writes has committed, 
both of the guarantees that the server gives on write 
completion hold. The data is persistent, and the writes 
are visible to subsequent operations; therefore, the 
server can send an acknowledgment back to the clerk. 

Updating the 8-tree 
The worker thread processes a B-tree update request 
in much the same way as a read request. The update 
request traverses the B-tree until either it reaches the 
node that maps the appropriate part of the file address 
space, or it fails to find a node in memory. 

Once the leaf node is reached, it is updated to point at 
the location of the data in the log (if the data is to be 
stored directly in the node, the data is copied into the 
node). The node is now dirty in memory and must 
be written to the log at some point. Rather than writing 
the node immediately, the mapping layer writes a log 
record describing the change, locks the node into the 
cache, and places a flush operation for the node to 
the mapping layer's flush queue. The flush operation 
describes the location of the node in the tree and 
records the need to write it to the Jog at some point 
in the future. 

If, on its way to the leaf node, the write operation 
reaches a node that is not in memory, the worker 
thread arranges for it to be read from the Jog and the 
write operation is placed on a pending queue as with a 
read operation. Because the write has been acknowl­
edged to the clerk, the new data must be visible to sub­
sequent read operations even though the B-tree has 
not been updated fully. This is achieved by attaching 
an in-memory record of the update to the node that is 



being read. If a read operation reaches the node with 
records of stalled updates, it must check whether any 
of these records contains data that should be returned. 
The record contains either a pointer to the data in the 
log or the actual data itself. If a read operation finds 
a record that can satisfy all or part of the request, the 
read request uses the information in the record to 
fetch the data. This preserves the guarantee that the 
clerk must see all data for which the write request has 
been acknowledged. 

Once the node is read in from the log, the stalled 
updates are restarted. Each update removes its log 
record from the node and recommences traversing the 
B-tree from that point. 

Writing 8-tree Nodes to the Log 
Writing nodes consumes bandwidth to the disk that 
might otherwise be used for writing or reading user 
data, so the server tries to avoid doing so until 
absolutely necessary. Two conditions make it neces­
sary to begin writing nodes: 

1. There are a large number of dirty nodes in the 
cache. 

2. A checkpoint is in progress. 

In the first condition, most of the memory available 
to the server has been given over to nodes that are 
locked in memory and waiting to be written to the 
log. Read and update operations begin to back up, 
waiting for available memory to store nodes. In the 
second condition, the LD has requested a checkpoint 
in order to bound recovery time ( see the section 
Checkpointing later in this paper). 

When either of these conditions occurs, the mapping 
layer switches into flush mode, during which it only 
writes nodes, until the condition is changed. In flush 
mode, the worker thread processes flush operations 
from the mapping layer's flush queue in depth order, 
that is, starting with the nodes furthest from the root 
of the B-tree. For each flush operation, it traverses the 
B-tree until it finds the target node and its parent. The 
target node is identified by the keys it maps and its 
level. The level of a node is its distance from the leaf of 
the B-tree (or subtree). Unlike its depth, which is its 
distance from the root of the B-tree, a node's level does 
not change as the B-tree grows and shrinks. 

Once it has reached its destination, the flush opera­
tion writes out the target node and updates the parent 
with the new log address. The modifications made to 
the parent node by the flush operation are analogous 
to those made to a leaf node by an update operation. 
In this way, a modification to a leaf node eventually 
works its way to the root of the B-tree, causing each 
node in its path to be rewritten to the log over time. 
Writing dirty nodes only when necessary and then in 
deepest first order minimizes the number of nodes 

written to the log and increases the average number of 
changes that are reflected in each node written. 

Log Driver 

The log driver is responsible for creating the illusion of 
a semi-infinite sequential log on top of a physical disk. 
The entire history of the file system is recorded in the 
updates made to the log, but only those parts of 
the log that describe its current or live state need to 
be persistently stored on the disk. As files are overwrit­
ten or deleted, the parts of the log that contain the 
previous contents become obsolete. 

Segments and the Segment Array 
To make the management of free space more straight­
forward, the log is divided into sections called 
segments. In the Spiralog file system, segments are 
256 KB. Segments in the log are identified by their seg­
ment identifier (SEGID). SEGIDs increase monotoni­
cally and are never reused. Segments in the log that 
contain live data are mapped to physical, segment-sized 
locations or slots on the disk that are identified by their 
segment number (SEGNUM) as shown in Figure 6. 
The mapping between SEGID and SEGNUM is main­
tained by the segment array. The segment array also 
tracks which parts of each mapped segment contain live 
data. This information is used by the cleaner. 

The LD interface layer contains a segment switch 
that allows segments to be fetched from a location 
other than the disk. 13 The backup function on the 
Spiralog file system uses this mechanism to restore files 
contained in segments held on backup media. Figure 7 
shows the LD layer. 
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The Segment Writer 
The segment writer is responsible for all I/Os to the 
log. It groups together writes it receives from the map­
ping layer into large, sequential I/Os where possible. 
This increases write throughput, but at the potential 
cost of increasing the latency of individual operations 
when the disk is lightly loaded. 

As shown in Figure 8, the segment writer is respon­
sible for the internal organization of segments written 
to the disk. Segments are divided into two sections, a 
data area and a much smaller commit record area. 
Writing a piece of data requires two operations to the 
segment at the tail of the log. First the data item is 
written to the data area of the segment. Once this 1/0 
has completed successfully, a record describing that 
data is written to the commit record area. Only when 
the write to the commit record area is complete can 
the original request be considered stable. 
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r- - --- - --- - -- - - , 
I I 
I I 
I I 
I I 
I I 
L - ---------J 

KEY: 

USER DATA ORB-TREE NODE 

COMMIT RECORD 

SINGLE 1/0 OPERATION 

Figure 8 
Organization of a Segment 

22 Digital Technical Journal Vol. 8 No. 2 1996 

The need for two writes to disk (potentially, with a 
rotational delay between) to commit a single data 
write is clearly a disadvantage. Normally, however, the 
segment writer receives a set of related writes from 
the mapping layer which are tagged as part of a single 
CAO. Since the mapping layer is interested in the com­
pletion of the whole CAO and not the writes within it 

' the segment writer is able to buffer additions to the 
commit records area in memory and then write them 
with a single 1/0. Under a normal write load, this 
reduces the number of I/Os for a single data write to 
very close to one. 

The boundary between the commit record area and 
the data area is fixed. Inevitably, this wastes space in 
either the commit record area or data area when the 
other fills. Choosing a size for the commit record area 
that minimizes this waste requires some care. After 
analysis of segments that had been subjected to a typi­
cal Open VMS load, we chose 24 KB as the value for 
the commit record area. 

This segment organization permits the segment 
writer to have complete control over the contents of 
the commit record area, which allows the segment 
writer to accomplish two important recovery tasks: 

• Detect the end of the log 

• Detect multiblock write failure 

When physical segments are reused to extend the 
log, they are not scrubbed and their commit record 
areas contain stale (but comprehensible) records. The 
recovery manager must distinguish between records 
belonging to the current and the previous incarnation 
of the physical slot. To achieve this, the segment writer 
writes a sequence number into a specific byte in every 
block written to the commit record area. The original 
contents of the "stolen" bytes are stored within the 
record being written. The sequence number used for 
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a segment is an attribute of the physical slot that is 
assigned to it. The sequence number for a physical slot 
is incremented each time the slot is reused, allowing 
the recovery manager to detect blocks that do not 
belong to the segment stored in the physical slot. 
The cost of resubstituting the stolen bytes is incurred 
only during recovery and cleaning, because this is 
the only time that the commit record area is read. 

In hindsight, the partitioning of segments into data 
and commit areas was probably a mistake. A layout 
that intermingles the data and commit records and that 
allows them to be written in one I/0 would offer bet­
ter latency at low throughput. If combined with careful 
writing, command tag queuing, and other optimiza­
tions becoming more prevalent in disk hardware and 
controllers, such an on-disk structure could offer sig­
nificant improvements in latency and throughput. 

Cleaner 

The cleaner's job is to turn free space in segments in 
the log into empty, unassigned physical slots that can 
be used to extend the log. Areas of free space appear in 
segments when the corresponding data decays; that is, 
it is either deleted or replaced. 

The cleaner rewrites the live data contained in par­
tially full segments. Essentially, the cleaner forces the 
segments to decay completely. If the rate at which data 
is written to the log matches the rate at which it is 
deleted, segments eventually become empty of their 
own accord. When the log is full (fullness depends on 
the distribution of file longevity), it is necessary to 

proactively clean segments. As the cleaner continues 
to consume more of the disk bandwidth, performance 
can be expected to decline. Our design goal was that 
performance should be maintained up to a point at 
which the log is 85 percent full. Beyond this, it was 
acceptable for performance to degrade significantly. 

Bytes Die Young 
Recently written data is more likely to decay than old 
data. 14

•
15 Segments that were written a short time ago 

are likely to decay further, after which the cost of 
cleaning them will be less. In our design, the cleaner 
selects candidate segments that were written some 
time ago and are more likely to have undergone this 
initial decay. 

Mixing data cleaned from older segments with data 
from the current stream of new writes is likely to pro­
duce a segment that will need to be cleaned again once 
the new data has undergone its initial decay. To avoid 
mixing cleaned data and data from the current write 
stream, the cleaner builds its output segments sepa­
rately and then passes them to the LD to be threaded in 
at the tail of the log. This has two important benefits: 

• The recovery information in the output segment is 
minimal, consisting only of the self-describing tags 
on the data. As a result, the cleaner is unlikely to 
waste space in the data area by virtue of having filled 
the commit record area. 

• By constructing the output segment off-line, the 
cleaner has as much time as it needs to look for data 
chunks that best fill the segment. 

Remapping the Output Segment 
The data items contained in the cleaner's output seg­
ment receive new addresses. The cleaner informs the 
mapping layer of the change oflocation by submitting 
B-tree update operation for each piece of data it 
copied. The mapping layer handles this update opera­
tion in much the same way as it would a normal over­
write. This update does have one special property: 
the cleaner writes are conditional. In other words, the 
mapping layer will update the B-tree to point to 
the copy created by the cleaner as long as no change 
has been made to the data since the cleaner took its 
copy. This allows the cleaner to work asynchronously 
to file system activity and avoids any locking protocol 
between the cleaner and any other part of the Spiralog 
file system. 

To avoid modifying the mapping layer directly, the 
cleaner does not copy B-tree nodes to its output seg­
ment. Instead, it requests the mapping layer to flush 
the nodes that occur in its input segments (i.e., rewrite 
them to the tail of the log). This also avoids wasting 
space in the cleaner output segment on nodes that 
map data in the cleaner's input segments. These nodes 
are guaranteed to decay as soon as the cleaner's B-tree 
updates are processed. 

Figure 9 shows how the cleaner constructs an output 
segment from a number of input segments. The cleaner 
keeps selecting input segments until either the output 
segment is full, or there are no more input segments. 
Figure 9 also shows the set of operations that are gener­
ated by the cleaner. In this example, the output segment 
is filled with the contents of two full segments and part 
of a third segment. This will cause the third input seg­
ment to decay still further, and the remaining data and 
B-tree nodes will be cleaned when that segment is 
selected to create another output segment. 

Cleaner Policies 
A set of heuristics governs the cleaner's operation. 
One of our fundamental design decisions was to sepa­
rate the cleaner policies from the mechanisms that 
implement them. 

When to clean? 
Our design explicitly avoids cleaning until it is 
required. This design appears to be a good match for 

Digital Technical Journal Vol. 8 No. 2 1996 23 



~:~~ENTS I [§ ~----_-j ~ [ ~ J 11 1 NODE A I [§] ~----_-j II s [~] ~ I NODE B 11 
( ' I 

KEY: 

I NODE A I B-TREE NODE 

D . LIVE DATA 

r---, 
I I .. ___ .J 

SUPERSEDED DATA 

' 
CLEANER 

' 

CLEAN 
DATA 1 

B-TREE UPDATE REQUEST 

Figure9 
Cleaner Operation 

a workload on the OpenVMS system. On our time­
sharing system, the cleaner was entirely inactive for the 
first three months of 1996; although segments were 
used and reused repeatedly, they always decayed 
entirely to empty of their own accord. The trade-off 
in avoiding cleaning is that although performance is 
improved (no cleaner activity), the size of the full 
savesnaps created by backup is increased. This is 
because backup copies whole segments, regardless of 
how much live data they contain. 

When the cleaner is not running, the live data in the 
volume tends to be distributed across a large number of 
partially full segments. To avoid this problem, we have 
added a control to allow the system manager to manu­
ally start and stop the cleaner. Forcing the cleaner to 
run before performing a full backup compacts the live 
data in the log and reduces the size of the savesnap. 

In normal operation, the cleaner will start cleaning 
when the number of free segments available to extend 
the log falls below a fixed threshold ( 300 in the cur­
rent implementation). In making this calculation, the 
cleaner takes into account the amount of space in 
the log that will be consumed by writing data currently 
held in the clerks' write-behind caches. Thus, accepting 
data into the cache causes the cleaner to "clear the way" 
for the subsequent write request from the clerk. 

When the cleaner starts, it is possible that the 
amount of live data in the log is approaching 
the capacity of the underlying disk, so the cleaner may 
find nothing to do. It is more likely, however, that 
there will be free space it can reclaim. Because the 
cleaner works by forcing the data in its input segments 
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to decay by rewriting, it is important that it begins 
work while free segments are available. Delaying the 
decision to start cleaning could result in the cleaner 
being unable to proceed. 

A fixed number was chosen for the cleaning thresh­
old rather than one based on the size of the disk. The 
size of the disk does not affect the urgency of cleaning 
at any particular point in time. A more effective indica­
tor of urgency is the time taken for the disk to fill at the 
maximum rate of writing. Writing to the log at 10 MB 
per second will use 300 segments in about 8 seconds. 
With hindsight, we realize that a threshold based on a 
measurement of the speed of the disk might have been 
a more appropriate choice. 

Input Segment Selection 
The cleaner divides segments into four distinct groups: 

1. Empty. These segments contain no live data and are 
available to the LD to extend the log. 

2. Noncleanable. These segments are not candidates 
for cleaning for one of two reasons: 

• The segment contains information that would 
be required by the recovery manager in the event 
of a system failure. Segments in this group are 
always close to the tail of the log and therefore 
likely to undergo further decay, making them 
poor candidates for cleaning. 

• The segment is part ofa snapshot.5 The snapshot 
represents a reference to the segment, so it can­
not be reused even though it may no longer con­
tain live data. 



3. Preferred noncleanable. These segments have 
recently experienced some natural decay. The sup­
position is that they may decay further in the near 
future and so are not good candidates for cleaning. 

4. Cleanable. These segments have not decayed for 
some time. Their stability makes them good candi­
dates for cleaning. 

The transitions between the groups are illustrated in 
Figure 10. It should be noted that the cleaner itself 
does not have to execute to transfer segments into the 
empty state. 

The cleaner's job is to fill output segments, not to 
empty input segments. Once it has been started, the 
cleaner works to entirely fill one segment. When that 
segment has been filled, it is threaded into the log; 
if appropriate, the cleaner will then repeat the process 
with a new output segment and a new set of input 
segments. The cleaner will commit a partially full 
output segment only under circumstances of extreme 
resource depletion. 

The cleaner fills the output segment by copying 
chunks of data forward from segments taken from the 
cleanable group. The members of this group are held 
on a list sorted in order of emptiness. Thus, the first 
cleaner cycle will always cause the greatest number of 
segments to decay. As the output segment fills, the 
smallest chunk of data in the segment at the head of 
the cleanable list may be larger than the space left in 
the output segment. In this case, the cleaner performs 
a limited search down the cleanable list for segments 
containing a suitable chunk. The required information 
is kept in memory, so this is a reasonably cheap opera­
tion. As each input segment is processed, the cleaner 

temporarily removes it from the cleanable list. This 
allows the mapping layer to process the operations the 
cleaner submitted to it and thereby cause decay 
to occur before the cleaner again considers the seg­
ment as a candidate for cleaning. As the volume fills, 
the ratio between the number of segments in the 
cleanable and preferred noncleanable groups is 
adjusted so that the size of the preferred noncleanable 
group is reduced and segments are inserted into the 
cleanable list. If appropriate, a segment in the clean­
able list that experiences decay will be moved to the 
preferred noncleanable list. The preferred nonclean -
able list is kept in order of least recently decayed. 
Hence, as it is emptied, the segments that are least 
likely to experience further decay are moved to the 
cleanable group. 

Recovery 

The goal of recovery of any file system is to rebuild the 
file system state after a system failure. This section 
describes how the server reconstructs state, both in 
memory and in the log. It then describes checkpoint­
ing, the mechanism by which the server bounds the 
amount of time it takes to recover the file system state. 

Recovery Process 
In normal operation, a single update to the server can 
be viewed as several stages: 

1. The user data is written to the log. It is tagged with 
a self-identifying record that describes its position in 
the file address space. A B-tree update operation is 
generated that drives stage 2 of the update process. 

EMPTY 
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2. The leaf nodes of the B-tree are modified in mem­
ory, and corresponding change records are written 
to the log to reflect the position of the new data. 
A flush operation is generated and queued and then 
starts stage 3. 

3. The B-tree is written out level by level until the root 
node has been rewritten. As one node is written to 
the log, the parent of that node must be modified, 
and a corresponding change record is written to the 
log. As a parent node is changed, a further flush 
operation is generated for the parent node and so 
on up to the root node. 

Stage 2 of this process, logging changes to the leaf 
nodes of the B-tree, is actually redundant. The self­
identifying tags that are written with the user data are 
sufficient to act as change records for the leaf nodes of 
the B-tree. When we started to design the server, we 
chose a simple implementation based on physiological 
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write-ahead logging.9 As time progressed, we moved 
more toward operational logging.9 The records writ­
ten in stage 2 are a holdover from the earlier imple­
mentation, which we may remove in a future release of 
the Spiralog file system. 

At each stage of the process, a change record is writ­
ten to the log and an in-memory operation is generated 
to drive the update through the next stage. In effect, 
the change record describes the set of changes made 
to an in-memory copy of a node and an in-memory 
operation associated with that change. 

Figure 11 shows the log and the in-memory work 
queue at each stage of a write request. The B-tree 
describing the file system state consists of three nodes: 
A, B, and C. A wunner, consisting of a single data 
write is accepted by the server. The write request 
requires that both leaf nodes A and B are modified. 
Stage 1 starts with an empty log and a write request for 
Data 1. 
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After a system failure, the server's goal is to recon­
struct the file system state to the point of the last write 
that was written to the log at the time of the crash. 
This recovery process involves rebuilding, in memory, 
those B-tree nodes that were dirty and generating any 
operations that were outstanding when the system 
failed. The outstanding operations can be scheduled in 
the normal way to make the changes that they repre­
sent permanent, thus avoiding the need to recover 
them in the event of a future system failure. The recov­
ery process itself does not write to the log. 

The mapping layer work queue and the flush lists 
are rebuilt, and the nodes are fetched into memory by 
reading the sequential log from the recovery start 
position (see the section Checkpointing) to the end of 
the log in a single pass. 

The B-tree update operations are regenerated using 
the self-identifying tag that was written with each 
piece of data. When the recovery process finds a node, 
a copy of the node is stored in memory. As log records 
for node changes are read, they are attached to the 
nodes in memory and a flush operation is generated 
for the node. If a log record is read for a node that has 
not yet been seen, the log record is attached to a place­
holder node that is marked as not-yet-seen. The recov­
ery process does not perform reads to fetch in nodes 
that are not part of the recovery scan. Changes to 
B-tree nodes are a consequence of operations that 
happened earlier in the log; therefore, a B-tree node 

log record has the effect of committing a prior modifi­
cation. Recovery uses this fact to throw away update 
operations that have been committed; they no longer 
need to be applied. 

Figure 12 shows a log with change records and 
B-tree nodes along with the in-memory state of the 
B-tree node cache and the operations that are regener­
ated. In this example, change record 1 for node A is 
superseded or committed by the new version of node A 
(node A'). The new copy of node C (node C') super­
sedes change records 3 and 5. This example also shows 
the effect of finding a log record without seeing a copy 
of the node during recovery. The log record for node B 
is attached to an in-memory version of the node that is 
marked as not-yet-seen. The data record with self-iden­
tifying tag Data l generates a B-tree update record that 
is placed on the work queue for processing. As a final 
pass, the recovery process generates the set of flush 
operations that was outstanding when the system failed. 
The set of flush requests is defined as the set of nodes in 
the B-tree node cache that has log records attached 
when the recovery scan is complete. In this case, flush 
operations for nodes A' and B are generated. 

The server guarantees that a node is never written to 
the log with uncommitted changes, which means that 
we only need to log redo records.9

•
16 In addition, when 

we see a node during the recovery scan, any log 
records that are attached to the previous version of the 
node in memory can be discarded. 
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Operations generated during recovery are posted to 
the work queues as they would be in normal running. 
Normal operation is not allowed to begin until the 
recovery pass has completed; however, when recovery 
reaches the end of the log, the server is able to service 
operations from clerks. Thus new requests from the clerk 
can be serviced, potentially in parallel with the operations 
that were generated by the recovery process. 

Log records are not applied to nodes during recov­
ery for a number of reasons: 

• Less processing time is needed to scan the log and 
therefore the server can start servicing new user 
requests sooner. 

• Recovery will not have seen copies of all nodes for 
which it has log records. To apply the log records, 
the B-tree node must be read from the log. This 
would result in random read requests during the 
sequential scan of the log, and again would result in a 
longer period before user requests could be serviced. 

• There may be a copy of the node later in the recov­
ery scan. This would make the additional 1/0 oper­
ation redundant. 

Checkpointing 

As we have shown, recovering an LFS log is imple­
mented by a single-pass sequential scan of all records 
in the log from the recovery start position to the tail of 
the log. This section defines a recovery start position 
and describes how it can be moved forward to reduce 
the amount of log that has to be scanned to recover 
the file system state. 

To reconstruct the in-memory state when a system 
crashed, recovery must see something in the log that 
represents each operation or change of state that was 
represented in memory but not yet made stable. This 
means that at time t, the recovery start position is 
defined as a point in the log after which all operations 
that are not stably stored have a log record associated 
with them. Operations obtain the association by scan­
ning the log sequentially from the beginning to the 
end. The recovery position then becomes the start of 
the log, which has two important problems: 

1. In the worst case, it would be necessary to sequen­
tially scan the entire log to perform recovery. For 
large disks, a sequential read of the entire log con­
sumes a great deal of time. 

2. Recovery must process every log record written 
between the recovery start position and the end of 
the log. As a consequence, segments between the 
start of recovery and the end of the log cannot be 
cleaned and reused. 

To restrict the amount of time to recover the log 
and to allow segments to be released by cleaning, the 
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recovery position must be moved forward from time 
to time, so that it is always close to the tail of the log. 

Under any workload, a number of outstanding oper­
ations are at various stages of completion. In other 
words, there is no point in the log when all activity 
has ceased. To overcome this problem, we use a fuzzy 
checkpoint scheme.9 In version 1.0 of the Spiralog file 
system, the server initiates a new checkpoint when 
20 MB of data has been written since the previous 
checkpoint started. The process cannot yet move the 
recovery position forward in the log to the start of 
the new checkpoint, because some outstanding opera­
tions may have priority. The mapping layer keeps track 
of the operations that were started before the check­
point was initiated. When the last of these operations 
has moved to the next stage ( as defined by the recovery 
process), the mapping layer declares that the check­
point is complete. Only then can the recovery position 
be moved forward to the point in the log where the 
checkpoint was started. 

With this scheme, the server does not need to write 
all the nodes in all paths in the B-tree between a dirty 
node and the root node. All that is required in practice 
is to write those nodes that have flush operations 
queued for them at the time that the checkpoint is 
started. Flushing these nodes causes change records 
to be written for their parent nodes after the start of 
the checkpoint. As the recovery scan proceeds from 
the start of the last completed checkpoint, it is able to 
regenerate the flush operation on the parent nodes 
from these change records. 

We chose to base the checkpoint interval on the 
amount of data written to the log rather than on 
the amount of time to recover the log. We felt that this 
would be an accurate measure of how long it would 
take to recover a particular log. In operation, we find 
this works well on logs that experience a reasonable 
write load; however, for logs that predominantly ser­
vice read requests, the recovery time tends toward the 
limit. In these cases, it may be more appropriate to add 
timer-based checkpoints. 

Managing Free Space 
A traditional, update-in-place file system overwrites 
superseded data by writing to the same physical loca -
tion on disk. If, for example, a single block is continu­
ally overwritten by a file system client, no extra disk 
space is required to store the block. In contrast, a log­
structured file system appends all modifications to the 
file system to the tail of the log. Every update to a sin­
gle block requires log space, not only for the data, but 
also for the log records and B-tree nodes required to 
make the B-tree consistent. Although old copies of the 
data and B-tree nodes are marked as no longer live, 
this free space is not immediately available for reuse; it 
must be reclaimed by the cleaner. The goal is to ensure 
that there is sufficient space in the log to write the 



parts of the B-tree that are needed to make the file 
system structures consistent. This means that we can 
never have dirty B-tree nodes in memory that cannot 
be flushed to the log. 

The server must carefully manage the amount of free 
space in the log. It must provide two guarantees: 

1. A write will be accepted by the server only if there is 
sufficient free space in the log to hold the data and 
rewrite the mapping B-tree to describe it. This guar­
antee must hold regardless of how much space the 
cleaner may subsequently reclaim. 

2. At the higher levels of the file system, if an 1/0 oper­
ation is accepted, even if that operation is stored in 
the write-behind cache, the data will be written to 
the log. This guarantee holds except in the event of 
a system failure. 

The server provides these guarantees using the same 
mechanism. As shown in Figure 13, the free space and 
the reserved space in the log are modeled using an 
escrow function. 17 

The total number of blocks that contain live, valid 
data is maintained as the used space. When a write 
operation is received, the server calculates the amount 
of space in the log that is required to complete the 
write and update the B-tree, based on the size of 
the write and the current topology of the B-tree. The 
calculation is generous because the B-tree is a dynamic 
structure and the outcome of a single update has 
unpredictable effects on it. Each clerk reserves space 
for dirty data that it has stored in the write-behind 
cache using the same mechanism. 

To accept an operation and provide the required 
guarantees, the server checks the current state of the 
escrow function. If the guaranteed free space is suffi­
cient, the server accepts the operation. As operations 
proceed, reserved space is converted to used space as 
writes are performed. A single write operation may 
affect several leaf nodes. As it becomes clear how the 
B-tree is changing, we can convert any unrequired 
reserved space back to guaranteed free space. 

If the cost of an operation exceeds the free space 
irrespective of how the reserved space is converted, the 
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operation cannot be guaranteed to complete; there­
fore it is rejected. On the other hand, if the cost of the 
operation is greater than the guaranteed free space (yet it 
may fit in the log, depending on the outcome of the out­
standing operations), the server enters a "maybe" state. 
For the server to leave the maybe state and return defini­
tive results, the escrow cost function must be collapsed. 
This removes any uncertainty by decreasing the reserved 
space figure, potentially to zero. Operations and unused 
clerk reservations are drained so that reserved space is 
converted to either used space or guaranteed free space. 

This mechanism provides a fuzzy measure of how 
much space is available in the log. When it is clear that 
operations can succeed, they are allowed to continue. 
If success is doubtful, the operation is held until a 
definitive yes or no result can be determined. This 
scheme of free space management is similar to the 
method described in reference 7. 

Future Directions 

This section outlines some of the possibilities for future 
implementations of the Spiralog file system. 

Hierarchical Storage Management 
The Spiralog server distinguishes between the logical 
position of a segment in the log and its physical location 
on the media by means of the segment array. This map­
ping can be extended to cover a hierarchy of devices 
with differing access characteristics, opening up the pos­
sibility of transparent data shelving. Since the unit of 
migration is the segment, even large, sparsely used files 
can benefit. Segments containing sections of the file not 
held on the primary media can be retrieved from slower 
storage as required. This is identical to the virtual mem­
ory paging concept. 

For applications that require a complete history of 
the file system, segments can be saved to archive media 
before being recycled by the cleaner. In principle, this 
would make it possible to reconstruct the state of the 
file system at any time. 

Disk Mirroring (RAID 1) Improvements 
When a mirrored set of disks is forcefully dismounted 
with outstanding updates, such as when a system 
crashes, rebuilding a consistent disk state can be an 
expensive operation. A complete scan of the members 
may be necessary because I/Os may have been out­
standing to any part of the mirrored set. 

Because the data on an LFS disk is temporally 
ordered, making the members consistent following 
a failure is much more straightforward. In effect, an 
LFS allows the equivalent of the minimerge function­
ality provided by Volume Shadowing for Open VMS, 
without the need for hardware support such as 1/0 
controller logging of operations. 18 
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Compression 
Adding file compression to an update-in-place file 
system presents a particular problem: what to do when 
a data item is overwritten with a new version that does 
not compress to the same size. Since all updates take 
place at the tail of the log, an LFS avoids this problem 
entirely. In addition, the amount of space consumed 
by a data item is determined by its size and is not influ­
enced by the cluster size of the disk. For this reason, an 
LFS does not need to employ file compaction to make 
efficient use oflarge disks or RAID sets. 19 

Future Improvements 
The existing implementation can be improved in a 
number of areas, many of which involve resource con­
sumption. The B-tree mapping mechanism, although 
general and flexible, has high CPU overheads and 
requires complex recovery algorithms. The segment 
layout needs to be revisited to remove the need for seri­
alized I/Os when committing write operations and thus 
further reduce the write latency. 

For the Spiralog file system version 1.0, we chose to 
keep complete information about live data and data that 
was no longer valid for every segment in the log. This 
mechanism allows us to reduce the overhead of the 
cleaner; however, it does so at the expense of memory 
and disk space and consequently does not scale well to 
multi-terabyte disks. 

A Final Word 

Log structuring is a relatively new and exciting tech­
nology. Building Digital's first product using this 
technology has been both a considerable challenge and 
a great deal of fun. Our experience during the con­
struction of the Spiralog product has led us to believe 
that LFS technology has an important role to play in 
the future of file systems and storage management. 

Acknowledgments 

We would like to take this opportunity to acknowl­
edge the contributions of the many individuals who 
helped during the design of the Spiralog server. Alan 
Paxton was responsible for initial investigations into 
LFS technology and laid the foundation for our under­
standing. Mike Johnson made a significant contribu­
tion to the cleaner design and was a key member of the 
team that built the final server. We are very grateful to 
colleagues who reviewed the design at various stages, 
in particular, Bill Laing, Dave Thiel, Andy Goldstein, 
and Dave Lomet. Finally, we would like to thank Jim 
Johnson and Cathy Foley for their continued loyalty, 
enthusiasm, and direction during what has been a long 
and sometimes hard journey. 

30 Digital Technical Journal Vol. 8 No. 2 1996 

References 

1. D. Gifford, R. Needham, and M. Schroeder, "The 
Cedar File System," Communications of the ACM, 
vol. 31, no. 3 (March 1988). 

2. S. Chutanai, 0 . Anderson, M. Kazar, and B. Leverett, 
"The Episode File System," Proceedings of the Winter 
1992 USENIX Technical Conference(January 1992). 

3. M. Rosenblum, "The Design and Implementation of 
a Log-Structured File System," Report No. UCB/CSD 
92/ 696, University of California, Berkeley (June 
1992). 

4. J. Ousterhout and F. Douglis, "Beating the 1/0 Bottle­
neck: The Case for Log-Structured File Systems," 
Operating Systems Review (January 1989). 

5. R. Green, A. Baird, and J. Davies, "Designing a Fast, 
On-line Backup System for a Log-structured File Sys­
tem," Digital Technical journal, vol. 8, no. 2 ( 1996, 
this issue): 32- 45. 

6. J. Ousterhout et al., "A Comparison of Logging and 
Clustering," Computer Science Department, Univer­
sity of California, Berkeley ( March 1994 ). 

7. M. Seltzer, K. Bostic, M. McKusick, and C. Staelin, 
"An Implementation of a Log-Structured File System 
for UNIX," Proceedings of the Winter 1993 USENIX 
Technical Conference (January 1993). 

8. M. Wiebren de Jounge, F. Kaashoek, and W.-C. Hsieh, 
"The Logical Disk: A New Approach to Improving 
File Systems," ACM SIGOPS '93 (December 1993). 

9 . J. Gray and A. Reuter, Transaction Processing: Con­
cepts and Techniques (San Mateo, Calif.: Morgan 
Kaufman Publishers, 1993 ), ISBN 1-55860-190-2. 

10. A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart, 
"The Echo Distributed File System," Digital Systems 
Research Center, Research Report 111 ( September 
1993). 

11. J. Johnson and W. Laing, "Overview of the Spiralog 
File System," Digital Technical journal, vol. 8, no. 2 
( 1996, this issue): 5- 14. 

12. A. Sweeney et al., "Scalability in the XFS File System," 
Proceedings of the Winter 1996 USENIX Technical 
Conference(January 1996). 

13. J. Kohl, "Highlight: Using a Log-structured File 
System for Tertiary Storage Management," USENIX 
Association Conference Proceedings (January 1993). 

14. M. Baker et al., "Measurements of a Distributed File 
System," Symposium on Operating System Principles 
(SOSP) 13 (October 1991). 

15. J. Ousterhout et al., "A Trace-driven Analysis of the 
UNIX 4.2 BSD File System," Symposium on Operat­
ing System Principles (SOSP) 10 (December 1985 ). 



16. D. Lomet and B. Salzberg, "Concurrency and Recov­
ery for Index Trees," Digital Cambridge Research 
Laboratory, Technical Report (August 1991). 

17. P. O'Neil, "The Escrow Transactional Model," 
ACM Transactions on Distributed Systems, vol. 11 
(December 1986). 

18. Volume Shadowing/or Open VMS AXP Version 6.1 
(Maynard, Mass.: Digital Equipment Corp., 1994). 

19. M. Burrows et al., "On-line Data Compression in a 
Log-structured File System," Digital Systems Research 
Center, Research Report 85 (April 1992). 

Biographies 

Christopher Whitaker 
Chris Whitaker joined Digital in 1988 after receiving 
a B.Sc. Eng. (honours, lSLclass) in computer science 
from the Imperial College of Science and Technology, 
University of London. He is a principal software engineer 
with the Open VMS File System Development Group 
located near Edinburgh, Scotland. Chris was the team 
leader for the LFS server component of the Spiralog file 
system. Prior to this, Chris worked on the distributed 
transaction management services (DECdtm) for Open VMS 
and the port of the Open VMS record management services 
(RMS and RMS journaling) to Alpha. 

J. Stuart Bayley 
Stuart Bayley is a member of the Open VMS File System 
Development Group, located near Edinburgh, Scotland. 
He joined Digital in 1990 and prior to becoming a member 
of the Spiralog LFS server team, worked on Open VMS 
DECdtm services and the Open VMS XQP file system. 
Stuart graduated from King's College, University of 
London, with a B.Sc. (honours) in physics in 1986. 

Rod D. W. Widdowson 
Rod Widdowson received a B.Sc. (1984) and a Ph.D. (1987) 
in computer science from Edinburgh University. He joined 
Digital in 1990 and is a principal software engineer with the 
Open VMS File System Development Group located near 
Edinburgh, Scotland. Rod worked on the implementation 
of LFS and cluster distribution components of the Spiralog 
file system. Prior to this, Rod worked on the port of the 
Open VMS XQP file system to Alpha. Rod is a charter mem­
ber of the British Computer Society. 

Digital Technical Journal Vol. 8 No. 2 1996 31 



Designing a Fast, 
On-line Backup System 
for a Log-structured 
File System 

The Spiralog file system for the OpenVMS 
operating system incorporates a new tech­
nical approach to backing up data. The fast, 
low-impact backup can be used to create 
consistent copies of the file system while 
applications are actively modifying data. 
The Spiralog backup uses the log-structured 
file system to solve the backup problem. The 
physical on-disk structure allows data to be 
saved at near-maximum device throughput 
with little processing of data. The backup 
system achieves this level of performance 
without compromising functionality such as 
incremental backup or fast, selective restore. 
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Most computer users want to be able to recover data 
lost through user error, software or media failure, or 
site disaster but are unwilling to devote system 
resources or downtime to make backup copies of the 
data. Furthermore, with the rapid growth in the use of 
data storage and the tendency to move systems toward 
complete utilization (i.e., 24-hour by 7-day operation), 
the practice of taking the system off line to back up 
data is no longer feasible. 

The Spiralog file system, an optional component of 
the Open VMS Alpha operating system, incorporates 
a new approach to the backup process ( called 
simply backup), resulting in a number of substantial 
customer benefits. By exploiting the features of log­
structured storage, the backup system combines the 
advantages of two different traditional approaches 
to performing backup: the flexibility of file-based 
backup and the high performance of physically ori­
ented backup. 

The design goal for the Spiralog backup system was 
to provide customers with a fast, application-consistent, 
on-line backup. In this paper, we explain the features 
of the Spiralog file system that helped achieve this goal 
and outline the design of the major backup functions, 
namely volume save, volume restore, file restore, and 
incremental management. We then present some per­
formance results arrived at using Spiralog version 1.1. 
The paper concludes with a discussion of other design 
approaches and areas for future work. 

Background 

File system data may be lost for many reasons, includ­
ing 
• User error- A user may mistakenly delete data. 

• Software failure-An application may execute 
incorrectly. 

• Media failure-The computing equipment may 
malfunction because of poor design, old age, etc. 

• Site disaster- Computing facilities may experience 
failures in, for example, the electrical supply or cool­
ing systems. Also, environmental catastrophes such 
as electrical storms and floods may damage facilities. 



The ability to save backup copies of all or part of 
a file system's information in a form that allows it to be 
restored is essential to most customers who use com­
puting resources. To understand the backup capability 
needed in the Spiralog file system, we spoke to a num -
ber of customers-five directly and several hundred 
through public forums. Each ran a different type of sys­
tem in a distinct environment, ranging from research 
and development to finance on OpenVMS and other 
systems. Our survey revealed the following set of cus­
tomer requirements for the Spiralog backup system: 

1. Backup copies of data must be consistent with 
respect to the applications that use the data. 

2. Data must be continuously available to applica­
tions. Downtime for the purpose of backup is unac­
ceptable. An application must copy all data of 
interest as it exists at an instant in time; however, 
the application should also be allowed to modify 
the data during the copying process. Performing 
backup in such a way as to satisfy these constraints is 
often called hot backup or on-line backup. Figure 1 
illustrates how data inconsistency can occur during 
an on-line backup. · 

3. The backup operations, particularly the save opera­
tion, must be fast. That is, copying data from the 
system or restoring data to the system must be 
accomplished in the time available. 

4. The backup system must allow an incremental 
backup operation, i.e., an operation that captures 
only the changes made to data since the last backup. 

The Spiralog backup team set out to design and 
implement a backup system that would meet the four 
customer requirements. The following section dis­
cusses the features of the implementation of a log­
structured file system (LFS) that allowed us to use 
a new approach to performing backup. Note that 
throughout this paper we use disk to describe the 

FILE 

TIME 

Figure 1 

BACKUP EXPLANATION 

The initial file contains two blocks. 

Backup starts and copies the first 
block. 

The application rewrites the file. 

Backup proceeds and copies the 
second block. The resulting backup 
copy is corrupt because the first 
block is inconsistent with the latest 
rewritten file. 

Example of an On-line Backup That Results in Inconsistent 
Data 

physical media used to store data and volume to 

describe the abstraction of the disk as presented by the 
Spiralog file system. 

