
Digital 
Technical 
Journal 

I 
DATABASE INTEGRATION 

ALPHA SERVERS & WORKSTATIONS 

ALPHA 21164 CPU 

Special 10th Anniversary Issue 
1995 



Editorial 
Jane C. Bia.kc, Managing Edi tor 
Helen L. Patterson, Edi tor 
Kathleen M. Stetson, Editor 

Circulation 
Catherine M. Phillips, Administrator 
Dorothea B. Cassady, Secretary 

Production 
Terri Autieri, Production Editor 
Anne S. Katzcft~ Typographer 
Joanne Murphy, Typographer 
Peter R. Woodbury, lllustra.tor 

Advisory Board 
Samuel H . Fuller, Chairman 
Richard W. Beane 
Donald Z . Harbert 
William R. Hawe 
Richard J. Hollingsworth 
Richard F. Lary 
Alan G. Nemeth 
Jean A. Proulx 
Robert M. Supnik 
Gayn 8. Winters 

Cover Design 
Key to the remarkable performance of the 
AlphaServer 8400/8200 systems is Digital's 
new 300-MHz, 64-bit Alpha 21164 micro­
processor. Both subjects are featured in this 
tenth anniversary issue ofthejountal and 
are represented o n the cover in the forms 
ofa photograph of the microprocessor and 
an illustratio n of the AlphaScrvcr system 
topology. 

The cover was designed by Mario 
Furtado of Furtado Communication 
Design. 

The Dig ital Technical journal is a refereed 
jo urnal published quarterly by Digital 
Equipment Corporation , 30 Porter Road 
LJ02/ D l 0 , Littleton, Massachusetts O 1460. 
Subscriptions to the j ournal are $40.00 
(110 11 -U.S. $60 ) for four issues and $75.00 
(110 11 -U.S. $115 ) for eight issues and must 
be prepaid in U.S. funds . University and 
college professors and Ph .D. students in 
the electrical engineering and computer 
science fields receive complimentary sub­
scriptions upon request. Orders, inquiries, 
and add ress changes should be sent to the 
Digital Technical j ournal at the published­
by address. Inquiries can also be sent elec­
tronically to dtj@digital.com. Single copies 
and back issues arc avail able for $ 16.00 each 
by calling DECdirect at 1-800-DIGITAL 
( l -800-344-4825 ). Recent back issues of tl1 e 
Journal arc also available on the Internet at 
http:/ /www.digital.com/i nfo/ DTJ/ home. 
html. Complete Digital Internet listings can 
be obtained by sending an electronic mail 
message to info@digital.com. 

Digital employees may order subscriptions 
through Reade rs Choice by entering VTX 
PROFILE at tl1e system prompt. 

Comments on tl1e content of any paper 
arc welcomed and may be sent to the 
managing editor at the published-by or 
network address. 

Copyright © 1995 D igital Equipment 
Corporation . Copying without fee is per­
mitted provided that such copies are made 
for use in educational institutions by faculty 
members and are not distributed for com­
mercial advantage. Abstracting with credit 
of Digital Equipment Corporation's autho r­
ship is permitted . All ri ghts reserved . 

T he info rmatio n in tl1ejournal is subject 
to change witl1out notice and should not 
be construed as a commitment by Digital 
Equipment Corporation or by the compa­
nies here in represented. Digital Equipment 
Corpo ratio n assumes no responsibility for 
any errors that may appear in tl1ejou.rnal. 

!SS 0898-901 X 

Documentation Number EY-T l35 E-TJ 

Book production was done by Quantic 
Communications, Inc. 

The following arc trademarks of Digital 
Equipment Corporation : ACMS, 
ACMS Desktop, ACMSxp, AlphaScrver, 
AlphaStation , DEC, DEC OSF / 1, DECchip, 
DECnet, DECdtm , DECnet, D igital, the 
DIGITAL logo, ObjectBroker, Open VMS, 
PATHWORKS, ULTRIX, VAX, and VMS. 

ADABAS is a registered trademark of 
Software AG o f North America, Inc. 

AIX, IBM, OS/ 2, and lUSC System/ 6000 
arc registered trademarks and AS/ 400, CICS, 
and D 82 are trademarks oflnternational 
Business Machines Corporation. 

Apple Talk and Macintosh are registered 
trademarks of Apple Computer, Inc. 

AT&T is a registered trademark of American 
Telephone and Telegraph Company. 

BT is a registered trademark of British 
Telecommunications pie. 

Challenge is a trademark of Silicon 
Graphics, Inc. 

Cyri x is a trademark ofCyri x Corporation. 

dBASE is a trademark and Paradox is 
a registered trademark of Borland 
International, Inc. 

EDA/ SQL is a trademark of Info rmation 
Builders, Inc. 

Encina is a registered trademark ofTransarc 
Corporation. 

Excel and Microsoft are registe red trade­
marks and Windows and Windows NT are 
trademarks of Microsoft Corporatio n. 

H ewlett-Packard and HP-U X arc registered 
trademarks of Hewlett-Packard Company. 

!NG RES is a registered trademark of Ingres 
Corporation. 

INFORM IX is a registered trademark of 
Informix Software, Inc. 

lntel486, Intel , and Pentium arc trademarks 
of Intel Corporation. 

Kerbcros is a trademark of Massachusetts 
Institute ofTcchnology. 

MI PS R4000 is a trademark of MI PS 
Computer Systems, Inc. 

Motif; OSF, and OSF / l are registered trade­
marks of the Open Software Foundation , 
Inc. 

Novell is a registered trademark of Novell, 
Inc. 

ORACLE is a registe red trademark of Oracle 
Corporatio n. 

POS!X is a registered trademark of the 
Insti tute of Electrical and Electronics 
Engineers, Inc. 

SCO is a registered trademark of The Santa 
Cruz Operation, Inc. 

SequcLink is a registered trademark of 
TechGnosis, Inc. 

Solaris and Sun are registered trade­
marks and SunOS is a trademark of Sun 
Microsystems, l nc. 

SPARC is a registered trademark of SPARC 
International, Inc. 

SPEC, SPECfp, SPECi nt , SPECfp92, 
SPECint92, SPECmark , SPECratc_fp92, 
and SPECratc_int92 are t rademarks of the 
Standard Performance Evaluation Council. 

SPICE is a trademark of the University of 
California at Berkeley. 

SPX/ I PX is a trademark of Novell, Inc. 

SY BASE is a registered trademark of Sybasc, 
Inc. 

Tuxedo is a registered trademark of Unix 
Systems Laboratories, Inc. 

UN IX is a registered trademark in the 
United States and other countries, licensed 
exclusively through X/ Open Company Ltd . 

X/Open is a trademark of X/ Opcn 
Company Ltd. 



Contents 

Foreword 

DATABASE INTEGRATION 

DB Integrator: Open Middleware for Data Access 

ACMSxp Open Distributed Transaction Processing 

An Open, Distributable, Three-tier, Client-Server 
Architecture with Transaction Semantics 

ALPHA SERVERS & WORKSTATIONS 

The AlphaServer 8000 Series: High-end Server 
Platform Development 

Digital's High-performance CMOS ASIC 

The Second-generation Processor Module for 
AlphaServer 2100 Systems 

The Design and Verification of the Alpha Station 
600 5-series Workstation 

ALPHA 21164 CPU 

Circuit Implementation of a 300-MHz 64-bit 
Second-generation CMOS Alpha CPU 

Internal Organization of the Alpha 21164, 
a 300-MHz 64-bit Quad-issue CMOS RISC 
Microprocessor 

Functional Verification of a Multiple-issue, 
Pipelined, Superscalar Alpha Processor -
the Alpha 21164 CPU Chip 

Richard L. Sites 

Richard Pledereder, Vishu Krishnamurthy, Michael Gagnon, 

and Mayank Vadodaria 

Robert K. Baafi, J. Ian Carrie, William B. Drury, 
and Oren L. Wiesler 

Norman G. Depledge, William A. Turner, and 
Alexandra Woog 

David M. Fenwick, Denis J. Foley, William B. Gist, 

Stephen R. VanDoren, and Daniel Wissell 

Jean H. Basmaji, Kay R. Fisher, Frank W. Gatulis, 
Herbert R. Kolk, and James F. Rosencrans 

Nitin D. Godiwala and Barry A. Maskas 

John H . Zurawski, John E. Murray, and Paul J. Lemmon 

5 

7 

23 

34 

43 

66 

77 

89 

William J. Bowhill, Shane L. Bell, Bradley J. Benschneider, 100 

Andrew J. Black, Sharon M. Britton, Ruben W. Castelino, 
Dale R. Donchin, John H . Edmondson, Harry R. Fair, III, 
Paul E. Gronowski, Anil K. Jain, Patricia L. Kroesen, Marc E. 

Lamere, Bruce J. Loughlin, Shekhar Mehta, Robert 0. Mueller, 
Ronald P. Preston, Sribalan Santhanam, Timothy A. Shedd, 

Michael J. Smith, and Stephen C. Thierauf 

John H . Edmondson, Paul I. Rubinfeld, Peter J. Bannon, 
Bradley J. Benschneider, Debra Bernstein, Ruben W. 
Castelino, Elizabeth M. Cooper, Daniel E. Dever, Dale R. 
Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar Mehta, 

Jeanne E. Meyer, Ronald P. Preston, Vidya Rajagopalan, 
Chandrasekhara Somanathan, Scott A. Taylor, and 
Gilbert M . Wolrich 

Michael Kantrowitz and Lisa M. Noack 

119 

136 

Digital Technical Journal Vol. 7 No. 1 1995 



2 

In Memoriam 

This tenth anniversary issue of the Digital Technical Journal is dedicated to 
the memory of Peter F. Conklin, Corporate Consulting Engineer, who passed 
away in April 1995. Peter worked at Digital for 26 years. He was one of the pio­
neers of the DECsystem-IO software group, contributing its first batch and vir­
tual memory subsystems. He was a key contributor in the design of the VAX 
architecture and its language and run-time environments. He worked in the 
PDP-11 and Terminals and Printers groups, helping to develop their technical 
and business strategies in rapidly changing environments. And he was a prime 
mover of the Alpha program, overseeing first the software development and 
then all of the engineering, as well as creating its unique cultural and managerial 
approach to cross-organizational development. 

Beyond his outstanding technical and business contributions, Peter espoused 
and represented all that was good in Digital's culture-respect for and focus on 
people; doing the right thing for customers and colleagues; driving for concrete 
results and workable processes. He championed the role of women and minori­
ties as managers and contributors. He helped set up the internal Notes system to 
further open communications among employees, and between employees and 
management. And he advocated and modeled the uses of training and develop­
ment to improve personal and organizational performance at all levels. 

Peter's work is woven through the fabric of Digital's history like a bright, 
unbreakable thread. He will be sorely missed. 

BobSupnik 

Digital Technical Journal Vol. 7 No. 1 1995 



Editor's 
Introduction 

The Digital Technical Journal marks 
its tenth anniversary with the publica­
tion of this issue. Since 1985, the 
Journal has chronicled Digital' s engi­
neering achievements from silicon to 
software: record-breaking micropro­
cessors, standards-setting network 
technologies, advanced storage archi­
tectures, and industry-leading imple­
mentations of clusters and distributed 
systems. More than simply a record, 
the Journal offers readers insights into 
the how and why ofDigital's product 
designs- in papers written by the 
design engineers themselves. A look 
back over the last ten years, however, 
provides only a partial view to engi­
neering's unique combination of 
vision and pragmatism, a combi­
nation that has spurred industry 
breakthroughs and established the 
foundation for the development 
of today's world-class hardware and 
software products. To celebrat~ 
Digital's outstanding engineering 
achievements, we have therefore 
included a special section of historic 
milestones as part of this anniversary 
issue. The milestones begin in 1957 
with the development of the com­
pany's first product, a system module 
for scientific use that ran at 5 MHz. 
The milestones continue through 
the recent introduction ofDigital's 
new high-performance server system 
based on microprocessors that run 
at an extraordinary 300 MHz. 

The 300-MHz microprocessor and 
the AlphaServer 8400/8200 system 
that uses it are in fact featured in this 
issue. As Dick Sites points out in his 
Foreword, these second-generation 
Alpha products truly take advantage 
of the Alpha 64-bit RISC architecture 
introduced by Digital in 1992. In 

addition to discussions of three Alpha 
hardware designs and the new micro­
process~r, this issue presents papers 
on database software technologies. 
These papers focus on the realities 
ofintegrating heterogeneous systems 
and data sources. 

The Database Integrator (DBI) 
directly addresses the heterogeneity 
issue by providing a multidatabase 
management system for data access 
and integration of distributed data 
sources. Richard Pledereder, Vishu 
Krishnamurthy, Mike Gagnon, and 
Mayank Vadodaria outline the data 
access issues and compare the DBI 
approach with others. Their discus­
sion addresses such topics as hetero­
geneous query optimization, location 
transparency, global consistency, reso­
lution of semantic differences, and 
security checks. 

Key to solving the problems posed 
by heterogeneous systems are open­
ness and standards. Both are stressed 
in the ACMSxp transaction processing 
monitor design, described by Bob 
Baafi, Ian Carrie, Bill Drury, and Oren 
Wiesler. ACMSxp is layered on the 
OSF's Distributed Computing Envi­
ronment and uses Transarc's Encina 
toolkit to support XA-compliant 
databases. The monitor's applica-
tion development environment is 
based on the Structured Transaction 
Definition Language. 

The ACMSxp monitor figures in 
the next paper, written by Norman 
Depledge, Bill Turner, and Alexandra 
Woog, which defines an architecture 
for improving the effectiveness of 
heterogeneous environments. The 
authors first review relevant standards, 
such as CORBA and DCE, and then 
describe an open, distributable client-

server architecture made up of three 
tiers: desktop, middleware (founded 
on the ACMSxp monitor and Digital's 
ObjectBroker software), and legacy 
interfaces. 

The next set of papers features 
high-performance systems built on 
the 300-MHz Alpha 21164 micro­
processor. Presented first is the 
AlphaServer 8000 platform-the 
basis for the highest performance 
systems yet developed by Digital. 
Dave Fenwick, Denis Foley, Bill Gist, 
Steve VanDoren, and Dan Wissell 
discuss the principal design issues 
relative to the aggressive goals set for 
system data bandwidth and memory 
read latency. They define their design 
approach with seven levels of abstrac­
tion and review the choices made in 
each level; the prevailing theme is 
achieving low memory read latency. 
As a result, the AlphaServer 8400 
and 8200 systems feature a minimum 
memory read latency of260 nanosec­
onds (ns). Moreover, in benchmark 
tests, the 12-processor AlphaServer 
8400 system achieves supercomputer 
performance levels of5 billion float­
ing-point operations per second. 

Essential for meeting AlphaServer 
speed requirements was a custom 
application-specific integrated circuit 
(ASIC) bus interface. Jean Basmaji, 
Kay Fisher, Frank Gatulis, Herb Kolk, 
and Jim Rosencrans describe a 
timing-driven layout approach for 
designing and implementing high­
performance ASICs. Called CSALT, 
i.e., CMOS standard-cell alternative 
technology, the tool suite saved sig­
nificant project time and provided the 
customization necessary to support 
the system's 10-ns bus speed. 

