
Digital
Technical
Journal

I
DIGITAL UNIX CLUSTERS

OBJECT MODIFICATION TOOLS

EXCURSION FOR WINDOWS
OPERATING SYSTEMS

NETWORK DIRECTORY SERVICES

Volume 8 Number 1
1996

mamaoma··

Editorial
jane C. Blake, Managing Editor
Helen L. Patterson, Ediror
Kathleen M. Srcrson, Editor

Circulation
Catherine M. Phillips, Adrninisrraror
Dororhea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
AnneS. Karzcff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
William R . Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Pauline A. Nist
Robert M. Supnik

Cover Design
The "bot" colors on our cover retlecr rhe
kind of performance delivered by 64-bir
Digital UNIX TruCiuster systems . A four­
node cluster made up of AlphaServer 8400
5/350 systems interconnected with the
high-speed MEMORY CHANNEL and
running the Oracle Universal Server with
Oracle Parallel Server recently achieved
record TPC-C performance of 30,390
tprnC. The design of the Digital UNIX

TruCiuster system is the opening topic
in this issue.

The cover was designed by Lucinda O'Neill
of Digital's Design Group.

The Digital Technical(ournal is a rekreed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
L)02/D 10, Lirrleron, !'vlassachusetts 01460.

Subscriptions ro thejounw/ are $40.00
(non-U.S. $60) for tour issues and $75.00
(non-U.S. S 115) for eight issues and must
be prepaid in U.S. funds. University and
colkge professors and Ph.D. students in
the electrical engineering and computer
science tields receive complimentary sub­
scriptions upon request. Orders, inquiries,
and address changes should be scm to the
Oigita/ Tecbnical(ournal at rhe published­
by address. Inqui(ies can also be sent elec­
rronically ro dtj@digital.com. Single copies
and b<Kk issues are available tor $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent issues of the

journal arc also available on the Internet
at http:/ jwww.digital.com/into/dtj.
Complete Digirallnternet listings can
be obtained by sending an electronic mail
message to into@digiral.com.

Digital employees may order subscriptions
through Readers Choice by entering VIX
PROFILE at the sysrem prompt.

Comments on rbe content of any paper
are wdcomed and may be sent to the
managing editor at the published-by or
nerwork address.

Copyright© 1996 Digital Equipment
Corporation. Copying without fee is per­
mitted provided that such copies are made
for use in educational institut.ions by f

.
1ctlity

members and are nor distributed for com­
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's author­
ship is perm i ned.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa­
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the journal.

ISSN 0898-901X

Documenration Number EY-U025E-TJ

Book production was done by Quanric
Communications, Inc.

The following are trademarks ofDigit:d
Equipment Cmpmarion: AlphaSen·er,
DECnet, DECsafe, Digital, the DIGITAL
logo, eXcursion, l'vlanagcWORKS, J'v!SCP,
Open VMS, PATHWORKS, Tn1Ciuster,
and VAXcluster.

Adobe is a registered trademark of Adobe
Systems Incorporated.

DCE, OSF, and Motif ate registered
trademarks and Open Sofi.ware
Foundation is a trademark of Open

Software Foundation, Inc.

Hewlerr-Packacd is a n-adernark of
Hewlett-PKkard Company.

Himala)'a and Tandem c\rc rcgisteccd
trademarks of Tandem Computers, Inc.

Inrd is a trademark of Intel Corporation.

MEMORY CHANNEL is a trademark of
Encore Compmer Corporation.

Microsoft, Visual C++, vVin32, and
Windows 95 are registered trademarks
and Windows, Windows tor Workgroups,
and Windows NT are tradem<lrks of
Microsoft Corporation.

NetWare and Novell are registered
trademarks of Novell, Inc.

POSIX is a cegistered trademark of The
Institute of Electrical and Electronics
Engineers, Inc.

Oracle? is a trademark of Oracle
Corporation.

S3 is a registered trademark of S3
I ncorporared.

Sequent is a trademark of Sequent
Computer Systems, Inc.

SPEC is a registered trademark of the
Standard Performance Evaluation
Corporation.

StreetTalk is a tcadernark of Banyan
Systems, Inc.

Sun Microsystems is a registered trade­
mark of Sun Microsysrems, Inc.

TPC-C is a trademark of the Transaction
Processing Performance Council.

UNIX is a registered trademark in the
United Stares and other countries, licensed
exclusively through X/Opcn Company Ltd.

X vVindow System is a trademark of the
Massachusetts Institute ofTechnology.

http:/ jwww_digital.com/info/dtj

Contents

Foreword

DIGITAL UNIX CLUSTERS

Design of the TruCluster Multicomputer System for
the Digital UNIX Environment

OBJECT MODIFICATION TOOLS

Delivering Binary Object Modification Tools for
Program Analysis and Optimization

EXCURSION FOR WINDOWS OPERATING SYSTEMS

Design of excursion Version 2 for Windows,
Windows NT. and Windows 95

NETWORK DIRECTORY SERVICES

Integrating Multiple Directory Services

Design of the Common Directory Interface
for DECnet/OSI

Don Harbert

Wayne M. Cardoza, Frederick S. Glover, and
William E. Snaman, Jr.

Linda S. Wilson, Craig A. Neth, and
Michael J. Rickabaugh

John T. Freitas, James G. Peterson, Scot A. Aurenz,
Charles P. Guldenschuh, and Paul J. Ranauro

Margaret Olson, Laura E. Holly, and Colin Strutt

Richard L. Rosenbaum and Stanley I. Goldfarb

3

5

18

32

46

59

Digital Technical Journal Vol. 8 No. 1 1996

2

Editor's
Introduction

Digital recently announced record­
breaking 30,390 tpmC performance
on a Digital UNIX cluster of 64-bit
RISC AlphaServer systems. In this
issue, engineers from the UNIX team
describe the key technologies that
enable these near supercomputer
performance levels as well as provide
the cluster characteristics of high
availability and scalability. Also pre­
sented in this issue are advanced
UNIX programming tools for maxi­
mizing performance, X server soft­
ware that supports the Microsoft
family of operating systems, and new
network directory services that sim­
plify management.

First defined by Digital in the early
1980s, clusters are highly available,
scalable multicomputer systems built
with standard parts and offering the
advantages of single-computer systems.
Wayne Cardoza, Fred Glover, and
Sandy Snaman compare clusters with
other types of multicomputer config­
urations and describe the major com­
ponents ofDigital's newest cluster
implementation, TruCluster systems,
for the 64-bit UNIX environment.
The cluster interconnect, called
MEMORY CHANNEL, is critical to
the cluster's outstanding performance.
MEMORY CHANNEL implements
clusterwide virtual shared memory
and reduces overhead and latency by
two to three orders of magnitude
over conventional interconnects.

Also developed for the Digital
UNIX environment (version 4.0) are
two program analysis and optimiza -
tion tools-OM and Atom. The tool
technology originated in Digital's
Western Research Laboratory, where

Digital Technical Journal

researchers focused on providing
performance diagnosis and improve­
ments for large customer applications.
Software developers Linda Wilson,
Craig Neth, and Mike Rickabaugh
from the UNIX Development Envi­
ronment Group describe the object
modification tools and the flexibility
they provide over traditional tools
that are implemented in the realm of
compilers. In addition to demonstrat­
ing practical application of the tools,
the authors examine the process of
transferring technology from research
to development.

For mixed operating system
environments, Digital developed
Windows-based X server software,
called eXcursion, to allow the win­
dows of a remote host running UNIX
or Open VMS to display on a desk­
top running the Microsoft Windows
operating system. The latest version
of eXcursion, described here by John
Freitas, Jim Peterson, Scot Aurenz,
Chuck Guldenschuh, and Paul
Ranauro, is wholly rewritten to maxi­
mize graphics performance and to
support the full range ofWindows
platforms: Windows, Windows 95,
and Windows NT. This new version
is based on the X Window System
version 11, release 6 protocol from
the X Consortium.

Two network directory services
that reduce complexity and increase
choices for network managers are the
subjects of our next papers. The first
is designed for multiple networked
environments; Integrated Directory
Services (IDS) software integrates
multiple services into one directory­
service-independent system. Margaret

Vol. 8 No. 1 1996

Olson, Laura Holly, and Colin Strutt
outline the problems that have lim­
ited the use of directory services and
the different design approaches the
team considered to simplify directory
services use and make it more attrac­
tive. They then describe the IDS
extensible, object-based framework,
which comprises an application
programming interface and a ser­
vice provider interface. Next, Rich
Rosenbaum and Stan Goldfarb
present the Common Directory
Interface (CDI) for DECnet/OSI.
Implemented as shared libraries in
the Digital UNIX and Open VMS
operating systems, CDI is designed
to give network managers a choice
of directory services. The authors
describe the libraries and the registra­
tion tool set of management opera­
tions that is layered on a specialized
APL

Coming up in the journal are
papers about a new log-structured
clusterwide file system called Spiralog,
the 64-bit Open VMS operating
system, speech recognition software,
and the UNIX clusters message­
passing system and its use for pro­
gram parallelization.

Jane C. Blake
Managing Editor

Foreword

Don Harbert
Vice President, UNIX Business

Digital not only invented clusters but
continues to set the standard by
which all other cluster systems are
measured. The VAXcluster success
and that ofDigital's latest UNIX clus­
ter systems derive from superb engi­
neering that builds on the system
definition put forth in the early 1980s
by the VAX engineering team: an
available, extensible, high-performance
multicomputer system built from
standard processors and a general­
purpose operating system, with char­
acteristics of both loosely and tightly
coupled systems~

We in the UNIX community are
proud of our V AXcluster heritage
and have engineered our products
to provide the same kinds of benefits
to customers that VAXcluster systems
provide.t In the opening paper for
this issue of the journal, members
of the Digital UNlX engineering
team describe the multicomputer
system for the Digital UNIX environ­
ment, called TruCluster, which, like
the VAXcluster system, is designed
for high availability, scalability, and
performance.

The technology, of course, is dif­
ferent, and the environment is open.
The fundamental concepts are never­
theless the same. The TruCluster
system is a loosely coupled, general­
purpose system connected by a
high-performance interconnect. It
maintains a single security domain
and is managed as a single system.

* Nancy P. Kronenberg, Henry M. Levy,
and William D. Strecker, "VAXclusters:
A Closely-Coupled Distributed System,"
ACM Transactions on Computer Systems,
vol. 4, no. 2 (May 1986): 130- 146.

t Digital has renamed VAXcluster systems
to Open VMS Cluster systems.

Cluster services remain available even
when other members are unavailable.
Like VAXcluster systems, TruCluster
systems implement a distributed lock
manager, which provides synchro­
nization for a highly parallelized
distributed database system. The
technology for the lock manager,
however, is newly implemented for
the UNIX environment. Also com­
pletely new is the interconnect tech­
nology for Tm Cluster systems.
MEMORY CHANNEL is a reliable,
high-speed interconnect based on
a design by Digital partner Encore
Computer Corporation. MEMORY
CHANNEL addresses the unique
needs of clusters by implementing
clusterwide virtual shared memory;
the interconnect reduces overhead
and latency by two to three orders
ofmagnitude.i Because MEMORY
CHANNEL uses the industry­
standard PCI, designers can imple­
ment the network at very low cost.
We believe this interconnect tech­
nology puts Digital years ahead of
the competition.

The Tm Cluster system is the latest
example ofDigital's intent to remain
a technology leader in the UNIX
market. We began by developing
the first high-performance, 64-bit
general-purpose operating system,
DEC OSF/1, shipping in March
1993. The first Digital UNIX cluster
release, DECsafe Available Server
Environment, followed soon there­
after in April 1994. The announce­
ment in April 1996 ofTruCluster
systems with MEMORY CHANNEL

i Richard B. Gillett, "Memory Channel
Network for PCI," IEEE Micro
(February 1996): 12- 18.

Digital Technical Journal Vol. 8 No. I 1996 3

4

again places Digital far ahead of the
competition technologically. The
performance of these available cluster
systems now approaches that of very
expensive supercomputers. System
performance has been measured at
the record-breaking rate of30,390
tpmC on four AlphaServer 8400
systems running Digital UNIX and
the Oracle Universal Server with
Oracle Parallel Server. The previous
performance record, 20,918 tpmC,
was held by the proprietary Tandem
Himalaya Kl0000-112; Digital's
open system cluster performance
record is 1.5 times the Tandem
performance record at one-third
the system cost.

For Digital, clusters ofhigh­
performance 64-bit systems are
to a great extent at the heart of its
commercial and technical server
strategy. Digital UNIX has been
defined and engineered for the ser­
ver business, specifically, for the high­
performance commercial and large­
problem/ scientific environment. To
be successful in the open system mar­
ket, however, a company must reach
outside itself to jointly engineer prod­
ucts with leading software suppliers
that have the software customers
need to be competitive. Therefore,
the first TruCluster implementation
is designed with Digital's partners­
major software companies- to meet
the requirements for high performance
and functionality in the commercial
database server market.

The competitive challenge now is
to maintain Digital's significant lead
in providing outstanding cluster per­
formance, availability, and affordabil­
ity. From a technological perspective,
the immediate and achievable goal

Digital Technical Journal

is to increase the number of cluster
nodes from 4 to 10 or 20 nodes.
Within this range, Digital maintains
a simple cluster system model that
offers the performance advantages
of clustering and avoids the disadvan­
tages, such as the management prob­
lems and qualification headaches, of
more complex topologies. Further,
the Digital UNIX organization will
focus on a new cluster file system,
configuration flexibility, management
tools, and a cluster alias that allows
a single-system view for clients and
peers. The overall goal of this work
is to evolve toward a more general
computing environment.

The kinds of tools that both sim­
plify and enhance performance are
exemplified by the program analysis
and optimization tools presented
in this issue. Built on Digital UNIX
version 4 .0 and announced in April,
these tools help software developers
extract maximum performance from
the system. The story of the tools
development is an excellent example
of the direct application of research
to products. The power of the OM
object modification tool and the analy­
sis tool with object modification
(Atom) was recognized by developers
even as research progressed; in fact,
semiconductor designers developed
Atom tools to evaluate new Alpha
chip implementations. The result
of this close cooperation between
research and development is advanced
programming tools for customers.

These efforts in the UNIX organi­
zation are manifestations ofDigital's
commitment to open systems. Other
areas of engineering where this com -
mitment is apparent are also repre­
sented in this issue. For example,

Vol. 8 No. I 1996

eXcursion software is key to integra­
tion between Microsoft's Windows
family of products and Digital 's
UNIX and Open VMS products.
This wholly revised version both
adds new functionality and conserves
system resources. Another major area
of strength for Digital is its networks
products. Networks engineers
describe two examples of network
services that increase users' choices
and extend system functionality,
i.e., the Integrated Directory Services
(IDS) and the Common Directory
Interface.

Digital's strategy is to continue to
engineer products that provide out­
standing performance and price/
performance in open environments.
In all areas of engineering- systems,
services, networking-our goal is
to set the standard by which all others
are measured.

Design of the TruCluster
Multicomputer System
for the Digital UNIX
Environment

The TruCluster product from Digital provides
an available and scalable multicomputer sys­
tem for the UNIX environment. Although it was
designed for general-purpose computing, the
first implementation is directed at the needs
of large database applications. Services such
as distributed locking, failover management,
and remote storage access are layered on a
high-speed cluster interconnect. The initial
implementation uses the MEMORY CHANNEL,
an extremely reliable, high-performance inter­

connect specially designed by Digital for the
cluster system.

I
Wayne M. Cardoza
Frederick S. Glover
William E. Snaman, Jr.

The primary goal for the first release of the TruCluster
system for the Digital UNIX operating system was to
develop a high-performance commercial database
server environment running on a cluster of several
nodes. Database applications often require computing
power and 1/0 connectivity and bandwidth greater
than that provided by most single systems. In addi­
tion, availability is a key requirement for enterprises
that are dependent on database services for normal
operations. These requirements led us to implement a
cluster of computers that cooperate to provide services
but fail independently. Thus, both performance and
availability are addressed.

We chose an industry-standard benchmark to gauge
our success in meeting performance goals. The
Transaction Processing Performance Council TPC-C
benchmark is a widely accepted measurement of the
capability of large servers. Our goal was to achieve
industry-leading numbers in excess of 30,000 transac­
tions per minute (tpmC) with a four-node TruCluster
system.

The TruCluster version 1.0 product provides
reliable, shared access to large amounts of storage,
distributed synchronization for applications, efficient
cluster communication, and application failover. The
focus on database servers does not mean that the
TruCluster system is not suitable for other applica­
tions, but that the inevitable design decisions and
trade-offs for the first product were made with this
goal in mind. Although other aspects of providing
a single-system view of a cluster are important, they
are secondary objectives and will be phased into the
product over time.

This paper begins with a brief comparison of com­
puter systems and presents the advantages of clustered
computing. Next, it introduces the TruCluster prod­
uct and describes the design ofits key software compo­
nents and their relationship to database applications.
The paper then discusses the design of the MEMORY
CHANNEL interconnect for cluster systems, along
with the design of the low-level software foundation
for cluster synchronization and communication.
Finally, it addresses application failover and hardware
configurations.

Digital Technical Journal Vol. 8 No. 1 1996 5

6

Brief Comparison of Computing Systems

Contemporary computing systems evolved from
centralized, single-node time-sharing systems into sev­
eral distinct styles of multinode computer systems.
Single-node systems provided uniform accessibility
to resources and services and a single-management
domain. They were limited with respect to scalability,
however, and system failures usually resulted in a com­
plete loss of service to clients of the system.

Multinode computer systems include symmetric
multiprocessing (SMP) systems and massively parallel
processors (MPPs). They also include network-based
computing systems such as the Open Software
Foundation Distributed Computing Environment
(OSF DCE), Sun Microsystems Inc.'s Open Network
Computing (ONC), and workstation farms. 1

•
2 Each of

these systems addresses one or more of the benefits
associated with clustered computing.

SMP configurations provide for tightly coupled,
high-performance resource sharing. In their effective
range, SMP systems provide the highest-performance
single-system product for shared-resource applica­
tions. Outside that range, however, both hardware
and software costs increase rapidly as more processors
are added to an SMP system. In addition, SMP avail­
ability characteristics are more closely associated with
those of single systems because an SMP system, by def­
inition, is composed of multiple processors but not
multiple memories or 1/0 subsystems.

MPP systems such as the Intel Paragon series were
developed to support complex, high-performance
parallel applications using systems designed with hun­
dreds of processors. The individual processors of an
MPP system were typically assigned to specific tasks,
resulting in fairly special-purpose machines.

The DCE and ONC technologies provide support
for common naming and access capabilities, user
account management, authentication, and the replica­
tion of certain services for improved availability.
Workstation farms such as the Watson Research Cen­
tral Computer Cluster deliver support for the parallel
execution of applications within multiple computer
environments typically constructed using off-the-shelf
software and hardware.3 ONC, DCE, and farms pro­
vide their services and tools in support of heteroge­
neous, multivendor computing environments with
hundreds of nodes. They are, however, much further
away from realizing the benefits of a single-system view
associated with clustered computing.

In the continuum of multinode computer systems,
the advantage of the cluster system is its ability to
provide the single-system view and ease of manage­
ment associated with SMP systems and at the same
time supply the failure isolation and scalability of dis­
tributed systems.

D igital Technical Journal Vol. 8 No. I 1996

Cluster systems have clear advantages over large­
scale parallel systems on one side and heterogeneous
distributed systems on the other side. Cluster systems
provide many cost and availability advantages over
large parallel systems. They are built of standard build­
ing blocks with no unusual packaging or interconnect
requirements. Their I/0 bandwidth and storage con­
nectivity scale well with standard components. They
are inherently more tolerant of failures due to looser
coupling. Parallel or multiprocessor systems should be
thought of as cluster components, not as cluster
replacements.

Cluster systems have a different set of advantages
over distributed systems. First they are homogeneous
in nature and more limited in size. Cluster systems can
be more efficient when operating in more constrained
environments. Data formats are known; there is a
single-security domain; failure detection is certain; and
topologies are constrained. Cluster systems also are
likely to have interconnect performance advantages.
Protocols are more specialized; interconnect charac­
teristics are more uniform; and high performance can
be guaranteed. Finally, the vendor-specific nature of
cluster systems allows them to evolve faster than het­
erogeneous distributed systems and will probably
always allow them to have advantages.

There are numerous examples of general-purpose
clusters supplied by most computer vendors, including
AT&T, Digital, Hewlett-Packard, International Busi­
ness Machines Corporation, Sequent Computer Sys­
tems, Sun Microsystems, and Tandem Computers.
Digital's Open VMS cluster system is generally accepted
as the most complete cluster product offering in the
industry, and it achieves many of the single-system
management attributes.• Much of the functionality of
the OpenVMS cluster system is retained in Digital's
TruCluster product offerings.

Structure of the TruCluster System

Digital's TruCluster multicomputer system is a highly
available and scalable structure of UNIX servers that
preserves many of the benefits of a centralized, single
computer system. The TruCluster product is a collec­
tion of loosely coupled, general-purpose computer
systems connected by a high-performance intercon­
nect. It maintains a single security domain and is man­
aged as a single system. Each cluster node may be
a uniprocessor or a multiprocessor system executing
the Digital UNIX operating system. Figure 1 shows
a typical cluster configuration.

Each cluster member is isolated from software and
hardware faults occurring on other cluster members.
Thus, the TruCluster system does not have the tightly
coupled, "fail together" characteristics of multiproces­
sor systems. Cluster services remain available even
when individual cluster members are temporarily

Figure 1

SCSI BUS

MEMORY CHANNEL
INTERCONNECT

DISKS

Configuration of a Four-node Cluster System

unavailable. Other important availability objectives of
the TruCluster server include quick detection of com­
ponent and member failures, on-line reconfigurations
to accommodate the loss of a failed component, and
continued service while safe operation is possible.

The TruCluster product supports large, highly
available database systems through several of its key
components. First, the distributed remote disk (DRD)
facility provides reliable, transparent remote access to
all cluster storage from any cluster node. Next, the dis­
tributed lock manager (DLM) enables the elements of
a distributed database system to synchronize activity
on independent cluster nodes. Finally, elements of
Digital's DECsafe Available Server Environment
(ASE) provide application failover. 5 In support of all
these components is the connection manager, which
controls cluster membership and the transition of
nodes in and out of the cluster. Figure 2 is a block dia­
gram showing the relationships between components.

Each major component is described in the remain­
der of this paper. In addition, we describe the high­
performance MEMORY CHANNEL interconnect
that was designed specifically for the needs of cluster
systems.

Distributed Remote Disk Subsystem

The distributed remote disk (DRD) subsystem was
developed to support database applications by present­
ing a clusterwide view of disks accessed through the
character or raw device interface. The Oracle Parallel
Server (OPS), which is a parallelized version of the
Oracle database technology, uses the DRD subsystem.

The DRD subsystem provides a clusterwide name­
space and access mechanism for both physical and log­
ical (logical storage manager or LSM) volumes. The
LSM logical device may be a concatenated, a striped,

or a mirrored volume. DRD devices are accessible
from any cluster member using the DRD device name.
This location independence allows database software
to treat storage as a uniformly accessible cluster
resource and to easily load balance or fail over activity
between cluster nodes.

Cluster Storage Background

Disk devices on UNIX systems are commonly accessed
through the UNIX file system and an associated block
device special file . A disk device may also be accessed
through a character device special file or raw device
that provides a direct, unstructured interface to the
device and bypasses the block buffer cache.

Database management systems and some other
high-performance UNIX applications are often
d_esigne~ to take advantage of the character device spe­
cial file mterfaces to improve performance by avoiding
additional code path length associated with the file sys­
tem cache. 6'

7 The 1/0 profile of these systems is char­
acterized by large files, random access to records,
private data caches, and concurrent read-write sharing.

Overall Design of the DRD

The DRD subsystem consists of four primary compo­
nents. The remote raw disk (RRD) pseudo-driver redi­
rects DRD access requests to the cluster member
serving the storage device. The server is identified by
information maintained in the DRD device database
(RRDB). Requests to access local DRD devices are
passed through to local device drivers. The block ship­
ping client (BSC) sends requests for access to remote
DRD devices to the appropriate DRD server and
returns responses to the caller. The block shipping
server (BSS) accepts requests from BSC clients, passes
them to its local driver for service, and returns the
results to the calling BSC client. Figure 3 shows the
components of the DRD subsystem.

The DRD management component supports DRD
device naming, device creation and deletion, device
relocation, and device status requests. During the
DRD device creation process, the special device file
designating the DRD device is created on each cluster
member. In addition, the DRD device number its cor­
responding physical device number, the ~etwork
address of the serving cluster member, and other con­
figuration parameters are passed to the DRD driver,
which updates its local database and communicates
the information to other cluster members. The DRD
driver may be queried for device status and DRD data­
base information.

Clusterwide Disk Access Model

During the design of the DRD subsystem, we consid­
ered both shared (multiported) and served disk models.
A multiported disk configuration provides good failure
recovery and load balancing characteristics. On the

Digital Technical Journal Vol. 8 No. 1 1996 7

8

r ---- ------ -- - -----1 r---------- ------- -,
I NODE B NODE A

DATABASE INSTANCE I
I
I

DATABASE INSTANCE

RAW DISK
INTERFACE

LOCK
MANAGER
INTERFACE

I
I
I
I
I
I

I
I
I

LOCK
MANAGER
INTERFACE

RAW DISK
INTERFACE

.----------------+-•• DECSAFE ASE AVAILABILITY SERVICES ..._+---+------------,
.------+---------++---------+----+-----,~1 ACTIVE

STANDBY
CONFIGURATION
MANAGER

DISTRIBUTED LOCK MANAGER
CONFIGURATION
MANAGER

CONNECTION
MANAGER
AGENT

I DISTRIBUTED DIRECTORY SERVICE

RESOURCE MANAGER RESOURCE MANAGER

AVAILABILITY
MANAGER

~---+- -----<1------- COMMUNICATION SERVICES

Figure 2

DAD 1/0
REDIRECTION

Software Components

DISTRIBUTED REMOTE DEVICE

DAD BLOCK
SHIPPING
SERVER

DAD BLOCK
SHIPPING
CLIENT

NODEC

DAD BLOCK
SHIPPING
CLIENT

DAD BLOCK
SHIPPING
SERVER

SHARED
STORAGE

NODED

DRDl/0
REDIRECTION

ID;D ;Ll;N; - - - - - - - - - - i IDRD SERVER - - - - - - 1
I

DAD DEVICE
DATABASE

ACCESS TO /dev/drd/drd5 I I ACCESS TO /dev/drd/drd5

I I
I I
I I
I I

BLOCK SHIPPING l--'-1---+--i BLOCK SHIPPING
CLIENT I SERVER

DEVICE DRIVER

I ----.,----

1

I
DEVICE DRIVER

_______________ J
L..-----------

Figure 3
Distributed Remote Disk Subsystem

Digital Technical Journal Vol. 8 No. 1 1996

AVAILABILITY
MANAGER

___ J

other hand, 1/0 bus contention and hardware queuing
delays from fully connected, shared disk configurations
can limit scalability. In addition, present standard 1/0
bus technologies limit configuration distances.8 As a
consequence, we selected a served disk model for the
DRD implementation. With this model, software
queuing alleviates the bus contention and bus queuing
delays. This approach provides improved scalability and
fault isolation as well as flexible storage configura­
tions.9·10 Full connectivity is not required, and extended
machine room cluster configurations can be con­
structed using standard networks and 1/0 buses.

The DRD implementation supports clusterwide
access to DRD devices using a software-based emula­
tion of a fully connected disk configuration. Each
device is assigned to a single cluster member at a time.
The member registers the device into the cluster­
wide namespace and serves the device data to other
cluster members. Failure recovery and load-balancing
support are included with the DRD device implemen­
tation. The failure of a node or controller is transpar­
ently masked when another node connected to the
shared bus takes over serving the disk. As an option,
automatic load balancing can move service of the disk
to the node generating the most requests.

In the TruCluster version 1.0 product, data is
transferred between requesting and serving cluster
members using the high-bandwidth, low-latency
MEMORY CHANNEL interconnect, which also sup­
ports direct memory access (DMA) between the 1/0
adapter of the serving node and the main memory of
the requesting node. The overall cluster design, how­
ever, is not dependent on the MEMORY CHANNEL
interconnect, and alternative cluster interconnects will
be supported in future software releases.

DRDNaming
The Digital UNIX operating system presently supports
character device special file names for both physical disk
devices and LSM logical volumes and maintains a sepa­
rate device namespace for each. An important DRD
design objective was to develop a clusterwide naming
scheme integrating the physical and logical devices
within the DRD namespace. We considered defining
a new, single namespace to support all cluster disk
devices. Our research, however, revealed plans to intro­
duce significant changes into the physical device nam­
ing scheme in a future base system release and the
complications of licensing the logical disk technology
from a third party that maintains control over the logi­
cal volume namespace. These issues resulted in defer­
ring a true clusterwide device namespace.

As an interim approach, we chose to create a sepa -
rate, clusterwide DRD device namespace layered on
the existing physical and logical device naming

schemes. Translations from DRD device names into
the underlying physical and logical devices are main­
tained by the DRD device mapping database on each
cluster node. DRD device "services" are created by
the cluster administrator using the service registra­
tion facility. 11 Each "add Service" management opera­
tion generates a unique service number that is
used in constructing the DRD device special file name.
This operation also creates the new DRD device
special file on each cluster member. A traditional
UNIX-device-naming convention results in the cre­
ation ofDRD special device file names in the form of
/ dev / drd/ drd { service number} .12

DRD Relocation and Fai/over

ASE fail over (see the discussion in the section
Application Failover) is used to support DRD failover
and is fully integrated within the cluster product. The
device relocation policy defined during the creation of
a DRD device indicates whether the device may be
reassigned to another cluster member as a result of
a node or controller failure or a load-balancing opera­
tion. In the event of a cluster member failure, DRD
devices exported by the failed member are reassigned
to an alternate server attached to the same shared 1/0
bus. During reassignment, the DRD device databases
are updated on all cluster members and DRD 1/0
operations are resumed. Cluster device services may
also be reassigned during a planned relocation, such
as for load balancing or member removal. Any DRD
operation in progress during a relocation triggered by
a failure will be retried based upon the registered DRD
retry policy. The retry mechanism must revalidate the
database translation map for the target DRD device
because the server binding may have been modified.
Failover is thus transparent to database applications
and allows them to ignore configuration changes.

Several challenges result from the support of
multiported disk configurations under various failure
scenarios. One of the more difficult problems is distin­
guishing a failed member from a busy member or a
communication fault. The ASE failover mechanism was
designed to maintain data integrity during service
failover, and to ensure that subsequent disk operations
are not honored from a member that has been declared
"down" by the remaining cluster members. This ASE
mechanism, which makes use of small computer sys­
tems interface (SCSI) target mode and device reserva­
tion, was integrated into the TruCluster version 1.0
product and supports the DRD service guarantees.