Spiralog Features 

The Spiralog file system is an implementation of a log­
structured file system. An LFS is characterized by the 
use of disk storage as a sequential, never-ending repos­
itory of data. We generally refer to this organization of 
data as a log. Johnson and Laing describe in detail the 
design of the Spiralog implementation of an LFS and 
how files are maintained in this implementation. 1 

Some features unique to a log-structured file system 
are of particular interest in the design of a backup 
system.24 These features are 

• Segments, where a segment is the fundamental 
unit of storage 

• The no-overwrite nature of the system 

• The temporal ordering of on-disk data structures 

• The means by which files are constructed 

This section of the paper discusses the relevance of 
these features; a later section explains how these fea­
tures are exploited in the backup design. 

Segments 
In this paper, the term segment refers to a logical 
entity that is uniquely identified and never overwrit­
ten. This definition is distinct from the physical stor­
age of a segment. The only physical feature of interest 
to backup with regard to segments is that they are effi­
cient to read in their entirety. 

Using log-structured storage in a file system allows 
efficient writing irrespective of the write patterns or 
load to the file system. All write operations are 
grouped in segment-sized chunks. The segment size is 
chosen to be sufficiently large that the time required 
to read or write the segment is significantly greater 
than the time required to access the segment, i.e., the 
time required for a head seek and rotational delay on 
a magnetic disk. All data ( except the LFS homeblock 
and checkpoint information used to locate the end of 
the data log) is stored in segments, and all segments 
are known to the file system. From a backup point of 
view, this means that the entire contents of a volume 
can be copied by reading the segments. The segments 
are large enough to allow efficient reading, resulting in 
a near-maximum transfer rate of the device. 

No Overwrite 
In a log-structured file system, in which the segments 
are never overwritten, all data is written to new, empty 
segments. Each new segment is given a segment iden­
tifier (segid) allocated in a monotonically increasing 
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manner. At any point in time, the entire contents and 
state of a volume can be described in terms of a ( check­
point position, segment list) pair. At the physical level, 
a volume consists of a list of segments and a position 
within a segment that defines the end of the log. 
Rosenblum describes the concept of time travel, where 
an old state of the file system can be revisited by creat­
ing and maintaining a snapshot of the file system for 
future access.3 Allowing time travel in this way requires 
maintaining an old checkpoint and disabling the reuse 
of disk space by the cleaner. The cleaner is a mecha -
nism used to reclaim disk space occupied by obsolete 
data in a log, i.e., disk space no longer referenced in 
the file system. The contents of a snapshot are inde­
pendent of operations undertaken on the live version 
of the file system. Modifying or deleting a file affects 
only the live version of the file system (see Figure 2). 
Because of the no-overwrite nature of the LFS, previ­
ously written data remains unchanged. 

Other mechanisms specific to a particular backup 
algorithm have been developed to achieve on-line con­
sistency.5 The snapshot model as described above allows 
a more general solution with respect to multiple con­
current backups and the choice of the save algorithm. 

A read-only version of the file system at an instant 
in time is precisely what is required for application 
consistency in on-line backup. This snapshot approach 
to attaining consistency in on-line backup has been 
used in other systems.6

•
7 As explained in the following 

sections, the Spiralog file system combines the snap­
shot technique with features oflog-structured storage 
to obtain both on-line backup consistency and perfor­
mance benefits for backup. 

Temporal Ordering 
As mentioned earlier, all data, i.e., user data and file 
system metadata ( data that describes the user data in 
the file system), is stored in segments and there is no 
overwrite of segments. All on-disk data structures that 
refer to physical placement of data use pointers, 
namely ( segid, offset) pairs, to describe the location of 
the data. Each ( segid, offset) pair specifies the segment 
and where within that segment the data is stored. 
Together, these imply the following two properties of 
data structures, which are key features of an LFS: 

This data is 
visible to only 
the snapshot. 

Figure 2 

This data is 
shared by the 
snapshot and the 
live file system. 

This is new live 
data written since 
the snapshot was 
taken. 

Data Accessible to the Snapshot and to the Live File 
System 
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1. On-disk structure pointers, namely (segid, offset) 
pairs, are relatively time ordered. Specifically, data 
stored at ( s2, o2) was written more recently than 
data stored at ( sl, ol) if and only if s2 is greater 
than sl or s2 equals sl and o2 is greater than ol. 
Thus, new data would appear to the right in the 
data structure depicted in Figure 3. 

2. Any data structure that uses on-disk pointers stored 
within the segments ( the mapping data structure 
implementing the LFS index) must be time 
ordered; that is, all pointers must refer to data writ­
ten prior to the pointer. Referring again to Figure 3, 
only data structures that point to the left are valid. 

These properties of on-disk data structures are of 
interest when designing backup systems. Such data 
structures can be traversed so that segments are read 
in reverse time order. To understand this concept, con­
sider the root of some on-disk data structure. This root 
must have been written after any of the data to which 
it refers (property 2). A data item that the root refer­
ences must have been written before the root and so 
must have been stored in a segment with a segid less 
than or equal to that of the segment in which the root 
is stored (property 1 ). A similar inductive argument can 
be used to show that any on-disk data structure can be 
traversed using a single pass of segments in increasing 
segment age, i.e., decreasing segid. This is of particular 
interest when considering how to recover selective 
pieces of data ( e.g., individual files) from an on-disk 
structure that has been stored in such a way that only 
sequential access is viable. The storage of the segments 
that compose a volume on tape as part of a backup is an 
example of such an on-disk data structure. 

File Construction 
Whitaker, Bayley, and Widdowson describe the persis­
tent address space as exported by the Spiralog LFS.8 

Essentially, the interface presented by the log­
structured server is that of a memory ( various read and 
write operations) indexed using a file identifier and an 
address range. The entire contents of a file, regardless 
of type or size, are defined by the file identifier and all 
possible addresses built using that identifier. 

This means of file construction is important when 
considering how to restore the contents of a file. All 

All pointers specify 
previously written segments. 

+.------S1 ; ~: S2 S3 

DIRECTION IN WHICH THE LOG IS WRITIEN 

Figure 3 
A Valid Data Structure in the Log 



data contained in a file defined by a file identifier can be 
recovered, independent of how the file was created, 
without any knowledge of the file system structure. 
Consequently, together with the temporal ordering of 
data in an LFS, files can be recovered using an ordered 
linear scan of the segments of a volume, provided the 
on-disk data structures are traversed correctly. This 
mechanism allows efficient file restore from a sequence 
of segments. In particular, a set of files can be restored 
in a single pass of a saved volume stored on tape. 

Existing Approaches to Backup 

The design of the Spiralog backup attempts to com -
bine the advantages of file-based backup tools such as 
Files-11 backup, UNIX tar, and Windows NT backup, 
and physical backup tools such as UNIX dd, Files-11 
backup/PHYSICAL, and HSC backup (a controller­
based backup for Open VMS volumes).° 

File-based Backup 
A file-based backup system has two main advantages: 
( 1) the system can explicitly name files to be saved, and 
(2) the system can restore individual files. In this paper, 
the file or structure that contains the output data of 
a backup save operation is called a saveset. Individual 
file restore is achieved by scanning a saveset for the file 
and then recreating the file using the saved contents. 
Incremental file-based backup usually entails keeping 
a record of when the last backup was made ( either on a 
per-file basis or on a per-volume basis) and copying 
only those files and directories that have been created 
or modified since a previous backup time. 

The penalty associated with these features of a file­
based backup system is that of save performance. 
In effect, the backup system performs a considerable 
amount of work to lay out data in the saveset to allow 
simple restore. All files are segregated to a much greater 
extent than they are in the file system on-disk struc­
ture. The limiting factor in the performance of a file­
based save operation is the rate at which data can be 
read from the source disk. Although there are some 
ways to improve performance, in the case of a volume 
that has a large number of files, read performance is 
always costly. Figure 4 illustrates the layouts of three 
different types of savesets. 

Physical Backup 
In contrast to the file-based approach to backup, a 
physical backup system copies the actual blocks of data 
on the source disk to a saveset. The backup system is 
able to read the disk optimally, which allows an imple­
mentation to achieve data throughput near the disk's 
maximum transfer rate. Physical backups typically 
allow neither individual file restore nor incremental 

DIRECTION IN WHICH THE TAPE IS WRITIEN 
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In a physical backup saveset, blocks are laid out contiguously on tape. 
File restore is not possible without random access. 

FILE 1 FILE2 FILE 3 

In a file backup saveset, files are laid out contiguously on tape. 
To create this sort of saveset, files need to be read individually 
from disk, which generally means suboptimal disk access. 

I DIR I SEGT I SEG I SEG I SEG I .. · I 
In a Spiralog backup saveset, directory (DIR) and segment table 
(SEGT) allow file restore from segments. Segments are large 
enough to allow near-optimal disk access. 

Figure4 
Layouts of Three Different Types ofSaveset 

backup. The overhead required to include sufficient 
information for these features usually erodes the per­
formance benefits offered by the physical copy. In 
addition, a physical backup usually requires that the 
entire volume be saved regardless of how much of the 
volume is used to store data. 

How Spiralog Backup Exploits the LFS 

Spiralog backup uses the snapshot mechanism to 
achieve on-line consistency for backup. This section 
describes how Spiralog attains high-performance 
backup with respect to the various save and restore 
operations. 

Volume Save Operation 
The save operation ofSpiralog creates a snapshot and 
then physically copies it to a tape or disk structure 
called a savesnap. (This term is chosen to be different 
from saveset to emphasize that it holds a consistent 
snapshot of the data.) This physical copy operation 
allows high-performance data transfer with minimal 
processing. 10 In addition, the temporal ordering of 
data stored by Spiralog means that this physical copy 
operation can also be an incremental operation. 

The savesnap is a file that contains, among other 
information, a list of segments exactly as they exist 
in the log. The structure of the savesnap allows the 
efficient implementation of volume restore and file 
restore (see Figure 5 and Figure 6) . 

The steps of a full save operation arc as follows: 

1. Create a snapshot and mount it. This mounted 
snapshot looks like a separate, read-only file system. 
Read information about the snapshot. 
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Figure 6 
Correspondence between Segments on Disk and in the 
Savesnap 

2. Write the header to the savesnap, including snap­
shot information such as the checkpoint position. 

3. Copy the contents of the file system directories to 
the savesnap. 

4. Write the list of segids that compose the snapshot 
to the savesnap as a segment table in decreasing 
segid order. 

5. Copy these segments in decreasing segid order 
from the volume to the savesnap ( see Figure 6 ). 

6. Dismount and delete the snapshot, leaving only the 
contents of the live volume accessible. The effect of 
deleting the snapshot is to release all the space used 
to store segments that contain only snapshot data. 
All segments that contain data in the live volume 
are left intact. 
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The Spiralog backup system is primarily physical. 
The system copies the volume (snapshot) data in 
segments that are large enough to allow efficient 
disk reading, regardless of the number of files in the 
volume. To save a volume, the Spiralog backup sys­
tem has to read all the directories in the volume and 
then all the segments. In comparison, a file-based 
backup system must read all the directories and then 
all the files. On volumes with large file populations, 
file-based backup performance suffers greatly as a 
result of the number of read operations required to 
save the volume. Our measurements showed that the 
directory-gathering phase of our copy operation was 
insignificant in relation to the data transfer during the 
segment copy phase. 

Incremental Save Operation 
The incremental save operation in Spiralog is very 
different from that in a file-based backup. We use the 
temporal ordering feature of the LFS to capture only 
the changes in a volume's data as part of the incremen­
tal save. The temporal ordering provides a simple way 
of determining the relative age of data. To be precise, 
data in the segment with segid s2 must have been writ­
ten after data in the segment with segid sl if and only 
if s2 is greater than s 1. 

Consider the lifetime of a volume as an endless 
sequence of segments. A backup copy of a volume at 
any time is a copy of all segments that contain data 
accessible in that volume. Segments in the volume's 
history that are not included in the backup copy are 
those that no longer contain any useful data or those 
that have been cleaned. An incremental backup con­
tains the sequence of segments containing accessible 
data written since a previous backup. 

This is different from an incremental save operation 
in a file -based backup scheme. The Spiralog incremen­
tal save operation copies only the data written since 
the last backup. In comparison, a file -based backup 



incremental save comprises entire files that contain 
new or modified data. For example, consider an incre­
mental save of a volume in which a large database file 
has had only one record updated in place since a full 
backup. Spiralog's incremental save copies the seg­
ments written since the last full backup that contain 
the modified record with other updated file system 
index data. A file-based backup copies the entire data­
base file. 

The following steps for the incremental save opera­
tion augment the six process steps previously 
described for the save operation. Note that steps 3a, 
4a, and Sa follow steps 3, 4, and 5, respectively. 

3a. Write dependent savesnap information. This is a 
list of the savesnaps required to complete the 
chain of segments that constitutes the entire snap­
shot contents. The savesnap information includes 
a unique savesnap identifier ( volume id, segment 
id, segment offset). This is the checkpoint position 
of the snapshot and is unique across volumes. 

4a. Determine the segment range to be stored in this 
savesnap. This range is calculated by reading the 
segment range of the last backup from a file stored 
on the source volume. 

Sa. Record the minimum segid stored in this save­
snap with the segment table. The segment table 
contains the segids of all segments in the saved 
snapshot. The incremental savesnap contains 
segments identified by a subset of these segids. 
The segid of the last segment stored in the save­
snap is recorded as the minimum segid held in the 
savesnap. 

7. Record on the source volume the segment range 
stored in the savesnap. 

The implementation provides an interface that 
allows the user to specify the maximum number of 
savesnaps required for a restore operation. This feature 
is similar to specifying the levels in the UNIX dump 

TIME LIVE SEGMENTS IN VOLUME 
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Figure 7 
Snapshot Contents in Incremental Savesnaps 

utility, where a level O save is a full backup (it requires 
no other savesnaps for a restore), and a level I save 
is an incremental backup since the full backup (it 
requires one additional savesnap for a restore, namely 
the full backup). 

Figure 7 shows the savesnaps produced from 
full and incremental save operations. Note that the 
most recently written segment may appear in two 
different savesnaps that supposedly contain disjoint 
data. For example, segment 4, the youngest segment 
in Monday's savesnap, appears in the savesnaps made 
on both Monday and Wednesday. The youngest seg­
ment is not guaranteed to be full at the time of a snap­
shot creation, and therefore a later savesnap may 
contain data that was not in the first savesnap. 
Consequently, incremental savesnaps recapture the 
oldest segment in their segment range. 

Note that with this design a slowly changing file 
can be spread across many incremental savesnaps. 
Restoring such a file accordingly may require access 
to many savesnaps. The file restore section shows that 
the design of file restore allows efficient tape traversal 
for these files. 

Volume Restore Operation 
The Spiralog backup volume restore operation takes a 
set of savesnaps and copies the segments that make up 
a snapshot onto a disk. Together, this set of segments 
and the location of the snapshot checkpoint define 
a volume. The steps involved in a volume restore from 
a full savesnap are 

I . Open the savesnap, and read the snapshot check­
point position from the savesnap header. 

2. Initialize the target disk to be a Spiralog volume. 

3. Copy all segments from the savesnap to the tar­
get disk. Note that the segments written to the 
target disk do not depend in any way on the tar­
get disk geometry. This means that the target disk 
may be completely different from the source 

SAVESNAPS 

@ Full save on 
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@ Wednesday 
since Monday 

9 I @ Friday since 
Wednesday 
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disk from which the savesnap was made, providing 
the target container is large enough to hold the 
restored segments. 

4. Backup declares the volume restore as complete 
(no more segments will be written to the volume). 
Backup tells the file system how to mount the vol­
ume by supplying the snapshot checkpoint location. 

A Spiralog restore operation treats an increm~nt~l 
savesnap and all the preceding savesnaps upon which It 
depends as a single savesnap. For savesnaps other than 
the most recent savesnap ( the base savesnap ), the 
snapshot information and directory inform~tion are 
ignored. The sole purpose of these savesnaps 1s to pro­
vide segments to the base savesnap. 

To restore a volume from a set of incremental save­
snaps, the Spiralog backup system performs steps 1 
and 2 using the base savesnap. In step 3, the restore 
copies all the segments in the snapshot defined by 
the base savesnap to the target disk. (Note that there 
is a one-to-one correspondence between snapshots 
and savesnaps.) The savesnaps are processed in reverse 
chronological order. The contents of the segment 
table in the base savesnap define the list of segments in 
the snapshot to be restored. Although the volume 
restore operation copies all the segments in the base 
savesnap, not all segments in the savesnaps processed 
may be required. Savesnaps are included in the restore 
process if they contain some segments that are needed. 
Such savesnaps may also contain segments that were 
cleaned before the base savesnap was created. 

The structure of the savesnap allows the efficient 
location and copying of specific segments. The segment 
table in the savesnap describes exactly which segments 
are stored in the savesnap. Since the segments are of 
a fixed size, it is easy to calculate the position within 
the savesnap where a particular segment is stored, pro­
vided the segment table is available and the position of 
the first segment is known. This will always be the case 
by the time the segment table has been read because 
the segments immediately follow this table. 

Most savesnaps are stored on tape. This storage 
medium lends itself to the indexing just described. In 
particular, modern tape drives such as the Digital 
Linear Tape (DLT) series provide fast, relative tape 
positioning that allows tape-based savesnaps to be 
selectively read more quickly than with a sequential 
scan. 11 Similarly, on random-access media such as 
disks, a particular segment can be read without strict 
sequential scanning of data. . 

The volume restore operation is therefore a phystcal 
operation. The segments can be read and written effi­
ciently (even in the case of incremental savesnaps from 
sequential media), resulting in a high-performance 
recovery from volume failure or site disaster. 
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File Restore Operation 
The purpose of a file restore operation is to provide 
a fast and efficient way to retrieve a small number of 
files from a savesnap without performing a full volume 
restore. Typically, file restore is used to recover files 
that have been inadvertently deleted. To achieve high­
performance file restore, we imposed the following 
requirements on the design: 

• A file restore session must process as few savesnaps 
as possible; it should skip savesnaps that do not 
contain data needed by the session. 

• When processing a savesnap, the file restore must 
scan the savesnap linearly, in a single pass. 

The process of restoring files can be broken down 
into three steps: ( 1) discover the file identifiers for all 
the files to be restored; (2) use the file identifiers to 
locate the file data in the saved segments, and then 
read that data; and ( 3) place the newly recovered data 
back into the current Spiralog file system. 

Discovering the File Identifiers The user supplies the 
names of the files to be restored. The mapping 
between the file names and the file identifiers associ­
ated with these names is stored in the segments, but 
this information cannot be discovered simply by 
inspecting the contents of the saved segments. A 
corollary of the temporal ordering of the segments 
within a savesnap is that hierarchical information, such 
as nested directories, tends to be presented in precisely 
the wrong order for scanning in a single pass. To over­
come this problem, the save operation writes the com­
plete directory tree to the savesnap before copying any 
segments to the savesnap. This tree maps file names to 
identifiers for every file and directory in the savesnap. 
The file restore session constructs a partial tree of the 
names of the files to be restored. The partial tree is 
then matched, in a single pass, against the complete 
tree stored in the savesnap. This process produces the 
required file identifiers. 

Locating and Reading t he File Data After discovering 
the file identifiers, the file restore session reads the list 
of segments present in the savesnap; this list comes 
after the directory tree and before any saved segments. 
The file restore then switches focus to discover pre­
cisely which segments contain the file data that corre-
spond to the file identifiers. . 

The first segment read from the savesnap contams 
the tail of the log. The log provides a mapping between 
file identifiers and locations of data within segments. 
The tail of the log contains the root of the map. 

We developed a simple interface for the file restore 
to use to navigate the map. Essentially, this interface 
permits the retrieval of all mapping information 



relevant to a particular file identifier that is held within 
a given segment. The mapping information returned 
through this interface describes either mapping infor­
mation held elsewhere or real file data. One character­
istic of the log is that anything to which such mapping 
information points must occur earlier in the log, that 
is, in a subsequent saved segment. Recall property 2 of 
the LFS on-disk data structures. Consequently, the file 
restore session will progress through the savesnaps in 
the desired linear fashion provided that requests are 
presented to the interface in the correct order. The 
correct order is determined by the allocation of segids. 
Since segids increase monotonically over time, it is 
necessary only to ensure that requests are presented in 
a decreasing segid order. 

The file restore interface operates on an object 
called a context. The context is a tuple that contains a 
location in the log, namely ( segid, offset), and a type 
field. When supplied with a file identifier and a con­
text, the core function of the interface inspects the seg­
ment determined by the context and returns the set of 
contexts that enumerate all available mapping infor­
mation for the file identifier held at the location given 
by the initial context. 

The type of context returned indicates one of the 
following situations: 

SAVESNAP 

633 555 478 

MET ADA TA 

EXTENT OF SAVESNAP TRAVERSAL SO FAR 

• The location contains real file data. 

• The location given by the context holds more 
mapping information. In this case, the core func­
tion can be applied repeatedly to determine the 
precise location of the file's data. 

A work list of contexts in decreasing segid order 
drives the file restore process. The procedure for 
retrieving the data for a single file identifier is as fol­
lows. At the outset of the file restore operation, the 
work list holds a single context that identifies the root 
of the map (the tail of the log). As items are taken from 
the head of the list, the file restore must perform one 
of two actions. If the context is a pointer to real file 
data, then the file restore reads the data at that location. 
If the context holds the location of mapping informa­
tion, then the core function must be applied to enu­
merate all possible further mapping information held 
there. The file restore operation places all returned 
contexts in the work list in the correct order prior to 
picking the next work item. This simple procedure, 
which is illustrated in Figure 8, continues until the 
work list is empty and all the file's data has been read. 

To cope with more than one file, the file restore 
operation extends this procedure by converting the 
work list so that it associates a particular file identifier 

195 69 59 

TARGET FILE SYSTEM FOR FILE RESTORE 

Figure 8 

DIRECTION IN WHICH THE LOG IS WRITIEN 

KEY: 

:···: . . ........ • 
FILE DATA 

FILE SYSTEM MAP DATA 

The shaded areas represent the file data to be restored and the file system metadata that 
needs to be accessed to retrieve that data. The restore session has thus far processed 
segment 478. Part A of the file has been recovered into the target file system. Parts Band C 
are still to come. After processing segment 478, the file restore visits the next known parts of 
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment 
59 will be on the work list. The next segment that the file restore will read is segment 69, so the 
session can skip the intervening segment (segment 195). 

File Restore Session in Progress 
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with each context. File restore initializes the work list 
to hold a pointer to the root of the map (the tail of the 
log) for each file identifier to be restored. The effect is 
to interleave requests to read more than one file while 
maintaining the correct segid ordering. 

A further subtlety occurs when the context at the 
head of the work list is found to refer to a segment 
outside the current savesnap. The ordering imposed 
on the work list implies that all subsequent items of 
work must also be outside the current savesnap. This 
follows from the temporal ordering properties of LFS 
on-disk structures and the way in which incremental 
savesnaps are defined. When this situation occurs, the 
work list is saved. When the next savesnap is ready for 
processing, the file restore session can be restarted 
using the saved work list as the starting point. 

During this step, the file restore writes the pieces of 
files to the target volume as they are read from the 
savesnap. Since the file restore process allocates file 
identifiers on a per-volume basis, restore must allocate 
new file identifiers in the target volume to accept the 
data being read from the source savesnap. 

The new file identifiers are hidden from users dur­
ing the file restore until the file restore process has fin­
ished since the files are not complete and may be 
missing vital parts such as access permissions. Rather 
than allow access to these partial files, the file restore 
hides the new file identifiers until all the data is pres­
ent, at which time the final stage of the file restore can 
take place. 

Making the Recovered Files Available to the User In 
the third step of the process, the file restore operation 
makes the newly recovered files accessible. At the 
beginning of the step, the files exist only as bits of data 
associated with new file identifiers-the files do not yet 
have names. The names that are now bound to these 
file identifiers come from the partial directory tree that 
was originally used to match against the directory tree 
in the savesnap. This final step restores the original 
names and contents to all the files that were originally 
requested. The files retain the new file identifiers that 
were allocated during the file restore process. 

Management of Incremental Saves 

One design goal for the Spiralog backup was to reduce 
the cost of storage management. The design includes 
the means of performing an incremental volume save 
that copies only data written since the previous 
backup. To implement a backup strategy that never 
requires more than one full backup but allows restores 
using a finite number of savesnaps, we designed and 
implemented the savesnap merge function. 

Savesnap merge operates similarly to volume 
restore, but instead of copying segments to a disk as 
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in a volume restore, savesnap merge copies segments 
to a new savesnap. As shown in Figure 9, the effect 
of merging a base savesnap and all the incremental 
savesnaps upon which it depends is to produce a full 
savesnap. This savesnap is precisely the one that would 
have been created had the base savesnap been specified 
as a full savesnap instead of an incremental savesnap. 
Spiralog merge copies the savesnap information and 
the directory information stored in the base savesnap 
to the merged savesnap before it copies the segment 
table and the segments. 

Savesnap merge provides a practical way of manag­
ing very large data volumes. The merge operation can 
be used to limit the number of savesnaps required to 
restore a snapshot, even if full backups are never taken. 
Merge is independent of the source volume and can be 
undertaken on a different system to allow further sys­
tem management flexibility. 

Summary of Spiralog Backup Features 
A summary of the features and performance provided 
by the Spiralog backup system appears in Table 3 at 
the end of the Results section. For comparison, the 
table also contains corresponding information for the 
file-based and physical approaches to backup. 

Results 

We measured volume save and individual file restore 
performance on both the Spiralog backup system and 
the backup system for Files- I 1, the original Open VMS 
file system. The hardware configuration consisted of 
a DEC 3000 Model 500 and a single RZ25 source disk 
each for Spiralog and Files-11 volumes, respectively. 
The target device for the backup was a TZ877 tape. 
The system was running under the Open VMS version 
7.0 operating system and Spiralog version 1.1. The 
volumes were populated with file distributions that 
reflected typical user accounts in our development 
environment. Each volume contained 260 megabytes 
(MB) of user data, which included a total of21,682 
files in 401 directories. 

Volume Save Performance 

For both the Spiralog backup and the Files-11 backup, 
we saved the source volume to a freshly initialized tape 
on an otherwise idle system. We measured the elapsed 
time of the save operation and recorded the size of the 
output savesnap or saveset. We averaged the results 
over five iterations of the benchmark. Table 1 presents 
these measurements and the resulting throughput. 

The throughput represents the average rate in 
megabytes per second (MB/s) of writing to tape over 
the duration of a save operation. In the case of 
Spiralog, tape throughput varies greatly with the 



Figure 9 
Merging Savesnaps 

Table 1 

BACKUPS 

Monday-Full 

Wednesday­
Incremental 

Friday­
Incremental 

Merge three savesets to produce one 
new savesnap equivalent to a full 
save snap taken on Friday. 

Performance Comparison of the Spira log and Files-11 Backup Save Operat ions 

Elapsed Time 
Backup System (Minutes:seconds) 

Spiralog save 05:20 

Files-11 backup 10:14 

phases of the save operation. During the directory 
scan phase ( typically up to 20 percent of the total 
elapsed save time), the only tape output is a compact 
representation of the volume directory graph. In com­
parison, the segment writing phase is usually bound by 
the tape throughput rate. In this configuration, the 
tape is the throughput bottleneck; its maximum raw 
data tluoughput is 1.25 MB/s (uncompressed).11 

Overall, the Spiralog volume save operation is nearly 
twice as fast as the Files-11 backup volume save opera­
tion in this type of computing environment. Note that 
the Spiralog savesnap is larger than the corresponding 
Files-11 saveset. The Spiralog savesnap is less efficient 
at holding user data than the packed per-file represen­
tation of the Files-11 saveset. In many cases, though, 
the higher performance of the Spiralog save operation 
more than out\vcighs this inefficiency, particularly 
when it is taken into account that the Spiralog save 
operation can be performed on-line. 

File Restore Performance 
To determine file restore performance, we measured 
how long it took to restore a single file from the 
savesets created in the save benchmark tests. The hard­
ware and software configurations were identical to 
those used for the save measurements. We deleted 
a single 3-kilobyte (KB) file from the source volume 
and then restored the file. We repeated this operation 
nine times, each time measuring the time it took to 
restore the file. Table 2 shows the results. 

Savesnap or 
Saveset Size Throughput 
(Megabytes) (Megabytes/second) 

339 1.05 

297 0.48 

Table 2 
Performance Comparison of the Spira log and Files-1 1 
Individual File Restore Operations 

Backup System 

Spira log file restore 

Files-11 backup 

Elapsed Time 
(Minutes:seconds) 

01:06 

03:35 

The Spiralog backup system achieves such good 
performance for file restore by using its knowledge of 
the way the segments are laid out on tape. The file 
restore process needs to read only those segments 
required to restore the file; the restore skips the inter­
vening segments using tape skip commands. In the 
example presented in Figure 8, the restore can skip 
segments 555 and 195. In contrast, a file-based backup 
such as Files-11 usually does not have accurate index­
ing information to minimize tape I/0. Spiralog's 
tape-skipping benefit is particularly noticeable when 
restoring small numbers of files from very large save­
snaps; however, as shown in Table 2, even with small 
savesets, individual file restore using Spiralog backup is 
three times as fast as using Files-I 1. 

Table 3 presents a comparison of the save per­
formance and features of the Spiralog, file-based, and 
physical backup systems. 
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Table 3 
Comparison of Spiralog, File-based, and Physical Backup Systems 

Spiralog Backup File-based Backup Physical Backup 
System System System 

Save performance 
(the number of I/Os 
required to save the 
the source volume) 

File restore 

Volume restore 

Incremental save 

The number of I/Os is 
O(number of segments that 
contain live data) plus 
O(number of directories) 

Yes 

Yes, fast 

Yes, physical 

The number of I/Os is 
O(number of files) 
I/Os to read the file 
data plus O(number 
of directories) I /Os 

Yes 

Yes 

Yes, entire files that 
have changed 

The number of I/Os 
is O(size of the disk) 

No 

Yes, fast but limited 
to disks of the same size 

No 

Note that this table uses "big oh" notation to bound a value. O(n), which is pronounced "order of n," means that the value represented is no 
greater than Cn for some constant C, regardless of the value of n. Informally, this means that O(n) can be thought of as some constant multiple 
of n. 

Other Approaches and Future Work 

This section outlines some other design options 
we considered for the Spiralog backup system. Our 
approach offers further possibilities in a number 
of areas. We describe some of the opportunities 
available. 

Backup and the Cleaner 
The benefits of the write performance gains in an LFS 
are attained at the cost of having to clean segments. 8 

An opportunity appears to exist in combining the 
cleaner and backup functions to reduce the amount of 
work done by either or both of these components; 
however, the aims of backup and the cleaner are quite 
different. Backup needs to read all segments written 
since a specific time (in the case of a full backup, since 
the birth of the volume). The cleaner needs to defrag­
ment the free space on the volume. This is done most 
efficiently by relocating data held in certain segments. 
These segments are those that are sufficiently empty to 
be worth scavenging for free space. The data in these 
segments should also be stable in the sense that the 
data is unlikely to be deleted or outdated immediately 
after relocation. 

The only real benefit that can be exacted by looking 
at these functions together is to clean some segments 
while performing backup. For example, once a seg­
ment has been read to copy to a savesnap, it can be 
cleaned. This appro.i.ch is probably not a good one 
because it reduces system performance in the follow­
ing ways: additional processing required in cleaning 
removes CPU and memory resources available to 
applications, and the cleaner generates write opera­
tions that reduce the backup read rate. 
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There are two other areas in which backup and 
the cleaner mechanism interact that warrant further 
investigation. 

1. The save operation copies segments in their 
entirety. That is, the operation copies both "stale" 
(old) data and live data to a savesnap. The cost of 
extra storage media for this extraneous data is 
traded off against the performance penalty in trying 
to copy only live data. It appears that the file system 
should run the cleaner vigorously prior to a backup 
to minimize the stale data copied. 

2. Incremental savesnaps contain cleaned data. This 
means that an incremental savesnap contains a copy 
of data that already exists in one of the savesnaps on 
which it depends. This is an apparent waste of effort 
and storage space. 

It is best to undertake a full backup after a thorough 
cleaning of the volume. A single strategy for incremen­
tal backups is less easy to define. On one hand, the size 
of an incremental backup is increased if much cleaning 
is performed before the backup. On the other hand, 
restore operations from a large incremental backup 
(particularly selective file restores ) are likely to be 
more efficient. The larger the incremental backup, the 
more data it contains. Consequently, the chance of 
restoring a single file from just the base savesnap 
increases with the size of the incremental backup. 
Studying the interactions between the backup and the 
cleaner may offer some insight into how to improve 
either or both of these components. 

A continuous backup system can take copies of seg­
ments from disk using policies similar to the cleaner. 
This is explored in Kohl's paper. 12 



Separating the Backup Save Operation into a 
Snapshot and a Copy 
The design of the save operation involves the creation 
of a snapshot followed by the fast copy of the snapshot 
to some separate storage. The Spiralog version 1.1 
implementation of the save operation combines these 
steps. A snapshot can exist only during a backup save 
operation. 

System administrators and applications have signifi­
cantly more flexibility if the split in these two functions 
of backup is visible. The ability to create snapshots that 
can be mounted to look like read-only versions of a file 
system may eliminate the need for the large number of 
backups performed today. Indeed, some file systems 
offer this feature. 6

•
7 The additional advantage that 

Spiralog offers is to allow the very efficient copying of 
individual snapshots to off-line media. 

Improving the Consistency and Availability 
of On-line Backup 
There are a number of ways to improve application 
consistency and availability using the Spiralog backup 
design. In addition, some of these features further 
reduce storage management costs. 

lntervolume Snapshot Creation Spiralog allows a 
practical way of creating and managing large volumes, 
but there will be times when applications require data 
consistency for backup across volumes. A coordinated 
snapshot across volumes would provide this. 

Application Involvement The Spiralog version 1.1 
implementation does not address application involve­
ment in the creation of a snapshot. A snapshot's con­
tents are precisely the volume's contents that are on 
disk at the time of snapshot creation. This means that 
applications accessing the volume have to commit 
independently to the file system data they require to 
be part of the snapshot. 

There is an emerging trend to design system­
level interfaces that allow better application interac­
tion with the file system. For example, the Windows 
NT operating system provides the oplock and 
NtNotifyChangeDirectory interfaces to advise an 
interested application of changes to files and directo­
ries. Similarly, an interface could allow applications to 
register an interest with the file system for notification 
of an impending snapshot creation. The application 
would then be able to commit the data it needs as part 
of a backup and continue, thus improving application 
consistency and availability and reducing work for sys­
tem administrators. 

Minimizing Disk Reads 
The Spiralog file restore retrieves the data that 
constitutes a number of files in a single pass of 

segments read in a specific order. This design was 
important to allow the efficient restore of files from 
sequential media. 

More generally, this way of traversing the file system 
allows specific, known parts of a set of files to be 
obtained by reading the segments that contain part of 
this data only once. This technique is also interesting 
for random-access media storage of volumes because 
it describes an algorithm for minimizing the number 
of disk reads to get this data. Possible applications 
of this technique are numerous and are particularly 
interesting in the context of data management of very 
large volumes. 

For example, suppose an application is required 
to monitor an attribute ( e.g., the time oflast access) of 
all files on a massive volume. Suppose also that the vol­
ume is too big to allow the application to trawl the file 
system daily for this information; this process takes too 
long. If the application maintains a database of the 
information, it needs only to gather the changes that 
have happened to this data on a daily basis. Therefore, 
the application could obtain this information by tra­
versing only those segments written since the last time 
it updated its database and locating the relevant data 
within those segments. Our mechanism for restoring 
files provides exactly this capability. An investigation of 
how applications might best use this technique could 
lead to the design of an interface that the file system 
could use for fast scanning of data. 

Conclusions 

File systems use backup to protect against data loss. 
A significant portion of the cost associated with man­
aging storage is directly related to the backup func­
tion. 13-17 Log-structured data storage provides some 
features that reduce the costs associated with backup. 

The Spiralog log-structured file system version 1.1 
for the Open VMS Alpha operating system includes 
a new, high-performance, on-line backup system. The 
approach that Spiralog takes to obtain data consis­
tency for on-line backup is similar to the snapshot 
approach used in Network Appliance Corporation's 
FAServer, the Digital UNIX Advanced File System, and 
other systems,6,7 The feature unique to the Spiralog 
backup system is its use of the physical attributes of 
log-structured storage to obtain high-performance 
saving and restoring of data to and from tape. In par­
ticular, the gain in save performance is the result of 
a restore strategy that can efficiently retrieve data from 
a sequence of segments stored on tape as they are on 
disk. This design leads to a minimum of processing 
and discrete I/0 operations. The restore operation 
uses improvements in tape hardware to reduce pro­
cessing and I/0 bandwidth consumption; the opera­
tion uses tape record skipping within savesnaps for fast 
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data indexing. The Spiralog backup implementation 
provides an on-line backup save operation with signifi­
cantly improved performance over existing offerings. 
Performance ofindividual file restore is also improved. 
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Integrating the Spiralog 
File System into the 
OpenVMS Operating 
System 

Digital's Spiralog file system is a log-structured 
file system that makes extensive use of write­
back caching. Its technology is substantially 
different from that of the traditional OpenVMS 
file system, known as Files-11. The integration 
of the Spiralog file system into the OpenVMS 
environment had to ensure that existing appli­
cations ran unchanged and at the same time had 
to expose the benefits of the new file system. 
Application compatibility was attained through 
an emulation of the existing Files-11 file system 
interface. The Spiralog file system provides an 
ordered write-behind cache that allows applica­
tions to control write order through the barrier 
primitive. This form of caching gives the benefits 
of write-back caching and protects data integrity. 
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The Spiralog file system is based on a log-structuring 
method that offers fast writes and a fast, on-line backup 
capability. 1-

3 The integration of the Spiralog file system 
into the Open VMS operating system presented many 
challenges. Its programming interface and its extensive 
use of write-back caching were substantially different 
from those of the existing Open VMS file system, 
known as Files-I 1. 

To encourage use of the Spiralog file system, we had 
to ensure that existing applications ran unchanged in 
the Open VMS environment. A file system emulation 
layer provided the necessary compatibility by mapping 
the Files-11 file system interface onto the Spiralog file 
system. Before we could build the emulation layer, we 
needed to understand how these applications used the 
file system interface. The approach taken to under­
standing application requirements led to a file system 
emulation layer that exceeded the original compatibil­
ity expectations. 

The first part of this paper deals with the approach 
to integrating a new file system into the OpenVMS 
environment and preserving application compatibility. 
It describes the various levels at which the file system 
could have been integrated and the decision to emu -
late the low-level file system interface. Techniques 
such as tracing, source code scanning, and functional 
analysis of the Files-11 file system helped determine 
which features should be supported by the emulation. 

The Spiralog file system uses extensive write-back 
caching to gain performance over the write-through 
cache on the Files-11 file system. Applications have 
relied on the ordering of writes implied by write­
through caching to maintain on-disk consistency in 
the event of system failures. The lack of ordering 
guarantees prevented the implementation of such 
careful write policies in write-back environments. The 
Spiralog file system uses a write-behind cache (intro­
duced in the Echo file system) to allow applications to 
take advantage of write-back caching performance 
while preserving careful write policies.4 This feature is 
unique in a commercial file system. The second part of 
this paper describes the difficulties of integrating write­
back caching into a write-through environment and 
how a write-behind cache addressed these problems. 