Digital Technical Journal Vol. 7 No. l 1995 3 



4 

Developers of a second-generation 
processor module for the AlphaServer 
2100 multiprocessing system also 
took advantage of the Alpha 21164 
microprocessor performance and at 
the same time ensured physical com­
patibility with the first generation. 
Nitin Godiwala and Barry Maskas 
highlight the designs that most effi­
ciently used the system bus bandwidth 
and provided a 1.4 SPEC performance 
increase over the first-generation 
module, including a third-level cache, 
duplicate tag store, and a synchro­
nous clocking scheme. 

Also based on the Alpha 21164 
microprocessor, the AlphaStation 
600 5-series workstation incorporates 
the 64-bit PCI bus and supports three 
operating systems. In their paper, 
John Zurawski, John Murray, and 
Paul Lemmon focus on the chips that 
provide high-bandwidth intercon­
nects between the CPU, the main 
memory, and the PCI bus. They also 
recount their experiences in the 
development of a hardware-based 
verification technique that improved 
test throughput by five orders of 
magnitude over the software-based 
techniques. 

The Alpha 21164 microprocessor 
that is at the heart of the three systems 
described above delivers an outstand­
ing microprocessor performance 
(peak) of 1.2 billion instructions per 
second. Three papers examine the 
circuit design, the logic functions, 
and the functional verification of this 
custom, 64-bit VI.SI chip. First, Bill 
Bowhill et al. examine the circuit 
design contributions needed to 
achieve the performance goal of 
300-MHz operation. The authors 
describe the floorplan choices for 

Digital Technical Jo urnal 

laying out the 9.3-million transistor 
chip and the global single-wire clock 
distribution scheme. They then pre­
sent a set of significant circuit design 
challenges-the speed requirement, 
the complicated microarchitecture, 
and the large physical size of the chip 
-and explain circuit implementation 
decisions for the instruction, execu­
tion, and memory units; the system 
clock; and the three caches. 

The paper by John Edmondson 
et al. describes the functional units 
of the Alpha 21164 microprocessor: 
the quad-issue, superscalar instruction 
unit; the 64-bit integer execution pipe­
lines; two 64-bit floating-point execu­
tion pipelines; a high-performance 
memory unit; and a cache control 
and bus interface unit. The authors 
note architectural improvements over 
the first-generation 21064 micropro­
cessor and provide performance data. 

The functional verification of this 
complex microprocessor is described 
in our concluding paper. Mike 
Kantrowitz and Lisa Noack review 
the many techniques employed 
to verify the logic design and the 
PALcode interface, including 
implementation-directed pseudo­
random exercisers used in combina­
tion with focused hand-generated 
tests. The authors relate the lessons 
learned from the few bugs found in 
the first prototype of the 
microprocessor. 

An anniversary is a time to look 
back and ahead. Looking back to the 
Journal's origins, I want to acknowl­
edge the wisdom of Dick Beane, the 
Journal's first editor, and Sam Fuller, 
vice president of Corporate Research. 
They established the Journal's edito­
rial focus and its structure: to publish 

Vol. 7 No. I 1995 

technical papers, written by Digital's 
engineers, that describe the techno­
logical foundations of our products, 
under the guidance of an advisory 
board responsible for content and 
editorial philosophy. Because readers 
responded so well to the working 
engineer's perspective on product 
design, the Journal has grown from 
a biannual to a quarterly publication, 
and was one of the first industry jour­
nals to publish electronically on the 
WorldWide Web. Further, since 
1992, papers have been peer reviewed 
to ensure that readers receive substan­
tive, accurate information on a widen­
ing number of topics covered in 
the Journal. Of course this growth 
would not have happened without 
the Journal's contributors, the engi­
neers who analyze their unique and 
informative experiences and share 
them with their peers. As Digital's 
engineers add to the timeline of engi­
neering milestones in computer sys­
tems, software, networking, storage, 
semiconductors, and peripherals, 
the Journal will continue to serve its 
readers by publishing this important 
work. 

The editors thank Bob Supnik, 
Senior Corporate Consulting Engi­
neer, for his help in bringing together 
this special issue of the Journal. 

Upcoming in the Journal: systems 
engineering, Sequoia 2000 research, 
software environments, scientific 
computing, and networking. 

Jane C. Blake 
Managing Editor 



Foreword 

Richard L . Sites 
Alpha CPU Co-architect 
Corporate Consultant Engineer 

Welcome to the Tenth Anniversary 
issue of the Digital Technical Journal I 
As Jane explains in the Editor's 
Introduction, much has changed 
since Volume 1 Number 1. In fact, 
much has changed in only three 
years, as this issue on Alpha attests. 

From Race Cars to Express­
Delivery Trucks 
What if race cars evolved as quickly 
as computers? They might stay on the 
race track and get about three times 
faster every three years. Or they might 
move off the track into everyday life. 

Just three short years ago, Digital 
was celebrating in these pages and 
elsewhere the first-generation Alpha 
hardware and software announce­
ments. The typical analogy likened 
Alpha to a race car - blazingly fast, 
but not seen in your own neighbor­
hood. In this issue, Digital's engineers 
describe second-generation Alpha 
hardware and software. Today's anal­
ogy is to an express-delivery truck -

still faster than the rest of the industry, 
but now so commonplace in the deliv­
ery of business data that it is almost 
taken for granted. 

lfwe look back at history, most 
healthy computer architectures did 
not become firmly established in the 
marketplace until the introduction 
of their second generation. The table 
below shows architecture generations 
for three popular processor designs, 
with milestone implementations 
highlighted. Each architecture goes 
through many generations, on about 
a three-year cycle. The second gener­
ation in each case has been the point 
at which the architecture became 
firmly established. Subsequent gener­
ations have represented continuing 
refinement and performance increases. 
Alpha fits this industry-wide pattern. 

So, with the advent of second­
generation Alpha computers, how 
are we doing? 

IBM 
System/360 

Architecture design 1962 

First generat ion 1965 360/40 

Second generation 1968 360/85 

Third generat ion 1971 370/145 

Fourth generation 1974 Virtual 
memory 
370/168 

Fifth generation 1977 

Sixth generation 1980 

Sevent h generation 1983 3090 

Eight h generation 1986 

Ninth generation 1989 ES/9000 

Tenth generation 1992 

At the Starting Line 
The first-generation Alpha hardware 
designs focused on performance, 
especially on high clock rate for the 
CPU chip. The initial 150-MHz and 
200-MHz Alpha systems entered the 
market when the Intel 486 at 66 MHz 
and MIPS R4000 at 75 MHz were the 
fastest chips in their respective lines. 

The first-generation Alpha soft­
ware focused on survival - enough 
operating system functionality (VMS 
subset) to support at least some cus­
tomers, and enough compiler optimi­
zation to make at least some (single­
user, Fortran, scientific) programs 
run fast. An important part of the 
introduction was migration software 
to help the installed base of VAX/VMS 
and MIPS/ ULTRIX customers move 
to the Alpha platform. As with any 
new venture, the approaches were 
minimalist, with sophistication left 
to the future. 

VAX Alpha 

1975 1989 

1978 VAX-11/780 1992 21064 
scientific 

1982 VAX-11/750 199521164 
business 

1985 MicroVAX 1998 21264 

1988 VAX 6000 
Model 200 

1991 VAX 6000 
Model 600 

1994 

Digital Technical Journal Vol. 7 No. 1 1995 5 



6 

Like race cars, the initial Alpha 
hardware and software products were 
criticized for being temperamental -
fast indeed for some applications, 
but not appropriate for others. Some 
observers assumed that the first 
generation was a fluke, or that it 
represented all that Alpha computers 
could ever be. The reaction to many 
architectural features, such as 64-bit 
addressing or relaxed read-write 
ordering, was "who needs it?" They 
wrote Alpha off as a niche design. 

Delivering on Its Promise 
Three years later, the future has 
arrived with a (muffied) roar: 

• The sophisticated second­
generation Alpha 21164 chip, 
described in this issue, is 1.5 
to 2 times as efficient as the first­
generation 21064 chip in terms 
of work done per clock cycle on 
real programs. 

• The chip clock rate has been 
boosted from 200 MHz to 
a stunning 300 MHz. 

• Efficiency of compiled code has 
improved by 10 to 60 percent 
on many programs. 

• Operating system code has been 
expanded and tuned. 

The performance factors roughly 
multiply together, producing second­
generation systems that are about 2.5 
to 3.5 times faster than the equivalent 
first-generation systems. One exam­
ple of the higher speeds of these new 
systems is the AlphaServer 8400, 
discussed in this issue; system perfor­
mance approaches the level of super­
computers with Linpack n X n results 
of5 GFLOPS. 

The second-generation system 
platforms emphasize industry leader­
ship for a broad range of commercial 
client-server applications, not just 
scientific applications. Like express­
delivery trucks, much of the second­
generation software is focused on 
enterprise-wide database access. Truly 
taking advantage of the 64-bit address­
ing for the first time, Oracle 7 database 
software can run huge in-memory 
database queries 200( ! ) times faster 

Digital Technical Journal 

than traditional 32-bit database soft­
ware. The three database papers in 
this issue emphasize Digital's focus 
on commercial applications. 

Operating system support is sub­
stantially more robust and has been 
expanded to the fastest UNIX and 
Windows NT implementations in the 
industry. Full Open VMS clustering, 
including mixed Alpha and VAX 
clusters, is available. UNIX and NT 
clustering is announced. All three 
operating systems now support SMP, 
symmetric multiprocessing. The 
64-bit Digital UNIX implementation 
has led the rest of the industry in 
delivering 64-bit software by over 
24months. 

Compiled-code improvements 
have been remarkable. In 1992, 
I could read the code generated by 
some of our compilers and redline 
three out of every four instructions 
as unneeded unneeded unneededd 
unneeded. A year ago, I could read 
compiled code and redline one 
instruction out of every two as 
unneeded unneeded. Today, I am 
hard-pressed to redline even 15 per­
cent of the instructions as unneededd. 

Moving beyond the installed base, 
migration efforts are now focused 
on bringing in new customers. In 
addition to VAX and MIPS binary 
translation, the SPARC-to-Alpha 
binary translation product is available. 
Code from x86 PC platforms runs 
emulated on all Alpha operating sys­
tems. A technology demonstration 
of x86-to-Alpha binary translation 
has been given at trade shows. 

The growing maturity and sophis­
tication of the Alpha products have in 
turn led to accelerated sales growth. 
Over 100,000 Alpha systems worth 
over $3.5 billion (hardware, software, 
and service) have been shipped, and 
the ship rate has increased 66 percent 
in the past year alone. In its first three 
years, Alpha is off to a much faster 
start than other RISC architectures, 
such as HP-PA, in their first three 
years. Buying patterns have shifted 
from try-one-out to buy-a-fleet-to­
run-the-business. 

In three short years, Alpha com­
puters have become established as 

Vol. 7 No. 1 1995 

the fastest in the industry - the 
yardstick by which others measure 
computer performance. Competitors 
have shortened their development 
cycles and aggressively increased their 
clock rates. Every single company 
that described Alpha features as 
unnecessary in 1992 is now rushing 
to bring its own 64-bit and relaxed 
read-write order SMP implementa­
tions to market. Alpha has grown 
from "niche design" to "industry 
yardstick" in a single generation. 

Digital has invested over $1 billion 
in the development of Alpha. Literally 
thousands of people have brought 
a paper design to life. Bleeding-edge, 
brute-force chip technology has 
turned into practical engineering, 
with a balance of sophistication and 
everyday care: race cars to express­
delivery trucks. 

Alpha is evolving much as the 
architects originally envisioned. 
I believe Peter Conklin, who led the 
Alpha Program Office and to whom 
this issue is dedicated in memoriam, 
would want to also dedicate this issue 
to all the brilliant and hardworking 
people who have made it a reality. My 
thanks and admiration to each of you. 

So how are we doing? After you 
read this issue, I think you will agree, 
"Quite well, thank you." 



DB Integrator: 
Open Middleware 
for Data Access 

During the last few years, access to hetero­

geneous data sources and integration of the 

disparate data has emerged as one of the major 

areas for growth of database management 

software. Digital's DB Integrator provides robust 

data access by supporting heterogeneous query 

optimization, location transparency, global 

consistency, resolution of semantic differences, 

and security checks. A global catalog provides 

location transparency and operates as an 

autonomous metadata repository. Global trans­

actions are coordinated through two-phase 

commit. Highly available horizontal partitioned 

views support continuous distributed process­

ing in the presence of loss of connectivity. The 

DB Integrator enables security checks without 

interfering with the access controls specified 

in the underlying data sources. 

I 
Richard Pledereder 
Vishu Krishnamurthy 
Michael Gagnon 
Mayank Vadodaria 

A problem faced by organizations today is how to 
uniformly access data that is stored in a variety of data­
bases managed by relational and nonrelational data 
systems and then transform it into an information 
resource that is manageable, functional, and readily 
accessible. Digital's DB Integrator (DBI) is a multi­
database management system designed to provide 
production-quality data access and integration for 
heterogeneous and distributed data sources. 

This paper describes the data integration needs of 
the enterprise and how the DBI product fulfills those 
needs. It then presents the DBI approach to multi­
database systems and a technical overview of DBI con­
cepts and terminology. The next section outlines the 
system architecture of the DBI. The paper concludes 
with highlights of some of the technologies incorpo­
rated in DBI. 

Data Integration Needs 

Companies often find themselves data rich, but infor­
mation poor. Propelled by diverse application and 
end-user requirements, companies have made signifi­
cant investments in incompatible, fragmented, and 
geographically distributed database systems that need 
to be integrated. Companies with centralized informa­
tion systems are seeking methods to distribute this 
data to inexpensive, departmental platforms, which 
would maximize performance, lower cost, and 
increase availability. 

The DB Integrator product family is specifically 
designed and implemented to address the following 
data integration needs: 

• Data access. The data integration product must 
provide uniform access to both relational and 
nonrelational data regardless of location or stor­
age form. Data access must be extensible to allow 
the user to write special-purpose methods. 

• Location and functional transparency. The loca­
tion of the data and the functional differences 
of the various database systems must be hidden 
to provide end users with a single, logical view of 
the data and a uniformly functional data access 
system. 

Digital Technical Journal Vol. 7 No. 1 1995 7 



8 

• Schema integration and translation. Users of data 
integration software must be presented with an 
environment that lets them easily determine what 
data is available. Such an environment is fre­
quently referred to as a federated database. A data 
integration product must be flexible enough to 
help resolve semantic inconsistencies such as 
variances in field names, data types, and units of 
measurement. 

• Data consistency. Maintaining data consistency is 
one of the most important aspects of any database 
system. This is also true for a federated database. 

• Performance. Integrating data from multiple data 
sources can be an expensive operation. The two 
primary goals are to minimize the amount of data 
that is transferred across the network and to maxi­
mize the amount of rows that are processed 
within a given unit of time. 

• Security. Access to distributed data must not 
compromise the security of data in the target 
databases. The security model must provide 
authorized access to an integrated schema without 
violating the security of the autonomous data 
sources that have been integrated. 