Other challenges relate to preserving serialization
guarantees in the case of cluster member failure.
Consider a parallel application that uses locks to serial­
ize access to shared DRD devices. Suppose the applica­
tion is holding a write lock for a given data block and

Digital Technical Journal Vol. 8 No. 1 1996 9

issues an update for that block. Before the update
operation is acknowledged, however, the local mem­
ber fails. The distributed lock manager, which will
have been notified of the member failure, then takes
action to release the lock. A second cooperating appli­
cation executing on another cluster member now
acquires the write lock for that same data block and
issues an update for that block. If the failure had not
occurred, the second application would have had to
wait to acquire a write lock for the data block until the
first application released the lock, presumably after its
write request had completed. This same serialization
must be maintained during failure conditions. Thus, it
is imperative that the write issued by the first (now
failed) application partner not be applied after the
write issued by the second application, even in the
presence of a timing or network retransmission anom­
aly that delays this first write.

To avoid the reordering scenario just described,
we employed a solution called a sequence barrier in
which the connection manager increments a sequence
number each time it completes a recovery transition
that results in released locks. The sequence number
is communicated to each DRD server, which uses
the sequence number as a barrier to prevent apply­
ing stale writes. This is similar to the immediate com­
mand feature of the Mass Storage Control Protocol
(MSCP) used by Open VMS cluster systems to provide
similar guarantees. Note that no application changes
are required.

As another example, client retransmissions of
DRD pr9tocol requests that are not idempotent can
cause serious consistency problems. Request transac­
tion IDs and DRD server duplicate transaction caches
are employed to avoid undesirable effects of client­
generated retransmissions. 13

Cluster member failures are mostly transparent to
applications executing on client member systems.
Nondistributed applications may fail, but they can be
automatically restarted by ASE facilities. DRD devices
exported by a serving member become unavailable for
a small amount of time when the member fails . Cluster
failover activities that must occur before the DRD
service is again available include detecting and verify­
ing the member failure, purging the disk device SCSI
hardware reservation, assigning an alternate server,
establishing the new reservation, and bringing the
device back on-line. A database application serving
data from the DRD device at the time of the failure
may also have registered to have a restart script with
a recovery phase executed prior to the restart of the
database application. A possible lack of transparency
may result if some client applications are not designed
to accommodate this period of inaccessible DRD ser­
vice. The DRD retry request policy is configurable
to accommodate applications interacting directly with
a DRD device.

10 Digital Technical Journal Vol. 8 No. 1 1996

Distributed Lock Manager

The distributed lock manager (DLM) provides syn­
chronization services appropriate for a highly paral­
lelized distributed database system. Databases can use
locks to control access to distributed copies of data
buffers (caches) or to limit concurrent access to shared
disk devices such as those provided by the DRD sub­
system. Locks can also be used for controlling applica­
tion instance start-up and for detecting application
instance failures. In addition, applications can use the
locking services for their other synchronization needs.

Even though this is a completely new implementa -
tion, the lock manager borrows from the original
design and concepts introduced in 1984 with the
V AXcluster distributed lock manager.14 These concepts
were used in several recent lock manager implementa­
tions for UNIX by other vendors. In addition, the
Oracle Parallel Server uses a locking application pro­
gramming interface (API) that is conceptually similar
to that offered here.

Usage of the DLM
The lock manager provides an API for request­
ing, releasing, and altering locks.15

•
16 These locks are

requested on abstract names chosen by the applica -
tion. The names represent resources and may be orga­
nized in a hierarchy. When a process requests a lock on
a resource, that request is either granted or denied
based on examination of locks already granted on the
resource. Cooperating components of an application
use this service to achieve mutually exclusive resource
usage. In addition, a mode associated with each lock
request allows traditional levels of sharing such as mul­
tiple readers excluding all writers.

The API provides optional asynchronous request
completion to allow queuing requests or overlapping
multiple operations for increased performance.
Queuing prevents retry delays, eliminates polling
overhead, and provides a first in, first out (FIFO) fair­
ness mechanism. In addition, asynchronous requests
can be used as the basis of a signaling mechanism to
detect component failures in a distributed system. One
component acquires an exclusive lock on a named
resource. Other components queue incompatible
requests with asynchronous completion specified. If
the lock holder fails or otherwise releases its lock, the
waiting requests are granted. This usage is sometimes
referred to as a "dead man" lock.17

A process can request notification when a lock it
holds is blocking another request. This allows elimina­
tion of many lock calls by effectively caching locks.
When resource contention is low, a lock is acquired
and held until another process is blocked by that lock.
Upon receiving blocking notification, the lock can be
released. When resource contention is high, the lock
is acquired and released immediately. In addition, rhjs

notification mechanism can be used as the basis of a
general signaling mechanism. One component of the
application acquires an exclusive lock on a named
resource with blocking notification specified. Other
components then acquire incompatible locks on that
resource, thus triggering the blocking notification.
This usage is known as a "doorbell" lock.17

The OLM is often used to coordinate access to
resources such as a distributed cache of database
blocks. Multiple copies of the data are held under
compatible locks to permit read but not write access.
When a writer wants an incompatible lock, readers are
notified to downgrade their locks and the writer is
granted the lock. The writer modifies the data before
downgrading its lock. The reader's lock requests are
again granted, and the reader fetches the latest copy of
the data. A value block can also be associated with each
resource. Its value is obtained when a lock is granted
and can be changed when certain locks are released.
The value block can be used to communicate any use­
ful information, including the latest version number of
cached data protected by the resource.

Design Goals of the DLM
The overall design goal of the lock manager was to
provide services for highly scalable database systems.
Thus correctness, robustness, scaling, and speed were
the overriding subgoals of the project.

Careful attention to design details, rigorous testing,
internal consistency checking, and years of experience
working with the VMS distributed lock manager have
all contributed to ensuring the correctness of the
implementation for the Digital UNIX system. Because
the lock manager provides guarantees about the state
of all locks when either a lock holder or the node upon
which it is running fails, it can ensure the internal lock
state is consistent as far as surviving lock holders are
concerned. This robustness permits the design of
applications that can continue operation when a clus­
ter node fails or is removed for scheduled service. The
choice of a kernel-based service and the use of a mes­
sage protocol also contribute to robustness as dis­
cussed below.

In terms of performance and scaling, the lock man­
ager is designed for minimal overhead to its users. The
kernel-based service design provides high perfor­
mance by eliminating the context switch overhead
associated with server daemons. The lock manager
uses the kernel-locking features of the Digital UNIX
operating system for good scaling on SMP systems. A
kernel-based service as opposed to a library also allows
the lock manager to make strong guarantees about the
internal consistency state oflocks when a lock-holding
process fails.

The message protocol contributes to cluster scaling
and performance through a scaling property that
maintains a constant cost as nodes are added to the

cluster. 1
• The message protocol also provides suffi­

ciently loose coupling to allow the lock manager to
maintain internal lock state when a node fails. The use
of messages controls the amount of internal state visi­
ble to other nodes and provides natural checkpoints,
which limit the damage resulting from the failure of
a cluster node.

DLM Communication Services
The DLM session service is a communication layer
that takes advantage of MEMORY CHANNEL fea­
tures such as guaranteed ordering, low error rate, and
low latency. These features allow the protocol to be
very simple with an associated reduction in CPU over­
head. The service provides connection establishment,
delivery and order guarantees, and buffer manage­
ment. The connection manager uses the communi­
cation service to establish a channel for the lock
manager. The lock manager uses the communication
services to communicate between nodes. Because the
service hides the details of the communication mecha­
nism, alternative interconnects can be used without
changes to the lock manager's core routines.

The use of the MEMORY CHANNEL interconnect
provides a very low latency communication path for
small messages. This is ideal for the lock manager since
lock messages tend to be very small and the users of
the lock manager are sensitive to latency since they
wait for the lock to be granted before proceeding.
Small messages are sent by simply writing them into
the receiving node's memory space. No other com­
munication setup needs to be performed. Many net­
work adapters and communication protocols are
biased toward providing high throughput only when
relatively large packets are used. This means that the
performance drops off as the packet size decreases.
Thus, the MEMORY CHANNEL interconnect pro­
vides a better alternative for communicating small,
latency-sensitive packets.

Connection Manager

The connection manager defines an operating envi­
ronment for the lock manager. The design allows gen­
eralization to other clients; but in the TruCluster
version 1.0 product, the lock manager is the only con­
sumer of the connection manager services. The envi­
ronment hides the details of dynamically changing
configurations. From the perspective of the lock man­
ager, the connection manager manages the addition
and removal of nodes and maintains a communication
path between each node. These services allowed us to
simplify the lock manager design.

The connection manager treats each node as a mem­
ber of a set of cooperating distributed components.
It maintains the consistency of the set by admitting
and removing members under controlled conditions.

Digital Technical Journal Vol. 8 No. 1 1996 11

The connection 1t1anager provides configuration­
related event notification and other support services
to each member of a set. It provides notification when
members are added and removed. It also maintains a
list of current members. The connection manager also
provides notification to clients when unsafe operation
is possible as a result of partitioning. Partitioning exists
when a member of a set is unaware of the existence of
a disjoint set of similar clients.

The connection manager can be extended in
client-specific ways to facilitate handling of mem­
bership change events. Extensions are integral, well­
synchronized parts of the membership change
mechanism. The lock manager uses an extension to
distribute a globally consistent directory database and
to coordinate lock database rebuilds.

The connection manager maintains a fully con­
nected web of communication channels between
members of the set. Membership in the set is contin­
gent upon being able to communicate with all other
members of that set. The use of the communication
channels is entirely under the control of the lock man­
ager or any other client that may use the connection
manager in the future. When a client requests admis­
sion to a set, the connection manager establishes a
communication channel between the new client and
all existing clients. It monitors these connections to
ensure they remain functional. A connection fails
when a communication channel is unusable between
a pair of clients or when a client at either end of the
channel fails. The connection manager detects these
conditions and reconfigures the set to contain only
fully connected members.

The combination of a highly available communi­
cation channel, together with set membership and
synchronized membership change responses, allows
optimizations in the lock manager's message protocol.
The lock manager can send a message to another node
and know that either the message will be delivered or
that the configuration will be altered so that it does
not matter.

MEMORY
CHANNEL
TRANSFER

NORMAL
MEMORY
WRITE

PAGE >--

The use of the connection manager greatly sim­
plifies the design and implementation of the lock
manager. The connection manager allows most of
the logic for handling configuration changes and com­
munication errors to be moved away from main code
paths. This increases mainline performance and simpli­
fies the logic, allowing more emphasis on correct and
efficient operation.

Memory Channel Interconnect

Cluster performance is critically dependent on the
cluster interconnect. This is due both to the high­
bandwidth requirements of bulk data transport for
DRD and to the low latency required for DLM opera­
tions. Although the cluster architecture allows for any
high-speed interconnect, the initial implementation
supports only the new MEMORY CHANNEL inter­
connect designed specifically for the needs of cluster
systems. This very reliable, high-speed interconnect is
based on a previous interconnect designed by Encore
Computer Corporation.18 It has been significantly
enhanced by Digital to improve data integrity and
provide for higher performance in the future.

Each cluster node has a MEMORY CHANNEL
interface card that connects to a hub. The hub can be
thought of as a switch that provides either broadcast or
point-to-point connections between nodes. It also
provides ordering guarantees and does a portion of
the error detection. The current implementation is an
eight-node hub, but larger hubs are planned.

The MEMORY CHANNEL interconnect pro­
vides a 100-megabyte-per-second, memory-mapped
connection to other cluster members. As shown in
Figure 4, cluster members may map transfers from the
MEMORY CHA.t~NEL interconnect directly into
their memory. The effect is of a write-only window
into the memory of other cluster systems. Transfers
are done with standard memory access instructions
rather than special I/0 instructions or device access

MEMORY PAGE

l CHANNEL
TRANSFER

PAGE

NODEO
ADDRESS SPACE

MEMORY CHANNEL
BUS ADDRESS SPACE

NODE 1 MEMORY

Figure4
Transfers Performed by the MEMORY CHANNEL Interconnect

12 Digital Technical Journal Vol. 8 No. l 1996

protocols to avoid the overhead usually present with
these techniques. The use of memory store instruc­
tions results in extremely low latency (two microsec­
onds) and low overhead for a transfer of any length.

The MEMORY CHANNEL interconnect guaran­
tees essentially no undetected errors (approximately
the same undetected error rate as CPUs or memory),
allowing the elimination of checksums and other
mechanisms that detect software errors. The detected
error rate is also extremely low (on the order of one
error per year per connection)'~ Since recovery code
executes very infrequently, we are assured that rela­
tively simple, brute-force recovery from software
errors is adequate. Using hardware error insertion, we
have tested recovery code at error rates of many per
second. Thus we are confident there are no problems
at the actual rates.

Low-level MEMORY CHANNEL Software
Low-level software interfaces are provided to insulate
the next layer of software (e.g., lock manager and dis­
tributed disks) from the details of the MEMORY
CHANNEL implementation. We have taken the
approach of providing a very thin layer to impact per­
formance as little as possible and allow direct use of the
MEMORY CHANNEL interconnect. Higher-level
software then isolates its use of MEMORY CHANNEL
in a transport layer that can later be modified for addi­
tional cluster interconnects.

The write-only nature of the MEMORY CHANNEL
interconnect leads to some challenges in designing
and implementing software. The only way to see a
copy of data written to the MEMORY CHANNEL
interconnect is to map MEMORY CHANNEL trans­
fers to another region of memory on the same node.
This leads to two very visible programming con­
straints. First, data is read and written from different
addresses. This is not a natural programming style, and
code must be written to treat a location as two vari­
ables, one for read and one for write. Second, the
effect of a write is delayed by the transfer latency. At
two microseconds, this is short but is enough time to
execute hundreds of instructions. Hardware features
are provided to stall until data has been looped back,
but very careful design is necessary to minimize these
stalls and place them correctly. We have had several
subtle problems when an algorithm did not include a
stall and proceeded to read stale data that was soon
overwritten by data in transit. Finding these problems
is especially difficult because much evidence is gone by
the time the problem is observed. For example, con­
sider a linked list that is implemented in a region of
memory mapped to all cluster nodes through the
MEMORY CHANNEL interconnect. If two elements
are inserted on the list without inserting proper waits

for the loopback delay, the effect of the first insert will
not be visible when the second insert is done. This
results in corrupting the list.

The difficulties just described are most obvious
when dealing with distributed shared memory. Low­
level software intended to support applications is
instead oriented toward a message-passing model.
This is especially apparent in the features provided for
error detection. The primary mechanisms allow either
the receiving or the sending node to check for any
errors over a bounded period of time. This error check
requires a special hardware transaction with each node
and involves a loopback delay. If an error occurs,
the sender must retransmit all messages and the
receiver must not use any data received in that time.
This mechanism works well with the expected error
rates. However, a shared memory model makes it
extremely difficult to bound the data affected by an
error, unless each modification of a data element
is separately checked for errors. Since this involves
a loopback delay, many of the perceived efficiencies
of shared memory may disappear. This is not to say
that a shared memory model cannot be used. It is just
that error detection and control of concurrent access
must be well-integrated, and node failures require
careful recovery. In addition, the write-only nature of
MEMORY CHANNEL mappings is more suited to
message passing than shared memory due to the
extremely careful programming necessary to handle
delayed loopback at a separate address.

APis are provided primarily to manage resources,
control memory mappings, and provide synchroniza­
tion. MEMORY CHANNEL APis perform the follow­
ing tasks:

• Allocation and mapping
- Allocate or deallocate the MEMORY

CHANNEL address space.
- Map the MEMORY CHANNEL interconnect

for receive or transmit.
- Unmap the MEMORY CHANNEL

interconnect.

• Spinlock synchronization
- Create and delete spinlock regions.
- Acquire and release spinlocks.

• Other synchronization
- Create and delete write acknowledgment

regions.
- Request write acknowledgment.
- Create and delete software notification channels.
- Send notification.
- Wait for notification.

• Error detection and recovery
- Get current error count.
- Check for errors.
- Register for callback on error.

Digital Technical Journal Vol. 8 No. 1 1996 13

Higher layers of software are responsible for transfer­
ring data, checking for errors, retrying transfers, and
synchronizing their use of MEMORY CHANNEL
address space after it is allocated.

Synchronization
Efficient synchronization mechanisms are essential
for high-performance protocols over a cluster inter­
connect. MEMORY CHANNEL hardware provides
two important synchronization mechanisms: first, an
ordering guarantee that all writes are seen in the same
order on all nodes, including the looped-back write on
the originating node; second, an acknowledgment
request that returns the current error state of all other
nodes. Once the acknowledgment operation is com­
plete, all previous writes are guaranteed either to have
been received by other nodes or reported as a transmit
or receive error on some node. We have implemented
clusterwide software spinlocks based on these guaran­
tees. Spinlocks are used for many purposes, including
internode synchronization of other components and
concurrency control for the clusterwide shared-mem­
ory data structures used by the low-level MEMORY
CHANNEL software.

A spinlock is structured as an array with one element
for each node. To acquire the spinlock, a node first
bids for it by writing a value to the node's array ele­
ment. A node wins by seeing its bid looped back by the
MEMORY CHANNEL interconnect without seeing
a bid from any other node. The ordering guarantees of
the MEMORY CHANNEL ensure that no other node
could have concurrently bid and believed it had won.
Multiple nodes can realize they have lost, but more
than one node cannot win. In case of a conflict, many
different back-off techniques can be used. The win­
ning node then changes its bid value to an own value.
This last step is not necessary for correctness, but it
does help with resolving contention and with various
failure recovery algorithms. All higher-level synchro­
nization is built on combinations of spinlocks, order­
ing guarantees, and error acknowledgments.

Error Recovery and Node Failures
Most of the difficult problems in the low-level soft­
ware relate to error recovery and node failures. In spite
of its reliability, errors will occur in the MEMORY
CHANNEL interconnect, and they must be handled
as transparently as possible. Transparency is key to sim­
plifying the communication model seen by higher­
level software. In addition, node failures from
hardware or software faults are more frequent than
MEMORY CHANNEL errors and must be dealt with
even in the most inconvenient portions of the low­
Ievel code. The MEMORY CHANNEL interconnect
is managed through a collection of distributed data

14 Digital Technical Journal Vol. 8 No. 1 1996

structures that must be kept consistent. Software locks
are used to synchronize access to these structures, but
errors may leave them in an inconsistent state.
Guaranteed error detection before the release of a lock
allows operations to be redone in case of an error.
Thus, all sequences of MEMORY CHANNEL writes
must be idempotent to take advantage of this straight­
forward error-recovery technique.

If a node failure occurs, a surviving node must make
all data structures consistent before it releases locks
held by the failed node. To keep this a manageable
task, we have written carefully structured algorithms
to handle each inconsistent state. In general, struc­
tures are changed such that a single atomic write com­
mits a change. If a node fails before this last write, no
recovery is necessary. As an example, consider a data
structure that is completely initialized before being
added to a list. A single write is used to accomplish the
list addition. If a node fails, the last write was either
done or not and, in either case, the list is consistent.
Complications arise when another node has a receive
error on the last write done by a failing node. In this
case, the failed node cannot retry after detecting the
error, so the node with the receive error has a different
view of the list than all other surviving nodes. To
resolve this event, one node must propagate its view of
the list to all other nodes before it releases the lock
held by the failed node. Any node can do this because
each has a self-consistent view of the list. If the node
with the receive error propagates its view, the last ele­
ment added by the failed node is lost. This situation is
no different, however, from having the node fail a few
instructions earlier. The challenge is to design recov­
ery for all these cases and maintain our sanity by mini­
mizing the number of such cases.

Anotl1er interesting problem is maintaining a con­
sistent count of errors across all nodes. This count
is key to the error protocols of both the low-level
MEMORY CHANNEL software and higher layers
since comparisons of a saved and a current value
bound the period over which data is suspect. The
count may be read on one node, transferred with
a message, and compared to a current value on
another node. Thus, a consistent value on all nodes
is critical and must be maintained in the presence of
arbitrary combinations of receive and transmit errors.
(Although errors are very infrequent, they may be cor­
related; so algorithms must work well for error bursts.)
The write acknowledgment, described earlier, guaran­
tees that other nodes have received a write without
error. It is used both to implement a lock protecting
the error count and to guarantee that all nodes have
seen an updated count. Updating the count is a slow
operation due to multiple round-trip delays and long
error time-outs, but it is performed very infrequently.

Future Enhancements to MEMORY CHANNEL
Software
Fully supported MEMORY CHANNEL APis are
currently available only to other layers in the UNIX
kernel for two important reasons: First, MEMORY
CHANNEL is a new type of interconnect and we want
to better understand its uses and advantages before
committing to a fully functional API for general use.
Second, many difficult issues of security and resource
limits will affect the final interface. To help Digital
and its customers gain the necessary experience, a lim­
ited functionality version of a user-level MEMORY
CHANNEL API has been implemented in the version
1.0 product. This interface supports allocation and
mapping of MEMORY CHANNEL space along with
spinlock synchronization. It is oriented toward sup­
port of parallel computation in a cluster, but we also
expect it will serve the needs of many commercial
applications. Once we have a better understanding of
how high-level applications will use the MEMORY
CHANNEL interconnect, we will extend the design
and provide additional APis oriented toward both
commercial applications and technical computing.

Application Failover

Digital's TruCluster multicomputer system is a logical
evolution of the DECsafe Available Server Envi­
ronment (ASE). An ASE system is a multinode con­
figuration with all nodes and all highly available
storage connected to shared SCSI storage buses.
Figure 5 shows an ASE configuration. Software on
each node monitors the status of all nodes and of
shared storage. In case of a failure, the storage and
associated applications are failed over to surviving sys­
tems. Planned application failover is accomplished by
stopping the application on one node and restarting
the application on a surviving node with access to any
storage associated with the application. Application­
specific scripts control failover and usually do not
require application changes.

DISKS

SCSI BUS 1

SCSI BUS 2

Figure 5
Typical ASE Configuration

In addition to supporting the application failover
mechanisms from ASE, the TruCluster system sup­
ports parallel applications running on multiple cluster
nodes. In case of a failure, the application is not
stopped and restarted. Instead, it may continue to exe­
cute and transparently retain access to storage through
a distributed disk server. In addition, more general
hardware topologies are supported.

Hardware Configurations

The TruCluster version 1.0 product supports a maxi­
mum of four nodes connected by a high-speed
MEMORY CHANNEL interconnect. The nodes may
be any Digital UNIX system with a peripheral compo­
nent interconnect (PCI) that supports storage and the
MEMORY CHANNEL interconnect. Highly available
storage is on shared SCSI buses connected to at least
two nodes. Thus, a cluster looks like multiple ASE
systems joined by a cluster interconnect.

Although the limitation to four nodes is temporary,
we do not intend to support large numbers of nodes.
Ten to twenty nodes on a high-speed interconnect is
a reasonable target. A cluster is a component of a dis­
tributed system, not a replacement for one. If very
large numbers of nodes are desired, a distributed
system is built with cluster nodes as servers and other
nodes as clients. This allows maintaining a simple
model of a cluster system without having to allow for
many complex topologies. Aside from simplicity, there
are performance advantages from targeting algorithms
for relatively small and simple cluster systems.
Although the number of nodes is intended to be small,
the individual nodes can be high-end multiprocessor
systems. Thus, the overall computing power and the
I/0 bandwidth of a cluster are extremely large.

Conclusions

With the completion of the first release of Digital's
TruCluster product, we believe we have met our goal
of providing an environment for high-performance
commercial database servers. Both the distributed lock
manager and the remote disk services are meeting
expectations and providing reliable, high-performance
services for parallelized applications. The MEMORY
CHANNEL interconnect is proving to be an excellent
cluster interconnect: Its synchronization and failure
detection are especially compatible with many cluster­
aware components, which are enhanced by its low
latencies and simplified by its elimination of complex
error handling. The error rates have also proven to be
as predicted. With over 100 units in use over the last
year, we have observed only a very small number of
errors other than those attributable to debugging new
versions of the hardware.

Digital Technical Journal Vol. 8 No. 1 1996 15

Detailed component performance measurements
are still in progress, but rough comparisons of ORD
against local I/0 have shown no significant penalty in
latency or throughput. There is of course additional
CPU cost, but it has not proven to be significant for
real applications. OLM costs are comparable to VMS
and thus meet our goals. Audited TPC-C results with
the Oracle database also validated both our design
approach and the implementation details by showing
that database performance and scaling with additional
cluster nodes meet our expectations.

The previous best reported TPC-C numbers were
20,918 tpmC on Tandem Computers' Himalaya
Kl0000-112 system with the proprietary NonStop
SQL/MP database software. The best reported num­
bers with open database software were 11,456 tpmC
on the Digital AlphaServer 8400 5/350 with Oracle7
version 7.3. A four-node AlphaServer 8400 5/350
cluster with Oracle Parallel Server was recently audited
at 30,390 tpmC. This represents industry-leadership
performance with nonproprietary database software.

Future Developments

We will continue to evolve the TruCluster product
toward a more scalable, more general computing envi­
ronment. In particular, we will emphasize distributed
file systems, configuration flexibility, management
tools, and a single-system view for both internal and
client applications. Work is under way for a cluster file
system with local node semantics across the cluster sys­
tem. The new cluster file system will not replace ORD
but will complement it, giving applications the choice
of raw access through ORD or full, local-file-system
semantics. We are also lifting the four-node limitation
and allowing more flexibility in cluster interconnect
and storage configurations. A single network address
for the cluster system is a priority. Finally, further steps
in managing a multinode system as a single system will
become even more important as the scale of cluster
systems increases.

Further in the future is a true single-system view of
cluster systems that will transparently extend all
process control, communication, and synchronization
mechanisms across the entire cluster. An implicit trans­
parency requirement is performance.

Acknowledgments

In addition to the authors, the following individuals
contributed directly to the cluster components
described in this paper: Tim Burke, Charlie Briggs,
Dave Cherkus, and Maria Vella for DRD; Joe Amato
and Mitch Condylis for OLM; and Ali Rafieymehr for
MEMORY CHANNEL. Hai Huang, Jane Lawler, and

16 Digital Technical Journal Vol. 8 No. l 1996

especially project leader Brian Stevens made many
direct and indirect contributions to the project.
Thanks also to Dick Buttlar for his editing assistance.

References and Notes

1. "Introduction to DCE," OSF DCE Documentation Set
(Cambridge, Mass.: Open Software Foundation, 1991).

2. Internet RFCs 1014, 1057, and 1094 describe ONC
XDR., RPC, and NFS protocols, respectively.

3. G. Pfister, In Search ofClusters(Upper Saddle River,
N.J.: Prentice-Hall, Inc., 1995): 19-26.

4. N. Kronenberg, H. Levy, and W. Strecker, "VAXclusters:
A Closely-Coupled Distributed System," ACM Trans­
actions on Computer Systems, vol. 4, no. 2 (May
1986): 130-146.

5. L. Cohen and J. Williams, "Technical Description of
the DECsafe Available Server Environment," Digital
Technicaljournal, vol. 7, no. 4 (1995): 89-100.

6. TPC performance numbers for UNIX systems are typi­
cally reported for databases using the character device
interface.

7. The file system interfaces on the Digital UNIX operat­
ing system are being extended to support direct I/0,
which results in bypassing the block buffer cache and
reducing code path length for those applications that
do not benefit from use of the cache.

8. A fast wide differential (FWD) SCSI bus is limited to
a maximum distance of about 25 meters for example.

9. M. Devarakonda et al., "Evaluation of Design Alterna­
tives for a Cluster File System," USENIX Conference
Proceedings, USENIX Association, Berkeley, Calif.
(January 1995).

10. J. Gray and A. Reuter, Transaction Processing­
Concepts and Techniques (San Mateo, Calif.:
Morgan Kaufman Publishers, 1993).

11. This mechanism is inherited from the DECsafe Avail­
able Server management facility, including the asemgr
interface.

12. As an example, if the first DRD service created for a
cluster is 1, the DRD device special file name is
/dev/drd/drdl and its minor device number is also 1.

13. C. Juszczak, "Improving the Performance and Cor­
rectness of an NFS Server," USENIX Conference Pro­
ceedings, USENIX Association, San Diego, Calif.
(Winter 1989).

14. W. Snaman, Jr. and D. Thiel, "The VAX/VMS Distrib­
uted Lock Manager," Digital Technical Journal,
vol. 1, no. 5 (September 1987): 29-44.

15. R. Goldenberg, L. Kenah, and D. Dumas, VAXIVil!S

Internals and Data Structures (Bedford, Mass.:
Digital Press, 1991).

16. TruCluster Application Programming Interfaces
Guide(Maynard, Mass.: Digital Equipment Corpora­
tion, Order No. AA-QL8PA-TE, 1996).

17. T. Rengarajan, P. Spiro, and W. Wright, "High Avail­
ability Mechanisms of VAX DBMS Software," Digital
Technical Journal, vol. 1, no. 8 (February 1989):
88-98.

18. Encore 91 Series Technical Summary (Fort Laud­
erdale, Fla.: Encore Computer Corporation, 1991).

Biographies

Wayne M. Cardoza
Wayne Cardoza is a senior consulting engineer in the
UNIX Engineering Group. He joined Digital in 1979
and contributed to various areas of the VMS kernel prior
to joining the UNIX Group to work on the UNIX cluster
product. Wayne was also one of the architects of PRISM,
an early Digital RISC architecture; he holds several patents
for this work. More recently, he participated in the design
of the Alpha AXP architecture and the Open VMS port to
Alpha. Before coming to Digital, Wayne was employed by
Bell Laboratories. He received a B.S.E.E. from Southeastern
Massachusetts University and an M.S.E.E. from MIT.

Frederick S. Glover
Fred Glover is a software consulting engineer and the tech­
nical director of the Digital UNIX Base Operating System
Group. Since joining the Digital UNIX Group in 1985,
Fred has contributed to the development ofnetworking
services, local and remote file systems, and cluster technol­
ogy. He has served as the chair of the IETF/TSIG Trusted
NFS Working Group, as the chair of the OSF Distributed
File System Working Group, and as Digital's representative
to the IEEE POSIX 1003.8 Transparent File Access Work­
ing Group. Prior to joining Digital, Fred was employed by
AT&T Bell Laboratories, where his contributions included
co-development of the RMAS network communication
subsystem. He received B.S. and M.S. degrees in computer
science from Ohio State University and conducted his
thesis research in the areas of fault-tolerant distributed
computing and data flow architecture.

William E. Snarnan, Jr.
Sandy Snaman joined Digital in 1980. He is currently a
consulting software engineer in Digital's UNIX Software
Group, where he contributed to the TruCluster architec­
ture and design. He and members of his group designed
and implemented cluster components such as the con­
nection manager, lock manager, and various aspects of
cluster communications. Previously, in the VMS Engineer­
ing Group, he was the project leader for the port of the
VMScluster system to the Alpha platform and the technical
supervisor and project leader for the VAXcluster executive
area. Sandy also teaches MS Windows programming and
C++ at Daniel Webster College. H e has a B.S. in computer
science and an M.S. in information systems from the
University of Lowell.

Digital Technical Journal Vol. 8 No. 1 1996 17

Delivering Binary Object
Modification Tools for
Program Analysis and
Optimization

Digital has developed two binary object
modification tools for program analysis and
optimization on the Digital UNIX version 4.0
operating system for the Alpha platform. The
technology originated from research performed
at Digital's Western Research Laboratory. The
OM object modification tool is a transforma­
tion tool that focuses on postlink optimizations.
OM can apply powerful intermodule and inter­
language optimizations, even to routines in sys­
tem libraries. Atom, an analysis tool with object
modification, provides a flexible framework for
customizing the transformation process to ana­
lyze a program. With Atom, compilation system
changes are not needed to create both simple
and sophisticated tools to directly diagnose or
debug application-specific performance prob­
lems. The linker and loader are enhanced to sup­
port Atom. The optimizations OM performs can
be driven from performance data generated
with the Atom-based pixie tool. Applying OM
and Atom to commercial applications provided
performance improvements of up to 15 percent.