Providing a Compatible File System Interface 

Application compatibility can be described in two 
ways: compatibility at the file system interface and 
compatibility of the on-disk structure. Since only spe­
cialized applications use knowledge of the on-disk 
structure and maintaining compatibility at the inter­
face level is a feature of the Open VMS system, the 
Spiralog file system preserves compatibility at the file 
system interface level only. In the section Files-11 and 
the Spiralog File System On-disk Structures, we give 
an overview of the major on-disk differences between 
the two file systems. 

The level of interface compatibility would have a 
large impact on how well users adopted the Spiralog 
file system. If data and applications could be moved to 
a Spiralog volume and run unchanged, the file system 
would be better accepted. The goal for the Spiralog 
file system was to achieve 100 percent interface com­
patibility for the majority of existing applications. The 
implementation of a log-structured file system, how­
ever, meant that certain features and operations of the 
Files-11 file system could not be supported. 

The Open VMS operating system provides a number 
of file system interfaces that are called by applications. 
This section describes how we chose the most compat­
ible file system interface. The OpenVMS operating 
system directly supports a system-level call interface 
(QIO) to the file system, which is an extremely com­
plex interface.5 The QIO interface is very specific to 
the OpenVMS system and is difficult to map directly 
onto a modern file system interface. This interface is 
used infrequently by applications but is used exten­
sively by Open VMS utilities. 

Open VMS File System Environment 
This section gives an overview of the general 
OpenVMS file system environment, and the existing 

Open VMS and the new Spiralog file system interfaces. 
To emulate the Files-11 file system, it was important to 
understand the way it is used by applications in the 
Open VMS environment. A brief description of the 
Files-11 and the Spiralog file system interfaces gives an 
indication of the problems in mapping one interface 
onto the other. These problems are discussed later in 
the section Compatibility Problems. 

In the OpenVMS environment, applications inter­
act with the file system through various interfaces, 
ranging from high-level language interfaces to direct 
file system calls. Figure l shows the organization of 
interfaces within the Open VMS environment, includ­
ing both the Spiralog and the Files-11 file systems. 

The following briefly describes the levels ofinterface 
to the file system. 

• High-level language (HLL) libraries. HLL libraries 
provide file system functions for high-level 
languages such as the Standard C library and 
FORTRAN I/0 functions. 

• OpenVMS language-specific libraries. These 
libraries offer OpenVMS-specific file system func­
tions at a high level. For example, lib$create_dir( ) 
creates a new directory with specific OpenVMS 
security attributes such as ownership. 

• Record Management Services. The OpenVMS 
Record Management Services (RMS) are a set of 
complex routines that form part of the Open VMS 
kernel. These routines are primarily used to access 
structured data within a file. However, there are 
also routines at the file level, for example, open, 
close, delete, and rename. The RMS parsing rou­
tines for file search and open give the Open VMS 
operating system a consistent syntax for file names. 
These routines also provide file name parsing oper­
ations for higher level libraries. RMS calls to the file 
system are treated in the same way as direct applica­
tion calls to the file system. 

APPLICATIONS 

Figure 1 

HIGH-LEVEL LANGUAGE 
LIBRARIES, e.g., C LIBRARY 

OPENVMS LANGUAGE­
SPECIFIC LIBRARIES 

RECORD MANAGEMENT SERVICES - SYSTEM CALLS 

OPENVMS FILE SYSTEM INTERFACE - SYSTEM CALLS (010) 

FILES-11 FILE SYSTEM 
EMULATION LAYER 

SPIRALOG FILE SYSTEM 

FILES-11 FILE SYSTEM 

The Open VMS File System Environment 
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• Files-11 file system interface. The Open VMS oper­
ating system has traditionally provided the Files-11 
file system for applications. It provides a low-level 
file system interface so that applications can request 
file system operations from the kernel. 

Each file system call can be composed of multiple 
subcalls. These subcalls can be combined in numer­
ous permutations to form a complex file system 
operation. The number of permutations of calls and 
subcalls makes the file system interface extremely 
difficult to understand and use. 

• File system emulation layer. This layer provides 
a compatible interface between the Spiralog file 
system and existing applications. Calls to export 
the new features available in the Spiralog file system 
are also included in this layer. An important new 
feature, the write-behind cache, is described in the 
section Overview of Caching. 

• The Spiralog file system interface. The Spiralog 
file system provides a generic file system interface. 
This interface was designed to provide a superset 
of the features that are typically available in file sys­
tems used in the UNIX operating system. File 
system emulation layers, such as the one written for 
Files-11, could also be written for many different 
file systems.6 Features that could not be provided 
generically, for example, the implementation of 
security policies, are implemented in the file system 
emulation layer. 

The Spiralog file system's interface is based on the 
Virtual File System (VFS), which provides a file 
system interface similar to those found on UNIX 
systems.7 Functions available are at a higher level 
than the Files-11 file system interface. For example, 
an atomic rename function is provided. 

Files-11 and the Spiralog File System 
On-disk Structures 
A major difference between the Files-11 and the 
Spiralog file systems is the way data is laid out on 
the disk. The Files-11 system is a conventional, 
update-in-place file system.8 Here, space is reserved for 
file data, and updates to that data are written back to 
the same location on the disk. Given this knowledge, 
applications could place data on Files-11 volumes to 
take advantage of the disk's geometry. For example, 
the Files-11 file system allows applications to place files 
on cylinder boundaries to reduce seek times. 

The Spiralog file system is a log-structured file 
system (LFS). The entire volume is treated as a con­
tinuous log with updates to files being appended to 
the tail of the log. In effect, files do not have a fixed 
home location on a volume. Updates to files, or cleaner 
activity, will change the location of data on a volume. 
Applications do not have to be concerned where their 
data is placed on the disk; LFS provides this mapping. 
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With the advent of modern disks in the last decade, 
the exact placement of data has become much less crit­
ical. Modern disks frequently return geometry infor­
mation that does not reflect the exact geometry of 
the disk. This nullifies any advantage that exact place­
ment on the disk offers to applications. Fortunately, 
with the Files-11 file system, the use of exact file place­
ment is considered a hint to the file system and can be 
safely ignored. 

Interface Decision 
Many features of the Spiralog file system and the 
Files-11 file system are not directly compatible. To 
enable existing applications to use the Spiralog file 
system, a suitable file system interface had to be 
selected and emulated. The file system emulation layer 
would need to hook into an existing kernel-level file 
system interface to provide existing applications with 
access to the Spiralog file system. 

Analysis of existing applications showed that the 
majority of file system calls came through the RMS 
interface. This provides a functionally simpler interface 
onto the lower level Files-11 interface. Most applica­
tions on the Open VMS operating system use the RMS 
interface, either directly or through HLL libraries, to 
access the file system. 

Few applications make direct calls to the low-level 
Files-11 interface. Calls to this interface are typically 
made by RMS and Open VMS utilities that provide 
a simplified interface to the file system. RMS supports 
file access routines, and Open VMS utilities support 
modification of file metadata, for example, security 
information. Although few in number, those applica­
tions that do call the Files-11 file system directly are 
significant ones. If the only interface supported was 
RMS, then these utilities, such as SET FILE and 
OpenVMS Backup, would need significant modifica­
tion. This class of utilities represents a large number of 
the OpenVMS utilities that maintain the file system. 

To provide support for the widest range of applica­
tions, we selected the low-level Files-11 interface for 
use by the file system emulation layer. By selecting this 
interface, we decreased the amount of work needed 
for its emulation. However, this gain was offset by the 
increased complexity in the interface emulation. 

Problems caused by this interface selection are 
described in the next section. 

Interface Compatibility 
Once the file system interface was selected, choices 
had to be made about the level of support provided by 
the emulation layer. Due to the nature of the log­
structured file system, described in the section Files-11 
and the Spiralog File System On-disk Structures, full 
compatibility of all features in the emulation layer was 
not possible. This section discusses some of the deci­
sions made concerning interface compatibility. 



An initial decision was made to support docu­
mented low-level Files-11 calls through the emula­
tion layer as often as possible. This would enable all 
well-behaved applications to run unchanged on the 
Spiralog file system. Examples of well-behaved appli­
cations are those that make use of HLL library calls. 
The following categories of access to the file system 
would not be supported: 

• Those directly accessing the disk without going 
through the file system 

• Those making use of specific on-disk structure 
information 

• Those making use of undocumented file system 
features 

A very small number of applications fell into these 
categories. Examples of applications that make use of 
on-disk structure knowledge are the Open VMS boot 
code, disk structure analyzers, and disk defragmenters. 

The majority of Open VMS applications make file 
system calls through the RMS interface. Using file sys­
tem call-tracing techniques, described in the section 
Investigation Techniques, a full set of file system calls 
made by RMS could be constructed. After analysis of 
this trace data, it was clear that RMS used a small set 
of well-structured calls to the low-level file system 
interface. Further, detailed analysis of these calls 
showed that all RMS operations could be fully emu­
lated on the Spiralog file system. 

The support of Open VMS file system utilities that 
made direct calls to the low-level Files-11 interface was 
important if we were to minimize the amount of code 
change required in the Open VMS code base. Analysis 
of these utilities showed that the majority of them 
could be supported through the emulation layer. 

Very few applications made use of features of the 
Files-11 file system that could not be emulated. This 
enabled a high number of applications to run 
unchanged on the Spiralog file system. 

Table 1 
Categorization of File System Features 

Category Examples 

Compatibility Problems 
This section describes some of the compatibility prob­
lems that we encountered in developing the emulation 
layer and how we resolved them. 

When considering the compatibility of the Spiralog 
file system with the Files-11 file system, we placed the 
features of the file system into three categories: sup­
ported, ignored, and not supported. Table 1 gives 
examples and descriptions of these categories. A feature 
was recategorized only ifit could be supported but was 
not used, or if it could not be easily supported but 
was used by a wide range of applications. 

The majority ofOpenVMS applications make sup­
ported file system calls. These applications will run as 
intended on the Spiralog file system. Few applications 
make calls that could be safely ignored. These applica­
tions would run successfully but could not make use of 
these features. Very few applications made calls that 
were not supported. Unfortunately, some of these 
applications were very important to the success of the 
Spiralog file system, for example, system management 
utilities that were optimized for the Files-11 system. 

Analysis of applications that made unsupported calls 
showed the following categories of use: 

• Those that accessed the file header-a structure 
used to store a file's attributes. This method was 
used to return multiple file attributes in one call. 
The supported mechanism involved an individual 
call for each attribute. 

This was solved by returning an emulated file 
header to applications that contained the majority 
ofinformation interesting to applications. 

• Those reading directory files. This method was used 
to perform fast directory scans. The supported 
mechanism involved a file system call for each name. 

This was solved by providing a bulk directory 
reading interface call. This call was similar to the 
getdirentries( ) call on the UNIX system and was 

Notes 

Supported. The operation requested 
was completed, and a success status 
was returned. 

Requests to create a file or open 
a file. 

Most calls made by applications 
belong in the supported category. 

Ignored. The operation requested 
was ignored, and a success status 
was returned. 

Not supported. The operation 
requested was ignored, and a 
failure status was returned. 

A request to place a file in a 
specific position on the disk to 
improve performance. 

A request to directly read the 
on-disk structure. 

This type of feature is incompatible 
with a log-structured file system. 
It is very infrequently used and not 
available through HLL libraries. It 
could be safely ignored. 

This type of request is specific to 
the Files-11 file system and could 
be allowed to fail because the 
application would not work on the 
Spiralog file system. It is used only 
by a few specialized applications. 
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straightforward to replace in applications that 
directly read directories. 

The OpenVMS Backup utility was an example of 
a system management utility that directly read 
directory files. The backup utility was changed to 
use the directory reading call on Spiralog volumes. 

• Those accessing reserved files. The existing file sys­
tem stores all its metadata in normal files that can be 
read by applications. These files are called reserved 
files and are created when a volume is initialized. 

No reserved files are created on a Spiralog volume, 
with the exception of the master file directory 
(MFD). Applications that read reserved files make 
specific use of on-disk structure information and 
are not supported with the Spiralog file system. The 
MFD is used as the root directory and performs 
directory traversals. This file was virtually emulated. 
It appears in directory listings of a Spiralog volume 
and can be used to start a directory traversal, but it 
does not exist on the volume as a real file. 

Investigation Techniques 
This section describes the approach taken to investi­
gate the interface and compatibility problems 
described above. Results from these investigations 
were used to determine which features of the Files-11 
file system needed to be provided to produce a high 
level of compatibility. 

The investigation focused on understanding how 
applications called the file system and the semantics of 
the calls. A number of techniques were used in lieu 
of design documentation for applications and the 
Files-11 file system. These techniques were also used 
to avoid the direct examination of source code. 

The following techniques were used to understand 
application calls to the file system: 

• Tracing file system operations 

Tracing file system operations provided a large 
amount of data for applications. A modified 
Files-1 1 file system was constructed that logged all 
file operations on a volume. A full set of regression 
tests were then run for the 25 Digital and third­
party products most often layered on the Files-11 
file system. The data was then reduced to deter­
mine the type of file system calls made by the 
layered products. Analysis of log data showed 
that most layered products made file system calls 
through HLL libraries or the RMS interface. This 
technique is useful where source code is not avail­
able, but full code path coverage is available to con­
struct a full picture of calls and arguments. 

• Surveying application maintainers on file system use 

Surveying application maintainers was a potentially 
useful technique for alerting the other maintainers 
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about the impact of the Spiralog file system. More 
than 2,000 surveys were sent out, but fewer than 
25 useful results were returned. Sadly, most appli­
cation maintainers were not aware of how their 
product used the file system. 

• Automated application source code searching 

Automated source code searching quickly checks 
a large amount of source code. This technique was 
most useful when analyzing file system calls made by 
the OpenVMS operating system or utilities. How­
ever, this does not work well when applications 
make dynamic calls to the file system at run time. 

The following techniques were used to understand 
the semantics of file system calls: 

• Functional analysis of the Files-11 file system 

Functional analysis of the Files-11 file system was 
one of the most useful techniques adopted. It 
avoided the need to reverse-engineer the Files-11 
file system. Whenever possible, the Files-11 file sys­
tem was treated as a black box, and its function was 
inferred from interface documentation and appli­
cation calls. This technique avoided duplicating 
defects in the interface and enabled the design of 
the emulation layer to be derived from function, 
rather than the existing implementation of the 
Files-11 system. 

• Test programs to determine call semantics 

Test programs were used extensively to isolate spe­
cific application calls to the file system. Individual 
calls could be analyzed to determine how they 
worked with the Files-11 file system and with the 
emulation layer. This technique formed the basis 
for an extensive file system interface regression test 
suite without requiring the complete application. 

Level of Compatibility Achieved 
The level of file system compatibility with applications 
far exceeded our initial expectations. Table 2 summa­
rizes the results of the regression tests used to verify 
compatibility. 

Table 2 illustrates that applications that use the C or 
the FORTRAN language or the RMS interface to 
access the file system can be expected to work 
unchanged. Verification with the top 25 Digital lay­
ered products and third-party products shows that 
all products that do not make specific use of Files-11 
on-disk features run with the Spiralog file system. 
With the version 1.0 release of the Spiralog file system, 
there are no known compatibility issues. 

Providing New Caching Features 

The Spiralog file system uses ordered write-back cach­
ing to provide performance benefits for applications. 



Table 2 
Verification of Compatibility 

Test Suite 

RMS regression tests 

OpenVMS regression tests 

Files-11 compatibility tests 

C2 security test suite 

C language tests 

FORTRAN language tests 

Number of Tests 

-500 

-100 

-100 

-50 discrete tests 

-2,000 

- 100 

Write-back caching provides very different semantics 
to the model of write-through caching used on the 
Files-11 file system. The goal of the Spiralog project 
members was to provide write-back caching 
in a way that was compatible with existing Open VMS 
applications. 

This section compares write-through and write-back 
caching and shows how some important Open VMS 
applications rely on write-through semantics to pro­
tect data from system failure. It describes the ordered 
write-back cache as introduced in the Echo file system 
and explains how this model of caching (known as 
write-behind caching) is particularly suited to the envi­
ronment of OpenVMS Cluster systems and the 
Spiralog log-structured file system. 

Overview of Caching 
During the last few years, CPU performance improve­
ments have continued to outpace performance 
improvements for disks. As a result, the I/0 bottle­
neck has worsened rather than improved. One of 
the most successful techniques used to alleviate this 
problem is caching. Caching means holding a copy of 
data that has been recently read from, or written to, 
the disk in memory, giving applications access to that 
data at memory speeds rather than at disk speeds. 

Write-through and write-back caching are two 
different models frequently used in file systems. 

• Write-through caching. In a write-through cache, 
data read from the disk is stored in the in-memory 
cache. When data is written, a copy is placed in 
the cache, but the write request does not return 
until the data is on the disk. Write-through caches 
improve the performance of read requests but not 
write requests. 

• Write-back caching. A write-back cache improves 
the performance of both read and write requests. 
Reads are handled exactly as in a write-through 

Result 

All passed. 

All passed. 

All passed. 

All passed, giving the Spira log 
file system the same potential 
security rating as the Files-11 
system. 

All passed. 

All passed. 

cache. This time though, a write request returns as 
soon as the data has been copied to the cache; some 
time later, the data is written to the disk. This 
method allows both read and write requests to 
operate at main memory speeds. The cache can also 
amalgamate write requests that supersede one 
another. By deferring and amalgamating write 
requests, a write-back cache can issue many fewer 
write requests to the disk, using less disk bandwidth 
and smoothing the write pattern over time. 

Figure 2 shows the write-through and write-back 
caching models. The Spiralog file system makes exten­
sive use of caching, providing both write-through and 
write-back models. The use of write-back caching 
allows the Spiralog file system to amalgamate writes, 
thus conserving disk bandwidth. This is especially 
important in an Open VMS Cluster system where disk 
bandwidth is shared by several computers. The 
Spiralog file system attempts to amalgamate not just 
data writes but also file system operations. For example, 
many compilers create temporary files that are deleted 
at the end of the compilation. With write-back caching, 
it is possible that this type of file may be created and 
deleted without ever being written to the disk. 

There are two disadvantages of write-back caching: 
(1) if the system fails, any write requests that have 
not been written to the disk are lost, and (2) once in 
the cache, any ordering of the write requests is lost. 
The data may be written from the cache to the disk in 
a completely different order than the order in which 
the application issued the write requests. To preserve 
data integrity, some applications rely on write ordering 
and the use of careful write techniques. (Careful writ­
ing is discussed further in the section below.) The 
Spiralog file system preserves data integrity by provid­
ing an ordered write-back cache known as a write­
behind cache. 
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Figure 2 
Caching Models 

WRITE-THROUGH 
CACHE 

D 

D 

MICROSECONDS 

WRITE-BACK 
CACHE 

D 

D 

MICROSECONDS 

Caching is more important to the Spiralog file 
system than it is to conventional file systems. Log­
structured file systems have inherently worse read 
performance than conventional, update-in-place file 
systems, due to the need to locate the data in the log. 
As described in another paper in this journal, locating 
data in the log requires more disk I/Os than an 
update-in-place file system. 2 The Spiralog file system 
uses large read caches to offset this extra read cost. 

Careful Writing 
The Files-11 file system provides write-tl1rough 
semantics. Key Open VMS applications such as transac­
tion processing and the OpenVMS Record Manage­
ment Services (RMS) have come to rely on the implicit 
ordering of write-through. They use a technique 
known as careful writing to prevent data corruption 
following a system failure. 

Careful writing allows an application to ensure that 
the data on the disk is never in an inconsistent or 
invalid state. This guarantee avoids situations in which 
an application has to scan and possibly rebuild the data 
on the disk after a system failure. Recovery to a consis­
tent state after a system failure is often a very complex 
and time-consuming task. By ensuring that the disk 
can never be inconsistent, careful writing removes the 
need for this form of recovery. 

Careful writing is used in situations in which an 
update requires several blocks on the disk to be written. 
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Most disks guarantee atomic update of only a single 
disk block. The occurrence of a system failure while 
several blocks are being updated could leave the blocks 
partially updated and inconsistent. Careful writing 
avoids this risk by defining the order in which the 
blocks should be updated on the disk. If the blocks are 
written in this order, the data will always be consistent. 

For example, the file shown in Figure 3 represents 
a persistent data structure. At the start of the file is an 
index block, I, that points to two data blocks within 
the file, A and B. The application wishes to update the 
data (A, B) to the new data (A' , B' ). For the file to be 
valid, the index must point to a consistent set of data 
blocks. So, the index must point either to (A, B) or to 
(A', B'). It cannot point to a mixture such as (A', B). 
Since the disk can guarantee to write only a single 
block atomically, the application cannot simply write 
(A' , B') on top of(A, B) because that involves writing 
two blocks. Should the system fail during the updates, 
doing so could leave the data in an invalid state. 

To solve this problem, the application writes the 
new data to the file in a specific order. First, it writes 
the new data (A', B' ) to a new section of the file, wait­
ing until the data is written to the disk. Once (A' , B' ) 
are known to be on the disk, it atomically updates the 
index block to point to the new data. The old blocks 
(A, B) are now obsolete, and the space they consume 
can be reused. During the update, the file is never in 
an inconsistent state. 
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Figure 3 
Example of a Careful Write 

Write-behind Caching 
A careful write policy relies totally on being able to 
control the order of writes to the disk. This cannot be 
achieved on a write-back cache because the write-back 
method does not preserve the order of write requests. 
Reordering writes in a write-back cache would risk cor­
rupting the data that applications using careful writing 
were seeking to protect. This is unfortunate because 
the performance benefits of deferring the write to the 
disk are compatible with a careful write policy. Careful 
writing does not need to know when the data is written 
to the disk, only the order it is written. 

To allow these applications to gain the performance 
of the write-back cache but still protect their data on 
disk, the Spiralog file system uses a variation on write­
back caching known as write-behind caching. Intro­
duced in the Echo file system, write-behind caching is 
essentially write-back caching with ordering guaran­
tees.4 The cache allows the application to specify which 
writes must be ordered and the order in which they 
must be written to the disk. 

This is achieved by providing the barrier primitive to 
applications. Barrier defines an order or dependency 
between write operations. For example, consider the 
diagram in Figure 4: Here, writes are represented as 
a time-ordered queue, with later writes being added 

TIME----

BARRIER 

Figure 4 
Barrier Insertion in Write Queue 

WAIT UNTIL ON-DISK 

to the tail. In the example, the application issues 
the writes in the order 1,2,3,4. Without a barrier, the 
cache could write the data to the disk in any order (for 
example, 1,3,4,2). If a barrier is placed in the write 
queue, it specifies to the cache that all writes prior to 
the barrier must be written to the disk before ( or 
atomically with) any write requests after it. In the 
example, if a barrier is placed after the second write, 
the cache file system guarantees that writes 1 and 2 will 
be written to the disk before writes 3 and 4. Writes 1 
and 2 may still be written in any order, as could writes 
3 and 4, but 3 and 4 will be written after 1 and 2. 

A careful write policy can easily be implemented on 
a write-behind cache. As shown in Figure 5, the appli­
cation would use barriers to control the write order­
ing. Two barriers are required. The first (Bl) comes 
after the writes of the new data (A', B'). The second 
( B2) is placed after the index update I'. B 1 is required 
to ensure that the new data is on the disk before the 
index block is updated. B2 ensures that the index 
block is updated before any subsequent write requests. 

The use of barriers avoids the need to wait for I/Os 
to reach the disk, improving CPU utilization. In addi­
tion, the Spiralog file system allows amalgamation 
of superseding writes between barriers, reducing 
the number of requests being written to the disk. 

NO BARRIER 

BARRIER AFTER 
SECOND WRITE 
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Figure 5 
Example ofa Careful Write Using Barrier 

Internally, the Spiralog file system allows barriers to be 
placed between any two write operations, even if they 
are to different files. The Spiralog file system uses this 
to build its own careful write policy for all changes 
to files, including metadata changes. This guarantees 
that the file system is always consistent and gives write­
back performance on changes to file metadata as well 
as data. One major advantage is that the Spiralog file 
system does not require a disk repair utility such as the 
UNIX system's fsck to rebuild the file system following 
a system failure. 

Barriers are used internally in several places to pre­
serve the order of updates to the file system metadata. 
For example, when a file is extended, the allocation of 
new blocks must be written to the disk before any 
subsequent data writes to the newly allocated region. 
A barrier is placed immediately after the write request 
to update the file length. 

Barriers are also used during complex file operations 
such as a file create. These complex operations fre­
quently update shared resources such as parent direc­
tories. The barriers prevent updates to these shared 
objects, avoiding the risk of corruption due to the 
updates being reordered by the cache. 

At the application level, the Spiralog file system pro­
vides the barrier function only within a file. It is not 
possible to order writes between files. This was suffi­
cient to allow RMS ( described in the section Open VMS 
File System Environment) to exploit the performance 
of write-behind caching on most of its file organiza­
tions. RMS was enhanced to use barriers in its own 
careful write policy, which ensures the consistency of 
complex file organizations, such as indexed files, even 
when they are subject to write-behind caching. Since 
the majority of Open VMS applications access the file 
system through RMS, gaining write-behind caching 
on all RMS file organizations provides a significant 
performance benefit to applications. 
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Internally, the Spiralog file system supports barriers 
between files. The decision to support barriers within 
a file was made to limit the complexity of interface 
changes, in the belief that a cross-file barrier was of 
little use to RMS. In retrospect, this proved to be 
wrong. Some key RMS file organizations use secondary 
files to hold journal records for the main application 
file. These file organizations cannot express the order 
in which updates to the two files should reach the disk, 
and so are precluded from using write-behind caching. 

Application-level Caching Policies 
The main problem with the barrier primitive is its 
requirement that the application express the depen­
dencies to the file system. Although this is unavoid­
able, it means that the application has to change if 
it wishes to safely exploit write-behind caching. Clearly, 
many applications were not going to make these 
changes. In addition, some applications have on-disk 
consistency requirements that tie them to a write­
through environment. 

The file system emulation layer provides additional 
support for these types of applications by exposing 
three caching policies to applications. The policies are 
stored as permanent attributes of the file. By default, 
when the file is opened by the file system, the perma­
nent caching policy is used on all write requests. 

The three policies are described as follows: 

1. Write-through caching policy. This policy provides 
applications with the standard write-through beha­
vior provided by the Files-11 file system. Each write 
request is flushed to the disk before the application 
request returns. If an application needs to know 
what data is on the disk at all times, it should use 
write-through caching. 

2. Write-behind caching policy. A pure write-behind 
cache provides the highest level of performance. 
Dirty data is not flushed to the disk when the fi le is 



closed. The semantics of full write-behind caching 
are best suited to applications that can easily regen­
erate lost data at any time. Temporary files from a 
compiler are a good example. Should the system 
fail, the compilation can be restarted without any 
loss of data. 

3. Flush-on-close caching policy. The flush-on-close 
policy provides a restricted level of write-behind 
caching for applications. Here, all updates to the file 
are treated as write behind, but when the file is 
closed, all changes are forced to the disk. This gives 
the performance of write-behind but, in addition, 
provides a known point when the data is on the disk. 
This form of caching is particularly suitable for appli­
cations that can easily re-create data in the event of 
a system crash but need to know that data is on the 
disk at a specific time. For example, a mail store-and­
forward system receiving an incoming message must 
know the data is on the disk when it acknowledges 
receipt of the message to the forwarder. Once the 
acknowledgment is sent, the message has been for­
mally passed on, and the forwarder may delete its 
copy. In this example, the data need not be on the 
disk until that acknowledgment is sent, because that 
is the point at which the message receipt is commit­
ted. Should the system fail before the acknowledg­
ment is sent, all dirty data in the cache would be lost. 
In that event, the sender can easily re-create the data 
by sending the message again. 

Figure 6 shows the results of a performance com­
parison of the three caching policies. The test was run 
on a dual-CPU DEC 7000 Alpha system with 384 
megabytes of memory on a RAID-5 disk. The test 
repeated the following sequence for the different file 
sizes. 

1. Create and open a file of the required size and set 
its caching policy. 

2. Write data to the whole file in 1,024-byte I/Os. 

3. Close the file. 

4. Delete the file. 

With small files, the number of file operations ( create, 
close, delete) dominates. The leftmost side of the 
graph therefore shows the time per operation for file 
operations. With time, the files increase in size, and the 
data I/Os become prevalent. Hence, the rightmost 
side of Figure 6 is displaying the time per operation for 
data I/Os. 

Figure 6 clearly shows that an ordered write-behind 
cache provides the highest performance of the three 
caching models. For file operations, the write-behind 
cache is almost 30 percent faster than the write­
through cache. Data operations are approximately 
three times faster than the corresponding operation 
with write-through caching. 
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Performance Comparison of Caching Policies 

Summary and Conclusions 

The task of integrating a log-structured file system 
into the Open VMS environment was a significant 
challenge for the Spiralog project members. Our 
approach of carefully determining the interface to 
emulate and the level of compatibility was important 
to ensure that the majority of applications worked 
unchanged. 

We have shown that an existing update-in-place file 
system can be replaced by a log-structured file system. 
Initial effort in the analysis of application usage fur­
nished information on interface compatibility. Most 
file system operations can be provided through a file 
system emulation layer. Where necessary, new inter­
faces were provided for applications to replace their 
direct knowledge of the Files-11 file system. 

File system operation tracing and functional analysis 
of the Files-11 file system proved to be the most useful 
techniques to establish interface compatibility. Appli­
cation compatibility far exceeds the level expected 
when the project was started. A majority of people use 
the Spiralog file system volumes without noticing any 
change in their application's behavior. 

Careful write policies rely on the order of updates 
to the disk. Since write-back caches reorder write 
requests, applications using careful writing have been 
unable to take advantage of the significant improve­
ments in write performance given by write-back 
caching. The Spiralog file system solves this problem 
by providing ordered write-back caching, known as 
write-behind. The write-behind cache allows applica­
tions to control the order of writes to the disk through 
a primitive called barrier. 

Using barriers, applications can build careful write 
policies on top of a write-behind cache, gaining all the 
performance of write-back caching without risking 
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data integrity. A write-behind cache also allows the file 
system itself to gain write-back performance on all 
file system operations. Since many file system opera­
tions are themselves quickly superseded, using write­
behind caching prevents many file system operations 
from ever reaching the disk. Barriers also allow the file 
system to protect the on-disk file system consistency 
by implementing its own careful write policy, avoiding 
the need for disk repair utilities. 

The barrier primitive provided a way to get write­
through semantics within a file for those applications 
relying on careful write policies. Changing RMS to use 
the barrier primitive allowed the Spiralog file system 
to support write-behind caching as the default policy 
on all file types in the Open VMS environment. 
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Extending OpenVMS 
for 64-bit Addressable 
Virtual Memory 

The OpenVMS operating system recently 

extended its 32-bit virtual address space to 

exploit the Alpha processor's 64-bit virtual 

addressing capacity while ensuring binary 

compatibility for 32-bit nonprivileged pro­

grams. This 64-bit technology is now available 

both to OpenVMS users and to the operating 

system itself. Extending the virtual address 

space is a fundamental evolutionary step for 

the Open VMS operating system, which has 

existed within the bounds of a 32-bit address 

space for nearly 20 years. We chose an asym­

metric division of virtual address extension that 

allocates the majority of the address space to 

applications by minimizing the address space 

devoted to the kernel. Significant scaling issues 

arose with respect to the kernel that dictated 

a different approach to page table residency 

within the OpenVMS address space. The paper 

discusses key scaling issues, their solutions, 

and the resulting layout of the 64-bit virtual 

address space. 

I 
AiichaelS.IIarvey 
Leonard S. Szubowicz 

The OpenVMS Alpha operating system initially sup­
ported a 32-bit virtual address space that maximized 
compatibility for Open VMS VAX users as they ported 
their applications from the VAX platform to the Alpha 
platform. Providing access to the 64-bit virtual mem­
ory capability defined by the Alpha architecture was 
always a goal for the Open VMS operating system. An 
early consideration was the eventual use of this tech­
nology to enable a transition from a purely 32-bit­
oriented context to a purely 64-bit-oriented native 
context. Open VMS designers recognized that such 
a fundamental transition for the operating system, 
along with a 32-bit VAX compatibility mode support 
environment, would take a long time to implement 
and could seriously jeopardize the migration of appli­
cations from the VAX platform to the Alpha platform. 
A phased approach was called for, by which the operat­
ing system could evolve over time, allowing for quicker 
time-to-market for significant features and better, more 
timely support for binary compatibility. 

In 1989, a strategy emerged that defined two funda­
mental phases of Open VMS Alpha development. Phase 
1 would deliver the Open VMS Alpha operating system 
initially with a virtual address space that faithfully repli­
cated address space as it was defined by the VAX archi­
tecture. This familiar 32-bit environment would ease 
the migration of applications from the VAX platform 
to the Alpha platform and would ease the port of the 
operating system itself. Phase 1, the Open VMS Alpha 
version 1.0 product, was delivered in 1992.1 

For Phase 2, the Open VMS operating system would 
successfully exploit the 64-bit virtual address capacity 
of the Alpha architecture, laying the groundwork 
for further evolution of the OpenVMS system. In 
1989, strategists predicted that Phase 2 could be deliv­
ered approximately three years after Phase 1. As 
planned, Phase 2 culminated in 1995 with the delivery 
of Open VMS Alpha version 7.0, the first version of 
the OpenVMS operating system to support 64-bit 
virtual addressing. 

This paper discusses how the OpenVMS Alpha 
Operating System Development group extended the 
OpenVMS virtual address space to 64 bits. Topics 
covered include compatibility for existing applica­
tions, the options for extending the address space, the 
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strategy for page table residency, and the final layout of 
the Open VMS 64-bit virtual address space. In imple­
menting support for 64-bit virtual addresses, design­
ers maximized privileged code compatibility; the paper 
presents some key measures taken to this end and pro­
vides a privileged code example. A discussion of the 
immediate use of64-bit addressing by the Open VMS 
kernel and a summary of the work accomplished con­
clude the paper. 

Compatibility Constraints 

Growing the virtual address space from a 32-bit to 
a 64-bit capacity was subject to one overarching con­
sideration: compatibility. Specifically, any existing non­
privileged program that could execute prior to the 
introduction of 64-bit addressing support, even in 
binary form, must continue to run correctly and 
unmodified under a version of the Open VMS operat­
ing system that supports a 64-bit virtual address space. 

In this context, a nonprivileged program is one that 
is coded only to stable interfaces that are not allowed 
to change from one release of the operating system to 

another. In contrast, a privileged pr_ogram is defined 
as one that must be linked against the Open VMS 
kernel to resolve references to internal interfaces and 
data structures that may change as the kernel evolves. 

The compatibility constraint dictates that the follow­
ing characteristics of the 32-bit virtual address space 
environment, upon which a nonprivileged program 
may depend, must continue to appear unchanged. 2 

• The lower-addressed half(2 gigabytes [GB]) of vir­
tual address space is defined to be private to a given 
process. This process-private space is further divided 
into two 1-GB spaces that grow toward each other. 

1. The lower 1-GB space is referred to as PO space. 
This space is called the program region, where 
user programs typically reside while running. 

2. The higher 1-GB space is referred to as Pl space. 
This space is called the control region and con­
tains the stacks for a given process, process­
permanent code, and various process-specific 
control cells. 

• The higher-addressed half ( 2 GB) of virtual address 
space is defined to be shared by all processes. This 
shared space is where the Open VMS operating sys­
tem kernel resides. Although the VAX architecture 
divides this space into a pair of separately named 
1-GB regions (SO space and Sl space), the Open VMS 
Alpha operating system makes no material distinc­
tion between the two regions and refers to them 
collectively as SO/Sl space. 

Figure 1 illustrates the 32-bit virtual address space 
layout as implemented by the Open VMS Alpha oper­
ating system prior to version 7 .0. 1 An interesting 
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mechanism can be seen in the Alpha implementation 
of this address space. The Alpha architecture defines 
32-bit load operations such that values (possibly 
pointers) are sign extended from bit 31 as they are 
loaded into registers.3 This facilitates address calcula­
tions with results that are 64-bit, sign-extended forms 
of the original 32-bit pointer values. For all PO or Pl 
space addresses, the upper 32 bits of a given pointer in 
a register will be written with zeros. For all SO/Sl 
space addresses, the upper 32 bits of a given pointer in 
a register will be written with ones. Hence, on the 
Alpha platform, the 32-bit virtual address space actu­
ally exists as the lowest 2 GB and highest 2 GB of the 
entire 64-bit virtual address space. From the perspec­
tive of a program using only 32-bit pointers, these 
regions appear to be contiguous, exactly as they 
appeared on the VAX platform. 

Superset Address Space Options 

We considered the following three general options for 
extending the address space beyond the current 32-bit 
limits. The degree to which each option would relieve 
the address space pressure being felt by applications 
and the OpenVMS kernel itself varied significantly, 
as did the cost ofimplementing each option. 

1. Extension of shared space 

2. Extension of process-private space 

3. Extension of both shared space and process-private 
space 

The first option considered was to extend the virtual 
address boundaries for shared space only. Process­
private space would remain limited to its current size 
of2 GB. If processes needed access to a huge amount 
of virtual memory, the memory would have to have 
been created in shared space where, by definition, all 
processes would have access to it. This option's chief 
advantage was that no changes were required in the 
complex memory management code that specifically 
supports process-private space. Choosing this option 
would have minimized the time-to-market for deliver­
ing some degree of virtual address extension, however 
limited it would be. Avoiding any impact to process­
private space was also its chief disadvantage. By failing 
to extend process-private space, this option proved to 
be generally unappealing to our customers. In addi­
tion, it was viewed as a makeshift solution that we 
would be unable to discard once process-private space 
was extended at a future time. 

The second option was to extend process-private 
space only. This option would have delivered the 
highly desirable 64-bit capacity to processes but would 
not have extended shared space beyond its current 
32-bit boundaries. The option presumed to reduce 
the degree of change in the kernel, hence maximizing 
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Open VMS Alpha 32-bit Virtual Address Space 

privileged code compatibility and ensuring faster time­
to-market. However, analysis of this option showed 
that there were enough significant portions of the ker­
nel requiring change that, in practice, very little addi­
tional privileged code compatibility, such as for 
drivers, would be achievable. Also, this option did not 
address certain important problems that are specific to 
shared space, such as limitations on the kernel's capac­
ity to manage ever-larger, very large memory (VLM) 
systems in the future. 

We decided to pursue the option of a flat, superset 
64-bit virtual address space that provided extensions 
for both the shared and the process-private portions of 
the space that a given process could reference. The 
new, extended process-private space, named P2 space, 
is adjacent to Pl space and extends toward higher 
virtual addressesY The new, extended shared space, 
named $2 space, is adjacent to SO/Sl space and 
extends toward lower virtual addresses. P2 and S2 
spaces grow toward each other. 

A remaining design problem was to decide where 
P2 and S2 would meet in the address space layout. 
A simple approach would split the 64-bit address 
space exactly in half, symmetrically scaling up the 
design of the 32-bit address space already in place. 
(The address space is split in this way by the Digital 
UNIX operating system.3) This solution is easy to 
explain because, on the one hand, it extends the 32-bit 
convention that the most significant address bit can be 
treated as a sign bit, indicating whether an address 
is private or shared. On the other hand, it allocates 
fully one-half the available virtual address space to the 

operating system kernel, whether or not this space is 
needed in its entirety. 

