
Digital
Technical
Journal

I
SPIRALOG LOG-STRUCTURED FILE SYSTEM

OPENVMS FOR 64-BIT ADDRESSABLE
VIRTUAL MEMORY

HIGH-PERFORMANCE MESSAGE PASSING
FOR CLUSTERS

SPEECH RECOGNITION SOFTWARE

Vol u me 8 N umber 2

1996

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzdf, Typographer
Peter R.. Woodbury, Illustrator

Advisory Board
Samuel H. fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Pauline A. Nist
Robert M. Supnik

Cover Design
Digital's new Spiralog rile system, a featured
topic in the issue, supports rid! 64-bit system
capability and fast backup and is integrated
with the Open VMS 64-bit version 7.0 oper­
ating system. The cover graphic captures the
inspired character of the Spiralog design
effort and illustrates a concept taken from
University of California research in which
the whole disk is treated as a single, sequen­
tial log and all file system modifications arc
appended to the tail of the log.

The cover was designed by Lucinda O'Neill
of Digital's Design Group using images
fi·om Photo Disc, Inc., copyright 1996.

The Digital Teclmica/juumal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
L)02/DIO, Littleton, MA 0!460.

Subscriptions can be ordered by sending
a check in U.S. ti.mds (made payable to
Digital Equipment Corporation) to the
published-by address. General subscrip­
tion rates arc $40.00 (non-U.S. $60) for
rour issues and $75.00 (non-U.S. $!15)
for eight issues. University and college pro­
fessors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. Digital's customers may qualify
for gift subscriptions and arc encouraged
to contact their account representatives.

Single copies and back issues are available
ri:>r $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue's
volume and number and a check to the
published-by address. Sec the Further
Readings section in the back of this issue
ror a complete listing. Recent issues arc
also available on the Internet at
http:/ /www.digital.com/info/dtj.
Digital employees may order subscrip­
tions through Readers Choice at UR.L
http:/ jwebrc.das.dec.com or by enter-
ing VTX PROfiLE at the system prompt.

Inquiries, address changes, and compli­
mentary subscription orders can be sent
to the Digital Teclmical.fourna/ at the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the joumal
office at 508-486-2538.

Comments on the content of any paper
arc welcomed and may be sent to the
managing editor at the published-by or
electronic mail address.

Copyright© 1996 Digital Equipment
Corporation. Copying without fee is per­
mitted provided that such copies are made
for usc in educational institutions by faculty
members and are not distributed for com­
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's auth­
orship is permitted.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa­
nies herein represented. Digital Equipment
Corporation assumes no responsibility ror
any errors that may appear in the Journal.

!SSN 0898-90 I X

Documentation Number EC-N6992-18

Book production was done by Quantic
Communications, Inc.

The following arc trademarks of Digital
Equipment Corporation: AlphaScrver,
DEC, DECtalk, Digital, the DIGITAL
logo, HSC, Open VMS, PATH WORKS,
POLYCENTER, RZ, TruCiuster, VAX,
and VAXcluster.

BBN Hark is a trademark of Bolt Beranek
and Newman Inc.

Encore is a registered trademark and
MEMORY CHANNEL is a trademark
of Encore Computer Corporation.

FAScrver is a trademark of Network
Appliance Corporation.

Listen for Windows is a trademark of
Verbcx Voice Systems, Inc.

Microsoft and Win32 arc registered trade­
marks and Windows and Windows NT arc
trademarks of Microsoft Corporation.

MIPSpro is trademark of MIPS Technol­
ogies, 1 nc., a wholly owned subsidiary of
Silicon Graphics, Inc.

Netscape Navigator is a trademark of
Netscape Communications Corporation.

PAL is a rcgistcn:d trademark of Advanced
Micro Devices, Inc.

UNIX is a registered trademark in the
United States and in other countries,
licensed exclusively through X/Open
Company Ltd.

VoiceAssist is a trademark of Creative
Labs, Inc.

X Window System is a trademark of the
Massachusetts Institute ofTechnology.

Contents

Foreword

SPIRALOG LOG-STRUCTURED FILE SYSTEM

Overview of the Spira log File System

Design of the Server for the Spira log File System

Designing a Fast, On-line Backup System for
a Log-structured File System

Integrating the Spiralog File System into the
OpenVMS Operating System

Rich Marcello

James E. Johnson and William A. Laing

Christopher Whitaker, J. Stuart Bayley, and
Rod D. W. Widdowson

Russell J. Green, Alasdair C. Baird, and
J. Christopher Davies

Mark A. Howell and Julian M. Palmer

3

5

15

32

46

OpenVMS FOR 64-BIT ADDRESSABLE VIRTUAL MEMORY

Extending Open VMS for 64-bit Addressable Michael S. Harvey and Leonard S. Szubowicz 57
Virtual Memory

The OpenVMS Mixed Pointer Size Environment Thomas R. Benson, Karen L. Noel, and 72
Richard E. Peterson

Adding 64-bit Pointer Support to a 32-bit Run-time Library Duane A. Smith 83

HIGH-PERFORMANCE MESSAGE PASSING FOR CLUSTERS

Building a High-performance Message-passing System
for MEMORY CHANNEL Clusters

SPEECH RECOGNITION SOFTWARE

The Design of User Interfaces for Digital Speech
Recognition Software

James V. Lawton, John J. Brosnan, Morgan P. Doyle, 96
Seosamh D. 6 Riordain, and Timothy G. Reddin

Bernard A. Rozmovits 117

Digital Technical Journal Vol. 8 No. 2 1996

2

Editor's
Introduction

This past spring when we surveyed
Journal subscribers, readers took the
time to comment on the particular
value of the issues featuring Digital's
64-bit Alpha technology. The engi­
neering described in those two issues
continues, with ever higher levels of
performance in Alpha microproces­
sors, servers, clusters, and systems
software. This issue presents recent
developments: a log-structured file
system, called Spiralog; the Open VMS
operating system extended to take full
advantage of64-bit addressing; high­
performance computing software for
Alpha clusters; and speech recognition
software for Alpha workstations.

Spiralog is a wholly new clusterwide
file system integrated with the new
64-bit Open VMS version 7.0 operat­
ing system and is designed for high
data availability and high performance.
The first of four papers about Spiralog
is written by Jim Johnson and Bill
Laing, who introduce log-structured
file (LFS) concepts, the university
research behind the design, and design
innovations.

The advantages ofLFS technology
over conventional "update-in-place"
technology are explained by Chris
Whitaker, Stuart Bayley, and Rod
Widdowson. In their paper about the
file server design, they compare the
Spiralog implementation of the LFS
technology with others and describe
the novel combination of the technol­
ogy with a B-tree mapping mechanism
to provide the system with needed
data recovery guarantees.

A third paper about Spiralog,
written by Russ Green, Alasdair
Baird, and Chris Davies, addresses
a critical customer requirement­
fast, application-consistent, on-line

Digital Technical Journal

backup. Exploiting the features of
log-structured storage, designers
were able to combine the flexibility
of file-based backup and the high
performance of physically oriented
backup. Consistent copies of the file
system are created while applications
modify data.

The Spiralog integration into the
Open VMS file system required that
existing applications be able to run
unchanged. Mark Howell and Julian
Palmer describe the integration of the
write-back caching used in Spiralog
into the write-through environment
used in the existing Files-11 file system.

The importance of compatibility
for existing 32-bit applications in
a 64-bit environment js stressed
again in the set of three papers about
the latest step in the evolution of the
Open VMS operating system. Digital
first ported the 32-bit Open VMS
operating system to the Alpha archi­
tecture in 1992. The extension of
the system to exploit 64-bit virtual
addressing is presented by Mike
Harvey and Lenny Szubowicz.
Their discussion includes the team's
solution to significant scaling issues
that involved a new approach to
page-table residency.

The Open VMS team anticipated
that applications would mix 32- and
64-bit addresses, or pointers, in the
new environment. Tom Benson,
Karen Noel, and Rich Peterson
explain why this mixing of pointer
sizes is expected and the DEC C
compiler solution they developed to
support the practice. In a related dis­
cussion, Duane Smith's paper reviews
new techniques the team used to
analyze and modify the C run-time
library interfaces that accommodate

Vol. 8 No. 2 1996

applications using 32-bit, 64-bit, or
both address sizes.

Designed for scientific users,
the parallel-programming tool
next described does not run on the
Open VMS Alpha system but instead
on UNIX clusters connected with
MEMORY CHANNEL technology.
Jim Lawton, John Brosnan, Morgan
Doyle, Seosamh 6 Riordain, and
Tim Reddin review the challenges in
designing the TruCluster MEMORY
CHANNEL Software product, which
is a message-passing system intended
for builders of parallel software
libraries and implementers of parallel
compilers. The product reduces
communications latency to less than
10 µs in shared memory systems.

Finally, Bernie Rozmovits presents
the design of user interfaces for the
Digital Speech Recognition Software
(DSRS) product. Although DSRS
is targeted for Digital's Alpha work­
stations running UNIX, the imple­
mentation issues examined and the
team's efforts to ensure the prod­
uct's ease-of-use can be generally
applied to speech recognition prod­
uct development.

Coming up are papers on a variety
of topics, including the internet
protocol, collaborative software for
the internet, and high-performance
servers. These topics reflect areas of
interestjournal readers rated near
the top in last spring's survey. Our
sincere thanks go to everyone who
responded to that survey.

Jane C. Blake
Managing Editor

Foreword

Rich Marcello
Vice President, Open vMS Systems
Software Group

The papers you will read in this issue
of the Journal describe how we in the
Open VMS engineering community
set out to bring the Open VMS oper­
ating system and our loyal customer
base into the twenty-first century.
The papers present both the develop­
ment issues and the technical chal­
lenges faced by the engineers who
delivered the Open VMS operating
system version 7.0 and the Spiralog
file system, a new log-structured file
system for Open VMS.

We are extremely proud of the
results of these efforts. In December
1995 at U.S. Fall DECUS (Digital
Equipment Computer Users Society),
Digital announced Open VMS version
7.0 and the Spiralog file system as part
of a first wave of product deliveries for
the Open VMS Windows NT Affinity
Program. Open VMS version 7.0 pro­
vides the "unlimited high end" on
which our customers can build their
distributed computing environments
and move toward the next millennium.

The release of Open VMS version
7 .0 in January ofthis year represents
the most significant engineering
enhancement to the Open VMS oper­
ating system since Digital released
the VAXcluster system in 1983.
Open VMS version 7.0 extends the
32-bit architecture of Open VMS
to a 64-bit architecture, allowing
Open VMS Alpha users to fully exploit
the 64-bit virtual address capacity of
the Alpha architecture. As you will
read in some of the papers in this
issue, however, our design goal for
Open VMS version 7.0 went beyond
just delivering 64-bit virtual address
capability to Open VMS users. It was

essential to us that Open VMS users
be able to upgrade to version 7.0
with full compatibility for their exist­
ing 32-bit applications.

In addition to achieving the sig­
nificant goals of 64-bit addressing
and compatibility for 32-bit applica­
tions, version 7.0 includes very large
memory (VLM), very large database
(VLDB), fast I/0, fast path, and
symmetric multiprocessing (SMP)
enhancements. These new features
recently combined with the power
of the Alpha architecture to earn
Open VMS a world record for perform­
ance. In May of this year, Open VMS
version 7.0 on an AlphaServer 8400
system configured with eight pro­
cessors and 8 gigabytes of memory,
running Oracle's Rdb7 database
and using the ACMS transaction
processing monitor, set a new world
record for TPC-C performance on
a single SMP system. Audited per­
formance was 14,227 tpmC at $269
per tpm C. Just this past August, the
combination of Open VMS version
7.0, Oracle's Rdb7 database, the
ACMS monitor, and the AlphaServer
4100 system achieved world-record
departmental server performance.
The new world record was set on
an AlphaServer 4100 5 / 400 system
configured with four processors and
4 gigabytes of memory. In audited
benchmarks, the performance results
were 7,985 tpmC at $173 per tpmC.

Such outstanding results are achiev­
able in a full 64-bit environment­
hardware architecture, operating
systems, and applications such as
Oracle's Rdb database. No other
vendor today can deliver this power.

Digital Technical Journal Vol. 8 No. 2 1996 3

4

In fact, Digital has two 64-bit oper­
ating systems with this power: the
Open VMS and the Digital UNIX
operating systems.

As noted above, Digital introduced
the Open VMS operating system with
support for full 64-bit virtual address­
ing at the same time it introduced the
Spiralog file system, in December
199 5. The Spiralog design is based
on the Sprite log-structured file sys­
tem from the University of California,
Berkeley. With its use of this log­
structured approach, Spiralog offers
major new performance features,
including fast, application-consistent,
on-line backup. Further, it is fully
compatible with customers' existing
Files-11 file systems, and applications
that run on Files-11 will run on
Spiralog with no modification. To
deliver all of the features we felt were
essential to meet the needs of our
loyal customer base, the Spiralog team
examined and resolved a number of
technical issues. The papers in this
issue describe some of the challenges
they faced, including the decision to
design a Files-11 file system emulation.

The delivery of the Open VMS
version 7.0 operating system and
the Spiralog file system are part of
Digital's continued commitment to
the Open VMS customer base. These
products represent the work of dedi­
cated, talented engineering teams
that have deployed state-of-the-art
technology in products that will help
our customers remain competitive
for years to come.

In the Open VMS group as else­
where in Digital, we are committed
to excellence in the development and

Digital Technical Journal

delivery of business computing solu­
tions. We will continue to maintain
and enhance a product portfolio that
meets our customers' need for true
24-hour by 365-day access to their
data, full integration with Microsoft
Windows NT environments, and the
full complement of network solutions
and application software for today
and well into the next millennium.

Vol. 8 No. 2 1996

Overview of the Spiralog
File System

The Open VMS Alpha environment requires a

file system that supports its full 64-bit capabili­

ties. The Spiralog file system was developed to

increase the capabilities of Digital's Files-11 file

system for OpenVMS. It incorporates ideas from

a log-structured file system and an ordered write­

back model. The Spiralog file system provides

improvements in data availability, scaling of the

amount of storage easily managed, support for

very large volume sizes, support for applications

that are either write-operation or file-system­

operation intensive, and support for heteroge­

neous file system client types. The Spiralog

technology, which matches or exceeds the relia­

bility and device independence of the Files-11

system, was then integrated into the OpenVMS

operating system.

I
James E. Johnson
William A. Laing

Digital's Spiralog product is a log-structured, cluster­
wide file system with integrated, on-line backup and
restore capability and support for multiple file sys­
tem personalities. It incorporates a number of recent
ideas from the research community, including the
log-structured file system (LFS) from the Sprite file
system and the ordered write back from the Echo
file system.1

•
2

The Spiralog file system is fully integrated into the
Open VMS operating system, providing compatibility
with the current Open VMS file system, Files-I 1. It
supports a coherent, clusterwide write-behind cache
and provides high-performance, on-line backup and
per-file and per-volume restore functions.

In this paper, we first discuss the evolution of file
systems and the requirements for many of the basic
designs in the Spiralog file system. Next we describe
the overall architecture of the Spiralog file system,
identifying its major components and outlining their
designs. Then we discuss the project's results: what
worked well and what did not work so well. Finally, we
present some conclusions and ideas for future work.

Some of the major components, i.e., the backup
and restore facility, the LFS server, and Open VMS
integration, are described in greater detail in compan­
ion papers in this issue.3-5

The Evolution of File Systems

File systems have existed throughout much of the his­
tory of computing. The need for libraries or services
that help to manage the collection of data on long­
term storage devices was recognized many years ago.
The early support libraries have evolved into the file
systems of today. During their evolution, they have
responded to the industry's improved hardware capa­
bilities and to users' increased expectations. Hardware
has continued to decrease in price and improve in its
price/performance ratio. Consequently, ever larger
amounts of data are stored and manipulated by users
in ever more sophisticated ways. As more and more
data are stored on-line, the need to access that data 24
hours a day, 365 days a year has also escalated.

Digital Technical Journal Vol. 8 No. 2 1996 5

6

Significant improvements to file systems have been
made in the following areas:

• Directory structures to ease locating data

• Device independence of data access through the file
system

• Accessibility of the data to users on other systems

• Availability of the data, despite either planned or
unplanned service outages

• Reliability of the stored data and the performance
of the data access

Requirements of the Open VMS File System

Since 1977, the OpenVMS operating system has
offered a stable, robust file system known as Files-11.
This file system is considered to be very successful in
the areas of reliability and device independence.
Recent customer feedback, however, indicated that
the areas of data availability, scaling of the amount of
storage easily managed, support for very large volume
sizes, and support for heterogeneous file system client
types were in need ofimprovement.

The Spiralog project was initiated in response to
customers' needs. We designed the Spiralog file system
to match or somewhat exceed the Files-11 system in
its reliability and device independence. The focus of
the Spiralog project was on those areas that were due
for improvement, notably:

• Data availability, especially during planned opera­
tions, such as backup.

If the storage device needs to be taken off-line
to perform a backup, even at a very high backup
rate of 20 megabytes per second (MB/s), almost
14 hours are needed to back up 1 terabyte. This
length of service outage is clearly unacceptable.
More typical backup rates of 1 to 2 MB/scan take
several days, which, of course, is not acceptable.

• Greatly increased scaling in total amount of on-line
storage, without greatly increasing the cost to man­
age that storage.

For example, 1 terabyte of disk storage currently
costs approximately $250,000, which is well within
the budget of many large computing centers.
However, the cost in staff and time to manage such
amounts of storage can be many times that of the
storage.6 The cost of storage continues to fall, while
the cost of managing it continues to rise.

• Effective scaling as more processing and storage
resources become available.

For example, Open VMS Cluster systems allow pro­
cessing power and storage capacity to be added
incrementally. It is crucial that the software support-

Digital Technical Journal Vol. 8 No. 2 1996

ing the file system scale as the processing power,
bandwidth to storage, and storage capacity increase.

• Improved performance for applications that are
either write-operation or file-system-operation
intensive.

As file system caches in main memory have
increased in capacity, data reads and file system read
operations have become satisfied more and more
from the cache. At the same time, many applica­
tions write large amounts of data or create and
manipulate large numbers of files. The use of
redundant arrays of inexpensive disks (RAID) stor­
age has increased the available bandwidth for data
writes and file system writes. Most file system oper­
ations, on the other hand, are small writes and are
spread across the disk at random, often negating
the benefits of RAID storage.

• Improved ability to transparently access the stored
data across several dissimilar client types.

Computing environments have become increas­
ingly heterogeneous. Different client systems, such
as the Windows or the UNIX operating system,
store their files on and share their files with server
systems such as the OpenVMS server. It has
become necessary to support the syntax and seman­
tics of several different file system personalities on
a common file server.

These needs were central to many design decisions we
made for the Spiralog file system.

The members of the Spiralog project evaluated
much of the ongoing work in file systems, databases,
and storage architectures. RAID storage makes high
bandwidth available to disk storage, but it requires
large writes to be effective. Databases have exploited
logs and the grouping of writes together to minimize
the number of disk I/Os and disk seeks required.
Databases and transaction systems have also exploited
the technique of copying the tail of the log to effect
backups or data replication. The Sprite project at
Berkeley had brought together a log-structured file
system and RAID storage to good effect. 1

By drawing from the above ideas, particularly the
insight of how a log structure could support on-line,
high-performance backup, we began our development
effort. We designed and built a distributed file system
that made extensive use of the processor and memory
near the application and used log-structured storage in
the server.

Spiralog File System Design

The main execution stack of the Spiralog file system
consists of three distinct layers. Figure 1 shows the
overall structure. At the top, nearest the user, is the file

F64 FSLIB l FILE
...,._~~__~~~ SYSTEM

VPI SERVICES CLIENT

BACKUP USER
INTERFACE

NODE A NODE B

USER APPLICATION USER APPLICATION

SPIRALOG CLERK SPIRALOG CLERK

CLERK ETHERNET

LFS SERVER BACKUP ENGINE

Figure 1
Spiralog Structure Overview

system client layer. It consists of a number of file
system personalities and the underlying personality­
independent services, which we call the VPI.

Two file system personalities dominate the Spiralog
design. The F64 personality is an emulation of the
Files-11 file system. The file system library (FSLIB)
personality is an implementation of Microsoft's New
Technology Advanced Server (NTAS) file services for
use by the PATHWORKS for Open VMS file server.

The next layer, present on all systems, is the clerk
layer. It supports a distributed cache and ordered write
back to the LFS server, giving single-system semantics
in a cluster configuration.

The LFS server, the third layer, is present on all des­
ignated server systems. This component is responsible
for maintaining the on-disk log structure; it includes
the cleaner, and it is accessed by multiple clerks. Disks
can be connected to more than one LFS server, but
they are served only by one LFS server at a time. Trans­
parent fail over, from the point of view of the file sys­
tem client layer, is achieved by cooperation between
the clerks and the surviving LFS servers.

The backup engine is present on a system with an
active LFS server. It uses the LFS server to access the
on-disk data, and it interfaces to the clerk to ensure
that the backup or restore operations are consistent
with the clerk's cache.

Figure 2 shows a typical Spiralog cluster configura­
tion. In this cluster, the clerks on nodes A and B are
accessing the Spiralog volumes. Normally, they use the
LFS server on node C to access their data. If node C
should fail, the LFS server on node D would immedi­
ately provide access to the volumes. The clerks on
nodes A and B would use the LFS server on node D,
retrying all their outstanding operations. Neither user
application would detect any failure. Once node C had
recovered, it would become the standby LFS server.

ACTIVE LFS SERVER STANDBY LFS SERVER

NODEC NODED

SPIRALOG VOLUMES

Figure 2
Spiralog Cluster Configuration

File System Client Design
The file system client is responsible for the traditional
file system functions. This layer provides files, directo­
ries, access arbitration, and file naming rules. It also
provides the services that the user calls to access the file
system.

VPI Services Layer The VPI layer provides an underly­
ing primitive file system interface, based on the UNIX
VFS switch. The VPI layer has two overall goals:

1. To support multiple file system personalities

2. To effectively scale to very large volumes of data
and very large numbers of files

To meet the first goal, the VPI layer provides

• File names of 256 Unicode characters, with no
reserved characters

• No restriction on directory depth

• Up to 255 sparse data streams per file, each with
64-bit addressing

• Attributes with 255 Unicode character names, con­
taining values of up to 1,024 bytes

• Files and directories that are freely shared among
file system personality modules

To meet the second goal, the VPI layer provides

• File identifiers stored as 64-bit integers

• Directories through a B-tree, rather than a simple
linear structure, for log(n) file name lookup time

The VPI layer is only a base for file system personali­
ties. Therefore it requires that such personalities are
trusted components of the operating system.
Moreover, it requires them to implement file access
security (although there is a convention for storing
access control list information) and to perform all nec­
essary cleanup when a process or image terminates.

Digital Technical Journal Vol. 8 No. 2 1996 7

8

F64 File System Personality As previously stated, the
Spiralog product includes two file system personalities,
F64 and FSLIB. The F64 personality provides a service
that emulates the Files-11 file system.5 Its functions,
services, available file attributes, and execution
behaviors are similar to those in the Files-11 file sys­
tem. Minor differences are isolated into areas that
receive little use from most applications.

For instance, the Spiralog file system supports the
various Files-11 queued 1/0 ($QIO) parameters for
returning file attribute information, because they are
used implicitly or explicitly by most user applications.
On the other hand, the Files-11 method of reading
the file header information directly through a file
called INDEXF.SYS is not commonly used by applica­
tions and is not supported.

The F64 file system personality demonstrates that
the VPI layer contains sufficient flexibility to support
a complex file system interface. In a number of cases,
however, several VPI calls are needed to implement
a single, complex Files-11 operation. For instance, to
do a file open operation, the F64 personality performs
the tasks listed below. The items that end with (VPI)
are tasks that use VPI service calls to complete.

• Access the file's parent directory (VPI)

• Read the directory's file attributes (VPI)

• Verify authorization to read the directory

• Loop, searching for the file name, by
- Reading some directory entries (VPI)
- Searching the directory buffer for the file name
- Exiting the loop, if the match is found

• Access the target file (VPI)

• Read the file's attributes (VPI)

• Audit the file open attempt

FSLIB File System Personality The FSLIB file system
personality is a specialized file system to support the
PATHWORKS for Open VMS file server. Its two major
goals are to support the file names, attributes, and
behaviors found in Microsoft's NTAS file access proto­
cols, and to provide low run-time cost for processing
NTAS file system requests.

The PATHWORKS server implements a file service
for personal computer (PC) clients layered on top of
the Files-11 file system services. When NTAS service
behaviors or attributes do not match those ofFiles-11,
the PATHWORKS server has to emulate them. This
can lead to checking security access permissions twice,
mapping file names, and emulating file attributes.

Many of these problems can be avoided if the VPI
interface is used directly. For instance, because the
FSLIB personality does not layer on top of a Files-11
personality, security access checks do not need to be
performed twice. Furthermore, in a straightforward
design, there is no need to map across different file

Digital Technical Journal Vol. 8 No. 2 1996

naming or attribute rules. For reasons we describe
later, in the VPI Results section, we chose not to pur­
sue this design to its conclusion.

Clerk Design
The clerks are responsible for managing the caches,
determining the order of writes out of the cache to the
LFS server, and maintaining cache coherency within
a cluster. The caches are write behind in a manner that
preserves the order of dependent operations.

The clerk-server protocol controls the transfer of
data to and from stable storage. Data can be sent as
a multiblock atomic write, and operations that change
multiple data items such as a file rename can be made
atomically. If a server fails during a request, the clerk
treats the request as if it were lost and retries the
request.

The clerk-server protocol is idempotent. Idem­
potent operations can be applied repeatedly with no
effects other than the desired one. Thus, after any
number of server failures or server failovers, it is always
safe to reissue an operation. Clerk-to-server write
operations always leave the file system state consistent.

The clerk-clerk protocol protects the user data and
file system metadata cached by the clerks. Cache
coherency information, rather than data, is passed
directly between clerks.

The file system caches are kept in the clerks. Mul­
tiple clerks can have copies of stabilized data, i.e., data
that has been written to the server with the write
acknowledged. Only one clerk can have unstabilized,
volatile data. Data is exchanged between clerks by
stabilizing it. When a clerk needs to write a block of
data to the server from its cache, it uses a token inter­
face that is layered on the clerk-clerk protocol.

The writes from the cache to the server are deferred
as long as possible within the constraints of the cache
protocol and the dependency guarantees.

Dirty data remains in the cache as long as 30 sec­
onds. During that time, overwrites are combined
within the constraints of the dependency guarantees.
Furthermore, operations that are known to offset one
another, such as freeing a file identifier and allocating
a file identifier, are fully combined within the cache.

Eventually, some trigger causes the dirty data to be
written to the server. At this point, several writes are
grouped together. Write operations to adjacent, or
overlapping, file locations are combined to form
a smaller number oflarger writes. The resulting write
operations are then grouped into messages to the
LFS server.

The clerks perform write behind for four reasons:

• To spread the 1/0 load over time

• To remove occluded data, which can result from
repeated overwrites of a data block, from being
transferred to the server

• To avoid writing data that is quickly deleted such as
temporary files

• To combine multiple small writes into larger transfers

The clerks order dependent writes from the cache
to the server; consequently, other clerks never see
"impossible" states, and related writes never overtake
each other. For instance, the deletion of a file cannot
happen before a rename that was previously issued to

the same file. Related data writes are caused by a partial
overwrite, or an explicit linking of operations passed
into the clerk by the VPI layer, or an implicit linking
due to the clerk-clerk coherency protocol.

The ordering between writes is kept as a directed
graph. As the clerks traverse these graphs, they issue
the writes in order or collapse the graph when writes
can be safely combined or eliminated.

LFS Server Design
The Spiralog file system uses a log-structured, on-disk
format for storing data within a volume, yet presents
a traditional, update-in-place file system to its users.

! USER I/Os

FILE HEADER FILE VIRTUAL BLOCKS

NAMED CELL

I I I I I I I I I I
DJ

Figure 3
Spiralog Address Mapping

Recently, log-structured file systems, such as Sprite,
have been an area of active research.1

Within the LFS server, support is provided for the
log-structured, on-disk format and for mapping that
format to an update-in-place model. Specifically, this
component is responsible for

• Mapping the incoming read and write operations
from their simple address space to positions in an
open-ended log

• Mapping the open-ended log onto a finite amount
of disk space

• Reclaiming disk space by cleaning (garbage collect­
ing) the obsolete (overwritten) sections of the log

Figure 3 shows the various mapping layers in the
Spiralog file system, including those handled by the
LFS server.

Incoming read and write operations are based on a
single, large address space. Initially, the LFS server trans­
forms the address ranges in the incoming operations
into equivalent address ranges in an open-ended log.
This log supports a very large, write-once address space.

LOG GROWS

DISK

D igital Technical To uma!

FILE SYSTEM ADDRESS
SPACE

J
VPI
CLERK

FILE ADDRESS SPACE

J
LFS
B-TREE

LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

PHYSICAL ADDRESS
SPACE

Vol. 8 No. 2 1996 9

A read operation looks up its location in the open­
ended log and proceeds. On the other hand, a write
operation makes obsolete its current address range
and appends its new value to the tail of the log.

In turn, locations in the open-ended log are then
mapped into locations on the (finite-sized) disk. This
additional mapping allows disk blocks to be reused
once their original contents have become obsolete.

Physically, the log is divided into log segments, each
of which is 256 kilobytes (KB) in length. The log seg­
ment is used as the transfer unit for the backup engine.
It is also used by the cleaner for reclaiming obsolete
log space.

More information about the LFS server can be
found in this issue.4

On-line Backup Design
The design goals for the backup engine arose from
higher storage management costs and greater data avail­
ability needs. Investigations with a number of customers
revealed their requirements for a backup engine:

• Consistent save operations without stopping any
applications or locking out data modifications

• Very fast save operations

• Both full and incremental save operations

• Restores of a full volume and of individual files

Our response to these needs influenced many deci­
sions concerning the Spiralog file system design. The
need for a high-performance, on-line backup led to
a search for an on-disk structure that could support
it. Again, we chose the log-structured design as the
most suitable one.

A log-structured organization allows the backup
facility to easily demarcate snapshots of the file system
at any point in time, simply by marking a point in the
log. Such a mark represents a version of the file system
and prevents disk blocks that compose that version
from being cleaned. In turn, this allows the backup to
run against a low level of the file system, that of the
logical log, and therefore to operate close to the spiral
transfer rate of the underlying disk.

The difference between a partial, or incremental,
and a full save operation is only the starting point in
the log. An incremental save need not copy data back
to the beginning of the log. Therefore, both incre­
mental and full save operations transfer data at very
high speed.

By implementing these features in the Spiralog file
system, we fulfilled our customers' requirements for
high-performance, on-line backup save operations.
We also met their needs for per-file and per-volume
restores and an ongoing need for simplicity and reduc­
tion in operating costs.

10 Digital Technical Journal Vol. 8 No. 2 1996

To provide per-file restore capabilities, the backup
utility and the LFS server ensure that the appropriate
file header information is stored during the save oper­
ation. The saved file system data, including file head­
ers, log mapping information, and user data, are
stored in a file known as a saveset. Each · saveset,
regardless of the number of tapes it requires, repre­
sents a single save operation.

To reduce the complexity of file restore operations,
the Spiralog file system provides an off-line saveset
merge feature. This allows the system manager to
merge several savesets, either full or incremental, to
form a new, single saveset. With this feature, system
managers can have a workable backup save plan that
never calls for an on-line full backup, thus further
reducing the load on their production systems. Also,
this feature can be used to ensure that file restore oper­
ations can be accomplished with a small, bounded set
of savesets.

The Spiralog backup facility is described in detail in
this issue.3

Project Results

The Spiralog file system contains a number of innova­
tions in the areas of on-line backup, log-structured
storage, clusterwide ordered write-behind caching,
and multiple-file-system client support.

The use of log structuring as an on-disk format is
very effective in supporting high-performance, on-line
backup. The Spiralog file system retains the previously
documented benefits ofLFS, such as fast write perfor­
mance that scales with the disk size and throughput
that increases as large read caches are used to offset
disk reads. 1

It should also be noted that the Files-11 file system
sets a high standard for data reliability and robustness.
The Spiralog technology met this challenge very well:
as a result of the idempotent protocol, the cluster
failover design, and the recover capability of the log,
we encountered few data reliability problems during
development.

In any large, complex project, many technical deci­
sions are necessary to convert research technology
into a product. In this section, we discuss why certain
decisions were made during the development of the
Spiralog subsystems.

VP/Results
The VPI file system was generally successful in pro­
viding the underlying support necessary for different
file system personalities. We found that it was possi­
ble to construct a set of primitive operations that
could be used to build complex, user-level, file system
operations.

By using these pnnutives, the Spiralog project
members were able to successfully design two dis­
tinctly different personality modules. Neither was a
functional superset of the other, and neither was lay­
ered on top of the other. However, there was an
important second-order problem.

The FSLIB file system personality did not have a full
mapping to the Files-11 file system. As a consequence,
file management was rather difficult, because all the
data management tools on the OpenVMS operating
system assumed compliance with a Files-I 1, rather
than a VPI, file system.

This problem led to the decision not to proceed
with the original design for the FSLIB personality in
version 1.0 of Spiralog. Instead, we developed an
FSLIB file system personality that was fully compatible
with the F64 personality, even when that compatibility
forced us to accept an additional execution cost.

We also found an execution cost to the primitive
VPI operations. Generally, there was little overhead
for data read and write operations. However, for
operations such as opening a file, searching for a file
name, and deleting a file, we found too high an over­
head from the number of calls into the VPI services
and the resulting calls into the cache manager. We
called this the "fan-out" problem: one high-level
operation would turn into several VPI operations, each
of which would turn into several cache manager calls.
Table 1 gives the details of the fan-out problem.

We believe that it would be worthwhile to provide
slightly more complex VPI services in order to com­
bine calls that always appear in the same sequence.

Table 1
Call Fan-out by Level

Revised
F64 VPI Clerk Clerk

Operation Calls Calls Calls Calls

Create f ile 4 18 29 24
Open file 1 6 18 14
Read block 1 1 3 3
Write block 2 4 7 6
Close file 1 4 13 10

Clerk Results

The clerk met a number of our design goals. First, the
use of idempotent operations allowed fai1over to
standby LFS servers to occur with no loss of service to
the file system clients, and with little additional com -
plexity within the clerk.

Second, the ordered write behind proved to be
effective at ordering dependent, metadata file system

operations, thus supporting the ability to construct
complex file system operations out of simpler elements.

Third, the clerk was able to manage large physical
caches. It is very effective at making use of unused
pages when the memory demand from the Open VMS
operating system is low, and at quickly shrinking the
cache when memory demands increase. Although
certain parameters can be used to limit the size of a
clerk's cache, the caches are normally self-tuning.

Fourth, the clerks reduce the number of operations
and messages sent to the LFS server, with a subsequent
reduction to the number of messages and operations
waiting to be processed. For the COPY command, the
number of operations sent to the server was typically
reduced by a factor of 3. By using transient files with
lifetimes of fewer than 30 seconds, we saw a reduction
of operations by a factor of 100 or more, as long as the
temporary file fit into the clerk's cache.

In general, the code complexity and CPU path
length within the clerk were greater than we had origi­
nally planned, and they will need further work. Two
aspects of the services offered by the clerk com -
pounded the cost in CPU path length. First, the clerk
has a simple interface that supports reads and writes
into a single, large address space only. This interface
requires a number of clerk operations for a number of
the VPI calls, further expanding the call fan-out issues.
Second, a concurrency control model allows the clerk
to unilaterally drop locks. This requires the VPI layer
to revalidate its internal state with each call.

Either a change to the clerk and VPI service inter­
faces to support notification oflock invalidation, or a
change to the concurrency control model to disallow
locks that could be unilaterally invalidated, would
reduce the number of calls made. We believe such
changes would produce the results given in the last
column of Table 1.

LFS Server Results

The LFS server provides a highly available, robust file
system server. Under heavy write loads, it provides the
ability to group together multiple requests and reduce
the number of disk I/Os. In a cluster configuration,
it supports failover to a standby server.

In normal operation, the cleaner was successful in
minimizing overhead, typically adding only a few per­
cent to the elapsed time. The cleaner operated in a lazy
manner, cleaning only when there was an immediate
shortage of space. The cleaner operations were further
lessened by the tendency for normal file overwrites to
free up recently filled log segments for reuse.

Although this produced a cleaner that operated
with little overhead, it also brought about two unusual
interactions with the backup facility. In the first place,
the log often contains a number of obsolete areas that

Digital Technical Journal Vol. 8 No. 2 1996 11

are eligible for cleaning but have not yet been
processed. These obsolete areas are also saved by the
backup engine. Although they have no effect on the
logical state of the log, they do require the backup
engine to move more data to backup storage than
might otherwise be necessary.

Second, the design initially prohibited the cleaner
from running against a log with snapshots. Conse­
quently, the cleaner was disabled during a save opera­
tion, which had the following effects: (1) The amount
of available free space in the log was artificially
depressed during a backup. (2) Once the backup was
finished, the activated cleaner would discover that
a great number oflog segments were now eligible for
cleaning. As a result, the cleaner underwent a sudden
surge in cleaning activity soon after the backup had
completed.

We addressed this problem by reducing the area of
the log that was off-limits to the cleaner to only the
part that the backup engine would read. This limited
snapshot window allowed more segments to remain
eligible for cleaning, thus greatly alleviating the short­
age of cleanable space during the backup and eliminat­
ing the postbackup cleaning surge. For an 8-gigabyte
time-sharing volume, this change typically reduced the
period of high cleaner activity from 40 seconds to less
than one-half of a second.

We have not yet experimented with different cleaner
algorithms. More work needs to be done in this area
to see if the cleaning efficiency, cost, and interactions
with backup can be improved.

The current mapping transformation from the
incoming operation address space to locations in the
open-ended log is more expensive in CPU time than
we would like. More work is needed to optimize the
code path.

Finally, the LFS server is generally successful at pro­
viding the appearance of a traditional, update-in-place
file system. However, as the unused space in a volume
nears zero, the ability to behave with semantics that
meet users' expectations in a log-structured file system
proved more difficult than we had anticipated and
required significant effort to correct.

The LFS server is described in much more detail in
this issue.•

Table 2

Backup Performance Results
We took a new approach to the backup design in the
Spiralog system, resulting in a very fast and very low
impact backup that can be used to create consistent
copies of the file system while applications are actively
modifying data. We achieved this degree of success
without compromising such functionality as incre­
mental backup or fast, selective restore.

The performance improvements of the Spiralog
save operation are particularly noticeable with the
large numbers of transient or active files that are typi­
cally found on user volumes or on mail server volumes.
In the following tables, we compare the Spiralog
and the file-based Files-11 backup operations on a
DEC 3000 Model 500 workstation with a 260-MB
volume, containing 21,682 files in 401 directories and
a TZ877 tape.

Table 2 gives the results of two save operations,
which are the average of five operations. Although its
saveset size is somewhat larger, the Spiralog save
operation completes nearly twice as fast as the Files-11
save operation.

Table 3 gives the results from restoring a single file
to the target volume. In this case, the Spiralog file
restore operation executes more than three times as
fast as the Files-11 system.

The performance advantage of the Spiralog backup
and restore facility increases further for large, multi­
tape savesets. In these cases, the Spiralog system is able
to omit tapes that are not needed for the file restore;
the Files-11 system does not have this capability.

Observations and Conclusions

Overall, we believe that the significant innovation and
real success of the Spiralog project was the integration
of high-performance, on-line backup with the log­
structured file system model. The Spiralog file system
delivers an on-line backup engine that can run near
device speeds, with li ttle impact on concurrently run­
ning applications. Many file operations are signifi­
cantly faster in elapsed time as a result of the reduction
in I/Os due to the cache and the grouping of write
operations. Although the code paths for a number
of operations are longer than we had planned, their

Performance Comparison of the Backup Save Operation

File System

Spira log
Files-11

12 Digital Technical Journal

Elapsed Time
(Minutes:Seconds)

05:20
10:14

Vol. 8 No. 2 1996

Saveset Size (MB)

339
297

Throughput (MB/s)

1.05
0.48

Table 3
Performance Comparison of the Individual File
Restore Operation

Elapsed Time
File System (Minutes:Seconds)

Spiralog
Files-11

01:06
03:35

length is mitigated by continuing improvements in
processor performance.

We learned a great deal during the Spiralog project
and made the following observations:

• Volume full semantics and fine-tuning the cleaner
were more complex than we anticipated and will
require future refinement.

• A heavily layered architecture extends the CPU
path length and the fan-out of procedure calls. We
focused too much attention on reducing I/Os and
not enough attention on reducing the resource
usage of some critical code paths.

• Although elegant, the memory abstraction for the
interface to the cache was not as good a fit to file
system operations as we had expected. Further­
more, a block abstraction for the data space would
have been more suitable.

In summary, the project team delivered a new
file system for the OpenVMS operating system. The
Spiralog file system offers single-system semantics in
a cluster, is compatible with the current OpenVMS
file system, and supports on-line backup.

Future Work

During the Spiralog version 1.0 project, we pursued a
number of new technologies and found four areas that
warrant future work:

• Support is needed from storage and file­
management tools for multiple, dissimilar file
system personalities.

• The cleaner represents another area of ongoing
innovation and complex dynamics. We believe a
better understanding of these dynamics is needed,
and design alternatives should be studied.

• The on-line backup engine, coupled with the log­
structured file system technology, offers many areas
for potential development. For instance, one area
for investigation is continuous backup operation,
either to a local backup device or to a remote
replica.

• Finally, we do not believe the higher-than-expected
code path length is intrinsic to the basic file system

design. We expect to be working on this resource
usage in the near future.

Acknowledgments

We would like to take this opportunity to thank the
many individuals who contributed to the Spiralog
project. Don Harbert and Rich Marcello, Open VMS
vice presidents, supported this work over the lifetime
of the project. Dan Doherty and Jack Fallon, the
Open VMS managers in Livingston, Scotland, had day­
to-day management responsibility. Cathy Foley kept
the project moving toward the goal of shipping. Janis
Horn and Clare Wells, the product managers who
helped us understand our customers' needs, were elo­
quent in explaining our project and goal to others.
Near the end of the project, Yehia Beyh and Paul
Mosteika gave us valuable testing support, without
which the product would certainly be less stable than it
is today. Finally, and not least, we would like to
acknowledge the members of the development team:
Alasdair Baird, Stuart Bayley, Rob Burke, Ian
Compton, Chris Davies, Stuart Deans, Alan Dewar,
Campbell Fraser, Russ Green, Peter Hancock, Steve
Hirst, Jim Hogg, Mark Howell, Mike Johnson,
Robert Landau, Douglas McLaggan, Rudi Martin,
Conor Morrison, Julian Palmer, Judy Parsons, Ian
Pattison, Alan Paxton, Nancy Phan, Kevin Porter,
Alan Potter, Russell Robles, Chris Whitaker, and Rod
Widdowson.

References

1. M. Rosenblum and J. Ousterhout, "The Design and
Implementation of a Log Structured File System," ACM
Transactions on Computer Systems, vol. 10, no. 1
(February 1992): 26-52.

2. T. Mann,A. Birrell,A. Hisgen, C. Jerian, and G. Swart,
"A Coherent Distributed File Cache with Directory
Write-behind," Digital Systems Research Center,
Research Report 103 (June 1993).

3. R. Green, A. Baird, and J. Davies, "Designing a Fast,
On-line Backup System for a Log-structured File Sys­
tem," Digital TechnicalJournal, vol. 8, no. 2 (1996,
this issue): 32-45.

4. C. Whitaker, J. Bayley, and R. Widdowson, "Design of the
Server for the Spiralog File System," Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 15-31.

5. M. Howell and J. Palmer, "Integrating the Spiralog
File System into the OpenVMS Operating System,"
Digital Technical Journal, vol. 8, no. 2 (1996, this
issue): 46-56.

6. R. Wrenn, "Why the Real Cost of Storage is More Than
$1/MB," presented at U.S. DECUS Symposium,
St. Louis, Mo., June 3-6, 1996.

Digital Technical Journal Vol. 8 No. 2 1996 13

14

Biographies

James E. Johnson
Jim Johnson, a consulting software engineer, has been
working for Digital since 1984. He was a member of the
Open VMS Engineering Group, where he contributed
in several areas, including RMS, transaction processing
services, the port of Open VMS to the Alpha architecture,
file systems, and system management. Jim recently joined
the Internet Software Business Unit and is working on
the application ofX.500 directory services. Jim holds two
patents on transaction commit protocol optimizations and
maintains a keen interest in this area.

William A. Laing
Bill Laing, a corporate consulting engineer, is the technical
director of the Internet Software Business Unit. Bill joined
Digital in 1981; he worked in the United States for five
years before transferring to Europe. During his career at
Digital, Bill has worked on VMS systems performance
analysis, VAXcluster design and development, operating
systems development, and transaction processing. He
was the technical director of Open VMS engineering, the
technical director for engineering in Europe, and most
recently was focusing on software in the Technology and
Architecture Group of the Computer Systems Division.
Prior to joining Digital, Bill held research and teaching
posts in operating systems at the University of Edinburgh,
where he worked on the EMAS operating system. He was
also part of the start-up of European Silicon Structures
(ES2), an ambitious pan-European company. He holds
undergraduate and postgraduate degrees in computer
science from the University of Edinburgh.

Digital Technical Journal Vol. 8 No. 2 1996

Design of the Server for
the Spiralog File System

The Spiralog file system uses a log-structured,

on-disk format inspired by the Sprite log­

structured file system (LFS) from the University

of California, Berkeley. Log-structured file sys­

tems promise a number of performance and

functional benefits over conventional, update­

in-place file systems, such as the Files-11 file

system developed for the OpenVMS operating

system or the FFS file system on the UNIX oper­

ating system. The Spiralog server combines log­

structured technology with more traditional

B-tree technology to provide a general server

abstraction. The B-tree mapping mechanism

uses write-ahead logging to give stability and

recoverability guarantees. By combining write­

ahead logging with a log-structured, on-disk

format, the Spiralog server merges file system

data and recovery log records into a single,

sequential write stream.

I
Christopher Whitaker
J. Stuart Bayley
Rod D. W. Widdowson

The goal of the Spiralog file system project team was
to produce a high-performance, highly available, and
robust file system with a high-performance, on-line
backup capability for the Open VMS Alpha operating
system. The server component of the Spiralog file sys­
tem is responsible for reading data from and writing
data to persistent storage. It must provide fast write
performance, scalability, and rapid recovery from sys­
tem failures. In addition, the server must allow an
on-line backup utility to copy a consistent snapshot of
the file system to another location, while allowing nor­
mal file system operations to continue in parallel.

In this paper, we describe the log-structured file sys­
tem (LFS) technology and its particular implementation
in the Spiralog file system. We also describe the novel
way in which the Spiralog server maps the log to pro­
vide a rich address space in which files and directories are
constructed. Finally, we review some of the opportuni­
ties and challenges presented by the design we chose.

Background

All file systems must trade off performance against
availability in different ways to provide the throughput
required during normal operations and to protect data
from corruption during system failures. Traditionally,
file systems fall into two categories, careful write and
check on recovery.

• Careful writing policies are designed to provide a
fail-safe mechanism for the file system structures in
the event of a system failure; however, they suffer
from the need to serialize several I/Os during file
system operations.

• Some file systems forego the need to serialize file
system updates. After a system failure, however,
they require a complete disk scan to reconstruct a
consistent file system. This requirement becomes
a problem as disk sizes increase.

Modern file systems such as Cedar, Episode,
Microsoft's New Technology File System (NTFS),
and Digital's POLYCENTER Advanced File System
use logging to overcome the problems inherent in
these two approaches.1

•
2 Logging file system metadata

removes the need to serialize I/Os and allows a simple

Digital Technical Journal Vol. 8 No. 2 1996 15

and bounded mechanism for reconstructing the file
system after a failure. Researchers at the University of
California, Berkeley, took this process one stage fur­
ther and treated the whole disk as a single, sequential
log where all file system modifications are appended to
the tail of the log. 3

Log-structured file system technology is particularly
appropriate to the Spiralog file system, because it is
designed as a clusterwide file system. The server must
support a large number of file system clerks, each of
which may be reading and writing data to the disk. The
clerks use large write-back caches to reduce the need to
read data from the server. The caches also allow the
clerks to buffer write requests destined for the server.
A log-structured design allows multiple concurrent
writes to be grouped together into large, sequential
I/Os to the disk. This 1/0 pattern reduces disk head
movement during writing and allows the size of the
writes to be matched to characteristics of the underlying
disk. This is particularly beneficial for storage devices
with redundant arrays of inexpensive disks (RAID):

The use of a log-structured, on-disk format greatly
simplifies the implementation of an on-line backup
capability. Here, the challenge is to provide a consis­
tent snapshot of the file system that can be copied to
the backup media while normal operations continue
to modify the file system. Because an LFS appends all
data to the tail of a log, all data writes within the log
are temporally ordered. A complete snapshot of the
file system corresponds to the contents of the sequen­
tial log up to the point in time that the snapshot was
created. By extension, an incremental backup corre­
sponds to the section of the sequential log created
since the last backup was taken. The Spiralog backup
utility uses these features to provide a fast, on-line, full
and incremental backup scheme.5

We have taken a number of features from the exist­
ing log-structured file system implementations, in par­
ticular, the idea of dividing the log into fixed-sized
segments as the basis for space allocation and clean­
ing.• Fundamentally, however, existing log-structured
file systems have been built by using the main body of
an existing file system and layering on top of an under­
lying, log-structured containerY This design has been
taken to the logical extreme with the implementation
of a log-structured disk.~ For the Spiralog file system,
we have chosen to use the sequential log capability
provided by the log-structured, on-disk format through­
out the file system. The Spiralog server combines log­
structured technology with more traditional B-tree
technology to provide a general server abstraction.
The B-tree mapping mechanism uses write-ahead log­
ging to give stability and recoverability guarantees.9 By
combining write-ahead logging with a log-structured
on-disk format, the Spiralog server merges file system
data and recovery log records into a single, sequential
write stream.

16 Digital Technical Journal Vol. 8 No. 2 1996

The Spiralog file system differs from existing log­
structured implementations in a number of other
important ways, in particular, the mechanisms that we
have chosen to use for the cleaner. In subsequent sec­
tions of this paper, we compare these differences with
existing implementations where appropriate.

Spiralog File System Server Architecture

The Spiralog file system employs a client-server archi­
tecture. Each node in the cluster that mounts a
Spiralog volume runs a file system clerk. The term
clerk is used in this paper to distinguish the client com­
ponent of the file system from clients of the file system
as a whole. Clerks implement all the file functions asso­
ciated with maintaining the file system state with the
exception of persistent storage of file system and user
data. This latter responsibility falls on the Spiralog
server. There is exactly one server for each volume,
which must run on a node that has a direct connection
to the disk containing the volume. This distribution of
function, where the majority of file system processing
takes place on the clerk, is similar to that of the Echo
file system.10 The reasons for choosing this architecture
are described in more detail in the paper "Overview of
the Spiralog File System," elsewhere in this issue. 11

Spiralog clerks build files and directories in a struc­
tured address space called the file address space. This
address space is internal to the file system and is only
loosely related to that perceived by clients of the file
system. The server provides an interface that allows
the clerks to persistently map to file space addresses.
Internally, the server uses a logically infinite log struc­
ture, built on top of a physical disk, to store the file
system data and the structures necessary to locate
the data. Figure 1 shows the relationship between the
clerks and the server and the relationships among
the major components within the server.

I CLERK 11 CLERK 11 CLERK I
r _ ~ _ ~ _ _ ~ ~L:_ A5:_0~~ ~A~E :-1
I SERVER

I MAPPING LAYER I
I I
I I
I CLEANER I

I I
I LOG DRIVER I
I I

L - - - -1 PHYSICAL LOCATION - - - - J

Ej
Figure 1
Server Architecture

The mapping layer is responsible for maintaining
the mapping between the file address space used by
the clerks to the address space of the log. The server
directly supports the file address space so that it can
make use of information about the relative perfor­
mance sensitivity of parts of the address space that is
implicit within its structure. Although this results in
the mapping layer being relatively complex, it reduces
the complexity of the clerks and aids performance.
The mapping layer is the primary point of contact with
the server. Here, read and write requests from clerks
are received and translated into operations on the log
address space.