18 Digital Technical Journal Vol. 8 No. 1 1996

I
Linda S. Wilson
Craig A. Neth
i\fichaelJ.R.ickabaugh

Historically on UNIX systems, optimization and pro­
gram analysis tools have been implemented primarily
in the realm of compilers and run-time libraries. Such
implementations have several drawbacks, however.
For example, although the optimizations performed
by compilers are effective, typically, they are limited to
those that can be performed within the scope of a sin­
gle source file. At best, the compiler can optimize the
set of files presented during one compilation run .
Even the most sophisticated systems that save interme­
diate representations usually cannot perform opti­
mizations of calls to routines in system libraries or
other libraries for which no source or intermediate
forms are available. 1

The traditional UNIX performance analysis tools,
prof and gprof, require compiler support for inserting
calls to predefined run-time library routines at the
entry to each procedure . The monitor routines allow
more user control over prof and gprof profiling capa­
bilities, but their usage requires modifications to the
application source code. Because these capabilities are
implemented as compilation options, users of the tools
must recompile or, in the case of the monitor routines,
actually modify their applications. For a large applica­
tion, this can be an onerous requirement. Further, if
the application uses libraries for which the source is
unavailable, many of the analysis capabilities are lost or
severely impaired.

By comparison, object modification tools can per­
form arbitrary transformations on the executable
program. The OM object modification tool is a trans­
formation tool that focuses on postlink optimizations.
By performing transformations after the link step, OM
can apply powerful intermodule and interlanguage
optimizations, even to routines in system libraries.

Object transformations also have benefits in the area
of program analysis. Atom, an analysis tool with object
modification, provides a flexible framework for cus­
tomizing the transformation process to analyze a pro­
gram. With Atom, compilation system changes are not
needed to develop specialized types of debugging or
performance analysis tools. Application developers can
create both simple and sophisticated tools to directly
diagnose or debug application-specific performance
problems.

The OM and Atom technologies originated from
research performed at Digital's Western Research
Lab (WRL) in Palo Alto, California. 2 The software
was developed into products by the Digital UNIX
Development Environment (DUDE) group at
Digital's UNIX engineering site in Nashua, New
Hampshire. Both technologies are currently shipping
as supported products on Digital UNIX version 4.0
for the Alpha platform.3

This paper first provides technical overviews for
both OM and Atom. An example Atom tool is
presented to demonstrate how to use the Atom appli­
cation programming interface (API) to develop a cus­
tomized program analysis tool. Because OM and
Atom can be used together to enhance the effective­
ness of optimizations to application programs, the
paper includes an overview regarding the benefits of
profiling-directed optimizations.

Subsequent sections discuss the product develop­
ment and technology transfer process for OM and
Atom and several design decisions that were made.
The paper describes the working relationship between
WRL and DUDE, the utilization of the technology on
Independent Software Vendor (ISV) applications, and
the factors that drove the separate development strate­
gies for the two products. The paper concludes with
a discussion about areas for further investigation and
plans for future enhancements.

Technology Origins

Researchers at WRL investigating postlink optimiza­
tion techniques created OM in 1992! Unlike compile­
time optimizers, which operate on a single file, postlink
optimizers can operate on the entire executable pro­
gram. For instance, OM can remove procedures that
were linked into the executable but were never called,
thereby reducing the text space required by the pro­
gram and potentially improving its paging behavior.5

Using the OM technology, the researchers further
discovered that the same binary code modification
techniques needed for optimizations could also be
applied to the area of program instrumentation. In
fact, the processes of instrumenting an existing pro­
gram and generating a new executable could be
encapsulated and a programmable interface provided
to drive the instrumentation and analysis processes.
Atom evolved from this work.6

•
7

In 1993, WRL researchers Amitabh Srivastava and
Alan Eustace began planning with DUDE engineers
to provide OM and Atom as supported products on
the Digital UNIX operating system. Different product
development and technology transfer strategies were
used for delivering the two technologies. The sec­
tion Product Development Considerations discusses
the methods used and the forces that influenced
the strategies.

Technical Overview of OM

OM performs transformations in three phases. It pro­
duces an intermediate representation, performs opti­
mizations on that representation, and produces an
executable image.

Intermediate Representation
In the first phase, OM reads a specially linked input
file that is produced by the linker, parses the object
code, and produces an intermediate representation
of the instructions in the program. The flow informa­
tion and the program structure are maintained in
this representation.

Optimization
In the optimization phase, OM performs various trans­
formations on the intermediate representation created
in the first phase. These transformations include

• Text size reductions

• Data size reductions

• Instruction and data reorganization to improve
cache behavior

• Instruction scheduling and peephole optimization

• User-directed procedure inlining

Text Size Reductions One type of text size reduction
is the elimination of unused routines. Starting at the
entry point of the image, OM examines the instruction
stream for transfer-of-control instructions. OM fol­
lows each transfer of control until it finds all reachable
routines in the image. The remaining routines are
potentially unreachable and are candidates for removal.
Before removing them, OM checks all candidates for
any address references. (Such references will show up
in the relocation entries for the symbols.) If no refer­
ences exist, OM can safely remove the routine. A sec­
ond type of text size reduction is the elimination of
most GP register reloading sequences.8

•
9

Data Size Reductions Because it operates on the entire
program, OM performs optimizations that compilers
are not able to perform. One instance is with the
addressability of global data. The general instruction
sequence for accessing global data requires the use of
a table of address constants (the .lita section) and code
necessary for maintaining the current position in the
table. Each entry in the address constant table is relo­
cated by the linker. Because OM knows the location of
all global data, it can potentially remove the address
entry while inserting and removing code to more effi­
ciently reference the data directly. Removing as many
of the .lita entries as possible leaves more room in the
data cache (D-cache) for the application's global data.

Digital Technical Journal Vol. 8 No. 1 1996 19

This optimization is not possible at link time, because
the linker can neither insert nor remove code.

Reorganization of the Image By default, OM reorga­
nizes an image by reordering the routines in the image
as determined by a depth-first search of the routine
order, starting at the main entry point. In the absence
of profiling information, this ordering is usually better
than the linker's ordering.

In the presence of profiling feedback, OM performs
two more instruction-stream reorderings: (1) reorder­
ing of routines based on basic block counts and
(2) routine ordering based on execution frequency.
OM first reorganizes routines based on the basic block
information collected by a previous run of the image
instrumented with the Atom-based pixie tool. OM lays
the basic blocks to match the program's likely flow of
control. Branches are aligned to match the hardware
prediction mechanism. As a result, OM packs together
the most commonly executed blocks. After basic block
reorganization, OM then reorders the routines in the
image based on the cumulative basic block counts for
each routine. The reorganized image is ordered in
a way similar to the way the prof tool displays execution
statistics. The reordering performed by OM is superior
to that performed by cord, because cord does not
reorder basic blocks. cord is a UNIX profiling-directed
optimization utility that reorders procedures in an exe­
cutable program to improve cache performance. The
cord(l) reference page on Digital UNIX version 4.0
describes the operation of this utility in more detail.

Elapsed-time Performance The optimizations that
OM performs without profiling feedback can provide
elapsed-time performance improvements of up to
5 percent. The feedback-directed optimizations can
often provide an additional improvement of from 5 to
10 percent in elapsed time, for a total improvement
of up to 15 percent over an image not processed
by OM. Several commercial database programs have
realized elapsed-time performance improvements
ranging from 9 to 11 percent with feedback.

Executable Image

Finally, in the third phase, OM reassembles the trans­
formed intermediate representation into an executable
image. It performs relocation processing to reflect any
changes in data layout or program organization.

Technical Overview of Atom

The Atom tool kit consists of a driver, an instrumenta­
tion engine, and an analysis run-time system. The
Atom engine performs transformations on an exe­
cutable program, converting it to an intermediate
form. The engine then annotates the intermediate
form and generates a new, instrumented program .

20 Digital Techn ical Journal Vol. 8 No . I 1996

The Atom engine is programmable. Atom accepts
as input an instrumentation file and an analysis file.
The instrumentation file defines the points at which
the program is to be instrumented and what analysis
routine is to be called at each instrumentation point.
The analysis file (defined later in this section) defines
the analysis routines. Atom allows instrumentation of
a program at a very fine level of granularity. It supports
instrumentation before and after

• Program execution

• Shared library loading

• Procedures

• Basic blocks

• Individual instructions

Supporting instrumentation at these points allows
the development of a wide variety of tools, all within
the Atom framework. Examples of these tools are cache
simulators, memory checking tools, and performance
measurement tools. The framework supports the cre­
ation of customized tools and can decrease costs by
simplifying the development of single-use tools.

The instrumentation file is a C language program
that contains calls to the Atom APL The instrumenta­
tion file defines any arguments to be passed to the
analysis routine. Arguments can be register values,
instruction fields, symbol names, addresses, etc. The
instrumentation file is compiled and then linked with
the Atom instrumentation engine to create a tool to
perform the instrumentation on a target program.

The analysis file contains definitions of the routines
that are called from the instrumentation points in the
target program. The analysis routines record events or
process the arguments that are passed from the instru­
mentation points.

By convention, the instrumentation and analysis
files are named with the suffixes inst.c and anal.c,
respectively. Atom is invoked as follows to create an
instrumented executable:

% atom program tool.inst.c tool.anal.c

The atom command is a driver that invokes the
compiler and linker to generate the instrumented
program. The five steps of this process are

1. Compile the instrumentation code.

2. Link the instrumentation code with the Atom
instrumentation engine to create an instrumenta­
tion tool.

3. Compile the analysis code.

4. Link the analysis code with the Atom analysis run­
time system, using the UNIX Id tool with the -r
option so the object may be used as input to
another li nk.

5. Execute the instrumentation tool on the target
program, providing the linked analysis code as an
argument.

An Example Atom Tool for Memory Debugging
The following discussion of an example Atom tool
demonstrates how to use the Atom API to develop a
customized program analysis tool.

The final step produces an instrumented program
linked with the analysis code. Figure 1 shows the
changes in memory layout between the original pro­
gram and the instrumented program.

A common development problem is locating the
source of a memory overwrite. Figure 2 shows a con­
trived example program in which the loop to initialize
an array exceeds the array boundary and overwrites a

Figure 1

LOW
MEMORY

HIGH
MEMORY

.
STACK

READ-ONLY DATA
EXCEPTION DATA

PROGRAM TEXT

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

:

UNINSTRUMENTED
PROGRAM LAYOUT

-TEXT START-

NEW DATA

ST ART ---------

ANALYSIS gp --

OLD DATA

/START~

- PROGRAM gp_

STACK

READ-ONLY DATA
EXCEPTION DATA

ANALYSIS TEXT

INSTRUMENTED
PROGRAM TEXT

ANALYSIS DATA
INITIALIZED

ANALYSIS DATA
UNINITIALIZED
(SET TOO)

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

:

INSTRUMENTED
PROGRAM LAYOUT

PROGRAM
TEXT
ADDRESSES
CHANGED

PROGRAM
DATA
ADDRESSES
UNCHANGED

Source: A. Srivastava and A. Eustace, "ATOM: A System for Building Customized Program Analysis Tools,"
Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,
Orlando, Fla. (June 1994). This paper is also available as Digital's Western Research Laboratory
(WRL) Research Report 94/2.

Memory Layout oflnstrumented Programs

Figure 2

1 long numbers[8] = {0};
2 long *ptr = numbers;
3
4 main()
5 {
6 inti;
7
8 for(i=O; i<25; i++)
9 numbers[i] = i;

10 }

Example Program with Memory Overwrite

I* This pointer is overwritten*/

I* by this array initialization. */

Digital Technical Journal Vol. 8 No. 1 1996 21

22

pointer variable. In this case, the initialization of the
numbers array defined in line 1 overwrites the con­
tents of the variable ptrdefined in line 2. This type of
problem is often difficult and time-consuming to
locate with traditional debugging tools.

Atom can be used to develop a simple tool to locate
the source of the overwrite. The tool would instru­
ment each store instruction in the program and pass
the effective address of the store instruction and the
value being stored to an analysis routine. The analysis
routine would determine if the effective address is the
address being traced and, if so, generate a diagnostic.

The instrumentation and analysis files for the
mem_debug tool are shown in Figure 3.
Instrumentlnit() registers the analysis routines with
the Atom instrumentation engine and specifies that
calls to the get_args() and open_log() routines be
inserted before the program begins executing. A call
to the close_log() routine is dictated when the pro­
gram terminates execution. The Atom instrumenta­
tion engine calls Instrumentlnit() exactly once.

The Atom instrumentation engine calls the
Instrument() routine once for each executable object
in the program. The routine instruments each store
instruction that is not a stack operation with a call to the
analysis routine mem_store(). Each call to the routine
provides the address of the store instruction, the target
address of the store instruction, the value to be stored,
and the file name, procedure name, and line number.

The open_log() and close_log() analysis routines are
self-explanatory. The messages could have been written
to the standard output, because, in this example, they
would not have interfered with the program output.

The get_args() routine reads the value of the
MEM. DEBUG ARCS environment variable to obtain the
data -;_ddress ~o be traced. The tool could have been
written to accept arguments from the command line
using the -toolargs switch. The instrumentation code
would then pass the arguments to the analysis routine.
In the case of this tool, using the environment variable
to pass the arguments is beneficial because the pro­
gram does not have to be reinstrumented to trace a
new address.

The mem_store() routine is called from each store
instruction site that was instrumented. If the target
address of the store operation does not match the
trace address, the routine simply returns. If there is a
match, a diagnostic is logged that gives information
about the location of the store.

To demonstrate how this tool would be used, sup­
pose one has determined by debugging that the vari­
able ptr is being overwritten. The nm command is
used to determine the address of ptr, as follows:

% nm -B program I grep ptr
Ox000001400000 c 0 G ptr

Instrument the program with the mem_debug tool.

Digital Technical Journal Vol. 8 No. l 1996

% atom prog ram mem_debug.inst.c
mem_debug.anal.c

Set the MEM_DEBUG_ARGS environment variable with
the address to trace.

% setenv MEM_DEBUG_ARGS 1400000c0

Run the instrumented program,

% program.atom

and view the log file.

% more program.mem_debug.log

Tracing address Ox1400000c0

Address Ox 1400000c 0 modified with\
value Ox16:

at : Ox1200011c4 Procedu re: ma in\
File: prog ra m. c Line: 9

Using this simple Atom tool, the location of a mem­
ory overwrite can be detected quickly. The instru­
mented program executes at nearly normal speed.
Traditional debugging methods to detect such errors
are much more time-consuming.

Other Tools
An area in which Atom capabilities have proven particu­
larly powerful is for hardware modeling and simulation.
Atom has been used as a teaching tool in university
courses to train students on hardware and operating sys­
tem design. Moreover, Digital hardware designers have
developed sophisticated Atom tools to evaluate designs
for new implementations of the Alpha chip.

The Atom tool kit contains 10 example tools that
demonstrate the capabilities of this technology. The
examples include a branch prediction tool, which is
useful for compiler designers, a procedure tracing tool,
which can be useful in following the flow of unfamiliar
code, and a simple cache simulation tool.

Atom Tool Environments
Analysis of certain types of programs can require use of
specially designed Atom tools. For instance, to analyze
a program that uses POSIX threads, an Atom tool to
handle threads must also be designed, because the
analysis routines will be called from the threads in the
application program. Therefore, the analysis routines
need to be reentrant. They may also need to synchro­
nize access to data that is shared among the threads or
manage data for individual threads. The thread man­
agement in the analysis routines adds overhead to the
execution time of the instrumented program; this
overhead is not necessary for a nonthreaded program.
To effectively support both threaded and nonthreaded
programs, two distinct versions of the same Atom tool
need to coexist. Designers developed the concept of
tool environments to address the issues of providi ng
multiple versions of an Atom tool.

I*
* mem_debug_inst.c - Instrumentation for memory debugging tool
*
* This tool instruments every store operation in an application and
* reports when the application writes to a user-specified address.
* The address should be an address in the data segment, not a
* stack address.
*
* Usage: atom program mem_debug.inst.c mem_debug.anal.c
*
*I

#include <string.h>
#include <cmplrs/atom.inst.h>

I*
* Initializations:
*
*
*

register analysis routines
define the analysis routines to call before and after
program execution

* get_args() - reads environment variable MEM DEBUG ARGS for address to trace
* open_Log() - opens the Log file to record overwrites to the specified address
* close_Log() - closes the Log file at program termination
* mem_store() - checks if a store instruction writes to the specified address
*I

void InstrumentinitCint argc, char **argv)
{

}

AddCaLLProtoC"get_args()");
AddCaLLProtoC"open_Log(const char*)");
AddCaLLProto("close_Log()");
AddCaLLProtoC"mem_storeCVALUE,REGV,Long,const char *,canst char *,int)");

AddCaLLProgram(ProgramBefore, "get_args");
AddCaLLProgram(ProgramBefore, "open_Log",

basename(Cchar *)GetObjName(GetFirstObj())));
AddCaLLProgram(ProgramAfter, "close_Log");

I*
* Instrument each object.
*I

InstrumentCint argc, char *argv[], Obj *obj)
{

Proc
Block
Inst
int

I*

*proc;
*block;
*inst;
base; I* base register of memory reference*/

* Search for all of the store instructions into the data area.
*I

for Cproc = GetFirstObjProc(obj); proc; proc = GetNextProcCproc)) {

Figure 3

for (block= GetFirstBLockCproc); block; block= GetNextBLock(block)){
for (inst= GetFirstinstCblock); inst; inst= GetNextinstCinst)) {

I*
* Instrument memory references. Skip $sp based references
* because they reference the stack, not the data area.
* Memory references are instrumented with a call to the
* me m_s tore analysis routine. The arguments passed are
* the target address of the store instruction,
* the value to be stored at the target address,
* the PC address of the store instruction in the program,
* the procedure name, file name, and source Line for the
* PC address.
*I

Instrumentation and Analysis Code for the mem_debug Tool

Digital Technical Journal Vol. 8 No. 1 1996 23

24

}

}
}

}

if (IslnstTy pe (inst, InstTypeStore)) {
base= Getlnstlnfo(inst, InstRB);
if (base != REG_SP) {

}
}

AddCalllnst(inst, InstBefore, "mem_store",
EffAddrValue,
GetlnstRegEnum(inst, InstRA),
InstPC(inst>,
ProcName(proc>,
ProcfileName(proc>,
Cint)InstLineNo(inst));

I*
* mem_debug.anal.c - analysis routines for memory debugging tool
*
* Usage: setenv MEM_DEBUG_ARGS hex_address before running
* the program.
* Diagnostic output is written to program.mem_debug.log
*I

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

static FILE *log_file;

static caddr t trace_addr;

I*
* Create log file for diagnostics.
*I

void
open_log(const char *progname)
{

char name[200J;

I* Output file for diagnostics*/

I* Address to monitor*/

sprintf(name, "%s.mem_debug.log", progname);
log_ f i le = fop en (name, "w") ;

if (! log_ f i le) {
fprintf(stderr, "mem_debug: Can't create %s\n", name);
fflush(stderr);
exit(1);

}

fprintf(log_file, "Traci ng address Ox%p\n\n", trace_addr);
fflush(log_file);

}

I*
* Close the log file.
*I

void
close_log(void)
{

fclose(log_file);
}

I*
* Get address to trace from the environment.
*I

void
get_args(void)

Figure 3 (continued)

Digital Technical Journal Vol. 8 No. 1 1996

{

char * a ddr;
if (!(addr = getenv("MEM_DEBUG_ARGS"))) {

fprintf(stderr, "mem_debug: set MEM DEBUG_ARGS to he x address\n");
fflush(stderr);
exit(1>;

}

trace addr (caddr_t) strtoul(addr, 0, 16) ;
}

I*
* The target address is about to be modif ied with the given value.
* If this is the address being traced, report the modification.
*I

void
mem_store(

caddr_t
unsigned Long
caddr_t

{

const char
const char
unsigned

ta rget_addr,
value,
pc,
*proc,
*file,
Line)

if (target_addr trace_ addr) {

I* Add r es s being stored into*/
I* Value being stored at target_addr */
I* PC of this store instruction*/
I* Procedure name*/
I* File name*/
I* Line number*/

fprint f(Log_file, "Address Ox %p modified with value Ox %Lx:\n",
target_addr, value);

fprintf(log_file, "\tat : Ox %p ", pc);
if(p r oc != NULL) {

fpr i ntf(log_file,"Procedure: %s , proc) ;
if(fil e != NULL)

f pr i n t f (Log_ f i Le," Fi Le : % s Li n e : % d " , f i Le, L i n e) ;

}
}

}

fprin tf(L og_fil e , "\n");
fflush(log_file);

Figure 3 (continued)

Tool environments accommodate seamless integra­
tion of specialized versions of tools into the Atom tool
kit. They provide a means for extending the Atom kit.
This facility allows the addition of specialized Atom
tools by Digital's layered product groups or by cus­
tomers, while maintaining a consistent user interface.

The versions of the Atom tools hiprof, pixie, and
Third Degree that support POSIX threads are pro­
vided as a separate environment. hiprof is a perfor­
mance analysis tool that collects data similar to but
with more precision than gprof. pixie is a basic block
profiling tool. Third Degree is a memory leak detec­
tion tool.

The following command invokes the Atom-based
pixie tool for use on a nonthreaded program:

% atom program -tool pixie

The following command invokes the version of the
pixie tool that supports threaded programs:

% atom program -tool pix ie -env threads

Tools for other specialized environments can be
provided by defining a new environment name. For
example, Atom tools written to work with a language­
specific run-time environment can be added to the

Atom tool kit by selecting an environment name for
the category of tools. Similarly, tools designed to work
on the kernel could be collected into an environment.

The environment name is used in the names of the
tool's instrumentation, analysis, and description files.
The description file for a tool provides the names
of the instrumentation and analysis files, as well as spe­
cial instructions for compiling and linking the tool.
For example, the pixie description file for threaded
programs is named pixie.threads.desc. It identifies
the threaded versions of the pixie instrumentation and
analysis files . The Atom driver builds the name of
the description file from the arguments to the -tool and
-env switches on the command line. The contents
of the description file then drive the subsequent steps
of the build process.

Tool environments can be added without modifica­
tion to the base Atom technology, thereby providing
extensibility to the tool kit while maintaining a consis­
tent interface.

Compact Relocations
Atom inserts code into the text of the program, thus
changing the location of routines. Atom requires
that relocation information be retained in the

Digital Technical Journal Vol. 8 No. 1 1996 25

executable image created by the linker. This allows
Atom to properly perform relocations on the instru­
mented executable.

During the normal process of linking, the relocation
entries stored in object files are eliminated once they
have been resolved. Because it effectively relinks the
executable, Atom must have access to the relocation
information.

Consider, for example, an application that invokes a
function through a statically initialized function pointer
variable, as shown in the following code segment:

void foo(int a, i nt b)
{

}

void (*ptr_foo)(int, int) foo;

void bar<>
{

C*pt r_foo)C 1,2);
}

The address offunctionfoois stored in the memory
location referenced by the ptr_foo variable. When
Atom instruments this application, the address of
Joo will change, and Atom needs to know to update
the contents of the memory location referenced by
ptr_foo. This is possible only if there is a relocation record
pointing at this memory location. Adding compact relo­
cations to the executable file solves this problem.

Compact relocations are smaller than regular relo­
cations for two reasons. First, the Atom system does
not require all the information in the regular reloca­
tion records in order to instrument an executable.
Atom changes only the layout of the text segment,
so relocation records that describe the data segments
are not needed. Second, the remaining relocations
can often be predicted by analyzing other parts of
the executable file. This property is used to store a
compact form of the remaining relocation records.
Since compact relocation records are represented in a
different form than regular relocations, they are stored
in the .comment section of the object file rather than
in the normal relocation area.

Profiling-directed Optimization

OM and the Atom-based pixie tool can interoperate
using profiling-directed optimization. The Atom­
based pixie tool is a basic block profiler that provides
execution counts for each basic block when the pro­
gram is run. The execution counts are then used as
input to OM for performing optimizations on the exe­
cutable that are driven from actual run-time perfor­
mance data.

As an example, the following steps would be
performed to utilize profiling-directed optimizations
with OM:

26 Digital Technical Journal Vol. 8 No. 1 1996

1. % cc -non_shared -o program *.o
2. % atom -tool pixie program
3. % program.pixie
4. % cc -non_sha red -om

-WL,-om_ireorg_feedback,program *.o

In step 1, a nonshared version of the program
is built. In step 2, the Atom-based pixie tool instru­
ments the program. Step 2 produces program.pixie
and program.Addrs files. Step 3 results in the exe­
cution of the instrumented program to generate a
program.Counts file. This file contains an execution
count for each basic block in the program. The last
step provides the basic block profile as input to OM.
OM rearranges the text segment of the program such
that the most frequently executed basic blocks and
procedures are placed in proximity to each other, thus
improving the instruction cache (I-cache) hit rate.

Product Development Considerations

Bringing the OM and Atom technologies from the lab­
oratory into use on current Digital UNIX production
systems required frequent communication and coordi­
nation between WRL and DUDE engineers working
on opposite coasts of the U.S. The success of both proj­
ects depended upon establishing and maintaining an
atmosphere of cooperation among the engineers at the
two locations. Common goals and criteria for bringing
the technology to product supported the teams during
development and planning work.

Among the product development considerations
for OM and Atom were

1. The products must address a business or customer
requirement.

2. The products must meet customer expectations of
features, usability, quality, and performance.

3. Engineering, quality assurance, and documentation
resources must be identified to ensure that the
products could be enhanced, updated to operate
on new platform releases, and supported through­
out their life cycles.

4. The products must be released at the appropriate
times. Releasing a product too early could result in
high support costs, perhaps at the expense of new
development. Releasing a product too late could
compromise Digital's ability to leverage the new
technology most effectively.

Product Development and Technology Transfer
Process for OM
As part of their research and development efforts,
WRL engineers applied OM to large applications.
Researchers and Digital engineers at ISV porting labo­
ratories worked together to share information and to
diagnose the performance problems of programs in

use on actual production systems, such as relational
database and CAD applications. This cooperative
effort helped engineers determine the types of opti­
mizations that would benefit the broadest range of
applications. In addition, the engineers were able to
identify those optimizations that would be useful
to specific classes of applications and make them
switch-selectable through the OM interface. The per­
formance improvements achieved on ISV applications
enabled OM to meet the criteria for addressing cus­
tomer needs.

Although WRL researchers also applied OM to the
SPEC benchmark suite to measure performance
improvements, the primary focus of the OM tech­
nology development was to provide performance
improvements for applications currently in widespread
use by the Digital UNIX customer base. With the
focus of performance improvements on large cus­
tomer applications, OM satisfied a prominent Digital
business need for inclusion in the Digital UNIX devel­
opment environment.

Engineers discussed the limitation that OM did not
support shared libraries and the programs that used
them. In this respect, the technology would not meet
the expectations of all customers. Many ISV applica­
tions and other performance-sensitive programs, how­
ever, are built nonshared to improve execution times.
Engineers determined that the benefits for this class
of application outweighed this limitation of OM,
and, therefore, the limitation did not prevent moving
forward to develop the prototype into a product.
Developers recognized the risks and support costs
associated with shipping the prototype, yet again
decided that the proven benefits to existing applica­
tions outweighed these factors.

Because of the pressing business and customer
needs for this technology, DUDE and WRL engineer­
ing concurred that OM should be provided as a fully
supported component in Digital UNIX version 3.0.
Full product development commitments from DUDE
engineering, documentation, and quality assurance
could not be made for that release, however. After
discussion, WRL provided technical support and
extensions to OM to address this need. DUDE engi­
neering agreed to provide consulting support to WRL
researchers on object file and symbol table formats and
on evaluations of text and data optimizations.

The next issue the engineers faced was how to inte­
grate OM into the existing development environment.
They evaluated three approaches.

The first approach was to make OM a separate tool
directly accessible to users as /usr/ bin/om. Thus, an
application developer could utilize OM as a separate
step during the build process. This approach offered
two advantages. First, it was similar to the approach
used to achieve the present internal use of OM and

would require few additional modifications to the
Digital UNIX development environment. The second
advantage was that Atom and OM could be more
easily merged into one tool since their usage would be
similar. This merging would provide the potential
efficiencies of a single stream of sources for the object
modification technology.

A major disadvantage of this approach was that it
put additional burden on the application developer.
OM requires a specially linked input file produced by
the linker. This intermediate input file is not a com­
plete executable nor is it a pure OMAGIC file. 10 This
approach would require customers to add and debug
additional build steps to use OM on their applications.
The WRL and DUDE engineers agreed that the user
complexity of this approach would be a significant bar­
rier to user acceptance of OM.

The second approach was to change the compiler
driver to invoke OM for linking an executable. With
this approach, a switch would be added to the com­
piler driver. If this switch was given, the driver would
call /usr/lib/cmplrs/cc/om instead of the system
linker to do the final link.

This approach had the advantage of reducing the
complexity of the user interface for building an applica­
tion with OM. A developer could specify one switch to
the compiler driver, and the driver would automatically
invoke OM. This would allow a developer to introduce
feedback-directed optimizations into the program by
simply relinking with the profiling information, thus
making OM easier to use and less error-prone.

The disadvantage of this second approach was that
the complex symbol resolution process in the linker
would need to be added to OM. The process of per­
forming symbol resolution on Digital UNIX operating
systems is nontrivial. There are special rules, boundary
conditions, and constraints that the linker must under­
stand. OM was designed to modify an already resolved
executable, and any problems introduced from adding
linker semantics would discourage its use. Also, dupli­
cating linker capabilities in OM would require addi­
tional overhead in maintaining both components.

The advantages and disadvantages of the second
approach motivated the development of a third
approach. The compiler driver could be changed to
invoke OM during a postlink optimization step. As
in the second approach, a switch from the developer
would trigger the invocation of OM; however, OM
would be run after the linker had performed symbol
and library resolution.

The third approach is the one currently used. This
method maintains separation between the linking and
optimization phases. When directed by the -om switch,
Id produces a specially linked object that will be used as
input to OM. The compiler driver supplies this object
as input to OM when the linking is completed.

Digital Technical Journal Vol. 8 No. 1 1996 27

The WRL and DUDE engineers found that this
functional separation also improved the efficiency of
the development efforts between WRL and DUDE.
The separation permitted concurrent WRL develop­
ment on OM and DUDE development on Id, with
minimal interference. This approach allowed more
development time to be dedicated to technical issues
rather than dealing with source management and inte­
gration issues.

DUDE engineers added the OM sources into the
Digital UNIX development pool and integrated
updates from WRL. WRL assumed responsibility for
testing OM prior to providing source updates. As pre­
viously outlined, DUDE engineers integrated support
for OM into the existing development environment
tools for the initial release.

Because of proven performance improvements on
ISV applications, committed engineering efforts by
WRL, and testing activities at both Digital sites, engi­
neers judged the technology mature enough for release
on production systems. Efficient development strate­
gies enabled Digital to rapidly turn this leading-edge
technology into a product that benefits an important
segment of the Digital UNIX customer base.

