
Digital
Technical
Journal

I
HIGH PERFORMANCE FORTRAN
IN PARALLEL ENVIRONMENTS

SEQUOIA 2000 RESEARCH

Volume 7 Number 3

1995

Editorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

Cover Design
The images on the front and back covers
of this issue are different visualizations
of the same data output from a regional
climate simulation program run by Dr.
John Roads of the Scripps Institution of
Oceanography. The data depicted con­
tain measures of temperature, liquid and
gaseous water content, and wind vectors;
the topography represented by the data
is the western U.S. in January 1990. Pro­
viding earth scientists with the ability to
visualize such data is one of the objectives
of the Sequoia 2000 research project-
a joint eftort of the University of California,
government agenc ies, and industry to build
a computing environment for global change
research. This issue presents papers on sev­
eral major an::as explored by Sequoia 2000
rese;uchers, including an electronic reposi­
tory, networking, and vi sualization.

The cover was designed by Lucinda O'Neill
of Digital's Design Group. Special thanks go
to Peter Kochevar for supplying the cover
images .

The Digital Technical journal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
L)02/D lO, Littleton, Massachusetts 01460.
Subscriptions ro rhejoumaiare $40.00
(non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must
be prepaid in U.S. funds. University and
college protessors and Ph.D. srudems in
the electrical engineering and computer
science fields receive complimentary sub­
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
Digital Technica!journalat rhe published­
by address. Inquiries can also be sent elec­
tronically ro drj@digital.com. Single copies
and back issues are available for $16.00 each
by calling DECdirecr at 1-800-DIGITAL
(1-800-344-4825). Recent back issuesofrhe
journal are also available on the Internet at
h rrp:/ jwww.digital.com/info/DTJ/home.
hrml. Complete Digital Internet listings can
be obtained by sending an electronic mail
message ro info@digiral.com.

Digital employees may order subscriptions
through Readers Choice by enteringVTX
PROFILE at the system prompt.

Comments on the content of any paper are
welcomed and may be sent to the managing
editor at the pubhshed-by or network address.

Copyright© 1995 Digital Equipment
Corporation. Copying without fee is per­
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com­
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's author­
ship is permitted. All rights reserved.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa­
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

JSSN 0898-901X

Documentation Number EY-T838E-TJ

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Corporation: D igital, the
DIGITAL logo, Alpha Generation,
AJphaServer, AlphaSrarion, DEC, DEC
OSF /1, DECstation, GIGAswirch,
TURBOchannel, and ULTlUX.

Dore is a registered trademark of Kubota
Pacific Computer Inc.

Ex a byte is a registered trademark of
Exabyre Corporation.

Hewlett-Packard and HP are registered
trademarks of Hewlett-Packard Company

JBM and SP2 are registered trademarks
of! nternarional Business Machines
Corporation.

II lustra is a registered trademark of Illustra
lntormation Technologies, Inc.

Intel is a trademark oflnrel Corporation.

MCf is a registered trademark of MCI
Communications Corporation.

MEMORY CHANNEL is a trademark
of Encore Computer Corporation.

Mosaic is a trademark of Mosaic
Communications Corporation.

Nerscape is a trademark ofNerscape
Communications Corporation.

NewronScripr is a trademark of Apple
Compu ter, Inc.

NFS is a registered trademark of Sun
Microsysrems, Inc.

OpenGL is a registered trademark and
Open Inventor is a trademark of Silicon
Graphics, Inc.

Picture Tel is a registered trademark of
PictureTcl Corporation.

PostScript is a registered trademark of
Adobe Systems Inc.

SAIC is a registered trademark of Science
Applications International Corporation.

Siemens is ·a registered trademark of
Siemens Nixdorflnformation Systems, Inc .

Sony is a registered trademark of Sony
Corporation.

SPEC is a trademark of the Standard
Performance Evaluation Council.

Telescripr is a trademark of General Magic, Inc.

UNIX is a registered trademark in the
United Stares and other countries, licensed
exclusively through X/Open Company Ltd.

Contents

Foreword

HIGH PERFORMANCE FORTRAN IN
PARALLEL ENVIRONMENTS

Compiling High Performance Fortran for
Distributed-memory Systems

Design of Digital's Parallel Software Environment

SEQUOIA 2000 RESEARCH

An Overview of the Sequoia 2000 Project

The Sequoia 2000 Electronic Repository

Tecate: A Software Platform for Browsing and
Visualizing Data from Networked Data Sources

High-performance 1/0 and Networking Software
in Sequoia 2000

Jean C. Bonney

Jonathan Harris, John A. Bircsak, M. Regina Bolduc,
Jill Ann Diewald, Israel Gale, Neil W. Johnson,
Shin Lee, C. Alexander Nelson, and Carl D. Offner

Edward G. Benson, David C.P. Lafrance-Linden,
Richard A. Warren, and Santa Wiryaman

Michael Stonebraker

Ray R. Larson, Christian Plaunt,
Allison G. Woodruff, and Marti Hearst

Peter D. Kochevar and Leonard R. Wanger

Joseph Pasquale, Eric W. Anderson, Kevin Fall, and
Jonathan S. Kay

3

5

24

39

50

66

84

Digital Technical Journal Vol. 7 No. 3 1995

2

Editor's
Introduction

Scientists have long been motivators
for the development of powerful
computing environments. Two
sections in this issue of the Journal
address the requirements of scientific
and technical computing. The first,
from Digital's High Performance
Technical Computing Group, looks
at compiler and development tools
that accelerate performance in parallel
environments. The second section
looks to the future of computing;
University of California and Digital
researchers present their work on a
large, distributed computing environ­
ment suited to the needs of earth sci­
entists studying global changes such
as ocean dynamics, global warming,
and ozone depletion. Digital was an
early industry sponsor and participant
in this joint research project, called
Sequoia 2000.

To support the writing of parallel
programs for computationally intense
environments, Digital has extended
DEC Fortran 90 by implementing
most of High Performance Fortran
(HPF) version 1.1. After reviewing
the syntactic features of Fortran 90
and HPF, Jonathan Harris et al. focus
on the HPF compiler design and
explain the optimizations it performs
to improve interprocessor communi­
cation in a distributed-memory envi­
ronment, specifically, in workstation
clusters (farms) based on Digital's
64-bit Alpha microprocessors.

The run-time support for this dis­
tributed environment is the Parallel
Software Environment (PSE). Ed
Benson, David Lafrance-Linden,
Rich Warren, and Santa Wiryaman
describe the PSE product, which is
layered on the UNIX operating sys­
tem and includes tools for developing

Digital Technical Journal

parallel applications on clusters of up
to 256 machines. They also examine
design decisions relative to message­
passing support in distributed systems
and shared-memory systems; PSE
supports network message passing,
using TCP /IP or UDP /IP protocols,
and shared memory.

Michael Stonebraker's paper opens
the section featuring Sequoia 2000
research and is an overview of the
project's objectives and status. The
objectives encompassed support for
high-performance 1/0 on terabyte
data sets, placing all data in a DBMS,
and providing new visualization tools
and high-speed networking. After
a discussion of the architectural layers,
he reviews some lessons learned by
participants-chief of which was to
view the system as an end-to-end
solution-and concludes with a look
at future work.

An efficient means for locating
and retrieving data from the vast
stores in the Sequoia DBMS was
the task addressed by the Sequoia
2000 Electronic Repository project
team. Ray Larson, Chris Plaunt,
Allison Woodruff, and Marti Hearst
describe the Lassen text indexing
and retrieval methods developed
for the POSTGRES database system,
the GIPSY system for automatic index­
ing of texts using geographic coor­
dinates discussed in the text, and the
TextTiling method for automatic
partitioning of text documents to
enhance retrieval.

The need for tools to browse
through and to visualize Sequoia
2000 data was the impetus behind
Tecate, a software platform on which
browsing and visualization applica­
tions can be built. Peter Kochevar

Vol. 7 No. 3 1995

and Len Wanger present the features
and functions of this research proto­
type and offer details of the object
model and the role of the interpre­
tive Abstract Visualization Language
(AVL) for programming. They con­
clude with example applications that
browse data spaces.

The challenge of high-speed net­
working for Sequoia 2000 is the sub­
ject of the paper by Joseph Pasquale,
Eric Anderson, Kevin Fall, and Jon
Kay. In designing a distributed system
that efficiently retrieves, stores, and
transfers very large objects (in excess
of tens or hundreds of megabytes),
they focused on operating system
1/0 and network software. They
describe two 1/0 system software
solutions-container shipping and
peer-to-peer 1/0-that avoid data
copying. Their TCP /IP network
software solutions center on avoiding
or reducing checksum computation.

The editors thank Jean Bonney,
Digital's Director of External
Research, for her help in obtaining
the papers on Sequoia 2000 research
and for writing the Foreword to this
issue.

Our next issue will feature papers
on multimedia and UNIX clusters.

Jane C. Blake
Managing Editor

Foreword

Jean C. Bonney
Director, External Research

The Information Utility, the
Information Highway, the Internet,
the Infobahn, the Information
Economy-the sound bytes of the
1990s. To make these concepts
reality, a robust technology infra­
structure is necessary. In 1990,
Digital's research organization saw
this need and set out to develop an
experimental test bed that would
examine assumptions and provide a
basis for a technology edge in the '90s.
The resulting project was Sequoia
2000, a three-year research collabora­
tion between Digital, campuses of the
University of California, and several
other industry and government orga -
nizations. The Sequoia 2000 vision is

Petabytes (i.e., trillions of bytes)
of data in a distributed archive,
transparently managed, and
logically viewed over a high-speed
network with isochronous capabilities
via a host of tools

-in other words, a big, fast, easy-to­
use system.

Although the vision is still not reality
today, our more than three years
of participation in Sequoia 2000
research gave us the knowledge base
we sought.

After a rigorous process of pro­
posal development and review by
experts at Digital and the University
of California, Sequoia 2000 began
in June 1991. The focus of the
research was a high-speed, broad­
band network spanning University
of California campuses from Berkeley
to Santa Barbara, Los Angeles, and
San Diego; a massive database; stor­
age; a visualization system; and elec­
tronic collaboration. Driving the
research requirements were earth
scientists. The computing needs of
these scientists push the state of the
art. Current computing technologies
lack the capabilities earth scientists
need to assimilate and interpret the
vast quantities ofinformation col­
lected from satellites. Once the data
are collected and organized, there is
the challenge of massive simulations,
simulations that forecast world climate
ten or even one hundred years from
now. These were exactly the kinds
of challenges the computer scientists
needed.

Among the major results of three
years of work on Sequoia 2000 was
a set of product requirements for
large data applications. These require­
ments have been validated through
discussions with customers in finan­
cial, healthcare, and communications
industries and in government. The
requirements include

• A computing environment built
on an object relational database,
i.e., a data-centric computing
system

• A database that handles a wide
variety of nontraditional objects
such as text, audio, video, graph­
ics, and images

• Support for a variety of traditional
databases and file systems

• The ability to perform necessary
operations from computing
environments that are intuitive
and have the same look and feel;
the interface to the environment
should be generic, very high level,
and easily tailored to the user
application

• High-speed data migration
between secondary and tertiary
storage with the ability to handle
very large data transfers

• Network bandwidth capable
of handling image transmission
across networks in an acceptable
time frame with quality guarantees
for the data

• High-quality remote visualization
of any relevant data regardless
of format; the user must be able
to manipulate the visual data
interactively

• Reliable, guaranteed, delivery
of data from tertiary storage to
the desktop

Sequoia 2000 was also a catalyst
for maturing the POSTGRES research
database software to the point where
it was ready for commercialization.
The commercial version, Illustra,
is available on Alpha platforms and
is enjoying success in the banking
industry and in geographic informa­
tion system (GIS) applications, as
well as in other government applica -
tions with massive data requirements.
Illustra is also making inroads into the
Internet where it is used by on-line
services.

Yet another major result of Sequoia
2000 was a grant from the National

Digital Technical Journal Vol. 7 No. 3 1995 3

4

Aeronautics and Space Administra­
tion (NASA) to develop an alternate
architecture for the Earth Observing
System Data and Information System
(EOSDIS). EOSDIS will process the
petabytes ofreal-time data from
the Earth Observing System (EOS)
satellites to be launched at the end
of the decade. The alternate infor­
mation architecture proposed by the
University of California faculty was
the Sequoia 2000 architecture. It
will have a major influence on the
EOSDIS project.

For the earth scientists, gains
were made in simulation speeds and
in access to large stores of organized
data. These scientists used some of
Digital's first Alpha workstation farms
and software prototypes for their cli­
mate simulations. An eight-processor
Alpha workstation farm provided a
two-to-one price/performance advan­
tage over the powerful, multimillion­
dollar CRAY C90 machine. In another
earth science application, scientists
using Alpha and hierarchical storage
systems could simulate two years'
worth of climate data over the week­
end without operator intervention;
formerly, two months' worth of data
took one day to simulate and required
considerable operator intervention.
Thus many more simulations could
be processed in a fixed time and
"time to discovery" was decreased
considerably.

Now that we can look at Sequoia
2000 in retrospect, would we do
such a project again? The answer
is a resounding "yes" from all of
us involved. It was a complex proj­
ect that included 12 University of
California faculty members, 25 grad­
uate students, and 20 staff. Another

Digital Technical Journal

8 faculty members and students pro­
vided additional expertise. Four of
Digital's engineers worked on site,
and a variety of support personnel
from other industry sponsors partici­
pated, including SAIC, the California
Department of Water Resources,
Hewlett-Packard, Metrum, United
States Geological Survey (USGS),
Hughes Application Information
Services, and the Army Corps of
Engineers.

But as is the case with such ambi­
tious projects, there were unantici­
pated and difficult lessons for all
to learn. To experiment with real­
life test beds means considerably
more than writing a rigorous set
of hypotheses in a proposal. Michael
Stonebraker, in his paper, notes a
number of challenges we faced and
the lessons learned. One of the issues
that kept surfacing was the "grease
and glue" for the infrastructure, that
is, the interoperability of pieces of
software and hardware that composed
the end-to-end system. This remains
a challenge that needs research if we
are going to achieve the promised
goals ofinternetworking. Another
sticky point was scalability. On the
one hand, it is difficult to build a very
large networked system from scratch.
On the other hand, as we slowly built
the mass storage system to the point
of minimal critical mass, we found
that the current off-the-shelf tech­
nologies for mass storage were not
ready to be put use for our purposes.
So, yes, we believe the project was
worthwhile with some caveats. We
gained critical knowledge about the
technology, and we also came a long
way in learning the art of directing
and leading the type of project that is

Vol. 7 No. 3 1995

necessary to assist the Information
Technology industry in its quest
for the ubiquitous distributed
information system.

How else are we going to get
insight into the critical issues of build­
ing and reliably operating a robust
information infrastructure without
building a large test bed with real end
users whose needs push the state of
the art at each point along the way?
We believe that large projects similar
to Sequoia are crucial. The papers
that follow attest to the important
knowledge gained. We have focused
specifically on the end-to-end system
-from the scientists' desktops to the
mass storage system, the challenge
of building and using a large data
repository, the timely and fast move­
ment of very large objects over the
network, and browsing and visualiz­
ing data from networked sources.

Compiling High
Performance Fortran
for Distributed­
memory Systems

Digital's DEC Fortran 90 compiler implements

most of High Performance Fortran version 1.1,

a language for writing parallel programs. The

compiler generates code for distributed-memory

machines consisting of interconnected work­

stations or servers powered by Digital's Alpha

microprocessors. The DEC Fortran 90 compiler

efficiently implements the features of Fortran 90

and HPF that support parallelism. HPF programs

compiled with Digital's compiler yield perfor­

mance that scales linearly or even superlinearly

on significant applications on both distributed­

memory and shared-memory architectures.

I
Jonathan Harris
John A. Bircsak
M. Regina Bolduc
Jill Ann Diewald
Israel Gale
Neil W. Johnson
Shin Lee
C. Alexander Nelson
Carl D. Offner

High Performance Fortran (HPF) is a new program­
ming language for writing parallel programs. It is
based on the Fortran 90 language, with extensions
that enable the programmer to specify how array oper­
ations can be divided among multiple processors for
increased performance. In HPF, the program specifies
only the pattern in which the data is divided among
the processors; the compiler automates the low-level
details of synchronization and communication of data
between processors.

Digital's DEC Fortran 90 compiler is the first imple­
mentation of the full HPF version 1.1 language
(except for transcriptive argument passing, dynamic
remapping, and nested FORALL and WHERE con­
structs). The compiler was designed for a distributed­
memory machine made up of a cluster (or farm) of
workstations and/ or servers powered by Digital's
Alpha microprocessors.

In a distributed-memory machine, communication
between processors must be kept to an absolute mini­
mum, because communication across the network is
enormously more time-consuming than any operation
done locally. Digital's DEC Fortran 90 compiler
includes a number of optimizations to minimize the
cost of communication between processors.

This paper briefly reviews the features of Fortran 90
and HPF that support parallelism, describes how the
compiler implements these features efficiently, and
concludes with some recent performance results
showing that HPF programs compiled with Digital's
compiler yield performance that scales linearly or even
superlinearly on significant applications on both
distributed-memory and shared-memory architectures.

Historical Background

The desire to write parallel programs dates back to the
19 50s, at least, and probably earlier. The mathematician
John von Neumann, credited with the invention of the
basic architecture of today's serial computers, also
invented cellular automata, the precursor of today's
massively parallel machines. The continuing motiva­
tion for parallelism is provided by the need to solve
computationally intense problems in a reasonable time
and at an affordable price. Today's parallel machines,

Digital Technical Journal Vol. 7 No. 3 1995 5

6

which range from collections of workstations con­
nected by standard fiber-optic networks to tightly cou­
pled CPUs with custom high-speed interconnection
networks, are cheaper than single-processor systems
with ~quivalent performance. In many cases, equiva­
lent smgle-processor systems do not exist and could
not be constructed with existing technology.

Historically, one of the difficulties with parallel
machines has been writing parallel programs. The work
of parallelizing a program was far from the original sci­
ence being explored; it required programmers to keep
track of a great deal of information unrelated to the
actual computations; and it was done using ad hoc
methods that were not portable to other machines.

The experience gained from this work, however, led
to a consensus on a better way to write portable
Fortran programs that would perform well on a variety
of parallel machines. The High Performance Fortran
Forum, an international consortium of more than
100 commercial parallel machine users, academics,
and computer vendors, captured and refined these
ideas, producing the language now known as High
Performance Fortran.1

-
3 HPF programming systems

are now being developed by most vendors of parallel
machines and software. HPF is included as part of the
DEC Fortran 90 language.'
. One obvious and reasonable question is: Why
mvent a_ new language rather than have compilers
automatically generate parallel code? The answer is
straightforward: it is generally conceded that auto­
matic parallelization technology is not yet sufficiently
advanced. Although parallelization for particular archi­
tectu_res (e.g., vector machines and shared-memory
multiprocessors) has been successful, it is not fully
automatic but requires substantial assistance from the
programmer to obtain good performance. That assis­
tance usually comes in the form of hints to the compiler
and rewritten sections of code that are more paralleliz­
able. These hints, and in some cases the rewritten code ,
are not usually portable to other architectures or com­
pilers. Agreement was widespread at the HPF Forum
that a set of hints could be standardized and done in a
porta~le way. Automatic parallelization technology is
an acnve field of research; consequently, it is expected
that compilers will become increasingly adept. s.-12 Thus,
these hints are cast as comments-called compiler
directives-in the source code. HPF actually contains
~ery little new language beyond this; it consists primar­
ily of these compiler directives.

The HPF language was shaped by certain key
considerations in parallel programming:

• The need to identify computations that can be
done in parallel

• The need to minimize communication between
processors on machines with nonuniform memory
access costs

Digital Technical Journal Vol. 7 No. 3 1995

• The need to keep processors as busy as possible by
balancing the computation load across processors

It is not always obvious which computations in
a Fortran program are parallelizable. Although some
DO loops express parallelizable computations, other
DO loops express computations in which later itera­
tions of the loop require the results of earlier itera­
tions. This forces the computation to be done in order
(serially), rather than simultaneously (in parallel).
Also, whether or not a computation is parallelizable
sometimes depends on user data that may vary from
run to run of the program. Accordingly, HPF contains
a new statement (FORALL) for describing parallel
computations, and a new directive (INDEPENDENT)
to identify additional parallel computations to the
compiler. These features are equally useful for distrib­
uted- or shared-memory machines.
. HPF's data distribution directives are particularly
important for distributed-memory machines. The
HPF directives were designed primarily to increase
performance on "computers with nonuniform mem­
ory access costs. " 1 Of all parallel architectures, distrib­
uted memory is the architecture in which the location
of data has the greatest effect on access cost. On
distributed-memory machines, interprocessor com­
munication is very expensive compared to the cost of
f~tching local data, typically by several orders of mag­
rutude. Thus the effect of suboptimal distribution of
data across processors can be catastrophic. HPF direc­
tives tell the compiler how to distribute data across
processors; based on knowledge of the algorithm, pro­
grammers choose directives that will minimize com­
mu~ication time. These directives can also help
ac?1eve good load balance: by spreading data appro­
pnately across processors, the computations on those
data will also be spread across processors.

Finally, a number of idioms that are important in
parallel programming either are awkward to express in
Fortran or are greatly dependent on machine architec­
ture for their efficient implementation. To be useful in
a portable language, these idioms must be easy to
express and implement efficiently. HPF has captured
some of these idioms as library routines for efficient
implementation on very different architectures.

For example, consider the Fortran 77 program in
Figure 1, which repeatedly replaces each element of
a two-dimensional array with the average of its north,
so~th, e~st, ~d west neighbors. This kind of compu­
t~tJon anses ma number of programs, including itera­
tive solvers for partial differential equations and
image-filtering applications. Figure 2 shows how this
code can be expressed in HPF.

. On_ a machine with four processors, a single HPF
d!fective causes the array A to be distributed across
the processors as shown in Figure 3. The program

c

Figure 1

integer n, nu mb er_of_ iterations, i , j , k
para meter(n=16)
real A(n,n), Temp(n,n)

... (Initialize A, number_of_iterations)
do k=1, number_of_iterations

Update non-edge elements only
d o i=2, n-1

do j=2, n-1
Temp(i, j)= (A(i, j-1)+A(i, j+1)+A(i+1, j)+A(i -1 , j))*0.25

enddo
enddo
do i=2, n-1

do j=2, n-1
A(i, j)=Temp(i,j)

enddo
enddo

enddo

A Computation Expressed in Fortran 77

figure 2

integer n , numbir_of_iterations, i, j, k
parameter (n=16)
r eal A(n , n)

!hpf$ d is tribute A(block, block)
..• (Initialize A, nu mber_of_iterations)

do k=1, number_of_iterations
forall Ci=2:n-1, j =2:n-1) !Update non-edge elements only

A(i, j)=(A(i, j-1)+A(i, j+1)+A(i+1, j)+A(i-1 , j))*0.25
endforall

end do

The Same Computation Expressed in HPF

2

3

f igure 3
An Array Distributed over Four Processors

executes in parallel on the four processors, with each
processor performing the updates to the array ele­
ments it owns. This update, however, requires inter­
processor communication (or "data motion"). To
compute a new value for A(8, 2), which lives on
processor 0, the value of A(9, 2), which lives on
processor 1, is needed. In fact, processor O requires the
seven values A(9, 2), A(9, 3), ... A(9, 8) from proces­
sor 1, and the seven values A(2, 9), A(3, 9), ... A(B, 9)
from processor 2.13 Each processor, then, needs seven
values apiece from two neighbors. By knowing the lay­
out of the data and the computation being performed,
the compiler can automatically generate the inter­
processor communication instructions needed to exe­
cute the code.

Even for seemingly simple cases, the communica­
tion instructions can be complex. Figure 4 shows the
communication instructions that are generated for the
code that implements the FORALL statement for a
distributed-memory parallel processor.

Digital Technical Journal Vol. 7 No. 3 1995 7

8

Proc=rO Processor I

SEND SEND
A(8, 2) ... A(8, 8) A(9, 2) .. . A(9, 8)
to Processor 1 to Processor O

SEND SEND
A(2, 8) ... A(8, 8) A(9, 8) .. . A(l5, 8)
to Processor 2 to Processor 3

RECEIVE RECEIVE
A(9, 2) ... A(9, 8) A(8, 2) ... A(8, 8)
from Processor 1 fi'om Processor O

RECEIVE RECEIVE
A(2, 9) .. . A(8, 9) A(9, 9) ... A(15, 9)
from Processor 2 from Processor 3

Figure 4
Compiler-generated Communication for a FORALL Statement

Although the communication needed in this sim­
ple example is not difficult to figure out by hand,
keeping track of the communication needed for
higher-dimensional arrays, distributed onto more
processors, with more complicated computations, can
be a very difficult, bug-prone task. In addition, a num­
ber of the optimizations that can be performed would
be extremely tedious to figure out by hand. Never­
theless, distributed-memory parallel processors are
programmed almost exclusively today by writing pro­
grams that contain explicit hand-generated calls to the
SEND and RECEIVE communication routines. The
difference between this kind of programming and pro­
gramming in HPF is comparable to the difference
between assembly language programming and high­
level language programming.

This paper continues with an overview of the HPF
language, a discussion of the machine architecture tar­
geted by the compiler, the architecture of the compiler
itself, and a discussion of some optimizations per­
formed by its components. It concludes with recent
performance results, showing that HPF programs
compiled with Digital's compiler scale linearly in sig­
nificant cases.

Overview of the High Performance
Fortran Language

High Performance Fortran consists of a small set of
extensions to Fortran 90. It is a data-parallel program­
ming language, meaning that parallelism is made pos­
sible by the explicit distribution oflarge arrays of data
across processors, as opposed to a control-parallel

Digital Technical Journal Vol. 7 No. 3 1995

Processor 2 Processor 3

SEND SEND
A(2, 9) ... A(8, 9) A(9, 9) .. . A(l5, 9)
to Processor O to Processor 1

SEND SEND
A(8, 9) ... A(8, 15) A(9, 9) ... A(9, 9)
to Processor 3 to Processor 2

RECEIVE RECEIVE
A(2, 8) ... A(8, 8) A(9, 8) .. . A(l5, 8)
from Processor O from Processor 1

RECEIVE RECEIVE
A(9, 9) ... A(9, 15) A(8, 9) .. . A(8, 15)
from Processor 3 from Processor 2

language, in which threads of computation are distrib­
uted. Like the standard Fortran 77, Fortran 90, and C
models, the HPF programming model contains a sin­
gle thread of control; the language itself has no notion
of process or thread.

Conceptually, the program executes on all the
processors simultaneously. Since each processor con­
tains only a subset of the distributed data, occasionally
a processor may need to access data stored in the
memory of another processor. The compiler deter­
mines the actual details of the interprocessor commu -
nication needed to support this access; that is, rather
than being specified explicitly, the details are implicit
in the program.

The compiler translates HPF programs into low­
level code that contains explicit calls to SEND and
RECEIVE message-passing routines. All addresses in
this translated code are modified so that they refer to
data local to a processor. As part of this translation,
addressing expressions and loop bounds become
expressions involving the processor number on which
the code is executing. Thus, the compiler needs to gen­
erate only one program: the generated code is parame­
trized by the processor number and so can be executed
on all processors with appropriate results on each
processor. This generated code is called explicit single­
program multiple-data code, or explicit-SPMD code.

In some cases, the programmer may find it useful
to write explicit-SPMD code at the source code level.
To accommodate this, the HPF language includes an
escape hatch called EXTRINSIC procedures that is
used to leave data-parallel mode and enter explicit­
SPMD mode.

We now describe some of the HPF language exten­
sions used to manage parallel data.

Distributing Data over Processors
Data is distributed over processors by the
DISTRIBUTE directive, the ALIGN directive, or
the default distribution.

The DISTRIBUTE Directive For parallel execution of
array operations, each array must be divided in mem­
ory, with each processor storing some portion of
the array in its own local memory. Dividing the array
into parts is known as distributing the array. The HPF
DISTRIBUTE directive controls the distribution of
arrays across each processor's local memory. It does
this by specifying a mapping pattern of data objects
onto processors. Many mappings are possible; we illus­
trate only a few.

Consider first the case of a 16 X 16 array A in an
environment with four processors. One possible speci­
fication for A is

! hp f$
real A(16, 16)
d i stribute AC*, block)

The asterisk (*) for the first dimension of A means
that the array elements are not distributed along
the first (vertical) axis. In other words, the elements
in any given column are not divided among differ­
ent processors, but are assigned as a single block to
one processor. This type of mapping is referred to as
serial distribution. Figure 5 illustrates this distribution.

The BLOCK keyword for the second dimension
means that for any given row, the array elements are
distributed over each processor in large blocks. The
blocks are of approximately equal size-in this case,
they are exactly equal-with each processor holding
one block. As a result, A is broken into four contigu­
ous groups of columns, with each group assigned to
a separate processor.

Another possibility is a (*, CYCLIC) distribution.
As in (*, BLOCK), all the elements in each column are
assigned to one processor. The elements in any given
row, however, are dealt out to the processors in round­
robin order, like playing cards dealt out to players
around a table. When elements are distributed over n
processors, each processor contains every nth column,
starting from a different offset. Figure 6 shows the
same array and processor arrangement, distributed
CYCLIC instead ofBLOCK.

As these examples indicate, the distributions of the
separate dimensions are independent.

A (BLOCK, BLOCK) distribution, as in Figure 3,
divides the array into large rectangles. In that figure,
the array elements in any given column or any given
row are divided into two large blocks: Processor O gets
A(l :8, 1:8), processor 1 gets A(9:16, 1:8), processor 2
gets A(l :8, 9:16), and processor 3 gets A(9:16,9:16).

0 2 3

Figure 5
A (•,BLOCK) Distribution

0 1230123 0123 0123

Figure 6
A(•, CYCLIC) Distribution

The ALIGN Directive The ALIGN directive is used to
specify the mapping of arrays relative to one another.
Corresponding elements in aligned arrays are always
mapped to the same processor; array operations
between aligned arrays are in most cases more efficient
than array operations between arrays that are not
known to be aligned.

The most common use of ALIGN is to specify that
the corresponding elements of two or more arrays be
mapped identically, as in the following example:

Digital Technical Journal Vol. 7 No. 3 1995 9

! hpf$ a l ig n A(i) with B(i)

This example specifies that the two arrays A and Bare
always mapped the same way. More complex align­
ments can also be specified. For example:

! hpf$ a lign E(i) with F(2*i-1)

In this example, the elements of Eare aligned with the
odd elements of F. In this case, E can have at most half
as many elements as F.

An array can be aligned with the interior of a larger
array:

r e a l AC 12, 12)
r e al 8 (16 , 16)

!h p f $ a lign A(i, j) with B(i+2, j+2)

In this example, the 12 X 12 array A is aligned with
the interior of the 16 X 16 array B(see Figure 7). Each
interior element of B is always stored on the same
processor as the corresponding element of A.

The Default Distribution Variables that are not explic­
itly distributed or aligned are given a default distribu­
tion by the compiler. The default distribution is not
specified by the language: different compilers can
choose different default distributions, usually based
on constraints of the target architecture. In the DEC
Fortran 90 language, an array or scalar with the default
distribution is completely replicated. This decision was
made because the large arrays in the program are the
significant ones that the programmer has to distribute
explicitly to get good performance. Any other arrays
or scalars will be small and generally will benefit from
being replicated since their values will then be available
everywhere. Of course, the programmer retains com­
plete control and can specify a different distribution
for these arrays.

Replicated data is cheap to read but generally
expensive to write. Programmers typically use repli­
cated data for information that is computed infre­
quently but used often.

B

A

Figure 7
An Example of Array Ali gn ment

10 Digital Technical Journal Vol. 7 No. 3 1995

Data Mapping and Procedure Calls
The distribution of arrays across processors introduces
a new complication for procedure calls: the interface
between the procedure and the calling program must
take into account not only the type and size of the rel­
evant objects but also their mapping across processors.
The HPF language includes special forms of the
ALIGN and DISTRIBUTE directives for procedure
interfaces. These allow the program to specify whether
array arguments can be handled by the procedure as
they are currently distributed, or whether (and how)
they need to be redistributed across the processors.

Expressing Parallel Computations
Parallel computations in HPF can be identified in four
ways:

• Fortran 90 array assignments

• FORALL statements

• The INDEPENDENT directive, applied to DO
loops and FORALL statements

• Fortran 90 and HPF intrinsics and library functions

In addition, a compiler may be able to discover paral­
lelism in other constructs. In this section, we discuss
the first two of these parallel constructions.

Fortran 90 Array Assignment In Fortran 77, operations
on whole arrays can be accomplished only through
explicit DO loops that access array elements one at a
time. Fortran 90 array assignment statements allow
operations on entire arrays to be expressed more simply.

In Fortran 90, the usual intrinsic operations for
scalars (arithmetic, comparison, and logical) can be
applied to arrays, provided the arrays are of the same
shape. For example, if A, B, and Care two-dimensional
arrays of the same shape, the statement C = A + B
assigns to each element of C a value equal to the sum
of the corresponding elements of A and B.

In more complex cases, this assignment syntax can
have the effect of drastically simplifying the code. For
instance, consider the case of three-dimensional
arrays, such as the arrays dimensioned in the following
declaration:

real 0 (10 , 5:24, - 5:M), EC 0:9, 20, M+6)

In Fortran 77 syntax, an assignment to every ele­
ment of D requires triple-nested loops such as the
example shown in Figure 8.

In Fortran 90, this code can be expressed in a single
line:

D = 2.5*D +E+ 2 .0

The FORALL Statement The FORALL statement is an
HPF extension to the American National Standards
Institute (ANSI) Fortran 90 standard but has been
included in the draft Fortran 95 standard.

do i = 1, 10
do j = 5, 24

do k = - 5, M
D(i, j, k)

end do
2.5•D (i , j , k) + E(i - 1 , j -4, k+6) + 2.0

end do
en d do

Figure 8
An Example of a Triple-nested Loop

FORALL is a generalized form of Fortran 90 array
assignment syntax that allows a wider variety of array
assignments to be expressed. For example, the diago­
nal of an array cannot be represented as a single
Fortran 90 array section. Therefore, the assignment of
a value to every element of the diagonal cannot be
expressed in a single array assignment statement. It
can be expressed in a FORALL statement:

real, dimension (n, n) :: A
foral l (i = 1 : n) A(i , i) = 1

Although FORALL structures serve the same pur­
pose as some DO loops do in Fortran 77, a FORALL
structure is a parallel assignment statement, not a
loop, and in many cases produces a different result
from an analogous DO loop. For example, the
FORALL statement

fora ll (i = 2:5) C(i , i) = C(i - 1 , i - 1)

applied to the matrix

11 0 0 0 0
0 22 0 0 0

c 0 0 33 0 0
0 0 0 44 0
0 0 0 0 55

produces the following result:

11 0 0 0 0
0 11 0 0 0

C O O 22 0 0
0 0 0 33 0
0 0 0 044

On the other hand, the apparently similar DO loop

do i = 2 , 5
C(i, i) = C(i-1 , i-1)

end do

produces

11 0 0 0 0
0 11 0 0 0

C O O 11 0 0
0 0 0 11 0
0 0 0 0 11

This happens because the DO loop iterations are per­
formed sequentially, so that each successive element of
the diagonal is updated before it is used in the next
iteration. In contrast, in the FORALL statement, all
the diagonal elements are fetched and used before any
stores happen.

The Target Machine

Digital's DEC Fortran 90 compiler generates code
for clusters of Alpha processors running the Digital
UNIX operating system. These clusters can be separate
Alpha workstations or servers connected by a fiber dis­
tributed data interface (FDDI) or other network
devices. (Digital's high-speed GIGAswitch/FDDI sys­
tem is particularly appropriate.14

) A shared-memory,
symmetric multiprocessing (SMP) system like the
AlphaServer 8400 system can also be used. In the case
of an SMP system, the message-passing library uses
shared memory as the message-passing medium; the
generated code is otherwise identical. The same exe­
cutable can run on a distributed-memory cluster or an
SMP shared-memory cluster without recompiling.
DEC Fortran 90 programs use the execution envi­
ronment provided by Digital's Parallel Software
Environment (PSE), a companion product.3

•
15 PSE

is responsible for invoking the program on multiple
processors and for performing the message passing
requested by the generated code.

The Architecture of the Compiler

Figure 9 illustrates the high-level architecture of
the compiler. The curved path is the path taken
when compiler command-line switches are set for
compiling programs that will not execute in parallel,
or when the scoping unit being compiled is declared
as EXTRINSIC(HPF _LOCAL).

Figure 9 shows the front end, transform, middle
end, and GEM back end components of the compiler.
These components function in the following ways:

• The front end parses the input code and produces
an internal representation containing an abstract
syntax tree and a symbol table. It performs exten­
sive semantic checking. 16

Digital Technical Journal Vol. 7 No. 3 1995 11

12

SOURCE
CODE ------.

FRONT END TRANSFORM

Figure 9
Compiler Components

• The transform component performs the transfor­
mation from global-HPF to explicit-SPMD form.
To do this, it localizes the addressing of data, inserts
communication where necessary, and distributes
parallel computations over processors.

• The middle end translates the internal representa­
tion into another form of internal representation
suitable for GEM.

• The GEM back end, also used by other Digital
compilers, performs local and global optimization,
storage allocation, code generation, register alloca­
tion, and emits binary object code.17

In this paper, we are mainly concerned with the
transform component of the compiler.

An Overview of Transform

Figure 10 shows the transform phases discussed in this
paper. These phases perform the following key tasks:

• LOWER . Transforms array assignments so that
they look internally like FORALL statements.

• DATA. Fills in the data space information for each
symbol using information from HPF directives
where available. This determines where each data
object lives, i.e., how it is distributed over the
processors.

• ITER. Fills in the iteration space information for
each computational expression node. This deter­
mines where each computation takes place and
indicates where communication is necessary.

• ARG. Pulls functions in the interior of expressions
up to the statement level. It also compares the map­
ping of actual arguments to that of their corre­
sponding dummies and generates remapping into
compiler-generated temporaries if necessary.

~ DATA ITER

Figure 10
The Transform Phases

Digital Technical Journal Vol. 7 No. 3 1995

MIDDLE END GEM

OBJECT
CODE

• DIVIDE. Pulls all communication inside expres­
sions (identified by ITER) up to the statement level
and identifies what kind of communication is
needed. It also ensures that information needed for
tlow of control is available at each processor.

• STRIP. Turns global-HPF code into explicit-SPMD
code by localizing the addressing of all data objects
and inserting explicit SEND and RECEIVE calls
to make communication explicit. In the process,
it performs strip mining and loop optimizations,
vectorizes communication, and optimizes nearest­
neighbor computations.

Transform uses the following main data structures:

• Symbol table. This is the symbol table created by
the front end. It is extended by the transform phase
to include dope information for array and scalar
symbols.

• Dotree. Transform uses the dotree form of the
abstract syntax tree as an internal representation of
the program.

• Dependence graph. This is a graph whose nodes are
expression nodes in the dotree and whose edges
represent dependence edges.

• Data spaces. A data space is associated with each
data symbol (i.e., each array and each scalar). The
data space information describes how each data
object is distributed over the processors. This infor­
mation is derived from HPF directives.

• Iteration spaces. An iteration space is associated
with each computational node in the dotree. The
iteration space information describes how compu­
tations are distributed over the processors. This
information is not specified in the source code but
is produced by the compiler.

The interrelationship of these data structures is dis­
cussed in Reference 18. The data and iteration spaces
arc central to the processing performed by transform.

The Transform Phases

LOWER
Since the FORALL statement is a generalization of a
Fortran 90 array assignment and includes it as a special
case, it is convenient for the compiler to have a uni­
form representation for these two constructions. The

LOWER phase implements this by turning each
Fortran 90 array assignment into an equivalent
FORALL statement (actually, into the dotree repre­
sentation of one). This uniform representation means
that the compiler has far fewer special cases to consider
than otherwise might be necessary and leads to no
degradation of the generated code.

DATA
The DATA phase specifies where data lives. Placing
and addressing data correctly is one of the major tasks
of transform. There are a large number of possibilities:

When a value is available on every processor, it is
said to be replicated. When it is available on more than
one but not all processors, it is said t<;> be partially
replicated. For instance, a scalar may live on only one
processor, or on more than one processor. Typically, a
scalar is replicated-it lives on all processors. The repli­
cation of scalar data makes fetches cheap because each
processor has a copy of the requested value. Stores to
replicated scalar data can be expensive, however, if the
value to be stored has not been replicated. In that case,
the value to be stored must be sent to each processor.

The same consideration applies to arrays. Arrays
may be replicated, in which case each processor has a
copy of an entire array; or arrays may be partially repli­
cated, in which case each element of the array is avail­
able on a subset of the processors.

Furthermore, arrays that are not replicated may be
distributed across the processors in several different
fashions, as explained above. In fact, each dimension
of each array may be distributed independently of
the other dimensions. The HPF mapping directives,
principally ALIGN and DISTRIBUTE, give the pro­
grammer the ability to specify completely how each
dimension of each array is laid out. DATA uses the
information in these directives to construct an internal
description or data space of the layout of each array.

ITER
The ITER phase determines where the intermediate
results of calculations should live. Its relationship to
DATA can be expressed as:

• DATA decides where parallel data lives.

• ITERdecides where parallel computations happen.

Each array has a fixed number of dimensions and an
extent in each of those dimensions; these properties
together determine the shape of an array. After DATA
has finished processing, the shape and mapping of
each array is known. Similarly, the result of a computa­
tion has a particular shape and mapping. This shape
may be different from that of the data used in the com­
putation. As a simple example, the computation

AC: , :,3) + 8 (: , :,3)

has a two-dimensional shape, even though both arrays
A and B have three-dimensional shapes. The data
space data structure is used to describe the shape of
each array and its layout in memory and across proces­
sors; similarly, iteration space is used to describe the
shape of each computation and its layout across
processors. One of the main tasks of transform is to
construct the iteration space for each computation so
that it leads to as little interprocessor communication
as possible: this construction happens in ITER. The
compiler's view of this construction and the interac­
tion of these spaces are explained in Reference 18.