The log driver (LD) creates the illusion of an infinite
log on top of the physical disk. The LD transforms read
and write requests from the mapping layer that are cast
in terms of a location in the log address space into read
and write requests to physical addresses on the underly­
ing disk. Hiding the implementation of the log from
the mapping layer allows the organization of the log to
be altered transparently to the mapping layer. For
example, parts of the log can be migrated to other
physical devices without involving the mapping layer.

! USER I/Os

FILE HEADER FILE VIRTUAL BLOCKS

NAMED CELL

I I I I I I I I I I
[I]

Figure 2
Address Translation

Although the log exported by the LD layer is con­
ceptually infinite, disks have a finite size. The cleaner
is responsible for garbage collecting or coalescing free
space within the log.

Figure 2 shows the relationship between the various
address spaces making up the Spiralog file system. In
the next three sections, we examine each of the com­
ponents of the server.

Mapping Layer

The mapping layer implements the mapping between
the file address space used by the file system clerks
and the log address space maintained by the LD.
It exports an interface to the clerks that they use to
read data from locations in the file address space,
to write new data to the file address space, and to spec­
ify which previously written data is no longer required.
The interface also allows clerks to group sets of depen­
dent writes into units that succeed or fail as if they
were a single write. In this section, we introduce the
file address space and describe the data structure used
to map it. Then we explain the method used to handle
clerk requests to modify the address space.

LOG GROWS

DISK

Digital Technical Journal

FILE SYSTEM ADDRESS
SPACE

IVPI
CLERK

FILE ADDRESS SPACE

J
LFS
B-TREE

LOG ADDRESS SPACE

LFS
LOG
DRIVER
LAYER

PHYSICAL ADDRESS
SPACE

Vol. 8 No. 2 1996 17

18

File Address Space

The file address space is a structured address space. At
its highest level it is divided into objects, each of which
has a numeric object identifier (OID). An object may
have any number of named cells associated with it and
up to 2 16

- l streams. A named cell may contain a vari­
able amount of data, but it is read and written as a sin­
gle unit. A stream is a sequence of bytes that are
addressed by their offset from the start of the stream,
up to a maximum of264

- l. Fundamentally, there are
two forms of addresses defined by the file address
space: Named addresses of the form

<OID, name>

specify an individual named cell within an object, and
numeric addresses of the form

<OID, stre am-id, stream-offset, Length>

specify a sequence of length contiguous bytes in an
individual stream belonging to an object.

The clerks use named cells and streams to build files
and directories. In the Spiralog file system version 1.0,
a file is represented by an object, a named cell contain­
ing its attributes, and a single stream that is used
to store the file's data. A directory is represented by
an object that contains a number of named cells.
Each named cell represents a link in that directory and
contains what a traditional file system refers to as a
directory entry. Figure 3 shows how data files and
directories are built from named cells and streams.

The mapping layer provides three principal opera­
tions for manipulating the file address space: read,
write, and clear. The read operation allows a clerk to
read the contents of a named cell, a contiguous range
of bytes from a stream, or all the named cells for a par­
ticular object that fall into a specified search range. The
write operation allows a clerk to write to a contiguous
range of bytes in a stream or an individual named cell.

DATA FILE

ATTRIBUTES

KEY:

O OBJECT

BYTE
STREAM

E3 BYTE STREAM

~ NAMEDCELL

Figure 3
File System

Digital Technical Journal

DIRECTORY

ATTRIBUTES

FRED.TXT

FRED.C

JIM.H

CHRIS.TXT

STU.C

Vol. 8 No. 2 1996

The clear operation allows a clerk to remove a named
cell or a number ofbytes from an object.

Mapping the File Address Space
We looked at a variety of indexing structures for mapping
the file address space onto the log address space.1

•
12 We

chose a derivative of the B-tree for the following reasons.
For a uniform address space, B-trees provide predictable
worst-case access times because the tree is balanced
across all the keys it maps. A B-tree scales well as the
number of keys mapped increases. In other words, as
more keys are added, the B-tree grows in width and in
depth. Deep B-trees carry an obvious performance
penalty, particularly when the B-tree grows too large to
be held in memory. As described above, directory entries,
file attributes, and file data are all addresses, or keys, in
the file address space. Treating these keys as equals and
balancing the mapping B-tree across all these keys intro­
duces the possibility that a single directory with many
entries, or a file with many extents, may have an impact
on the access times for all the files stored in the log.

To solve this problem, we limited the keys for an
object to a single B-tree leaf node. With this restric­
tion, several small files can be accommodated in a sin­
gle leaf node. Files with a large number of extents (or
large directories) are supported by allowing individual
streams to be spawned into subtrees. The subtrees are
balanced across the keys within the subtree. An object
can never span more than a single leaf node of the
main B-tree; therefore, nonleaf nodes of the main
B-tree only need to contain OIDs. This allows the
main B-tree to be very compact. Figure 4 shows the
relationship between the main B-tree and its subtrees.

010100
STREAM 1

MAIN B-TREE
LEAF NODE

r.=====;--;::::==:::::::::=:;-;::::::====:::;-, SUBTREE ROOT
NODE 010 100,

~~==~===F===-===F::!.J STREAM 1

Figure 4
Mapping B-tree Structure

To reduce the time required to open a file, data for
small extents and small named cells are stored directly in
the leaf node that maps them. For larger extents (greater
than one disk block in size in the current implementa­
tion), the data item is written into the log and a pointer
to it is stored in the node. This pointer is an address in
the log address space. Figure 5 illustrates how the B-tree
maps a small file and a file with several large extents.

Processing Read Requests
The clerks submit read requests that may be for a
sequence of bytes from a stream (reading a data from a
file), a single named cell (reading a file's attributes), or
a set of named cells (reading directory contents). To
fulfill a given read request, the server must consult the
B-tree to translate from the address in the file address
space supplied by the clerk to the position in the log
address space where the data is stored. The extents
making up a stream are created when the file data
is written. If an application writes 8 kilobytes (KB)
of data in 1-KB chunks, the B-tree would contain
8 extents, one for each 1-KB write. The server may
need to collect data from several different parts of the
log address space to fulfill a single read request.

Read requests share access to the B-tree in much
the same way as processes share access to the CPU of
a multiprocessing computer system. Read requests

KEY:

142.1.0.501

Figure 5
Mapping B-tree Detail

DATA IN LOG DATA IN LOG

B-TREE INDEX RECORD
MAPPING OID 35 ...

RECORD CONTAINING FILE
DATA: OID 42, STREAM 1,
START OFFSET 0, LENGTH 50

arriving from clerks are placed in a first in first out
(FIFO) work queue and are started in order of their
arrival. All operations on the B-tree are performed by
a single worker thread in each volume. This avoids
the need for heavyweight locking on individual
nodes in the B-tree, which significantly reduces the
complexity of the tree manipulation algorithms and
removes the potential for deadlocks on tree nodes.
This reduction in complexity comes at the cost of
the design not scaling with the number of processors
in a symmetric multiprocessing (SMP) system. So far
we have no evidence to show that this design deci­
sion represents a major performance limitation on
the server.

The worker thread takes a request from the head
of the work queue and traverses the B-tree until it
reaches a leaf node that maps the address range of
the read request. Upon reaching a leaf node, it may
discover that the node contains

• Records that map part or all of the address of the
read request to locations in the log, and/or

• Records that map part or all of the address of the
read request to data stored directly in the node,
and/or

• No records mapping part or all of the address of the
read request

,.,...
' , MAIN B-TREE

NODE A

DATA IN LOG

NODEC

SUBTREE FOR OID 35,
• •• _STREAM 1

DATA IN LOG

B-TREE INDEX RECORD
MAPPING OID 35, STREAM 1,
START OFFSET 0 ...

RECORD CONTAINING POINTER
TO FILE DATA: OID 42, STREAM 1,
START OFFSET 0, LENGTH 50

Digital Technical Journal Vol. 8 No. 2 1996 19

Data that is stored in the node is simply copied
to the output buffer. When data is stored in the Jog,
the worker thread issues requests to the LO to read the
data into the output buffer. Once all the reads have
been issued, the original request is placed on a pend­
ing queue until they complete; then the results are
returned to the clerk. When no data is stored for all or
part of the read request, the server zero-fills the corre­
sponding part of the output bufler.

The process described above is complicated by the
fact that the B-tree is itself stored in the log. The map­
ping layer contains a node cache that ensures that com­
monly referenced nodes are normally found in memory.
When the worker thread needs to traverse through a
tree node that is not in memory, it must arrange for the
node to be read into the cache. The address of the node
in the log is the value of the pointer to it from its parent
node. The worker thread uses this to issue a request to
the LO to read the node into a cache buffer. While the
node read request is in progress, the original clerk oper­
ation is placed on a pending queue and the worker
thread proceeds to the next request 011 the work queue.
When the node is resident in memory, the pending read
request is placed back on the work queue to be
restarted. In this way, multiple read requests can be in
progress at any given time.

Processing Write Requests
Write requests received by the server arrive in groups
consisting of a number of data items corresponding to
updates to noncontiguous addresses in the file address
space. Each group must be written as a single failure
atomic unit, which means that all the parts of the write
request must be made stable or none of them must
become stable. Such groups of writes are called wun­
ners and are used by the clerk to encapsulate complex
file system operations. 11

Before the server can complete a wunner, that
is, before an acknowledgment can be sent back to
the clerk indicating that the wunner was successful,
the server must make two guarantees:

I. All parts of the wunner are stably stored in the log
so that the entire wunner is persistent in the event
of a system failure.

2. All data items described by the wunner are visible to
subsequent read requests.

The wunner is made persistent by writing each data
item to the log. Each data item is tagged with a log
record that identifies its corresponding file space
address. This allows the data to be recovered in the
event of a system failure. All individual writes are made
as part of a single compound atomic operation (CAO).
This method is provided by the LO layer to bracket
a set of writes that must be recovered as an atomic
unit. Once all the writes for the wunner have been

20 Digital Technical Journal Vol. 8 No. 2 1996

issued to the log, the mapping layer instructs the LO
layer to end (or commit) the CAO.

The wunner can be made visible to subsequent read
operations by updating the B-tree to reflect the loca­
tion of the new data. Unfortunately, this would cause
writes to incur a significant latency since updating the
B-tree involves traversing the B-tree and potentially
reading B-tree nodes into memory from the log.
Instead, the server completes a write operation before
the B-tree is updated. By doing this, however, it must
take additional steps to ensure that the data is visible to
subsequent read requests.

Before completing the wunner, the mapping layer
queues the B-tree updates resulting from writing the
wunner to the same FIFO work queue as read requests.
All items are queued atomically, that is, no other read
or write operation can be interleaved with the individ­
ual wunner updates. In this way, the ordering between
the writes making up the wunner and subsequent read
or write operations is maintained. Work cannot begin
on a subsequent read request until work has started 011

the 8-tree updates ahead ofit in the queue.
Once the B-tree updates have been queued to the

server work queue and the mapping layer has been
notified that the CAO for the writes has committed,
both of the guarantees that the server gives on write
completion hold. The data is persistent, and the writes
are visible to subsequent operations; therefore, the
server can send an acknowledgment back to the clerk.

Updating the 8-tree
The worker thread processes a B-tree update request
in much the same way as a read request. The update
request traverses the B-tree until either it reaches the
node that maps the appropriate part of the file address
space, or it fails to find a node in memory.

Once the leaf node is reached, it is updated to point at
the location of the data in the log (if the data is to be
stored directly in the node, the data is copied into the
node). The node is now dirty in memory and must
be written to the log at some point. Rather than writing
the node immediately, the mapping layer writes a log
record describing the change, locks the node into the
cache, and places a flush operation for the node to
the mapping layer's flush queue. The flush operation
describes the location of the node in the tree and
records the need to write it to the Jog at some point
in the future.

If, on its way to the leaf node, the write operation
reaches a node that is not in memory, the worker
thread arranges for it to be read from the Jog and the
write operation is placed on a pending queue as with a
read operation. Because the write has been acknowl­
edged to the clerk, the new data must be visible to sub­
sequent read operations even though the B-tree has
not been updated fully. This is achieved by attaching
an in-memory record of the update to the node that is

being read. If a read operation reaches the node with
records of stalled updates, it must check whether any
of these records contains data that should be returned.
The record contains either a pointer to the data in the
log or the actual data itself. If a read operation finds
a record that can satisfy all or part of the request, the
read request uses the information in the record to
fetch the data. This preserves the guarantee that the
clerk must see all data for which the write request has
been acknowledged.

Once the node is read in from the log, the stalled
updates are restarted. Each update removes its log
record from the node and recommences traversing the
B-tree from that point.

Writing 8-tree Nodes to the Log
Writing nodes consumes bandwidth to the disk that
might otherwise be used for writing or reading user
data, so the server tries to avoid doing so until
absolutely necessary. Two conditions make it neces­
sary to begin writing nodes:

1. There are a large number of dirty nodes in the
cache.

2. A checkpoint is in progress.

In the first condition, most of the memory available
to the server has been given over to nodes that are
locked in memory and waiting to be written to the
log. Read and update operations begin to back up,
waiting for available memory to store nodes. In the
second condition, the LD has requested a checkpoint
in order to bound recovery time (see the section
Checkpointing later in this paper).

When either of these conditions occurs, the mapping
layer switches into flush mode, during which it only
writes nodes, until the condition is changed. In flush
mode, the worker thread processes flush operations
from the mapping layer's flush queue in depth order,
that is, starting with the nodes furthest from the root
of the B-tree. For each flush operation, it traverses the
B-tree until it finds the target node and its parent. The
target node is identified by the keys it maps and its
level. The level of a node is its distance from the leaf of
the B-tree (or subtree). Unlike its depth, which is its
distance from the root of the B-tree, a node's level does
not change as the B-tree grows and shrinks.

Once it has reached its destination, the flush opera­
tion writes out the target node and updates the parent
with the new log address. The modifications made to
the parent node by the flush operation are analogous
to those made to a leaf node by an update operation.
In this way, a modification to a leaf node eventually
works its way to the root of the B-tree, causing each
node in its path to be rewritten to the log over time.
Writing dirty nodes only when necessary and then in
deepest first order minimizes the number of nodes

written to the log and increases the average number of
changes that are reflected in each node written.

Log Driver

The log driver is responsible for creating the illusion of
a semi-infinite sequential log on top of a physical disk.
The entire history of the file system is recorded in the
updates made to the log, but only those parts of
the log that describe its current or live state need to
be persistently stored on the disk. As files are overwrit­
ten or deleted, the parts of the log that contain the
previous contents become obsolete.

Segments and the Segment Array
To make the management of free space more straight­
forward, the log is divided into sections called
segments. In the Spiralog file system, segments are
256 KB. Segments in the log are identified by their seg­
ment identifier (SEGID). SEGIDs increase monotoni­
cally and are never reused. Segments in the log that
contain live data are mapped to physical, segment-sized
locations or slots on the disk that are identified by their
segment number (SEGNUM) as shown in Figure 6.
The mapping between SEGID and SEGNUM is main­
tained by the segment array. The segment array also
tracks which parts of each mapped segment contain live
data. This information is used by the cleaner.

The LD interface layer contains a segment switch
that allows segments to be fetched from a location
other than the disk. 13 The backup function on the
Spiralog file system uses this mechanism to restore files
contained in segments held on backup media. Figure 7
shows the LD layer.

LOG GROWS

SEQUENTIAL LOG

SEGMENT 104

I SEGNUM c I I
. . SEGNUM D

PHYSICAL DISK

Figure 6
Mapping the Log onto the Disk

Digital Technical Journal Vol. 8 No. 2 1996 21

LO LAYER INTERFACE

SEGMENT ARRAY

I SEGMENT WRITER I

DISK

Figure 7

ALTERNATE SOURCE
OF SEGMENTS
(SPIRALOG BACKUP)

Q
TAPE

Subcomponents of the LD Layer

The Segment Writer
The segment writer is responsible for all I/Os to the
log. It groups together writes it receives from the map­
ping layer into large, sequential I/Os where possible.
This increases write throughput, but at the potential
cost of increasing the latency of individual operations
when the disk is lightly loaded.

As shown in Figure 8, the segment writer is respon­
sible for the internal organization of segments written
to the disk. Segments are divided into two sections, a
data area and a much smaller commit record area.
Writing a piece of data requires two operations to the
segment at the tail of the log. First the data item is
written to the data area of the segment. Once this 1/0
has completed successfully, a record describing that
data is written to the commit record area. Only when
the write to the commit record area is complete can
the original request be considered stable.

DATA AREA

r- - --- - --- - -- - - ,
I I
I I
I I
I I
I I
L - ---------J

KEY:

USER DATA ORB-TREE NODE

COMMIT RECORD

SINGLE 1/0 OPERATION

Figure 8
Organization of a Segment

22 Digital Technical Journal Vol. 8 No. 2 1996

The need for two writes to disk (potentially, with a
rotational delay between) to commit a single data
write is clearly a disadvantage. Normally, however, the
segment writer receives a set of related writes from
the mapping layer which are tagged as part of a single
CAO. Since the mapping layer is interested in the com­
pletion of the whole CAO and not the writes within it

' the segment writer is able to buffer additions to the
commit records area in memory and then write them
with a single 1/0. Under a normal write load, this
reduces the number of I/Os for a single data write to
very close to one.

The boundary between the commit record area and
the data area is fixed. Inevitably, this wastes space in
either the commit record area or data area when the
other fills. Choosing a size for the commit record area
that minimizes this waste requires some care. After
analysis of segments that had been subjected to a typi­
cal Open VMS load, we chose 24 KB as the value for
the commit record area.

This segment organization permits the segment
writer to have complete control over the contents of
the commit record area, which allows the segment
writer to accomplish two important recovery tasks:

• Detect the end of the log

• Detect multiblock write failure

When physical segments are reused to extend the
log, they are not scrubbed and their commit record
areas contain stale (but comprehensible) records. The
recovery manager must distinguish between records
belonging to the current and the previous incarnation
of the physical slot. To achieve this, the segment writer
writes a sequence number into a specific byte in every
block written to the commit record area. The original
contents of the "stolen" bytes are stored within the
record being written. The sequence number used for

COMMIT RECORD AREA

,-- - - -- - - - - - ,
I I
I I
I I
I I
I I

_...J

a segment is an attribute of the physical slot that is
assigned to it. The sequence number for a physical slot
is incremented each time the slot is reused, allowing
the recovery manager to detect blocks that do not
belong to the segment stored in the physical slot.
The cost of resubstituting the stolen bytes is incurred
only during recovery and cleaning, because this is
the only time that the commit record area is read.

In hindsight, the partitioning of segments into data
and commit areas was probably a mistake. A layout
that intermingles the data and commit records and that
allows them to be written in one I/0 would offer bet­
ter latency at low throughput. If combined with careful
writing, command tag queuing, and other optimiza­
tions becoming more prevalent in disk hardware and
controllers, such an on-disk structure could offer sig­
nificant improvements in latency and throughput.

Cleaner

The cleaner's job is to turn free space in segments in
the log into empty, unassigned physical slots that can
be used to extend the log. Areas of free space appear in
segments when the corresponding data decays; that is,
it is either deleted or replaced.

The cleaner rewrites the live data contained in par­
tially full segments. Essentially, the cleaner forces the
segments to decay completely. If the rate at which data
is written to the log matches the rate at which it is
deleted, segments eventually become empty of their
own accord. When the log is full (fullness depends on
the distribution of file longevity), it is necessary to

proactively clean segments. As the cleaner continues
to consume more of the disk bandwidth, performance
can be expected to decline. Our design goal was that
performance should be maintained up to a point at
which the log is 85 percent full. Beyond this, it was
acceptable for performance to degrade significantly.

Bytes Die Young
Recently written data is more likely to decay than old
data. 14

•
15 Segments that were written a short time ago

are likely to decay further, after which the cost of
cleaning them will be less. In our design, the cleaner
selects candidate segments that were written some
time ago and are more likely to have undergone this
initial decay.

Mixing data cleaned from older segments with data
from the current stream of new writes is likely to pro­
duce a segment that will need to be cleaned again once
the new data has undergone its initial decay. To avoid
mixing cleaned data and data from the current write
stream, the cleaner builds its output segments sepa­
rately and then passes them to the LD to be threaded in
at the tail of the log. This has two important benefits:

• The recovery information in the output segment is
minimal, consisting only of the self-describing tags
on the data. As a result, the cleaner is unlikely to
waste space in the data area by virtue of having filled
the commit record area.

• By constructing the output segment off-line, the
cleaner has as much time as it needs to look for data
chunks that best fill the segment.

Remapping the Output Segment
The data items contained in the cleaner's output seg­
ment receive new addresses. The cleaner informs the
mapping layer of the change oflocation by submitting
B-tree update operation for each piece of data it
copied. The mapping layer handles this update opera­
tion in much the same way as it would a normal over­
write. This update does have one special property:
the cleaner writes are conditional. In other words, the
mapping layer will update the B-tree to point to
the copy created by the cleaner as long as no change
has been made to the data since the cleaner took its
copy. This allows the cleaner to work asynchronously
to file system activity and avoids any locking protocol
between the cleaner and any other part of the Spiralog
file system.

To avoid modifying the mapping layer directly, the
cleaner does not copy B-tree nodes to its output seg­
ment. Instead, it requests the mapping layer to flush
the nodes that occur in its input segments (i.e., rewrite
them to the tail of the log). This also avoids wasting
space in the cleaner output segment on nodes that
map data in the cleaner's input segments. These nodes
are guaranteed to decay as soon as the cleaner's B-tree
updates are processed.

Figure 9 shows how the cleaner constructs an output
segment from a number of input segments. The cleaner
keeps selecting input segments until either the output
segment is full, or there are no more input segments.
Figure 9 also shows the set of operations that are gener­
ated by the cleaner. In this example, the output segment
is filled with the contents of two full segments and part
of a third segment. This will cause the third input seg­
ment to decay still further, and the remaining data and
B-tree nodes will be cleaned when that segment is
selected to create another output segment.

Cleaner Policies
A set of heuristics governs the cleaner's operation.
One of our fundamental design decisions was to sepa­
rate the cleaner policies from the mechanisms that
implement them.

When to clean?
Our design explicitly avoids cleaning until it is
required. This design appears to be a good match for

Digital Technical Journal Vol. 8 No. 2 1996 23

~:~~ENTS I [§ ~----_-j ~ [~ J 11 1 NODE A I [§] ~----_-j II s [~] ~ I NODE B 11
(' I

KEY:

I NODE A I B-TREE NODE

D . LIVE DATA

r---,
I I .. ___ .J

SUPERSEDED DATA

'
CLEANER

'

CLEAN
DATA 1

B-TREE UPDATE REQUEST

Figure9
Cleaner Operation

a workload on the OpenVMS system. On our time­
sharing system, the cleaner was entirely inactive for the
first three months of 1996; although segments were
used and reused repeatedly, they always decayed
entirely to empty of their own accord. The trade-off
in avoiding cleaning is that although performance is
improved (no cleaner activity), the size of the full
savesnaps created by backup is increased. This is
because backup copies whole segments, regardless of
how much live data they contain.

When the cleaner is not running, the live data in the
volume tends to be distributed across a large number of
partially full segments. To avoid this problem, we have
added a control to allow the system manager to manu­
ally start and stop the cleaner. Forcing the cleaner to
run before performing a full backup compacts the live
data in the log and reduces the size of the savesnap.

In normal operation, the cleaner will start cleaning
when the number of free segments available to extend
the log falls below a fixed threshold (300 in the cur­
rent implementation). In making this calculation, the
cleaner takes into account the amount of space in
the log that will be consumed by writing data currently
held in the clerks' write-behind caches. Thus, accepting
data into the cache causes the cleaner to "clear the way"
for the subsequent write request from the clerk.

When the cleaner starts, it is possible that the
amount of live data in the log is approaching
the capacity of the underlying disk, so the cleaner may
find nothing to do. It is more likely, however, that
there will be free space it can reclaim. Because the
cleaner works by forcing the data in its input segments

24 Digital Technical Journal Vol. 8 No. 2 1996

CLEAN
D1

FLUSH CLEAN
NODEA 03

CLEAN

to decay by rewriting, it is important that it begins
work while free segments are available. Delaying the
decision to start cleaning could result in the cleaner
being unable to proceed.

A fixed number was chosen for the cleaning thresh­
old rather than one based on the size of the disk. The
size of the disk does not affect the urgency of cleaning
at any particular point in time. A more effective indica­
tor of urgency is the time taken for the disk to fill at the
maximum rate of writing. Writing to the log at 10 MB
per second will use 300 segments in about 8 seconds.
With hindsight, we realize that a threshold based on a
measurement of the speed of the disk might have been
a more appropriate choice.

Input Segment Selection
The cleaner divides segments into four distinct groups:

1. Empty. These segments contain no live data and are
available to the LD to extend the log.

2. Noncleanable. These segments are not candidates
for cleaning for one of two reasons:

• The segment contains information that would
be required by the recovery manager in the event
of a system failure. Segments in this group are
always close to the tail of the log and therefore
likely to undergo further decay, making them
poor candidates for cleaning.

• The segment is part ofa snapshot.5 The snapshot
represents a reference to the segment, so it can­
not be reused even though it may no longer con­
tain live data.

3. Preferred noncleanable. These segments have
recently experienced some natural decay. The sup­
position is that they may decay further in the near
future and so are not good candidates for cleaning.

4. Cleanable. These segments have not decayed for
some time. Their stability makes them good candi­
dates for cleaning.

The transitions between the groups are illustrated in
Figure 10. It should be noted that the cleaner itself
does not have to execute to transfer segments into the
empty state.

The cleaner's job is to fill output segments, not to
empty input segments. Once it has been started, the
cleaner works to entirely fill one segment. When that
segment has been filled, it is threaded into the log;
if appropriate, the cleaner will then repeat the process
with a new output segment and a new set of input
segments. The cleaner will commit a partially full
output segment only under circumstances of extreme
resource depletion.

The cleaner fills the output segment by copying
chunks of data forward from segments taken from the
cleanable group. The members of this group are held
on a list sorted in order of emptiness. Thus, the first
cleaner cycle will always cause the greatest number of
segments to decay. As the output segment fills, the
smallest chunk of data in the segment at the head of
the cleanable list may be larger than the space left in
the output segment. In this case, the cleaner performs
a limited search down the cleanable list for segments
containing a suitable chunk. The required information
is kept in memory, so this is a reasonably cheap opera­
tion. As each input segment is processed, the cleaner

temporarily removes it from the cleanable list. This
allows the mapping layer to process the operations the
cleaner submitted to it and thereby cause decay
to occur before the cleaner again considers the seg­
ment as a candidate for cleaning. As the volume fills,
the ratio between the number of segments in the
cleanable and preferred noncleanable groups is
adjusted so that the size of the preferred noncleanable
group is reduced and segments are inserted into the
cleanable list. If appropriate, a segment in the clean­
able list that experiences decay will be moved to the
preferred noncleanable list. The preferred nonclean -
able list is kept in order of least recently decayed.
Hence, as it is emptied, the segments that are least
likely to experience further decay are moved to the
cleanable group.

Recovery

The goal of recovery of any file system is to rebuild the
file system state after a system failure. This section
describes how the server reconstructs state, both in
memory and in the log. It then describes checkpoint­
ing, the mechanism by which the server bounds the
amount of time it takes to recover the file system state.

Recovery Process
In normal operation, a single update to the server can
be viewed as several stages:

1. The user data is written to the log. It is tagged with
a self-identifying record that describes its position in
the file address space. A B-tree update operation is
generated that drives stage 2 of the update process.

EMPTY

Figure 10
Segment States

DECAY
TO EMPTY

USER
WRITES

CHECKPOINT/
SNAPSHOT
DELETION

CHECKPOINT/
SNAPSHOT
DELETION

CLEANER POLICY/
SEGMENT DECAY

Digital Technical Journal Vol. 8 No. 2 1996 25

26

2. The leaf nodes of the B-tree are modified in mem­
ory, and corresponding change records are written
to the log to reflect the position of the new data.
A flush operation is generated and queued and then
starts stage 3.

3. The B-tree is written out level by level until the root
node has been rewritten. As one node is written to
the log, the parent of that node must be modified,
and a corresponding change record is written to the
log. As a parent node is changed, a further flush
operation is generated for the parent node and so
on up to the root node.

Stage 2 of this process, logging changes to the leaf
nodes of the B-tree, is actually redundant. The self­
identifying tags that are written with the user data are
sufficient to act as change records for the leaf nodes of
the B-tree. When we started to design the server, we
chose a simple implementation based on physiological

B-TREE

LOG------

STAGE 1:

LOG

STAGE 2:

TAG

DATA 1

LOG

STAGE 3:

TAG

DATA 1

LOG

TAG

DATA 1

LOG

TAG

DATA 1

LOG

TAG

DATA1

Figure 11
Stages of a Write Request

Digital Technical Journal Vol. 8 No.2 1996

write-ahead logging.9 As time progressed, we moved
more toward operational logging.9 The records writ­
ten in stage 2 are a holdover from the earlier imple­
mentation, which we may remove in a future release of
the Spiralog file system.

At each stage of the process, a change record is writ­
ten to the log and an in-memory operation is generated
to drive the update through the next stage. In effect,
the change record describes the set of changes made
to an in-memory copy of a node and an in-memory
operation associated with that change.

Figure 11 shows the log and the in-memory work
queue at each stage of a write request. The B-tree
describing the file system state consists of three nodes:
A, B, and C. A wunner, consisting of a single data
write is accepted by the server. The write request
requires that both leaf nodes A and B are modified.
Stage 1 starts with an empty log and a write request for
Data 1.

WORK QUEUE

WORK QUEUE

WORK QUEUE

WORK QUEUE

I I-

WORK QUEUE

WORK QUEUE

WRITE
REQUEST

DATA1

B·TREE
UPDATE

DATA1

FLUSH
REQUEST

NODE A

FLUSH
REQUEST

, NODE B

FLUSH
REQUEST

NODEC

c=Ji

~

FLUSH
REQUEST

NODEB

FLUSH
REQUEST

NODEC

After a system failure, the server's goal is to recon­
struct the file system state to the point of the last write
that was written to the log at the time of the crash.
This recovery process involves rebuilding, in memory,
those B-tree nodes that were dirty and generating any
operations that were outstanding when the system
failed. The outstanding operations can be scheduled in
the normal way to make the changes that they repre­
sent permanent, thus avoiding the need to recover
them in the event of a future system failure. The recov­
ery process itself does not write to the log.

The mapping layer work queue and the flush lists
are rebuilt, and the nodes are fetched into memory by
reading the sequential log from the recovery start
position (see the section Checkpointing) to the end of
the log in a single pass.

The B-tree update operations are regenerated using
the self-identifying tag that was written with each
piece of data. When the recovery process finds a node,
a copy of the node is stored in memory. As log records
for node changes are read, they are attached to the
nodes in memory and a flush operation is generated
for the node. If a log record is read for a node that has
not yet been seen, the log record is attached to a place­
holder node that is marked as not-yet-seen. The recov­
ery process does not perform reads to fetch in nodes
that are not part of the recovery scan. Changes to
B-tree nodes are a consequence of operations that
happened earlier in the log; therefore, a B-tree node

log record has the effect of committing a prior modifi­
cation. Recovery uses this fact to throw away update
operations that have been committed; they no longer
need to be applied.

Figure 12 shows a log with change records and
B-tree nodes along with the in-memory state of the
B-tree node cache and the operations that are regener­
ated. In this example, change record 1 for node A is
superseded or committed by the new version of node A
(node A'). The new copy of node C (node C') super­
sedes change records 3 and 5. This example also shows
the effect of finding a log record without seeing a copy
of the node during recovery. The log record for node B
is attached to an in-memory version of the node that is
marked as not-yet-seen. The data record with self-iden­
tifying tag Data l generates a B-tree update record that
is placed on the work queue for processing. As a final
pass, the recovery process generates the set of flush
operations that was outstanding when the system failed.
The set of flush requests is defined as the set of nodes in
the B-tree node cache that has log records attached
when the recovery scan is complete. In this case, flush
operations for nodes A' and B are generated.

The server guarantees that a node is never written to
the log with uncommitted changes, which means that
we only need to log redo records.9

•
16 In addition, when

we see a node during the recovery scan, any log
records that are attached to the previous version of the
node in memory can be discarded.

RECOVERY SCAN

CHANGE CHANGE I NODEA' I CHANGE
RECORD 1 RECORD 2 RECORD 3

NODE A

t
RECOVERY
START POSITION

NODES

S-TREE NODE CACHE (AFTER RECOVERY SCAN)

NODEC

NODES

DATA 1

CHANGE CHANGE I NODEC' I
RECORD 4 RECORD 5

NODE A' NODEC

t
TAIL OF
LOG

NODE A' (NOT-YET-SEEN)
NODEC'

WORK QUEUE (AFTER RECOVERY)

Figure 12
Recovering a Log

I ~

- CHANGE
RECORD4

NODE A'

S-TREE - FLUSH
UPDATE REQUEST

DATA1 NODE A'

>---- CHANGE
RECORD2

NODES

- FLUSH
REQUEST

NODES

Digital Technical Journal Vol. 8 No. 2 1996 27

Operations generated during recovery are posted to
the work queues as they would be in normal running.
Normal operation is not allowed to begin until the
recovery pass has completed; however, when recovery
reaches the end of the log, the server is able to service
operations from clerks. Thus new requests from the clerk
can be serviced, potentially in parallel with the operations
that were generated by the recovery process.

Log records are not applied to nodes during recov­
ery for a number of reasons:

• Less processing time is needed to scan the log and
therefore the server can start servicing new user
requests sooner.

• Recovery will not have seen copies of all nodes for
which it has log records. To apply the log records,
the B-tree node must be read from the log. This
would result in random read requests during the
sequential scan of the log, and again would result in a
longer period before user requests could be serviced.

• There may be a copy of the node later in the recov­
ery scan. This would make the additional 1/0 oper­
ation redundant.

Checkpointing

As we have shown, recovering an LFS log is imple­
mented by a single-pass sequential scan of all records
in the log from the recovery start position to the tail of
the log. This section defines a recovery start position
and describes how it can be moved forward to reduce
the amount of log that has to be scanned to recover
the file system state.

To reconstruct the in-memory state when a system
crashed, recovery must see something in the log that
represents each operation or change of state that was
represented in memory but not yet made stable. This
means that at time t, the recovery start position is
defined as a point in the log after which all operations
that are not stably stored have a log record associated
with them. Operations obtain the association by scan­
ning the log sequentially from the beginning to the
end. The recovery position then becomes the start of
the log, which has two important problems:

1. In the worst case, it would be necessary to sequen­
tially scan the entire log to perform recovery. For
large disks, a sequential read of the entire log con­
sumes a great deal of time.

2. Recovery must process every log record written
between the recovery start position and the end of
the log. As a consequence, segments between the
start of recovery and the end of the log cannot be
cleaned and reused.

To restrict the amount of time to recover the log
and to allow segments to be released by cleaning, the

28 Digital Technical Journal Vol. 8 No. 2 1996

recovery position must be moved forward from time
to time, so that it is always close to the tail of the log.

Under any workload, a number of outstanding oper­
ations are at various stages of completion. In other
words, there is no point in the log when all activity
has ceased. To overcome this problem, we use a fuzzy
checkpoint scheme.9 In version 1.0 of the Spiralog file
system, the server initiates a new checkpoint when
20 MB of data has been written since the previous
checkpoint started. The process cannot yet move the
recovery position forward in the log to the start of
the new checkpoint, because some outstanding opera­
tions may have priority. The mapping layer keeps track
of the operations that were started before the check­
point was initiated. When the last of these operations
has moved to the next stage (as defined by the recovery
process), the mapping layer declares that the check­
point is complete. Only then can the recovery position
be moved forward to the point in the log where the
checkpoint was started.

With this scheme, the server does not need to write
all the nodes in all paths in the B-tree between a dirty
node and the root node. All that is required in practice
is to write those nodes that have flush operations
queued for them at the time that the checkpoint is
started. Flushing these nodes causes change records
to be written for their parent nodes after the start of
the checkpoint. As the recovery scan proceeds from
the start of the last completed checkpoint, it is able to
regenerate the flush operation on the parent nodes
from these change records.

We chose to base the checkpoint interval on the
amount of data written to the log rather than on
the amount of time to recover the log. We felt that this
would be an accurate measure of how long it would
take to recover a particular log. In operation, we find
this works well on logs that experience a reasonable
write load; however, for logs that predominantly ser­
vice read requests, the recovery time tends toward the
limit. In these cases, it may be more appropriate to add
timer-based checkpoints.

Managing Free Space
A traditional, update-in-place file system overwrites
superseded data by writing to the same physical loca -
tion on disk. If, for example, a single block is continu­
ally overwritten by a file system client, no extra disk
space is required to store the block. In contrast, a log­
structured file system appends all modifications to the
file system to the tail of the log. Every update to a sin­
gle block requires log space, not only for the data, but
also for the log records and B-tree nodes required to
make the B-tree consistent. Although old copies of the
data and B-tree nodes are marked as no longer live,
this free space is not immediately available for reuse; it
must be reclaimed by the cleaner. The goal is to ensure
that there is sufficient space in the log to write the

parts of the B-tree that are needed to make the file
system structures consistent. This means that we can
never have dirty B-tree nodes in memory that cannot
be flushed to the log.

The server must carefully manage the amount of free
space in the log. It must provide two guarantees:

1. A write will be accepted by the server only if there is
sufficient free space in the log to hold the data and
rewrite the mapping B-tree to describe it. This guar­
antee must hold regardless of how much space the
cleaner may subsequently reclaim.

2. At the higher levels of the file system, if an 1/0 oper­
ation is accepted, even if that operation is stored in
the write-behind cache, the data will be written to
the log. This guarantee holds except in the event of
a system failure.

The server provides these guarantees using the same
mechanism. As shown in Figure 13, the free space and
the reserved space in the log are modeled using an
escrow function. 17

The total number of blocks that contain live, valid
data is maintained as the used space. When a write
operation is received, the server calculates the amount
of space in the log that is required to complete the
write and update the B-tree, based on the size of
the write and the current topology of the B-tree. The
calculation is generous because the B-tree is a dynamic
structure and the outcome of a single update has
unpredictable effects on it. Each clerk reserves space
for dirty data that it has stored in the write-behind
cache using the same mechanism.

To accept an operation and provide the required
guarantees, the server checks the current state of the
escrow function. If the guaranteed free space is suffi­
cient, the server accepts the operation. As operations
proceed, reserved space is converted to used space as
writes are performed. A single write operation may
affect several leaf nodes. As it becomes clear how the
B-tree is changing, we can convert any unrequired
reserved space back to guaranteed free space.

If the cost of an operation exceeds the free space
irrespective of how the reserved space is converted, the

GROWS!

GROWS I
Figure 13
Modeling Free Space

RESERVED SPACE

GUARANTEED FREE
SPACE

USED SPACE

TOTAL
DISK
SPACE

operation cannot be guaranteed to complete; there­
fore it is rejected. On the other hand, if the cost of the
operation is greater than the guaranteed free space (yet it
may fit in the log, depending on the outcome of the out­
standing operations), the server enters a "maybe" state.
For the server to leave the maybe state and return defini­
tive results, the escrow cost function must be collapsed.
This removes any uncertainty by decreasing the reserved
space figure, potentially to zero. Operations and unused
clerk reservations are drained so that reserved space is
converted to either used space or guaranteed free space.

This mechanism provides a fuzzy measure of how
much space is available in the log. When it is clear that
operations can succeed, they are allowed to continue.
If success is doubtful, the operation is held until a
definitive yes or no result can be determined. This
scheme of free space management is similar to the
method described in reference 7.

Future Directions

This section outlines some of the possibilities for future
implementations of the Spiralog file system.

Hierarchical Storage Management
The Spiralog server distinguishes between the logical
position of a segment in the log and its physical location
on the media by means of the segment array. This map­
ping can be extended to cover a hierarchy of devices
with differing access characteristics, opening up the pos­
sibility of transparent data shelving. Since the unit of
migration is the segment, even large, sparsely used files
can benefit. Segments containing sections of the file not
held on the primary media can be retrieved from slower
storage as required. This is identical to the virtual mem­
ory paging concept.

For applications that require a complete history of
the file system, segments can be saved to archive media
before being recycled by the cleaner. In principle, this
would make it possible to reconstruct the state of the
file system at any time.

Disk Mirroring (RAID 1) Improvements
When a mirrored set of disks is forcefully dismounted
with outstanding updates, such as when a system
crashes, rebuilding a consistent disk state can be an
expensive operation. A complete scan of the members
may be necessary because I/Os may have been out­
standing to any part of the mirrored set.

Because the data on an LFS disk is temporally
ordered, making the members consistent following
a failure is much more straightforward. In effect, an
LFS allows the equivalent of the minimerge function­
ality provided by Volume Shadowing for Open VMS,
without the need for hardware support such as 1/0
controller logging of operations. 18

Digital Technical Journal Vol. 8 No. 2 1996 29

Compression
Adding file compression to an update-in-place file
system presents a particular problem: what to do when
a data item is overwritten with a new version that does
not compress to the same size. Since all updates take
place at the tail of the log, an LFS avoids this problem
entirely. In addition, the amount of space consumed
by a data item is determined by its size and is not influ­
enced by the cluster size of the disk. For this reason, an
LFS does not need to employ file compaction to make
efficient use oflarge disks or RAID sets. 19

Future Improvements
The existing implementation can be improved in a
number of areas, many of which involve resource con­
sumption. The B-tree mapping mechanism, although
general and flexible, has high CPU overheads and
requires complex recovery algorithms. The segment
layout needs to be revisited to remove the need for seri­
alized I/Os when committing write operations and thus
further reduce the write latency.

For the Spiralog file system version 1.0, we chose to
keep complete information about live data and data that
was no longer valid for every segment in the log. This
mechanism allows us to reduce the overhead of the
cleaner; however, it does so at the expense of memory
and disk space and consequently does not scale well to
multi-terabyte disks.

A Final Word

Log structuring is a relatively new and exciting tech­
nology. Building Digital's first product using this
technology has been both a considerable challenge and
a great deal of fun. Our experience during the con­
struction of the Spiralog product has led us to believe
that LFS technology has an important role to play in
the future of file systems and storage management.

Acknowledgments

We would like to take this opportunity to acknowl­
edge the contributions of the many individuals who
helped during the design of the Spiralog server. Alan
Paxton was responsible for initial investigations into
LFS technology and laid the foundation for our under­
standing. Mike Johnson made a significant contribu­
tion to the cleaner design and was a key member of the
team that built the final server. We are very grateful to
colleagues who reviewed the design at various stages,
in particular, Bill Laing, Dave Thiel, Andy Goldstein,
and Dave Lomet. Finally, we would like to thank Jim
Johnson and Cathy Foley for their continued loyalty,
enthusiasm, and direction during what has been a long
and sometimes hard journey.

30 Digital Technical Journal Vol. 8 No. 2 1996

References

1. D. Gifford, R. Needham, and M. Schroeder, "The
Cedar File System," Communications of the ACM,
vol. 31, no. 3 (March 1988).

2. S. Chutanai, 0 . Anderson, M. Kazar, and B. Leverett,
"The Episode File System," Proceedings of the Winter
1992 USENIX Technical Conference(January 1992).

3. M. Rosenblum, "The Design and Implementation of
a Log-Structured File System," Report No. UCB/CSD
92/ 696, University of California, Berkeley (June
1992).

4. J. Ousterhout and F. Douglis, "Beating the 1/0 Bottle­
neck: The Case for Log-Structured File Systems,"
Operating Systems Review (January 1989).

5. R. Green, A. Baird, and J. Davies, "Designing a Fast,
On-line Backup System for a Log-structured File Sys­
tem," Digital Technical journal, vol. 8, no. 2 (1996,
this issue): 32- 45.

6. J. Ousterhout et al., "A Comparison of Logging and
Clustering," Computer Science Department, Univer­
sity of California, Berkeley (March 1994).

7. M. Seltzer, K. Bostic, M. McKusick, and C. Staelin,
"An Implementation of a Log-Structured File System
for UNIX," Proceedings of the Winter 1993 USENIX
Technical Conference (January 1993).

8. M. Wiebren de Jounge, F. Kaashoek, and W.-C. Hsieh,
"The Logical Disk: A New Approach to Improving
File Systems," ACM SIGOPS '93 (December 1993).

9 . J. Gray and A. Reuter, Transaction Processing: Con­
cepts and Techniques (San Mateo, Calif.: Morgan
Kaufman Publishers, 1993), ISBN 1-55860-190-2.

10. A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart,
"The Echo Distributed File System," Digital Systems
Research Center, Research Report 111 (September
1993).

11. J. Johnson and W. Laing, "Overview of the Spiralog
File System," Digital Technical journal, vol. 8, no. 2
(1996, this issue): 5- 14.

12. A. Sweeney et al., "Scalability in the XFS File System,"
Proceedings of the Winter 1996 USENIX Technical
Conference(January 1996).

13. J. Kohl, "Highlight: Using a Log-structured File
System for Tertiary Storage Management," USENIX
Association Conference Proceedings (January 1993).

14. M. Baker et al., "Measurements of a Distributed File
System," Symposium on Operating System Principles
(SOSP) 13 (October 1991).

15. J. Ousterhout et al., "A Trace-driven Analysis of the
UNIX 4.2 BSD File System," Symposium on Operat­
ing System Principles (SOSP) 10 (December 1985).

16. D. Lomet and B. Salzberg, "Concurrency and Recov­
ery for Index Trees," Digital Cambridge Research
Laboratory, Technical Report (August 1991).

17. P. O'Neil, "The Escrow Transactional Model,"
ACM Transactions on Distributed Systems, vol. 11
(December 1986).

18. Volume Shadowing/or Open VMS AXP Version 6.1
(Maynard, Mass.: Digital Equipment Corp., 1994).

19. M. Burrows et al., "On-line Data Compression in a
Log-structured File System," Digital Systems Research
Center, Research Report 85 (April 1992).

Biographies

Christopher Whitaker
Chris Whitaker joined Digital in 1988 after receiving
a B.Sc. Eng. (honours, lSLclass) in computer science
from the Imperial College of Science and Technology,
University of London. He is a principal software engineer
with the Open VMS File System Development Group
located near Edinburgh, Scotland. Chris was the team
leader for the LFS server component of the Spiralog file
system. Prior to this, Chris worked on the distributed
transaction management services (DECdtm) for Open VMS
and the port of the Open VMS record management services
(RMS and RMS journaling) to Alpha.

J. Stuart Bayley
Stuart Bayley is a member of the Open VMS File System
Development Group, located near Edinburgh, Scotland.
He joined Digital in 1990 and prior to becoming a member
of the Spiralog LFS server team, worked on Open VMS
DECdtm services and the Open VMS XQP file system.
Stuart graduated from King's College, University of
London, with a B.Sc. (honours) in physics in 1986.

Rod D. W. Widdowson
Rod Widdowson received a B.Sc. (1984) and a Ph.D. (1987)
in computer science from Edinburgh University. He joined
Digital in 1990 and is a principal software engineer with the
Open VMS File System Development Group located near
Edinburgh, Scotland. Rod worked on the implementation
of LFS and cluster distribution components of the Spiralog
file system. Prior to this, Rod worked on the port of the
Open VMS XQP file system to Alpha. Rod is a charter mem­
ber of the British Computer Society.

Digital Technical Journal Vol. 8 No. 2 1996 31

Designing a Fast,
On-line Backup System
for a Log-structured
File System

The Spiralog file system for the OpenVMS
operating system incorporates a new tech­
nical approach to backing up data. The fast,
low-impact backup can be used to create
consistent copies of the file system while
applications are actively modifying data.
The Spiralog backup uses the log-structured
file system to solve the backup problem. The
physical on-disk structure allows data to be
saved at near-maximum device throughput
with little processing of data. The backup
system achieves this level of performance
without compromising functionality such as
incremental backup or fast, selective restore.

32 Digital Technical Journal Vol. 8 No. 2 1996

I
Russell J. Green
Alasdair C. Baird
J. Christopher Davies

Most computer users want to be able to recover data
lost through user error, software or media failure, or
site disaster but are unwilling to devote system
resources or downtime to make backup copies of the
data. Furthermore, with the rapid growth in the use of
data storage and the tendency to move systems toward
complete utilization (i.e., 24-hour by 7-day operation),
the practice of taking the system off line to back up
data is no longer feasible.

The Spiralog file system, an optional component of
the Open VMS Alpha operating system, incorporates
a new approach to the backup process (called
simply backup), resulting in a number of substantial
customer benefits. By exploiting the features of log­
structured storage, the backup system combines the
advantages of two different traditional approaches
to performing backup: the flexibility of file-based
backup and the high performance of physically ori­
ented backup.

The design goal for the Spiralog backup system was
to provide customers with a fast, application-consistent,
on-line backup. In this paper, we explain the features
of the Spiralog file system that helped achieve this goal
and outline the design of the major backup functions,
namely volume save, volume restore, file restore, and
incremental management. We then present some per­
formance results arrived at using Spiralog version 1.1.
The paper concludes with a discussion of other design
approaches and areas for future work.

Background

File system data may be lost for many reasons, includ­
ing
• User error- A user may mistakenly delete data.

• Software failure-An application may execute
incorrectly.

• Media failure-The computing equipment may
malfunction because of poor design, old age, etc.

• Site disaster- Computing facilities may experience
failures in, for example, the electrical supply or cool­
ing systems. Also, environmental catastrophes such
as electrical storms and floods may damage facilities.

The ability to save backup copies of all or part of
a file system's information in a form that allows it to be
restored is essential to most customers who use com­
puting resources. To understand the backup capability
needed in the Spiralog file system, we spoke to a num -
ber of customers-five directly and several hundred
through public forums. Each ran a different type of sys­
tem in a distinct environment, ranging from research
and development to finance on OpenVMS and other
systems. Our survey revealed the following set of cus­
tomer requirements for the Spiralog backup system:

1. Backup copies of data must be consistent with
respect to the applications that use the data.

2. Data must be continuously available to applica­
tions. Downtime for the purpose of backup is unac­
ceptable. An application must copy all data of
interest as it exists at an instant in time; however,
the application should also be allowed to modify
the data during the copying process. Performing
backup in such a way as to satisfy these constraints is
often called hot backup or on-line backup. Figure 1
illustrates how data inconsistency can occur during
an on-line backup. ·

3. The backup operations, particularly the save opera­
tion, must be fast. That is, copying data from the
system or restoring data to the system must be
accomplished in the time available.

4. The backup system must allow an incremental
backup operation, i.e., an operation that captures
only the changes made to data since the last backup.

The Spiralog backup team set out to design and
implement a backup system that would meet the four
customer requirements. The following section dis­
cusses the features of the implementation of a log­
structured file system (LFS) that allowed us to use
a new approach to performing backup. Note that
throughout this paper we use disk to describe the

FILE

TIME

Figure 1

BACKUP EXPLANATION

The initial file contains two blocks.

Backup starts and copies the first
block.

The application rewrites the file.

Backup proceeds and copies the
second block. The resulting backup
copy is corrupt because the first
block is inconsistent with the latest
rewritten file.

Example of an On-line Backup That Results in Inconsistent
Data

physical media used to store data and volume to

describe the abstraction of the disk as presented by the
Spiralog file system.

Spiralog Features

The Spiralog file system is an implementation of a log­
structured file system. An LFS is characterized by the
use of disk storage as a sequential, never-ending repos­
itory of data. We generally refer to this organization of
data as a log. Johnson and Laing describe in detail the
design of the Spiralog implementation of an LFS and
how files are maintained in this implementation. 1

Some features unique to a log-structured file system
are of particular interest in the design of a backup
system.24 These features are

• Segments, where a segment is the fundamental
unit of storage

• The no-overwrite nature of the system

• The temporal ordering of on-disk data structures

• The means by which files are constructed

This section of the paper discusses the relevance of
these features; a later section explains how these fea­
tures are exploited in the backup design.

Segments
In this paper, the term segment refers to a logical
entity that is uniquely identified and never overwrit­
ten. This definition is distinct from the physical stor­
age of a segment. The only physical feature of interest
to backup with regard to segments is that they are effi­
cient to read in their entirety.

Using log-structured storage in a file system allows
efficient writing irrespective of the write patterns or
load to the file system. All write operations are
grouped in segment-sized chunks. The segment size is
chosen to be sufficiently large that the time required
to read or write the segment is significantly greater
than the time required to access the segment, i.e., the
time required for a head seek and rotational delay on
a magnetic disk. All data (except the LFS homeblock
and checkpoint information used to locate the end of
the data log) is stored in segments, and all segments
are known to the file system. From a backup point of
view, this means that the entire contents of a volume
can be copied by reading the segments. The segments
are large enough to allow efficient reading, resulting in
a near-maximum transfer rate of the device.