WRL continued engineering support for OM
through the Digital UNIX version 3.0 and 3.2 releases.
Responsibility for the technology gradually shifted
from WRL to DUDE over the course of these releases.
Currently, DUDE fully supports and enhances OM
while WRL continues to provide consultation on the
technology and input for future improvements.

Product Development and Technology Transfer
Process for Atom
WRL deployed early versions of the Atom tool kit at
internal Digital sites, ISV porting laboratories, and
universities, thus allowing developers to experiment
with and evaluate the Atom APL The early availability
of the tool kit promoted use of the Atom technology.
User feedback and requests for features helped the
engineers to more quickly and effectively develop a
robust technology from the prototype.

Engineers throughout Digital recognized Atom as a
unique and useful technology. Atom's API, with
instrumentation and analysis capabilities down to the
instruction level, increased the power and diversity of
tools that could be created for software and hardware
development. Hardware development teams used
Atom to simulate the performance of new Alpha
implementations. Software developers created and
shared Atom tools for debugging and measuring pro­
gram performance. The value of the Atom technology
in solving application development problems provided
the business justification for developing the technol­
ogy into a product.

28 Digital Technical Journal Vol. 8 No. l 1996

The prototype version of Atom had several
limitations.

• Like OM, the prototype version of Atom worked
only on nonshared applications. A production
version of Atom would require support for call­
shared programs and shared libraries, since, by
default, programs are built as call-shared programs.
A viable Atom product offering needed to sup­
port these types of programs, in addition to non­
shared programs.

• Programs needed to be relinked to retain relocation
information before Atom could be used. This addi­
tional build step impaired the usability of Atom.

• The Atom prototype performed poorly because it
consumed a large amount of memory. Much of the
data collected about an executable for optimization
purposes was not needed for program analysis
transformations.

• The Atom API required extensive design and devel­
opment to support call-shared programs and
shared libraries.

The engineers decided to allow the OM and Atom
technologies to diverge so that the differing require­
ments for optimization and program analysis could be
more effectively addressed in each component.

Because the cost of supporting a release of the Atom
prototype would have been high, WRL and DUDE
engineering developed a strategy for simultaneously
releasing the Atom prototype while focusing engineer­
ing efforts on developing the production version. An
Atom Advanced Development Kit (ADK) was released
with Digital UNIX version 3.0 as the initial step of the
strategy. The ADK provided customer access to the
technology with limited support. Engineers viewed
the lack of support for shared executable objects as an
acceptable limitation for the Atom ADK but unaccept­
able for the final product.

In addition to allowing WRL and DUDE engineers
to focus on product development, this first strategic step
permitted the engineering teams more time and flexi­
bility to incrementally add support for Atom into other
production components, such as the linker and the
loader. For usability purposes, minor extensions were
made to the loader to allow it to automatically load
instrumented shared libraries produced by Atom tools.

The second step of the strategy was to provide
updated Atom kits to users as development of the soft­
ware progressed. These kits included the source code
for example tools, manuals, and reference pages. The
update kits performed two functions; they supported
users and they provided feedback to the development
teams. DUDE and WRL engineers posted information
internally within Digital when kits were available and
developed a mailing list of Atom users. The Atom user

community grew to include universities and several
external customers.

Once the Atom ADK and update strategy were
established, DUDE engineering began to implement
support for Atom in the linker. As mentioned earlier,
Atom inserts text into a program and requires reloca­
tion information to create a correctly instrumented
executable. The Atom prototype required a program
to be linked to retain the relocation information, and
this requirement presented a usability problem for
users. Ideally, Atom would be able to instrument the
executables and shared libraries produced by default
by the linker.

Modifying the linker to retain all traditional reloca­
tion information by default was not acceptable since
the size increase in the executable would have been
prohibitive. In some cases, 40 percent of the object file
consists of relocation records. Engineers did not view
an increase of that magnitude as a viable solution. In
addition, this solution conflicted with the goal of
Digital UNIX version 3.0 .to reduce object file size.
As a compromise, DUDE engineering implemented
compact relocation support in the linker. Compact
relocations provided an acceptable solution since they
required far less space than regular relocation records,
typically less than 0.1 percent of the total file size.

Another side effect of using compact relocations as a
solution was that it introduced a dependency between
Atom and Id. All executable objects to be processed by
Atom needed to have been generated with the linker
that contained compact relocation support. There­
fore, to support Atom, layered product libraries and
third-party libraries needed to be relinked with the
compact relocation support.

In Digital UNIX version 3.0, Id was modified to
generate compact relocation information in exe­
cutable objects. This allowed Atom to instrument the
default output of Id. Engineers viewed this capability
as critical to the usability and ultimate success of the
Atom technology. The compact relocation support in
Id was refined and extended over the course of several
Digital UNIX releases as development work with
Atom progressed.

Concurrently, the WRL research team expanded
and began development of the Atom Third Degree
and hiprof tools. WRL engineers also continued with
additions and improvements to a suite of example
Atom tools. ·

After the release of Digital UNIX version 3.0,
DUDE began design and development of the produc­
tion version of the core Atom technology and the APL
DUDE engineers modified and extended the Atom
API as tool development progressed at WRL. During
peak development periods, engineers discussed design
issues daily by telephone and electronic mail.

The original Atom ADK included the source code
for a number of example Atom tools. Because some
of these tools contained hardware implementation
dependencies, they would require ongoing and long­
term support to remain operational on changing
implementations of the Alpha architecture. For the sec;
ond shipment of the Atom AD Kin Digital UNIX ver­
sion 3.2, these high-maintenance tools were removed
and made available through unsupported channels.

Between releases of the ADK on the Digital UNIX
operating system, the engineering teams continued to
deliver update kits. Engineers scheduled delivery of
the update kits to coincide with key milestones in the
software development process. This strategy gave
them more control over the development schedule
and minimized risk. The update kits provided immedi­
ate field test exposure for the evolving Atom software.
The design, development, and kit process was prac­
ticed iteratively over a year to develop the original
ideas into a full product. The Atom update kits were
provided for Digital UNIX version 3.0 and later sys­
tems, since most users did not have access to early ver­
sions of Digital UNIX version 4.0. Providing Atom
kits for use on pre-version 4.0 systems allowed the
software to be exercised in the field on actual applica­
tions prior to its initial release as a supported product.
Although support for earlier operating system versions
added overhead and complexity to the process of pro­
viding the update kits, the engineering teams valued
the abundance of user feedback that the process
yielded. The benefits of user input to the software
development process outweighed the overhead costs.

During Digital UNIX version 4.0 development,
WRL engineers finalized the implementations of the
hiprof and Third Degree tools and transferred the tool
sources to DUDE for further development. The WRL
developers had added support for threaded applica­
tions on pre- version 4.0 Digital UNIX systems.
Because the implementation of threads changed in
version 4.0, DUDE engineers needed to update the
Atom tools accordingly.

DUDE engineers also developed an Atom-based
pixie tool with support for threaded applications. In
fact, the Atom-based pixie tool replaced the original
version of pixie in Digital UNIX version 4.0. The
Atom-based pixie allowed new features such as sup­
port for shared libraries and threads to be more
efficiently added into the product offering. The devel­
opment of an Atom-based pixie tool solved the exten­
sibility problems that were being faced with the
original version of pixie.

WRL engineers also began to use Atom for instru­
menting pre- version 4 .0 Digital UNIX kernels, devel­
oping special tools for collecting kernel statistics.
Atom was extended by DUDE engineering as needed
to support instrumentation and analysis of the kernel.

Digital Technical Journal Vol. 8 No. 1 1996 29

The Atom tool kit and example tools were shipped
with Digital UNIX version 4 .0. The pixie, hiprof, and
Third Degree tools were shipped with the Software
Development Environment subset of Digital UNIX
version 4.0. Research regarding use of Atom for kernel
instrumentation and analysis continues.
· WRL continues to share ideas and consults
with DUDE on the future directions for the Atom
technology.

Conclusions
Developing OM into a product directly from research
proved to be challenging. Problems and issues that
needed to be addressed had to be handled within the
schedule constraints and pressures of a committed
release plan.

In contrast, the ADK method used to deliver the
Atom product allowed the Atom developers to spend
more time on product development issues in an envi­
ronment relatively free from the pressures associated
with daily schedules. The ADK mechanism, however,
probably limited the exposure of Atom technology at
some customer sites.

The close cooperation of engineers from both
research and development was necessary to accom­
plish the goals of the two projects. We believe that a
collaborative development paradigm was key to suc­
cessfully bringing research to product.

Future Directions

This paper describes the evolution of the OM and
Atom technologies through the release of the Digital
UNIX version 4.0 operating system. Digital plans to
investigate many new and improved capabilities, some
intended for future product releases. Plans are under
way to

• Provide support in OM for call-shared programs
and shared libraries.

• Support the use of Atom tools on programs opti­
mized with OM.

• Investigate providing an API to allow program­
mable, customized optimizations to be delivered
through OM.

• Investigate reuse of instrumented shared libraries
by multiple call-shared programs that have been
instrumented with the same Atom tool.

• Research support for Atom tools that provide sys­
temwide and per-process analysis of shared libraries.

• Extend Atom to improve kernel analysis.

• Simplify the use of the profiling-directed optimiza­
tion facilities of Atom and OM through an
improved interface.

30 Digital Technical Journal Vol. 8 No. 1 1996

• Extend the Atom tool kit to provide development
support for thread-safe program analysis tools.

In addition to enhancements to the Atom product,
original Atom-based tools are expected to become avail­
able through the development activities of students and
educators at universities. Internal Digital developers will
continue to develop and share tools as well.

Acknowledgments

Many people contributed to the development of the
OM and Atom products. The following list gives
recognition to those most actively involved. Amitabh
Srivastava led the research and development work at
WRL on OM and Atom and mediated many of the
design discussions on the Atom design. Greg Luec~ of
DUDE designed and implemented the production
version of Atom, compact relocations, and the Atom­
based pixie tool. Alan Eustace developed Atom exam­
ple tools, created the first Atom ADK, wo~ked
diligently with users, developed kernel tools, proVId~d
training and documentation on using Atom, and dis­
played eternal optimism. Russell Kao at WRL con­
tributed the hiprof tool with thread support. Jeremy
Dion and Louis Monier at WRL developed Third
Degree and an Atom-based code coverage tool called
tracker. John Williams and Chris Clark ofDUDE com­
pleted the process of turning the hiprof, pixie and
Third Degree tools into products. Dick Buttlar pro­
vided documentation on every component. Last but
not least, the authors wish to extend a final thanks to
all the users who contributed feedback to the OM and
Atom development teams.

References

1. F. Chow, M. Himelstein, E. Killian, and L. Weber,
"Engineering a RISC Compiler System," Proceedings
of COMPCON, San Francisco, Calif. (March 1986):
132- 137.

2. Western Research Laboratory, located on the Web at
http:/ / www.research.digital.com/wrl.

3. R. Sites and R. Witek, Alpha AXP Architecture Refer­
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

4 . A. Srivastava and D. Wall, "A Practical System for
Intermodule Code Optimization at Link-time," Jour­
nal of Programming Languages, vol. 1 (1993):
1-18. Also available as WRL Research Report 92/6
(December 1992).

5. A. Srivastava, "Unreachable Procedures in Object­
oriented Programming," ACM LOPLAS, vol. 1, no. 4
(December 1992): 355- 364. Also available as WRL
Research Report93/ 4 (August 1993).

6. A. Eustace and A. Srivastava, "ATOM: A Flexible
Interface for Building High Performance Program
Analysis Tools," Proceedings of the Winter 1995
USENIX Conference, New Orleans, La. (January
1995). Also available as WRL Technical Note TN-44
(July 1994).

7. A. Srivastava and A. Eustace, "ATOM: A System for
Building Customized Program Analysis Tools," Pro­
ceedings of the SIGPI.AN '94 Conference on Pro­
gramming Language Design and Implementation,
Orlando, Fla. (June 1994). Also available as WRL
Research Report 94/2 (March 1994).

8. A. Srivastava and D. Wall, "Link-Time Optimization of
Address Calculation on a 64-bit Architecture," Pro­
ceedings of the SIGPI.AN '94 Conference on Pro­
gramming Language Design and Implementation,
Orlando, Fla. (June 1994). Also available as WRL
Research Report 94/1 (February 1994).

9. Digital UNIX Calling Standard for Alpha Systems,
Order No. AA-PY8AC-TE, Digital UNIX version 4.0
or higher (Maynard, Mass.: Digital Equipment Corpo­
ration, 1996).

10. Digital UNIX Assembly Language Programmer's
Guide, Order No. AA-PS31C-TE, Digital UNIX ver­
sion 4.0 or higher (Maynard, Mass.: Digital Equip­
ment Corporation, 1996).

General Reference

J. Larus and E. Schnarr, "EEL: Machine-Independent Exe­
cutable Editing," SIGPI.AN Conference on Programming
Language Design and Implementation (June 1995).

Biographies

Linda S. W ilson
As a principal software engineer in the Digital UNIX
Development Environment group, Linda Wilson leads
the development of program analysis tools for the Digital
UNIX operating system. In prior positions, she was respon­
sible for the delivery of other development environment
components, including DEC FUSE, the dbx debugger,
and run-time libraries on the ULTRIX and Digital UNIX
operating systems. Linda received a B.S. in computer sci­
ence from the Universityof Nebraska-Lincoln. Before
joining Digital in 1989, Linda held software engineering
positions at Masscomp in Westford, Massachusetts, and
Texas Instruments in Austin, Texas.

Craig A. N eth
Craig Neth is a principal software engineer in the Digital
UNIX Development Environment group, where he is the
technical leader oflink-time tools. In prior positions at
Digital, Craig has worked on the OM object modification
tool and the VAX and DEC COBOL compilers, and led
the development of DEC COBOL versions 1 and 2. Craig
received a B.S. in computer science from Purdue University
in 1984 and an M.S. in computer science from the
University of Illinois in 1986.

Michael J. Rickabaugh
Michael Rickabaugh is a principal software engineer in
the Digital UNIX Development Environment group.
He started his Digital career in 1986 in the SEG/ CAD
Engineering group as a software engineer on the DECSIM
logic simulation project. In 1991, Michael transitioned
to the DEC OSF / 1 AXP project and was a member of
the original team responsible for delivering the UNIX
development environment on the DEC OSF / 1 Alpha
platform. He has since been a technical contributor to
all aspects of the Digital UNIX link-time technology
as well as the creator of the ASAXP assembler for the
Windows NT operating system. Michael received a B.S.
in electrical and computer engineering from Carnegie
Mellon University in 1986.

Digital Technical Journal Vol. 8 No. 1 1996 31

Design of excursion
Version 2 for Windows,
Windows NT, and
Windows95

Version 2 of the excursion product is a complete
rewrite of the successful Windows-based X
server software package. Based on release 6
of the X Window System version 11 protocol,
the new product runs on Microsoft's Windows,
Windows NT, and Windows 95 operating sys­
tems. The X server is one of several components
that compose this package. The other compo­
nents are X Image Extension, the control panel
(which constitutes the user interface for product
configuration), the error logger, the application
launcher, and the setup program. An interprocess
communication facility enables the excursion
components to communicate in a uniform fash­
ion under all three operating systems. A unique
server design using object-oriented program­
ming techniques integrates the X graphics con­
text with the Windows device context into a
combined state management facility. The result­
ing implementation maximized graphics perfor­
mance while conserving Windows resources,
w hich are in limited supply under the 16-bit
version of the Windows operating system. The
control panel was coded completely in the C++
programming language, thus making full use
of the Microsoft Foundation Class library to
minimize development time and to ensure
consistency with the Windows user interface
paradigm.

32 Digital Technical Journal Vol. 8 No. 1 1996

I
John T. Freitas
James G. Peterson
Scot A. Aurenz
Charles P. Guldenschuh
Paul J. Ranauro

Digital developed the eXcursion family of display
server products to provide interoperability between
desktop personal computers (PCs) running the
Microsoft Windows operating system and remote
hosts running the X Window System operating system
under the UNIX or Open VMS operating systems. The
first version of the eXcursion X server was a 16-bit
application written specifically for Microsoft Windows
versions 3.0 and 3.1. As the popularity of Windows
increased and desktop systems were connected to cor­
porate networks, the market for X interoperability
grew quickly. The 16-bit eXcursion code, much of
which had been ported from 32-bit UNIX code, was
again ported- this time to Microsoft's Win32 appli­
cation programming interface (API) to support the
Windows NT operating system. When release 6 of
the X Window System version 11 protocol (XllR6)
appeared and a new sample implementation source
kit became available from the X Consortium, the
eXcursion team decided that it was time for a complete
rewrite of the eXcursion software. Microsoft had
established the Win32 API as a uniform coding inter­
face for all its Wmdows-based operating systems. Since
development tools such as 32-bit compilers and
debuggers of sufficient quality and robustness had
become available, it was now possible to implement a
high-quality, 32-bit product. This product would sup­
port the entire range of Windows-based platforms,
from notebook PCs running the Windows operating
system to high-end Alpha systems running the
Windows NT operating system.

Terminology

This paper incorporates certain conventions to clarify
the distinction between the two window systems
under consideration. X window refers to the collection
of data structures, concepts, and operations that con -
stitute a window, as defined in the X Window System
environment. Win32 window refers to a window as
defined in Microsoft's Win32 APL

When referring to a window system as opposed to
a particular window instance, X Window System
is sometimes abbreviated to X. Windows denotes
the Microsoft Windows operating system.

Note that the word bitmap has more than one
meaning. In the X environment, a bitmap is a two­
dimensional array of bits, and a pixmap is a two­
dimensional array of pixels, where each pixel may
consist of one or more bits. Under the Win32 API, the
term bitmap is used exclusively; that is, no distinction
is made between an array of depth 1 and an array of
depth n. In this paper, the term pixmap is used in
its general sense to refer to X pixel arrays, and the
term bitmap refers to the Win32 concept.

Another common point of confusion when dis­
cussing the X Window System environment is the use
of the terms seroer and client. To one familiar with file
and print servers, the meanings of these two terms in
the X environment may seem to be reversed. In the X
environment, the server is a display server, and the
clients are the applications requesting display services.
The X server and the X client applications may reside
on the same PC, but the power of the eXcursion soft­
ware is in its ability to bridge the gap between the
Windows desktop and the traditional Xll UNIX and
Open VMS workstations.

excursion Version 2 Product Goals

The design of eXcursion version 2 was driven primarily
by the following product goals:

• Support X Window System version 11, release 6.

• Support the Microsoft Windows, Windows NT,
and Windows 95 operating systems.

• Code the single source pool to Microsoft's Win32
APL

• Exceed graphics performance of eXcursion version
1 as measured with the standard benchmark tests
Xl lperf and Xbench.

• Preserve maintainability by using modular coding
and limiting changes of the sample implementation
from the X Consortium.

• Maximize reliability by performing extended error
checking and resource management.

• Correct known protocol conformance deficiencies
in version 1. For example, in version 1, plane mask
support was implemented for only a few graphics
operations. Version 2 would provide plane mask
support for all graphics operations.

Components of excursion Version 2

In eXcursion version 1, most of the functions provided
by the product were combined in a single executable.
To conserve resources and to partition the code for
easier maintenance, version 2 is divided into several
separate components or modules. Some of these run
as individual processes, and some are built as dynamic
link libraries (DLLs). A DLL is a shared memory

library module that is linked to the calling program at
run time.

eXcursion version 2 is partitioned into the following
major components:

• X server. The X server is the primary component of
eXcursion version 2. The X server process is respon­
sible for displaying windows and graphics on the
Windows desktop and for sending keyboard,
mouse, and other events to the client application.

• X Image Extension. X extensions are additions to
the server that support functionality not addressed
by the core Xl 1 protocol, such as displaying shaped
(nonrectangular) windows, handling large requests,
testing/recording, and imaging. All extensions
except the X Image Extension (XIE) are imple­
mented internally in the X server. Because of its
size, XIE is implemented as a pair ofDLLs, one for
XIE version 3 and one for XIE version 5.

• Control panel. As the primary user interface, the
control panel provides the user with access to the
many configuration settings. It is an independent
Win32 application implemented using Microsoft
Visual C++ and the Microsoft Foundation Class
(MFC) library.

• Interprocess communication library. The inter­
process communication (IPC) library is an operat­
ing system-independent library used by cooperating
processes or tasks to communicate configuration
and status information.

• Error logger. The error logger is a simple Win32
application that records error and status informa­
tion from other eXcursion components in a win­
dow, a file, or the Windows NT event log.

• Application Launcher. The application launcher is a
Win32 application that starts X client applications
at the request of the X server or the control panel.
The application launcher is invisible to the user.

• Registry interface. The registry interface is an
operating system-independent interface to the
eXcursion configuration profile. The registry inter­
face is implemented as a Win32 DLL.

X Server

The core of the eXcursion product is the X server, a
Win32 application that accepts X requests from client
applications and transforms them into graphics on the
Windows desktop. The device-independent portion of
the server code is ported from the sample implementa­
tion provided by the X Consortium. The device­
dependent portion treats the Win32 APT as the device
interface through which client requests are material­
ized on the screen. The eXcursion X server is illus­
trated in Figure 1.

Digital Technical Journal Vol. 8 No. 1 1996 33

INTERNAL WINDOW MANAGER

X REQUESTS

X EVENTS
NETWORK
TRANSPORT

DEVICE-INDEPENDENT DEVICE-DEPENDENT WIN32 FUNCTION CALLS

WIN32 MESSAGES CODE CODE

Figure 1
The eXcursion X Server

The server can operate in one of two modes: single­
window mode or multiwindow mode. In single­
window mode, the server creates one Win32 window,
which represents the X root window. All descendant
windows and their contents are drawn into the root
window using Win32 function calls. In multiwindow
mode, the root window is a virtual window; that is, it is
never drawn on the screen. Each top-level child of the
root window has a corresponding Win32 window,
which is created when the X window is mapped. All
descendants of a top-level window are drawn inside
the Win32 window with Win32 calls. Multiwindow
mode thereby creates a desktop environment in which
X applications are peers of other Win32 applications.

Single-window mode is useful for emulating a com­
plete workstation environment including the window
manager and the session or desktop manager. In multi­
window mode, drawing to and getting input from the
root window is restricted by the X server to prevent
conflicts with the Microsoft Windows system's use
of the desktop window. Despite this restriction, the
multiwindow mode, when used with the native win­
dow manager, provides the cleanest integration of the
X and Windows environments.

Resource Management and Performance

Both the X and Win32 systems have built-in notions
of graphics state and resource allocation . The seman -
tics and usage of the concept, however, are quite dif­
ferent in the two window systems.

In X, graphics state is maintained in a data structure
known as a graphics context (GC). A GC has an inde­
pendent existence and may be created, destroyed,
updated, queried, and copied at will by the X applica­
tion. During graphics operations, a GC is associated
with the X "drawable" (window or pixmap) being
drawn into, and information in the GC is used to fully
define the operation. For example, the GC may specify
foreground or background colors, line styles, or font
information.

The Win32 API has a concept called a device con­
text (DC), which also contains state information but
whose purpose is more closely related to providing
device independence. Consequently, two different
types of DCs are required under the Win32 API,

34 Digital Technical Journal Vol. 8 No. 1 1996

depending on whether the graphics operation is draw­
ing to a window or to a bitmap. Furthermore, a win­
dow DC may be allocated either permanently or from
a cache, depending on its expected lifetime. Any draw­
ing operation therefore requires that both the GC
used in the X graphics request and the DC used in the
ultimate Win32 call be properly set up and synchro­
nized. The manner in which this is done has a signifi­
cant effect on the graphics performance of the server.

Before an X graphics operation can be started, the
GC must be validated. Validation is a process of
preparing the output device to render the graphics
properly. In the case of the eXcursion server, the out­
put device is a Win32 DC. For every graphics com­
mand, the GC must be checked for changes and the
appropriate Win32 objects and state values must be
selected into the DC. This process can be very time­
consuming. The key to maximizing performance is to
recognize that most operations are repetitive. A typical
stream ofX requests tends to contain many commands
directed at the same window with the same GC.
Therefore, the way to reduce GC/ DC validation time
is to cache the most recent GC/ DC pair so that subse­
quent commands that use the same combination need
not trigger a validation step. In some cases, graphics
operations will toggle between two or more GCs. (For
example, the CopyArea operation takes a source and a
destination .) The performance in these cases can be
improved by simply caching more than one recent
GC/DC pair. Tuning experiments on the server
revealed that a cache size between 2 and 4 was suffi­
cient to maximize performance. Under the Windows
and Windows 95 operating systems, where resources
are limited, a cache size of 2 is used. Under the
Windows NT operating system, the cache size is 4.

In the eXcursion server, the notion of a cached
GC/ DC pair is encapsulated in a C++ class called a
WXDC. The WXDC remembers the Win32 objects that
have been selected into the DC and the last GC that was
used with it. As long as these elements do not change
from one graphics operation to the next, no validation
is necessary. If the client application changes the con­
tents of the GC, any affected objects in the DC are
tagged and the next graphics operation on that WXDC
will require new objects to be selected into the DC.

Events in the window system can also cause WXDC
elements to become invalid. For example, if the win­
dow is moved on the screen by the window manager,
its clip list may have changed. This causes the WXDC
to invalidate the clip region in its DC. (Clip list and
region are defined in the following section.) The next
graphics operation on that window will require the
clip region to be recalculated and reloaded.

Clipping in Single-window Mode
In the X Window System environment, all descen­
dants of the root window have a clip list, which is a list
of rectangles that defines the visible area of the win­
dow. The clip list is equal to the area of the child
window minus any areas that are occluded by other
X windows. Before drawing into a descendant win­
dow, the server must convert the clip list into a Win32
region. In the Win32 API, a region is a polygonal area,
not necessarily rectangular, that can be selected into
a DC for clipping. Before initiating a graphics out­
put operation, the target WXDC checks to see if the
current region for the window is valid. If it is not, the
X clip list is converted to a Win32 region and com­
bined with the client-supplied clip list in the GC, if
any. The result is selected into the output DC.

Clipping in Multiwindow Mode
In multiwindow mode, the root window is invisible.
Each top-level X window (first-generation child of the
root) corresponds to a Win32 window on the desktop.
No dipping is necessary for these windows, because
Win32 does this automatically. For windows below
the first generation, dipping is accomplished in a man­
ner similar to that used in single-window mode, except
that the offset of the dip region must be adjusted to be
relative to the top-level window instead of relative to
the root window.

Graphics Rendering
Graphics rendering is at the heart of the X server. Two
of the core goals for the excursion version 2 project
were to significantly improve server performance over
that of the eXcursion version 1 server and to improve
server compliance to the X protocol specification.
Figure 2 compares the performance of the eXcursion
version 2 server with that of the version 1 server. The
standard benchmark tests Xl lperf and Xbench were
run over a local area network to eXcursion running
on a 66-megahertz Pentium processor with an S3
video card.

The sample X server upon which the eXcursion X
server is based provides a machine-independent layer
that is capable of rendering all X graphics through a
small set of device-dependent functions. In the
eXcursion X server, the Win32 functions provide the
virtual hardware interface. For maximum perfor­
mance, X graphics requests are passed to the Win32

100

90

!z 80
LU

as 70
>
0 60
a:
ll. 50
~
!z 40

~ 30
a:
~ 20

10

-
- -

-

o.__~en~-':"::.L.._....J....L..---1...J.._-1...J.._~~--1......L--1......L_
en en en en en en :.::

LU
z
0
I-­en
LU
z
::J

Performance

LU
z
0
I-en
...J
...J
u::

LU LU LU LU LU a: z z z z z ,0::
0 0 0 0 0 ~
I- I- I- I- I- x en en en en en
I- (.) I- x x
::J a: x LU
CD ,0:: LU ...J

I- ll.
~
0
(.)

PERFORMANCE BENCHMARK

excursion excursion
Benchmark Version 1 Version 2 Improvement

XBench
li neStones 135,735 239,740 76.6%
fi ll Stones 38,083 74,331 95.2%
bl itStones 59,743 88,320 47.8%
arcStones 2, 172,720 3,662,770 68.6%
textStones 156, 190 214,762 37.5%
complexStones 71,633 71,699 0.1%
XS tones 80,057 126,408 57.9%

X11perf
Xmark 1.6495 2.5805 56.4%

Notes:
The test machine was a DECpc XL 566.

Since excursion version 1 did not support 16-bit fonts, the version 2
numbers were substituted to obtain the Xmark number.

Figure 2
Comparison of eXcursion Version 1 and Version 2
Performance

API as early as possible without compromising the
requested rendering. Many X graphics requests map
neatly into Win32 calls with little or no data manipu­
lation . Some complex graphics requests, however,
cannot be practically mapped into high-level Win32
calls and achieve proper pixelization. In such cases, the
machine-independent functions are called as helper
functions to break the request down into simpler
graphics requests.

GDI Context Switching To reduce context switching,
Windows batches graphics device interface (GDI)
calls. The default GDI batch size is 20, but this limit
can be adjusted per thread. Testing with a mix of all X
requests showed that an overall performance increase
of about 9 percent could be achieved by increasing the
GDI batch limit to 30. At this level, there is no mea­
surable latency, and, furthermore, increasing the batch
size beyond this point had no measurable benefit.

Digital Technical Journal Vol. 8 No. 1 1996 35

Some competing X server products set the batch size
very high (100) at the beginning of every request and
flush the queue at the end. This approach has no mea­
surable benefit over our simpler method, probably
because the Windows operating system already per­
forms timer-based flushing to prevent drawing latency.

Similarly, whenever possible, Win32 graphics calls
are combined to reduce the overhead of context
switching. For example, an X Poly Line request could
be rendered with a series of Win32 LineTo calls,
but it is much more efficient to render the PolyLine
request with a single Win32 PolyLine call. Similarly, a
Poly Rectangle X request is best rendered with a single
PolyPolyLine call.

Solid Fills Many different Win32 resources such as
pens, brushes, fonts, and clip regions may be required
for any given graphics request. The resources needed
are determined by the graphics operation itself and the
state of the X GC. As noted earlier, these resources are
created as needed and managed by the WXDC objects,
removing significant complexity and nearly redundant
code from the actual graphics drawing routines.

Windows Pen structures provide color and dash
pattern when dra\ving line objects. For drawing lines,
segments, and arcs, the X server creates and uses Pens
that correspond to the GC state. In some cases, how­
ever, exact pixclization cannot be achieved when using
Windows Pens. Examples of this are drawing wide
lines with raster operations other than GXcopy or
with long, dash patterns. In these cases, machine­
independent functions are used to reduce the request
to a set of spans (single-width horizontal lines) to be
filled. The use of Pens is also abandoned in special
cases when the highly optimized GDI pattern block
transfer (PatBlt) function can be used. PatBlt fills rec­
tangular regions with specified colors or patterns. It is
faster, for example, to use the PatBlt function to draw
vertical or horizontal lines than to use the Windows
traditional line-drawing functions.

Windows Brush structures provide color and pat­
tern when drawing filled rectangles, filled polygons,
and filled arcs. Again, for performance reasons, the
PatBlt function is often used even when there is a
higher-level function that seems to be a closer match.
For example, PatBlt can perform the X PolyPoint
request about 10 percent faster than SetPixelV, the
Windows standard call for setting single pixel values.
Similarly, PatBlt can perform the X PolyFillRect
request about 14 percent faster than the Windows
FillRectangle call.