• Openness. Any data integration product must 
accommodate tools and applications with stan­
dard SQL (structured query language) interfaces, 
both at the call level ( e.g., Open Database 
Connectivity [ODBC] for personal computer 
clients) and the language level ( e.g., ANSI SQL)!,2 

It must be able to provide and enable access to 
data over the most commonly deployed transports 
such as transmission control protocol/internet 

PATHWORKS NOVELL WINDOWS SOCKETS 
DECNET - TCP/IP COMPLIANT TCP/IPs 
APPLETALK 

AP ls 

ODBC SQL-92 
DAL SQUSERVICES 
SEOUELINK 

protocol (TCP /IP), DECnet, or Systems Network 
Architecture (SNA).3 

• Administration. The integrated database must 
provide flexibility in configuration and be easy to 
set up, maintain, and use. 

Figure 1 illustrates the current set of client-server 
data access supported by the DB Integrator product 
family. 

Multidatabase Management Systems 

A multidatabase management system (MDBMS) 
enables operations across multiple autonomous com­
ponent databases. Based on the taxonomy for multi­
database systems presented in Reference 4, we can 
describe DBI as a loosely coupled, heterogeneous, and 
federated multidatabase system. DBI is loosely cou­
pled compared to the component databases: The data­
base administrator (DBA) that is responsible for DBI 
and the DBAs that are responsible for the component 
databases manage their environments independently 
of one another. DBI is heterogeneous because it sup­
ports different types of component database systems. 
DBI is federated because each component database 
exists as an independent entity. 

Reference Architecture 
The MDBMS provides users with a single system view 
of data distributed over a large number of heteroge­
neous databases and file systems. The MDBMS inter­
operates with the individual component databases 
similar to the way that the SQL query processing 
engine in a relational DBMS interoperates with the 

LINK DAT ABASES 

ADA BAS SYBASE MODEL-204 .. 
AS/400 SUPRA TOTAL" 
DB2 SOUSERVER 
DB2/2 PC DATA 
082/6000 RMS -ACCESS 
INFORM IX DBMS -BTRIEVE 
INGRES DSM -DBASE 
INTERBASE VSAM - EXCEL 
ORACLE IMS" -PARADOX 

DB INTEGRATOR ORACLE RDB FOCUS" - SEQUENTIAL 

OPERATING SYSTEMS 

DOS 
OS/2 
DEC OSF/1 
AIX' 
SGI' 

MACINTOSH 
WINDOWS NT 
ULTRIX 
HP-UX' 
sco· 

*VIA SEOUELINK 

Figure 1 

WINDOWS 
OPENVMS 
SUN-OS 
SOL.ARIS' 

DB INTEGRATOR 
GATEWAYS 

DECNET 

Client-Server Data Access with the DB Integrator 

Digital Technical Journal Vol. 7 No. I 1995 

PROGRES CA-IDMS'' 
SQUDS TERADATA CUSTOM DATA 

.. READ-ONLY VIA EDA/SOL 

TCP/IP SNA 



record storage system. Thus, a relational MDBMS, 
such as DBI, is typically composed of the following 
processing units: 

• Language application programming interface 
(API) and SQL parser 

• Relational data system 
- Global catalog manager 
- Distributed query optimizer and compiler 
- Distributed execution system 
- Distributed transaction management 

• Gateways to access data sources 

Catalog Management 
One of the key differentiators between MDBMS archi­
tectures is the way that the metadata catalog is orga­
nized. Metadata is defined as the attributes of the data 
that are accessible ( e.g., naming, location, data types, 
or statistics). The metadata is stored in a catalog. Two 
common approaches for catalog management are 
described below: 

• Autonomous catalog. The MDBMS maintains its 
own catalog in a separate database. This catalog 
describes the data available in the multidatabase. 
For data that resides in a relational database, the 
metadata definitions of table objects, index 
objects, and so forth, are imported (i.e., repli­
cated) into the multidatabase catalog. For data 
that resides in some other data source such as a 
record file system (e.g., record management sys­
tem [RMS]) or a spread sheet, the MDBMS cata­
log contains a relational description of that data 
source. 

• Integrated catalog. The MDBMS is integrated 
with a regular database system that is capable of 
accessing objects (both data and metadata) in 
remote and foreign databases. A gateway server is 
responsible for making a foreign database appear 
as a homogeneous, remote database instance. For 
data that resides in a relational database, the gate­
way server stores views of its system relations into 
that database. For data that resides in a record file 
system or spread sheet, the gateway server stores 
the relational metadata description of the data in a 
separate data store. 

DBI Approach 
The DBI approach to multidatabase management very 
closely follows the reference architecture presented 
earlier. The DBI approach emphasizes the following 
design directions: 

• Global, autonomous catalog for metadata man­
agement 

• Three-tier integration model ( described later in 
this section) 

• Simple, mapped-in gateway drivers to access data 
sources 

• Support of distributed database features for the 
Oracle Rdb relational database as well as support 
of existing Oracle Rdb applications in the multi­
database environment 

Global Catalog DBI is addressable as a single inte­
gration server. Integration clients such as tools and 
applications do not need to deal with the complexities 
of the distributed data. The DBI global catalog is a 
repository in which DBI maintains the description 
of the distributed data. It enables DBI to provide 
tools and applications with a single access point to the 
federated database environment. The global catalog 
enables DBI to tell users what data is available without 
requiring immediate connectivity to the data or its 
data source. It can be managed and maintained as an 
independent database. The maintenance of the DBI 
global catalog is not inherently tied to a specific data 
manager; currently, the DBI catalog may reside in 
ORACLE, SYBASE, or Oracle Rdb databases. 

The use of a global catalog may result in a system 
with a single point of failure . To eliminate its potential 
failure within a node, a disk, or a network, standard 
high-availability mechanisms may be employed. These 
include shadowed disks with shared access ( e.g., clus­
tered nodes) and data replication of the DBI catalog 
tables with products such as the Digital Data 
Distributor.s 

Three-tier versus Two-tier Architecture With a two­
tier data integration model, once the data has been 
retrieved from the server tier, the actual integration 
occurs on the client tier. This may result in massive 
integration operations at the client site. In contrast, 
the DBI is based on a three-tier architecture that 
performs most integration functions on a middle 
tier between the client and the various database 
servers. The three-tier approach avoids unnecessary 
transfer of data to the client and is essential to provid­
ing production-quality data integration. In another 
comparison, all clients in the two-tier approach need 
to be configured to access the various data sources; 
however, the three-tier approach significantly reduces 
such management complexities. 

Gateway Driver Model DBI deploys a set of gateway 
drivers to access specific data sources, including other 
DBI databases. These drivers share a single operating 
system process space with DBI to avoid unnecessary 
interprocess communications. When DBI performs 
parallel query processing, however, gateway drivers 
may reside in a separate process space. The core of DBI 
interacts with the actual gateway drivers ( e.g., a 
SYBASE gateway driver) through the Strategic Data 

Digital Technical Journal Vol. 7 No. l 1995 9 



Interface (SDI), an architected interface that is used 
within the DBI product family as a design center.6 A 
gateway driver is implemented as a relatively thin soft­
ware layer that is SDI compliant and that is responsible 
for handling impedance mismatches in data models 
(e.g., RMS versus relational), query language (e.g., 
different dialects of SQL), and run-time capabilities 
( e.g., SQL statement atomicity). 

Distributed Rdb One of the design goals for DBI was 
to enable distributed database processing for DEC 
Rdb ( now Oracle Rdb) .7 From the perspective of an 
application, DBI therefore looks like a distributed Rdb 
database system. 

DBI Concepts and Terminology 

In this section, we present a brief overview of the con­
cepts and terminology relevant to DBI. 

DBI Database 
A DBI database consists of ( 1) a set of tables that DBI 
creates to maintain the DBI metadata (also referred to 
as the catalog) and (2) the distributed data that is avail­
able to the user when connected to the DBI catalog. 

A DBA creates a DBI database using the DEC SQL 
CREATE DATABASE statement. This statement has 
been extended for DBI to allow the user to indicate 
the physical database (e.g., a SYBASE database) that 
will be used to hold the DBI metadata tables. 

The creator of a DBI database automatically 
becomes the owner and system administrator of that 
database. A DBI system administrator may grant 
access privileges on the DBI database to other users. 
Depending on the level of privilege, a user may then 
perform system administration functions, execute data 
definition language (DDL) operations, and/or query 
the tables in the virtual database. 

DB/Objects 
In addition to regular SQL objects such as tables or 
columns, DBI uses objects, links, and proxies that are 
outside the scope of the SQL language standard. 

Links and Proxies The link object tells DBI how to 
connect to an underlying data source ( referred to as 
the link database). A link object has three components: 
a link name, the access string used to attach to the link 
database, and, optionally, security information used by 
the DBI gateway driver to provide authentication 
information to the link database system. The proxy 
object is associated with a link object. It can be used 
to specify user-specific authentication information for 
individual links. When users do not want to use prox­
ies for their links, they must specify the authentication 
information for a specific database at the time they 
connect to DBI. 

Tables With link and proxy objects in place, the user 
can import metadata definitions of underlying tables 
into the DBI catalog. The metadata imported for a 
table includes statistics, and constraint and index infor­
mation, all of which are used by the DBI optimizer. 
The import step is performed with a CREATE TABLE 
statement that has been extended to allow for a link 
reference. For example: 

Import "rdb_emp " table into DBI 
database as " emp " from the link 
database represented by the link 
named "link_r db". 

CREATE TA BLE emp LI NK TO rdb_emp 
USING link_rdb; 

Views View objects are useful for making multiple 
tables from different link databases appear as a single 
table. In DBI, views serve as powerful mechanisms to 
resolve semantic differences in tables from disparate 
databases. DBI supports two types of views: regular 
SQL views and horizontally partitioned views (HPVs). 
Regular views are compliant with ANSI SQL92 Level 
1; they support full query expression capabilities and 
updatability.2 HPVs consist of a view name, a parti­
tioning column, and partition specifications. Figure 2 
is an example of an HPV definition. 

HPVs provide a very powerful construct for defin­
ing a logical table composed of horizontal partitions 

CREATE VIEW emp (emp_id, first_name, la st_n ame, cou ntry) 
USING HORIZONTAL PARTITIO NING ON (c ountr y) 

Figure 2 

PARTITION us WHERE country= 'US' COMPOSE AS 
SELECT employeeid, firstname, lastname, 'US' 
FROM emp_u s 

PARTITION europe WH ERE OTHERWISE COMPOSE AS 
SELECT emp_id, first_n ame, las t_na me, co untry_cod e 
FROM emp_ eur; 

Example of an HPV Definition 

IO Digital Technical Journal Vol. 7 No. l 1995 



that may span tables from disparate data sources. Both 
retrieval and update operations on HPVs are opti­
mized such that unnecessary partition access is elimi­
nated. In addition, HPVs may be used to implement a 
shared-nothing computing model on top of both 
homogeneous and heterogeneous databases.8 

Stored Procedures DBI supports stored procedure 
objects. Stored procedures allow the user to embed 
application logic in the database. They make applica­
tion code easily shareable and facilitate DBI to main­
tain dependencies between the application code and 
database objects. Furthermore, stored procedures 
reduce message traffic between the client and the 
server. Figure 3 is an example of a stored procedure. 

DBI Database Administration 

DBI supports statements that keep the imported 
metadata consistent with the link database. The 
extended ALTER TABLE statement may be used to 
regularly refresh the table metadata information or 
update the table's statistics. The ALTER LINK state­
ment may be used to modify the link database specifi­
cation or a proxy for a given link object. 

DBI Configuration Capabilities 

Figure 4 shows the power of configuration options 
supported by DBI. Following the three-tier model for 
data integration, the DBI server may access a very large 
number of databases, including other DBI databases. 

The DBI server is accessible through SQL APis that 
are available on popular client platforms. DBI's client­
server protocol is supported on all common transports 

such as TCP /IP, Novell's sequenced packet exchange/ 
internetwork packet exchange (SPX/IPX), DECnet, 
or Windows Sockets. DBI itself may be deployed on 
Digital UNIX (formerly DEC OSF/1) and OpenVMS 
platforms today. Support for additional platforms is 
being added. 

DBI System Architecture 

In this section, we describe the system architecture 
of the DBI product family and present some of its 
specific designs. 

Interfaces 

As shown in Figure 5, the DBI system architecture is 
anchored by two external interfaces, SQL and meta­
data driver interfaces/data driver interfaces (MDI/ 
DDI), and two internal interfaces, Digital Standard 
Relational Interface (DSRI) and SDI. 

The SQL interface is used by DBI clients to issue 
requests to the integration server. The MDI/DDI 
interface is used by DBI to call gateway drivers that are 
provided by a user. The MDI/DDI interface specifies a 
simple, record-oriented data access interface provided 
by Digital to assist users in the access and integration 
of data sources for which no Digital-supplied gateway 
drivers are available. 

DSRI is the interface between DB I's SQL parser and 
the DBI processing engine.9 The SDI interface speci­
fies a canonical data interface that shields the DBI core 
from data-source-specific interfaces and facilitates 
modular development.6 

pr o c ed ure mai ntain_salaries(:state char(2) in, 
:n_decreased inte ger out); 

Figure 3 

begin 

en d ; 

set :n_decreased = O; 
for :empfor as each row of 

do 

do 

select* from employees emp where state 

set :Last_salary = O; 
history_loop: 
for :salfor as for each row of 

:state; 

select sal a ry_amount from salary history s 
where s.e mp loyee_id = :empfor. employee_id 

if :salfor . salary_amount {lt} : la st_salary then 
set : n_ decreased = :n_decreas ed + 1; 
Leave hi stor y_L oop; 

end if; 
set :last_salary = :salfor.salary_amount 

en d for; 
e nd for; 