Shapes can change within an expression: while some
operators return a result having the shape of their
operands (e.g., adding two arrays of the same shape
returns an array of the same shape), other operators
can return a result having a different shape than the
shape of their operands. For example, reductions like
SUM return a result having a shape with lower rank
than that of the input expression being reduced.

One well-known method of determining where
computations happen is the "owner-computes" rule.
With this method, all the values needed to construct
the computation on the right-hand side of an assign­
ment statement are fetched (using interprocessor
communication if necessary) and computed on the
processor that contains the left-hand-side location.
Then they are stored to that left-hand-side location (on
the same processor on which they were computed).
Thus a description of where computations occur is
derived from the output of DATA. There are, however,
simple examples where this method leads to less than
optimal performance. For instance, in the code

! hpf$
!hpf$
!hpf$

real A(n, n), B(n, n), C(n, n)
distribute A(block, block)
distribute B(cyclic, cyclic)
distribute C(cyclic, cyclic)

forall Ci=1:n, j=1:n)
A(i, j) = BCi, j) + C(i, j)

end for a ll

the owner-computes rule would move B and C to
align with A, and then add the moved values of Band
C and assign to A. It is certainly more efficient, how­
ever, to add Band C together where they are aligned
with each other and then communicate the result to
where it needs to be stored to A. With this procedure,
we need to communicate only one set of values rather
than two. The compiler identifies cases such as these
and generates the computation, as indicated here, to
minimize the communication.

ARG
The ARG phase performs any necessary remapping of
actual arguments at subroutine call sites. It does this
by comparing the mapping of the actuals (as deter­
mined by ITER) to the mapping of the corresponding
dummies (as determined by DATA).

D igital Technical Journal Vol. 7 No. 3 1995 13

In our implementation, the caller performs all
remapping. If remapping is necessary, ARG exposes
that remapping by inserting an assignment statement
that remaps the actual to a temporary that is mapped
the way the dummy is mapped. This guarantees that
references to a dummy will access the correct data as
specified by the programmer. Of course, if the parame­
ter is an OUT argument, a similar copy-out remapping
has to be inserted after the subroutine call.

DIVIDE
The DIVIDE phase partitions ("divides") each expres­
sion in the dotree into regions. Each region contains
computations that can happen without interprocessor
communication. When region R uses the values of
a subexpression computed in region S, for example,
interprocessor communication is required to remap
the computed values from their locations in S to their
desired locations in R. DIVIDE makes a temporary
mapped the way region R needs it and makes an
explicit assignment statement whose left-hand side
is that temporary and whose right-hand side is the
subexpression computed in region S. In this way,
DIVIDE makes explicit the interprocessor communi­
cation that is implicit in the iteration space information
attached to each expression node.

DIVIDE also performs other processing:

• DIVIDE replicates expressions needed to manage
control flow, such as an expression representing
a bound of a DO loop or the condition in an IF
statement. Consequently, each processor can do
the necessary branching.

• For each statement requiring communication,
DIVIDE identifies the kind of communication
needed.

Depending on what knowledge the two sides of the
communication (i.e., the sender and the receiver)
have, we distinguish two kinds of communication:

- Full knowledge. The sender knows what it is
sending and to whom, and the receiver knows
what it is receiving and from whom.

- Partial knowledge. Either the sender knows
what it is sending and to whom, or the receiver
knows what it is receiving and from whom, but
the other party knows nothing.

STRIP

This kind of message is typical of code dealing
with irregular data accesses, for instance, code
with array references containing vector-valued
subscripts.

The STRIP phase (shortened from "strip miner";
probably a better term would be the "localizer") takes
the statements categorized by DIVIDE as needing

14 Digital Technical Journal Vol. 7 No. 3 1995

communication and inserts calls to library routines to
move the data from where it is to where it needs to be.

It then localizes parallel assignments corning from
vector assignments and FORALL constructs. In other
words, each processor has some (possibly zero) num­
ber of array locations that must be stored to. A set of
loops is generated that calculates the value to be stored
and stores it. The bounds for these loops are depen­
dent on the distribution of the array being assigned to
and the section of the array being assigned to. These
bounds may be explicit numbers known at compile
time, or they may be expressions (when the array size
is not known at compile time). In any case, they are
exposed so that they may be optimized by later phases.
They are not calls to run-time routines.

The subscripts of each dimension of each array in
the statement are then rewritten in terms of the loop
variable. This modification effectively turns the origi­
nal global subscript into a local subscript. Scalar sub­
scripts are also converted to local subscripts, but in this
case the subscript expression does not involve loop
indices. Similarly, scalar assignments that reference
array elements have their subscripts converted from
global addressing to local addressing, based on the
original subscript and the distribution of the corre­
sponding dimension of the array. They do not require
strip loops. For example, consider the code fragment
shown in Figure l la.

Here k is some variable whose value has been
assigned before the FORALL. Let us assume that A
and B have been distributed over a 4 X 5 processor
array in such a way that the first dimensions of A and B
are distributed CYCLIC over the first dimension of the
processor array (which has extent 4), and the second
dimensions of A and B are distributed BLOCK over
the second dimension of the processor array (which
has extent 5). (The programmer can express this
through a facility in HPF.) The generated code is
shown in Figure lib.

If the array assigned to on the left-hand side of such
a statement is also referenced on the right-hand side,
then replacing the parallel FORALL by a DO loop
may violate the "fetch before store" semantics of the
original statement. That is, an array element may be
assigned to on one iteration of the DO loop, and this
new value may subsequently be read on a later itera­
tion. In the original meaning of the statement, how­
ever, all values read would be the original values.

This problem can always be resolved by evaluating
the right-hand side of the statement in its entirety into
a temporary array, and then-in a second set of DO
loops-assigning that temporary to the left-hand side.
We use dependence analysis to determine if such a
problem occurs at all. Even ifit does, there are cases in
which loop transformations can be used to eliminate
the need for a temporary, as outlined in Reference 19.

real AC100, 20), 8 (100, 20)
! hpf$ distribute ACcycl ic , block), B(cyclic, block)

fora ll Ci = 2:99)
ACi, k) = B(i, k)

end forall

(a) Code Fragment

m = my_processor()

if k mod 5 = Lm / 4J then
do i = (i f m mod 4 = 0 then 2 else 1), Cif m mod 4

ACi, Lk / 5J) = BC i , Lk / 5 J)
3 then 24 else 25)

end do
end if

(b) Pseudocode Generated for Code Fragment

Figure 11
Code Fragment and Pseudocode Generated for Code Fragment

(Some poor implementations always introduce the
temporary even when it is not needed.)

Unlike other HPF implementations, ours uses
compiler-generated inlined expressions instead of
function calls to determine local addressing values.
Furthermore, our implementation does not introduce
barrier synchronization, since the sends and receives
generated by the transform phase will enforce any
necessary synchronization. In general, this is much less
expensive than a naive insertion of barriers. The
reason this works can be seen as follows: first, any value
needed by a processor is computed either locally or
nonlocally. If the value is computed locally, the normal
control flow guarantees correct access order for that
value. If the value is computed nonlocally, the gener­
ated receive on the processor that needs the value
causes the receiving processor to wait until the value
arrives from the sending processor. The sending
processor will not send the value until it has computed
it, again because of normal control-flow. If the sending
processor is ready to send data before the receiving
processor is ready for it, the sending processor can
continue without waiting for the data to be received.
Digital's Parallel Software Environment (PSE) buffers
the data until it is needed.15

Some Optimizations Performed by the Compiler

The GEM back end performs the following
optimizations:

• Constant folding

• Optimizations of arithmetic IF, logical IF, and
block IF-THEN-ELSE

• Global common subexpression elimination

• Removal ofinvariant expressions from loops

• Global allocation of general registers across pro­
gram units

• In-line expansion of statement functions and
routines

• Optimization of array addressing in loops

• Value propagation

• Deletion of redundant and unreachable code

• Loop unrolling

• Software pipelining to rearrange instructions
between different unrolled loop iterations

• Array temporary elimination

In addition, the transform component performs
some important optimizations, mainly devoted to
improving interprocessor communication. We have
implemented the following optimizations:

Message Vectorization

The compiler generates code to limit the communica­
tion to one SEND and one RECEIVE for each array
being moved between any two processors. This is the
most obvious and basic of all the optimizations that a
compiler can perform for distributed-memory archi­
tectures and has been widely studied.20-

22

Digital Technical Journal Vol. 7 No. 3 1995 15

If the arrays A and Bare laid out as in Figure 12 and
if B is to be assigned to A, then array elements B(4),
B(S), and B(6), all of which live on processor 6,
should be sent to processor 1. Clearly, we do not want
to generate three distinct messages for this. Therefore,
we collect these three elements and generate one mes­
sage containing all three of them. This example
involves full knowledge.

Communications involving partial knowledge are
also vectorized, but they are much more expensive
because the side of the message without initial knowl­
edge has to be informed of the message. Although
there are several ways to do this, all are costly, either in
time or in space.

We use the same method, incidentally, to inline the
HPF XXX_SCATIER routines. These new routines
have been introduced to handle a parallel construct
that could cause more than one value to be assigned to
the same location. The outcome of such cases is deter­
mined by the routine being inlined. For instance,
SUM_SCATIER simply adds all the values that arrive
at each location and assigns the final result to that loca­
tion. Although this is an example of interprocessor
communication with partial knowledge, we can still
build up messages so that only a minimum number of
messages are sent.

In some cases, we can improve the handling of com­
munications with partial knowledge, provided they
occur more than once in a program. For more infor­
mation, please see the section Run-time Preprocessing
of Irregular Data Accesses.

Strip Mining and Loop Optimizations
Strip mining and loop optimizations have to do with
generating efficient code on a per-processor basis, and
so in some sense can be thought of as conventional.
Generally, we follow the processing detailed in
Reference 19 and summarized as:

• Strip mining obstacles are eliminated where possi­
ble by loop transformations (loop reversal or loop
interchange).

ARRAY A

PROCESSOR
NUMBER 1 2

mem[Abase + OJ 7

mem[Abasa + 1) 8

Figure 12

1 9

2 10

3 11

4 12

5

6

Two Arrays in Memory

16 Digital Technical Journal

ARRAY B

5 6 7 8

mem[Bbasa + OJ

mem[Bbase + 1) 1

2

3

4 8 12

5 9

6 10

7 11

Vol. 7 No. 3 1995

• Temporaries, ifintroduced, are of minimal size; this
is achieved by loop interchange.

• Exterior loop optimization is used to allow reused
data to be kept in registers over consecutive itera­
tions of the innermost loop.

• Loop fusion enables more efficient use of conven­
tional optimizations and minimizes loop overhead.

Nearest-neighbor Computations
Nearest-neighbor computations are common in code

· written to discretize partial differential equations. See
the example given in Figure 2.

If we have, for example, 16 processors, with the array
A distributed in a (BLOCK, BLOCK) fashion over the
processors, then conceptually, the array is distributed as
in Figure 13, where the arrows indicate communica­
tion needed between neighboring processors. In fact,
in this case, each processor needs to see values only
from a narrow strip (or "shadow edge") in the memory
of its neighboring processors, as shown in Figure 14.

The compiler identifies nearest-neighbor computa­
tions (the user does not have to tag them), and it alters
the addressing of each array involved in these compu­
tations (throughout the compilation unit). As a result,
each processor can store those array elements that are
needed from the neighboring processors. Those array
elements are moved in (using message vectorization)
at the beginning of the computation, after which the
entire computation is local.

Recognizing nearest-neighbor statements helps
generate better code in several ways:

• Less run-time overhead. The compiler can easily
identify the exact small portion of the array
that needs to be moved. The communication for
nearest-neighbor assignments is extremely regular:
At each step, each processor is sending an entire
shadow edge to precisely one of its neighbors.
Therefore the communication processing overhead
is greatly reduced. That is, we are able to generate

• ' .. f+- .. f-+-

• '

Figure 13
A Nearest-neighbor Communication Pattern

-
I

·~ -

Figure 14
Shadow Edges for a Nearest-neighbor Computation

communication involving even less overhead than
general communication involving full knowledge.

• No local copying. If shadow edges were not used,
then the following standard processing would take
place: For each shifted-array reference on the right­
hand side of the assignment, shift the entire array;
then identify that part of the shifted array that lives
locally on each processor and create a local tempo­
rary to hold it. Some of that temporary (the part
representing our shadow edge) would be moved in
from a neighboring processor, and the rest of the
temporary would be copied locally from the origi­
nal array. Our processing eliminates the need for
the local temporary and for the local copy, which is
substantial for large arrays.

• Greater locality ofreference. When the actual com­
putation is performed, greater locality of reference
is achieved because the shadow edges (i.e., the
received values) are now part of the array, rather
than being a temporary somewhere else in memory.

• Fewer messages. Finally, the optimization also
makes it possible for the compiler to see that some
messages may be combined into one message,
thereby reducing the number of messages that
must be sent. For instance, if the right-hand side
of the assignment statement in the above example
also contained a term A(i + 1, j + 1), even though
overlapping shadow edges and an additional
shadow edge would now be in the diagonally adja­
cent processor, no additional communication
would need to be generated.

Reductions
The SUM intrinsic function of Fortran 90 takes an
array argument and returns the sum of all its elements.
Alternatively, SUM can return an array whose rank is
one less than the rank of its argument, and each of
whose values is the sum of the elements in the argu­
ment along a line parallel to a specified dimension.

In either case, the rank of the result is less than that of
the argument; therefore, SUM is referred to as a
reduction intrinsic. Fortran 90 includes a family of
such reductions, and HPF adds more.

We inline these reduction intrinsics in such a way
as to distribute the work as much as possible across
the processors and to minimize the number of mes­
sages sent.

In general, the reduction is performed in three basic
steps:

1. Each processor locally performs the reduction oper­
ation on its part of the reduction source into a buffer.

2. These partial reduction results are combined with
those of the other processors in a "logarithmic"
fashion (to reduce the number of messages sent).

3. The accumulated result is then locally copied to the
target location.

Figure 15 shows how the computations and com­
munications occur in a complete reduction of an array
distributed over four processors. In this figure, each
vertical column represents the memory of a single
processor. The processors are thought of (in this case)
as being arranged in a 2 X 2 square; this is purely for
conceptual purposes-the actual processors are typi­
cally connected through a switch.

First, the reduction is performed locally in the
memory of each processor. This is represented by the
vertical arrows in the figure. Then the computations
are accumulated over the four processors in two steps:
the two parallel curved arrows indicate the inter­
processor communication in the first step, followed by
the communication indicated by the remaining curved
arrow in the second step. Of course, for five to eight
processors, three communication steps would be
needed, and so on.

Although this basic idea never changes, the actual
generated code must take into account various factors.
These include (1) whether the object being reduced

Figure 15
Computations and Communication for a Complete
Reduction over Four Processors

Digital Technical Journal Vol. 7 No. 3 1995 17

18

is replicated or distributed, (2) the different distri­
butions that each array dimension might have, and
(3) whether the reduction is complete or partial (i.e.,
with a DIM argument).

Run-time Preprocessing of Irregular Data Accesses
Run-time preprocessing of irregular data accesses is
a popular technique.23 If an expression involving the
same pattern of irregular data access is present more
than once in a compilation unit, additional run-time
preprocessing can be used to good effect. An abstract
example would be code of the form:

call setup(U, V, W)
do i = 1, n_time_steps,

do i = 1, n, 1
A(V(i)) = A(V(i)) + B(W(i))

en ddo
do i = 1, n, 1

C(V(i)) = C(V(i)) + D(W(i))
enddo
do i = 1, n, 1

E(V(i)) E(V (i)) + F(W(i))
enddo

enddo

which could be written in HPF as:

call
do i

A
c
E

enddo

setup(U, V, W)
1, n_time_steps, 1
sum_scatter(B(W(1 :n)),
sum_scatter(D(W(1 :n»,
sum_scatter(F(W(1:n)),

A, V(1 :n»
C, V(1 :n))
E, V(1 :n))

To the compiler, the significant thing about this
code is that the indirection vectors V and W are con­
stant over iterations of the loop. Therefore, the com­
piler computes the source and target addresses of the
data that has to be sent and received by each processor
once at the top of the loop, thus paying this price one
time. Each such statement then becomes a communi­
cation with full knowledge and is executed quite effi­
ciently with message vectorization.

Other Communication Optimizations
The processing needed to set up communication of
array assignments is fairly expensive. For each element
of source data on a processor, the value of the data and
the target processor number are computed. For each
target data on a processor, the source processor num­
ber and the target memory address are computed. The
compiler and run time also need to sort out local data
that do not involve communication, as well as to vec­
torize the data that are to be communicated.

We try to optimize the communication processing
by analyzing the iteration space and data space of the
array sections involved. Examples of the patterns of
operations that we optimize include the following:

• Contiguous data. When the source or target local
array section on each processor is in contiguous
memory addresses, the processing can be optimized

Digital Technical Journal Vol. 7 No. 3 1995

to treat the section as a whole, instead of comput­
ing the value or memory address of each element in
the section.

In general, array sections belong to this category
if the last vector dimension is distributed BLOCK
or CYCLIC and the prior dimensions (if any) are
all serial.

If the source and target array sections satisfy even
more restricted constraints, the processing overhead
may be further reduced. For example, array opera­
tions that involve sending a contiguous section of
BLOCK or CYCLIC distributed data to a single
processor, or vice versa, belong to this category and
result in very efficient communication processing.

• Unique source or target processor. When a proces­
sor only sends data to a unique processor, or a pro­
cessor only receives data from a unique processor,
the processing can be optimized to use that unique
processor number instead of computing the proces­
sor number for each element in the section. This
optimization also applies to target arrays that are
fully replicated.

• Irregular data access. If all indirection vectors
are fully replicated for an irregular data access,
we can actually implement the array operation as
a full-knowledge communication instead of a more
expensive partial-knowledge communication.

For example, the irregular data access statement

A(V(:)) = B(:)

can be turned into a regular remapping statement if
Vis fully replicated and A and Bare both distributed.

Furthermore, if Bis also fully replicated, the state­
ment is recognized as a local assignment, removing
the communication processing overhead altogether.

Performance

In this section, we examine the performance of three
HPF programs. One program applies the shallow­
water equations, discretized using a finite difference
scheme to a specific problem; another is a conjugate­
gradient solver for the Poisson equation, and the
third is a three-dimensional finite difference solver.
These programs are not reproduced in this paper, but
they can be obtained via the World Wide Web at
http:/ /www.digital.com/info /hpc/f90 /.

The Shallow-water Benchmark
The shallow-water equations model atmospheric
flows, tides, river and coastal flows, and other phe­
nomena. The shallow-water benchmark program uses
these equations to simulate a specific flow problem. It
models variables related to the pressure, velocity, and
vorticity at each point of a two-dimensional mesh that

is a slice through either the water or the atmosphere.
Partial differential equations relate the variables.
The model is implemented using a finite-difference
method that approximates the partial differential
equations at each of the mesh points. 24 Models based
on partial differential equations are at the core of many
simulations of physical phenomena; finite difference
methods are commonly used for solving such models
on computers.

The shallow-water program is a widely quoted
benchmark, partly because the program is small
enough to examine and tune carefully, yet it performs
real computation representative of many scientific sim­
ulations. Unlike SPEC and other benchmarks, the
source for the shallow-water program is not controlled.

The shallow-water benchmark was written in HPF
and run in parallel on workstation farms using PSE.
There is no explicit message-passing code in the pro­
gram. We modified the Fortran 90 version that
Applied Parallel Research used for its benchmark data.
The F90 /HPF version of the program takes advantage
of the new features in Fortran 90 such as modules.
The Fortran 77 version of the program is an unmodi­
fied version from Applied Parallel Research.

The resulting programs were run on two hardware
configurations: as many as eight 275-megahertz
(MHz) DEC 3000 Model 900 workstations connected
by a GIGAswitch system, and an eight-processor
AlphaServer 8400 (300-MHz) system using shared­
memory as the messaging medium. Table 1 gives the
speedups obtained for the 512 X 512-sized problem,
with ITMAX set to 50.

The speedups in each line are relative to the DEC
Fortran 77 code, compiled with the DEC Fortran
version 3.6 compiler and run on one processor. The
DEC Fortran 90 -wsf compiler is the DEC Fortran 90
version 1.3 compiler with the -wsf option ("parallel­
ize HPF for a workstation farm") specified. Both

Table 1

compilers use version 3.58 of the Fortran RTL. The
operating system used is Digital UNIX version 3.2.

Table 1 indicates that this HPF version of shallow
water scales very well to eight processors. In fact, we are
getting apparent superlinear speedup in some cases.
This is due in part to optimizations that the DEC
Fortran 90 compiler performs that the serial compiler
does not, and in part to cache effects: with more proces­
sors, there is more cache. On the shared-memory
machine, we are getting apparent superlinear speedups
even when compared to the DEC Fortran 90 -wsf
compiler's one-processor code; this is likely due to cache
effects. The program appears to scale well beyond eight
processors, though we have not made a benchmark­
quality run on more than eight identical processors.

For purposes of comparison, Table 2 gives the pub­
lished speedups from Applied Parallel Research on the
shallow-water benchmark for the IBM SP2 and Intel
Paragon parallel architectures. The speedups shown
are relative to the one-processor version of the code.
This table indicates that the scaling achieved by the
DEC Fortran 90 compiler on Alpha workstation farms
is comparable to that achieved by Applied Parallel
Research on dedicated parallel systems with high­
speed parallel interconnects.

A Conjugate-gradient Poisson Solver
The Poisson partial differential equation is a work­
horse of mathematical physics, occurring in problems

Table 2
Speedups of HPF Shallow-water Code on IBM's and
Intel's Parallel Architectures

IBM SP2
Intel Paragon

r-- Number of Processors--,
8 4 3 2 1

7.50 3.81
7.38 3.84

1.97 1.00
1.95 1.00

Speedups of DEC Fortran 90/HPF Shallow-water Equation Code

Eight 275-MHz,
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor,
300-MHz,
shared-memory
SMP AlphaServer
8400 systems

DEC Fortran 90 -wsf
Compiler

DEC Fortran 77
Compiler

~--- - --Number of Processors- -----~
8 4 3 2 1 1

8.57 3.13 2.19 1.59 1.00 1.00

10.6 5.30 3.86 1.97 1.12 1.00

Digital Technical Journal Vol. 7 No. 3 1995 19

of heat flow and electrostatic or gravitational poten­
tial. We have investigated a Poisson solver using the
conjugate-gradient algorithm. The code exercises
both the nearest-neighbor optimizations and the
inlining abilities of the DEC Fortran 90 compiler.25

Table 3 gives the timings and speedup obtained
on a 1000 X 1000 array. The hardware and software
configurations are identical to those used for the
shallow-water timings.

Red-black Relaxation
A common method of solving partial differential
equations is red-black relaxation.26 We used this
method to solve the Poisson equation in a three­
dimensional cube. We compare the parallelization
of this algorithm for a distributed-memory system
(a cluster of Digital Alpha workstations) with Parallel
Virtual Machine (PVM), which is an explicit message­
passing library, and with HPF.27 These algorithms are
based on codes written by Klose, Walton, and Lemke
and made available as part of the suite of GENESIS
distributed-memory benchmarks. 28

Table 4 gives the speedups obtained for both
the HPF and PVM versions of the program, which
solves a 128 X 128 X 128 problem, on a cluster of
DEC 3000 Model 900 workstations connected by an
FDDI/GIGAswitch system. The speedups shown are
relative to DEC Fortran 77 code written for and run on
a single processor. This table shows that the HPF ver­
sion performs somewhat better than the PVM version.

There is a significant difference in the complexity of
the programs, however. The PVM code is quite intri­
cate, because it requires that the user be responsible
for the block partitioning of the volume, and then for
explicitly copying boundary faces between processors.
By contrast, the HPF code is intuitive and far more
easily maintained. The reader is encouraged to obtain
the codes (as described above) and compare them.

Table 3

Table 4
Speedups of DEC Fortran 90/HPF
and DEC Fortran 77/PVM on
Red-black Code

.- Number of Processors -,
8 4 2 1

DEC Fortran 77

DEC Fortran 77/PVM 7.01

DEC Fortran 90/HPF 8.04

3.73

4.10

1.79

1.95

1.00

1.05

In conclusion, we have shown that important algo­
rithms familiar to the scientific and technical commu­
nity can be written in HPF. HPF codes scale well to at
least eight processors on farms of Alpha workstations
with PSE and deliver speedups competitive with other
vendors' dedicated parallel architectures.

Acknowledgments

Significant help from the following people has been
essential to the success of this project: High
Performance Computing Group engineering manager
Jeff Reyer; the Parallel Software Environment Group
led by Ed Benson and including Phil Cameron,
Richard Warren, and Santa Wiryaman; the Parallel
Tools Group managed by Tomas Lofgren and includ­
ing David Lafrance-Linden and Chuck Wan; the
Digital Fortran 90 Group led by Keith Kimball; David
Loveman for discussions of language issues; Ned
Anderson of the High Performance Computing
Numerical Library Group for consulting on numeri­
cal issues; Brendan Boulter of Digital Galway for the
conjugate-gradient code and help with benchmarking;
Bill Celmaster, for writing the PVM version of the red­
black benchmark and its related description; Roland
Belanger for benchmarking assistance; and Marco
Annaratone for useful technical discussions.

Speedups of DEC Fortran 90/HPF on Conjugate-gradient Poisson Solver

Eight 275-MHz,
DEC 3000
Model 900
workstations in
a GIGAswitch farm

Eight-processor,
300-MHz,
shared-memory
SMP AlphaServer
8400 systems

20 Digital Technical Journal

DEC Fortran 90 -wsf
Compiler

DEC Fortran 77
Compiler

.----------Number of Processors------~
8 4 3 2 1 1

14.1 8.38 5.20 2.52 1.07 1.00

17.0 9.02 6.87 4.51 0.98 1.00

Vol. 7 No. 3 1995

References and Notes

1. High Performance Fortran Forum, "High Perfor­
mance Fortran Language Specification, Version 1.0,"
Scientific Programming, vol. 2, no. 1 (1993). Also
available as Technical Report CRPC-TR93300, Center
for Research on Parallel Computation, Rice University,
Houston, Tex.; and via anonymous ftp from
titan.cs.rice.edu in the directory public/HPFF /draft;
version 1.1 is the file hpf_ v 11.ps.

2. C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr.,
and M. Zosel, The High Performance Fortran
Handbook(Cambridge, Mass.: MIT Press, 1994).

3. Digital High Performance Fortran 90 HPF and
PSE Manual (Maynard, Mass.: Digital Equipment
Corporation, 199 5).

4 . DEC Fortran 90 Language Reference Manual (May­
nard, Mass.: Digital Equipment Corporation, 1994).

5. E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr., "Com­
piling Fortran 8x Array Features for the Connection
Machine Computer System," Symposium on Parallel
Programming: F.xperience with Applications,
Languages, and Systems, ACM SIGPLAN, July 1988.

6. K. Knobe, J. Lukas, and G. Steele, Jr., "Massively Par­
allel Data Optimization," Frontiers '88: The Second
Symposium on the Frontiers of Massively Parallel
Computation, IEEE, George Mason University,
October 1988.

7. K. Knobe, J. Lukas, and G. Steele, Jr., "Data Opti­
mization: Allocation of Arrays to Reduce Communica­
tion on SIMD Machines," journal of Parallel and
Distributed Computing, vol. 8 (1990): 102- 118.

8. K. Knobe and V. Natarajan, "Data Optimization:
Minimizing Residual Interprocessor Data Motion on
SIMD Machines," Frontiers '90: The Third Sympo­
sium on the Frontiers of Massively Parallel Compu­
tation, IEEE, University of Maryland, October 1990.

9. M. Gupta and P. Banerjee, "Demonstration of Auto­
matic Data Partitioning Techniques for Parallelizing
Compilers on Multicomputers," IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2
(1992): 179- 193.

10. M. Gupta and P. Banerjee, "PARADIGM: A Compiler
for Automatic Data Distribution on Multicomputers,"
ICS93: The Seventh ACM International Conference
on Supercomputing, Japan, 1993.

11. S. Chatterjee, J. Gilbert, and R. Schreiber, "The
Alignment-distribution Graph," Sixth Annual Work­
shop on Languages and Compilers for Parallel
Computing, 1993.

12. J. Anderson and M. Lam, "Global Optimizations for
Parallelism and Locality on Scalable Parallel
Machines," Proceedings of the ACM SIGPLAN '93
Conference on Programming Language Design
and Implementation. ACM Press, vol. 28 (1993):
1290-1317.

13. The seven values A(9, 2), A(9, 3), ... A(9, 8) can be
expressed concisely in Fortran 90 as A(9, 2:8).

14. R. Souza et al., "GIGAswitch System: A High­
performance Packet-switching Platform," Digital
Technical journal, vol. 6, no. 1 (1994): 9-22.

15. E. Benson, D. Lafrance-Linden, R. Warren, and
S. Wiryaman, "Design of Digital's Parallel Software
Environment," Digital Technical Journal, vol. 7,
no. 3 (1995, this issue): 24- 38.

16. D. Loveman, "The DEC High Performance Fortran
90 Compiler Front End," Frontiers '95: The Fifth
Symposium on the Frontiers of Massively Parallel
Computation, pages 46-53, McLean, Virginia,
February 1995. IEEE.

17. D. Blickstein et al., "The GEM Optimizing Compiler
System," Digital Technical Journal, vol. 4, no. 4
(Special Issue, 1992): 121-136.

18. C. Offner, "A Data Structure for Managing Parallel
Operations," Proceedings of the 27th Hawaii Inter­
national Conference on System Sciences, Volume
II: Software Technology (IEEE Computer Society
Press, 1994): 33- 42.

19. J. Allen and K. Kennedy, "Vector Register Allocation,"
IEEE Transactions on Computers, vol. 41, no. 10
(1992): 1290- 1317.

20. S. Amarasinghe and M. Lam, "Communication Opti­
mization and Code Generation for Distributed Mem­
ory Machines," Proceedings of the ACM SIGPLAN '93
Conference on Programming Language Design
and Implementation, ACM Press, vol. 28 (1993):
126- 138.

21. C.-W. Tseng, "An Optimizing Fortran D Compiler
for MIMD Distributed-Memory Machines," Ph.D.
thesis, Rice University, Houston, Tex., 1993. Available
as Rice COMPTR93-199.

22. A. Rogers, "Compiling for Locality of Reference,"
Technical Report TR91-1195, Ph.D. thesis, Cornell
University, Ithaca, N.Y., 1991.

23. J. Saltz, R. Mirchandaney, and K. Crowley, "Run-time
Parallelization and Scheduling of Loops," IEEE Trans­
actions on Computers(l991): 603- 611.

24. R. Sadourney, "The Dynamics of Finite-difference
Models of the Shallow-water Equations," Journal of
Atmospheric Sciences, vol. 32, no. 4 (1975).

Digital Technical Journal Vol. 7 No. 3 1995 21

22

25. B. Boulter, "Performance Evaluation ofHPF for Scien­
tific Computing," Proceedings of High Performance
Computing and Networking, Lecture Notes in
Computer Science 919 (Springer-Verlag, 199 5).

26. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes in Fortran: The Art of Scientific
Computing(Cambridge: Cambridge University Press,
2d edition, 1992).

27. A. Geist, PVM: Parallel Virtual Machine (Cam­
bridge, Mass.: MIT Press, 1994).

28. A. Hey, "The GENESIS Distributed Memory Bench­
marks," Parallel Computing, vol. 17, no. 10-11
(1991): 1275-1283.

Biographies

Jonathan Harris
Jonathan Harris is a consulting engineer in the High
Performance Computing Group and the project leader
for the transform (HPF parallelization) component of the
DEC Fortran 90 compiler. Prior to the High Performance
Fortran project, he designed the instruction set for the
DECmpp, a 16Kprocessor machine that became opera­
tional in 1987. He also helped design a compiler and
debugger for the machine, contributed to the processor
design, and invented parallel algorithms, some of which
were patented. He obtained an M.S. in computer science
in 1985 as a Digital Resident at the University of Illinois;
he has been with Digital since 1977.

John A. Bircsak
A principal software engineer in Digital's High Performance
Computing Group, John Bircsak contributed to the design
and development of the transform component of the DEC
Fortran 90 compiler. Before joining Digital in 1991, he was
involved in the design and development of compilers at
Compass, Inc.; prior to that, he worked on compilers and
software tools at Raytheon Corp. He holds a B.S.E. in
computer science and engineering from the University
of Pennsylvania (1984) and an M.S. in computer science
from Boston University (1990).

Digital Technical Journal Vol. 7 No. 3 1995

M. Regina Bolduc
Regina Bolduc joined Digital in 1991; she is a principal
software engineer in the High Performance Computing
Group. Regina was involved in the development of the
transform and front end components of the DEC Fortran
90 compiler. Prior to this work, she was a senior member
of the technical staff at Compass, Inc., where she worked
on the design and development of compilers and compiler­
generator tools. Regina received a B.A. in mathematics
from Emmanuel College in 1957.

Jill Ann Diewald
Jill Diewald contributed to the design and implementa­
tion of the transform component of the DEC Fortran 90
compiler. She is a principal software engineer in the High
Performance Computing Group. Before joining Digital
in 1991, Jill was a technical coordinator at Compass,
Inc., where she helped design and develop compilers and
compiler-related tools. Prior to that position, she worked
at Innovative Systems Techniques and Data Resources,
Inc. on programming languages that provide economic
analysis, modeling, and database capabilities for the finan­
cial marketplace. She has a B.S. in computer science from
the University of Michigan.

Israel Gale
Israel Gale is a principal writer in the High Performance
Computing Group and the author ofDigital's High
Performance Fortran Tutorial. He joined Digital in 1994
after receiving an A.M. degree in Near Eastern Languages
and Civilizations from Harvard University.

Neil W. Johnson
Before coming to Digital in 1991, Neil Johnson was a
staff scientist at Compass, Inc. He has more than 30 years
of experience in the development of compilers, including
work on the vectorization and optimization phases and
tools for compiler development. As a principal software
engineer in Digital's High Performance Computing
Group, he has worked on the development of the front­
end phase for the DEC Fortran 90 compiler. He is a mem­
ber of ACM and holds B.A. (magna cum laude) and M.A.
degrees in mathematics from Concordia College and the
University ofNebraska, respectively.

Shin Lee
Shin Lee is a principal software engineer in Digital's High
Performance Computing Group. She contributed to the
design and development of the transform component of
the DEC Fortran 90 compiler. Before joining Digital in
1991, she worked on the design and development of com­
pilers at Encore Computer Corporation and Wang Labs,
Inc. She received a B.S. in chemistry from National Taiwan
University and an M.S. in computer science from Michigan
State University.

C. Alexander Nelson
In 1991, Alex Nelson came to Digital to work on the
SIMD compiler for the MasPar machine. He is a principal
software engineer in the High Performance Computing
Group and helped design and implement the transform
component of the DEC Fortran 90 compiler. Prior to this
work, he was employed as a software engineer at Compass,
Inc. and a systems architect at Incremental Systems. He
received an M.S. in computer science from the University
of North Carolina in 1987 and an M.S. in chemistry (cum
laude) from Davidson College in 1985. He is a member
of Phi Beta Kappa.

Carl D. Offner
As a principal software engineer in Digital's High
Performance Computing Group, Carl Offner has primary
responsibility for the high-level design of the transform
component of the DEC Fortran 90 compiler. He is also
a member of the Advanced Development Group working
on issues of parallelizing DO loops. Before joining Digital
in 1993, Carl worked at Intel and at Compass, Inc. on
compiler development. Before that, he taught junior high
and high school mathematics for 16 years. Carl represents
Digital at the High Performance Fortran Forum. He is
a member of ACM, AMS, and MAA and holds a Ph.D.
in mathematics from Harvard University.

Digital Technical Journal Vol. 7 No. 3 1995 23

Design of Digital's
Parallel Software
Environment

Digital's Parallel Software Environment was
designed to support the development and exe­
cution of scalable parallel applications on clus­
ters (farms) of distributed- and shared-memory

Alpha processors running the Digital UNIX oper­
ating system. PSE supports the parallel execu­
tion of High Performance Fortran applications
with message-passing libraries that meet the
low-latency and high-bandwidth communica­
tion requirements of efficient parallel comput­
ing. It provides system management tools to
create clusters for distributed parallel process­
ing and development tools to debug and pro­
file HPF programs. An extended version of dbx
allows HPF-distributed arrays to be viewed,
and a parallel profiler supports both program
counter and interval sampling. PSE also supplies
generic facilities required by other parallel lan­
guages and systems.

24 Digital Technical Journal Vol. 7 No. 3 1995

I
Edward G. Benson
David C.P. LaFrance-Linden
Richard A. Warren
Santa Wrryaman

Digital's Parallel Software Environment (PSE) was
designed to support the development and execution
of scalable parallel applications on clusters (farms) of
distributed- and shared-memory Alpha processors
running the Digital UNIX operating system. PSE
version 1.0 supports the High Performance Fortran
(HPF) language; it also supplies generic facilities
required by other parallel languages and systems. PSE
provides tools to define a cluster of processors and to
manage distributed parallel execution. It also contains
development tools for debugging and profiling paral­
lel HPF programs. PSE supports optimized message
passing over multiple interconnect types, including
fiber distributed data interface (FDDI), asynchronous
transfer mode (ATM), and shared memory.1

In this paper, we present an overview of PSE version
1.0 and explain why it was designed and selected
for use with HPF programs. We then discuss cluster
definition and management, describe the PSE appli­
cation model, and discuss PSE's message-passing com­
munication options, including an optimized transport
for message passing. We conclude with our perfor­
mance results.

Overview of PSE

Many researchers and computer industry experts
believe that to achieve cost-effective scalable parallel
processing, systems must be built using off-the­
shelf components and not specialized CPUs and
interconnects.2-3 In accordance with this view, we
have designed Digital's PSE to support the building
of a consistent yet flexible and easy-to-use parallel­
processing environment across a networked collection
of AlphaGeneration workstations, servers, and sym­
metric multiprocessors (SMPs). Layered on top of the
Digital UNIX operating system, PSE provides the sys­
tem software and tools needed to group collections of
machines for parallel processing and to manage trans­
parently the distribution and running of parallel appli­
cations. PSE is implemented as a set of run-time
libraries and utilities and a daemon process.

PSE version 1.0 is designed to support clusters con­
sisting of 1 to 256 machines interconnected with any
networking fabric that Digital UNIX supports with the

transm1ss1on control protocol/internet protocol
(TCP/ IP). Networking technologies can range from
simple Ethernet to FDDI, ATM, and MEMORY
CHANNEL. Parallel execution is most efficient when
the interconnect technology offers high-bandwidth
and low-latency communications to the user at the
process level. When building a cluster for parallel pro­
cessing, the bisectional bandwidth of the communica­
tions fabric should scale with the number of processors
in the cluster. In practice, such a configuration can be
achieved by building clusters using Alpha processors
and Digital's GIGAswitch/ FDDI as components in a
multistage switch configuration.4

•
5 Figures 1 and 2

show two examples of PSE cluster configurations.
Although the design center for PSE is a set of machines
connected by a high-speed local area interconnect, a
cluster can be constructed that includes remote
machines connected by a wide area network.

PSE is a collection of many interrelated entities that
support parallel processing. PSE's model is to collect
machines (called members) into a set (called a cluster).
The members are generally all the machines at a site or
within an organization that have or might have PSE
installed. One then subsets the cluster into named
(partitions) that may overlap. The members of a parti­
tion usually share some common attribute, which
could be administrative (e.g., the machines of the
development group), geographic (e.g., connected to
the same FDDI switch), or relevant to the configura­
tion (e.g., large memory, SMP).

The members of a cluster, the partitions, and other
related data form a configuration database that can be
maintained in different ways, but preferably by a sys­
tem administrator. The configuration database can be
distributed using the Domain Name System (DNS) or
as a simple file distributed by Network File System
(NFS).6 A daemon process farmd runs on each mem­
ber to provide per-member dynamic information,

such as availability and system load average. The static
database plus the dynamic information allow applica­
tions to perform tasks such as load balancing.

HPF Program Support

PSE was designed to be largely language-independent;
it currently supports the HPF programming language.
HPF allows programmers to express data parallel com­
putations easily using Fortran 90 array-operation syn­
tax. As a result, users can obtain the benefits of parallel
processing without becoming systems programmers
and developing message passing or threads-based pro­
grams. The HPF language and compiler are discussed
elsewhere in this issue of the Digital Technical
Journal:

Writing parallel applications in HPF is significantly
less complex than decomposing a problem and coding
a solution using explicit message passing, but good
development tools are required. To allow the viewing
of HPF distributed arrays, we developed an extended
version of dbx and a parallel profiler that supports both
program counter and interval sampling. These tools
are discussed later in this paper.

High performance and efficient communication are
essential to success in parallel processing. PSE includes
a private message-passing library for use with compiler­
generated code. Thus it avoids overhead such as buffer
alignment and size checking that are required with
user-visible programming interfaces, such as Parallel
Virtual Machine (PVM).8 The message-passing library
supports shared memory and both TCP/ IP and user
datagram protocol (UDP)/ IP protocols on many
types of media, including FDDI and ATM. PSE also
includes an optional subset implementation of the
UDP, known as UDP_prime, that has been optimized
to reduce latency and improve efficiency. This opti­
mization is discussed later in this paper.