Tile and Stipple Fills An X pixmap can be specified as a
pattern to be used when performing fill operations.
When the pixmap is created, it is realized as a Win32
bitmap. When the pixmap has a depth greater than 1,
it is used as a color tile that will be used for the fill. If

36 Digital Technical Journal Vol. 8 No. 1 1996

the pixmap has a depth of 1, it can be used as either a
transparent or an opaque stipple. An opaque stipple
draws both the GC's foreground and background col­
ors, where the stipple is 1 and O respectively. A trans­
parent stipple is similar except that it leaves the
destination untouched where the stipple is 0.

When the tile or opaque stipple is 8 by 8 or smaller,
a Win32 color brush is created and cached for the
drawing. On the Windows NT system, brushes larger
than 8 by 8 can be created, but our experience has
shown it to be slower to draw with them than it is to
perform a series of bit block transfer (BitBlt) opera­
tions from the tile/stipple bitmap to the destination.

Transparent Stipple Fills There is a Win32 function,
MaskBlt, that seems ideally suited for performing
transparent stipple fills. This function, however, was
not fully implemented on all platforms at the time we
designed the eXcursion version 2 software product.
Without this function, there is no easy way in the
Win32 environment to perform the transparent stip­
ple operations. When the foreground color is either
O or OxFFFF, the raster operation can be remapped
to get the proper effect. General rectangular fills that
do not meet the requirements of the special case previ­
ously mentioned must be accomplished by first con­
verting the stipple bitmap to the depth of the
destination and then remapping the raster operation.
In general cases that are not rectangular fills, machine­
independent functions are called to break down the
request into spans.

Image Requests The Getimage and Putlmage
requests are other examples of X graphics requests
that do not map well into the Win32 APL The only
way in the Win32 environment to put image data on
the screen is to first create a Win32 bitmap and initial­
ize it with the image data, and then call the BitBlt
function to copy the bitmap to the screen. X image
data always lists the top scan lines first, whereas the
bottom scan lines are listed first in Windows bitmap
data. Therefore, before the bitmap is initialized, the
X image data must be scan-line flipped. Similarly,
the X Getimage request requires the use of an inter­
mediate bitmap and also requires the scan-line flip.

Plane Mask Support Any graphics operation in X can
be modified by setting a plane mask in the GC. The
plane mask specifies which bits of the destination pixel
are allowed to be changed. Without a plane mask, an
X graphics operation may be defined as

dst - src ® dst,

where ® is one of the 16 binary raster operations
(e.g., OR, AND, and XOR). When a plane mask is
given, the following assignment defines the destina­
tion pixel:

dst +--- ((src ® dst) & pm) I (dst & -pm)

Most video hardware devices support plane masking,
and those that do not support it generally provide fast
access to video random-access memory (RAM). The
Win32 API, however, provides neither plane masking
nor direct video RAM access. To understand why, you
must realize that Windows has virtualized the color
handling in an attempt to mediate conflicts between
applications that would otherwise want to modify the
colormap (the pixel-to-color mapping table) . In this
virtual color environment, the concept of plane masks
has no meaning because Win32 applications need not
know the pixel value that corresponds to a particular
color. See the section Color Resource Management for
an explanation of how the eXcursion software manages
to assign specific pixel values to colors.

In the general plane mask case, it is necessary for the
X server to first save the contents of the destination in
a bitmap. The graphics can then be temporarily drawn
without regard to the plane mask. Those bits in the
destination that are specified by the plane mask
as being unaffected can then be restored from th~ s~ved
bitmap. This process will work in every c_ase but 1s ~ef­
ficient since it involves several graphics operanons
before achieving the final result. Many special cases can
be reduced to one or two simple steps by modifying the
source color and raster operation. Table 1 shows how
the source color and raster operation can be set to
achieve the plane mask effect. The eXcursion X server
uses these optimizations for many graphics operations
when the source fill is a solid color.

Internal Window Manager
In the absence of a window manager, the eXcursion
server creates all windows as pop-up windows. All win­
dows, including top-level windows in multi.window
mode are undecorated. They have no Win32 borders,
title b~rs, or system menus. To move, size, minimi~e,
maximize, or close windows, the user must run a wm­
dow manager.

An eXcursion user always has the option of using
one of the many X-based window managers available,
such as the Motif Window Manager. However, many
users will want a window manager paradigm that is
consistent with Windows so that all windows on the
desktop have the same user interface. To accomplish
this a built-in window manager is provided as part of

' the eXcursion server. This internal window manager
is operative only in multiwindow mode. . .

The internal window manager, although linked with
the server, is functionally isolated from the rest of the
code so that it can easily be disabled. This allows exter­
nal window managers to be used and also facilitates
debugging by allowing problems to be isolated. The
window manager creates a "hook" into the server's
window procedure, so that all Win32 messages are first

examined by the window manager. This gives the
window manager the opportunity to act on window
management-related messages such as those that indi­
cate a change in the window's configuration or state.
If the window manager decides to handle a message, it
is removed from the queue, and the server never sees
it. If the window manager is not interested, the mes­
sage is passed on to the normal window procedure. .

The purpose of the internal window manager 1s
to give X windows the same appearance and behavior
as Win32 windows that are created by typical desk­
top applications, such as word processors and
spreadsheets. When an X window is mapped . for
the first time, the internal window manager receives
a Win32 WM_CREATE message. Before the window
becomes visible on the screen, the window man­
ager alters the style of the Win32 window to
WS OVERLAPPEDWINDOW. Win32 windows with
this-style are automatically managed by Windows,
which handles moving, resizing, iconifying, maximiz­
ing, and closing the windows. Each of these actions
causes a corresponding message to be sent to the
server's window procedure. The internal window
manager intercepts the messages and dispatches them
to the appropriate internal function.

The role of the internal window manager comple­
ments the role of the server. The server processes client
requests on X windows and translates them into opera­
tions on Win32 windows. The internal window man­
ager handles Windows messages that indic~te changes
to a Win32 window and translates them mto corre­
sponding changes to the underlying X windo~. For
example, the most important message that the wmdow
manager handles is WM_WINDOWPOSCHANGING.
This message is sent just before any change in the win­
dow's position, size, stacking order, or visibility. If this
message indicates that the window size changed, the
window manager changes the size of the correspond­
ing X window and sends a ConfigureNotify event to
the client. Similarly, the window manager translates
other user-directed events such as focus change, win­
dow stacking, and iconification into changes to the
underlying X data structures. In most cases, the~­
dow manager does this by calling into the device­
independent layer, thus simulating an X request that
would occur from an external window manager.

Mouse, Keyboard, and Input Focus
Mouse actions and keystrokes are received by the
eXcursion server as Win32 messages. Each message
contains information about the window that received
the input and the time of the input. For mouse moves
and clicks, the server uses the window information to
locate the corresponding X window and forwards an
X event to that window. Keyboard input is forwarded
to the window that currently has X focus.

Digital Technical Journal Vol. 8 No. l 1996 37

Table 1
Plane Mask Optimizations

Requested X Raster src O 0 1 1 Modified Source Color and
Operation dst O 1 0 1 Notes Raster Operations

GXclear 0 0 0 0 4 src - -pm, rop - and
GXand 0 0 0 1 src - src I -pm

GXandReverse 0 0 0 6 src - src I -pm
src - -pm, rop - xor

GXcopy 0 0 8 src - -pm, rop - and
src - src & pm, rop - or

GXcopy 0 0 8 src - pm, rop - or
(src & pm) = pm

GXcopy 0 0 8 src - src I -pm, rop - and
(src & pm)= 0

GXandlnverted 0 0 0 2 src - src & pm

GXnoop 0 0 1 10

GXxor 0 0 2 src - src & pm

GXor 0 1 1 2 src - src & pm

GXnor 0 0 0 7 src - src & pm
src - -pm, rop - xor

GXequiv 0 0 1 src - src I -pm
GXinvert 0 0 5 src - pm, rop - xor
GXorReverse 0 7 src - src & pm

src - -pm, rop - xor
GXcopylnverted 0 0 9 src - -pm, rop - and

src - -src & pm, rop - or
GXorlnverted 0 1 src - src I -pm
GXnand 0 6 src - src I -pm

src - -pm, rop - xor
GXset 3 src - pm, rop - or

Notes:

1. dst is unchanged when src equals 1 for these raster operations. Therefore, to preserve the value of dst when
pm equals 0, set src equal to 1.

2. dst is unchanged when src equals O for these raster operations. Therefore, to preserve the value of dst when
pm equals 0, set src equal to 0.

3. This operation sets all dst bits to 1 except where the plane mask equals 0. This can be done simply by ORing
pm into dst.

4. This operation clears all dst bits except where the plane mask equals 0. This can be done simply by AN Ding
pm into dst.

5. XORing with 1 has the effect of inverting. To invert only where pm equals 1, XOR pm with dst.

6. These operations are performed in two steps. Note that dst is inverted when src equals 1. First perform the
operation with src set to 1 where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

7. These operations are performed in two steps. Note that dst is inverted when src equals 0. First perform the
operation with src set to O where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

8. This operation is performed in two steps. First dst is set to O whenever pm equals 1. Then dst is set to 1 when­
ever both pm and src equal 1. The two special cases can be reduced to operations that use GXset and GXclear.

9. This operation is performed in two steps. First dst is set to O whenever pm equals 1. Then dst is set to 1 when­
ever pm equals 1 and src equals 0.

10. dst is unchanged; therefore, no operation is required.

38 Digital Technical Journal Vol. 8 No. 1 1996

The X server is a single application in the Win32
environment that "owns" all the X windows it creates.
From the user's perspective, though, there may appear
to be more than one X application running, each with
its own collection of windows. The user expects to
be able to shift the keyboard focus from one window
to another in the same fashion that focus is shifted
between other applications. When an external window
manager is in use, focus control is straightforward.
The window manager, using whatever semantic it
was designed for, monitors mouse events and shifts
focus accordingly. However, the semantic model for
this may or may not be consistent with the Win32
model. In either case, the window decorations, e.g.,
borders, title bars, and menus, are almost guaranteed
to be different. A user who wants a consistent user
interface model across all applications must employ
the internal window manager.

At any given time, one window on the screen has
Win32 focus and one X window has X focus. The two
windows are not necessarily the same. Since the X
server creates and owns all the X windows in use, the
server receives keyboard input when any one of its
windows has Win32 focus . The keystrokes are not
necessarily sent to the underlying X window, however.
They are sent to the window that has X focus. The
internal window manager assigns X focus to the X win­
dow that receives Win32 focus. The client receives
notification of this event and may decide to assign X
focus to some other window, perhaps a child window.

The server must therefore keep track of both the
X window that currently has focus and the state of
Win32 focus. When the server loses Win32 focus, the
X focus is assigned to the root window. When the
server receives Win32 focus, X focus is assigned to the
X window that previously had it. Whenever X focus is
changed by an application or by the window manager,
the current X focus state is cached so that it can be
restored later, if necessary.

Font/Vlanage,nent
Fonts and text functionality make up a significant por­
tion of any graphics architecture. Both the X and the
Win32 systems define a rich set of text-rendering
operations and can process several font formats.

X and Win32 Fonts The X font management library is
a modular architecture that defines an API for reading
and writing individual font formats . The module that
implements the API for a given font format is called a
renderer. This approach allows X to support several
font formats: the library's renderer modules convert
external formats to a single, internal bitmap format,
which is used for all drawing operations. The term
X font refers to font data in this internal format.

The font management library supports both bitmap
and scalable outline fonts. Bitmap font glyphs are sim­
ply reformatted and used. Scalable formats, such as
Adobe Typel, are rasterized on demand into the X
font format.

For maximum performance, the server draws text
with native Win32 fonts using the Win32 APL Win32
fonts are bitmap fonts in the FON format. Win32
functionality covers the great majority of text-drawing
operations, .but there are a few cases in which it is
either not possible or not efficient to use Win32 fonts .

The server can also draw directly with the X fonts to
provide full X font support and complete text-drawing
functionality. This method uses Win32 BitB!t() opera­
tions to copy the character glyphs to the display as
bitmaps. Drawing speed with this method is accept­
able but not maximum.

Therefore, both X and Win32 fonts are used. The
Win32 fonts may be thought of as optional accelera­
tors: the server uses them whenever possible and falls
back to the X fonts when necessary. The decision to
fall back can be made on a variety of conditions. This
technique has also proved useful in working around
problems such as text-drawing bugs in individual
video drivers.

Since scalable font outlines are rasterized into
bitmaps at run time, they are generally drawn directly
with the internal X font format. The extra work of
compiling a companion Win32 font at run time gener­
ally outweighs its value as an accelerator.

X bitmap fonts are most commonly distributed in
the Bitmap Distribution Format (BDF), an ASCII text
source file . The eXcursion team wrote a font compiler
tool that generates native Win32 (FON format) fonts
from the BDF sources. The fonts created can be used
by any Win32 application.

The compiler can generate either the commonly
used version 2 format or the extended version 3 for­
mat, which is necessary for large fonts that require
more than 64 kilobytes (KB) of glyph storage. Figure 3
illustrates the process of generating equivalent X and
Win32 fonts from a common source.

The X font format contains extra information (e.g.,
metrics and properties) that cannot be derived from

BDF FONT

Figure 3
Font Conversion

X FONT
LIBRARY

EXCURSION
FONT
COMPILER

Digital Technical Journal

X FONT

WINDOWS (FON)
FONT

Vol. 8 No. 1 1996 39

the Win32 font. Therefore, the X and Win32 fonts are
used together; the X information comes from the
X font and the Win32 font is used by the Win32 APL

Realizing Win32 and X Fonts When the X server first
opens a font, it invokes the function RealizeFont().
This function gives the server an opportunity to initial­
ize data structures and perform any format-specific
operations necessary to make the font available.

To make a Win32 font available for drawing,
the server retrieves the filename of the font from the
server's look-up table and registers it with the Win32
API using the function AddFontResource(). A handle
to the font is obtained from CreateFontindirect(), and
thereafter the handle is selected into the desired DC
for drawing operations. If the Win32 realization fails
for any reason, the code simply realizes the X font
instead. Failing to realize a Win32 font does not neces­
sarily imply an error condition. Such failure happens in
any case in which the server decides that it is best to
use the X font directly.

The internal X font format is a set of data structures.
The glyphs are stored in conventional arrays in user
memory. To improve performance, the server realizes
an X font by writing all glyphs to a Win32 bitmap in
off-screen memory. CreateBitmap() returns a handle
for later reference, and the glyphs in the bitmap are
indexed for use in drawing operations.

Drawing with Win32 and X Fonts The glyphs in X text
strings are often kerned, that is, overlapped for best
typographic appearance. To draw with Win32 fonts,
the server emulates the way X draws text by using
ExtTextOut(), which uses an intercharacter spacing
vector to place the individual glyphs. The font's X met­
rics are used directly to calculate this vector.

Glyphs from X fonts are drawn by performing
BitBlts from the Win32 bitmap to the target window
or bitmap. The server places the glyphs using the font's
X metrics as described in the previous paragraph.

Color Resource Management
Although some X Window System concepts and struc­
tures map fairly closely to those in the Win32 system,
color resource management is handled very differ­
ently. The difference is most evident when dealing
with pseudocolor video systems. Consequently, this
paper describes only this case.

The X Window System environment shares 256 col­
ormap cells among all applications that use the default
colormap (i.e., those that do not have a private col­
ormap). Applications can allocate cells in the default
colormap to protect them from modification by other
applications. In contrast, the Win32 system allows
each application complete access to the system palette
while the application has focus and maps the palettes
of the windows without focus as best it can.

40 Digital Technical Journal Vol. 8 No . 1 1996

In the X Window System environment, when an
application reserves a colormap cell, it references the
cell with a pixel value. This value is an index into the
colormap and is used to look up the value that will
actually be stored in screen memory when that pixel
value is used in a drawing operation.

In the Win32 system, color management is handled
by the palette manager through a palette structure.
Each application has a logical palette, and a single sys­
tem palette contains the colors currently mapped to
the hardware colormap. Applications reference colors
relative to their logical palette, and the palette man -
ager handles the mapping between the logical palette
and the system palette. When an application is given
focus, the palette manager maps all the colors from the
logical palette into the system palette. If the system
palette does not have enough empty cells, the palette
manager frees cells allocated to other applications. If
this occurs, the palette manager will attempt to remap
the other applications' colors into any remaining free
cells in the system colormap. If not enough cells are
free, any remaining unmapped colors are mapped to
the system palette colors that most closely match.

Because of this way of handling color resource man­
agement, an application does not know what value is
being stored in screen memory for any particular color
and the value stored for any color can change over the
lifetime of the application. This situation presents sig­
nificant difficulties for X operations that require exact
knowledge of the pixel values in screen memory, such
as the Getlmage operation and operations involving
plane masks. The server works around the difficulties
by creating two Win32 logical palettes.

The first palette, i.e., the working palette, corre­
sponds exactly to the X default colormap and does not
allow sharing of the palette by Win32 applications.
Whenever an X window has focus, the working palette
is in use. This causes the Win32 palette manager to set
up the system palette such that it directly corresponds
to the X colormap, and operations that are pixel based
work properly.

The other palette, i.e., the identity palette, is set up
to correspond exactly to the system palette. The iden­
tity palette is used whenever no X window has focus.
Because of the correspondence, no translation is
involved between the identity palette and the system
palette, which allows the X server to know what pixel
value is stored in screen memory.

The X Window System environment allows for pri­
vate colormaps, which are created and used by a single
application. The server creates a working palette for
every colormap created. When the colormap is installed
(normally by the window manager when the X applica­
tion is given focus}, the eXcursion software installs the
working palette associated with the private colonnap.

The eXcursion X server currently supports tl1e
PseudoColor visual class and the StaticGray depth 1

visual class, which is mainly used for bitmaps.
eXcursion version 1 also supported a StaticColor visual
class for 16-color video graphics array (VGA) displays.
eXcursion version 2 treats VGA devices identically to
PseudoColor devices and allows the Windows palette
manager to generate dithering patterns for the
unavailable colors.

Network Interface
With the release of Xl 1R6, the X Consortium com­
bined all transport-specific code into a single place
in the source tree, the X transport interface. The
eXcursion team extended the X transport interface to
include Network Computing Device's (NCD's)
Xremote serial line transport. Combined with the
transmission control protocol/internet protocol
(TCP /IP) and DECnet transports, the eXcursion
product can now execute X sessions over any of these
transports simultaneously. The eXcursion product
supports any TCP /IP stack that complies with the
Winsock version 1.1 implementation, PATHWORKS
DECnet protocol, and NCD's Xremote protocol for
serial line.

The X transport interface provides functions that
are common to all transports, such as parsing an
address into a host and port number. The interface
does not provide an abstraction for the select() call,
because it assumes that this call is transport indepen­
dent. Unfortunately, the Xremote protocol requires
an independent select() mechanism, and, thus, it
was necessary to implement a select() abstraction to
combine the transport-independent select() with the
Xremote select(). Although somewhat compromised
by this addition, performance was a problem only
when the Xremote protocol was used in combination
with either the TCP /IP or the DECnet protocol.

X Image Extension

eXcursion version 2 provides versions 3 and 5 of the
X Image Extension to support a wide range ofimaging
applications. Because it is a large body of code, XIE
is implemented as a pair ofWin32 DLLs to conserve
memory on systems that will not be running applica­
tions that use XIE.

Normally, access to a DLL is one-way. Applications
can load and make function calls into a DLL, but
because it is linked dynamically at run time, the DLL
code cannot make function calls back into the calling
application. XIE, however, must call into the device­
dependent layer of the server to perform any required
drawing after processing its imaging requests. To per­
mit this, an addition to the interface was designed.
When the XIE DLL is initialized, the caller supplies a
list of pointers to the functions needed by the XIE.

The DLL fills an array with these pointers and then
calls back indirectly through the array. On the
Windows operating system, this design could create a
problem because under Win32 APis, global data in a
DLL is not instanced; that is, the code is not reentrant.
The approach works in this case because there is only
one copy of the DLL loaded. If another application
was sharing the DLL, the pointers would be overwrit­
ten by the second initialization.

Control Panel

The eXcursion control panel is the primary interface
through which the user configures and controls the
product. Some other components create simple win­
dows or icons, but these functions are limited. The
control panel constitutes 90 percent of the user inter­
face for the eXcursion application. This fact makes the
control panel an ideal candidate for the rapid applica -
tion development features of the Microsoft Visual
C++ environment. The control panel is a Win32 appli­
cation coded almost entirely in C++ and linked with
the Microsoft Foundation Class library.

The main purpose of the control panel is to pre­
sent a manageable interface through which the user
can view and modify the eXcursion configuration pro­
file. To do this in a manner consistent with the new
Windows 95 shell, the Property Sheet MFC object
was chosen. Property Sheets are tabbed dialog boxes
that have the advantage of organizing large amounts
of data settings in a compact space. They are used
extensively by the Windows 95 operating system and
by the most recent versions of Microsoft applications.

The Property Sheet object is a subclass of the
Windows object and is essentially a container for the
tabbed pages. Each tab, when clicked by the user, dis­
plays a dialog box that is subclassed from the MFC
Property Page object. The individual pages can be
visually configured and revised using the class wizard
feature of Microsoft Visual C++. The designer simply
selects dialog box controls such as buttons, drop lists,
or edit fields and positions them on the dialog box.
The code to handle user actions is then filled in.

The eXcursion control panel is shown in Figure 4 .
We constructed an initial prototype of the control
panel application with about 60 percent of the final
functionality in less than one month.

Interprocess Communication Library

eXcursion version 2 consists of several cooperating
processes that must communicate and synchronize
with one another. When a remote X application is
started by the server or the control panel, the applica­
tion launcher signals when the operation is complete.

Digital Technical Journal Vol. 8 No . l 1996 41

excursion Control Panel

XDMCP Extensions

[.. ! .. ~-~~] Accounts Applications Display Fonts

Communications

Keyboard I Mouse

Modem I
Logging I Access I

eXcursion Control Panel

Copyright e 1995
Digital Equipment Corporation

Computer Name:
Registered to:
Serial Number:
Installed Path:
Version:

Server Number:

Number of Links in Use:
Number of Errors Logged:

.__o_K. __ 1 _1 _ c_anc_e1 __ 1 _1 _ H_e_1p __

Figure4
The eXcursion Control Panel

Error and status information is sent to the error logger
by the other components. When the user changes
a configuration setting through the control panel, the
change must be communicated to the X server, ifit is
running. In some cases, the change can take effect
immediately; in other cases, the server cannot imple­
ment the change without restarting. The control panel
and the server must engage in a dialog so that the user
can be informed as to what action must be taken, if any.
The IPC library is an operating system-independent
API that permits eXcursion components to determine
which other components are present and to exchange
commands and configuration information.

The Windows NT operating system provides several
built-in IPC mechanisms, but most are not available
on the Windows or Windows 95 systems. The only
mechanism that is universal to the three operating
systems is the message-passing interface in the Win32
APL This mechanism, while not the most efficient, is
relatively straightforward to implement. Since the per­
formance demands on the IPC library were deter­
mined to be very light, this mechanism was chosen.

42 Digital Technical Journal Vol. 8 No. l 1996

SNOOTS
SNOOTS

21309

C: \XCURSION\x86\
V2.1.309

0

8
0

I Restart Server I

The disadvantage of the Win32 message-passing
interface is that it is window based, not process based.
Messages are received by a callback procedure that
must be associated with a window before any commu -
nication can take place. If an application has not yet
created a window, or never creates a window, as is the
case with the application launcher, no communication
is possible. To remedy this, the IPC library creates its
own window when the calling process initializes. The
IPC window is never mapped to the screen, so it is not
visible to the user. All interprocess communication
passes through the IPC window.

The IPC library consists of a collection of unique
messages and an APL The messages are registered
with the Win32 function RegisterWindowMessage.
This ensures that the messages used by the eXcursion
application do not conflict with system messages or
messages used by other applications. The eXcursion
IPC messages are

• ipcComponentStartedMsg, which the IPC posts to
all components when a component initializes.

• ipcRestartServerMsg, which the IPC sends to the
server to tell it to restart.

• ipcRestartServerStatusMsg, which the IPC posts
with the status of the restart request.

• ipclnquireMsg, which the IPC sends to retrieve a
data item from a component.

• ipcProfileChangedMsg, which the control panel
sends when the registry profile changes.

• ipcLaunchOneCompleteMsg, which the applica­
tion launcher sends to notify the server of launch
completion.

• ipcLaunchAllCompleteMsg, which the application
launcher sends to notify the server oflaunch com­
pletion.

• ipcHideAllWmdowsMsg, which the server sends to
all components to tell them to hide all their win­
dows. The eXcursion application uses this message
to execute the pause/resume feature.

• ipcShow AllWindowsMsg, which the server sends
to all components to tell them to show all their win­
dows. The eXcursion application uses this message
to execute the pause/resume feature.

In addition to sending and receiving messages,
eXcursion processes can use the IPC library to deter­
mine which other components are running. The IPC
initialization procedure creates a window with a
unique name that identifies the calling component. To
determine whether a specific component is present
in the system, the IPC searches all windows on the
system until it finds one with the correct name.

Error Logger

The error logger is a Win32 application that receives
error and informational messages from other compo­
nents and either displays them in a window or logs
them to a file. On the Windows NT operating system,
information that may help system managers or users
diagnose problems may additionally be recorded in
the Windows NT event log.

Application Launcher

The application launcher is a Win32 application that
handles requests from the control panel or server to
start X client applications. The client may reside on
a remote host or on the same machine.

When the user requests the server or control panel
to start an X client application, it starts the eXcursion
application launcher in a separate process. The applica­
tion command, host name, account information, net­
work transport, and command shell are passed to the
launcher in its command line arguments. The launcher
makes the connection to the remote system, initiates

the command using the selected protocol (rexec, rsh,
DECnet object, or local command), and sends an IPC
message to the server indicating that a new application
is starting.

Registry Interface

The Windows NT operating system introduced a new
concept called the registry. This is a protected database
maintained by the operating system, wherein Win32
applications may store configuration and state infor­
mation. The registry has a well-defined API and
a maintenance utility program that is shipped with
the Windows NT operating system. Under the
Windows operating system, configuration information
is kept in simple text files, which are vulnerable to
accidental or malicious tampering. At the time the
design of eXcursion version 2 was under way, it was
unknown which, if either, of these two methods would
be available under the Windows 95 operating system.
Nevertheless, all three of these operating systems had
to be supported.

We designed an API for accessing the configuration
information in a manner independent of the operating
system. Knowledge of the operating system and its reg­
istry access method is encapsulated in the library. Since
several independent processes must access the informa­
tion, the library is built as a DLL to conserve memory.
The interface basically resembles that of the Windows
NT registry API but eliminates some of the complexity.

If the eXcursion software has not been configured
when the registry interface first accesses the profile,
default values for all settings are selected to allow the
software to function normally.

Summary

With computer systems based on the Microsoft
Windows operating system increasing in power and
decreasing in price, Wmdows-based systems are appear­
ing on desktops that once held workstations running
the UNIX or Open VMS operating systems. Windows
systems must be able to access applications on remote
file and compute servers running in the X Window
System environment. Version 2 of the eXcursion prod­
uct provides desktop integration of X client applications
with native Win32 applications. Modular coding tech­
niques, object-oriented programming, and selective use
of the Microsoft Foundation Class library helped
reduce development time, and improve performance,
maintainability, and reliability.

General References

D . Giokas and A. Leskowitz, "eXcursion for Windows:
Integrating Two Windowing Systems," Digital Technical
Journal, vol. 4, no. 1 (Winter 1992): 56-67.

Digital Technical Journal Vol. 8 No. l 1996 43

44

X Window System
S. Angebranndt et al., Definition of the Porting Layer for
the X vl 1 Sample Seroer (Cambridge, Mass.: X Consor­
tium, Inc., 1994).

J. Fulton, Tbe X Font Seroice Protocol, Version 2.0,
X Version 11, Release 6 (Cambridge, Mass.: X Consor­
tium, Inc., 1994).

E. Israel and E. Fortune, Tbe X Window System Seroer,
X Version 11, Release 5 (Woburn, Mass.: Digital Press,
1993).

0 . Jones, Introduction to the X Window System (Engle­
wood Cliffs, N.J.: Prentice-Hall, Inc., 1989).

K. Packard and D. Lemke, Tbe X Font Library (Cam­
bridge, Mass.: X Consortium, Inc., 1995).

D. Rosenthal, Inter-Client Communication Conventions
Manual, Version 2.0(Cambridge, Mass.: X Consortium,
Inc., 1994).

R. Scheifler, X Window System Protocol, X Version 11,
Release 6(Cambridge, Mass.: X Consortium, Inc., 1994).

R. Scheifler and J. Gettys, X Window System (Bedford,
Mass.: Digital Press, 1992).

Networks
M. Hall et al., "Windows Sockets: An Open Interface for
Network Programming under Microsoft Windows, Version
1.1" (1993).

K. Packard, X Display Manager Control Panel, Version
1.0, X Ver.s-ion 11, Release 5 (Cambridge, Mass.: MIT
X Consortium, 1989).

W. Stevens, UNIX Network Programming (Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1990).

X Transport Interface (Dayton, Ohio: NCR Corporation,
1993).

Windows Operating Systems
R. Blake, optimizing Windows NT, Windows NT Resource
Kit, vol. 3 (Redmond, Wash.: Microsoft Press, 1993).

H. Custer, Inside Windows NT (Redmond, Wash.:
Microsoft Press, 1993).

A. King, Inside Windows 95(Redmond, Wash.: Microsoft
Press, 1994).

Win32 Programmer's Reference, vols. 1-5 (Redmond,
Wash.: Microsoft Press, 1995).

Windows Programming
K. Christian, Tbe Microsoft Guide to C++ Programming
(Redmond, Wash. : Microsoft Press, 1992).

P. DiLascia, Windows++: Writing Reusable Windows
Code in C++ (Reading, Mass.: Addison-Wesley Publishing
Company, 1992).

Digital Technical Journal Vol. 8 No. 1 1996

Tbe GUI Guide, International Terminology for the Win­
dows Interface(Redmond, Wash.: Microsoft Press, 1993).

S. McConnell, Code Complete: A Practical Handbook of
Software Construction (Redmond, Wash.: Microsoft
Press, 1993).

C . Petzold, Programming Windows, 2d ed. (Redmond,
Wash.: Microsoft Press, 1990).

B. Stroustrup, Tbe C++ Programming Language (Read­
ing, Mass.: Addison-Wesley Publishing Company, 1986).

Biographies

John T. Freitas
Presently a software engineer at Atria Software, John
Freitas worked at Digital for 15 years. For the last few
years, he was associated with Digital's excursion product
as an individual contributor, an architect, and a designer.
Previously, he was in the Workstation group. John received
a B.S.E.E. from Northeastern University in 1967. While
in college, he worked as a co-op student on the Apollo
Project at MIT's Draper Laboratory. During the 1970s,
he worked for Harvard University developing and main­
taining medical computing facilities at Massachusetts
General Hospital.

James G. Peterson
James Peterson is currently a software engineer at
Delorme Mapping. As a member ofDigital's Windows
NT group, James led the releases of the eXcursion soft­
ware from version 1.1 through version 2.1. In addition,
he worked as architect and individual contributor on
the eXcursion project, concentrating on graphics and
performance. Earlier, he worked in the PATHWORKS
and Rainbow groups. James was employed by Compion
Corporation before joining Digital in 1984. He received
a B.A. (1979) in mathematics from Indiana University
and an M.S. (1981) in mathematics and an M .S. (1984)
in computer science, both from the University of Ill inois.