Example of a Stored Procedure 

Digital Technical Journal Vol. 7 No. 1 1995 11 



NODE A 

B 
~ NODEB NODEE 

NODEC 

LJ-oBI 
SOFTWARE 

DBI/ i DB2 
NODED 

LJ LJ 

LJ 
ROB ORACLE 

SYBASE 

Figure4 
DBI Configuration Capabilities 

I ODBC I SQUSERVICES I SEQUELINK I DEC SQL I CLIENTS 

~~~~~~~~~~~~~~~~~SQL 

DBI RELATIONAL 
GATEWAY 

NATIVE DBMS API 

Figure 5 

SQL 

DB Integrator Architecture 

Components 

MDI 
DRIVER 

DOI 
DRIVER 

I 

The component architecture of DBI in Figure 6 
closely resembles the multidatabase reference architec­
ture presented earlier: 

• The SQL and ODBC client-server environment 
provides language API and SQL parser functions. 

• The API driver and context manager support dis­
tributed transaction management and part of the 
distributed execution system. 

• The metadata manager provides global catalog 
management. 

• The compiler supports the distributed query opti­
mizer and compilation. 

• The executor suppo rts the remaining part of the 
distributed execution system. 

12 Digital Technical Journal Vol. 7 No. 1 1995 

DBI 
SOFTWARE 

+ 
LJ 

DBMS 

DBI 
DB1 

• The SDI dispatcher and gateway drivers provide 
the access to data sources. 

SQL Environment and Server Infrastructure The SQL 
parser supports DEC SQL, an ANSI/National Institute 
for Science and Technology (NIST)-compliant SQL 
implementation by mapping DEC SQL syntax into an 
internal query graph representation.9 In a client-server 
environment, the DBI server infrastructure is used to 
manage, monitor, and maintain a DBI server configu­
ration that supports workstation and desktop clients. 

API Driver and Context Manager The API driver is 
responsible for the top-level control flow of client 
requests within the DBI core. It currently accepts 
DSRI calls from applications such as DEC SQL and 
dispatches them within DBI. The context manager 
performs demand-driven propagation of execution 
context to the gateway drivers and maintains the dis­
tributed context of active sessions, transactions, and 
requests. 

Metadata Manager The metadata manager is respon­
sible for the overall management and access to meta­
data. The services provided fall into the categories of 
catalog management, data definition, metadata cache 
management, and query access to DBI system rela­
tions. The metadata catalog manager maintains the 
DBI catalog in the form of DBI-created tables in an 
underlying database (e.g., SYBASE or ORACLE). The 
DDL processor executes the data definition state­
ments. The metadata cache manager is responsible for 
maintaining metadata in a volatile cache that provides 
high-speed access to metadata objects. 



METADATA 
MANAGER 

Figure 6 

SQUODBC CLIENTS 

API DRIVER DSRI 

CONTEXT MANAGER 

I COMPILER I I EXECUTOR 

SDI DISPATCHER SDI 

DB INTEGRATOR 
DBI GATEWAY DRIVER 

DB Integrator Components 

Compiler The compiler provides services for translat­
ing SQL statements and stored procedures into DBI 
execution plans. A rule-based query optimizer per­
forms query rewrite operations, enumerates different 
execution strategies, and factors in functional capabili­
ties of the underlying data sources. Each execution 
strategy is associated with a cost that is based on predi­
cate selectivity estimates, table cardinalities, availability 
of indices, network band,vidth, and so forth. The low­
est cost strategy is chosen as the final execution plan. 
Above a certain threshold of query complexity, the 
optimizer switches from an exhaustive search method 
to a greedy search method to limit the computational 
complexity of the optimization phase. The compiler 
generates code that can be processed by the executor 
component and the gateway drivers. 

Executor The executor component is responsible for 
processing the execution plan that the compiler pro­
duces. These activities include 

• Exchanging data between the DBI and the client 

• Streaming data between the DBI core and the link 
databases 

• Performing intermediate data manipulation steps 
such as joins or aggregates 

• Managing workspace and buffer pool to effi­
ciently handle large amounts of transient and 
intermediate data 

• Supporting parallel processing 

SDI Dispatcher and Gateway Drivers The SDI dis­
patcher separates the core of DBI from the gateway 
driver space. It locates and loads shareable images that 
represent gateway drivers and routes SDI calls to the 
corresponding entries in the gateway driver image. 

Technical Considerations 

The DBI development team selected several designs 
and technologies that it believes to be crucial for dis­
tributed and heterogeneous data processing. This sec­
tion summarizes those designs within the following 
functional units: distributed execution; distributed 
metadata handling; distributed, heterogeneous query 
processing; high availability; performance; and DBI 
server configuration. 

Distributed Execution 
To support transparent distributed query processing, 
DBI propagates execution context such as connection 
context or transaction context to the target data 
sources. Tools and applications see only the simple 
user session and transaction that they establish with 
the DBI integration server. 

DBI uses a tree organization to track the distributed 
execution context. When a user connects to a DBI 
database, a DBI user session context is created. This 
session context is subsequently used to anchor active 
transactions, compiled SQL statements, as well as the 
metadata cache that is created for every user attaching 
to DBI. When DBI passes control to a gateway driver, 
both session and transaction context are established at 
the target data source. 

Distributed transactions must support consistency 
and concurrency across autonomous database man­
agers. Consistency requires that a distributed transac­
tion manager with two-phase commit logic is available. 
DBI uses the Digital Distributed Transaction Manager 
( D DTM) for that purpose and is adding support for the 
distributed transaction processing (DTP) XA standard 
integration.10,11 

Concurrency requires that distributed deadlocks are 
detected. In a multidatabase system, distributed dead­
lock prevention is not feasible because no database 
manager exposes external interfaces to its lock man­
agement services-a procedure required to perform 
deadlock detection. DBI therefore relies on the simple 
technique of transaction time-out to detect deadlocks. 
In addition, a DBI application may choose to specify 
isolation levels lower than serializability or repeatable 
read. This is done with the SQL SET TRANSACTION 
statement. The DBI context manager records the 
transaction attributes specified and forwards them to 
the underlying data sources as part of propagating 
transaction context. Lower isolation levels will, in 
general, result in fewer lock requests and thus fewer 
deadlock situations. 

Distributed Request Activation DBI supports SQL 
statement atomicity. This requires either that a single 
SQL statement executes in its entirety or, in the case of 
a failure, that the database is reset to its state prior to 

Digital Technical Journal Vol. 7 No. 1 1995 13 



the execution of the statement. With DBI, the SQL 
statement may be executed as a series of database 
requests at multiple data sources. DBI internally uses 
the concept of markpoints to track SQL statement 
boundaries. Gateway drivers are informed of mark­
point boundaries, and the driver attempts to map the 
markpoint SDI operations into semantically equivalent 
constructs (e.g., savepoints) at the target data source. 
Some databases support SQL3-style savepoints, which 
are atomic units of work within a transaction. When 
DBI decides to roll back a markpoint, the gateway dri­
ver may then inform such a data source to roll back to 
the last savepoint. In the absence ofmarkpoint primi­
tives in the target data source, the gateway driver may 
elect to roll back the entire transaction to meet the 
roll-back markpoint semantics. 

Gateway Drivers In contrast with other data integra­
tion architectures, the DBI gateway drivers are 
designed to be simple protocol and data translators. 
Their primary task is to report the capabilities of the 
data-source interface (API and SQL language) to the 
DBI core and subsequently map between the SDI 
interface protocol and the data-source interface. The 
gateway drivers typically share process context with 
the DBI server process, thus avoiding the need for an 
intermediate gateway server process that would other­
wise reside between the DBI server and the data­
source server ( e.g., SYBASE SQL Server). This reduces 
the amount of context switching and interprocess 
message transfer. 

The gateway drivers are responsible for mapping the 
SDI semantics to the interface primitives provided at 
the target data source. For relational databases such as 
Oracle Rdb, ORACLE, INFORMIX, SYBASE, or 
DB2, this requires primarily a mapping to the product­
specific SQL dialect and the product-specific data 
types. For file systems such as RMS, the gateway driver 
maps the SDI semantics to calls to the RMS run-time 
library. 

Distributed Metadata Handling 
In this section, we discuss three areas of importance to 
the handling of metadata in DBI: catalog manage­
ment, security, and metadata caching. 

Catalog Management The DBI requirement of data­
base independence implies that DBI cannot require 
the presence of a particular DBMS for its persistence 
metadata storage. Rather than devising a private stor­
age and retrieval system, DBI was designed to layer on 
top of common relational DBMSs. 

Static, precompiled native applications are used 
to access metadata from a given catalog DBMS for 
two reasons: ( 1) The pattern of metadata access for the 
catalog database is known, and (2) The tables housing 

14 Digital Technical Journal Vol. 7 No. 1 1995 

the DBI metadata in the catalog database are predeter­
mined. Although this approach does not take advan­
tage of the existing gateway drivers, it results in 
high-performance access to the metadata store. 

To simplify the development of a catalog applica­
tion, the set of primitive operations on the catalog 
database was isolated, and a catalog application 
interface (CI) was defined. Catalog applications are 
developed according to the CI specification and 
implemented as shareable images. DBI dynamically 
loads the appropriate catalog application image based 
on the catalog type specified by a user attaching to a 
DBI database. 

Security The security support in the currently 
released version 3.1 of DBI is simple but effective. It 
uses the security mechanisms of the underlying link 
database systems in the following areas: 

• Authorization to connect to an underlying data­
base through DBI and access data from it. 

Access to the data that is manipulated through DBI 
is controlled by the underlying DBMS. Typically, 
underlying database systems control access to data 
based on the identity of the user attached to its 
database. DBI supports objects called proxies that 
enable the client to specify its user identity (i.e., 
username/password), which is then used to attach 
to the underlying database. 

• Authorization to perform various DBI operations. 

All privileges for a DBI database are for the database 
itself, rather than for tables or columns. The privi­
leges are based on hierarchically organized cate­
gories of users: 

-The DBADM privilege is given to users respon­
sible for setting up and maintaining a DBI 
database. 

-The CREATE, DROP privilege is granted to 
interactive users and application developers with 
database design responsibility who must perform 
data definition operations. 

- The SELECT privilege is reserved for interactive 
users and application developers who perform 
data manipulation operations but do not perform 
any data definition operations. 

When a DBI administrator grants or revokes privi­
leges for a DBI database, DBI, in turn, grants or 
revokes the appropriate set of privileges on the DBI 
tables in the database system that manages the DBI 
catalog. The enforcement of privileges is therefore car­
ried out by that database system. For example, when 
the SELECT privilege is granted on the logical data­
base, DBI grants the SELECT privilege on the tables 
that represent the DBI catalog. This ensures that the 
user has access to the metadata for processing queries. 



Similarly, when a user is granted the CREATE, DROP 
privilege on the DBI database, DBI grants SELECT, 
INSERT, UPDATE, and DELETE on the appropriate 
tables in the catalog database to the user. This ensures 
that any DDL actions executed by the user will enable 
DBI to modify the tables in the catalog database. 

Metadata Manager Cache The in-memory metadata 
cache serves a dual purpose. First, it facilitates rapid 
access to the metadata by the DBI compiler. Second, it 
serves as a data store for the DBI system relations that 
can be queried by tools and applications. For example, 
DEC SQL obtains metadata for semantic analysis of 
SQL statements by querying the DBI system relations. 

The metadata cache is structured as a single hash 
table representing a flat namespace across all DBI 
objects. An open hashing scheme is employed in 
which the hash-table entries hang off the buckets in 
the hash table in a linked list. 

To optimize the use of the cache as well as to accel­
erate the attach operation, the metadata manager 
initially obtains only minimal, high-level metadata 
information from the catalog database; for example, 
only names of tables are fetched into the cache during 
the DBI database attach operation. Subsequently, the 
metadata manager obtains further metadata informa­
tion from the catalog database on a demand basis. 

DBI allows the creation of new metadata objects. 
These operations are typically performed within mark­
point and transaction boundaries to enforce proper 
statement and transaction demarcation. The metadata 
manager maintains a physical log in cache to denote 
transaction and markpoint boundaries. The log is an 
ordered list of structures, each representing a DDL 
action, a pointer to the cache structure that was 
changed, and either the previous values of fields that 
were updated or a pointer to a previous image of an 
entire structure. When a markpoint or transaction is 
committed, the corresponding log part is reset; when 
a markpoint or transaction is rolled back, the log is 
used to restore the cache to its state prior to the start of 
the markpoint or transaction. 

An object in cache can become stale when another 
user attaches to the DBI database and causes an 
object's metadata to be changed in the catalog data­
base. To ensure consistency of the cached version of an 
object's metadata with the actual version in the catalog 
database, the metadata manager uses a time stamp to 
check the currency of the cached object when per­
forming incremental fetching of the object's metadata. 
If the object in cache is stale, the object is not accessi­
ble in the session, and an error message is issued to the 
user indicating that the object in cache is inconsistent 
with the catalog database. In a production environ­
ment, this would be a rare event, given the low fre­
quency of data definition operations. 

The metadata cache is also the data source for the 
DBI system relation queries. The metadata manager 
navigates the cache structures to obtain data for the 
system relations, making use of the hash table for effi­
cient access and using DBI's execution component for 
evaluating search conditions and expressions. 

Distributed, Heterogeneous Query Processing 
Distributed query processing in a heterogeneous data­
base environment poses certain unique problems. 
Data sources behave differently in terms of data 
transfer cost, and they support different language 
constructs. Many systems employ rudimentary tech­
niques for decomposing a query, frequently pulling in 
all the data from underlying tables to the processing 
node, and then performing all the operations in the 
integration engine. Others simply use syntactic trans­
formations, thereby providing the least common 
denominator in language functionality. DBI, on the 
other hand, provides a robust query optimizer that 
includes decomposition algorithms to reduce the data 
flow and provide high-performance query execution. 

Cost-based Plan Generation When a query has several 
equivalent means of producing the result, the plan that 
has the least estimated cost is chosen. Statistics for 
table, column, and index objects are used for estimat­
ing result size after various relational operations.12,13 

Data transmission costs from the underlying link data­
base to DBI are taken into account when estimating 
how much of the query is to be sent to the gateway 
database. The network transmission cost is measured 
dynamically for each user session, once per gateway 
connection. The cost associated with performing a 
relational operation is also aggregated into the overall 
cost. This crucial step ensures that the plan is not 
skewed toward one database engine, which would be 
the case if only the network transmission costs were 
taken into account. 

Rule-based Transformations A query result may be 
produced with different sequences of relational opera­
tions. These sequences are generated using rule-based 
transformations. The starting point is the original 
operation set in which the query was syntactically rep­
resented. From this, permutations are generated to 
form equivalence sets, which then lead to the various 