No Overwrite
In a log-structured file system, in which the segments
are never overwritten, all data is written to new, empty
segments. Each new segment is given a segment iden­
tifier (segid) allocated in a monotonically increasing

Digital Technical Journal Vol. 8 No. 2 1996 33

manner. At any point in time, the entire contents and
state of a volume can be described in terms of a (check­
point position, segment list) pair. At the physical level,
a volume consists of a list of segments and a position
within a segment that defines the end of the log.
Rosenblum describes the concept of time travel, where
an old state of the file system can be revisited by creat­
ing and maintaining a snapshot of the file system for
future access.3 Allowing time travel in this way requires
maintaining an old checkpoint and disabling the reuse
of disk space by the cleaner. The cleaner is a mecha -
nism used to reclaim disk space occupied by obsolete
data in a log, i.e., disk space no longer referenced in
the file system. The contents of a snapshot are inde­
pendent of operations undertaken on the live version
of the file system. Modifying or deleting a file affects
only the live version of the file system (see Figure 2).
Because of the no-overwrite nature of the LFS, previ­
ously written data remains unchanged.

Other mechanisms specific to a particular backup
algorithm have been developed to achieve on-line con­
sistency.5 The snapshot model as described above allows
a more general solution with respect to multiple con­
current backups and the choice of the save algorithm.

A read-only version of the file system at an instant
in time is precisely what is required for application
consistency in on-line backup. This snapshot approach
to attaining consistency in on-line backup has been
used in other systems.6

•
7 As explained in the following

sections, the Spiralog file system combines the snap­
shot technique with features oflog-structured storage
to obtain both on-line backup consistency and perfor­
mance benefits for backup.

Temporal Ordering
As mentioned earlier, all data, i.e., user data and file
system metadata (data that describes the user data in
the file system), is stored in segments and there is no
overwrite of segments. All on-disk data structures that
refer to physical placement of data use pointers,
namely (segid, offset) pairs, to describe the location of
the data. Each (segid, offset) pair specifies the segment
and where within that segment the data is stored.
Together, these imply the following two properties of
data structures, which are key features of an LFS:

This data is
visible to only
the snapshot.

Figure 2

This data is
shared by the
snapshot and the
live file system.

This is new live
data written since
the snapshot was
taken.

Data Accessible to the Snapshot and to the Live File
System

34 Digital Technical Journal Vol. 8 No. 2 1996

1. On-disk structure pointers, namely (segid, offset)
pairs, are relatively time ordered. Specifically, data
stored at (s2, o2) was written more recently than
data stored at (sl, ol) if and only if s2 is greater
than sl or s2 equals sl and o2 is greater than ol.
Thus, new data would appear to the right in the
data structure depicted in Figure 3.

2. Any data structure that uses on-disk pointers stored
within the segments (the mapping data structure
implementing the LFS index) must be time
ordered; that is, all pointers must refer to data writ­
ten prior to the pointer. Referring again to Figure 3,
only data structures that point to the left are valid.

These properties of on-disk data structures are of
interest when designing backup systems. Such data
structures can be traversed so that segments are read
in reverse time order. To understand this concept, con­
sider the root of some on-disk data structure. This root
must have been written after any of the data to which
it refers (property 2). A data item that the root refer­
ences must have been written before the root and so
must have been stored in a segment with a segid less
than or equal to that of the segment in which the root
is stored (property 1). A similar inductive argument can
be used to show that any on-disk data structure can be
traversed using a single pass of segments in increasing
segment age, i.e., decreasing segid. This is of particular
interest when considering how to recover selective
pieces of data (e.g., individual files) from an on-disk
structure that has been stored in such a way that only
sequential access is viable. The storage of the segments
that compose a volume on tape as part of a backup is an
example of such an on-disk data structure.

File Construction
Whitaker, Bayley, and Widdowson describe the persis­
tent address space as exported by the Spiralog LFS.8

Essentially, the interface presented by the log­
structured server is that of a memory (various read and
write operations) indexed using a file identifier and an
address range. The entire contents of a file, regardless
of type or size, are defined by the file identifier and all
possible addresses built using that identifier.

This means of file construction is important when
considering how to restore the contents of a file. All

All pointers specify
previously written segments.

+.------S1 ; ~: S2 S3

DIRECTION IN WHICH THE LOG IS WRITIEN

Figure 3
A Valid Data Structure in the Log

data contained in a file defined by a file identifier can be
recovered, independent of how the file was created,
without any knowledge of the file system structure.
Consequently, together with the temporal ordering of
data in an LFS, files can be recovered using an ordered
linear scan of the segments of a volume, provided the
on-disk data structures are traversed correctly. This
mechanism allows efficient file restore from a sequence
of segments. In particular, a set of files can be restored
in a single pass of a saved volume stored on tape.

Existing Approaches to Backup

The design of the Spiralog backup attempts to com -
bine the advantages of file-based backup tools such as
Files-11 backup, UNIX tar, and Windows NT backup,
and physical backup tools such as UNIX dd, Files-11
backup/PHYSICAL, and HSC backup (a controller­
based backup for Open VMS volumes).°

File-based Backup
A file-based backup system has two main advantages:
(1) the system can explicitly name files to be saved, and
(2) the system can restore individual files. In this paper,
the file or structure that contains the output data of
a backup save operation is called a saveset. Individual
file restore is achieved by scanning a saveset for the file
and then recreating the file using the saved contents.
Incremental file-based backup usually entails keeping
a record of when the last backup was made (either on a
per-file basis or on a per-volume basis) and copying
only those files and directories that have been created
or modified since a previous backup time.

The penalty associated with these features of a file­
based backup system is that of save performance.
In effect, the backup system performs a considerable
amount of work to lay out data in the saveset to allow
simple restore. All files are segregated to a much greater
extent than they are in the file system on-disk struc­
ture. The limiting factor in the performance of a file­
based save operation is the rate at which data can be
read from the source disk. Although there are some
ways to improve performance, in the case of a volume
that has a large number of files, read performance is
always costly. Figure 4 illustrates the layouts of three
different types of savesets.

Physical Backup
In contrast to the file-based approach to backup, a
physical backup system copies the actual blocks of data
on the source disk to a saveset. The backup system is
able to read the disk optimally, which allows an imple­
mentation to achieve data throughput near the disk's
maximum transfer rate. Physical backups typically
allow neither individual file restore nor incremental

DIRECTION IN WHICH THE TAPE IS WRITIEN

11 I 2 I 3 I 4 I s I 6 I 7 I a I 9 I 10 I 11 I··· I
In a physical backup saveset, blocks are laid out contiguously on tape.
File restore is not possible without random access.

FILE 1 FILE2 FILE 3

In a file backup saveset, files are laid out contiguously on tape.
To create this sort of saveset, files need to be read individually
from disk, which generally means suboptimal disk access.

I DIR I SEGT I SEG I SEG I SEG I .. · I
In a Spiralog backup saveset, directory (DIR) and segment table
(SEGT) allow file restore from segments. Segments are large
enough to allow near-optimal disk access.

Figure4
Layouts of Three Different Types ofSaveset

backup. The overhead required to include sufficient
information for these features usually erodes the per­
formance benefits offered by the physical copy. In
addition, a physical backup usually requires that the
entire volume be saved regardless of how much of the
volume is used to store data.

How Spiralog Backup Exploits the LFS

Spiralog backup uses the snapshot mechanism to
achieve on-line consistency for backup. This section
describes how Spiralog attains high-performance
backup with respect to the various save and restore
operations.

Volume Save Operation
The save operation ofSpiralog creates a snapshot and
then physically copies it to a tape or disk structure
called a savesnap. (This term is chosen to be different
from saveset to emphasize that it holds a consistent
snapshot of the data.) This physical copy operation
allows high-performance data transfer with minimal
processing. 10 In addition, the temporal ordering of
data stored by Spiralog means that this physical copy
operation can also be an incremental operation.

The savesnap is a file that contains, among other
information, a list of segments exactly as they exist
in the log. The structure of the savesnap allows the
efficient implementation of volume restore and file
restore (see Figure 5 and Figure 6) .

The steps of a full save operation arc as follows:

1. Create a snapshot and mount it. This mounted
snapshot looks like a separate, read-only file system.
Read information about the snapshot.

Digital Technical Journal Vol. 8 No. 2 1996 35

MET ADA TA

.·············· ······· ··· .•. ······ ·

KEY:

tJ

DIRECTORY
INFO

...... ··.

PHYSICAL SAVESNAP
RECORD (FIXED SIZE FOR
ENTIRE SAVESNAP)

~ ZERO PADDING

Figure 5
Savesnap Structure

THE LOG TAIL OF THE LOG ~

! 101 j 102 j 103 I 104 ! 1os litJ 101 Jil
ROOT OF THE
SNAPSHOT

DIRECTION IN WHICH THE LOG IS WRITIEN

SAVESNAP

j 10s I 104 I 102 I 101 1

DIRECTION IN WHICH
THE TAPE IS WRITIEN

KEY:

D UNUSED SEGMENT

D USED SEGMENT

Figure 6
Correspondence between Segments on Disk and in the
Savesnap

2. Write the header to the savesnap, including snap­
shot information such as the checkpoint position.

3. Copy the contents of the file system directories to
the savesnap.

4. Write the list of segids that compose the snapshot
to the savesnap as a segment table in decreasing
segid order.

5. Copy these segments in decreasing segid order
from the volume to the savesnap (see Figure 6).

6. Dismount and delete the snapshot, leaving only the
contents of the live volume accessible. The effect of
deleting the snapshot is to release all the space used
to store segments that contain only snapshot data.
All segments that contain data in the live volume
are left intact.

36 Digital Technical Journal Vol. 8 No. 2 1996

SEGMENTS (DECREASING SEGID)

i SEGMENT
i TABLE

SP

ST

SAVESNAP INFORMATION

SNAPSHOT INFORMATION

The Spiralog backup system is primarily physical.
The system copies the volume (snapshot) data in
segments that are large enough to allow efficient
disk reading, regardless of the number of files in the
volume. To save a volume, the Spiralog backup sys­
tem has to read all the directories in the volume and
then all the segments. In comparison, a file-based
backup system must read all the directories and then
all the files. On volumes with large file populations,
file-based backup performance suffers greatly as a
result of the number of read operations required to
save the volume. Our measurements showed that the
directory-gathering phase of our copy operation was
insignificant in relation to the data transfer during the
segment copy phase.

Incremental Save Operation
The incremental save operation in Spiralog is very
different from that in a file-based backup. We use the
temporal ordering feature of the LFS to capture only
the changes in a volume's data as part of the incremen­
tal save. The temporal ordering provides a simple way
of determining the relative age of data. To be precise,
data in the segment with segid s2 must have been writ­
ten after data in the segment with segid sl if and only
if s2 is greater than s 1.

Consider the lifetime of a volume as an endless
sequence of segments. A backup copy of a volume at
any time is a copy of all segments that contain data
accessible in that volume. Segments in the volume's
history that are not included in the backup copy are
those that no longer contain any useful data or those
that have been cleaned. An incremental backup con­
tains the sequence of segments containing accessible
data written since a previous backup.

This is different from an incremental save operation
in a file -based backup scheme. The Spiralog incremen­
tal save operation copies only the data written since
the last backup. In comparison, a file -based backup

incremental save comprises entire files that contain
new or modified data. For example, consider an incre­
mental save of a volume in which a large database file
has had only one record updated in place since a full
backup. Spiralog's incremental save copies the seg­
ments written since the last full backup that contain
the modified record with other updated file system
index data. A file-based backup copies the entire data­
base file.

The following steps for the incremental save opera­
tion augment the six process steps previously
described for the save operation. Note that steps 3a,
4a, and Sa follow steps 3, 4, and 5, respectively.

3a. Write dependent savesnap information. This is a
list of the savesnaps required to complete the
chain of segments that constitutes the entire snap­
shot contents. The savesnap information includes
a unique savesnap identifier (volume id, segment
id, segment offset). This is the checkpoint position
of the snapshot and is unique across volumes.

4a. Determine the segment range to be stored in this
savesnap. This range is calculated by reading the
segment range of the last backup from a file stored
on the source volume.

Sa. Record the minimum segid stored in this save­
snap with the segment table. The segment table
contains the segids of all segments in the saved
snapshot. The incremental savesnap contains
segments identified by a subset of these segids.
The segid of the last segment stored in the save­
snap is recorded as the minimum segid held in the
savesnap.

7. Record on the source volume the segment range
stored in the savesnap.

The implementation provides an interface that
allows the user to specify the maximum number of
savesnaps required for a restore operation. This feature
is similar to specifying the levels in the UNIX dump

TIME LIVE SEGMENTS IN VOLUME

Monday I 1 3 4 I

Wednesday I 1 3 I 4 I 5 7 I

Friday I 4 5 I 7

Figure 7
Snapshot Contents in Incremental Savesnaps

utility, where a level O save is a full backup (it requires
no other savesnaps for a restore), and a level I save
is an incremental backup since the full backup (it
requires one additional savesnap for a restore, namely
the full backup).

Figure 7 shows the savesnaps produced from
full and incremental save operations. Note that the
most recently written segment may appear in two
different savesnaps that supposedly contain disjoint
data. For example, segment 4, the youngest segment
in Monday's savesnap, appears in the savesnaps made
on both Monday and Wednesday. The youngest seg­
ment is not guaranteed to be full at the time of a snap­
shot creation, and therefore a later savesnap may
contain data that was not in the first savesnap.
Consequently, incremental savesnaps recapture the
oldest segment in their segment range.

Note that with this design a slowly changing file
can be spread across many incremental savesnaps.
Restoring such a file accordingly may require access
to many savesnaps. The file restore section shows that
the design of file restore allows efficient tape traversal
for these files.

Volume Restore Operation
The Spiralog backup volume restore operation takes a
set of savesnaps and copies the segments that make up
a snapshot onto a disk. Together, this set of segments
and the location of the snapshot checkpoint define
a volume. The steps involved in a volume restore from
a full savesnap are

I . Open the savesnap, and read the snapshot check­
point position from the savesnap header.

2. Initialize the target disk to be a Spiralog volume.

3. Copy all segments from the savesnap to the tar­
get disk. Note that the segments written to the
target disk do not depend in any way on the tar­
get disk geometry. This means that the target disk
may be completely different from the source

SAVESNAPS

@ Full save on
Monday

@ Wednesday
since Monday

9 I @ Friday since
Wednesday

Digital Technical Journal Vol. 8 No. 2 1996 37

disk from which the savesnap was made, providing
the target container is large enough to hold the
restored segments.

4. Backup declares the volume restore as complete
(no more segments will be written to the volume).
Backup tells the file system how to mount the vol­
ume by supplying the snapshot checkpoint location.

A Spiralog restore operation treats an increm~nt~l
savesnap and all the preceding savesnaps upon which It
depends as a single savesnap. For savesnaps other than
the most recent savesnap (the base savesnap), the
snapshot information and directory inform~tion are
ignored. The sole purpose of these savesnaps 1s to pro­
vide segments to the base savesnap.

To restore a volume from a set of incremental save­
snaps, the Spiralog backup system performs steps 1
and 2 using the base savesnap. In step 3, the restore
copies all the segments in the snapshot defined by
the base savesnap to the target disk. (Note that there
is a one-to-one correspondence between snapshots
and savesnaps.) The savesnaps are processed in reverse
chronological order. The contents of the segment
table in the base savesnap define the list of segments in
the snapshot to be restored. Although the volume
restore operation copies all the segments in the base
savesnap, not all segments in the savesnaps processed
may be required. Savesnaps are included in the restore
process if they contain some segments that are needed.
Such savesnaps may also contain segments that were
cleaned before the base savesnap was created.

The structure of the savesnap allows the efficient
location and copying of specific segments. The segment
table in the savesnap describes exactly which segments
are stored in the savesnap. Since the segments are of
a fixed size, it is easy to calculate the position within
the savesnap where a particular segment is stored, pro­
vided the segment table is available and the position of
the first segment is known. This will always be the case
by the time the segment table has been read because
the segments immediately follow this table.

Most savesnaps are stored on tape. This storage
medium lends itself to the indexing just described. In
particular, modern tape drives such as the Digital
Linear Tape (DLT) series provide fast, relative tape
positioning that allows tape-based savesnaps to be
selectively read more quickly than with a sequential
scan. 11 Similarly, on random-access media such as
disks, a particular segment can be read without strict
sequential scanning of data. .

The volume restore operation is therefore a phystcal
operation. The segments can be read and written effi­
ciently (even in the case of incremental savesnaps from
sequential media), resulting in a high-performance
recovery from volume failure or site disaster.

38 Digital Technical Journal Vol. 8 No. 2 1996

File Restore Operation
The purpose of a file restore operation is to provide
a fast and efficient way to retrieve a small number of
files from a savesnap without performing a full volume
restore. Typically, file restore is used to recover files
that have been inadvertently deleted. To achieve high­
performance file restore, we imposed the following
requirements on the design:

• A file restore session must process as few savesnaps
as possible; it should skip savesnaps that do not
contain data needed by the session.

• When processing a savesnap, the file restore must
scan the savesnap linearly, in a single pass.

The process of restoring files can be broken down
into three steps: (1) discover the file identifiers for all
the files to be restored; (2) use the file identifiers to
locate the file data in the saved segments, and then
read that data; and (3) place the newly recovered data
back into the current Spiralog file system.

Discovering the File Identifiers The user supplies the
names of the files to be restored. The mapping
between the file names and the file identifiers associ­
ated with these names is stored in the segments, but
this information cannot be discovered simply by
inspecting the contents of the saved segments. A
corollary of the temporal ordering of the segments
within a savesnap is that hierarchical information, such
as nested directories, tends to be presented in precisely
the wrong order for scanning in a single pass. To over­
come this problem, the save operation writes the com­
plete directory tree to the savesnap before copying any
segments to the savesnap. This tree maps file names to
identifiers for every file and directory in the savesnap.
The file restore session constructs a partial tree of the
names of the files to be restored. The partial tree is
then matched, in a single pass, against the complete
tree stored in the savesnap. This process produces the
required file identifiers.

Locating and Reading t he File Data After discovering
the file identifiers, the file restore session reads the list
of segments present in the savesnap; this list comes
after the directory tree and before any saved segments.
The file restore then switches focus to discover pre­
cisely which segments contain the file data that corre-
spond to the file identifiers. .

The first segment read from the savesnap contams
the tail of the log. The log provides a mapping between
file identifiers and locations of data within segments.
The tail of the log contains the root of the map.

We developed a simple interface for the file restore
to use to navigate the map. Essentially, this interface
permits the retrieval of all mapping information

relevant to a particular file identifier that is held within
a given segment. The mapping information returned
through this interface describes either mapping infor­
mation held elsewhere or real file data. One character­
istic of the log is that anything to which such mapping
information points must occur earlier in the log, that
is, in a subsequent saved segment. Recall property 2 of
the LFS on-disk data structures. Consequently, the file
restore session will progress through the savesnaps in
the desired linear fashion provided that requests are
presented to the interface in the correct order. The
correct order is determined by the allocation of segids.
Since segids increase monotonically over time, it is
necessary only to ensure that requests are presented in
a decreasing segid order.

The file restore interface operates on an object
called a context. The context is a tuple that contains a
location in the log, namely (segid, offset), and a type
field. When supplied with a file identifier and a con­
text, the core function of the interface inspects the seg­
ment determined by the context and returns the set of
contexts that enumerate all available mapping infor­
mation for the file identifier held at the location given
by the initial context.

The type of context returned indicates one of the
following situations:

SAVESNAP

633 555 478

MET ADA TA

EXTENT OF SAVESNAP TRAVERSAL SO FAR

• The location contains real file data.

• The location given by the context holds more
mapping information. In this case, the core func­
tion can be applied repeatedly to determine the
precise location of the file's data.

A work list of contexts in decreasing segid order
drives the file restore process. The procedure for
retrieving the data for a single file identifier is as fol­
lows. At the outset of the file restore operation, the
work list holds a single context that identifies the root
of the map (the tail of the log). As items are taken from
the head of the list, the file restore must perform one
of two actions. If the context is a pointer to real file
data, then the file restore reads the data at that location.
If the context holds the location of mapping informa­
tion, then the core function must be applied to enu­
merate all possible further mapping information held
there. The file restore operation places all returned
contexts in the work list in the correct order prior to
picking the next work item. This simple procedure,
which is illustrated in Figure 8, continues until the
work list is empty and all the file's data has been read.

To cope with more than one file, the file restore
operation extends this procedure by converting the
work list so that it associates a particular file identifier

195 69 59

TARGET FILE SYSTEM FOR FILE RESTORE

Figure 8

DIRECTION IN WHICH THE LOG IS WRITIEN

KEY:

:···: •
FILE DATA

FILE SYSTEM MAP DATA

The shaded areas represent the file data to be restored and the file system metadata that
needs to be accessed to retrieve that data. The restore session has thus far processed
segment 478. Part A of the file has been recovered into the target file system. Parts Band C
are still to come. After processing segment 478, the file restore visits the next known parts of
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment
59 will be on the work list. The next segment that the file restore will read is segment 69, so the
session can skip the intervening segment (segment 195).

File Restore Session in Progress

Digital Technical Journal Vol. 8 No. 2 1996 39

with each context. File restore initializes the work list
to hold a pointer to the root of the map (the tail of the
log) for each file identifier to be restored. The effect is
to interleave requests to read more than one file while
maintaining the correct segid ordering.

A further subtlety occurs when the context at the
head of the work list is found to refer to a segment
outside the current savesnap. The ordering imposed
on the work list implies that all subsequent items of
work must also be outside the current savesnap. This
follows from the temporal ordering properties of LFS
on-disk structures and the way in which incremental
savesnaps are defined. When this situation occurs, the
work list is saved. When the next savesnap is ready for
processing, the file restore session can be restarted
using the saved work list as the starting point.

During this step, the file restore writes the pieces of
files to the target volume as they are read from the
savesnap. Since the file restore process allocates file
identifiers on a per-volume basis, restore must allocate
new file identifiers in the target volume to accept the
data being read from the source savesnap.

The new file identifiers are hidden from users dur­
ing the file restore until the file restore process has fin­
ished since the files are not complete and may be
missing vital parts such as access permissions. Rather
than allow access to these partial files, the file restore
hides the new file identifiers until all the data is pres­
ent, at which time the final stage of the file restore can
take place.

Making the Recovered Files Available to the User In
the third step of the process, the file restore operation
makes the newly recovered files accessible. At the
beginning of the step, the files exist only as bits of data
associated with new file identifiers-the files do not yet
have names. The names that are now bound to these
file identifiers come from the partial directory tree that
was originally used to match against the directory tree
in the savesnap. This final step restores the original
names and contents to all the files that were originally
requested. The files retain the new file identifiers that
were allocated during the file restore process.

Management of Incremental Saves

One design goal for the Spiralog backup was to reduce
the cost of storage management. The design includes
the means of performing an incremental volume save
that copies only data written since the previous
backup. To implement a backup strategy that never
requires more than one full backup but allows restores
using a finite number of savesnaps, we designed and
implemented the savesnap merge function.

Savesnap merge operates similarly to volume
restore, but instead of copying segments to a disk as

40 Digital Technical Journal Vol. 8 No. 2 1996

in a volume restore, savesnap merge copies segments
to a new savesnap. As shown in Figure 9, the effect
of merging a base savesnap and all the incremental
savesnaps upon which it depends is to produce a full
savesnap. This savesnap is precisely the one that would
have been created had the base savesnap been specified
as a full savesnap instead of an incremental savesnap.
Spiralog merge copies the savesnap information and
the directory information stored in the base savesnap
to the merged savesnap before it copies the segment
table and the segments.

Savesnap merge provides a practical way of manag­
ing very large data volumes. The merge operation can
be used to limit the number of savesnaps required to
restore a snapshot, even if full backups are never taken.
Merge is independent of the source volume and can be
undertaken on a different system to allow further sys­
tem management flexibility.

Summary of Spiralog Backup Features
A summary of the features and performance provided
by the Spiralog backup system appears in Table 3 at
the end of the Results section. For comparison, the
table also contains corresponding information for the
file-based and physical approaches to backup.

Results

We measured volume save and individual file restore
performance on both the Spiralog backup system and
the backup system for Files- I 1, the original Open VMS
file system. The hardware configuration consisted of
a DEC 3000 Model 500 and a single RZ25 source disk
each for Spiralog and Files-11 volumes, respectively.
The target device for the backup was a TZ877 tape.
The system was running under the Open VMS version
7.0 operating system and Spiralog version 1.1. The
volumes were populated with file distributions that
reflected typical user accounts in our development
environment. Each volume contained 260 megabytes
(MB) of user data, which included a total of21,682
files in 401 directories.

Volume Save Performance

For both the Spiralog backup and the Files-11 backup,
we saved the source volume to a freshly initialized tape
on an otherwise idle system. We measured the elapsed
time of the save operation and recorded the size of the
output savesnap or saveset. We averaged the results
over five iterations of the benchmark. Table 1 presents
these measurements and the resulting throughput.

The throughput represents the average rate in
megabytes per second (MB/s) of writing to tape over
the duration of a save operation. In the case of
Spiralog, tape throughput varies greatly with the

Figure 9
Merging Savesnaps

Table 1

BACKUPS

Monday-Full

Wednesday­
Incremental

Friday­
Incremental

Merge three savesets to produce one
new savesnap equivalent to a full
save snap taken on Friday.

Performance Comparison of the Spira log and Files-11 Backup Save Operat ions

Elapsed Time
Backup System (Minutes:seconds)

Spiralog save 05:20

Files-11 backup 10:14

phases of the save operation. During the directory
scan phase (typically up to 20 percent of the total
elapsed save time), the only tape output is a compact
representation of the volume directory graph. In com­
parison, the segment writing phase is usually bound by
the tape throughput rate. In this configuration, the
tape is the throughput bottleneck; its maximum raw
data tluoughput is 1.25 MB/s (uncompressed).11

Overall, the Spiralog volume save operation is nearly
twice as fast as the Files-11 backup volume save opera­
tion in this type of computing environment. Note that
the Spiralog savesnap is larger than the corresponding
Files-11 saveset. The Spiralog savesnap is less efficient
at holding user data than the packed per-file represen­
tation of the Files-11 saveset. In many cases, though,
the higher performance of the Spiralog save operation
more than out\vcighs this inefficiency, particularly
when it is taken into account that the Spiralog save
operation can be performed on-line.

File Restore Performance
To determine file restore performance, we measured
how long it took to restore a single file from the
savesets created in the save benchmark tests. The hard­
ware and software configurations were identical to
those used for the save measurements. We deleted
a single 3-kilobyte (KB) file from the source volume
and then restored the file. We repeated this operation
nine times, each time measuring the time it took to
restore the file. Table 2 shows the results.

Savesnap or
Saveset Size Throughput
(Megabytes) (Megabytes/second)

339 1.05

297 0.48

Table 2
Performance Comparison of the Spira log and Files-1 1
Individual File Restore Operations

Backup System

Spira log file restore

Files-11 backup

Elapsed Time
(Minutes:seconds)

01:06

03:35

The Spiralog backup system achieves such good
performance for file restore by using its knowledge of
the way the segments are laid out on tape. The file
restore process needs to read only those segments
required to restore the file; the restore skips the inter­
vening segments using tape skip commands. In the
example presented in Figure 8, the restore can skip
segments 555 and 195. In contrast, a file-based backup
such as Files-11 usually does not have accurate index­
ing information to minimize tape I/0. Spiralog's
tape-skipping benefit is particularly noticeable when
restoring small numbers of files from very large save­
snaps; however, as shown in Table 2, even with small
savesets, individual file restore using Spiralog backup is
three times as fast as using Files-I 1.

Table 3 presents a comparison of the save per­
formance and features of the Spiralog, file-based, and
physical backup systems.

Digital Technical Journal Vol. 8 No. 2 1996 41

Table 3
Comparison of Spiralog, File-based, and Physical Backup Systems

Spiralog Backup File-based Backup Physical Backup
System System System

Save performance
(the number of I/Os
required to save the
the source volume)

File restore

Volume restore

Incremental save

The number of I/Os is
O(number of segments that
contain live data) plus
O(number of directories)

Yes

Yes, fast

Yes, physical

The number of I/Os is
O(number of files)
I/Os to read the file
data plus O(number
of directories) I /Os

Yes

Yes

Yes, entire files that
have changed

The number of I/Os
is O(size of the disk)

No

Yes, fast but limited
to disks of the same size

No

Note that this table uses "big oh" notation to bound a value. O(n), which is pronounced "order of n," means that the value represented is no
greater than Cn for some constant C, regardless of the value of n. Informally, this means that O(n) can be thought of as some constant multiple
of n.

Other Approaches and Future Work

This section outlines some other design options
we considered for the Spiralog backup system. Our
approach offers further possibilities in a number
of areas. We describe some of the opportunities
available.

Backup and the Cleaner
The benefits of the write performance gains in an LFS
are attained at the cost of having to clean segments. 8

An opportunity appears to exist in combining the
cleaner and backup functions to reduce the amount of
work done by either or both of these components;
however, the aims of backup and the cleaner are quite
different. Backup needs to read all segments written
since a specific time (in the case of a full backup, since
the birth of the volume). The cleaner needs to defrag­
ment the free space on the volume. This is done most
efficiently by relocating data held in certain segments.
These segments are those that are sufficiently empty to
be worth scavenging for free space. The data in these
segments should also be stable in the sense that the
data is unlikely to be deleted or outdated immediately
after relocation.

The only real benefit that can be exacted by looking
at these functions together is to clean some segments
while performing backup. For example, once a seg­
ment has been read to copy to a savesnap, it can be
cleaned. This appro.i.ch is probably not a good one
because it reduces system performance in the follow­
ing ways: additional processing required in cleaning
removes CPU and memory resources available to
applications, and the cleaner generates write opera­
tions that reduce the backup read rate.

42 Digital Technical Journal Vol. 8 No. 2 1996

There are two other areas in which backup and
the cleaner mechanism interact that warrant further
investigation.

1. The save operation copies segments in their
entirety. That is, the operation copies both "stale"
(old) data and live data to a savesnap. The cost of
extra storage media for this extraneous data is
traded off against the performance penalty in trying
to copy only live data. It appears that the file system
should run the cleaner vigorously prior to a backup
to minimize the stale data copied.

2. Incremental savesnaps contain cleaned data. This
means that an incremental savesnap contains a copy
of data that already exists in one of the savesnaps on
which it depends. This is an apparent waste of effort
and storage space.

It is best to undertake a full backup after a thorough
cleaning of the volume. A single strategy for incremen­
tal backups is less easy to define. On one hand, the size
of an incremental backup is increased if much cleaning
is performed before the backup. On the other hand,
restore operations from a large incremental backup
(particularly selective file restores) are likely to be
more efficient. The larger the incremental backup, the
more data it contains. Consequently, the chance of
restoring a single file from just the base savesnap
increases with the size of the incremental backup.
Studying the interactions between the backup and the
cleaner may offer some insight into how to improve
either or both of these components.

A continuous backup system can take copies of seg­
ments from disk using policies similar to the cleaner.
This is explored in Kohl's paper. 12

Separating the Backup Save Operation into a
Snapshot and a Copy
The design of the save operation involves the creation
of a snapshot followed by the fast copy of the snapshot
to some separate storage. The Spiralog version 1.1
implementation of the save operation combines these
steps. A snapshot can exist only during a backup save
operation.

System administrators and applications have signifi­
cantly more flexibility if the split in these two functions
of backup is visible. The ability to create snapshots that
can be mounted to look like read-only versions of a file
system may eliminate the need for the large number of
backups performed today. Indeed, some file systems
offer this feature. 6

•
7 The additional advantage that

Spiralog offers is to allow the very efficient copying of
individual snapshots to off-line media.

Improving the Consistency and Availability
of On-line Backup
There are a number of ways to improve application
consistency and availability using the Spiralog backup
design. In addition, some of these features further
reduce storage management costs.

lntervolume Snapshot Creation Spiralog allows a
practical way of creating and managing large volumes,
but there will be times when applications require data
consistency for backup across volumes. A coordinated
snapshot across volumes would provide this.

Application Involvement The Spiralog version 1.1
implementation does not address application involve­
ment in the creation of a snapshot. A snapshot's con­
tents are precisely the volume's contents that are on
disk at the time of snapshot creation. This means that
applications accessing the volume have to commit
independently to the file system data they require to
be part of the snapshot.

There is an emerging trend to design system­
level interfaces that allow better application interac­
tion with the file system. For example, the Windows
NT operating system provides the oplock and
NtNotifyChangeDirectory interfaces to advise an
interested application of changes to files and directo­
ries. Similarly, an interface could allow applications to
register an interest with the file system for notification
of an impending snapshot creation. The application
would then be able to commit the data it needs as part
of a backup and continue, thus improving application
consistency and availability and reducing work for sys­
tem administrators.

Minimizing Disk Reads
The Spiralog file restore retrieves the data that
constitutes a number of files in a single pass of

segments read in a specific order. This design was
important to allow the efficient restore of files from
sequential media.

More generally, this way of traversing the file system
allows specific, known parts of a set of files to be
obtained by reading the segments that contain part of
this data only once. This technique is also interesting
for random-access media storage of volumes because
it describes an algorithm for minimizing the number
of disk reads to get this data. Possible applications
of this technique are numerous and are particularly
interesting in the context of data management of very
large volumes.

For example, suppose an application is required
to monitor an attribute (e.g., the time oflast access) of
all files on a massive volume. Suppose also that the vol­
ume is too big to allow the application to trawl the file
system daily for this information; this process takes too
long. If the application maintains a database of the
information, it needs only to gather the changes that
have happened to this data on a daily basis. Therefore,
the application could obtain this information by tra­
versing only those segments written since the last time
it updated its database and locating the relevant data
within those segments. Our mechanism for restoring
files provides exactly this capability. An investigation of
how applications might best use this technique could
lead to the design of an interface that the file system
could use for fast scanning of data.

Conclusions

File systems use backup to protect against data loss.
A significant portion of the cost associated with man­
aging storage is directly related to the backup func­
tion. 13-17 Log-structured data storage provides some
features that reduce the costs associated with backup.

The Spiralog log-structured file system version 1.1
for the Open VMS Alpha operating system includes
a new, high-performance, on-line backup system. The
approach that Spiralog takes to obtain data consis­
tency for on-line backup is similar to the snapshot
approach used in Network Appliance Corporation's
FAServer, the Digital UNIX Advanced File System, and
other systems,6,7 The feature unique to the Spiralog
backup system is its use of the physical attributes of
log-structured storage to obtain high-performance
saving and restoring of data to and from tape. In par­
ticular, the gain in save performance is the result of
a restore strategy that can efficiently retrieve data from
a sequence of segments stored on tape as they are on
disk. This design leads to a minimum of processing
and discrete I/0 operations. The restore operation
uses improvements in tape hardware to reduce pro­
cessing and I/0 bandwidth consumption; the opera­
tion uses tape record skipping within savesnaps for fast

Digital Technical Journal Vol. 8 No. 2 1996 43

data indexing. The Spiralog backup implementation
provides an on-line backup save operation with signifi­
cantly improved performance over existing offerings.
Performance ofindividual file restore is also improved.

Acknowledgments

We would like to thank the following people whose
efforts were vital in bringing the Spiralog backup sys­
tem to fruition: Nancy Phan, who helped us develop
the product and worked relentlessly to get it right;
Judy Parsons, who helped us clarify, describe, and doc­
ument our work; Clare Wells, who helped us focus on
the real customer problems; Alan Paxton, who was
involved in the early design ideas and later specifica -
tion of some of the implementation; and, finally,
Cathy Foley, our engineering manager, who sup­
ported us throughout the project.

References

1. J. Johnson and W. Laing, "Overview of the Spiralog
File System," Digital Technical journal, vol. 8, no. 2
(1996, this issue): 5-14.

2. M. Rosenblum and J. Ousterhout, "The Design and
Implementation of a Log-Structured File System,"
ACM Transactions on Computer Systems, vol. 10,
no. 1 (February 1992): 26-52.

3. M. Rosenblum, "The Design and Implementation of a
Log-Structured File System," Report No. UCB/CSD
92/696 (Berkeley, Calif.: University of California,
Berkeley, 1992).

4. M. Seltzer, K. Bostock, M. McKusick, and C. Staelin,
"An Implementation of a Log-Structured File System
for UNIX," Proceedings of the USENIX Winter 1993
Technical Conference, San Diego, Calif. (January
1993).

5. K. Walls, "File Backup System for Producing a Backup
Copy of a File Which May Be Updated during
Backup," U.S. Patent No. 5,163,148.

6. D. Hitz, J. Lau, and M. Malcolm, "File System Design
for an NFS File Server Appliance," Proceedings of
the USENIX Winter 1994 Technical Conference,
San Francisco, Calif. (January 1994).

7. S. Chutani, 0. Anderson, M. l(azar, and B. Leverett,
"The Episode File System," Proceedings of the
USENIX Winter 1992 Technical Conference,
San Francisco, Calif. (January 1992).

8. C. Whitaker, J. Bayley, and R. Widdowson, "Design of
the Server for the Spiralog File System," Digital
Technicaljournal, vol. 8, no. 2 (1996, this issue): 15-31.

9. Open VMS System Management Utilities Reference
Manual: A- L, Order No. AA-PV5PC-TK (Maynard,
Mass.: Digital Equipment Corporation, 1995).

44 Digital Technical Journal Vol. 8 No. 2 1996

10. L. Drizis, "A Method for Fast Tape Backups and
Restores," Software-Practice and F.xperience,
vol. 23, no. 7 (July 1993): 813-815.

11. "Digital Linear Tape Meets Critical Need for Data
Backup," Quantum Technical Information Paper,
http:/ /www.quantum.com/products/whitepapers/
dlttips.html (Milpitas, Calif.: Quantum Corporation,
1996).

12. J. Kohl, C. Staelin, and M. Stonebraker, "HighLight:
Using a Log-structured File System for Tertiary
Storage Management," Proceedings of the USENIX
Winter 1993 Technical Conference (Winter 1993).

13. R. Mason, "The Storage Management Market Part 1:
Preliminary 1994 Market Sizing," IDC No. 9538
(Framingham, Mass.: International Data Corporation,
December 1994).

14. I. Stenmark, "Implementation Guidelines for Client/
Server Backup" (Stamford, Conn.: Gartner Group,
March 14, 1994).

15. I. Stenmark, "Market Size: Network and Systems
Management Software" (Stamford, Conn.: Gartner
Group, June 30, 1995).

16. I. Stenmark, "Client/Server Backup-Leaders and
Challengers" (Stamford, Conn.: Gartner Group,
May 9, 1994).

17. R. Wrenn, "Why the Real Cost of Storage is More
Than $1/MB," presented at the U.S. DECUS Sympo­
sium, St. Louis, Mo., June 3-6, 1996.

Biographies

Russell J. Green
Russell Green is a principal software engineer in Digital's
Open VMS Engineering group in Livingston, Scotland.
He was responsible for the design and delivery of the
backup component of the Spiralog file system for the
Open VMS operating system. Currently, Russ is the tech­
nical leader ofSpiralog follow-on work. Prior to joining
Digital in 1991, he was a staff member in the computer
science department at the University of Edinburgh. Russ
received a B.Sc. (Honours, 1st class, 1983) in engineering
from the University of Cape Town and an M.Sc. (1986)
in engineering from the University of Edinburgh. He
holds two patents and has filed a patent application for
his Spiralog backup system work.

Alasdair C. Baird
Alasdair Baird joined Digital in 1988 to work for the
ULTRIX Engineering group in Reading, U.K He is
a senior software engineer and has been a member of
Digital's OpenVMS Engineering group since 1991.
He worked on the design of the Spiralog file system and
then contributed to the Spiralog backup system, particu­
larly the file restore component. Currently, he is involved
in Spiralog development work. Alasdair received a B.Sc.
(Honours, 1988) in computer science from the University
of Edinburgh.

J. Christopher Davies
Software engineer Chris Davies has worked for Digital
Equipment Corporation in Livingston, Scotland, since
September 1991. As a member of the Spiralog team, he
initially designed and implemented the Spiralog on-line
backup system. In subsequent work, he improved the
performance of the file system. Chris is currently working
on further Spiralog development. Prior to joining Digital,
Chris was employed by NRG Surveys as a software engi­
neer while earning his degree. He holds a B.Sc. (Honours,
199 l) in artificial intelligence and computer science from
the University of Edinburgh. He is coauthor of a filed
patent application for the Spiralog backup system.

Digital Technical Journal Vol. 8 No. 2 1996 45

Integrating the Spiralog
File System into the
OpenVMS Operating
System

Digital's Spiralog file system is a log-structured
file system that makes extensive use of write­
back caching. Its technology is substantially
different from that of the traditional OpenVMS
file system, known as Files-11. The integration
of the Spiralog file system into the OpenVMS
environment had to ensure that existing appli­
cations ran unchanged and at the same time had
to expose the benefits of the new file system.
Application compatibility was attained through
an emulation of the existing Files-11 file system
interface. The Spiralog file system provides an
ordered write-behind cache that allows applica­
tions to control write order through the barrier
primitive. This form of caching gives the benefits
of write-back caching and protects data integrity.

46 Digital Technical Journal Vol. 8 No. 2 1996

I
Mark A. Howell
Julian M. Palmer

The Spiralog file system is based on a log-structuring
method that offers fast writes and a fast, on-line backup
capability. 1-

3 The integration of the Spiralog file system
into the Open VMS operating system presented many
challenges. Its programming interface and its extensive
use of write-back caching were substantially different
from those of the existing Open VMS file system,
known as Files-I 1.

To encourage use of the Spiralog file system, we had
to ensure that existing applications ran unchanged in
the Open VMS environment. A file system emulation
layer provided the necessary compatibility by mapping
the Files-11 file system interface onto the Spiralog file
system. Before we could build the emulation layer, we
needed to understand how these applications used the
file system interface. The approach taken to under­
standing application requirements led to a file system
emulation layer that exceeded the original compatibil­
ity expectations.

The first part of this paper deals with the approach
to integrating a new file system into the OpenVMS
environment and preserving application compatibility.
It describes the various levels at which the file system
could have been integrated and the decision to emu -
late the low-level file system interface. Techniques
such as tracing, source code scanning, and functional
analysis of the Files-11 file system helped determine
which features should be supported by the emulation.

The Spiralog file system uses extensive write-back
caching to gain performance over the write-through
cache on the Files-11 file system. Applications have
relied on the ordering of writes implied by write­
through caching to maintain on-disk consistency in
the event of system failures. The lack of ordering
guarantees prevented the implementation of such
careful write policies in write-back environments. The
Spiralog file system uses a write-behind cache (intro­
duced in the Echo file system) to allow applications to
take advantage of write-back caching performance
while preserving careful write policies.4 This feature is
unique in a commercial file system. The second part of
this paper describes the difficulties of integrating write­
back caching into a write-through environment and
how a write-behind cache addressed these problems.

Providing a Compatible File System Interface

Application compatibility can be described in two
ways: compatibility at the file system interface and
compatibility of the on-disk structure. Since only spe­
cialized applications use knowledge of the on-disk
structure and maintaining compatibility at the inter­
face level is a feature of the Open VMS system, the
Spiralog file system preserves compatibility at the file
system interface level only. In the section Files-11 and
the Spiralog File System On-disk Structures, we give
an overview of the major on-disk differences between
the two file systems.

The level of interface compatibility would have a
large impact on how well users adopted the Spiralog
file system. If data and applications could be moved to
a Spiralog volume and run unchanged, the file system
would be better accepted. The goal for the Spiralog
file system was to achieve 100 percent interface com­
patibility for the majority of existing applications. The
implementation of a log-structured file system, how­
ever, meant that certain features and operations of the
Files-11 file system could not be supported.

The Open VMS operating system provides a number
of file system interfaces that are called by applications.
This section describes how we chose the most compat­
ible file system interface. The OpenVMS operating
system directly supports a system-level call interface
(QIO) to the file system, which is an extremely com­
plex interface.5 The QIO interface is very specific to
the OpenVMS system and is difficult to map directly
onto a modern file system interface. This interface is
used infrequently by applications but is used exten­
sively by Open VMS utilities.

Open VMS File System Environment
This section gives an overview of the general
OpenVMS file system environment, and the existing

Open VMS and the new Spiralog file system interfaces.
To emulate the Files-11 file system, it was important to
understand the way it is used by applications in the
Open VMS environment. A brief description of the
Files-11 and the Spiralog file system interfaces gives an
indication of the problems in mapping one interface
onto the other. These problems are discussed later in
the section Compatibility Problems.

In the OpenVMS environment, applications inter­
act with the file system through various interfaces,
ranging from high-level language interfaces to direct
file system calls. Figure l shows the organization of
interfaces within the Open VMS environment, includ­
ing both the Spiralog and the Files-11 file systems.

The following briefly describes the levels ofinterface
to the file system.

• High-level language (HLL) libraries. HLL libraries
provide file system functions for high-level
languages such as the Standard C library and
FORTRAN I/0 functions.

• OpenVMS language-specific libraries. These
libraries offer OpenVMS-specific file system func­
tions at a high level. For example, lib$create_dir()
creates a new directory with specific OpenVMS
security attributes such as ownership.

• Record Management Services. The OpenVMS
Record Management Services (RMS) are a set of
complex routines that form part of the Open VMS
kernel. These routines are primarily used to access
structured data within a file. However, there are
also routines at the file level, for example, open,
close, delete, and rename. The RMS parsing rou­
tines for file search and open give the Open VMS
operating system a consistent syntax for file names.
These routines also provide file name parsing oper­
ations for higher level libraries. RMS calls to the file
system are treated in the same way as direct applica­
tion calls to the file system.

APPLICATIONS

Figure 1

HIGH-LEVEL LANGUAGE
LIBRARIES, e.g., C LIBRARY

OPENVMS LANGUAGE­
SPECIFIC LIBRARIES

RECORD MANAGEMENT SERVICES - SYSTEM CALLS

OPENVMS FILE SYSTEM INTERFACE - SYSTEM CALLS (010)

FILES-11 FILE SYSTEM
EMULATION LAYER

SPIRALOG FILE SYSTEM

FILES-11 FILE SYSTEM

The Open VMS File System Environment

Digital Technical Journal Vol. 8 No. 2 1996 47

48

• Files-11 file system interface. The Open VMS oper­
ating system has traditionally provided the Files-11
file system for applications. It provides a low-level
file system interface so that applications can request
file system operations from the kernel.

Each file system call can be composed of multiple
subcalls. These subcalls can be combined in numer­
ous permutations to form a complex file system
operation. The number of permutations of calls and
subcalls makes the file system interface extremely
difficult to understand and use.

• File system emulation layer. This layer provides
a compatible interface between the Spiralog file
system and existing applications. Calls to export
the new features available in the Spiralog file system
are also included in this layer. An important new
feature, the write-behind cache, is described in the
section Overview of Caching.

• The Spiralog file system interface. The Spiralog
file system provides a generic file system interface.
This interface was designed to provide a superset
of the features that are typically available in file sys­
tems used in the UNIX operating system. File
system emulation layers, such as the one written for
Files-11, could also be written for many different
file systems.6 Features that could not be provided
generically, for example, the implementation of
security policies, are implemented in the file system
emulation layer.

The Spiralog file system's interface is based on the
Virtual File System (VFS), which provides a file
system interface similar to those found on UNIX
systems.7 Functions available are at a higher level
than the Files-11 file system interface. For example,
an atomic rename function is provided.

Files-11 and the Spiralog File System
On-disk Structures
A major difference between the Files-11 and the
Spiralog file systems is the way data is laid out on
the disk. The Files-11 system is a conventional,
update-in-place file system.8 Here, space is reserved for
file data, and updates to that data are written back to
the same location on the disk. Given this knowledge,
applications could place data on Files-11 volumes to
take advantage of the disk's geometry. For example,
the Files-11 file system allows applications to place files
on cylinder boundaries to reduce seek times.

The Spiralog file system is a log-structured file
system (LFS). The entire volume is treated as a con­
tinuous log with updates to files being appended to
the tail of the log. In effect, files do not have a fixed
home location on a volume. Updates to files, or cleaner
activity, will change the location of data on a volume.
Applications do not have to be concerned where their
data is placed on the disk; LFS provides this mapping.

Digital Technical Journal Vol. 8 No. 2 1996

With the advent of modern disks in the last decade,
the exact placement of data has become much less crit­
ical. Modern disks frequently return geometry infor­
mation that does not reflect the exact geometry of
the disk. This nullifies any advantage that exact place­
ment on the disk offers to applications. Fortunately,
with the Files-11 file system, the use of exact file place­
ment is considered a hint to the file system and can be
safely ignored.

Interface Decision
Many features of the Spiralog file system and the
Files-11 file system are not directly compatible. To
enable existing applications to use the Spiralog file
system, a suitable file system interface had to be
selected and emulated. The file system emulation layer
would need to hook into an existing kernel-level file
system interface to provide existing applications with
access to the Spiralog file system.

Analysis of existing applications showed that the
majority of file system calls came through the RMS
interface. This provides a functionally simpler interface
onto the lower level Files-11 interface. Most applica­
tions on the Open VMS operating system use the RMS
interface, either directly or through HLL libraries, to
access the file system.

Few applications make direct calls to the low-level
Files-11 interface. Calls to this interface are typically
made by RMS and Open VMS utilities that provide
a simplified interface to the file system. RMS supports
file access routines, and Open VMS utilities support
modification of file metadata, for example, security
information. Although few in number, those applica­
tions that do call the Files-11 file system directly are
significant ones. If the only interface supported was
RMS, then these utilities, such as SET FILE and
OpenVMS Backup, would need significant modifica­
tion. This class of utilities represents a large number of
the OpenVMS utilities that maintain the file system.

To provide support for the widest range of applica­
tions, we selected the low-level Files-11 interface for
use by the file system emulation layer. By selecting this
interface, we decreased the amount of work needed
for its emulation. However, this gain was offset by the
increased complexity in the interface emulation.

Problems caused by this interface selection are
described in the next section.

Interface Compatibility
Once the file system interface was selected, choices
had to be made about the level of support provided by
the emulation layer. Due to the nature of the log­
structured file system, described in the section Files-11
and the Spiralog File System On-disk Structures, full
compatibility of all features in the emulation layer was
not possible. This section discusses some of the deci­
sions made concerning interface compatibility.

An initial decision was made to support docu­
mented low-level Files-11 calls through the emula­
tion layer as often as possible. This would enable all
well-behaved applications to run unchanged on the
Spiralog file system. Examples of well-behaved appli­
cations are those that make use of HLL library calls.
The following categories of access to the file system
would not be supported:

• Those directly accessing the disk without going
through the file system

• Those making use of specific on-disk structure
information

• Those making use of undocumented file system
features

A very small number of applications fell into these
categories. Examples of applications that make use of
on-disk structure knowledge are the Open VMS boot
code, disk structure analyzers, and disk defragmenters.

The majority of Open VMS applications make file
system calls through the RMS interface. Using file sys­
tem call-tracing techniques, described in the section
Investigation Techniques, a full set of file system calls
made by RMS could be constructed. After analysis of
this trace data, it was clear that RMS used a small set
of well-structured calls to the low-level file system
interface. Further, detailed analysis of these calls
showed that all RMS operations could be fully emu­
lated on the Spiralog file system.

The support of Open VMS file system utilities that
made direct calls to the low-level Files-11 interface was
important if we were to minimize the amount of code
change required in the Open VMS code base. Analysis
of these utilities showed that the majority of them
could be supported through the emulation layer.

Very few applications made use of features of the
Files-11 file system that could not be emulated. This
enabled a high number of applications to run
unchanged on the Spiralog file system.

Table 1
Categorization of File System Features

Category Examples

Compatibility Problems
This section describes some of the compatibility prob­
lems that we encountered in developing the emulation
layer and how we resolved them.

When considering the compatibility of the Spiralog
file system with the Files-11 file system, we placed the
features of the file system into three categories: sup­
ported, ignored, and not supported. Table 1 gives
examples and descriptions of these categories. A feature
was recategorized only ifit could be supported but was
not used, or if it could not be easily supported but
was used by a wide range of applications.