Scot A. Aurenz
Scot Aurenz is a principal software engineer. in the
Windows NT group where he works on the development
of the eXcursion PC X server. Scot has contributed to many
projects at Digital, including the Language Sensitive Editor
(DECset I..SE) and the SUVAX workstation. Scot came to
Digital in 1979 as a Purdue University co-op student and
became a full-time employee after receiving his B.S.E.E.
in 1982. He received an M.S.E.E. from the University of
Illinois in 1986.

Charles P. Guldenschuh
Charles Guldenschuh is a principal software engineer in
Digital's Windows NT group. He is responsible for color
support and software installation of the eXcursion product.
Previously, he worked in the Real-Time Software,
Professional 300 Software Engineering, and RT-11
Engineering groups. Charles joined Digital after receiving
his B.S. in information and computer science from the
Georgia Institute ofTechnology in 1976.

Paul J. Ranauro
Paul Ranauro joined Digital in 1987 and is a principal
software engineer in the Windows NT group. He is
responsible for application failover for the Digital Clusters
for Windows NT product. In earlier work, he participated
in the development of the eXcursion software and the
ACMSxp transaction processing monitor, specifically,
in the implementation of the RTI protocol. He also par­
ticipated in the implementation of the Manufacturing
Messaging Service OSI application layer protocol for the
DEComni product and a network performance analyzer.
Prior to coming to Digital, he was a consultant at Index
Systems and a senior software engineer at Micom-Interlan.
Paul holds a B.A. in history from the University of
Massachusetts at Boston.

Digital Technical Journal Vol. 8 No. 1 1996 45

Integrating Multiple
Directory Services

The Integrated Directory Services (IDS) infra­
structure implements a directory-service­
independent interface. The IDS infrastructure

is used by applications that store and retrieve
information about resources in environments
with either multiple directory services or one
of several directory services. The IDS interface
isolates users and application writers from
the unique requirements of different directory

services by providing a view of a single, logi­
cal directory service through a simple federa­
tion mechanism. To retrieve resources from
the logical directory, IDS determines its phys­
ical location and converts the resource from
a directory-specific to a canonical format.
Extensible schema tables represent the canon­
ical format for each resource and allow IDS to
represent resources created using both the IDS
interfaces and the directory-specific interfaces.

46 Digital Technical Journal Vol. 8 No. 1 1996

I
Margaret Olson
Laura E. Holly
Colin Strutt

Digital has developed the Integrated Directory
Services (IDS) technology to provide a mechanism for
integrating multiple directory services into a single sys­
tem. In this paper, we examine the development of the
IDS infrastructure. We begin by discussing the prob­
lems faced by network directory applications. Next we
describe our design goals, the IDS infrastructure, and
our initial implementation on the PATHWORKS
product. We conclude with a brief discussion of plans
for future development.

Directory Support in Multiple Environments

Although directory services are a powerful mechanism
for distributing and accessing certain kinds of informa­
tion, relatively few applications choose to use them.
Digital's PATHWORKS application was in need of a
directory for printers and file shares. PATHWORKS is
a network operating system (NOS) integration product
that gives users access to both Microsoft's lAN
Manager and Novell's NetWare file and print shares. As
we studied how to incorporate directory support into
PATHWORKS, we came to a better understanding of
the problems faced by directory applications in general.

Networks are growing rapidly, as are the amount
and kind of information that can be accessed through
the network. We were certain that future network
application products would have an even greater need
for a directory, and therefore a general solution was
needed. We then set out to design a system that would
remove the barriers to directory service application
usage and deployment. We resolved the tension
between the product deadline and the time required
to implement the general solution by designing a
complete solution and implementing what was neces­
sary to prove the design and to meet the immediate
needs of the PATHWORKS product.

Existing Directory Services
There are a number of general-purpose directory ser­
vices. Some of the more familiar include X.500,
Novell's NetWare Directory Service (NDS), the Cell
Directory Service (CDS), and Banyan Systems'

Street Talk. H In the past, directory services were in rel­
atively limited use because most directory services
were tied to either an operating system or a transport
or both. In addition, directory services were con­
nected to a multitude of application programming
interfaces (APis) that were incompatible and difficult
to use. More recently, directory services have been tied
to network operating systems or applications, rather
than to host operating systems or transports. If any­
thing, the number of"standard" APis has grown.

In large networks, this complexity has resulted in
the proliferation of directories, often containing over­
lapping information. This makes the network man­
ager's job difficult, which in turn creates resistance to
directory applications. At the same time, network and
NOS technology has developed to a point where an
ever-increasing amount of information is being shared
on different machines. To give a simple example,
almost every server at Digital's Littleton site has a con­
nection to the high-volume printer in the copy center,
with a different name on every server. A directory
would simplify users' access to this single physical
resource by presenting a single name for the printer,
if only the application writer could figure out which
directory service to use and how to use it.

Other Approaches
As discussed later in the Design of the IDS Framework
and Service Providers section, IDS defines both an API
and a service provider interface. Support for any direc­
tory service can be provided by writing a service
provider module. Microsoft's OLE Directory Services
(OLE DS) takes a similar approach to IDS, with a more
limited initial implementation. 5 Although the current
IDS implementation runs under Microsoft Wmdows, it
was designed to port to other systems. OLE DS depends
on features of the Windows operating systems.

The X/Open Federated Naming (XFN) specification
was not complete at the time we were designing IDS,
and it did not include either a service provider interface
or a reference implementation.6 We did examine the
XFN draft and designed the IDS interface to be com­
patible with XFN, with a view toward supporting the
XFN API in the future. Supporting the XFN interfaces
on top of IDS would be a relatively straightforward
task, and we have considered doing this.

The PATH WORKS Application
In the NOS environment, each NOS has its own
directory or pseudo-directory. NetWare version 3
implements the Bindery; NetWare 4 implements
NDS.7 The various implementations of Microsoft's
LAN Manager protocols provide a virtual directory
based on information maintained by its domain con­
trollers. In a multiple NOS environment, the user is

presented with multiple information sources from the
multiple directories. Even worse, the user may be
faced with multiple information sources even in a sin­
gle NOS environment, since there may be multiple
NetWare Binderies or LAN Manager domains.

Multiple NOS environments do not, in and of them­
selves, cause complexity and confusion. Problems arise
when people within a single environment want to share
resources across multiple environments. For example,
consider a common local area network (LAN) configu­
ration where NetWare is installed on the clients and
servers for one department and Microsoft's LAN
Manager (contained within products such as
Microsoft's Windows for Workgroups, Windows 95,
and Windows NT operating systems, or the LAN
Server product from International Business Machines
Corporation) is installed on the clients and servers for
another department. If each department's resources,
users, and administration personnel are kept distinct,
there is no problem. However, any desire to allow
users to share resources between departments, or to
have common administration over the departments
introduces administrative and user problems. If a
printer is to be shared by the two departments, it must
be administered twice: once in the NetWare environ­
ment and once in the LAN Manager environment.
Users in the two departments use different names for
the same printer. Later NOS implementations, such as
Digital's PATHWORKS version 5.0 or the networking
software built into Microsoft's Windows 95 that pro­
vides support for multiple NOS protocols, do nothing
to manage the multiplicity of names for the same net­
work resource.

As we were contemplating the set of capabilities
we needed to design for the next generation of
PATHWORKS client products, we realized that solv­
ing the connectivity problem implied in a multiple
NOS environment was not enough. User access and
administrator control of NOS resources needed to be
considerably simpler.

As we looked at the problems in larger networks,
we saw the need for the ability to provide more sophis­
ticated means to locate NOS resources. Typically,
NOS client software provides the means to browse
the network to locate a resource. However, browsing
requires the user to know the location of the resource,
specifically the name of the server, and to be able to
choose the resource on the server by recognizing
something about the resource name or a resource
description provided by the administrator. What was
needed was a design that allows a user to search, as
well as browse, for a resource based on various attrib­
utes describing the resource.

Finally, existing NOS environments have a fairly lim­
ited view of the set of resources that can be referenced.

Digital Technical Journal Vol. 8 No. l 1996 47

Both NetWare and various LAN Manager implemen­
tations provide support for printers and file shares.
We wanted to be able to extend the types of resources
that could be referenced and managed from the new
directory capability that we were designing.

Thus we embarked on a design for the facility we
initially called IDS, for Integrated Directory Services.
The PATHWORKS version 6.0 implementation was
eventually called Directory Assistant. We refer to this
technology as IDS throughout this paper.

Design Goals

As we looked at the requirements of the PATHWORKS
product, we found that many of those requirements
could technically be met with any directory service that
was integrated into the PATHWORKS applications and
tool sets. PATHWORKS required the ability to

• Give a single name to resources that can be accessed
by means of multiple servers or protocols

• Insulate end users from changes in the way
resources are allocated among the servers

• Manage resources in an NOS-independent manner

We could not simply pick a directory service and
integrate it into PATHWORKS, because we could not
require that all customers deploy a particular directory
service at their site. The PATHWORKS product is
both NOS- and transport-independent; introducing
such a dependence was unacceptable. We quickly real­
ized that these were the requirements that kept many
other applications from using directory services.

Our assumption was that many network applica­
tions would use directory services if they could, but
that few of them could assume or require a particular
directory service. Working from that assumption, we
selected the following design requirements for IDS:

• Directory service independence

• Ability to access existing data

• Ability to join disparate namespaces into a single,
logical namespace

• Removal of barriers to successful deployment of
a wide area network (WAN) directory

• Ability to hide directory name syntax

• Support of search

• Support ofapplication-specific directory entries

Directory Service Independence

Customers must be able to choose the directory service
in which they store resource information. Some cus­
tomers have a preferred directory service, which they
want to continue to use. Other customers, who are not
using a particular directory service, prefer that Digital

48 Digital Technical Journal Vol. 8 No. 1 1996

provides the directory service. In a few cases, a cus­
tomer might wish or even need to store information
about different resources in different directory services.

Ability to Access Existing Data

A great deal of information currently exists in
application-specific di rectory services and in NOS­
specific directory services. A relatively large number
of applications also use the native interfaces to store
information in the NOS directories. Allowing users
to access this information directly through IDS was
critical. We expressly wanted to avoid the need to
duplicate directory information in separate, incompat­
ible systems.

Ability to Join Disparate Namespaces into a Single,

Logical Namespace

Many directory services are aimed at a specific applica­
tion or a set of applications. For example, current
X.500 deployments contain mostly people informa­
tion such as names, phone numbers, and electronic
mail addresses. (Note: X.500 is an extremely flexible
directory service that can be used to store almost any
kind of information, but for historical reasons most
deployments contain people information.) NOS direc­
tories contain information about NOS resources such
as printers. Consequently, many user environments
have multiple directory services, each of which con­
tains critical business information. To access this exist­
ing data and present it to the user in a meaningful way,
these multiple directory namespaces must be joined
into a single, logical namespace.

Removal of Barriers to Successful Deployment of

a WAN Directory

Hierarchical directory services generally require that
the naming hierarchy be designed before the directory
is deployed. Since the hierarchy consists of names,
and names are sensitive and political entities, this can
be an extremely difficult task. Organizations also
change over time, further complicating the problem of
designing a name hierarchy. 8

Organizations that successfully deploy directory ser­
vices do so from the bottom up. The NOS directories
are deployed precisely because they avoid the prob­
lems inherent in a name hierarchy. An administrator
can set up a Novell 3.x Bindery for a local organization
without worrying about how the name of one group
relates to the names of all the other groups. The
downside to the NOS directories is that they have
a limited ability to scale beyond a LAN. With IDS, we
wanted to provide a framework that would grow with
the user's environment. A user could start with a local
directory but incorporate that directory into an enter­
prise or global directory when the time was appropri ­
ate, without affecting the end users or the applications.

Ability to Hide Directory Name Syntax
The syntax of the names in hierarchical directory ser­
vices varies not only from one directory service to
another, but in some cases from one implementation
of a single directory service to another. The syntax for
Domain Name System names is ordered the same as a
postal mail address, that is, from the most-specific
component.9

•
1° For example, a machine at Digital

might be bigAlpha.digital.com. The X.500 name
order is usually (depending on the implementation)
the reverse. The corresponding X.500 name might
be: c=us;o=Digital;cn=bigAlpha. Particularly in the
X.500 case, different systems and applications also
accept different separator characters.

Together, the IDS designers have much experience
with a number of directory services and their name
syntaxes. Users and applications developers alike have
been quick to point out the problems with directory
names. These names are cumbersome, confusing, or
just plain inconvenient to type. The separator charac­
ters within a directory name may have special mean­
ings on some operating systems.

Because of these limitations, we decided that a name
syntax specific to IDS would detract from the value of
the solution. An application using IDS may choose to
present its own syntax, one that is suitable to its partic­
ular environment and preferences. The API takes the
object name and the context, as described in the
Contexts section. The service provider module uses
these to construct the name in the native name syntax.

Support of Search
Users need to locate resources in a number of ways.
The most familiar method is to locate resources
by knowing their name; this is often referred to as
a white pages lookup, named after the printed U.S.
telephone directory of alphabetically ordered names.
Searching for resources based upon information about
the resources is referred to as a yellow pages lookup,
named after the printed U.S. telephone directory
organized by business category. To support yellow
pages lookup, resources must be retrievable from the
directory service based on their attributes. For a
printer, this might include the type of printer, the loca­
tion of the printer, whether it supports color or not,
who is responsible for maintaining the printer, and
other information. IDS needed to support both yellow
pages and white pages lookups.

Support of Application-specific Directory Entries
We saw a need to support two kinds of extensibility:
the ability for an application to create new kinds of
directory entries, and the ability for a customer to add
attributes or other descriptive information to the
directory entries created by PATHWORKS or other

applications. By providing applications with the capa­
bility to create new kinds of directory entries, the IDS
designers allowed IDS to be used by any application,
regardless of its requirements. By allowing the addi­
tion of attributes to existing directory entries, we
allowed customers to easily add information that is
specific to their organization to application objects.
For example, a customer might add a specific code,
such as an asset identification tag, to all printer direc­
tory entries.

Design of the IDS Framework and Service
Providers

IDS is an object-based system that consists of a frame­
work and a set of service providers. For clarity, we fur­
ther divided the framework into an API and a service
provider interface (SPI). The API consists of a subset
of the framework's objects and their public virtual
methods. The SPI is a generalized, directory-service­
independent interface (described in detail later in this
section). The SPI objects define the abstract interface
to the directory service. We use the term service
providerto refer to any directory service that provides
IDS storage. The service providers interact with the
framework through the SPI.

Framework
The framework performs three major functions:

• It specifies the IDS directory-independent opera­
tions.

• It dispatches operations to directory-specific mod­
ules for execution.

• It verifies that all IDS objects and operations do
not violate the IDS schema.

Figure 1 illustrates the structure ofIDS. When an
application makes an API call, the framework examines
the name information and calls the appropriate service
provider. The service provider then makes the call to
the appropriate native directory service client. When
the directory client returns the results, the service
provider converts the results into the IDS canonical
form. The design supports junctions from one direc­
tory service to another, in that the result returned
to the framework by the service provider may be only
a reference to an object in another directory service.

The abstract interface to the directory service
ensures that IDS provides applications with a consistent
level of functionality without regard to which directory
service a customer has in his or her environment.

Because the words "object" and "object class" are
overloaded and overused in the industry, we define the
words "resource" and "resource class" to denote
objects represented in IDS. A resource is a directory

Digital Technical Journal Vol. 8 No. 1 1996 49

IDS

APPLICATION PROGRAMMING INTERFACE

FRAMEWORK

SERVICE PROVIDER INTERFACE

~ -
SERVICE SERVICE SERVICE
PROVIDER PROVIDER PROVIDER

NATIVE NATIVE NATIVE
DIRECTORY DIRECTORY DIRECTORY
CLIENT CLIENT CLIENT

~ ~ ~
I I I

NATIVE NATIVE NATIVE
DIRECTORY DIRECTORY DIRECTORY
SERVER SERVER SERVER

Figure 1
Structure of the Integrated Directory Services

entry; it is a directory service object that represents
some network object. A resource class is the definition
of that type of directory entry. For example, the direc­
tory entry that describes a specific printer is an IDS
resource and the IDS class that describes every printer ,
entry is a resource class.

The framework provides extensibility by defining
C++ object classes that allow for the creation and
manipulation of resources, attributes, and attribute
values in a type-independent manner. The type inde­
pendence allows both applications and the framework
itself to manipulate IDS attributes and attribute values
without knowing their types. As long as the new types
are built on top of existing IDS system types, applica -
tion writers may define new IDS types without modi­
fying the service providers.

The framework dispatches director)' operations to
the appropriate service provider and maintains overall
system state and integrity. It maintains a list of the
service providers that are currently available and
shows the errors encountered in any failed loads.
This allows the system to continue to operate, albeit
in a degraded state, even though one of the service
providers may be malfunctioning.

Before we discuss the design of the SPI, we describe
the framework's objects.

IDS Entry The fundamental IDS object is the canoni­
cal representation of a directory entry, the IDS entry.

50 Digital Technical Journal Vol. 8 No. l 1996

The IDS entry is an abstract object. To create a
resource class, applications define a resource type and
derive it from the IDS entry. IDS entry objects are cre­
ated and manipulated through the API and translated
into the appropriate native directory format by the ser­
vice providers. Derivatives of the IDS entry may define
additional methods, but they may not override the
IDS entry methods. The IDS entry methods are part
of the framework.

The IDS entry methods fall into one of two
categories: those which manipulate the attributes and
values contained in the IDS entry in a type-indepen­
dent manner, and those which perform operations on
the directory. Each IDS entry, each attribute, and each
attribute value contains a type. For convenience, deriv­
atives of the IDS entry may define additional methods
that manipulate certain attribute or values directly.
For example, a derivation that defines a printer might
define a method to set the description attribute. The
implementation of this method would call the general
IDS entry attribute and value manipulation method
to set the value of the appropriate attribute.

As shown in Figure 2, the IDS entry contains identi­
fying information and the attributes and attribute
values that describe the resource. The context identi­
fies the service provider that performs directory opera -
tions on this entry and the location within that
directory service in which this entry is stored. The
resource type defines the kind of resource that this
entry represents. The resource name is the name by
which applications and users refer to the entry.

The attributes of the entry are contained in a set.
Each attribute in turn contains the value or list of val­
ues associated with the attribute.

Contexts The context is an object that uniquely iden­
tifies a particular location in a particular nan1espace.
The IDS context is very similar in concept to the XFN
context.6 All contexts contain the type identifier for
the directory service and an internal name. The type
identifier is used by the IDS framework to dispatch
operations to the appropriate service provider. The
internal name is the location within the directory ser­
vice described by this context. The internal name is
represented in the native syntax of the underlying
directory service. The service provider is responsible
for setting and maintaining this internal name. (See
Figure 2.)

Attributes and Attribute Values The type of an
attribute defines the data type of its value or values.
The attribute value object is a canonical representation
of an actual attribute value. The attribute value object
defines a set of methods for accessing and manipulat­
ing values. For each data type supported in IDS, there
is a corresponding attribute value derivation in the

I RESOURCE TYPE IDS_PRINTER

CONTEXT SERVICE PROVIDER TYPE: LDAP
LOCATION WITHIN SP: o=dec;ou=lkg

I RESOURCE NAME I NIST GROUP PRINTER

ATIRIBUTE SET

ATIRIBUTEN

ATIRIBUTE2

ATIRIBUTE 1

I ATIRIBUTE TYPE I IDS-ATIR·MAINTAINER

ATIRIBUTE VALUE LIST

ATIRIBUTE VALUE DATA TYPE IDS-TYPE-STRING

ATIRIBUTE VALUE JANE DOE

ATIRIBUTE VALUE DATA TYPE

ATIRIBUTE VALUE

ATIRIBUTE VALUE DATA TYPE

ATIRIBUTE VALUE

Figure 2
IDS Entry

IDS framework. This allows applications, and the IDS
framework itself, to manipulate attribute values with­
out knowing their types. The service providers, on the
other hand, use the type information to translate from
the IDS data formats to their native data formats.

Types To allow customers and third parties to identify
their own IDS resources, the IDS type mechanism
must uniquely identify objects. The two identifiers we
considered using were universal unique identifiers
(UUIDs) as defined by the Open Software Foundation
Distributed Computing Environment (OSF DCE) and
object identifiers (OIDs) as defined by the open sys·
terns interconnection (OSI) standards. 11

•
12 Some direc·

tory services identify attributes with OIDs, while others
use UUIDs. For applications defining new resources,
we wanted to avoid the necessity to obtain both an
OID and a UUID. It is possible to encode a UUID in
an OID, but the reverse is not true.

We could encode a UUID in an OID by registering
an OID prefix. The prefix would indicate that the

sequence after the prefix was a UUID. UUIDs are
fixed-length structures generated from time stamps
and Ethernet addresses, and therefore arbitrary infor·
mation such as an OID cannot be encoded in them.
UUIDs are also easier for application writers to gener·
ate because numerous systems ship with tools to
generate them.

Certain directory services, for example X.500, have
external type definitions for the directory entries. It
is possible to define a generic entry and then map
arbitrary values into that entry, but IDS entries would
not be meaningful when viewed with the native direc·
tory management tools. We felt that this was unac·
ceptable, because it would make the management of
IDS entries in the namespace much more difficult.
Some systems use UUIDs to represent the type infor­
mation. We chose to use UUIDs since they are both
easy to generate and can be used in both UUID and
OID class definition systems. The use of OIDs would
require UUIDs to be generated for UUID-based
systems and mappings to be maintained.

Digital Technical Journal Vol. 8 No. 1 1996 51

52

Communities An IDS community is both an adminis­
trative grouping mechanism and a logical location for
IDS resources. When people interact with the IDS sys­
tem, they see a community as the organizing principle.
The administrator controls the boundaries and mem­
bership of an IDS community. Typically, a community
represents either a particular location such as a build­
ing or a functional grouping such as a work group.

Initially, we considered a supercontext to join multi­
ple directories into a single logical directory. This
supercontext would have contained multiple contexts,
one for each type of resource supported by IDS. We
eventually subsumed the supercontext into a commu­
nity and called it a resource context list. An IDS com­
munity is stored as a special object in the directory.
Each community's resource context list describes the
directories that make up the community. The resource
context list is the federation mechanism by which IDS
determines where resources of each type are stored.
Each entry in the resource context list is a pair of
resource type and context. As users and applications
operate on entries in a community, the IDS framework

COMMUNITY

(through IDS entry and community methods) inspects
the resource type and the community to determine the
context. Figure 3 illustrates an IDS community.

One of the problems we anticipated was that large
organizations would naturally tend to have many IDS
communities: How would the user identify these? We
considered an additional hierarchy in which commu­
nities would be members of other communities. Our
usability consultants emphasized that users should not
have to browse a hierarchy to access resources. In
response, we developed the concepts of the local and
the home community. The local community is associ­
ated with the machine a user is currently using-it
represents a physical location. The home community
is the one with which the user is associated or belongs.
We envisioned that the home community would be
the same as the local community at the user's normal
place of work, but there is no requirement inherent in
the design that things be organized this way. For
example, if a user is associated with the community at
her work site and the machine she uses is also located
at that work site, both her local community and

DEFAULT
CONTEXT ...__

Svc Provider Type= F7801DB7-F675-11CD-A8C2-08002B187D1A (ODBC)
External Name= IDS_Group Community

RESOURCE
CONTEXT

CONTEXT

OBJECT
TYPE

KEY:

RESOURCE CONTEXT LIST

FILE SYSTEMS

c=:J COMMUNITY

c=:J RESOURCE CONTEXT LIST

- RESOURCE CONTEXT

~ OBJECT TYPE

-CONTEXT

Figure 3
IDS Community

Internal Name = E:\\tuxedo\idsodbc\idsdbdir.mdb
Svc Provider Private = NULL

Svc Provider Type = EFF4B840-EC52-1 1 CD-9E5E-08002BBA95CA (CDS)
Ex1ernal Name = ids_cell.lkg.dec.com
Internal Name = ids_cell.lkg.dec.com
Svc Provider Private = NULL

Svc Provider Type= C723E850-A1A6-10AB-A699-08002B361 FC1 (LDAP)
Ex1ernal Name = c=us;0=dec;ou=IDS_Group Community
Internal Name= c=us;0=dec;ou=IDS_Group Community
Svc Provider Private= YUMMY, 386, TCP/IP

Digital Technical Journal Vol. 8 No. l 1996

her home community represent this work site. If this
user works at another work site and uses a different
machine, her home community remains the same, but
her local community reflects the community where
the new machine resides. The concepts of local and
home communities do not reduce the number of
communities, but they do provide a direct method by
which users can access the communities that contain
the resources they most frequently use. The local and
home communities are a convenience; users and appli­
cations are in no way restricted to those communities.

Search Support Searching is handled by the search
object. The search object contains a community (or
list of communities), a resource type, and an attribute
filter. The attribute filter supports both equality and
comparison matching of attribute values and allows
callers to construct complex requests by concatenating
comparisons together in a series of Boolean opera­
tions. For example, a caller could construct a filter
that returned all printer objects that (((are located
on Floor2) OR (are located on Floor3)) AND (sup­
port color printing)). Combined with the local and
home community support, filters allow applications
and users to express ideas such as "print this at the
closest printer that supports color, two-sided printing,
and then transmit it to any facsimile machine in my
home community."

The search object's default filter returns all objects of
the resource type in the local community. The search
object resolves the community to a context and passes
it to the service provider. The service provider con­
structs a list of matching IDS entry objects to return to
the user. In IDS, the search object supports browsing.

The search object has methods that display a dialog
and construct filters based on user input. When
designing the system, we debated whether it was bet­
ter for the search object to contain both the filter and
the search dialogs or whether the filter construction
belonged in the IDS entry. We chose to keep the
search dialogs separate from the IDS entry. Experience
with implementing resources derived from the IDS
entry has shown this to be an error. Currently it is nec­
essary to derive from two objects, IDS entry and the
search object, to implement a resource that has a
resource-specific search dialog. We will be modifying
the search and IDS entry objects so that the construc­
tion of the filters and the dialog that constructs the
filters are IDS entry methods.

Schema The service providers translate between the
native directory object and the IDS entry. In general,
directory service entries are not self-describing. In
existing directory services, either a schema or the
application is expected to know the directory-specific
format of the data. The latter is more common than

the former, and in any case the schema methodologies
are unique to each directory service.

From the point of view of the native directory ser­
vice, IDS is the application. To properly convert the
data, the service providers must know what it is. The
service providers use the schema to determine the cor­
rect attribute and value types to use when constructing
the IDS entry of a particular type.

The schema describes resource types, attribute
types, and attribute value data types. Logically, the
schema is a set of tables, one for each service provider,
which maps the native name or type to the IDS name
or type. These tables are read by the IDS schema com­
ponent when IDS is initialized. Because these tables
are external to the system, they can be modified by
users or applications.

There is one limitation on the extension of the
schema: New attribute and resource types can be
defined, but they must be composed from the prede­
fined IDS attribute value types that the service
providers can support. The service providers would
have to be modified to support additional attribute
value data types. This limitation is not as severe as it
at first appears. A rich set of data types is defined in
the existing directory services, and a relatively small set
is in common usage. By defining the IDS data types to
encompass the set of data types defined by existing
directory services, we have reduced this limitation to
a theoretical rather than a practical problem.

As a consequence of the use of schema, applications
must specify the resource type for any IDS operation.
This is a limitation that in principle does not exist in
other directory systems. After some consideration, we
concluded that few useful operations can be performed
on an object whose type is unknown. To perform an
operation on objects of all types, the schema can be
interrogated for the list of all supported IDS object
types, and the operation is then iterated over each type.

The System Object The system object loads and
initializes the service providers. On initialization, the
system object constructs a list of the available service
providers from those defined in a local configuration
file .

The system object constructs and maintains the list
of known communities. The system object obtains this
list using the following mechanisms:

• Inspect a well-known location (if one exists) to see
ifit contains a cache of known communities.

• For each service provider, call the discover method
to ask the service provider for its list of known
communities.

• If the system object is initializing for the first time,
prompt the user to create a community.

Digital Technical Journal Vol. 8 No. 1 1996 53

Application Programming Interface
As mentioned previously, we divided the framework
into an API and a service provider interface (SPI}. The
API consists of the search object methods, the IDS
entry methods, the attribute object and value object
methods, and the system object methods necessary to
access communities.

Service Provider Interface
The SPI specifies the interface between the IDS frame­
work and the native directory services. It defines the
semantics for all operations that may be performed on
IDS information regardless of which directory service
stores the information. The SPI effectively insulates
both the IDS framework and the IDS applications
from the unique syntax and requirements of different
directory services.

A directory-specific module, called a seroice provider
library, provides a directory-service-specific implemen­
tation of all SPI operations and translates resource infor­
mation back and forth between the IDS entry and
the service-provider-specific format. A service provider
library must be implemented for each directory service
to be supported by IDS. Any directory service or infor­
mation repository system that can provide the IDS SPI
semantics may be an IDS service provider.

SPI Semantics The IDS SPI defines the following
main operations: create, read, search, modify, discover,
and delete. All SPI operations specify the name of the
IDS community upon which to operate. Each IDS
community maintains a list of contexts that specify
in which service provider IDS resources of a particular
type are stored and in what location within the service
provider. The SPI uses this community name to
retrieve the context information that directs the oper­
ation to the correct service provider library. With the
exception of the delete operation, which requires an
explicitly set context (to be sure that an explicitly
located object is selected for deletion), if the caller
does not set the community name, the local commu -
nity is assumed.

The create, delete, modify, and read functions all
operate on a single IDS resource at a time. Each,
therefore, provides an IDS entry object to identify
and/or describe the resource.

The create operation creates a new IDS resource in
the directory. The create operation specifies the type of
IDS resource to be created, the resource's name, and
the IDS attributes and values associated with the
resource. On a successful create operation, the service
provider constructs a unique directory-specific name for
the new IDS resource and stores this name in the
object's IDS entry. The service provider subsequently
may use this name to find the object more quickly rather
than constructing it from the name, resource type, and
context information contained in the IDS entry.

54 Digital Technical Journal Vol. 8 No. 1 1996

Before constructing the resource in the directory,
the operation validates the IDS entry against the
schema to ensure that it does not violate the schema.
For example, attempting to create a resource without
a required attribute value pair violates the schema and
is flagged as an error. Conversely, the delete operation
removes the IDS resource from the directory.

The modify operation updates the attribute and
values associated with the resource in the directory.
The modify operation supports the following update
directives:

• Add a new attribute and value.

• Add a new value to an existing attribute.

• Replace a value of an existing attribute.

• Delete an attribute and its associated values.

• Delete a value from an existing attribute.

Each modify directive is verified against the schema
before being applied to the directory.

A read operation retrieves a uniquely specified
IDS resource from the directory, translates it into
IDS entry format, and returns the IDS entry to
the caller. The read function is typically used to com­
pare the directory format of an IDS resource to one
maintained in memory by an application, or to process
IDS resources returned from a search operation one
at a time.

The search function identifies and returns IDS
resources that match the characteristics specified by
the caller. To bound the scope of the search, the caller
specifies the following search characteristics: resource
type, community name or names to be searched, and
a filter containing attributes and associated values or
value ranges.