The pressure to grow the address space generally 
stems from applications rather than from the operat­
ing system itself. In response, we implemented the 
64-bit address space with a boundary that floats 
between the process-private and shared portions. The 
operating system configures at bootstrap only as much 
virtual address space as it needs (never more than 
50 percent of the whole). At this point, the boundary 
becomes fixed for all processes, with the majority of 
the address space available for process-private use. 

A floating boundary maximizes the virtual address 
space that is available to applications; however, using 
the sign bit to distinguish between process-private 
pointers and shared-space pointers continues to work 
only for 32-bit pointers. The location of the floating 
boundary must be used to distinguish between 64-bit 
process-private and shared pointers. We believed that 
this was a minor trade-off in return for realizing twice 
as much process-private address space as would other­
wise have been achieved. 

Page Table Residency 

While pursuing the 64-bit virtual address space layout, 
we grappled with the issue of where the page tables 
that map the address space would reside within that 
address space. This section discusses the page table 
structure that supports the OpenVMS operating sys­
tem, the residency issue, and the method we chose to 
resolve this issue. 
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Virtual Address- to- Physical Address Translation 
The Alpha architecture allows an implementation to 
choose one of the following four page sizes: 8 kilo­
bytes (KB), 16 KB, 32 KB, or 64 KB.3 The architecmre 
also defines a multilevel, hierarchical page table struc­
mre for virmal address-to-physical address (VA-to­
PA) translations. All Open VMS Alpha platforms have 
implemented a page size of 8 KB and three levels 
in this page table structure. Although throughout 
this paper we assume a page size of 8 KB and three 
levels in the page table hierarchy, no loss of generality 
is incurred by this assumption. 

Figure 2 illustrates the VA-to-PA translation 
sequence using the multilevel page table strucmre. 

1. The page table base register (PTBR) is a per-process 
pointer to the highest level (Ll) of that process' 
page table structure. At the highest level is one 
8-KB page (LlPT) that contains 1,024 page table 
entries (PTEs) of 8 bytes each. Each PTE at the 
highest page table level ( that is, each Ll PTE) maps 
a page table page at the next lower level in the trans­
lation hierarchy (the L2PTs). 

2. The Segment 1 bit field of a given virmal address 
is an index into the LlPT that selects a particular 
Ll PTE, hence selecting a specific L2PT for the next 
stage of the translation. 

3. The Segment 2 bit field of the virmal address 
then indexes into that L2PT to select an L2PTE, 
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hence selecting a specific L3PT for the next stage 
of the translation. 

4. The Segment 3 bit field of the virtual address then 
indexes into that L3PT to select an L3PTE, hence 
selecting a specific 8-KB code or data page. 

5. The byte-within-page bit field of the virmal address 
then selects a specific byte address in that page. 

An Alpha implementation may increase the page 
size and/or number of levels in the page table hierar­
chy, thus mapping greater amounts of virmal space up 
to the full 64-bit amount. The assumed combination 
of8-KB page size and three levels of page table allows 
the system to map up to 8 terabytes (TB) (i.e., 1,024 
X 1,024 X 1,024 X 8 KB = 8 TB) of virmal memory 
for a single process. 

To map the entire 8-TB address space available to a 
single process requires up to 8 GB of PTEs (i.e., 1,024 
X 1,024 X 1,024 X 8 bytes = 8 GB). This fact alone 
presents a serious sizing issue for the Open VMS oper­
ating system. The 32-bit page table residency model 
that the Open VMS operating system ported from the 
VAX platform to the Alpha platform does not have 
the capacity to support such large page tables. 

Page Tables: 32-bit Residency Model 
We stated earlier that materializing a 32-bit virtual 
address space as it was defined by the VAX architecture 
would ease the effort to port the Open VMS operating 
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system from the VAX platform to the Alpha platform. 
A concrete example of this relates to page table resi­
dency in virtual memory. 

The VAX architecture defines, for a given process, 
a PO page table and a Pl page table that map that 
process' PO and Pl spaces, respectively.2 The architec­
ture specifies that these page tables are to be located in 
SO/Sl shared virtual address space. Thus, the page 
tables in virtual memory are accessible regardless of 
which process context is currently active on the system. 

The Open VMS VAX operating system places a given 
process' PO and Pl page tables, along with other per­
process data, in a fixed-size data structure called a bal­
ance slot. An array of such slots exists within SO/Sl 
space with each memory-resident process being 
assigned to one of these slots. 

This page table residency design was ported from 
the VAX platform to the Alpha platform.1 The L3PTs 
needed to map PO and Pl spaces and the one L2PT 
needed to map those L3PTs are all mapped into a bal­
ance slot in SO/Sl space. (To conserve virtual mem­
ory, the process' LlPT is not mapped into SO/Sl 
space. ) The net effect is illustrated in Figure 3. 

The VAX architecture defines a separate, physically 
resident system page table (SPT) that maps SO/Sl 
space. The SPT was explicitly mapped into SO/Sl 
space by the Open VMS operating system on both the 
VAX and the Alpha platforms. 
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Recall from earlier discussion that on today's Alpha 
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An elegant approach to mapping a process' page 
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The effect of this self-mapping on the VA-to-PA 
translation sequence (shown in Figure 2) is subtle but 
important. 

• For those virtual addresses with a Segment 1 bit 
field value that selects the self-mapper LlPTE, step 
2 of the VA-to- PA translation sequence reselects 
the LlPT as the effective L2PT (L2PT' ) for the 
next stage of the translation. 

• Step 3 indexes into L2PT' (the LlPT) using the 
Segment 2 bit field value to select an L3PT'. 

• Step 4 indexes into L3PT' (an L2PT) using the 
Segment 3 bit field value to select a specific data 
page. 

• Step 5 indexes into that data page ( an L3 PT) using 
the byte-within-page bit field of the virtual address 
to select a specific byte address within that page. 

When step 5 of the VA-to-PA translation sequence 
is finished, the final page being accessed is itself one of 
the level 3 page table pages, not a page that is mapped 
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by a level 3 page table page. The self-map operation 
places the entire 8-GB page table structure at the end 
of the VA-to-PA translation sequence for a specific 
8-GB portion of the process' address space. This vir­
tual space that contains all of a process' potential page 
tables is called page table space (PT space ).6 

Figure 4 depicts the effect of self-mapping the page 
tables. On the left is the highest-level page table 
page containing a fixed number of PTEs. On the right 
is the virtual address space that is mapped by that page 
table page. The mapped address space consists of a col­
lection of identically sized, contiguous address range 
sections, each one mapped by a PTE in the corre­
sponding position in the highest-level page table page. 
(For clarity, lower levels of the page table structure are 
omitted from the figure.) 

Notice that LlPTE #1022 in Figure 4 was chosen to 
map the high-level page table page that contains that 
PTE. (The reason for this particular choice will 
be explained in the next section. Theoretically, any one 
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of the LlPTEs could have been chosen as the self­
mapper.) The section of virtual memory mapped by 
the chosen LlPTE contains the entire set of page 
tables needed to map the available address space of 
a given process. This section of virtual memory is PT 
space, which is depicted on the right side of Figure 4 
in the l,022d 8-GB section in the materialized virtual 
address space. 

The base address for this PT space incorporates the 
index of the chosen self-mapper LlPTE (1,022 
3FE(l6)) as follows (see Figure 2): 

Segment 1 bit field = 3FE 
Segment 2 bit field= 0 
Segment 3 bit field = 0 
Byte within page = 0, 

which result in 

VA= FFFFFFFC.00000000 
(also known as PT_Base). 

Figure 5 illustrates the exact contents of PT space 
for a given process. One can observe the positional 
effect of choosing a particular high-level PTE to self­
map the page tables even within PT space. In Figure 4, 
the choice of PTE for self-mapping not only places PT 
space as a whole in the l,022d 8-GB section in virtual 
memory but also means that 

• The l,022d grouping of the lowest-level page 
tables (L3PTs) within PT space is actually the col­
lection of next-higher-level PTs (L2PTs) that map 
the other groupings ofL3PTs, beginning at 

Segment 1 bit field = 3FE 
Segment 2 bit field = 3FE 
Segment 3 bit field = 0 
Byte within page = 0, 

which result in 

VA= FFFFFFFD.FFOOOOOO 
(also known as L2_Base). 

• Within that block of L2PTs, the l ,022d L2PT is 
actually the next-higher-level page table that maps 
the L2PTs, namely, the LlPT. The LlPT begins at 

Segment 1 bit field = 3FE 
Segment 2 bit field = 3FE 
Segment 3 bit field = 3FE 
Byte within page = 0, 

which result in 

VA= FFFFFFFD.FF7FCOOO 
( also known as Ll_Base ). 

• Within that LlPT, the l,022d PTE is the one used 
for self-mapping these page tables. The address of 
the self-mapper LlPTE is 
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Segment 1 bit field = 3FE 
Segment 2 bit field = 3FE 
Segment 3 bit field = 3FE 
Byte within page= 3FE X 8 

which result in 

VA= FFFFFFFD.FF7FDFFO. 

This positional correspondence within PT space is pre­
served should a different high-level PTE be chosen for 
self-mapping the page tables. 

The properties inherent in this self-mapped page 
table are compelling. 

• The amount of virtual memory reserved is exactly 
the amount required for mapping the page tables, 
regardless of page size or page table depth. 
Consider the segment-numbered bit fields of a 
given virtual address from Figure 2. Concatenated, 
these bit fields constitute the virtual page number 
(VPN) portion of a given virtual address. 

The total size of the PT space needed to map every 
VPN is the number of possible VPNs times 8 bytes, 
the size of a PTE. The total size of the address 
space mapped by that PT space is the number of 
possible VPNs times the page size. Factoring 
out the VPN multiplier, the difference between 
these is the page size divided by 8, which is exactly 
the size of the Segment 1 bit field in the vir­
tual address. Hence, all the space mapped by a 
single PTE at the highest level of page table is 
exactly the size required for mapping all the PTEs 
that could ever be needed to map the process' 
address space. 

• The mapping of PT space involves simply choos­
ing one of the highest-level PTEs and forcing it to 
self-map. 

• No additional system tuning or coding is required 
to accommodate a more widely implemented 
virtual address width in PT space. By definition of 
the self-map effect, the exact amount of virtual 
address space required will be available, no more 
and no less. 

• It is easy to locate a given PTE. The address of 
a PTE becomes an efficient function of the address 
that the PTE maps. The function first clears 
the byte-within-page bit field of the subject vir­
tual address and then shifts the remaining virtual 
address bits such that the Segments 1, 2, and 3 bit 
field values (Figure 2) now reside in the corre­
sponding next-lower bit field positions. The func­
tion then writes (and sign extends if necessary) 
the vacated Segment 1 field with the index of 
the self-mapper PTE. The result is the address 
of the PTE that maps the original virtual address. 
Note that this algorithm also works for addresses 
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within PT space, including that of the self-mapper 
PTE itself. 

• Process page table residency in virtual memory is 
achieved without imposing on the capacity of 
shared space. That is, there is no longer a need to 
map the process page tables into shared space. Such 
a mapping would be redundant and wasteful. 

OpenVMS 64-bit Virtual Address Space 

With this page table residency strategy in hand, it 
became possible to finalize a 64-bit virtual address lay­
out for the Open VMS operating system. A self-mapper 
PTE had to be chosen. Consider again the highest level 
of page table in a given process' page table structure 
(Figure 4). The first PTE in that page table maps a sec­
tion of virtual memory that includes PO and Pl spaces. 
This PTE was therefore unavailable for use as a self­
mapper. The last PTE in that page table maps a section 
of virtual memory that includes SO/Sl space. This PTE 
was also unavailable for self-mapping purposes. 

All the intervening high-level PTEs were potential 
choices for self-mapping the page tables. To maximize 
the size of process-private space, the correct choice 
is the next-lower PTE than the one that maps the low­
est address in shared space. 

This choice is implemented as a boot-time algo­
rithm. Bootstrap code first determines the size 
required for OpenVMS shared space, calculating the 
corresponding number of high-level PTEs. A suffi­
cient number of PTEs to map that shared space are 
allocated later from the high-order end of a given 
process' highest-level page table page. Then the next­
lower PTE is allocated for self-mapping that process' 
page tables. All remaining lower-ordered PTEs are left 
available for mapping process-private space. In prac­
tice, nearly all the PTEs are available, which means that 
on today's systems, almost 8 TB of process-private vir­
tual memory is available to a given Open VMS process. 

Figure 6 presents the final 64-bit Open VMS virtual 
address space layout. The portion with the lower 
addresses is entirely process-private. The higher­
addressed portion is shared by all process address 
spaces. PT space is a region of virtual memory that lies 
between the P2 and S2 spaces for any given process 
and at the same virtual address for all processes. 

Note that PT space itself consists of a process-private 
and a shared portion. Again, consider Figure 5. The 
highest-level page table page, LlPT, is process-private. 
It is pointed to by the PTBR. (When a process' context 
is loaded, or made active, the process' PTBR value is 
loaded from the process' hardware-privileged context 
block into the PTBR register, thereby making current 
the page table structure pointed to by that PTBR and 
the process-private address space that it maps.) 
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Figure 6 
Open VMS Alpha 64-bit Virtual Address Space 

All higher-addressed page tables in PT space are 
used to map shared space and are themselves shared. 
They are also adjacent to the shared space that they 
map. All page tables in PT space that reside at 
addresses lower than that of the LlPT are used to map 
process-private space. These page tables are process­
private and are adjacent to the process-private space 
that they map. Hence, the end of the LlPT marks 
a universal boundary between the process-private 
portion and the shared portion of the entire virtual 
address space, serving to separate even the PTEs that 
map those portions. In Figure 6, the line passing 
through PT space illustrates this boundary. 

A direct consequence of this design is that the 
process page tables have been privatized. That is, 
the portion of PT space that is process-private is cur­
rently active in virtual memory only when the owning 
process itself is currently active on the processor. 

Fortunately, the maJonty of page table references 
occur while executing in the context of the owning 
process. Such references actually are enhanced by 
the privatization of the process page tables because 
the mapping function of a virtual address to its PTE 
is now more efficient. 

Privatization does raise a hurdle for certain pri­
vileged code that previously could access a process' 
page tables when executing outside the context of the 
owning process. With the page tables resident in 
shared space, such references could be made regard­
less of which process is currently active. With priva­
tized page tables, additional access support is needed, 
as presented in the next section. 

A final commentary is warranted for the separately 
maintained system page table. The self-mapped page 
table approach to supplying page table residency in 
virtual memory includes the PTEs for any virtual 
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addresses, whether they are process-private or shared. 
The shared portion of PT space could serve now as the 
sole location for shared-space PTEs. Being redundant, 
the original SPT is eminently discardable; however, 
discarding the SPT would create a massive compatibil­
ity problem for device drivers with their many 32-bit 
SPT references. This area is one in which an opportu­
nity exists to preserve a significant degree of privileged 
code compatibility. 

Key Measures Taken to Maximize 
Privileged Code Compatibility 

To implement 64-bit virtual address space support, we 
altered central sections of the Open VMS Alpha kernel 
and many of its key data structures. We expected that 
such changes would require compensating or corre­
sponding source changes in surrounding privileged 
components within the kernel, in device drivers, and 
in privileged layered products. 

For example, the previous discussion seems to indi­
cate that any privileged component that reads or writes 
PTEs would now need to use 64-bit-wide pointers 
instead of 32-bit pointers. Similarly, all system fork 
threads and interrupt service routines could no longer 
count on direct access to process-private PTEs with­
out regard to which process happens to be current 
at the moment. 

A number of factors exacerbated the impact of such 
changes. Since the Open VMS Alpha operating sys­
tem originated from the OpenVMS VAX operating 
system, significant portions of the Open VMS Alpha 
operating system and its device drivers are still written 
in MACR0-32 code, a compiled language on the 
Alpha platform.1 Because MACR0-32 is an assembly­
level style of programming language, we could not 
simply change the definitions and declarations of vari­
ous types and rely on recompilation to handle the 
move from 32-bit to 64-bit pointers. Finally, there are 
well over 3,000 references to PTEs from MACR0-32 
code modules in the Open VMS Alpha source pool. 

We were thus faced with the prospect of visiting and 
potentially altering each of these 3,000 references. 
Moreover, we would need to follow the register life­
times that resulted from each of these references to 
ensure that all address calculations and memory refer­
ences were done using 64-bit operations. We expected 
that this process would be time-consuming and error 
prone and that it would have a significant negative 
impact on our completion date. 

Once OpenVMS Alpha version 7.0 was available 
to users, those with device drivers and privileged code 
of their own would need to go through a similar 
effort. This would further delay wide use of the 
release. For all these reasons, we were well motivated 
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to minimize the impact on privileged code. The next 
four sections discuss techniques that we used to over­
come these obstacles. 

Resolving the SPT Problem 
A significant number of the PTE references in pri­
vileged code are to PTEs within the SPT. Device 
drivers often double-map the user's 1/0 buffer into 
SO/Sl space by allocating and appropriately initializ­
ing system page table entries (SPTEs). Another situa­
tion in which a driver manipulates SPTEs is in the 
substitution of a system buffer for a poorly aligned or 
noncontiguous user 1/0 buffer that prevents the 
buffer from being directly used with a particular 
device. Such code relies heavily on the system data cell 
MMG$GL_SPTBASE, which points to the SPT. 

The new page table design completely obviates the 
need for a separate SPT. Given an 8-KB page size and 
8 bytes per PTE, the entire 2-GB SO/Sl virtual address 
space range can be mapped by 2 MB of PTEs within PT 
space. Because 50/Sl resides at the highest addressable 
end of the 64-bit virtual address space, it is mapped by 
the highest 2 MB of PT space. The arcs on the left in 
Figure 7 illustrate this mapping. The PTEs in PT space 
that map SO/Sl are fully shared by all processes, but 
they must be referenced with 64-bit addresses. 

This incompatibility is completely hidden by the 
creation of a 2-MB "SPT window" over the 2 MB in 
PT space (level 3 PTEs) that maps SO/Sl space. The 
SPT window is positioned at the highest addressable 
end ofSO/ Sl space. Therefore, an access through the 
SPT window only requires a 32-bit SO/Sl address and 
can obtain any of the PTEs in PT space that map 
SO/Sl space. The arcs on the right in Figure 7 illus­
trate this access path. 

The SPT window is set up at system initialization 
time and consumes only the 2 KB of PTEs that 
are needed to map 2 MB. The system data cell 
MMG$GL_SPTBASE now points to the base of the 
SPT window, and all existing references to that data cell 
continue to function correctly without change.7 

Providing Cross-process PTE Access for Direct VO 
The self-mapping of the page tables is an elegant solu­
tion to the page table residency problem imposed by 
the preceding design. However, the self-mapped page 
tables present significant challenges of their own to the 
1/0 subsystem and to many device drivers. 

Typically, Open VMS device drivers for mass storage, 
network, and other high-performance devices perform 
direct memory access (OMA) and what Open VMS calls 
"direct 1/0." These device drivers lock down into 
physical memory the virtual pages that contain the 
requester's 1/0 buffer. The 1/0 transfer is performed 
directly to those pages, after which the buffer pages are 
unlocked, hence the term "direct 1/0." 
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System Page Table Window 

The virtual address of the buffer is not adequate for 
device drivers because much of the driver code runs in 
system context and not in the process context of the 
requester. Similarly, a process-specific virtual address is 
meaningless to most DMA devices, which typically can 
deal only with the physical addresses of the virtual 
pages spanned by the buffer. 

For these reasons, when the 1/0 buffer is locked 
into memory, the Open VMS 1/0 subsystem converts 
the virtual address of the requester's buffer into 
( 1) the address of the PTE that maps the start of 
the buffer and (2) the byte offset within that page to 
the first byte of the buffer. 

Once the virtual address of the J/0 buffer is con­
verted to a PTE address, all references to that buffer 
are made using the PTE address. This remains the case 
even if this I/0 request and 1/0 buffer are handed off 
from one driver to another. For example, the 1/0 
request may be passed from the shadowing virtual disk 
driver to the small computer systems interface (SCSI) 
disk class driver to a port driver for a specific SCSI host 
adapter. Each of these drivers will rely solely on the 
PTE address and the byte offset and not on the virtual 
address of the IjO buffer. 

Therefore, the number of virtual address bits the 
requester originally used to specify thf address of 

the 1/0 buffer is irrelevant. What really matters is 
the number of address bits that the driver must use 
to reference a PTE. 

These PTE addresses were always within the page 
tables within the balance set slots in shared SO/Sl 
space. With the introduction of the self-mapped page 
tables, a 64-bit address is required for accessing any 
PTE in PT space. Furthermore, the desired PTE is not 
accessible using this 64-bit address when the driver is 
no longer executing in the context of the original 
requester process. This is called a cross-process PTE 
access problem. 

In most cases, this access problem is solved for 
direct 1/0 by copying the PTEs that map the 1/0 
buffer when the 1/0 buffer is locked into physical 
memory. The PTEs in PT space are accessible at that 
point because the requester process context is required 
in order to lock the buffer. The PTEs are copied into 
the kernel's heap storage and the 64-bit PT space 
address is replaced by the address of the PTE copies. 
Because the kernel's heap storage remains in SO/Sl 
space, the replacement address is a 32-bit address that 
is shared by all processes on the system. 

This copy approach works because drivers do not 
need to modify the actual PTEs. Typically, this 
arrangement works well because the associated PTEs 
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can fit into dedicated space within the 1/0 request 
packet data structure used by the Open VMS operating 
system, and there is no measurable increase in CPU 
overhead to copy those PTEs. 

If the 1/0 buffer is so large that its associated PTEs 
cannot fit within the 1/0 request packet, a separate 
kernel heap storage packet is allocated to hold the 
PTEs. If the 1/0 buffer is so large that the cost of 
copying all the PTEs is noticeable, a direct access path 
is created as follows: 

• The L3PTEs that map the 1/0 buffer are locked 
into physical memory. 

• Address space within SO/Sl space is allocated 
and mapped over the L3PTEs that were just 
locked down. 

This establishes a 32-bit addressable shared-space 
window over the L3PTEs that map the 1/0 buffer. 

The essential point is that one of these methods is 
selected and employed until the 1/0 is completed and 
the buffer is unlocked. Each method provides a 32-bit 
PTE address that the rest of the 1/0 subsystem can use 
transparently, as it has been accustomed to doing, with­
out requiring numerous, complex source changes. 

Use of Self-identifying Structures 
To accommodate 64-bit user virtual addresses, a num­
ber of kernel data structures had to be expanded and 
changed. For example, asynchronous system trap 
(AST) control blocks, buffered 1/0 packets, and timer 
queue entries all contain various user-provided 
addresses and parameters that can now be 64-bit 
addresses. These structures are often embedded in 
other structures such that a change in one has a ripple 
effect to a set of other structures. 

If these structures changed unconditionally, many 
scattered source changes would have been required. 
Yet, at the same time, each of these structures had con­
sumers who had no immediate need for the 64-bit 
addressing-related capabilities. 

Instead of simply changing each of these structures, 
we defined a new 64-bit-capable variant that can coex­
ist with its traditional 32-bit counterpart. The 64-bit 
variant's structures are "self-identifying" because they 
can readily be distinguished from their 32-bit counter­
parts by examining a particular field within the struc­
ture itself Typically, the 32-bit and 64-bit variants can 
be intermixed freely within queues and only a limited 
set of routines need to be aware of the variant types. 

Thus, for example, components that do not need 
64-bit ASTs can continue to build 32-bit AST control 
blocks and queue them with the SCH$QAST routine. 
Similarly, 64-bit AST control blocks can be queued 
with the same SCH$QAST routine because the AST 
delivery code was enhanced to support either type of 
AST control block. 
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The use of self-identifying structures is also a tech­
nique that was employed to compatibly enhance pub­
lic user-mode interfaces to library routines and the 
Open VMS kernel. This topic is discussed in greater 
detail in "The Open VMS Mixed Pointer Size 
Environment."8 

Limiting the Scope of Kernel Changes 
Another key tactic that allowed us to minimize the 
required source code changes to the Open VMS kernel 
came from the realization that full support of 64-bit 
virtual addressing for all processes does not imply or 
require exclusive use of64-bit pointers within the ker­
nel. The portions of the kernel that handled user 
addresses would for the most part need to handle 
64-bit addresses; however, most kernel data structures 
could remain within the 32-bit addressable SO/Sl 
space without any limit on user functionality. For 
example, the kernel heap storage is still located 
in SO/Sl space and continues to be 32-bit address­
able. The Record Management Services (RMS) 
supports data transfers to and from 64-bit address­
able user buffers, but RMS continues to use 32-bit­
wide pointers for its internal control structures. 
We therefore focused our effort on the parts of 
the kernel that could benefit from internal use 
of 64-bit addresses (see the section Immediate Use 
of 64-bit Addressing by the OpenVMS Kernel 
for examples) and that needed to change to support 
64-bit user virtual addresses. 

Privileged Code Example-The Swapper 

The Open VMS working set swapper provides an inter­
esting example of how the 64-bit changes within the 
kernel may impact privileged code. 

Only a subset of a process' virtual pages is mapped 
to physical memory at any given point in time. The 
Open VMS operating system occasionally swaps this 
working set of pages out of memory to secondary stor­
age as a consequence of managing the pool of available 
physical memory. The entity responsible for this activ­
ity is a privileged process called the working set swap­
per or swapper, for short. Since it is responsible for 
transferring the working set of a process into and out 
of memory when necessary, the swapper must have 
intimate knowledge of the virtual address space of 
a process including that process' page tables. 

Consider the earlier discussion in the section 
OpenVMS 64-bit Virtual Address Space about how 
the process' page tables have been privatized as a way 
to efficiently provide page table residency in virtual 
memory. A consequence of this design is that while the 
swapper process is active, the page tables of the process 
being swapped are not available in virtual memory. 
Yet, the swapper requires access to those page tables to 



do its job. This is an instance of the cross-process PTE 
access problem mentioned earlier. 

The swapper is unable to directly access the page 
tables of the process being swapped because the swap­
per's own page tables are currently active in virtual 
memory. We solved this access problem by revising the 
swapper to temporarily "adopt" the page tables of 
the process being swapped. The swapper accomplishes 
this by temporarily changing its lYfBR contents to 
point to the page table structure for the process being 
swapped instead of to the swapper's own page table 
structure. This change forces the PT space of the 
process being swapped to become active in virtual 
memory and therefore available to the swapper as it 
prepares the process to be swapped. Note that the 
swapper can make this temporary change because 
the swapper resides in shared space. The swapper does 
not vanish from virtual memory as the PTBR value is 
changed. Once the process has been prepared for 
swapping, the swapper restores its own PTBR value, 
thus relinquishing access to the target process' PT 
space contents. 

Thus, it can be seen how privileged code with 
intimate knowledge of OpenVMS memory man­
agement mechanisms can be affected by the changes 
to support 64-bit virtual memory. Also evident is that 
the alterations needed to accommodate the 64-bit 
changes are relatively straightforward. Although the 
swapper has a higher-than-normal awareness of mem­
ory management internal workings, extending the 
swapper to accommodate the 64-bit changes was 
not particularly difficult. 

Immediate Use of 64-bit Addressing by the 
OpenVMS Kernel 

Page table residency was certainly the most pressing 
issue we faced with regard to the Open VMS kernel as 
it evolved from a 32-bit to a 64-bit-capable operating 
system. Once implemented, 64-bit virtual addressing 
could be harnessed as an enabling technology for solv­
ing a number of other problems as well. This section 
briefly discusses some prominent examples that serve 
to illustrate how immediately useful 64-bit addressing 
became to the Open VMS kernel. 

Page Frame Number Database and 
Very Large Memory 
The OpenVMS Alpha operating system maintains a 
database for managing individual, physical page frames 
of memory, i.e., page frame numbers. This database is 
stored in SO/Sl space. The size of this database grows 
linearly as the size of the physical memory grows. 

Future Alpha systems may include larger memory 
configurations as memory technology continues to 
evolve. The corresponding growth of the page frame 

number database for such systems could consume 
an unacceptably large portion of SO /S 1 space, which 
has a maximum size of 2 GB. This design effectively 
restricts the maximum amount of physical memory 
that the OpenVMS operating system would be able 
to support in the future. 

We chose to remove this potential restriction by 
relocating the page frame number database from 
SO/Sl to 64-bit addressable S2 space. There it can 
grow to support any physical memory size being con­
sidered for years to come. 

Global Page Table 

The Open VMS operating system maintains a data 
structure in SO/Sl space called the global page table 
( GPT). This pseudo-page table maps memory objects 
called global sections. Multiple processes may map 
portions of their respective process-private address 
spaces to these global sections to achieve protected 
shared memory access for whatever applications they 
may be running. 

With the advent of P2 space, one can easily anticipate 
a need for orders-of-magnitude-greater global section 
usage. This usage directly increases the size of the 
GPT, potentially reaching the point where the GPT 
consumes an unacceptably large portion of SO/Sl 
space. We chose to forestall this problem by relocating 
the GPT from SO/Sl to 52 space. This move allows the 
configuration of a GPT that is much larger than any 
that could ever be configured in SO/ Sl space. 

Summary 

Although providing 64-bit support was a significant 
amount of work, the design of the Open VMS operat­
ing system was readily scalable such that it could 
be achieved practically. First, we established a goal of 
strict binary compatibility for nonprivileged applica­
tions. We then designed a superset virtual address 
space that extended both process-private and shared 
spaces while preserving the 32-bit visible address space 
to ensure compatibility. To maximize the available 
space for process-private use, we chose an asymmetric 
style of address space layout. We privatized the pro­
cess page tables, thereby eliminating their residency 
in shared space. The few page table accesses that 
occurred from outside the context of the owning 
process, which no longer worked after the privatiza­
tion of the page tables, were addressed in various ways. 
A variety of ripple effects stemming from this design 
were readily solved within the kernel. 

Solutions to other scaling problems related to the 
kernel were immediately possible with the advent of 
64-bit virtual address space. Already mentioned was 
the complete removal of the process page tables from 
shared space. We also removed the global page table 
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and the page frame number database from 32-bit 
addressable to 64-bit addressable shared space. The 
immediate net effect of these changes was significantly 
more room in SO/Sl space for configuring more 
kernel heap storage, more balance slots to be assigned 
to greater numbers of memory resident processes, etc. 
We further anticipate use of64-bit addressable shared 
space to realize additional benefits of VLM, such as 
for caching massive amounts of file system data. 

Providing 64-bit addressing capacity was a logical, 
evolutionary step for the Open VMS operating system. 
Growing numbers of customers are demanding the 
additional virtual memory to help solve their problems 
in new ways and to achieve higher performance. This 
has been especially fruitful for database applications, 
with substantial performance improvements already 
proved possible by the use of64-bit addressing on the 
Digital UNIX operating system. Similar results are 
expected on the OpenVMS system. With terabytes 
of virtual memory and many gigabytes of physical 
memory available, entire databases may be loaded into 
memory at once. Much of the 1/0 that otherwise 
would be necessary to access the database can be elimi­
nated, thus allowing an application to improve perfor­
mance by orders of magnitude, for example, to reduce 
query time from eight hours to five minutes. Such 
performance gains were difficult to achieve while 
the Open VMS operating system was constrained to a 
32-bit environment. With the advent of 64-bit address­
ing, Open VMS users now have a powerful enabling 
technology available to solve their problems. 
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The OpenVMS Mixed 
Pointer Size Environment 

A central goal in the implementation of 64-bit 
addressing on the OpenVMS operating system 
was to provide upward-compatible support for 
applications that use the existing 32-bit address 
space. Another guiding principle was that mixed 
pointer sizes are likely to be the rule rather than 
the exception for applications that use 64-bit 
address space. These factors drove several key 
design decisions in the OpenVMS Calling Stan­
dard and programming interfaces, the DEC C 
language support, and the system services 
support. For example, self-identifying 64-bit 
descriptors were designed to ease development 
when mixed pointer sizes are used. DEC C sup­
port makes it easy to mix pointer sizes and to 
recompile for uniform 32- or 64-bit pointer sizes. 
OpenVMS system services remain fully upward 
compatible, with new services defined only 
where required or to enhance the usability of the 
huge 64-bit address space. This paper describes 
the approaches taken to support the mixed 
pointer size environment in these areas. The 
issues and rationale behind these OpenVMS 
and DEC C solutions are presented to encourage 
others who provide library interfaces to use 
a consistent programming interface approach. 
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Support for 64-bit virtual addressing on the Open VMS 
Alpha operating system, version 7.0, has vastly increased 
the amount of virtual address space available for applica­
tion use. 1 At the same time, fully compatible support for 
applications that use only 32-bit addresses (also called 
pointers) has been preserved. 

An application that mixes 32-bit and 64-bit pointer 
sizes operates in a mixed pointer size environment. 
Mixed pointer size applications were the design center 
for the initial implementation of 64-bit support in the 
OpenVMS operating system. This paper discusses 
the reasons why mixing pointer sizes is expected to 
be a common practice and describes the design of 
operating system and language features that are pro­
vided to ease programming in this mixed pointer size 
environment. 

Reasons for Mixed Pointer Sizes 

To use 64-bit address space, some simple applications 
need only be recompiled for a uniform 64-bit pointer 
size. For example, self-contained DEC C applications 
that rely on only the C run-time library, without 
using system services or other libraries, can take 
this approach. Real-world applications are seldom this 
clean-cut, however. In more complex applications, 
where 64-bit address space is likely to be needed, 
mixes oflanguages, dependencies on system interfaces 
and other libraries, and reliance on third-party pack­
ages or libraries are common. These practices all lead 
to the mixed pointer size environment in which appli­
cations continue to use some 32-bit addresses while 
taking advantage of 64-bit virtual address space. 

Applications that are likely to take advantage of 
64-bit memory are those in which the declaration and 
management of a large data set can be logically sepa­
rated from the rest of the program. This separation 
does not need to be at the source file level. It can be 
at a program flow level, indicating which internal and 
external interfaces will be given 64-bit addresses to 
work with. 

The following sections explore the reasons for 
mixing pointer sizes. 



Open VMS and Language Support 
Implementation choices that Digital made for this first 
release of the Open VMS operating system that sup­
ports 64-bit virtual addressing will probably encour­
age mixed pointer size programming. These choices 
were driven largely by the need for absolute upward 
compatibility for existing programs and the goal of 
supporting large, dynamic data sets as the primary 
application for 64-bit addressing. 

Dynamic Data Only OpenVMS services support 
dynamic allocation of 64-bit address space. This mech­
anism most closely resembles the malloc and free func­
tions for allocating and deallocating dynamic storage 
in the C programming language. Allocation of this 
type differs from static and stack storage in that explicit 
source statements are required to manage it. For static 
and stack storage, the system is allocating the memory 
on behalf of the application at image activation time. 
( Of course, the allocation may be extended during 
execution in the case of stack storage.) This allocation 
continues to be from 32-bit addressable space. 

Two special cases of static allocation are worth men­
tioning. Linkage sections, which are program sections 
that contain routine linkage information, and code 
sections, which contain the executable instructions, 
do not differ substantially from preinitialized static 
storage. As a result, these sections also reside only in 
32-bit addressable memory. 

Upward-compatibility Constraints The OpenVMS 
Alpha operating system is cautious to avoid using 
64-bit memory freely where it may prevent upward 
compatibility for 32-bit applications. For example, the 
linkage section might seem to be a natural candidate 
for the Open VMS system to allocate automatically in 
64-bit memory. This allocation would essentially free 
more 32-bit addressable memory for application use; 
however, even if this were done only for applications 
relinked for new versions of the Open VMS operating 
system, there is no guarantee that all object code treats 
linkage section addresses as 64 bits in width. A simple 
example is storing the address of a routine in a struc­
ture. Since a routine's address is the address of its pro­
cedure descriptor in the linkage section, moving the 
linkage section to 64-bit memory would cause code 
that stores this address in a 32-bit cell to fail. 

Allocating the user stack in 64-bit space also appears 
to be a good opportunity to easily increase the amount 
of memory available to an application. Stack addresses 
are often more visible to application code than linkage 
section addresses are. For instance, a routine can easily 
allocate a local variable using temporary storage on the 
stack and pass the address of the variable to another 
routine. If the stack is moved to 64-bit space, this 

address quietly becomes a 64-bit address. If the called 
routine is not 64-bit capable, attempts to use the 
address will fail. 

Focus on Services Required for Large Data Sets Not 
all system services could be changed to support 64-bit 
addresses (i.e., promoted) in time for the first version 
of the OpenVMS operating system to support 64-bit 
addressing. With the mixed-pointer model in mind, 
we focused on those services that were likely to be 
required for large data sets. For example, to allow 1/0 
directly to and from high memory, it was essential that 
the 1/ 0 queuing service, SYS$QIO, accept a 64-bit 
buffer address. Conversely, the SYS$TRNLNM service 
for translating a logical name did not need to be mod­
ified to accept 64-bit addresses. Its arguments include 
a logical name, a table name, and a vector that contains 
requests for information about the name. These are 
small data elements that are unlikely to require 64-bit 
addressing on their own. Of course, they may be part 
of some larger structure that resides in 64-bit space. 
In this case, they can easily be copied to or from 32-bit 
addressable memory. 

System services are discussed further in the section 
Open VMS System Services. The 32-bit address restric­
tion on certain system services again emphasizes the 
importance of being able to logically separate large 
data set support from the rest of an application. 

Limited Language Support Another interface point 
that requires care when using 64-bit addressing is at 
calls between modules written in different program­
ming languages. The Open VMS Calling Standard 
traditionally makes it easy to mix languages in an appli­
cation, but DEC C is the only high-level language 
to fully support 64-bit addresses in the first 64-bit­
capable version of the Open VMS operating system.2 

The use of 64-bit addresses in mixed-language 
applications is possible, and data that contains 64-bit 
addresses may even be shared; however, references 
that actually use the data pointed to by these addresses 
need to be limited to DEC C code or assembly lan­
guage. Mixed high-level language applications are cer­
tain to be mixed pointer size applications in this 
version of the operating system. 

Support for 32-bit Libraries 
Many applications rely on library packages to provide 
some aspect of their functionality. Typical examples 
include user interface packages, graphics libraries, and 
database utilities. Third-party libraries may or may not 
support 64-bit addresses. Applications that use these 
libraries will probably mix 32-bit and 64-bit pointer 
sizes and will therefore require an operating system 
that supports mixed pointer sizes. 
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Implications of Fu/164-bit Conversion 
For some applications, it may be desirable to mix 
pointer sizes to avoid the side effects of universal 64-bit 
address conversion. The approach of recompiling every­
thing with 64-bit address widths is sometimes called 
"throwing the switch." An obvious implication of 
throwing the switch is that all pointer data doubles in 
size. For complex linked data structures, this can be a 
significant overall increase in size. Increasing the pointer 
size may also reveal hidden dependencies on pointer size 
being the same as integer size. If code accesses a cell as 
both a 32-bit integer and a 32-bit pointer, the code will 
no longer work if the pointer is enlarged. Thus, 
universally increasing the pointer size may force changes 
to code that would otherwise continue to work. 

There is a more compelling reason for not throwing 
the switch for code that is part of a shared library. 
Library packages must not return 64-bit addresses to 
users of the library unless the calling code is definitely 
64-bit capable. If the library developer throws the 
switch when building a library written in DEC C, all 
memory returned by the malloc function will be in 
64-bit address space. This can be a problem if the 
address is blindly returned to a library caller. If a library 
is to work in a mixed pointer size environment, and 
it sometimes returns pointers to memory it has allo­
cated, it needs to use mixed pointer sizes internally. 