FULL DUPLEX
FDDI

GIGASWITCH FDDI
+
I
I
I
I
I
I
I
I
I
I
I
I

I I 'l
ALPHASERVER DEC 3000 DEC 3000 DEC 3000
8400 MODEL 900 MODEL 900 MODEL900
SMPSERVER WORKSTATION WORKSTATION WORKSTATION

' ' ' '
' ' ' '
' DEC 3000 ' DEC 3000 ' DEC 3000 '
' ' ' ' ALPHASERVER ' MODEL 900 ' MODEL 900 ' MODEL 900 '
' ' ' ' 2100 SERVER
' WORKSTATION ' WORKSTATION ' WORKSTATION '
' ' ' '
' ' ' '
,_ - - - - - - - - - - - - - ~ - - - - - - -' - - - - - - -·- - - - - - - ! - - - - - - - ·- - - - - - - ~ - - - - - - -0-_ _I
ETHERNET NETWORK !

BRIDGE

Figure 1
PSE Basic Configuration

Digital Technical Journal Vol. 7 No. 3 1995 25

26

Figure 2
PSE Multistage Switch Configuration

Before developing PSE for use with HPF programs,
Digital considered two major alternatives: the distrib­
uted computing environment (DCE) and PVM.8

•
9

(At that time, the message-passing interface [MPI]
standard effort was in progress. 10

)

Although a good model for client-server application
deployment, DCE is designed for use with remote CPU
resources via procedure calls to libraries. This model
is very different from the data-parallel and message­
passing nature of distributed parallel processing. Its
synchronous procedure call model requires the exten­
sive use of threads. In addition, DCE contains a signif­
icant number of setup and management tasks. For
these reasons, we rejected the DCE environment.

Digital Technical Journal Vol. 7 No. 3 1995

Three major considerations in our choice to develop
PSE instead of using PVM were stability, performance,
and transparency. At the start of the PSE project, the
publicly available version of PVM did not meet the sta­
bility, performance, and transparency goals of the PSE
project.

Cluster Definition and Management

PSE is designed to operate in a common system envi­
ronment where systems are organized so that user
access, file name space, host names, and so on are con­
sistent. The ultimate goal for the systems in a distrib­
uted parallel-processing environment is to approach

the transparent usability of a symmetric multiproces­
sor. Facilities such as NFS (to mount/share file systems
among machines, in particular working directories)
and network information service (NIS) (also known as
"yellow pages" and used to share password files) are
frequently used to set up a common system environ­
ment. In such an environment, users can log into any
machine and see the same environment. Other distrib­
uted environments such as Load Sharing Facility
(LSF) make this same design assumption.11

A consistent file name space allows all processes that
make up an application to have the same file system
view by simply changing directory to the working
directory of the invoking application. Consistent user
access allows PSE to use the standard UNIX remote
shell facility to start up peer processes with standard
security checking.

Systems in a common system environment are can­
didates to become members of a cluster. A cluster is
often the largest set of machines running PSE and
sharing a common system environment within an
organization or site. A cluster is divided into partitions
that can overlap. A partition consists of a set of
machines grouped together to meet the needs of an
application or user. Although partitions may be
defined in many ways, systems in a partition usually
share common attributes.

Partitions
Parallel programs run most efficiently on a balanced
hardware configuration. Typically, organizations have
a varied collection of machines. Over time, organiza­
tions often acquire new hardware with different net­
work adapters, faster CPUs, and more memory. Such
situations can easily lead to increasing difficulty in
predicting application performance if scheduling
and load-balancing algorithms treat all machines in
a cluster equivalently. In addition to hardware differ­
ences, individual machines can have different software
installed that affects the ability to run applications.

The PSE engineering team recognized that the
number of characteristics that users might want to
manage for processor allocation and load-balancing
purposes would be overwhelming. To limit the prob­
lem, a design was chosen that allows machines to be
grouped arbitrarily into named partitions. A partition
can be thought of as a parallel machine. Although
a system can be a member of two different partitions
and therefore cause overlap, PSE does not attempt to
load balance or schedule processes beyond partition
boundaries. Overlapping partitions can therefore cre­
ate a complex and potentially conflicting scheduling
situation. Well-defined and managed partitions allow
for flexibility and predictability.

In addition to identifying machine membership,
partition definition allows various execution-related

characteristics to be set. Examples include the specifi­
cation of a default communication type, the default
execution priority, the upper bound on the execution
priority, and access control to partition resources.
Access control is enforced only on PSE-related activity
and does not affect the use of the machine for other
applications.

Configuration Database
PSE cluster configuration information is captured in
a database. The database includes a list of cluster mem­
bers, partitions, and partition members. Additional
attributes such as the default partition of a cluster, user
access lists for a partition, and preferred network
addresses for members of a partition can be encoded in
the database.

The PSE configuration database can be distributed
to all cluster members in two ways: by storing it in
a file that is accessible from all cluster members, or by
storing it as a Domain Name System (DNS) database.
The usage patterns of the cluster database fit well with
the usage patterns of a DNS database. In particular,
DNS provides central administrative control with
version numbering to maintain consistency during
updates. It is designed for query-often, update-seldom
usage; it is distributed and allows secondary servers to
increase availability. Applications linked with the PSE
run-time libraries transparently access the database to
obtain configuration information.

In the DNS database, each PSE configuration
token-value pair is stored as DNS TXT records. The
original specification for DNS did not have TXT
records, but additional general information was
attached to domain names at the request of MIT's
Project Athena. 12 The list of the TXT records, along
with DNS header information such as version number,
forms a DNS domain whose name is the PSE cluster
name. To facilitate the creation and setup of a PSE
cluster, we built the psedbedit utility for editing and
maintaining configuration databases.

A simple file that is available on all members of the
cluster can also be used as the cluster configuration
database. The file could be made available through
NFS or copied to all nodes using rdist. This alternative
might be appropriate for very simple clusters where
the services of DNS are not warranted or in cases
where local policy precludes the use ofDNS.

Dynamic Information and Control
In addition to the static information of the configura­
tion database, there are also several pieces of dynamic
information that optimize usage of clusters and parti­
tions. At the most fundamental level is availability, i.e.,
is a machine running? Other information includes the
number of CPUs, load average, number of allowed
PSE jobs, and number of active PSE jobs. All these

Digital Technical Journal Vol. 7 No. 3 1995 27

28

factors can help an application choose the best set of
members for parallel execution. This dynamic informa­
tion is collected by a daemon process (farmd). The
farmd daemon process executes as a privileged (root)
process on each cluster member and listens for requests
on a well-known cluster-specific UDP/IP port.

Multiple cluster members defined in the configura­
tion database are designated as load servers. The load
servers are the central repository for the dynamic
information for the entire cluster. Their farmd process
periodically receives time-stamped updates from the
individual daemons. Applications query the load
servers for both static and dynamic information.
Applications do not themselves parse the database nor
query the individual farmd daemons running on each
cluster member.

Once PSE is installed and configured, farmd is
started each time the system is booted. The name of
the cluster that farmd will service and the number of
PSE jobs (job slots) that will be allowed to run are set.
The inetd facility is used to restart farmd in response to
UDP/IP connection requests, if farmd is not run­
ning.13 Use of the inetd facility to start farmd improves
the availability of machines to run PSE applications by
transparently restarting farmd in the case of a failure.

As farmd daemons are started, they attempt to
establish TCP/ IP connections with their neighbors as
defined by the PSE configuration database. 1• This
process is undertaken by all cluster members and
quickly results in a configuration ring whose purpose
is the detection of node or network failures. We chose
a simple ring of TCP / IP connections because the
mechanism is passive, i.e., it relies on the loss of
TCP/IP connectivity and does not impose any addi­
tional load on the system or network under normal
conditions. When connectivity to a member is lost,
neighboring cluster members report the member
being unavailable. This prevents PSE from attempting
to schedule new applications on the failed member.

Failures that do not break the configuration ring, but
prevent updated load information from being sent to
the load server, are detected by checking the time­
stamps on previously received load information. As
soon as a "time-to-live" period expires for a particular
member's load information, the load servers disable fur­
ther use of the suspect node. System managers are also
able to set the number of job slots to zero at any time,
thus disabling the host for new PSE-related activities.
This has no effect on currently executing applications.

Pseudo-gang Scheduling
The start-up sequence for a PSE application includes
the potential modification of execution priority and
scheduling policy. These changes are made in accor­
dance with the user command-line options and/or the
default characteristics defined by the PSE configura­
tion database. To allow nonroot UID processes to

Digital Technical Journal Vol. 7 No. 3 1995

elevate scheduling priorities and/or alternate sched­
uling policies, farmd modifies the user process's
scheduling priority or policy. Processes scheduled at
a high real-time priority using a first in, first out
(FIFO) queue with preemption policy achieve a
pseudo-gang-scheduling effect. (Gang scheduling
ensures that all processes associated with a job are
scheduled simultaneously.) This effect occurs because
of the scheduling preference given high-priority jobs
and because PSE polls for messages for a period of
time before giving up the CPU.

Using PSE

Parallel applications are developed for PSE using the
Digital Fortran 90 compiler. When the Fortran 90
compiler is invoked with the -wsfN flag, HPF source
codes are compiled and then linked with a PSE library
for parallel execution on N processors. After defining a
partition in which to run, a PSE application can be run
simply by typing the name of the application. The fol­
lowing example shows the compilation and execution
of a four-process program called myprog on a set of
cluster members in the partition named fast.

csh> se t env PSE_PARTITI ON f a st
csh> f9 0 -wsf 4 myprog.f90 -o myprog
cs h> my p ro g > my p r og. out < myp rog.dat &

Transparently, PSE starts up four processes on
members of the partition fast; creates communications
channels between the processes; supports redirected
standard input, output, and error (standard I/0); and
controls the execution and termination of the applica­
tion. Several environment variables and run-time flags
are available to control how an application executes.
Figure 3 shows how to use PSE.

PSE Application Model

PSE implements an application as a collection of inter­
connected processes. The initial process created when a
user runs an application is called the controlling process.
It provides application distribution and start-up services
and preserves UNIX user-interface semantics (i.e., stan­
dard I/0), but does not participate in the HPF parallel
computation. The controlling process usually deter­
mines which partition members to use for the parallel
computation by getting system load information from
a load server and then distributing the new processes
across the partition. As an alternative, users can direct
computation onto specific partition members.

The controlling process starts a process called the
io_manager on each partition member participat­
ing in the parallel execution. Each io_manager then
starts one or more application peer processes that
perform the user-specified computation. The use of
an io_manager is necessary to create a parent-child

STATIC
SOURCE DATABASE
"MYPROG.F90" (E.G., DNS)

i !
COMPILATION

FORTRAN 90 LOAD SERVER
OPTIONS f--+

COMPILER (E.G., -WSF 4)

i I DYNAMIC INFORM
(E.G., LOAD)

ATION

OBJECT FILE CLUSTER

"MYPROG.0 " --------- -----------, ----------- -----,
i

I

IHOST I
I

(CLUSTER MEMBER)
I
I

LIBRARIES: I

• FORTRAN STANDARD I

• RUN-TIME -- LINKER (LO)
I

• PSE IHOST I:

i (CLUSTER MEMBER) :
_______________ J

~--------------,
EXECUTABLE I

HOST [SMP] I :
"MYPROG" I

I (CLUSTER MEMBER) :
COMMAND LINE I

SWITCHES AND i L----- -- ---- - --~
ENVIRONMENT I
VARIABLES

IHOST I EXECUTION
(E.G., SHELL) (CLUSTER MEMBER)

i i - I PARTITIONS ___ -- -- - ____ J

-
CONTROLLING

......--PROCESS

PEER SPAWN
AND CONTROL

Figure 3
PSE Use

process relationship between the io_manager and peer
processes. This relationship is used for ex.it status report­
ing and process control. It also enables or eases other
activities, such as signal handling and propagation. Peer
processes create communication channels between
themselves and perform standard 1/0 through a desig­
nated peer. Standard 1/0 is forwarded to and from the
controlling process through the io_manager. Figure 4
shows a PSE application structure.

Application Initialization
Prior to the execution of any user code, an initializa­
tion routine executes automatically through function­
ality provided by the linker and loader. The
initialization routine implements both the controlling
process functions and the HPF-specific peer initializa­
tion. Because no explicit call is required, parallel HPF
procedures can be used within non-HPF main pro­
grams, and proper initialization will occur. A simple
HPF main program can also be used with PSE to start
up and manage a task-parallel application that uses
PVM or MPI for message passing.

In general, the controlling process places peer
processes onto members of a partition, although hand
placement of individual peers onto selected members

is possible. To achieve efficiency and fairness in map­
ping a set of peers, the controlling process consults
with a load server for load-balancing information.
Which members are used and the order in which they
are used is based on each member's load average,
number of CPUs, and number of available job slots.

As an alternative, PSE may map peer processes onto
members based upon a user-selected mode of opera­
tion. In the default physical mode of operation, PSE
maps one peer process per member. In virtual mode,
PSE allows more than one peer process per member,
thereby enabling large virtual clusters. This is useful
for developing and debugging parallel programs on
limited resources. Virtual clusters also improve appli­
cation availabiliL-y: when the requested number of peer
processes is greater than the available set of partition
members, applications continue to run; however, they
may suffer performance degradation.

Application Peer Execution

Each application peer process has an io_manager
parent process that provides it with environment
initialization, exit value processing, 1/0 buffering,
signal forwarding, and potential scheduling priority
and policy modification. Rather than include the

Digital Technical Journal Vol. 7 No. 3 1995 29

MEMBER

IO_MANAGER

PEER
PROCESS

MEMBER

IO_MANAGER

MEMBER

IO_MANAGER

PEER
PROCESS

-- ---- - , ~----~

CONTROLLING
PROCESS

,,
' ' ', ... ---..... -:-:

~----'---'~~--' --
--:.-:.-:.,:.~-.,.

KEY:

Figure4

STANDARD 1/0

PEER
PROCESS

PEER-TO-PEER COMMUNICATIONS

PSE Application Structure

io_manager's functions in each PSE executable,
the io_manager is implemented as a simple utility.

Application peers run the same binary image as the
controlling process. They inherit their current working
directory, resource usage limits, and an augmented set
of environment variables from their controlling process
through their parent io_manager. When started, the
initialization process described for the controlling
process is repeated, but peers do not become control­
ling processes because they detect that a controlling
process already exists. Instead, peer processes return
from the initialization routines with communication
links established and are ready to run user-application
code. Figure 5 represents a controlling process, four
application peers running on three members, and the
communications between processes.

farmd
LOADSERVER

LOAD INFORMATION

HOST A

LIBPHPF
STANDARD 1/0
AND SIGNALS

APPLICATION

CONTROLLING
PROCESS

PEER
PROCESS

Application Exit
Multiple peer exits can have potentially conflicting exit
values. Coordinating them into a single meaningful
application exit value is the most challenging trans­
parency issue faced by PSE. Under normal circum­
stances, all peer processes exit without error and at
approximately the same time. The resulting exit values
are reported to the application controlling process by
the io_managers. The application (i.e., the controlling
process) is allowed to exit without error only when all
exit values are recorded and standard 1/0 connections
are drained and closed. The HPF compiler generates
synchronization code to guarantee the roughly syn­
chronous exit for all nonerror conditions. This pre­
sumption allows PSE to implement a timely exit
model, i.e., one by which we can reasonably assume

HOSTB

I farmd I
i

IO_MANAGER

i
LIBPHPF --

APPLICATION

PEER PROCESS

HPF
COMMUNICATIONS

y ~ T

1

HER HOSTS/PEERS ~
Figure 5
Communications between PSE Processes

30 Digital Technical Journal Vol. 7 No. 3 1995

normal activity will cease after receiving the last exit
notification from an io_manager.

Peers that exit abnormally make it difficult to
provide a meaningful exit value for the application.
Consider one peer process that exits due to a segmen­
tation fault and another that exits due to a floating­
point exception. There is no single exit value possible
for the application; PSE chooses the first abnormal
value it sees. Furthermore, as a result of error detec­
tion in the communication library, the other peer
processes will exit with lost network connections. It is
possible that the controlling process will see an exit
value for this effect before it sees an exit value for one
of the causes, resulting in a misleading application exit
value. To understand a faulting parallel application
running under PSE, the core files associated with each
peer process must be examined.

PSE includes support for capturing the entire appli­
cation core state and for discriminating the multiple
core files of a parallel application. Because peer pro­
cesses share the same working directory, any core files
generated would be inconsistent and overwrite one
another due to N processes writing to the same core
file name. PSE solves this problem by establish­
ing a signal handler that catches core-generating sig­
nals, creates a peer-specific subdirectory, changes to
the new directory, and resignals the signal to cause the
writing of the core file. The root for the core directo­
ries can be set through an environment variable.

Issues
Although PSE achieves the standard UNIX look-and­
feel for most application situations, complete trans­
parency is not achieved. For example, timing an
application-controlling process using the c-shell's
built-in time command, does not time user code or
provide meaningful statistics other than the elapsed
wall clock time to start a parallel application and to tear
it down. Another situation that highlights the parallel
nature of PSE occurs during application debugging:
multiple debug sessions are started by running the
application with a debugger flag rather than by using
dbx directly.

Tools for HPF Programming

The development model for HPF-based applications
is a two-step process. First, a serial Fortran 90 program
is written, debugged, and optimized. Then it is paral­
lelized with HPF directives and again debugged and
optimized. The development tools supplied with PSE
address profiling and debugging. Unlike most of PSE,
which is language-independent, both the pprof profil­
ing facility and the "dbx in n windows" debugging
facility are specific to HPF programming.

Profiling
Several issues in profiling parallel HPF programs do
not apply to Fortran programs that execute serially.
HPF execution occurs through multiple processes on
multiple processors simultaneously and therefore pro­
duces multiple profiling data sets. The storage and
analysis of these data sets must be coordinated to pro­
duce accurate and comprehensive program profiles.
Unlike typical Fortran programs, significant time can
be spent communicating in an HPF program. The
Digital UNIX prof and pixie utilities do not handle
either of these issues. 15 In addition, the prof utility has
coarse-grained (1-millisecond resolution) program
counter (PC) sampling and reports only down to the
procedure level. To address these issues, Digital added
profiling support to the Fortran 90 compiler and
developed the pprof analysis tool.

Data Collecting The PSE parallel profiling facility
handles profiling data collection in parallel by writing
data to a set of files that are uniquely named. It
encodes the application name, the type of data collec­
tion, and the peer number of the process. The analysis
tool pprof merges the data in the file set when per­
forming analysis and producing reports.

It supports two types of data collecting: nonin­
trusive traditional PC sampling and intrusive interval
profiling. PC sampling simply records the program
counter at each occurrence of the system clock inter­
val interrupt. To achieve an accurate execution profile
with PC sampling, programs must be long running
to become statistically significant. Also, it is difficult to
gather do-loop iteration data using PC sampling.

We developed interval profiling support to overcome
the deficiencies of PC sampling. Interval profiling is
achieved with compiler-inserted functions that record
the entry and exit times for the execution of each event.
This produces an accurate execution profile. Events
include routines, array assignments, do loops, FORALL
constructs, message sends, and message receives.
Because the entry and exit times are recorded, time
spent executing other events within an event is
included, which gives a hierarchical profile. To achieve
fine-resolution timings (single-digit nanoseconds), the
Alpha process cycle counter is used to measure time. 16

Analysis The pprof utility provides many different
ways to examine and report on a large set of profiling
data from a parallel program execution. Different
approaches include focusing on routines, statements,
or communications. In contrast, prof reports on proce­
dures only. With pprof, the scope of the analysis can be
limited to a single peer process or encompass all appli­
cation processes. The range of reports generated can be
comprehensive or limited to a number of events or

Digital Technical Journal Vol. 7 No. 3 1995 31

32

a percentage of time. Users can specify their reports
from a combination of analysis, report format, and
scoping options. By default, the pprof utility reports on
routine-level activity averaged across all peer processes,
which provides an overall view of application behavior.

Parallel programs execute most efficiently when
there is minimum communication between processes.
The high-level, data parallel nature of the HPF
language reduces the visibility of communication to
the programmer. To make tuning easier, pprof was
designed with the ability to focus tuning on communi­
cation. Reports can be generated that help correlate
the use of HPF data-distribution directives to
observed communication activities.

Debugging
For PSE version 1.0, we are supplying a "dbx in n win­
dows" capability. Each peer is controlled by a separate
instance of dbx that has its own Xterm window. This
capability gives users basic debugging functionality,
including the ability to set breakpoints, get backtraces,
and examine variables on an all-peer or a per-peer
basis. We added a new command to dbx, hpfget, that
allows the viewing of individual elements of a distrib­
uted array. We recognize it as far from meeting the
challenges of an HPF debugger, and we are continuing
the development of a new debugging technology.

Message-passing Model

One of the goals of PSE is to support high-performance,
reliable message passing for parallel applications. At
the start of the project, the HPF language and com­
piler technology were still in their infancy. Even
though no HPF application code base existed, the PSE
team needed to determine the messaging-passing
requirements. To support message ,passing success­
fully, PSE had to be flexible enough to accommodate
new interconnect technologies and network proto­
cols, adapt to the message-passing characteristics of
future HPF applications, and support the changing
demands of the compiler. A need for high perfor­
mance and efficiency with low latency was assumed.

The PSE message-passing facility provides primi­
tives to initialize and terminate message-passing oper­
ations, to allocate and deallocate message buffers, and
to send and receive messages. A PSE message contains
a tag, a source peer number, and variable-length data.
The higher layers fill in the tag, which is used as a mes­
sage identifier on receive. The data is a stream of bytes
without any data-type information. These primitives
are not intended to be used in the application code.
The HPF compiler implicitly generates calls to these
primitives. Because the message-passing primitives are
tightly coupled to the HPF compiler, overhead such as
data-alignment restrictions and error checking can be
eliminated.

Digital Technical Journal Vol. 7 No. 3 1995

The PSE message-passing model assumes that the
application peers are running on systems with the same
CPU architecture and networking capabilities. Each
peer process can send or receive binary messages
directly to or from any other peer. This is different from
the PVM model, where messages might be routed to
a pvmd daemon to be multiplexed to another peer, or
messages might be converted to external data represen­
tation (XDR) to allow for data passing between
machines with different architectures.17

Buffer allocation and deallocation routines are spe­
cific to each of the communication options that PSE
supports. (These options are discussed in the follow­
ing sections.) Before a message can be sent, a buffer
must be allocated. The send primitive sends the mes­
sage and implicitly deallocates the buffer. The receive
primitive implicitly allocates a buffer containing the
newly arrived message. Receive buffers have to be
deallocated explicitly after they are used. Our initial
design allowed a received message buffer to be reused
for sending a new message, possibly to a different peer.
This design was inefficient, especially when a commu­
nication option such as shared memory optimizes
buffer allocation on a peer-by-peer basis. The current
design uses a peer number as a parameter to the buffer
allocation routine and does not allow reuse of the
received message buffer.

The send primitive sends a message contained in
a preallocated buffer to a specified peer. It guarantees
reliable in-order delivery of messages. For underlying
protocols, such as UDP/ IP that do not provide this
level of service, the message-passing library must pro­
vide it. A broadcast primitive is also provided to send
a single message to all peers.

The receive primitive uses a particular message tag
to receive a message with a matching tag from any
peer. This allows the compiler to use functions that can
perform calculations correctly when data is required
from several peers, regardless of the order in which
messages arrive. The normal operation for receive is
to block the receiving peer until a matching tagged
message arrives. A nonblocking receive is also pro­
vided to poll for messages.

Communication Options

PSE provides applications with several run-time selec­
table communication options. Within a single SMP
system, PSE supports message passing over shared
memory. On multiple system configurations, PSE sup­
ports network message passing using the TCP / IP or
UDP/IP protocols over any network media that the
Digital UNIX operating system supports. Currently,
PSE supports a single communication option within
an application execution, but the design supports
multiple protocols and interconnects. Run-time selec­
tion of the communication options and media, which

is implemented using a vector of pointers to functions
within a shared library, provides flexibility to introduce
new protocols and media without having to recompile
or relink existing applications.

Shared-memory Message Passing
The use of shared memory as a message-passing
medium allows for very high performance because
data does not have to be copied. When designing
shared-memory messaging, we looked at a variety of
interrelated issues, including coordination mecha­
nisms, memory-sharing strategies, and memory con­
sumption. The use of locks (i.e., semaphores) in the
traditional manner to coordinate access to shared­
memory segments proved problematic. For example,
clients often request a message from any peer, not
from a particular peer. This implies the use of a general
receive semaphore that senders would unlock after
delivering data. Contention for a single lock could be
significant and could become a performance bottle­
neck. Instead of locks, a simple set of producer and
consumer indexes is used to manage a ring buffer of
messages. Senders read the consumer index and
update the producer index, and receivers read the pro­
ducer index and update the consumer index to syn -
chronize. No locking is required.

Several memory-sharing strategies are possible: all
peers may share a single large segment, each pair of
peers may share a segment, and each pair of peers may
have a pair of unidirectional segments. The use of unidi­
rectional pairs of shared-memory segments offers sev­
eral advantages: it simplifies the code by eliminating
multiplexing; it fits in well with the design of MEMORY
CHANNEL hardware, which is unidirectional; and by
creating receive segments with read-only protection, it
promotes robustness. 18 A disadvantage to the use of
unidirectional segment pairs is increased memory use
due to limited sharing. Because of its advantages and
because the coordination of the producer/consumer
index does not require segments to be shared between
peers, we selected unidirectional pairs of shared­
memory segments as our memory-sharing strategy.

To enhance performance, a receiver spins, waiting
for a peer to produce a message. If there is no data
after a number of spin iterations, the receiver voluntar­
ily deschedules itself. The number of spin iterations
was chosen to be small enough to be polite, but large
enough to permit scheduling when a peer produced
a message. An additional performance enhancement
allows the user, via command line option, to prevent
peers from migrating between processors, which
results in better cache utilization.

TCP/ IP Message Passing
TCP/IP is the default communication option. It pro­
vides full wire bandwidth for peer-to-peer communi­
cation with large message transfer sizes across a variety

of network media. The implementation of the message­
passing primitive operations is relatively straight­
forward since TCP/IP provides reliable, in-order,
connection-oriented delivery of messages. The TCP/
IP initialization routine sets up a vector of bound and
connected socket descriptors, one for each peer. These
sockets are used to send messages to other peers. The
receive primitive uses a blocking select() system call on
all sockets. Because TCP/IP is connection based,
abnormal peer termination and network faults can be
detected by connection loss.

Although TCP/IP provides acceptable bandwidth,
latency-sensitive applications might suffer from the
processing overhead of the TCP/ IP protocol. The
connection-oriented nature of TCP/ IP also requires
the application to maintain many socket descriptors,
which reduces scalability and necessitates the use of
expensive select() system calls on receive.

UDP/IP Message Passing
To address the latency and overhead of TCP/IP, PSE
provides UDP/IP as an option that can be selected at
run time. UDP/IP is a connectionless protocol that
provides unordered, best-effort delivery of messages.
Because UDP/IP is connectionless, the initialization
function needs to set up a single locally bound socket
description for all peer-to-peer communication. File
descriptor use is not a scaling issue when UDP/IP
is used for messaging.

Reliable in-order delivery of messages is imple­
mented at the library level. Each peer maintains a set of
send and receive ring buffers, one for each peer. The
ring buffers have producer and consumer indexes
to indicate positions in the ring where messages can
be read or written. The buffer-allocation primitive
allocates buffers from the send ring whenever possible,
or from a pool of overflow buffers when the ring is full.
The use of an overflow buffer eliminates the need for
upper levels to provide flow control or to block sends.
The send and receive primitives manipulate the pro­
ducer and consumer indexes of the send and receive
rings. In-order delivery of messages is guaranteed
through the use of a sliding window protocol with
sequentially numbered messages. For efficiency, piggy­
backed acknowledgments are used.

To improve scheduling synchronization among
multiple peers, especially when a high-priority FIFO
scheduling policy is used, the UDP/IP option uses a
nonblocking socket. On receive, it loops calling the
recvfrom() system call many times before calling the
expensive select() system call to wait for a message to
arrive. Abnormal peer termination and network faults
cannot be detected since the socket layer does not
maintain a connection state. The UDP/IP option con­
tains a user-specifiable time-out value by which the peer
application will exit when there is no socket activity.

Digital Technical Journal Vol. 7 No. 3 1995 33

The UDP/IP option provides better bandwidth
than the TCP /IP with smaller messages and matches
the TCP /IP bandwidth at large message size. The
user-level latency reduction, however, was less than
expected. The next two sections discuss our investiga­
tion into ways to optimize the latency of UDP/IP and
the performance of the message-passing options.

Optimizing UDP/IP

Our initial approach to improve latency was to reex­
amine the standard UDP /IP code path within the
Digital UNIX kernel for unnecessary overhead. Our
idea was to create a faster path, optimized for a
UDP/IP over a local area network (LAN) configura­
tion by reducing numerous conditional checks in the
path. Although this work yielded some improvement,
it was not enough to justify supporting a deviation
from the standard code path. An overhaul of the origi­
nal code path would have been necessary for this
approach to gain significant improvement in latency.

UDP/IP provides a general transport protocol,
capable of running across a range of network inter­
faces. We realize the value in retaining the generality
of UDP/IP. For optimal performance, however, we
anticipate typical cluster configurations being con­
structed using a high-performance switched LAN
technology such as the GIGAswitch/FDDI system. 5

In such configurations, the IP family of protocols
presents unnecessary protocol-processing overhead.
A messaging system using a lower-level protocol, such
as native FDDI, would offer better latency, but its
implementation requires the use of nonstandard mech­
anisms to access the data link layer directly, which is less
general and portable than a UDP/IP implementation.

Based on the above observations, we designed a new
protocol stack in the kernel, called UDP_prime, to
coexist with the standard UDP/IP stack. UDP_prime
packets conform to the UDP /IP specification.19 To
reduce the amount of per-packet processing and
approach that of a lower-level protocol, UDP_prime
imposes several restrictions on its use. These restric­
tions optimize the typical switched LAN cluster config­
urations. To retain the generality of UDP/IP,
UDP_prime falls back to the standard UDP/IP stack
when these restrictions are not applicable.

Restrictions on UDP_ prime
The LAN nature of the cluster configuration imposes
a restriction on UDP_prime. Each cluster member has
to be within the same IP subnet, which is directly
accessible from any other member. With this restric­
tion, routing decision and internet-to-hardware
address resolution can be done once for each peer­
to-peer connection rather than on a per-packet basis.
Per-packet UDP/IP checksum processing can also
be eliminated, because intermediate routing is not

34 Digital Technical Journal Vol. 7 No. 3 1995

involved and the data link cyclic redundancy check
(CRC) is sufficient to guarantee error-free packets.

The next restriction is the maximum length of the
message. PSE message passing uses fixed-size buffers.
UDP_prime restricts the maximum buffer size to be
the maximum transmission unit (MTU) of the underly­
ing network interface. This eliminates per-message IP
fragmentation and defragmentation overhead. Since
the messaging clients have to fragment the messages
into fixed-size buffers at the higher layer, there is no
need for the IP layer to perform further fragmentation.

One complication in our current implementation
occurs when multiple peers are running on a single
system while others are on remote systems. The
default behavior for peers within a single system is
to communicate across the loopback interface. In this
situation, there are two MTU values, one for the net­
work interface and one for the loopback interface.
Our current implementation of UDP_prime does not
allow communication over the loopback interface so
that a single-size MTU can be used. Further studies
need to be done to find an optimal maximum buffer
size, taking into account multiple MTU values, page
alignment, and so forth.

Based on the above restrictions, UDP_prime opti­
mizes the per-packet processing overhead of sending a
packet by constructing a UDP, IP, and data link packet
header template for each peer at initialization. Except
for a few fields, the content of these headers is static
with respect to a particular peer. UDP_prime defines a
new IP option, IP_ UDP _PRlME, for the setsockopt()
system call, to allow the messaging system to define
the set of peers and their Internet addresses involved in
the application execution. 20 The IP option processing,
done prior to sending any message, makes routing
decisions, performs Internet-to-hardware address res­
olution, and fills in the static portion of the header
fields. When sending a packet, UDP_prime simply
copies the header template to the beginning of the
packet, minimizing the per-packet processing over­
head and increasing the likelihood of the templates
being in the CPU cache. Several header fields, such as
the IP identification, header checksum, and packet
length fields, are then filled dynamically, and the com­
plete packet is presented to the interface layer.

UDP_ prime Packet Processing
Since a UDP_prime packet is a UDP/IP packet, the
standard UDP/IP receive processing can handle the
packet and deliver it to the messaging client. To trig­
ger the use of UDP_prime optimized receive process­
ing, the sending system uses the type of service (TOS)
field within the IP header to specify priority delivery of
the packet. 21 The priority delivery indication does not
by itself uniquely differentiate between UDP_prime
and UDP /IP packets, as any other IP packets can
also have the TOS field set to priority. As a result, the

optimized receive processing has to check for the
packet's adherence to the UDP_prime restrictions.
Nonadherence to the restrictions reroutes the packet
to the standard receive processing code.

When a packet arrives at a network interface, the
interface posts a hardware interrupt, and the interface
interrupt service routine processes the packet. The
standard interrupt service routine deletes the data link
header, and hands the packet over to the netisr kernel
thread.22 Netisr demultiplexes the packet based on
the packet header contents and delivers it to the appli­
cation's socket receive buffer. Netisr, designed to be
a general-purpose packet demultiplexer, runs at a low­
interrupt priority level. The main reason for a thread­
based demultiplexer is extensibility. New protocol
stacks can be registered to the thread. Since there is
no a priori knowledge of the execution and SMP lock­
ing requirements of these stacks, a thread-based low­
interrupt priority demultiplexer is needed so that the
network interrupt processing time can be held to a
minimum. The extensibility feature, however, intro­
duces a context switch overhead.

For UDP_prime, the packet header processing time
on the receive path is almost a small constant. We
modified the interface service routine to demultiplex
the packet by processing the data link, IP, and UDP
headers, and deliver the packet to the socket receive
buffer without handing it over to netisr. This short cir­
cuit path is used only when the packet is a UDP/ IP
packet with no IP fragmentation and with priority
delivery indication. If these conditions are not met,
the standard netisr path is chosen. The UDP_prime
receive path eliminates the netisr context switch over­
head. This is a significant advantage, especially when
the receiving application runs with a real-time FIFO
scheduling policy.

SMP Synchronization
One difficulty in designing the UDP_prime stack to
run in parallel with the standard UDP/IP stack was
in SMP synchronization.23 The socket buffer structure
is a critical section guarded by a complex lock.
Requesting a complex lock in Digital UNIX blocks
execution if the lock is taken. To prevent deadlocks,
its use is prohibited at an elevated priority level, such
as the case in the interrupt service routine. To work
around this problem, a new spin lock was introduced
in the short circuit path and in the socket layer where
access to the socket buffer needs to be synchronized.

Performance

To measure message-passing performance, we used
two DEC 3000 Model 700 workstations connected by
a GIGAswitch/ FDDI system using TURBOchannel­
based DEFTA full-duplex FDDI adapters. Each work-

station contained a 225-megahertz (MHz) Alpha
21064 microprocessor and was running the Digital
UNIX version 3.0 operating system.

Figure 6 shows the message-passing bandwidth for
TCP/IP, UDP/IP, and UDP_prime transports at dif­
ferent message sizes. The bandwidth was measured at
the message-passing application programmer interface
(API) level, taking into account allocation and deallo­
cation of each message buffer in addition to the data
transmission. TCP/IP, UDP/ IP and UDP_prime
bandwidth peaks at approximately 95 megabits per
second at a 4,224-byte message, approaching the
FDDI peak bandwidth. UDP/IP approaches the peak
bandwidth at a 1,400-byte message, and UDP_prime
at a 1,024-byte message. Reaching the peak band­
width using small messages is a measure of protocol
processing efficiency.

Figure 7 shows the minimum message-passing
latency for TCP/ IP, UDP/ IP, and UDP_prime
transports at different message sizes. The latency was
measured as half of the minimum time to send a mes­
sage and receive the same message looped by the
receiver system over many iterations. The measure­
ment made allowance for the allocation and deallo­
cation of each message buffer, in addition to the
round-trip transmission.

Compared to the TCP/IP option, UDP/IP has a
slightly higher minimum latency. This is not expected,
because the original goal of the UDP/ IP option was to
reduce TCP/ IP processing overhead. It is, however,
encouraging to see only a slight degradation in latency
when the reliable in-order delivery protocol is imple­
mented at the library level. This prompted us to use
the same protocol engine in the library for
UDP_prime. At a very small message size (4 bytes),

100

90

80

0 70
z
0 60
(.)

l}j 50

g? 40
ai
::E 30

20

10

r- · / I _. _,,

I :
I :

I . , ...

/
/

/

· · · ········ . . _--:.

,,
,,­,, ,,

--

0 500 1 000 1500 2000 2500 3000 3500 4000 4500

MESSAGE SIZE (BYTES)

KEY:

- - UDP _PRIME
---- TCP/IP
·· .. ···· UDP/IP

Figure 6
Peer-to-Peer Bandwidth

Digital Technical Journal Vol. 7 No. 3 1995 35

1000 .·~

900 .. -;. :.>--
800 .. ;,..·;.. -

~ .·.:-·.:-·,/

~ 700 ·>.,,;:.,..::,,.:,...
frl 600 -~-
~ 500 _,.. . .,...;-
er: .. ,..
U 400 .. ··:,,-

~ 300 --~>/
200

100

O 500 1 000 1500 2000 2500 3000 3500 4000 4500

MESSAGE SIZE (BYTES)

KEY:

-- UDP _PRIME
---- TCP/IP
·· ·· ···· UDP/IP

Figure 7
Minimum Peer-to-Peer Latency

protocol processing overhead dominates the latency.
At this point, UDP_prime was 44 percent (103.5
microseconds) better than TCP/IP, even though
UDP/IP and UDP_prime use the same mechanism.

As the message size increases, the protocol processing
time remains constant, but the data copy time becomes
dominant. Despite this, UDP_prime was approximately
12 percent better at a 4-k.ilobyte message.

Future Work

The current communication options along with the
UDP_prime optimization provide good performance
for HPF-style message passing on SMP systems and
clusters. To remain competitive, however, we need to
consider support for new high-performance commu­
nication media and configurations. We are working on
support for MEMORY CHANNEL, the use of multi­
ple interconnects and protocols within an application
running on a cluster of SMPs, and lightweight proto­
cols for use with ATM at speeds of 622 megabits per
second and higher. The flexibility of the message-pass­
ing design will allow current applications to use future
communication options without relinking.

We are also working on a new HPF debugger tech­
nology. Debugging a cluster-style HPF program is
considerably harder than debugging a uniprocessing
program. HPF's single-program multiple-data (SPMD)
parallel programming model includes a single­
threaded control structure, a global name space, and
loosely synchronous parallel execution. HPF also sup­
ports the calling of extrinsic procedures that use other
parallel programming styles or nonparallel computa -
tional kernels.

36 Digital Technical Journal Vol. 7 No. 3 1995

The goal of an HPF debugger is to present the
application in source-level terms. Since HPF is roughly
Fortran 90 with data-distribution directives, HPF is
conceptually a single-threaded application with the
compiler transforming pieces of the application to exe­
cute in parallel. As a result, an HPF debugger has to
take the states from the actual peer processes and
recreate a single source-level view of the application. It
is not always possible to do this with complete preci­
sion. Consider the user interrupting the application,
which interrupts the peer processes at different points
within the computation. It is unlikely each peer is at
the same place (e.g., the same program statement),
and it is quite likely that the stack backtraces of the
peers differ! Even if they are at the same place, they
could be in different iterations of their local portions
of a parallelized loop-like operation.

At the start of the HPF debugger project, we sur­
veyed a variety of debuggers and disqualified all of
them for logistical and/ or technical reasons. Rather
than modify an existing debugger technology so that
it could debug cluster-style HPF programs, we initi­
ated an effort to build a new debugger technology.
As we continue to design the new HPF debugger to
be general-purpose, portable, and extensible, we will
be able to capitalize on modern programming con­
cepts, paradigms, and techniques.

Summary

PSE contains the tools and execution environment to
debug, tune, and deploy parallel applications written
in the HPF language. From an end user's perspective,
PSE provides transparency, flexibility, and compati­
bility with familiar tools. Using standard UNIX com­
mand syntax, the same executable can be run serially
or in parallel on hardware ranging from a single-node
system to a cluster of SMP systems. PSE supports sev­
eral high-performance message-passing protocols run­
ning over a variety of network media. From a system
administrator's perspective, PSE provides the flexibil­
ity to create a cluster from standard components and
to control the cluster by assigning access controls and
setting scheduling policy and priorities. Although it
currently supports only the HPF language, PSE has
the flexibility and generic infrastructure to support
other parallel languages and programming models.

Acknowledgments

The PSE team would like to thank the members of the
Fortran 90 and HPF compiler teams and to acknowl­
edge the contributions of Chuck Wan, Rob Rodan,
Phil Cameron, Israel Gale, Rishiyur Nikhil, Marco
Annaratone, Bert Halstead, and George Surka.

References

1. Digital High Performance Fortran 90: HPF and
PSE Manual (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-2ATAA-Te, 1995).

2. G. Bell, "Scalable, Parallel Computers: Alternatives,
Issues, and Challenges," International Journal of
Parallel Programming, vol. 22, no. 1 (1994).

3. H . Kung et al., "Network-based Multicomputers: An
Emerging Parallel Architecture," Proceedings Super­
computing 91.

4. W. Michel, FDDI- An Introduction to Fiber Dis­
tributed Data Interface (Newton, Mass.: Digital
Press, 1992).

5. R . Souza et al., "GIGAswitch System: A High­
performance Packet-switching Platform," Digital
TechnicalJournal, vol. 6, no. 1 (Winter 1994): 9-22.

6. Internet Engineering Task Force, "Domain Name
System," RFC883(November 1983).

7. J. Harris et al., "Compiling High Performance Fortran
for Distributed-memory Systems," Digital Technical
Journal, vol. 7, no. 3 (1995, this issue): 5-23.