combinations of execution plans that need to be exam­
ined for cost. Finally, the least costly plan is chosen for 
the query. Heuristics are applied to limit the amount 
of search space. 

Capability-based Decomposit ion The critical charac­
teristic of a heterogeneous environment is that the 
data sources are nonuniform in their ability to perform 
certain operations and in their support of various 

Digital Technical Journal Vol. 7 No. l 1995 15 



language constructs. For example, most databases 
cannot support derived table expressions (i.e., select 
expressions in the FROM clause of another SELECT 
statement). 

The plan generation and decomposition phases of 
the optimizer must recognize the underlying data -
bases' capabilities. Consider the query example shown 
in Figure 7 and the indicated locations of the tables. 

First, with Tl and T3 located in the same database, 
the optimizer can generate a subplan in which the join 
between these two tables can be executed in the 
ORACLE database. An examination of the last (third) 
AND predicate indicates that all the tables involved in 
that predicate are located in the same ORACLE data­
base. Due to the limitations in ORACLE's SQL lan­
guage support, however, it cannot evaluate the 
combined expression between two subqueries in the 
WHERE clause, where the arithmetic result is to be 
compared to the column Tl.c5. 

The DBI optimizer employs a more sophisticated 
alternative. It evaluates the two subqueries separately 
and then substitutes them in the predicate in the 
subplan for ORACLE as run-time parameter values. 
This technique leads to the most efficient plan: 

l. Retrieve value for (select avg(T4.c5 ) from T4) from 
ORACLE. 

2. Assign value to variable X. 

3. Retrieve value for (select T5.c7 from T5 where 
T5.c8 = 'a') from ORACLE. 

4. Assign value to variable Y. 

5. Assign param_l : = variable X. 

6. Assign param_2 := variable Y. 

7. Execute the SELECT statement below in ORACLE 
and fetch the result rows. 

select* 
from T1, T3 

where CT1.c3 = T3.c3) 
and CT1.c5 = param_ 1 + param_ 2); 

8. Fetch the rows ofT2 from DB2 into DBI. 

select* 
from T1, T2, T3 

where (T1.c1 T2.c2) 
and (T1 .c3 T3.c3) 

9. Perform the join in DBI between the results of 
steps 7 and 8. 

Query Unnesting A nested SQL query, in its simplest 
form, is a SELECT query with the WHERE clause 
predicate containing a subquery (i.e., another 
SELECT query). The following are examples of nested 
SQL queries: 

Example 1, Table Subquery 

select* 
from A 

where A.c1 IN (select CB.c2 + 5) 
from B 

where B.c3 = A.c3); 

Example 2, Scalar Subquery 

select* 
from A 

where A.c1 (select max(B.c2) 
from B 

where B.c3 = A.c3); 

Using strict SQL semantics, we can evaluate this 
nested query by computing the results of the inner 
subquery for every tuple in the outer ( containing) 
query block. The value for the column A.c3 is substi­
tuted in the inner subquery, and the resulting value ( or 
values) are computed for the select list and used to 
evaluate the Boolean condition on column A.c 1: this is 
repeated for every tuple of A. This method of evaluat­
ing the results is very expensive, especially in a distrib­
uted environment. 

Query unnesting algorithms provide other methods 
of evaluation that are semantically equivalent but 
much more efficient in both time and space. 
Unnesting deals with the transformation of nested 
SQL queries into an equivalent sequence of relational 
operations. These relational operations are performed 
as set operations, thereby avoiding the expensive tuple 
iteration operators during execution and providing 
large performance gains in most cases. The back­
ground and motivation behind the use of unnesting 
has been presented in several research papers.14,15 

and (T1.c5 = (select avg(T4.c5) from T4) 
+ (select T5 . c7 from T5 where T5.c8 

T1, T3, T4 and T5 are Located in a Oracle database . 
Tabl e T2 is Located in a DB2 database. 

Figure 7 
Example of an SQL Query 

16 Digital Technical Journal Vol. 7 No. l 1995 

I a I) ) ; 



Depending on the type of operations and constructs 
found in the nested select block and its parent select 
block, several different algorithms can be used. Some 
of these require no special operators over and above 
the regular join operator. Other transformations 
require a special semijoin operator. Consider the 
examples shown in Figure 8. 

In the example shown in Figure 9, a special operator 
called semijoin is necessary. The semijoin of table R 
with S on condition J is defined as the subset of 
R-tuples for which there is at least one matching 
S-tuple satisfying]. Note that this makes the operator 
asymmetric, in that (R sernijoin S) is not the same as 
(S semijoin R), whereas the regular join is symmetric. 
By implementing the special semantics required for 
this semijoin operator, we can transform the nested 
query into this join operator that can again make use 
of high-performance techniques like hash joins within 
the DBI execution engine. 

Predicate Analysis When a query against an HPV can 
be satisfied by simply accessing a single logical parti­
tion, then the rest of the partitions can be eliminated 
from the execution plan. Partition elimination algo­
rithms in DBI are used both at compile time, when the 
predicates on the HPV query involve comparison of 

the partitioning column with literals, as well as at 
query execution time (run time), when the partition­
ing column is compared with run-time parameters. 

During affinity analysis, predicates are situated as 
close to the inner table operation as feasible. For exam­
ple, consider the following view definition, and the 
subsequent select statement on that view: 

create view V1 Ca, b) as 
select T1.c1, avg(T2.c2) 

from T1, T2 
where CT1 .c4 = T2.c4) 
group by T1. c1; 

select* from V1 where Ca = 5 and b > 10); 

The predicate a = 5 ( upon further conjunctive normal 
form [ CNF] analysis) can be applied on the base table 
scan itself as Tl.cl = 5. 

Index join is one of the efficient join techniques 
used in DBI. This join technique minimizes the move­
ment of data from the link databases by taking advan­
tage of the indexing schemes in the link database to 
facilitate the join process. Consider the following 
query: 

select* 
from T1, T2 

where T1.c1 = T2.c2 + 5 
and( ••. some restrict predicate(s) 

on T2 ..• > 

Q1 - query that will not require a special join after transformation 

select snum, city, status 
from S 

where status= (select avg(weight) + 5 
from P 

where P.city = S.city); 

Q1-U - the unnested version 

select snum, city, status 
from S, (select city, avg(weight) + 5 

from P 
group by city) as T1Cc1,c2) 

where T1.c1 = S.city 
and S.status = T1.c2; 

Algorithm: 

nesting predicate 

correlation predicate 

1) Take the inner block's FRO M table that has a correlation predicate. 

Figure 8 

2) Add a Group- By to the inner block containing all attributes of this 
table that appear in one or more correlation predicates. The order of 
the attributes in the Group-By does not matter. 

3) Also, add these elements to the select list of the inner block; at the 
beginning or at the end, whatever is convenient. 

4) Next, add this block to the FROM list of the outer block - effectively 
doing a regular join with the tables in the outer FROM list. 

5) Lastly, rewrite the correlation and nesting predicates as shown. 

Query Unnesting Algorithm 

Digital Technical Journal Vol. 7 No. 1 1995 17 



Q2 - query requiring a semi-join 

select snum 
from S 

where city IN (select city 
from P 

where P.weight S.status); 

Q2 -U - the unnested version 

select snum 
from (S semi-join P 

on ( P.wei ght S.status ANDS.city P.city) 
) . , 

-- Algorithm: 

--1) Do a semi-join between Sand P using the following (combined) condition: 
"(P.weig ht = S.status) AND CS.city= P.city)" 

In reality, this is actually specified as 2 separate semi-joins between 
Sand P, one with the correlation predicate and one with the for m of 
the nesting predicate. But these get combine d using rules. 

2) Proje ct out S.snum from the result 

Figure 9 
Algorithm with Semijoin Operator 

Given an index on column cl of table Tl, and with 
cardinality and cost estimates permitting, the query 
optimizer can generate an alternate plan. This plan 
allows the join to be performed by using efficiently 
indexed access retrieval for table Tl. 

High Availability 
High availability in DBI results from the use of hori­
zontal partitioned views and catalog replication. 

Horizontal Partitioned Views An HPV is a special 
kind of view in which DBI is provided with informa­
tion about how data is distributed among tables in link 
databases. HPVs offer many advantages over normal 
views, one of them being improved performance 
through partition elimination and use of parallelism. 
The other advantage is high availability. 

If a partitioned view has multiple partitions and if 
some partitions are unavailable when the view is 
queried, then DBI does not fail the query but returns 
data from the available partitions. An example is 
shown in Figure 10. The example creates a partitioned 
view named ALL_EMPLOYEES, with four columns 
and three partitions, each of which obtains rows from 
three different tables. The partitioning is based on a 
specific column, in this case the CITY column, as spec­
ified in the USING HORIZONTAL PARTITIONING 
ON clause. 

Suppose the following query is submitted 

SQL> SELECT* FROM ALL_EMPLOYEES 
WHERE (CITY 'MUNICH' ) 

OR (CITY= 'NASHUA' ); 

18 Digital Technical Journal Vol. 7 No. 1 1995 

First, partition P2 is eliminated at compile time. 
Now suppose partition P3 is presently not available 
due to network connectivity problems (Figure 11 ). 
For each partition that is unavailable, a message is 
returned indicating that some rows are missing from 
the result table: %DBI-W-HAHPV_UNAVAILABLE 
Partition P3 is currently unavailable. However, DBI 
still attempts to return as much data as is accessible. 

Catalog Replication To prevent the DBI global cata­
log from becoming a single point of failure, multiple 
copies of a catalog table can be maintained by using 
replication techniques. Catalog table copies can be 
created easily and maintained using replication tools 
such as the DEC Data Distributor.5 

Performance 
In addition to its distributed query optimizer, DBI 
uses a series of techniques to increase the speed of 
query processing, most notably in the areas of data 
transfer, memory management, join processing, paral­
lelism, and stored procedures. 

Data Transfer The DBI execution engine performs 
bulk data transfer using the bulk fetch mechanisms 
provided by the SDI interface. With bulk data transfer, 
a single request message to a local or remote data 
source returns many tuples with a single response mes­
sage. Bulk transfer techniques are mandatory in a dis­
tributed environment; they reduce both message 
traffic and stall waits due to message delays. The data 



CREATE VIEW ALL_EMPLOYEES(ID, NAME, ADDRESS, CITY) 
USING HORIZONTAL PARTITIONING ON CITY 
PARTITION P1 WHERE CITY= 'MUNICH' 

COMPOSE AS SELECT ID, LAST_NAME, ADDRESS, 'MUNICH' 
FROM MUNICH_EMPLOYEES 
WHERE STATUS = 'Y' 

PARTITION P2 WHERE CITY= 'PARIS' 
COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, 'PARIS' 

FROM PARIS_EMPLOYEES 
WHERE STATUS= 'Y'; 

PARTITION P3 WHERE CITY= 'NASHUA' 
COMPOSE AS SELECT ID, FULL_NAME, ADDRESS, LOCATION 

FROM NH_EMPLOYEES 
WHERE STATUS= 'Y'; 

Figure 10 
Example of a Partitioned View 

Figure 11 

-------~ 
P1 : MUNICH 

--OOJ 
--- P2: PARIS 

~ 
P3: NASHUA 

MULTIPLE 
PHYSICAL 
DATABASES 

High Availability with Partitioned Views 

transfer bandwidth between the DBI engine and the 
gateway drivers is further increased through the use of 
asynchronous SDI operations. 

Memory Management An MDBMS needs to be able 
to process large amounts of data efficiently without 
exceeding platform- or user-specific operational quo­
tas such as the page file size or the working set limit. 
In addition, standard operating system paging tech­
niques may easily result in heavy 1/0 thrashing for 
database-centric work loads. 

The DBI executor places data streams, intermediate 
query results, or hash buckets into individual work­
spaces. A workspace is organized as a linear sequence 
of fixed-size pages. A standard page-table mechanism 
identifies the allocated pages and records status such as 
whether a page is present in memory or whether it is 
paged out to secondary storage. The workspace man­
ager operates as an intelligent buffer manager and pag­
ing system that controls fair access to memory across 
all active workspaces of a given DBI user. A buffer pool 
manager holds the workspace pages that reside in 
memory. 

The buffer pool manager supports multiple buffer 
replacement policies, which is important for database 
workloads that involve sequential access to data that is 
subsequently no longer needed. The two supported 
strategies are least recently used (LRU) and most 
recently used (MRU).16 Finally, the workspace man­
ager supports write-behind for newly allocated pages. 
This allows newly allocated pages that have been filled 
to be written asynchronously. 

Join Processing Highly efficient processing of joins 
and unions is important in any commercial database; it 
is crucial for a multidatabase system. DBI supports 
nested loop join, index join, and hash join. In fact, 
DBI supports both a regular hash-join mechanism and 
a hybrid, hash-partitioned variant that is augmented 
with Bloom filtering.1?,1s,19 

For both hash-join variants, the inner table rows are 
read asynchronously into a DBI workspace. This first 
pass is used to estimate whether or not to use the hash­
partitioned variant. An exact estimate for the number 
of partitions to use is well worth the overhead of this 
initial pass. 20 In addition, a Bloom filter with 64 kilo­
bits is populated as part of this pass. The inner table 
cardinality, an estimate for the outer table cardinality, 
and an estimate of the presently available memory are 
used to determine whether the simple hash-join tech­
nique is sufficient, or whether the use of the hybrid 
hash-partitioned join technique is warranted. 

In general, hash-partitioned join processing is indi­
cated when the inner table and its hash-table buckets 
do not fit in memory. In this case, both the build phase 
for the inner-table hash buckets as well as the probe 
phase of outer-table tuples against the inner-table hash 
buckets may incur massive amounts of random 1/0. 
When the hash-partitioned variant is selected, the fol­
lowing steps are performed. 

Digital Technical Journal Vol. 7 No. 1 1995 19 



• Each partition receives a separate workspace. 

• The inner table is partitioned first. During this 
partitioning step, a Bloom filter is generated from 
the join column of inner-table tuples and is 
applied when the outer table rows are partitioned. 
This results in a potentially massive reduction 
of the number of rows that are placed into the 
outer partitions, thus eliminating expensive 1/0 
operations. 

• The workspaces that hold the inner-table partition 
1 and the hash-table buckets for that partition are 
aged LRU, which keeps them in memory for the 
join operation on the first partition pair. 

• The workspaces that hold the remaining inner­
table partitions 2 through ( n ) are aged MRU; 
these pages become immediately available for 
buffer replacement selection once they have been 
filled and their frames unpinned. 

• Once the partitioning phase is complete, each pair 
of inrn:r and outer partitions is joined starting 
with partition pair 1. The inner partitions are aged 
LRU, and the outer partitions are aged MRU to 
keep the inner partition tuples in memory. 

The use of flexible buffer replacement strategies is 
crucial for good buffer cache behavior. 

Parallelism DBI employs two types of parallelism: 
pipelined parallelism and independent parallelism.s 

With hash-join processing, for instance, the outer 
table rows are read by separate DBI execution threads 
from the underlying database. This means that the 
outer table tuple stream is effectively generated in par­
allel with the probe phase processing of the hash-join 
operator on the inner table rows. The outer-table tuple 
stream is directed into the hash-join probe phase. 

For UNION processing on partitioned views, the 
individual input streams to the UNION operator are 
generated by separate DBI execution threads. The 
streams are provided in parallel and independently to 
the UNION operator. 

Stored Procedures Stored procedures provide a criti­
cal performance enhancement for client-server pro­
cessing. They allow the DBA to encapsulate a set of 
SQL statements plus control logic. The client sends 
one message containing a stored procedure rather 
than several messages, each containing one SQL state­
ment. This reduces processing delays that otherwise 
would be incurred due to network traffic. 

DBI Server Configuration 

In a standard DBI configuration, one execution 
process is created for each DBI client. As the number 
of clients increases, more and more operating system 
resources are consumed. The DBI server configura­
tion addresses this problem. 

20 Digital Technical Journal Vol. 7 No. 1 1995 

Server Components A DBI server configuration 
includes minimally a monitor process, a dispatcher 
process, and a set of DBI executor processes. The 
monitor process supports on-line system management 
of the server configuration. One or more dispatcher 
processes manage all client communications context. 