Programming Interlace Issues 

The coexistence of 32-bit and 64-bit pointers raised 
several design questions for operating system and lan­
guage support, particularly in the area of routine inter­
faces. When an application or library is being modified 
to use 64-bit address space, argument passing may 
be the most exposed area. In this section, we describe 
how mixed pointer size support affects argument­
passing mechanisms and the design decisions made to 
ease the coexistence of mixed pointer sizes. 

Argument List Width 
Even before the introduction of 64-bit addressing, the 
Open VMS Calling Standard defined argument list ele­
ments to be 64 bits in width. When passing a 32-bit 
address (that is, when passing an item in 32-bit space 
by reference), compilers sign extend the 32-bit value 
into the 64-bit argument location.1 Passing 64-bit 
addresses as values works transparently without chang­
ing the calling standard, assuming, of course, that the 
called routine expects to receive 64-bit addresses. 
Passing 32-bit addresses as values to routines that 
expect 64-bit addresses works properly because the 
values have been sign extended to a 64-bit width. 

Pointers by Reference 
Passing the addresses of pointers requires special care 
when mixing pointer sizes. If the caller passes a 32-bit 
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address by reference, and the called routine reads it as 
a 64-bit address from memory, the upper 32 bits will be 
incorrect. Similarly, if the address of a 64-bit address is 
passed, and the called routine reads only 32 bits from 
memory, it will fail when that address is used. 

This is the simplest case in which support of 64-bit 
addresses may require a programming interface change 
for 64-bit callers. A single entry point that receives 
a pointer by reference cannot tell which size pointer 
it has received. Some possible solutions include a new 
alternate entry point for 64-bit-capable callers or a 
new parameter indicating the size of the address. 

Pointers Embedded in Structures 
Pointers passed by reference are a special case of the 
more general problem of passing structures that con­
tain pointers. Again, the caller and called routine must 
agree on the size of the pointers contained in the 
structure. This case offers an option that may not 
require a new programming interface, however. If the 
structure is self-identifying, the routine may be able to 
tell which form of the structure it has received and dis­
patch to appropriate code for the corresponding 
pointer length. 

Function Return Values 
Function return values are also defined to be 64 bits in 
width, so no calling standard change was required to 
support 64-bit pointer returns. It is important that a 
64-bit address not be returned blindly, though, unless 
it is known that the caller is 64-bit capable. Typically, 
this is a problem for library support routines rather 
than for those within an application. A library routine 
should return a 64-bit address only if the routine has 
been specifically developed for a 64-bit environment 
or if it can tell with certainty, based on input parame­
ters received, that the caller is 64-bit capable. 

Calling Standard Issues 
The Open VMS Calling Standard defines register usage 
conventions, argument list locations, data structures, 
and standard practices for making procedure calls that 
operate correctly in a multilanguage and multi­
threaded environment. As mentioned earlier, this stan­
dard already defined argument list elements to be 
64 bits in width; however, some key data structures 
defined by the standard were based on 32-bit pointer 
sizes. The goal of upward compatibility for existing 
code complicated the job of extending the standard. 
The following sections describe how the structures 
were ultimately changed and illustrate some 
approaches to supporting mixed pointer sizes when 
shared structures contain pointers. 

Descriptors Descriptors are structures defined by 
the calling standard to specify an argument's type, 
length, and address, along with other type or 



structure-specific information. Typically, descriptors 
are used only for character strings, arrays, and complex 
data types such as packed decimal. 

Descriptor types are by definition self-identifying by 
virtue of the type and class fields they contain. An 
obvious choice, therefore, for extending descriptors to 
handle 64-bit addresses would be to add new type 
constants for 64-bit data elements and extend the 
structure beyond the type fields to accommodate 
larger addresses and sizes. In practice, however, the 
address and length fields from descriptors are fre­
quently used without accessing the type fields, partic­
ularly when a character string descriptor is expected. 

As a result, a solution was sought that would yield 
a predictable failure, rather than incorrect results or 
data corruption, when a 64-bit descriptor is received 
by a routine that expects only the 32-bit form. The 
final design includes a separate 64-bit descriptor layout 
that contains two special fields at the same offsets as 
the length and address fields in the 32-bit descriptor. 
These fields are called MBO (must be one) and 
MBMO (must be minus one), respectively. The sim­
plest versions of the 32-bit and 64-bit descriptors are 
illustrated in Figure 1. 

If a routine that expects a 32-bit descriptor receives 
a 64-bit descriptor, it will find the value 1 in the length 
field. This nonzero value ensures that the address will 
need to be read. Otherwise, the descriptor could ~e 
treated as describing a null value, and the address 
would be ignored. In the address field, a 32-bit reader 
will find the value - 1. When the reader attempts to 
reference this address, an access violation occurs, 
because the Open VMS operating system guarantees 
this address to be inaccessible. This combination of 
values ensures that an access will also fail if the length is 
added to the address first, in an attempt to read the last 
byte of data. 

BYTE 
OFFSET 

===C=LA=S=S=====D=TY==P=E========L=EN=G=T=H======1 ,.04 ADDRESS _ 
SIMPLE 32-BIT DESCRIPTOR 

CLASS I DTYPE I MBO :0 

MBMO : 4 

LENGTH :8 

ADDRESS :16 

SIMPLE 64-BIT DESCRIPTOR 

Figure 1 
Simplest Versions of the 32-bit and 64-bit Descriptors 

To distinguish the descriptor forms, a new routine 
must check the MBO and MBMO fields for the 
expected 64-bit descriptor values. In the OpenVMS 
operating system, many routines now accept either 
descriptor form. 

Signal Arrays The signal array is a user-visible struc­
ture that is passed to condition handlers when an 
exception occurs. The array contains message codes, 
arguments specific to the conditions, and control data. 
Because the arguments may include one or more vir­
tual addresses, a new format was necessary to accom -
modate 64-bit addresses. 

The signal array could not simply be promoted to 
contain 64-bit addresses, because handlers in existing 
code often make assumptions about its format. The 
mechanism array, a related structure containing a snap­
shot of register contents, was already 64 bits in width. 

The solution was to leave the original form of the 
signal array unchanged and create a 64-bit counter­
part. The items passed to a condition handler, the 
32-bit signal array address, and a 64-bit mechanism 
array address are the same. The mechanism array now 
contains a pointer to the 64-bit version of the signal 
array. This allows existing code to work without 
change, while new handlers that may require access to 
64-bit addresses in exceptions can obtain the 64-bit 
array address from the mechanism array. Some addi­
tional work was needed in Open VMS exception han­
dling to keep these two arrays synchronized, because 
handlers are allowed to change their contents. 

Sign-extension Checking 
As described earlier, 32-bit addresses passed as routine 
arguments are sign extended into 64-bit argument loca­
tions. A safeguard that can be used in 32-bit routines 
that are not extended to fully support 64-bit addresses is 
referred to as sign-extension checking of the argument 
addresses. This checking consists of simply reading the 
low 32 bits of the argument, sign extending this value to 
a 64-bit width, and comparing the result to the full 
64 bits of the argument. If the bits differ, the address is 
not one that can be represented in 32 bits. The routine 
can then return an error status of some kind, rather than 
failing in some unpredictable way. Sign-extension 
checking is a useful tool for ensuring robust interfaces in 
the mixed pointer size environment. 

DEC C Language Support for Mixed Pointer Sizes 

To support application programming in the mixed 
pointer size environment, some design work was 
required in the DEC C compiler. This section 
describes the rationale behind the final design. 

It was dear that the compiler would have to provide 
a way for 32-bit and 64-bit pointers to coexist in the 
same regions of code. At the same time, customers and 
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internal users initially favored a simple command line 
switch when polled on potential compiler support 
for 64-bit address space. (At least one C compiler that 
supports 64-bit addressing, MIPSpro C, does so only 
through command line switches for setting pointer 
sizes.3

) The motivation for using switches was to limit 
the source changes needed to take advantage of the 
additional address space, especially when portability 
to other platforms is desired. For cases in which mix­
ing pointer sizes was unavoidable, something more 
flexible than a switch was needed. 

Why Not _near and _ far? 
The most common suggestion for controlling individ­
ual pointer declarations was to adopt the _near and 
_far type qualifier syntax used in the PC environment 
in its transition from 16-bit to 32-bit addressing.• 
While this idea has merit in that it has already been 
used elsewhere in C compilers and is familiar to PC 
software developers, we rejected this approach for the 
following reasons: 

• The syntax is not standard. 

• The syntax requires source code edits at each decla­
ration to be affected. 

• The syntax has become largely obsolete even in the 
PC domain with the acceptance of the flat 32-bit 
address space model offered by modern 386-
minimum PC compilers and the Win32 program­
ming interface. 

• Because of the vast difference in scale in choosing 
between 16-bit or 32-bit pointers on a PC as com­
pared to choosing between 32-bit or 64-bit pointers 
on an Alpha system, there would be no porting ben­
efit in using the same keywords. No existing source 
code base would be able to port to the OpenVMS 
mixed pointer size environment more easily because 
of the presence of _near and _far qualifiers. 

Pragma Support 
The Digital UNIX C compiler had previously defined 
pragma preprocessing directives to control pointer 
sizes for slightly different reasons than those described 
for the OpenVMS system.5 By default, the Digital 
UNIX operating system offers a pure 64-bit address­
ing model. In some circumstances, however, it is desir­
able to be able to represent pointers in 32 bits to 
match externally imposed data layouts or, more rarely, 
to reduce the amount of memory used in representing 
pointer values. The Digital UNIX pointer_size prag­
mas work in conjunction with command line options 
and linker/loader features that limit memory use and 
map memory such that pointer values accessible to the 
C program can always be represented in 32 bits. 

Since compatibility with the Digital UNIX compiler 
would have greater value if it met the needs of the 
OpenVMS platform, we evaluated the pragma-based 
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approach and decided to adopt it, propagating any 
necessary changes back to the UNIX platform to main­
tain compatibility. The decision to use pragmas to 
control pointer size addressed the major deficiencies 
of the _near and _far approach. In particular, the 
pragma directive is specified by ISO/ ANSI C in such 
a way that using it does not compromise portability as 
the use of additional keywords can, because unrecog­
nized pragmas are ignored. Furthermore, pragmas can 
easily be specified to apply to a range of source code 
rather than to an individual declaration. A number of 
DEC C pragmas, including the pointer size controls 
implemented on the UNIX system, provide the ability 
to save and restore the state of the pragma. This makes 
them convenient and safe to use to modify the pointer 
size within a particular region of code without disturb­
ing the surrounding region. The state may easily be 
saved before changing it at the beginning of the region 
and then restored at the end. 

Command Line Interaction 
Pragmas fit in with the initial desire of prospective 
users to have a simple command line switch to indicate 
64 bits. As with several other pragmas, we defined a 
command line qualifier (/pointer_size) to specify the 
initial state of the pragma before any instances are 
encountered in the text. Unlike other pragmas, 
though, we also use the same command line qualifier 
to enable or disable the action of the pragmas alto­
gether. In this way, a default compilation of source 
code modified for 64-bit support behaves the same 
way that it would on a system that did not offer 64-bit 
support. That is, the pragmas are effectively ignored, 
with only an informational message produced. 

This behavior was adopted for consistency with the 
Digital UNIX behavior and also to aid in the process of 
adding optional 64-bit support to existing portable 
32-bit source code that might be compiled for an 
older system or with an older compiler. In this model, 
a compilation of new source code using an old com­
mand line produces behavior that is equivalent to the 
behavior produced using an older compiler or a com -
piler on another platform. With one notable excep­
tion, building an application that actually uses 64-bit 
addressing requires changing the command line. 

The exception to the rule that existing 32-bit build 
procedures do not create 64-bit dependencies is a sec­
ond form of the pragma, named required_pointer_size. 
This form contrasts with the form pointer_size in that it 
is always active regardless of command line qualifiers; 
otherwise, required_pointer_size and pointer_size are 
identical. The intent of this second pragma is to sup­
port writing source code that specifies or interfaces to 
services or libraries that can only work correctly with 
64-bit pointers. An example of this code might be a 
header file that contains declarations for both 64-bit 
and 32-bit memory management services; the services 



must always be defined to accept and return the 
appropriate pointer size, regardless of the command 
line qualifier used in the compilation. 

Pragma Usage 
The use of pragmas to control pointer sizes within a 
range of source code fits well with the model of start­
ing with a working 32-bit application and extending it 
to exploit 64-bit addressing with minimal source code 
edits. Programming interface and data structure decla­
rations are typically packaged together in header files, 
and the primary manipulators of those data structures 
are often implemented together in modules. 

One good approach for extending a 32-bit applica­
tion would be to start with an initial analysis of mem­
ory usage measurements. The purpose of this analysis 
would be to produce a rough partitioning of routines 
and data structures into two categories: "32-bit suffi­
cient" and "64-bit desirable." Next, 64-bit pointer 
pragmas could be used to enclose just the header files 
and source modules that correspond to the routines 
and data structures in the 64-bit-desirable category. 
After recompilation, the next step would be to respond 
to compiler diagnostics for pointer-type mismatches by 
adding pragma regions to mark sections of the 64-bit 
files as 32-bit and parts of the 32-bit files as 64-bit and 
to carefully add type casts, where necessary. This opera -
tion is likely to iterate until the compilation is clean and 
a debugging cycle has shown correctness. The end 
result is an application that takes advantage of the 
increased address space for the data structures that will 
benefit from it. 

A common approach to minimizing the spread of 
pragmas throughout a program is to limit them to 
typedefs in header files. Then, subsequent uses of the 
defined type do not require the pragma. A simple 
example appears in Figure 2. 

This example defines a type called char_ptr64, 
which may be used to declare 64- bit pointers to char­
acter data without the use of pragmas. Of course, indi­
vidual pointers within structure types may also be set 
to 64-bit or 32-bit sizes. 

Secondary Effects 
With the decision made to use pragmas and the basic 
semantics of how the pragmas take effect established 
by the Digital UNIX implementation, we needed to 
consider additional requirements and issues that 

#pragma required_pointer_size save 
#pragma required_pointer_size 64 
typedef char* char_ptr64; 
#pragma required_pointer_size restore 

Figure 2 

might be specific to the Open VMS implementation. 
Two major differences between the platforms are 

1. On the Digital UNIX system, the linker/loader 
options used with mixed pointer size compilations 
ensure that any address value obtained by the pro­
gram can be represented using 32 bits, whereas on 
the OpenVMS system, any program using 64-bit 
pointers in C will almost certainly encounter address 
values that cannot be represented in 32 bits. 

2. On the Digital UNIX system, the scope of the use 
of mixed pointer sizes was expected to be quite 
small and not likely to grow much over time, 
whereas on the OpenVMS system, the scope is 
expected to be somewhat larger at first and grow 
significantly over time. 

These two differences emphasized the need for effec­
tive compile-time diagnostics, debugging aids, envi­
ronmental support, and clear documentation. 

Diagnostics As an aid to finding bugs resulting from 
improper mixing of pointer sizes, the DEC C compiler 
provides two kinds of diagnostics. Compile-time warn­
ings are issued for assignments from long pointers to 
short pointers because of the possibility of data loss. In 
addition, users may enable run-time checking for 
pointer truncation through a command line qualifier. 
This option causes the compiler to generate code on 
each conversion from a long to a short pointer, which 
will signal a range-check error if data truncation occurs. 

Run-time checking is particularly useful in code that 
sometimes employs type casting to use long pointers 
in short pointer contexts. Since this action prevents a 
compile-time warning about using a long pointer 
where a short pointer is expected, a run-time check 
may be the only way to discover a coding error. The 
run-time check qualifier provides options distinguish­
ing this case from checking on general assignments 
and parameter passing, allowing users to select for 
which classes of pointer-size mixing the compiler 
should generate checking code. Run-time checking is 
also available for parameters received by a routine. 
This allows detection of 64-bit addresses passed to 
routines that expect 32-bit parameters even when the 
caller is separately compiled or written in a different 
programming language. For performance reasons, it is 
usually desirable to remove all run-time checking once 
a program is debugged. 

I* Save the previous pointer size*/ 
I* Set pointer size to 64 bits*/ 
I* Define a 64-bit char pointer*/ 
I* Re store the pointer size*/ 

Sample Header File Code That Limits Pragmas to Defined Types 
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Allocation Function Mapping The command line 
qualifier setting the default pointer size has an addi­
tional effect that simplifies the use of 64-bit address 
space. If an explicit pointer size is specified on the 
command line, the malloc function is mapped to a 
routine specific to the address space for that size. For 
example, _malloc64 is used for malloc when the 
default pointer size is 64 bits. This allows allocation 
of 64-bit address space without additional source 
changes. The source code may also call the size­
specific versions of run-time routines explicitly, when 
compiled for mixed pointer sizes. These size-specific 
functions are available, however, only when the 
/pointer_size command line qualifier is used. See 
"Adding 64-bit Pointer Support to a 32-bit Run-time 
Library" in this issue for a discussion of other effects of 
64-bit addressing on the C run-time library.6 

Header File Semantics The treatment of pointer_size 
pragmas in and around header files (i.e., any source 
included by the #include preprocessing directive) 
deserves special mention. Programs typically include 
both private definition files and public or system-specific 
header files. In the latter case, it may not be desirable for 
definitions within the header files to be affected by the 
pointer_size pragmas or command line currently in 
effect. To prevent these definitions from being affected, 
the DEC C compiler searches for special prologue and 
epilogue header files when a #include directive is 
processed. These files may be used to establish a par­
ticular state for environmental pragmas, such as 
pointer_size, for all header files in the directory. This 
eliminates the need to modify either the individual 
header files or the source code that includes them. 

The compiler creates a predefined macro called 
_INITIAL_POINTER_SIZE to indicate the initial 
pointer size as specified on the command line. This may 
be of particular use in header files to determine what 
pointer size should be used, if mixed pointer size sup­
port is desirable. Conditional compilation based on this 
macro's definition state can be used to set or override 
pointer size or to detect compilation by an older com­
piler lacking pointer-size support. Ifits value is zero, no 
/pointer_size qualifier was specified, which means that 
pointer_size pragmas do not take effect. If its value is 
32 or 64, pointer_size pragmas do take effect, so it can 
be assumed that mixed pointer sizes are in use. 

Code Example 
In the simple code example shown in Figure 3, sup­
pose that the routine procl is part of a library that has 
been only partially promoted to use 64-bit addresses. 
This function may receive either a 32-bit address or a 
64-bit address in the argument_ptr parameter. To 
demonstrate the use of the new DEC C features, prod 
has been modified to copy this character string para­
meter from 64-bit space to 32-bit space when neces-
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sary, so that routines that prod subsequently calls 
need to deal with only 32-bit addresses. 

The _INITIAL_POINTER_SIZE macro is used to 
determine if pointer_size pragmas will be effective 
and, hence, whether argument_ptrrnight be 64 bits in 
width. If it might be a 64-bit pointer, whose actual 
width is unknown in this example, the pointer's value 
is copied to a 32-bit-wide pointer. The pointer_size 
pragma is used to change the current pointer size to 
32 bits to declare the temporary pointer. Next, the 
two pointer values are compared to determine if 
the original pointer fits in 32 bits. If the pointer does 
not fit, temporary storage in 32-bit addressable space 
is allocated, and the argument is copied there. Note 
that the example uses _malloc32 rather than malloc, 
because malloc would allocate 64-bit address space 
if the initial pointer size was 64 bits. At the end of 
the routine, the temporary space is freed, if necessary. 

A type cast is used in the assignment from 
argument_ptr to temp_shorl_ptr, even though both 
variables are of type char *. Without this type cast, if 
argument_ptr is a 64-bit-wide pointer, the DEC C 
compiler would report a warning message because of 
the potential data loss when assigning from a 64-bit to 
a 32-bit pointer. 

For other examples of pointer_size pragmas and the 
use of the _INITIAL_POINTER_SIZE macro, see 
Duane Smith's paper on 64-bit pointer support in 
run-time libraries.6 

OpenVMS System Services 

The OpenVMS operating system provides a suite of 
services that perform a variety of basic operating sys­
tem functions. 7 Design work was required to maxi­
mize the utility of these routines in the new mixed 
pointer size environment. Issues that needed to be 
addressed included the following, which are discussed 
in subsequent sections: 

• Several services pass pointers by reference and, 
hence, required an interface change. 

• Because of resource constraints, not all system ser­
vices could be promoted to handle 64-bit addresses 
in the first version of the 64-bit-capable Open VMS 
operating system. 

• Since the services provide mixed levels of support, it 
is important to indicate those that support 64-bit 
addresses and those that do not. 

• Certain new services seemed desirable to improve 
the usability of 64-bit address space. 

Services That Are 64-bit Friendly 
Services that can be promoted to support 64-bit 
addresses without any interface change are called 64-bit 
friendly. If a service receives an address by reference, the 
service is typically not 64-bit friendly, and a separate 



voi d proc1(ch ar * argu men t_p tr) 
{ 

#if I NITIAL_PO IN TER SIZE != 0 
#pr ag ma poi n t er_s ize save 
# p ragma pointer_size 32 
char* temp_short_ptr; 
te mp_short_ptr = (char *)argument_ptr; 
if <temp_short_ptr != argument_ptr) { 

temp_short_ptr = _malloc32Cstrlen(arg umen t_ptr) + 1); 
strcpy(te mp_short_ptr,argument_ptr); 
argument_ptr = te mp_short_ptr; 

} 

e lse { 
temp_short_ptr = O; 

} 

# p ragma poi nt er_size restore 
#end if 

I* 
The actual body of proc1 is omitted. Ass ume that it calls 
r outines t ha t operat e o n the data pointe d to by arg ume nt_ptr 
and that the routines are not yet prepare d to handle 6 4-bit 
a ddresses. 

Figure 3 

*I 

#if INITIA L POINTER SIZE != 0 
if Ctemp_sho rt_ptr != 0) 

free(temp_short_ptr); 
#end if 
} 

Code Example of Pointer_size Pragmas and the _INITIAL_POINTER_SIZE Macro 

entry point is required to support 64-bit addresses. A 
single routine cannot distinguish whether the address at 
the specified location is 32 bits or 64 bits in width. 

If a service does not receive or return an address by 
reference, the service is usually 64-bit friendly. Even 
descriptor arguments present no problem, because the 
32-and 64-bit versions can be distinguished at run 
time. The majority of services fall into this category. 

The services that are not 64-bit friendly include 
the entire suite of memory management system ser­
vices, since they access address ranges passed by refer­
ence. Other such services include those that receive 
a 32-bit vector as an argument, which may include the 
address of a pointer as an element. A good example 
from this group is SYS$FAOL, which accepts a 32-bit 
vector argument for formatted output. For all these 
services, new interfaces were designed to accommo­
date 64-bit callers. 

Promotion of Services 
The Open VMS project team explored the idea of pro­
moting all system services to support 64-bit addresses. 
Since the majority of Open VMS system service 
routines are written in the MACR0-32 assembly lan­
guage or the Bliss-32 programming language, the 
internals of the routines could not be promoted to 
handle 64-bit addresses without modifications. We 
could not take advantage of the throw-the-switch 
approach, and we did not want to because many 

pointers used internally in the OpenVMS operating 
system remain at 32 bits. 

We considered using 64-bit jacket routines to copy 
64-bit arguments to the stack in 32-bit space, which 
would then call the 32-bit internal routine to perform 
the requested function. However, this approach would 
fail for context arguments such as asynchronous system 
trap (AST) routine parameters, where the address of 
the argument is stored for subsequent use. This 
approach would also prevent services from operating 
on any true 64-bit addresses. It was clear that at least 
some routines would have to be modified internally. 

The idea of using jacket routines was ultimately 
rejected for several reasons. First, the jackets would 
need to be custom written to ensure correct parameter 
semantics. There could not be a "common jacket" 
that could have saved time and lowered risk. Second, 
there would be an undesirable performance impact for 
64-bit callers. Third, we decided that having a com­
plete 64-bit system service suite was not essential for 
usable 64-bit support. We could define a subset that 
would meet the needs of 64-bit address space users, 
while lowering our risk and implementation costs. 

The services selected for 64-bit support fall into 
four categories. 

1. Memory management services. 

2. Performance-critical services. This group includes 
services that are typically sensitive to the addition of 
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even a few cycles of execution time. Requiring that 
a 64-bit address user do any additional work, such 
as copying data to 32-bit space, is undesirable. An 
example of this type of service is SYS$ENQ, which 
is used for queuing lock requests. 

3. Design center services. The primary design center 
for 64-bit support was database applications. 
Database architects and consultants were polled to 
determine which services were most needed by 
their products. Many of these services, for example 
SYS$QIO for queuing 1/0 requests, were also in 
the performance-critical set. 

4. Other useful basic services. This set includes ser­
vices to ease the transition to 64 bits with minimal 
change to program structure. For example, the 
SYS$CMKRNL service accepts a routine address 
and a vector of 32-bit arguments and invokes the 
routine in kernel mode, passing those arguments. 
Without a new 64-bit version of SYS$CMKRNL, 
a caller could not pass a 64-bit address to the kernel 
mode routine without changing the form of the 
argument block, such as passing a structure that 
SYS$CMKRNL would not interpret as a vector. 

Several steps were taken to ease programming to 
this subset implementation. 

• For all 64-bit services, all pointer arguments may 
be in 64-bit space. Extending only individual argu­
ments for some services would have been confusing 
and difficult to document. 

• The 64-bit-capable system services are clearly listed 
in the OpenVMS documentation, and the docu­
mentation for individual services clearly calls out 
their capabilitiesY 

• For C programmers, the header file that defines 
function prototypes for system services 
(STARLET.H) defines the expected pointer size 
for service arguments. This file can be used for 
compile-time type checking for correct argument 
pointer sizes. 

• A strict naming convention has been adhered to for 
64-bit services. If a routine was 64-bit friendly, i.e., 
it required no interface change, its name was not 
changed. If a new entry point was required 
because, for example, an address is passed by refer­
ence, a "_64" suffix was added to the name to iden­
tify the new entry point. 

• Sign-extension checking is performed in routines 
that do not accept 64-bit addresses. 

Centralized Sign-extension Checking 
For services that have not been promoted to accept 
arguments in 64-bit space, centralized sign-extension 
checking takes place. As described in the section Sign­
extension Checking, such checking prevents errors that 
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occur when a 64-bit address is erroneously passed to a 
routine that uses only 32-bit addresses. This centralized 
checking is part of the system service dispatcher, which 
returns the error status SS$ _ARG_ GTR_32_BITS when 
the error is discovered. Performing the checking at this 
common point minimized the implementation effort, 
while protecting sensitive inner mode services. No 
changes were necessary to the modules that contain the 
32-bit service code. The internal vector of services con­
tains a flag for each service indicating whether checking 
should be done. 

Naturally, it is best for mixed-size errors to be dis­
covered at compile time. The DEC C compiler issues a 
warning message when a 64-bit pointer is used as a 
parameter to a routine whose function prototype spec­
ifies that the parameter should be a 32-bit pointer. 
Run-time sign-extension checking works for any lan­
guage, though, including MACR0-32. 

This support can also be used to allow a run-time 
decision to be made to copy data from 64-bit space 
to 32-bit space. For example, a routine could call a 
system service, passing along an address that it 
had received as a parameter. If the service returns 
SS$_ARG_GTR_32_BITS, the calling routine can 
then copy the argument to the stack and retry the ser­
vice. In this way, the overhead of copying can be 
avoided if copying is unnecessary. When the system 
service is promoted to handle 64-bit addresses in a 
future version of the Open VMS operating system, no 
change will be needed in this caller; the data copying 
code will never be invoked. This approach may be 
appropriate for a run-time library that needs to be fully 
64-bit capable today on Open VMS Alpha version 7.0, 

• if that library will not be rereleased for a future version 
of the Open VMS operating system. 

Memory Management System Services 
The OpenVMS memory management system ser­
vices are not 64-bit friendly because they pass 32-bit 
input and output address arguments by reference. 
This set of services includes SYS$EXPREG ( expand 
program/ control region), SYS$MGBLSC (map global 
section), SYS$CRMPSC (create and map section), and 
SYS$PURGWS (purge working set), among others. 

The guiding principle in promoting these services 
was that the new 64-bit services had to perform the 
same functions as their 32-bit counterparts but not 
necessarily with an identical interface. Since 32-bit 
addresses can be expressed as 64-bit addresses with 
sign-extension bits in the upper 32 bits, it made sense to 
accommodate 32-bit addresses in the 64-bit interfaces, 
making the new services a superset of the 32-bit forms. 
For example, the SYS$CRMPSC service was split into 
multiple 64-bit-capable services, because it handles a 
variety of types of sections. The new services can operate 
on either 32-bit or 64-bit addresses and have simpler 



interfaces than the 32-bit-only SYS$CRMPSC. The 
original SYS$CRMPSC is still present so that existing 
code may function without change. 

Some new feature requests were considered as part 
of the 64-bit effort, but, to maintain the focus of 
the release, these features were not implemented. The 
64-bit memory management services were designed 
to more easily accommodate new features in the 
future. For example, the new services check the argu­
ment count for both too many and too few supplied 
arguments. In this way, new optional arguments can 
be added later to the end of the list without jeopardiz­
ing backward compatibility. 

Virtual Regions 
One new feature that was added to the suite of64-bit 
memory management services is support for new enti­
ties called virtual regions. A virtual region is an address 
range that is reserved by a program for future dynamic 
allocation requests. The region is similar in concept to 
the program region (PO ) and the control region ( P 1 ), 
which have long existed on the Open VMS operating 
system.9 A virtual region differs from the program and 
control regions in that it may be defined by the user by 
calling a system service and may exist within PO, Pl, or 
the new 64-bit addressable process-private space, P2. 1 

When a virtual region is created, a handle is returned 
that is subsequently used to identify the region in 
memory management requests. 

Address space within virtual regions is allocated in 
the same manner as in the default PO, Pl, and P2 
regions, with allocation defined to expand space 
toward either ascending or descending addresses. As 
in the default regions, allocation is in multiples of 
pages. The Open VMS operating system keeps track of 
the first free virtual address within the region. A region 
can be created such that address space is created auto­
matically when a virtual reference is made within the 
region, just as the control region in Pl space expands 
automatically to accommodate user stack expansion. 
When a virtual region is created within PO, Pl, or P2, 
the remainder of that containing region decreases in 
size so that it does not overlap with the virtual region. 

Virtual regions were added to the Open VMS Alpha 
operating system along with the 64-bit addressing 
capability so that the huge expanse of 64-bit address 
space could be more easily managed. If a subsystem 
requires a large portion of virtually contiguous address 
space, the space can be reserved within P2 with little 
overhead. Other subsystems within the application 
cannot inadvertently interfere with the contiguity 
of this address space. They may create their own 
regions or create address space within one of the 
default regions. 

Another advantage of using virtual regions is that 
they are the most efficient way to manage sparse 
address space within the 64-bit P2 space. Further-

more, no quotas are charged for the creation of a vir­
tual region. The internal storage for the description 
of the region comes from process address space, which 
is the only resource used. 

Summary 

This paper presents the reasons behind the new 
Open VMS mixed pointer size environment and the 
support added to allow programming within this envi­
ronment. The discussion touches on some of the new 
support designed to simplify the use of the 64-bit 
address space. 

The approaches discussed yielded full upward com­
patibility for 32-bit applications, while allowing other 
applications access to the huge 64-bit address space for 
data sets that require it. Promotion of all pointers to 
64-bit width is not required to use 64-bit space; the 
mixed pointer size environment was considered para­
mount in all design decisions. A case study of adding 
64-bit support to the C run-time library also appears 
in this issue of the Journal.6 
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Adding 64-bit Pointer 
Support to a 32-bit 
Run-time Library 

A key component of delivering 64-bit addressing 
on the OpenVMS Alpha operating system, ver­
sion 7 .0, is an enhanced C run-time library that 
allows application programmers to allocate and 
utilize 64-bit virtual memory from their C pro­
grams. This C run-time library includes modified 
programming interfaces and additional new 
interfaces yet ensures upward compatibility 
for existing applications. The same run-time 
library supports applications that use only 
32-bit addresses, only 64-bit addresses, or 
a combination of both. Source code changes 
are not required to utilize 64-bit addresses, 
although recompilation is necessary. The new 
techniques used to analyze and modify the 
interfaces are not specific to the C run-time 
library and can serve as a guide for engineers 
who are enhancing their programming inter­
faces to support 64-bit pointers. 

I 
Duane A. Smith 

The OpenVMS Alpha operating system, version 7.0, 
has extended the address space accessible to applica -
tions beyond the traditional 32-bit address space. This 
new address space is referred to as 64-bit virtual mem­
ory and requires a 64-bit pointer for memory access. 1 

The operating system has an additional set of new 
memory allocation routines that allows programs to 
allocate and release 64-bit memory. In OpenVMS 
Alpha version 7 .0, this set of routines is the only mech­
anism available to acquire 64-bit memory. 

For application programs to take advantage of these 
new OpenVMS programming interfaces, high-level 
programming languages such as C had to support 
64-bit pointers. Both the C compiler and the C run­
time library required changes to provide this support. 
The compiler needed to understand both 32-bit and 
64-bit pointers, and the run-time library needed to 
accept and return such pointers. 

The compiler has a new qualifier called /pointer_size, 
which sets the default pointer size for the compilation 
to either 32 bits or 64 bits. Also added to the compiler 
are pragmas (directives) that can be used within the 
source code to change the active pointer size. An 
application program is not required to compile each 
module using the same /pointer_size qualifier; some 
modules may use 32-bit pointers while others use 
64-bit pointers. Benson, Noel, and Peterson describe 
these compiler enhancements. 2 The DEC C User's 
Guide for Open VMS Systems documents the qualifier 
and the pragmas.3 

The C run-time library added 64-bit pointer sup­
port either by modifying the existing interface to a 
function or by adding a second interface to the same 
function. Public header files define the C run-time 
library interfaces. These header files contain the pub­
licly accessible function prototypes and structure defi­
nitions. The library documentation and header files 
are shipped with the C compiler; the C run-time 
library ships with the operating system. 

This paper discusses all phases of the enhancements 
to the C run-time library, from project concepts 
through the analysis, the design, and finally the imple­
mentation. The DEC C Runtime Library Reference 
Manual for open VMS Systems contains user documen­
tation regarding the changes.4 
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Starting the Project 

We devoted the initial two months of the project to 
understanding the overall Open VMS presentation of 
64-bit addresses and deciding how to present 64-bit 
enhancements to customers. Representatives from 
OpenVMS engineering, the compiler team, the run­
time library team, and the Open VMS Calling Standard 
team met weekly with the goal of converging on the 
deliverables for Open VMS Alpha version 7.0. 

The project team was committed to preserving both 
source code compatibility and the upward compati­
bility aspects of shareable images on the Open VMS 
operating system. Early discussions with application 
developers reinforced our belief that the Open VMS 
system must allow applications to use 32-bit and 
64-bit pointers within the same application. The team 
also agreed that for a mixed-pointer application to 
work effectively, a single run-time library would need 
to support both 32-bit and 64-bit pointers; however, 
there was no known precedent for designing such 
a library. 

One implication of the decision to design a run­
time library that supported 32-bit and 64-bit pointers 
was that the library could never return an unsolicited 
64-bit pointer. Returning a 64-bit pointer to an 
application that was expecting a 32-bit pointer would 
result in the loss of one half of an address. Although 
typically this error would cause a hardware exception, 
the resulting address could be a valid address. Storing 
to or reading from such an address could result in 
incorrect behavior that would be difficult to detect. 

The Open VMS Calling Standard specifies that argu­
ments passed to a function be 64-bit values.5 If a 
32-bit address is used, it is always sign extended to 
form a 64-bit address that can be used by the Alpha 
hardware. The C run-time library team exploited this 
fact when creating the 64-bit interface to the library. 

The team also agreed that using 64-bit pointers 
should be as simple as possible; the simplest mode 
would allow the application to compile using the 
qualifier /pointer_size=64 without making source 
code changes. The design of 64-bit support must 
appear as a logical extension to the C programming 
environment in use today. Furthermore, applications 
written to conform strictly to the ANSI standard must 
be able to use 64-bit pointers while remaining confor­
mant. For example, allocating 64-bit virtual memory 
would be an extension to the standard C memory man­
agement functions malloc, calloc, realloc, and free. 

This paper shows that each of the C run-time library 
interfaces examined falls into one of the following 
four categories (listed in order of added complexity 
to library users ): 

1. Not affected by the size of a pointer 

2. Enhanced to accept both pointer sizes 
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3. Duplicated to have a 64-bit-specific interface 

4. Restricted from using 64-bit pointers 

One last point to come from the meetings was 
that many of the C run-time library interfaces are 
implemented by calling other Open VMS images. For 
example, the Curses Screen Management interfaces 
make calls to the Open VMS Screen Management 
(SMG) facility. It is important that the C run-time 
library defines the interfaces to support 64-bit 
addresses without looking at the implementation of 
the function. Consistency and completeness of the 
interface are more important than the complexity 
of the implementation. In the SMG example, if the 
C run-time library needs to make a copy of a string 
prior to passing the string to the SMG facility, this 
is what will be implemented. 

Analyzing the Interfaces 

The process of analyzing the interfaces began by creat­
ing a document that listed all the header files and the 
definitions in these files. A total of 50 header files that 
contained approximately 50 structures and 500 proto­
types needed to be analyzed. Each structure or pro­
totype had to be examined to see if a change in pointer 
size would affect the interface. Keep in mind that 
we analyzed only the interfaces; we did not examine 
the underlying implementation changes that would 
be required. 

Analyzing the Structures 

It is necessary to distinguish between a structure, 
which may contain pointers, and a pointer to the struc­
ture itself. For example, the div_t structure contains 
two integer fields. Although the size of the pointer 
to div_t does not affect the contents of the structure, 
the entire structure may be allocated in 32-bit or 64-bit 
virtual memory. Functions that accept a pointer to such 
a structure may need to be modified to accommodate 
the 64-bit case. The div_t structure is 

t ypedef struct { 
i nt qu ot, rem; 

} div_t; 

Many structures used in the C run-time library 
interfaces are allocated by the run-time library in 
response to a function call. For example, a call to the 
fopen function returns the following pointer to 
the FILE structure: 

FILE *f ope nCco nst ch a r *fil ename, 
co nst char * mo de ); 

The C run-time library always allocates FILE struc­
tures in 32-bit virtual memory and returns a 32-bit 
pointer to the calling program. This important con­
cept can dramatically impact the use of 64-bit pointers 



in structures. If a FILE pointer is always a 32-bit 
pointer, structures that contain only FILE pointers are 
not affected by the choice of pointer size. We use this 
information when we look at the layout of structures 
and examine function prototypes that accept pointers 
to structures. 

In this paper, structures that are always allocated in 
32-bit virtual memory are referred to as structures 
bound to low memory. After determining which 
structures are bound to low memory, we examine the 
layout of each structure to decide if the structure 
is affected by pointer size. We keep in mind that 
pointer size does not affect a structure that is bound 
to low memory. 

For upward compatibility, the analysis must always 
consider existing software that depends on the layout 
of the structure. In the case of public header file analy­
sis, such dependence will probably always be present. 
An application may have executable code that, for 
example, fetches 4 bytes beginning at byte 12 of the 
structure and dereferences those 4 bytes as the address 
ofa string. 

For these public structures, the analysis must weigh 
the impact of forcing these structures to be 32-bit 
pointers. If the decision is made to allocate two differ­
ent structure types, each function that either returns 
or is passed such a structure must have a pointer-size­
specific implementation. The case analysis and further 
details appear in the section Pointer to Pointer-size­
sensitive Structures. 