The discover operation is called by the IDS system
object to find all communities known to a given ser­
vice provider. Service providers for directory services
that support a server solicitation and advertisement
network protocol implement a discover function. In
these directories, servers advertise their presence in
response to network solicitation requests. The dis­
cover method uses the directory's native solicitation
and advertisement protocol to discover local directory
servers and then issues the appropriate operations to
the server to determine ifit has defined any IDS com­
munities. Service providers that do not have a solicita­
tion and advertisement protocol can implement an
alternative discovery mechanism such as retrieving the
community information from a file or provide no dis­
covery mechanism.

Construction of the System: Directory, Session, and
IDS Entry Objects The SPI is constructed of three
framework objects: the directory object, the session
object, and the directory operation methods of the
IDS entry object. The directory object is responsible

for service provider initialization and termination,
maintenance of session objects, and community dis­
covery. Each service provider exports one directory
object to the IDS framework. The session object
implements all the directory operations on a service
provider. Session objects are obtained from the service
provider by means of the directory object. The IDS
entry directory operation methods determine the con­
text ifit has not been set, obtain a session object from
the proper directory, and dispatch the operation to the
associated service provider through the session object.
For efficiency, session objects may be cached by the
service providers.

Implementation Considerations

Once we had established our basic approach, we
turned our attention to implementation decisions.

Client versus Server
Our first consideration was whether to implement this
technology as software executing on a server system or
as software executing on a client system. The server
solution had a number of attractive qualities: it would
not be necessary to have all the native directory clients
on all the desktops, and potentially complex pro­
cessing would occur on an appropriate platform.
However, we identified two problems with the server
solution. The first concerned security. To access the
directory service on behalf of a particular user, we
would have to impersonate that client user on the
server machine. Although this can be done without
exposing security holes, doing so adds another layer of
complexity to the problem. The second problem with
the server solution was that it required the customer
to find a machine for and deploy a server prior to get­
ting started with the system. One of the design goals
was to remove barriers to directory deployment, and
we were concerned that a server solution would add
a barrier. We saw a need for both client- and server­
based solutions, and since the client solution was sim­
pler to implement, we chose to start there.

Security
The IDS interfaces leave security to the underlying
directory services; we did not attempt to abstract a
general-purpose, access control or authentication
interface. The primary reason for this was a conviction
that the vast majority of current directory information
is world read, and therefore a complex access control
interface was not necessary. An access control and
authentication layer that was directory-service­
independent would have added significantly to the
complexity of the project, and we chose to postpone
this problem. IDS does pass requests directly to the
native directory-service client; IDS does not alter
or impersonate the user's identity. In that sense, it

perfectly preserves the security inherent in the under­
lying directory services.

Filter Implementation
The implementation of the IDS attribute filter is based
on the string filter as defined in RFC 1777 .13 The
Lightweight Directory Access Protocol (LDAP) string
filter provided a convenient internal representation,
and we would be able to reuse the LDAP parsing and
processing code that we had developed as part of an
earlier product. We considered using SQL to construct
IDS attribute filters, but chose not to do this for imple­
mentation convenience.

Service Provider Considerations
Initially, we thought that developing a directory­
service-independent interface would not be difficult.
Most of the required operations such as read and write
are straightforward and obvious. The implementation
of such an interface, however, proved to be difficult
because the underlying directory services have, in some
cases, very different native capabilities and semantics.
We chose to implement service provider libraries for
the following three types of service providers:

• Open Database Connect (ODBC)-compliant
database

• X.500-based directory using the LDAP

• DCECDS

These service providers are representative of the types
of directories that exist today. Table 1 highlights some
of the differences among the three directories. As
this table illustrates, not all directories can natively
support the semantics described by the IDS SPI.
In these situations, we have followed three alterna­
tives: (1) the service provider library implements the
functionality, (2) the IDS framework implements
the functionality, or (3) in a small number of cases, the
service provider cannot implement the functionality
and remains less functional.

Some operations cannot be supported natively by
only one or a small handful of directory services. For
these operations, we require the service provider devel­
opers to implement (or emulate as best they can) the
functionality in the specific service provider library for
that directory. For functions that a number of service
providers cannot support or that are sufficiently diffi­
cult to implement, we provide a common implementa­
tion or emulation in the IDS framework that service
provider libraries can call. For example, CDS does not
natively support an attribute-based search mechanism.
Rather than attempt to implement a CDS search capa­
bility, we chose to provide an IDS framework "prune"
function that applies an IDS filter to a list ofIDS entries
and returns only those entries that satisfy all conditions
of the filter. Service providers such as CDS can then

Digital Technical Journal Vol. 8 No. 1 1996 55

Table 1
Differences among the ODBC, X.500, and CDS Directories

Functionality

Distributed directory service

Hierarchical organization of directory information

Attribute-based search

Attribute value-based search

Native schema support

User can extend IDS schema

Transactional semantics

Tolerant of intermittent connectivity

Provides security mechanism on connections

emulate the IDS search function by enumerating all
resources of a particular type and then call the prune
function to pare down the list of resources.

The IDS schema implementation is another example
of a common capability we have provided for all service
providers to use. Not all service providers support
object, schema and, of those that do, fewer still can sup­
port user extension of the schema. We chose to allow
user extensibility and implemented a service-provider­
independent schema interface and mechanism.

In a few instances, we determined that it would be
too expensive in terms of implementation time to pro­
vide a service-provider-specific or an IDS-framework
implementation of an SPI-mandated function. In
these cases, we allowed the service provider to remain
noncompliant. For example, a call to initiate a session
to a service provider specifies user name and password
arguments. For those directories that support user
name and password security mechanisms, we preserve
that functionality. For directories such as the ODBC
service provider that do not support these security
mechanisms, however, we provide no additional secu­
rity measures. The cost to implement and deploy such
a security mechanism outweighs the gain of having the
additional features.

In addition, we found that not all directories pro­
vide the same semantics for a particular operation. For
example, when updating a resource, service providers
handle existence checking of resource attributes differ­
ently. If requested to add an attribute value to an
attribute that does not yet exist, one service provider
returns an error, while another implicitly creates the
attribute. We worked around problems of this type by
carefully specifying the semantics and error conditions
of all SPI operations. Service providers that do not
natively support these SPI semantics must implement
whatever additional functionality is required to do
so. For example, the CDS service provider required
additional functions that determined and flagged
whether or not a particular attribute existed.

56 Digital Technical Journal Vol. 8 No. 1 1996

ODBC X.500 CDS

No Yes Yes

No Yes Yes

Yes Yes No

Yes Yes No

Yes Yes No

No Yes No

Yes No No

No Yes Yes

No Yes Yes

In addition to all errors that are specific to service
providers, we return an error that is independent
of any IDS framework service provider. This adds
another level of consistency across our service­
provider implementations.

Current Applications

As with any foundation technology, the proof of its
viability lies with the applications that employ it. In the
PATHWORKS product, we currently have three appli­
cations that use IDS:

• Network Connect

• IDS Administration

• Resource Synchronizer

The Network Connect application finds and con­
nects users' printers and file shares. It provides a user
interface that allows users to browse or search for file
shares or printers. Through Network Connect, users
can refer to resources by their logical name or their
attributes. A single physical printer, with queues on
several machines or several NOS systems, is presented
to users as a single printer. Network Connect uses the
IDS API to access the IDS search capabilities and
to translate a printer or file share's IDS name to its
network-specific name to connect to the resource.
Network Connect may be accessed through the
Windows version 3.1 Print Manager and File Manager
utilities and through the PATHWORKS Network
Connect utility.

The IDS Administration utility (IDS Admin) allows
a network administrator to manage IDS resources
and communities. IDS Admin is integrated into the
Digital ManageWORKS Workgroup Administrator
for Windows software product.14 Admin creates, mod­
ifies, and deletes resources and communities. It
also allows users to browse IDS resources and com mu -
nities in the ManageWORKS hierarchy and to search
for IDS resources.

An administrator can manage IDS resources manu­
ally through the ManageWORKS user interface or can
rely on information provided through the semiauto­
matic resource collection utilities called the Resource
Gatherer and Resource Synchronizer. The Resource
Gatherer periodically collects information about
network lAN Manager and NetWare printers and file
shares. The Resource Synchronizer utility processes
the gathered information, updating the directory. It
also eliminates duplicate entries and discards informa­
tion the administrator wishes to ignore. The gatherer
and synchronizer allow the directory to be kept up-to­
date, even if resources are added or removed through
the native NOS interfaces.

Future Work

In the future, we plan to improve the IDS extensibility
mechanisms. Currently, a local copy of the schema
exists on every client. Propagating the changes to each
client will become a problem as users and applications
extend the schema. We are considering storing either
the schema or a pointer to the schema in the directory.

The current IDS implementation runs on both
the Windows version 3.1 and version 3.11 operating
systems. We are currently porting it to Windows 95
and investigating ports to other operating systems,
such as UNIX.

The implementation does not support the entire
IDS design: Although resource context lists are imple­
mented, there is no reasonable way for a user or
administrator to create them. The user interface work
for these features in the IDS Admin application has not
yet been completed.

Summary

IDS provides a mechanism for integrating multiple
directory services into a single system. It is predicated
on the ability to define a common set of directory oper­
ations and on the type information. The implementa­
tion of three very different service providers-CDS,
X.500, and ODBC-indicates that we succeeded in
defining the directory operations. The use of IDS in the
PATHWORKS product shows that it does address the
practical aspects of the problem of integrating multiple
directories into a single, logical directory service.

Acknowledgments

We would like to thank the many past and present
members of the IDS team who contributed to the
design and implementation of the product. Special
thanks to Konstantinos Baryiames, Anthony
Hinxman, David Magid, Tracy Teng, and Tamar

Wexler. We would also like to thank the members of
the Directory Task Force, Dah Ming Chiu, Dennis
Giokas, and William Nichols.

References

1. ccrrr Recommendation X.501 (1992) and
Information Technology- Open Systems Inter­
connection-7be Directory: Models, ISO /JEC
9594-2: 1992 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1992).

2. "Naming Concepts" in Using NetWare Seroices for
N!Ms(Provo, Utah: Novell, Inc., 1993).

3. AES/Distributed Computing-Directory Seroices
(Cambridge, Mass.: Open Software Foundation,
1993).

4. "StreetTalk Naming Service" in ENS Administrator's
Planning Guide (Westborough, Mass. : Banyan
Systems, Inc., 1992).

5. "Microsoft Directory Services Strategy," a white
paper from the Business Systems Technology Series
(Redmond, Wash.: Microsoft Corporation, 1995).

6. X/Open CAB Specification, Federated Naming: 7be
XFN Specification (Reading, U.K.: X/Open Com­
pany Ltd., 1995).

7. "Bindery Services" in NetWare System Interface:
Technical Overoiew (Provo, Utah: Novell, Inc.,
1990).

8. S. Radicati, "Implementing the DIT" in X.500 Direc­
tory Seroices: Technology and Deployment (New
York: Van Nostrand Reinhold, 1994).

9. P. Mockapetris, "Domain Names-Concepts and
Facilities," Internet Engineering Task Force, RFC
1034 (November 1987).

10. P. Mockapetris, "Domain Names-Implementation
and Specification," Internet Engineering Task Force,
RFC 1035 (November 1987).

11. AES/Distributed Computing-Remote Procedure
Call, Appendix A (Cambridge, Mass.: Open Software
Foundation, 1993).

12. ccrrr Recommendation 208 (1992) and Informa­
tion Technology-Open Systems Interconnection­
Abstract Syntax Notation One (ASN.1) ISO/ IEC
8824-2:1992 (Geneva: International Organization for
Standardization/International Electrotechnical Com­
mission, 1992).

13. W. Yeong, T. Howes, and S. Hardcastle-Kille, "X.500
Lightweight Directory Access Protocol," Internet
Engineering Task Force, RFC 1777 (March 1995).

14. D. Giokas and J. Rokicki, "The Design of Manage­
WORKS: A User Interface Framework," Digital Tech­
nical journal, vol. 6, no. 4 (Fall 1994): 63-74.

Digital Technical Journal Vol. 8 No. 1 1996 57

58

Biographies

Margaret Olson
Margaret Olson is a consulting software engineer in the
Network Software Group. She was the project and tech­
nical leader for the IDS development project. For the last
six years, she has had technical leadership roles in Digital's
Directory Services Group. Before joining Digital in 1989,
she worked in the networking and distributed computing
areas at Apollo Computer. She received a B.A. (Sigma Xi)
from Wellesley College in 1981. She published a paper on
network licensing in 1988.

Laura E. Holly
Laura Holly is a principal engineer with the Network
Software Group. She was a key technical contributor to
the IDS development effort. Laura has previously con­
tributed to the areas ofDCE, distributed system, and
knowledge-based system development. She joined Digital
in 1985 after receiving an A.B. (high honors) from Smith
College. Laura holds a patent and has published several
papers in the area of knowledge-based systems.

Digital Technical Journal Vol. 8 No. 1 1996

Colin Strutt
Colin Strutt is a consulting software engineer and technical
director for Teaming Software in the Network Software
Group, where he is helping to define new PC-based soft­
ware products. Previously, he has held technical leadership
roles in directories, network management, and terminal
server development, and before that led product develop­
ments in Ethernet servers and DECnet. He joined Digital
in 1980 from British Airways in the U .K He received a
B.A. (honours) in 1972 and a Ph.D. in 1978, both in com­
puter science from the University of Essex, U.K He is a
member ofBCS and ACM. He has two patents issued and
several patents pending and has published extensively, par­
ticularly on management technology.

Design of the Common
Directory lnterf ace for
DECnet/OSI

Digital has developed the Common Directory

Interface (CDI) as the means by which DECnet/

OSI can now access and manage node name and

address information in multiple directory ser­

vices. CDI comprises libraries for node name-to­

address translation and a tool set for managing

and migrating node information among differ­

ent directory services. The Common Directory

Registration API is layered on top of a set of

directory service wrapper routines to provide an

extensible mechanism for adding new directory

services. CDI gives customers greater flexibility

in choosing a directory service and supports the

new multiprotocol capabilities in DECnet/OSI,

which support the open systems interconnec­

tion (OSI) standards.

I
Richard L. Rosenbawn
Stanley I. Goldfarb

The Common Directory Interface (CDI) provides the
ability to store and retrieve DECnet node information
from a variety of directory services. It consists of the
CDI library, which enables multiple directory access,
and the CDI registration tool set, which creates and
maintains node/addressing information in multiple
directory services. CDI was developed for the DECnet/
OSI for OpenVMS operating system version 6.0 and
for the DECnet/OSI for Digital UNIX operating sys­
tem version 3.0.

This paper begins by presenting the product goals
and the background of the CDI design. It then dis­
cusses the structure of the CDI components, the CDI
library, and the CDI registration tool set.

Design Goals

As the interface to DECnet node information from
multiple directory services, CDI was designed to meet
the following goals:

• Give DECnet network administrators and users
a choice of directory services.

• Provide system administrators with an easy-to-use
node registration tool.

• Enable easy and flexible configuration of directory
choices.

• Provide developers of the DECnet protocol soft­
ware with a simple internal interface that hides the
complexities and differences between the various
directory services.

• Provide a common design for both DECnet/OSI
platforms: the OpenVMS and the Digital UNIX
operating systems.

• Interoperate with older, non-CDI systems.

Background

In 1991, Digital updated its DECnet networking
products to include the use of the DECdns distributed
directory service.1 DECdns provided a highly scalable,
distributed information source for translating node
names to addresses and addresses to node names.

Digital Technical Journal Vol. 8 No. 1 1996 59

Initially, customer acceptance of this name service was
low for a number of reasons:

• Adoption of this new technology required a signifi­
cant learning curve.

• Significant planning was required before the
DECdns service could be deployed.

• Users of small networks did not need the features of
a distributed naming service-the costs out­
weighed the benefits. These customers requested
a naming service based on local files similar to
the Phase IV DECnet product.

• Customers were deploying a number of other
directory services-in particular the Domain
Name System-for storing host information for
transmission control protocol/internet protocol
(TCP /IP) networks.2

• A new comprehensive service, X.500, had the
advantage of being an international standard.3

These reasons, together with the need to directly sup­
port TCP /IP host names and addresses, prompted
Digital to incorporate new directory service choices
in a new release of DECnet/OSI software.

CDI: Basic Design

Supporting multiple name services required decisions
to be made concerning naming syntax, multiple
address formats, and local file support. These decisions
affected the design of both the CDI library and the
CDI registration tool set.

Client-based versus Server-based Design
The earliest and most fundamental design decision was
choosing between a client-based or a server-based solu­
tion. With a client-based design, support for the vari­
ous directory services would be accomplished through
a variety of client-based programming libraries. With
a server-based design, a single client library would
communicate with a new "multiheaded" server that
would fan out to the directory servers.

Tab le 1
Naming Syntax

Directory Service Example Name

DECdns XYZ:.hq.sa les.system1

Since clients outnumber servers, a client-based
approach affects more systems during the upgrade
process. In spite of this drawback, we chose a client­
based solution for the following reasons:

• Implementation of the client-based design would
be less complex than the server design.

• A client-based design did not have the syntax and
protocol translation issues of a server-based design.

• With a server-based solution, client changes would
still be required to support new native naming
syntaxes.

• For small installations, no server would be needed
if node information was stored in a local file: local
file support was not possible with a server-only
approach.

Naming Syntax
One of the most visible complications when support­
ing multiple naming services is the need to recognize
different name syntaxes. Table 1 gives the different
syntaxes for three widely used directory services.

A further complication of supporting different name
synta,xes was the use of an internal DECdns name
format by network management. One of the goals of
the CDI design was to allow management requests
to be exchanged with older, non-CD I systems.

For the initial implementation, CDI continues to
support the internal DECdns format, rather than use
a newer, non -D ECdns specific format alongside
the existing one. As a result, CDI is required to map
non-DECdns names onto the DECdns format. For
example, the name hq.xyz.com from the Domain
Name System maps onto the DECdns name
DOMA!N.hq.xyz.com (actually onto the internal
DECdns form of this name).

Multiple Address Support
Along with the introduction of CDI, a major inno­
vation in this release of DECnet/OSI was direct sup­
port for TCP /IP transports in addition to the existing

Domain Name System

X.500

system 1.sales.hq.xyz.com

/c=US/O=XYZ/ou=hq/ou=sales/ap=syst em1/ae=DECnet
Notes:

The X.500 service is not supported by the first release of CDI.

The syntax shown for X.500 is commonly used but is not part of a standard.

60 Digital Technical Journal Vol. 8 No. 1 1996

support for DECnet Phase IV and OSI. To simplify the
initial implementation, IP addresses are retrieved only
from the Domain Name System (not from DECdns).
However, the design of CDI allows the retrieval of
both kinds of addresses from any supported directory;
for example, OSI addresses can be obtained from the
Domain Name System.4•

5

Support of multiple protocols created another nam­
ing issue. Many customers already have a Domain
Name System in place in their networks. Often DECnet
systems are also mnning TCP /IP protocols and are reg­
istered in the Domain Name System, yet these systems
are not running DECnet software over TCP/IP. For
exan1ple, a system registered as hq.xyz.com may be
directly reachable with TCP /IP but not with DECnet
over TCP /IP. In this case, it is possible that CDI may
retrieve a valid IP address for a remote system that is
llllfeachable by the DECnet protocol.

For these reasons, when CDI determines that both
the Domain Name System and the DECdns naming
service (or a local file) are specified in the search path,
it does not stop processing the search path until both
the IP address and the OSI address have been
obtained, or until the end of the list has been reached.
In this way, if the desired remote system is not running
DECnet over TCP/IP, an attempt to connect will be
made through the DECnet protocol, using a connec­
tionless network service (CLNS) OSI address.

Local File Support
Early versions of the DECnet networking product
offered only a local file for node-to-address informa­
tion. The first release of DECnet/OSI replaced the

NETWORK
MANAGEMENT

DECNETfOSI
APPLICATION

local file with the DECdns naming service. Unfor­
tunately, administrators of small- and medium-sized
networks found that the benefits of DECdns (scaling
and centralized management) were outweighed by its
additional complexity.

A subsequent version of DECnet/OSI introduced
the Local Naming Option. This allowed approxi­
mately 150 nodes to be stored in a local file, but many
customers found this number to be too small.

CDI supports a very large local file: the supported
limit is 100,000 nodes, but there is no fixed internal
limit. In addition, through the use of the search
path, customers can configure the local file either as
a backup to a distributed service, or as a way to provide
greater performance. Note that both of these qualities
are also provided in a more automated way by the CDI
cache (see the CDI Library Cache section for more
information).

Security Considerations
CD I relies upon the security provided by the underlying
directory services (or in the case of the local file, the file
system). Security of its remote management features
depends on the network management security system.

CDI Libraries: Basic Design

CDI is implemented as shared libraries on both the
Digital UNIX and the OpenVMS operating systems.
At the highest level, the design is identical on both sys­
tems, as shown in Figure 1. Name-to-address transla­
tion requests from the session control layer are passed
through a single entry point in each CDI library.

DECNETfOSI
APPLICATION

1---- - - - ---1 SESSION CONTROL LAYER

Figure 1

r-----------------------~
I CDI SHARED LIBRARY I

LOCAL FILE
INTERFACE

COMMON DIRECTORY I
INTERFACE LIBRARY I

DOMAIN NAME
SYSTEM
INTERFACE

DECDNS
INTERFACE

I
I

FUTURE I
INTERFACE... I

~- -- ----- ----- --------~

DOMAIN NAME
SYSTEM
SERVER

DECDNS
SERVER

Block Diagram of the CDI Library

Digital Technical Journal Vol. 8 No. 1 1996 61

Depending upon the search path (described below),
the CDI libraries translate and forward the request to
one or more directory services (or they look up the
information in a local file).

The CDI implementation was considerably more
complex on the Open VMS operating system than on
the Digital UNIX operating system due to the dif­
fering design of DECnet/OSI on each system. On
the Digital UNIX operating system, the DECnet/OSI
session control layer consists of a shared library that
is linked with each network application. Name
resolution requests are processed synchronously. On
the Open VMS operating system, session control is a
component of the NET$ACP process. Since all name
resolution requests are channeled through this single
process, operations must be asynchronous (requests
must block concurrent operations). In addition, since
multiple requests may be simultaneously outstanding,
the library is multithreaded. Asynchronous, multi­
threaded operations on the Open VMS operating
system are implemented using the asynchronous sys­
tem trap (AST) mechanism. For these reasons, the
CDI implementation on OpenVMS was much larger
and more complex.

CD/ Search Path
Another goal was to permit flexibility in determining
a configuration of directory services. The CDI design
achieves this goal in two ways. First, it allows admin­
istrators to select their service(s) of choice and to use
them in any order. The search path is normally created
during network configuration and can be subse­
quently managed either locally or remotely. Second, it
gives network users the ability to use short, abbrevi­
ated names instead of potentially cumbersome full
names. For example, they can use "system!" instead of
"system! .sales.hq.xyz.com."

A single mechanism in the CDI library-the CDI
search path-provides these two capabilities. The
search path consists of a series of directory
service/name template pairs, as shown in Figure 2a.
When the CDI library is given a name to process, it
scans the search path, replacing the "*" in the name
template with the supplied name. For example, if the
library was searching for the name frodo, it would use
the directory services identified from the names gener­
ated shown in Figure 2b.

During network configuration, a default search
path is automatically configured based upon the local
node name and the administrator-specified directory
services. This search path behavior is similar to a
number of existing TCP /IP host name/ address
lookup implementations.

CD/ Library Cache
Occasionally, name service lookups can take a long
time to complete (for example, if requests are travers-

62 Digital Technical Journal Vol. 8 No. l 1996

DECdns
DECdns
DECdns
Domain
Domain

XYZ:.hq.sales. •
XYZ:.DNA_Node_synonym.• .
• .sales.hq.xyz.com

(a) Directory Service/Name Template Pairs

frodo
XYZ:.hq.sales.lrodo
XYZ:.DNA_Node_synonym.lrodo
frodo
frodo.sales.hq.xyz.com

(DECdns)
(DECdns)
(DECdns)
(Domain)
(Domain)

(b) Address Lookup for Name/rodo

Figure 2
Using the CDI Search Path

ing a slow network link, a lookup could take several
seconds). To improve performance, the CDI library
incorporates a single cache that accumulates node
information from all the directory services. Usually,
the cache is consulted before sending a request to
a remote service. However, if session control deter­
mines that cached information is stale-for example,
if connection to a node at a cached address reaches
a node with a different name-it will reissue the call,
requesting that the cache be bypassed.

Each entry in the cache has a creation time stored
with it. The cache itself has a "time-to-live" value that
can be modified by the administrator. If a cache
lookup finds an entry whose lifetime (time since it was
created) is greater than the time-to-live value, the
cache entry is purged.

To prevent a period of low performance immedi­
ately after system start-up, the cache is preserved
across system reboots by periodically checkpointing
it to a disk file. The checkpoint interval is adjustable
by the administrator.

CDI Registration Tool: Basic Design

The CDI registration tool provides functions to create,
modify, rename, display, and delete node name and
address information in any of the supported directory
services. It runs on the major DECnet/OSI platforms,
the Open VMS and the Digital UNIX operating systems.

The basic requirements for the CDI registration
tool were the same as those for the CDI library. These
three requirements were the need to:

• Support different directory services for storing
node information

• Access each directory service using the appropriate
application programming interfaces (APis)

• Store data in each directory service using the
appropriate data types

In addition, the following requirements were spe­
cific to the CDI registration tool:

• Both a forms and console user interface had to
be provided. These had to work identically on all
DECnet/OSI operating system platforms.

• Functions to transfer node information between
the various directory services had to be provided.

• Other applications such as the DECnet/OSI
network control language (NCL) utility and other
namespace management tools had to be able to
access node name management functions.

The directory services supported by the CDI regis­
tration tool are slightly different from those supported
by the CDI library. The CDI registration tool supports
the DECdns, the local file, and the DECnet Phase IV
database services.

The DECnet Phase IV database is supported by the
CDI registration tool to allow administrators to use
old Phase IV node information when populating
the node names and addresses for DECnet/OSI. The
Phase IV database is not supported for node name-to­
address lookup by the CDI library.

Due to its lack of a remote update capability, the
Domain Name System is not supported by the CDI
registration tool. Node name-to-address information
in the Domain Name System is managed using its
native tools. Dynamic updating of the Domain Name
System servers is currently under study by the Internet
Engineering Task Force (IETF) Domain Name
System Working Group.

Application Design
The design of the CDI registration tool uses a client­
based, multilayer approach. It is layered on top of a
specialized API, called the Common Directory
Registration (CDR) APL The CDR API differs from
the API provided by the CDI library in that it presents
a full set of management operations, rather than just
the lookup operations required by DECnet/OSI.

In this design, the CDI registration tool provides
forms and console user interfaces for node informa­
tion management. It also provides functions beyond
the basic ones provided by the CDR API, such as
exporting from and importing to a directory service.
The function of the CDRAPI is to perform all under­
lying node name management operations in a Stan -
dardized manner. This layered approach was adopted
to make node name management functions available
to applications other than the CDI registration tool.

The CDRAPI defines a node definition object. This
contains all the information that is exchanged between
the CDR API and the application and is a canonical,

directory-service-independent data representation of
all information needed by the CDR API to manage
node names and addresses.

To provide an extensible mechanism for adding new
directory services, the CDR API is layered on top of
a set of directory service wrapper routines, one per
supported directory service. Access to these wrapper
routines is provided by a set of entry point tables that
can be extended to support new directory services.
The CDRAPI is responsible for accepting application
requests and dispatching them to the correct directory
service by means of the appropriate wrapper routine.
The CDR API wrapper routines are described later in
this section.

Figure 3 shows the design of the CDI registration
tool and the CDRAPI.

CD/ Registration Tool User Interface
The forms and the console user interfaces had to
present exactly the same characteristics on both the
OpenVMS and the Digital UNIX operating systems.
Because no high-level software packages at the time
could provide this level of user interface portability, we
developed them for this application.

The console user interface parses commands and
dispatches them to the appropriate user request pro­
cessing routine, using a portable command parser.

The forms user interface obtains input from task­
speci.fic forms and dispatches the function or functions
associated with the form to the appropriate user
request processing routine. The forms processor
was written specifically for this application because
no existing libraries could provide the required level
of portability.

CD/ Registration Tool User Request Processing
Each user request maps into a specific request process­
ing function as follows:

• Register. Create a new node name entry in the
directory service.

• Add address. Add address information to a node
name entry.

• Remove address. Remove address information
from a node name entry.

• Modify address. Replace the address information in
a node name entry.

• Update address. Replace the address information in
one or more node name entries, using information
obtained from the nodes themselves (if possible).

• Modify synonym. Replace the node synonym in a
node name entry.

• Rename. Change the name of a node name entry.

• Show. Display the information contained in one or
more node name entries.

Digital Technical Journal Vol. 8 No. 1 1996 63

a
I

CDI REGISTRATION TOOL ~---------------------,
I

FORMS USER INTERFACE I
FORMS DEFINITIONS

I CONSOLE USER INTERFACE
COMMAND TABLES

REQUEST DISPATCHER

SHOW REGISTER DELETE ...
PROCESSING PROCESSING PROCESSING

CDR API CALLS CDR API CALLS CDR API CALLS CDR API CALLS
I I I I I

I
I I I r----------- I t

CDRAPI I ~-----------~----------J
I I

I I

ENTRY POINT ENTRY POINT ENTRY POINT ENTRY POINT

SHOW REGISTER DELETE ...
PROCESSING PROCESSING PROCESSING

WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS

DIRECTORY SERVICE WRAPPER ROUTINE DISPATCHER

DECDNS I
WRAPPER ROUTINES

I LOCAL FILE I
WRAPPER ROUTINES

I PHASE IV DATABASE
WRAPPER ROUTINES

,
.,
I
I

I I

DECDNS LOCAL FILE DECNET PHASE
IV DATABASE

Figure 3
Block Diagram of the CDI Registration Tool and the CDRAPI

• Deregister. Delete one or more node name entries
by name, synonym, or address.

• Repair. Fix any detected problems or inconsisten­
cies in the directory service for one or more node
name entries.

• Export. Copy the information for one or more node
name entries from the directory service into a text file
that can be copied between systems, edited if neces­
sary, and imported into any other directory service.

• Import. Use an export text file to register, modify, or
deregister node name entries in a directory service.

The request processing routines perform any required
validation of the user request and translate those
requests to calls into the CDR APL Each request may
map into one or more CDRAPI calls, depending on the
complexity of the request. For example, register and
deregister requests both map into single CDR API calls,
and export and import requests map into several calls.

Most requests are straightforward in their pro­
cessing requirements. For example, a register request
simply calls the CDR API register entry point. The
CD R API takes care of any complications in processing
the request.

64 Digital Technical Journal Vol. 8 No. 1 1996

Some requests can operate over multiple node name
entries. For example, the show request enumerates
the node name entries, retrieves the information con­
tained in each node name entry, and displays the infor­
mation to the user.

An export request is similar to a show request,
except that the resulting information is written to a
text file in a standard format instead of being displayed
to the user. The import request, however, is more
complicated. This request must enumerate and show
the contents of the directory service, and then com­
pare the results with the contents of the text file. Based
on the specific form of the import request, it may then
register new node name entries, update the informa­
tion in existing node name entries, or deregister listed
node name entries.