8. G. Geist et al., PVM- Parallel Virtual Machine­
A Users' Guide and Tutorial for Networked Parallel
Computing (Cambridge, Mass.: The MIT Press,
1994).

9. W. Rosenberry, Understanding DCE (Sebastopol,
Calif.: O'Reilly & Associates, Inc., 1992).

10. W. Gropp et al., Using MP!: Portable Parallel Pro­
gramming with the Message Passing Interface
(Cambridge, Mass.: The MIT Press, 1994).

11 . LSF Administrator's Guide (Toronto, Ont., Canada:
Platform Computing Corporation, 1994).

12. G. Champine, MIT Project Athena: A Model for
Distributed Campus Computing (Newton, Mass.:
Digital Press, 1991).

13. W. Stevens, UNIX Network Programming (Engle­
wood Cliffs, N.J.: Prentice-Hall, 1990).

14. D. Comer, Internetworking with TCPIIP(Englewood
Cliffs, N.J.: Prentice-Hall, 1991).

15. DEC OSF/1 Programmer's Guide (Maynard, Mass.:
Digital Equipment Corporation, Order No. AA­
PS30C-TE, 1993).

16. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, Order No.
EY-L520E-DP, 1992).

17. Internet Engineering Task Force, "XDR: External
Data Representation," RFC 1014 (June 1987).

18. R. Gillett, "Memory Channel Network for PCI: An
Optimized Cluster Interconnect," Hot Interconnects
(1995).

19. J. Postel, "User Datagram Protocol," RFC 768(Menlo
Park, Calif.: SRI Network Information Center, 1980).

20. DEC OSF/1 Reference Pages, Section 2: System Calls
(Maynard, Mass .: Digital Equipment Corporation,
Order No. AA-PS30C-TE, 1993).

21. J. Postel, "Internet Protocol," RFC 791 (Menlo Park,
Calif.: SRI Network Information Center, 1981).

22. Open Software Foundation, Design of the OSF/1
Operating System (Englewood Cliffs, N.J .: Prentice- .
Hall, 1993).

23. J. Denham, P. Long, and J. Woodward, "DEC OSF /1
Version 3.0 Symmetric Multiprocessing Implemen­
tation," Digital Technical Journal, vol. 6, no. 3
(Summer 1994): 29-43.

Biographies

Edward G. Benson
Ed Benson is a principal engineer and the project leader
for the parallel software environment product. Ed is
a 1981 graduate ofTufts University. He joined Digital
in 1984 after working at Harvard University and ADAC
Corporation. In previous work at Digital, he led the
DECmpp and VAXlab software projects and contributed
to the design and development of the POSIX real-time
extensions in Digital UNIX and Open VMS.

David C. P. LaFrance-Linden
David Lafrance-Linden is a principal software engineer in
Digital's High Performance Fortran Group. Since joining
Digital in 1991, he has worked on tools for parallel pro­
cessing and has developed a promising new debugger tech­
nology capable of debugging HPF. He has also contributed
to the PSE implementation and compile-time performance
of the HPF compiler. Before joining Digital, he worked at
Symbolics, Inc. on front-end support, networks, operating
system, performance, and CPU architecture. He received
a B.S. in mathematics from M.I.T. in 1982.

Digital Technical Journal Vol. 7 No. 3 1995 37

38

Richard A. Warren
Richard Warren is a principal software engineer in the
High Performance Computing Group, where his primary
responsibility is the design and development ofDigital's
parallel software environment. Since joining Digital in
1977, Richard has contributed to PDP-11 systems devel­
opment and VAX 32-bit shared-memory multiprocessor
designs. He has also been a member of Corporate Research,
first as an assignee in parallel processing to the Microelec­
tronics and Computer Technology Corporation (MCC),
and later as a researcher at the Digital Joint Project office
at CERN, where he helped develop high-availability system
software. Richard has a B.S. in electrical and computer
engineering from the University of Massachusetts and is
a co-inventor on several patents relating to coherent write­
back cache design and high-performance bus/ memory
designs for SMPs.

Santa Wiryaman
A senior software engineer in the High Performance
Computing Group, Santa Wiryaman develops enhance­
ments to the Digital UNIX kernel and UDP/ IP protocol
stack to support optimal performance of message passing
over FDDI and ATM networks. Since joining Digital's
performance group in 1987, he has also contributed to
many network-related performance characterizations,
benchmarks, and the development of performance tools
for UNIX and Windows NT. Santa received B.S. (1985)
and M.S. (1987) degrees in computer science from
Cornell University and Rensselaer Polytechnic Institute,
respectively.

Digital Technical Journal Vol. 7 No. 3 1995

An Overview of the
Sequoia 2000 Project

The Sequoia 2000 project is the joint effort
of computer scientists, earth scientists, gov­
ernment agencies, and industry partners to
build a better computing environment for
global change researchers. The objectives of
this widely distributed project are to support
high-performance 1/0 on terabyte data sets,
to put all data in a database management
system, and to provide improved visualization
tools and high-speed networking. The partici­
pants developed a four-level architecture to
meet these objectives. Chief among the lessons
learned is that the Sequoia 2000 system must
be considered an end-to-end solution, with all
pieces of the architecture working together.
This paper describes the Sequoia 2000 project
and its implementation efforts during the first
three years. The research was sponsored by
Digital Equipment Corporation.

I
Michael Stonebraker

The purpose of the Sequoia 2000 project is to build a
better computing environment for global change
researchers, hereafter referred to as Sequoia 2000
clients. These researchers investigate issues such as
global warming, ozone depletion, environment toxifi­
cation, and species extinction and are members of
earth science departments at universities and national
laboratories. A more detailed conception for the proj­
ect appears in the Sequoia 2000 technical report
"Large Capacity Object Servers to Support Global
Change Research. " 1

The participants in the Sequoia 2000 project are
investigators of four types: (1) computer science
researchers, (2) earth science researchers, (3) govern­
ment agencies, and (4) industry partners.

Computer science researchers are responsible for
building a prototype environment that better serves
the needs of the target clients. Participating in
the Sequoia 2000 project are investigators from the
Computer Science Division at the University of
California, Berkeley; the Computer Science Depart­
ment at the University of California, San Diego; the
School of Library and Information Studies at the
University of California, Berkeley; and the San Diego
Supercomputer Center.

Earth science researchers must explain their needs
to the computer science investigators and use the
resulting prototype environment to perform better
earth science research. The Sequoia 2000 project
comprises earth science investigators from the
Department of Geography at the University of
California, Santa Barbara; the Atmospheric Science
Department at the University of California, Los
Angeles (UCLA); the Climate Research Division at
the Scripps Institution of Oceanography; and the
Department of Earth, Air, and Water at the University
of California, Davis.

To ensure that the resulting computer environment
addresses the needs of the Sequoia 2000 clients, gov­
ernment agencies that are affected by global change
matters participate in the project. The responsibility of
these agencies is to steer Sequoia 2000 research
toward achieving solutions to their problems. The
government agencies that participate are the State of
California Department of Water Resources (DWR),

Digital Technical Journal Vol. 7 No. 3 1995 39

the State of California Department of Forestry, the
Coordinated Environment Research Laboratory
(CERL) of the United States Army, the National
Aeronautics and Space Administration (NASA), the
National Oceanic and Atmospheric Administration
(NOAA), and the United States Geologic Survey
(USGS).

The task of the industry participants is to use
the Sequoia 2000 technology and to offer guidance
and research direction. In addition, they are a source
of free or discounted computing equipment. Digital
Equipment Corporation was the original indus­
try partner. Recently, Epoch Systems, Hewlett­
Packard, Hughes, Illustra, MCI, Metrum Systems,
PictureTel, RSI, SAIC, Siemens, and TRW have
become participants.

The purpose of this paper is to present the goals of
the Sequoia 2000 project and to discuss how we
achieved these goals and the results we accomplished
during the first three years. The paper describes the
architecture that we decided to pursue and the state of
the software efforts in the various areas. The most
important lesson we have learned is that the Sequoia
2000 system must be considered an end-to-end solu­
tion. Hence, clients can be satisfied only if all pieces of
the architecture work together in a harmonious fash­
ion. Also, many services required by the clients must be
provided by every element of the architecture, each
working with the others. We illustrate this end-to-end
characteristic of Sequoia 2000 by discussing three
issues that cross all parts of the system: guaranteed
delivery, abstracts, and compression. We then indicate
other specific lessons that we learned during the first
three years of the project. The paper concludes with the
current state of the project and its future directions.

The Sequoia 2000 Architecture

The Sequoia 2000 architecture is motivated by four
fundamental computer science objectives:

1. Support high-performance l/0 on terabyte data
sets. The Sequoia 2000 clients are frustrated by cur­
rent computing environments because they cannot
effectively store the massive amounts of data
desired for research purposes. The four academic
clients plus DWR collectively want to be able to
store approximately 100 terabytes of information,
much of which is common data sets used by multi­
ple investigators. These clients would like high­
performance system software that would allow
sharing of assorted tertiary memory devices. Unlike
the 1/0 activities of most other scientific comput­
ing users, their activity involves primarily random
access. For example, DWR is digitizing the agency's
library of 500,000 slides and is putting it on-line
using the Sequoia 2000 system. This data set has

40 Digital Technical Journal Vol. 7 No. 3 1995

some locality of reference but will have consider­
able random activity.

2. Put all data in a database management system
(DBMS). To maintain the metadata that describe
their data sets and thus aid in the retrieval of infor­
mation, the Sequoia 2000 clients want to move
all their data to a DBMS. More important, using
a DBMS will facilitate the sharing of information.
Because a DBMS insists on a common schema for
shared information, it will allow the researchers to
define a schema. Then all researchers must use
a common notation for shared data. Such a system
will be a big improvement over the current situa­
tion where every data set exists in a unique format
and must be converted by every researcher who
wishes to use it.

3. Provide improved visualization tools. Sequoia
2000 clients use popular scientific visualization
tools such as Explorer, Khoros, AVS, and IDL and
are eager to use a next-generation toolkit.

4. Provide high-speed networking. Sequoia 2000
clients realize that a 100-terabyte storage server (or
100-terabyte servers) will not be located on each of
their desktops. Moreover, the storage is likely to be
located at the other end of a wide area network
(WAN), far from their client machines. Since the
clients' visualization scenarios invariably involve
animation, for example, showing the last 10 years
of the ozone hole by playing time forward, the
clients require ultrahigh-speed networking to move
sequences of images from a server machine to
a client machine.

To meet these objectives, we adopted the four-level
architecture illustrated in Figure 1. The architecture
comprises the footprint layer, the file system layer, the
DBMS layer, and the application layer. This section
discusses our efforts at each of the levels and then con­
cludes with a discussion of the Sequoia 2000 network­
ing that connects the elements of the architecture.

The Footprint Layer
The footprint layer is a software system that shields
higher-level software, such as file systems, from device­
specific characteristics of robotic devices. These charac­
teristics include specific robot commands, block sizes,
and media-specific issues. The footprint layer can be
thought of as a common robot device driver. A foot­
print implementation exists for each of the four tertiary
memory devices used by the project, namely, a Sony
write once, read many (WORM) optical disk jukebox,
an HP rewritable optical disk jukebox, a Metrum VHS
tape jukebox, and an Exabyte 8-millimeter tape juke­
box. Collectively, these four devices and the CPUs and
disk storage systems in front of them were named
Bigfoot, after the legendary, very tall recluse spotted
occasionally in the Pacific Northwest.

APPLICATIONS -+-

!
DATABASE
MANAGEMENT
SYSTEM

NETWORK !
FILE SYSTEMS I-+-

!
FOOTPRINT

!
STORAGE DEVICES

Figure 1
The Sequoia 2000 Architecture

The File System Layer
On top of the footprint layer is the file system layer.
Two file systems manage data in the Bigfoot multilevel
memory hierarchy. The first file system is Highlight,
which extends the Log-structured File System (LFS)
pioneered for disk devices by Ousterhout and
Rosenblum to tertiary memory.2

•
3 The original LFS

treats a disk device as a single continuous log onto
which newly written disk blocks are appended. Blocks
are never overwritten, so a disk device can always be
written sequentially. Hence, the LFS turns a random­
write environment into a sequential-write environ­
ment. In particular problem areas, this may lead to
much higher performance. Benchmark data support
this conclusion! In addition, the LFS can always iden­
tify the last few blocks that were written prior to a file
system failure by finding the end of the log at recovery
time. File system repair is then very fast, because
potentially damaged blocks are easily found. This
approach differs from conventional file system repair,
where a laborious check of the disk must be performed
to ascertain disk integrity.

Highlight extends the LFS to support tertiary mem­
ory by adding a second log-structured file system on
top of the footprint layer. This file system also writes
tertiary memory blocks sequentially, thereby obtain­
ing the performance characteristics of the LFS. The
Highlight file system adds migration and bookkeeping
code that treats the disk LFS file system as a cache for
the tertiary memory file system. In summary,
Highlight should provide good performance for
workloads that consist of mainly write operations.
Since Sequoia 2000 clients want to archive vast

amounts of data, the Highlight file system has the
potential for good performance in the Sequoia 2000
environment.

The second file system is lnversion.5 Most DBMSs,
including the one used for the Sequoia 2000 project,
support binary large objects (BLOBs), which are
arbitrary-length byte strings ofvariable length. Like
several commercial systems, Sequoia's data manager
POSTGRES stores large objects in a customized
storage system directly on a raw storage device.6 As
a result, it is a straightforward exercise to support con­
ventional files on top of DBMS large objects. In this
way, the front end turns every read or write operation
into a query or an update, which is processed directly
by the DBMS. Simulating files on top of DBMS large
objects has several advantages. First, DBMS services
such as transaction management and security are auto­
matically supported for files. In addition, novel charac­
teristics of our next-generation DBMS, including time
travel and an extensible type system for all DBMS
objects, are automatically available for files. Of course,
the possible disadvantage of simulating files on top of
a DBMS is poor performance. As reported by Olson,
Inversion performance is exceedingly good when large
blocks of data are read and written, as is characteristic
of the Sequoia 2000 workload.5

At the present time, Highlight is operational but
very buggy. Inversion, on the other hand, is used to
manage production data on Sequoia's Sony WORM
jukebox. Unfortunately, the reliability of the proto­
type system has not met user expectations. Sequoia
2000 clients have a strong desire for commercial off­
the-shelf (COTS) software and are frustrated by docu­
mentation glitches, bugs, and crashes.

As a result, the Sequoia 2000 project team has also
deployed two commercial file systems, Epoch and
AMASS. The Epoch file system is quite reliable but
does not support either of Sequoia's large-capacity
robots. Hence, it is used heavily but only for small data
sets. The AMASS file system is just coming into pro­
duction use for Sequoia's Metrum robot and replaces
an earlier COTS system, which was unreliable. Given
the experience of the Sequoia 2000 team with tertiary
memory support, tertiary memory users should care­
fully test all file system software.

The DBMS Layer
To meet Sequoia 2000 client needs, a DBMS
must support spatial data such as points, lines, and
polygons. In addition, the DBMS must support the
large spatial arrays in which satellite imagery is natu­
rally stored. These characteristics are not met by pop­
ular, general-purpose relational and object-oriented
DBMSs.7 The best fit to client needs is a special­
purpose Geographic Information System (GIS) or
a next-generation object-relational DBMS. Since it
has one such object-relational system, namely

Digital Technical Journal Vol. 7 No. 3 1995 41

POSTGRES, the Sequoia 2000 project elected to
focus its DBMS efforts on this system.

To make the POSTGRES DBMS suitable for
Sequoia 2000 use, we require a schema for all Sequoia
data. This database design process has evolved as a
cooperative exercise between various database experts
at Berkeley, the San Diego Supercomputer Center,
CERL, and SAIC. The Sequoia schema is the collec­
tion of metadata that describes the data stored in the
POSTGRES DBMS on Bigfoot. Specifically, these
metadata comprise

• A standard vocabulary of terms with agreed-upon
definitions that are used to describe the data

• A set of types, instances of which may store data
values

• A hierarchical collection of classes that describe
aggregations of the basic types

• Functions defined on the types and classes

The Sequoia 2000 schema accommodates four
broad categories of data: scalar, vector, raster, and text.
Scalar quantities are stored as POSTGRES types and
assembled into classes in the usual way. Vector quanti­
ties are stored in special line and polygon types.
Vectors are fully enumerated (as opposed to an arc­
node representation) to take advantage of POSTGRES
indexed searches. The advantages of this representa­
tion are discussed in more detail in "The Sequoia
2000 Benchmark. m

Raster data constitute the bulk of the Sequoia 2000
data. These data are stored in POSTGRES multi­
dimensional arrays objects. The contents of textual
objects (in PostScript or scanned page bitmaps) are
stored in a POSTGRES document type. Both docu­
ments and arrays make use of a POSTGRES large
object storage manager that can support arbitrary­
length objects.

We have tuned the POSTGRES DBMS to meet
the needs of the Sequoia 2000 clients. The interface
to POSTGRES arrays has been improved, and a novel
chunking strategy is now operational.8 Instead of
storing an array by ordering the array indexes from
fastest changing to slowest changing, this system
chooses a stride for each dimension and stores chunks
of the correct stride sizes in each storage object. When
user queries inspect the array in more than one way,
this technique results in dramatically superior retrieval
performance.

Sequoia 2000 clients typically run queries with user­
defined functions in the predicate. Moreover, many
of the predicates are very expensive in CPU time to
compute. For example, the Santa Barbara group has
written a function, SNOW, that recognizes the snow­
covered regions in a satellite image. It is a user-defined
POSTGRES function that accepts an image as an argu­
ment and returns a collection of polygons. A typical

42 Digital Technical Journal Vol. 7 No. 3 1995

query using the SNOW function for the table
IMAGES (id, date, content) would be to find the
images that were more than 50 percent snow and that
were observed subsequent to June 1992. In SQL, this
query is expressed as follows:

select id
from IMAGES
where AREA (SNOW (content))> 0.5
and date> "June 1, 1992"

The first clause in the predicate requires the CPU to
evaluate millions of instructions, whereas the second
clause requires only a few hundred instructions. The
DBMS must be cognizant of the CPU cost of clauses
when constructing a query plan, a cost component
that has been ignored by most previous optimization
work. We have extended the POSTGRES optimizer to
deal intelligently with expensive functions.9

It is highly desirable to allow popular expensive
functions to be precomputed. In this way, the CPU
need only evaluate each such function once, rather
than once for each query in which the function
appears. Our approach to this issue is to allow data­
bases to contain indexes on a function of the data and
not on just the data object itself. Hence, the database
administrator can specify that a B-tree index be built
for the function AREA (SNOW(content)). Areas of
images are arranged in sort order in a B-tree, so the
first clause in the above query is now very inexpensive
to compute. Using this technique, the function is
computed at data entry or data update time and not at
query evaluation time. A consequence of function
indexing is that inserting a new image into the data­
base may be very time-consuming, since function
computation is now included in the load transaction.
To deal with the undesirable lengthy response times
for some loads, we have also explored lazy indexing
and partial indexing. Thus, index building does not
need to be synchronous with data loading.

The feedback from the Sequoia 2000 clients regard­
ing POSTGRES is that it is not reliable enough to
serve as a base for production work. Moreover, the
documentation is inadequate, and no facility exists to
train users. Our users want a COTS product and not
a research prototype. Consequently, the Sequoia 2000
project has migrated to the commercial version of
POSTGRES, namely the Illustra system, to obtain a
COTS DBMS product. Migration to this system
required reloading all project data, a task that is now
nearly complete.

The Application Layer
The application layer of the Sequoia 2000 architecture
contains five elements:

1. An off-the-shelf visualization tool

2. A visualization environment

3. A browsing capability for textual information

4. A facility to interface the UCIA General Circula­
tion Model (GCM) to the POSTGRES/Illustra
system

5. A desktop videoconferencing or "picturephone"
facility

For the off-the-shelf visualization tool, we have
converged around the use of AVS and IDL for project
activities. AVS has an easy-to-use "boxes-and-arrows"
user interface, whereas IDL has a more conventional
linear programming notation. On the other hand,
IDL has better two-dimensional (2-D) graphics fea­
tures. Both AVS and IDL allow the user to read and
write file data. To connect to the DBMS, we have writ­
ten an AVS-POSTGRES bridge. This program allows
the user to construct an ad hoc POSTGRES query and
pipe the result into an AVS boxes-and-arrows network.
Sequoia 2000 clients can use AVS for further process­
ing on any data retrieved from the DBMS. IDL is
being interfaced to AVS by the vendor. Consequently,
data retrieved from the database can be moved into
IDL using AVS as an intermediary. Now that we have
migrated to the Illustra DBMS, we are considering
porting this AVS bridge to the Illustra application pro­
gramming interface (API).

AVS has some disadvantages as a visualization tool
for Sequoia 2000 clients. First, its type system, which
is different from the POSTGRES/Illustra type system,
has no direct knowledge of the common Sequoia
2000 schema. In addition, AVS consumes significant
amounts of main memory. Architecturally, AVS
depends on virtual memory to pass results between
various boxes. It also maintains the output of each box
in virtual memory for the duration of an execution ses­
sion. The user can thus change a run-time parameter
somewhere in the network, and AVS will recompute
only the downstream boxes by taking advantage of the
previous output. & a result, Sequoia 2000 clients,
who generally produce very large intermediate results,
consume large amounts of both virtual and real mem­
ory. In fact, clients report that 64 megabytes of real
memory on a workstation is often not enough to
enable serious AVS use. Furthermore, AVS does not
support zooming in to investigate data of interest to
obtain higher resolution, nor does it keep track of the
history of how any given data element was con­
structed, i.e., the so-called data lineage of an item.
Lastly, AVS has a video player model for animation
that is too primitive for many Sequoia 2000 clients.

Consequently, we have designed two new visualiza­
tion environments. The first system, called Tecate, is
being built at the San Diego Supercomputer Center.
The Tecate infrastructure enables the creation of appli­
cations that allow end users to browse for and visualize
data from networked data sources. This software

platform capitalizes on the architectural strengths of
current scientific visualization systems, network
browsers, database management system front ends,
and virtual reality systems, as discussed in a companion
paper in this issue ofthejournat.10

The other system, Tioga, is a boxes-and-arrows pro­
gramming environment that is DBMS-centric, i.e., the
environment type system is the same as the DBMS
type system. The Tioga user interface gives the user
a flight simulator paradigm for browsing the output
of a network. In this way, the visualizer can navigate
around data and then zoom in to obtain additional
data on items of particular interest. The preliminary
Tioga design was presented at the 1993 Very Large
Databases Conference. 11 A first prototype, described
by Woodruff, is currently running.12

A commercial version of the Tioga environment has
also been implemented by Illustra. The Sequoia 2000
project is making considerable use of this tool, which is
named Object-Knowledge. Early user experience with
both Tioga and Object-Knowledge indicates that these
systems are not easy to use. We are now exploring
ways to improve the Tioga system. The objective is to
build a system that a scientist with minimal training in
the environment can use without a reference manual.

The third element of the application layer is a
browsing capability for textual information of interest
to our clients. This capability is a cornerstone of the
Sequoia 2000 architecture. Initially, we converted a
stand-alone text retrieval system called Lassen to our
DBMS-centric view. The first part of the Lassen system
is a facility for constructing weighted keyword indexes
for the words in a POSTGRES document. This index­
ing system, Cheshire, builds on the pioneering work of
the Cornell Smart system and operates as the action
part of a POSTGRES rule, which is triggered on each
document insertion, update, or removal. 1•

13 The sec­
ond part of the Lassen system is a front-end query tool
that understands natural language. This tool allows
a user to request all documents that satisfy a collection
of keywords by using a natural language interface. The
Lassen system has been operational for more than
a year, and retrievals can be requested against the cur­
rently loaded collection of Sequoia 2000 documents.

In addition, we have moved Lassen to Z39.50,
a popular protocol oriented toward information inter­
change and information retrievaJ. 1

• The client portion
of Lassen has been changed to emit Z39.50, and
we have written a Z39.50-to-POSTGRES translator
on the server side. In this way, the Lassen client code
can access non-Sequoia 2000 information and the
Sequoia 2000 server can be accessed by text-retrieval
front ends other than the Cheshire system.

With our move to the Illustra DBMS, we have con­
verted the client side of Lassen to work with Illustra.

Digital Technical Journal Vol. 7 No. 3 1995 43

Illustra has an integrated document data type with
capabilities similar to the extensions we made to
POSTGRES.

A related Berkeley project is focused on digitizing
all the Berkeley Computer Science Technical Reports.
This project uses a Mosaic client to access a custom
World Wide Web server called Dienst, which stores
technical report objects in a UNIX file system. In a few
months, we expect to convert Dienst to store objects
in the Sequoia 2000 database, rather than in files.
When this system, nicknamed Database Dienst, is
operational, Mosaic/Dienst service will be available
for all textual objects in the Sequoia schema.

Our fourth thrust in the application layer is a facility
to interface the UCLA General Circulation Model
(GCM) to the POSTGRES/Illustra system. This pro­
gram is a "data pump" because it pumps data out of
the simulation model and into the DBMS. We named
the program "the big lift" after the DWR pumping
station that raises Northern California water over the
Tehachapi Mountains into Southern California.

Basically, the UCLA GCM produces a vector of sim­
ulation output variables for each time step of a lengthy
run for each tile in a three-dimensional (3-D) grid of
the atmosphere and ocean. Depending on the scale
of the model, its resolution, and the capability of the
serial or parallel machine on which the model is run­
ning, the UCLA GCM can produce from 0.1 to 10.0
megabytes per second (MB/s) output. The purpose of
the big lift is to install the output data into a database
in real time. UCLA scientists can then use Object­
Knowledge, Tioga, Tecate, AVS, or IDL to visualize
their simulation output. The big lift will likely have to
exploit parallelism in the data manager, ifit is required
to keep up with the execution of the model on a mas­
sively parallel architecture.

The fifth application system is a conferencing sys­
tem. Since Sequoia 2000 is a distributed project, we
learned early that face-to-face meetings that required
participants to travel to other sites and electronic mail
were not sufficient to keep project members working
as a team. Consequently, we purchased conference
room videoconferencing equipment for each project
site. This technology costs approximately $50,000 per
site and allows multiway videoconferences over inte­
grated services digital network (ISDN) lines.

Although the conference room equipment has
helped project communication immensely, it must be
set up and taken down at each use because the rooms
it occupies at the various sites are normally used as
classrooms. Therefore, videoconferencing tends to be
used for arranged conferences and not for spur-of-the­
moment interactions. To alleviate this shortcoming,
Sequoia 2000 has also invested in desktop videocon­
ferencing. A video compression board, a microphone,
speakers, a network connection, a video camera, and

44 Digital Technical Journal Vol. 7 No. 3 1995

the appropriate software can turn a conventional
workstation into a desktop videoconferencing facility.
In addition, video can be easily transmitted over the
network interface that is present in virtually all Sequoia
2000 client machines. We are using the Mbone soft­
ware suite to connect about 30 of our client machines
in this fashion and are migrating most of our video­
conferencing activities to desktop technology. This
effort, which is called Hollywood, strives to further
improve the ability of Sequoia 2000 researchers to
communicate.

Note that the Sequoia 2000 researchers do not
need groupware, i.e., the ability to have common win­
dows on multiple client machines separated by a WAN,
in which common code can be run, updated, and
inspected. Rather, our researchers need a way to hold
impromptu discussions on project business. They
want a low-cost multicast picturephone capability, and
our desktop videoconferencing efforts are focused in
this direction.

Sequoia 2000 Networking
The last topic of this section on the Sequoia 2000
architecture is the networking agenda. Regarding
Figure 1, it is possible for the implementation of each
layer to exist on a different machine. Specifically, the
application can be remote from the DBMS, which can
be remote from the file system, which can be remote
from the storage device. Each layer of the Sequoia
2000 architecture assumes a local UNIX socket con­
nection or a local area network (LAN) or WAN connec­
tion using the transmission control protocol/internet
protocol (TCP / IP). Actual connections among
Sequoia 2000 sites use either the Internet or a dedi­
cated T3 network, which the University of California
provides as part of its contribution to the project.

The networking team judged Digital's Alpha
processors to be fast enough to route T3 packets.
Hence, the project uses conventional workstations as
routers; custom machines are not required. Fur­
thermore, the Sequoia 2000 network has installed
a unique guaranteed delivery service through which
an application can make a contract with the network
that will guarantee a specific bandwidth and latency if
the client sends information at a rate that does not
exceed the rate specified in the contract. These algo­
rithms, which are based on the work of Ferrari, require
a setup phase for a connection that allocates band­
width on all the lines and in all the switches.15

Lastly, the network researchers are concerned that
the Digital UNIX (formerly DEC OSF/ 1) operating
system copies every byte four times in between retriev­
ing it from the disk and sending it out over a network
connection. The efficient integration of networking
services into the operating system is the topic of
a companion paper by Pasquale et al. in this issue.16

Sequoia 2000 as an End-to-End Problem

The major lesson we have learned from the Sequoia
2000 project is that many issues facing our clients can­
not be isolated to a single layer of the Sequoia 2000
architecture. This section describes three such end-to­
end problems: guaranteed delivery, abstracts, and
compression.

Guaranteed Delivery
Clearly, guaranteed delivery must be an end-to-end
contract. Suppose a Sequoia 2000 client wishes to visu­
alize a specific computation; for example, the client
wants to observe Hurricane Andrew as it moves from
the Bahamas to Florida to Louisiana. Specifically, the
client wishes to visualize appropriate satellite imagery at
a resolution of 500 X 500 in 8-bit color at 10 frames
per second. Hence, the client requires 2.5 MB/s of
bandwidth to his screen. The following scenario might
be the computation steps that take place.

The DBMS must run a query to fetch the satellite
imagery. The query might require returning a 16-bit
data value for each pixel that will ultimately appear on
the screen. The DBMS must therefore agree to exe­
cute the query in such a way that it guarantees output
at a rate of5.0 MB/s.

The storage system at the server will fetch some
number of 1/0 blocks from secondary and/ or tertiary
memory. DBMS query optimizers can accurately guess
how many blocks they need to read to satisfy the
query. The DBMS can then easily generate a guaran­
teed delivery contract that the storage manager must
satisfy, thus allowing the DBMS to satisfy its contract.

The network must agree to deliver 5.0 MB/ s over
the network link that connects the client to the server.
The Sequoia 2000 network software expects exactly
this type of contract request.

The visualization package must agree to translate
the 16-bit data element into an 8-bit color and render
the result onto the screen at 2.5 MB/ s.

In short, guaranteed delivery is a collection of con­
tracts that must be adhered to by the DBMS, the
storage system, the network, and the visualization
package. One approach to architecting these contracts
was presented at the 1993 Very Large Databases
Conference. 11

Abstracts
One aspect of the Sequoia 2000 visualization process
is the necessity of abstracts. Consider the Hurricane
Andrew example. The client might initially want to
browse the hurricane at 100 X 100 resolution. Then,
on finding something of interest, the client would
probably like to zoom in and increase the resolution,
usually to the maximum available in the original data.
This ability to dynamically change the amount of reso­
lution in an image is supported by abstracts.

Note that providing abstracts is a much more pow­
erful construct than merely providing for resolution
adjustment. Specifically, obtaining more detail may
entail moving from one representation to another. For
example, one could have an icon for a document,
zoom in to see the abstract, and then zoom in further
to see the entire document. Hence, zooming can
change from iconic to textual representation. This use
of abstracts was popularized in the DBMS community
by an early DBMS visualization system called the
Spatial Data Management System (SDMS).17

Sequoia 2000 clients wish to have abstracts; how­
ever, it is clear that they can be managed by the visual­
ization tool, the DBMS, the network, or the file
system. In the former case, abstracts are defined for
boxes-and-arrows networks.11 In the DBMS, abstracts
would be defined for inclividual data elements or for
data classes. If the network manages abstracts, it will
use them to automatically lower resolution to elimi­
nate congestion. Much research on the optimization
of network abstracts (called hierarchical encocling of
data in that community) is available. In the file system,
abstracts would be defined for files. Sequoia 2000
researchers are pursuing all four possibilities, and it is
expected that this notion will be one of the powerful
constructs to be used by Sequoia 2000 software,
perhaps in multiple ways.

Compression
The Sequoia 2000 clients are adamant on the issue of
compression-they are open to any compression
scheme as long as it is lossless. As scientists, they
believe that ultimate resolution may be required to
understand future phenomena. Since it is not possible
to predict what these phenomena might be or where
they might occur, the Sequoia 2000 scientists want
access to all data at full resolution.

Some Sequoia 2000 data cannot be compressed
economically and should be stored in uncompressed
form. The inclusion of abstracts offers a mechanism to
lower the bandwidth required between the storage
device and the visualization program. No saving of
tertiary memory through compression is available for
such data.

Other data ought to be stored in compressed form.
The question of when compression and decompres­
sion should occur can be handled by using a just-in­
time decompression strategy. For example, if the
storage manager compresses data as they are written
and then decompresses them on a read operation, the
network manager may then recompress the data for
transmission over a WAN to a remote site where they
will be decompressed a second time. Obviously, data
should be moved in compressed form and decom­
pressed only when necessary. In general, decompres­
sion will occur in the visualization system on the client
machine. If search criteria are performed on the data,

Digital Technical Journal Vol. 7 No. 3 1995 45

then the DBMS may have to decompress the data to
perform the search. If an application resides on the
same machine as the storage manager, the file system
must be in charge of decompressing the data. All soft­
ware modules in the Sequoia 2000 architecture must
cooperate to perform just-in-time decompression and
as-early-as-possible compression. Like guaranteed
delivery, compression is a task that requires all software
modules to cooperate.

Specific Lessons Learned

In addition to the end-to-end issues, we learned other
lessons from the first three years of the Sequoia 2000
experience, as discussed in this section.

Lesson 1: Infrastructure is necessary, time-consuming,
and very expensive.
We learned early in the project that electronic mail and
travel between sites would not result in the desired
degree of cooperation from geographically dispersed
researchers from different disciplines. Consequently,
we made a significant investment in infrastructure.
This included meetings for all the Sequoia 2000 par­
ticipants, which are now held twice a year, and video­
conferencing equipment at each site. Through this
video link, project members interact by holding
a weekly distributed seminar, semimonthly operations
committee meetings, occasional steering committee
meetings, and meetings between researchers with
common interests. The video quality of the project's
current videoconferencing equipment is not high, and
to achieve success when participants are located far
apart, specially trained individuals must operate the
equipment. Nevertheless, the equipment has proven
to be valuable in generating cohesion in the dispersed
project. We have installed desktop videoconferencing
systems on 30 Sequoia 2000 workstations and expect
to replace our current conference room equipment
with next-generation desktop technology.

In addition, we conducted a learning experiment in
which a course taught by one of the Sequoia 2000 fac­
ulty members at the Santa Barbara campus was broad­
cast over our videoconferencing equipment to four
other sites. Students could take the course for credit at
their respective campuses. Of course, the overhead of
setting up such a course was substantial. A new course
had to be added at each campus, and every step in the
approval process required briefings on the fact that the
instructor was from a different campus and on the way
everything was going to work. This experiment was
popular, and students have requested additional
courses taught in this manner.

On the other hand, we also tried to run a computer
science colloquium using this technology. We broad­
cast from various sites to six computer science depart­
ments around th~ U.S. Initial student interest was high

46 Digital Technical Journal Vol. 7 No. 3 1995

because of the lineup of eminent speakers. Such speak­
ers could be recruited easily, because they only had to
locate the nearest compatible equipment and then get
to that site. No air travel was required. The experiment
failed, however, because attendance decreased through­
out the semester and ended at an extremely low level.

The basic problem was that, typically, speakers were
not skilled in using the medium-they would put too
much information on slides and then flip though the
slides before remote sites could get a complete trans­
mission. Also, the question-and-answer period could
not be very interactive because of the many sites
involved. The experiment ended after one semester
and will not be repeated.

Lesson 2: There was often a mismatch between the
expectations of the earth scientists and those of the
computer scientists.
The computer scientists on the Sequoia 2000 team
wanted access to knowledgeable application specialists
who could describe their problems in terms under­
standable to the computer scientist. The computer
scientists then wanted to think through elegant solu -
tions, verify with the earth scientists that the solutions
were appropriate, and then prototype the results. The
earth scientists wanted final COTS solutions to their
problems; they were unsympathetic about poor docu -
mentation, bugs, and crashes.

With considerable effort, the expectations are con­
verging. The ultimate solution is to move to COTS
software modules as they become available for por­
tions of the system and augment the modules with
in-house prototype code.

We have found that the best way to make forward
progress was to ensure that each earth science group
using Sequoia 2000 prototype code had one or more
sophisticated staff programmers who could deal
successfully with the quirks of prototype code. With
computer science expertise surrounding the earth sci­
entists, the problems in this area became much more
manageable. We also discovered that we could distrib­
ute such expertise. In fact, support programmers for
Sequoia 2000 clients are often not at the same physical
location as the client.

Lesson 3: Interdisciplinary research is fundamentally
difficult.
One lengthy discussion on the construction of a
Sequoia 2000 benchmark eventually led to the discus­
sion presented in the 1993 ACM SIGMOD conference
paper entitled "The Sequoia 2000 Benchmark,"
which we referred to previously.7 The computer sci­
ence researchers were arguing strongly for a represen­
tative abstract example of earth science data access,
i.e., the "specmark of earth science." On the other
hand, the earth scientists were equally adamant tl1at
the benchmark convey the exact data accesses.

Finally, the computer scientists and the earth scien­
tists realized that the word "benchmark" has a different
meaning for each of the two groups ofresearchers. To
earth scientists, a benchmark is a scenario, whereas to
computer scientists, a benchmark is an abstract exam­
ple. This vignette was typical of the experience these
two disciplines had trying to understand one another.
Fundamentally, this process is time-consuming, and
ample interaction time should be planned for any proj­
ect that must deal with multiple disciplines.

The Sequoia 2000 project participants made effec­
tive use of"converters." A converter is a person of one
discipline who is planted directly in the research group
of another discipline. Through informal communica­
tion, this person serves as an interpreter and translator
for the other discipline. Converters are encouraged by
the existence of a formal exchange program, whereby
central Sequoia 2000 resources pay the living expenses
of the exchange personnel.

Lesson 4: Database technology is a major advance for
earth scientists.
Our initial plan was to introduce database technology
into the project with the expectation that the earth sci­
entists would pick it up and use it. Unfortunately, they
are accustomed to data being in files and found it very
difficult to make the transition to a database view. The
earth scientists are becoming increasingly aware of
the inherent advantages of DBMS technology.

In addition, we appointed the earth scientist with
the most computer science knowledge as leader of the
database design effort. This person chaired a commit­
tee of mainly computer scientists who were charged
with producing a schema.

This technique failed for several reasons. First, the
computer scientists disagreed about whether we were
designing an interchange format, by which sites could
reliably exchange data sets (i.e., an on-the-wire repre­
sentation), or a schema for stored data at a site. Most
earth science standards, such as the Hierarchical Data
Format (HDF) and the network Common Data Form
(netCDF), are of the first form, and there was substan­
tial enthusiasm for simply choosing one of these for­
mats. 18

•
19 On the other hand, some computer scientists

argued that an on-the-wire representation mixes the
data (e.g., a satellite image) and the metadata that
describe it (e.g., the frequency of the sensor, the date
of the data collection, and the name of the satellite)
into a single, highly encoded bit string. A better design
would separate the two kinds of data and construct
a good stored schema for it.

A second problem was that numerous legacy
formats are currently in use, and some earth scientists
did not want to change the formats they were using.
This led to many arguments about the merits of one
legacy format over another, which in turn caused the

opposing sides to conclude that both formats under
discussion should be supported in addition to a neu -
tral representation.

A third problem was that earth science data are fun­
damentally quite complex. For example, earth scien­
tists store geographic points, which are 3-D positions
on the earth's surface. There are approximately 20
popular projections of 3-D space onto 2-D space,
including (latitude, longitude), Mercator projection,
and Lambert Equal Azimuthal projection. With every
instance of a geographic point, it is necessary to associ­
ate the projection system that is being used. Another
data problem is related to units. Some geographic data
are represented as integers, with miles as the funda­
mental unit; other data are represented as floating­
point numbers, with meters as the underlying unit.
In addition, satellite imagery must be massaged in
a variety of ways to "cook" it from raw data into
a usable form. Cooking includes converting imagery
from a one-dimensional stream of data recorded in
satellite flight order into a 2-D representation. Many
details of this cooking process must be recorded for all
imagery. This dramatically expands the metadata
about imagery as well as forces the earth scientist to
write down all the extra data elements.

Schema design turned out to be laborious and very
difficult. The earth scientists did not have a good
understanding of database design and thus were not
prepared to take on the extreme complexity of the
task. As a result, we have reconstructed our database
design effort. Now, two computer scientists are
responsible for producing a schema. They interact
with the earth scientists when such action helps to
accomplish the task.

Lesson 5: Project management is a substantial problem.
Sequoia 2000 is a large project. About 110 people
attended the last general meeting. The attendees
included approximately 30 computer scientists, 40
earth scientists, and 40 visitors from industry. Multiple
efforts on multiple campuses must "plug and play."
Synchronizing distributed development is an extreme
challenge. Furthermore, the skill of project manage­
ment is not fostered in a university environment, nor
is it rewarded in a university faculty evaluation.

The principal investigators viewed the time spent
on project management as time that could be better
invested in research activities. An obvious solution
would be for the Sequoia 2000 project to hire a pro­
fessional project manager. Unfortunately, it is impos­
sible to pay a nonfaculty person the market rates
normally received by such skilled persons. One strat­
egy we attempted to use was to solicit a visitor with
the desired skill mix from one of our industrial spon­
sors. Our efforts in this direction failed, and we were
never able to recruit project management expertise for

Digital Technical Journal Vol. 7 No. 3 1995 47

48

the Sequoia 2000 effort. As a result, project manage­
ment was performed poorly at best. In any future large
project, this component should be addressed satisfac­
torily up front by project personnel.