Analyzing the Function Prototypes 
Analyzing functions only requires looking at the func­
tion prototypes. To determine the effect of pointer 
size on a function, we look at each parameter and 
return value that involves a pointer. This section 
describes the types of situations that are affected by 
pointer size, from the simplest type to the most com­
plex. Note that when a program passes an array of any 
type to a function, the array is passed as a pointer and 
must be considered. 

Making 64-bit-friendly Parameters As mentioned in 
the section Starting the Project, the open vMS Calling 
Standard specifies that a 32-bit address is sign 
extended to a 64-bit address when passed as an 
argument to a function. This implies that existing 
programs that pass addresses as parameters are already 
sign extending those 32-bit addresses to be passed as 
64-bit quantities. Each 32-bit address can, therefore, 
be expressed as a 64-bit address in which the top 
32 bits are zero. 

This sign-extending scheme allows the run-time 
library to have a single implementation that can be 
used by both 32-bit and 64-bit calling programs. This 

implementation would be modified to accept only 
64-bit addresses. An implementation that supports 
parameters of either pointer size is referred to as being 
64-bit friendly. The function strlen is an example of 
a 64-bit-fiiendly function. 

size t str len(co nst c har *stri ng) ; 

The string parameter is the only part of the strlen func­
tion that the pointer size affects. To support 64-bit 
addressing, the strlen function had to be modified to 
accept a 64- bit pointer. 

Parameters Bound to Low Memory In structures bound 
to low memory, the addresses that the programs pass 
are always 32-bit addresses. One explanation is that 
the structures are managed by the run-time library, 
and the only method of creating, destroying, or 
obtaining the addresses of these structures is by calling 
a library routine. Given that a single library services 
both 32-bit and 64-bit calling programs, the library 
does not change the structures based on command 
qualifiers, nor does it allocate the structures in 64-bit 
virtual memory. For user convenience, the C run-time 
library implemented these pointers as 32-bit return 
values but 64-bit-friendly parameters. 

The reason for this design became apparent while 
testing the 64-bit interfaces to the library. Consider 
the following code fragment, which exists in many 
applications: 

FILE *fp; 
char buffer[100 J ; 
fp = fopen("the_file", "r"); 
fread(array , sizeof(buffer), 1, fp); 

The C run-time library always allocates a FILE 
structure in 32-bit virtual memory. When the previous 
code fragment is compiled using /pointer_size=64,fp 
is declared as a 64-bit pointer to a FILE structure, 
because using this qualifier specifies the default pointer 
size to be used. When the fopen function returns the 
32-bit pointer, the return value is sign extended into 
the 64-bit FILE pointer. If the fourth parameter of the 
fread function had been declared as a 32-bit FILE 
pointer, the compiler would report an error when the 
64-bit FILE pointer fp was passed as an argument. 
This example explains why the C run-time library 
declares structures bound to low memory as 32-bit 
return values but 64-bit parameters. 

Parameters Restricted to Low Memory Structures 
restricted to low memory are similar to those bound to 
low memory except that the user allocates the struc­
tures and can allocate the structures in high memory. 
The C run-time library cannot support the allocation 
of such structures in 64-bit virtual memory. 
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An example of a parameter being restricted to a 
low memory address is the buffer being passed as the 
parameter to the function setbuf. The parameter 
defines this buffer to be used for I/0 operations. The 
user expects to see this buffer change as I/0 opera­
tions are performed on the file. If the run-time library 
made a copy of this buffer, the changes would appear 
in the copy and not in the original buffer that the user 
supplied. When the C run-time library begins to use 
the 64-bit OpenVMS Record Management Services 
(RMS) interface, this low-memory restriction will be 
removed. 

In most cases, the run-time library is able to hide 
the fact that the 32-bit RMS interface is not able to 
interpret a 64-bit virtual memory address. Consider 
the filename parameter to the fopen function. If the 
parameter is a 64-bit virtual memory address, the run­
time library copies this parameter to 32-bit virtual 
memory and passes the address of the copy to RMS . 
Neither the user nor RMS is aware that this copy has 
been made. The library may copy the data if and only if 
such a copy operation does not change functionality or 
significantly degrade performance. 

Size-independent Structure Pointers Many functions 
receive the address of a structure whose layout is not 
affected by pointer size. The simplest address in this 
category is that of an array of integers. This array may 
be in either 32-bit or 64-bit virtual memory, but only 
one interface is needed to determine the layout of the 
structure. If the structure layout is independent of 
pointer size, then pointer-size-specific entry points are 
not required for this parameter. The developer would 
still make the parameter 64-bit fiiendly so that the user 
would have the freedom to make the allocation that is 
best for the application. 

Pointer to Pointer Parameters It is common practice 
for a function to be passed a pointer to a pointer. If the 
pointer being pointed to is not bound or restricted to 
a 32-bit address, then two implementations of the 
function are necessary. 

To understand why some functions require two 
implementations, consider the following strtod 
function: 

double strtod(const char *string, 
char **endptr); 

The strtod function converts a string to a floating­
point double-precision number. The second parame­
ter to this function, endptr, is a pointer to a memory 
location into which the address of the first unrecog­
nized character is to be placed. The caller of this func­
tion has allocated either 4 or 8 bytes to store this 
address. Without pointer-size-specific entry points, 
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the function has no way of determining how many 
bytes to write. Writing 4 bytes may truncate a pointer; 
writing 8 bytes may overwrite 4 bytes of user data that 
follows the pointer. The strtod function, therefore, has 
two implementations. The first expects endptr to be 
the address of a 32-bit pointer, and the second expects 
endptr to be the address of a 64-bit pointer. 

Pointer to Pointer-size-sensitive Structures Many func­
tions receive the address of a structure. If the analysis 
reveals that the layout of this structure is dependent 
upon pointer size, the functions that receive or return 
this structure must have pointer-size-specific entry points. 

Note that the layout of the structure is separate 
from whether the structure is allocated in low memory 
or in high memory. The 32-bit-specific entry point is 
needed to understand the layout of the structure, but 
the parameter should allow this structure to be allo­
cated in high memory. 

Functions that receive the address of an array of 
addresses are treated in the same way, assuming that 
the addresses in the array are neither bound nor 
restricted to low memory. The function being called 
needs to know if the array contains 32-bit addresses or 
64-bit addresses. Unlike the address of the array, the 
individual members of the array are not sign extended 
to 64-bit values. 

Separate implementations are necessary only to 
determine the layout of what is being pointed to. The 
32-bit interface handles pointers to structures contain­
ing 32-bit addresses, and the 64-bit interface handles 
pointers to structures containing 64-bit addresses. 

Functions That Return Pointers Many functions return 
pointers as the value of the function. These pointers are 
either pointer-size specific or they are not affected by 
the pointer size. Similar to its specifications for 64-bit­
fiiendly parameters, the OpenVMS Calling Standard 
indicates that return values on the OpenVMS Alpha 
operating system are always sign extended to 64-bit 
values and returned in register zero (RO). 

To make an address parameter 64-bit fiiendly, a 
function allows a 64-bit address to be passed, thus 
enabling both 32-bit and 64-bit calling programs to 
use a single interface. Conversely, if a function returns 
a 64-bit address to a 32-bit calling program, the 
address is safely returned in RO but is truncated when 
moved from RO into the user's data area. A 64-bit­
fiiendly address return value is always 32 bits. When 
moved from RO into the calling program's variable, 
it is sign extended when the calling program is using 
64-bit addresses. 

If the return value of a function can be a 64-bit 
address, this function must have pointer-size-specific 
entry points. If the function returns the address of a 



structure that is bound to low memory, such as a FILE 
or WINDOW pointer, the return value does not force 
separate entry points. 

Certain functions, such as malloc, allocate memory 
on behalf of the calling program and return the address 
of that memory as the value of the function. These 
functions have two implementations: the 32-bit inter­
face always allocates 32-bit virtual memory, and the 
64-bit interface always allocates 64-bit virtual memory. 

Many string and memory functions have return val­
ues that are relative to a parameter passed to the same 
routine. These addresses may be returned as high 
memory addresses if and only if the parameter is a 
high memory address. 

The following is the function prototype for strcat, 
which is found in the header file <string.h>: 

char *strcat(char *s1, const char *s2); 

The strcat function appends the string pointed to by 
s2 to the string pointed to by sl. The return value is 
the address of the latest string sl. 

In this case, the size of the pointer in the return 
value is always the same as the size of the pointer 
passed as the first parameter. The C programming lan­
guage has no way to reflect this. Since the function 
may return a 64-bit pointer, the strcat function must 
have two entry points. 

As discussed earlier, the pointer size used for para­
meter s2 is not related to the returned pointer size. 
The C run-time library made this s2 argument 64-bit 
friendly by declaring it a 64-bit pointer. This declara­
tion allows the application programmer to concate­
nate a string in high memory to one in low memory 
without altering the source code. The following strcat 
function statement shows this declaration: 

c har *strcat(char *s1, ~char_ptr64 s2); 

The data type _char_ptr64 is a 64-bit character 
pointer whose definition and use will be explained 
later in this paper. 

High-level Design 

The /pointer_size qualifier is available in those 
versions of the C compiler that support 64-bit point­
ers. The compiler has a predefined macro named 
_ INITIAL_POINTER._SIZE whose value is based on 
the use of the / pointer_size qualifier. The macro 
accepts the following values: 

• 0, which indicates that the /pointer_size qualifier is 
not used or is not available 

• 32, which indicates that the /pointer_size qualifier 
is used and has a value of 32 

• 64, which indicates that the /pointer_size qualifier 
is used and has a value of 64 

The C run-time library header files conditionally 
compile based on the value of this predefined macro. 
A zero value indicates to the header files that the com­
puting environment is purely 32-bit. The pointer-size­
specific function prototypes are not defined. The user 
must use the /pointer_size qualifier to access 64-bit 
functionality. The choice of 32 or 64 determines the 
default pointer size. 

The header files define two distinct types of declara­
tions: those that have a single implementation and 
those that have pointer-size-specific implementations. 
The addresses passed or returned from functions that 
have a single implementation are either bound to low 
memory, restricted to low memory, or widened to 
accept a 64-bit pointer. 

Those functions that have pointer-size-specific 
entry points have three function prototypes defined. 
Using malloc as an example, prototypes are created for 
the functions malloc, _malloc32, and _malloc64. The 
latter two prototypes are the pointer-size-specific pro· 
totypes and are defined only when the / pointer_size 
qualifier is used. The malloc prototype defaults to call­
ing _malloc32 when the default pointer size is 32 bits. 
The malloc prototype defaults to calling _malloc64 
when the default pointer size is 64 bits. Applica­
tion programmers who mix pointer types use the 
/pointer_size qualifier to establish the default pointer 
size but can then use the _malloc32 and _malloc64 
explicitly to achieve nondefault behavior. 

In addition to being enhanced to support 64-bit 
pointers, the C compiler has the added capability of 
detecting incorrect mixed-pointer usage. It is the 
function prototype found in the header files that tells 
the compiler exactly what pointer size is permitted or 
expected in a call. Proper use of the header files helps 
prevent pointer truncation. 

The actual functions called in the C run-time library 
are either decc$malloc or decc$_malloc64, depending 
on the pointer size. The C run-time library does not 
contain an entry point called decc$_malloc32 . This 
naming scheme was selected so that applications that 
link on older systems always get the 32-bit interface. 

The C compiler has always looked at a table within 
the C run-time library shareable image for assistance in 
name prefixing. Using this table, the compiler knows 
to change calls to the malloc function into calls to the 
decc$malloc function and not to change calls to xyz, 
which is not a C run-time library function, into calls to 
decc$xyz. 

The C run-time library and the C compiler have 
added new information to the table that tells the com­
piler which functions have pointer-size-specific entry 
points. When the compiler sees a call to the function 
_xyz32, it looks it up in the name table. If the name of 
the function is found, the compiler then looks at 
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whether the function is the 32-bit-specific entry point. 
If it is, the compiler forms the prefixed name by 
adding "decc$" to the beginning of the name but 
also removes the"_" and the "32." Consequently, the 
function name _malloc32 becomes decc$malloc, but 
the function name _xyz32 does not change. 

Implementation 

To illustrate changes that needed to be made to the 
header files, we invented a single header file called 
<header.h>. This file, which is shown in Figure 1, illus­
trates the classes of problems faced by a developer who 
is adding support for 64-bit pointers. The functions 
defined in this header file are actual C run-time library 
functions. 

Preparing the Header File 
The first pass through <header.h> resulted in a num­
ber of changes in terms of formatting, commenting, 
and 64-bit support. Realizing that many modifications 
would be made to the header files, we considered 
readability a major goal for this release of these files. 

The initial header files assumed a uniform pointer 
size of 32 bits for the OpenVMS operating system. 
During the first pass through <header.h>, we added 
pointer-size pragmas to ensure that the file saved the 
user's pointer size, set the pointer size to 32 bits, and 
then restored the user's pointer size at the end of the 
header. 

Next we formatted <header.h> to show the various 
categories that the structures and functions fall into. 
The categories and the result of the first pass through 
<header.h> can be seen in Figure 2. For example, 
the function rand had no pointers in the function 

prototype and was immediately moved to the section 
"Functions that support 64-bit pointers." 

Organizing <header.h> in this way gave us an accu­
rate reading of how many more functions needed 
64-bit support. If any of the sections became empty, 
we did not remove the section. This approach worked 
well because while some engineers were doing 64-bit 
work, others were adding new functions. Any new 
functions added to a header file after the 64-bit work 
was done would be placed in the section "Functions 
that need 64-bit support." Prior to shipping the 
header files, we removed the empty sections. 

Preparing the Source Code 
After several false starts, we settled on a design for 
modifying the source code for 64-bit support. The 
expected starting design was to modify the source 
code by adding pointer_size pragmas and compile the 
source modules using the /pointer_size qualifier. 
Some modules would use /pointer_size=32; others 
would use /pointer_size=64. The major drawback to 
this approach was that looking at a variable declared as 
a pointer requires an understanding of the context in 
which that variable appears. No longer would "char *" 
be simply a character pointer. It could be a 32-bit or a 
64-bit character pointer, and the implementer needed 
to know which one. 

The design on which we decided overcomes the 
readability problem. By default, source files are not 
compiled with the /pointer_size qualifier. This means 
that no pointer-size manipulation occurs when includ­
ing the header files. The readability of the source code 
is improved in that the implementers can see which 
pointers are 32-bit pointers and which are 64-bit 
pointers. 

#ifndef ~HEADER_LOADED 

Figure 1 
Original Header File <header.h> 
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#define HEADER_LOADED 

#ifndef SIZE_T 
# defi n e SIZE_T 1 

typedef unsigned int size_t; 
#endif 

int execv(const char*, char*[]); 
void freeCvoid *); 
void *malloc(size_t); 
int r and (void); 
char *strcatCcha r * , const c har*); 
char *strerror(int); 
size_t strlenCconst char*); 

#endif /* ~HEADER_LOADED */ 

Vol. 8 No. 2 1996 



#ifndef 
#define 

I* 

HEADER_LOADED 
HEADER_LOADED 

** Ensure that we begin with 32-bit pointers. 
*I 
#if INITIAL POINTER SIZE 
# if C_VMS_VER < 70000000) 
# error "Pointer size added in OpenVMS V7.0 for Alpha" 

Figure 2 

# endif 
# pragma _pointer_size save 
# pragma _pointer_size 32 
#end if 

I* 
** STRUCTURES NOT AFFECTED BY POINTERS 
*I 
# i fn de f _s I ZE_ T 
# define SIZE_T 1 

typedef unsigned int size_t; 
#end if 

I* 
** FUNCTIONS THAT NEED 64-BIT SUPPORT 
*I 
int execvCconst char*, char*[]); 
void freeCvoid *); 
void *mallocCsize_t); 
cha r *strcatCchar *, canst char*); 
char *strerrorCint); 
size_t strlenCconst char*); 

I* 
** Create 32-bit header file typedefs. 
*I 

I* 
** Create 64-bit header f i le typedefs. 
*I 

I* 
** FUNCTIONS RESTRICTED FROM 64 BITS 
*I 

I* 
** Change default to 64-bit pointers. 
*I 
#if INITIAL_POINTER SIZE 
# pragma _pointer_size 64 
#end if 

I* 
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS 
*I 
int rand(void); 

I* 
** Restore the user's pointer context. 
*I 
#if INITIAL_POINTER SIZE 
# pragma _pointer_size _restore 
#end if 

#endif / * _HEADER_LOADED * / 

First Pass through <header.h> 
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We created a C run-time library private header 
file called <wide_types.src>. This header file has the 
appropriate pragmas to define 64-bit pointer types used 
within the C run-time library, as shown in Figure 3. 

This header file also contains the definitions of macros 
used in the implementations of the functions. Figure 4 
shows the macros declared in <wide_types.src>. 

Once a module includes the file <wide_types.src>, 
the compilation of that module changes to add the 
qualifier /pointer_size=32. This change improves the 
readability of the code because "char *" is read as a 

I* 

32-bit character pointer, whereas 64-bit pointers use 
typedefs whose names begin with "_wide." The 
name of the new typedef is _wide_char_ptr, which is 
read as a 64-bit character pointer. 

The C run-time library design also requires that the 
implementation of a function include all header files 
that define the function. This ensures that the imple­
mentation matches the header files as they are modi­
fied to support 64-bit pointers. For functions defined 
in multiple header files, this ensures that header files 
do not contradict each other. 

** This include file defines all 32-bit and 64-bit data types used in 
** the implementation of 64-bit addresses in the C run-time Library. 

Figure 3 

** 
** Those modules that are compiled with a 64-bit-capable compiler 
** are required to enable pointer size with /POINTER_SIZE=32. 
*I 
#ifdef INITIA L_POINTER_SIZE 
# if ( INITIAL_POINTER_SIZE != 32) 
# error "This module must be compiled /pointer_size=32" 
# endif 
#end if 

I* 
** ALL interfaces that require 64-bit pointers must use one of 
** the following definitions. When this header file is used on 
** platforms not supporting 64-bit pointers, these definitions 
** will define 32-bit pointers. 
*I 
#if def INITIAL_POINTER_SIZE 
# pragma ~pointer_size ~save 
# pragma ~pointer_size 64 
#endif 

typedef char *~w ide_char_ptr; 
typedef const char *~wide_const_char_ptr; 

typedef int *~wide_int_ptr; 
typedef const int *~wide_const_int_ptr; 

typedef char **~wide_char_ptr_ptr; 
typedef const char **~wide_const_char_ptr_ptr; 

typedef void *~wide_void_ptr; 
typedef const void *~wide_const_void_ptr; 

#include <curses.h> 
typedef WINDOW *~wide_WINDOW_ptr; 

#include <string.h> 
typedef size_t *~wide_size_t_ptr; 

I* 
** Restore pointer size. 
*I 
#if def INITIAL_POINTER_SIZE 
# pragma ~pointer_size ~restore 
#endif 

Typedefs from <wide_types.src> 
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I* 
** Defi ne macros t ha t are use d to deter mine poi nt er size a nd 
** macros that wi ll copy fro m high memo ry onto t he sta ck. 
*I 
#if def I NITIA L POI NTER SIZE 

# inclu de <builtins.h> 

# define C$$IS_S HO RT_ADD R( add r) \ 
((( ( i nt64)(addr)<<32)>>32) == ( un signed i nt64)a dd r ) 

# define C$$SHORT ADDR OF STRING(a dd r) \ 
(C $$ IS SHORT ADDR(;ddr) ? (char*) (addr) \ 
:(char-*) strcpy(~ALLOCA(strlen(a ddr) + 1) , (addr))) 

# define C$$SHO RT_ADDR_OF_STRUCT(a dd r) \ 
(C$$IS_SHO RT_AD DR (addr) ? (void*) (addr) \ 
:(void*) me mcpy(~ALLOCA(sizeof(* addr)), (addr), siz e of(*ad d r))) 

# define C$$SHO RT_A DD R_OF_M EMOR Y(addr, Len) \ 
(C$$IS SHO RT_AD DR(addr) ? (void*) (addr) \ 
:(void*) me mcpy(~ALLOCA(Len), (a ddr), Len) ) 

#else 

# define C$$IS SHO RT ADDR(a dd r) (1) 
# define C$$SHORT ADDR OF ST RING(addr) (addr) 
# define C$$SHORT-ADDR-OF-STRUCT(addr) (addr) 
# define C$$SHORT=ADDR=OF=M EM ORY(addr, Len) (a dd r) 

#end if 

Figure4 
Macros from <wide_types.src> 

Implementing the strerror Return Pointer 
The function strerror always returns a 32-bit pointer. 
The memory is allocated by the C run-time library for 
both 32-bit and 64-bit calling programs. As shown 
in Figure 5, we moved the function strerror into the 
section "Functions that support 64-bit pointers" of 
<header.h> to show that there are no restrictions on 
the use of this function. 

The "Create 32-bit header file typedefs" section of 
<header.h> is in the 32-bit pointer section, where the 
bound-to-low-memory data structures are declared. 
The function returns a pointer to a character string. 
We, therefore, added typedefs for _char_ptr32 and 
_const_char_ptr32 while in a 32-bit pointer context. 
These declarations are protected with the definition of 
_CHAR_P'TR32 to allow multiple header files to use 
the same naming convention. Declarations of the 
const form of the typedef are always made in the same 
conditional code since they usually are needed and 
using the same condition removes the need for a dif­
ferent protecting name. 

The strerror function could have been implemented 
in <header.h> by placing the function in the 32-bit sec­
tion, but that would have implied that the 32-bit 
pointer was a restriction that could be removed later. 
The pointer is not a restriction, and the strerror func­
tion fully supports 64-bit pointers. 

The private header file typedefs are always declared 
starting with two underscores and ending in either 
"_ptr32" or "_ptr64." These typedefs are created only 
when the header file needs to be in a particular 
pointer-size mode while referring to a pointer of the 
other size. The return value of strerror is modified to 
use the typedef _char_ptr32. 

Including the header file, which declares strerror, 
allows the compiler to verify that the arguments, 
return values, and pointer sizes are correct. 

Widening the strlen Argument 
The function strlen accepts a constant character 
pointer and returns an unsigned integer (size_t). 
Implementing full 64-bit support in strlen means 
changing the parameter to a 64-bit constant character 
pointer. If an application passes a 32-bit pointer to 
the strlen function, the compiler-generated code sign 
extends the pointer. The required header file mod­
ification is to simply move strlen from the sec­
tion "Functions that need 64-bit support" to the 
section "Functions that support 64-bit pointers." 

The steps necessary for the source code to support 
64-bit addressing are as follows: 

1. Ensure that the module includes header files that 
declare strlen. 
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Figure 5 

#ifndef 
#define 

I* 

HEADER_LOADED 
HEADER_LOADED 

** Ensure that we begin with 32-bit pointers. 
*I 
#if INITIAL POINTER SIZE 
# iT""c~vMs_vER < 10000000> 
# error "Pointer size added in OpenVMS V7.0 for Alpha" 
# endif 
# pragma ~ pointer_size ~save 
# pragma ~ pointer_size 32 
#end if 

I* 
** STRUCTURES NOT AFFECTED BY POINTERS 
*I 
# i fn de f S I Z E_ T 
# define SIZE T 1 

typedef""unsigned int 
#end if 

I* 

size_t; 

** FUNCTIONS THAT NEED 64-BIT SUPPORT 
*I 

I* 
** Create 32-bit header file typedefs. 
*I 
#ifndef ~CHAR_PTR32 
# define CHAR PTR32 

typedef char *~ char_ptr32; 
typedef const char *~const_char_ptr32; 

#endif 

I* 
** Create 64-bit header file typedefs. 
*I 
#ifndef CHAR_PTR64 
# define ~CHAR_PTR64 1 
# pragma ~pointer_size 64 

typedef char *~char_ptr64; 
typedef const char *~const_char_ptr64; 

# pragma ~pointe r_size 32 
#endif 

I* 
** FUNCTIONS RESTRICTED FROM 64 BITS 
*I 
int execv(~const_char_ptr64, char*[]); 

I* 
** Change default to 64-b it pointers. 
*I 
#if INITIAL POINTER SIZE 
# pragma ~pointer_size 64 
#endif 

I* 
** The following functions have interfaces of XXX, _XXX32, 
** and _XXX64. 
** 
** The function strcat has two interfaces because the return 
** argument is a pointer that is relative to the first arguments. 
** 
** The malloc function returns either a 32-bit or a 64-bit 
** memory address. 
*I 
#if I NITIAL POINTER SIZE 32 
# pr'igma ~pointer_size 32 
#end if 

Final Form of <header.h> 
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void *malloc(size_t ~ size); 
char *strcat(char *~s1, ~ const_char_ptr64 ~s2); 

#if INITIAL POINTER SIZE== 32 
# pragma ~pointer_size 64 
#end if 

#if ~INITIAL_POINTER_SIZE && ~VMS_VER >= 70000000 
# pragma ~pointer_size 32 

void *_malloc32(size_t); 
char *_strcat32(char *~s1, ~c onst_cha r_p tr64 ~s2); 

# pragma ~pointer_size 64 
void *_malloc64(size_t); 
char *_strcat64(char *~s1, const char *~s2); 

#end if 

I* 
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS 
*I 
void free(void *~ptr); 
int rand(void); 
size_t strlen(const char *~s >; 

~char_ptr32 strerror(int ~errnu m); 

I* 
** Restore the user's pointer context. 
*I 
#if ~I NI TIAL_POI NTER_S IZE 
# pragma ~pointer_size ~restore 

Figure 5 
Continued 

#end if 

#endif /* ~HEADER_LOADED */ 

2. Add the following line of code to the top of the 
module: #inc 1 ude <w i de_types. src>. 

3. Change the declaration of the function to accept 
a _wide_const_char_ptr parameter instead of the 
previous canst char * parameter. 

4. Visually follow this argument through the code, 
looking for assignment statements. This particular 
function would be a simple loop. If local variables 
store this pointer, they must also be declared as 
_ wide_const_char_ptr. 

5. Compile the source code using the directive 
/warn=enable=maylosedata to have the compiler 
help detect pointer truncation. 

6. Add a new test to the test system to exercise 64-bit 
pointers. 

Restricting execv from High Memory 
Examination of the execv function prototype showed 
that this function receives two arguments. The first 
argument is a pointer to the name of the file to start. 
The second argument represents the argv array that is 
to be passed to the child process. This array of pointers 
to null terminated strings ends with a NULL pointer. 

Initially, the execv function was to have had two 
implementations. The parameters passed to the execv 
function are used as the parameters to the main func­
tion of the child process being started. Because no 
assumptions could be made about that child process 
(in terms of support for 64-bit pointers), these para­
meters are restricted to low memory addresses. 

To illustrate that the argv passing was a restriction, 
we place that prototype into the section "Functions 
restricted from 64 bits" of <header.h>. The first argu­
ment, the name of the file, did not need to have this 
restriction. The section "Create 64-bit header file 
typedefs" was enhanced to add the definition of 
_const_char_ptr64, which allows the prototypes to 
define a 64-bit pointer to constant characters while in 
either 32-bit or 64-bit context. 

Returning a Relative Pointer in strcat 
The strcat function returns a pointer relative to its first 
argument. We looked at this function and determined 
that it required two entry points. In addition, we 
widened the second parameter, which is the address of 
the string to concatenate to the second, to allow the 
application to concatenate a 64-bit string to a 32-bit 
string without source code changes. 
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Figure 5 shows the changes made to support func­
tions that have pointer-size-specific entry points. The 
prototypes of functions XXX, _XXX:32, and _XXX:64 
begin in 64-bit pointer-size mode. Since the unmodi­
fied function name ( strcat, XXX) is to be in the pointer 
size specified by the /pointer_size qualifier, the 
pointer size is changed from 64 bits to 32 bits if and 
only if the user has specified /pointer_size:a32. At this 
point, we are not certain of the pointer size in effect. 
We know only that the size is the same as the size of 
the qualifier. The second argument to strcat uses the 
_const_char_ptr64 typedef in case we are in 32-bit 
pointer mode. Notice the declaration of _strcat64 
does not use this typedef because we are guaranteed 
to be in 64-bit pointer context. Figure 6 shows the 
implementation of both the 32-bit and the 64-bit 
strcat functions. 

The 64-bit ma/foe Function 
The implementation of multiple entry points was dis­
cussed and demonstrated in the strcat implementation. 
Although multiple entry points are typically added to 
1void truncating pointers, functions such as memory 
allocation routines have newly defined behavior. 

The functions decc$malloc and decc$_malloc64 
use new support provided by the OpenVMS Alpha 
operating system for allocating, extending, and freeing 
64-bit virtual memory. The C run-time library utilizes 
this new functionality through the LIBRTL entry 
points. The LIB RTL group added new entry points for 
each of the existing memory management functions. 
The LIBRTL includes an additional second entry 
point for the free function. Since our implementation 
of the free function simply widens the pointer, we end 
up with a single, C run-time library function that must 
choose which LIBRTL function to call. 

#include <string.h> 
#include <wide_types.src> 

I* 
** STRCAT/ STRCAT64 
** 

int free <~wi de_void_ptr ptr) { 
if (!(CSSIS_SHORT_ADDR(ptr))) 

return(cSS_free64(ptr)); 
else return(c$$ f ree32((void *) ptr); 

} 

Concluding Remarks 

The project took approximately seven person-months 
to complete. The work involved two months to deter­
mine what we wanted to do, one month to figure out 
how we were going to do it, and four person-months 
to modify, document, and test the software. 

During the initial two months, the technical leaders 
met on a weekly basis and discussed the overall 
approach to adding 64-bit pointers to the Open VMS 
environment. Since I was the technical lead for the C 
run-time library project, this initial phase occupied 
between 25 and 50 percent of my time. 

The one month of detailed analysis and design con­
sumed more than 90 percent of my time and resulted 
in a detailed document of approximately 100 pages. 
The document covered each of the 50 header files and 
500 function interfaces. The functions were grouped 
by type, based on the amount of work required to 
support 64-bit pointers. 

The first month of implementation occupied nearly 
all of my time, as I made several false starts. Once I 
worked out the final implementation technique, I 
completed at least two of each type of work. As coding 
deadlines approached, I taught two other engineers on 
my team how to add 64-bit pointer support, pointing 
out those functions already completed for reference. 
They came up to speed within one week. Together, we 
completed the work during the final month of the 
project. 

** The 'strcat' function concatenates 's2', including the 
** terminating null character, to the end of 's1'. 
*I 

~wide_char_ptr _strcat64<~wide_char_ptr s1, ~wide_const_char_ptr s2) 
{ 

} 

<v o id) _memc py64((s1 + str l e n (s1)), s2, <strlen(s2) + 1)); 
ret u rn(s1 >; 

char* strcat32(char *s1 , ~w ide_const_char_ p tr s2) { 
(void) memcpy((s1 + str l en(s1)), s2, (strlen(s2) + 1)); 
return(s1); 

Figure 6 
Implementation of 32 -bit and 64-bit strcat Functions 
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Building a High-performance 
Message-passing System for 
MEMORY CHANNEL Clusters 

The new MEMORY CHANNEL for PCI cluster 

interconnect technology developed by Digital 

(based on technology from Encore Computer 

Corporation) dramatically reduces the over­

head involved in intermachine communica-

tion. Digital has designed a software system, 

the TruCluster MEMORY CHANNEL Software ver­

sion 1.4 product, that provides fast user-level 

access to the MEMORY CHANNEL network and 

can be used to implement a form of distributed 

shared memory. Using this product, Digital has 

built a low-level message-passing system that 

reduces the communications latency in a MEMORY 

CHANNEL cluster to less than 10 microseconds. 

This system can, in turn, be used to easily build 

the communications libraries that programmers 

use to parallelize scientific codes. Digital has 

demonstrated the successful use of this message­

passing system by developing implementations 

of two of the most popular of these libraries, 

Parallel Virtual Machine (PVM) and Message 

Passing Interface (MPI). 
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During the last few years, significant research and 
development has been undertaken in both academia 
and industry in an effort to reduce the cost of high­
performance computing (HPC). The method most 
frequently used was to build parallel systems out of 
clusters of commodity workstations or servers that 
could be used as a virtual supercomputer. 1 The moti­
vation for this work was the tremendous gains that 
have been achieved in reduced instruction set com­
puter (RISC) microprocessor performance during the 
last decade. Indeed, processor performance in today's 
workstations and servers often exceeds that of the indi­
vidual processors in a tightly coupled supercomputer. 
However, traditional local area network (LAN) per­
formance has not kept pace with microprocessor 
performance. LANs, such as fiber distributed data 
interface (FDDI), offer reasonable bandwidth, since 
communication is generally carried out by means of 
traditional protocol stacks such as the user datagram 
protocol/internet protocol (UDP /IP) or the trans­
mission control protocol/internet protocol (TCP /IP), 
but software overhead is a major factor in message­
transfer time.2 This software overhead is not reduced 
by building faster LAN network hardware. Rather, a 
new approach is needed-one that bypasses the pro­
tocol stack while preserving sequencing, error detec­
tion, and protection. 

Much current research is devoted to reducing this 
communications overhead using specialized hardware 
and software. To this end, Digital has been working 
to make commercial Alpha clusters, descended from 
the original VAXcluster technology, available to scien­
tific and technical users. 3,

4 This cluster technology 
uses available commodity hardware and software to 
implement a high-performance communications sub­
system.5 The hardware interconnect that supports 
clustered operation is Encore Computer Corporation's 
patented MEMORY CHANNEL technology.6 This 
interconnect provides a mechanism that allows the vir­
tual address space of a process to be mapped so that 
a store instruction in one system is directly reflected in 
the physical memory of another system. We have 
developed software application programming inter­
faces (APis) that provide user-level applications with 
this capability in a controlled and protected manner. 



Data may then be transferred between the machines 
using simple memory read and write operations, with 
no software overhead, essentially utilizing the full per­
formance of the hardware. This approach is similar to 
the one used in the Princeton SHRIMP project, where 
this process is described as Virtual Memory-Mapped 
Communication (VMMC). 7

-
10 

Figure 1 shows the relationship between the various 
components of our message-passing system. The first 
phase of our work involved designing a program­
ming library and associated kernel components to pro­
vide protected, unprivileged access to the MEMORY 
CHANNEL network. Our objective in creating this 
library was to provide a facility much like the standard 
System V interprocess communication (IPC) shared 
memory functions available in UNIX implementations. 
Programmers could use the library to set up operations 
over the MEMORY CHANNEL interconnect, but they 
would not need to use the library functions for data 
transfer. In this way, performance could be maximized. 
This product, the TruCluster MEMORY CHANNEL 
Software, provides programmers with a simple, high­
performance mechanism for building parallel systems. 

TruCluster MEMORY CHANNEL Software delivers 
the performance available from the MEMORY 
CHANNEL network directly to user applications but 
requires a programming style that is different from 
that required for shared memory. This different pro­
gramming style is necessary because of the different 
access characteristics between local memory and mem­
ory on a remote node connected through a MEMORY 
CHANNEL network. To make programming with the 
MEMORY CHANNEL technology relatively simple 
while continuing to deliver the hardware performance, 
we built a library of primitive communications func­
tions. This system, called Universal Message Passing 
(UMP), hides the details of MEMORY CHANNEL 
operations from the programmer and operates seam­
lessly over two transports (initially): shared memory 
and the MEMORY CHANNEL interconnect. This 
allows seamless growth from a symmetric multipro­
cessor (SMP) to a full MEMORY CHANNEL cluster. 
Development can be done on a workstation, while 
production work is done on the cluster. The UMP 

PARALLEL APPLICATION 

PVM I MPI 

UMP 

SHARED 
TRUCLUSTER 

OTHER MEMORY CHANNEL 
MEMORY SOFTWARE TRANSPORT 

Figure 1 
Message-passing System Architecture 

layer was designed from the beginning with perfor­
mance considerations in mind, particularly with 
respect to minimizing the overhead involved in send­
ing small messages. 

Two distributed memory models are predominantly 
used in high-performance computing today: 

1. Data parallel, which is used in High Performance 
Fortran (HPF). 11 With this model, the programmer 
uses parallel language constructs to indicate to the 
compiler how to distribute data and what opera­
tions should be performed on it. The problem is 
assumed to be regular so that the compiler can use 
one of a number of data distribution algorithms. 

2. Message passing, which is used in Parallel Virtual 
Machine ( PVM) and Message Passing Interface 
(MPI).12

-
15 In this approach, all messaging is per­

formed explicitly, so the application programmer 
determines the data distribution algorithm, making 
this approach more suitable for irregular problems. 

It is not yet clear whether one of these approaches 
will predominate in the future or if both will continue 
to coexist. Digital has been working to provide com­
petitive solutions for both approaches using MEMORY 
CHANNEL clusters. Digital's HPF work has been 
described in a previous issue of the Journal. 16

•
17 This 

paper is primarily concerned with message passing. 
Building on the UMP layer, we constructed imple­

mentations of two common message-passing systems. 
The first, PVM, is a de facto standard for programmers 
who want to parallelize large scientific and technical 
applications. In addition to messaging functions, PVM 
also provides process control functions. The second, 
MPI, represents the efforts of a large group of acade­
mic and industrial users who are working together 
to specify a standard API for message passing. At this 
time, MPI does not provide any process control facili­
ties. The performance of these PVM and MPI systems 
on MEMORY CHANNEL clusters exceeds that of the 
public-domain implementations. 

MEMORY CHANNEL Overview 

Encore's MEMORY CHANNEL technology is a high­
performance network that implements a form of 
clusterwide shared virtual memory. In Digital's first 
implementation of this technology, it is a shared, 
100-megabyte-per-second (MB/ s) bus that provides 
a write-only path from a page of virtual address space 
on one node to a page of physical memory on another 
node (or multiple other nodes). The MEMORY 
CHANNEL network outperforms any traditional LAN 
technology that uses a bus topology. For example, a 
peak bandwidth of between 35 MB/ sand 70 MB/ sis 
possible with the current 32-bit peripheral component 
interconnect (PCI) MEMORY CHANNEL adapters, 
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depending on the bandwidth of the 1/0 subsystem 
into which the adapter is plugged. Although the cur­
rent MEMORY CHANNEL network is a shared bus, the 
plan for the next generation is to utilize a switched 
technology that will increase the aggregate bandwidth 
of the network beyond that of currently available 
switched LAN technologies. The latency ( time to send 
a minimum-length message one way between two 
processes) is less than 5 microseconds (µs). The 
MEMORY CHANNEL network provides a communica­
tions medium with a low bit-error rate, on the order of 
10-16. The probability of undetected errors occurring 
is so small ( on the order of the undetected error rate of 
CPUs and memory subsystems) that it is essentially 
negligible. A MEMORY CHANNEL cluster consists of 
one or more PCI MEMORY CHANNEL adapters on 
each node and a hub connecting up to eight nodes. 

The MEMORY CHANNEL cluster supports a 
512-MB global address space into which each adapter, 
under operating system control, can map regions of 
local virtual address space. 18 Figure 2 illustrates the 
MEMORY CHANNEL operation. Figure 2a shows 
transmission, and Figure 2b shows reception. A page 
table entry (PTE) is an entry in the system virtual­
to-physical map that translates the virtual address of 
a page to the corresponding physical address. The 
MEMORY CHANNEL adapter contains a page control 
table (PCT) that indicates for each page of MEMORY 
CHANNEL global address space if that page is mapped 
locally and whether it is mapped for transmission or 
reception. Thus, to map a page oflocal virtual mem­
ory for transmission, all that is required is to 

• Set up an entry in the system virtual-to-physical 
map to point to a page in the MEMORY CHANNEL 
adapter's PCI 1/0 address space window, which 
is directly mapped to the page in MEMORY 
CHANNEL space 

• Enable the corresponding page entry in the PCT 
for transmission 

Any write to the mapped virtual page will then 
result in a corresponding write to the MEMORY 
CHANNEL network. 