The majority ofOpenVMS applications make sup­
ported file system calls. These applications will run as
intended on the Spiralog file system. Few applications
make calls that could be safely ignored. These applica­
tions would run successfully but could not make use of
these features. Very few applications made calls that
were not supported. Unfortunately, some of these
applications were very important to the success of the
Spiralog file system, for example, system management
utilities that were optimized for the Files-11 system.

Analysis of applications that made unsupported calls
showed the following categories of use:

• Those that accessed the file header-a structure
used to store a file's attributes. This method was
used to return multiple file attributes in one call.
The supported mechanism involved an individual
call for each attribute.

This was solved by returning an emulated file
header to applications that contained the majority
ofinformation interesting to applications.

• Those reading directory files. This method was used
to perform fast directory scans. The supported
mechanism involved a file system call for each name.

This was solved by providing a bulk directory
reading interface call. This call was similar to the
getdirentries() call on the UNIX system and was

Notes

Supported. The operation requested
was completed, and a success status
was returned.

Requests to create a file or open
a file.

Most calls made by applications
belong in the supported category.

Ignored. The operation requested
was ignored, and a success status
was returned.

Not supported. The operation
requested was ignored, and a
failure status was returned.

A request to place a file in a
specific position on the disk to
improve performance.

A request to directly read the
on-disk structure.

This type of feature is incompatible
with a log-structured file system.
It is very infrequently used and not
available through HLL libraries. It
could be safely ignored.

This type of request is specific to
the Files-11 file system and could
be allowed to fail because the
application would not work on the
Spiralog file system. It is used only
by a few specialized applications.

Digital Technical Journal Vol. 8 No. 2 1996 49

straightforward to replace in applications that
directly read directories.

The OpenVMS Backup utility was an example of
a system management utility that directly read
directory files. The backup utility was changed to
use the directory reading call on Spiralog volumes.

• Those accessing reserved files. The existing file sys­
tem stores all its metadata in normal files that can be
read by applications. These files are called reserved
files and are created when a volume is initialized.

No reserved files are created on a Spiralog volume,
with the exception of the master file directory
(MFD). Applications that read reserved files make
specific use of on-disk structure information and
are not supported with the Spiralog file system. The
MFD is used as the root directory and performs
directory traversals. This file was virtually emulated.
It appears in directory listings of a Spiralog volume
and can be used to start a directory traversal, but it
does not exist on the volume as a real file.

Investigation Techniques
This section describes the approach taken to investi­
gate the interface and compatibility problems
described above. Results from these investigations
were used to determine which features of the Files-11
file system needed to be provided to produce a high
level of compatibility.

The investigation focused on understanding how
applications called the file system and the semantics of
the calls. A number of techniques were used in lieu
of design documentation for applications and the
Files-11 file system. These techniques were also used
to avoid the direct examination of source code.

The following techniques were used to understand
application calls to the file system:

• Tracing file system operations

Tracing file system operations provided a large
amount of data for applications. A modified
Files-1 1 file system was constructed that logged all
file operations on a volume. A full set of regression
tests were then run for the 25 Digital and third­
party products most often layered on the Files-11
file system. The data was then reduced to deter­
mine the type of file system calls made by the
layered products. Analysis of log data showed
that most layered products made file system calls
through HLL libraries or the RMS interface. This
technique is useful where source code is not avail­
able, but full code path coverage is available to con­
struct a full picture of calls and arguments.

• Surveying application maintainers on file system use

Surveying application maintainers was a potentially
useful technique for alerting the other maintainers

50 Digital Technical Journal Vol. 8 No. 2 1996

about the impact of the Spiralog file system. More
than 2,000 surveys were sent out, but fewer than
25 useful results were returned. Sadly, most appli­
cation maintainers were not aware of how their
product used the file system.

• Automated application source code searching

Automated source code searching quickly checks
a large amount of source code. This technique was
most useful when analyzing file system calls made by
the OpenVMS operating system or utilities. How­
ever, this does not work well when applications
make dynamic calls to the file system at run time.

The following techniques were used to understand
the semantics of file system calls:

• Functional analysis of the Files-11 file system

Functional analysis of the Files-11 file system was
one of the most useful techniques adopted. It
avoided the need to reverse-engineer the Files-11
file system. Whenever possible, the Files-11 file sys­
tem was treated as a black box, and its function was
inferred from interface documentation and appli­
cation calls. This technique avoided duplicating
defects in the interface and enabled the design of
the emulation layer to be derived from function,
rather than the existing implementation of the
Files-11 system.

• Test programs to determine call semantics

Test programs were used extensively to isolate spe­
cific application calls to the file system. Individual
calls could be analyzed to determine how they
worked with the Files-11 file system and with the
emulation layer. This technique formed the basis
for an extensive file system interface regression test
suite without requiring the complete application.

Level of Compatibility Achieved
The level of file system compatibility with applications
far exceeded our initial expectations. Table 2 summa­
rizes the results of the regression tests used to verify
compatibility.

Table 2 illustrates that applications that use the C or
the FORTRAN language or the RMS interface to
access the file system can be expected to work
unchanged. Verification with the top 25 Digital lay­
ered products and third-party products shows that
all products that do not make specific use of Files-11
on-disk features run with the Spiralog file system.
With the version 1.0 release of the Spiralog file system,
there are no known compatibility issues.

Providing New Caching Features

The Spiralog file system uses ordered write-back cach­
ing to provide performance benefits for applications.

Table 2
Verification of Compatibility

Test Suite

RMS regression tests

OpenVMS regression tests

Files-11 compatibility tests

C2 security test suite

C language tests

FORTRAN language tests

Number of Tests

-500

-100

-100

-50 discrete tests

-2,000

- 100

Write-back caching provides very different semantics
to the model of write-through caching used on the
Files-11 file system. The goal of the Spiralog project
members was to provide write-back caching
in a way that was compatible with existing Open VMS
applications.

This section compares write-through and write-back
caching and shows how some important Open VMS
applications rely on write-through semantics to pro­
tect data from system failure. It describes the ordered
write-back cache as introduced in the Echo file system
and explains how this model of caching (known as
write-behind caching) is particularly suited to the envi­
ronment of OpenVMS Cluster systems and the
Spiralog log-structured file system.

Overview of Caching
During the last few years, CPU performance improve­
ments have continued to outpace performance
improvements for disks. As a result, the I/0 bottle­
neck has worsened rather than improved. One of
the most successful techniques used to alleviate this
problem is caching. Caching means holding a copy of
data that has been recently read from, or written to,
the disk in memory, giving applications access to that
data at memory speeds rather than at disk speeds.

Write-through and write-back caching are two
different models frequently used in file systems.

• Write-through caching. In a write-through cache,
data read from the disk is stored in the in-memory
cache. When data is written, a copy is placed in
the cache, but the write request does not return
until the data is on the disk. Write-through caches
improve the performance of read requests but not
write requests.

• Write-back caching. A write-back cache improves
the performance of both read and write requests.
Reads are handled exactly as in a write-through

Result

All passed.

All passed.

All passed.

All passed, giving the Spira log
file system the same potential
security rating as the Files-11
system.

All passed.

All passed.

cache. This time though, a write request returns as
soon as the data has been copied to the cache; some
time later, the data is written to the disk. This
method allows both read and write requests to
operate at main memory speeds. The cache can also
amalgamate write requests that supersede one
another. By deferring and amalgamating write
requests, a write-back cache can issue many fewer
write requests to the disk, using less disk bandwidth
and smoothing the write pattern over time.

Figure 2 shows the write-through and write-back
caching models. The Spiralog file system makes exten­
sive use of caching, providing both write-through and
write-back models. The use of write-back caching
allows the Spiralog file system to amalgamate writes,
thus conserving disk bandwidth. This is especially
important in an Open VMS Cluster system where disk
bandwidth is shared by several computers. The
Spiralog file system attempts to amalgamate not just
data writes but also file system operations. For example,
many compilers create temporary files that are deleted
at the end of the compilation. With write-back caching,
it is possible that this type of file may be created and
deleted without ever being written to the disk.

There are two disadvantages of write-back caching:
(1) if the system fails, any write requests that have
not been written to the disk are lost, and (2) once in
the cache, any ordering of the write requests is lost.
The data may be written from the cache to the disk in
a completely different order than the order in which
the application issued the write requests. To preserve
data integrity, some applications rely on write ordering
and the use of careful write techniques. (Careful writ­
ing is discussed further in the section below.) The
Spiralog file system preserves data integrity by provid­
ing an ordered write-back cache known as a write­
behind cache.

Digital Technical Journal Vol. 8 No. 2 1996 51

52

NO CACHE

I I
MILLISECONDS' -9

~ -· ~----Er
MILLISECONDS

Figure 2
Caching Models

WRITE-THROUGH
CACHE

D

D

MICROSECONDS

WRITE-BACK
CACHE

D

D

MICROSECONDS

Caching is more important to the Spiralog file
system than it is to conventional file systems. Log­
structured file systems have inherently worse read
performance than conventional, update-in-place file
systems, due to the need to locate the data in the log.
As described in another paper in this journal, locating
data in the log requires more disk I/Os than an
update-in-place file system. 2 The Spiralog file system
uses large read caches to offset this extra read cost.

Careful Writing
The Files-11 file system provides write-tl1rough
semantics. Key Open VMS applications such as transac­
tion processing and the OpenVMS Record Manage­
ment Services (RMS) have come to rely on the implicit
ordering of write-through. They use a technique
known as careful writing to prevent data corruption
following a system failure.

Careful writing allows an application to ensure that
the data on the disk is never in an inconsistent or
invalid state. This guarantee avoids situations in which
an application has to scan and possibly rebuild the data
on the disk after a system failure. Recovery to a consis­
tent state after a system failure is often a very complex
and time-consuming task. By ensuring that the disk
can never be inconsistent, careful writing removes the
need for this form of recovery.

Careful writing is used in situations in which an
update requires several blocks on the disk to be written.

Digital Technical Journal Vol. 8 No. 2 1996

D
CACHE

MILLISECONDS \

D ._____,_________. - •. a
CACHE LJ

Most disks guarantee atomic update of only a single
disk block. The occurrence of a system failure while
several blocks are being updated could leave the blocks
partially updated and inconsistent. Careful writing
avoids this risk by defining the order in which the
blocks should be updated on the disk. If the blocks are
written in this order, the data will always be consistent.

For example, the file shown in Figure 3 represents
a persistent data structure. At the start of the file is an
index block, I, that points to two data blocks within
the file, A and B. The application wishes to update the
data (A, B) to the new data (A' , B'). For the file to be
valid, the index must point to a consistent set of data
blocks. So, the index must point either to (A, B) or to
(A', B'). It cannot point to a mixture such as (A', B).
Since the disk can guarantee to write only a single
block atomically, the application cannot simply write
(A' , B') on top of(A, B) because that involves writing
two blocks. Should the system fail during the updates,
doing so could leave the data in an invalid state.

To solve this problem, the application writes the
new data to the file in a specific order. First, it writes
the new data (A', B') to a new section of the file, wait­
ing until the data is written to the disk. Once (A' , B')
are known to be on the disk, it atomically updates the
index block to point to the new data. The old blocks
(A, B) are now obsolete, and the space they consume
can be reused. During the update, the file is never in
an inconsistent state.

I
I
I A I B I

f t
START

I
I
I A I B I

f t

j
.....,,........ _____ __......,..,.. __ _A_' _B_' ..._ _____ I w11TE (A', B'I

WAIT UNTIL ON-DISK

i
A' B'

A I B I I WRITE(I')

---~------------.--t~t--~- i

Figure 3
Example of a Careful Write

Write-behind Caching
A careful write policy relies totally on being able to
control the order of writes to the disk. This cannot be
achieved on a write-back cache because the write-back
method does not preserve the order of write requests.
Reordering writes in a write-back cache would risk cor­
rupting the data that applications using careful writing
were seeking to protect. This is unfortunate because
the performance benefits of deferring the write to the
disk are compatible with a careful write policy. Careful
writing does not need to know when the data is written
to the disk, only the order it is written.

To allow these applications to gain the performance
of the write-back cache but still protect their data on
disk, the Spiralog file system uses a variation on write­
back caching known as write-behind caching. Intro­
duced in the Echo file system, write-behind caching is
essentially write-back caching with ordering guaran­
tees.4 The cache allows the application to specify which
writes must be ordered and the order in which they
must be written to the disk.

This is achieved by providing the barrier primitive to
applications. Barrier defines an order or dependency
between write operations. For example, consider the
diagram in Figure 4: Here, writes are represented as
a time-ordered queue, with later writes being added

TIME----

BARRIER

Figure 4
Barrier Insertion in Write Queue

WAIT UNTIL ON-DISK

to the tail. In the example, the application issues
the writes in the order 1,2,3,4. Without a barrier, the
cache could write the data to the disk in any order (for
example, 1,3,4,2). If a barrier is placed in the write
queue, it specifies to the cache that all writes prior to
the barrier must be written to the disk before (or
atomically with) any write requests after it. In the
example, if a barrier is placed after the second write,
the cache file system guarantees that writes 1 and 2 will
be written to the disk before writes 3 and 4. Writes 1
and 2 may still be written in any order, as could writes
3 and 4, but 3 and 4 will be written after 1 and 2.

A careful write policy can easily be implemented on
a write-behind cache. As shown in Figure 5, the appli­
cation would use barriers to control the write order­
ing. Two barriers are required. The first (Bl) comes
after the writes of the new data (A', B'). The second
(B2) is placed after the index update I'. B 1 is required
to ensure that the new data is on the disk before the
index block is updated. B2 ensures that the index
block is updated before any subsequent write requests.

The use of barriers avoids the need to wait for I/Os
to reach the disk, improving CPU utilization. In addi­
tion, the Spiralog file system allows amalgamation
of superseding writes between barriers, reducing
the number of requests being written to the disk.

NO BARRIER

BARRIER AFTER
SECOND WRITE

Digital Technical Journal Vol. 8 No. 2 1996 53

A I B I START

t t l
1 1 _! ___,...............,.. _._! A_' ! _e· __ ___.! wi lTE (A', B'l

I +
A I B I
f t

BARRIER 81

A I B I
!

, I _____ _._ _ _.___.__ _ __.__A.,..' B_' ... ! _____ ! WilTE (I')

t t +

Figure 5
Example ofa Careful Write Using Barrier

Internally, the Spiralog file system allows barriers to be
placed between any two write operations, even if they
are to different files. The Spiralog file system uses this
to build its own careful write policy for all changes
to files, including metadata changes. This guarantees
that the file system is always consistent and gives write­
back performance on changes to file metadata as well
as data. One major advantage is that the Spiralog file
system does not require a disk repair utility such as the
UNIX system's fsck to rebuild the file system following
a system failure.

Barriers are used internally in several places to pre­
serve the order of updates to the file system metadata.
For example, when a file is extended, the allocation of
new blocks must be written to the disk before any
subsequent data writes to the newly allocated region.
A barrier is placed immediately after the write request
to update the file length.

Barriers are also used during complex file operations
such as a file create. These complex operations fre­
quently update shared resources such as parent direc­
tories. The barriers prevent updates to these shared
objects, avoiding the risk of corruption due to the
updates being reordered by the cache.

At the application level, the Spiralog file system pro­
vides the barrier function only within a file. It is not
possible to order writes between files. This was suffi­
cient to allow RMS (described in the section Open VMS
File System Environment) to exploit the performance
of write-behind caching on most of its file organiza­
tions. RMS was enhanced to use barriers in its own
careful write policy, which ensures the consistency of
complex file organizations, such as indexed files, even
when they are subject to write-behind caching. Since
the majority of Open VMS applications access the file
system through RMS, gaining write-behind caching
on all RMS file organizations provides a significant
performance benefit to applications.

54 Digital Technical Journal Vol. 8 No. 2 1996

BARRIER 82

Internally, the Spiralog file system supports barriers
between files. The decision to support barriers within
a file was made to limit the complexity of interface
changes, in the belief that a cross-file barrier was of
little use to RMS. In retrospect, this proved to be
wrong. Some key RMS file organizations use secondary
files to hold journal records for the main application
file. These file organizations cannot express the order
in which updates to the two files should reach the disk,
and so are precluded from using write-behind caching.

Application-level Caching Policies
The main problem with the barrier primitive is its
requirement that the application express the depen­
dencies to the file system. Although this is unavoid­
able, it means that the application has to change if
it wishes to safely exploit write-behind caching. Clearly,
many applications were not going to make these
changes. In addition, some applications have on-disk
consistency requirements that tie them to a write­
through environment.

The file system emulation layer provides additional
support for these types of applications by exposing
three caching policies to applications. The policies are
stored as permanent attributes of the file. By default,
when the file is opened by the file system, the perma­
nent caching policy is used on all write requests.

The three policies are described as follows:

1. Write-through caching policy. This policy provides
applications with the standard write-through beha­
vior provided by the Files-11 file system. Each write
request is flushed to the disk before the application
request returns. If an application needs to know
what data is on the disk at all times, it should use
write-through caching.

2. Write-behind caching policy. A pure write-behind
cache provides the highest level of performance.
Dirty data is not flushed to the disk when the fi le is

closed. The semantics of full write-behind caching
are best suited to applications that can easily regen­
erate lost data at any time. Temporary files from a
compiler are a good example. Should the system
fail, the compilation can be restarted without any
loss of data.

3. Flush-on-close caching policy. The flush-on-close
policy provides a restricted level of write-behind
caching for applications. Here, all updates to the file
are treated as write behind, but when the file is
closed, all changes are forced to the disk. This gives
the performance of write-behind but, in addition,
provides a known point when the data is on the disk.
This form of caching is particularly suitable for appli­
cations that can easily re-create data in the event of
a system crash but need to know that data is on the
disk at a specific time. For example, a mail store-and­
forward system receiving an incoming message must
know the data is on the disk when it acknowledges
receipt of the message to the forwarder. Once the
acknowledgment is sent, the message has been for­
mally passed on, and the forwarder may delete its
copy. In this example, the data need not be on the
disk until that acknowledgment is sent, because that
is the point at which the message receipt is commit­
ted. Should the system fail before the acknowledg­
ment is sent, all dirty data in the cache would be lost.
In that event, the sender can easily re-create the data
by sending the message again.

Figure 6 shows the results of a performance com­
parison of the three caching policies. The test was run
on a dual-CPU DEC 7000 Alpha system with 384
megabytes of memory on a RAID-5 disk. The test
repeated the following sequence for the different file
sizes.

1. Create and open a file of the required size and set
its caching policy.

2. Write data to the whole file in 1,024-byte I/Os.

3. Close the file.

4. Delete the file.

With small files, the number of file operations (create,
close, delete) dominates. The leftmost side of the
graph therefore shows the time per operation for file
operations. With time, the files increase in size, and the
data I/Os become prevalent. Hence, the rightmost
side of Figure 6 is displaying the time per operation for
data I/Os.

Figure 6 clearly shows that an ordered write-behind
cache provides the highest performance of the three
caching models. For file operations, the write-behind
cache is almost 30 percent faster than the write­
through cache. Data operations are approximately
three times faster than the corresponding operation
with write-through caching.

ui
0.156

0
z 0.138

0 0.121 C)
UJ

~ 0.104
z
0 0.086 ~
cl:
a: 0.069

\ · ..
\ ...

\

\\ \········ ...
\

\
UJ ' ······ ·················· ··· ··· 0..

0.052 0
a:
UJ 0.035 0..
UJ

0.017 ::i:
~

0.000

\

' ' ' ', ...

1,024 2,048 4,096 8,192 16,384 32,768

FILE SIZE (BYTES)

KEY:

WRITE-BEHIND CACHE

FLUSH-ON-CLOSE CACHE

WRITE-THROUGH CACHE

Figure 6
Performance Comparison of Caching Policies

Summary and Conclusions

The task of integrating a log-structured file system
into the Open VMS environment was a significant
challenge for the Spiralog project members. Our
approach of carefully determining the interface to
emulate and the level of compatibility was important
to ensure that the majority of applications worked
unchanged.

We have shown that an existing update-in-place file
system can be replaced by a log-structured file system.
Initial effort in the analysis of application usage fur­
nished information on interface compatibility. Most
file system operations can be provided through a file
system emulation layer. Where necessary, new inter­
faces were provided for applications to replace their
direct knowledge of the Files-11 file system.

File system operation tracing and functional analysis
of the Files-11 file system proved to be the most useful
techniques to establish interface compatibility. Appli­
cation compatibility far exceeds the level expected
when the project was started. A majority of people use
the Spiralog file system volumes without noticing any
change in their application's behavior.

Careful write policies rely on the order of updates
to the disk. Since write-back caches reorder write
requests, applications using careful writing have been
unable to take advantage of the significant improve­
ments in write performance given by write-back
caching. The Spiralog file system solves this problem
by providing ordered write-back caching, known as
write-behind. The write-behind cache allows applica­
tions to control the order of writes to the disk through
a primitive called barrier.

Using barriers, applications can build careful write
policies on top of a write-behind cache, gaining all the
performance of write-back caching without risking

Digital Technical Journal Vol. 8 No. 2 1996 55

data integrity. A write-behind cache also allows the file
system itself to gain write-back performance on all
file system operations. Since many file system opera­
tions are themselves quickly superseded, using write­
behind caching prevents many file system operations
from ever reaching the disk. Barriers also allow the file
system to protect the on-disk file system consistency
by implementing its own careful write policy, avoiding
the need for disk repair utilities.

The barrier primitive provided a way to get write­
through semantics within a file for those applications
relying on careful write policies. Changing RMS to use
the barrier primitive allowed the Spiralog file system
to support write-behind caching as the default policy
on all file types in the Open VMS environment.

Acknowledgments

The development of the Spiralog file system involved
the help and support of many individuals. We would
like to acknowledge Ian Pattison, in particular, who
developed the Spiralog cache. We also want to thank
Cathy Foley and Jim Johnson for their help through­
out the project, and Karen Howell, Morag Currie, and
all those who helped with this paper. Finally, we are
very grateful to Andy Goldstein, Stu Davidson, and
Tom Speer for their help and advice with the Spiralog
integration work.

References

1. J. Johnson and W. Laing, "Overview of the Spiralog File
System," Digital Technical Journal, vol. 8, no. 2
(1996, this issue): 5-14.

2. C. Whitaker, S. Bayley, and R. Widdowson, "Design of the
Server for the Spiralog File System," Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 15-31.

3. R. Green, A. Baird, and J. Davies, "Designing a Fast,
On-line Backup System for a Log-structured File Sys­
tem," Digital Technical Journal, vol. 8, no. 2 (1996,
this issue): 32-45.

4. A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart,
"The Echo Distributed File System," Digital Systems
Research Center, Research Report 111 (September
1993).

5. OpenVMS 1/0 User's Reference Manual (Maynard,
Mass.: Digital Equipment Corporation, 1988).

6. R. Goldenberg and S. Saravanan, Open VMS AXP Inter­
nals and Data Structures (Newton, Mass.: Digital
Press, 1994).

7. S. Kleiman, "Vnodes: An Architecture for Multiple File
System Types in Sun UNIX," Proceedings of Summer
USENIX Conference, Atlanta, Ga. (1986): 238-247.

8. K. McCoy, VMS File System Internals (Burlington,
Mass.: Digital Press, 1990).

56 Digital Technical Journal Vol. 8 No. 2 1996

Biographies

Mark A. Howell
Mark Howell is an engineering manager in the Open VMS
Engineering Group in Livingston, U .K. Mark was the proj­
ect leader for Spiralog and wrote some of the product code.
He is now managing the follow-on releases to Spiralog ver­
sion 1.0. In previous projects, Mark contributed to Digital's
DECdtm distributed transaction manager, DECdfs distrib­
uted file system, and the Alpha port of Open VMS. Prior
to joining Digital, Mark worked on flight simulators and
flight software for British Aerospace. Mark received a B.Sc.
(honours) in marine biology and biochemistry from Bangor
University, Wales. He is one of the rare people who still like
interactive fiction (the stuff you have to type, instead of the
stuff you point a mouse at.)

Julian M. Palmer
A senior software engineer, Julian Palmer is a member of
the Open VMS Engineering Group in Livingston, Scotland.
He is currently working on file system caching for Open VMS.
Prior to his work in file systems, Julian contributed to
Open VMS interprocess communication. Julian joined
Digital in 1989 after completing his B.Sc. (honours) in
computer science from Edinburgh University.

Extending OpenVMS
for 64-bit Addressable
Virtual Memory

The OpenVMS operating system recently

extended its 32-bit virtual address space to

exploit the Alpha processor's 64-bit virtual

addressing capacity while ensuring binary

compatibility for 32-bit nonprivileged pro­

grams. This 64-bit technology is now available

both to OpenVMS users and to the operating

system itself. Extending the virtual address

space is a fundamental evolutionary step for

the Open VMS operating system, which has

existed within the bounds of a 32-bit address

space for nearly 20 years. We chose an asym­

metric division of virtual address extension that

allocates the majority of the address space to

applications by minimizing the address space

devoted to the kernel. Significant scaling issues

arose with respect to the kernel that dictated

a different approach to page table residency

within the OpenVMS address space. The paper

discusses key scaling issues, their solutions,

and the resulting layout of the 64-bit virtual

address space.

I
AiichaelS.IIarvey
Leonard S. Szubowicz

The OpenVMS Alpha operating system initially sup­
ported a 32-bit virtual address space that maximized
compatibility for Open VMS VAX users as they ported
their applications from the VAX platform to the Alpha
platform. Providing access to the 64-bit virtual mem­
ory capability defined by the Alpha architecture was
always a goal for the Open VMS operating system. An
early consideration was the eventual use of this tech­
nology to enable a transition from a purely 32-bit­
oriented context to a purely 64-bit-oriented native
context. Open VMS designers recognized that such
a fundamental transition for the operating system,
along with a 32-bit VAX compatibility mode support
environment, would take a long time to implement
and could seriously jeopardize the migration of appli­
cations from the VAX platform to the Alpha platform.
A phased approach was called for, by which the operat­
ing system could evolve over time, allowing for quicker
time-to-market for significant features and better, more
timely support for binary compatibility.

In 1989, a strategy emerged that defined two funda­
mental phases of Open VMS Alpha development. Phase
1 would deliver the Open VMS Alpha operating system
initially with a virtual address space that faithfully repli­
cated address space as it was defined by the VAX archi­
tecture. This familiar 32-bit environment would ease
the migration of applications from the VAX platform
to the Alpha platform and would ease the port of the
operating system itself. Phase 1, the Open VMS Alpha
version 1.0 product, was delivered in 1992.1

For Phase 2, the Open VMS operating system would
successfully exploit the 64-bit virtual address capacity
of the Alpha architecture, laying the groundwork
for further evolution of the OpenVMS system. In
1989, strategists predicted that Phase 2 could be deliv­
ered approximately three years after Phase 1. As
planned, Phase 2 culminated in 1995 with the delivery
of Open VMS Alpha version 7.0, the first version of
the OpenVMS operating system to support 64-bit
virtual addressing.

This paper discusses how the OpenVMS Alpha
Operating System Development group extended the
OpenVMS virtual address space to 64 bits. Topics
covered include compatibility for existing applica­
tions, the options for extending the address space, the

Digital Technical Journal Vol. 8 No. 2 1996 57

strategy for page table residency, and the final layout of
the Open VMS 64-bit virtual address space. In imple­
menting support for 64-bit virtual addresses, design­
ers maximized privileged code compatibility; the paper
presents some key measures taken to this end and pro­
vides a privileged code example. A discussion of the
immediate use of64-bit addressing by the Open VMS
kernel and a summary of the work accomplished con­
clude the paper.

Compatibility Constraints

Growing the virtual address space from a 32-bit to
a 64-bit capacity was subject to one overarching con­
sideration: compatibility. Specifically, any existing non­
privileged program that could execute prior to the
introduction of 64-bit addressing support, even in
binary form, must continue to run correctly and
unmodified under a version of the Open VMS operat­
ing system that supports a 64-bit virtual address space.

In this context, a nonprivileged program is one that
is coded only to stable interfaces that are not allowed
to change from one release of the operating system to

another. In contrast, a privileged pr_ogram is defined
as one that must be linked against the Open VMS
kernel to resolve references to internal interfaces and
data structures that may change as the kernel evolves.

The compatibility constraint dictates that the follow­
ing characteristics of the 32-bit virtual address space
environment, upon which a nonprivileged program
may depend, must continue to appear unchanged. 2

• The lower-addressed half(2 gigabytes [GB]) of vir­
tual address space is defined to be private to a given
process. This process-private space is further divided
into two 1-GB spaces that grow toward each other.

1. The lower 1-GB space is referred to as PO space.
This space is called the program region, where
user programs typically reside while running.

2. The higher 1-GB space is referred to as Pl space.
This space is called the control region and con­
tains the stacks for a given process, process­
permanent code, and various process-specific
control cells.

• The higher-addressed half (2 GB) of virtual address
space is defined to be shared by all processes. This
shared space is where the Open VMS operating sys­
tem kernel resides. Although the VAX architecture
divides this space into a pair of separately named
1-GB regions (SO space and Sl space), the Open VMS
Alpha operating system makes no material distinc­
tion between the two regions and refers to them
collectively as SO/Sl space.

Figure 1 illustrates the 32-bit virtual address space
layout as implemented by the Open VMS Alpha oper­
ating system prior to version 7 .0. 1 An interesting

58 Digital Technical Journal Vol. 8 No. 2 1996

mechanism can be seen in the Alpha implementation
of this address space. The Alpha architecture defines
32-bit load operations such that values (possibly
pointers) are sign extended from bit 31 as they are
loaded into registers.3 This facilitates address calcula­
tions with results that are 64-bit, sign-extended forms
of the original 32-bit pointer values. For all PO or Pl
space addresses, the upper 32 bits of a given pointer in
a register will be written with zeros. For all SO/Sl
space addresses, the upper 32 bits of a given pointer in
a register will be written with ones. Hence, on the
Alpha platform, the 32-bit virtual address space actu­
ally exists as the lowest 2 GB and highest 2 GB of the
entire 64-bit virtual address space. From the perspec­
tive of a program using only 32-bit pointers, these
regions appear to be contiguous, exactly as they
appeared on the VAX platform.

Superset Address Space Options

We considered the following three general options for
extending the address space beyond the current 32-bit
limits. The degree to which each option would relieve
the address space pressure being felt by applications
and the OpenVMS kernel itself varied significantly,
as did the cost ofimplementing each option.

1. Extension of shared space

2. Extension of process-private space

3. Extension of both shared space and process-private
space

The first option considered was to extend the virtual
address boundaries for shared space only. Process­
private space would remain limited to its current size
of2 GB. If processes needed access to a huge amount
of virtual memory, the memory would have to have
been created in shared space where, by definition, all
processes would have access to it. This option's chief
advantage was that no changes were required in the
complex memory management code that specifically
supports process-private space. Choosing this option
would have minimized the time-to-market for deliver­
ing some degree of virtual address extension, however
limited it would be. Avoiding any impact to process­
private space was also its chief disadvantage. By failing
to extend process-private space, this option proved to
be generally unappealing to our customers. In addi­
tion, it was viewed as a makeshift solution that we
would be unable to discard once process-private space
was extended at a future time.

The second option was to extend process-private
space only. This option would have delivered the
highly desirable 64-bit capacity to processes but would
not have extended shared space beyond its current
32-bit boundaries. The option presumed to reduce
the degree of change in the kernel, hence maximizing

/

/
/

/

/
/

/

00000000.00000000 ,..,.. ________ __ /
/

/

PROCESS
PRIVATE
(2GB)

PO SPACE

P1SPACE

00000000.?FFFFFFF P-----------f ../
00000000.80000000 I

I
I

FFFFFFFF.7FFFFFFF
I

UNREACHABLE WITH
32-BIT POINTERS

(264 - 232) BYTES

-----------;
SHARED
SPACE
(2GB)

FFFFFFFF.80000000

SO/S1 SPACE

FFFFFFFF.FFFFFFFF _________ _,

Figure 1
Open VMS Alpha 32-bit Virtual Address Space

privileged code compatibility and ensuring faster time­
to-market. However, analysis of this option showed
that there were enough significant portions of the ker­
nel requiring change that, in practice, very little addi­
tional privileged code compatibility, such as for
drivers, would be achievable. Also, this option did not
address certain important problems that are specific to
shared space, such as limitations on the kernel's capac­
ity to manage ever-larger, very large memory (VLM)
systems in the future.

We decided to pursue the option of a flat, superset
64-bit virtual address space that provided extensions
for both the shared and the process-private portions of
the space that a given process could reference. The
new, extended process-private space, named P2 space,
is adjacent to Pl space and extends toward higher
virtual addressesY The new, extended shared space,
named $2 space, is adjacent to SO/Sl space and
extends toward lower virtual addresses. P2 and S2
spaces grow toward each other.

A remaining design problem was to decide where
P2 and S2 would meet in the address space layout.
A simple approach would split the 64-bit address
space exactly in half, symmetrically scaling up the
design of the 32-bit address space already in place.
(The address space is split in this way by the Digital
UNIX operating system.3) This solution is easy to
explain because, on the one hand, it extends the 32-bit
convention that the most significant address bit can be
treated as a sign bit, indicating whether an address
is private or shared. On the other hand, it allocates
fully one-half the available virtual address space to the

operating system kernel, whether or not this space is
needed in its entirety.

The pressure to grow the address space generally
stems from applications rather than from the operat­
ing system itself. In response, we implemented the
64-bit address space with a boundary that floats
between the process-private and shared portions. The
operating system configures at bootstrap only as much
virtual address space as it needs (never more than
50 percent of the whole). At this point, the boundary
becomes fixed for all processes, with the majority of
the address space available for process-private use.

A floating boundary maximizes the virtual address
space that is available to applications; however, using
the sign bit to distinguish between process-private
pointers and shared-space pointers continues to work
only for 32-bit pointers. The location of the floating
boundary must be used to distinguish between 64-bit
process-private and shared pointers. We believed that
this was a minor trade-off in return for realizing twice
as much process-private address space as would other­
wise have been achieved.

Page Table Residency

While pursuing the 64-bit virtual address space layout,
we grappled with the issue of where the page tables
that map the address space would reside within that
address space. This section discusses the page table
structure that supports the OpenVMS operating sys­
tem, the residency issue, and the method we chose to
resolve this issue.

Digital Technical Journal Vol. 8 No. 2 1996 59

Virtual Address- to- Physical Address Translation
The Alpha architecture allows an implementation to
choose one of the following four page sizes: 8 kilo­
bytes (KB), 16 KB, 32 KB, or 64 KB.3 The architecmre
also defines a multilevel, hierarchical page table struc­
mre for virmal address-to-physical address (VA-to­
PA) translations. All Open VMS Alpha platforms have
implemented a page size of 8 KB and three levels
in this page table structure. Although throughout
this paper we assume a page size of 8 KB and three
levels in the page table hierarchy, no loss of generality
is incurred by this assumption.

Figure 2 illustrates the VA-to-PA translation
sequence using the multilevel page table strucmre.

1. The page table base register (PTBR) is a per-process
pointer to the highest level (Ll) of that process'
page table structure. At the highest level is one
8-KB page (LlPT) that contains 1,024 page table
entries (PTEs) of 8 bytes each. Each PTE at the
highest page table level (that is, each Ll PTE) maps
a page table page at the next lower level in the trans­
lation hierarchy (the L2PTs).

2. The Segment 1 bit field of a given virmal address
is an index into the LlPT that selects a particular
Ll PTE, hence selecting a specific L2PT for the next
stage of the translation.

3. The Segment 2 bit field of the virmal address
then indexes into that L2PT to select an L2PTE,

Figure 2

VIRTUAL
ADDRESS

63 I

SIGN EXTENSION
OF SEGMENT 1

PAGE TABLE
BASE REGISTER

42

SEGMENT 1

L1PT

Virtual Address-to-Physical Address Translation

60 Digital Technical Journal Vol. 8 No. 2 1996

hence selecting a specific L3PT for the next stage
of the translation.

4. The Segment 3 bit field of the virtual address then
indexes into that L3PT to select an L3PTE, hence
selecting a specific 8-KB code or data page.

5. The byte-within-page bit field of the virmal address
then selects a specific byte address in that page.

An Alpha implementation may increase the page
size and/or number of levels in the page table hierar­
chy, thus mapping greater amounts of virmal space up
to the full 64-bit amount. The assumed combination
of8-KB page size and three levels of page table allows
the system to map up to 8 terabytes (TB) (i.e., 1,024
X 1,024 X 1,024 X 8 KB = 8 TB) of virmal memory
for a single process.

To map the entire 8-TB address space available to a
single process requires up to 8 GB of PTEs (i.e., 1,024
X 1,024 X 1,024 X 8 bytes = 8 GB). This fact alone
presents a serious sizing issue for the Open VMS oper­
ating system. The 32-bit page table residency model
that the Open VMS operating system ported from the
VAX platform to the Alpha platform does not have
the capacity to support such large page tables.

Page Tables: 32-bit Residency Model
We stated earlier that materializing a 32-bit virtual
address space as it was defined by the VAX architecture
would ease the effort to port the Open VMS operating

32 31 I I 0 . .
BYTE

: SEGMENT2 SEGMENT3 WITHIN

: PAGE

L2PTs L3PTs DATA PAGES

system from the VAX platform to the Alpha platform.
A concrete example of this relates to page table resi­
dency in virtual memory.

The VAX architecture defines, for a given process,
a PO page table and a Pl page table that map that
process' PO and Pl spaces, respectively.2 The architec­
ture specifies that these page tables are to be located in
SO/Sl shared virtual address space. Thus, the page
tables in virtual memory are accessible regardless of
which process context is currently active on the system.

The Open VMS VAX operating system places a given
process' PO and Pl page tables, along with other per­
process data, in a fixed-size data structure called a bal­
ance slot. An array of such slots exists within SO/Sl
space with each memory-resident process being
assigned to one of these slots.

This page table residency design was ported from
the VAX platform to the Alpha platform.1 The L3PTs
needed to map PO and Pl spaces and the one L2PT
needed to map those L3PTs are all mapped into a bal­
ance slot in SO/Sl space. (To conserve virtual mem­
ory, the process' LlPT is not mapped into SO/Sl
space.) The net effect is illustrated in Figure 3.

The VAX architecture defines a separate, physically
resident system page table (SPT) that maps SO/Sl
space. The SPT was explicitly mapped into SO/Sl
space by the Open VMS operating system on both the
VAX and the Alpha platforms.

Figure 3

BALANCE
SLOTS

:

SLOT

SLOT

SLOT

SLOT

.

SLOT

SLOT

:

Only 2 megabytes (MB) of level 3 PT space is
required to map all of a given process' PO and Pl
spaces. This balance slot design reasonably accommo­
dates a large number of processes, all of whose PO and
Pl page tables simultaneously reside within those
balance slots in SO/Sl shared space.

This design cannot scale to support a 64-bit virtual
address space. Measured in terms of gigabytes per
process, the page tables required to map such an enor­
mous address space are too big for the balance slots,
which are constrained to exist inside the 2-GB SO/Sl
space. The designers had to find another approach for
page table residency.

Self-mapping the Page Tables
Recall from earlier discussion that on today's Alpha
implementations, the page size is 8 KB, three levels of
translation exist within the hierarchical page table struc­
ture, and each page table page contains 1,024 PTEs.
Each LlPTE maps 8 GB of virtual memory. Eight giga­
bytes of PT space allows all 8 TB of virtual memory that
this implementation can materialize to be mapped.

An elegant approach to mapping a process' page
tables into virtual memory is to self-map them. A sin­
gle PTE in the highest-level page table page is set to
map that page table page. That is, the selected LlPTE
contains the page frame number of the level 1 page
table page that contains that LlPTE.

PROCESS
HEADER

PROCESS-PRIVATE
L2PT

PO PAGE TABLE
(L3PTs)

P1 PAGE TABLE
(L3PTs)

t

SIZED AT
BOOTSTRAP

ARROWS INDICATE
DIRECTION OF GROWTH

32-bit Page Tables in SO/SI Space (Prior to Open VMS Alpha Version 7.0)

Digital Technical Journal Vol. 8 No. 2 1996 61

The effect of this self-mapping on the VA-to-PA
translation sequence (shown in Figure 2) is subtle but
important.

• For those virtual addresses with a Segment 1 bit
field value that selects the self-mapper LlPTE, step
2 of the VA-to- PA translation sequence reselects
the LlPT as the effective L2PT (L2PT') for the
next stage of the translation.

• Step 3 indexes into L2PT' (the LlPT) using the
Segment 2 bit field value to select an L3PT'.

• Step 4 indexes into L3PT' (an L2PT) using the
Segment 3 bit field value to select a specific data
page.

• Step 5 indexes into that data page (an L3 PT) using
the byte-within-page bit field of the virtual address
to select a specific byte address within that page.

When step 5 of the VA-to-PA translation sequence
is finished, the final page being accessed is itself one of
the level 3 page table pages, not a page that is mapped

PTBR

L1PT'S PFN -· ••

KEY:

..

PTE #102

UPT

.

2 UPT'S PFN

PTBR
PFN
PTE

PAGE TABLE BASE REGISTER
PAGE FRAME NUMBER
PAGE TABLE ENTRY

Figure4
Effect of Page Table Self-map

62 Digital Technical Journal Vol. 8 No. 2 1996

by a level 3 page table page. The self-map operation
places the entire 8-GB page table structure at the end
of the VA-to-PA translation sequence for a specific
8-GB portion of the process' address space. This vir­
tual space that contains all of a process' potential page
tables is called page table space (PT space).6

Figure 4 depicts the effect of self-mapping the page
tables. On the left is the highest-level page table
page containing a fixed number of PTEs. On the right
is the virtual address space that is mapped by that page
table page. The mapped address space consists of a col­
lection of identically sized, contiguous address range
sections, each one mapped by a PTE in the corre­
sponding position in the highest-level page table page.
(For clarity, lower levels of the page table structure are
omitted from the figure.)

Notice that LlPTE #1022 in Figure 4 was chosen to
map the high-level page table page that contains that
PTE. (The reason for this particular choice will
be explained in the next section. Theoretically, any one

64-BIT ADDRESSABLE
VIRTUAL ADDRESS SPACE

PO/P1

l
00000000.00000000

8-GB#O

t--------t

t--------t

l ·-68'1

1,020 x8GB

PT SPACE l 8-GB '1022

t-- _-_-_ -S--O-{S--l-------t l :,::::FFFFFFFF

of the LlPTEs could have been chosen as the self­
mapper.) The section of virtual memory mapped by
the chosen LlPTE contains the entire set of page
tables needed to map the available address space of
a given process. This section of virtual memory is PT
space, which is depicted on the right side of Figure 4
in the l,022d 8-GB section in the materialized virtual
address space.

The base address for this PT space incorporates the
index of the chosen self-mapper LlPTE (1,022
3FE(l6)) as follows (see Figure 2):

Segment 1 bit field = 3FE
Segment 2 bit field= 0
Segment 3 bit field = 0
Byte within page = 0,

which result in

VA= FFFFFFFC.00000000
(also known as PT_Base).

Figure 5 illustrates the exact contents of PT space
for a given process. One can observe the positional
effect of choosing a particular high-level PTE to self­
map the page tables even within PT space. In Figure 4,
the choice of PTE for self-mapping not only places PT
space as a whole in the l,022d 8-GB section in virtual
memory but also means that

• The l,022d grouping of the lowest-level page
tables (L3PTs) within PT space is actually the col­
lection of next-higher-level PTs (L2PTs) that map
the other groupings ofL3PTs, beginning at

Segment 1 bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 bit field = 0
Byte within page = 0,

which result in

VA= FFFFFFFD.FFOOOOOO
(also known as L2_Base).

• Within that block of L2PTs, the l ,022d L2PT is
actually the next-higher-level page table that maps
the L2PTs, namely, the LlPT. The LlPT begins at

Segment 1 bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 bit field = 3FE
Byte within page = 0,

which result in

VA= FFFFFFFD.FF7FCOOO
(also known as Ll_Base).

• Within that LlPT, the l,022d PTE is the one used
for self-mapping these page tables. The address of
the self-mapper LlPTE is

NEXT-LOWER 8 GB

Figure 5
Page Table Space

PAGE TABLE
SPACE (BGB)

PT_BASE:

f ,.~rnm

1--------t

1,021 x (1,024 L3PTs)

L2_BASE: ,_:_::_:_::_~~-~
2
(:;_~-~-~:_::_: __ : f 1.024 L2PTs

L1_BASE: L1PT
- -- -- - -- - -- -- - - -- -----

L2PT

f •~rnns

-------NEXT·HIGHER 8 GB

Digital Technical Journal Vol. 8 No. 2 1996 63

Segment 1 bit field = 3FE
Segment 2 bit field = 3FE
Segment 3 bit field = 3FE
Byte within page= 3FE X 8

which result in

VA= FFFFFFFD.FF7FDFFO.

This positional correspondence within PT space is pre­
served should a different high-level PTE be chosen for
self-mapping the page tables.

The properties inherent in this self-mapped page
table are compelling.

• The amount of virtual memory reserved is exactly
the amount required for mapping the page tables,
regardless of page size or page table depth.
Consider the segment-numbered bit fields of a
given virtual address from Figure 2. Concatenated,
these bit fields constitute the virtual page number
(VPN) portion of a given virtual address.

The total size of the PT space needed to map every
VPN is the number of possible VPNs times 8 bytes,
the size of a PTE. The total size of the address
space mapped by that PT space is the number of
possible VPNs times the page size. Factoring
out the VPN multiplier, the difference between
these is the page size divided by 8, which is exactly
the size of the Segment 1 bit field in the vir­
tual address. Hence, all the space mapped by a
single PTE at the highest level of page table is
exactly the size required for mapping all the PTEs
that could ever be needed to map the process'
address space.

• The mapping of PT space involves simply choos­
ing one of the highest-level PTEs and forcing it to
self-map.

• No additional system tuning or coding is required
to accommodate a more widely implemented
virtual address width in PT space. By definition of
the self-map effect, the exact amount of virtual
address space required will be available, no more
and no less.

• It is easy to locate a given PTE. The address of
a PTE becomes an efficient function of the address
that the PTE maps. The function first clears
the byte-within-page bit field of the subject vir­
tual address and then shifts the remaining virtual
address bits such that the Segments 1, 2, and 3 bit
field values (Figure 2) now reside in the corre­
sponding next-lower bit field positions. The func­
tion then writes (and sign extends if necessary)
the vacated Segment 1 field with the index of
the self-mapper PTE. The result is the address
of the PTE that maps the original virtual address.
Note that this algorithm also works for addresses

64 Digital Technical Journal Vol. 8 No. 2 1996

within PT space, including that of the self-mapper
PTE itself.

• Process page table residency in virtual memory is
achieved without imposing on the capacity of
shared space. That is, there is no longer a need to
map the process page tables into shared space. Such
a mapping would be redundant and wasteful.

OpenVMS 64-bit Virtual Address Space

With this page table residency strategy in hand, it
became possible to finalize a 64-bit virtual address lay­
out for the Open VMS operating system. A self-mapper
PTE had to be chosen. Consider again the highest level
of page table in a given process' page table structure
(Figure 4). The first PTE in that page table maps a sec­
tion of virtual memory that includes PO and Pl spaces.
This PTE was therefore unavailable for use as a self­
mapper. The last PTE in that page table maps a section
of virtual memory that includes SO/Sl space. This PTE
was also unavailable for self-mapping purposes.

All the intervening high-level PTEs were potential
choices for self-mapping the page tables. To maximize
the size of process-private space, the correct choice
is the next-lower PTE than the one that maps the low­
est address in shared space.

This choice is implemented as a boot-time algo­
rithm. Bootstrap code first determines the size
required for OpenVMS shared space, calculating the
corresponding number of high-level PTEs. A suffi­
cient number of PTEs to map that shared space are
allocated later from the high-order end of a given
process' highest-level page table page. Then the next­
lower PTE is allocated for self-mapping that process'
page tables. All remaining lower-ordered PTEs are left
available for mapping process-private space. In prac­
tice, nearly all the PTEs are available, which means that
on today's systems, almost 8 TB of process-private vir­
tual memory is available to a given Open VMS process.

Figure 6 presents the final 64-bit Open VMS virtual
address space layout. The portion with the lower
addresses is entirely process-private. The higher­
addressed portion is shared by all process address
spaces. PT space is a region of virtual memory that lies
between the P2 and S2 spaces for any given process
and at the same virtual address for all processes.

Note that PT space itself consists of a process-private
and a shared portion. Again, consider Figure 5. The
highest-level page table page, LlPT, is process-private.
It is pointed to by the PTBR. (When a process' context
is loaded, or made active, the process' PTBR value is
loaded from the process' hardware-privileged context
block into the PTBR register, thereby making current
the page table structure pointed to by that PTBR and
the process-private address space that it maps.)

/ / ,,
/

00000000.00000000

00000000. 7FFFFFF
00000000.80000000

F

:;;:;;

, I
' I

I I

/ I

PO SPACE

P1 SPACE

P2 SPACE :::::::

/ /
/

/ ~
>- /

/ /

-; >-
/

v

----,
/

/
/

>-
r, v

----,
/

/
/

'"";
r,

:::b: PAGE TABLE SPACE ::::::: -- /

PROCESS-PRIVATE

/~0
/ <:,:f3

-~ I, 0«;
~<?-0 ------------------ -'< ---

SHARED SPACE

:;; b:

F FFFFFFFF.7FFFFFF

FFFFFFFF.80000000

82 SPACE :;;-:;

S0/81 SPACE
FFFFFFFF.FFFFFFF F

Note that this drawing is not to scale.

Figure 6
Open VMS Alpha 64-bit Virtual Address Space

All higher-addressed page tables in PT space are
used to map shared space and are themselves shared.
They are also adjacent to the shared space that they
map. All page tables in PT space that reside at
addresses lower than that of the LlPT are used to map
process-private space. These page tables are process­
private and are adjacent to the process-private space
that they map. Hence, the end of the LlPT marks
a universal boundary between the process-private
portion and the shared portion of the entire virtual
address space, serving to separate even the PTEs that
map those portions. In Figure 6, the line passing
through PT space illustrates this boundary.

A direct consequence of this design is that the
process page tables have been privatized. That is,
the portion of PT space that is process-private is cur­
rently active in virtual memory only when the owning
process itself is currently active on the processor.

Fortunately, the maJonty of page table references
occur while executing in the context of the owning
process. Such references actually are enhanced by
the privatization of the process page tables because
the mapping function of a virtual address to its PTE
is now more efficient.

Privatization does raise a hurdle for certain pri­
vileged code that previously could access a process'
page tables when executing outside the context of the
owning process. With the page tables resident in
shared space, such references could be made regard­
less of which process is currently active. With priva­
tized page tables, additional access support is needed,
as presented in the next section.

A final commentary is warranted for the separately
maintained system page table. The self-mapped page
table approach to supplying page table residency in
virtual memory includes the PTEs for any virtual

Digital Technical Journal Vol. 8 No. 2 1996 65

addresses, whether they are process-private or shared.
The shared portion of PT space could serve now as the
sole location for shared-space PTEs. Being redundant,
the original SPT is eminently discardable; however,
discarding the SPT would create a massive compatibil­
ity problem for device drivers with their many 32-bit
SPT references. This area is one in which an opportu­
nity exists to preserve a significant degree of privileged
code compatibility.

Key Measures Taken to Maximize
Privileged Code Compatibility

To implement 64-bit virtual address space support, we
altered central sections of the Open VMS Alpha kernel
and many of its key data structures. We expected that
such changes would require compensating or corre­
sponding source changes in surrounding privileged
components within the kernel, in device drivers, and
in privileged layered products.

For example, the previous discussion seems to indi­
cate that any privileged component that reads or writes
PTEs would now need to use 64-bit-wide pointers
instead of 32-bit pointers. Similarly, all system fork
threads and interrupt service routines could no longer
count on direct access to process-private PTEs with­
out regard to which process happens to be current
at the moment.

A number of factors exacerbated the impact of such
changes. Since the Open VMS Alpha operating sys­
tem originated from the OpenVMS VAX operating
system, significant portions of the Open VMS Alpha
operating system and its device drivers are still written
in MACR0-32 code, a compiled language on the
Alpha platform.1 Because MACR0-32 is an assembly­
level style of programming language, we could not
simply change the definitions and declarations of vari­
ous types and rely on recompilation to handle the
move from 32-bit to 64-bit pointers. Finally, there are
well over 3,000 references to PTEs from MACR0-32
code modules in the Open VMS Alpha source pool.