The export and import requests make use of a text
file to provide maximum flexibility. The use of a text
file allows the information to be copied between dis­
similar platforms such as the Open VMS and the
Digital UNIX operating systems, and allows the infor­
mation to be manipulated using standard tools such as
batch files, grep, awk, and text editors. This is particu­
larly useful when applying a change to all node entries.

For example, the contents of a directory service could
be exported to a text file, the addresses in the text file
changed to reflect a new routing area, and the results
imported back into the directory to update the exist­
ing information.

The repair function performs a show operation on
all specified node names to determine if any consis­
tency errors are found. This type of error can occur in
directory services that keep multiple physical records
for each logical node name entry. DECdns is one
example of this kind of directory service, because it
uses soft links to map node synonyms and addresses
back to their respective node name entries. If this type
of error is found, the repair function re-registers the
node synonym and address information to correct
these inconsistencies.

The most complicated request is the update request.
This performs a show request for the specified node
names and attempts to use the current addressing
information contained in the node name entry to make
a network management connection to the node itself
For each node name entry, it steps through the com­
plete set of registered addresses and tries each address
in turn, using both a DECnet Phase N connect and a
DECnet/OSI connect. If a connect attempt is success­
ful, it uses the appropriate network management
requests to read the true addressing data. It then com­
pares this addressing data to what it found in the direc­
tory service and makes any necessary corrections to the
node name entry. The update operation does not oper­
ate on IP addresses due to the lack of dynamic update
capabilities in the Domain Name System servers.

Before making the CDRAPI calls, all request process­
ing routines convert the user request data into a node
definition object, which is discussed in the next section.

CDR AP/ Node Definition Object
The node definition object is the only input data pro­
vided to any of the CDRAPI entry points. It stores the
necessary data for any directory service operation,
using a canonical representation. The node definition
object contains the following:

1. Type of directory service to access

2. Name of the node entry to access (depending on the
operation being performed, it may allow a fully qual­
ified name, a synonym, an address, or wildcards)

3. Synonym name (for DECnet Phase N access)

4 . DECnet Phase N network service access point
(NSAP) prefix (for use when a Phase N address is
specified)

5. Address information

6. Directory names used for reverse mapping of
synonym names and addresses back to the fully
qualified node name

The CDRAPI controls all access to elements within the
node definition object, which further isolates the call­
ing application from the lower-level data structures.

CDR AP/ Entry Points
Each CDRAPI entry point provides one logical func­
tion to the calling application. Each user request can
translate into one or more CDR API functions. The
functions are

• Register. Create a new node name entry in the
directory service.

• Add address. Add address information to a node
name entry.

• Remove address. Remove address information
from a node name entry.

• Modify address. Replace the address information in
a node name entry.

• Modify synonym. Replace the node synonym in a
node name entry.

• Rename. Change the name of a node name entry.

• Show. Return the information contained in one or
more node name entries.

• Deregister. Delete one or more node name entries
by name, synonym, or address.

• Enumerate. Return a series of node name entries,
one at a time, based on a wildcard specification.

All node information passed to and from the CDR
API is in the form of a node definition object, as
described previously. The CDRAPI functions validate
the canonical information contained in the node defi­
nition object and dispatch a directory-service-specific
function to handle the request.

CDR AP/ Directory Service Wrapper Routines
Each directory service supported by the CDRAPI has
an associated set of directory service management
wrapper routines. These routines provide entry points
that are functionally identical to those provided by
the CDR APL The CDR API does the initial input
argument validation, and the directory service wrap­
per routines perform the data manipulation in the
underlying directory service.

The CDR API dispatches the appropriate directory
service wrapper routine using a set of entry point tables.
This provides a means to easily extend the CDRAPI to
include additional directory services in future versions.

CDR AP/ Wrapper Routines for DECdns
In the DECdns name service, each node name entry
contains all the information required to translate a
node name to a synonym or a set of node addresses.
However, no search mechanism exists to allow a

Digital Technical Journal Vol. 8 No. 1 1996 65

lookup of the node name entry based on the synonym
or on an address. For this reason, all functions that cre­
ate, modify, and delete node name entries (register,
modify addresses, modify synonym, rename, and
deregister) must also create, modify, and delete reverse
mapping entries.

Reverse mapping entries are based on a node's syn­
onym and addresses; they contain pointers to the true
node name entry. These entries are used by the CDI
library lookup functions and by the CDR API display
functions (show and enumerate) to access the node
name entry when given a synonym or address.

The use of reverse mapping entries requires that
multiple directory service entries be created for each
registered node. These must be synchronized by prop­
erly ordering the creation and deletion of the various
entries when registering, modifying, or deregistering
a node name. For example, when registering, the node
name entry is created and its synonym and address val­
ues are set before the reverse mapping entries are cre­
ated and set. Similarly, when deregistering, the reverse
mapping entries are deleted before the node name
entry is deleted. This prevents orphaned reverse map­
ping entries from being created, because they can
always be found by starting from the information con­
tained in the node name entry.

The repair function is provided in case a register or
deregister operation fails before completion. The
repair function corrects the reverse mapping entries by
re-registering all node name entries that show errors.
The CDI registration tool (not the CDRAPI) provides
this higher-level function.

CDR AP/ Wrapper Routines for the Local Node File
Under the Open VMS operating system, the local node
name file is implemented using a record management
system (RMS)-indexed file. Under the Digital UNIX
operating system, a DBM-indexed file is used. On
both systems, the file content is essentially the same.

The local node name file contains a series oflogical
records, one for each node name entry in the directory
service. Together, these records define each node's
fully qualified name, its synonym, and its addresses.
This logical record may be looked up using the full
name, the synonym, or any of the node's addresses.

Each logical record consists of (1) a node definition
physical record, which contains all information related
to the node, and (2) zero or more reverse mapping
physical records, which contain alternate keys for look­
ing up the node definition. Each reverse mapping
record contains only the node name key in its record
data. All the data used to describe the node is con­
tained in the node definition record.

Because multiple records compose a node name
entry, operations that fail to complete can result in

66 Digital Technical Journal Vol. 8 No. I 1996

inconsistencies in the local node file. Fortunately,
these inconsistencies can be resolved using the same
synchronization algorithms as used for DECdns.

CDR AP/ Wrapper Routines for the DECnet Phase IV
Node Database
Access to the DECnet Phase IV node database is pro­
vided primarily to help users migrate their Phase IV
node name data to DECnet/OSI. No access is pro­
vided to this database by the CDI library for
DECnet/OSI applications. Because this database con­
sists of a simple file, with one record per node name
entry, none of the multiple record synchronization
problems exist.

Conclusion

The Common Directory Interface, cons1snng of
the CDI registration tool set and the CDI library, pro­
vides flexible and extensible directory service access
for DECnet/OSI. Initial customer acceptance of these
new capabilities has been high and future enhance­
ments are being studied.

Acknowledgments

The design and development of the Common
Directory Interface involved the contributions of the
entire directory services and DECnet engineering
teams. We extend our thanks to all the team members,
as well as to product and engineering management for
supporting this project.

References

1. S. Martin, J. McCann, and D. Oran, "Development of
the VAX. Distributed Name Service," Digital Technical
Journal, vol. 1, no. 9 (June 1989): 9-15.

2. P. Mockapetris, "Domain Names-Implementation and
Specification," RFC 1035, Internet Document (Novem­
ber 1987).

3. CCITI Sixth Plenary Assembly, "The Directory­
Overview of Concepts, Models and Services," Recom­
mendation X.500 and ISO 9594-1, Data
Communications Networks Directory: Recommen­
dations X.500 to X.521, CCllT Blue Book, vol. xiii.8
(Geneva: International Telecommunications Union,
1989).

4. R. Rosenbaum, "Using the Domain Name System to
Store Arbitrary String Attributes," RFC 1464, Internet
Document (May 1993).

5. B. Manning and R. Colella, "The Domain Name System
NSAP Resource Records," RFC 1706, Internet Docu­
ment (October 1994).

Biographies

Richard L. Rosenbaum
Rich Rosenbaum is a software engineering consultant in
the Internet Software Business Unit, where he is focusing
on the application of indexing and collaboration technolo­
gies to the World Wide Web. In his 17 years with Digital,
he has worked on networking products operating on
Digital's 16-, 32-, 36-, and 64-bit platforms. He is the
co-author of several patents on network software. Rich
obtained a B.S. from the State University of New York
at Stony Brook.

Stanley I. Goldfarb
Stan Goldfarb is a principal software engineer with the
Internet Software Business Unit. Since joining Digital
in 1976, he has contributed to several network and net·
work management projects, including DECnet/RSX,
DECnet-PRO, DECnet-DOS, DECmcc, DECnet/ OSI,
and PATHWORKS, and he has co-authored several patents
on network management software. He is currently work·
ing on a Workgroup Web Forum application to provide
electronic mail subscription and distribution services.
Stan holds B.S. and M.S. degrees in computer science
from Worcester Polytechnic Institute and an M.S. in
management from Lesley College.

Digital Teclmical Journal Vol. 8 No. 1 1996 67

Recent Digital
U.S. Patents

The following patents were recently issued to Digital
Equipment Corporation. Titles and names supplied
to us by the U.S. Patent and Trademark Office are
reproduced exactly as they appear on the original
published patent.

0336,081
0336,082
0336,290
0336,636

0337,761
0338,001
0338,653
0339,325
0340,035
0342,523
0344,710
0346,370
0347,624

0348,448
0348,672
0350,341
5,209,389
5,210,795
5,212,776

5,214,963
5,215,608

5,216,655

5,216,672

5,218,513

5,220,271
5,223,710

5,223,806

5,223,996

5,224,235

S. K. Morgan and M. L. Hetfield
S. K. Morgan and M. L. Hetfield
S. K. Morgan and M. L. Hetfield
R. Veno, K. Palumbo, P. Roach, P. Barron,
and M. Freeman
S. K. Morgan and M. L. Hetfield
M. Falkner, M. Good, and M. Wiesenhahn
S. K. Morgan and M. L. Hetfield
L. Spencer and C. Detsikas
R. Faranda
S. K. Morgan and M. L. Hetfield
S. K. Morgan and M. L. Hetfield
M. L. Hetfield and S. K. Morgan
W. McCarthy, R. Hellweg, R. Masters,
M. Freeman, C. Williams, C. Brench,
K. Palumbo, D. Snow, and P. Barron
C. E. Vaillant, J. D. Read, and G. J. Norquay
M. J. Falkner and M. W. Kleeman
C. Landry
K. Sullivan and P. Caine
S. Lipner, M. Gasser, and B. W. Lampson
M. Kindervater and F. Zandveld

D. Widder
R. Stroud and K. Vonbrandt

P. Hearn, A. Prentakis, W. Lewis, and
F. Zayas
P. M. Goodwin, D. W. Smelser, and
D. A. Tatosian
D. Brown

J. Palczynski
R. Pavlak

R. Curtis and D. Skendzic

C. E. Vaillant and J. D. Read

P. Lison and W. Baines

68 Digital Technical Journal Vol. 8 No. 1 1996

I

Electronic Device Module
Electronic Device Module
Enclosure for Electronic Module
Power Supply Door

Electronic Device Module
Positioning Device
Power Supply Module
Face Plate
Central Processing Unit Enclosure
Cover for Wall-mounted Electronic Equipment
Electronic Device Module
Network Multiplexor for an Office Environment
Card Cage Enclosure

Removable Rigid Disk Drive
Desktop Audio Enclosure
Display Monitor
Solder Pump Bushing Seal
Secure User Authentication from Personal Computer
Computer System Comprising a Main Bus and an
Additional Communication Means Directly Connected
between Processor and Main Memory
Method and Apparatus for Testing Inner Lead Bonds
Composition and Method for Bonding Electrical
Components
Method and Apparatus for Surface Reallocation for
Improved Manufacturing Process Margin
Parallel Diagnostic Mode for Testing Computer Memory

Plenum for Air-impingement Cooling of Electronic
Components
Cross Regulator for a Multiple Output Power Supply
Optical Angular Position Sensing System for Use with
a Galvanometer
Method and Apparatus for Reducing Electromagnetic
Interference and Emission Associated with Computer
Network Interfaces
Combined Shock Mount Frame and Seal for a Rigid
Disk Drive
Electronic Component Cleaning Apparatus

5,224,263
5,225,790
5,226,092
5,227,041
5,227,582

5,227,604

5,228,066

5,229,901
5,229,914
5,229,926
5,231,246
5,232,570

5,235,617
5,235,642

5,239,260
5,239,274

5,240,549
5,241,632
5,241,639

5,243,308

5,243,495
5,243,756
5,247,426

5,248,253
5,251,316

5,254,930

5,255,287
5,255,375

5,256,060
5,256,975

5,260,864
5,260,928
5,260,945

5,260,999
5,261,002

5,263,030

5,263,032

5,265,212

5,265,216
5,266,156

W. Hamburgen
R. Noguchi, J. Rinaldis, and P. Esling
K.Chen
B. Brogden, L. Brown, and S. Husain
D. J. Velasco, J.P. Copeland, D. C. Robinson,
and R . L. Fernandez
G. Freedman

C. Devane

M . Mallary
D. Bailey
D. D. Donaldson and D. Wissell
J. Benson, D. Alessandrini, and W. Rett
W. Haines, R. Raymond, C. Byun, E. Johns,
D. Ravipati, Q. Ng, and G. Rauch
W. Mallard
E. Wobber, M. Abadi, A. Birrell, and
B. W. Lampson

D. Widder and D. Ringleb
K.Chi

W. Hamburgen and J. Fitch
T. Creedon, D. Smith, and A. O'Connell
F. Feldbrugge

R. Curtis and B. Shusterman

C. E. Vaillant, J. D. Read, and G. Norquay
W. Hamburgen and J. Fitch
W. Hamburgen and J. Fitch

A. Philipossian and E. Culley
P. Anick and R. Flynn

J. A. Daly

D. C. Davies, D. G. Vonada, and R . A. Curtis
N . Crook, P. Bruce, and R. Galuszka

A. Philipossian and E. Culley
R. Mellitz and E. Stearns

J. Simonelli and Z. Arbanas
A. Jain, N. Lee, and E. Keppeler
T. L. Rodeheffer

R. Wyman
R.J. Perlman and C. W. Kaufman

P. S. Rotker, and E.W. Ertel

B. Porter, C. A. Mega, and R. L. Myers

B. E. William

C. P. Murphy, T. Creedon, and C. D. Cremin
A. Nasr

Gentle Package Extraction Tool and Method
Tunable Wideband Active Filter
Method and Apparatus for Learning in a Neural Network
Dry Contact Electroplating Apparatus
Video Amplifier Assembly Mount

Atmospheric Pressure Gaseous-flux-assisted Laser
Reflow Soldering
System and Method for Measuring Computer System
Time Intervals
Side-by-Side Read/Write Heads with Rotary Positioner
Cooling Device that Creates Longitudinal Vortices
Power Supply Interlock for Distributed Power Systems
Apparatus for Securing Shielding or the Like
Nitrogen-containing Materials for Wear Protection and
Friction Reduction
Transmission Media Driving System
Access Control Subsystem and Method for Distributed
Computer System Using Locally Cached Authentication
Credentials
Semiconductor Probe and Alignment System
Voltage-controlled Ring Oscillator Using Complementary
Differential Buffers for Generating Multiple Phase Signals
Fixture and Method for Attaching Components
Programmable Priority Arbiter
Method for Updating Modified Data from a Cache
Address Location to Main Memory and Maintaining
the Cache Address in Registration Memory
Combined Differential-mode and Common-mode
Noise Filter
Removable Enclosure Housing a Rigid Disk Drive
Integrated Circuit Protection by Liquid Encapsulation
Semiconductor Heat Removal Apparatus with
Non-uniform Conductance
Thermal Processing Furnace with Improved Plug Flow
Method and Apparatus for Integrating a Dynamic Lexicon
into a Full-text Information Retrieval System
Fault Detector for a Plurality of Batteries in Battery
Backup Systems
Transceiver Apparatus and Methods
High Performance Interface between an Asynchronous
Bus and One or More Processors or the Like
Reducing Gas Recirculation in Thermal Processing Furnace
Manually Operated Continuity /Shorts Test Probe for Bare
Interconnection Packages
Configurable Inverter for 120 VAC or 240 VAC Output
Apparatus and Method for Fabricating a Lens/Mirror Tower
Intermittent Component Failure Manager and Method for
Minimizing Disruption of Distributed Computer System
Filters in License Management System
Method of Issuance and Revocation of Certificates
of Authenticity Used in Public Key Networks and
Other Systems
Method and Apparatus for Encoding Data for Storage
on Magnetic Tape
Computer System Operation with Corrected Read
Data Function
Sharing of Bus Access among Multiple State Machines with
Minimal Wait Time and Prioritization of Like Cycl.e Types
High-performance Asynchronous Bus Interface
Methods of Forming a Local Interconnect and a High
Resistor Polysilicon Load by Reacting Cobalt with Polysilicon

Digital Technical Journal Vol. 8 No. 1 1996 69

5,267,112

5,267,199

5,267,235
5,267,237
5,267,867
5,268,837
5,268,962

5,269,013

5,272,390

5,272,445
5,273,455
5,274,210
5,274,509

5,274,628
5,276,569
5,276,872

5,278,703

5,278,783

5,279, 865
5,280,437

5,280,608

5,281,869
5,283,560

5,285,007

5,286,919
5,287,263
5,287,359
5,287,500

5,287,501

5,287,517
5,289,046

5,289,328

5,289,347

5,291,529
5,293,486
5,293,487

5,294,842

S. Batra, S. Ramaswamy, and M. Mallary

R. J. Galuszka, A. J. Walton, and C. Choi

C. P. Thacker
A. T. Townley
F. Aghadel and C. W. Ho
M. Saylor
M. Abadi, M. Burrows, and B. W. Lampson

K. D. Abramson, H. B. Butts, and
D.A. Orbits
H. A. Collins, R. B. Watson, and R. Iknaian

S. G. Lloyd and H. Partovi
L. MacLellan
G. Freedman, P. Elmgren, and M. Brodeur
B. D. Buch

N. D. Godiwala and K. M. Thaller
W. F. Even
D. B. Lomet and B. J. Salzberg

B. Rub, J.E. Deroo, S. B. Skraly, A. Solli,
andR. Frame
J. Edmondson

R. P. Chebi and S. Mittal
D. A. Corliss

A. J. Beverson, T. E. Hunt, and
G. P. Lidington
J. R. Lundberg
J. F. Bartlett

A. E. Deluca, J.M. Lewis, C. L. Leo,
T. J. Orr, D. T. Symmes, and R. A. Barker
J. W. Benson and D. T. Staffiere
M.Shilo
W. Engelse
P. Stoppani

D. B. Lomet

B. A. Maskas, J. A. Metzger, and G. J. Harris
J. A. Daly, J. M. Gregorich, and G. J. Brand

G. Saliba

W. F. McCarthy, D. M. Snow, and
C. E. Brench
N. A. Crook, P. L. Bruce, and R . J. Galuszka
M. A. Jordan and D. J. Donnelly
A. P. Russo, S. L. Rege, M. F. Kempf, and
E. T. Sullivan

R. Iknaian and R. B. Watson

70 Digital Technical Journal Vol. 8 No. 1 1996

Thin Film Read/Write Head for Minimizing Erase
Fringing and Method of Making the Same
Apparatus for Simultaneous Write Access to a Single
Bit Memory
Method and Apparatus for Resource Arbitration
Collision Detection and Signaling Circuit
Package for Multiple Removable Integrated Circuits
Robotics Workstation
Computer Network with Modified Host-to-Host
Encryption Keys
Adaptive Memory Management Method for Coupled
Memory Multiprocessor Systems
Method and Apparatus for Clock Skew Reduction through
Absolute Delay Regulation
Resistance Tester Utilizing Regulator Circuits
Torsion Bar Connector
Laser Bonding Highly Reflective Surfaces
On-the-fly Splitting of Disk Data Blocks Using Timed
Sampling of a Data Position Indicator
Multisignal Synchronizer with Shared Last Stage
Spindle Controller with Startup Correction of Disk Position
Concurrency and Recovery for Index Trees with Nodal
Updates Using Multiple Atomic Actions by Which
the Trees Integrity is Preserved during Undesired
System Interruptions
Embedded Servo Banded Format for Magnetic Disks for
Use with a Data Processing System
Fast Area-Efficient Multi-bit Binary Adder with Low
Fan-out Signals
High Throughput Interlevel Dielectric Gap Filling Process
Structure and Method for Direct Calibration of
Registration Measurement Systems to Actual
Semiconductor Wafer Process Topography
Programmable Stall Cycles

Reduced Voltage NMOS Output Driver
Computer System and Method for Displaying Images with
Superimposed Partially Transparent Menus
System for Reducing the Emission of High Frequency
Electromagnetic Waves from Computer Systems
Computer Cable Management System
Inrush Current Control Circuit
Synchronous Decoder for Self-clocking Signals
System for Allocating Storage Spaces Based upon Required
and Optional Service Attributes Having Assigned Priorities
Multilevel Transaction Recovery in a Database System
Which Loss Parent Transaction Undo Operation upon
Commit of Child Transaction
Self-compensating Voltage Level Shifting Circuit
Power Converter with Controller for Switching between
Primary and Battery Power Sources
Method and Apparatus for Variable Density Read-after­
writing on Magnetic Tape
Enclosure for Electronic Modules

Synchronization Scheme
Deterministic Method for Allocation of a Shared Resource
Network Adapter with High Throughput Data Transfer
Circuit to Optimize Network Data Transfers, with Host
Receive Ring Resource Monitoring and Reporting
PVT Update Synchronizer

5,294,994

5,297,107

5,297,291

5,297,992
5,299,206

5,301,186
5,301,283

5,301,320

5,301,325

5,302,960
5,303,302

5,303,347

5,304,939
5,305,185

5,305,354
5,305,389

5,306,994

5,307,217

5,307,256

5,307,336

5,307,345

5,307,492

5,308,429

5,309,035

5,309,294

5,309,451

5,309,569
5,311,081

5,313,369

5,313,501
5,313,577

5,313,595
5,315,597

D. C. Robinson, J. P. Copeland, D. J. Velasco,
R. L. Fernandez, and S. D. Venditti
J. A. Metzger and P. J. Graffam

D. L. Murphy

D. Bailey, P. Martino, and B. Arsenault
A. Beaverson and C. J. Devane

R . Galuszka, A. Walton, and S. Bryant
C. P. Thacker and D. Hartwell

P. J. Cerqua, S. M. Kennedy, J. D. McAtee,
and P.J. Piccolomini
T. R. Benson

P. Boers
M. Burrows

S. L. Rege and D. A. Gagne

D. C. Davies
V. Samarov, J. DeCarolis, R . Patel, G. Piche,
G. Skutt, and S. Norris
N. D. Godiwala and K. M. Thaller
M. L. Palmer

L. Supino

G. A. Saliba

R . Silverstein

N. K. Lee, A. Jain, E. Keppeler, and
M. Bouchard
S.-T. Ben-Michael and P. Lozowick

T. R. Benson

S. J. Bradley

H . Collins, R. Watson, and R. lknaian

D. Cahalan

E. S. Noya, M. N. Rosich, and R . M. Arnott

N. A. Warchol
D. D. Donaldson, R. A. Dame, and
R. E. Nike!

M. Lewis, L. Treseder, R. Martinez, and
R. Tusler
C. P. Thacker
K. Meinerth, C. Case, R. Gamache,
B. Fanning, and C. Franklin
M. Lewis and R. Ravey
W. C. Mallard and H. S. Yang

Integrated Computer Assembly

Interconnect Arrangement for Electronic Components
Disposed on a Circuit Board
System for Linking Program Units by Binding Symbol
Vector Index in the Symbol Table into Calling Image
to Obtain Current Value of the Target Image
Method and Apparatus for Liquid Spill Containment
A General Process for Finding Patterns in Large Logic
Traces (or Other Large Binary Arrays) Using Multiple
Concurrent Finite Automata with Cross-communication
High Speed Transmission Line Interface
Dynamic Arbitration for System Bus Control in
Multiprocessor Data Processing System
Workflow Management and Control System

Use of Stack Depth to Identify Architecture and Calling
Standard Dependencies in Machine Code
Multi-element Susceptibility Room
Network Packet Receiver with Buffer Logic for
Reassembling Interleaved Data Packets
Attribute Based Multiple Data Structures in Host for
Network Received Traffic
Tracking Peak Detector
Coplanar Heatsink and Electronics Assembly

Aborting Synchronizer
Predictive Cache for Improved Performance in Retrieving
Cached Data
Automatic Phase Margin Compensation Control Circuit
and Method for Disk Drives
Magnetic Head for Very High Track Density Magnetic
Recording
Trickle Charge Circuit for an Off-line Switching
Power Supply
Multi-disk Optical Storage System

Method and Apparatus for Cut-through Data Packet
Transfer in a Bridge Device
Mapping Assembly Language Argument List References
in Translating Code for Different Machine Architectures
System for Bonding a Heatsink to a Semiconductor
Chip Package
Method and Apparatus for Clock Skew Reduction through
Absolute Delay Regulation
Method and Circuitry to Provide True Voltage Bias to
a Magnetoresistive Head
Data and Parity Prefetching for Redundant Arrays of
Disk Drives
Self-configuring Bus Termination Component
Data Bus Using Open Drain Drivers and Differential
Receivers Together with Distributed Termination
Impedances
Reduced Tolerance Interconnect System

Method and Apparatus for Deskewing Digital Data
Translation of Virtual Addressing in a Computer
Graphics System
Automatic Signal Termination System for a Computer Bus
Method and Means for Automatically Detecting and
Correcting a Polarity Error in Twisted-pair Media

Digital Technical Journal Vol. 8 No. 1 1996 71

72

5,315,602

5,315,696

5,315,698

5,315,707
5,316,642
5,316,965

5,317,527

5,317,693

5,319,385
5,319,678
5,319,743

5,319,760

5,319,766

5,319,785

5,321,373

5,321,693

5,321,703
5,321,806

5,321,810

5,325,495
5,325,528

5,327,416
5,327,424
5,327,435

5,329,426
5,330,920

5,331,496

5,332,487
5,333,097
5,333,098

5,333,260
5,333,262

5,333,315

5,333,744

5,334,043
5,335,226

5,335,235

R. M. Arnott, E. S. Noya, and M. N. Rosich

K. Meinerth, C. Case, B. Fanning,
and J. Irwin
K. Meinerth, C. Case, J. Irwin,
and B. Fanning
S. Bryant and M. Seaman
D. Young, S. Randall, S. Shaw, and A. Wylde
A. Philipossian, H. Soleimani, and B. Doyle

S. Britton, R. Allmon, and S. Samudrala

J.-C. E. Cuenod, and P. A. Sichel

F. Fernando
S. Ho and N . Darcy
S. Dutta, A. Roy, and N. Rao

A. H. Mason, P. T. Robinson, R. Witek,
and J. S. Hall
B. A. Maskas, J. A. Metzger, N. D. Godiwala,
and K. M. Thaller
K. M. Thaller

R. Curtis and B. Shusterman

R . Perlman

L.-J. Weng
K. Meinerth, C. Case, J. Irwin, A. Masucci,
S. Krishnaswami, and A. Moezzi
K. Meinerth, C. Case, J. Irwin, and
B.Fanning
E.McLellan
J. Klein

L. Neville, A. Jain, and A. L. Gutierrez
R. Perlman
N. Warchol

A. Villani
A. Philipossian, B. Doyle, and H. Soleimani

S. Batra and A. Wu

D. Young, S. Randall, S. Shaw, and A. Wylde
G. Christensen and J. Marceca
A. E. Deluca, S. W. Stefanick, C. L. Leo,
T. J. Orr, D. T. Symmes, and H. Wright
R. Ulichney
R. Ulichney

P. Stoppani and C. Saether

R.-A. Locicero, S. Morgan, M. Romm,
E. Mangan, and M. Bantly
G. Dvorak and L. Wolfe
R. A. Williams

R . M. Arnott

Digital Technical Journal Vol. 8 No. 1 1996

Optimized Stripe Detection for Redundant Arrays of
Disk Drives
Graphics Command Processing Method in a Computer
Graphics System
Method and Apparatus for Varying Command Length
in a Computer Graphics System
Multiprocessor Buffer System
Oscillation Device for Plating System
Method of Decreasing the Field Oxide Etch Rate in
Isolation Technology
Leading One/Zero Bit Detector for Floating Point
Operation
Computer Peripheral Device Network with Peripheral
Address Resetting Capabilities
Quadrant-based Binding of Pointer Device Buttons
Clocking System for Asynchronous Operations
Intelligent and Compact Bucketing Method for Region
Queries in Two-dimensional Space
Translation Buffer for Virtual Machines with Address
Space Match
Duplicate Tag Store without Valid Indicator

Polling of 1/0 Device Status Comparison Performed
in the Polled 1/0 Device
Combined Differential-mode and Common-mode
Noise Filter
Multicast Address in a Local Area Network Where
the Local Area Network has Inadequate Multicast
Addressing Capability
Data Recovery after Error Correction Failure
Residue Buffer for Graphics System

Address Method for Computer Graphics System

Reducing Branch Delay in Pipelined Computer System
Distributed Computation Recovery Management System
and Method
Surface Selection Mechanism for Optical Storage System
Automatically Configuring Parallel Bridge Numbers
Method for Testing a Processor Module in a Computer
System
Clip-on Heat Sink
Method of Controlling Gate Oxide Thickness in the
Fabrication of Semiconductor Devices
Thin Film Magnetic Transducer with a Multitude of
Magnetic Flux Interactions
Method and Plating Apparatus
Disk Drive Holder and Interconnection System
Apparatus for Storing Storage Devices

Imaging System with Multilevel Dithering Using Bit Shifter
Imaging System with Multilevel Dithering Using Two
Memories
Data Storage System and Method with Device
Independent File Directories
Modular Equipment Support System

Test Fixture for Electronic Components
Communications System with Reliable Collision Detection
Method and Apparatus
FIFO: Based Parity Generator (FBPG)

Call for Authors
from Digital Press

Digi tal Press is an imprint of Butterworth- Heinemann, a major international pub­
l isher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized p ublisher for Digital Equipment Corporation : The two
companies are working i n partnership to identifY and publ ish new books under the
Digital Press imprin t and create opportu nities for authors to publish their work.

Digital Press is com mitted to publishing high-qua l ity books on a wide variety
of su bjects. We would l ike to hear from you if you are writing or thinking about
writing a book .

Contact: Mike Cash , Digital Press Manager, or
Liz McCarthy, Assistant Edi tor

DIGITAL PRESS
3 1 3 Washington Street
Newton, MA 02 1 5 8- 1 626
U .S.A.
Tel : (6 1 7) 928-2649, Fax: (6 1 7) 928-2640
E-mai l : Mike.Cash@BHein .rel .co .uk or
LizMc@world .std .com

ISSN 0898-901X

Printed i n U .S.A. EY- U02SE·T)/96 6 14 20.7 Copvright � Digital Equipment Corporation

	Front cover
	Contents
	Editor's introduction
	Foreword
	Design of the TruCluster Multicomputer System for the Digital UNIX Environment
	Delivering Binary Object Modification Tools for Program Analysis and Optimization
	Design of eXcursion Version 2 for Windows, Windows NT, and Windows 95
	Integrating Multiple Directory Services
	Design of the Common Directory lnterface for DECnet/OSI
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