To complete the circuit, the page of MEMORY 
CHANNEL space must be mapped to virtual memory 
on another node. This is accomplished on the other 
node by 

• Making a page of physical memory nonpageable 
(wired) 

• Creating a virtual region whose PTE points to the 
wired page 

• Setting up the 1/0 direct memory access (DMA) 
scatter/gather map to point to the physical page 

• Enabling the appropriate entry in the adapter's 
PCT for reception 
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Thus, when a MEMORY CHANNEL network packet 
is received that corresponds to the page that is mapped 
for reception, the data is transferred directly to the 
appropriate page of physical memory by the system's 
DMA engine. In addition, any cache lines that refer to 
the updated page are invalidated. 

Subsequently, any writes to the mapped page of vir­
tual memory on the first node result in corresponding 
writes to physical memory on the second node. This 
means that when a region in MEMORY CHANNEL 
space has been allocated and attached to a process, 
writes to that region are just simple stores to a process 
virtual address. The virtual address translates to a phys­
ical address that is mapped for transmission. Reads 
from that region are simply loads from a process virtual 
address, so the operating system is not involved in data 
transfer, with consequent reduction in overhead. 

To use the MEMORY CHANNEL hardware, the 
operating system must provide certain basic services. 
Digital's cluster software includes a set of low-level 
primitives that can be used in the UNIX kernel. The 
functionality that these services provide includes 

• Allocating and deallocating regions of MEMORY 
CHANNEL space for transmission or reception 

• Allocating and deallocating cluster spinlocks 

• Providing the capability to be notified when a page 
has been written (i.e., a notification channel) 

TruCluster MEMORY CHANNEL Software 

We designed the TruCluster MEMORY CHANNEL 
Software product to provide user-level access to the 
kernel functions that control the MEMORY CHANNEL 
hardware. The target audience for this technology is 
parallel software library builders and parallel compiler 
implementers. As shown in Figure 3, the product con­
sists of two components layered on top of the kernel 
MEMORY CHANNEL functions: 

1. A kernel subsystem that interfaces to the low-level 
kernel functions 

2. A user-level API library 

There were two choices in developing the product: 
provide simple user-level access to the basic functional­
ity or build a more sophisticated system ( e.g., a distrib­
uted shared memory [DSM] system). We chose to 
make a subset of the functionality of the operating sys­
tem kernel primitives available to applications for two 
reasons. First, we did not initially know the degree 
of functionality required to provide generic user­
level access to the MEMORY CHANNEL network 
for the long term. Second, the original purpose of 
the work was to give scientific and technical cus­
tomers, rather than commercial cluster users, early 
access to the MEMORY CHANNEL network. As a 
result, the functionality we built into the product is 
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MEMORY CHANNEL Operation 
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Figure 3 
TruCluster MEMORY CHANNEL Software Architecture 

a set of simple building blocks that are analogous to the 
System V IPC facility in most UNIX implementations. 
The advantage is that while a very simple interface is 
provided initially, the interface can later be extended as 

required, without losing compatibility with applications 
based on the initial implementation. Table 1 details the 
MEMORY CHANNEL API library functions that the 
product provides. An important feature to note is that 
when a MEMORY CHANNEL region is allocated using 
TruCluster MEMORY CHANNEL Software, a key is 
specified that uniquely identifies this region in the clus­
ter. Other processes anywhere in the cluster can attach 
to the same region using the same key; the collection of 
keys provides a clusterwide namespace. 

The MEMORY CHANNEL API library communi­
cates with the kernel subsystem using kmodcall, a sim­
ple generic system call used to manage kernel 
subsystems. The library function constructs a com­
mand block containing the type of command (i.e., 
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Table 1 
TruCluster MEMORY CHANNEL API Library Functions 

Function 
Name 

imc_asalloc 

lmc_asattach 

lmc_asdetach 

i mc_asdea I loc 

imc_lkalloc 

imc_lkacquire 

imc_lkrelease 

imc_lkdealloc 

imc_rderrcnt 

imc_ckerrcnt 

imc_kill 

imc_gethosts 

Description 

Allocates a region of MEMORY CHANNEL address space of a specified size and permissions and 
with a user-supplied key; the ability to specify a key allows other cluster processes to rendezvous 
at the same region. The function returns to the user a clusterwide ID for this region. 

Attaches an allocated MEMORY CHANNEL region to a process virtual address space. A region 
can be attached for transmission or reception, and in shared or exclusive mode. The user can also 
request that the page be attached in loopback mode, i.e., any writes will be reflected back to the 
current node so that if an appropriate reception mapping is in effect, the result of the writes can 
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned 
to the user. 

Detaches an allocated MEMORY CHANNEL region from a process virtual address space. 

Deallocates a region of MEMORY CHANNEL address space with a specified ID. 

Allocates a set of clusterwide spin locks. The user can specify a key and the required permissions. 
Normally, if a spinlock set exists, then this function just returns t he ID of that lock set; otherwise 
it creates the set. If the user specifies that creation is to be exclusive, then failure will result if the 
spinlock set exists already. In addition, by specifying the IMC_CREATOR flag, the first spinlock in 
the set will be acquired. These two features prevent the occurrence of races in the allocation of 
spin lock sets across the cluster. 

Acquires (locks) a spinlock in a specified spinlock set. 

Releases (unlocks) a spinlock in a specified spinlock set. 

Deallocates a set of spin locks. 

Reads the clusterwide MEMORY CHANNEL error count and returns the value to the user. This 
value is not guaranteed to be up-to-date for all nodes in the cluster. It can be used to construct 
an application-specific error-detection scheme. 

Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have not yet been reflected in 
the clusterwide MEMORY CHANNEL error count returned by imc_rderrcnt. This function checks 
each node in the cluster for any outstanding errors and updates t he global error count accordingly. 

Sends a UNIX signal to a specified process on another node in the cluster. 

Returns the number of nodes currently in the cluster and their host names. 

which library function has been called) and any para­
meters and sends it to the kernel subsystem using 
kmodcall. The kernel subsystem has a matching func­
tion for each of the library calls. When a command 
block is received, it is parsed and the appropriate func­
tion is called to service the request. All security and 
resource checks are performed inside the kernel. 

creation time, and the UNIX user ID (UID) and group 
ID (GID) of the creating process. For an individual 
CRD, there is a host region descriptor ( HRD ) for each 
node that has the region mapped. This HRD contains 
the cluster ID of the node and other node-specific 
information. Finally, for a specific HRD, there is a 
process region descriptor ( PRD) for each process on 
that node that is using the region. The PRD contains 
the UNIX process ID ( PID) of the process that created 
the region and any process-specific information, such 
as virtual addresses. 

Figure 4 shows some of the data structures that the 
kernel services use. A clusterwide region of MEMORY 
CHANNEL space is allocated to store these manage­
ment structures. This region contains a control struc­
ture and six linked lists of descriptors. The control 
structure manages MEMORY CHANNEL resources 
allocated using TruCluster MEMORY CHANNEL 
Software. Each region of MEMORY CHANNEL address 
space and each set of MEMORY CHANNEL spinlocks 
allocated using the product have a corresponding 
descriptor in the kernel data structure. 

For each region of MEMORY CHANNEL address 
space allocated in the cluster, there is a cluster region 
descriptor ( CRD ) that contains information describ­
ing the region, including its clusterwide region identi­
fication number (ID ), its size, key, permissions, 
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Similarly, for each set of spinlocks allocated on the 
cluster there is a cluster lock descriptor ( CLD) that 
contains information describing the spinlock set, 
including its clusterwide lock ID, the number ofspin­
locks in the set, the key, permissions, creation time, 
and the UID and GID of the creating process. For an 
individual CLD, there is a host lock descriptor (HLD) 
for each node that is using the spinlock set. The HLD 
contains the cluster ID of the node and other node­
specific information about the spinlock set. For a spe­
cific HLD, there is a process lock descriptor (PLD ) for 
each process on that node that is using the spinlock 
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Figure4 
TruCluster MEMORY CHANNEL Kernel Data Structures 

set. The PLD contains the PID of the process that cre­
ated the spin.lock set and any process-specific informa­
tion about the spin.lock set. 

A.II these cluster data structures have pointers that 
cannot be updated atomically. In our implementation, 
they actually consist of two copies (old and new) and 
a toggle that indicates which of the two copies is valid. 
The toggle is switched from an old copy to a new copy 
only when the new copy is known to be consistent, so 
that failure of a cluster member while modifying the 
structures can be tolerated. 

Figure 4a illustrates a hypothetical situation in which 
four regions of MEMORY CHANNEL space have been 
allocated on the cluster. The first region, with desc1ip­
tor CRD 0, is mapped on three nodes: host 4, host 6, 
and host 3. The diagram also shows four processes on 
host 3 with the region mapped and lists the PID of each 
process. Figure 4b shows a similar situation for spin­
locks. Two sets of spinlocks have been allocated. The 

first, with descriptor CLD 0, is mapped on two nodes 
of the cluster: host 2 and host 0. One process on each 
of these nodes is currently using the spin.lock set. 

Command Relay 
The command relay is a kernel-level framework that 
enables the execution of a generic service routine on 
another node within the cluster. It functions as a sim­
ple kernel remote procedure ca.II (RPC) mechanism 
based on fixed unidirectional message locations (mail­
boxes) and MEMORY CHANNEL notification chan­
nels to awaken the server kernel thread. Figure 5 
shows the major components of the command relay 
and illustrates its operation between two hosts in a 
cluster. A client kernel thread on one host invoking a 
service and the corresponding server kernel thread on 
another cluster host communicate data using a defined 
bidirectional command/ response block, known as a 
parameter structure. The client and server routines 
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Figure 5 
Command Relay Operation 

must conform to this interface and must be reliable, 
i.e., they must always return to the caller. The server 
can call any kernel function. Server routines are regis­
tered (step 1 in Figure 5) using a clusterwide service 
ID. A kernel thread invoking a remote service passes 
a packed parameter structure to the command relay, 
together with a destination node ID and a service ID 
( step 2). This command relay then adds process crcdcn -
rials and builds a service protocol data unit (SPDU). 
Using a MEMORY CHANNEL notification channel, it 
signals the remote node and passes the SPDU by means 
of a mailbox in MEMORY CHANNEL space (step 3). 
The server parses the SPDU and calls the requested ser­
vice function, passing it the parameter structure (step 
4). When the service function completes (step 5), its 
return status and any data values arc packed into an 
SPDU and placed into the mailbox, and the initiating 
relay is signaled (step 6). The initiator then lmpacks the 
data from the SPDU and returns the appropriate status 
and values to the client kernel thread (step 7). 

All calls to the command relay are synchronous and 
serialized. The invoking kernel thread blocks until the 
server returns. Requests to the command relay subsys­
tem are treated on a first-come first-served basis, and 
calls to a busy relay block until the relay becomes free. 
Relays arc automatically created between all nodes in 
the cluster. 

The command relay mechanism makes it possible 
to send a UNIX signal to a process on another node 
within the MEMORY CHANNEL cluster. The imc_kill 
library function uses the command relay to invoke 
the registered kernel server routine for cluster signals 
on the remote node, which, in turn, calls the kernel kill 
function directly with the PIO supplied. 

Initial Coherency 
When a process on a cluster member maps a region of 
MEMORY CHANNEL address space for both recep­
tion and transmission, any writes to the transmit 
region by that process are reflected as changes to the 

102 Digital Technical Journal Vol. 8 No. 2 1996 

corresponding receive region. If another process on 
another cluster node subsequently maps the same 
region for reception, the contents of its receive region 
are indeterminate; i.e., the two processes do not have 
a coherent view of that region. This situation is known 
as the initial coherency problem. For an application 
developer, this problem makes it difficult to treat 
MEMORY CHANNEL address space as another form 
of shared memory. Applications can overcome this dif­
ficulty by using some form of start-up synchronization. 
However, all developers would have to implement 
these solutions separately. To increase the usability of 
TruClustcr MEMORY CHANNEL Software, the design 
team decided to build in the ability to request coherent 
allocation of MEMORY CHANNEL address space 
across the cluster. Developers can specify this as an 
option in the call to imc_asalloc. As a result, a process 
can attach a MEMORY CHANNEL region for reception 
following any updates and still share a common view of 
the region with other processes in the cluster. 

A special process, called the mapper, is used to pro­
vide the virtual address space to hold the coherent user 
space mappings. When the kernel subsystem receives 
a request for coherent allocation, it allocates the 
MEMORY CHANNEL region as normal and then maps 
the region for reception into the virtual address space 
of the mapper process. The command relay mecha­
nism then causes all the other nodes in the cluster to 
allocate the same region and map it for reception into 
the address space of the mapper process on each node. 
Since multiple user-level processes on a node that 
attach a particular region for reception share the same 
physical memory, all updates to the region are seen by 
late-joining processes on any node in the cluster. If 
the requesting process exits, the region will still be 
allocated to the mapper, so that another allocation of 
the same region on that node will result in a coherent 
picture of that region. The region is fully deallocated 
(i.e., from all the mapper processes) when the last 
application process allocating the region either exits or 
explicitly deallocates the region. 



Given the usefulness of coherent allocations, it may 
seem unusual that we made this feature an option 
rather than the default. There are several reasons for 
this. With coherent allocations, the associated physical 
memory becomes nonpageable on all nodes within the 
cluster, and, as such, it consumes physical resources. 
In addition, every outbound write to such a region 
results in an inbound write to the physical memory of 
each node in the cluster. For some application designs, 
it may be more desirable to create a region that is writ­
ten by one node and only read by other nodes. Also, 
automatically reflecting all writes back to a node, as 
is done for coherent regions, consumes twice as much 
bandwidth on the PCI bus. 

Late Join and Failure Resilience 
To provide an operational environment in which 
nodes can join or leave the cluster at any time, the ker­
nel subsystem needs to overcome a number of prob­
lems resulting from late join and node failure. In fact, 
the kernel subsystem is subject to the same difficulties 
of initial coherency as application-level processes. To 
manage user space allocations, late-joining nodes 
require a coherent view of the cluster data structures. 
Moreover, failure of an existing node can result in out­
of-date or, even worse, corrupt data structures in the 
subsystem's control region. To contain the failure, 
corrupt data structures must be repaired. 

Low-level kernel routines detect cluster membership 
change and wake up a management service thread on 
each node that performs operations local to that node. 
The first management service thread to acquire a spe­
cific spinlock is elected to manage clusterwide updates. 

In the case of late join, the management service 
thread updates local state to reflect the new configura­
tion. The thread that has been designated to manage 
clusterwide updates is responsible for providing the 
late-joining node with an up-to-date copy of the clus­
ter data structures. When triggered by the new node, 
the thread retransmits the contents of the data struc­
tures so that the late-joining node has a fully up-to­
date view of allocations and resource usage. 

When a node fails, the thread elected to manage 
clusterwide updates must examine the entire manage­
ment data structure and repair it appropriately. Repair 
is necessary when the failing node that is in the process 
of updating the global data structures has left these 
clusterwide updates in an unstable state. Repair is pos­
sible because all updates to global data structures use 
two copies of the structure ( old and new, as described 
previously), which means that the structures can be 
reset easily to a stable state. If the failed node was not 
actively updating the data structures at the time of the 
failure, the management thread simply removes all 
resources allocated to the failed node. 

Error Management 
The MEMORY CHANNEL hardware provides a very 
low error rate, ordering guarantees, and an ability to 
detect remote error situations quickly, making it possi­
ble to construct simple error detection and recovery 
protocols. A kernel interrupt service routine detects 
cluster errors and updates an error counter that reflects 
the clusterwide error count. A low-level kernel routine 
returns the value of this counter. Due to timing consid­
erations, it is not possible to guarantee that this count 
will be up-to-date with respect to possible errors on 
remote nodes. A low-level kernel routine that effi­
ciently reads the error status of remote MEMORY 
CHANNEL adapters and detects unprocessed errors 
is provided. This routine uses a hardware feature, 
known as an ACK page, that is specifically designed to 
facilitate error detection. A write to such a page results 
in the error status of each MEMORY CHANNEL 
adapter being written to successive locations of the 
corresponding reception mapped region. 

During development, we built simple interfaces 
to access these low-level routines, thereby allowing 
message-passing libraries to build in error manage­
ment. Because the method of getting into and out of 
the kernel is a generic one, the overhead is high­
approximately 30 µs. This compares poorly with the 
raw latency for short messages, which is less than 5 µs. 
To provide suitable performance, we reimplemented 
the functions to execute totally in user space. As a 
result, when an application reads the error count for 
the first time (using imc_rderrcnt), the kernel value of 
the error count is mapped for read-only access into the 
virtual address space of the process. Subsequent reads 
of the error count are then simply reads of a memory 
location. Similarly, when an application calls the check 
error service (using imc_ckerrcnt) for the first time, 
ACK pages are transparently mapped into the virtual 
address space of the process, and the error detection is 
performed at hardware speeds directly from user 
space. This has been measured at less than 5 µs. 

The following sequence can be used to guarantee 
detection of intervening errors by the transmitter: 

I . Save the error count. 

2. Write the message. 

3. Check the error count ( using imc_ckerrcnt ). 

If the transmitter writes the saved error count at the 
end of the message, the message receiver can deter­
mine if any intervening errors have occurred by simply 
comparing the error count in the message with the 
current value using imc_rderrcnt. This is possible 
because of the sequencing guarantees built into the 
MEMORY CHANNEL network. Using imc_rderrcnt 
and imc_ckerrcnt, the programmer can build an appro­
priate error detection and/ or recovery scheme that 
meets the performance requirements of the application. 
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Performance 
The performance ofTruCluster MEMORY CHANNEL 
Software on a pair of AlphaServer 4100 5/300 
machines is presented in Table 2. These measurements 
were made using version 1.5 MEMORY CHANNEL 
adapters. The bandwidth (64 MB/s) and latency 
( 2. 9 µs) achieved using this system are essentially that 
of the hardware, since no system overhead is involved. 
The times required to perform the error-checking 
functions indicate that the overhead of calling 
imc_rderrcnt is much less than that of imc_ckerrcnt. 
This is because the latter has to synchronize with all 
other members of the cluster. Protocols that rely on 
receiver-only error detection ( using imc_rderrcnt) will 
therefore have a lower overhead. 

Programming with TruCluster 
MEMORY CHANNEL Software 
The MEMORY CHANNEL network imposes some 
unique restrictions on the programmer. Since the net­
work requires separate transmit and receive regions, 
any read-write memory location that is to be visible 
clusterwide must have two addresses: a read address 
and a write address. Attempts to read from a write 
address typically cause a segmentation violation. 
MEMORY CHANNEL address space can be used like 
shared memory. Unlike shared memory, though, its 
latency is visible to the programmer, who must consider 
latency effects when writing to a clusterwide location. 

As an example of programming with TruCluster 
MEMORY CHANNEL Software, Figure 6 shows a 
simple program that implements a global counter, 
performs some work, and then decrements the global 
counter and exits. For the purposes of this example, 
assume that multiple copies of the program are run 
concurrently on different machines in a cluster. Such 
operation requires synchronization to ensure safe 
access to shared data in MEMORY CHANNEL space. 
The example program first allocates MEMORY 
CHANNEL regions for transmission and reception and 
attaches them to process virtual addresses. Next, a 
set of spinlocks is created ( unless it already exists). The 
first copy of the program to create the spinlock set 
acquires the first lock in the set and initializes the 
global region, whereupon it releases the spinlock and 
continues. All other copies of the program wait in 
imc_lkacquire until the spinlock is released by the first 

Table 2 
TruCluster MEMORY CHANNEL Software Performance 

Sustained bandwidth 

Latency 

Read error count (imc_rderrcnt) 

Check error count (imc_ckerrcnt) 
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2.9 µs 

< 1 µs 

<5 µs 
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copy. Each copy in turn acquires the lock itself, incre­
ments the process counter, and releases the lock. The 
copies then perform some work in parallel. When each 
program has finished its portion of the work, it decre­
ments the global process counter (using the spinlock 
to control access again). Finally, the spinlock set and 
shared regions are deallocated. Several examples of 
code illustrating these topics are contained in the 
TruC/uster MEMORY CHANNF1 Software Programmer's 
Manua/.19 We have found that implementing a simple 
message-passing layer on top ofTruCluster MEMORY 
CHANNEL Software is a more effective solution than 
programming directly with MEMORY CHANNEL 
regions, as described in the next section. 

Several features described above were not initially 
present in the TruCluster MEMORY CHANNEL 
Software product. As a result of our experience imple­
menting UMP and the higher PVM and MPI layers, 
we added the following features: 

• Initial coherency 

• Command relay 

• Cluster signals 

• User-level error checking 

Universal Message Passing 
The Universal Message Passing (UMP) library is 
designed to provide a foundation for implementing 
efficient message-passing systems on the MEMORY 
CHANNEL network. From the outset, we were aware 
that there would be a demand for PVM and MPI 
implementations and that other implementations 
might follow. We felt that it would be easier to con­
struct high-performance message-passing systems if 
we provided a thin layer that could efficiently handle 
the restrictions that the MEMORY CHANNEL net­
work imposes. 

The goals in developing UMP were to 

• Simplify the construction of message-passing sys­
tems utilizing the MEMORY CHANNEL network 
by hiding the details of the underlying commu­
nications transport (initially, shared memory or 
MEMORY CHANNEL). 

• Optimize performance and exploit the low latency 
of the MEMORY CHANNEL network; the initial 
goal for latency over the MEMORY CHANNEL net­
work using PVM was to achieve less than 30 µs. 

• Ease the development of parallel message-passing 
libraries by providing a simple set of message­
passing functions. 

• Perform only basic communications; any more 
complex operations (e.g., process control) would 
be performed by a higher layer. 

• Act as a convergence center for possible future 
interconnects. 



extern Long asm(const char*, ... ); 
#pragma intrinsic(asm) 
#define mb() asm("mb") 

#include <sys/types.h> 
#include <sys /imc.h> 

main() 
{ 

} 

int status, i, Locks=4, temp, errors; 
imc_asid_t region_id; 
imc_Lkid_t Lock_id; 
typedef struct { 

volatile int processes; 
volatile int pattern[2047J; 

} shared_region; 

I* MC region ID *I 
I* MC spinlock set ID*/ 

I* Shared data structure*/ 

shared_region *region_read, *region_write; 
caddr_t read_ptr = 0, write_ptr = O; 

I* Allocate a region of coherent MC address space and attach to* / 
I* process VA*/ 
imc_asalloc(123, 8192, IMC_URW, IMC_COHERENT, &region_id); 
imc_asattach(region_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK, &write_ptr); 
imc_asattach(region_id, IMC_RECEIVE, IMC_SHARED, 0, &read_ptr); 

region_read = (shared_region *)write_ptr; 
region_write = (shared_region *)read_ptr; 

I* Allocate a set of spinlocks and atomically acquire the first Lock*/ 
status= imc_Lkalloc(456, &Locks, IMC_LKU, IMC_CREATOR, &Lock_id); 
errors= imc_rderrcnt(); 
if (status== IMC SUCCESS) { 

do { -
region_write->processes = O; I* Initialize the global region*/ 
for (i=O; i<2047; i++) 

region_write->pattern[i] = i; 
i --; 
mb(); 

} while (imc ckerrcnt(&errors) I I region_read->pattern[i] != i) ; 
imc_Lkrelease(Lock_id, 0); 

} else if (status== IMC EXISTS) { 
imc_Lkalloc(456, &Locks, IMC_LKU, 0, &Lock_id); 
imc_Lkacquire(lock_id, 0, 0, IMC_LOCKWAIT); 
temp= region_read->processes + 1; /* Increment the process counter*/ 
errors= imc_rderrcnt<>; 
do { 

region_write->processes = temp; 
mb(); 

} while (imc ckerrcnt(&errors) I I region_read->processes != temp) ; 
imc_Lkrelease<Lock_id, 0); 

} 

(Body of program goes here) 

I* clean up*/ 
imc_Lkacquire(lock_id, 0, 0, IMC_LOCK WAIT); 
temp= region_read->processes - 1; /* Decrement the process counter*/ 
errors= imc_rderrcnt(); 
do { 

region_write->processes = temp; 
mb(); 

} while (imc ckerrcnt(&errors) I I 

imc_Lkrelease(Lock_id, 0); 
imc_Lkdealloc(Lock_id); 
imc_asdetach(region_id); 
imc_asdealloc(region_id); 

region_read->processes != temp) ; 

I* Deallocate spinlock set*/ 
I* Detach shared region*/ 

I* Deallocate MC address space*/ 

Figure 6 
Programming with TruCluster MEMORY CHANNEL Software 
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These goals placed some important constraints on 
the architecture of UMP, particularly with regard to 
performance. This meant that design decisions had 
to be constantly evaluated in terms of their performance 
impact. The initial design decision was to use a dedi­
cated point-to-point circular buffer between every pair 
of processes. These buffers use producer and consumer 
indexes to control the reading and writing of buffer 
contents. The indexes can be modified only by the 
consumer and producer tasks and allow fully lockless 
operation of the buffers. Removing lock requirements 
eliminates not only the software costs associated with 
lock manipulation (in the initial implementation of 
TruCluster MEMORY CHANNEL Software, acquiring 
and releasing an uncontested spinlock takes approxi­
mately 130 µsand 120 µs, respectively) but also the 
impact on processor performance associated with 
Load-locked/Store-conditional instruction sequences. 

Although this buffering style eliminates lock manip­
ulation costs, it results in an exponential demand for 
storage and can limit scalability. If there are N processes 
communicating using this method, that implies N2 
buffers are required for full mesh communication. 
MEMORY CHANNEL address space is a relatively 
scarce resource that needs to be carefully husbanded. 
To manage the demand on cluster resources as fairly as 
possible, we decided to do the following: 

• Allocate buffers sparsely, i.e., as required up to 
some default limit. Full N2 allocation would still be 
possible if the user increased the number of buffers. 

• Make the size of the buffers configurable. 

• Use lock-controlled single-writer, multiple-reader 
buffers to handle both the overflow from the N2 
buffer and fast multicast. One of these buffers, 
called outbufs, would be assigned to each process 
using UMP upon initialization. 

Note that while the channel buffers are logically 
point-to-point, they may be implemented physically as 
either point-to-point or broadcast. For example, in the 
first version of UMP, we used broadcast MEMORY 
CHANNEL mappings for the sake of simplicity. We are 
currently modifying UMP to use point-to-point 
MEMORY CHANNEL mappings, both to increase 
available bandwidth and to exploit a switched 
MEMORY CHANNEL network. 

Figure 7 shows several tasks communicating in 
a cluster and illustrates how the two types of UMP 
buffers are used. Task 1 and task 2 are executing 
on node 1, while task 3 is executing on node 2. In the 
diagram, the channel buffers are located under the task 
in whose virtual address space they reside to indicate 
visually that they reside in the virtual address space of 
the destination task. In the figure, task 1 communicates 
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with task 2 using UMP channel buffers in shared mem­
ory, shown as 1---+2 and 2---+ 1. Task 1 and task 3 com­
municate using UMP channel buffers in MEMORY 
CHANNEL space, shown as 1 •3 and 3---+ 1. Task 3 is 
reading a message from task 1 using an outbuf. The 
outbuf can be written only by task 1 but is mapped for 
transmission to all other cluster members. On node 2, 
the same region is mapped for reception. Access to 
each outbufis controlled by a unique cluster spinlock. 

Our rationale for taking this approach is that a short 
software path is more appropriate for small messages 
because overhead dominates message transfer time, 
whereas the overhead of lock manipulation is a small 
component of message transfer time for large mes­
sages. We felt that this approach helped to control the 
use of cluster resources and maintained the lowest pos­
sible latency for short messages yet still accommodated 
large messages. Note that outbufs are still fixed-size 
buffers but are generally configured to be much larger 
than the N2 buffers. 

This approach worked for PVM because its message 
transfer semantics make it acceptable to fail a mes­
sage send request due to buffer space restrictions 
(e.g., if both the N2 buffer and the outbufare full) . 
When we analyzed the requirements for MPI, how­
ever, we found that this approach was not possible. For 
this reason, we changed the design to use only the N2 
buffers. Instead of writing the message as a single 
operation, the message is streamed through the buffer 
in a series of fragments. Not only does this approach 
support arbitrarily large messages, but it also improves 
message bandwidth by allowing ( and, for messages 
exceeding the available buffer capacity, requiring) the 
overlapped writing and reading of the message. 
Deadlock is avoided by using a background thread 
to write the message. Since overflow is now handled 
using the streaming N2 buffers, outbufs were not nec­
essary to achieve the required level of performance for 
large messages and were not implemented. Outbufs 
are retained in the design to provide fast multicast 
messaging, even though in the current implementa­
tion they are not yet supported. 

Achieving the performance goals set for UMP was 
not easy. In addition to the buffer architecture 
described earlier, several other techniques were used. 

• No syscalls were allowed anywhere in the UMP 
messaging functions, so UMP runs completely in 
user space. 

• Calls to library routines and any expensive arith­
metic operations were minimized. 

• Global state was cached in local memory wherever 
possible. 

• Careful attention was paid to data alignment issues, 
and all transfers are multiples of 32-bit data. 

At the programmer's level, UMP operation is based 
on duplex point-to-point links called channels, which 
correspond to the N2 buffers already described. 
A channel is a pair of unidirectional buffers used to 
provide two-way communication between a pair of 
process endpoints anywhere in the cluster. UMP pro­
vides functions to open a channel between a pair of 
tasks. While the resources are allocated by the first task 
to open the channel, the connection is not complete 
until the second task also opens the same channel. 
Once a channel has been opened by both sides, UMP 
functions can be used to send and receive messages on 
that channel. It is possible to direct UMP to use shared 
memory or MEMORY CHANNEL address space for 
the channel buffers, depending on the relative location 
of the associated processes. In addition, UMP provides 
a function to wait on any event ( e.g., arrival of a mes­
sage, creation or deletion of a channel). In total, UMP 
provides a dozen functions, which are listed in Table 3. 
Most of the functions relate to initialization, shut­
down, and miscellaneous operations. Three functions 
establish the channel connection, and three functions 
perform all message communications. 

UMP channels provide guaranteed error detection 
but not recovery. Through the use of TruCluster 
MEMORY CHANNEL Software error-checking rou­
tines, we were able to provide efficient error detection 
in UMP. We decided to let the higher layers implement 
error recovery. As a result, designers of higher layers can 
control the performance penalty they incur by specify­
ing their own error recovery mechanisms, or, since 
reliability is high, can adapt a fail-on-error strategy. 

Performance 
UMP avoids any calls to the kernel and any copying of 
data across the kernel boundary. Messages are written 
directly into the reception buffer of the destination 
channel. Data is copied once from the user's buffer 
to physical memory on the destination node by the 
sending process. The receiving process then copies the 
data from local physical memory to the destination 
user's buffer. By comparison, the number of copies 
involved in a similar operation over a LAN using sock­
ets is greater. In this case, the data has to be copied 
into the kernel, where the network driver uses DMA to 
copy it again into the memory of the network adapter. 
At this point the data is transmitted onto the LAN. 

The first version of UMP used one large shared 
region of MEMORY CHANNEL space to contain its 
channel buffers and a broadcast mapping to transmit 
this simultaneously to all nodes in the cluster. This 
version of UMP also used loopback to reflect transmis­
sions back to the corresponding receive region on the 
sending node, which resulted in a loss of available 
bandwidth. Using our AlphaServer 2100 4/190 
development machines, we measured 
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Table 3 
UMP API Functions 

Function 
Name Description 

ump_init Initializes UMP and allocates the necessary resources. 

ump_exit Shuts down UMP and deallocates any resources used by the calling process. 

ump_open Opens a duplex channel between two endpoints over a given transport (shared memory or 
MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles. 

ump_close Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary. 
ump_listen Registers an endpoint for a channel over a specified transport. This can be used by a server process 

to wait on connections from clients with unknown handles. This function returns immediately, 
but the channel is created only when another task opens the channel. This can be detected using 
ump_wait. 

ump_wait Waits for a UMP event to occur, either on one specified channel to this task or on all channels 
to this task. 

ump_read Reads a message from a specified channel. 

ump_write Writes a message to a specified channel. This function is blocking, i.e., it does not return until 
the complete message has been written to the channel. 

ump_nbread Starts reading a message from a channel, i.e., it returns as soon as a specified amount of the 
message has been received, but not necessarily all the message. 

ump_nbwrite Starts writing a message to a specified channel. i.e., it returns as soon as the write has started. 
A background thread will continue writing the message until it is completely transmitted. 

ump_mcast Writes a message to a specified list of channels. 
ump_info Returns UMP configuration and status information. 

• Latency: 11 µs (MEMORY CHANNEL), 4 µs 
(shared memory) 

• Bandwidth: 16 MB/s (MEMORY CHANNEL), 
30 MB/s (shared memory) 

To increase bandwidth, we modified UMP to use 
transmit-only regions for its channel buffers, thus 
eliminating loopback. The performance measured for 
the revised UMP using the same machines was 

• Latency: 9 µs (MEMORY CHANNEL), 3 µs 
( shared memory) 

• Bandwidth: 23 MB/s (MEMORY CHANNEL), 
32 MB/s (shared memory) 

Figure 8 shows the message transfer time and Figure 
9 shows the bandwidth for various message sizes for the 
revised version of UMP using both blocking and non­
blocking writes over shared memory and the MEMORY 
CHANNEL network. Using newer AlphaServer 4100 
5/300 machines, which have a faster 1/0 subsystem 
than the older machines, and version 1.5 MEMORY 
CHANNEL adapters, the measured latency is 5.8 µs 
(MEMORY CHANNEL), 2 µs (shared memory). The 
peak bandwidth achieved is 61 MB/s (MEMORY 
CHANNEL), 75 MB/s (shared memory). In the non­
blocking cases, the buffer size used was 256 kilobytes 
(KB) for shared memory and 32 KB for MEMORY 
CHANNEL. Further work is under way to improve the 
performance using shared memory as the transport. 
This work is aimed at eliminating the high-end falloff in 
bandwidth in the blocking case and the notch when the 
message size exceeds the buffer size in the nonblocking 
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case. Note that these effects are not displayed in the 
MEMORY CHANNEL results. 

Message-passing Libraries 

Message-passing libraries provide the programmer 
with a set of facilities to build parallel applications. 
Typically, these services include the ability to send and 
receive a variety of data types to and from other peer 
processes in a variety of modes, as well as collective 
operations that span a set of peer processes. Other 
facilities may be provided in addition to the basic set, 
e.g., PVM provides functions for managing PVM 
processes ( spawning, killing, signaling, etc.), whereas 
MPI ( at least in its first revision, MPI-1) does not. PVM 
is probably the most widely used message-passing sys­
tem. It has been available for approximately five years, 
and implementations are available for a wide variety of 
platforms. MPI is an emerging standard for message 
passing that is growing rapidly in popularity; many 
new applications are being written for it. 

Parallel Virtual Machine 
Parallel Virtual Machine (PVM) is supported on a 
wide variety of platforms, including supercomputers 
and networks of workstations (NOWs). PVM uses 
a variety of underlying communications methods: 
shared memory on multiprocessors, various native 
message-passing systems on massively parallel proces­
sors (MPPs), and UDP /IP or TCP /IP on NOWs. The 
large software overhead in the IP stacks makes it di ffi ­
cult to provide high-performance communications for 
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PVM when using networks like Ethernet or FDDI. 
The high cost of communications for these systems 
means that only the more coarse-grained parallel appli­
cations have demonstrated performance improvements 
as a result of parallelization using PVM. Using the 
MEMORY CHANNEL cluster technology described 
earlier, we have implemented an optimized PVM that 
offers low latency and high-bandwidth communica­
tions. The PVM library and daemon use UMP to pro­
vide seamless communications over the MEMORY 
CHANNEL cluster. 

When we began to develop PVM for MEMORY 
CHANNEL clusters, we had one overriding goal: to use 
the hardware performance the MEMORY CHANNEL 
interconnect offers to provide a PVM with industry­
leading communications performance, specifically with 
regard to latency. Initially, we set a target latency for 
PVM of less than 15 µs using shared memory and less 
than 30 µs using the MEMORY CHANNEL transport. 

Our first task was to build a prototype using the 
public-domain PVM implementation. We used an 
early prototype of the MEMORY CHANNEL system 
jointly developed by Digital and Encore. The proto­
type had a hardware latency of 4 µs. We modified the 
shared-memory version of PVM to use the prototype 
hardware and achieved a PVM latency of 60 µs. 
Profiling and straightforward code analysis revealed 
that most of the overhead was caused by 

• PVM's support for heterogeneity (i.e., external data 
representation [XDR] encoding) 

• Messages being copied multiple times inside PVM 

• A large number of function calls in the critical com­
munications path 

• Inefficient coding of the low-level data copy routines 

Since we wanted to achieve the maximum possible 
performance available from the hardware, we decided 
to reimplement the PVM library, eliminating support 
for heterogeneity from the communications functions 
of PVM and focusing on maximum performance 
inside a Digital cluster. 20 Heterogeneity would then be 
supported by using a special PVM gateway process. 

The overall architecture of the Digital PVM imple­
mentation is shown in Figure 10. To maximize per­
formance, we decided that, wherever possible, an 
operation should be executed in-line rather than be 
requested from a remote task or daemon. This con­
trasts with PVM's traditional approach of relaying such 
requests to the PVM daemon for service. For example, 
when a PVM task starts, often it first calls pvm_mytid to 
request a unique task identifier (TID). Previously, this 
would have involved sending a message to a PVM dae­
mon which would then allocate a TID to the process 

' and return another message. In our design, we could 
use global data structures in MEMORY CHANNEL 
space ( e.g., the list of all PVM tasks and associated 
data). Now, for example, pvm_mytid simply involves 
acquiring a cluster lock on a global table, getting the 
new TID, and releasing the lock-all executed in-line 
by the calling process rather than a daemon. Executing 
PVM services in-line with the requesting process 
increases multiprocessing capability and eliminates 
daemon bottlenecks and associated delays. 

We reimplemented the PVM library with the empha­
sis on performance rather than heterogeneity, although 
we plan to eventually allow interoperation with het­
erogeneous implementations of PVM using a special 
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Figure 10 
Digital PVM Architecture 

gateway daemon. The PVM API library is a complete 
rewrite of the standard PVM version 3.3 API, with 
which full functional compatibility is maintained. 
Emphasis has been placed on optimizing the perfor­
mance of the most frequently used code paths. In 
addition, all data structures and data transfers have 
been optimized for the Alpha architecture. As stated 
earlier, the amount of message passing between tasks 
and the local daemon has been minimized by perform­
ing most operations in-line and communicating with 
the daemon only when absolutely necessary. Inter­
mediate buffers are used for copying data between the 
user buffers. This is necessary because of the semantics 
of PVM, which allow operations on buffer contents 
before and after a message has been sent. The one 
exception to this is pvm_psend; in this case, data is 
copied directly since the user is not allowed to modify 
the send buffer. 