We were thus faced with the prospect of visiting and
potentially altering each of these 3,000 references.
Moreover, we would need to follow the register life­
times that resulted from each of these references to
ensure that all address calculations and memory refer­
ences were done using 64-bit operations. We expected
that this process would be time-consuming and error
prone and that it would have a significant negative
impact on our completion date.

Once OpenVMS Alpha version 7.0 was available
to users, those with device drivers and privileged code
of their own would need to go through a similar
effort. This would further delay wide use of the
release. For all these reasons, we were well motivated

66 Digital Technical Journal Vol. 8 No. 2 1996

to minimize the impact on privileged code. The next
four sections discuss techniques that we used to over­
come these obstacles.

Resolving the SPT Problem
A significant number of the PTE references in pri­
vileged code are to PTEs within the SPT. Device
drivers often double-map the user's 1/0 buffer into
SO/Sl space by allocating and appropriately initializ­
ing system page table entries (SPTEs). Another situa­
tion in which a driver manipulates SPTEs is in the
substitution of a system buffer for a poorly aligned or
noncontiguous user 1/0 buffer that prevents the
buffer from being directly used with a particular
device. Such code relies heavily on the system data cell
MMG$GL_SPTBASE, which points to the SPT.

The new page table design completely obviates the
need for a separate SPT. Given an 8-KB page size and
8 bytes per PTE, the entire 2-GB SO/Sl virtual address
space range can be mapped by 2 MB of PTEs within PT
space. Because 50/Sl resides at the highest addressable
end of the 64-bit virtual address space, it is mapped by
the highest 2 MB of PT space. The arcs on the left in
Figure 7 illustrate this mapping. The PTEs in PT space
that map SO/Sl are fully shared by all processes, but
they must be referenced with 64-bit addresses.

This incompatibility is completely hidden by the
creation of a 2-MB "SPT window" over the 2 MB in
PT space (level 3 PTEs) that maps SO/Sl space. The
SPT window is positioned at the highest addressable
end ofSO/ Sl space. Therefore, an access through the
SPT window only requires a 32-bit SO/Sl address and
can obtain any of the PTEs in PT space that map
SO/Sl space. The arcs on the right in Figure 7 illus­
trate this access path.

The SPT window is set up at system initialization
time and consumes only the 2 KB of PTEs that
are needed to map 2 MB. The system data cell
MMG$GL_SPTBASE now points to the base of the
SPT window, and all existing references to that data cell
continue to function correctly without change.7

Providing Cross-process PTE Access for Direct VO
The self-mapping of the page tables is an elegant solu­
tion to the page table residency problem imposed by
the preceding design. However, the self-mapped page
tables present significant challenges of their own to the
1/0 subsystem and to many device drivers.

Typically, Open VMS device drivers for mass storage,
network, and other high-performance devices perform
direct memory access (OMA) and what Open VMS calls
"direct 1/0." These device drivers lock down into
physical memory the virtual pages that contain the
requester's 1/0 buffer. The 1/0 transfer is performed
directly to those pages, after which the buffer pages are
unlocked, hence the term "direct 1/0."

PAGE TABLE SPACE
(SGB)

------ -- - ---- ----- - -------- --
PTEs THAT MAP S0/81 (2 MB)

82 (~6 GB)

: ..

S0/81 (2 GB)

·.~· . . . · ..

:'..4: .· .·
-- - -- -- -- - ------------- -- - -- -

SPT WINDOW (2 MB) • 'FFFFFFFF.FFFFFFFF

Figure 7
System Page Table Window

The virtual address of the buffer is not adequate for
device drivers because much of the driver code runs in
system context and not in the process context of the
requester. Similarly, a process-specific virtual address is
meaningless to most DMA devices, which typically can
deal only with the physical addresses of the virtual
pages spanned by the buffer.

For these reasons, when the 1/0 buffer is locked
into memory, the Open VMS 1/0 subsystem converts
the virtual address of the requester's buffer into
(1) the address of the PTE that maps the start of
the buffer and (2) the byte offset within that page to
the first byte of the buffer.

Once the virtual address of the J/0 buffer is con­
verted to a PTE address, all references to that buffer
are made using the PTE address. This remains the case
even if this I/0 request and 1/0 buffer are handed off
from one driver to another. For example, the 1/0
request may be passed from the shadowing virtual disk
driver to the small computer systems interface (SCSI)
disk class driver to a port driver for a specific SCSI host
adapter. Each of these drivers will rely solely on the
PTE address and the byte offset and not on the virtual
address of the IjO buffer.

Therefore, the number of virtual address bits the
requester originally used to specify thf address of

the 1/0 buffer is irrelevant. What really matters is
the number of address bits that the driver must use
to reference a PTE.

These PTE addresses were always within the page
tables within the balance set slots in shared SO/Sl
space. With the introduction of the self-mapped page
tables, a 64-bit address is required for accessing any
PTE in PT space. Furthermore, the desired PTE is not
accessible using this 64-bit address when the driver is
no longer executing in the context of the original
requester process. This is called a cross-process PTE
access problem.

In most cases, this access problem is solved for
direct 1/0 by copying the PTEs that map the 1/0
buffer when the 1/0 buffer is locked into physical
memory. The PTEs in PT space are accessible at that
point because the requester process context is required
in order to lock the buffer. The PTEs are copied into
the kernel's heap storage and the 64-bit PT space
address is replaced by the address of the PTE copies.
Because the kernel's heap storage remains in SO/Sl
space, the replacement address is a 32-bit address that
is shared by all processes on the system.

This copy approach works because drivers do not
need to modify the actual PTEs. Typically, this
arrangement works well because the associated PTEs

Digital Technical Journal Vol. 8 No. 2 1996 67

can fit into dedicated space within the 1/0 request
packet data structure used by the Open VMS operating
system, and there is no measurable increase in CPU
overhead to copy those PTEs.

If the 1/0 buffer is so large that its associated PTEs
cannot fit within the 1/0 request packet, a separate
kernel heap storage packet is allocated to hold the
PTEs. If the 1/0 buffer is so large that the cost of
copying all the PTEs is noticeable, a direct access path
is created as follows:

• The L3PTEs that map the 1/0 buffer are locked
into physical memory.

• Address space within SO/Sl space is allocated
and mapped over the L3PTEs that were just
locked down.

This establishes a 32-bit addressable shared-space
window over the L3PTEs that map the 1/0 buffer.

The essential point is that one of these methods is
selected and employed until the 1/0 is completed and
the buffer is unlocked. Each method provides a 32-bit
PTE address that the rest of the 1/0 subsystem can use
transparently, as it has been accustomed to doing, with­
out requiring numerous, complex source changes.

Use of Self-identifying Structures
To accommodate 64-bit user virtual addresses, a num­
ber of kernel data structures had to be expanded and
changed. For example, asynchronous system trap
(AST) control blocks, buffered 1/0 packets, and timer
queue entries all contain various user-provided
addresses and parameters that can now be 64-bit
addresses. These structures are often embedded in
other structures such that a change in one has a ripple
effect to a set of other structures.

If these structures changed unconditionally, many
scattered source changes would have been required.
Yet, at the same time, each of these structures had con­
sumers who had no immediate need for the 64-bit
addressing-related capabilities.

Instead of simply changing each of these structures,
we defined a new 64-bit-capable variant that can coex­
ist with its traditional 32-bit counterpart. The 64-bit
variant's structures are "self-identifying" because they
can readily be distinguished from their 32-bit counter­
parts by examining a particular field within the struc­
ture itself Typically, the 32-bit and 64-bit variants can
be intermixed freely within queues and only a limited
set of routines need to be aware of the variant types.

Thus, for example, components that do not need
64-bit ASTs can continue to build 32-bit AST control
blocks and queue them with the SCH$QAST routine.
Similarly, 64-bit AST control blocks can be queued
with the same SCH$QAST routine because the AST
delivery code was enhanced to support either type of
AST control block.

68 Digital Technical Journal Vol. 8 No. 2 1996

The use of self-identifying structures is also a tech­
nique that was employed to compatibly enhance pub­
lic user-mode interfaces to library routines and the
Open VMS kernel. This topic is discussed in greater
detail in "The Open VMS Mixed Pointer Size
Environment."8

Limiting the Scope of Kernel Changes
Another key tactic that allowed us to minimize the
required source code changes to the Open VMS kernel
came from the realization that full support of 64-bit
virtual addressing for all processes does not imply or
require exclusive use of64-bit pointers within the ker­
nel. The portions of the kernel that handled user
addresses would for the most part need to handle
64-bit addresses; however, most kernel data structures
could remain within the 32-bit addressable SO/Sl
space without any limit on user functionality. For
example, the kernel heap storage is still located
in SO/Sl space and continues to be 32-bit address­
able. The Record Management Services (RMS)
supports data transfers to and from 64-bit address­
able user buffers, but RMS continues to use 32-bit­
wide pointers for its internal control structures.
We therefore focused our effort on the parts of
the kernel that could benefit from internal use
of 64-bit addresses (see the section Immediate Use
of 64-bit Addressing by the OpenVMS Kernel
for examples) and that needed to change to support
64-bit user virtual addresses.

Privileged Code Example-The Swapper

The Open VMS working set swapper provides an inter­
esting example of how the 64-bit changes within the
kernel may impact privileged code.

Only a subset of a process' virtual pages is mapped
to physical memory at any given point in time. The
Open VMS operating system occasionally swaps this
working set of pages out of memory to secondary stor­
age as a consequence of managing the pool of available
physical memory. The entity responsible for this activ­
ity is a privileged process called the working set swap­
per or swapper, for short. Since it is responsible for
transferring the working set of a process into and out
of memory when necessary, the swapper must have
intimate knowledge of the virtual address space of
a process including that process' page tables.

Consider the earlier discussion in the section
OpenVMS 64-bit Virtual Address Space about how
the process' page tables have been privatized as a way
to efficiently provide page table residency in virtual
memory. A consequence of this design is that while the
swapper process is active, the page tables of the process
being swapped are not available in virtual memory.
Yet, the swapper requires access to those page tables to

do its job. This is an instance of the cross-process PTE
access problem mentioned earlier.

The swapper is unable to directly access the page
tables of the process being swapped because the swap­
per's own page tables are currently active in virtual
memory. We solved this access problem by revising the
swapper to temporarily "adopt" the page tables of
the process being swapped. The swapper accomplishes
this by temporarily changing its lYfBR contents to
point to the page table structure for the process being
swapped instead of to the swapper's own page table
structure. This change forces the PT space of the
process being swapped to become active in virtual
memory and therefore available to the swapper as it
prepares the process to be swapped. Note that the
swapper can make this temporary change because
the swapper resides in shared space. The swapper does
not vanish from virtual memory as the PTBR value is
changed. Once the process has been prepared for
swapping, the swapper restores its own PTBR value,
thus relinquishing access to the target process' PT
space contents.

Thus, it can be seen how privileged code with
intimate knowledge of OpenVMS memory man­
agement mechanisms can be affected by the changes
to support 64-bit virtual memory. Also evident is that
the alterations needed to accommodate the 64-bit
changes are relatively straightforward. Although the
swapper has a higher-than-normal awareness of mem­
ory management internal workings, extending the
swapper to accommodate the 64-bit changes was
not particularly difficult.

Immediate Use of 64-bit Addressing by the
OpenVMS Kernel

Page table residency was certainly the most pressing
issue we faced with regard to the Open VMS kernel as
it evolved from a 32-bit to a 64-bit-capable operating
system. Once implemented, 64-bit virtual addressing
could be harnessed as an enabling technology for solv­
ing a number of other problems as well. This section
briefly discusses some prominent examples that serve
to illustrate how immediately useful 64-bit addressing
became to the Open VMS kernel.

Page Frame Number Database and
Very Large Memory
The OpenVMS Alpha operating system maintains a
database for managing individual, physical page frames
of memory, i.e., page frame numbers. This database is
stored in SO/Sl space. The size of this database grows
linearly as the size of the physical memory grows.

Future Alpha systems may include larger memory
configurations as memory technology continues to
evolve. The corresponding growth of the page frame

number database for such systems could consume
an unacceptably large portion of SO /S 1 space, which
has a maximum size of 2 GB. This design effectively
restricts the maximum amount of physical memory
that the OpenVMS operating system would be able
to support in the future.

We chose to remove this potential restriction by
relocating the page frame number database from
SO/Sl to 64-bit addressable S2 space. There it can
grow to support any physical memory size being con­
sidered for years to come.

Global Page Table

The Open VMS operating system maintains a data
structure in SO/Sl space called the global page table
(GPT). This pseudo-page table maps memory objects
called global sections. Multiple processes may map
portions of their respective process-private address
spaces to these global sections to achieve protected
shared memory access for whatever applications they
may be running.

With the advent of P2 space, one can easily anticipate
a need for orders-of-magnitude-greater global section
usage. This usage directly increases the size of the
GPT, potentially reaching the point where the GPT
consumes an unacceptably large portion of SO/Sl
space. We chose to forestall this problem by relocating
the GPT from SO/Sl to 52 space. This move allows the
configuration of a GPT that is much larger than any
that could ever be configured in SO/ Sl space.

Summary

Although providing 64-bit support was a significant
amount of work, the design of the Open VMS operat­
ing system was readily scalable such that it could
be achieved practically. First, we established a goal of
strict binary compatibility for nonprivileged applica­
tions. We then designed a superset virtual address
space that extended both process-private and shared
spaces while preserving the 32-bit visible address space
to ensure compatibility. To maximize the available
space for process-private use, we chose an asymmetric
style of address space layout. We privatized the pro­
cess page tables, thereby eliminating their residency
in shared space. The few page table accesses that
occurred from outside the context of the owning
process, which no longer worked after the privatiza­
tion of the page tables, were addressed in various ways.
A variety of ripple effects stemming from this design
were readily solved within the kernel.

Solutions to other scaling problems related to the
kernel were immediately possible with the advent of
64-bit virtual address space. Already mentioned was
the complete removal of the process page tables from
shared space. We also removed the global page table

Digital Technical Journal Vol. 8 No. 2 1996 69

and the page frame number database from 32-bit
addressable to 64-bit addressable shared space. The
immediate net effect of these changes was significantly
more room in SO/Sl space for configuring more
kernel heap storage, more balance slots to be assigned
to greater numbers of memory resident processes, etc.
We further anticipate use of64-bit addressable shared
space to realize additional benefits of VLM, such as
for caching massive amounts of file system data.

Providing 64-bit addressing capacity was a logical,
evolutionary step for the Open VMS operating system.
Growing numbers of customers are demanding the
additional virtual memory to help solve their problems
in new ways and to achieve higher performance. This
has been especially fruitful for database applications,
with substantial performance improvements already
proved possible by the use of64-bit addressing on the
Digital UNIX operating system. Similar results are
expected on the OpenVMS system. With terabytes
of virtual memory and many gigabytes of physical
memory available, entire databases may be loaded into
memory at once. Much of the 1/0 that otherwise
would be necessary to access the database can be elimi­
nated, thus allowing an application to improve perfor­
mance by orders of magnitude, for example, to reduce
query time from eight hours to five minutes. Such
performance gains were difficult to achieve while
the Open VMS operating system was constrained to a
32-bit environment. With the advent of 64-bit address­
ing, Open VMS users now have a powerful enabling
technology available to solve their problems.

Acknowledgments

The work described in this paper was done by mem­
bers of the Open VMS Alpha Operating System Devel­
opment group. Numerous contributors put in many
long hours to ensure a well-considered design and
a high-quality implementation. The authors particu­
larly wish to acknowledge the following major con -
tributors to this effort: Tom Benson, Richard Bishop,
Walter Blaschuk, Nitin Karkhanis, Andy Kuehnel,
Karen Noel, Phil Norwich, Margie Sherlock, Dave
Wall, and Elinor Woods. Thanks also to members
of the Alpha languages community who provided
extended programming support for a 64-bit environ­
ment; to Wayne Cardoza, who helped shape the earli­
est notions of what could be accomplished; to Beverly
Schultz, who provided strong, early encouragement
for pursuing this project; and to Ron Higgins and
Steve Noyes, for their spirited and unflagging support
to the very end.

The following reviewers also deserve thanks for
the invaluable comments they provided in helping to
prepare this paper: Tom Benson, Cathy Foley, Clair
Grant, Russ Green, Mark Howell, Karen Noel, Margie
Sherlock, and Rod Widdowson.

70 Digital Technical Journal Vol. 8 No. 2 1996

References and Notes

1. N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan,
and B. Thomas, "Porting Open VMS from VAX to Alpha
AXP," Digital Technical Journal, vol. 4, no. 4 (1992):
111-120.

2. T. Leonard, ed., VAX Architecture Reference Manual
(Bedford, Mass.: Digital Press, 1987).

3. R. Sites and R. Witek, Alpha AXP Architecture Refer­
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

4. Although an OpenVMS process may refer to PO or Pl
space using either 32-bit or 64-bit pointers, references
to P2 space require 64-bit pointers. Applications may
very well execute with mixed pointer sizes. (See refer­
ence 8 and D. Smith, "Adding 64-bit Pointer Support
to a 32-bit Run-time Library," Digital Technical
Journal, vol. 8, no. 2 [1996, this issue]: 83-95.) There
is no notion of an application executing in either a 32-bit
mode or a 64-bit mode.

5. Superset system services and language support were
added to facilitate the manipulation of 64-bit address­
able P2 space."

6. This mechanism has been in place since OpenVMS
Alpha version 1.0 to support virtual PTE fetches by the
translation buffer miss handler in PALcode. (PALcode
is the operating system-specific privileged architecture
library that provides control over interrupts, exceptions,
context switching, etc. 3

) In effect, this means that the
OpenVMS page tables already existed in two virtual
locations, namely, SO/Sl space and PT space.

7. The SPT window is more precisely only an SO/Sl PTE
window. The PTEs that map 52 space are referenced
using 64-bit pointers to their natural locations in PT
space and are not accessible through the use of this SPT
window. However, because 52 PTEs did not exist prior
to the introduction of 52 space, this limitation is of no
consequence to contexts that are otherwise restricted to
SO/Sl space.

8. T. Benson, K. Noel, and R. Peterson, "The OpenVMS
Mixed Pointer Size Environment," Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 72-82.

General References

R. Goldenberg and S. Saravanan, Open VMS AXP Internals
and Data Structures, Version 1.5 (Newton, Mass.: Digital
Press, 1994).

Open VMS Alpha Guide to 64-Bit Addressing (Maynard,
Mass.: Digital Equipment Corporation, Order No.
M-QSBCA-TE, December 1995).

Open VMS Alpha Guide to Upgrading Privileged-Code
Applications (Maynard, Mass.: Digital Equipment
Corporation, Order No. M-QSBGA-TE, December 1995).

Biographies

AfichaelS.IIarvey
Michael Harvey joined Digital in 1978 after receiving his
B.S.C.S. from the University ofVermont. In 1984, as a mem­
ber of the Open VMS Engineering group, he participated in
new processor support for VAX multiprocessor systems and
helped develop Open VMS symmetric multiprocessing (SMP)
support for these systems. He received a patent for this work.
Mike was an original member of the RISCy-V AX task force,
which conceived and developed the Alpha architecture.
Mike led the project that ported the Open VMS Executive
from the VAX to the Alpha platform and subsequently led
the project that designed and implemented 64-bit virtual
addressing support in Open VMS. This effort led to a num­
ber of patent applications. As a consulting software engi­
neer, Mike is currently working in the area of infrastructure
that supports the Windows NT/Open VMS Affinity initiative.

Leonard S. Szubowicz
Leonard Szubowicz is a consulting software engineer in
Digital's Open VMS Engineering group. Currently the
technical leader for the Open VMS J/0 engineering team,
he joined Digital Software Services in 1983. As a member
of the Open VMS 64-bit virtual addressing project team,
Lenny had primary responsibility for J/0 and driver sup­
port. Prior to that, he was the architect and project leader
for the Open VMS high-level language device driver proj­
ect, contributed to the port of the Open VMS operating
system to the Alpha platform, and was project leader for
RMS Journaling. Lenny is a coauthor of Writing Open vMS
Alpha Device Drivers in C, which was recently published
by Digital Press.

Digital Technical Journal Vol. 8 No. 2 1996 71

The OpenVMS Mixed
Pointer Size Environment

A central goal in the implementation of 64-bit
addressing on the OpenVMS operating system
was to provide upward-compatible support for
applications that use the existing 32-bit address
space. Another guiding principle was that mixed
pointer sizes are likely to be the rule rather than
the exception for applications that use 64-bit
address space. These factors drove several key
design decisions in the OpenVMS Calling Stan­
dard and programming interfaces, the DEC C
language support, and the system services
support. For example, self-identifying 64-bit
descriptors were designed to ease development
when mixed pointer sizes are used. DEC C sup­
port makes it easy to mix pointer sizes and to
recompile for uniform 32- or 64-bit pointer sizes.
OpenVMS system services remain fully upward
compatible, with new services defined only
where required or to enhance the usability of the
huge 64-bit address space. This paper describes
the approaches taken to support the mixed
pointer size environment in these areas. The
issues and rationale behind these OpenVMS
and DEC C solutions are presented to encourage
others who provide library interfaces to use
a consistent programming interface approach.

72 Digital Technical Journal Vol. 8 No. 2 1996

11
Thomas R. Benson
Karen L. Noel
Richard E. Peterson

Support for 64-bit virtual addressing on the Open VMS
Alpha operating system, version 7.0, has vastly increased
the amount of virtual address space available for applica­
tion use. 1 At the same time, fully compatible support for
applications that use only 32-bit addresses (also called
pointers) has been preserved.

An application that mixes 32-bit and 64-bit pointer
sizes operates in a mixed pointer size environment.
Mixed pointer size applications were the design center
for the initial implementation of 64-bit support in the
OpenVMS operating system. This paper discusses
the reasons why mixing pointer sizes is expected to
be a common practice and describes the design of
operating system and language features that are pro­
vided to ease programming in this mixed pointer size
environment.

Reasons for Mixed Pointer Sizes

To use 64-bit address space, some simple applications
need only be recompiled for a uniform 64-bit pointer
size. For example, self-contained DEC C applications
that rely on only the C run-time library, without
using system services or other libraries, can take
this approach. Real-world applications are seldom this
clean-cut, however. In more complex applications,
where 64-bit address space is likely to be needed,
mixes oflanguages, dependencies on system interfaces
and other libraries, and reliance on third-party pack­
ages or libraries are common. These practices all lead
to the mixed pointer size environment in which appli­
cations continue to use some 32-bit addresses while
taking advantage of 64-bit virtual address space.

Applications that are likely to take advantage of
64-bit memory are those in which the declaration and
management of a large data set can be logically sepa­
rated from the rest of the program. This separation
does not need to be at the source file level. It can be
at a program flow level, indicating which internal and
external interfaces will be given 64-bit addresses to
work with.

The following sections explore the reasons for
mixing pointer sizes.

Open VMS and Language Support
Implementation choices that Digital made for this first
release of the Open VMS operating system that sup­
ports 64-bit virtual addressing will probably encour­
age mixed pointer size programming. These choices
were driven largely by the need for absolute upward
compatibility for existing programs and the goal of
supporting large, dynamic data sets as the primary
application for 64-bit addressing.

Dynamic Data Only OpenVMS services support
dynamic allocation of 64-bit address space. This mech­
anism most closely resembles the malloc and free func­
tions for allocating and deallocating dynamic storage
in the C programming language. Allocation of this
type differs from static and stack storage in that explicit
source statements are required to manage it. For static
and stack storage, the system is allocating the memory
on behalf of the application at image activation time.
(Of course, the allocation may be extended during
execution in the case of stack storage.) This allocation
continues to be from 32-bit addressable space.

Two special cases of static allocation are worth men­
tioning. Linkage sections, which are program sections
that contain routine linkage information, and code
sections, which contain the executable instructions,
do not differ substantially from preinitialized static
storage. As a result, these sections also reside only in
32-bit addressable memory.

Upward-compatibility Constraints The OpenVMS
Alpha operating system is cautious to avoid using
64-bit memory freely where it may prevent upward
compatibility for 32-bit applications. For example, the
linkage section might seem to be a natural candidate
for the Open VMS system to allocate automatically in
64-bit memory. This allocation would essentially free
more 32-bit addressable memory for application use;
however, even if this were done only for applications
relinked for new versions of the Open VMS operating
system, there is no guarantee that all object code treats
linkage section addresses as 64 bits in width. A simple
example is storing the address of a routine in a struc­
ture. Since a routine's address is the address of its pro­
cedure descriptor in the linkage section, moving the
linkage section to 64-bit memory would cause code
that stores this address in a 32-bit cell to fail.

Allocating the user stack in 64-bit space also appears
to be a good opportunity to easily increase the amount
of memory available to an application. Stack addresses
are often more visible to application code than linkage
section addresses are. For instance, a routine can easily
allocate a local variable using temporary storage on the
stack and pass the address of the variable to another
routine. If the stack is moved to 64-bit space, this

address quietly becomes a 64-bit address. If the called
routine is not 64-bit capable, attempts to use the
address will fail.

Focus on Services Required for Large Data Sets Not
all system services could be changed to support 64-bit
addresses (i.e., promoted) in time for the first version
of the OpenVMS operating system to support 64-bit
addressing. With the mixed-pointer model in mind,
we focused on those services that were likely to be
required for large data sets. For example, to allow 1/0
directly to and from high memory, it was essential that
the 1/ 0 queuing service, SYS$QIO, accept a 64-bit
buffer address. Conversely, the SYS$TRNLNM service
for translating a logical name did not need to be mod­
ified to accept 64-bit addresses. Its arguments include
a logical name, a table name, and a vector that contains
requests for information about the name. These are
small data elements that are unlikely to require 64-bit
addressing on their own. Of course, they may be part
of some larger structure that resides in 64-bit space.
In this case, they can easily be copied to or from 32-bit
addressable memory.

System services are discussed further in the section
Open VMS System Services. The 32-bit address restric­
tion on certain system services again emphasizes the
importance of being able to logically separate large
data set support from the rest of an application.

Limited Language Support Another interface point
that requires care when using 64-bit addressing is at
calls between modules written in different program­
ming languages. The Open VMS Calling Standard
traditionally makes it easy to mix languages in an appli­
cation, but DEC C is the only high-level language
to fully support 64-bit addresses in the first 64-bit­
capable version of the Open VMS operating system.2

The use of 64-bit addresses in mixed-language
applications is possible, and data that contains 64-bit
addresses may even be shared; however, references
that actually use the data pointed to by these addresses
need to be limited to DEC C code or assembly lan­
guage. Mixed high-level language applications are cer­
tain to be mixed pointer size applications in this
version of the operating system.

Support for 32-bit Libraries
Many applications rely on library packages to provide
some aspect of their functionality. Typical examples
include user interface packages, graphics libraries, and
database utilities. Third-party libraries may or may not
support 64-bit addresses. Applications that use these
libraries will probably mix 32-bit and 64-bit pointer
sizes and will therefore require an operating system
that supports mixed pointer sizes.

Digital Technical Journal Vol. 8 No. 2 1996 73

Implications of Fu/164-bit Conversion
For some applications, it may be desirable to mix
pointer sizes to avoid the side effects of universal 64-bit
address conversion. The approach of recompiling every­
thing with 64-bit address widths is sometimes called
"throwing the switch." An obvious implication of
throwing the switch is that all pointer data doubles in
size. For complex linked data structures, this can be a
significant overall increase in size. Increasing the pointer
size may also reveal hidden dependencies on pointer size
being the same as integer size. If code accesses a cell as
both a 32-bit integer and a 32-bit pointer, the code will
no longer work if the pointer is enlarged. Thus,
universally increasing the pointer size may force changes
to code that would otherwise continue to work.

There is a more compelling reason for not throwing
the switch for code that is part of a shared library.
Library packages must not return 64-bit addresses to
users of the library unless the calling code is definitely
64-bit capable. If the library developer throws the
switch when building a library written in DEC C, all
memory returned by the malloc function will be in
64-bit address space. This can be a problem if the
address is blindly returned to a library caller. If a library
is to work in a mixed pointer size environment, and
it sometimes returns pointers to memory it has allo­
cated, it needs to use mixed pointer sizes internally.

Programming Interlace Issues

The coexistence of 32-bit and 64-bit pointers raised
several design questions for operating system and lan­
guage support, particularly in the area of routine inter­
faces. When an application or library is being modified
to use 64-bit address space, argument passing may
be the most exposed area. In this section, we describe
how mixed pointer size support affects argument­
passing mechanisms and the design decisions made to
ease the coexistence of mixed pointer sizes.

Argument List Width
Even before the introduction of 64-bit addressing, the
Open VMS Calling Standard defined argument list ele­
ments to be 64 bits in width. When passing a 32-bit
address (that is, when passing an item in 32-bit space
by reference), compilers sign extend the 32-bit value
into the 64-bit argument location.1 Passing 64-bit
addresses as values works transparently without chang­
ing the calling standard, assuming, of course, that the
called routine expects to receive 64-bit addresses.
Passing 32-bit addresses as values to routines that
expect 64-bit addresses works properly because the
values have been sign extended to a 64-bit width.

Pointers by Reference
Passing the addresses of pointers requires special care
when mixing pointer sizes. If the caller passes a 32-bit

74 Digital Technical Journal Vol. 8 No. 2 1996

address by reference, and the called routine reads it as
a 64-bit address from memory, the upper 32 bits will be
incorrect. Similarly, if the address of a 64-bit address is
passed, and the called routine reads only 32 bits from
memory, it will fail when that address is used.

This is the simplest case in which support of 64-bit
addresses may require a programming interface change
for 64-bit callers. A single entry point that receives
a pointer by reference cannot tell which size pointer
it has received. Some possible solutions include a new
alternate entry point for 64-bit-capable callers or a
new parameter indicating the size of the address.

Pointers Embedded in Structures
Pointers passed by reference are a special case of the
more general problem of passing structures that con­
tain pointers. Again, the caller and called routine must
agree on the size of the pointers contained in the
structure. This case offers an option that may not
require a new programming interface, however. If the
structure is self-identifying, the routine may be able to
tell which form of the structure it has received and dis­
patch to appropriate code for the corresponding
pointer length.

Function Return Values
Function return values are also defined to be 64 bits in
width, so no calling standard change was required to
support 64-bit pointer returns. It is important that a
64-bit address not be returned blindly, though, unless
it is known that the caller is 64-bit capable. Typically,
this is a problem for library support routines rather
than for those within an application. A library routine
should return a 64-bit address only if the routine has
been specifically developed for a 64-bit environment
or if it can tell with certainty, based on input parame­
ters received, that the caller is 64-bit capable.

Calling Standard Issues
The Open VMS Calling Standard defines register usage
conventions, argument list locations, data structures,
and standard practices for making procedure calls that
operate correctly in a multilanguage and multi­
threaded environment. As mentioned earlier, this stan­
dard already defined argument list elements to be
64 bits in width; however, some key data structures
defined by the standard were based on 32-bit pointer
sizes. The goal of upward compatibility for existing
code complicated the job of extending the standard.
The following sections describe how the structures
were ultimately changed and illustrate some
approaches to supporting mixed pointer sizes when
shared structures contain pointers.

Descriptors Descriptors are structures defined by
the calling standard to specify an argument's type,
length, and address, along with other type or

structure-specific information. Typically, descriptors
are used only for character strings, arrays, and complex
data types such as packed decimal.

Descriptor types are by definition self-identifying by
virtue of the type and class fields they contain. An
obvious choice, therefore, for extending descriptors to
handle 64-bit addresses would be to add new type
constants for 64-bit data elements and extend the
structure beyond the type fields to accommodate
larger addresses and sizes. In practice, however, the
address and length fields from descriptors are fre­
quently used without accessing the type fields, partic­
ularly when a character string descriptor is expected.

As a result, a solution was sought that would yield
a predictable failure, rather than incorrect results or
data corruption, when a 64-bit descriptor is received
by a routine that expects only the 32-bit form. The
final design includes a separate 64-bit descriptor layout
that contains two special fields at the same offsets as
the length and address fields in the 32-bit descriptor.
These fields are called MBO (must be one) and
MBMO (must be minus one), respectively. The sim­
plest versions of the 32-bit and 64-bit descriptors are
illustrated in Figure 1.

If a routine that expects a 32-bit descriptor receives
a 64-bit descriptor, it will find the value 1 in the length
field. This nonzero value ensures that the address will
need to be read. Otherwise, the descriptor could ~e
treated as describing a null value, and the address
would be ignored. In the address field, a 32-bit reader
will find the value - 1. When the reader attempts to
reference this address, an access violation occurs,
because the Open VMS operating system guarantees
this address to be inaccessible. This combination of
values ensures that an access will also fail if the length is
added to the address first, in an attempt to read the last
byte of data.

BYTE
OFFSET

===C=LA=S=S=====D=TY==P=E========L=EN=G=T=H======1 ,.04 ADDRESS _
SIMPLE 32-BIT DESCRIPTOR

CLASS I DTYPE I MBO :0

MBMO : 4

LENGTH :8

ADDRESS :16

SIMPLE 64-BIT DESCRIPTOR

Figure 1
Simplest Versions of the 32-bit and 64-bit Descriptors

To distinguish the descriptor forms, a new routine
must check the MBO and MBMO fields for the
expected 64-bit descriptor values. In the OpenVMS
operating system, many routines now accept either
descriptor form.

Signal Arrays The signal array is a user-visible struc­
ture that is passed to condition handlers when an
exception occurs. The array contains message codes,
arguments specific to the conditions, and control data.
Because the arguments may include one or more vir­
tual addresses, a new format was necessary to accom -
modate 64-bit addresses.

The signal array could not simply be promoted to
contain 64-bit addresses, because handlers in existing
code often make assumptions about its format. The
mechanism array, a related structure containing a snap­
shot of register contents, was already 64 bits in width.

The solution was to leave the original form of the
signal array unchanged and create a 64-bit counter­
part. The items passed to a condition handler, the
32-bit signal array address, and a 64-bit mechanism
array address are the same. The mechanism array now
contains a pointer to the 64-bit version of the signal
array. This allows existing code to work without
change, while new handlers that may require access to
64-bit addresses in exceptions can obtain the 64-bit
array address from the mechanism array. Some addi­
tional work was needed in Open VMS exception han­
dling to keep these two arrays synchronized, because
handlers are allowed to change their contents.

Sign-extension Checking
As described earlier, 32-bit addresses passed as routine
arguments are sign extended into 64-bit argument loca­
tions. A safeguard that can be used in 32-bit routines
that are not extended to fully support 64-bit addresses is
referred to as sign-extension checking of the argument
addresses. This checking consists of simply reading the
low 32 bits of the argument, sign extending this value to
a 64-bit width, and comparing the result to the full
64 bits of the argument. If the bits differ, the address is
not one that can be represented in 32 bits. The routine
can then return an error status of some kind, rather than
failing in some unpredictable way. Sign-extension
checking is a useful tool for ensuring robust interfaces in
the mixed pointer size environment.

DEC C Language Support for Mixed Pointer Sizes

To support application programming in the mixed
pointer size environment, some design work was
required in the DEC C compiler. This section
describes the rationale behind the final design.

It was dear that the compiler would have to provide
a way for 32-bit and 64-bit pointers to coexist in the
same regions of code. At the same time, customers and

Digital Technical Journal Vol. 8 No. 2 1996 75

internal users initially favored a simple command line
switch when polled on potential compiler support
for 64-bit address space. (At least one C compiler that
supports 64-bit addressing, MIPSpro C, does so only
through command line switches for setting pointer
sizes.3

) The motivation for using switches was to limit
the source changes needed to take advantage of the
additional address space, especially when portability
to other platforms is desired. For cases in which mix­
ing pointer sizes was unavoidable, something more
flexible than a switch was needed.

Why Not _near and _ far?
The most common suggestion for controlling individ­
ual pointer declarations was to adopt the _near and
_far type qualifier syntax used in the PC environment
in its transition from 16-bit to 32-bit addressing.•
While this idea has merit in that it has already been
used elsewhere in C compilers and is familiar to PC
software developers, we rejected this approach for the
following reasons:

• The syntax is not standard.

• The syntax requires source code edits at each decla­
ration to be affected.

• The syntax has become largely obsolete even in the
PC domain with the acceptance of the flat 32-bit
address space model offered by modern 386-
minimum PC compilers and the Win32 program­
ming interface.

• Because of the vast difference in scale in choosing
between 16-bit or 32-bit pointers on a PC as com­
pared to choosing between 32-bit or 64-bit pointers
on an Alpha system, there would be no porting ben­
efit in using the same keywords. No existing source
code base would be able to port to the OpenVMS
mixed pointer size environment more easily because
of the presence of _near and _far qualifiers.

Pragma Support
The Digital UNIX C compiler had previously defined
pragma preprocessing directives to control pointer
sizes for slightly different reasons than those described
for the OpenVMS system.5 By default, the Digital
UNIX operating system offers a pure 64-bit address­
ing model. In some circumstances, however, it is desir­
able to be able to represent pointers in 32 bits to
match externally imposed data layouts or, more rarely,
to reduce the amount of memory used in representing
pointer values. The Digital UNIX pointer_size prag­
mas work in conjunction with command line options
and linker/loader features that limit memory use and
map memory such that pointer values accessible to the
C program can always be represented in 32 bits.

Since compatibility with the Digital UNIX compiler
would have greater value if it met the needs of the
OpenVMS platform, we evaluated the pragma-based

76 Digital Technical Journal Vol. 8 No. 2 1996

approach and decided to adopt it, propagating any
necessary changes back to the UNIX platform to main­
tain compatibility. The decision to use pragmas to
control pointer size addressed the major deficiencies
of the _near and _far approach. In particular, the
pragma directive is specified by ISO/ ANSI C in such
a way that using it does not compromise portability as
the use of additional keywords can, because unrecog­
nized pragmas are ignored. Furthermore, pragmas can
easily be specified to apply to a range of source code
rather than to an individual declaration. A number of
DEC C pragmas, including the pointer size controls
implemented on the UNIX system, provide the ability
to save and restore the state of the pragma. This makes
them convenient and safe to use to modify the pointer
size within a particular region of code without disturb­
ing the surrounding region. The state may easily be
saved before changing it at the beginning of the region
and then restored at the end.

Command Line Interaction
Pragmas fit in with the initial desire of prospective
users to have a simple command line switch to indicate
64 bits. As with several other pragmas, we defined a
command line qualifier (/pointer_size) to specify the
initial state of the pragma before any instances are
encountered in the text. Unlike other pragmas,
though, we also use the same command line qualifier
to enable or disable the action of the pragmas alto­
gether. In this way, a default compilation of source
code modified for 64-bit support behaves the same
way that it would on a system that did not offer 64-bit
support. That is, the pragmas are effectively ignored,
with only an informational message produced.

This behavior was adopted for consistency with the
Digital UNIX behavior and also to aid in the process of
adding optional 64-bit support to existing portable
32-bit source code that might be compiled for an
older system or with an older compiler. In this model,
a compilation of new source code using an old com­
mand line produces behavior that is equivalent to the
behavior produced using an older compiler or a com -
piler on another platform. With one notable excep­
tion, building an application that actually uses 64-bit
addressing requires changing the command line.

The exception to the rule that existing 32-bit build
procedures do not create 64-bit dependencies is a sec­
ond form of the pragma, named required_pointer_size.
This form contrasts with the form pointer_size in that it
is always active regardless of command line qualifiers;
otherwise, required_pointer_size and pointer_size are
identical. The intent of this second pragma is to sup­
port writing source code that specifies or interfaces to
services or libraries that can only work correctly with
64-bit pointers. An example of this code might be a
header file that contains declarations for both 64-bit
and 32-bit memory management services; the services

must always be defined to accept and return the
appropriate pointer size, regardless of the command
line qualifier used in the compilation.

Pragma Usage
The use of pragmas to control pointer sizes within a
range of source code fits well with the model of start­
ing with a working 32-bit application and extending it
to exploit 64-bit addressing with minimal source code
edits. Programming interface and data structure decla­
rations are typically packaged together in header files,
and the primary manipulators of those data structures
are often implemented together in modules.

One good approach for extending a 32-bit applica­
tion would be to start with an initial analysis of mem­
ory usage measurements. The purpose of this analysis
would be to produce a rough partitioning of routines
and data structures into two categories: "32-bit suffi­
cient" and "64-bit desirable." Next, 64-bit pointer
pragmas could be used to enclose just the header files
and source modules that correspond to the routines
and data structures in the 64-bit-desirable category.
After recompilation, the next step would be to respond
to compiler diagnostics for pointer-type mismatches by
adding pragma regions to mark sections of the 64-bit
files as 32-bit and parts of the 32-bit files as 64-bit and
to carefully add type casts, where necessary. This opera -
tion is likely to iterate until the compilation is clean and
a debugging cycle has shown correctness. The end
result is an application that takes advantage of the
increased address space for the data structures that will
benefit from it.

A common approach to minimizing the spread of
pragmas throughout a program is to limit them to
typedefs in header files. Then, subsequent uses of the
defined type do not require the pragma. A simple
example appears in Figure 2.

This example defines a type called char_ptr64,
which may be used to declare 64- bit pointers to char­
acter data without the use of pragmas. Of course, indi­
vidual pointers within structure types may also be set
to 64-bit or 32-bit sizes.

Secondary Effects
With the decision made to use pragmas and the basic
semantics of how the pragmas take effect established
by the Digital UNIX implementation, we needed to
consider additional requirements and issues that

#pragma required_pointer_size save
#pragma required_pointer_size 64
typedef char* char_ptr64;
#pragma required_pointer_size restore

Figure 2

might be specific to the Open VMS implementation.
Two major differences between the platforms are

1. On the Digital UNIX system, the linker/loader
options used with mixed pointer size compilations
ensure that any address value obtained by the pro­
gram can be represented using 32 bits, whereas on
the OpenVMS system, any program using 64-bit
pointers in C will almost certainly encounter address
values that cannot be represented in 32 bits.

2. On the Digital UNIX system, the scope of the use
of mixed pointer sizes was expected to be quite
small and not likely to grow much over time,
whereas on the OpenVMS system, the scope is
expected to be somewhat larger at first and grow
significantly over time.

These two differences emphasized the need for effec­
tive compile-time diagnostics, debugging aids, envi­
ronmental support, and clear documentation.

Diagnostics As an aid to finding bugs resulting from
improper mixing of pointer sizes, the DEC C compiler
provides two kinds of diagnostics. Compile-time warn­
ings are issued for assignments from long pointers to
short pointers because of the possibility of data loss. In
addition, users may enable run-time checking for
pointer truncation through a command line qualifier.
This option causes the compiler to generate code on
each conversion from a long to a short pointer, which
will signal a range-check error if data truncation occurs.

Run-time checking is particularly useful in code that
sometimes employs type casting to use long pointers
in short pointer contexts. Since this action prevents a
compile-time warning about using a long pointer
where a short pointer is expected, a run-time check
may be the only way to discover a coding error. The
run-time check qualifier provides options distinguish­
ing this case from checking on general assignments
and parameter passing, allowing users to select for
which classes of pointer-size mixing the compiler
should generate checking code. Run-time checking is
also available for parameters received by a routine.
This allows detection of 64-bit addresses passed to
routines that expect 32-bit parameters even when the
caller is separately compiled or written in a different
programming language. For performance reasons, it is
usually desirable to remove all run-time checking once
a program is debugged.

I* Save the previous pointer size*/
I* Set pointer size to 64 bits*/
I* Define a 64-bit char pointer*/
I* Re store the pointer size*/

Sample Header File Code That Limits Pragmas to Defined Types

Digital Technical Journal Vol. 8 No. 2 1996 77

----- ------ - ---------------------------------

Allocation Function Mapping The command line
qualifier setting the default pointer size has an addi­
tional effect that simplifies the use of 64-bit address
space. If an explicit pointer size is specified on the
command line, the malloc function is mapped to a
routine specific to the address space for that size. For
example, _malloc64 is used for malloc when the
default pointer size is 64 bits. This allows allocation
of 64-bit address space without additional source
changes. The source code may also call the size­
specific versions of run-time routines explicitly, when
compiled for mixed pointer sizes. These size-specific
functions are available, however, only when the
/pointer_size command line qualifier is used. See
"Adding 64-bit Pointer Support to a 32-bit Run-time
Library" in this issue for a discussion of other effects of
64-bit addressing on the C run-time library.6

Header File Semantics The treatment of pointer_size
pragmas in and around header files (i.e., any source
included by the #include preprocessing directive)
deserves special mention. Programs typically include
both private definition files and public or system-specific
header files. In the latter case, it may not be desirable for
definitions within the header files to be affected by the
pointer_size pragmas or command line currently in
effect. To prevent these definitions from being affected,
the DEC C compiler searches for special prologue and
epilogue header files when a #include directive is
processed. These files may be used to establish a par­
ticular state for environmental pragmas, such as
pointer_size, for all header files in the directory. This
eliminates the need to modify either the individual
header files or the source code that includes them.

The compiler creates a predefined macro called
_INITIAL_POINTER_SIZE to indicate the initial
pointer size as specified on the command line. This may
be of particular use in header files to determine what
pointer size should be used, if mixed pointer size sup­
port is desirable. Conditional compilation based on this
macro's definition state can be used to set or override
pointer size or to detect compilation by an older com­
piler lacking pointer-size support. Ifits value is zero, no
/pointer_size qualifier was specified, which means that
pointer_size pragmas do not take effect. If its value is
32 or 64, pointer_size pragmas do take effect, so it can
be assumed that mixed pointer sizes are in use.

Code Example
In the simple code example shown in Figure 3, sup­
pose that the routine procl is part of a library that has
been only partially promoted to use 64-bit addresses.
This function may receive either a 32-bit address or a
64-bit address in the argument_ptr parameter. To
demonstrate the use of the new DEC C features, prod
has been modified to copy this character string para­
meter from 64-bit space to 32-bit space when neces-

78 Digital Technical Journal Vol. 8 No. 2 1996

sary, so that routines that prod subsequently calls
need to deal with only 32-bit addresses.

The _INITIAL_POINTER_SIZE macro is used to
determine if pointer_size pragmas will be effective
and, hence, whether argument_ptrrnight be 64 bits in
width. If it might be a 64-bit pointer, whose actual
width is unknown in this example, the pointer's value
is copied to a 32-bit-wide pointer. The pointer_size
pragma is used to change the current pointer size to
32 bits to declare the temporary pointer. Next, the
two pointer values are compared to determine if
the original pointer fits in 32 bits. If the pointer does
not fit, temporary storage in 32-bit addressable space
is allocated, and the argument is copied there. Note
that the example uses _malloc32 rather than malloc,
because malloc would allocate 64-bit address space
if the initial pointer size was 64 bits. At the end of
the routine, the temporary space is freed, if necessary.

A type cast is used in the assignment from
argument_ptr to temp_shorl_ptr, even though both
variables are of type char *. Without this type cast, if
argument_ptr is a 64-bit-wide pointer, the DEC C
compiler would report a warning message because of
the potential data loss when assigning from a 64-bit to
a 32-bit pointer.

For other examples of pointer_size pragmas and the
use of the _INITIAL_POINTER_SIZE macro, see
Duane Smith's paper on 64-bit pointer support in
run-time libraries.6

OpenVMS System Services

The OpenVMS operating system provides a suite of
services that perform a variety of basic operating sys­
tem functions. 7 Design work was required to maxi­
mize the utility of these routines in the new mixed
pointer size environment. Issues that needed to be
addressed included the following, which are discussed
in subsequent sections:

• Several services pass pointers by reference and,
hence, required an interface change.

• Because of resource constraints, not all system ser­
vices could be promoted to handle 64-bit addresses
in the first version of the 64-bit-capable Open VMS
operating system.

• Since the services provide mixed levels of support, it
is important to indicate those that support 64-bit
addresses and those that do not.

• Certain new services seemed desirable to improve
the usability of 64-bit address space.

Services That Are 64-bit Friendly
Services that can be promoted to support 64-bit
addresses without any interface change are called 64-bit
friendly. If a service receives an address by reference, the
service is typically not 64-bit friendly, and a separate

voi d proc1(ch ar * argu men t_p tr)
{

#if I NITIAL_PO IN TER SIZE != 0
#pr ag ma poi n t er_s ize save
p ragma pointer_size 32
char* temp_short_ptr;
te mp_short_ptr = (char *)argument_ptr;
if <temp_short_ptr != argument_ptr) {

temp_short_ptr = _malloc32Cstrlen(arg umen t_ptr) + 1);
strcpy(te mp_short_ptr,argument_ptr);
argument_ptr = te mp_short_ptr;

}

e lse {
temp_short_ptr = O;

}

p ragma poi nt er_size restore
#end if

I*
The actual body of proc1 is omitted. Ass ume that it calls
r outines t ha t operat e o n the data pointe d to by arg ume nt_ptr
and that the routines are not yet prepare d to handle 6 4-bit
a ddresses.

Figure 3

*I

#if INITIA L POINTER SIZE != 0
if Ctemp_sho rt_ptr != 0)

free(temp_short_ptr);
#end if
}

Code Example of Pointer_size Pragmas and the _INITIAL_POINTER_SIZE Macro

entry point is required to support 64-bit addresses. A
single routine cannot distinguish whether the address at
the specified location is 32 bits or 64 bits in width.

If a service does not receive or return an address by
reference, the service is usually 64-bit friendly. Even
descriptor arguments present no problem, because the
32-and 64-bit versions can be distinguished at run
time. The majority of services fall into this category.

The services that are not 64-bit friendly include
the entire suite of memory management system ser­
vices, since they access address ranges passed by refer­
ence. Other such services include those that receive
a 32-bit vector as an argument, which may include the
address of a pointer as an element. A good example
from this group is SYS$FAOL, which accepts a 32-bit
vector argument for formatted output. For all these
services, new interfaces were designed to accommo­
date 64-bit callers.

Promotion of Services
The Open VMS project team explored the idea of pro­
moting all system services to support 64-bit addresses.
Since the majority of Open VMS system service
routines are written in the MACR0-32 assembly lan­
guage or the Bliss-32 programming language, the
internals of the routines could not be promoted to
handle 64-bit addresses without modifications. We
could not take advantage of the throw-the-switch
approach, and we did not want to because many

pointers used internally in the OpenVMS operating
system remain at 32 bits.

We considered using 64-bit jacket routines to copy
64-bit arguments to the stack in 32-bit space, which
would then call the 32-bit internal routine to perform
the requested function. However, this approach would
fail for context arguments such as asynchronous system
trap (AST) routine parameters, where the address of
the argument is stored for subsequent use. This
approach would also prevent services from operating
on any true 64-bit addresses. It was clear that at least
some routines would have to be modified internally.

The idea of using jacket routines was ultimately
rejected for several reasons. First, the jackets would
need to be custom written to ensure correct parameter
semantics. There could not be a "common jacket"
that could have saved time and lowered risk. Second,
there would be an undesirable performance impact for
64-bit callers. Third, we decided that having a com­
plete 64-bit system service suite was not essential for
usable 64-bit support. We could define a subset that
would meet the needs of 64-bit address space users,
while lowering our risk and implementation costs.

The services selected for 64-bit support fall into
four categories.

1. Memory management services.

2. Performance-critical services. This group includes
services that are typically sensitive to the addition of

Digital Technical Journal Vol. 8 No. 2 1996 79

even a few cycles of execution time. Requiring that
a 64-bit address user do any additional work, such
as copying data to 32-bit space, is undesirable. An
example of this type of service is SYS$ENQ, which
is used for queuing lock requests.

3. Design center services. The primary design center
for 64-bit support was database applications.
Database architects and consultants were polled to
determine which services were most needed by
their products. Many of these services, for example
SYS$QIO for queuing 1/0 requests, were also in
the performance-critical set.

4. Other useful basic services. This set includes ser­
vices to ease the transition to 64 bits with minimal
change to program structure. For example, the
SYS$CMKRNL service accepts a routine address
and a vector of 32-bit arguments and invokes the
routine in kernel mode, passing those arguments.
Without a new 64-bit version of SYS$CMKRNL,
a caller could not pass a 64-bit address to the kernel
mode routine without changing the form of the
argument block, such as passing a structure that
SYS$CMKRNL would not interpret as a vector.

Several steps were taken to ease programming to
this subset implementation.

• For all 64-bit services, all pointer arguments may
be in 64-bit space. Extending only individual argu­
ments for some services would have been confusing
and difficult to document.

• The 64-bit-capable system services are clearly listed
in the OpenVMS documentation, and the docu­
mentation for individual services clearly calls out
their capabilitiesY

• For C programmers, the header file that defines
function prototypes for system services
(STARLET.H) defines the expected pointer size
for service arguments. This file can be used for
compile-time type checking for correct argument
pointer sizes.