Dispatchers route client messages to an appropriate 
DBI executor process through high-speed shared 
memory queues. Figure 12 shows a typical DBI server 
configuration. 

Server Infrastructure In the DBI server environment, 
an ODBC client logically connects to a service object 
that provides access to a specific DBI database.1 A ser­
vice is instantiated by a pool of DBI executor processes 
that contain the DBI image. The amount of processes 
of the pool is configurable, both off-line and on-line. 
This allows the administrator to match the throughput 
requirements for a given DBI database with the appro­
priate amount of executor processes. 

Multithreading DBI executor processes may pres­
ently be configured as session-reusable or transaction­
reusable. Session-reusable means that a client is bound 
to an executor process for the duration of the entire 
database session. Transaction-reusable means that 
multiple clients may share the same executor process; 
a client is scheduled to a DBI executor for one trans­
action at a time. 

Summary 

The DB Integrator product contains many features 
that enable it to provide open, robust, and high-per­
formance data access. DBI guarantees open data access 
by supporting de facto and de jure interface standards 
such as SQL92 and ODBC. Client-server connectivity 
is available over the DECnet, TCP /IP, and SPX/IPX 
transports. The MDI/DDI interface allows users to 
extend the use of DBI to gain access to any number of 
data sources. 

DBI 
EXECUTOR 

Figure 12 

CLIENT 1 CLIENT 2 

DISPATCHER 

DBI 
EXECUTOR 

DBI Server Configuration 



DBI provides robust data access by supporting het­
erogeneous query optimization, location trans­
parency, global consistency, resolution of semantic 
differences, and security checks. The DBI query opti­
mizer takes cost factors and capabilities into account to 
determine the optimal plan. A global catalog provides 
location transparency and operates as an autonomous 
metadata repository. Global transactions are coordi­
nated through two-phase commit. Highly available 
horizontal partitioned views support continuous dis­
tributed processing in the presence of loss of connec­
tivity. Definitions of views and stored procedures allow 
the user to hide semantic differences among the 
underlying databases. Finally, DBI enables security 
checks without interfering with the access controls 
specified in the underlying data sources. 

DBI offers high-performance data access through 
a combination of sophisticated query optimization, 
advanced query execution algorithms, and efficient 
use of network resources. The query optimizer 
decomposes a distributed query by using as many fea­
tures of the underlying database as possible and by 
employing state-of-the-art techniques such as query 
unnesting and partition elimination. The DBI query 
processor is capable of driving index joins and hybrid 
hash-partitioned joins. All intermediate data is cached 
1/0 optimized. Connections to remote data sources 
are established solely on demand. Finally, parallel 
query execution is supported. 

In the future, performance will continue to be an 
important factor for any data access product as will 
support for object-oriented data models. By combin­
ing data-integration technologies such as DBI with 
application-integration standards such as Object 
Request Brokers, a merger of data integration and 
application integration will be feasible. 

Acknowledgments 

The authors would like to recognize everyone who 
contributed to the DBI project. Jim Gray, Hal 
Berenson, Dave Lomet, and Gayn Winters helped to 
establish the product vision. Russ Holden and Dan 
Dietterich lent their technical guidance and project 
leadership. The DBI engineering team designed, 
implemented, and delivered the product on schedule. 
The DBI management team of Steve Serra, Rich 
Bourdeau, Arlene Lacharite, and Trish Pendleton con­
tributed their commitment to delivering the vision. 
We would also like to thank the anonymous referees 
for their invaluable comments on the content and 
presentation of this paper. 

References 

1. Microsoft Open Database Connectivity, Program­
mer's Reference, Version 2.0 (Redmond, Wash.: 
Microsoft Corporation, 1993). 

2. Information Technology-Database Language 
SQL, ANSI X3H2-92-154/DBL CBR-002 (New York: 
American National Standards Institute, 1992). 

3. "Middleware: Panacea or Boondoggle?," Strategic 
Anarysis Reporl (Gartner Group, July 5, 1994). 

4. A. Sheth and J. Larson, "Federated Database Systems 
for Managing Distributed, Heterogeneous, and 
Autonomous Databases," ACM Computing Suroeys, 
vol. 22, no. 3 (1990). 

5. Digital Data Distributor Handbook (Maynard, 
Mass.: Digital Equipment Corporation, Order No. 
AA-HZ65Fl-TE, 1994). 

6. Strategic Data Interface, Version 3.1 (Maynard, 
Mass.: Digital Equipment Corporation, 1994). This 
internal DB integrator specification is not available to 
external readers. 

7. DEC Rdb Documentation Set for DEC Rdb Version 
6.0 (Maynard, Mass.: Digital Equipment Corporation, 
1994). 

8. D. J. DeWitt and J. Gray, "Parallel Database Systems: 
The Future of High Performance Database Systems," 
Communications of the ACM, vol. 35, no. 6 ( 1992 ): 
85-98. 

9. Digital DSRI Handbook, Version 5.1 (Maynard, 
Mass.: Digital Equipment Corporation, 1994). This 
internal document is not available to external readers. 

10. Digital Distributed Transaction Manager, DpenvMS 
Documentation, Version 5.5 (Maynard, Mass.: Digital 
Equipment Corporation, 1992). 

11. Distributed Transaction Processing: 1be XA Speci­
fication, X/Open CAE Specification: C 19 3, ISBN 
1-872630-24-3 (1992). 

12. P. Selinger et al., "Access Path Selection in a Relational 
Database Management System," Proceedings of the 
ACMSIGMODConference(l979). 

13. P. Selinger and M. Adiba, "Access Path Selection in 
Distributed Database Management Systems," IBM 
Research Reporl (1980). 

14. W. Kim, "On Optimizing an SQL-like Nested Query," 
ACM Transactions on Database Systems, vol. 7, no. 3 
(1982). 

15. U. Dayal, "Of Nests and Trees: A Unified Approach to 
Processing Queries That Contain Nested Subqueries, 
Aggregates and Quantifiers," Proceedings of the 13th 
Conference on Very Large Databases (VLDB), 
Brighton (1987). 

16. M. Stonebraker, "Operating System Support 
for Database Management Systems," Communica­
tions of the ACM, vol. 24, no. 7 (1981): 412. 

17. G. Graefe, "Query Evaluation Techniques for Large 
Databases," ACM Computing Suroeys, vol. 25, no. 2 
(1993). 

Digital Technical Journal Vol. 7 No. 1 1995 21 



22 

18. B. H. Bloom, "Space/time Tradeoffs in Hash Coding 
with Allowable Errors," Communications of the 
ACM, vol. 13, no. 7 (1970): 422-426. 

19. M. Ramakrishna, "Practical Performance of Bloom 
Filters and Parallel Free-text Searching," Communi­
cations of the ACM, vol. 32,no.10 (1989): 1237. 

20. S. Christodoulakis, "Estimating Block Transfers and 
Join Sizes," Proceedings of the ACM SIGMOD 
Conference ( 1983 ). 

Biographies 

Richard Pledereder 
Formerly a consulting software engineer in Digital's 
Software Products Group, Richard Pledereder was the 
system architect on the DB Integrator product family 
and contributed to the architecture and implementation 
of common DBI and Rdb features such as SQL stored 
procedures. Richard also initiated the architecture, design, 
and development effort of a multi threaded database server 
environment, which is now part of the DBI/OSF and 
Rdb/OSF products. He is now a software architect in the 
Distributed Products Group at Sybase, Inc. He received 
a B.S. and an M.S. in computer science from the Technical 
University Munich, Bavaria. Richard also collects tapes of 
operas by the Bavarian composer Richard Wagner. 

Vishu Krishnamurthy 
Vishu Krishnamurthy is a principal engineer in Digital's 
Database Integration and Interoperability Group, where 
he is currently the project leader for the DB Integrator 
product. Vishu was the technical leader for the metadata 
and catalog management components of DBI. Since join­
ing Digital in 1988, he has held senior development posi­
tions in the Distributed Compiler Group, in the RdbStar 
project, and in the DEC Data Distributor project. Vishu 
holds a B .E. (honors) in mechanical engineering from 
the University of Madras and M.S. degrees in computer 
and information sciences and in mechanical engineering 
(robotics) from the University of Florida. 

Digital Technical Journal Vol. 7 No. 1 1995 

Michael Gagnon 
Mike Gagnon joined Digital in 1981 and worked on the 
design and development ofDigital's transaction processing 
and database systems. Mike contributed to the develop­
ment of ACMS, Digital's transaction processing monitor 
for VMS systems, and more recently he contributed to the 
development of a distributed heterogeneous database sys­
tem. When that system was refocused as the DB Integrator 
product, Mike led the team that produced the execution 
engine for all relational processing. Mike assumed project 
leadership responsibility for DBI version 1.0 and led the 
project through version 3.1. Mike is currently employed 
by Iris Associates, a subsidiary of Lotus Software. 

Mayank Vadodaria 
Formerly a principal software engineer in Digital's Database 
Integration and Interoperability Group, Mayank Vadodaria 
was the technical group leader for the query processing 
components ofDigital's DB Integrator product family. 
He was also responsible for Digital's SQL development 
environment products. He has been instrumental in the 
design of many key features in the compilation and query 
optimization within DBI. Mayank holds a B. Tech. from 
the Indian Institute ofTechnology, Madras, and an M.S. in 
computer science from the University of Illinois at Urbana­
Champaign. He is currently with Gupta Technologies. 



ACMSxpOpen 
Distributed Transaction 
Processing 

Digital's ACMSxp portable transaction process­

ing (TP) monitor supports open TP standards and 

provides an environment for the development, 

execution, and administration of robust, distrib­

uted, client-server applications. The ACMSxp 

TP monitor supports the Structured Transaction 

Definition Language, a modular language that 

simplifies the development of transactional 

applications. ACMSxp software is layered on 

the Open Software Foundation's Distributed 

Computing Environment (DCE) and supports 

><A-compliant databases and other resource 

managers by using the Encina toolkit from 

Transarc Corporation or Digital's distributed 

transaction manager (DECdtm) software. As 

a framework for DCE-based applications, the 

ACMSxp TP monitor simplifies application 

development, integrates system administra­

tion, and provides the additional capabilities 

of high availability, high performance, fault 

tolerance, and data integrity. 

Robert K. Baafi 
J. Ian Carrie 
William B. Drury 
Oren L. Wiesler 

Transaction processing (TP) is a style of computing 
that guarantees robustness and high availability for 
critical business applications. TP typically involves a 
large number of users using display devices to issue 
similar and repetitive requests. The requests result in 
the accessing and updating of one or more databases 
to reflect the current state of the business. 

The basic building block in a TP system is a transac­
tion. A transaction is an indivisible unit of work that 
represents the fundamental construct of recovery, con­
sistency, and concurrency. Each transaction has the 
properties of atomicity, consistency, isolation, and dura­
bility (ACID). These properties are defined as follows: 

• Atomicity. Either all the actions of a transaction 
succeed or all fail. In case of failure, the actions are 
rolled back. 

• Consistency. After a transaction executes, it must 
either leave the system in a correct state or abort 
and return the system to its initial state. 

• Isolation. The actions carried out by a transaction 
against a shared database cannot become visible to 
other transactions until the transaction commits. 

• Durability. The effects of a committed transaction 
are permanent. 

A TP monitor manages and coordinates the flow of 
transactions through the system. Transaction requests 
typically originate from clients, are processed by one 
or more servers, and end at the originating client. 
When a transaction ends, the TP monitor ensures that 
all systems involved in the transaction are left in a con­
sistent state. 

The development of powerful desktop systems and 
advances in communications technology have fueled 
the growth of distributed client-server computing. The 
systems in a distributed environment may run different 
operating systems, possibly from different vendors. 
Business-critical applications may run under the con­
trol of different TP monitors. To coordinate their activ­
ities, TP monitors on heterogeneous systems need to 
conform to standards for open transaction processing. 

Open standards for transaction processing have 
been adopted by the International Organization for 

Digital Technical Journal Vol. 7 No. 1 1995 23 



Standardization/Open Systems Interconnection 
(ISO/OSI), the X/Open initiative, and the Service 
Providers' Integrated Requirements for Information 
Technology (SPIRIT) consortium. 1,2 The X/Open 
initiative is a consortium of vendors whose purpose is 
to define standards for application portability. SPIRIT 
is a consortium of telecommunications service pro­
viders from the U.S., Europe, and Japan working 
under the general sponsorship of the Network 
Management Forum (NMF).3-S The goal of the 
NMF's SPIRIT consortium is to define standards for 
portability and interoperability across heterogeneous 
systems to be used as the basis for procurement. 

The main standards for open transaction processing 
are 

• X/Open distributed transaction processing (DTP), 
which is an architecture that allows multiple pro­
grams to share resources ( e.g., databases and files) 
provided by multiple resource managers and allows 
their work to be coordinated. The architecture 
defines application programming interfaces and 
interactions among transactional applications, 
transaction managers, resource managers, and 
communications resource managers. The transac­
tion manager and the resource manager communi­
cate by means of the XA interface.6 

• X/Open transactional remote procedure call 
(TxRPC), which allows an application to invoke 
local and remote resource managers as if they were 
all local. TxRPC also allows an application to be 
decomposed into client and server components on 
different computers interconnected by means of 
remote procedure calls (RPCs). 

• SPIRIT Structured Transaction Definition Language 
(STDL), which is a block-structured language for 
transaction processing.4,s,7 STDL provides transac­
tional features including demarcation of transaction 
boundaries, transaction recovery, exception han­
dling, transactional communications, access to data 
queues, submission of queued work requests, and 
invocation of presentation services. 

Digital's Application Control and Management 
System/Cross-platform (ACMSxp) software product 
is a portable TP monitor that supports the open TP 
standards. It provides an environment for the develop­
ment, execution, and administration of STDL appli­
cations. ACMSxp software is layered on the Open 
Software Foundation's (OSF's) Distributed Comput­
ing Environment (DCE) and supports multiple 
resource managers through Transarc Corporation's 
Encina toolkit on the UNIX operating system and 
Digital's distributed transaction manager (DECdtm) 
services on the OpenVMS operating system.8 This 
paper describes the design of the ACMSxp TP monitor. 

24 Digital Technical Journal Vol. 7 No. I 1995 

Application Development 

ACMSxp applications are written using a combination 
of the STDL and traditional languages such as C and 
COBOL. STDL is a modular, block-structured lan­
guage developed specifically for transaction processing. 
It is based on the ACMS Task Definition Language 
(TDL) and was developed as part of Nippon Telegraph 
and Telephone's (NTT's) Multivendor Integration 
Architecture (MIA) initiative.9- 11 The NMF's SPIRIT 
consortium subsequently adopted STDL. 

STDL Language Overview 
STDL provides transactional features including trans­
action demarcation, transactional remote procedure 
call, transactional task and data record queuing, trans­
actional display management, transactional exception 
handling, and transactional working storage called 
workspaces. 

STDL divides an application into three parts: pre­
sentation, transaction flow control, and processing, as 
illustrated in Figure 1. The presentation part interfaces 
with display devices using a presentation manager, 
such as Motif, Windows, or forms manager software. 
The transaction flow control part is written in STDL 
and controls the flow of execution, including transac­
tion demarcation, exception handling, and access to 
queues. The processing part is written in traditional 
languages, such as C, COBOL, and SQL, and provides 
computation and access to resource managers such as 
databases and files. 

The application functions in the three parts of the 
STDL application model are referred to respectively as 
presentation procedures, tasks, and processing proce­
dures. The application functions are packaged into 
groups for the purposes of compilation and execution. 
The groups are referred to as presentation groups, task 
groups, and processing groups. 

A group specification describes the functions in the 