Lesson 6: Multicampus projects are extremely difficult
to implement.
Sequoia 2000 work is taking place in seven different
organizations within the University of California edu­
cational system. There is a constant need to transfer
money and people among these organizations. Accom­
plishing such moves is a difficult and slow process,
however, because of the bureaucracy within the sys­
tem. In addition, the personnel rules of the University
are often in conflict with the needs of the Sequoia
2000 project. As a result, multi-institution projects,
where participants are in different and often distant
locations, are extremely difficult to carry out.

Status and Future Plans

The Sequoia 2000 project is more than three years old
and has nearly accomplished its objectives. We have
a common schema in place for all Santa Barbara and
UCLA data, and all participants have agreed to use the
schema. This schema serves as leverage for the stan­
dards efforts under way in the spatial arena. 20 The
infrastructure is in place to enable this schema to
evolve as more data types, user-defined functions, and
operators are included in the future.

The combination of Object-Knowledge, Illustra,
Epoch, and AMASS is proving robust and meets our
clients' needs. Lastly, we have ample resources to
move our prototype into production use at UCLA and
Santa Barbara during the next several months.

We are also extending the scope of the prototype in
two different directions. First, we will recruit addi­
tional earth scientists to utilize our system. This will
require extending our common schema to meet their
needs and then installing our suite of software at their
site. We expect to recruit two to three new groups
during the next year.

Second, a companion project, the Electronic
Repository, has as one of its objectives to use the
Sequoia 2000 technology to support an environmen­
tal digital library of aerial photography, polygonal
data, and text for the Resources Agency of the State of
California.21 This electronic library project is extend­
ing the reach of Sequoia 2000 technology from earth
scientists toward a broader community.

Our research activities are also very active. As noted
earlier, we are continuing our visualization activities
and anticipate an improved Tioga system. The
Sequoia 2000 clients have made it clear that they want
seamless access to distributed data, and we have
evolved POSTGRES to a wide-area distributed DBMS

Digital Technical Journal Vol. 7 No. 3 1995

that makes decisions based on an economic paradigm.
This system is called Mariposa. 22 In our COTS system,
a bad impedance mismatch exists between the DBMS
and the tertiary memory file systems. We have there­
fore shifted our research focus to constructing an
intelligent mass storage interface that properly sup­
ports a DBMS.

Finally, the Sequoia 2000 network currently sup­
ports service guarantees, but there is no economic
framework in which to place multiple levels of service.
As a result, our networking research is focused on con­
struction of this type of framework.

We anticipate a robust production environment for
earth science researchers by the end ofl995. In addi­
tion, we expect to continue to improve the Sequoia
2000 environment with future research results in the
above areas.

References and Notes

1. M. Stonebraker and J. Dozier, "Large Capacity Object
Servers to Support Global Change Research," Sequoia
2000 Technical Report 91/1, Berkeley, California
(July 1991).

2. J. Kohl ct al., "Highlight: Using a Log-structured File
System for Tertiary Storage Management," Proceed­
ings of the 1993 Winter USENIX Meeting, San Diego,
California (January 1993).

3. M. Rosenblum and J. Oustcrhout, "The Design and
Implementation of a Log-structured File System,"
ACM Transactions on Computing Systems (TOCS)
(February 1992).

4. M. Seltzer ct al., "An Implementation of a Log­
structurcd File System for UNIX," Proceedings of the
1993 Winter USENIX Meeting, San Diego, California
(January 1993).

5. M. Olson, "The Design and Implementation of the
Inversion File System," Proceedings of the 1993
Winter USENIX Meeting, San Diego, California
(January 1993).

6. M. Stonebraker ct al., "The Implementation of
POSTGRES," IEEE Transactions on Knowledge and
Data Engineering (TKDE)(March 1990).

7. M. Stonebraker ct al., "The Sequoia 2000 Bench­
mark," Proceedings of the 1993 ACM SIGMOD
Conference, Washington, D.C. (May 1993).

8. S. Sarawagi and M. Stonebraker, "Efficient Organiza­
tion of Large Multidimensional Arrays," Proceedings
of the 1993 IEEE Data Engineering Conference,
Houston, Texas (February 1993).

9. J. Hcllcrstcin and M. Stonebraker, "Predicate Migra­
tion: Optimizing Queries with Expensive Predicates,"
Proceedings of the 1993 ACM SIGMOD Conference,
Washington, D.C. (May 1993).

10. P. Kochevar and L. Wanger, "Tecate: A Software
Platform for Browsing and Visualizing Data from
Networked Data Sources," Digital Technical
Journal, vol. 7, no. 3 (1995, this issue): 66-83.

11. M. Stonebraker et al., "Tioga: Providing Data Man­
agement for Scientific Visualization Applications,"
Proceedings of the 1993 VWB Conference, Dublin,
Ireland (August 1993).

12. A. Woodruff et al., "Zooming and Tunneling in Tioga:
Supporting Navigation in Multidimensional Space,"
Sequoia 2000 Technical Report 94/48, Berkeley,
California (March 1994).

13. R. Larson, "Classification, Clustering, Probabilistic
Information Retrieval and the On-Line Catalog,"
Library Quarterly (April 1991) .

14. Information Retrieval Application Service Defini­
tion and Protocol Specification for Open Systems
Interconnection, ANSI/NISO Z39 .50-l 992 (revi­
sion and redesignation of ANSI Z39.50-1988) (New
York: American National Standards Institute/National
Information Standards Organization, 1992).

15. D. Ferrari, "Client Requirements for Real-time
Communication Services," IEEE Communications
(November 1990).

16. J. Pasquale et al., "High-performance I/0 and Net­
working Software in Sequoia 2000," Digital Techni­
cal Journal, vol. 7, no. 3 (1995, this issue): 84-96.

17. C. Herot, "SDMS: A Spatial Data Base System,"
ACM Transactions on Computing Systems (TOCS)
(June 1980).

18. The National Center for Supercomputing Applications
(NCSA) at the University of Illinois developed
the Hierarchical Data Format (HDF) as a multiobject
file format.

19. Network Common Data Form (netCDF) is an inter­
face for scientific data access and a freely distributed
software library that provides an implementation of
the interface. netCDF was developed by Glenn Davis,
Russ Rew, and Steve Emmerson at the U nidata Pro­
gram Center in Boulder, Colorado. The netCDF
library defines a machine-independent format for
representing scientific data. Together, the interface,
the library, and the format support the creation,
access, and sharing of scientific data.

20. J. Anderson and M. Stonebraker, "Sequoia 2000
Metadata Schema for Satellite Images," SIGMOD
Record, Vol. 23, No. 4 (December 1994).

21. R. Larson et al., "The Sequoia 2000 Electronic Repos­
itory," Digital Technicaljournal, vol. 7, no. 3 (1995,
this issue): 50-65.

22. M. Stonebraker et al., "An Economic Paradigm for
Query Processing and Data Migration in Mariposa,"
Proceedings of IEEE Parallel and Distributed
Information Systems Conference, Austin, Texas
(September 1994).

Biography

Michael Stonebraker
Michael Stonebraker is a professor of electrical engineer­
ing and computer science at the University of California,
Berkeley, where he has been employed since 1971. He
was one of the principal architects of the INGRES rela­
tional database management system and subsequently
constructed Distributed INGRES. For the last six years,
Michael has been developing POSTGRES, a next-generation
DBMS that can manage objects and rules, as well as data.
Michael is a founder ofINGRES Corporation, the founder
ofillustra Information Technologies, a past chairman of
ACM SIGMOD, and the author of many papers on DBMS
technology. He lectures widely and was the winner of the
first ACM SIGMOD innovations award in 1992.

Digital Technical Journal Vol. 7 No. 3 1995 49

The Sequoia 2000
Electronic Repository

A major effort in the Sequoia 2000 project was to

build a very large database of earth science infor­

mation. Without providing the means for scien­

tists to efficiently and effectively locate required

information and to browse its contents, how­

ever, this vast database would rapidly become
unmanageable and eventually unusable. The

Sequoia 2000 Electronic Repository addresses

these problems through indexing and retrieval

software that is incorporated into the POSTGRES

database management system. The Electronic
Repository effort involved the design of proba­

bilistic indexing and retrieval for text documents

in POSTGRES, and the development of algo­

rithms for automatic georeferencing of text

documents and segmentation of full texts

into topically coherent segments for improved

retrieval. Various graphical interfaces support

these retrieval features.

50 Digital Technical Journal Vol. 7 No. 3 1995

I
Ray R. Larson
Christian Plaunt
Allison G. Woodruff
Marti A. Hearst

Global change researchers, who study phenomena that
include the Greenhouse Effect, ozone depletion,
global climate modeling, and ocean dynamics, have
found serious problems in attempting to use current
information systems to manage and manipulate the
diverse information sources crucial to their research.t
These information sources include remote sensing data
and images from satellites and aircraft, databases of
measurements (e.g., temperature, wind speed, salinity,
and snow depth) from specific geographic locations,
complex vector information such as topographic maps,
and large amounts of text from a variety of sources.
These textual documents range from environmental
impact reports on various regions to journal articles
and technical reports documenting research results.

The Sequoia 2000 project brought together com­
puter and information scientists from the University
of California (UC), Digital Equipment Corporation,
and the San Diego Supercomputer Center (SDSC),
and global change researchers from UC campuses to
develop practical solutions to some of these problems.2

One goal of this collaboration was the development of
a large-scale (i.e., multiterabyte) storage system that
would be available to the researchers over high-speed
network links. In addition to storing massive amounts
of data in this system, global change researchers
needed to be able to share its contents, to search for
specific known items in it, and to retrieve relevant
unknown items based on various criteria. This sharing,
searching, and retrieving had to be done efficiently
and effectively, even when the scale of the database
reached the multiterabyte range.

The goal of the Electronic Repository portion of
the Sequoia 2000 project was to design and evaluate
methods to meet these needs for sharing, searching,
and retrieving database objects (primarily text docu -
ments). The Sequoia 2000 Electronic Repository
is the precursor of several ongoing projects at
the University of California, Berkeley, that address
the development of digital libraries.

For repository objects to be effectively shared and
retrieved, they must be indexed by content. User inter­
faces must allow researchers to both search for items
based on specific characteristics and browse the repos­
itory for desired information. This paper summarizes

the research conducted in these areas by the Sequoia
2000 project participants. In particular, the paper
describes the Lassen text indexing and retrieval meth­
ods developed for the POSTGRES database system,
the GIPSY system for automatic indexing of texts
using geographic coordinates based on locations men­
tioned in the text, and the TextTiling method for
improving access to full-text documents.

Indexing and Retrieval in the Electronic Repository

The primary engine for information storage and
retrieval in the Sequoia 2000 Electronic Repository
is the POSTGRES next-generation database man­
agement system (DBMS).3 POSTGRES is the core of
the DBMS-centric Sequoia 2000 system design. All
the data used in the project was stored in POSTGRES,
including complex multidimensional arrays of data,
spatial objects such as raster and vector maps, satellite
images, and sets of measurements, as well as all the
full-text documents available. The POSTGRES DBMS
supports user-defined abstract data types, user-defined
functions, a rules system, and many features of object­
oriented DBMSs, including inheritance and methods,
through functions in both the query language, called
POSTQUEL, and conventional programming lan­
guages. The POSTQUEL query language provides all
the features found in relational query languages like
SQL and also supports the nonrelational features of
POSTGRES. These features give POSTGRES the abil­
ity to support advanced information retrieval methods.

We used these features of POSTGRES to develop
prototype versions of advanced indexing and retrieval
techniques for the Electronic Repository. We chose
this approach rather than adopting a separate retrieval
system for full-text indexing and retrieval for the fol­
lowing reasons:

1. Text elements are pervasive in the database, ranging
in size from short descriptions or comments on
other data items to the complete text oflarge docu­
ments, such as environmental impact reports.

2. Text elements are often associated with other data
items (e.g., maps, remote sensing measurements,
and aerial photographs), and the system must sup­
port complex queries involving multiple data types
and functions on data.

3. Many text-only systems lack support for concurrent
access, crash recovery, data integrity, and security of
the database, which are features of the DBMS.

4. Unlike many text retrieval systems, DBMSs permit
ad hoc querying of any element of the database,
whether or not a predefined index exists for that
element.

Moreover, there are a number of interesting
research issues involved in the integration of methods

of text retrieval derived from information retrieval
research with the access methods and facilities of
a DBMS. Information retrieval has dealt primarily
with imprecise queries and results that require human
interpretation to determine success or failure based on
some specified notion of relevance. Database systems
have dealt with precise queries and exact matching of
the query specification. Proposals exist to add proba­
bilistic weights to tuples in relations and to extend
the relational model and query language to deal with
the characteristics of text databases.•,s Our approach to
designing this prototype was to use the features of the
POSTGRES DBMS to add information retrieval meth­
ods to the existing functionality of the DBMS. This
section describes the processes used in the prototype
version of the Lassen indexing and retrieval system and
also discusses some of the ongoing development work
directed toward generalizing the inclusion of advanced
information retrieval methods in the DBMS.6

Indexing
The Lassen indexing method operates as a daemon
invoked whenever a new text item is appended to the
database. Several POSTGRES database relations (i.e.,
classes, in POSTGRES terminology) provide support
for the indexing and retrieval processes. Figure 1
shows these classes and their logical linkages. These
classes are intended to be treated as system-level
classes, which are usually not seen by users.

The wn_index class contains the complete WordNet
dictionary and thesaurus.7 It provides the normalizing
basis for terms used in indexing text elements of the
database. That is, all terms extracted from data elements
in the database are converted to the word form used in
this class. The POSTQUEL statement defining the
class is

create wn_index
te:nnid = int4, /* unique term ID*/
word = text, /* the term or phrase */
pos = char, /* WordNet part of speech

infonnation */
sense_cnt = int2, /* number of senses of word*/
ptruse_cnt = int2, /* types and locations of*/
offset_cnt = int2, /* related terms in WordNet*/
ptruse = int2[] , /* database are stored in*/
offset= int4[]) /* these arrays

All other references to terms in the indexing process
are actually references to the unique term identifiers
(termid) assigned to words in this class. The wn_index
dictionary contains individual words and common
phrases, although in the prototype implementation,
only single words are used for indexing purposes. The
other parts of the record include WordNet database
information such as the part of speech (pos) and an
array of pointers to the different senses of the word.

The kw_term_doc_rel class provides a linkage
between a particular text item in any class or text
large object (we will refer to either as documents) and

Digital Technical Journal Vol. 7 No. 3 1995 51

52

WN_INDEX

KW_TERM_DOC_REL

KW_DOC_INDEX

KW_SOURCES
ANY CLASS AND
ATIRIBUTE

KW_INDEX_FLAGS

Figure 1
The Lassen POSTGRES Classes for Indexing and Their Linkages

a particular term from the wn_index class. The
POSTQUEL definition of this class is

create kw_term_doc_rel (
termid = int4, /* WordNet termid number*/
synset = int4, /* WordNet sense number*/
docid = int4, /* document ID*/
termfreq = int4) /* term frequency within

the document * I

The raw frequency of occurrence of the term
in the document (termfreq) is included in the
kw_term_doc_rel tuple. This information is used in
the retrieval process for calculating the probability of
relevance for each document that contains the term.
The kw_doc_index class stores information on indi­
vidual documents in the database. This information
includes a unique document identifier (docid), the
location of the document (the class, the attribute, and
the tuple in which it is contained), and whether it is
a simple attribute or a large object (with effectively
unlimited size). The kw_doc_index class also main­
tains additional statistical information, such as the
number of unique terms found in the document. The
POSTQUEL definition is as follows:

create kw_doc_index (
docid = int4, /* document ID*/
relaid= oid, /* oid of relation

attroid = oid,

attrnum = int2,

tupleid = oid,

sourcetype = int4,

doc_ len = int4,
doc_ulen = int4)

Digital Technical Journal

/*

/*

/*

/*

/*
/*

containing it*/
attribute definition of
attr containing it*/
attribute number of attr
containing it*/
tuple oid of tuple
containing it*/
type of object -- attribute
or large object*/
document length in words*/
number of unique words in
document*/

Vol. 7 No. 3 1995

KW_RETRIEVAL

KW_QUERY

The kw _sources class contains information about
the classes and attributes indexed at the class level, as
well as statistics such as the number of items indexed
from any given class. The following POSTQUEL
statement defines this class:

create kw_sources
relname = charl6,

relaid= oid,

attrname = charl6,

attroid = oid,

attrnum = int2,

I* name of indexed
relation*/

/* oid of indexed
relation*/

I* name of indexed
attribute*/

/* object ID of indexed
attribute*/

/* number of indexed
attribute*/

attrtype = int4, /* attribute type -- large
object or otherwise*/

num_indexed = int4, /* number of items
indexed */

last_tid = oid, /* oid and time for last*/
last_ti.me = absti.me, /* tuple added*/
tot_te:cme = int4, /* total te:cme frcm all

tot_ute:cme = int4,

include_pat = text,
exclude_pat = text)

items*/
I* total unique te:cme fran

all items */
/* sin1Ple patterns to*/
/* match for indexable
I* items*/

The other classes shown in Figure 1 relate to the
indexing and retrieval processes. The Lassen prototype
uses the POSTGRES rules system to perform such
tasks as storing the elements of the bibliographic
records in an appropriate normalized form and to trig­
ger the indexing daemon.

Defining an attribute in the database as indexable
for information retrieval purposes (i.e., by appending
a new tuple to the kw _sources definition) creates a rule
that appends the class name and attribute name to the

kw _index_flags class whenever a new tuple is appended
to the class. Another rule then starts the indexing
process for the newly appended data. Figure 2 shows
this trigger process.

The indexing process extracts each unique keyword
from the indexed attributes of the database and stores
it along with pointers to its source document and its
frequency of occurrence in kw _term_doc_rel. This
process is shown in Figure 3. The indexing daemon
and the rules system maintain other global frequency
information. For example, the overall frequency of
occurrence of terms in the database and the total num­
ber of indexed items are maintained for retrieval pro­
cessing. The indexing daemon attempts to perform
any outstanding indexing tasks before it shuts down. It
also updates the kw _doc_index tuple for a given index­
able class and attribute with a time stamp for the last
item indexed (last_tid and last_ time). This permits
ongoing incremental indexing without having to
reindex older tuples.

Retrieval
The prototype version of Lassen provides ranked
retrieval of the documents indexed by the indexing
daemon using a probabilistic retrieval algorithm. This
algorithm estimates the probability of relevance for
each document based on statistical information on
term usage in a user's natural language query and in
the database. The algorithm used in the prototype is
based on the staged logistic regression method.8

A POSTGRES user-defined function invokes ranked
retrieval processing. That is, from a user's perspective,
ranked retrieval is performed by a simple function
call (kwsearch) in a POSTQUEL query language

POSTGRES APPEND

RULE-TRIGGERED
APPEND

DO NOTHING

Figure 2

INDEXABLE
CLASS

KW INDEX -
FLAGS

RULE STARTS
FUNCTION
DAEMON_ TRIGGER

START KWINDEXD AS
SEPARATE PROCESS

The Lassen Indexing Trigger Process

statement. Information from the classes created and
maintained by the indexing daemon are used to esti­
mate the probability of relevance for each indexed doc­
ument. (Note that the full power of the POSTQUEL
query language can also be used to perform conven­
tional Boolean retrieval using the classes created by the
indexing process and to combine the results of ranked
retrieval with other search criteria.) Figure 4 shows the
process involved in the probabilistic ranked retrieval
from the repository database.

The actual query to the Lassen ranked retrieval
process consists simply of a natural language statement
of the searcher's interests. The query goes through the

KW
SOURCES

INDEXABLE
CLASS

LARGE
OBJECT

WN
EXCLUSION

WN_INDEX

KW_TERM_
DOC_REL

KW_DOC_
INDEX

KW
SOURCES

Figure 3

RETRIEVE KW SOURCES
AND EXTRACT-SOURCE ,- - - ----,
INFO

RETRIEVE ANY NEW
TUPLES IN INDEXED
CLASSES

READ INDEXED
ATIRIBUTE OR LARGE
OBJECT AND EXTRACT
WORDS AND FREQUENCY

NORMALIZE WORD FORM
USING WORDNET
MORPHING AND GET
TERMID

APPEND NEW WORDS
TO THE WN INDEX
DICTIONARY

APPEND NEW
KW TERM DOC REL
TUPLE - -

APPEND NEW
KW_DOC_INDEX TUPLE

REPLACE KW SOURCES
ENTRY WITH NEW TIME

SLEEP FOR A WHILE
AND START OVER FOR
XTIMES

YES

YES

YES

KW
STOPWORDS

The Lassen Indexing Daemon Process

Digital Technical Journal Vol. 7 No. 3 1995 53

RETRIEVE USING
KWSEARCH
FUNCTION CALL

WN
EXCLUSION NORMALIZE WORD

FORM USING WORDNET KW
MORPHING AND GET STOPWORDS

WN_INDEX TERMID

KW TERM RETRIEVE EACH

DOC_REL
- KW TERM DOC REL

TUPLE usiNG TERMID

KW DOC RETRIEVE EACH

INDEX
- KW DOC INDEX

TUPLE USING DOCID

CALCULATE PROBABILITY
OF RELEVANCE USING
STAGED LOGISTIC
REGRESSION FORMULA

KW

APPEND ENTRIES TO RETRIEVAL

KW RETRIEVAL AND
Kw::::aurnv

KW_QUERY

RETURN
QUERY ID

Figure4
The Lassen Retrieval Process

same processing steps as documents in the indexing
process. The individual words of the query are
extracted and located in the wn_index dictionary
(after removing common words or "stopwords"). The
termids for matching words from wn_index are then
used to retrieve all the tuples in kw_term_doc_rel that
contain the term. For each unique document identifier
in this list of tuples, the matching kw_doc_index tuple
is retrieved. With the frequency information contained
in kw_term_doc_rel and kw_doc_index, the estimated
probability of relevance is calculated for each docu­
ment that contains at least one term in common with
the query. The formulae used in the calculation are
based on experiments with full-text retrieval.8 The
basic equation for the probabilistic model used in
Lassen states the following: The probability of the
event that a document is relevant R, given that there
is a set of N"clues" associated with that document, Ai
fori = l,2, ... ,N,is

where for any events E and £; the odds O(EIE') is
P(E IE')/P(E IE'), i.e., a simple transformation of the
probabilities. Because there is not enough information
to compute the exact probability of relevance for any
user and any document, an estimation is derived based
on logistic regression of a set of clues (usually terms or
words) contained in some sample of queries and the
documents previously judged to be relevant to those
queries. For a set of M terms that occur in both a query
and a given document, the regression equation is of
the form

N

log O(RIA1, ••• ,AN) = log O(R) + ~ [log O(RIA;)
i= l

- log O(R)], (1)

54 Digital Technical Journal Vol. 7 No. 3 1995

M

log O(RIAi, ... ,AM) = C0 + C1 -/(M) ~ Xm,1 + · · ·
M I

+ cK-/(M) ~ Xm,K+ CK+1M+ CK+2M2, (2)
1

where there are K retrieval variables Xm K used to
characterize each term or clue, and the C; ~oefficients
are constant for a given training set of queries and
documents. The coefficients used in the prototype
were derived from analysis of full-text documents

and queries (with relevance judgments) from the
TIPSTER information retrieval test collection.9 The
derivation of this formula is given in "Probabilistic
Retrieval Based on Staged Logistic Regression."8 The
full retrieval equation used for the prototype version of
retrieval described in this section is

log O(RIA1, ••• ,AM) = - 3.51

J M M

+, IAf + 1 [37.4 LXm.l + 0.330 L Xm,2
V"" I I

M

- 0.1937 L Xm 3] + 0.0929M, (3)
I

where
Xm 1 is the quotient of the number of times the mth

term 'occurs in the query and the sum of the total
number of terms in the query plus 35;

Xm 2 is the logarithm of the quotient arrived at by
dividi'ng the number of times the mth term occurs in
the document by the sum of the total number of terms
in the document plus 80;

Xm,3 is the logarithm of the quotient arrived at by
dividing the number of times the mth term occurs in
the database (i.e., in all documents) by the total num­
ber of terms in the collection;

M is the number of terms held in common by the
query and the document.

Note that the M 2 term called for in Equation 2 was
not found to provide any significant difference in the
results and was omitted from Equation 3. The con­
stants 35 and 80, which were used in Xm 1 and Xm 2,

are arbitrary but appear to offer the best r~sults wh~n
set to the average size of a query and the average size
of a document for the particular database. The
sequence of operations performed to calculate the
probability of relevance is shown in Figure 5. Note
that in the figure, kl, .. . , k5 represent the constants
ofEquation 3.

The probability of relevance is calculated for each
document (by converting the logarithmic odds to a
probability) and is stored along with a unique query
identifier, the document identifier, and some location
information in the kw _retrieval class. The query itself

CALCULATE NUMBER OF
TERMS IN COMMON
BETWEEN QUERY AND
DOCUMENT M

FOR EACH DOCUMENT
CONTAINING ANY TERM
INTHE QUERY

RETURN

Figure 5

FOR EACH TERM mTHAT
OCCURS IN THE QUERY

SUM FREQUENCY OF
TERM IN QUERY DIVIDED
BY ALL TERM
OCCURENCES PLUS A
CONSTANT

lXm,1

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DOCUMENT DIVIDED BY
TOTAL TERMS IN DOCUMENT
PLUS A CONSTANT

~Xm.2

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DATABASE DIVIDED BY
TOTAL TERM OCCURENCES
IN DATABASE

lXm,3

YES

CALCULATE DOCUMENT
PROBABILITY OF RELEVANCE
P(R) = 1 I 1 + e ••(- LOG O(R))

CALCULATE DOCUMENT LOG
ODDS OF RELEVANCE
LOG O(R) = k1 + (S• [k2 • lXm,1

+ k3 • lXm,2 + k4 lXm.3D
+ k5 • M

CALCULATE
S=1 / (VM+1)

The Calculation for the Staged Logistic Regression Probabilistic Ranking Process

Digital Technical Journal Vol. 7 No. 3 1995 55

and its unique identifier are stored in the kw_query
class. To see the results of the retrieval operation, the
query identifier is used to retrieve the appropriate
kw _retrieval tuples, ranked in order according to the
estimated probability of relevance. The kw _retrieval
and kw_query classes have the following POSTQUEL
definitions:

create kw_query
query_id = int4,
query_user = char16,
query_text = text)

create kw_retrieval
query_id = int4,
doc_id = int4,
rel_oid = oid,
attr_oid = oid,
attr_num = int2,
tuple_id = oid,
doc_len = int4,
doc_match_terms = int4,

doc_prob_rel = float8)

I* ID number*/
I* POSTGRES user name*/
I* the actual query*/

/* link to the query * I
/* document ID number*/
/* location of doc*/

/* size of document*/
/* number of query terms

in the document*/
I* estimated probability

of relevance * I

The algorithm used for ranked retrieval in the
Lassen prototype was tested against a number of other
systems and algorithms as part of the TREC competi­
tion and provided excellent retrieval performance.10

We have found that the retrieval coefficients used in
the formula derived from analysis of the TIPSTER col­
lection appear to work well for a variety of document
types. In principle, the staged logistic regression
retrieval coefficients should be adapted to the particu­
lar characteristics of the database by collecting rele­
vance judgments from actual users and reapplying the
staged logistic regression analysis to derive new coeffi­
cients. This activity has not been performed for this
prototype implementation.

The primary contribution of the Lassen prototype
has been as a proof-of-concept for the integration of
full-text indexing and ranked retrieval operations in
a relational database management system. The proto­
type implementation that we have described in this
section has a number of problems. For example, in the
prototype design for indexing and retrieval operations,
all the information used is visible in user-accessible
classes in the database. Also, the overhead is fairly
high, in terms of storage and processing time, for
maintaining the indexing and retrieval information in
this way. For example, POSTGRES allocates 40 bytes
of system information for each tuple in a class, and
indexing can take several seconds per document.

Currently, we are investigating a class of new access
methods to support indexing and retrieval in a more
efficient fashion. The class of methods involves declar­
ing some POSTGRES functions that can extract
subelements of a given type of attribute (such as words
in a text document) and generate indexes for each of
the subelements extracted. Other types of data might

56 Digital Technical Journal Vol. 7 No. 3 1995

also benefit from this class of access methods. For
example, functions that extract subelements like geo­
metric shapes from images might be used to generate
subelement indexes of image collections. Particular
index element extraction methods can be of great
value in providing access to the sort of information
stored in the Sequoia 2000 Electronic Repository. The
following section describes one such index extraction
method developed for the special needs of Sequoia
2000 data.

GIPSY: Automatic Georeferencing of Text

Environmental Impact Reports (EIRs), journal arti­
cles, technical reports, and myriad other text items
related to global change research that might be
included in the Sequoia 2000 database are examples of
a class of documents that discuss or refer to particular
places or regions. A common retrieval task is to find
the items that refer to or concentrate on a specific geo­
graphic region. Although it is possible to have a
human catalog each item for location, one goal of the
Electronic Repository was to make all indexing and
retrieval automatic, thus eliminating the requirement
for human analysis and classification of documents in
the database. Therefore, part of our research involved
developing methods to perform automatic georefer­
encing of text documents, that is, to automatically
index and retrieve a document according to the geo­
graphic locations discussed or displayed in or other­
wise associated with its content.

In Lassen and most other full-text information
retrieval systems, searches with a geographical compo­
nent, such as "Find all documents whose contents per­
tain to location X," are not supported directly by
indexing, query, or display functions. Instead, these
searches work only by references to named places,
essentially as side effects of keyword indexing. Whereas
human indexers are usually able to understand and
apply correct references to a document, the costs in
time and money of using geographically trained human
indexers to read and index the entire contents of a large
full-text collection are prohibitive. Even in cases where
a document is meticulously indexed manually, geo­
graphic index terms consisting of keywords (text
strings) have several well-documented problems with
ambiguity, synonymy, and name changes over time. u·12

Advantages of the GIPSY Model
To deal with these problems, we developed a new
model for supporting geographically based access to
text.13 In this model, words and phrases that contain
geographic place names or geographic characteristics
are extracted from documents and used as input to
certain database functions . These functions use spatial
reasoning and statistical methods to approximate the

geographic position being referenced in the text. The
actual index terms assigned to a document are a set of
coordinate polygons that describe an area on the
earth's surface in a standard geographical projection
system. Using coordinates instead of names for the
place or geographic characteristic offers a number of
advantages.

• Uniqueness. Place names are not unique, e.g.,
Venice, California, and Venice, Italy, are not appar­
ently different without the qualifying larger region
to differentiate them. Using coordinates removes
this ambiguity.

• Immunity to spatial boundary changes. Political
boundaries change over time, leading to confusion
about the precise area being referred to. Coordi­
nates do not depend on political boundaries.

• Immunity to name changes. Geographic names
change over time, making it difficult for a user to
retrieve all information that has been written about
an area during any extended time period. Coordi­
nates remove this ambiguity.

• Immunity to spatial, naming, and spelling varia­
tion. Names and terms vary not only over time but
also in contemporary usage. Geographic names
vary in spelling over time and by language. Areas of
interest to the user will often be given place names
designated only in the context of a specific docu­
ment or project. Such variations occur frequently
for studies done in oceanic locations. Names associ­
ated with these studies are unknown to most users.
Coordinates are not subject to these kinds of verbal
variations.

Indexing texts and other objects (e.g., photographs,
videos, and remote sensing data sets) by coordinates
also permits the use of a graphical interface to the
information in the database, where representations of
the objects are plotted on a map. A map-based graphi­
cal interface has several advantages over one that uses
text terms or one that simply uses numerical access to
coordinates. As Furnas suggests, humans use different
cognitive structures for graphical information than for
verbal information, and spatial queries cannot be fully
simulated by verbal queries. 14 Because many geo­
graphical queries are inherently spatial, a graphical
model is more intuitive. This is supported by Morris'
observation that users given the choice between menu
and graphical interfaces to a geographic database pre­
ferred the graphical mode. 15 A graphical interface,
such as a map, also allows for a dense presentation of
information. 16

To address the needs of global change scientists, the
Sequoia 2000 project team proposed a new browser
paradigm.17 This system, called Tioga, displays infor­
mation topologically according to continuous charac­
teristics that are attributes of the data. 18 For example,

documents may be displayed on a map according to
their latitude and longitude. Documents may also be
displayed according to the time at which they were
generated and the time to which they refer, as well as
by more abstract functions such as the reading level of
the document and the author's attitudes as expressed
in the document. A prototype of the geographical
browsing component was included in the Lassen
Geographic Rrowser, which is shown in Figure 6.

This browser allows any georeferenced object in the
database to be indicated by an icon on the map. The
user employs the mouse to center the map on any
location and to zoom in or out for more or less map
detail. Icons can be made to appear at any coordinates
and for any range of magnification values. When an
icon is selected by the user, a menu of the objects geo­
referenced at the icon coordinates and detail level are
displayed for selection.

An Algorithm to Georeference Text
The advantages of georeferencing are apparent. Not so
apparent is how to perform such a task automatically.
We developed the following three-part thesaurus­
based algorithm to explore this task; the algorithm pro­
vides the basis for georeferencing in GIPSY.19

1. Identify geographic place names and phrases. This
step attempts to recognize all relevant content­
bearing geographic words and phrases. The parser
for this step must "understand" how to identify
geographic terminology of two types:

a. Terms that match objects or attributes in the
data set. This step requires a large thesaurus of
geographic names and terms, partially hand built
and partially automatically generated.

b. Lexical constructs that contain spatial informa­
tion, e.g., "adjacent to the coast," "south of the
delta," and "between the river and the highway."

To implement this part of the algorithm, a list of
the most commonly occurring constructs must be
created and integrated into a thesaurus.

2. Locate pertinent data. The output of the parser is
passed to a function that retrieves geographic coor­
dinate data pertinent to the extracted terms and
phrases. Spatially indexed data used in this step can
include, for example, name, size, and location of
cities and states; name and location of endangered
species; and name, location, and bioregional char­
acteristics of different climatic regions. The system
must identify the spatial locations that most closely
match the geographic terms extracted by the parser
and, when geographic modifiers are used, heuristi­
cally modify the area of coverage. For example, the
phrase "south of Lake Tahoe" will map to the area
south of Lake Tahoe, covering approximately the
same volume. This spatial representation is, by

Digital Technical Journal Vol. 7 No. 3 1995 57

58

Latitude (minutes)
I .:i::i

1

Longitude (minutes)
UJ
26

3
Aspect Correction

120

Display Map Hide Icons GeoBrowse Help AVHRR Clip I Cancel Display I
Figure 6
Screen from the Lassen Geographic Browser

necessity, the result of an arbitrary assumption
of size, but its purpose is to provide only partial
evidence to be used in determining locations as
described below.

Since geopositional data for land use (e.g., cities,
schools, and industrial areas) and habitats (e.g.,
wetlands, rivers, forests, and indigenous species)
is also available, extracted keywords and phrases for
these types of data must be recognized. The the­
saurus entries for this data should incorporate sev­
eral other types of information, such as synonymy
(e.g., Latin and common names of species) and
membership (e.g., wetlands contain cattails, but
geopositional data on cattails may not exist, so we
must use their mention as weak evidence of a dis­
cussion of wetlands and use that data instead).

For our implementation of GIPSY, we used two pri­
mary data sets to construct the thesaurus. The first
was a subset of the United States Geological
Survey's Geographic Names Information System
(GNIS).20 This data set contains latitude/ longitude
point coordinates associated with over 60,000 geo­
graphic place names in California. To facilitate

Digital Technical Journal Vol. 7 No. 3 1995

comparison with other data sets, the GNIS
latitude/ longitude coordinates were converted to
the Lambert-Azimuthal projection. Examples of
place names with associated points include

University of California Davis: - 1867878 - 471379

Redding: -1863339 -234894

Data for land use and habitat data was derived in
the United States Geological Survey's Geographic
Information Retrieval and Analysis System
(GIRAS).21

Each identified name, phrase, or region description
is associated with one or more polygons that may
be the place discussed in the text. Weights can be
assigned to each of these polygons based on the fre­
quency of use of its associated term or phrase in the
text being indexed and in the thesaurus. Many rele­
vant terms do not exactly match place names or the
feature and land use types listed above. For exam­
ple, alfalfa is a crop grown in California and should
be associated with the crop data from the GIRAS
land use data set. The thesaurus was therefore
extended, both manually and by extraction of

relationships from the WordNet thesaurus, to
include the following types of terms:7

synonymy
synonym

kind-of relationships
- : = hyponym (maple is a - of tree)
@ : = hypernym (tree is a @ of maple)

part-of relationships
: = meronym (finger is a# of hand)
% : = holonym (hand is a % offinger)
& : = evidonym (pine is a & of shortleaf

pine)

3. Overlay polygons to estimate approximate loca­
tions. The objective of this step is to combine the
evidence accumulated in the preceding step and
infer a set of polygons that provides a reasonable
approximation of the geographical locations men -
tioned in the text. Each geophrase, weight, polygon
tuple can be represented as a three-dimensional
"extruded" polygon whose base is in the plane of
the x- and z-axes and whose height extends upward
on the y-axis a distance proportional to its weight
(see Figure 7a). As new polygons are added, several
cases may arise.

a. If the base of a polygon being added does not
intersect with the base of any other polygons, it
is simply laid on the base map beginning at y = 0
(see Figure 7b).

b. If the polygon being added is completely con -
tained within a polygon that already exists on the
geopositional skyline, it is laid on top of that
extruded polygon, i.e., its base plane is posi­
tioned higher on the y-axis (see Figure 7 c).

c. If the polygon being added intersects but is not
wholly contained by one or more polygons, the
polygon being added is split. The intersecting
portion is laid on top of the existing polygon and
the nonintersecting portion is positioned at a
lower level (i .e., at y = 0). To minimize fragmen­
tation in this case, polygons are sorted by size
prior to being positioned on the skyline (see
Figure 7d).

In effect, the extruded polygons, when laid
together, are "summed" by weight to form a geoposi­
tional skyline whose peaks approximate the geograph­
ical locations being referenced in the text. The
geographic coordinates assigned to the text segment
being indexed are determined by choosing a threshold
of elevation z in the skyline, taking the x-z plane at z,
and using the polygons at the selected elevation.
Raising the elevation of the threshold will tend to
increase the accuracy of the retrieval, whereas lowering
the elevation tends to include other similar regions.

To see the results of this process in the GIPSY proto­
type, consider the following text from a publication of
the California Department of Water Resources:

The proposed project is the construction of a new
State Water Project (SWP) facility, the Coastal Branch,
Phase II, by the Department of Water Resources
(DWR) and a local distribution facility, the Mission
Hills Extension, by water purveyors of northern Santa
Barbara County. This proposed buried pipeline
would deliver 25,000 acre-feet per year (AF /YR) of
SWP water to San Luis Obispo County Flood Control
and Water Conservation District (SLOCFCWCD) and
27,723 AF /YR to Santa Barbara County Flood Control
and Water Conservation District (SBCFCWCD)
This extension would serve the South Coast and
Upper Santa Ynez Valley. DWR and the Santa Barbara
Water Purveyors Agency are jointly producing an
EIR for the Santa Ynez Extension. The Santa
Ynez Extension Draft EIR is scheduled for release in
spring 1991.12

The resulting surface plot appears in Figure 8. The
figure contains a gridded representation of the state of
California, which is elevated to distinguish it from the
base of the grid. The northern part of the state is on
the left-hand side of the image. The towers rising over
the state's shape represent polygons in the skyline
generated by GIPSY's interpretation of the text. The
largest towers occur in the area referred to by the text,
primarily centered on Santa Barbara County, San Luis
Obispo, and the Santa Ynez Valley area.

The surface plots generated in this fashion can also
be used for browsing and retrieval . For example, the
two-dimensional base of a polygon with a thickness
above a certain threshold can be assigned as a coordi­
nate index to a document. These two-dimensional
polygons might then be displayed as icons on a map
browser such as the one shown in Figure 6.

Future Work
Research remains to be done on several extensions to
the existing GIPSY implementation. Because a geo­
graphic knowledge base and spatial reasoning are fun­
damental to the georeferencing process, they have
been the focus ofinitial research efforts.

The existing prototype can be complemented by
the addition of more sophisticated natural language
processing. For example, spatial reasoning and geo­
graphic data could be combined with parsing tech­
niques to develop semantic representations of the
text. Adjacency indicators, such as "south of" or
"between," should be recognized by a parser. Also,
the work on document segmentation described below
could be used to explore the locality of reference to
geographic entities within full-text documents.
GIPSY's technique may be most effective when
applied to a paragraph or section level of a text instead
of to the entire document.

Digital Technical Journal Vol. 7 No. 3 1995 59

Figure 7

/7
(a) The "weight" of a polygon, indicated by the

vertical arrow, is interpreted as "th ickness."

(b) Two adjacent polygons do not affect each other;
each is merely assigned its appropriate "th ickness."

A
I
I

(c) When one polygon subsumes another, their
"thicknesses" in the area of overlap are summed.

(d) When two polygons intersect, their "thicknesses"
are summed in the area of overlap.

Overlaying Polygons to Estimate Approximate Locations

60 Digital Technical Journal Vol. 7 No. 3 1995

Figure 8
Surface Plot Produced from the State Water Project Text

TextTiling: Enhancing Retrieval through
Automatic Subtopic Identification

Full-length documents have only recently become
available on-line in large quantities, although technical
abstracts, short newswire texts, and legal documents
have been accessible for many years.23 The large major­
ity of on-line information has been bibliographic (e.g.,
authors, titles, and abstracts) instead of the full text of
the document. For this reason, most information
retrieval methods are better suited for accessing
abstracts than for accessing longer documents. Part of
the repository research was an exploration of new
approaches to information retrieval particularly suited
to full-length texts, such as those expected in the
Sequoia 2000 database.