• A strict naming convention has been adhered to for
64-bit services. If a routine was 64-bit friendly, i.e.,
it required no interface change, its name was not
changed. If a new entry point was required
because, for example, an address is passed by refer­
ence, a "_64" suffix was added to the name to iden­
tify the new entry point.

• Sign-extension checking is performed in routines
that do not accept 64-bit addresses.

Centralized Sign-extension Checking
For services that have not been promoted to accept
arguments in 64-bit space, centralized sign-extension
checking takes place. As described in the section Sign­
extension Checking, such checking prevents errors that

80 Digital Technical Journal Vol. 8 No. 2 1996

occur when a 64-bit address is erroneously passed to a
routine that uses only 32-bit addresses. This centralized
checking is part of the system service dispatcher, which
returns the error status SS$ _ARG_ GTR_32_BITS when
the error is discovered. Performing the checking at this
common point minimized the implementation effort,
while protecting sensitive inner mode services. No
changes were necessary to the modules that contain the
32-bit service code. The internal vector of services con­
tains a flag for each service indicating whether checking
should be done.

Naturally, it is best for mixed-size errors to be dis­
covered at compile time. The DEC C compiler issues a
warning message when a 64-bit pointer is used as a
parameter to a routine whose function prototype spec­
ifies that the parameter should be a 32-bit pointer.
Run-time sign-extension checking works for any lan­
guage, though, including MACR0-32.

This support can also be used to allow a run-time
decision to be made to copy data from 64-bit space
to 32-bit space. For example, a routine could call a
system service, passing along an address that it
had received as a parameter. If the service returns
SS$_ARG_GTR_32_BITS, the calling routine can
then copy the argument to the stack and retry the ser­
vice. In this way, the overhead of copying can be
avoided if copying is unnecessary. When the system
service is promoted to handle 64-bit addresses in a
future version of the Open VMS operating system, no
change will be needed in this caller; the data copying
code will never be invoked. This approach may be
appropriate for a run-time library that needs to be fully
64-bit capable today on Open VMS Alpha version 7.0,

• if that library will not be rereleased for a future version
of the Open VMS operating system.

Memory Management System Services
The OpenVMS memory management system ser­
vices are not 64-bit friendly because they pass 32-bit
input and output address arguments by reference.
This set of services includes SYS$EXPREG (expand
program/ control region), SYS$MGBLSC (map global
section), SYS$CRMPSC (create and map section), and
SYS$PURGWS (purge working set), among others.

The guiding principle in promoting these services
was that the new 64-bit services had to perform the
same functions as their 32-bit counterparts but not
necessarily with an identical interface. Since 32-bit
addresses can be expressed as 64-bit addresses with
sign-extension bits in the upper 32 bits, it made sense to
accommodate 32-bit addresses in the 64-bit interfaces,
making the new services a superset of the 32-bit forms.
For example, the SYS$CRMPSC service was split into
multiple 64-bit-capable services, because it handles a
variety of types of sections. The new services can operate
on either 32-bit or 64-bit addresses and have simpler

interfaces than the 32-bit-only SYS$CRMPSC. The
original SYS$CRMPSC is still present so that existing
code may function without change.

Some new feature requests were considered as part
of the 64-bit effort, but, to maintain the focus of
the release, these features were not implemented. The
64-bit memory management services were designed
to more easily accommodate new features in the
future. For example, the new services check the argu­
ment count for both too many and too few supplied
arguments. In this way, new optional arguments can
be added later to the end of the list without jeopardiz­
ing backward compatibility.

Virtual Regions
One new feature that was added to the suite of64-bit
memory management services is support for new enti­
ties called virtual regions. A virtual region is an address
range that is reserved by a program for future dynamic
allocation requests. The region is similar in concept to
the program region (PO) and the control region (P 1),
which have long existed on the Open VMS operating
system.9 A virtual region differs from the program and
control regions in that it may be defined by the user by
calling a system service and may exist within PO, Pl, or
the new 64-bit addressable process-private space, P2. 1

When a virtual region is created, a handle is returned
that is subsequently used to identify the region in
memory management requests.

Address space within virtual regions is allocated in
the same manner as in the default PO, Pl, and P2
regions, with allocation defined to expand space
toward either ascending or descending addresses. As
in the default regions, allocation is in multiples of
pages. The Open VMS operating system keeps track of
the first free virtual address within the region. A region
can be created such that address space is created auto­
matically when a virtual reference is made within the
region, just as the control region in Pl space expands
automatically to accommodate user stack expansion.
When a virtual region is created within PO, Pl, or P2,
the remainder of that containing region decreases in
size so that it does not overlap with the virtual region.

Virtual regions were added to the Open VMS Alpha
operating system along with the 64-bit addressing
capability so that the huge expanse of 64-bit address
space could be more easily managed. If a subsystem
requires a large portion of virtually contiguous address
space, the space can be reserved within P2 with little
overhead. Other subsystems within the application
cannot inadvertently interfere with the contiguity
of this address space. They may create their own
regions or create address space within one of the
default regions.

Another advantage of using virtual regions is that
they are the most efficient way to manage sparse
address space within the 64-bit P2 space. Further-

more, no quotas are charged for the creation of a vir­
tual region. The internal storage for the description
of the region comes from process address space, which
is the only resource used.

Summary

This paper presents the reasons behind the new
Open VMS mixed pointer size environment and the
support added to allow programming within this envi­
ronment. The discussion touches on some of the new
support designed to simplify the use of the 64-bit
address space.

The approaches discussed yielded full upward com­
patibility for 32-bit applications, while allowing other
applications access to the huge 64-bit address space for
data sets that require it. Promotion of all pointers to
64-bit width is not required to use 64-bit space; the
mixed pointer size environment was considered para­
mount in all design decisions. A case study of adding
64-bit support to the C run-time library also appears
in this issue of the Journal.6

Acknowledgments

The authors wish to thank the other members of the
64-bit Alpha-L Team who helped shape many of the
ideas presented in this paper: Mark Arsenault, Gary
Barton, Barbara Benton, Ron Brender, Ken Cowan,
Mark Davis, Mike Harvey, Lon Hilde, Duane Smith,
Cheryl Stocks, Lenny Szubowicz, and Ed Vogel.

References

1. M. Harvey and L. Szubowicz, "Extending OpenVMS
for 64-bit Addressable Virtual Memory," Digital
Technical Journal, vol. 8, no. 2 (1996, this issue):
57-71.

2. Open VMS Calling Standard (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBBA-TE,
1995).

3. MIPSpro 64-Bit Porting and Transition Guide, Docu­
ment No. 007-2391-002 (Mountain View, Calif.:
Silicon Graphics, Inc., 1996).

4. C Language Reference for MS-DOS and Windows
Operating Systems (Redmond, Wash.: Microsoft Cor­
poration, 1991) and "Declarations and Types," chap. 3,
and "Expressions and Assignments," chap. 4, in
Microsoft CIC++ Version 7.0 (Redmond, Wash.:
Microsoft Corporation, 1991).

5. Digital UNIX Programmer's Guide (Maynard, Mass.:
Digital Equipment Corporation, 1996).

6. D. Smith, "Adding 64-bit Pointer Support to a 32-bit
Run-time Library," Digital Technical journal, vol. 8,
no. 2 (1996, this issue): 83-95.

Digital Technical Journal Vol. 8 No. 2 1996 81

82

7. OpenVMS System Seroices Reference Manual:
A-GETMSG (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QSBMA-TE, 1995) and
OpenVMS System Seroices Reference Manual:
GETQUI-Z(Maynard, Mass.: Digital Equipment Corpo­
ration, Order No. AA-QSBN-TE, 1995).

8. OpenVMS Alpha Guide to 64-Bit Addressing (May­
nard, Mass.: Digital Equipment Corporation, Order
No. AA-QSBCA-TE, 1995).

9. T. Leonard, ed., VAX Architecture Reference Manual
(Bedford, Mass.: Digital Press, 1987).

Biographies

Thomas R. Benson
A consulting engineer in the Open VMS Engineering Group,
Tom Benson is one of the developers of64-bit addressing
support. Tom joined Digital's VAX Basic project in 1979
after receiving B.S. and M.S. degrees in computer science
from Syracuse University. After working on an optimizing
compiler shell used by several VAX compilers, he joined
the VMS Group where he led the VMS DECwindows
File View and Session Manager projects, and brought the
Xlib graphics library to the VMS operating system. Tom
holds three patents on the design of the VAX MACR0-32
compiler for Alpha and recently applied for two patents
related to 64-bit addressing work.

Karen L. Noel
A principal engineer in the Open VMS Engineering Group,
Karen Noel is one of the developers of64-bit addressing
support. After receiving a B.S. in computer science from
Cornell University in 1985, Karen joined Digital's RSX
Development Group. In 1990, she joined the VMS Group
and ported several parts of the VMS kernel from the VAX
platform to the Alpha platform. As one of the principal
designers of Open VMS Alpha 64-bit addressing support,
she has recently applied for six software patents.

Digital Technical Journal Vol. 8 No. 2 1996

Richard E. Peterson
Rich Peterson joined Digital's DEC C/C++ team in 1992.
He was the project leader for the development of the C
and C++ compilers that joined the Microsoft front ends
to the GEM back end. These compilers were used to build
and deliver the first release of the Windows NT operating
system on the Alpha platform and later were used in Visual
C++ for Alpha. A principal software engineer in the Core
Technologies Group, Rich is currently the project leader
for DEC Con the Digital UNIX and Open VMS platforms.
Prior to joining Digital, Rich worked at Intermetrics on
a number of compiler projects, including HAL/S for the
Space Shuttle and Ada for IBM/370 and MIL-STD l 750A.
Rich also worked at COMPASS, where he was the project
leader for the Thinking Machines Fortran compiler and
Digital's initial MPP compiler effort. He received a B.S.
in English from the California Institute ofTechnology
and has applied for one patent on Alpha Open VMS 64-bit
compiler work.

Adding 64-bit Pointer
Support to a 32-bit
Run-time Library

A key component of delivering 64-bit addressing
on the OpenVMS Alpha operating system, ver­
sion 7 .0, is an enhanced C run-time library that
allows application programmers to allocate and
utilize 64-bit virtual memory from their C pro­
grams. This C run-time library includes modified
programming interfaces and additional new
interfaces yet ensures upward compatibility
for existing applications. The same run-time
library supports applications that use only
32-bit addresses, only 64-bit addresses, or
a combination of both. Source code changes
are not required to utilize 64-bit addresses,
although recompilation is necessary. The new
techniques used to analyze and modify the
interfaces are not specific to the C run-time
library and can serve as a guide for engineers
who are enhancing their programming inter­
faces to support 64-bit pointers.

I
Duane A. Smith

The OpenVMS Alpha operating system, version 7.0,
has extended the address space accessible to applica -
tions beyond the traditional 32-bit address space. This
new address space is referred to as 64-bit virtual mem­
ory and requires a 64-bit pointer for memory access. 1

The operating system has an additional set of new
memory allocation routines that allows programs to
allocate and release 64-bit memory. In OpenVMS
Alpha version 7 .0, this set of routines is the only mech­
anism available to acquire 64-bit memory.

For application programs to take advantage of these
new OpenVMS programming interfaces, high-level
programming languages such as C had to support
64-bit pointers. Both the C compiler and the C run­
time library required changes to provide this support.
The compiler needed to understand both 32-bit and
64-bit pointers, and the run-time library needed to
accept and return such pointers.

The compiler has a new qualifier called /pointer_size,
which sets the default pointer size for the compilation
to either 32 bits or 64 bits. Also added to the compiler
are pragmas (directives) that can be used within the
source code to change the active pointer size. An
application program is not required to compile each
module using the same /pointer_size qualifier; some
modules may use 32-bit pointers while others use
64-bit pointers. Benson, Noel, and Peterson describe
these compiler enhancements. 2 The DEC C User's
Guide for Open VMS Systems documents the qualifier
and the pragmas.3

The C run-time library added 64-bit pointer sup­
port either by modifying the existing interface to a
function or by adding a second interface to the same
function. Public header files define the C run-time
library interfaces. These header files contain the pub­
licly accessible function prototypes and structure defi­
nitions. The library documentation and header files
are shipped with the C compiler; the C run-time
library ships with the operating system.

This paper discusses all phases of the enhancements
to the C run-time library, from project concepts
through the analysis, the design, and finally the imple­
mentation. The DEC C Runtime Library Reference
Manual for open VMS Systems contains user documen­
tation regarding the changes.4

Digital Technical Journal Vol. 8 No. 2 1996 83

Starting the Project

We devoted the initial two months of the project to
understanding the overall Open VMS presentation of
64-bit addresses and deciding how to present 64-bit
enhancements to customers. Representatives from
OpenVMS engineering, the compiler team, the run­
time library team, and the Open VMS Calling Standard
team met weekly with the goal of converging on the
deliverables for Open VMS Alpha version 7.0.

The project team was committed to preserving both
source code compatibility and the upward compati­
bility aspects of shareable images on the Open VMS
operating system. Early discussions with application
developers reinforced our belief that the Open VMS
system must allow applications to use 32-bit and
64-bit pointers within the same application. The team
also agreed that for a mixed-pointer application to
work effectively, a single run-time library would need
to support both 32-bit and 64-bit pointers; however,
there was no known precedent for designing such
a library.

One implication of the decision to design a run­
time library that supported 32-bit and 64-bit pointers
was that the library could never return an unsolicited
64-bit pointer. Returning a 64-bit pointer to an
application that was expecting a 32-bit pointer would
result in the loss of one half of an address. Although
typically this error would cause a hardware exception,
the resulting address could be a valid address. Storing
to or reading from such an address could result in
incorrect behavior that would be difficult to detect.

The Open VMS Calling Standard specifies that argu­
ments passed to a function be 64-bit values.5 If a
32-bit address is used, it is always sign extended to
form a 64-bit address that can be used by the Alpha
hardware. The C run-time library team exploited this
fact when creating the 64-bit interface to the library.

The team also agreed that using 64-bit pointers
should be as simple as possible; the simplest mode
would allow the application to compile using the
qualifier /pointer_size=64 without making source
code changes. The design of 64-bit support must
appear as a logical extension to the C programming
environment in use today. Furthermore, applications
written to conform strictly to the ANSI standard must
be able to use 64-bit pointers while remaining confor­
mant. For example, allocating 64-bit virtual memory
would be an extension to the standard C memory man­
agement functions malloc, calloc, realloc, and free.

This paper shows that each of the C run-time library
interfaces examined falls into one of the following
four categories (listed in order of added complexity
to library users):

1. Not affected by the size of a pointer

2. Enhanced to accept both pointer sizes

84 Digital Technical Journal Vol. 8 No. 2 1996

3. Duplicated to have a 64-bit-specific interface

4. Restricted from using 64-bit pointers

One last point to come from the meetings was
that many of the C run-time library interfaces are
implemented by calling other Open VMS images. For
example, the Curses Screen Management interfaces
make calls to the Open VMS Screen Management
(SMG) facility. It is important that the C run-time
library defines the interfaces to support 64-bit
addresses without looking at the implementation of
the function. Consistency and completeness of the
interface are more important than the complexity
of the implementation. In the SMG example, if the
C run-time library needs to make a copy of a string
prior to passing the string to the SMG facility, this
is what will be implemented.

Analyzing the Interfaces

The process of analyzing the interfaces began by creat­
ing a document that listed all the header files and the
definitions in these files. A total of 50 header files that
contained approximately 50 structures and 500 proto­
types needed to be analyzed. Each structure or pro­
totype had to be examined to see if a change in pointer
size would affect the interface. Keep in mind that
we analyzed only the interfaces; we did not examine
the underlying implementation changes that would
be required.

Analyzing the Structures

It is necessary to distinguish between a structure,
which may contain pointers, and a pointer to the struc­
ture itself. For example, the div_t structure contains
two integer fields. Although the size of the pointer
to div_t does not affect the contents of the structure,
the entire structure may be allocated in 32-bit or 64-bit
virtual memory. Functions that accept a pointer to such
a structure may need to be modified to accommodate
the 64-bit case. The div_t structure is

t ypedef struct {
i nt qu ot, rem;

} div_t;

Many structures used in the C run-time library
interfaces are allocated by the run-time library in
response to a function call. For example, a call to the
fopen function returns the following pointer to
the FILE structure:

FILE *f ope nCco nst ch a r *fil ename,
co nst char * mo de);

The C run-time library always allocates FILE struc­
tures in 32-bit virtual memory and returns a 32-bit
pointer to the calling program. This important con­
cept can dramatically impact the use of 64-bit pointers

in structures. If a FILE pointer is always a 32-bit
pointer, structures that contain only FILE pointers are
not affected by the choice of pointer size. We use this
information when we look at the layout of structures
and examine function prototypes that accept pointers
to structures.

In this paper, structures that are always allocated in
32-bit virtual memory are referred to as structures
bound to low memory. After determining which
structures are bound to low memory, we examine the
layout of each structure to decide if the structure
is affected by pointer size. We keep in mind that
pointer size does not affect a structure that is bound
to low memory.

For upward compatibility, the analysis must always
consider existing software that depends on the layout
of the structure. In the case of public header file analy­
sis, such dependence will probably always be present.
An application may have executable code that, for
example, fetches 4 bytes beginning at byte 12 of the
structure and dereferences those 4 bytes as the address
ofa string.

For these public structures, the analysis must weigh
the impact of forcing these structures to be 32-bit
pointers. If the decision is made to allocate two differ­
ent structure types, each function that either returns
or is passed such a structure must have a pointer-size­
specific implementation. The case analysis and further
details appear in the section Pointer to Pointer-size­
sensitive Structures.

Analyzing the Function Prototypes
Analyzing functions only requires looking at the func­
tion prototypes. To determine the effect of pointer
size on a function, we look at each parameter and
return value that involves a pointer. This section
describes the types of situations that are affected by
pointer size, from the simplest type to the most com­
plex. Note that when a program passes an array of any
type to a function, the array is passed as a pointer and
must be considered.

Making 64-bit-friendly Parameters As mentioned in
the section Starting the Project, the open vMS Calling
Standard specifies that a 32-bit address is sign
extended to a 64-bit address when passed as an
argument to a function. This implies that existing
programs that pass addresses as parameters are already
sign extending those 32-bit addresses to be passed as
64-bit quantities. Each 32-bit address can, therefore,
be expressed as a 64-bit address in which the top
32 bits are zero.

This sign-extending scheme allows the run-time
library to have a single implementation that can be
used by both 32-bit and 64-bit calling programs. This

implementation would be modified to accept only
64-bit addresses. An implementation that supports
parameters of either pointer size is referred to as being
64-bit friendly. The function strlen is an example of
a 64-bit-fiiendly function.

size t str len(co nst c har *stri ng) ;

The string parameter is the only part of the strlen func­
tion that the pointer size affects. To support 64-bit
addressing, the strlen function had to be modified to
accept a 64- bit pointer.

Parameters Bound to Low Memory In structures bound
to low memory, the addresses that the programs pass
are always 32-bit addresses. One explanation is that
the structures are managed by the run-time library,
and the only method of creating, destroying, or
obtaining the addresses of these structures is by calling
a library routine. Given that a single library services
both 32-bit and 64-bit calling programs, the library
does not change the structures based on command
qualifiers, nor does it allocate the structures in 64-bit
virtual memory. For user convenience, the C run-time
library implemented these pointers as 32-bit return
values but 64-bit-friendly parameters.

The reason for this design became apparent while
testing the 64-bit interfaces to the library. Consider
the following code fragment, which exists in many
applications:

FILE *fp;
char buffer[100 J ;
fp = fopen("the_file", "r");
fread(array , sizeof(buffer), 1, fp);

The C run-time library always allocates a FILE
structure in 32-bit virtual memory. When the previous
code fragment is compiled using /pointer_size=64,fp
is declared as a 64-bit pointer to a FILE structure,
because using this qualifier specifies the default pointer
size to be used. When the fopen function returns the
32-bit pointer, the return value is sign extended into
the 64-bit FILE pointer. If the fourth parameter of the
fread function had been declared as a 32-bit FILE
pointer, the compiler would report an error when the
64-bit FILE pointer fp was passed as an argument.
This example explains why the C run-time library
declares structures bound to low memory as 32-bit
return values but 64-bit parameters.

Parameters Restricted to Low Memory Structures
restricted to low memory are similar to those bound to
low memory except that the user allocates the struc­
tures and can allocate the structures in high memory.
The C run-time library cannot support the allocation
of such structures in 64-bit virtual memory.

Digital Technical Journal Vol. 8 No. 2 1996 85

An example of a parameter being restricted to a
low memory address is the buffer being passed as the
parameter to the function setbuf. The parameter
defines this buffer to be used for I/0 operations. The
user expects to see this buffer change as I/0 opera­
tions are performed on the file. If the run-time library
made a copy of this buffer, the changes would appear
in the copy and not in the original buffer that the user
supplied. When the C run-time library begins to use
the 64-bit OpenVMS Record Management Services
(RMS) interface, this low-memory restriction will be
removed.

In most cases, the run-time library is able to hide
the fact that the 32-bit RMS interface is not able to
interpret a 64-bit virtual memory address. Consider
the filename parameter to the fopen function. If the
parameter is a 64-bit virtual memory address, the run­
time library copies this parameter to 32-bit virtual
memory and passes the address of the copy to RMS .
Neither the user nor RMS is aware that this copy has
been made. The library may copy the data if and only if
such a copy operation does not change functionality or
significantly degrade performance.

Size-independent Structure Pointers Many functions
receive the address of a structure whose layout is not
affected by pointer size. The simplest address in this
category is that of an array of integers. This array may
be in either 32-bit or 64-bit virtual memory, but only
one interface is needed to determine the layout of the
structure. If the structure layout is independent of
pointer size, then pointer-size-specific entry points are
not required for this parameter. The developer would
still make the parameter 64-bit fiiendly so that the user
would have the freedom to make the allocation that is
best for the application.

Pointer to Pointer Parameters It is common practice
for a function to be passed a pointer to a pointer. If the
pointer being pointed to is not bound or restricted to
a 32-bit address, then two implementations of the
function are necessary.

To understand why some functions require two
implementations, consider the following strtod
function:

double strtod(const char *string,
char **endptr);

The strtod function converts a string to a floating­
point double-precision number. The second parame­
ter to this function, endptr, is a pointer to a memory
location into which the address of the first unrecog­
nized character is to be placed. The caller of this func­
tion has allocated either 4 or 8 bytes to store this
address. Without pointer-size-specific entry points,

86 Digital Technical Journal Vol. 8 No. 2 1996

the function has no way of determining how many
bytes to write. Writing 4 bytes may truncate a pointer;
writing 8 bytes may overwrite 4 bytes of user data that
follows the pointer. The strtod function, therefore, has
two implementations. The first expects endptr to be
the address of a 32-bit pointer, and the second expects
endptr to be the address of a 64-bit pointer.

Pointer to Pointer-size-sensitive Structures Many func­
tions receive the address of a structure. If the analysis
reveals that the layout of this structure is dependent
upon pointer size, the functions that receive or return
this structure must have pointer-size-specific entry points.

Note that the layout of the structure is separate
from whether the structure is allocated in low memory
or in high memory. The 32-bit-specific entry point is
needed to understand the layout of the structure, but
the parameter should allow this structure to be allo­
cated in high memory.

Functions that receive the address of an array of
addresses are treated in the same way, assuming that
the addresses in the array are neither bound nor
restricted to low memory. The function being called
needs to know if the array contains 32-bit addresses or
64-bit addresses. Unlike the address of the array, the
individual members of the array are not sign extended
to 64-bit values.

Separate implementations are necessary only to
determine the layout of what is being pointed to. The
32-bit interface handles pointers to structures contain­
ing 32-bit addresses, and the 64-bit interface handles
pointers to structures containing 64-bit addresses.

Functions That Return Pointers Many functions return
pointers as the value of the function. These pointers are
either pointer-size specific or they are not affected by
the pointer size. Similar to its specifications for 64-bit­
fiiendly parameters, the OpenVMS Calling Standard
indicates that return values on the OpenVMS Alpha
operating system are always sign extended to 64-bit
values and returned in register zero (RO).

To make an address parameter 64-bit fiiendly, a
function allows a 64-bit address to be passed, thus
enabling both 32-bit and 64-bit calling programs to
use a single interface. Conversely, if a function returns
a 64-bit address to a 32-bit calling program, the
address is safely returned in RO but is truncated when
moved from RO into the user's data area. A 64-bit­
fiiendly address return value is always 32 bits. When
moved from RO into the calling program's variable,
it is sign extended when the calling program is using
64-bit addresses.

If the return value of a function can be a 64-bit
address, this function must have pointer-size-specific
entry points. If the function returns the address of a

structure that is bound to low memory, such as a FILE
or WINDOW pointer, the return value does not force
separate entry points.

Certain functions, such as malloc, allocate memory
on behalf of the calling program and return the address
of that memory as the value of the function. These
functions have two implementations: the 32-bit inter­
face always allocates 32-bit virtual memory, and the
64-bit interface always allocates 64-bit virtual memory.

Many string and memory functions have return val­
ues that are relative to a parameter passed to the same
routine. These addresses may be returned as high
memory addresses if and only if the parameter is a
high memory address.

The following is the function prototype for strcat,
which is found in the header file <string.h>:

char *strcat(char *s1, const char *s2);

The strcat function appends the string pointed to by
s2 to the string pointed to by sl. The return value is
the address of the latest string sl.

In this case, the size of the pointer in the return
value is always the same as the size of the pointer
passed as the first parameter. The C programming lan­
guage has no way to reflect this. Since the function
may return a 64-bit pointer, the strcat function must
have two entry points.

As discussed earlier, the pointer size used for para­
meter s2 is not related to the returned pointer size.
The C run-time library made this s2 argument 64-bit
friendly by declaring it a 64-bit pointer. This declara­
tion allows the application programmer to concate­
nate a string in high memory to one in low memory
without altering the source code. The following strcat
function statement shows this declaration:

c har *strcat(char *s1, ~char_ptr64 s2);

The data type _char_ptr64 is a 64-bit character
pointer whose definition and use will be explained
later in this paper.

High-level Design

The /pointer_size qualifier is available in those
versions of the C compiler that support 64-bit point­
ers. The compiler has a predefined macro named
_ INITIAL_POINTER._SIZE whose value is based on
the use of the / pointer_size qualifier. The macro
accepts the following values:

• 0, which indicates that the /pointer_size qualifier is
not used or is not available

• 32, which indicates that the /pointer_size qualifier
is used and has a value of 32

• 64, which indicates that the /pointer_size qualifier
is used and has a value of 64

The C run-time library header files conditionally
compile based on the value of this predefined macro.
A zero value indicates to the header files that the com­
puting environment is purely 32-bit. The pointer-size­
specific function prototypes are not defined. The user
must use the /pointer_size qualifier to access 64-bit
functionality. The choice of 32 or 64 determines the
default pointer size.

The header files define two distinct types of declara­
tions: those that have a single implementation and
those that have pointer-size-specific implementations.
The addresses passed or returned from functions that
have a single implementation are either bound to low
memory, restricted to low memory, or widened to
accept a 64-bit pointer.

Those functions that have pointer-size-specific
entry points have three function prototypes defined.
Using malloc as an example, prototypes are created for
the functions malloc, _malloc32, and _malloc64. The
latter two prototypes are the pointer-size-specific pro·
totypes and are defined only when the / pointer_size
qualifier is used. The malloc prototype defaults to call­
ing _malloc32 when the default pointer size is 32 bits.
The malloc prototype defaults to calling _malloc64
when the default pointer size is 64 bits. Applica­
tion programmers who mix pointer types use the
/pointer_size qualifier to establish the default pointer
size but can then use the _malloc32 and _malloc64
explicitly to achieve nondefault behavior.

In addition to being enhanced to support 64-bit
pointers, the C compiler has the added capability of
detecting incorrect mixed-pointer usage. It is the
function prototype found in the header files that tells
the compiler exactly what pointer size is permitted or
expected in a call. Proper use of the header files helps
prevent pointer truncation.

The actual functions called in the C run-time library
are either decc$malloc or decc$_malloc64, depending
on the pointer size. The C run-time library does not
contain an entry point called decc$_malloc32 . This
naming scheme was selected so that applications that
link on older systems always get the 32-bit interface.

The C compiler has always looked at a table within
the C run-time library shareable image for assistance in
name prefixing. Using this table, the compiler knows
to change calls to the malloc function into calls to the
decc$malloc function and not to change calls to xyz,
which is not a C run-time library function, into calls to
decc$xyz.

The C run-time library and the C compiler have
added new information to the table that tells the com­
piler which functions have pointer-size-specific entry
points. When the compiler sees a call to the function
_xyz32, it looks it up in the name table. If the name of
the function is found, the compiler then looks at

Digital Technical Journal Vol. 8 No. 2 1996 87

88

whether the function is the 32-bit-specific entry point.
If it is, the compiler forms the prefixed name by
adding "decc$" to the beginning of the name but
also removes the"_" and the "32." Consequently, the
function name _malloc32 becomes decc$malloc, but
the function name _xyz32 does not change.

Implementation

To illustrate changes that needed to be made to the
header files, we invented a single header file called
<header.h>. This file, which is shown in Figure 1, illus­
trates the classes of problems faced by a developer who
is adding support for 64-bit pointers. The functions
defined in this header file are actual C run-time library
functions.

Preparing the Header File
The first pass through <header.h> resulted in a num­
ber of changes in terms of formatting, commenting,
and 64-bit support. Realizing that many modifications
would be made to the header files, we considered
readability a major goal for this release of these files.

The initial header files assumed a uniform pointer
size of 32 bits for the OpenVMS operating system.
During the first pass through <header.h>, we added
pointer-size pragmas to ensure that the file saved the
user's pointer size, set the pointer size to 32 bits, and
then restored the user's pointer size at the end of the
header.

Next we formatted <header.h> to show the various
categories that the structures and functions fall into.
The categories and the result of the first pass through
<header.h> can be seen in Figure 2. For example,
the function rand had no pointers in the function

prototype and was immediately moved to the section
"Functions that support 64-bit pointers."

Organizing <header.h> in this way gave us an accu­
rate reading of how many more functions needed
64-bit support. If any of the sections became empty,
we did not remove the section. This approach worked
well because while some engineers were doing 64-bit
work, others were adding new functions. Any new
functions added to a header file after the 64-bit work
was done would be placed in the section "Functions
that need 64-bit support." Prior to shipping the
header files, we removed the empty sections.

Preparing the Source Code
After several false starts, we settled on a design for
modifying the source code for 64-bit support. The
expected starting design was to modify the source
code by adding pointer_size pragmas and compile the
source modules using the /pointer_size qualifier.
Some modules would use /pointer_size=32; others
would use /pointer_size=64. The major drawback to
this approach was that looking at a variable declared as
a pointer requires an understanding of the context in
which that variable appears. No longer would "char *"
be simply a character pointer. It could be a 32-bit or a
64-bit character pointer, and the implementer needed
to know which one.

The design on which we decided overcomes the
readability problem. By default, source files are not
compiled with the /pointer_size qualifier. This means
that no pointer-size manipulation occurs when includ­
ing the header files. The readability of the source code
is improved in that the implementers can see which
pointers are 32-bit pointers and which are 64-bit
pointers.

#ifndef ~HEADER_LOADED

Figure 1
Original Header File <header.h>

Digital Technical Journal

#define HEADER_LOADED

#ifndef SIZE_T
defi n e SIZE_T 1

typedef unsigned int size_t;
#endif

int execv(const char*, char*[]);
void freeCvoid *);
void *malloc(size_t);
int r and (void);
char *strcatCcha r * , const c har*);
char *strerror(int);
size_t strlenCconst char*);

#endif /* ~HEADER_LOADED */

Vol. 8 No. 2 1996

#ifndef
#define

I*

HEADER_LOADED
HEADER_LOADED

** Ensure that we begin with 32-bit pointers.
*I
#if INITIAL POINTER SIZE
if C_VMS_VER < 70000000)
error "Pointer size added in OpenVMS V7.0 for Alpha"

Figure 2

endif
pragma _pointer_size save
pragma _pointer_size 32
#end if

I*
** STRUCTURES NOT AFFECTED BY POINTERS
*I
i fn de f _s I ZE_ T
define SIZE_T 1

typedef unsigned int size_t;
#end if

I*
** FUNCTIONS THAT NEED 64-BIT SUPPORT
*I
int execvCconst char*, char*[]);
void freeCvoid *);
void *mallocCsize_t);
cha r *strcatCchar *, canst char*);
char *strerrorCint);
size_t strlenCconst char*);

I*
** Create 32-bit header file typedefs.
*I

I*
** Create 64-bit header f i le typedefs.
*I

I*
** FUNCTIONS RESTRICTED FROM 64 BITS
*I

I*
** Change default to 64-bit pointers.
*I
#if INITIAL_POINTER SIZE
pragma _pointer_size 64
#end if

I*
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*I
int rand(void);

I*
** Restore the user's pointer context.
*I
#if INITIAL_POINTER SIZE
pragma _pointer_size _restore
#end if

#endif / * _HEADER_LOADED * /

First Pass through <header.h>

Digital Technical Journal Vol. 8 No. 2 1996 89

90

We created a C run-time library private header
file called <wide_types.src>. This header file has the
appropriate pragmas to define 64-bit pointer types used
within the C run-time library, as shown in Figure 3.

This header file also contains the definitions of macros
used in the implementations of the functions. Figure 4
shows the macros declared in <wide_types.src>.

Once a module includes the file <wide_types.src>,
the compilation of that module changes to add the
qualifier /pointer_size=32. This change improves the
readability of the code because "char *" is read as a

I*

32-bit character pointer, whereas 64-bit pointers use
typedefs whose names begin with "_wide." The
name of the new typedef is _wide_char_ptr, which is
read as a 64-bit character pointer.

The C run-time library design also requires that the
implementation of a function include all header files
that define the function. This ensures that the imple­
mentation matches the header files as they are modi­
fied to support 64-bit pointers. For functions defined
in multiple header files, this ensures that header files
do not contradict each other.

** This include file defines all 32-bit and 64-bit data types used in
** the implementation of 64-bit addresses in the C run-time Library.

Figure 3

**
** Those modules that are compiled with a 64-bit-capable compiler
** are required to enable pointer size with /POINTER_SIZE=32.
*I
#ifdef INITIA L_POINTER_SIZE
if (INITIAL_POINTER_SIZE != 32)
error "This module must be compiled /pointer_size=32"
endif
#end if

I*
** ALL interfaces that require 64-bit pointers must use one of
** the following definitions. When this header file is used on
** platforms not supporting 64-bit pointers, these definitions
** will define 32-bit pointers.
*I
#if def INITIAL_POINTER_SIZE
pragma ~pointer_size ~save
pragma ~pointer_size 64
#endif

typedef char *~w ide_char_ptr;
typedef const char *~wide_const_char_ptr;

typedef int *~wide_int_ptr;
typedef const int *~wide_const_int_ptr;

typedef char **~wide_char_ptr_ptr;
typedef const char **~wide_const_char_ptr_ptr;

typedef void *~wide_void_ptr;
typedef const void *~wide_const_void_ptr;

#include <curses.h>
typedef WINDOW *~wide_WINDOW_ptr;

#include <string.h>
typedef size_t *~wide_size_t_ptr;

I*
** Restore pointer size.
*I
#if def INITIAL_POINTER_SIZE
pragma ~pointer_size ~restore
#endif

Typedefs from <wide_types.src>

Digital Technical Journal Vol. 8 No. 2 1996

I*
** Defi ne macros t ha t are use d to deter mine poi nt er size a nd
** macros that wi ll copy fro m high memo ry onto t he sta ck.
*I
#if def I NITIA L POI NTER SIZE

inclu de <builtins.h>

define C$$IS_S HO RT_ADD R(add r) \
((((i nt64)(addr)<<32)>>32) == (un signed i nt64)a dd r)

define C$$SHORT ADDR OF STRING(a dd r) \
(C $$ IS SHORT ADDR(;ddr) ? (char*) (addr) \
:(char-*) strcpy(~ALLOCA(strlen(a ddr) + 1) , (addr)))

define C$$SHO RT_ADDR_OF_STRUCT(a dd r) \
(C$$IS_SHO RT_AD DR (addr) ? (void*) (addr) \
:(void*) me mcpy(~ALLOCA(sizeof(* addr)), (addr), siz e of(*ad d r)))

define C$$SHO RT_A DD R_OF_M EMOR Y(addr, Len) \
(C$$IS SHO RT_AD DR(addr) ? (void*) (addr) \
:(void*) me mcpy(~ALLOCA(Len), (a ddr), Len))

#else

define C$$IS SHO RT ADDR(a dd r) (1)
define C$$SHORT ADDR OF ST RING(addr) (addr)
define C$$SHORT-ADDR-OF-STRUCT(addr) (addr)
define C$$SHORT=ADDR=OF=M EM ORY(addr, Len) (a dd r)

#end if

Figure4
Macros from <wide_types.src>

Implementing the strerror Return Pointer
The function strerror always returns a 32-bit pointer.
The memory is allocated by the C run-time library for
both 32-bit and 64-bit calling programs. As shown
in Figure 5, we moved the function strerror into the
section "Functions that support 64-bit pointers" of
<header.h> to show that there are no restrictions on
the use of this function.

The "Create 32-bit header file typedefs" section of
<header.h> is in the 32-bit pointer section, where the
bound-to-low-memory data structures are declared.
The function returns a pointer to a character string.
We, therefore, added typedefs for _char_ptr32 and
_const_char_ptr32 while in a 32-bit pointer context.
These declarations are protected with the definition of
_CHAR_P'TR32 to allow multiple header files to use
the same naming convention. Declarations of the
const form of the typedef are always made in the same
conditional code since they usually are needed and
using the same condition removes the need for a dif­
ferent protecting name.

The strerror function could have been implemented
in <header.h> by placing the function in the 32-bit sec­
tion, but that would have implied that the 32-bit
pointer was a restriction that could be removed later.
The pointer is not a restriction, and the strerror func­
tion fully supports 64-bit pointers.

The private header file typedefs are always declared
starting with two underscores and ending in either
"_ptr32" or "_ptr64." These typedefs are created only
when the header file needs to be in a particular
pointer-size mode while referring to a pointer of the
other size. The return value of strerror is modified to
use the typedef _char_ptr32.

Including the header file, which declares strerror,
allows the compiler to verify that the arguments,
return values, and pointer sizes are correct.

Widening the strlen Argument
The function strlen accepts a constant character
pointer and returns an unsigned integer (size_t).
Implementing full 64-bit support in strlen means
changing the parameter to a 64-bit constant character
pointer. If an application passes a 32-bit pointer to
the strlen function, the compiler-generated code sign
extends the pointer. The required header file mod­
ification is to simply move strlen from the sec­
tion "Functions that need 64-bit support" to the
section "Functions that support 64-bit pointers."

The steps necessary for the source code to support
64-bit addressing are as follows:

1. Ensure that the module includes header files that
declare strlen.

Digital Technical Journal Vol. 8 No. 2 1996 91

92

Figure 5

#ifndef
#define

I*

HEADER_LOADED
HEADER_LOADED

** Ensure that we begin with 32-bit pointers.
*I
#if INITIAL POINTER SIZE
iT""c~vMs_vER < 10000000>
error "Pointer size added in OpenVMS V7.0 for Alpha"
endif
pragma ~ pointer_size ~save
pragma ~ pointer_size 32
#end if

I*
** STRUCTURES NOT AFFECTED BY POINTERS
*I
i fn de f S I Z E_ T
define SIZE T 1

typedef""unsigned int
#end if

I*

size_t;

** FUNCTIONS THAT NEED 64-BIT SUPPORT
*I

I*
** Create 32-bit header file typedefs.
*I
#ifndef ~CHAR_PTR32
define CHAR PTR32

typedef char *~ char_ptr32;
typedef const char *~const_char_ptr32;

#endif

I*
** Create 64-bit header file typedefs.
*I
#ifndef CHAR_PTR64
define ~CHAR_PTR64 1
pragma ~pointer_size 64

typedef char *~char_ptr64;
typedef const char *~const_char_ptr64;

pragma ~pointe r_size 32
#endif

I*
** FUNCTIONS RESTRICTED FROM 64 BITS
*I
int execv(~const_char_ptr64, char*[]);

I*
** Change default to 64-b it pointers.
*I
#if INITIAL POINTER SIZE
pragma ~pointer_size 64
#endif

I*
** The following functions have interfaces of XXX, _XXX32,
** and _XXX64.
**
** The function strcat has two interfaces because the return
** argument is a pointer that is relative to the first arguments.
**
** The malloc function returns either a 32-bit or a 64-bit
** memory address.
*I
#if I NITIAL POINTER SIZE 32
pr'igma ~pointer_size 32
#end if

Final Form of <header.h>

Digital Technical Journal Vol. 8 No. 2 1996

void *malloc(size_t ~ size);
char *strcat(char *~s1, ~ const_char_ptr64 ~s2);

#if INITIAL POINTER SIZE== 32
pragma ~pointer_size 64
#end if

#if ~INITIAL_POINTER_SIZE && ~VMS_VER >= 70000000
pragma ~pointer_size 32

void *_malloc32(size_t);
char *_strcat32(char *~s1, ~c onst_cha r_p tr64 ~s2);

pragma ~pointer_size 64
void *_malloc64(size_t);
char *_strcat64(char *~s1, const char *~s2);

#end if

I*
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*I
void free(void *~ptr);
int rand(void);
size_t strlen(const char *~s >;

~char_ptr32 strerror(int ~errnu m);

I*
** Restore the user's pointer context.
*I
#if ~I NI TIAL_POI NTER_S IZE
pragma ~pointer_size ~restore

Figure 5
Continued

#end if

#endif /* ~HEADER_LOADED */

2. Add the following line of code to the top of the
module: #inc 1 ude <w i de_types. src>.

3. Change the declaration of the function to accept
a _wide_const_char_ptr parameter instead of the
previous canst char * parameter.

4. Visually follow this argument through the code,
looking for assignment statements. This particular
function would be a simple loop. If local variables
store this pointer, they must also be declared as
_ wide_const_char_ptr.

5. Compile the source code using the directive
/warn=enable=maylosedata to have the compiler
help detect pointer truncation.

6. Add a new test to the test system to exercise 64-bit
pointers.

Restricting execv from High Memory
Examination of the execv function prototype showed
that this function receives two arguments. The first
argument is a pointer to the name of the file to start.
The second argument represents the argv array that is
to be passed to the child process. This array of pointers
to null terminated strings ends with a NULL pointer.

Initially, the execv function was to have had two
implementations. The parameters passed to the execv
function are used as the parameters to the main func­
tion of the child process being started. Because no
assumptions could be made about that child process
(in terms of support for 64-bit pointers), these para­
meters are restricted to low memory addresses.

To illustrate that the argv passing was a restriction,
we place that prototype into the section "Functions
restricted from 64 bits" of <header.h>. The first argu­
ment, the name of the file, did not need to have this
restriction. The section "Create 64-bit header file
typedefs" was enhanced to add the definition of
_const_char_ptr64, which allows the prototypes to
define a 64-bit pointer to constant characters while in
either 32-bit or 64-bit context.

Returning a Relative Pointer in strcat
The strcat function returns a pointer relative to its first
argument. We looked at this function and determined
that it required two entry points. In addition, we
widened the second parameter, which is the address of
the string to concatenate to the second, to allow the
application to concatenate a 64-bit string to a 32-bit
string without source code changes.

Digital Technical Journal Vol. 8 No. 2 1996 93

Figure 5 shows the changes made to support func­
tions that have pointer-size-specific entry points. The
prototypes of functions XXX, _XXX:32, and _XXX:64
begin in 64-bit pointer-size mode. Since the unmodi­
fied function name (strcat, XXX) is to be in the pointer
size specified by the /pointer_size qualifier, the
pointer size is changed from 64 bits to 32 bits if and
only if the user has specified /pointer_size:a32. At this
point, we are not certain of the pointer size in effect.
We know only that the size is the same as the size of
the qualifier. The second argument to strcat uses the
_const_char_ptr64 typedef in case we are in 32-bit
pointer mode. Notice the declaration of _strcat64
does not use this typedef because we are guaranteed
to be in 64-bit pointer context. Figure 6 shows the
implementation of both the 32-bit and the 64-bit
strcat functions.

The 64-bit ma/foe Function
The implementation of multiple entry points was dis­
cussed and demonstrated in the strcat implementation.
Although multiple entry points are typically added to
1void truncating pointers, functions such as memory
allocation routines have newly defined behavior.

The functions decc$malloc and decc$_malloc64
use new support provided by the OpenVMS Alpha
operating system for allocating, extending, and freeing
64-bit virtual memory. The C run-time library utilizes
this new functionality through the LIBRTL entry
points. The LIB RTL group added new entry points for
each of the existing memory management functions.
The LIBRTL includes an additional second entry
point for the free function. Since our implementation
of the free function simply widens the pointer, we end
up with a single, C run-time library function that must
choose which LIBRTL function to call.

#include <string.h>
#include <wide_types.src>

I*
** STRCAT/ STRCAT64
**

int free <~wi de_void_ptr ptr) {
if (!(CSSIS_SHORT_ADDR(ptr)))

return(cSS_free64(ptr));
else return(c$$ f ree32((void *) ptr);

}

Concluding Remarks

The project took approximately seven person-months
to complete. The work involved two months to deter­
mine what we wanted to do, one month to figure out
how we were going to do it, and four person-months
to modify, document, and test the software.

During the initial two months, the technical leaders
met on a weekly basis and discussed the overall
approach to adding 64-bit pointers to the Open VMS
environment. Since I was the technical lead for the C
run-time library project, this initial phase occupied
between 25 and 50 percent of my time.

The one month of detailed analysis and design con­
sumed more than 90 percent of my time and resulted
in a detailed document of approximately 100 pages.
The document covered each of the 50 header files and
500 function interfaces. The functions were grouped
by type, based on the amount of work required to
support 64-bit pointers.

The first month of implementation occupied nearly
all of my time, as I made several false starts. Once I
worked out the final implementation technique, I
completed at least two of each type of work. As coding
deadlines approached, I taught two other engineers on
my team how to add 64-bit pointer support, pointing
out those functions already completed for reference.
They came up to speed within one week. Together, we
completed the work during the final month of the
project.

** The 'strcat' function concatenates 's2', including the
** terminating null character, to the end of 's1'.
*I

~wide_char_ptr _strcat64<~wide_char_ptr s1, ~wide_const_char_ptr s2)
{

}

<v o id) _memc py64((s1 + str l e n (s1)), s2, <strlen(s2) + 1));
ret u rn(s1 >;

char* strcat32(char *s1 , ~w ide_const_char_ p tr s2) {
(void) memcpy((s1 + str l en(s1)), s2, (strlen(s2) + 1));
return(s1);

Figure 6
Implementation of 32 -bit and 64-bit strcat Functions

94 Digital Technical Journal Vol. 8 No. 2 1996

Acknowledgments

The author would like to acknowledge the others who
contributed to the success of the C run-time library
project. The engineers who helped with various
aspects of the analysis, design, and implementation
were Sandra Whitman, Brian McCarthy, Greg Tarsa,
Marc Noel, Boris Gubenko, and Ken Cowan. Our
writer, John Paolillo, worked countless hours docu­
menting the changes we made to the library.

References

1. M. Harvey and L. Szubowicz, "Extending OpenVMS
for 64-bit Addressable Virtual Memory," Digital
Technical Journal, vol. 8, no. 2 (1996, this issue):
57-71.

2. T. Benson, K. Noel, and R. Peterson, "The OpenVMS
Mixed Pointer Size Environment," Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 72-82.

3. DEC C User's Guide for Open VMS Systems (Maynard,
Mass.: Digital Equipment Corporation, Order No.
M-PUNZE-TK, 1995).

4. DEC C Runtime Library Reference Manual for
Open Vi11'S Systems (Maynard, Mass.: Digital Equipment
Corporation, Order No. M-PUNEE-TK, 1995).

5. OpenVi11'S Calling Standard (Maynard, Mass.: Digital
Equipment Corporation, Order No. M-QSBBA-TE,
1995).

Biography

Duane A. Smith
As a consulting software engineer, Duane Smith is currently
architect and project leader of the C run-time library for
the Open VMS VAX and Alpha platforms. He joined Digital
in 1981 and has worked on a variety of projects, including
the A-to-Z Database Manager and the Language-Sensitive
Editor. Duane received his B.S. in engineering from the
University of Connecticut in 1981 and his M.S. in soft­
ware engineering from Wang Institute of Graduate Studies
in 1987. He pursued his master's degree through Digital's
Graduate Engineering Education Program (GEEP). Duane
holds one U.S. patent issued for the DECwindows Structured
Visual Navigation (SVN) widget.

Digital Technical Journal Vol. 8 No. 2 1996 95

Building a High-performance
Message-passing System for
MEMORY CHANNEL Clusters

The new MEMORY CHANNEL for PCI cluster

interconnect technology developed by Digital

(based on technology from Encore Computer

Corporation) dramatically reduces the over­

head involved in intermachine communica-

tion. Digital has designed a software system,

the TruCluster MEMORY CHANNEL Software ver­

sion 1.4 product, that provides fast user-level

access to the MEMORY CHANNEL network and

can be used to implement a form of distributed

shared memory. Using this product, Digital has

built a low-level message-passing system that

reduces the communications latency in a MEMORY

CHANNEL cluster to less than 10 microseconds.

This system can, in turn, be used to easily build

the communications libraries that programmers

use to parallelize scientific codes. Digital has

demonstrated the successful use of this message­

passing system by developing implementations

of two of the most popular of these libraries,

Parallel Virtual Machine (PVM) and Message

Passing Interface (MPI).

96 Digital Technical Journal Vol. 8 No. 2 1996

I
James V. Lawton
John J. Brosnan
Morgan P. Doyle
Seosamh D. 6 Riordain.
Timothy G. Reddin

During the last few years, significant research and
development has been undertaken in both academia
and industry in an effort to reduce the cost of high­
performance computing (HPC). The method most
frequently used was to build parallel systems out of
clusters of commodity workstations or servers that
could be used as a virtual supercomputer. 1 The moti­
vation for this work was the tremendous gains that
have been achieved in reduced instruction set com­
puter (RISC) microprocessor performance during the
last decade. Indeed, processor performance in today's
workstations and servers often exceeds that of the indi­
vidual processors in a tightly coupled supercomputer.
However, traditional local area network (LAN) per­
formance has not kept pace with microprocessor
performance. LANs, such as fiber distributed data
interface (FDDI), offer reasonable bandwidth, since
communication is generally carried out by means of
traditional protocol stacks such as the user datagram
protocol/internet protocol (UDP /IP) or the trans­
mission control protocol/internet protocol (TCP /IP),
but software overhead is a major factor in message­
transfer time.2 This software overhead is not reduced
by building faster LAN network hardware. Rather, a
new approach is needed-one that bypasses the pro­
tocol stack while preserving sequencing, error detec­
tion, and protection.

Much current research is devoted to reducing this
communications overhead using specialized hardware
and software. To this end, Digital has been working
to make commercial Alpha clusters, descended from
the original VAXcluster technology, available to scien­
tific and technical users. 3,

4 This cluster technology
uses available commodity hardware and software to
implement a high-performance communications sub­
system.5 The hardware interconnect that supports
clustered operation is Encore Computer Corporation's
patented MEMORY CHANNEL technology.6 This
interconnect provides a mechanism that allows the vir­
tual address space of a process to be mapped so that
a store instruction in one system is directly reflected in
the physical memory of another system. We have
developed software application programming inter­
faces (APis) that provide user-level applications with
this capability in a controlled and protected manner.

Data may then be transferred between the machines
using simple memory read and write operations, with
no software overhead, essentially utilizing the full per­
formance of the hardware. This approach is similar to
the one used in the Princeton SHRIMP project, where
this process is described as Virtual Memory-Mapped
Communication (VMMC). 7

-
10

Figure 1 shows the relationship between the various
components of our message-passing system. The first
phase of our work involved designing a program­
ming library and associated kernel components to pro­
vide protected, unprivileged access to the MEMORY
CHANNEL network. Our objective in creating this
library was to provide a facility much like the standard
System V interprocess communication (IPC) shared
memory functions available in UNIX implementations.
Programmers could use the library to set up operations
over the MEMORY CHANNEL interconnect, but they
would not need to use the library functions for data
transfer. In this way, performance could be maximized.
This product, the TruCluster MEMORY CHANNEL
Software, provides programmers with a simple, high­
performance mechanism for building parallel systems.