group and their interfaces. The interface specification 
includes the arguments that are passed to the function 
and an indication of whether an argument is input only, 
output only, or both input and output. For a task, the 
interface specification also indicates whether the task 
begins a new transaction (NONCOMPOSABLE) or 
joins the caller's transaction (COMPOSABLE). 

STDL variables are defined in constructs called 
workspaces. Workspaces may have the transactional 
attribute, thus allowing an application to coordinate 
internal data with the outcome of the transaction 
along with other resource manager participants. 
Workspaces have the scope of either PRIVATE or 
SHARED. A PRIVATE workspace is accessible to only 
a single task; a SHARED workspace is accessible to all 
tasks in a task group. 



Figure 1 
STDL Application Model 

PRESENTATION 

PRESENTATION 
MANAGER 

I TRANSACTION 
I FLOW 
I CONTROL 

I 

STOL TASK 
DEFINITION 

PROCESSING 

C, COBOL, 
SOL 

RESOURCES 

STDL supports two types of queues: record and 
task. Record queues provide a transactional, durable 
scratch pad facility for applications to store and 
retrieve intermediate results. Task queues provide 
a way of executing tasks independently of the currently 
executing task in both time and location. Storage of 
the task queue element on the task queue may or may 
not be conditional on the outcome of the currently 
executing task. 

defined in the task group to track the number of suc­
cessful executions (successes) and the number of failed 
executions (failures). These operations all take place 
within the context of a transaction defined by task 
addl. If the transaction succeeds, the program incre­
ments number and the shared workspace successes. 
If the transaction fails, the program restores number 
to its initial state and invokes the exception handler. 
The exception handler then updates the shared work­
space failures. 

Sample STDL Application 
STOL Compiler Figure 2 shows a sample STDL application program. 

The sample program accepts an integer, increments 
it, and displays it. In addition, shared workspaces are 

The STDL compiler simplifies the process of develop­
ing distributed client-server applications. It generates 

Figure 2 

RECORD arg1 
number INTEGER; 

END RECORD; 

TASK GROUP example1 
TASK add1 

TASK ARGUMENT IS arg1 PASSED AS INOUT; 
END TASK GROUP; 

TASK add1 ARGUMENT IS arg1 PASSED AS INOUT; 
WORKSPACES ARE successes SHARED UPDATE RECOVERABLE, 

failures SHARED UPDATE, 
arg1 PRIVATE RECOVERABLE; 

BLOCK WITH TRANSACTION 
PROC ESSI NG 

COMPUTE successes= successes+ 1 
PROCESSING 

COMPUTE number= number+ 1 
EXCHANGE 

SEND RECORD number TO inscreen 
END BLOCK 
EXCEPTION HANDLER IS 

PROCESSING 
COMPUTE failures 

END EXCEPTION HANDLER; 
END TASK; 

failures + 1 

Sample STDL Application 

Digital Technical Journal Vol. 7 No. 1 1995 25 



all the code necessary for supporting the application in 
the distributed environment, including server initial­
ization, namespace registration, namespace lookup, 
and application context propagation. This allows the 
application programmer to focus on the application 
problem at hand. 

The ACMSxp STDL compiler translates STDL spec­
ifications into executable code. The compiler itself is 
written in the ANSI C programming language using 
POSIX 1003.1 library interfaces for platform portabil­
ity; the generated code consists of only ACMSxp run­
time service calls and DCE service calls.12 To the 
application programmer, the ACMSxp STDL compiler 
looks much like a classical compiler. The STDL com­
piler reads source code, converts it to object code, and 
then links it to create an executable program. Figure 3 
shows the elements written by the application pro­
grammer and the transformations required to create 
an executable program. 

Internally, the STDL compiler consists of a series of 
steps that run under the control of a driver program. 
This processing takes place in the steps shown inside 
the dashed-line box of Figure 3. The STDL driver first 
reads STDL specifications in one pass and constructs 
internal structures that represent each STDL entity in 
the source file. Once an entity has been completely 

STOL SOURCE FILES 

I----------- -----------, 
I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

DCE IDL 
FILES 

DCEIDL 
COMPILER 

TP STUBS 
AND TASKS 

CCOMPILER 

------ ---------- ------

OBJECT MODULES 

parsed and the syntax has been checked for errors, the 
driver generates intermediate files by translating 

• STDL groups into ACMSxp client and server stubs 
and a DCE RPC Interface Definition Language 
(IDL) file 

• STDL tasks into C code andACMSxp run-time ser­
vice calls 

• STDL record definitions into C structures con­
tained in C header files or COBOL copy files 

After the STDL driver has generated all the interme­
diate files, it invokes the appropriate language proces­
sor to convert the files into object files. The DCE IDL 
compiler processes the IDL files, and the C compiler 
processes the tasks and the ACMSxp stubs. To keep 
the number of pieces visible to the application pro­
grammer within reason, the ACMSxp client and server 
stubs are combined with the DCE client and server 
stubs. The result is a collection of object files similar to 
those found in a conventional DCE application. The 
platform linker then combines the resulting files into 
an executable program. 

The ACMSxp client and server stubs are similar in 
concept to the DCE RPC client and server stubs. The 
client stub is linked with other applications that invoke 

ACMSXP 
LIBRARY 

COR COBOL 
SOURCE FILES 

COR COBOL 
COMPILER 

j 
OBJECT 
MODULES 

LINKER 

KEY: 

[:=] FILE 

Figure 3 
STDL Compiler Flows 

26 Digital Technical Journal 

EXECUTABLE PROGRAM 

PROCESSING 
ACTIVITY 

Vol. 7 No. 1 1995 

,----- ... .. . . . . -----· .. -' 
STOL COMPILER 
PHASES 



this group's tasks or procedures. The server stub is 
combined with application code to create the applica­
tion server image. The ACMSxp stubs call ACMSxp 
run-time services to add to the base DCE RPC services 
features such as transactions, failover and failback, and 
time-out. 

Execution Environment 

The ACMSxp.run-time system provides an environ­
ment for executing and invoking STDL applications. 
It also provides services that allow components in the 
execution environment to be managed. The execution 
environment provides many services typically needed 
in TP environments, such as resource scheduling, fault 
tolerance, and queuing. 

Process Model 
The ACMSxp environment consists of client and 
server components. A TPsystem comprises multiple 
server components on a node that are managed as 
a unit. A given TPsystem has a globally unique name 
and is associated with only one node, but a node can 
have multiple TPsystems associated with it. A TPsystem 
contains a central process called the TPcontroller, 
which controls the components within the TPsystem. 
The processes in the execution environment are illus­
trated in Figure 4. 

As the central point of control for the components 
within a TPsystem, the TPcontroller performs many 
functions, including license checking, starting and 
stopping servers, and monitoring server processes and 
restarting them when they terminate abnormally. It 
also receives administration requests and performs the 
requested operations, maintains information in shared 
memory for communication with server processes, 
and maintains key files for server authentication. 

A task server executes STDL task group code and 
uses multiple threads in a single process to achieve 

concurrent execution (multithreaded). A processing 
server executes STDL processing group code and uses 
a pool of single-threaded processes to achieve concur­
rent execution (multiprocess). 

System servers provide specific run-time services to 
the TPcontroller, task servers, and processing servers. 
The system servers include the event log server, the 
request queue server, and the record queue server. 
System servers are multithreaded. 

Client processes invoke services provided by a 
TPsystem and its servers. An administration client 
(also referred to as the director) invokes administra­
tion services provided by the TPcontroller and system 
servers. An application client invokes application ser­
vices provided by task servers. An application client 
can be a customer-written client or an ACMS Desktop 
client. A customer-written client can consist of code 
necessary to support a forms manager or device con­
trol such as an automatic teller machine or a gas pump. 
An ACMS Desktop client allows popular desktop sys­
tems such as the Macintosh, SCO's UNIX, Microsoft 
Windows, and Windows NT operating systems to be 
used to access services provided by ACMSxp applica­
tion servers. 

Run-time Services 
The ACMSxp run-time system provides services 
required for the execution of client-server TP applica­
tions . The run-time services are highly modular and 
are layered on the services provided by the underlying 
transaction manager, DCE, operating system, network, 
and other services, as shown in Figure 5. 

The run-time services integrate the services of the 
underlying platform and provide additional function­
ality. They export an application programming inter­
face (API) called the transaction processing service 
interface (TPSI). The run-time services include 

• Communication, which provides services for trans­
actional and nontransactional communication 

r - --------------, 

Figure4 

APPLICATION 
CLIENT 

KEY: 

I TPSYSTEM I 

I I 

I 
I 
I 
I 

TASK SERVER 

I 
I 

I 
I 

TPCONTROLLER 

I PROCESSING SYSTEM 
SERVER SERVER 

I I 

I_ - - - - - - - - - - - - - - _J 

D APPLICATION COMPONENTS - DCE RPC COMMUNICATION 

D SYSTEM COMPONENTS MANAGEMENT CONTROL 

Processes in Execution Environment 

Digital Technical Journal 

ADMINISTRATION 
CLIENT 

Vol. 7 No. 1 1995 27 



28 

STOL APPLICATION PROGRAM 

ACMSXP RUN-TIME LIBRARY 

,-----------r-----------,-------,--------
I TRANSACTION I COMMUNICATION I QUEUING I SECURITY : 
: DEMARCATION : SERVICES : SERVICES : SERVICES I 

... 
----------------------------------------' 

I DATABASES AND OTHER RESOURCE MANAGERS 

TRANSACTION MANAGER, DCE, OPERATING SYSTEM, NETWORK, 
AND OTHER SERVICES 

Figure 5 
Modular Run-time Architecture 

between clients and servers using DCE RPC. The 
supported transports are transmission control pro­
tocol/internet protocol (TCP /IP), DECnet OSI, 
and Fast Local Transport. 

• Process management, which provides services for 
starting and stopping server processes, monitoring 
server processes for abnormal termination, and 
restarting new ones to maintain the specified num­
ber of processes. 

• Thread context management, which provides ser­
vices for creating, setting, and propagating thread 
context. Thread context includes request context, 
exception context, transaction context, and proce­
dure context. 

• Timer alert, which provides services for accumulat­
ing CPU time and transaction (elapsed) time. 

• Transaction demarcation, which integrates with the 
Encina toolkit on the OSF /1 platform or the 
DECdtm software on the OpenVMS platform to 
provide distributed transaction support. 

• Queuing, which provides services for request queu­
ing and record queuing. Request queuing allows 
task requests to be queued for deferred invocation. 
Record queuing allows data records to be enqueued 
and dequeued. 

• File management, which provides file management 
services for COBOL and C programs. It provides 
thread-based transaction semantics for STDL file 
access and handles opening and closing of files, 
file positioning, and file locking. 

• Workspace management, which provides services 
for managing private and shared workspaces. 
A workspace is an STDL construct and represents 
an area of memory used for data storage and for 
arguments passed in a procedure call. A workspace 
can be recoverable or nonrecoverable. 

• Security, which authenticates users and servers and 
provides access control, based on the DCE security 
service, for application invocation as well as man­
agement operations. 

Digital Technical Journal Vol. 7 No. 1 1995 

• Event posting, which provides services for writing 
events into a log. Logged events include error, 
security, status, audit, and trace events. 

• Performance monitoring, which provides services 
for capturing performance measurement data. 

Client-Server Communication 
The ACMSxp communications services use OSF's 
DCE services for locating servers, invoking servers, 
and ensuring secure communications. The communi­
cations services maximize the efficiency of DCE ser­
vice usage, provide robustness in the event of failure, 
and add distribution of transaction semantics to DCE 
RPC communications. 

Figure 6 shows the elements and steps involved in 
the communication between a client and a server. The 
numeric annotations in the following discussion refer 
to the numbers that appear in the figure. 

The STDL client application calls the server (1). 
The ACMSxp client stub issues run-time service calls 
(2) to initialize context blocks and to obtain a binding 
handle (i.e., server addressing information), and calls 
the DCE RPC client stub, passing context blocks and 
application data ( 3 ). The DCE RPC client stub mar­
shals data and calls the server ( 4 ). 

The DCE RPC server stub receives the call, unmar­
shals data, and calls the ACMSxp server stub ( 5). The 
ACMSxp server stub issues run-time service calls ( 6) to 
establish local context and to check security authoriza­
tion, and calls the server application (7). The server 
application executes and returns the results to the 
ACMSxp server stub, which propagates any error 
information. 

Transaction Processing Characteristics 
The run-time system provides the TP monitor with 
characteristics such as high availability, load balancing, 
and high performance. Some of the mechanisms used 
to achieve these characteristics are discussed below. 

Availability The run-time system provides failover 
and failback capabilities to enhance the availability of 



Figure 6 

-------------, 
I CLIENT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

RUN-TIME 
SERVICES 

2 

APPLICATION I 
I 

! 1 I 
I 

ACMSXP I 
CLIENT I STUB 

!3 I 
I 

DCE RPC I 
CLIENT I 
STUB 

I 
I _____________ I 

Client-Server Communication Flow 

applications. Failover is the redirection of an RPC to an 
alternate server if the intended server is not reachable. 
The target server can be unreachable for many reasons, 
including loss of connectivity, application failures, and 
machine failures. Failback is the redirection of calls to 
the original server when it becomes available. 

Failover and failback capabilities are supported for 
task servers but not for processing servers. The DCE 
cell directory service (CDS) namespace profile mecha­
nism supports failover and failback. The system admin­
istrator configures the primary and alternate servers by 
placing them in the same namespace profile with dif­
ferent priorities. The server with the lower priority 
number is the primary server. 

Run-time support for failover and failback is imple­
mented in the client stub. Failover is attempted if an 
RPC fails and the returned error indicates that no work 
had been done by the called server in the current 
transaction. Failover is always attempted for a non­
transactional RPC but is attempted for a transactional 
RPC only if this is the first call to the intended server in 
the transaction. The failover mechanism is optimized 
in three ways: by reconnecting, by pinging, and by 
checking the failed servers table. When a failure is 
detected, the failover mechanism attempts to recon­
nect to the server in case the failure was caused by 
intermittent communications problems. If the recon­
nect fails, the failover mechanism attempts to find an 
alternate server. When an alternate server is selected, 
it is pinged to ensure that it is reachable before being 
called with application work. If a server cannot be 
reached, it is recorded in a "failed servers" table and 
skipped on subsequent failover attempts. 

Failback is attempted if the binding found is for 
an alternate server. Failback to the primary server is 
attempted even if the binding for the alternate server 
is good, as long as the failback timer has expired. The 
failback timer defaults to 300 seconds and can be set 
by an environment variable. 

4 

------------ - , 
I SERVER 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

APPLICATION 

t7 
ACMSXP 6 RUN-TIME 
SERVER SERVICES 
STUB 

fs 
DCE RPC 
SERVER 
STUB 

Load Balancing The ACMSxp run-time system can 
achieve load balancing for task servers through the 
DCE CDS. The DCE CDS group entry contains mul­
tiple server entries that provide the same interface. 
Locating a server by means of a group entry results in 
the random selection of one server in the entry. 
A combination of static load balancing and failover can 
also be implemented using DCE CDS functionality. 

Performance Many parts of the ACMSxp system con­
tain mechanisms that are designed to improve perfor­
mance. A discussion of some of these mechanisms 
follows. 

The server stub caches server bindings to improve 
performance. Server bindings are the addressing infor­
mation that allows a client process to call a server 
process. Binding caching is a means of retaining the 
server addressing information for reuse. Reading the 
binding from the namespace can be time-consuming. 
For example, a DCE CDS namespace lookup requires 
a network connection to fetch the data from another 