A problem with applying traditional information
retrieval methods to full-length text documents is that
the structure of full-length documents is quite differ­
ent from that of abstracts. (In this paper, "full-length
document" refers to expository text of any length.
Typical examples are a short magazine article and
a SO-page technical report. We exclude documents
composed of headlines, short advertisements, and any
other disjointed texts of whatever length. We also
assume that the document does not have detailed
orthographically marked structure. Croft, Kravetz,
and Turtle describe work that takes advantage of this
kind ofinformation.24

) One way to view an expository
text is as a sequence of subtopics set against a backdrop
of one or two main topics. A long text comprises many
different subtopics that may be related to one another
and to the backdrop in many different ways. The main
topics of a text are discussed in its abstract, if one
exists, but subtopics are usually not mentioned.
Therefore, instead of querying against the entire
content of a document, a user should be able to issue a

query about a coherent subpart, or subtopic, of a full­
length document, and that subtopic should be specifi­
able with respect to the document's main topic(s).

Consider a Discover magazine article about the
Magellan space probe's exploration of Venus.25

A reader divided this 23-paragraph article into the fol­
lowing segments with the labels shown, where the
numbers indicate paragraph numbers:

1-2 Intro to Magellan space probe
3-4 Intro to Venus
5- 7 Lack of craters
8-11 Evidence of volcanic action

12-15 River Styx
16- 18 Crustal spreading
19-21 Recent volcanism
22-23 Future of Magellan

Assume that the topic of volcanic act.1V1ty is of
interest to a user. Crucial to a system's decision to
retrieve this document is the knowledge that a dense
discussion of volcanic activity, rather than a passing ref­
erence, appears. Since volcanism is not one of the
text's two main topics, the number of references to
this term will probably not dominate the statistics of
term frequency. On the other hand, document selec­
tion should not necessarily be based on the number of
references to the target terms.

The goal should be to determine whether or not
a relevant discussion of a concept or topic appears.
A simple approach to distinguishing between a true
discussion and a passing reference is to determine the
locality of the references. In the computer science
operating systems literature, locality refers to the fact
that over time, memory access patterns tend to con­
centrate in localized clusters rather than be distributed
evenly throughout memory. Similarly, in full-length
texts, the close proximity of members of a set of

Digital Technical Journal Vol. 7 No. 3 1995 61

references to a particular concept is a good indicator of
topicality. For example, the term volcanism occurs 5
times in the Magellan article, the first four instances of
which occur in four adjacent paragraphs, along with
accompanying discussion. In contrast, the term scien­
tists, which is not a valid subtopic, occurs 13 times, dis­
tributed somewhat evenly throughout. By its very
nature, a subtopic will not be discussed throughout an
entire text. Similarly, true subtopics are not indicated
by only passing references. The term belly dancer
occurs only once, and its related terms are confined to
the one sentence it appears in. As its usage is only
a passing reference, belly dancing is not a true subtopic
of this text.

Our solution to the problem of retaining valid
subtopical discussions while at the same time avoid­
ing being fooled by passing references is to make
use of locality information and to partition docu­
ments according to their subtopical structure. This
approach's capacity for improving a standard informa­
tion retrieval task has been verified by information
retrieval experiments using full-text test collections
from the TIPSTERdatabase.26

•
27

One way to get an approximation of the subtopic
structure is to break the document into paragraphs, or
for very long documents, sections. In both cases, this
entails using the orthographic marking supplied by the
author to determine topic boundaries.

Another way to approximate local structure in long
documents is to divide the documents into even-sized
pieces, without regard for any boundaries. This
approach is not practical, however, because we are
interested in exploring the performance of motivated
segmentation, i.e., segmentation that reflects the
text's true underlying subtopic structure, which often
spans paragraph boundaries.

Toward this end, we have developed TextTiling,
a method for partitioning full-length text documents
into coherent multiparagraph units called tiles. 26

•
28

•
29

TextTiling approximates the subtopic structure of
a document by using patterns oflexical connectivity to
find coherent subdiscussions. The layout of the tiles is
meant to reflect the pattern of subtopics contained in
an expository text. The approach uses quantitative lex­
ical analyses to determine the extent of the tiles and to
classify them with respect to a general knowledge base.
The tiles have been found to correspond well to
human judgments of the major subtopic boundaries of
science magazine articles.

The algorithm is a two-step process. First, all pairs of
adjacent blocks of text (where blocks are usually three
to five sentences long) are compared and assigned
a similarity value. Second, the resulting sequence of
similarity values, after being graphed and smoothed, is
examined for peaks and valleys. H igh similarity values,
which imply that the adjacent blocks cohere well, tend

62 Digital Technical Journal Vol. 7 No. 3 1995

to form peaks, whereas low similarity values, which
indicate a potential boundary between tiles, create val­
leys. Figure 9 shows such a graph for the Discover
magazine article mentioned earlier. The vertical lines
indicate where human judges thought the topic
boundaries should be placed. The graph shows the
computed similarity of adjacent blocks of text. Peaks
indicate coherency, and valleys indicate potential
breaks between tiles.

The one adjustable parameter is the size of the block
used for comparison. This value, k, varies slightly from
text to text. As a heuristic, it is assigned the average
paragraph length (in sentences), although the block
size that best matches the human judgment data is
sometimes one sentence greater or smaller. Actual
paragraphs are not used because their lengths can be
highly irregular, leading to unbalanced comparisons.

Similarity is measured by using a variation of the
tf.idf (term frequency times inverse document fre­
quency) measurement. 30 In standard tf.idf, terms that
are frequent in an individual document but relatively
infrequent throughout the corpus are considered to
be good distinguishers of the contents of the individ­
ual document. In TextTiling, each block of k sen­
tences is treated as a unit, and the frequency of a term
within each block is compared to its frequency in the
entire document. (Note that the algorithm uses a large
stop list; i.e., closed class words and other very fre­
quent terms are omitted from the calculation.) This
approach helps bring out a distinction between local
and global extent of terms. A term that is discussed fre­
quently within a localized cluster (thus indicating
a cohesive passage) will be weighted more heavily than
a term that appears frequently but scattered evenly
throughout the entire document, or infrequently
within one block. Thus if adjacent blocks share many
terms, and those shared terms are weighted heavily,
there is strong evidence that the adjacent blocks
cohere with one another.

0.22

0.20

0.18

0.16
>-!::: 0.14
a:
:'.5 0.12

~ 0.10
(f)

0.08

0.04

0.02

0 10 20 30 40 50 60 70 80

SENTENCE GAP NUMBER

Figure 9
Results ofTextTiling a 77-sentence Science Article

Similarity between blocks is calculated by the follow­
ing cosine measure: Given two text blocks bl and b2,

cos(bl,b2) =

n

L w,.b1 w,.b2
1- I

" n

L W7.bl L W1.b2
t=I t = l

where t ranges over all the terms in the document, and
wt bl is the tf.idf weight assigned to term t in block bl.
Thus, if the similarity score between two blocks is
high, then not only do the blocks have terms in com­
mon, but the common terms are relatively rare with
respect to the rest of the document. The evidence in
the reverse is not as conclusive. If adjacent blocks have
a low similarity measure, this does not necessarily
mean that the blocks cohere. In practice, however, this
negative evidence is often justified.

The graph is then smoothed using a discrete convo­
lution31 of the similarity function with the function
bk(.), where

lil ~ k-1
otherwise.

The result is smoothed further with a simple median
smoothing algorithm to eliminate small local min­
ima. 32 Tile boundaries are determined by locating the
lowermost portions of valleys in the resulting plot.
The actual values of the similarity measures are not
taken into account; the relative differences are what
are of consequence.

Retrieval processing should reflect the assumption
that full-length text is meaningfully different in struc­
ture from abstracts and short articles. We have con­
ducted retrieval experiments that demonstrate that
taking text structure into account can produce better
results than using full-length documents in the standard
way.26.2s.29 By working within this paradigm, we have
developed an approach to vector-space-based retrieval
that appears to work better than retrieving against entire
documents or against segments or paragraphs alone.

The resulting retrieval method matches a query
against motivated segments and then sums the scores
from the top segments for each document. The high­
est resulting sums indicate which documents should
be retrieved. In our test set, this method produced
higher precision and recall than retrieving against
entire documents or against segments or paragraphs
alone.26 Although the vector-space model of retrieval
was used for these experiments, probabilistic models
such as the one used in Lassen are equally applicable,
and the method should provide similar improvement
in retrieval performance.

We believe that recognizing the structure of full ­
length text for the purposes of information retrieval

is very important and will produce considerable
improvement in retrieval effectiveness over most exist­
ing similarity-based techniques.

Conclusion

The Sequoia 2000 Electronic Repository project has
provided a test bed for developing and evaluating tech­
nologies required for effective and efficient access to
the digital libraries of the future . We can expect that as
digital libraries proliferate and include vast databases of
information linked together by high-bandwidth net­
works, they must support all current and future media
in an easily accessible and content-addressable fashion.

The work begun on the Sequoia 2000 Electronic
Repository is continuing under UC Berkeley's digital
library project sponsored jointly by the National
Science Foundation (NSF), the National Aeronautics
and Space Administration (NASA), and the Defense
Advanced Research Projects Agency (DARPA).
Digital libraries are a fledgling technology with no
firm standards, architectures, or even consensus
notions of what they are and how they are to work.
Our goal in this ongoing research is to develop the
means of placing the contents of this developing
global virtual library at the fingertips of a worldwide
clientele. Achieving this goal will require the applica­
tion of advanced techniques for information retrieval,
information filtering, resource discovery, and the
application of new techniques for automatically ana­
lyzing and characterizing data sources ranging from
texts to videos. Much of the work needed to enable
our vision of these new technologies was pioneered in
the Sequoia 2000 Electronic Repository project.

References

1. J. Dozier, "How Sequoia 2000 Addresses Issues in
Data and Information Systems for Global Change,"
Sequoia 2000 Technical Report 92/ 14 (S2K-92-14)
(Berkeley, Calif.: University of California, Berkeley,
1992) (ftp:/ / s2k-ftp.cs.berkeley.edu/ pub/sequoia/
tech-reports/ s2k-9 2-14/s2k-92-14.ps).

2. M. Stonebraker, "An Overview of the Sequoia 2000
Project," Digital Technical Journal, vol. 7, no. 3
(1995, this issue): 39- 49.

3. M. Stonebraker and G. Kemnitz, "The POSTGRES
Next-generation Database Management System,"
Communications of the ACM, vol. 34, no. 10 (1991):
78-92.

4. N. Fuhr, "A Probabilistic Relational Model for
the Integration of IR and Databases," Proceedings
of the Six teenth Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval (SIGIR '93), Pittsburgh,
June 27- July 1, 1993 (New York: Association for
Computing Machinery, 1993): 309-317.

Digital Technical Journal Vol. 7 No. 3 1995 63

64

5. D. Blair, "An Extended Relational Document
Retrieval Model," Information Processing and
Management, vol. 24 (1988): 349-371.

6. R. Larson, "Design and Development of a Network­
Based Electronic Library," Navigating the Networks:
Proceedings of the ASIS Midyear Meeting, Portland,
Oregon, May 21-25, 1994 (Medford, N.J.: Learned
Information, Inc., 1994): 95-114. Also available as
Sequoia 2000 Technical Report 94/54, July 1994
(ftp:/ /s2k-ftp.cs.berkeley.edu/pub/sequoia/tech­
reports/s2k-9 4-54/s2k-94-54.ps).

7. G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller, "Five Papers on WordNet," CSL Report 43
(Princeton, N.J.: Princeton University: Cognitive
Science Laboratory, 1990).

8. W. Cooper, F. Gey, and D. Dabney, "Probabilistic
Retrieval Based on Staged Logistic Regression," Pro­
ceedings of the Fifteenth Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR '92), Copenhagen,
Denmark, June 21-24, 1992 (New York: Association
for Computing Machinery, 1992): 198-210.

9. D. Harman, "The DARPA TIPSTER Project," SIGIR
Fornm, vol. 26, no. 2 (1992): 26-28.

10. W. Cooper, A. Chen, and F. Gey, "Experiments in the
Probabilistic Retrieval of Full Text Documents," Text
Retrieval Conference (YREC-3) Draft Conference
Papers (Gaithersburg, Md.: National Institute of
Standards and Technology, 1994).

11. A. Griffiths, "SAGIS: A Proposal for a Sardinian Geo­
graphical Information System and an Assessment of
Alternative Implementation Strategies," Journal
of Information Science, vol. 15 (1989): 261-267.

12. D. Holmes, "Computers and Geographic Information
Access," Meridian, vol. 4 (1990): 37-49.

13. A. Woodruff and C. Plaunt, "GIPSY: Georeferenced
Information Processing SYstem," Journal of the
American Society for Information Science, vol. 45,
no. 9 (1994): 645-655.

14. G. Furnas, "New Graphic Reasoning Models for
Understanding Graphical Interfaces," Human Fac­
tors in Computing Systems: Reaching Through
Technology Proceedings (CHI '91 Conference),
New Orleans, April-May 1991 (New York: Association
for Computing Machinery, 1991): 71-78.

15. B. Morris, "CARTO-NET: Graphic Retrieval and
Management in an Automated Map Library," Special
Libraries Association, Geography and Map Divi­
sion Bulletin, vol. l 52 (1988): 19-35.

16. C. McCann, M. Taylor, and M. Tuori, "ISIS: The
Interactive Spatial Information System," Interna­
tional Journal of Man-Machine Studies, vol. 28
(1988): 101-138.

17. J. Chen, R. Larson, and M. Stonebraker, "Sequoia
2000 Object Browser," Digest of Papers, 7birty­
seventh IEEE Computer Society International Con­
ference (COMPCON Spring 1992), San Francisco,

Digital Technical Journal Vol. 7 No. 3 1995

February 24-28, 1992 (Los Alamitos, Calif.: Com­
puter Society Press, February 1992): 389-394.

18. M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and
J. Wu, "Tioga: Providing Data Management Support
for Scientific Visualization Applications," Proceed­
ings of the Nineteenth International Conference on
Very Large Data Bases, Dublin, Ireland (August
1993): 25-38.

19. A. Woodruff and C. Plaunt, "Automated Geographic
Indexing of Text Documents," Sequoia 2000 Tech­
nical Report 94/41 (S2K-94-41) (Berkeley, Calif.:
University of California, Berkeley, 1994) (ftp://s2k­
ftp.cs.berkeley.edu/pub/sequoia/tech-reports/s2k-9
4-4 l/s2k-94-4 l .ps).

20. Geographic Names Information System/United
States Department of the Interior, United States Geo­
logical Survey, rev. ed., Data User's Guide, vol. 6
(Reston, Va.: United States Geological Survey, 1987).

21. J. Anderson, E. Hardy, J. Roach, and R. Witmer,
"A Land Use and Land Cover Classification System for
Use with Remote Sensor Data," United States Geologi­
cal Survey Professional Paper #964 (Washington, D.C.:
United States Government Printing Office, 1976).

22. State Water Project, Coastal Branch, Phase II, and
Mission Hills Extension (Sacramento, Calif: Califor­
nia Department ofWater Resources, 1991).

23. C. Tenopir and J. Ro, Full Text Databases (New York:
Greenwood Press, 1990).

24. W. Croft, R. Kravetz, and H. Turtle, "Interactive
Retrieval of Complex Documents," Information Pro­
cessing and Management, vol. 26, no. 5 (1990):
593-616.

25. A. Chaikin, "Magellan Pierces the Venusian Veil,"
Discover, vol. 13, no. 1 (January 1992).

26. M. Hearst and C. Plaunt, "Subtopic Structuring for
Full-Length Document Access," Proceedings of the
Sixteenth Annual International ACM SIGIR Confer­
ence on Research and Development in Information
Retrieval (SIGIR '93), Pittsburgh, June 1993 (New
York: Association for Computing Machinery, 1993):
59-68.

27. M. Hearst, "Context and Structure in Automated
Full-Text Information Access," Ph.D. dissertation,
Report No. UCB/CSD-94/836 (Berkeley, Calif.:
University of California, Berkeley, Computer Science
Division, 1994).

28. M. Hearst, "TextTiling: A Quantitative Approach to
Discourse Segmentation," Sequoia 2000 Technical
Report 93/24 (S2K-93-24) (Berkeley, Calif: Univer­
sity of California, Berkeley, 1993) (ftp:/ /s2k­
ftp.cs.berkeley.edu/pub/sequoia/tech-reports/s2k-9
3-24/s2k-93-24.ps).

29. M. Hearst, "Multi-Paragraph Segmentation of Expos­
itory Text," Proceedings of the Thirty-second
Meeting of the Association for Computational
Linguistics, Los Cruces, New Mexico, June 1994.

30. G. Salton, Automatic Text Processing: 7be Transfor­
mation, Analysis, and Retrieval of Information by
Computer(Reading, Mass. : Addison-Wesley, 1989).

31. The authors are grateful to Michael Braverman for
proving that the smoothing algorithm is equivalent to
this convolution.

32. L. Rabiner and R. Schafer, Digital Processing of
Speech Signals (Englewood Cliffs, N.J.: Prentice­
Hall, Inc., 1978).

Biographies

Ray R . Larson
Ray Larson is an Associate Professor at the University
of California, Berkeley, in the School oflnformation
Management and Systems (formerly the School of Library
and Information Studies). He teaches courses and conducts
research on the design and evaluation ofinformation
retrieval systems. Ray received his Ph.D. from the University
of California. He is a member of the American Society for
Information Science (ASIS), the Association for Comput­
ing Machinery (ACM), the IEEE Computer Society, the
American Association for the Advancement of Science,
and the American Library Association. He is the Associate
Editor for ACM Transactions on Information Systems
and received the ASISJournalBest Paper Award in 1993.

Christian Plaunt
Christian Plaunt is a doctoral student and graduate
research assistant at the University of California, Berkeley,
School oflnformation Management and Systems. His
interests include experimental information retrieval sys­
tem modeling, simulation, design, and evaluation; arti­
ficial intelligence techniques for information retrieval;
multistage retrieval techniques; information filtering;
and music. Chris holds master's degrees in library and
information studies and in music (composition). In his
spare time, he composes, plays the piano, and works in the
Music Library at California State University, Fresno, near
which he lives with his wife and their three Siamese cats.

Allison G. Woodruff
Allison Woodruff is a Ph.D. student in the Electrical
Engineering and Computer Science Department at the
University of California, Berkeley. Her research interests
include spatial information systems, multimedia databases,
visual programming languages, and user interfaces. Pre­
viously, she worked as a geographic information systems
specialist for the California Department ofWater Resources.
Allison holds a BA. in English from California State Uni­
versity, Chico, and an M.A. in linguistics and an M.S. in
computer science from the University of California, Davis.

Marti A. Hearst
Currently a member of the research staff at Xerox Palo Alto
Research Center, Marti Hearst completed her Ph.D. in
computer science at the University of California, Berkeley,
in April 1994. Her dissertation examined context and
structure of full -text documents for information access.
Her current research interests include intelligent informa­
tion access, corpus-based computational linguistics, user
interfaces, and psycholinguistics.

Digital Technical Journal Vol. 7 No. 3 1995 65

Tecate: A Software
Platform for Browsing
and Visualizing Data
from Networked Data
Sources
Tecate is a new infrastructure on which applica­
tions can be constructed that allow end users
to browse for and then visualize data within
networked data sources. This software platform
capitalizes on the architectural strengths of cur­
rent scientific visualization systems. network
browsers like Netscape. database management
system front ends. and virtual reality systems.
Applications layered on top of Tecate are able
to browse for information in databases man­
aged by database management systems and for
information contained in the World Wide Web.
In addition. Tecate dynamically crafts user inter­
faces and interactive visualizations of selected
data sets with the aid of an intelligent system.
This system automatically maps many kinds of
data sets into a virtual world that can be explored
directly by end users. In describing these virtual
worlds. Tecate uses an interpretive language that
is also capable of performing arbitrary compu­
tations and mediating communications among
different processes.

66 Digital Technical Journal Vol. 7 No. 3 1995

I
Peter D. Kochevar
Leonard R. Wanger

All people share the need to find and assimilate infor­
mation. Data from which information is created is
increasingly available electronically, and that data
is becoming more and more accessible with the prolif­
eration of computer networks. Therefore, the world
is quickly becoming abstracted as a collection of net­
worked data spaces, where a data space is a data source
or repository whose access is controlled by means of
a well-defined software interface. Some examples
of data spaces are a database managed by a database
management system, the World Wide Web (WWW or
Web), and any data object that resides in a computer's
main memory and whose components are accessible
through the object's methods.

The need to locate data and then map it to a form
that is readily understood lies at the core of learning,
conducting commerce, and being entertained. To
address this need, interactive tools are required for
exploring data spaces. These tools should allow any
end user to browse the contents of data spaces and to
inspect, measure, compare, and identify patterns in
selected data sets. Combining both tasks into one tool
is both elegant and utile in that end users need to learn
only one system to seamlessly switch back and forth
between browsing for data and assimilating it. Before
such applications can be constructed, however, a furn
foundation must be defined that provides an interface
to data spaces, helps map data into a visual representa­
tion, and manages user interactions with elements in
the visualizations.

This paper describes one such software platform,
called Tecate, which has been implemented as a
research prototype to help understand the issues
involved in exploring data spaces. With Tecate, the
emphasis has been on developing the tools needed to
build end-to-end applications. Such applications can
access data spaces, automatically create virtual worlds
that represent data found in data spaces, and give end
users the ability to navigate and interact with those
worlds as the mechanism for exploring data spaces.
Because of this emphasis, Tecate's development con­
centrated on understanding what system components
are needed to create end-to-end applications and how
those components interact rather than on the func­
tionality of individual components. As a consequence,

the tools provided by Tecate can be used to build
applications of only modest capabilities.

Historically, Tecate grew out of the Sequoia 2000
project, which was initiated jointly by Digital Equip­
ment Corporation and the University of California
in 1991. The primary purpose of the Sequoia 2000
project was to develop information systems that would
allow earth scientists to better study global envi­
ronmental change. Sequoia 2000 participants needed
to browse for data sets on which to test scientific
hypotheses and then to interactively visualize the data
sets once found. The data can be quite varied in con­
tent and structure, ranging from text and images
to time-varying, multidimensional, gridded or poly­
hedral data sets. Such data may stream from many dif­
ferent sources, e.g., databases managed by a database
management system, a running simulation of some
physical process, or the WWW. Therefore, a tool was
required that could interface to any such source. To be
of maximum use, though, the tool had to be easy
to use so that the scientists themselves could make
sophisticated data queries and then experiment with
the query results using a wide variety of data visualiza­
tion techniques.

Generalizing from its Sequoia 2000 roots, the
design of Tecate is intended to achieve four goals:

1. Interface to general data spaces wherever they may
reside.

2. Saliently visualize most kinds of data, e.g., scientific
data and the listings in a telephone book.

3. Dynamically craft user interfaces and interactive
visualizations based on what data is selected, who is
doing the visualizing, and why the user is exploring
the data.

4. Allow end users to interact with elements in visual­
izations as a means to query data spaces, to explore
alternate ways of presenting information, and to
make annotations.

There are systems available today that have some of
these capabilities, but no one system possesses all four.
Data visualization systems such as AVS, Khoros, or
Data Explorer are capable of visualizing scientific data;
however, they are poor at interfacing to general data
spaces, they provide only limited interactivity within
visualizations themselves, and they require visualiza­
tions to be crafted by hand by knowledgeable end
users. •.2.3 Network browsers such as Netscape are good
at fetching data from certain types of data spaces but
are limited in the variety of data they can directly visu­
alize without having to rely on external viewer pro­
grams. Moreover, most network browsers offer a
restricted type of interactivity where only hyperlinks
can be followed and text can be submitted through
forms. Finally, front ends to database management
systems provide elaborate querying mechanisms for

selecting data from a database, but they lack a sophisti­
cated means for visualizing and further exploring
query results.

The Tecate architecture borrows from that of visu­
alization systems, network browsers, and database
management systems as well as from virtual reality sys­
tems like Alice and the Minimal Reality Toolkit/
Object Modeling Language (MR/OML).4-5 One
major contribution of the Tecate system is that it
incorporates the architectural strengths of these
systems into a coherent whole. In addition, Tecate
possesses at least two novel features that are not found
in other data visualization systems. One feature is
Tecate's use of an interpretive language that can
describe three-dimensional (3-D) virtual worlds. This
language is more than a markup language in that it is
capable of performing arbitrary computations and
facilitating communication among different processes.
The second novel component ofTecate is the presence
of an expert system that automatically crafts interactive
visualizations of data. This system is intended to make
data space exploration easier to perform by having end
users simply state their goals while leaving the details
ofimplementing a visualization to attain those goals to
the expert system.

The remainder of the paper outlines Tecate's sys­
tem model and architecture and then identifies and
describes Tecate's major components. Finally, the
paper sketches Tecate's capabilities by discussing two
simple applications that have been implemented on top
of the Tecate software framework. The first application
is a tool for visualizing earth science data residing in
a database managed by a database management system.
The second application is a Web browser that uses 3-D
graphics as an underlying browsing paradigm rather
than depending solely on the medium of hypertext.

Tecate's System Model

After presenting an overview ofTecate's system model,
this section provides details of the object model and the
interpretive, object-oriented language used to describe
virtual world objects.

Overview
From the standpoint of an applications programmer,
Tecate is a distributed, object-oriented system. All
major components ofTecate, as well as entities appear­
ing in virtual worlds created by Tecate, are objects that
communicate with one another by means of message
passing. The main focus within Tecate is on object­
object interactions. These interactions occur primarily
when objects send messages to one another. An object
can also send a message to itself, which has the effect of
making a local function call. Unlike with graphics
systems such as Open Inventor, rendering is not a cen­
tral activity within Tecate; rather it is just a side effect

Digital Technical Journal Vol. 7 No. 3 1995 67

of object-object interactions.6 In this sense, Tecate is
like virrual reality programming systems such as Alice
and MR/OML, although Tecate is far more flexible.

In the Tecate system, objects can create and destroy
other objects and can alter the properties of existing
objects on-the-fly. Such capabilities make Tecate very
extensible and give it great power and flexibility. These
capabilities can also cause problems for applications
programmers, however, if care is not taken when writ­
ing programs. Presently, all of an object's properties
are visible to all other objects, and hence those proper­
ties can be manipulated from outside the object. In the
future, some form of selective property hiding needs
to be added so that designated properties of an object
cannot be altered by other objects.

A powerful feature ofTecate is its ability to dynami­
cally establish object-subobject relationships. This fea­
ture provides a mechanism for building assemblies of
parts similar to the mechanisms in classical hierarchical
graphics systems like Dore or Open Inventor.7 This
feature also provides the capability of creating sets or
aggregates of objects that share some trait, such as
being highlighted. Tecate allows all objects within a set
to be treated en masse by providing a means of selec­
tively broadcasting messages to groups of objects.
A message that is sent to an object can be forwarded
to all the object's subobjects. Thus, for example, one
object can serve as a container for all other objects that
are highlighted; the highlighted objects are merely sub­
objects of the container. To unhighlight all highlighted
objects, a single unhighlight message can be sent to the
container object, which then forwards the message to
all its subobjects. In general, an object can be the sub­
object of any number of other objects and thus simulta­
neously be a member of many different sets.

The handling of user input within Tecate is
intended to appear the same as ordinary object-object
interactions. All physical input devices that are known
to Tecate have an agent object associated with them
that acts as a device handler. All objects that wish to
be informed of a particular input event register with
the appropriate agent. When an input event occurs,
the agent sends all registered objects a message notify­
ing them of the event. Complex events, such as the
occurrence of event A and event B within a specified
time period, can easily be defined by creating new han­
dler objects. These handlers register to be informed of
separate events but then, in turn, inform other objects
of the events' conjunction.

The Object Model
Tecate uses an object model in which no distinction
is made between classes and instances, as is done in
languages like C + +. 8 In Tecate, there is a single object
creation operation called cloning. Any object in the
system can serve as a prototype from which a copy can
be made through the clone operation. A clone inherits

68 Digital Technical Journal Vol. 7 No. 3 1995

properties from its prototype by copying the proto­
type's properties, but any such property can be altered
or removed, either by another object or by the clone
itself, so that a clone can take on an identity ofits own.

The object model is based on delegation. When
Tecate clones an object to produce a new object,
the prototype's properties are not explicitly copied.
Instead, the new object retains a reference to the
object from which it was cloned. When a reference to
a property is made within an object, the system looks
for the property value locally within the object. If no
property value is found locally, then the object's pro­
totype is searched to associate a value with the refer­
ence. If the prototype is itself a clone, the prototype's
prototype is recursively searched to resolve the refer­
ence, and so on. This type of "lazy" evaluation of
property references is called delegation.

Note that with delegation, a change in value for
a property in an object may affect the values of all
other objects that can trace their ancestry through
prototype-clone relationships to the original object.
This type of semantics is useful for establishing class­
instance-like relationships between objects. For exam­
ple, one object may represent a particular class of
automobile tire, and all clones of the object would
represent class instances. If a class-level change is
needed that would affect all instances, e.g., a new tread
pattern is to be introduced, only the object represent­
ing the tire class needs to change.

The clone-prototype chaining implied by delega­
tion can be overridden by changing the property
values locally. Thus, if one particular tire instance is
to have a new tread pattern, then the pattern is altered
in that instance only. References to the tread pattern
for that object will use the local tread value rather than
chain back to the tire class object. All other instances
will continue to reference the value present in the tire
class object.

All Tecate objects possess four classes of properties:

1. Appearance-attributes that affect an object's
visual appearance, such as geometric and topologi­
cal structure, color, texture, and material properties

2. Behaviors-a set of methods that are invoked upon
receipt of messages from other objects

3. State-a collection of variables whose values repre­
sent an object's state

4. Subobjects-a list of objects that are parts of a
given object, just as a wheel is part of a car

Although most users of the system uniformly see
communicating objects, a distinction is actually made
between two kinds of objects based on how they are
implemented by applications programmers. Resource
objects are implemented primarily as external processes
using some compilable, general-purpose program­
ming language such as C or Fortran. Objects that have

compute-intensive behaviors or whose behavior execu­
tions are time-critical are generally implemented as
resource objects. For instance, most Tecate objects that
provide system services, such as rendering or database
management, are implemented as resource objects.

Objects populating virtual worlds that represent
data features are implemented differently than
resource objects by using an interpretive program­
ming language called the Abstract Visualization Lan­
guage (AVL). Such objects are called dynamic objects
because they may be created, destroyed, and altered
on-the-fly as a Tecate session unfolds. Nonetheless,
the ability to dynamically add, remove, and alter object
properties is not solely endemic to dynamic objects.
Resource properties may also be changed on-the-fly
because resources are actually implemented with a
dynamic object that interfaces to the portion of the
resource that is implemented as an external process.

The Abstract Visualization Language
AVL is essential to the Tecate system; it is through AVL
that applications programmers write applications that
use Tecate's features.9 AVL is an interpretive, object­
oriented programming language that is capable of
performing arbitrary computations and facilitating
communication among different processes. Through
this language, applications programmers specify and
manipulate object properties and invoke object behav­
iors by sending messages from one object to another.

AVL is a typeless language that manipulates char­
acter strings; it is based on the Tel embeddable
command language.10 AVL extends Tel by adding
object-oriented programming support, 3-D graphics,
and a more sophisticated event-handling mechanism.
Although AVL is a proper superset ofTel, the relation­
ship between AVL and Tel is much like that between
C and C+ +. By adding a small set of new constructs
to Tel, the way applications programmers structure
AVL programs differs markedly from how they struc­
ture Tel programs, just as the C+ + language exten­
sions to C greatly alter the C programming style.

One use of AVL is to describe virtual worlds that
represent data sets. Through AVL, objects that popu­
late these worlds can be assigned behaviors that are
elicited through user interaction. For instance, select­
ing a 3-D icon can cause a Universal Resource Locator
(URL) to be followed out into the WWW. In this
sense, AVL is somewhat like the Hypertext Markup
Language (HTML) that underlies all Web browsers
today, or, more fitting, it is similar to the Virtual
Reality Modeling Language (VRML) that has been
proposed as a 3-D analog ofHTML.11 AVL does, how­
ever, differ markedly from HTML and VRML, which
are only markup languages. Because A VL is a full­
fledged programming language that has sophisticated
interaction handling built in, it is philosophically more
similar to interpretive languages like Telescript,

NewtonScript, and PostScript.12
•
13

•
14 Like Telescript,

for instance, A VL programs can encode "smart
agents" that can be sent across a network to perform
user tasks at a remote machine, if an AVL interpreter
resides there. Note, however, that in the present ver­
sion of Tecate, there is no notion of security when
arbitrary AVL code runs on a remote machine.

AVL includes some additional commands that aug­
ment the Tel instruction set, for instance, clone and
delete. The clone command is the object creation com­
mand within AVL, and the delete command is the com­
plementary operation to delete objects from the
system. Object properties are specified and manipu­
lated using the add command and deleted using the
remove command. Behaviors in one object are initiated
by another object using the send command, which
specifies the behavior to invoke and the arguments to
be passed. Queries about object properties can be
made using the inquire command. The which com­
mand is used to determine where an object's properties
are actually defined in light ofTecate's use of delega­
tion to resolve property references. Finally, AVL pro­
vides a rich set of matrix and vector operators that are
useful when positioning objects within 3-D scenes.

As an example of how AVL is used in practice,
Figure 1 depicts a code fragment similar to one that
appears in the WWW application described later in the
paper. The code fragment creates a 3-D Web site icon
that is positioned on a world map. The code begins
with the definition of the Hyperlinkobject from which
all Web site icons are cloned. The Hyperlink object is
itself cloned from the Visual object that is predefined
by Tecate at system start-up. The Visual object con­
tains properties that relate to the viewing of objects
within scenes. For instance, objects that are cloned
from the Visual object inherit behaviors to rotate
themselves and to change their color. To the proper­
ties that are inherited from the Visual object, the
Hyperlink object adds the state variables url and desc,
which will be used to store respectively a URL and its
textual description. In addition, objects cloned from
the Hyperlink object will inherit the default appear­
ance of a solid blue sphere having unit radius.

The specification for the Hyperlink object also
defines three behaviors: init, openUrl, and showDesc.
The init behavior replaces the init method inherited
from the Visual object. When an object cloned from
the Hyperlinkobject receives an initmessage, it sets its
url and desc state variables, positions itself within the
scene whose name is given by the argument scene, and
registers itself with the mouse handler agent to receive
two events. When mouse button 1 is depressed, the
agent sends the object the open Uri message, which in
turn requests the WWW Interface to fetch the data
pointed to by the object's URL. Depressing button 2
invokes the sbowDesc message, causing the Web site
URL and description to be displayed by a previously

Digital Technical Journal Vol. 7 No. 3 1995 69

70

Define a prototype for all Web icons
clone Hyperlink Visual

add Hyperlink {
sta te {

}

ur l ""
des c nu

appearance {

}

shape {sphere}
diffuseColor {0.0 0.0 1.0}
repType {surface}

behavior {
Initialize hyperlink
init {url desc pos scene window} {

addstate url Surl
addstate desc Sdesc
send [getselfl •ove "add Spos"
add Sscene "subobject [ge tselfl"
send Swindow addEvent "[getselfl {Button-1 {openUrl {}}} {Button-2 {showDesc {}}}"

}

Open the URL
openUrl {} {send www fetch "[getstate urll"}

Display the description
showDesc {} {send •etaView e r display "[getstate desc]"}

}

}

Initialize an infor•ational landscape
clone scene Visual
clone window Viewer
send window init {scene}

Create a Web site icon
clone hlink Hyperlink
send hlink init {"http://www.sdsc.edu/Ho•e.ht•l"

" SDSC ho•e page " "-2.3 -2.0 1.0" scene window}

Use the SDSC •odel geo•etry
add hlink {appearance {shape {box}}}

Figure 1
An Implementation of a World Wide Web Icon in the Abstract Visualization Language

defined interface widget called the meta Viewer. The
AVL command getself, which is used within the init
behavior lxxly, returns the name of the object on
which the behavior was called, thus allowing applica­
tions programmers to write generic behaviors. The
other AVL commands, getstate and addstate, are
shorthand for "get [getself) state ... " and "add [getself)
{state ... j."

Once the Hyperlinkobject is defined, a scene, a dis­
play window, and a Web site icon are created. The
Tecate scene object is cloned from the Visual object.
The window object, cloned from the predefined
Vieiwrobject, is the viewport into which the scene is
to be rendered. Finally, blink is a Web site icon whose
appearance differs from that which is inherited from
the Hyperlink object. Rather than being spherical, the
shape of the blink icon is a unit cube.

Digital Technical Journal Vol. 7 No. 3 1995

Tecate's Architecture

The general structure ofTecate and how it relates to
application programs is depicted in Figure 2. Tecate
consists of a kernel, a set of basic system services, and a
toolkit of predefined objects. The Tecate kernel, which
is shown in Figure 3, is an object management system
called the Abstract Visualization Machine; AVL is its
native language. The Abstract Visualization Machine
is responsible for creating, destroying, altering, ren­
dering, and mediating communication between
objects. The two major components of the Abstract
Visualization Machine are the Object Manager and
the Rendering Engine.

The Object Manager is the primary component of
the Abstract Visualization Machine. It is responsible for
interpreting AVL programs, managing a database of

APPLICATIONS

TECATE

Figure 2
The Tecate System and I ts Relationship to Application
Programs

objects, mediating communication between objects,
and interfacing with input devices. The Object
Manager is itself a resource object that is distinguished
by the fact that all other resource objects are spawned
from this one object. In addition, the Object Manager
is responsible for creating a distinguished dynamic
object, called Root, from which all other dynamic
objects can trace their heritage through prototype­
clone relationships.

The Object Manager is implemented on a simple,
custom-built thread package. Each object within
Tecate can be thought of as a process that has its own
thread of control. Each thread can be implemented
either as a lightweight process that shares the same
machine context as the Object Manager's operating
system process or as its own operating system process
separate from that of the Object Manager. Lightweight
processes are so named because their use requires little
system overhead, which enables thousands of such
processes to be active at any given time. Within Tecate,
dynamic objects are implemented as lightweight

INTELLIGENT
VISUALIZATION
SYSTEM

BIGRIVER

processes, whereas resource objects are implemented
as heavyweight operating system processes, which may
or may not be paired with a lightweight, adjunct
process. A low-level function library is provided to
handle the creation and destruction of threads and
to handle interthread communication regardless of
how the threads are implemented.

Closely allied with the Object Manager is the Ren­
dering Engine, which is a special resource object
wholly contained within the Abstract Visualization
Machine. The Rendering Engine is responsible for
creating a graphical rendition of a virtual world that is
specified by AVL programs interpreted by the Object
Manager. When interpreting an AVL program, the
Object Manager strips off appearance attributes of
objects and sends appropriate messages to the Ren­
dering Engine so that it can maintain a separate display
list that represents a virtual world. Display lists are rep­
resented as directed, acyclic graphs whose connectivity
is determined by object-subobject relationships that
are specified within AVL programs.

The present Rendering Engine implementation
uses the Dore graphics package running on a DEC
3000 Model 500 workstation.7 The display lists that are
created by invoking behaviors within the Rendering
Engine are actually built up and maintained through
Dore. The set of messages that the Rendering Engine
responds to represents an interface to a platform's
graphics hardware that is independent of both the
graphics package and the display device.

Layered on top of the Abstract Visualization
Machine are Tecate's system services and the object
toolkit. The system services consist of a collection of
resource objects that are automatically instantiated at
system start-up. These resources include an expert
system called the Intelligent Visualization System,
the Database Interface, the WWW Interface, and a

OBJECT MANAGER

DATABASE
INTERFACE

WWW
INTERFACE

RENDERING
ENGINE

ABSTRACT VISUALIZATION MACHINE

Figure3
Detail ofTecate's Kernel (the Abstract Visualization Machine) and the System Services Provided by Tecate

Digital Technical Journal Vol. 7 No. 3 1995 71

visualization programming system called BigRiver.
Figure 3 shows these resources in relationship to
Tecate's kernel. Each resource is a Tecate object that
has a number of predefined behaviors that can be use­
ful to applications programmers. For instance, the
WWW Interface has a behavior that fetches a data file
referred to by a URL and then translates the file's con­
tents into an appropriate AVL program.

The toolkit within Tecate is a set of predefined
dynamic objects that programmers can use to develop
applications. These objects are considered abstract
objects in the sense that they are not intended to be
used directly. Rather, they serve as prototypes from
which clones can be created. The toolkit consists of
objects such as viewports, lights, and cameras that are
used to illuminate and render virtual worlds. The
toolkit also contains a modest collection of 3-D user
interface widgets that can be used within virtual
worlds created by an applications programmer. These
widgets include sliders, menus, icons, legends, and
coordinate axes.

One useful object in the toolkit that aids in simulat­
ing physical processes and helps in performing anima­
tions is a clock. This object is an event generator that
signals every clock tick. If objects wish to be informed
of a clock pulse, those objects register themselves with
the clock object just like objects register themselves
with input device agent objects. The default clock
object can be cloned, and each clone can be instanti­
ated with a different clock period down to a resolution
of one millisecond. Any number of clocks can be tick­
ing simultaneously during a Tecate session. Since new
clocks can be created dynamically, and objects can reg­
ister and unregister to be informed of clock pulses
on-the-fly, clocks can be used as timers and triggers,
and as pacesetters.