TruCluster MEMORY CHANNEL Software delivers
the performance available from the MEMORY
CHANNEL network directly to user applications but
requires a programming style that is different from
that required for shared memory. This different pro­
gramming style is necessary because of the different
access characteristics between local memory and mem­
ory on a remote node connected through a MEMORY
CHANNEL network. To make programming with the
MEMORY CHANNEL technology relatively simple
while continuing to deliver the hardware performance,
we built a library of primitive communications func­
tions. This system, called Universal Message Passing
(UMP), hides the details of MEMORY CHANNEL
operations from the programmer and operates seam­
lessly over two transports (initially): shared memory
and the MEMORY CHANNEL interconnect. This
allows seamless growth from a symmetric multipro­
cessor (SMP) to a full MEMORY CHANNEL cluster.
Development can be done on a workstation, while
production work is done on the cluster. The UMP

PARALLEL APPLICATION

PVM I MPI

UMP

SHARED
TRUCLUSTER

OTHER MEMORY CHANNEL
MEMORY SOFTWARE TRANSPORT

Figure 1
Message-passing System Architecture

layer was designed from the beginning with perfor­
mance considerations in mind, particularly with
respect to minimizing the overhead involved in send­
ing small messages.

Two distributed memory models are predominantly
used in high-performance computing today:

1. Data parallel, which is used in High Performance
Fortran (HPF). 11 With this model, the programmer
uses parallel language constructs to indicate to the
compiler how to distribute data and what opera­
tions should be performed on it. The problem is
assumed to be regular so that the compiler can use
one of a number of data distribution algorithms.

2. Message passing, which is used in Parallel Virtual
Machine (PVM) and Message Passing Interface
(MPI).12

-
15 In this approach, all messaging is per­

formed explicitly, so the application programmer
determines the data distribution algorithm, making
this approach more suitable for irregular problems.

It is not yet clear whether one of these approaches
will predominate in the future or if both will continue
to coexist. Digital has been working to provide com­
petitive solutions for both approaches using MEMORY
CHANNEL clusters. Digital's HPF work has been
described in a previous issue of the Journal. 16

•
17 This

paper is primarily concerned with message passing.
Building on the UMP layer, we constructed imple­

mentations of two common message-passing systems.
The first, PVM, is a de facto standard for programmers
who want to parallelize large scientific and technical
applications. In addition to messaging functions, PVM
also provides process control functions. The second,
MPI, represents the efforts of a large group of acade­
mic and industrial users who are working together
to specify a standard API for message passing. At this
time, MPI does not provide any process control facili­
ties. The performance of these PVM and MPI systems
on MEMORY CHANNEL clusters exceeds that of the
public-domain implementations.

MEMORY CHANNEL Overview

Encore's MEMORY CHANNEL technology is a high­
performance network that implements a form of
clusterwide shared virtual memory. In Digital's first
implementation of this technology, it is a shared,
100-megabyte-per-second (MB/ s) bus that provides
a write-only path from a page of virtual address space
on one node to a page of physical memory on another
node (or multiple other nodes). The MEMORY
CHANNEL network outperforms any traditional LAN
technology that uses a bus topology. For example, a
peak bandwidth of between 35 MB/ sand 70 MB/ sis
possible with the current 32-bit peripheral component
interconnect (PCI) MEMORY CHANNEL adapters,

Digital Technical Journal Vol. 8 No. 2 1996 97

depending on the bandwidth of the 1/0 subsystem
into which the adapter is plugged. Although the cur­
rent MEMORY CHANNEL network is a shared bus, the
plan for the next generation is to utilize a switched
technology that will increase the aggregate bandwidth
of the network beyond that of currently available
switched LAN technologies. The latency (time to send
a minimum-length message one way between two
processes) is less than 5 microseconds (µs). The
MEMORY CHANNEL network provides a communica­
tions medium with a low bit-error rate, on the order of
10-16. The probability of undetected errors occurring
is so small (on the order of the undetected error rate of
CPUs and memory subsystems) that it is essentially
negligible. A MEMORY CHANNEL cluster consists of
one or more PCI MEMORY CHANNEL adapters on
each node and a hub connecting up to eight nodes.

The MEMORY CHANNEL cluster supports a
512-MB global address space into which each adapter,
under operating system control, can map regions of
local virtual address space. 18 Figure 2 illustrates the
MEMORY CHANNEL operation. Figure 2a shows
transmission, and Figure 2b shows reception. A page
table entry (PTE) is an entry in the system virtual­
to-physical map that translates the virtual address of
a page to the corresponding physical address. The
MEMORY CHANNEL adapter contains a page control
table (PCT) that indicates for each page of MEMORY
CHANNEL global address space if that page is mapped
locally and whether it is mapped for transmission or
reception. Thus, to map a page oflocal virtual mem­
ory for transmission, all that is required is to

• Set up an entry in the system virtual-to-physical
map to point to a page in the MEMORY CHANNEL
adapter's PCI 1/0 address space window, which
is directly mapped to the page in MEMORY
CHANNEL space

• Enable the corresponding page entry in the PCT
for transmission

Any write to the mapped virtual page will then
result in a corresponding write to the MEMORY
CHANNEL network.

To complete the circuit, the page of MEMORY
CHANNEL space must be mapped to virtual memory
on another node. This is accomplished on the other
node by

• Making a page of physical memory nonpageable
(wired)

• Creating a virtual region whose PTE points to the
wired page

• Setting up the 1/0 direct memory access (DMA)
scatter/gather map to point to the physical page

• Enabling the appropriate entry in the adapter's
PCT for reception

98 Digital Technical Journal Vol. 8 No. 2 1996

Thus, when a MEMORY CHANNEL network packet
is received that corresponds to the page that is mapped
for reception, the data is transferred directly to the
appropriate page of physical memory by the system's
DMA engine. In addition, any cache lines that refer to
the updated page are invalidated.

Subsequently, any writes to the mapped page of vir­
tual memory on the first node result in corresponding
writes to physical memory on the second node. This
means that when a region in MEMORY CHANNEL
space has been allocated and attached to a process,
writes to that region are just simple stores to a process
virtual address. The virtual address translates to a phys­
ical address that is mapped for transmission. Reads
from that region are simply loads from a process virtual
address, so the operating system is not involved in data
transfer, with consequent reduction in overhead.

To use the MEMORY CHANNEL hardware, the
operating system must provide certain basic services.
Digital's cluster software includes a set of low-level
primitives that can be used in the UNIX kernel. The
functionality that these services provide includes

• Allocating and deallocating regions of MEMORY
CHANNEL space for transmission or reception

• Allocating and deallocating cluster spinlocks

• Providing the capability to be notified when a page
has been written (i.e., a notification channel)

TruCluster MEMORY CHANNEL Software

We designed the TruCluster MEMORY CHANNEL
Software product to provide user-level access to the
kernel functions that control the MEMORY CHANNEL
hardware. The target audience for this technology is
parallel software library builders and parallel compiler
implementers. As shown in Figure 3, the product con­
sists of two components layered on top of the kernel
MEMORY CHANNEL functions:

1. A kernel subsystem that interfaces to the low-level
kernel functions

2. A user-level API library

There were two choices in developing the product:
provide simple user-level access to the basic functional­
ity or build a more sophisticated system (e.g., a distrib­
uted shared memory [DSM] system). We chose to
make a subset of the functionality of the operating sys­
tem kernel primitives available to applications for two
reasons. First, we did not initially know the degree
of functionality required to provide generic user­
level access to the MEMORY CHANNEL network
for the long term. Second, the original purpose of
the work was to give scientific and technical cus­
tomers, rather than commercial cluster users, early
access to the MEMORY CHANNEL network. As a
result, the functionality we built into the product is

USER
SPACE

EXECUTES STORE INSTRUCTION
TO VIRTUAL ADDRESS IN
TRANSMIT REGION

TRANSMIT
REGION

VIRTUAL-TO­
PHYSICAL
ADDRESS
TRANSLATION

PHYSICAL ADDRESS
IN PCI 1/0 SPACE

VIRTUAL
ADDRESS

PAGE TABLE ENTRY

(a) Transmission

MEMORY CHANNEL
ADAPTER

PAGE CONTROL
TABLE

MEMORY
CHANNEL
ADDRESS
DATA

USER
SPACE -- - --------------------, DATA RETURNED FROM

EXECUTES LOAD INSTRUCTION
FROM VIRTUAL ADDRESS IN
RECEIVE REGION

', PHYSICAL MEMORY

' ' ' I
I
I
I
I
I
I

RECEIVE
REGION

VIRTUAL-TO·
PHYSICAL
ADDRESS
TRANSLATION

1---------l~I WIRED PHYSICAL
PAGES

VIRTUAL
ADDRESS

PAGE TABLE ENTRY

CACHE
INVALIDATE

DMA SCATTER/
GATHER MAP

MEMORY CHANNEL
ADAPTER

PAGE CONTROL
TABLE

MEMORY
CHANNEL
ADDRESS
DATA

(b) Reception

Figure 2
MEMORY CHANNEL Operation

TRUCLUSTER MEMORY
CHANNEL API LIBRARY

USER SPACE

TRUCLUSTER MEMORY CHANNEL
KERNEL SUBSYSTEM

KERNEL SPACE

LOW-LEVEL KERNEL
MEMORY CHANNEL FUNCTIONS

Figure 3
TruCluster MEMORY CHANNEL Software Architecture

a set of simple building blocks that are analogous to the
System V IPC facility in most UNIX implementations.
The advantage is that while a very simple interface is
provided initially, the interface can later be extended as

required, without losing compatibility with applications
based on the initial implementation. Table 1 details the
MEMORY CHANNEL API library functions that the
product provides. An important feature to note is that
when a MEMORY CHANNEL region is allocated using
TruCluster MEMORY CHANNEL Software, a key is
specified that uniquely identifies this region in the clus­
ter. Other processes anywhere in the cluster can attach
to the same region using the same key; the collection of
keys provides a clusterwide namespace.

The MEMORY CHANNEL API library communi­
cates with the kernel subsystem using kmodcall, a sim­
ple generic system call used to manage kernel
subsystems. The library function constructs a com­
mand block containing the type of command (i.e.,

Digital Technical Journal Vol. 8 No. 2 1996 99

Table 1
TruCluster MEMORY CHANNEL API Library Functions

Function
Name

imc_asalloc

lmc_asattach

lmc_asdetach

i mc_asdea I loc

imc_lkalloc

imc_lkacquire

imc_lkrelease

imc_lkdealloc

imc_rderrcnt

imc_ckerrcnt

imc_kill

imc_gethosts

Description

Allocates a region of MEMORY CHANNEL address space of a specified size and permissions and
with a user-supplied key; the ability to specify a key allows other cluster processes to rendezvous
at the same region. The function returns to the user a clusterwide ID for this region.

Attaches an allocated MEMORY CHANNEL region to a process virtual address space. A region
can be attached for transmission or reception, and in shared or exclusive mode. The user can also
request that the page be attached in loopback mode, i.e., any writes will be reflected back to the
current node so that if an appropriate reception mapping is in effect, the result of the writes can
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned
to the user.

Detaches an allocated MEMORY CHANNEL region from a process virtual address space.

Deallocates a region of MEMORY CHANNEL address space with a specified ID.

Allocates a set of clusterwide spin locks. The user can specify a key and the required permissions.
Normally, if a spinlock set exists, then this function just returns t he ID of that lock set; otherwise
it creates the set. If the user specifies that creation is to be exclusive, then failure will result if the
spinlock set exists already. In addition, by specifying the IMC_CREATOR flag, the first spinlock in
the set will be acquired. These two features prevent the occurrence of races in the allocation of
spin lock sets across the cluster.

Acquires (locks) a spinlock in a specified spinlock set.

Releases (unlocks) a spinlock in a specified spinlock set.

Deallocates a set of spin locks.

Reads the clusterwide MEMORY CHANNEL error count and returns the value to the user. This
value is not guaranteed to be up-to-date for all nodes in the cluster. It can be used to construct
an application-specific error-detection scheme.

Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have not yet been reflected in
the clusterwide MEMORY CHANNEL error count returned by imc_rderrcnt. This function checks
each node in the cluster for any outstanding errors and updates t he global error count accordingly.

Sends a UNIX signal to a specified process on another node in the cluster.

Returns the number of nodes currently in the cluster and their host names.

which library function has been called) and any para­
meters and sends it to the kernel subsystem using
kmodcall. The kernel subsystem has a matching func­
tion for each of the library calls. When a command
block is received, it is parsed and the appropriate func­
tion is called to service the request. All security and
resource checks are performed inside the kernel.

creation time, and the UNIX user ID (UID) and group
ID (GID) of the creating process. For an individual
CRD, there is a host region descriptor (HRD) for each
node that has the region mapped. This HRD contains
the cluster ID of the node and other node-specific
information. Finally, for a specific HRD, there is a
process region descriptor (PRD) for each process on
that node that is using the region. The PRD contains
the UNIX process ID (PID) of the process that created
the region and any process-specific information, such
as virtual addresses.

Figure 4 shows some of the data structures that the
kernel services use. A clusterwide region of MEMORY
CHANNEL space is allocated to store these manage­
ment structures. This region contains a control struc­
ture and six linked lists of descriptors. The control
structure manages MEMORY CHANNEL resources
allocated using TruCluster MEMORY CHANNEL
Software. Each region of MEMORY CHANNEL address
space and each set of MEMORY CHANNEL spinlocks
allocated using the product have a corresponding
descriptor in the kernel data structure.

For each region of MEMORY CHANNEL address
space allocated in the cluster, there is a cluster region
descriptor (CRD) that contains information describ­
ing the region, including its clusterwide region identi­
fication number (ID), its size, key, permissions,

100 Digital Technical Journal Vol. 8 No. 2 1996

Similarly, for each set of spinlocks allocated on the
cluster there is a cluster lock descriptor (CLD) that
contains information describing the spinlock set,
including its clusterwide lock ID, the number ofspin­
locks in the set, the key, permissions, creation time,
and the UID and GID of the creating process. For an
individual CLD, there is a host lock descriptor (HLD)
for each node that is using the spinlock set. The HLD
contains the cluster ID of the node and other node­
specific information about the spinlock set. For a spe­
cific HLD, there is a process lock descriptor (PLD) for
each process on that node that is using the spinlock

.----+-I HRDO:HOST4 PAD 0: PIO 2001

CRDO
HAD 1: HOST6

HRD2: HOST3
CAD 1

CRD2

CRD3

HRDO: HOST6

HAD 1: HOST 1

PRO 3: PIO 6583

(a) Regions

CLDO

CLO 1

1--- - ---+-I PLO 0: PIO 3346 .------+-• HLD 0: HOST 2

HLD 1: HOSTO

PLO 3: PIO 4072

'--- -+-I HLD 0: HOST 4

HLD 1: HOST 6

HLD2: HOST3

(b) Spinlocks

KEY:

CLO CLUSTER LOCK DESCRIPTOR
CAD CLUSTER REGION DESCRIPTOR
HLD HOST LOCK DESCRIPTOR
HAD HOST REGION DESCRIPTOR
PLO PROCESS LOCK DESCRIPTOR
PAD PROCESS REGION DESCRIPTOR

Figure4
TruCluster MEMORY CHANNEL Kernel Data Structures

set. The PLD contains the PID of the process that cre­
ated the spin.lock set and any process-specific informa­
tion about the spin.lock set.

A.II these cluster data structures have pointers that
cannot be updated atomically. In our implementation,
they actually consist of two copies (old and new) and
a toggle that indicates which of the two copies is valid.
The toggle is switched from an old copy to a new copy
only when the new copy is known to be consistent, so
that failure of a cluster member while modifying the
structures can be tolerated.

Figure 4a illustrates a hypothetical situation in which
four regions of MEMORY CHANNEL space have been
allocated on the cluster. The first region, with desc1ip­
tor CRD 0, is mapped on three nodes: host 4, host 6,
and host 3. The diagram also shows four processes on
host 3 with the region mapped and lists the PID of each
process. Figure 4b shows a similar situation for spin­
locks. Two sets of spinlocks have been allocated. The

first, with descriptor CLD 0, is mapped on two nodes
of the cluster: host 2 and host 0. One process on each
of these nodes is currently using the spin.lock set.

Command Relay
The command relay is a kernel-level framework that
enables the execution of a generic service routine on
another node within the cluster. It functions as a sim­
ple kernel remote procedure ca.II (RPC) mechanism
based on fixed unidirectional message locations (mail­
boxes) and MEMORY CHANNEL notification chan­
nels to awaken the server kernel thread. Figure 5
shows the major components of the command relay
and illustrates its operation between two hosts in a
cluster. A client kernel thread on one host invoking a
service and the corresponding server kernel thread on
another cluster host communicate data using a defined
bidirectional command/ response block, known as a
parameter structure. The client and server routines

Digital Technical Journal Vol. 8 No. 2 1996 101

HOST A r-------------------,

INVOKE

2

RETURN

7
3
6

HOSTS
r--------------- -----,

REGISTER
SERVICE

I
I
I

I
I

CALL COMPLETE I
I

4 5 I ,__.....__.___....._..,

SLAVE RELAY INITIATOR RELAY iv-----.---------~---,.,. I
MEMORY CHANNEL 1 1

NOTIFICATION CHANNEL L - - - - - - - - - - - - - - - - - - - .J

I

L-------------------J

Figure 5
Command Relay Operation

must conform to this interface and must be reliable,
i.e., they must always return to the caller. The server
can call any kernel function. Server routines are regis­
tered (step 1 in Figure 5) using a clusterwide service
ID. A kernel thread invoking a remote service passes
a packed parameter structure to the command relay,
together with a destination node ID and a service ID
(step 2). This command relay then adds process crcdcn -
rials and builds a service protocol data unit (SPDU).
Using a MEMORY CHANNEL notification channel, it
signals the remote node and passes the SPDU by means
of a mailbox in MEMORY CHANNEL space (step 3).
The server parses the SPDU and calls the requested ser­
vice function, passing it the parameter structure (step
4). When the service function completes (step 5), its
return status and any data values arc packed into an
SPDU and placed into the mailbox, and the initiating
relay is signaled (step 6). The initiator then lmpacks the
data from the SPDU and returns the appropriate status
and values to the client kernel thread (step 7).

All calls to the command relay are synchronous and
serialized. The invoking kernel thread blocks until the
server returns. Requests to the command relay subsys­
tem are treated on a first-come first-served basis, and
calls to a busy relay block until the relay becomes free.
Relays arc automatically created between all nodes in
the cluster.

The command relay mechanism makes it possible
to send a UNIX signal to a process on another node
within the MEMORY CHANNEL cluster. The imc_kill
library function uses the command relay to invoke
the registered kernel server routine for cluster signals
on the remote node, which, in turn, calls the kernel kill
function directly with the PIO supplied.

Initial Coherency
When a process on a cluster member maps a region of
MEMORY CHANNEL address space for both recep­
tion and transmission, any writes to the transmit
region by that process are reflected as changes to the

102 Digital Technical Journal Vol. 8 No. 2 1996

corresponding receive region. If another process on
another cluster node subsequently maps the same
region for reception, the contents of its receive region
are indeterminate; i.e., the two processes do not have
a coherent view of that region. This situation is known
as the initial coherency problem. For an application
developer, this problem makes it difficult to treat
MEMORY CHANNEL address space as another form
of shared memory. Applications can overcome this dif­
ficulty by using some form of start-up synchronization.
However, all developers would have to implement
these solutions separately. To increase the usability of
TruClustcr MEMORY CHANNEL Software, the design
team decided to build in the ability to request coherent
allocation of MEMORY CHANNEL address space
across the cluster. Developers can specify this as an
option in the call to imc_asalloc. As a result, a process
can attach a MEMORY CHANNEL region for reception
following any updates and still share a common view of
the region with other processes in the cluster.

A special process, called the mapper, is used to pro­
vide the virtual address space to hold the coherent user
space mappings. When the kernel subsystem receives
a request for coherent allocation, it allocates the
MEMORY CHANNEL region as normal and then maps
the region for reception into the virtual address space
of the mapper process. The command relay mecha­
nism then causes all the other nodes in the cluster to
allocate the same region and map it for reception into
the address space of the mapper process on each node.
Since multiple user-level processes on a node that
attach a particular region for reception share the same
physical memory, all updates to the region are seen by
late-joining processes on any node in the cluster. If
the requesting process exits, the region will still be
allocated to the mapper, so that another allocation of
the same region on that node will result in a coherent
picture of that region. The region is fully deallocated
(i.e., from all the mapper processes) when the last
application process allocating the region either exits or
explicitly deallocates the region.

Given the usefulness of coherent allocations, it may
seem unusual that we made this feature an option
rather than the default. There are several reasons for
this. With coherent allocations, the associated physical
memory becomes nonpageable on all nodes within the
cluster, and, as such, it consumes physical resources.
In addition, every outbound write to such a region
results in an inbound write to the physical memory of
each node in the cluster. For some application designs,
it may be more desirable to create a region that is writ­
ten by one node and only read by other nodes. Also,
automatically reflecting all writes back to a node, as
is done for coherent regions, consumes twice as much
bandwidth on the PCI bus.

Late Join and Failure Resilience
To provide an operational environment in which
nodes can join or leave the cluster at any time, the ker­
nel subsystem needs to overcome a number of prob­
lems resulting from late join and node failure. In fact,
the kernel subsystem is subject to the same difficulties
of initial coherency as application-level processes. To
manage user space allocations, late-joining nodes
require a coherent view of the cluster data structures.
Moreover, failure of an existing node can result in out­
of-date or, even worse, corrupt data structures in the
subsystem's control region. To contain the failure,
corrupt data structures must be repaired.

Low-level kernel routines detect cluster membership
change and wake up a management service thread on
each node that performs operations local to that node.
The first management service thread to acquire a spe­
cific spinlock is elected to manage clusterwide updates.

In the case of late join, the management service
thread updates local state to reflect the new configura­
tion. The thread that has been designated to manage
clusterwide updates is responsible for providing the
late-joining node with an up-to-date copy of the clus­
ter data structures. When triggered by the new node,
the thread retransmits the contents of the data struc­
tures so that the late-joining node has a fully up-to­
date view of allocations and resource usage.

When a node fails, the thread elected to manage
clusterwide updates must examine the entire manage­
ment data structure and repair it appropriately. Repair
is necessary when the failing node that is in the process
of updating the global data structures has left these
clusterwide updates in an unstable state. Repair is pos­
sible because all updates to global data structures use
two copies of the structure (old and new, as described
previously), which means that the structures can be
reset easily to a stable state. If the failed node was not
actively updating the data structures at the time of the
failure, the management thread simply removes all
resources allocated to the failed node.

Error Management
The MEMORY CHANNEL hardware provides a very
low error rate, ordering guarantees, and an ability to
detect remote error situations quickly, making it possi­
ble to construct simple error detection and recovery
protocols. A kernel interrupt service routine detects
cluster errors and updates an error counter that reflects
the clusterwide error count. A low-level kernel routine
returns the value of this counter. Due to timing consid­
erations, it is not possible to guarantee that this count
will be up-to-date with respect to possible errors on
remote nodes. A low-level kernel routine that effi­
ciently reads the error status of remote MEMORY
CHANNEL adapters and detects unprocessed errors
is provided. This routine uses a hardware feature,
known as an ACK page, that is specifically designed to
facilitate error detection. A write to such a page results
in the error status of each MEMORY CHANNEL
adapter being written to successive locations of the
corresponding reception mapped region.

During development, we built simple interfaces
to access these low-level routines, thereby allowing
message-passing libraries to build in error manage­
ment. Because the method of getting into and out of
the kernel is a generic one, the overhead is high­
approximately 30 µs. This compares poorly with the
raw latency for short messages, which is less than 5 µs.
To provide suitable performance, we reimplemented
the functions to execute totally in user space. As a
result, when an application reads the error count for
the first time (using imc_rderrcnt), the kernel value of
the error count is mapped for read-only access into the
virtual address space of the process. Subsequent reads
of the error count are then simply reads of a memory
location. Similarly, when an application calls the check
error service (using imc_ckerrcnt) for the first time,
ACK pages are transparently mapped into the virtual
address space of the process, and the error detection is
performed at hardware speeds directly from user
space. This has been measured at less than 5 µs.

The following sequence can be used to guarantee
detection of intervening errors by the transmitter:

I . Save the error count.

2. Write the message.

3. Check the error count (using imc_ckerrcnt).

If the transmitter writes the saved error count at the
end of the message, the message receiver can deter­
mine if any intervening errors have occurred by simply
comparing the error count in the message with the
current value using imc_rderrcnt. This is possible
because of the sequencing guarantees built into the
MEMORY CHANNEL network. Using imc_rderrcnt
and imc_ckerrcnt, the programmer can build an appro­
priate error detection and/ or recovery scheme that
meets the performance requirements of the application.

Digital Technical Journal Vol. 8 No. 2 1996 103

Performance
The performance ofTruCluster MEMORY CHANNEL
Software on a pair of AlphaServer 4100 5/300
machines is presented in Table 2. These measurements
were made using version 1.5 MEMORY CHANNEL
adapters. The bandwidth (64 MB/s) and latency
(2. 9 µs) achieved using this system are essentially that
of the hardware, since no system overhead is involved.
The times required to perform the error-checking
functions indicate that the overhead of calling
imc_rderrcnt is much less than that of imc_ckerrcnt.
This is because the latter has to synchronize with all
other members of the cluster. Protocols that rely on
receiver-only error detection (using imc_rderrcnt) will
therefore have a lower overhead.

Programming with TruCluster
MEMORY CHANNEL Software
The MEMORY CHANNEL network imposes some
unique restrictions on the programmer. Since the net­
work requires separate transmit and receive regions,
any read-write memory location that is to be visible
clusterwide must have two addresses: a read address
and a write address. Attempts to read from a write
address typically cause a segmentation violation.
MEMORY CHANNEL address space can be used like
shared memory. Unlike shared memory, though, its
latency is visible to the programmer, who must consider
latency effects when writing to a clusterwide location.

As an example of programming with TruCluster
MEMORY CHANNEL Software, Figure 6 shows a
simple program that implements a global counter,
performs some work, and then decrements the global
counter and exits. For the purposes of this example,
assume that multiple copies of the program are run
concurrently on different machines in a cluster. Such
operation requires synchronization to ensure safe
access to shared data in MEMORY CHANNEL space.
The example program first allocates MEMORY
CHANNEL regions for transmission and reception and
attaches them to process virtual addresses. Next, a
set of spinlocks is created (unless it already exists). The
first copy of the program to create the spinlock set
acquires the first lock in the set and initializes the
global region, whereupon it releases the spinlock and
continues. All other copies of the program wait in
imc_lkacquire until the spinlock is released by the first

Table 2
TruCluster MEMORY CHANNEL Software Performance

Sustained bandwidth

Latency

Read error count (imc_rderrcnt)

Check error count (imc_ckerrcnt)

104 Digital Technical Journal

64 MB/s

2.9 µs

< 1 µs

<5 µs

Vol. 8 No. 2 1996

copy. Each copy in turn acquires the lock itself, incre­
ments the process counter, and releases the lock. The
copies then perform some work in parallel. When each
program has finished its portion of the work, it decre­
ments the global process counter (using the spinlock
to control access again). Finally, the spinlock set and
shared regions are deallocated. Several examples of
code illustrating these topics are contained in the
TruC/uster MEMORY CHANNF1 Software Programmer's
Manua/.19 We have found that implementing a simple
message-passing layer on top ofTruCluster MEMORY
CHANNEL Software is a more effective solution than
programming directly with MEMORY CHANNEL
regions, as described in the next section.

Several features described above were not initially
present in the TruCluster MEMORY CHANNEL
Software product. As a result of our experience imple­
menting UMP and the higher PVM and MPI layers,
we added the following features:

• Initial coherency

• Command relay

• Cluster signals

• User-level error checking

Universal Message Passing
The Universal Message Passing (UMP) library is
designed to provide a foundation for implementing
efficient message-passing systems on the MEMORY
CHANNEL network. From the outset, we were aware
that there would be a demand for PVM and MPI
implementations and that other implementations
might follow. We felt that it would be easier to con­
struct high-performance message-passing systems if
we provided a thin layer that could efficiently handle
the restrictions that the MEMORY CHANNEL net­
work imposes.

The goals in developing UMP were to

• Simplify the construction of message-passing sys­
tems utilizing the MEMORY CHANNEL network
by hiding the details of the underlying commu­
nications transport (initially, shared memory or
MEMORY CHANNEL).

• Optimize performance and exploit the low latency
of the MEMORY CHANNEL network; the initial
goal for latency over the MEMORY CHANNEL net­
work using PVM was to achieve less than 30 µs.

• Ease the development of parallel message-passing
libraries by providing a simple set of message­
passing functions.

• Perform only basic communications; any more
complex operations (e.g., process control) would
be performed by a higher layer.

• Act as a convergence center for possible future
interconnects.

extern Long asm(const char*, ...);
#pragma intrinsic(asm)
#define mb() asm("mb")

#include <sys/types.h>
#include <sys /imc.h>

main()
{

}

int status, i, Locks=4, temp, errors;
imc_asid_t region_id;
imc_Lkid_t Lock_id;
typedef struct {

volatile int processes;
volatile int pattern[2047J;

} shared_region;

I* MC region ID *I
I* MC spinlock set ID*/

I* Shared data structure*/

shared_region *region_read, *region_write;
caddr_t read_ptr = 0, write_ptr = O;

I* Allocate a region of coherent MC address space and attach to* /
I* process VA*/
imc_asalloc(123, 8192, IMC_URW, IMC_COHERENT, ®ion_id);
imc_asattach(region_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK, &write_ptr);
imc_asattach(region_id, IMC_RECEIVE, IMC_SHARED, 0, &read_ptr);

region_read = (shared_region *)write_ptr;
region_write = (shared_region *)read_ptr;

I* Allocate a set of spinlocks and atomically acquire the first Lock*/
status= imc_Lkalloc(456, &Locks, IMC_LKU, IMC_CREATOR, &Lock_id);
errors= imc_rderrcnt();
if (status== IMC SUCCESS) {

do { -
region_write->processes = O; I* Initialize the global region*/
for (i=O; i<2047; i++)

region_write->pattern[i] = i;
i --;
mb();

} while (imc ckerrcnt(&errors) I I region_read->pattern[i] != i) ;
imc_Lkrelease(Lock_id, 0);

} else if (status== IMC EXISTS) {
imc_Lkalloc(456, &Locks, IMC_LKU, 0, &Lock_id);
imc_Lkacquire(lock_id, 0, 0, IMC_LOCKWAIT);
temp= region_read->processes + 1; /* Increment the process counter*/
errors= imc_rderrcnt<>;
do {

region_write->processes = temp;
mb();

} while (imc ckerrcnt(&errors) I I region_read->processes != temp) ;
imc_Lkrelease<Lock_id, 0);

}

(Body of program goes here)

I* clean up*/
imc_Lkacquire(lock_id, 0, 0, IMC_LOCK WAIT);
temp= region_read->processes - 1; /* Decrement the process counter*/
errors= imc_rderrcnt();
do {

region_write->processes = temp;
mb();

} while (imc ckerrcnt(&errors) I I

imc_Lkrelease(Lock_id, 0);
imc_Lkdealloc(Lock_id);
imc_asdetach(region_id);
imc_asdealloc(region_id);

region_read->processes != temp) ;

I* Deallocate spinlock set*/
I* Detach shared region*/

I* Deallocate MC address space*/

Figure 6
Programming with TruCluster MEMORY CHANNEL Software

Digital Technical Journal Vol. 8 No. 2 1996 105

These goals placed some important constraints on
the architecture of UMP, particularly with regard to
performance. This meant that design decisions had
to be constantly evaluated in terms of their performance
impact. The initial design decision was to use a dedi­
cated point-to-point circular buffer between every pair
of processes. These buffers use producer and consumer
indexes to control the reading and writing of buffer
contents. The indexes can be modified only by the
consumer and producer tasks and allow fully lockless
operation of the buffers. Removing lock requirements
eliminates not only the software costs associated with
lock manipulation (in the initial implementation of
TruCluster MEMORY CHANNEL Software, acquiring
and releasing an uncontested spinlock takes approxi­
mately 130 µsand 120 µs, respectively) but also the
impact on processor performance associated with
Load-locked/Store-conditional instruction sequences.

Although this buffering style eliminates lock manip­
ulation costs, it results in an exponential demand for
storage and can limit scalability. If there are N processes
communicating using this method, that implies N2
buffers are required for full mesh communication.
MEMORY CHANNEL address space is a relatively
scarce resource that needs to be carefully husbanded.
To manage the demand on cluster resources as fairly as
possible, we decided to do the following:

• Allocate buffers sparsely, i.e., as required up to
some default limit. Full N2 allocation would still be
possible if the user increased the number of buffers.

• Make the size of the buffers configurable.

• Use lock-controlled single-writer, multiple-reader
buffers to handle both the overflow from the N2
buffer and fast multicast. One of these buffers,
called outbufs, would be assigned to each process
using UMP upon initialization.

Note that while the channel buffers are logically
point-to-point, they may be implemented physically as
either point-to-point or broadcast. For example, in the
first version of UMP, we used broadcast MEMORY
CHANNEL mappings for the sake of simplicity. We are
currently modifying UMP to use point-to-point
MEMORY CHANNEL mappings, both to increase
available bandwidth and to exploit a switched
MEMORY CHANNEL network.

Figure 7 shows several tasks communicating in
a cluster and illustrates how the two types of UMP
buffers are used. Task 1 and task 2 are executing
on node 1, while task 3 is executing on node 2. In the
diagram, the channel buffers are located under the task
in whose virtual address space they reside to indicate
visually that they reside in the virtual address space of
the destination task. In the figure, task 1 communicates

,--------------------------, ,---------------,

Figure 7

CHANNEL BUFFERS

SHARED
MEMORY

B
MEMORY
CHANNEL

3-+ 1

OUTBUF

MEMORY
CHANNEL

SHARED
MEMORY

1 -+ 2

MEMORY
CHANNEL

E§···· B
I
I

MEMORY
CHANNEL

a
MEMORY
CHANNEL

B
NODE 1 ··-------------------- 1•••••• NODE 2
--------------------------~ L ______________ _

KEY:

DIRECT WRITE TO CHANNEL BUFFER
LOCK-CONTROLLED READ OF OUTBUF

Cluster Communication Using UMP

106 Digital Technical Journal Vol. 8 No. 2 1996

with task 2 using UMP channel buffers in shared mem­
ory, shown as 1---+2 and 2---+ 1. Task 1 and task 3 com­
municate using UMP channel buffers in MEMORY
CHANNEL space, shown as 1 •3 and 3---+ 1. Task 3 is
reading a message from task 1 using an outbuf. The
outbuf can be written only by task 1 but is mapped for
transmission to all other cluster members. On node 2,
the same region is mapped for reception. Access to
each outbufis controlled by a unique cluster spinlock.

Our rationale for taking this approach is that a short
software path is more appropriate for small messages
because overhead dominates message transfer time,
whereas the overhead of lock manipulation is a small
component of message transfer time for large mes­
sages. We felt that this approach helped to control the
use of cluster resources and maintained the lowest pos­
sible latency for short messages yet still accommodated
large messages. Note that outbufs are still fixed-size
buffers but are generally configured to be much larger
than the N2 buffers.

This approach worked for PVM because its message
transfer semantics make it acceptable to fail a mes­
sage send request due to buffer space restrictions
(e.g., if both the N2 buffer and the outbufare full) .
When we analyzed the requirements for MPI, how­
ever, we found that this approach was not possible. For
this reason, we changed the design to use only the N2
buffers. Instead of writing the message as a single
operation, the message is streamed through the buffer
in a series of fragments. Not only does this approach
support arbitrarily large messages, but it also improves
message bandwidth by allowing (and, for messages
exceeding the available buffer capacity, requiring) the
overlapped writing and reading of the message.
Deadlock is avoided by using a background thread
to write the message. Since overflow is now handled
using the streaming N2 buffers, outbufs were not nec­
essary to achieve the required level of performance for
large messages and were not implemented. Outbufs
are retained in the design to provide fast multicast
messaging, even though in the current implementa­
tion they are not yet supported.

Achieving the performance goals set for UMP was
not easy. In addition to the buffer architecture
described earlier, several other techniques were used.

• No syscalls were allowed anywhere in the UMP
messaging functions, so UMP runs completely in
user space.

• Calls to library routines and any expensive arith­
metic operations were minimized.

• Global state was cached in local memory wherever
possible.

• Careful attention was paid to data alignment issues,
and all transfers are multiples of 32-bit data.

At the programmer's level, UMP operation is based
on duplex point-to-point links called channels, which
correspond to the N2 buffers already described.
A channel is a pair of unidirectional buffers used to
provide two-way communication between a pair of
process endpoints anywhere in the cluster. UMP pro­
vides functions to open a channel between a pair of
tasks. While the resources are allocated by the first task
to open the channel, the connection is not complete
until the second task also opens the same channel.
Once a channel has been opened by both sides, UMP
functions can be used to send and receive messages on
that channel. It is possible to direct UMP to use shared
memory or MEMORY CHANNEL address space for
the channel buffers, depending on the relative location
of the associated processes. In addition, UMP provides
a function to wait on any event (e.g., arrival of a mes­
sage, creation or deletion of a channel). In total, UMP
provides a dozen functions, which are listed in Table 3.
Most of the functions relate to initialization, shut­
down, and miscellaneous operations. Three functions
establish the channel connection, and three functions
perform all message communications.

UMP channels provide guaranteed error detection
but not recovery. Through the use of TruCluster
MEMORY CHANNEL Software error-checking rou­
tines, we were able to provide efficient error detection
in UMP. We decided to let the higher layers implement
error recovery. As a result, designers of higher layers can
control the performance penalty they incur by specify­
ing their own error recovery mechanisms, or, since
reliability is high, can adapt a fail-on-error strategy.

Performance
UMP avoids any calls to the kernel and any copying of
data across the kernel boundary. Messages are written
directly into the reception buffer of the destination
channel. Data is copied once from the user's buffer
to physical memory on the destination node by the
sending process. The receiving process then copies the
data from local physical memory to the destination
user's buffer. By comparison, the number of copies
involved in a similar operation over a LAN using sock­
ets is greater. In this case, the data has to be copied
into the kernel, where the network driver uses DMA to
copy it again into the memory of the network adapter.
At this point the data is transmitted onto the LAN.

The first version of UMP used one large shared
region of MEMORY CHANNEL space to contain its
channel buffers and a broadcast mapping to transmit
this simultaneously to all nodes in the cluster. This
version of UMP also used loopback to reflect transmis­
sions back to the corresponding receive region on the
sending node, which resulted in a loss of available
bandwidth. Using our AlphaServer 2100 4/190
development machines, we measured

Digital Technical Journal Vol. 8 No. 2 1996 107

Table 3
UMP API Functions

Function
Name Description

ump_init Initializes UMP and allocates the necessary resources.

ump_exit Shuts down UMP and deallocates any resources used by the calling process.

ump_open Opens a duplex channel between two endpoints over a given transport (shared memory or
MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles.

ump_close Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary.
ump_listen Registers an endpoint for a channel over a specified transport. This can be used by a server process

to wait on connections from clients with unknown handles. This function returns immediately,
but the channel is created only when another task opens the channel. This can be detected using
ump_wait.

ump_wait Waits for a UMP event to occur, either on one specified channel to this task or on all channels
to this task.

ump_read Reads a message from a specified channel.

ump_write Writes a message to a specified channel. This function is blocking, i.e., it does not return until
the complete message has been written to the channel.

ump_nbread Starts reading a message from a channel, i.e., it returns as soon as a specified amount of the
message has been received, but not necessarily all the message.

ump_nbwrite Starts writing a message to a specified channel. i.e., it returns as soon as the write has started.
A background thread will continue writing the message until it is completely transmitted.

ump_mcast Writes a message to a specified list of channels.
ump_info Returns UMP configuration and status information.

• Latency: 11 µs (MEMORY CHANNEL), 4 µs
(shared memory)

• Bandwidth: 16 MB/s (MEMORY CHANNEL),
30 MB/s (shared memory)

To increase bandwidth, we modified UMP to use
transmit-only regions for its channel buffers, thus
eliminating loopback. The performance measured for
the revised UMP using the same machines was

• Latency: 9 µs (MEMORY CHANNEL), 3 µs
(shared memory)

• Bandwidth: 23 MB/s (MEMORY CHANNEL),
32 MB/s (shared memory)

Figure 8 shows the message transfer time and Figure
9 shows the bandwidth for various message sizes for the
revised version of UMP using both blocking and non­
blocking writes over shared memory and the MEMORY
CHANNEL network. Using newer AlphaServer 4100
5/300 machines, which have a faster 1/0 subsystem
than the older machines, and version 1.5 MEMORY
CHANNEL adapters, the measured latency is 5.8 µs
(MEMORY CHANNEL), 2 µs (shared memory). The
peak bandwidth achieved is 61 MB/s (MEMORY
CHANNEL), 75 MB/s (shared memory). In the non­
blocking cases, the buffer size used was 256 kilobytes
(KB) for shared memory and 32 KB for MEMORY
CHANNEL. Further work is under way to improve the
performance using shared memory as the transport.
This work is aimed at eliminating the high-end falloff in
bandwidth in the blocking case and the notch when the
message size exceeds the buffer size in the nonblocking

108 Digital Technical Journal Vol. 8 No. 2 1996

case. Note that these effects are not displayed in the
MEMORY CHANNEL results.

Message-passing Libraries

Message-passing libraries provide the programmer
with a set of facilities to build parallel applications.
Typically, these services include the ability to send and
receive a variety of data types to and from other peer
processes in a variety of modes, as well as collective
operations that span a set of peer processes. Other
facilities may be provided in addition to the basic set,
e.g., PVM provides functions for managing PVM
processes (spawning, killing, signaling, etc.), whereas
MPI (at least in its first revision, MPI-1) does not. PVM
is probably the most widely used message-passing sys­
tem. It has been available for approximately five years,
and implementations are available for a wide variety of
platforms. MPI is an emerging standard for message
passing that is growing rapidly in popularity; many
new applications are being written for it.

Parallel Virtual Machine
Parallel Virtual Machine (PVM) is supported on a
wide variety of platforms, including supercomputers
and networks of workstations (NOWs). PVM uses
a variety of underlying communications methods:
shared memory on multiprocessors, various native
message-passing systems on massively parallel proces­
sors (MPPs), and UDP /IP or TCP /IP on NOWs. The
large software overhead in the IP stacks makes it di ffi ­
cult to provide high-performance communications for

100,000

KEY:

-~
//

,;//
/

. /

-~·
~

10 100 1,000 10,000 100,000 1,000,000

MESSAGE SIZE (BYTES)

UMP BLOCKING (SHARED MEMORY)
UMP BLOCKING (MEMORY CHANNEL)

UMP NONBLOCKING (SHARED MEMORY)

UMP NONBLOCKING (MEMORY CHANNEL)

Figure 8
UMP Communications Performance: Message Transfer
Time

0 z 80
0
()
UJ
(/)

a:
UJ
0..
(/)
UJ 50

~ < 40
CD
UJ
~ 30
I
~ 20

~ o 10
z
~

- ·-·-·-·--·- ·- ·- · , .- ·

---------- ------------·
················· ················ ·········· ······· ·· ··· ········

O 200,000 400,000 600,000 800,000 1,000,000

KEY:

MESSAGE SIZE (BYTES)

UMP BLOCKING (SHARED MEMORY)
UMP BLOCKING (MEMORY CHANNEL)

UMP NONBLOCKING (SHARED MEMORY)

UMP NONBLOCKING (MEMORY CHANNEL)

Figure 9
UMP Communications Performance: Bandwidth

PVM when using networks like Ethernet or FDDI.
The high cost of communications for these systems
means that only the more coarse-grained parallel appli­
cations have demonstrated performance improvements
as a result of parallelization using PVM. Using the
MEMORY CHANNEL cluster technology described
earlier, we have implemented an optimized PVM that
offers low latency and high-bandwidth communica­
tions. The PVM library and daemon use UMP to pro­
vide seamless communications over the MEMORY
CHANNEL cluster.

When we began to develop PVM for MEMORY
CHANNEL clusters, we had one overriding goal: to use
the hardware performance the MEMORY CHANNEL
interconnect offers to provide a PVM with industry­
leading communications performance, specifically with
regard to latency. Initially, we set a target latency for
PVM of less than 15 µs using shared memory and less
than 30 µs using the MEMORY CHANNEL transport.

Our first task was to build a prototype using the
public-domain PVM implementation. We used an
early prototype of the MEMORY CHANNEL system
jointly developed by Digital and Encore. The proto­
type had a hardware latency of 4 µs. We modified the
shared-memory version of PVM to use the prototype
hardware and achieved a PVM latency of 60 µs.
Profiling and straightforward code analysis revealed
that most of the overhead was caused by

• PVM's support for heterogeneity (i.e., external data
representation [XDR] encoding)

• Messages being copied multiple times inside PVM

• A large number of function calls in the critical com­
munications path

• Inefficient coding of the low-level data copy routines

Since we wanted to achieve the maximum possible
performance available from the hardware, we decided
to reimplement the PVM library, eliminating support
for heterogeneity from the communications functions
of PVM and focusing on maximum performance
inside a Digital cluster. 20 Heterogeneity would then be
supported by using a special PVM gateway process.

The overall architecture of the Digital PVM imple­
mentation is shown in Figure 10. To maximize per­
formance, we decided that, wherever possible, an
operation should be executed in-line rather than be
requested from a remote task or daemon. This con­
trasts with PVM's traditional approach of relaying such
requests to the PVM daemon for service. For example,
when a PVM task starts, often it first calls pvm_mytid to
request a unique task identifier (TID). Previously, this
would have involved sending a message to a PVM dae­
mon which would then allocate a TID to the process

' and return another message. In our design, we could
use global data structures in MEMORY CHANNEL
space (e.g., the list of all PVM tasks and associated
data). Now, for example, pvm_mytid simply involves
acquiring a cluster lock on a global table, getting the
new TID, and releasing the lock-all executed in-line
by the calling process rather than a daemon. Executing
PVM services in-line with the requesting process
increases multiprocessing capability and eliminates
daemon bottlenecks and associated delays.

We reimplemented the PVM library with the empha­
sis on performance rather than heterogeneity, although
we plan to eventually allow interoperation with het­
erogeneous implementations of PVM using a special

Digital Technical Journal Vol. 8 No. 2 1996 109

MEMORY CHANNEL CLUSTER
r-- - --------------------------------~

HOST1 HOST2 I
~--~ .----------------- -----------1 I

I
I

DAEMON 1 PROCESS 1 PROCESS2 DAEMON 2 PROCESS3 I I

PVM DAEMON PVM APPLICATION PVM APPLICATION PVM DAEMON PVM APPLICATION I

PVM API LIBRARY

UNIX I UMP

PVM API LIBRARY

UNIX I UMP

!

PVM API LIBRARY

UNIX I UMP

B t

PVM API LIBRARY PVM API LIBRARY

UNIX I UMP UNIX I UMP

L...---------------- t A --i- ---------------- --------------- --------- ---
c

D

HOST3
r---

DAEMON 3 PROCESS4 GATEWAY
F

PVM DAEMON PVM APPLICATION PVM GATEWAY

PVM API LIBRARY PVM API LIBRARY PVM API LIBRARY PVM3 DAEMON

UNIX I UMP UNIX I UMP UNIX I UMP
INTERFACE

•--- t E ____ t ----------------------------------- ---- ---
G

-----------------------------------~
KEY:

A A PVM application on host 1 performs local control functions using UNIX signals.
B A PVM application on host 1 communicates with another PVM task on the same host using

UMP (via shared memory).
C A PVM application on host 1 communicates with another PVM task on a different host in the

cluster (host 2) using UMP (via MEMORY CHANNEL).
D A PVM application on host 1 requires a control function (e.g., a signal) to be executed on

another host in the cluster (host 3); it sends a request to a PVM daemon on host 3.
E The PVM daemon on host 3 executes the control function.
F A PVM application on host 1 sends a message to a PVM task on a host outside the MEMORY CHANNEL

cluster; the message is routed to the PVM gateway task on host 3.
G The PVM gateway translates the cluster message into a form compatible with the external PVM

implementation and forwards the message to the external task via IP sockets.

Figure 10
Digital PVM Architecture

gateway daemon. The PVM API library is a complete
rewrite of the standard PVM version 3.3 API, with
which full functional compatibility is maintained.
Emphasis has been placed on optimizing the perfor­
mance of the most frequently used code paths. In
addition, all data structures and data transfers have
been optimized for the Alpha architecture. As stated
earlier, the amount of message passing between tasks
and the local daemon has been minimized by perform­
ing most operations in-line and communicating with
the daemon only when absolutely necessary. Inter­
mediate buffers are used for copying data between the
user buffers. This is necessary because of the semantics
of PVM, which allow operations on buffer contents
before and after a message has been sent. The one
exception to this is pvm_psend; in this case, data is
copied directly since the user is not allowed to modify
the send buffer.

The purpose of our PVM daemon is different from
that of the daemon in the standard PVM package. Our
daemon is designed to relay commands between dif­
ferent nodes in the PVM cluster. It exists solely to

II O Digital Technical Journal Vol. 8 No. 2 1996

perform remote execution of those commands that
cannot be performed in-line by UNIX calls in the PVM
API library or by directly manipulating global data
structures. Commands to be executed on a remote
node are sent to the daemon on that node, which then
executes the command directly. Note that this
removes a level of indirection that exists in standard
PVM. Daemon-to-daemon communications are mini­
mized. Since there is no master daemon, the PVM
cluster has no single point of failure. All daemons are
equal. When not in use, the daemon sleeps, being
awakened as required by a signal from the calling task.
For a local task, UNIX signals are used. If the task is on
another node in the cluster, then MEMORY CHANNEL
cluster signals are used. As a result, the daemon uses
minimal cluster resources.

The PVM group or collective functions operate on
a group of PVM tasks. For example: pvm_barrier
synchronizes multiple PVM processes; pvm_bcast
sends a message to all members of a particular group;
pvm_scatter distributes an array to the members of
a group; pvm_gather reassembles the array from the

contributions of each of the group members, etc. The
group functions are implemented separately from the
other PVM messaging functions. They use a separate
global structure (the group table) to manage PVM
group data. Access to the group table is controlled
by locks. Unlike other PVM implementations, there is
no PVM group server, since all group operations can
manipulate the group table directly.

Performance
Table 4 compares the communications latency achieved
by various PVM implementations. As the table indi­
cates, the latency between two machines with Digital
PVM over a MEMORY CHANNEL transport is much
less than the latency of the public-domain PVM
implementation over shared memory, which validates
our approach of removing support for heterogeneity
from the critical performance paths. Figure 11 shows
the message transfer time and Figure 12 shows the
bandwidth for Digital PVM over shared memory and
MEMORY CHANNEL transports for various message
sizes. Two AlphaServer 4100 5/300 machines were
used for these measurements. The peak bandwidth
reached by Digital PVM is about 66 MB/s (shared
memory) and 43 MB/s (MEMORY CHANNEL).
By comparison, PVM 3.3.10 achieves a bandwidth of
24 MB/s (shared memory) and 3 MB/s (FDDI LAN).
A version of PVM developed at Digital's Systems
Research Center (SRC) using a specially adapted asyn­
chronous transfer mode (ATM) driver achieved a
latency of approximately 60 µs and a bandwidth of
approximately 16 MB/s using the AN2 ATM LAN.21

The performance results for PVM latency over the
MEMORY CHANNEL transport given in Reference 6
were obtained using an earlier version of
Digital PVM. Since those results were measured,
latency has been halved, mostly due to improvements
in UMP performance.