The purpose of our PVM daemon is different from 
that of the daemon in the standard PVM package. Our 
daemon is designed to relay commands between dif­
ferent nodes in the PVM cluster. It exists solely to 
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perform remote execution of those commands that 
cannot be performed in-line by UNIX calls in the PVM 
API library or by directly manipulating global data 
structures. Commands to be executed on a remote 
node are sent to the daemon on that node, which then 
executes the command directly. Note that this 
removes a level of indirection that exists in standard 
PVM. Daemon-to-daemon communications are mini­
mized. Since there is no master daemon, the PVM 
cluster has no single point of failure. All daemons are 
equal. When not in use, the daemon sleeps, being 
awakened as required by a signal from the calling task. 
For a local task, UNIX signals are used. If the task is on 
another node in the cluster, then MEMORY CHANNEL 
cluster signals are used. As a result, the daemon uses 
minimal cluster resources. 

The PVM group or collective functions operate on 
a group of PVM tasks. For example: pvm_barrier 
synchronizes multiple PVM processes; pvm_bcast 
sends a message to all members of a particular group; 
pvm_scatter distributes an array to the members of 
a group; pvm_gather reassembles the array from the 



contributions of each of the group members, etc. The 
group functions are implemented separately from the 
other PVM messaging functions. They use a separate 
global structure ( the group table) to manage PVM 
group data. Access to the group table is controlled 
by locks. Unlike other PVM implementations, there is 
no PVM group server, since all group operations can 
manipulate the group table directly. 

Performance 
Table 4 compares the communications latency achieved 
by various PVM implementations. As the table indi­
cates, the latency between two machines with Digital 
PVM over a MEMORY CHANNEL transport is much 
less than the latency of the public-domain PVM 
implementation over shared memory, which validates 
our approach of removing support for heterogeneity 
from the critical performance paths. Figure 11 shows 
the message transfer time and Figure 12 shows the 
bandwidth for Digital PVM over shared memory and 
MEMORY CHANNEL transports for various message 
sizes. Two AlphaServer 4100 5/300 machines were 
used for these measurements. The peak bandwidth 
reached by Digital PVM is about 66 MB/s (shared 
memory) and 43 MB/s (MEMORY CHANNEL). 
By comparison, PVM 3.3.10 achieves a bandwidth of 
24 MB/s (shared memory) and 3 MB/s (FDDI LAN). 
A version of PVM developed at Digital's Systems 
Research Center (SRC) using a specially adapted asyn­
chronous transfer mode (ATM) driver achieved a 
latency of approximately 60 µs and a bandwidth of 
approximately 16 MB/s using the AN2 ATM LAN.21 

The performance results for PVM latency over the 
MEMORY CHANNEL transport given in Reference 6 
were obtained using an earlier version of 
Digital PVM. Since those results were measured, 
latency has been halved, mostly due to improvements 
in UMP performance. 

Figure 13 compares the performance of an unmod­
ified PVM application using the public-domain PVM 
3.3.7 implementation and Digital PVM version 1.0. 
The application is a parallel molecular modeling pro­
gram. The bar chart shows the elapsed time for a vari­
ety of configurations. The application ran for 220 
seconds on 2 two-processor SMP machines connected 

Table4 
PVM Latency Comparison 

PVM Implementation Transport 

PVM 3.3.9 Sockets FDDI 

PVM 3.3.9 Shared Memory 

Digital PVM Vl .0 MEMORY CHANNEL 1.0 

Digital PVM V1 .0 MEMORY CHANNEL 1.5 

Digital PVM V1 .0 Shared Memory 

Digital PVM V1 .0 Shared Memory 

Digital PVM V1 .0 Shared Memory 

with FDDI. By replacing FDDI with a MEMORY 
CHANNEL network and PVM 3.3.7 with Digital 
PVM, we were able to speed up performance by a fac­
tor of approximately 3 .4 for the same number of pro­
cessors: the run time dropped from 220 seconds to 65 
seconds. For comparison, we also ran the program 
on a four-processor SMP; the application completed in 
64.5 seconds. This time was just marginally faster than 
the MEMORY CHANNEL configuration for the same 
number of processors, demonstrating that Digital PVM 
scales well from SMP to the MEMORY CHANNEL 
cluster. Finally, 2 four-processor SMP machines con­
nected in a two-node MEMORY CHANNEL cluster ran 
the program in 38 seconds, demonstrating a speedup 
of 1.7. 

Message Passing Interface 
Message Passing Interface (MPI) is a message-passing 
standard developed by a large group of industrial and 
academic users. The standard contains a substantial 
number of functions (more than 120) and offers the 
same wide range of facilities that many earlier message­
passing AP Is provided. In fact, many parallel applica -
tions can be written using only six of the functions, but 
a correct implementation must provide the complete 
set. Argonne National Laboratory (ANL) has pro­
duced a reference implementation called MPICH.22 

This is a robust, clean implementation of the complete 
MPI-1 function set. In addition, it has isolated trans­
port-specific components behind an abstract device 
interface (ADI).23 The abstract device implements the 
communications-related functions and is further lay­
ered on what is called the channel device. The public 
domain version comes with channel implementations 
for a number of interconnects including shared mem­
ory, TCP /IP, and other proprietary interfaces. This 
version also includes a template for building a channel 
device, called the channel interface.2

• To build a chan­
nel device, the programmer must supply five functions: 

l. Indicate if a control message is available on a con­
trol channel 

2. Get a control message from a control channel 

3. Send a control message to a control channel 

Platform Latency 

DEC 3000/800 400 µs 

Al phaServer 2100 4/233 60 µs 

AlphaServer 2100 4/233 11 µs 

AlphaServer 4100 5/300 8 µs 

AlphaServer 2100 4/233 5 µs 

AlphaServer 4100 5/300 4 µs 

AlphaServer 8400 5/350 3 µs 
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Digital PVM Communications Performance: Bandwidth 

4. Receive data from a data channel 

5. Send data to a data channel 

These functions can all be implemented using the 
UMP functions ump_read, ump_write, and ump_wait 
described earlier. In addition, hooks are added to 
the channel initialization and shutdown code to call 
ump_init and ump_exit. This approach leaves the 
portable MPICH API library unchanged and attempts 
to deliver optimum performance. MPICH implements 
all its operations, point-to-point and collective, on the 
basic point-to-point services that the ADI provides. 

Working with the Edinburgh Parallel Computing 
Centre (EPCC), we produced an early fimctional MPI 
prototype by building a channel device on UMP, as 
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shown in Figure 14a. This implementation demon­
strated latencies of 12.5 µs (shared memory) and 
29 µs (MEMORY CHANNEL), respectable perfor­
mance for such a quick port of MPI for clusters. 
Furthermore, since this implementation uses UMP, it 
works transparently on shared memory and MEMORY 
CHANNEL. ADI channels typically support only one 
interconnect; multiple ADis are not yet supported by 
MPI H. Unlike PVM, the semantics of MPI allow 
operation without an intermediate buffer, so that UMP 
buffers can be used directly. 

To further improve the performance of MPI on 
clusters, we eliminated the MPICH channel device and 
interfaced UMP directly to the ADI, as shown in 
Figure l 4b. The abstract device incurs some perfor­
mance penalty in its support for the channel device. In 
the UMP implementation, this is unnecessary as UMP 
already performs the function of hiding details of the 
transport mechanism. This implementation demon­
strated latencies of9.5 µs (shared memory) and 16 µs 
(MEMORY CHANNEL), using an Alpha cluster con­
sisting of two AlphaServer 2100 4/ 233 machines 
connected by a MEMORY CHANNEL network. 

Performance 
Table 5 compares the communications latency 
achieved by MPICH and the Digital MPI implementa­
tion, using an Alpha cluster. Results are shown for both 
AlphaServer 2100 4/190 and AlphaServer 4 100 
5 /300 machines connected by a MEMORY CHAl NEL 
network. Figure 15 shows the message transfer time 
and Figure 16 shows the bandwidth of Digital MPI 
over shared memory and MEMORY CHANNEL 
transports for a variety of message sizes. A pair of 
AlphaServer 4100 5 /300 machines were used for these 
measurements. Digital MPI reaches a peak bandwidth 
of about 64 MB/s using shared memory and 61 MB/s 
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using MEMORY CHANNEL. By comparison, the 
unmodified MPICH achieves a peak bandwidth of 
24 MB/s using shared memory and 5.5 MB/s using 
TCP /IP over an FDDI I.AN. 

Figure 17 shows the speedup demonstrated by an 
MPI application. The application is the Accelerated 
Strategic Computing Initiative (ASCI) benchmark 
SPPM, which solves a three-dimensional gas dynamics 
problem on a uniform Cartesian mesh.25.26 The same 
code was run using both Digital MPI and MPICH 
using TCP /IP. The hardware configuration was a two­
node MEMORY CHANNEL cluster of AJphaServer 
8400 5/350 machines, each with six CPUs. Digital 
MPI used shared memory and MEMORY CHANNEL 
transports, whereas MPICH used the Ethernet I.AN 
connecting the machines. The maximum speedup 

Table 5 
MPI Latency Comparison 

MPI Implementation 

MPICH 1.0.10 

MPICH 1.0.10 

Digital MPI V1 .0 

Digital MPI V1 .0 

Digital MPI V1 .0 

Digital MPI V1 .0 

Transport 

Sockets FDDI 

Shared Memory 

MEMORY CHANNEL 1.0 

MEMORY CHANNEL 1.5 

Shared Memory 

Shared Memory 

obtained using Digital MPI was approximately 7, 
whereas for MPICH the maximum speedup was 
approximately 1.6. 

Future Work 

We intend to continue refining the components 
described in this paper. The major change envisioned 
regarding the Tm Cluster MEMORY CHANNEL Soft­
ware product is the addition of user-space spinlocks, 
which should significantly reduce the cost of acquiring 
a spinlock. We intend to increase the performance 
of UMP by making more efficient use of MEMORY 
CHANNEL in a number of ways: striping large 
messages over multiple adapters, supporting next­
generation adapters, and using point-to-point map­
pings with a MEMORY CHANNEL switch. In addi­
tion, we plan to add outbufs to increase multicast 
message-passing performance. PVM enhancements 
planned include the addition of the gateway daemon to 
allow interoperation with other PVM implementations 
on external platforms. PVM will also be modified to use 
the UMP nonblocking write facility for arbitrarily large 
messages so that its performance matches that of 
MPI. Since the semantics of PVM force the use of an 
intermediate buffer, performance when using shared 
memory will be improved by passing pointers to a lock­
controlled buffer for messages whose transfer time 
would exceed the overhead associated with a lock. We 
will continue to improve MPI performance by optimiz­
ing the UMP ADI for the MPICH implementation. 

Summary 

We have built a high-performance communications 
infrastructure for scientific applications that utilizes a 
new network technology to bypass the software over­
head that limits the applicability of traditional net­
works. The performance of this system has been proven 
to be on a par with that of current supercomputer tech­
nology and has been achieved using commodity 
technology developed for Digital's commercial cluster 
products. The paper demonstrates the suitability of 
the MEMORY CHANNEL technology as a communica­
tions medium for scalable system development. 

Platform Latency 

DEC 3000/800 350 µs 

AlphaServer 2100 4/233 30µs 

AlphaServer 2100 4/233 16 µs 

AlphaServer 4100 5/300 6.9 µs 

AlphaServer 2100 4/233 9.5 µs 

Al phaServer 4100 5/300 5.2 µs 
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The Design of User 
Interfaces for Digital 
Speech Recognition 
Software 

Digital Speech Recognition Software (DSRS) adds 

a new mode of interaction between people and 

computers-speech. DSRS is a command and 

control application integrated with the UNIX 

desktop environment. It accepts user commands 

spoken into a microphone and converts them 

into keystrokes. The project goal for DSRS was 

to provide an easy-to-learn and easy-to-use 

computer-user interface that would be a power­

ful productivity tool. Making DSRS simple and 

natural to use was a challenging engineering 

problem in user interface design. Also challeng­

ing was the development of the part of the 

interface that communicates with the desktop 

and applications. DSRS designers had to solve 

timing-induced problems associated w ith enter­

ing keystrokes into applications at a rate much 

higher than that at which people type. The DSRS 

project clarifies the need to continue the devel­

opment of improved speech integration with 

applications as speech recognition and text-to­

speech technologies become a standard part of 

the modern desktop computer. 

I 
Bernard A. Rozmovits 

In the 1960s and early 1970s, people controlled com­
puters using toggle switches, punched cards, and 
punched paper tape. In the 1970s, the common con­
trol mechanism was the keyboard on teletypes and on 
video terminals. In the 1980s, with the advent of 
graphical user interfaces, people found that a new 
mode of interaction with the computer was useful. 
The concept of a pointer-the mouse-evolved. Its 
popularity grew such that the mouse is now a standard 
component of every modern computer. In the 1990s, 
the time is right to add yet another mode of inter­
action with the computer. As compute power grows 
each year, the boundary of the man-machine interface 
can move from interaction that is native to the com­
puter toward communication that is natural to 
humans, that is, speech recognition. 

DSRS Product Overview 

Very simply, DSRS is an application that provides 
speech macros. The user speaks a command, phrase, or 
sentence (that is, an utterance), and DSRS performs 
some actions. The action might be to launch an appli­
cation, for example, in response to the command 
"bring up calendar"; or to type something, for exam­
ple, in response to "edit to-do list," to invoke emacs 
\files\projectA\todo.txt. DSRS not only houses the 
speech macro capability but also provides a user inter­
face, a speech recognition engine, and interfaces to the 
X Window System. 

Following is a high-level description of how the 
software functions. Commands are spoken into a 
microphone, and the audio is captured and digitized. 
The first step in the processing is the speech analysis 
system, which provides a spectral representation of the 
characteristics of the time-varying speech signal. Next 
is the feature-detection stage. Here, the spectral mea­
surements are converted to a set of features that 
describe the broad acoustic properties of the different 
phonetic units.' These representations of the speech 
signal are then segmented and identified as phonetic 
sequences. The speech recognition engine accepts 
these phonetic sequences and returns word matches 
and confidence values for each match. These data are 
used to determine if each match is acceptable. If a 
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match is acceptable, DSRS retrieves keystrokes associ­
ated with each utterance, and the keystrokes are then 
sent into the system's keyboard buffer or to the appro­
priate application. For instances of continuous speech 
recognition, a sentence is recognized and keystrokes 
are concatenated to represent the utterance. For 
example, for the utterance "five two times seven three 
four equals," the keys "52 * 734 =" would be deliv­
ered to the calculator application. 

Although this concept seems simple, its implemen­
tation raised significant system integration issues and 
directly affected the user interface design, which was 
critical to the product's success. This paper specifically 
addresses the user interface and integration issues and 
concludes with a discussion of future directions for 
speech recognition products. 

Project Objective 

The objective of the DSRS project was to provide a 
useful but limited tool to users of Digital's Alpha 
workstations running the UNIX operating system. 
DSRS would be designed as a low-cost, speech recog­
nition application and would be provided at no cost to 
workstation users for a finite period of time. 

When the project began in 1994, a number of com­
mand and control speech recognition products for 
PCs already existed. These programs were aimed at 
end users and performed useful tasks "out of the box," 
that is, immediately upon start-up. They all came with 
built-in vocabulary for common applications and gave 
users the ability to add their own vocabulary. 

On UNIX systems, however, speech recognition 
products existed only in the form of programmable 
recognizers, such as BBN Hark software. Our objec­
tive was to build a speech recognition product for the 
UNIX workstation that had the characteristics of the 
PC recognizers, that is, one that would be functional 
immediately upon start-up and would allow the non­
programmer end user to customize the product's 
vocabulary. 

We studied several speech recognition products, 
including Talk-tTo Next from Dragon Systems, Inc., 
VoiceAssist from Creative Labs, Voice Pilot from 
Microsoft, and Listen from Verbex. We decided to 
provide users with the following features as the most 
desirable in a command and control speech recogni­
tion product: 

• Intuitive, easy-to-use interface 

• Speaker-independent models that would eliminate 
the need for extensive training 

• Speaker-adaptive capability to improve accuracy 
of words 

• Continuous speech recognition capability 

• Prompts for active vocabulary 
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• Minimum use of screen area 

• User control over the user interface configuration 

• Simple mechanism to modify and create new 
vocabulary 

• Integration with the X Window System 

• Support for out-of-the-box desktop applications 
provided with the UNIX operating system 

• Support for vi and emacs editors, and for C 
programming 

The DSRS Architecture 

DSRS comprises several major components which are 
outlined below and illustrated in Figure 1. Of these 
components, three are licensed from Dragon Systems, 
Inc.: the front-end processor, the recognizer engine, 
and the speaker-independent speech models. 

Dragon Systems, Inc. was chosen as the provider of 
the speech recognition engine based on the accuracy 
of their technology, their products and expertise in 
other local languages, and their long-term commit­
ment to speech recognition. 

Data acquisition consists of the microphone, audio 
card, and the multimedia services application pro­
gramming interface (API) that provides support for 
the sound card. 

The front-end processor analyzes a stream of digi­
tized data and differentiates between silence, noise, 
and speech; it then extracts a set of computed features 
from the speech signals. 

The recognizer, or speech recognition engine, 
accepts the computed representation of the speech 
in the form of feature packets which drive the Hid­
den Markov Models to recognize utterances. Hidden 
Markov Models are basically state machines that tran­
sition from a beginning state to a number of internal 
states and then to a final state based on input data and 
probabilities. 2 Each transition carries two sets of prob­
abilities: a transition probability, which provides the 
probability of this transition being taken, and an out­
put probability density function (PDF), which is the 
conditional probability of emitting each output sym­
bol from a finite alphabet given that a transition is 
taken.3 The PDFs are adapted when the model 
is "trained," that is, customized, by the individual user. 

The finite state grammar is a state machine that 
contains a representation of the vocabulary supported 
by DSRS. Each state contains words, phrases, or sen­
tences; their associated actions; and the information 
needed to transition to the next state. The current 
state is used to control the Active words. 

The speech models are a set of utterance models 
used by the recognizer. DSRS provides vocabulary and 
speaker-independent models for the applications sup­
ported by DSRS. Users who wish to include their own 
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DSRS Architectural Block Diagram 

words can create models using the Vocabulary 
Manager user interface. 

The Speech Manager is the main user·interface 
component. The Speech Manager window provides 
visual feedback to users. It also keeps track of the cur· 
rent window in focus and acts as the agent to control 
focus in response to users' speech commands. 

The Vocabulary Manager user· interface window 
displays the current hierarchy of the finite state gram· 
mar file. The Vocabulary Manager allows the user to 
customize using the functions for addition, deletion, 
and modification of words or macros. Also in this win· 
dow, the command-utterance to keystroke translations 
are displayed, created, or modified. 

In the Training Manager user interface, the user 
may train newly created words or phrases in the 
user vocabulary files and retrain, or adapt, the product· 
supplied, independent vocabulary. 

The DSRS Implementation 

As the design team gained experience with the DSRS 
prototypes, we refined user procedures and interfaces. 
This section describes the key functions the team 
developed to ensure the user·friendliness of the prod­
uct, including the first-time setup, the Speech 
Manager, the Training Manager, the Vocabulary 
Manager, and the finite state grammar. 

First-time Setup 

DSRS requires a setup process when used for the first 
time. The user must create user-specific files and set­
tings. The user begins by selecting the microphone 
and by testing and adjusting the microphone input 
volume to usable settings. The user is then prompted 
to speak a few words, which are presented on the 
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screen. DSRS uses the speech data to choose the 
speaker-independent model that most closely matches 
the speaker's voice. There are models for lower- and 
higher-pitched voices. The software copies the selected 
model to the user's home directory; the model is then 
modified when the user makes changes to the provided 
models and vocabulary. After setup is complete, the 
next step is the Training Manager which presents the 
user with a list of 20 words to train; when this step is 
completed, DSRS is ready for use. The Training 
Manager is described in more detail later in this section. 

The procedure above was developed to take a new 
user through the entire setup process without the 
need to refer to any documentation. Once the user 
files are created, DSRS bypasses these steps and comes 
up ready to work. A notable change that we made to 
the setup was instigated by our own use of the soft­
ware. We found that inconsistent microphone volume 
settings were a frequent problem. When systems were 
rebooted, volume settings were reset to default values. 
Consequently, we created an initialization file that 
records the volume settings as well as all user-definable 
characteristics of the graphical user interface. 

Speech Manager 

Once DSRS is ready and in its idle state, it presents the 
user with the Speech Manager window, an example of 
which is shown in Figure 2. The Speech Manager pro­
vides the following critical controls: 

• Microphone on/off switch. 

• A VU (volume units) meter that gives real-time 
feedback to the audio signal being heard. A VU 
meter is a visual feedback device commonly used on 
devices such as tape decks. Users are generally very 
comfortable using them. 
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Figure 2 
DSRS Speech Manager Window 

• Two user-controllable panes that display the Always 
Active and Active vocabulary sets. The Always Active 
vocabulary words are recognized regardless of 
the current application in focus. The Active vocabu­
lary words are specific to the application in focus 
and change dynamically as the current application 
changes. The vocabularies are designed in this way so 
that a user can speak commands both within an 
application context and in order to switch contexts. 

• Three small frames that provide status information 
to the user. 
- The Mode frame indicates the current state of 

the Speech Manager: command and control or 
sleeping. 
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- The Context frame displays the class name of the 
application currently in focus. This context also 
determines the current state of the Active word list. 

- The history frame displays the word, phrase, or 
sentence last heard by the recognizer. The history 
frame is set up as a button. When pressed, it drops 
down to reveal the last 20 recognized utterances. 

• A menu that provides access to the management of 
user files, the Vocabulary Manager, the Training 
Manager, and various user-configurable options. 

Training Manager 
The Training Manager adapts the speaker-indepen­
dent speech models to the user's speech patterns and 
creates new models for added words. Our study of 
PC-based speech recognizers led us to the conclusion 
that the design of a training interface is critical to 
obtain good results. For example, the training compo­
nent of one PC-based recognizer we examined did not 
provide clear feedback to the user when an utterance 
had been processed, thus causing the user confusion 
about when to speak. This confusion lead to training 
errors and frustration. Another recognizer did not 
allow the user to pause while training, a major incon­
venience for the user who, for example, needed to 
clear his throat or speak to someone. 

We developed the following list of design character­
istics for a good training user interface. 

• Strong, clear indications that utterances are pro­
cessed. We added a series of boxes that are checked 
off as each utterance is processed and a VU meter 
that shows the system is picking up audio signals. 

• Reduced amount of eye movement needed for the 
training to proceed smoothly and quickly. We 
placed visual feedback objects in positions that 
allow users to focus their eyes on a limited area of 
the screen and not have to look back and forth 
across the screen at each utterance. 

• A glimpse of upcoming words. A list of words is dis­
played on the user interface and moves as words are 
processed. 

• A progress indicator. Text is displayed and updated 
as each word is processed, indicating progress, for 
example, Word 4 of 21. 

• Option to pause, resume, and restart training. 

• Large, bold font display of the word to be spoken 
and a small prompt, "Please continue," displayed 
when the system is waiting for input. 

• Automatic addition of repeated utterances that are 
"bad" or do not match the expected word. 

• Control over the number of repetitions. 

As the example in Figure 3 shows, the Training 
Manager presents a word from a list of words to be 
trained. The word to be spoken is presented in a large, 



Figure 3 
Training Manager Window 

bold font to differentiate it from the other elements in 
the window. To train the words, the user repeats an 
utterance from one to six times. The user must speak 
at the proper times to make training a smooth and effi­
cient process. DSRS manages the process by prompt­
ing the speaker with visual cues. Right below the word 
is a set of boxes that represent the repetitions. The 
boxes are checked off as utterances are processed, pro­
viding positive visual feedback to the speaker. When 
one word is complete, the next word to be trained is 
displayed and the process is repeated. When all the 
words in the list are trained, the user saves the files, and 
DSRS returns to the Speech Manager and its active 
mode with the microphone turned off. 

Vocabulary Manager 
The Vocabulary Manager, an example of which is 
shown in Figure 4, enables users to modify speech 
macros by changing the keystrokes stored for each 
command and by adding new commands to existing 
applications. Users can also add speech support for 
entirely new applications. The vocabularies are repre­
sented graphically as hierarchies of application vocabu­
laries, groups of words, and individual words. The 
Vocabulary Manager provides an interface that allows 
manipulation ofthis database of words without resort­
ing to text editors. The Always Active vocabularies are 
accessible here and are manipulated in the same man -
ner as the application-specific vocabularies. With the 
Vocabulary Manager, the user may import and export 

vocabularies or parts of vocabularies in order to share 
commands and thus enable speech recognition m 
applications not supported by default in DSRS. 

Finite State Grammar 
The finite state grammar (FSG) is a state machine with 
all the vocabulary required to transition between states 
and conditions. The FSG has two distinct sets of 
vocabulary, which have already been mentioned: the 
Always Active, or global vocabulary, and the Active, or 
context-specific, vocabulary. 

In creating the FSG, we found that we needed spe­
cial functions for interaction with the windowing sys­
tem and representations for all keyboard keys. While 
creating these special functions, we designed the inter­
action for maximum convenience. For example, when 
a user speaks the phrase "go to calculator" or "switch 
to calculator" or simply "calculator," the meaning is 
readily interpreted by the software. For the user's con­
venience, these phrases trigger the following condi­
tional actions. 

• If a window of class "calculator" is present on the 
system, then set focus to it. This is done regardless 
of its state; the window may be in an icon state, 
hidden, or on another work space such as may be 
found in the Common Desktop Environment 
(CDE). 

• If the window does not exist, then create one by 
launching the application. 
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Figure4 
Vocabulary Manager Window 

The simple logic of this special function enhances 
user productivity. Often workstation and PC screens 
are littered with windows or applications icons and 
icon boxes through which the user must search. 
Speech control eliminates the steps between the user 
thinking "I want the calculator" and the application 
being presented in focus, ready to be used. The DSRS 
team created a function called FocusOrLaunch, which 
implements the behavior described above. The func­
tion is encoded into the FSG continuous-switching­
mode sentences in the Always Active vocabulary 
associated with the spoken commands "switch to 
<application name>," "go to <application name>," 
and just plain "<application name>." 

Applications like calculator and calendar are not 
likely to be needed in multiple instances. However, 
applications such as terminal emulator windows are. 
DSRS defines the specific phrase "bring up <application 
name>" to explicitly launch a new instance of the appli­
cation; that is, the phrase "bring up <application 
name>" is tied to a function named Launch. 

The phrases "next <application name>" and "previ­
ous <application name>" were chosen for navigating 
between instances of the same application. DSRS 
remembers the previous state of the application. For 
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instance, if the calendar application is minimized when 
the user says "switch to calendar," the calendar 
window is restored. When the user says "switch to 
emacs," the calendar is returned to its former state. In 
this case, it is minimized. 

DSRS also adds speech control to the common win­
dow controls such as minimize, maximize, and close. 
These functions operate on whatever window is cur­
rently in focus. 

Another convenient command is "Speech Manager 
go to sleep." When the user speaks this command, 
DSRS transitions into a special standby state. In this 
state, termed "sleeping," the recognizer is still listen­
ing but will return to command and control mode 
only when the command "Speech Manager wake up" 
is spoken. The "go to sleep" command puts DSRS 
into a standby state, allowing normal conversation to 
take place without words being recognized as com­
mands and causing unwanted events to occur. 

Version 1.1 of DSRS adds even more functions, 
such as the "microphone off" command, which goes a 
step beyond "go to sleep." With "microphone off," 
the input audio section is completely released and 
DSRS will no longer listen until the microphone is 
manually turned back on. This function allows the 



user to launch an audio-based application that will 
record, such as a teleconferencing session. Version 1.1 
also includes a function that allows the user to play 
a "wave," or digitized audio clip. Audio cues may thus 
be played as part of speech macros. The "say" com­
mand invokes DECtalk Text-to-Speech functionality 
so that audio events can be spoken.• 

Since speech recognition is a statistical process and 
prone to errors, the design team deemed "confirm" an 
important function to protect user data and prevent 
unwanted actions. The "confirm" function protects 
certain sensitive actions, such as exiting an editor, with 
a confirmation dialog box. Simply adding the "con­
firm" syntax within a speech macro causes the dialog 
box "are you sure?" to appear. The vocabulary is 
switched to respond to only yes and no so that a higher 
reliability can be achieved. If the user says no or presses 
the no button, the computer returns to its previous 
state . . If the user says yes, the action following the 
"confirm" function is executed. 

Another concept encoded in the FSG for user con -
venience is menu flattening. Menu displays are hierar­
chical because the number of menu entries that can 
be shown on the screen at one time is limited. A good 
example is the File menu. When the user clicks the 
mouse button on File, a drop-down menu appears 
containing actions such as Open file, Save file, Save 
file as ... , Print, and Exit. However, hierarchical menus 
do not really represent the way people normally 
think about actions; for example, when the user thinks 
"exit," he or she must then take the steps file and 
exit. With speech recognition, the computer can take 
the interim steps. The FSG in DSRS was built to han­
dle two cases: ( 1) The user says "file" and "exit," and 
(2) the user says only "exit" and DSRS performs the 
file and exit sequence transparently. This second mode 
connects the actions more closely with the user's 
thought processes and does not force a sequence of 
actions in order for tasks to be performed. The menu­
flattening feature of DSRS was encoded into the FSG 
file. While the example given may seem trivial, the 
concept is an important one and can be used to flatten 
many levels of menus. For instance, users take several 
steps to change the font or type size on a region of 
highlighted text in a word processing program. The 
following could conceivably be invoked as a speech 
macro: "Change to Helvetica Bold Italic 24 points." 

Integrating Speech Recognition in Applications 

As described in the section Overview, DSRS feeds key­
strokes to applications. Therefore, the preferred appli­
cation development method for allowing access to 
functions-one that will allow integration of speech 
recognition-is accelerator keys. Typically, accelerator 

keys are in the form of CTRL + <key> bindings that 
allow direct access to a function, regardless of menu 
hierarchies. It should be noted that this lack of hierar­
chy limits the number of directly accessible functions. 

A second method for integrating speech within an 
application is through menu mnemonics. Mnemonics 
are the keyboard equivalents signified in application 
menus by an underlined letter. The first mnemonic is 
invoked by a combination of the ALT key and the 
underlined letter, which can be followed by another 
underlined letter. For example, pressing ALT + f 
invokes the file menu item; pressing x immediately 
thereafter invokes the "exit" entry for the application. 

Integrating speech recognition becomes difficult 
when application functions are not accessible through 
the keyboard. Applications designed to allow access to 
functions only by means of the mouse cannot be 
speech enabled as DSRS is currently implemented. 
Although DSRS can send mouse clicks into the system, 
consistently locating the mouse pointer on applica­
tions is difficult. The next sections further illustrate the 
issues that stemmed from these integration issues as 
we implemented and tested DSRS. 

Client-Server Protocols 

Applications such as emacs and Netscape Navigator 
have protocols that allow other processes to send 
commands to them. For example, a file name or a 
universal resource locator (URL) may be sent via 
the command line. DSRS exploits this facility in 
Netscape Navigator to allow Web surfing by voice. 
For example, in the Netscape context, the speech 
macro "Digital home page" would translate to the 
following command issued to a window: nctscape­
remote openURL("http://www.digital.com"). Although 
this command string seems a bit awkward, the result is 
that the actions being taken are all transparent to the 
user and they work very well. 

Problems Encountered in Implementation 

Unlike the applications discussed in this paper, some 
applications are not developed with good program­
ming practices. Neither are the keyboard interfaces 
well-tested. We encountered the following types of 
problems when using the keyboard as the main input 
mechanism. 

• Applications had multiple menu mnemonics 
mapped to the same key sequence. This approach 
could not work even if the keyboard were used 
directly. 

• Application functions controlled by graphic but­
tons were accessible only by mouse. 

• Keyboard mapping was incomplete, that is, mnem­
onics were only partially implemented. 
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In the implementation of DSRS, we encountered 
one unexpected problem. When a nested menu 
mnemonic was invoked, the second character was lost. 
The sequence of events was as follows: 

• A spoken word was recognized, and keystrokes 
were sent to the keyboard buffer. 

• The first character, ALT + <key>, acted normally 
and caused a pop-up menu to display. 

• The menu remained on display, and the last key was 
lost. 

We determined that the second keystroke was being 
delivered to the application before the pop-up menu 
was displayed. Therefore, at the time the key was 
pressed, it did not yet have meaning to the application. 
It is apparent that such applications are written for 
a human reaction-based paradigm. DSRS, on the 
other hand, is typing on behalf of the user at computer 
speeds and is not waiting for the pop-up menu to 
display before entering the next key. 

To overcome this problem, we developed a syn­
chronizing function. Normally the Vocabulary 
Manager notation to send an ALT + f followed by an 
x would be ALT+ fx. This new synchronizing func­
tion was designated as sALT + fx. The synchronizing 
function sends the ALT + f and then monitors events 
for a map-notify message indicating that the pop-up 
menu has been written to the screen. The character 
following ALT + f is then sent, in this case, the x. 
The synchronizing function also has a watchdog timer 
to prevent a hang in the event a map-notify message. 
This method is included in the final product. 

Guidelines for Writing Speech-friendly 
Applications 

Several guidelines for enabling speech recognition in 
applications became apparent as we gained experience 
using DSRS. Coincidentally, a guideline recently pub­
lished by Microsoft Corporation documents some 
of the very same points.5 

• Provide keyboard access to all features. 

• Provide access keys for all menu items and controls. 

• Fully document the keyboard user interface. 

• Whenever possible, use accelerator keys; they are 
more reliable than using menu mnemonics. 
Mnemonics can be overloaded or non-functional 
if the menu is not active. 

II Client-server protocols can work well for enabling 
speech recognition; document fully. 

• Do not depend on human reaction times for dis­
played windows or on slow typing rates. 

• Provide user-friendly titles for all windows, even if 
the title is not visible. 
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• Avoid triggering actions or messages by mouse 
pointer location. 

• Give dialog boxes consistent keyboard access; for 
instance, boxes should close when the ESC key is 
pressed. The dialog box responses yes and no 
should correspond to the y and n keys. 

Application developers who wish to design a speech 
interface directly into their applications now have this 
option. Several speech APis are available. Microsoft 
offers the Speech Software Development Kit, and the 
Speech Recognition API Committee, chaired by 
Novell, offers SRAPI. Computer- human speech 
interaction is the subject of ongoing research. Much of 
the government-sponsored research is now being 
commercialized. Several groups, such as ACM CHI,6 
have been and continue to study speech-only 
interfaces. They are discovering that "translating a 
graphical interface into speech is not likely to produce 
an effective interface. The design of the Speech User 
Interface must be a separate effort that involves study­
ing the human-human conversations in the applica­
tion domain." 6 

Future Directions for Speech Recognition 

In addition to uncovering points for developers to 
build speech-enabled applications, we also gained a 
perspective on how speech recognition may develop in 
the future. A brief overview of these insights is pre­
sented in this section. 

Integrating speech and audio output-The addi­
tion of a two-way interface of speech and audio that 
gives users feedback will move the user interface to a 
new level. 

Telephone access-Telephone access can make 
workstations more valuable communications devices 
by connecting users to information such as e-mail 
messages and appointment calendars. The telephone 
can extend the reach of our desktop computers.6 

Dictation-Discrete dictation products with capa­
bilities of 60,000 words are commercially available 
now; in the not-too-distant future, continuous­
recognition dictation products will become viable. 
A command and control recognizer that can be seam­
lessly switched to dictation mode is a very powerful tool. 

Speech recognition integrated with natural lan­
guage processing-The field of natural language 
processing deals with the extraction of semantic infor­
mation contained in a sentence. Machine understand­
ing of natural language is an obvious next step. Users 
will be able to speak in a less restricted fashion and still 
have their desired actions carried out. 

A new paradigm for applications-A new class of 
applications needs to be created, one that is modeled 
more on human thought processes and natural lan ­
guage expression than on the functional partitioning 



in today's applications. A user agent or secretary pro­
gram that could process common requests delivered 
entirely by speech is not out of reach even with the 
technology available today, for example: 

User: What time is it? 
Computer: It is now 1 :30 p.m. 

User: Do I have any meetings today? 
Computer: Staff meeting is ten o'clock to twelve 

o'clock in the corner conference room. 

Computer: Mike Jones is calling on the phone. 

User: 

Would you like to answer or transfer the 
call to voice mail? 
Answer it. 

User: Do I have any new mail? 
Computer: Yes, two messages. One is from Paul 

Jones, the other from your boss. 
User: Read message two. 

User: What is the price of Digital stock? 
Computer: Digital stock is at $72 1/i, up 1/4. 

The example above shows the user agent providing 
information and interacting with e-mail, telephone, 
stock quote, and calendar programs. As we move into 
the future, the computer-user interface should move 
closer to the interaction model humans use to com -
municate with each other. Speech recognition and 
text-to-speech software help in a significant way to 
move in this direction.6 

Performance 

DSRS word recognition, which is the primary perfor­
mance measure, is as good as comparable command 
and control recognizers found on PCs. Training trou­
blesome and acoustically similar words improves the 
performance. The vocabulary, because of the targets 
chosen, that is, UNIX commands, does have acoustic 
collisions, for example, escape and Netscape. Further, 
we had to use the vocabularies supporting the UNIX 
shell commands, and commands such as vi can be pro­
nounced in different ways, for example, vee-eye or vie. 
The shell commands are also full of very short utter­
ances that tend to result in higher error rates. 

On the slower, first-generation Alpha workstations, 
DSRS has noticeable delays, on the order of a few hun­
dred milliseconds. However, on the newer and faster 
Alpha workstations, DSRS responds within human 
perceptual limits, less than 100 milliseconds. 

Another interesting phenomenon associated with 
the speed of the workstation is the improvement DSRS 
makes in user productivity. On a slow machine, the 
speech interface has little impact if the application is 
slow in performing its tasks. In other words, the time it 
takes to perform a certain task is not greatly affected 

unless the human input of commands is a significant 
portion of that time. However on a fast machine, the 
application performs tasks as quickly as the commands 
are spoken, and the productivity enhancement, there­
fore, is great. 

Summary and Conclusions 

The DSRS team accomplished its objective of develop­
ing a low-cost speech recognition product. DSRS for 
Digital UNIX is being shipped with all Alpha work­
stations at no additional cost. Integration with the 
X Window System was successful. 

With reference to the focus of this paper-develop­
ing the user-friendly interface-we found through 
feedback from our user base that most first-time users 
perform useful work using DSRS without consulting 
the documentation. The first-time setup design that 
provides instructions and feedback to users was suc­
cessful. The list of Active and Always Active words and 
phrases is a helpful reference for new users until they 
learn the "language" they can use to communicate 
with their applications. 

Adding vocabulary for new applications is a bit 
more challenging because some "reverse engineering" 
may be required on a particular application. One 
needs to know the class name of each of the windows 
and then map the keystrokes for each of the functions 
to speech macros. Although this procedure is docu­
mented in the manual, it can be challenging for users. 

Prototypes ofDSRS control for sophisticated menu­
driven applications, such as mechanical computer­
aided design, show excellent promise for enhancing 
user productivity. For example, with computer-aided 
design or drafting software, users can focus their eyes 
on the drawing target on the screen while they are 
speaking menu functions. 

Speech recognition is an evolutionary step in the 
overall computer-user interface. It is not a replace­
ment for the keyboard and mouse and should be used 
to complement these devices. Speech recognition 
works as an interface because it allows a more direct 
connection between the human thought processes 
and the applications. 

Speech recognition coupled with natural language 
processing, text-to-speech, and a new generation of 
applications will make computers more accessible to 
people by making them easier to use and understand. 
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