Application Resources

Tecate's system services are predefined application
resources that aid in interactively visualizing data. As
mentioned previously, these objects include the Intel­
ligent Visualization System, the Database Interface,
the WWW Interface, and the BigRiver visualization
programming system. In addition, an applications pro­
grammer can easily add new application resources
using tools provided with the base Tecate system. Such
new resources can be built around either user-written
programs or commercial off-the-shelf applications.
To create a new application resource, a programmer
needs to provide a set of functions that can be invoked
by other Tecate objects. These functions correspond
to behaviors that are called when the resource receives
a message from other objects. Tools are provided
to register the behaviors with Tecate and to manage
the communication between a resource and other
Tecate objects.15

72 Digital Technical Journal Vol. 7 No. 3 1995

The Intelligent Visualization System
The Intelligent Visualization System allows Tecate to
dynamically build interactive visualizations and user
interfaces that aid nonexpert end users in exploring
data spaces. This knowledge-based system is similar in
concept to other expert visualization systems, as the
literature describes.16

-
21 The Intelligent Visualization

System differs from other expert visualization systems
in two important ways. First, the Intelligent Visualiza­
tion System does not merely create a presentation of
information as do most other systems. Instead, the
Intelligent Visualization System creates virtual worlds
with which end users can interact to alter the way data
is presented, to make queries for additional data, and
to store new data back into data spaces.

The second way the Intelligent Visualization System
differs from expert visualization systems is that it takes
a holistic approach to fashioning a visualization. Most
systems decompose data into elementary components,
determine how to visualize each component separately,
and then recompose the individual visualizations into
a final presentation. In contrast, Tecate's Intelligent
Visualization System analyzes the full structure of data
by relying on a sophisticated data model based on the
mathematical notion of fiber bundles.12

-14 One way to
view fiber bundles is as a generalization of the concept
of graphs of mathematical functions. Depending on
the character of a fiber bundle's independent and
dependent variables, certain visualization techniques
are more applicable than others.

In general, the Intelligent Visualization System
automatically crafts virtual worlds based on a task spec­
ification and a description of the data that is to be visu­
alized. A task specification represents a high-level data
analysis goal of what an end user hopes to understand
from the data. For instance, an end user may wish to
determine if there is any correlation between tempera­
ture and the density of liquid water in a climatology
data set. Usually, task specifications must be input by
an end user, although at times they can be inferred
automatically by the system. Tecate provides a simple
task language from which task specifications can be
built, and it provides a point-and-dick tool for end
users to create these specifications when needed. Data
descriptions, on the other hand, do not require any
end-user input because they are provided automati­
cally by a data-space interface when data is imported
into the system.

From the data description and task specification,
a Planner within the Intelligent Visualization System
produces a dataflow program that when executed
builds an appropriate virtual world that represents
a selected data set. The Planner uses a collection of
rules, definitions, and relationships that are stored in
a knowledge base when building a visualization
that addresses a given task specification. Contents of
the knowledge base include knowledge about data

models, user tasks, and visualization techniques. The
Planner functions by constructing a sentence within a
data.flow language defined by a context-sensitive graph
grammar. At each step in the construction of the sen­
tence, rules in the knowledge base dictate which pro­
ductions in the grammar are to be applied and when.
Presently, the knowledge base is implemented using
the Classic knowledge representation system; the
Planner is implemented in CLOS.25

•
26

Big River
The data.flow program produced by the Intelligent
Visualization System is written in a scripting language
that is interpreted by BigRiver, a visualization pro­
gramming system similar to AVS and Khoros.1

•
2 From

a technical standpoint, BigRiver is not particularly
innovative and will eventually be reimplemented using
some existing visualization system that has more func­
tionality. The reason that BigRiver was created from
scratch was to better understand how existing visual­
ization programming systems work and to overcome
limitations within those systems. These limitations are
their inability to be embedded within other applica -
tions, their lack of comprehensive data models, and
their inability to work with user-supplied renderers.
The latest generation of visualization programming
systems, such as Data Explorer and AVS/Express,
overcome many of these limitations. 3•

27

Like most of the existing visualization systems,
BigRiver consists of a collection of procedures called
modules, each of which has a well-defined set ofinputs
and outputs. Functional specifications for these mod­
ules represent some of the knowledge contained in the
Intelligent Visualization System's knowledge base.
Visualization scripts that are interpreted by BigRiver
specify module parameter values and dictate how the
outputs of chosen modules are to be channeled into
the inputs of others.

BigRiver modules come in three varieties: 1/0, data
manipulators, and glyph generators. All modules use
self-describing data formats based on fiber bundJes.
One format is used for manipulation within memory;
the other is an on-the-wire encoding intended for
transporting data across a network. An input module
is responsible for converting data stored in the on-the­
wire encoding into the in-memory format. The data
manipulator modules transform fiber bundJes of one
in-memory format into those of another. The glyph
generators take as input fiber bundJes in the in-memory
format and produce AVL programs that when executed
build virtual worlds containing objects that represent
features of selected data sets. A single display module
takes as input A VL code and passes it to the Abstract
Visualization Machine. By means of the Rendering
Engine, the Abstract Visualization Machine uses the
appearance attributes of objects to create an image of
a virtual world that contains the objects.

The Database Interface
The Database Interface provides the means to interact
with a database management system, which in the cur­
rent version of Tecate can be either POSTGRES or
Illustra.28

•
29 Database queries, written in POSTQUEL

for POSTGRES-managed databases or in SQL for
Illustra databases, are sent to the Database Interface by
Tecate objects where they are passed to a database
management system server for execution. The server
returns the query results to the Database Interface,
which then attempts to package them up as an on-the­
wire encoding of a fiber bundJe buffered on local disk.
If the result is a set of tuples in the standard format
returned by POSTGRES or Illustra, the Database
Interface performs the fiber bundle translation. For
most other nonstandard results, the so-called binary
large objects (BLOBs) of the database realm, the
Database Interface cannot yet arbitrarily perform the
translation into the on-the-wire fiber bundJe encod­
ing. The only BLOBs that the Database Interface can
deal with presently are those that are already encoded
as on-the-wire fiber bundJes. The difficult problem of
automated data format translation was not addressed
during Tecate's initial development, although the
intent is to address this issue in the future.

Once query results are buffered on disk, a descrip­
tion of the fiber bundJe and the location of the buffer
are sent back to the object that made the query
request of the Database Interface. That object might
then request the Intelligent Visualization System to
structure a virtual world whose image would appear
on the display screen by way of BigRiver and the
Rendering Engine. Objects in the virtual world can be
given behaviors that are elicited by user interactions.
These behaviors might then result in further database
queries and so on. Chains of events such as these pro­
vide a means for browsing databases through direct
manipulation of objects within a virtual world.

The World Wide Web Interface
The WWW Interface functions similarly to the
Database Interface but instead of accessing data in
a database, the WWW Interface provides access to data
stored on the World Wide Web. Messages that contain
URLs are passed to the WWW Interface, which then
fetches the data pointed to by the URLs. In retrieving
data from the Web, the WWW Interface uses the same
CERN software libraries used by Web browsers like
Netscape.

Once a data file is fetched, the WWW Interface
attempts to translate its contents into an AVL pro­
gram, which is then passed to the Object Manager for
interpretation. AVL either specifies the creation of
a new virtual world that represents the data file's con­
tents or specifies new objects that are to populate the
current world being viewed. If the fetched data file
contains a stream of AVL code, the WWW Interface

Digital Technical Journal Vol. 7 No. 3 1995 73

merely forwards the file to the Object Manager. If the
file contains general data in the form of an on-the-wire
encoding of a fiber bundle, the WWW Interface
appeals to the Intelligent Visualization System to
structure an appropriate virtual world. If the data file
contains a stream of HTML code, the WWW Interface
invokes an internal translator that translates HTML
code into an equivalent AVL program, which is then
interpreted by the Object Manager. This interpreter
actually understands an extended version of HTML
that supports the direct embedding of AVL within
HTML documents. Through this mechanism, 3-D
objects with which users can interact can be embedded
directly into a hypertext Web page-something that
few if any other Web browsers can do today.

Example Applications

Applications that browse the contents of data spaces
and then interactively visualize selected results have
the same overall structure. One browser application
component acts as a data space interface, and through
this interface queries are posed, query results are
imported into the application, and data generated by
the application is stored back into a data space. Once
data has been imported into the application, a second
component must map the data into some appropriate
virtual world. Finally, a third component must manage
any interactions that may take place between an end
user and elements that populate the virtual worlds that
are created.

In creating an application using Tecate, the Database
Interface and the WWW Interface represent resources
that can be used to form the application's data space
interface. The mapping of data into a representative
virtual world can utilize Tecate's Intelligent Visuali­
zation System and the BigRiver visualization program-

Figure 4

PLAN VISUALIZATION

INTELLIGENT PLAN
VISUALIZATION --- -----,
SYSTEM VISUALIZATION

EXECUTE
SCRIPT

SET
BIG RIVER

PARAMETERS

INTERPRET
ABSTRACT
VISUALIZATION
LANGUAGE

OBJECT
MANAGER

ming system. Finally, the management of these worlds
can take place through AVL programs that exercise the
features of Tecate's Abstract Visualization Machine.
The following two examples that were implemented in
AVL illustrate how Tecate can be used to create applica­
tions that browse data spaces.

Visualizing Data in a Database
A simple example of an application that exploits
Tecate's features is one that browses for earth science
data in a database and then provides visualizations of
that data. The initial user interface for this application is
built using a collection of user interface widgets, where
each widget is a Tecate dynamic object. Because the
Tecate system does not yet have a comprehensive 3-D
widget set, some widgets still rely on two-dimensional
(2-D) constructs provided by the Tk widget set that
is implemented on top of the Tel language.30

Figure 4 depicts the flow of messages between some
of the more important objects that are used within the
application. One object is the Map Query Tool that
is used to make certain graphical queries for earth
science data sets whose geographical extents and time
stamps fall within user-specified constraints. The tool
is built around a world map on which regions of inter­
est can be specified (see Figure 5). When a user marks
a region of interest on the map and selects a temporal
range, a query message is sent to the Database
Interface. The result of the query is returned to the
Map Query Tool, which then forwards a description
of the result to the Intelligent Visualization System.
To structure an appropriate visualization, an inferred
select task directive accompanies the result. The ensu­
ing script produced by the Intelligent Visualization
System is executed by BigRiver, which produces a
stream of AVL code that is sent to the Abstract
Visualization Machine for interpretation.

QUERY

QUERY
RESULT

QUERY

QUERY
RESULT

KEY:

DATABASE
INTERFACE

O DYNAMIC OBJECT

C:=J RESOURCE OBJECT

- MESSAGE FLOW

Me~ge Flow between Important Objects in the Earth Science Application

74 Digital Technical Journal Vol. 7 No. 3 1995

Figure 5
The Map Query Tool Showing a Visualization of a Query Result

This AVL program creates a new virtual world that
consists of a collection of 3-D objects. Each object acts
as an icon that corresponds to one data set that was
returned as the result of the initial query (see Figure
5). The Intelligent Visualization System also builds
in two behaviors for each icon. Depending on how
a user selects an icon, either the metadata associated
with the data set represented by the icon is displayed in
a separate window or a query message is sent to the
Database Interface requesting the actual data. In
the latter case, the Map Query Tool again forwards
the query result to the Intelligent Visualization System,
and another virtual world containing objects repre­
senting data features is created and displayed with
the aid of BigRiver and the Abstract Visualization
Machine. In general, data exploration proceeds this
way by creating and discarding virtual worlds based on
interactions with objects that populate prior worlds.

After selecting an icon to actually view the data asso­
ciated with it, an end user is asked by the Intelligent
Visualization System to input a task specification using
a Task Editor. Generally, data sets can be visualized in

many different ways. The Intelligent Visualization
System uses the task specification to select the one
visualization that best satisfies the stated task. After
a task specification is entered, a visualization of the
selected data set appears on the screen. The BigRiver
dataflow program that the Intelligent Visualization
System creates to do that visualization can be edited by
hand by knowledgeable end users to override the deci­
sions made by the system.

Figure 6 shows a Task Editor and a visualization
crafted by the Intelligent Visualization System after an
end user selected a data-set icon. The visualization rep­
resents hydrological data that consists of a collection of
tuples, each corresponding to a set of measurements
made at discrete geographical locations. Based on
the task specification that the end user entered, the
Intelligent Visualization System chose to map the data
into a coordinate system that has axes that represent
latitude, longitude, and elevation. Each sphere repre­
sents an individual measurement site, whose color is
a function of the mean temperature. When an end user
selects a sphere, the actual data values associated with

Digital Technical Journal Vol. 7 No. 3 1995 75

Figure 6
Task Editor Showing a Visualization of Hydrological Data

the location represented by the sphere are displayed.
In addition, the Intelligent Visualization System auto­
matically places into the virtual world of the visualiza­
tion a color legend to help relate sphere colors to mean
temperature values.

Figure 7 depicts another virtual world showing a
visualization of data-set output from a regional climate
model program. The data set is a 3-D array indexed by
latitude, longitude, and elevation. Each array element
is a tuple that contains cloud density, water content,
and temperature values. In this instance, the end user
entered a task specification that stated that the spatial
variation in temperature was of primary importance.
The Intelligent Visualization System responded by
specifying a visualization that represented the temper­
ature data as an isosurface, i.e., a surface whose points
all have the same value for the temperature. Included
in the virtual world is a widget that can be used to
change the isosurface value and the field variable that
is being studied.

The isosurface widget that appears in the visualiza -
tion shown in Figure 7 is of special interest because of
the way that it is implemented. Embedded in the tool
is a slider that is used to change the isosurface value. As
with most sliders, the slider value indicator automati­
cally moves when a mouse button is held down while

76 Digital Technical Journal Vol. 7 No. 3 1995

pointing at one of the slider ends. To achieve this sim­
ple animation, Tecate's clock object is used. When the
mouse button is firs~ depressed while the cursor is over
a slider end, the slider indicator registers itself to be
informed of clock ticks. From then on, at every clock
tick, the indicator receives an update message from the
clock, at which time the indicator repositions itself and
increments or decrements the current slider value.
When the mouse button is released, the slider sends
a message to BigRiver indicating that a new isosurface
is to be calculated and displayed. In addition, the slider
indicator unregisters itself from the clock signaling
that it no longer is to receive the update messages. In
general, applications can use this same clock mecha­
nism to perform more elaborate animations.

A 3-D World Wide Web Browser
In the Tecate Web browser, exploration of the World
Wide Web and its contents occurs by placing an end
user onto an informational landscape. This landscape
is a 3-D virtual world whose appearance reflects the
content and the structure of a designated subset of the
entire Web. Upon application start-up, an end user
is presented with an initial informational landscape
that consists of a planar map of the earth embedded
in a 3-D space, as shown in Figure 8. In general, the

Figure7
Task Editor Showing a Visualization of Regional Climate Data, Including an Isosurface and a User Interface Widget

initial informational landscape can be any 3-D scene
and does not have to be geographically based. For
instance, an informational landscape might be a virtual
library where books on shelves serve as anchors for
hyperlinks to different Web sites.

In the present browser application, selected Web
sites appear as 3-D icons on the world map. These
icons are positioned either in locations where Web
servers physically reside or in locations referenced
,vithin Web documents (see Figure 8). A user places
information that describes these sites into a database
that serves as an elaboration of the hot list of current
hypertext-based browsers. When the browser applica­
tion is first started, it sends a query for the initial com­
plement of Web sites to the Database Interface. The
browser application then invokes a BigRiver script that
visualizes the results by placing icons representing
each site onto the world map.

Suspended above .the world map is a 3-D user inter­
face widget that is used to query a database of Web
sites that are of interest to an end user (see Figure 8).
This database, where the initial set of Web sites is
stored, includes information such as URLl, keywords,
geographical locations, and Web site types. Currently, Figure 8

Tecate Web Browser Informational Landscape Showing
WWW Sites Depicted as 3-D Icons on a Map of the World

Digital Technical Journal Vol. 7 No. 3 1995 77

individual users are responsible for maintaining their
own databases by adding or removing Web site entries
by hand. An automated means for building these data­
bases can be easily added to the browser application so
that Web information could be accumulated based on
where and when an end user travels on the Web.

During a browsing session, the Web Query Tool
allows arbitrary SQL queries to be posed to the
database by an end user. In addition, the Web Query
Tool has provisions to allow packaged queries to be
initiated by a simple click of a mouse button. In both
cases, queries are sent to the Database Interface for
forwarding to the appropriate database server. The
Database Interface packages up the query results as
on-the-wire fiber bundles which are returned to the
Web Query Tool. The Web Query Tool then invokes
a BigRiver script, which converts the fiber bundle data
into AVL code. This code, when interpreted by the
Object Manager, creates a visualization of the Web
sites that satisfies the query. Generally, a visualization
such as this consists of placing on the world map a set
of 3-D icons whose appearances are a function of the
Web site type. However, query result visualizations
need not be limited to an organization based on geo­
graphical position. For instance, a query for the con-

Figure9
Sample End-user Noogeographical IoformationaJ Landscape

78 Digital Technical Journal Vol. 7 No. 3 1995

tents of an end user's own file directory results in a
new informational landscape that consists of an evenly
spaced grid of icons suspended within a room, as
shown in Figure 9.

Each icon that appears within an informational
landscape is cloned from an AVL Hyper/ink abstract
object that stores its URL in a state variable. Each Web
site icon inherits from the Hyperlink prototype a
behavior that causes data pointed to by its URL state
variable to be fetched by means of the WWW Interface
when the icon is selected. When the data is drawn
across the Web, Tecate's WWW Interface attempts to
structure a visualization of it. Figure 10 summarizes
the message flow between the more important objects
within the Web browser application.

If an end user selects an icon and a Web server
returns a stream of HTML, the WWW Interface trans­
lates the stream into A VL and displays the result on the
base of an inverted pyramid whose apex is centered on
the chosen icon (see Figure 11). The text and imagery
resulting from the HTML appear similarly as they
would when visualized using a hypertext-based
browser like Netscape. Hyperlinks are represented as
highlighted text, which the user can follow by select­
ing the text. These hyperlinks are Tecate objects that

Figure 10

EXECUTE SCRIPT
BIGRIVER

INTERPRET
ABSTRACT
VISUALIZATION
LANGUAGE

OBJECT
MANAGER

INTERPRET
ABSTRACT

VISUALIZATION
LANGUAGE

KEY:

O DYNAMIC OBJECT

~ RESOURCE OBJECT

- MESSAGE FLOW

Mc~ge Aow between Important Objects in the Web Browser

Ftgure 11

QUERY

QUERY RESULT

FETCH URL

FETCH RESULT

DATABASE
INTERFACE

WWW
INTERFACE

Results of a Tecate Browsing Session Showing a Hyperlink and a Forest of Pyramids That Represents the User's Travels
on the Web

Digital Technical Journal Vol. 7 No. 3 1995 79

are cloned from the same Hypcrlink prototype as the
Web site icons. If another HTML document is
retrieved by following a hyperlink, that document
is viewed on the base of another inverted pyramid
whose apex rests on the selected text and so on (see
Figure 11). Rather than having to page back and forth
between hypertext documents as with most hypertext­
based browsers, in Tecate, an end user needs only to
move about the virtual world to gain an appropriate
viewpoint from which to examine a desired document.
Overall, as shown in Figure 11, a browsing session
with Tecate's Web browser results in a forest of pyra­
midal structures that represent a pictorial history of
an end user's travels on the Web.

Although Tecate's Web browser is capable of view­
ing HTML documents, its main purpose is not to
emulate what can currently be done using hypertext­
based browsers, albeit using 3-D. Rather, the new
browser is intended to visualize primarily more com­
plex types of data. When data does not consist of
a stream of HTML code, the WWW Interface attempts
to visualize what was returned from the Web. These
visualizations can take place in virtual worlds separate
from the informational landscape from where the data

Figure 12
Example of a Web Document with Embedded 3-D Vinual World

80 Digital Technical Journal Vol. 7 No. 3 1995

request was initiated, or they can be placed within
the original informational landscape. Figure 12 depicts
an example of a Web document that has embedded
within it a miniature virtual world containing a model
of a car. An end user can freely interact with this model
to initiate any behavior defined for objects populating
the subworld. For instance, selecting the car with the
mouse causes the car wheels to spin. Figure 13 shows
the AVL code embedded in the HTML page for the
Web document shown in Figure 12.

Conclusions

Tecate provides the infrastructure on which applica­
tions can be created for browsing and visualizing data
from networked data sources. Architecturally, Tecate
seeks to bring together into one package useful fea­
tures found in visualization systems, network browsers,
database front ends, and virtual reality systems. As a
first prototype, Tecate was created using a breadth-first
development strategy. That is, developers deemed it
essential to first understand what components were
needed to build a general data space exploration utility
and then determine how those components interact.

<HEAD>
<TITLE>The Tecate car demo< / TITLE>
</HEAD>

<BODY>

<H1>The Tec a te car demo</H1>

<AVL>
Global variables
global TEC_WEB_PARENT TEC_WEB_WIN
set path "/projects/s2k/sharedata"

Define car part prototype
clone CarPart Visual
add CarPart {

}

state {angle 10}
appearance {

}

repType surface
interpType surface

behavior {

}

around {args} {

}

for {set i 0} {Si < 360} {incr i [getstate angle]} {
send [getself] rotate "add O [getstate angle] O"

}

Define car body
clone car_body CarPart
add car_body {

}

appearance {

}

replacematrix {rotate {0.0 0.0 90.0}}
shape {AliasObj " Spath/car_body.t ri "}

Define generic wheel
clone wheel CarPart

Define car's four wheels
clone back_right CarPart

Assemble car
clone wheels CarPart
add wheels {subobject {back_right back_ left front_left front_right}}
clone car CarPart
add car {

appearance {replacematr i x {translate {28.0 -8.0 3.0} rotate {90.0 90.0 0.0}}}
subobject {car_body wheels}

}

add STEC_WEB_PARENT {subobject {car}}

Bind pick events to car
send STEC_WEB_WIN addEvent {wheel {Pick-Shift - Button- 1 {rot_wheels {}}}}
send STEC_W EB_WIN addEvent {wheel {Pick-Button-1 {around{}}}}
send STEC_WEB_WIN addEvent {car {Pick-Button- 1 {around{}}}}
</AVL>

<PRE>
Button- 1 on car to rotate the car

Button-1 on a wheel to rotate the wheels

Shift Button-1 on a wheel to change the wheels

</PRE>

<HR>
<P>
</BODY >

Figure 13
AVL Code Embedded in the HTML Page for the Web Document Example

Digital Technical Journal Vol. 7 No. 3 1995 81

82

This development strategy traded off the functionality
of individual components for the completeness of
a fully running visualization system.

In terms of achieving its design goals, the Tecate
effort has been moderately successful. Tecate can now
provide interfaces to two kind of data spaces: the
World Wide Web and databases managed by the
POSTGRES and Illustra database management sys­
tems. In addition, interfaces to other data spaces can
be implemented easily by creating new resource
objects using the tools provided by Tecate. Much
work still needs to be done, however. For example, the
attendant data translation problem must be satisfacto­
rily solved; data passing through an interface that
is stored in one format should be automatically con­
verted into Tecate's favored format and vice versa.

When building visualizations of data, Tecate now
understands data that has a specific conceptual struc­
ture, in particular, arbitrary sets of tuples and multi­
dimensional arrays where array elements may be
tuples. Although data types from many different disci­
plines possess such a structure, some types remain that
do not, for instance, data that has a lattice-like or poly­
hedral structure. Furthermore, Tecate can now con­
struct only crude visualizations of the data types that it
does understand. The primary reason for this short­
coming is that the basic module set within the
BigRiver resource is incomplete, and the knowledge
base within the Intelligent Visualization System con­
tains limited knowledge of visualization techniques
that can be used to transform data into virtual worlds.

At present, Tecate does dynamically craft simple user
interfaces and interactive visualizations using its Intelli­
gent Visualization System. This expert system takes into
account how data is conceptually structured and end­
user tasks regarding what is to be understood from the
data. Still, the Intelligent Visualization System does not
yet consider data semantics, end-user preferences, or
display system characteristics when building visualiza­
tions. Nonetheless, Tecate does provide the capabilities
to create highly interactive applications. Sophisticated
event handling constructs are built into A VL, and the
Intelligent Visualization System uses those features to
automatically place user interface widgets into the
virtual worlds it specifies.

Regarding future work, hopefully, succeeding gen­
erations of the Tecate system will include many new
features and enhancements. The management of
objects needs to be reworked so that thousands of
objects can be efficiently handled simultaneously.
Although Tecate now builds virtual worlds, virtual
reality gadgetry has yet to be integrated into the sys­
tem. The Abstract Visualization Language needs new
features, and it needs to be streamlined. Tecate can
also benefit greatly fro m a more complete toolki t of
3-D widgets that can be used to interact with objects
within virtual worlds. Finally, the Dore graphics sys-

Digital Technical Journal Vol. 7 No. 3 1995

tern that Tecate uses should be replaced with a more
mainstream system like OpenGL, which will allow
Tecate to run on a wide variety of hardware platforms.

Tecate is an exciting system to use and an excellent
foundation from which to pursue further research and
development in the exploration of general data spaces.
Tecate advances the state of the art by demonstrating a
comprehensive means to graphically browse for data
and then interactively visualize data sets that are
selected. Tecate accomplishes these tasks by using an
expert system that automatically builds virtual worlds
and by exploiting the flexibility of an interpretive,
object-oriented language that describes those worlds.

Acknowledgments

The work described in this paper was supported by
Digital Equipment Corporation, the University of
California, and the San Diego Supercomputer Center
as part of the Sequoia 2000 project. We would like to
give special thanks to Frank Araullo, Mike Kelley,
Jonathan Shade, and Colin Sharp for their help in con­
structing the Tecate prototype.

References

1. AVS User's Guide (Waltham, Mass.: Advanced Visual
Systems Inc., May 1992).

2. Khoros User's Manual (Albuquerque, N. Mex.: The
Khoros Group, Department of Electrical and Com­
puter Engineering, University of New Mexico, 1992).

3. IBM Visualization Data lixplorer: User's Guide
(Armonk, N.Y.: International Business Machines
Corporation, 1992).

4. R. Pausch et al., "Alice: A Rapid Prototyping System
for Virtual Reality," Course Notes #2: Developing
Advanced Virtual Reality Applications, Proceedings
of the ACM SIGGRAPH '94 Conference (1994).

5. Object Modeling Language (OML) Programmer's
Manual (Edmonton, Alberta, Canada: Department of
Computing Science, University of Alberta, 1992).

6. P. Strauss and R. Carey, "An Object-oriented
3D Graphics Toolkit," Proceedings of the ACM
SIGGRAPH '92 Conference (1992).

7. Dore Programmer's Guide (Santa Clara, Calif.:
Kubota Graphics Corporation, 1994).

8. D. Ungar and R. Smith, "Self: The Power of Simplic­
ity," SIGPLAN Notices, vol. 22, no. 12 (December
1987): 227-241.

9. P. Kochevar, "Programming in Tecate," available on the
Internet at http:/ /www.sdsc.edu/SDSC/Research/
Visualization/Tecate/tecate.html (May 1995).

10. J. Ousterhout, "Tel: An Embeddable Command
Language," Proceedings of the 1990 Winter USENIX
Conference (1990).

11. G. Bell, A. Parisi, and M. Pesce, "The Virtual Reality
Modeling Language Specification," available on the
Internet at http://vrml.wircd.com (November 1994).

12. J. White, "Telescript Technology: The Foundation for
the Electronic Marketplace," General Magic white
paper (Sunnyvale, Calif.: General Magic, Inc., 1994).

13. J. McKeehan and N. Rhodes, Programming for the
Newton: Software Development with NewtonScript
(Cambridge, Mass.: Academic Press Professional, 1994).

14. Adobe Systems Incorporated, PostScript Language
Reference Manual (Reading, Mass.: Addison· Wesley
Publishing Company, 1990).

15. L. Wanger, "Writing Tecate Resources," available on the
Internet at http:/ /www.sdsc.edu/SDSC/Research/
Visualization/Tecatc/tecatc.html (May 1995).

16. S. Casner, "A Task-analytic Approach to the Automated
Design of Graphic Presentations," ACM Transactions
on Graphics, vol. 10, no. 2 (April 1991): 111-151.

17. E. Ignatius and H. Senay, "Visualization Assistant,"
Proceedings of the IEEE Visualization Workshop 011

Intelligent Visualization Systems (October 1993).

18. J. Mackinlay, "Automating the Design of Graphical
Presentations of Relational Information," ACM Trans­
actions on Graphics, vol. 5, no. 2 (1986): 110- 141.

19. H . Senay and E. Ignatius, "VISTA: A Knowledge·
based System for Scientific Data Visualization,"
Technical Report GWU-IIST-92·10 (Washington,
D.C.: George Washington University, March 1992).

20. Z. Ahmed ct al., "An Intelligent Visualization System
for Earth Science Data Analysis," Journal of Visual
Languages and Computing (December 1994).

21 . P. Kochevar et al., "An Intelligent Assistant for Creat·
ing Data Flow Visualization Networks," Proceedings
of the AVS '94 Conference(1994).

22. D. Butler and M. Pendley, "A Visualization Model Based
on the Mathematics of Fiber Bundles," Computers in
Physics, vol. 3, no. 5 (September/October 1989).

23. D. Butler and S. Bryson, "Vector-bundle Classes Form
Powerful Tool for Scientific Visualization," Computers
in Physics, vol. 6, no. 6 (November/ December 1992):
576-584.

24. R. Haber, B. Lucas, and N. Collins, "A Data Model for
Scientific Visualization with Provisions for Regular and
Irregular Grids," Proceedings of the Visualization
'91 Conference (1991).

25. L. Resnick et al., CLASSIC Descnption and Reference
Manual for the Common LISP Implementation
(Murray Hill, N.J.: AT&T Bell Laboratories, 1993).

26. G. Steele, Jr., Common LISP. The Language, Second
Edition (Bedford, Mass.: Digital Press, 1990).

27. AVS!Express Developer's Reference (Waltham, Mass.:
Advanced Visual Systems Inc., June 1994).

28. M. Stonebraker and G. Kemnitz, "The POSTGRES
Next-generation Database Management System,"
CommwzicationsoftheACM(October 1991): 78-92.

29. Using lllustra (Oakland, Calif.: Illustra Information
Technologies, Inc., June 1994).

30. J. Ousterhout, "An Xl 1 Toolkit Based on the Tel
Language," Proceedings of the 1991 Winter USENIX
Conference (1991).

Biographies

. ~ ·-:- .,.~ ~-

/~,;.·.· ... · :.: :~., ., ·,
-. =-"'

I_... '

.... ,i.
Peter D. Kochevar
Peter Kochevar is a principal software engineer in Digital's
External Research Program. From 1992 to 1994, he led
the data visualization research efforts of the Sequoia 2000
project, which were undertaken at the San Diego Supercom·
puter Center (SDSC). Currently, Peter is a visiting scientist
at the SDSC, where he leads researchers in developing
interactive data visualization systems. Peter joined Digital
in 1990 as a member of the Workstations Engineering
Group. In earlier work, he was a software engineer for the
Boeing Commercial Airplane Company. Peter received a
B.S. (1976) in mathematics from the University of Michigan
and an M.S. (1982) in mathematics from the University of
Utah. He also holds M.S. and Ph.D. degrees in computer
science from Cornell University.

Leonard R. Wanger
Len Wanger is the head of development at Interactive
Simulations, Inc., working on interactive molecular model·
ing tools. He is also a member of the Computer Science
Department staff at the University of California, San Diego,
where he researches next-generation visualization systems
at the San Diego Supercomputer Center. He received a
B.S. in computer science from the University oflowa in
1987 and an M.S. in architectural science from Cornell
University in 1991 . His research interests include visual
front ends to simulations, database support for visualiza·
tion systems, navigation in virtual environments, and the
perception of complex data spaces.

Digital Technical Journal Vol. 7 No. 3 1995 83

High-performance
1/0 and Networking
Software in Sequoia 2000

The Sequoia 2000 project requires a high-speed

network and 1/0 software for the support of

global change research. In addition, Sequoia

distributed applications require the efficient

movement of very large objects, from tens to

hundreds of megabytes in size. The network

architecture incorporates new designs and

implementations of operating system 1/0 soft­

ware. New methods provide significant per­

formance improvements for transfers among

devices and processes and between the two.

These techniques reduce or eliminate costly mem­

ory accesses, avoid unnecessary processing, and

bypass system overheads to improve through­

put and reduce latency.

84 Digital Technical Journal Vol. 7 No. 3 1995

I
Joseph Pasquale
Eric W. Anderson
Kevin Fall
Jonathan S. Kay

In the Sequoia 2000 project, we addressed the prob­
lem of designing a distributed computer system that
can efficiently retrieve, store, and transfer the very
large data objects contained in earth science applica­
tions. By very large, we mean data objects in excess
of tens or even hundreds of megabytes (MB). Earth
science research has massive computational require­
ments, in large part due to the large data objects often
found in its applications. There are many examples: an
advanced very high-resolution radiometer (AVHRR)
image cube requires 300 MB, an advanced visible and
infrared imaging spectrometer (AVIRIS) image
requires 140 MB, and the common land satellite
(LANDSAT) image requires 278 MB. Any throughput
bottleneck in a distributed computer system becomes
greatly magnified when dealing with such large
objects. In addition, Sequoia 2000 was an experiment
in distributed collaboration; thus, collaboration tools
such as videoconferencing were also important appli­
cations to support.

Our efforts in the project focused on operating sys­
tem 1/0 and the network. We designed the Sequoia
2000 wide area network (WAN) test bed, and we
explored new designs in operating system 1/0 and
network software. The contributions of this paper are
twofold: (1) it surveys the main results of this work
and puts them in perspective by relating them to the
general data transfer problem, and (2) it presents
a new design for container shipping. (For a complete
discussion of container shipping, see Reference 1.)
Since container shipping is a new design, this paper
devotes more space to it in relation to the other sur­
veyed work (whose detailed descriptions may be found
in References 2 to 9). In addition to this work, we con­
ducted other network studies as part of the Sequoia
2000 project. These include research on protocols to
provide performance guarantees and multicasting. 10

-
17

To support a high-performance distributed comput­
ing environment in which applications can effectively
manipulate large data objects, we were concerned with
achieving high throughput during the transfer of these
objects. The processes or devices representing the data
sources and sinks may all reside on the same work­
station (single node case), or they may be distributed
over many workstations connected by the network

(multiple node case). In either case, we wanted appli­
cations, be they earth science distributed computa­
tions or collaboration tools involving multipoint
video, to make full use of the raw bandwidth provided
by the underlying communication system.

In the multiple node case, the raw bandwidth is
from 45 to 100 megabits per second (Mb/s), because
the Sequoia 2000 network used T3 links for long­
distance communication and a fiber distributed data
interface (FDDI) for local area communication. In the
single node case, the raw bandwidth is approximately
100 megabytes per second, since the workstation of
choice was one of the DECstation 5000 series or the
Alpha-powered DEC 3000 series, both of which use
the TURBOchannel as the system bus.

Our work focused only on software improvements,
in particular how to achieve maximum system software
performance given the hardware we selected. In fact,
we found that the throughput bottlenecks in the
Sequoia distributed computing environment were
indeed in the workstation's operating system software,
and not in the underlying communication system
hardware (e.g., network links or the system bus). This
problem is not limited to the Sequoia environment:
given modern high-speed workstations (100+ millions
of instructions per second [mips]) and fast networks
(100+ Mb/s), performance bottlenecks are often
caused by software, especially operating system soft­
ware. System software throughput has not kept up
with the throughputs of I/0 devices, especially net­
work adapters, which have improved tremendously
in recent years. These technology improvements are
being driven by a new generation of applications, such
as interactive multimedia involving digital video and
high-resolution graphics, that have high 1/0 through­
put requirements. Supporting these applications and
controlling these devices have taxed operating system
technology, much of which was designed during times
when intensive 1/0 was not an issue.

In the next section of this paper, we describe the
Sequoia 2000 network, which served as an experimen­
tal test bed for our work. Following that, we analyze
the data transfer problem, which serves as the context
for the three subsequent sections. There we describe
our solutions to the data transfer problem. Finally, we
present our conclusions.

The Sequoia 2000 Network Test Bed

The Sequoia 2000 network is a private WAN that we
designed to span five campuses at the University of
California: Berkeley, Davis, Los Angeles, San Diego,
and Santa Barbara. The topology is shown in Figure 1.
The backbone link speeds are 45 Mb/s (T3) with
the exception of the Berkeley-Davis link, which is
1.5 Mb/s (Tl). At each campus, one or more FDDI

Figure 1
Sequoia 2000 Research Network

SAN
DIEGO

local area networks (lANs) that operate at 100 Mb/s
are used for local distribution. At some campuses,
the configuration is a hierarchical set of rings. For
example, at UC San Diego, one FDDI ring covered
the campus and joined three separate rings: one at
the Computer Systems Lab (our laboratory) in the
Department of Computer Science and Engineering,
one at the Scripps Institution of Oceanography, and
one at the San Diego Supercomputer Center.

We used high-performance general-purpose com­
puters as routers, originally DECstation 5000 series
and later DEC 3000 series (Alpha-powered) work­
stations. Using workstations as routers running the
ULTRIX or the DEC OSF/1 (now Digital UNIX)
operating system provided us with a modifiable soft­
ware platform for experimentation. The T3 (and Tl)
interface boards were specially built by David Boggs at
Digital. We used off-the-shelf Digital products for
FDDI boards, both models DEFTA, which supports
both send and receive direct memory access (DMA),
and DEFZA, which supports only receive OMA.

The Data Transfer Problem

Since a data source or sink may be either a process or
device, and the operating system generally performs
the function of transferring data between processes
and devices, understanding the bottlenecks in these
operating system data paths is key to improving
performance. These data paths generally involve tra­
versing numerous layers of operating system software.
In the case of network transfers, the data paths are
extended by layers of network protocol software.

Digital Technical Journal Vol. 7 No. 3 1995 85

To understand the performance problem we were
trying to solve, consider a common client-server inter­
action in which a client has requested data from a
server. The data resides on some source device, e.g., a
disk, and must be read by the server so that it may send
the data to the client over a network. At the client, the
data is written to some sink device, e.g., a frame buffer
for display.

Figure 2 shows a typical end-to-end data path where
the source and sink end-point workstations are runnjng
protected operating system kernels such as UNIX. The
source device generates data into the memory of its
connected workstation . This memory is generally only
addressable by the kernel; to allow the server process
to access the data, it is physically copied into memory
addressable via the server process's address space, i.e.,
user space. Physically copying data from one memory
location to another (or more generally, touching the
data for any reason) is a major bottleneck in modern
workstations.

In travelling through the kernel, the data generally
travels over a device layer and an abstraction layer. The
device layer is part of the kernel's 1/0 subsystem and
manages the 1/0 devices by buffering data between
the device and the kernel. The abstraction layer com­
prises other kernel subsystems that support abstrac­
tions of devices, providing more convenient services
for user-level processes. Examples of kernel abstraction
layer software include file systems and communication
protocol stacks: a file system converts disk blocks into
files, and a communication protocol stack converts
network packets into datagrams or stream segments.
Sometimes, a kernel implementation may cause physi­
cal copying of data between the device layer and the
abstraction layer; in fact, copying may even occur
witrun these layers.

Figure 2

APPLICATION LAYER

USER SERVER
SPACE

STANDARD 1/0 LAYER

KERNEL j ABSTRACTION LAYER

SPACE
DEVICE LAYER

SOURCE
DEVICE

NETWORK
ADAPTER

ROUTER

From kernel space, the data may travel across several
more layers in user space, such as the standard 1/0
layer and the application layer. The standard 1/0 layer
buffers 1/0 data in large chunks to minimize the
number ofl/0 system calls. The application layer gen­
erally has its own buffers where 1/0 data is copied.

From the server process in user space, the data is
then given to the network adapter; this may cause
transfers across user process layers and then across the
kernel layers. The data is then transferred over the net­
work, which generally consists of a set of links con -
nected by routers. If the routers have kernels whose
software structure is like that described above, a simi­
lar (but typically simpler) intramachine data transfer
path will apply.

Finally, the data arrives at the client's workstation .
There, the data travels in a similar way as was described
for the server's workstation: from the network adapter,
across the kernel, through the client process's address
space, and across the kernel again, finally reaching the
sink device.

From this analysis, one can surmise why throughput
bottlenecks often occur at the end points of the end­
to-end data transfer path, assuming sufficiently fast
hardware devices and communjcation links. At the end
points, there may be significant data copying as the
data traverses the various software layers, and there is
protection-domain crossing (kernel to user to kernel),
among other functions. The overheads caused by these
functions, directly and indirectly, can be significant.

Consequently, we focused on improving operating
system 1/0 and network software, including opti­
mizations for the four possible process/ device data
transfer scenarios: process to process, process to device,
device to process, and device to device, with special
care in addressing cases where either source or sink

APPLICATION LAYER

USER CLIENT
SPACE

STANDARD 1/0 LAYER

KERNELj ABSTRACTION LAYER

SPACE
DEVICE LAYER

NETWORK
ADAPTER

-iJ,al
NETWORK

SINK
DEVICE

An End-to-End Data Path from a Source Device on One Workstation to a Sink Device on Another Workstation

86 Digital Technical Journal Vol. 7 No. 3 1995

device is a network adapter. In this paper, we use
the term data transfer problem to refer to the problem
of reducing these overheads to achieve high through­
put between a source device and a sink device, either
of which can be a network adapter within a single
workstation.

Although the data transfer problem may also exist in
intermediate routers, it does so to a much lesser
degree than with end-user workstations (assuming
modern router software and hardware technology).
This is because of a router's simplified execution envi­
ronment and its reduced needs for transfers across
multiple protected domains. However, there is noth­
ing that precludes the application of the techniques
discussed in this paper to router software. In fact, since
we used general-purpose workstations for routers to
support a flexible, modifiable test bed for experimen­
tation with new protocols, our work was also applied
to router software.

In the next three sections, we describe various
approaches to solving the data transfer problem. Since
data copying/touching is a major software limitation
in achieving high throughput, avoiding data copying/
touching is a constant theme. Much of our work
involves finding ways to avoid or limit touching the data
without sacrificing the flexibility or protection com­
monly provided by most modern operating systems.