Figure 13 compares the performance of an unmod­
ified PVM application using the public-domain PVM
3.3.7 implementation and Digital PVM version 1.0.
The application is a parallel molecular modeling pro­
gram. The bar chart shows the elapsed time for a vari­
ety of configurations. The application ran for 220
seconds on 2 two-processor SMP machines connected

Table4
PVM Latency Comparison

PVM Implementation Transport

PVM 3.3.9 Sockets FDDI

PVM 3.3.9 Shared Memory

Digital PVM Vl .0 MEMORY CHANNEL 1.0

Digital PVM V1 .0 MEMORY CHANNEL 1.5

Digital PVM V1 .0 Shared Memory

Digital PVM V1 .0 Shared Memory

Digital PVM V1 .0 Shared Memory

with FDDI. By replacing FDDI with a MEMORY
CHANNEL network and PVM 3.3.7 with Digital
PVM, we were able to speed up performance by a fac­
tor of approximately 3 .4 for the same number of pro­
cessors: the run time dropped from 220 seconds to 65
seconds. For comparison, we also ran the program
on a four-processor SMP; the application completed in
64.5 seconds. This time was just marginally faster than
the MEMORY CHANNEL configuration for the same
number of processors, demonstrating that Digital PVM
scales well from SMP to the MEMORY CHANNEL
cluster. Finally, 2 four-processor SMP machines con­
nected in a two-node MEMORY CHANNEL cluster ran
the program in 38 seconds, demonstrating a speedup
of 1.7.

Message Passing Interface
Message Passing Interface (MPI) is a message-passing
standard developed by a large group of industrial and
academic users. The standard contains a substantial
number of functions (more than 120) and offers the
same wide range of facilities that many earlier message­
passing AP Is provided. In fact, many parallel applica -
tions can be written using only six of the functions, but
a correct implementation must provide the complete
set. Argonne National Laboratory (ANL) has pro­
duced a reference implementation called MPICH.22

This is a robust, clean implementation of the complete
MPI-1 function set. In addition, it has isolated trans­
port-specific components behind an abstract device
interface (ADI).23 The abstract device implements the
communications-related functions and is further lay­
ered on what is called the channel device. The public
domain version comes with channel implementations
for a number of interconnects including shared mem­
ory, TCP /IP, and other proprietary interfaces. This
version also includes a template for building a channel
device, called the channel interface.2

• To build a chan­
nel device, the programmer must supply five functions:

l. Indicate if a control message is available on a con­
trol channel

2. Get a control message from a control channel

3. Send a control message to a control channel

Platform Latency

DEC 3000/800 400 µs

Al phaServer 2100 4/233 60 µs

AlphaServer 2100 4/233 11 µs

AlphaServer 4100 5/300 8 µs

AlphaServer 2100 4/233 5 µs

AlphaServer 4100 5/300 4 µs

AlphaServer 8400 5/350 3 µs

Digital Technical Journal Vol.8 No.2 1996 111

100,000

,
~ 10,000 /

,

~ /'
~ ,
w ,'
~& 1,000 ,'
zo ,
<Z /
cco ,,~""/ ~[rl 100 , ,
(!)(/) ,."'

~~ ~.,,,""
;~ 10 _________ ,,,,

10 100 1,000 10,000 100,000 1,000,000

MESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY

MEMORY CHANNEL

Figure 11
Digital PVM Communications Performance: Message
Transfer Time

0 70
z ' 0 I ',
(.) 60 ' w ',,
Cl) ---
~ --------------
w 50
CL
Cl)
w

40 ~
>-
CD
<
(!) 30 w
6
::c 20
~
0

~
0 10
z
<
CD

0 200,000 400,000 600,000 800,000 1.000.000

MESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY
MEMORY CHANNEL

Figure 12
Digital PVM Communications Performance: Bandwidth

4. Receive data from a data channel

5. Send data to a data channel

These functions can all be implemented using the
UMP functions ump_read, ump_write, and ump_wait
described earlier. In addition, hooks are added to
the channel initialization and shutdown code to call
ump_init and ump_exit. This approach leaves the
portable MPICH API library unchanged and attempts
to deliver optimum performance. MPICH implements
all its operations, point-to-point and collective, on the
basic point-to-point services that the ADI provides.

Working with the Edinburgh Parallel Computing
Centre (EPCC), we produced an early fimctional MPI
prototype by building a channel device on UMP, as

112 Digital Technical Journal Vol. 8 No. 2 1996

250

en 200
0
z
0
(.)

~ 150
w
:l!:
~
o 100
w
Cl)
CL

:s
w 50

0

Figure 13

220

FDDI
2x2

65

MEMORY
CHANNEL
2 x 2

64.5

SMP
4 x 1

CONFIGURATION

PVM Application Performance

38

MEMORY
CHANNEL
4 x 2

shown in Figure 14a. This implementation demon­
strated latencies of 12.5 µs (shared memory) and
29 µs (MEMORY CHANNEL), respectable perfor­
mance for such a quick port of MPI for clusters.
Furthermore, since this implementation uses UMP, it
works transparently on shared memory and MEMORY
CHANNEL. ADI channels typically support only one
interconnect; multiple ADis are not yet supported by
MPI H. Unlike PVM, the semantics of MPI allow
operation without an intermediate buffer, so that UMP
buffers can be used directly.

To further improve the performance of MPI on
clusters, we eliminated the MPICH channel device and
interfaced UMP directly to the ADI, as shown in
Figure l 4b. The abstract device incurs some perfor­
mance penalty in its support for the channel device. In
the UMP implementation, this is unnecessary as UMP
already performs the function of hiding details of the
transport mechanism. This implementation demon­
strated latencies of9.5 µs (shared memory) and 16 µs
(MEMORY CHANNEL), using an Alpha cluster con­
sisting of two AlphaServer 2100 4/ 233 machines
connected by a MEMORY CHANNEL network.

Performance
Table 5 compares the communications latency
achieved by MPICH and the Digital MPI implementa­
tion, using an Alpha cluster. Results are shown for both
AlphaServer 2100 4/190 and AlphaServer 4 100
5 /300 machines connected by a MEMORY CHAl NEL
network. Figure 15 shows the message transfer time
and Figure 16 shows the bandwidth of Digital MPI
over shared memory and MEMORY CHANNEL
transports for a variety of message sizes. A pair of
AlphaServer 4100 5 /300 machines were used for these
measurements. Digital MPI reaches a peak bandwidth
of about 64 MB/s using shared memory and 61 MB/s

MPI PORTABLE API LIBRARY

MPICH ABSTRACT DEVICE

MPICH CHANNEL INTERFACE
L-

UMP

SHARED I MEMORY
MEMORY CHANNEL

MPICH ----- - ,
I

ABSTRACT I
-DEVICE

INTERFACE :

I
I ______ _J

(a) Initial Prototype

MPICH
.-- ------1

MPI PORTABLE API LIBRARY ABSTRACT I
-DEVICE -- I

INTERFACE I
______ _J

L-

MPICH ABSTRACT DEVICE
FRONT END

UMP

SHARED

I
MEMORY

MEMORY CHANNEL

(b) Version 1.0 Implementation

Figure 14
Digital MPI Architecture

using MEMORY CHANNEL. By comparison, the
unmodified MPICH achieves a peak bandwidth of
24 MB/s using shared memory and 5.5 MB/s using
TCP /IP over an FDDI I.AN.

Figure 17 shows the speedup demonstrated by an
MPI application. The application is the Accelerated
Strategic Computing Initiative (ASCI) benchmark
SPPM, which solves a three-dimensional gas dynamics
problem on a uniform Cartesian mesh.25.26 The same
code was run using both Digital MPI and MPICH
using TCP /IP. The hardware configuration was a two­
node MEMORY CHANNEL cluster of AJphaServer
8400 5/350 machines, each with six CPUs. Digital
MPI used shared memory and MEMORY CHANNEL
transports, whereas MPICH used the Ethernet I.AN
connecting the machines. The maximum speedup

Table 5
MPI Latency Comparison

MPI Implementation

MPICH 1.0.10

MPICH 1.0.10

Digital MPI V1 .0

Digital MPI V1 .0

Digital MPI V1 .0

Digital MPI V1 .0

Transport

Sockets FDDI

Shared Memory

MEMORY CHANNEL 1.0

MEMORY CHANNEL 1.5

Shared Memory

Shared Memory

obtained using Digital MPI was approximately 7,
whereas for MPICH the maximum speedup was
approximately 1.6.

Future Work

We intend to continue refining the components
described in this paper. The major change envisioned
regarding the Tm Cluster MEMORY CHANNEL Soft­
ware product is the addition of user-space spinlocks,
which should significantly reduce the cost of acquiring
a spinlock. We intend to increase the performance
of UMP by making more efficient use of MEMORY
CHANNEL in a number of ways: striping large
messages over multiple adapters, supporting next­
generation adapters, and using point-to-point map­
pings with a MEMORY CHANNEL switch. In addi­
tion, we plan to add outbufs to increase multicast
message-passing performance. PVM enhancements
planned include the addition of the gateway daemon to
allow interoperation with other PVM implementations
on external platforms. PVM will also be modified to use
the UMP nonblocking write facility for arbitrarily large
messages so that its performance matches that of
MPI. Since the semantics of PVM force the use of an
intermediate buffer, performance when using shared
memory will be improved by passing pointers to a lock­
controlled buffer for messages whose transfer time
would exceed the overhead associated with a lock. We
will continue to improve MPI performance by optimiz­
ing the UMP ADI for the MPICH implementation.

Summary

We have built a high-performance communications
infrastructure for scientific applications that utilizes a
new network technology to bypass the software over­
head that limits the applicability of traditional net­
works. The performance of this system has been proven
to be on a par with that of current supercomputer tech­
nology and has been achieved using commodity
technology developed for Digital's commercial cluster
products. The paper demonstrates the suitability of
the MEMORY CHANNEL technology as a communica­
tions medium for scalable system development.

Platform Latency

DEC 3000/800 350 µs

AlphaServer 2100 4/233 30µs

AlphaServer 2100 4/233 16 µs

AlphaServer 4100 5/300 6.9 µs

AlphaServer 2100 4/233 9.5 µs

Al phaServer 4100 5/300 5.2 µs

Digital Technical Journal Vol.8 No. 2 1996 113

100,000

!:\i 10,000
i=
a:
w
~U) 1,000 r
zo , ~z ,
a:o / ~o ,
t\J~ 100 /
~o /
U) a: /
U>O ,..-~
!:\i ~ 10 1--------,,..., -., --------

10 100 1,000 10,000 100,000 1,000,000

MESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY

MEMORY CHANNEL

Figure 15
MPI Communications Performance: Message Transfer
Time

a 10
z
0
frl 60 \

U) ' ' --------------------
a:
~ 50
U)
w
\;:: 40
[!)
~

ffi 30

~
~ 20
0

§: 10
0 z
~
[!)

0 200,000 400,000 600,000 800,000 1,000,000

MESSAGE SIZE (BYTES)

KEY:

SHARED MEMORY

MEMORY CHANNEL

Figure 16
MPI Communications Performance: Bandwidth

Acknowledgments

The authors would like to acknowledge the following
people for their contributions to this project: Gavan
Duffy, whose testing made the TruCluster MEMORY
CHANNEL Software a much more robust product;
Liam Kelleher and Garret Taylor, who contributed
some of the Digital PVM functionality; Wayne
Cardoza and Brian Stevens of UNIX Engineering,
who provided early access to and ongoing support of

114 Digital Technical Journal Vol. 8 No. 2 1996

8

7

6

g; 5
0
ll:J 4
a..
U) 3

2

0
2 4 6 8 10

KEY:

D DIGITAL MPI

• MPICH TCP/IP

Figure 17

NUMBER OF PROCESSORS

MPI Application Speedup

12

kernel MEMORY CHANNEL software; Rick Gillett
and Mike Collins, who provided early MEMORY
CHANNEL hardware; Richard Kaufinann, who gave
us encouragement and support; and Lyndon Clarke
and Kenneth Cameron at Edinburgh Parallel Com­
puting Centre (EPCC), who modified MPICH to use
UMP for Digital MPI.

References and Note

1. T. Anderson, D. Culler, and D. Patterson, "A Case for
NOW (Network of Workstations)," Proceedings of
the Hot Interconnects II Symposium, Palo Alto, Calif.
(August 1994).

2. K. Keeton, T. Anderson, and D. Patterson, "LogP
Quantified: The Case for Low-Overhead Local Area
Networks," Proceedings of the Hot In terconnects III
Symposium, Palo Alto, Calif. (August 1995).

3. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, Order No.
EY-L520E-DP, 1992).

4. N. Kronenberg, H. Levy, and W. Strecker, "VAXclus­
ters: A Closely Coupled Distributed System," ACM
Transactions on Computer Systems, vol. 4, no. 2
(May 1986): 130-146.

5. W. Cardoza, F. Glover, and W. Snaman, Jr., "Design of
the TruCluster Multicomputer System for the Digital
UNIX Environment," Digital Technical Journal,
vol. 8, no. 1 (1996): 5-17.

6. R. Gillett, "MEMORY CHANNEL Network for PCI:
An Optimized Cluster Interconnect," IEEE Micro
(February 1996): 12-18.

7. M. Blumrich et al., "Virtual Memory Mapped Net­
work Interface for the SHRIMP Multicomputer," Pro­
ceedings of the Twenty-first Annual International
Symposium on Computer Architecture (April 1994):
142-153.

8. M. Blumrich et al., "Two Virtual Memory Mapped
Network Interface Designs," Proceedings of the Hot
Interconnects II Symposium, Palo Alto, Calif.
(August 1994): 134-142.

9. L. Iftode et al., "Improving Release-Consistent Shared
Virtual Memory using Automatic Update," Proceed­
ings of the Second International Symposium on
High-Performance Computer Architecture (Febru­
ary 1996).

10. C. Dubnicki et al., "Software Support for Virtual
Memory-Mapped Communication," Proceedings of
the Tenth International Parallel Processing Sympo­
sium (April 1996).

11. High Performance Fortran Forum, "High Perfor­
mance Fortran Language Specification," Version 1.0,
Scientific Programming, vol. 2, no. I (1993).

12. A. Geist et al., PVM 3 User's Guide and Reference
Manual, ORNL/TM-12187 (Oak Ridge, Tenn.: Oak
Ridge National Laboratory, May 1994). Also available
on-line at http:/ /www.netlib.org/pvm3/ug.ps.

13. A. Geist et al., PVM: Parallel Virlual Machine,
A User's Guide and Tutorial for Networked Parallel
Computing (Cambridge, Mass.: The MIT Press, 1994).
Also available on-line at http:/ /www.netlib.org/
pvm3 jbook/pvm-book.htrnl.

14. MPI Forum, "MP!: A Message Passing Interface Stan­
dard," International Journal of Supercomputer
Applications, vol. 8, no. 3/4 (1994). Version 1.1 of
this document is available on-line at http://
www.mcs.anl.gov/ mpi/mpi-report-1 . 1/ mpi­
report.html.

15. W. Gropp, E. Lusk, and A. Skjellum, Using MPl·
Porlable Parallel Programming with the Message
Passing lnteiface(Cambridge, Mass.: The MIT Press,
1994).

16. J. Harris et al., "Compiling High Performance Fortran
for Distributed-memory Systems," Digital Technical
Journal, vol. 7, no. 3 (1995): 5-23.

17. E. Benson et al., "Design ofDigital's Parallel Software
Environment," Digital Technical Journal, vol. 7,
no. 3, (1995): 24-38.

18. In the first implementations, the PCI MEMORY
CHANNEL network adapter places a limit of 128 MB
on the amount of MEMORY CHANNEL space that can
be allocated.

19. TruCluster MEMORY CHANNEL Software Program­
mer's Manual (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QTN4A-TE, 1996).

20.]. Brosnan, J. Lawton, and T. Reddin, "A High­
Performance PVM for Alpha Clusters," Proceedings
of the Second European PVM Users ' Group Meeting,
Lyons, France (September 1995).

2 1. M. Hausner, M. Burrows, and C. Thekkath, "Efficient
Implementation of PVM on the AN2 ATM Network,"
Proceedings of High-Performance Computing and
Networking (May 1995).

22. W. Gropp and N. Doss, "MPICH Model MPI Imple­
mentation Reference Manual," Draft Technical Report
(Argonne, lll .: Argonne National Laboratory, June
1995).

23. W. Gropp and E. Lusk, "MPICH ADI Implementation
Reference Manual," Draft Technical Report (Argonne,
111.: Argonne National Laboratory, October 1994).

24. W. Gropp and E. Lusk, "MPICH Working Note: Cre­
ating a New MPICH Device using the Channel Inter­
face," Draft Technical Report (Argonne, Ill.: Argonne
National Laboratory, June 1995).

25. Accelerated Strategic Computing Initiative (ASCI),
RFP Statement ofWork C6939RFP6-3X, Los Alamos
National Laboratory (LANL) (February 12, 1996).
This document is also available on-line at http://
www.llnl .gov/asci_rfp/asci-sow.html.

26. The ASCI SPPM Benchmark Code is available from
Lawrence Livermore National Laboratory at http://
www.llnl.gov/asci_benchmarks/ascijlimited /ppm/
asci_sppm.html.

Biographies

James V. Lawton
Jim Lawton joined Digital in 1986 and is a principal engi­
neer in the Technical Computing Group. In his current
position, he contributed to the design of Digital PVM and
the UMP library and was responsible for implementing UMP
and adding support for collective operations to Digital PVM.
Before that, he worked on the characterization and optimi­
zation of customer scientific/technical benchmark codes
and on various hardware and software design projects. Prior
to coming to Digital, Jim contributed to the design of ana­
log and digital motion control systems and sensors at the
Inland Motor Division of Kollmorgen Corporation. Jim
received a B.E. in electrical engineering (1982) and an
M.Eng.Sc. (1985) from University College Cork, Ireland,
where he wrote his thesis on the design of an electronic
control system for variable reluctance motors. In addition
to receiving the Hewlett-Packard (Ireland) Award for Inno­
vation (1982), Jim holds one patent and has published sev­
eral papers. He is a member ofIEEE and ACM.

Digital Technical Journal Vol. 8 No. 2 1996 llS

John J. Brosnan
John Brosnan is currently a principal engineer in the
Technical Computing Group where he is project leader
for Digital PVM. In prior positions at Digital, he was
project leader for the High Performance Fortran test
suite and a significant contributor to a variety of publish­
ing technology products. John joined Digital after receiv­
ing his B.Eng. in electronic engineering in 1986 from the
University of Limerick, Ireland. He received his M.Eng.
in computer systems in 1994, also from the University of
Limerick.

Morgan P. Doyle
In 1994, Morgan Doyle came to Digital to work on the
High Performance Fortran test suite. Presently, he is an
engineer in the Technical Computing Group. Early on,
he contributed significantly to the design and develop­
ment of the TruCluster MEMORY CHANNEL Software,
and he is now responsible for its development. Morgan
received his B.A.I. and B.A. in electronic engineering
(1991) and his M.Sc. (1993) from Trinity College
Dublin, Ireland.

Seosarnh D. 6 Riordain
Seosamh 6 Riordain is an engineer in the Technical
Computing Group where he is currently working on
Digital MPI and on enhancements to the UMP library.
Previously, he contributed to the design and implementa­
tion of the TruCluster MEMORY CHANNEL Software.
Seosamh joined Digital after receiving his B.Sc. (1991)
and M.Sc. (1993) in computer science from the University
of Limerick, Ireland.

116 Digital Technical Journal Vol. 8 No. 2 1996

Timothy G. Reddin
A principal engineer in the Technical Computing Group,
Timothy Reddin currently leads the team responsible for
the TruCluster MEMORY CHANNEL Software, the UMP
library, Digital PVM, and Digital MPI. Prior to coming to
Digital in 1994, Tim worked for eight years as a systems
designer at ICL High Performance Systems in the United
Kingdom. He was responsible for the I/0 architecture
of the ICL Goldrush parallel database server, for which
he holds two patents, and the design of an I/0 and com­
munications controller. Tim also worked at Raytheon on
the data communications subsystem for the NEXRAD
distributed real-time Doppler weather radar subsystem.
Prior to that, he developed the software architecture for
an integrated executive workstation while working at CPT
Limited. After receiving his B.Sc. (with distinction, 197 6)
in computer science and mathematics from University
College Dublin, Ireland, Tim joined the staff of Univer­
sity College Cork, where he was a systems programmer.
Tim is a member of the British Computer Society and is
a Chartered Engineer.

The Design of User
Interfaces for Digital
Speech Recognition
Software

Digital Speech Recognition Software (DSRS) adds

a new mode of interaction between people and

computers-speech. DSRS is a command and

control application integrated with the UNIX

desktop environment. It accepts user commands

spoken into a microphone and converts them

into keystrokes. The project goal for DSRS was

to provide an easy-to-learn and easy-to-use

computer-user interface that would be a power­

ful productivity tool. Making DSRS simple and

natural to use was a challenging engineering

problem in user interface design. Also challeng­

ing was the development of the part of the

interface that communicates with the desktop

and applications. DSRS designers had to solve

timing-induced problems associated w ith enter­

ing keystrokes into applications at a rate much

higher than that at which people type. The DSRS

project clarifies the need to continue the devel­

opment of improved speech integration with

applications as speech recognition and text-to­

speech technologies become a standard part of

the modern desktop computer.

I
Bernard A. Rozmovits

In the 1960s and early 1970s, people controlled com­
puters using toggle switches, punched cards, and
punched paper tape. In the 1970s, the common con­
trol mechanism was the keyboard on teletypes and on
video terminals. In the 1980s, with the advent of
graphical user interfaces, people found that a new
mode of interaction with the computer was useful.
The concept of a pointer-the mouse-evolved. Its
popularity grew such that the mouse is now a standard
component of every modern computer. In the 1990s,
the time is right to add yet another mode of inter­
action with the computer. As compute power grows
each year, the boundary of the man-machine interface
can move from interaction that is native to the com­
puter toward communication that is natural to
humans, that is, speech recognition.

DSRS Product Overview

Very simply, DSRS is an application that provides
speech macros. The user speaks a command, phrase, or
sentence (that is, an utterance), and DSRS performs
some actions. The action might be to launch an appli­
cation, for example, in response to the command
"bring up calendar"; or to type something, for exam­
ple, in response to "edit to-do list," to invoke emacs
\files\projectA\todo.txt. DSRS not only houses the
speech macro capability but also provides a user inter­
face, a speech recognition engine, and interfaces to the
X Window System.

Following is a high-level description of how the
software functions. Commands are spoken into a
microphone, and the audio is captured and digitized.
The first step in the processing is the speech analysis
system, which provides a spectral representation of the
characteristics of the time-varying speech signal. Next
is the feature-detection stage. Here, the spectral mea­
surements are converted to a set of features that
describe the broad acoustic properties of the different
phonetic units.' These representations of the speech
signal are then segmented and identified as phonetic
sequences. The speech recognition engine accepts
these phonetic sequences and returns word matches
and confidence values for each match. These data are
used to determine if each match is acceptable. If a

Digital Technical Journal Vol. 8 No. 2 1996 117

match is acceptable, DSRS retrieves keystrokes associ­
ated with each utterance, and the keystrokes are then
sent into the system's keyboard buffer or to the appro­
priate application. For instances of continuous speech
recognition, a sentence is recognized and keystrokes
are concatenated to represent the utterance. For
example, for the utterance "five two times seven three
four equals," the keys "52 * 734 =" would be deliv­
ered to the calculator application.

Although this concept seems simple, its implemen­
tation raised significant system integration issues and
directly affected the user interface design, which was
critical to the product's success. This paper specifically
addresses the user interface and integration issues and
concludes with a discussion of future directions for
speech recognition products.

Project Objective

The objective of the DSRS project was to provide a
useful but limited tool to users of Digital's Alpha
workstations running the UNIX operating system.
DSRS would be designed as a low-cost, speech recog­
nition application and would be provided at no cost to
workstation users for a finite period of time.

When the project began in 1994, a number of com­
mand and control speech recognition products for
PCs already existed. These programs were aimed at
end users and performed useful tasks "out of the box,"
that is, immediately upon start-up. They all came with
built-in vocabulary for common applications and gave
users the ability to add their own vocabulary.

On UNIX systems, however, speech recognition
products existed only in the form of programmable
recognizers, such as BBN Hark software. Our objec­
tive was to build a speech recognition product for the
UNIX workstation that had the characteristics of the
PC recognizers, that is, one that would be functional
immediately upon start-up and would allow the non­
programmer end user to customize the product's
vocabulary.

We studied several speech recognition products,
including Talk-tTo Next from Dragon Systems, Inc.,
VoiceAssist from Creative Labs, Voice Pilot from
Microsoft, and Listen from Verbex. We decided to
provide users with the following features as the most
desirable in a command and control speech recogni­
tion product:

• Intuitive, easy-to-use interface

• Speaker-independent models that would eliminate
the need for extensive training

• Speaker-adaptive capability to improve accuracy
of words

• Continuous speech recognition capability

• Prompts for active vocabulary

118 Digital Technical Journal Vol. 8 No. 2 1996

• Minimum use of screen area

• User control over the user interface configuration

• Simple mechanism to modify and create new
vocabulary

• Integration with the X Window System

• Support for out-of-the-box desktop applications
provided with the UNIX operating system

• Support for vi and emacs editors, and for C
programming

The DSRS Architecture

DSRS comprises several major components which are
outlined below and illustrated in Figure 1. Of these
components, three are licensed from Dragon Systems,
Inc.: the front-end processor, the recognizer engine,
and the speaker-independent speech models.

Dragon Systems, Inc. was chosen as the provider of
the speech recognition engine based on the accuracy
of their technology, their products and expertise in
other local languages, and their long-term commit­
ment to speech recognition.

Data acquisition consists of the microphone, audio
card, and the multimedia services application pro­
gramming interface (API) that provides support for
the sound card.

The front-end processor analyzes a stream of digi­
tized data and differentiates between silence, noise,
and speech; it then extracts a set of computed features
from the speech signals.

The recognizer, or speech recognition engine,
accepts the computed representation of the speech
in the form of feature packets which drive the Hid­
den Markov Models to recognize utterances. Hidden
Markov Models are basically state machines that tran­
sition from a beginning state to a number of internal
states and then to a final state based on input data and
probabilities. 2 Each transition carries two sets of prob­
abilities: a transition probability, which provides the
probability of this transition being taken, and an out­
put probability density function (PDF), which is the
conditional probability of emitting each output sym­
bol from a finite alphabet given that a transition is
taken.3 The PDFs are adapted when the model
is "trained," that is, customized, by the individual user.

The finite state grammar is a state machine that
contains a representation of the vocabulary supported
by DSRS. Each state contains words, phrases, or sen­
tences; their associated actions; and the information
needed to transition to the next state. The current
state is used to control the Active words.

The speech models are a set of utterance models
used by the recognizer. DSRS provides vocabulary and
speaker-independent models for the applications sup­
ported by DSRS. Users who wish to include their own

TRAINING
MANAGER SPEECH
USER MODELS•
INTERFACE

I

DIGITIZED FEATURE MICROPHONE
AUDIO FRONT·END PACKETS

PROCESSOR"
AUDIO CARD

• Denotes a component licensed from Dragon Systems, Inc.

Figure 1
DSRS Architectural Block Diagram

words can create models using the Vocabulary
Manager user interface.

The Speech Manager is the main user·interface
component. The Speech Manager window provides
visual feedback to users. It also keeps track of the cur·
rent window in focus and acts as the agent to control
focus in response to users' speech commands.

The Vocabulary Manager user· interface window
displays the current hierarchy of the finite state gram·
mar file. The Vocabulary Manager allows the user to
customize using the functions for addition, deletion,
and modification of words or macros. Also in this win·
dow, the command-utterance to keystroke translations
are displayed, created, or modified.

In the Training Manager user interface, the user
may train newly created words or phrases in the
user vocabulary files and retrain, or adapt, the product·
supplied, independent vocabulary.

The DSRS Implementation

As the design team gained experience with the DSRS
prototypes, we refined user procedures and interfaces.
This section describes the key functions the team
developed to ensure the user·friendliness of the prod­
uct, including the first-time setup, the Speech
Manager, the Training Manager, the Vocabulary
Manager, and the finite state grammar.

First-time Setup

DSRS requires a setup process when used for the first
time. The user must create user-specific files and set­
tings. The user begins by selecting the microphone
and by testing and adjusting the microphone input
volume to usable settings. The user is then prompted
to speak a few words, which are presented on the

VOCABULARY
FINITE STATE MANAGER
GRAMMAR USER

INTERFACE

j i COMMANDS
AND ACTIONS

SPEECH SPEECH
MANAGER RECOGNITION STATE

ENGINE• TRANSITIONS USER
INTERFACE

KEYSTROKES
AND WINDOW XWI NDOW

NTS ACTIONS EVE

XWINDOW
SYSTEM

screen. DSRS uses the speech data to choose the
speaker-independent model that most closely matches
the speaker's voice. There are models for lower- and
higher-pitched voices. The software copies the selected
model to the user's home directory; the model is then
modified when the user makes changes to the provided
models and vocabulary. After setup is complete, the
next step is the Training Manager which presents the
user with a list of 20 words to train; when this step is
completed, DSRS is ready for use. The Training
Manager is described in more detail later in this section.

The procedure above was developed to take a new
user through the entire setup process without the
need to refer to any documentation. Once the user
files are created, DSRS bypasses these steps and comes
up ready to work. A notable change that we made to
the setup was instigated by our own use of the soft­
ware. We found that inconsistent microphone volume
settings were a frequent problem. When systems were
rebooted, volume settings were reset to default values.
Consequently, we created an initialization file that
records the volume settings as well as all user-definable
characteristics of the graphical user interface.

Speech Manager

Once DSRS is ready and in its idle state, it presents the
user with the Speech Manager window, an example of
which is shown in Figure 2. The Speech Manager pro­
vides the following critical controls:

• Microphone on/off switch.

• A VU (volume units) meter that gives real-time
feedback to the audio signal being heard. A VU
meter is a visual feedback device commonly used on
devices such as tape decks. Users are generally very
comfortable using them.

Digital Technical Journal Vol. 8 No. 2 1996 119

Figure 2
DSRS Speech Manager Window

• Two user-controllable panes that display the Always
Active and Active vocabulary sets. The Always Active
vocabulary words are recognized regardless of
the current application in focus. The Active vocabu­
lary words are specific to the application in focus
and change dynamically as the current application
changes. The vocabularies are designed in this way so
that a user can speak commands both within an
application context and in order to switch contexts.

• Three small frames that provide status information
to the user.
- The Mode frame indicates the current state of

the Speech Manager: command and control or
sleeping.

120 Digital Technical Journal Vol. 8 No. 2 1996

- The Context frame displays the class name of the
application currently in focus. This context also
determines the current state of the Active word list.

- The history frame displays the word, phrase, or
sentence last heard by the recognizer. The history
frame is set up as a button. When pressed, it drops
down to reveal the last 20 recognized utterances.

• A menu that provides access to the management of
user files, the Vocabulary Manager, the Training
Manager, and various user-configurable options.

Training Manager
The Training Manager adapts the speaker-indepen­
dent speech models to the user's speech patterns and
creates new models for added words. Our study of
PC-based speech recognizers led us to the conclusion
that the design of a training interface is critical to
obtain good results. For example, the training compo­
nent of one PC-based recognizer we examined did not
provide clear feedback to the user when an utterance
had been processed, thus causing the user confusion
about when to speak. This confusion lead to training
errors and frustration. Another recognizer did not
allow the user to pause while training, a major incon­
venience for the user who, for example, needed to
clear his throat or speak to someone.

We developed the following list of design character­
istics for a good training user interface.

• Strong, clear indications that utterances are pro­
cessed. We added a series of boxes that are checked
off as each utterance is processed and a VU meter
that shows the system is picking up audio signals.

• Reduced amount of eye movement needed for the
training to proceed smoothly and quickly. We
placed visual feedback objects in positions that
allow users to focus their eyes on a limited area of
the screen and not have to look back and forth
across the screen at each utterance.

• A glimpse of upcoming words. A list of words is dis­
played on the user interface and moves as words are
processed.

• A progress indicator. Text is displayed and updated
as each word is processed, indicating progress, for
example, Word 4 of 21.

• Option to pause, resume, and restart training.

• Large, bold font display of the word to be spoken
and a small prompt, "Please continue," displayed
when the system is waiting for input.

• Automatic addition of repeated utterances that are
"bad" or do not match the expected word.

• Control over the number of repetitions.

As the example in Figure 3 shows, the Training
Manager presents a word from a list of words to be
trained. The word to be spoken is presented in a large,

Figure 3
Training Manager Window

bold font to differentiate it from the other elements in
the window. To train the words, the user repeats an
utterance from one to six times. The user must speak
at the proper times to make training a smooth and effi­
cient process. DSRS manages the process by prompt­
ing the speaker with visual cues. Right below the word
is a set of boxes that represent the repetitions. The
boxes are checked off as utterances are processed, pro­
viding positive visual feedback to the speaker. When
one word is complete, the next word to be trained is
displayed and the process is repeated. When all the
words in the list are trained, the user saves the files, and
DSRS returns to the Speech Manager and its active
mode with the microphone turned off.

Vocabulary Manager
The Vocabulary Manager, an example of which is
shown in Figure 4, enables users to modify speech
macros by changing the keystrokes stored for each
command and by adding new commands to existing
applications. Users can also add speech support for
entirely new applications. The vocabularies are repre­
sented graphically as hierarchies of application vocabu­
laries, groups of words, and individual words. The
Vocabulary Manager provides an interface that allows
manipulation ofthis database of words without resort­
ing to text editors. The Always Active vocabularies are
accessible here and are manipulated in the same man -
ner as the application-specific vocabularies. With the
Vocabulary Manager, the user may import and export

vocabularies or parts of vocabularies in order to share
commands and thus enable speech recognition m
applications not supported by default in DSRS.

Finite State Grammar
The finite state grammar (FSG) is a state machine with
all the vocabulary required to transition between states
and conditions. The FSG has two distinct sets of
vocabulary, which have already been mentioned: the
Always Active, or global vocabulary, and the Active, or
context-specific, vocabulary.

In creating the FSG, we found that we needed spe­
cial functions for interaction with the windowing sys­
tem and representations for all keyboard keys. While
creating these special functions, we designed the inter­
action for maximum convenience. For example, when
a user speaks the phrase "go to calculator" or "switch
to calculator" or simply "calculator," the meaning is
readily interpreted by the software. For the user's con­
venience, these phrases trigger the following condi­
tional actions.

• If a window of class "calculator" is present on the
system, then set focus to it. This is done regardless
of its state; the window may be in an icon state,
hidden, or on another work space such as may be
found in the Common Desktop Environment
(CDE).

• If the window does not exist, then create one by
launching the application.

Digital Technical Journal Vol. 8 No. 2 1996 121

Figure4
Vocabulary Manager Window

The simple logic of this special function enhances
user productivity. Often workstation and PC screens
are littered with windows or applications icons and
icon boxes through which the user must search.
Speech control eliminates the steps between the user
thinking "I want the calculator" and the application
being presented in focus, ready to be used. The DSRS
team created a function called FocusOrLaunch, which
implements the behavior described above. The func­
tion is encoded into the FSG continuous-switching­
mode sentences in the Always Active vocabulary
associated with the spoken commands "switch to
<application name>," "go to <application name>,"
and just plain "<application name>."

Applications like calculator and calendar are not
likely to be needed in multiple instances. However,
applications such as terminal emulator windows are.
DSRS defines the specific phrase "bring up <application
name>" to explicitly launch a new instance of the appli­
cation; that is, the phrase "bring up <application
name>" is tied to a function named Launch.

The phrases "next <application name>" and "previ­
ous <application name>" were chosen for navigating
between instances of the same application. DSRS
remembers the previous state of the application. For

122 Digital Technical Journal Vol. 8 No. 2 1996

instance, if the calendar application is minimized when
the user says "switch to calendar," the calendar
window is restored. When the user says "switch to
emacs," the calendar is returned to its former state. In
this case, it is minimized.

DSRS also adds speech control to the common win­
dow controls such as minimize, maximize, and close.
These functions operate on whatever window is cur­
rently in focus.

Another convenient command is "Speech Manager
go to sleep." When the user speaks this command,
DSRS transitions into a special standby state. In this
state, termed "sleeping," the recognizer is still listen­
ing but will return to command and control mode
only when the command "Speech Manager wake up"
is spoken. The "go to sleep" command puts DSRS
into a standby state, allowing normal conversation to
take place without words being recognized as com­
mands and causing unwanted events to occur.

Version 1.1 of DSRS adds even more functions,
such as the "microphone off" command, which goes a
step beyond "go to sleep." With "microphone off,"
the input audio section is completely released and
DSRS will no longer listen until the microphone is
manually turned back on. This function allows the

user to launch an audio-based application that will
record, such as a teleconferencing session. Version 1.1
also includes a function that allows the user to play
a "wave," or digitized audio clip. Audio cues may thus
be played as part of speech macros. The "say" com­
mand invokes DECtalk Text-to-Speech functionality
so that audio events can be spoken.•

Since speech recognition is a statistical process and
prone to errors, the design team deemed "confirm" an
important function to protect user data and prevent
unwanted actions. The "confirm" function protects
certain sensitive actions, such as exiting an editor, with
a confirmation dialog box. Simply adding the "con­
firm" syntax within a speech macro causes the dialog
box "are you sure?" to appear. The vocabulary is
switched to respond to only yes and no so that a higher
reliability can be achieved. If the user says no or presses
the no button, the computer returns to its previous
state . . If the user says yes, the action following the
"confirm" function is executed.

Another concept encoded in the FSG for user con -
venience is menu flattening. Menu displays are hierar­
chical because the number of menu entries that can
be shown on the screen at one time is limited. A good
example is the File menu. When the user clicks the
mouse button on File, a drop-down menu appears
containing actions such as Open file, Save file, Save
file as ... , Print, and Exit. However, hierarchical menus
do not really represent the way people normally
think about actions; for example, when the user thinks
"exit," he or she must then take the steps file and
exit. With speech recognition, the computer can take
the interim steps. The FSG in DSRS was built to han­
dle two cases: (1) The user says "file" and "exit," and
(2) the user says only "exit" and DSRS performs the
file and exit sequence transparently. This second mode
connects the actions more closely with the user's
thought processes and does not force a sequence of
actions in order for tasks to be performed. The menu­
flattening feature of DSRS was encoded into the FSG
file. While the example given may seem trivial, the
concept is an important one and can be used to flatten
many levels of menus. For instance, users take several
steps to change the font or type size on a region of
highlighted text in a word processing program. The
following could conceivably be invoked as a speech
macro: "Change to Helvetica Bold Italic 24 points."

Integrating Speech Recognition in Applications

As described in the section Overview, DSRS feeds key­
strokes to applications. Therefore, the preferred appli­
cation development method for allowing access to
functions-one that will allow integration of speech
recognition-is accelerator keys. Typically, accelerator

keys are in the form of CTRL + <key> bindings that
allow direct access to a function, regardless of menu
hierarchies. It should be noted that this lack of hierar­
chy limits the number of directly accessible functions.

A second method for integrating speech within an
application is through menu mnemonics. Mnemonics
are the keyboard equivalents signified in application
menus by an underlined letter. The first mnemonic is
invoked by a combination of the ALT key and the
underlined letter, which can be followed by another
underlined letter. For example, pressing ALT + f
invokes the file menu item; pressing x immediately
thereafter invokes the "exit" entry for the application.

Integrating speech recognition becomes difficult
when application functions are not accessible through
the keyboard. Applications designed to allow access to
functions only by means of the mouse cannot be
speech enabled as DSRS is currently implemented.
Although DSRS can send mouse clicks into the system,
consistently locating the mouse pointer on applica­
tions is difficult. The next sections further illustrate the
issues that stemmed from these integration issues as
we implemented and tested DSRS.

Client-Server Protocols

Applications such as emacs and Netscape Navigator
have protocols that allow other processes to send
commands to them. For example, a file name or a
universal resource locator (URL) may be sent via
the command line. DSRS exploits this facility in
Netscape Navigator to allow Web surfing by voice.
For example, in the Netscape context, the speech
macro "Digital home page" would translate to the
following command issued to a window: nctscape­
remote openURL("http://www.digital.com"). Although
this command string seems a bit awkward, the result is
that the actions being taken are all transparent to the
user and they work very well.

Problems Encountered in Implementation

Unlike the applications discussed in this paper, some
applications are not developed with good program­
ming practices. Neither are the keyboard interfaces
well-tested. We encountered the following types of
problems when using the keyboard as the main input
mechanism.

• Applications had multiple menu mnemonics
mapped to the same key sequence. This approach
could not work even if the keyboard were used
directly.

• Application functions controlled by graphic but­
tons were accessible only by mouse.

• Keyboard mapping was incomplete, that is, mnem­
onics were only partially implemented.

Digital Technical Journal Vol. 8 No. 2 1996 123

In the implementation of DSRS, we encountered
one unexpected problem. When a nested menu
mnemonic was invoked, the second character was lost.
The sequence of events was as follows:

• A spoken word was recognized, and keystrokes
were sent to the keyboard buffer.

• The first character, ALT + <key>, acted normally
and caused a pop-up menu to display.

• The menu remained on display, and the last key was
lost.

We determined that the second keystroke was being
delivered to the application before the pop-up menu
was displayed. Therefore, at the time the key was
pressed, it did not yet have meaning to the application.
It is apparent that such applications are written for
a human reaction-based paradigm. DSRS, on the
other hand, is typing on behalf of the user at computer
speeds and is not waiting for the pop-up menu to
display before entering the next key.

To overcome this problem, we developed a syn­
chronizing function. Normally the Vocabulary
Manager notation to send an ALT + f followed by an
x would be ALT+ fx. This new synchronizing func­
tion was designated as sALT + fx. The synchronizing
function sends the ALT + f and then monitors events
for a map-notify message indicating that the pop-up
menu has been written to the screen. The character
following ALT + f is then sent, in this case, the x.
The synchronizing function also has a watchdog timer
to prevent a hang in the event a map-notify message.
This method is included in the final product.

Guidelines for Writing Speech-friendly
Applications

Several guidelines for enabling speech recognition in
applications became apparent as we gained experience
using DSRS. Coincidentally, a guideline recently pub­
lished by Microsoft Corporation documents some
of the very same points.5

• Provide keyboard access to all features.

• Provide access keys for all menu items and controls.

• Fully document the keyboard user interface.

• Whenever possible, use accelerator keys; they are
more reliable than using menu mnemonics.
Mnemonics can be overloaded or non-functional
if the menu is not active.

II Client-server protocols can work well for enabling
speech recognition; document fully.

• Do not depend on human reaction times for dis­
played windows or on slow typing rates.

• Provide user-friendly titles for all windows, even if
the title is not visible.

124 Digital Technical Journal Vol. 8 No. 2 1996

• Avoid triggering actions or messages by mouse
pointer location.

• Give dialog boxes consistent keyboard access; for
instance, boxes should close when the ESC key is
pressed. The dialog box responses yes and no
should correspond to the y and n keys.

Application developers who wish to design a speech
interface directly into their applications now have this
option. Several speech APis are available. Microsoft
offers the Speech Software Development Kit, and the
Speech Recognition API Committee, chaired by
Novell, offers SRAPI. Computer- human speech
interaction is the subject of ongoing research. Much of
the government-sponsored research is now being
commercialized. Several groups, such as ACM CHI,6
have been and continue to study speech-only
interfaces. They are discovering that "translating a
graphical interface into speech is not likely to produce
an effective interface. The design of the Speech User
Interface must be a separate effort that involves study­
ing the human-human conversations in the applica­
tion domain." 6

Future Directions for Speech Recognition

In addition to uncovering points for developers to
build speech-enabled applications, we also gained a
perspective on how speech recognition may develop in
the future. A brief overview of these insights is pre­
sented in this section.

Integrating speech and audio output-The addi­
tion of a two-way interface of speech and audio that
gives users feedback will move the user interface to a
new level.

Telephone access-Telephone access can make
workstations more valuable communications devices
by connecting users to information such as e-mail
messages and appointment calendars. The telephone
can extend the reach of our desktop computers.6

Dictation-Discrete dictation products with capa­
bilities of 60,000 words are commercially available
now; in the not-too-distant future, continuous­
recognition dictation products will become viable.
A command and control recognizer that can be seam­
lessly switched to dictation mode is a very powerful tool.

Speech recognition integrated with natural lan­
guage processing-The field of natural language
processing deals with the extraction of semantic infor­
mation contained in a sentence. Machine understand­
ing of natural language is an obvious next step. Users
will be able to speak in a less restricted fashion and still
have their desired actions carried out.

A new paradigm for applications-A new class of
applications needs to be created, one that is modeled
more on human thought processes and natural lan ­
guage expression than on the functional partitioning

in today's applications. A user agent or secretary pro­
gram that could process common requests delivered
entirely by speech is not out of reach even with the
technology available today, for example:

User: What time is it?
Computer: It is now 1 :30 p.m.

User: Do I have any meetings today?
Computer: Staff meeting is ten o'clock to twelve

o'clock in the corner conference room.

Computer: Mike Jones is calling on the phone.

User:

Would you like to answer or transfer the
call to voice mail?
Answer it.

User: Do I have any new mail?
Computer: Yes, two messages. One is from Paul

Jones, the other from your boss.
User: Read message two.

User: What is the price of Digital stock?
Computer: Digital stock is at $72 1/i, up 1/4.

The example above shows the user agent providing
information and interacting with e-mail, telephone,
stock quote, and calendar programs. As we move into
the future, the computer-user interface should move
closer to the interaction model humans use to com -
municate with each other. Speech recognition and
text-to-speech software help in a significant way to
move in this direction.6

Performance

DSRS word recognition, which is the primary perfor­
mance measure, is as good as comparable command
and control recognizers found on PCs. Training trou­
blesome and acoustically similar words improves the
performance. The vocabulary, because of the targets
chosen, that is, UNIX commands, does have acoustic
collisions, for example, escape and Netscape. Further,
we had to use the vocabularies supporting the UNIX
shell commands, and commands such as vi can be pro­
nounced in different ways, for example, vee-eye or vie.
The shell commands are also full of very short utter­
ances that tend to result in higher error rates.

On the slower, first-generation Alpha workstations,
DSRS has noticeable delays, on the order of a few hun­
dred milliseconds. However, on the newer and faster
Alpha workstations, DSRS responds within human
perceptual limits, less than 100 milliseconds.

Another interesting phenomenon associated with
the speed of the workstation is the improvement DSRS
makes in user productivity. On a slow machine, the
speech interface has little impact if the application is
slow in performing its tasks. In other words, the time it
takes to perform a certain task is not greatly affected

unless the human input of commands is a significant
portion of that time. However on a fast machine, the
application performs tasks as quickly as the commands
are spoken, and the productivity enhancement, there­
fore, is great.

Summary and Conclusions

The DSRS team accomplished its objective of develop­
ing a low-cost speech recognition product. DSRS for
Digital UNIX is being shipped with all Alpha work­
stations at no additional cost. Integration with the
X Window System was successful.

With reference to the focus of this paper-develop­
ing the user-friendly interface-we found through
feedback from our user base that most first-time users
perform useful work using DSRS without consulting
the documentation. The first-time setup design that
provides instructions and feedback to users was suc­
cessful. The list of Active and Always Active words and
phrases is a helpful reference for new users until they
learn the "language" they can use to communicate
with their applications.

Adding vocabulary for new applications is a bit
more challenging because some "reverse engineering"
may be required on a particular application. One
needs to know the class name of each of the windows
and then map the keystrokes for each of the functions
to speech macros. Although this procedure is docu­
mented in the manual, it can be challenging for users.

Prototypes ofDSRS control for sophisticated menu­
driven applications, such as mechanical computer­
aided design, show excellent promise for enhancing
user productivity. For example, with computer-aided
design or drafting software, users can focus their eyes
on the drawing target on the screen while they are
speaking menu functions.

Speech recognition is an evolutionary step in the
overall computer-user interface. It is not a replace­
ment for the keyboard and mouse and should be used
to complement these devices. Speech recognition
works as an interface because it allows a more direct
connection between the human thought processes
and the applications.

Speech recognition coupled with natural language
processing, text-to-speech, and a new generation of
applications will make computers more accessible to
people by making them easier to use and understand.

Acknowledgments

Thanks go to the dedicated team of engineers who
developed this product: Krishna Mangipudi, Darrell
Stam, Alex Doohovskoy, Bill Hallahan, and Bill
Scarborough, and to Dragon Systems, Inc. for being
a cooperative business and engineering partner.

Digital Technical Journal Vol. 8 No. 2 1996 125

References

1. L. Rabiner and B. Juang, Fundamentals of Speech
Recognition (Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1993): 45-46.

2. C. Schmandt, Voice Communication with Computers:
Conversational Systems(New York, N.Y.: Van Nostrand
Reinhold, 1994): 144-145.

3. K.F. Lee, Large-Vocabulary Speaker-Independent
Continuous Speech Recognition: 7be SPHINX System
(Pittsburgh, Pa.: Carnegie-Mellon University Computer
Science Department, April 1988).

4. W. Hallahan, "DECtalk Software: Text-to-Speech Tech­
nology and Implementation," Digital Technical
Journal, vol. 7, no. 4 (1995): 5-19.

5. G. Lowney, 7be Microsoft Windows Guidelines for
Accessible Software Design (Redmond, Wash.:
Microsoft Development Library, 1995): 3-4.

6. N. Yankelovich, G. Levow, and M. Marx, "Designing
SpeechActs: Issues in Speech User Interfaces," Pro­
ceedings of ACM Conference on Computer- Human
Interaction (CHI) '95: Human Factors in Computing
Systems: Mosaic of Creativity, Denver, Colo. (May
1995): 369- 376.

Biography

Bernard A. Rozmovits
During his tenure at Digital, Bernie Rozmovits has worked
on both sides of computer engineering-hardware and soft­
ware. Currently he manages Speech Services in Digital's
Light and Sound Software Group, which developed the
user interfaces for Digital's Speech Recognition Software
and also developed the DECtalk software product. Prior
to joining this software effort, he focused on hardware
engineering in the Computer Special Systems Group
and was the architect for voice-processing platforms in
the Image, Voice and Video Group. Bernie received a
Diplome D'Etude Collegiale (DEC) from Dawson
College, Montreal, Quebec, Canada, in 1974. He
holds a patent entitled "Data Format For Packets Of
Information," U.S. Patent No. 5,317,719.

126 Digital Technical Journal Vol. 8 No. 2 1996

Further Readings

The Digital Technical Journal is a refereed, quarterly
publication of papers that explore the foundations of
Digital's products and technologies.Journal content
is selected by the Journal Advisory Board, and papers
are written by Digital's engineers and engineering
partners. Engineers who would like to contribute a
paper to the Journal should contact the Managing
Editor, Jane Blake, at Jane.Blake@ljo.dec.com.

Topics covered in previous issues of the
Digital Technical Journal are as follows:

Digital UNIX Clusters/Object Modification Tools/
eXcursion for Windows Operating Systems/
Network Directory Services
Vol. 8, No. 1, 1996, EY-U025E-TJ

Audio and Video Technologies/UNIX Available Servers/
Real-time Debugging Tools
Vol. 7, No. 4, 1995, EY-U002E-TJ

High Performance Fortran in Parallel Environments/
Sequoia 2000 Research
Vol. 7, No. 3, 1995, EY-T838E-TJ
(Available only on the Internet)

Graphical Software Development/Systems Engineering
Vol. 7, No. 2, 1995, EY-UOOlE-TJ

Database Integration/ Alpha Servers & Workstations/
Alpha 21164 CPU
Vol. 7, No. 1, 1995, EY-Tl35E-TJ
(Available only on the Internet)

RAID Array Controllers/Workflow Models/
PC LAN and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-Tl 18E-TJ

AlphaServer Multiprocessing Systems/
DEC OSF /1 Symmetric Multiprocessing/
Scientific Computing Optimization for Alpha
Vol. 6, No. 3, Summer 1994, EY-S799E-TJ

Alpha AXP Partners-Cray, Raytheon, Kubota/
DECchip 21071/21072 PCI Chip Sets/
DLT2000 Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking/
Open VMS AXP System Software/
Alpha AXP PC Hardware
Vol. 6, No. 1, Winter 1994, EY-QOllE-TJ

I

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/ Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-Cl 97E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-Cl96E-DP

Digital Technical Journal Vol. 8 No. 2 1996 127

ISSN 0898-90 1X

Printed in U.S.A. EC-N6992- 1 8/96 9 1 4 20.0 Copyright © Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Overview of the Spiralog File System
	Design of the Server for the Spiralog File System
	Designing a Fast, On-line Backup System for a Log-structured File System
	Integrating the Spiralog File System into the OpenVMS Operating System
	Extending OpenVMS for 64-bit Addressable Virtual Memory
	The OpenVMS Mixed Pointer Size Environment
	Adding 64-bit Pointer Support to a 32-bit Run-time Library
	Building a High-performance Message-passing System for Memory Channel Clusters
	The Design of User Interfaces for Digital Speech Recognition Software
	Further Readings
	Back cover