We describe two solutions to the data transfer prob­
lem that avoid all physical copying and are based on
the principle of providing separate mechanisms for
I/0 control and data transfer. 18

-
21 The reader will see

that while these two solutions are based on different
approaches (indeed, they can even be viewed as com­
peting), they fill different niches based on differing
assumptions of how I/0 is structured. In other words,
each is appropriate and optimal for different situations.
In addition to the data transfer problem, we address a
special problem- the bottleneck created by the check­
sum computation for I/0 on a network using the trans­
mission control protocol/internet protocol (TCP /IP).

Container Shipping

Container shipping is a kernel service that provides
I/0 operations for user processes. High performance
is obtained by eliminating the in-memory data copies
traditionally associated with 1/0. Additional gains are
achieved by permitting the selective accessing (map­
ping) of data. Finally, the design we present makes
possible specific optimizations that further improve
performance.

The goals of the container shipping model of data
transfer for 1/0 are to provide high performance with­
out sacrificing protection and to fully support the prin­
ciple of general-purpose computing. Full access to
1/0 data by user-level processes has long been a stan­
dard feature of operating systems. This ability has

traditionally been provided by copying data to and
from process memory at each instance when data is
transferred. The divergence of CPU and dynamic ran­
dom access memory (DRAM) speeds makes this in­
memory copying more inefficient and costly every
year. This problem is often attacked with application­
specific silicon or kernel modifications. A less-costly
and longer-lasting solution is to redesign the I/0 sub­
system to provide copy-free ljO. Container shipping
provides this ability, as well as additional performance
gains, in a uniform, general, and practical way.

Containers
A container is one or more pages of memory. In these
pages, it may contain a single block of data, whose
location is identified by an offset and a length. When
a container is mapped into an address space, the pages
form a contiguous region of memory, where the data
can be manipulated. A container can be owned by one
and only one domain, e.g., some user process or the
kernel itself, at any single point in time. The owning
domain may map the container for access. When
access is not required, mapping can be avoided, which
saves time.

User-level processes use container shipping system
calls to perform the following functions:

• Allocation: cs_alloc and cs_free allocate and deallo­
cate containers and their resources (e.g., physical
pages).

• Transfer: cs_read and cs_write perform 1/0 using
containers.

• Mapping: cs_map and cs_unmap allow a process to
access the data in a container.

The cs_read and cs_write calls take as parameters an
1/0 path identifier (such as a UNIX file descriptor),
a data size, and parameters describing a list of contain­
ers, or a return area for such a list. Several options are
also available, such as one for cs_read that immediately
maps all the resulting containers. Data is never copied
within memory to satisfy cs_read and cs_write, so all
1/0 performed this way is copy-free.

Because the mapping of containers is always
optional, a process can move data from one device to
another without mapping it at all. When containers of
data flow through a pipeline of several processes, sub­
stantial additional savings can be obtained if several of
the processes do not map the containers, or if they
map only some of the containers.

Although container shipping has six different sys­
tem calls versus the two of conventional I/0, read and
write, the actual number of calls a process issues with
container 1/0 may be no greater than with conven­
tional ljO. When data is not mapped, only cs_read
and cs_ write calls are required. Even if data is mapped,
it may be possible to perform the mapping through

Digital Technical Journal Vol. 7 No. 3 1995 87

flags to cs_read, without calling cs_map. Unmapping
is automatic in cs_write, so if cs_unmap is not used,
two system calls are still sufficient.

As shown in Figure 3, a process reads data in a con­
tainer from one device and writes it to another device.
Three pages of memory form one container that stores
two and one-half pages of data. On input (cs_read),
the source device deposits data into physical memory
pages forming the container. The process that owns
the container may then map (cs_map) it so that the
data can be manipulated in its address space. The data
is then output (cs_write) to the sink device. Output
can occur without having mapped the container.
Mapping can also occur automatically on cs_read.

Eliminating In-Memory Copying
Unconditionally avoiding the copying of data within
memory during 1/0 leads to the first of several perfor­
mance gains from container shipping. Other solutions
exist that avoid copies only in limited cases. To be uni­
form and general, copy-free 1/0 must be possible with­
out restrictions due to the devices used, the order of
operations, or the availabili ty of special device hardware.

In many 1/0 operations, the data requested by a
user-level process is already in system memory when
the request is made. This situation can arise when data
is moving between two processes via the I/0 system,
such as is done with pipes. Many optimized file sys­
tems perform read-ahead and in-memory caching to
improve performance, so file 1/0 requests may also be
satisfied with data that is already in memory. Finally,

USER
SPACE

KERNEL j
SPACE ii

'
' '

:oMA

APPLICATION LAYER

PROCESS

..
" .. '

MAP

0

~1NG (CS_~AP) I\ ,,
' ' ' ' '' ' ''

'' ''

OMA

PHYSICAL MEMORY

CS_READ

Figure 3

SOURCE
DEVICE

CS_WRITE

SINK
DEVICE

Container Shipping Transfer and Mapping

88 Digital Technical Journal Vol. 7 No. 3 1995

conventional network adapters transfer entire packets
into memory before they are examined by protocol
layers in the kernel. Only after protocol processing can
this data be delivered to the correct user-level process.
When requested data is already in memory, the only
possible copy-free transfer mechanism that allows full
read/write access in the address space of a process is
virtual memory remapping. Techniques that rely on
device-specific characteristics such as programmable
DMA or outboard protocol processors cannot provide
uniform, device-independent copy-free 1/0, because
these mechanisms cannot transfer data that is already
mmemory.

Using virtual memory remapping, container ship­
ping can perform copy-free 1/0 regardless of when
or where data arrives in memory, and with or without
any special device hardware that might be available.
Virtual memory hardware is employed to control the
ownership of, and access to, memory that contains
1/0 data. Ownership and access rights are transferred
between domains when container 1/0 is performed,
while data sits motionless in memory. This technique
requires no special assistance from devices and applies
to interprocess communication as well as all physical
1/0. Because user-level processes retain complete
access to 1/0 data with no in-memory copying, user­
level programming remains a practical solution for
high-performance systems.

The Gain/ Lose Model
In container 1/0, reading and writing are coupled
with the gain and loss of memory. We chose the
gain/lose model because it is imple and provides
higher performance without sacrificing protection.
Shared memory is a more complicated alternative to
the gain/ lose model, which also avoids data copying.
The use of shared memory to allow a set of processes
to efficiently communicate, however, reduces the
protection between domains. Shared-memory 1/0
schemes also tend to be complicated because of the
close coordination required between a user process and
the kernel when they both manipulate a shared data
pool. Since data is never shared under the gain/ lose
model, protection domains need not be compromised,
and less user/kernel cooperation and trust is required.

The gain/ lose model has three major implications
for programmers. First, a process must dispose ofl/ 0
data that it gains, or memory consumption may grow
rapidly. One way to dispose of data is to perform a
cs_write operation on it, so a process performing
matched reads and writes on a stream of data will not
accumulate any extra memory. Second, to avoid seri­
ously complicating conventional memory models, not
all memory is eligible for use in write operations. For
example, writing data from the stack would leave an
inconvenient hole in that part of the virtual memory,
so this is not allowed. Finally, because data that is

written is lost, a writing process must copy any data
that will still be needed after the write. Fortunately,
applications that move great volumes of data often
have no further need for it after a write is completed.

Implications of Virtual Memory Remapping
In addition to the use of the gain/lose model, the
decision to use virtual memory remapping has sub­
stantial implications for the design and use of an 1/0
system. Several changes are unavoidably visible to pro­
grammers. For example, data can no longer be placed
exactly at any requested location in an address space.
Virtual memory remapping can change the virtual
page in which a physical page of memory appears, but
it cannot realign data within a page. Furthermore,
mapping can rearrange memory only at page bound­
aries. The exact location where incoming 1/0 data is
placed is determined by the kernel. After a read opera­
tion is complete, a process can discover the address of
the data and access it at that address.

Some kinds ofl/0 place data in memory in a form
that differs from the way it is presented to user-level
processes. For example, network packets may arrive
with media-level headers that are not seen by higher
levels. These packets may also arrive out of order, or
in fragments that collectively form a single message.
Without help from an outboard protocol processor
or the use of in-memory copying, these packets cannot
be linearized. With container shipping, a process may
be required to accept a message that consists of multi­
ple fragments in memory. The semantics of the com­
munication do not change, but the data representation
differs. This issue is less troublesome for writes, because
kernels typically use internal structures to reorganize
network data without copying it. The mbufs found in
UNIX are an example of such a kernel structure.

Virtual memory remapping is not a simple tech­
nique, and it must be used with care to achieve high
performance. Although remapping a page is almost
always faster than copying it, remapping also con­
sumes time. This time comes from kernel virtual mem­
ory bookkeeping and from side effects (such as
translation lookaside buffer [TLB] flushes) of address
space changes. For these reasons, container shipping
makes all mapping optional. Some operating systems
such as Mach perform lazy mapping, using the page
fault mechanism to map pages when they are first
accessed.22 This technique avoids unnecessary map
operations but incurs the extra penalty of having to
map on demand while a program waits for access
to data. Taking one page fault for every page in a large
region, as is common in modern systems, is particu­
larly expensive. Furthermore, lazy mapping still
requires the setting of page table entries (and possibly
other data structures) to prepare for the possibility
of page faults, which can be costly for very large data
objects. This cost is avoided in container shipping.

Optimizations
The container shipping design makes possible opti­
mizations beyond copy and map elimination. Some
make use of the fact that 1/0 often flows through
pathways that are predictable. Other optimizations are
possible on a per-container basis.

High-speed 1/0 is often generated by long-running
processes, such as multimedia applications, real-time
data processing, or processes that run for a long time
merely by virtue of processing a very large data object
(common in Sequoia applications). This 1/0 typically
flows through pathways in the system that are essen­
tially static. Data enters through one device, moves
through a fixed set of domains, and leaves through
another device. Kernel awareness of this locality can be
used to optimize some container operations.

An 1/0 path through which same-sized containers
move repeatedly offers the opportunity to recycle
containers and their associated data structures. Per­
transfer cost can be reduced by reusing the same set of
pages and reusing page tables and address space. To
perform recycling, the kernel can keep track of which
containers were given to which processes, or the ker­
nel can match up recycled containers by size or by
device type.

In a system with a large secondary cache, promptly
recycling a just-written container may allow its reuse
while its data is still in the cache. In the best case, all
data may be automatically cached because of this recy­
cling. For example, DMA operations in DEC 3000-
series systems update the secondary cache. Because
this cache is much faster than main memory, the data
can now be accessed more quickly.

Even without identifying an 1/0 pathway, careful
tracking of the contents of container memory pages
can allow savings in security-driven zero fills. A just­
freed page consists entirely of sensitive data; the entire
page must be cleaned before it can be given to any
other user. But if this page is used as the target of a
data-generating operation such as a DMA, only the
part not overwritten needs to be zeroed. Furthermore,
this zeroing can be postponed until the data is mapped;
thus it may be avoided completely. If filling memory
with zeroes causes it to be loaded in the cache, zeroing
immediately before the map offers a cache benefit,
because the data may be used shortly after it is mapped.

Container Shipping Implementation and Performance
Container shipping has been implemented in DEC
OSF / 1 version 2.0 (now Digital UNIX) on Alpha­
powered DEC 3000-series workstations. All six system
calls are supported, and container 1/0 can be mea­
sured in a variety of situations. Conventional UNIX
1/0 remains, so a system can boot and run normally,
using container 1/0 only for specific experiments.

In our early paper, we showed significant through­
put improvements for container-based interprocess

Digital Technical Journal Vol. 7 No. 3 1995 89

90

communication (IPC) within the ULTRIX version
4.2a operating system on a DECstation 5000/200
system.1 With the new DEC OSF/1 implementation
on Alpha workstations, we compared the I/0 perfor­
mance of conventional UNIX I/0 to that of container
shipping for a variety of I/0 devices as well as IPC.
These experiments are described in detail elsewhere.23

Large improvements in throughput were observed,
from 40 percent for FDDI network I/0 (despite large
non-data-touching protocol and device-driver over­
heads) to 700 percent for socket-based IPC.

We devised an experiment that exercises both the
IPC and I/0 capabilities of container shipping.
Images (640 X 480 pixels, 1 byte per pixel) are sent by
one process and received by a second process using
socket IPC. The receiver process then does output to a
frame buffer to display the images on the screen. This
is a common application in the Sequoia project: view­
ing an animation composed of images displayed at
a rate ofup to 30 frames per second (fps). In fact, sci­
entists often want to view as many simultaneously
displayed animations as possible.

We carried out this experiment first using conven­
tional UNIX I/0 (i.e., read and write) and then using
container shipping (i.e., cs_read and cs_write). Figure 4
shows the throughput obtained for a sender process
transferring data to a receiver process, which then out­
puts the data to a frame buffer. The improvement of
container shipping over UNIX I/0 is almost 400 per­
cent. Assuming the maximum 30 fps rate, conven­
tional I/0 supports the full display of one animation
and container I/0 supports six. In general, the greater
the relative speed between an I/0 device and mem­
ory, the greater the relative throughput of container
shipping versus UNIX I/0 will be.

Related Work
The use of virtual transfer techniques to avoid the
performance penalty of physical copying goes back
to TENEX. 24 Mach (like TENEX) uses virtual copy­
ing, i.e., transferring a data object by mapping it in
the new address space, and then physically copying if

<fl 60
w
.....
>
Ill
<(-

&'l~ 40

~8
1-w
::J(f)
a. a: a~ 20
-::)

0 a:
:I:
..... 0 '-------'--I _ ..___I __ _..___

UNIX 1/0

Figure 4

CONTAINER
SHIPPING

Throughput of IPC and Frame Buffer Output

Digital Technical Journal Vol. 7 No. 3 1995

the data is modified (copy-on-write).22 This differs
from container shipping, which uses virtual moving;
i.e., the data object leaves the source domain and
appears in the destination domain, where it can be
read and written without causing fault handling,
which is expensive. If the original domain wants to
keep a copy, it may do so explicitly. Thus, container
shipping places a greater burden on the programmer
in return for improved performance.

The two systems that are most similar to container
shipping are DASH and Fbufs.25.26 Containers are simi­
lar to the IPC pages used in DASH and the fast buffers
used by Fbufs. DASH provides high-performance
interprocess communication: it achieves fast, local IPC
by means of page remapping, which allows processes
to own regions of a restricted area of a shared address
space. The Fbufs system uses a similar technique,
enhanced by caching the previous owners of a buffer,
allowing reuse among trusted processes and elimi­
nating memory management unit (MMU) updates
associated with changing buffer ownership. The dif­
ferences between these two systems and container
shipping are examined in detail elsewhere. 23

Peer-to-Peer 1/0

In addition to container shipping, we have investi­
gated an alternative I/0 system software model called
peer-to-peer I/0 (PPIO). As a direct result of the
structure of this model, its implementation avoids
the well-known overheads associated with data copy­
ing. Unlike other solutions, PPIO also reduces the
number of context-switch operations required to per­
form I/0 operations. In contrast to container ship­
ping, PPIO is based on a streaming approach, where
data is permitted to flow between a producer and con­
sumer (these may be devices, files, etc.) without pass­
ing through a controlling process' address space. In
PPIO, processes use the splice system call to create
kernel-maintained associations between producer and
consumer. Splice represents an addition to the conven­
tional operating system I/0 interfaces and is not a
replacement for the read and write system functions.

The Splice Mechanism
The splice mechanism is a system function used to
establish a kernel-managed data path directly between
I/0 device peers.2

•
3 It is the primary mechanism that

processes invoke to use PPIO. With splice, an applica­
tion expresses an association between a data source
and sink directly to the operating system through the
use of file descriptors. These descriptors do not refer to
memory addresses (i.e., they are not buffers):

sd = splice Cfd1, fd2);

As shown in Figure 5, the call establishes an in-kernel
data path, i.e., a splice, between a data source and sink

APPLICATION LAYER

USER
SPACE

Figure 5

SOURCE
DEVICE

PROCESS

SINK
DEVICE

A Splice Connecting a Source to a Sink Device

device. If the 1/0 bus and the devices support hard­
ware streaming, the data path is directly over the bus,
avoiding system memory altogether. Although the
process does not necessarily manipulate the data,
it controls the size and timing of the dataflow. To
manipulate the data, a processing module can be
downloaded either into the kernel or directly on the
devices if they support processing.

The data source and sink device are specified by the
references fdl and fd2, respectively. The splice descrip­
tor sd is used in subsequent calls to read or write to
control the flow of data across the splice. For example,
the following call causes size bytes of data to flow from
the source to the sink:

splice_ctrl_msg sc;
sc.op = SPLICE_OP_STARTFLOW;
sc.increment = size;
write (sd, &sc, sizeof(sc));

Data produced by the devices referenced by fdl is auto­
matically routed to fd2 without user process interven­
tion, until size bytes have been produced at the source.
The increment field specifies the number of bytes to
transfer across a splice before returning control to the
calling user application. When control is returned,
dataflow is stopped. A SPLICE_OP_STARTFLOW
must be executed to restart dataflow. The increment
represents an important concept in PPIO and refers to
the amount of data the user process is willing to have
transferred by the operating system on its behalf
In effect, it specifies the level of delegation the user
process is willing to give to the system. Specifying
SPLICE_INCREMENT_DEFAULT indicates the sys­
tem should choose an appropriate increment. This is
generally a buffer size deemed convenient by the oper­
ating system.

The splice mechanism eliminates copy operations to
user space by not relying on buffer interfaces such as
those present in the conventional 1/0 functions read
and write. By eliminating the user-level buffering, ker­
nel buffer sharing is possible. More specifically, when
block alignment is not required by an 1/0 device, a
kernel-level buffer used for data input may be used
subsequently for data output.

In addition to removing the buffering interfaces,
splice also combines the read/write functionality
together in one call. The splice call indicates to the
operating system the source and sink of a dataflow,
providing sufficient information for the kernel to man­
age the data transfer by itself without requiring user­
process execution. Thus, context-switch operations
for data transfer are eliminated. This is important: con­
text switches consume CPU resources, degrade cache
performance by reducing locality of reference, and
affect the performance of virtual memory by requiring
TLB invalidations. 27

•
28

For applications making no direct manipulation of
1/0 data (or for those allowing the kernel to make
such manipulations), splice relegates the issues of man­
aging the dataflow (e.g., buffering and flow control)
to the kernel. Data movement may be accomplished
by a kernel-level thread, possibly activated by comple­
tion events (e.g., device interrupt) or operating in a
more synchronous fashion. Flow control may be
achieved by selective scheduling of kernel threads or
simply by posting reads only to data-producing
devices when data-consuming peers complete 1/0
operations. A kernel-level implementation provides
much flexibility in choosing which control abstraction
is most appropriate.

One criticism of streaming-based data transfer
mechanisms is that they inhibit innovation in applica -
tion development by disallowing applications direct
access to 1/0 data. 29 However, many applications that
do not require direct manipulation of 1/0 data can
benefit from streaming (e.g., data-retrieving servers
that do not need to inspect the data they have been
requested to deliver to a client). Furthermore, for
applications requiring well-known data manipulations,
kernel-resident processing modules (e.g., Ritchie's
Streams) or outboard dedicated processors are more
easily exploited within the kernel operating environ­
ment than in user processes.30

•
31 In fact, PPIO supports

processing modules.•

PPIO Implementation and Performance
The PPIO design was conceived to support large data
transfers. The decoupling of 1/0 data from process
address space reduces cache interference and elimi­
nates most data copies and process manipulation.
PPIO and the accompanying splice system call have

Digital Technical Journal Vol. 7 No. 3 1995 91

92

been implemented within the ULTRIX version 4.2a
operating system for the DEC 5000 series work­
stations, and within DEC OSF /1 version 2.0 for DEC
3000 series (Alpha-powered) workstations, each for
a limited number of devices.

Three performance evaluation studies of PPIO
have been carried out and are described in our early
papers. 2

•
3

•
4 They indicate CPU availability improves by

30 percent or more; and throughput and latency
improve by a factor of two to three, depending on
the speed of 1/0 devices. Generally, the latency and
throughput performance improvements offered by
PPIO improve with faster 1/0 devices, indicating that
PPIO scales well with new 1/0 device technology.

Improving Network Software Throughput

Network 1/0 presents a special problem in that the
complexity of the abstraction layer (see Figure 2), a
stack of network protocols, is generally much greater
than that for other types of 1/0. In this section, we
summarize the results of an analysis of overheads for
an implementation of TCP /IP we used in the Sequoia
2000 project. The primary bottleneck in achieving
high throughput communication for TCP /IP is due
to data-touching operations: one expected culprit is
data copying (from kernel to user space, and vice
versa); another is the checksum computation. Since we
have already focused on how to avoid data copying in
the previous two sections, we discuss how one can
safely avoid computing checksums for a common case
in network communication.

Overhead Analysis
We undertook a study to determine what bottlenecks
might exist in TCP /IP implementations to direct us in
our goal of optimizing throughput. The full study is
described elsewhere.9

First, we categorized various generic functions com­
monly executed by TCP/IP (and UDP/IP) protocol
stacks:

• Checksum: the checksum computation for UDP
(user datagram protocol) and TCP

• DataMove: any operations that involve moving
data from one memory location to another

• Mbuf: the message-buffering scheme used by
Berkeley UNIX-based network subsystems

• ProtSpec: all protocol-specific operations, such as
setting header fields and maintai_ning protocol state

• DataStruct: the manipulation of various data struc­
tures other than mbufs or those accounted for in
the ProtSpec category

• OpSys: operating system overhead

Digital Technical Journal Vol. 7 No. 3 1995

• ErrorChk: The category of checks for user and sys­
tem errors, such as parameter checking on socket
system calls

• Other: This fina l category of overhead includes all
the operations that are too small to measure. Its
time was computed by taking the difference
between the total processing time and the sum of
the times of all the other categories listed above.

Other studies have shown some of these overheads
to be expensive.32

-
34

We measured the total amount of execution time
spent in the TCP / IP and UDP /IP protocol stacks as
implemented in the DEC ULTRIX version 4.2a kernel,
to send and receive IP packets of a wide range of sizes,
broken down according to the categories listed above.
All measurements were taken using a logic analyzer
attached to a DECstation 5000/200 workstation con­
nected to another similar workstation by an FD DI lAN
attached through a Digital DEFZA FDDI adapter.

Figure 6 shows the per-packet processing times
versus packet size for the various overheads for UDP
packets. These are for a large range of packet sizes,
from 1 to 8,192 bytes. One can distinguish two differ­
ent types of overheads: those due to data-touching
operations (i.e., data move and checksum) and those
due to non-data-touching operations (all other cate­
gories). Data-touching overheads dominate the pro­
cessing time for large packets that typically contain
application data, whereas non-data-touching opera­
tions dominate the processing time for small packets
that typically contain control information. Generally,
data-touching overhead times scale linearly with
packet size, whereas non-data-touching overhead
times are comparatively constant. Thus, data-touching
overheads present the major limitations to achieving
maximum throughput.

Data-touching operations, which do identical work
in the TCP and UDP software, also dominate process­
ing times for large TCP packets.9

Minimizing the Checksum Overhead
As can be seen in Figure 6, the largest bottleneck to
achieving maximum throughput (i.e., which one
achieves by sending large packets) is the checksum
computation. We applied two optimizations to mini­
mize this overhead: improving the implementation of
the checksum computation, and avoiding the check­
sum altogether in a special but common case where we
felt we were not compromising data integrity.

We improved the checksum computation imple­
mentation by applying some fairly standard tech­
niques: operating on 32-bit rather than 16-bit words,
loop unrolling, and reordering of instructions to
maximize pipelining. With these modifications, we

3000

~ 2500
i=
CJ z
gj- 2000
wCll
() Cl

~~ a..()
w w 1500
~~
wa::
&l9
a:~ 1000
Cl
z
<(

Cl
z
~ 500

.... , , \
I ------- -

I

~=~~~~~~~.::.:>-·-·-·-·-·-.;: . .:..~-: =:::-.:
0 2048 4096 6144 8192

MESSAGE SIZE (BYTES)
OPERATING SYSTEM,
DATA STRUCTURES,
ERROR CHECK KEY:

CHECKSUM
DATA MOVE

---- MBUF
- - - OPERATING SYSTEM

DATA STRUCTURES
ERROR CHECK

············· PROTOCOL-SPECIFIC OPERATIONS
- -·- - OTHER

Figure 6
UDP Processing Overhead Times

reduced the checksum computation time by more
than a factor of two. Figure 7 shows that the overall
throughput improvement is 37 percent. The through­
put measurements were made between two
DECstation 5000/200 systems communicating over
an FDDI network. Overall throughput is still a frac­
tion of the maximum FDDI network bandwidth
(100 Mb/s) because of data-copying overheads and

0
z
0
()

40

~ 30
a:
w
a..
(I)
1-
ai
(3 20
w
~
I­
::,
a..
I

~ 10
0
a:
I
I-

Figure 7

ULTRIX CHECKSUM CHECKSUM
VERSION 4.2A OPTIMIZATION ELIMINATION

UDP/IP End-to-End Throughput

machine-speed limitations. See Reference 6 for
detailed results.

A very easy way of significantly raising TCP and
UDP throughput is to simply avoid computing check­
sums; in fact, many systems provide options to do just
this. The Internet checksum, however, exists for a
good reason: packets are occasionally corrupted
during transmission, and the checksum is needed to
detect corrupted data. In fact, the Internet Engineer­
ing Task Force (IETF) recommends that systems not
be shipped with checksumming disabled by default. 35

Ethernet and FDDI networks, however, implement
their own cyclic redundancy checksum (CRC). Thus,
packets sent directly over an Ethernet or FDDI net­
work are already protected from data corruption, at
least at the level provided by the CRC. One can argue
that for LAN communication, the Internet checksum
computation does not significantly add to the machin­
ery for error detection already provided in hardware.

Thus, our second optimization was simply to elimi­
nate the software checksum computation altogether
when computing the checksum would make little
difference. Consequently, as part of the implementa­
tion of the protocol, when the source and destina­
tion are determined to be on the same LAN, the soft­
ware checksum computation is avoided. Figure 7
shows the resulting 74 percent improvement in
throughput over the unmodified ULTRIX version

Digital Technical Journal Vol. 7 No. 3 1995 93

4.2a operating system, and a 27 percent improvement
over the implementation with the optimized check­
sum computation algorithm.

Of course, one must be very careful about deciding
when the Internet checksum is of minimal value. We
believe it is reasonable to turn off checksums when
crossing a single network that implements its own
CRC, especially when one considers the performance
benefits of doing so. In addition, since the destinations
of most TCP and UDP packets are within the same
LAN on which they are sent, this policy eliminates the
software checksum computation for most packets.

Our checksum elimination policy differs somewhat
from traditional TCP /IP design in one aspect of pro­
tection against corruption. In addition to the protec­
tion between network interfaces given by the Ethernet
and FDDI checksums, we require a software checksum
in host memory as a protection from errors in data
transfer over the I/ 0 bus. For common devices such
as disks, however, data transfers over the I/0 bus are
routinely assumed to be correct and are not checked in
software. Therefore, a reduction in protection against
I/ 0 bus transfer errors for network devices does not
seem unreasonable.

Turning off the Internet checksum protection in
any wider area context seems unwise without consid­
erable justification. Not all networks are protected by
CRCs, and it is difficult to see how one might check
that an entire routed path is protected by CRCs with­
out undue complications involving IP extensions.
A more fundamental problem is that network CRCs
protect a packet only between network interfaces;
errors may arise while a packet is in a gateway machine.
Although such corruption is unlikely for a single
machine, the chance of data corruption occurring
increases exponentially with the number of gateways
a packet crosses.

Summary and Conclusions

We described various solutions to achieving high per­
formance in operating system I/0 and network soft­
ware, with a particular emphasis on throughput. Two of
the solutions, container shipping and peer-to-peer I/0,
focused on changes in the I/0 system software struc­
ture to avoid data copying and other overheads. The
third solution focused on the avoidance of additional
data-touching overheads in TCP / IP network software.

Container shipping is a kernel service that provides
I/0 operations for user processes. High performance
is obtained by eliminating the in-memory data copies
traditionally associated with I/0, without sacrificing
safety or relying on devices with special-purpose func­
tionality. Further gains are achieved by permitting the
selective accessing (mapping) of data. We measured

94 Digital Technical Journal Vol. 7 No. 3 1995

performance improvements over UNIX of 40 percent
(network I/0) to 700 percent (socket IPC).

PPIO is based on the hypothesis that the memory­
oriented model ofl/0 present in most operating sys­
tems presents a bottleneck that adversely affects overall
performance. PPIO decouples user-process execution
from interdevice dataflow and can achieve improve­
ments in both latency and throughput over conven­
tional systems by a factor of 2 to 3.

Finally, we considered the special case of network
I/0 where data moving/ copying is not the only major
overhead. We showed that the checksum computation
is a major source of TCP / IP network processing over­
head. We improved performance by optimizing the
checksum computation algorithm and eliminating
the checksum computation when communicating over
a single LAN that supports its own CRC, improving
throughput by 37 percent to 74 percent for UDP /IP.

Acknowledgments

We are indebted to David Boggs, who built the Tl
and T3 boards which worked like a charm. We appre­
ciate the efforts of Richard Bartholomaus and Ira
Machefsky who helped us get our first DECstation
5000/200 workstations. As our interface to Digital,
Ira Machefsky helped in many other ways; we sincerely
thank him. We thank Fred Templin for the technical
expertise he provided us on Digital networking equip­
ment. We thank Mike Stonebraker and Jeff Dozier
for their leadership of the Sequoia 2000 project. We
thank our network research colleagues, Professors
Domenico Ferrari and George Polyzos, and their stu­
dents, with whom we enjoyed collaborating; we have
benefited from their advice. Finally, thanks to Jean
Bonney for supporting our project from start to end.

References

I. J. Pasquale, E. Anderson, and K. Muller, "Container
Shipping: Operating System Support for Intensive
J/0 Applications," IEEE Computer, vol. 27, no. 3
(1994): 84- 93.

2. K. Fall and J. Pasquale, "Exploiting In-kernel Data
Paths to Improve 1/ 0 Throughput and CPU Availabil­
ity," Proceedings of the USENIX Winter Technology
Conference, San Diego (January 1993), pp. 327- 333.

3. K. Fall and J. Pasquale, "Improving Continuous­
media Playback Performance with In-kernel Data
Paths," Proceedings of the IEEE International Con­
ference on Multimedia Computing and Systems
(/CMCS), Boston, Mass. (June 1994), pp. 100- 109.

4 . K. Fall, "A Peer-to-Peer 1/ 0 System in Support ofl/0
Intensive Workloads," Ph.D. dissertation, University
of California, San Diego, 1994.

5. J. Kay and J. Pasquale, "The Importance of Non­
Data-Touching Processing Overheads in TCP/IP,"
Proceedings of the ACM Communications Architec­
tures and Protocols Conference (SIGCOMM),
San Francisco (September 1993), pp. 259-269.

6. J. Kay and J. Pasquale, "Measurement, Analysis,
and Improvement of UDP/IP Throughput for the
DECstation 5000," Proceedings of the USENIX
Winter Technology Conference, San Diego (January
1993), pp. 249-258.

7. J. Kay and J. Pasquale, "A Summary of TCP /IP
Networking Software Performance for the DECstation
5000," Proceedings of the ACM Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Santa Clara, Calif. (May 1993),
pp. 266-267.

8. J. Kay, "PathIDs: Reducing Latency in Network
Software," Ph.D. dissertation, University of California,
San Diego, 1995.

9. J. Kay and J. Pasquale, "Profiling and Reducing
Processing Overheads in TCP/IP," IEEE/ACM Trans­
actions on Networking (accepted for publication).

10. D. Ferrari, A. Banerjca, and H. Zhang, Network Sup­
port for Multimedia: A Discussion of the Tenet
Approach (Berkeley, Calif.: International Computer
Science Institute, Technical Report TR-92-072, 1992).

11. H. Zhang, D. Verma, and D. Ferrari, "Design and
Implementation of the Real-Time Internet Protocol,"
Proceedings of the IEEE Workshop on the Architecture
and Implementation of High Performance Commu­
nication Subsystems, Tucson, Ariz. (February 1992).

12. A. Bancrjca, E. Knightly, F. Templin, and H. Zhang,
"Experiments with the Tenet Real-time Protocol
Suite on the Sequoia 2000 Wide Area Network,"
Proceedings of the ACM Multimedia, San Francisco
(October 1994).

13. V. Kompella, J. Pasquale, and G. Polyzos, "Multicast
Routing for Multimedia Applications," IEEE/ACM
Transactions on Networking, vol. 1, no. 3 (1993):
286-292.

14. V. Kompella, J. Pasquale, and G. Polyzos, "Two
Distributed Algorithms for Multicasting Multi­
media Information," Proceedings of the Second
International Conference on Computer Communi­
cations and Networks (/CCCN), San Diego (J unc
1993), pp. 343-349.

15. J. Pasquale, G. Polyzos, E. Anderson, and V. Kompclla,
"Filter Propagation in Dissemination Trees: Trading
Off Bandwidth and Processing in Continuous Media
Networks," Proceedings of the Fourth International
Workshop on Network and operating System Sup­
port for Digital Audio and Video (NOSSDAV),
D. Shepherd, G. Blair, G. Coulson, N. Davies, and
F. Garcia (eds.), Lecture Notes in Computer Science,
vol. 846 (Springer-Verlag, forthcoming) .

16. J. Pasquale, G. Polyzos, E. Anderson, and V. Kompella,
"The Multimedia Multicast Channel," Journal
of Internetworking: Research and Experience
(in press).

17. J. Pasquale, G. Polyzos, and V. Kompella, "Real-time
Dissemination of Continuous Media in Packet-switched
Networks," Proceedings of the 38th IEEE Computer
Society International Conference (COMPCON), San
Francisco (February 93), pp. 47-48.

18. K. Muller and J. Pasquale, "A High-Performance
Multi-Structured File System Design," Proceedings of
the 13th ACM Symposium on Operating System Prin­
ciples (SOSP), Asilomar, Calif. (October 1991), pp.
56-67.

19. J. Pasquale, "I/0 System Design for Intensive
Multimedia 1/0," Proceedings of the Third IEEE
Workshop Workstation Operation Systems (WWOS),
Key Biscayne, Fla. (April 1992), pp. 29-33.

20. J. Pasquale, "System Software and Hardware Support
Considerations for Digital Video and Audio Comput­
ing," Proceedings of the 26th Hawaii International
Conference on System Sciences (HICSS), Maui, IEEE
Computer Society Press (January 1993), pp. 15-20.

21. C. Thckkath, H. Levy, and E. Lazowska, "Separating
Data and Control Transfer in Distributed Operating
Systems," Proceedings of the Sixth International
Conference on Architectural Support for Program­
ming Languages and Operating Systems (ASPLOS),
San Jose, Calif. (October 1994), pp. 2- 11.

22. R. Rashid ct al., "Machine-Independent Virtual
Memory Management for Paged Uniprocessor and
Multiprocessor Architectures," IEEE Transactions on
Computers,vol. 37, no. 8 (1988): 896-908.

23. E. Anderson, "Container Shipping: A Uniform Interface
for Fast, Efficient, High-bandwidth 1/0," Ph.D. disser­
tation, University of California, San Diego, 1995.

24. D. Bobrow, J. Burchfiel, D. Murphy, and R. Tomlinson,
"TENEX, a Paged Time-Sharing System for the
PDP-10," Communications of the ACM, vol. 15,
no. 3 (1972): 135-143.

25. S.-Y. Tzou and D. Anderson, "The Performance of
Message-Passing Using Restricted Virtual Memory
Remapping," Software- Practice and Experience,
vol. 21, no. 3 (1991): 251-267.

26. P. Druschel and L. Peterson, "Fbufs: a High-bandwidth
Cross-Domain Transfer Facility," Proceedings of
the 14th ACM Symposium on Operating System Prin­
ciples (SOSP), Asheville, N.C. (December 1993), pp.
189- 202.

27. J. Mogul and A. Borg, "The Effect of Context Switches
on Cache Performance," Proceedings of the ASPLOS­
JV(April 1991), pp. 75- 84.

28. B. Bcrshad, T. Anderson, E. Lazowska, and H. Levy,
"Lightweight Remote Procedure Call," ACM
Transactions on Computer Systems, vol. 8, no. 1
(1990): 37- 55.

Digital Technical Journal Vol. 7 No. 3 1995 95

96

29. P. Druschel, M. Abbott, M. Pagels, and L. Peterson,
"Analysis of 1/0 Subsystem Design for Multimedia
Workstations," Proceedings of the Third Interna­
tional Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV),
November 1992.

30. D. Ritchie, "A Stream Input-Output System," AT&T
Bell Laboratories Technical Journal, vol. 63, no. 8
(1984): 1897-1910.

31. D. Presotto and D. Ritchie, "Interprocess Communi­
cation in the Eighth Edition UNIX System," Proceed­
ings of the USENIX Winter Conference (January
1985), pp. 309-316.

32. L.-F. Cabrera, E. Hunter, M. Karels, and D. Mosher,
"User-Process Communication Performance in Net­
works of Computers," IEEE Transactions on Soft­
ware Engineering, vol. 14, no. 1 (1988): 38-53.

33. D. Clark, V. Jacobson, J. Romkey, and H. Salwen,
"An Analysis of TCP Processing Overhead," IEEE
Communications(1989): 23-29.

34. R. Watson and S. Mamrak, "Gaining Efficiency in
Transport Services by Appropriate Design and Imple­
mentation Choices," ACM Transactions on Com­
puter Systems, vol. 5, no. 2 (1987): 97-120.

35. R. Braden, "Requirements for Internet Hosts­
Communication Layers," Internet Request for Com­
ments 1122, (Network Information Center, 1989).

Biographies

Joseph Pasquale
Joseph Pasquale is an associate professor in the Department
of Computer Science and Engineering at the University of
California at San Diego. He has a B.S. and an M.S. from the
Massachusetts Institute ofTechnology and a Ph.D. from
the University of California at Berkeley, all in computer sci­
ence. In 1989, he established the UCSD Computer Systems
Laboratory, where he and his students do research in net­
work and operating system sofrware design, especially
to support 1/0-intensive applications such as distributed
multimedia (digital video and audio) and scientific com­
puting. He also investigates issues of coordination and
decentralized control in large distributed systems. He has
published more than 40 refereed conference and journal
articles in these areas and received the NSF Presidential
Young Investigator Award in 1989.

Digital Technical Journal Vol. 7 No. 3 1995

Eric W. Anderson
Eric Anderson received B.A. (1989), M.S. (199 l), and
Ph.D. (1995) degrees from the University of California
at San Diego. His dissertation is on the development of a
uniform interface for fast, efficient, high-bandwidth 1/0.
As a research assistant at UCSD, he contributed to the
planning and installation of the Sequoia 2000 network
and conducted research in operating system 1/0 and high­
speed networking. He is currently a postgraduate researcher
with the Computer Systems Laboratory at UCSD, where
he is involved in further studies of high-performance 1/0
techniques. He is a member of ACM and has coauthored
papers on the multimedia multicast channel, operating
system support for 1/0-intensive applications, and filter
propagation in dissemination trees in continuous media
networks.

Kevin R. Fall
Kevin Fall received a Ph.D. in computer science from the
University of California at San Diego in 1994 and a B.A.
in computer science from the University of California at
Berkeley in 1988. He held concurrent postdoctoral positions
with UCSD and MIT before joining the Lawrence Berkeley
National Laboratory in September 1995, where he is a staff
computer scientist in the Network Research Group. While
at UC Berkeley, he was responsible for the integration of
security sofrware into Berkeley UNIX and protocol develop­
ment for the campus' supercomputer. While at UC San
Diego, Kevin developed a high-performance 1/0 architec­
ture designed to the support the large 1/0 demands of the
Sequoia 2000 database and multimedia applications.
He was also responsible for the routing architecture and
system configuration of the Sequoia 2000 network.

Jonathan S. Kay
Jon Kay received a Ph.D. in computer science from the
University of California at San Diego. While working
toward his doctorate, he was involved in the Sequoia 2000
networking project. He joined Isis Distributed Systems
oflthaca, N .Y. in 1994 to work on distributed computing
toolkits. He also holds a B.S. and an M.S. in computer
science from Johns Hopkins University.

Call for Authors
from Digital Press

Digital Press is an i mprint of Butterworth - Hei neman n , a major international pub­
lisher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized p u bl isher for Digi tal Equipment Corporation : The two
companies are working in partnership to identify and publish new books under the
D igital Press i mprint and create opportu nities for authors to p u blish their work.

D igital Press is committed to publishing high -quality books on a wide variety
of subjects . We would l i ke to hear from you i f you are writing or thinking about
writing a book.

Contact: Mike Cash, Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIGITAL PRESS
3 1 3 Washi ngton Street
Newton , MA 02 1 5 8 - 1 626
U.S.A.
Tel (6 1 7) 928-2649, F ax : (6 1 7) 928-2640
E- mail : Mike .Cash@BH ei n . rel .co.uk or
LizMc@world .std .com

ISSN 0898 -90 1X

Printed in U . S .A. EY-T8 38 E-TJ/YS 1 2 1 4 1 8 .0 Copvright © Digital E q u i p m e n t Corporatio n . A l l Rights Resen·ed .

mamaama,M

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Compiling High Performance Fortran for Distributed-memory Systems
	Design of Digital's Parallel Software Environment
	An Overview of the Sequoia 2000 Project
	The Sequoia 2000 Electronic Repository
	Tecate: A Software Platform for Browsing and Visualizing Data from Networked Data Sources
	High-performanceI I/O and Networking Software in Sequoia 2000
	Call for Authors from Digital Press
	Back cover