process, which may be on a separate node. The cache 
of server bindings is shared among all the threads in 
the client process. This sharing provides a second order 
of performance improvement in that work previously 
performed on behalf of other threads can improve the 
performance of all threads by preloading the cache. 

The scheduler subcomponent of the communica­
tions services allocates and deallocates server processes. 
It maintains a local namespace (also referred to as 
scheduler database) in shared memory to keep track of 
server process allocation. The use of the local name­
space instead of DCE CDS improves the performance 
of RPC calls between task servers and processing 
servers, which are required to be in the same TPsystem. 

The security service caches access control lists 
(ACLs) to improve performance. The TPcontroller 
maintains in shared memory the ACLs for managed 
objects that the ACMSxp TP monitor accesses at run 
time (e.g., procedures). The security service caches 

Digital Technical Journal Vol. 7 No. 1 1995 29 



each object's ACL into the server process memory 
when the object is first accessed. The server process 
refreshes its cache if the entry in shared memory is 
updated. 

System Administration 

The distributed TP environment is inherently complex 
and requires effective system administration. The 
ACMSxp TP monitor provides the following system 
administration facilities for configuring, monitoring, 
and controlling components and resources within the 
ACMSxp run-time environment: 

• Integrated user interface. The director (see the dis­
cussion of Figure 7, which follows) provides a con­
sistent user interface for invoking management 
operations on all managed objects. The command 
line interface provides features such as command 
scripts, symbol substitution, session logging, default 
session parameters, and on-line help. 

• Centralized distributed management. A single direc­
tor can manage multiple TPsystems on the local or 
remote nodes using DCE RPC for communication. 

• Extensibility. The object-oriented approach allows 
the ACMSxp TP monitor to represent managed 
resources in a consistent manner and to add new 
objects gracefully. 

Management Model 
The ACMSxp management model is object oriented 
and is based on the ISO /OSI standard for network 
and system management.2,13 Figure 7 illustrates the 
elements of the model. 

A director initiates management requests on behalf 
of the system administrator and serves as the interface 
between a system administrator and the objects being 
monitored and controlled.14 A director consists of two 
parts: the user interface and the management service 
interface. The user interface interacts with the user and 
is either command line or graphical. The management 
service interface interacts with management agents. 
This interface provides services for creating an asso­
ciation for communication between a director and 

DIRECTOR 

management agents, for initiating management 
requests, for returning results to the director, for can­
celing an outstanding request without waiting for com­
pletion, and for terminating an association normally. 

The management protocol specifies both the mech­
anism for communication between a director and man­
agement agents and the model of interaction between 
them. The model specifies how requests and responses 
are passed between the director and the management 
agents, the processing of requests that involve wild 
card object instances, and the buffering of multiple 
responses to optimize performance. The ACMSxp TP 
monitor uses DCE RPC for communication between 
a director and management agents. 

A management agent performs operations for a 
managed object. Each object class has a management 
agent that performs management operations for 
instances of that object class. The management agent 
receives a management request from the director, per­
forms the requested operation, and returns the results. 

Management Functions 
Management operations that can be performed on 
managed objects are grouped into the following func­
tional categories, as defined by the OSI management 
framework: 

• Configuration management. Managed objects are 
instantiated, observed, and controlled. Persistent 
information about managed objects is stored in 
a configuration database. 

• Fault management. Events generated by system 
operation are recorded in a log file. The contents of 
the log can be examined using a variety of search 
criteria. 

• Performance management. Performance metrics are 
collected as the run-time system executes. The per­
formance data is captured as attributes of managed 
objects and can be examined using the director. 

• Security management. Principals are authenticated 
using the DCE. Access to system administration 
operations and application procedures is controlled 
using an ACL mechanism based on the DCE 
model. 

MANAGED OBJECTS 
MANAGEMENT 

M USER 
INTERFACE 

Figure 7 
Management Model 

30 Digital Technical Journal 

MANAGEMENT PROTOCOL MANAGEMENT 
SERVICE AGENT 
INTERFACE (DCE RPG) 

Vol. 7 No. 1 1995 



Managed Objects 
The resources in the ACMSxp environment that need 
to be managed are represented as objects. A managed 
object encapsulates the functionality of a real resource 
and specifies as visible only those aspects that need to 
be accessed by the manager. A managed object has the 
following properties: 

• Attributes. Attributes are pieces ofinformation that 
describe an object and represent internal state vari­
ables. Each attribute has a name and a value, which 
can be examined or modified as a result of a man -
agement operation. Examples of attributes are exe­
cutable file name and processing state (for a server). 

• Operations. Operations are activities that the man­
ager can perform on the managed object. Opera­
tions allow the manager to examine attributes, 
modify attributes, and perform actions specific 
to the object. Examples of operations are create, 
delete, enable, disable, set, and show. 

• Events. Events indicate the occurrence of nor­
mal and abnormal conditions. Examples of events 
are the detection of an error and the arrival at 
a threshold. 

• Behavior. Behavior defines how attributes, opera­
tions, and events work together and how they affect 
the managed resource. 

For naming purposes, managed objects are orga­
nized into a containment hierarchy. This hierarchy 
specifies which managed object is contained within 

Table 1 
ACMSxp Managed Objects 

Object Class Description 

another and reflects the containment relationship of all 
their corresponding managed resources. The top-level 
object in the structure, referred to as a global object, 
has a globally unique name. Objects contained within 
the global object are referred to as local objects and 
have names that are unique only within the context of 
their level in the structure. Table 1 describes the man­
aged objects in the ACMSxp system. 

Conclusion 

The ACMSxp transaction processing monitor employs 
modular design techniques and a proven transaction 
processing architecture to provide a truly open, 
distributed transaction processing system. The 
STDL application development language, which the 
ACMSxp TP monitor supports, has been endorsed 
by an international standards consortium and has 
been implemented on other vendors' platforms. The 
layering on both the Open Software Foundation's 
Distributed Computing Environment software and 
the Encina toolkit provides a foundation of open dis­
tributed processing that has been accepted by the 
world's largest computer systems providers. The 
ACMSxp TP monitor provides a comprehensive set of 
facilities for managing the run-time environment. The 
object-oriented management approach results in a 
consistent representation of managed objects, a con­
sistent user interface, a modular implementation, and 
extensibility. 

TPsystem A collection of system and application components and resources on a given node that is 
managed as a unit. A TPsystem is referred to as a global entity because it contains other 
managed objects and is not contained in any other managed object. 

Server 

Process 

Interface 

Procedure 

Queue 

Element 

Log 

Request session 

A managed object that executes procedures. It encapsulates a collection of one or more 
operating system processes that execute the same program image. 
The basic unit scheduled by the operating system that provides the context within which 
a program image executes. It represents an operating system process. 

A set of procedures that is provided by a server. It represents a DCE RPC interface and has 
a universally unique identifier (UUID) that distinguishes it from other instances. 
A structured sequence of instructions executed to achieve a particular result. It represents 
a DCE RPC operation. 
A repository for storing an ordered collection of elements. The supported queues include 
a request queue, which contains submit requests, and a record queue, which contains data 
records. 
A single entry in a queue. 
A named repository where event records are stored. 

The occurrence of a request at a particular TPsystem. A request is a series of operations 
invoked by a client program on behalf of a user and executed by one or more servers. 

Digital Technical Journal Vol. 7 No. 1 1995 31 



32 

Acknowledgments 

Throughout the course of this project, many people 
have participated in the design, implementation, and 
documentation of the product. The authors would 
like to thank all these people for their dedication and 
their contributions. 

References 

1. X/Open Distributed Transaction Processing Refer­
ence Model, ISBN 1-872630-16-2 (Reading, U.K.: 
X/Open Company Ltd., 1991 ). 

2. Information Processing Systems-Open Systems 
Interconnection-Basic Reference Model-Part 4: 
Management Framework, ISO/IEC 7498-4:1989 
(Geneva: International Organization for Standardiza­
tion, 1989). 

3. SPIRIT Platform Blueprint (SPIRIT 2.0, vol. 1), ISBN 
1-85912-059-8, Document No. J401 (Reading, U.K: 
X/Open Company Ltd., 1994). 

4. SPIRIT S1DL Language Specification (SPIRIT 2.0, 
vol. 3), ISBN 1-85912-063-6, Document No. J403 
(Reading, U.K.: X/Open Company Ltd., 1994). 

5. SPIRIT S1DL Environment, Execution and Protocol 
Mapping (SPIRIT 2.0, vol. 4), ISBN 1-85912-064-4, 
Document No. J404 (Reading, U .K.: X/Open 
Company Ltd., 1994). 

6. X/Open CAE Specification, December 1991, Distrib­
uted Transaction Processing: 7be XA Specification, 
ISBN 1-872630-24-3, Document No. Cl 93 or 
XO/CAE/91/300 (Reading, U.K.: X/Open Com­
pany Ltd., 1994). 

7. P. Bernstein, P. Gyllstrom, and T. Wimberg, "STDL­
Portable Language for Transaction Processing," Pro­
ceedings of the Nineteenth International Conference 
on Very Large Databases, Dublin, Ireland, 199 3. 

8. W. Laing, J. Johnson, and R. Landau, "Transaction 
Management Support in the VMS Operating System 
Kernel," Digital Technical Journal, vol. 3, no. 1 
(Winter 1991): 33-44. 

9 . T. Speer and M. Storm, "Digital's Transaction Pro­
cessing Monitors," Digital Technical Journal, vol. 3, 
no. 1 (Winter 1994): 18-32. 

10. Multivendor Integration Architecture, Division 1, 
Overview, Technical Requirements, TR550001 
(Tokyo, Japan: Nippon Telegraph and Telephone 
Corporation, 1991). 

11. E. Newcomer, "Pioneering Distributed Transaction 
Management," Bulletin of the Technical Committee 
on Data Engineering, vol. 17, no. 1 (March 1994). 

12. Information Technology- Portable Operating Sys­
tem Interface (POSIX)-Part 1: System Application 
Interface (AP/) [C Language], IEEE 1003.1-1990 

Digital Technical Journal Vol. 7 No. 1 1995 

(New York: The Institute of Electrical and Electronics 
Engineers, 1990). 

13. M. Sylor, F. Dolan, and D. Shurtleff, "Network Man­
agement," Digital Technical Journal, vol. 5, no. 1 
(Winter 1993): 117-129. 

14. C. Strutt and J. Swist, "Design of the DECmcc Man­
agement Director," Digital Technical Journal, vol. 5, 
no. I (Winter 1993): 130-142. 

Biographies 

Robert K. Baafi 
A principal software engineer in the Transaction Processing 
Engineering Group, Robert Baafi is the primary architect 
for the system management component of the ACMSxp 
transaction processing monitor. Prior to joining Digital 
in 1989, he was the project leader for Cullinet Software's 
IDMS·DC transaction processing monitor. Bob received 
a B.S. in electrical engineering from the University of 
Connecticut in 1971 and an M.S. in information systems 
from Lehigh University in 1973. He is a member of ACM, 
Tau Beta Pi, and Eta Kappa Nu. 

J. Ian Carrie 
Ian Carrie is the project leader for the ACMS Desktop 
product. He is a member of the Transaction Processing 
Engineering Group. Since joining Digital in 1989, Ian 
has also contributed to the ACMSxp transaction processing 
monitor. He worked on the STDL compiler code genera­
tor, language run-time support, file support, and Encina 
transaction manager integration. In earlier work, he was 
employed by Cullinet Software as a project leader in the 
IDMS/R database product's Communications Group. 
Ian holds a B.A. ( 1980) in computer science/managerial 
studies from Rice University. He is a member of ACM. 



William B. Drury 
Bill Drury is currently employed by Stratus Computer as 
Engineering Manager, Transaction Processing and System 
Performance. While a consulting engineer at Digital, he 
led the design and development of the ACMSxp trans­
action processing monitor. He presented the product 
at numerous technical forums, including the STDL 
Implementors' Workshop, DECUS, DECORUM '94 
(Transarc Corporation's user group), and the OSF DCE 
Developers' Conference. He also contributed to the 
specification of the Multivendor Integration Architecture 
(MIA) on which the ACMSxp product is based. Bill 
received B.S.E.E. (1982) and M.S.E.E. (1986) degrees 
from Ohio University. 

Oren L. Wiesler 
Presently, Oren Wiesler is a Factory Integration Manager 
at PRI Automation, a manufacturer of automation equip­
ment used in semiconductor manufacturing. At Digital, 
he was a principal software engineer in the Transaction 
Processing Engineering Group. He led the ACMSxp for 
OSF /1 AXP version 2 .0 effort and the support team for 
ACMSxp for Open VMS VAX version 1.0, and contributed 
to the ACMSxp run-time system. Earlier, Oren worked in 
a processor hardware group. He received a B.S.E.E. from 
Worcester Polytechnic Institute in 1984 and holds two 
patents: one related to dynamic control of simultaneously 
switching outputs, the other on interleaved control store 
addressing. 

Digital Technical Journal Vol. 7 No. l 1995 33 



An Open, Distributable, 
Three-tier Client-Server 
Architecture with 
Transaction Semantics 

This paper describes a distributable, three-tier 

client-server architecture for heterogeneous, 

multivendor environments based on the 

integration of Digital's ObjectBroker and 

ACMSxp transaction processing monitor 

products. ObjectBroker integration software 

provides the flexibility to decouple the tight 

association between desktop devices and spe­

cific legacy systems. The ACMSxp transaction 

processing monitor provides the transaction 

semantics, system management, scalabilty, and 

high availability that mission-critical production 

systems require. Combining these technologies 

and products in a three-tier architecture pro­

vides a strategic direction for the development 

of new applications and allows for optimal 

integration of legacy systems. The architecture 

complies with industry standards, which facili­

tates vendor independence and ensures the 

longevity of the solution. 

34 Digital Technical Journal Vol. 7 No. 1 1995 

I 
Norman G. Depledge 
William A. Turner 
Alexandra Woog 

Almost all large global enterprises have developed sep­
arate systems to address specific business needs. 
Frequently, these systems are on disparate platforms 
from different vendors. Users may have to log in to 
several systems in order to process a single service 
request from a customer. To improve customer service 
and develop new products, new applications must 
integrate existing environments and must be capable 
of accessing and integrating data from existing 
platforms. 

End users may be faced with an array ofinconsistent 
and incompatible user interfaces that are difficult to 
learn to use. This source of inefficiency directly 
impacts the level and cost of service provided to cus­
tomers and the time-to-market for new products and 
services. 

An analysis of the above problems leads to some 
fundamental conclusions about existing business sys­
tems in large enterprises. Generally, the in-place appli­
cations are mission-critical legacy systems that record 
transactions performed by the businesses. These sys­
tems demand superior transactional integrity and 
operational reliability. They serve hundreds to thou -
sands of users and yet provide good response at high 
levels of performance. Systems designers will not 
introduce changes to them that would compromise 
these exacting requirements. Consequently, enter­
prises do not readily replace their legacy systems but, 
instead, look for other solutions that integrate them 
with new systems. 

To improve the effectiveness of existing legacy sys­
tems, major enterprises are seeking to reengineer the 
user interface. The goal is to reface the applications 
with a modern, consistent, easy-to-use interface that 
directly reflects the users' and customers' needs. The 
new interface must be fully articulated; that is, it 
should allow any desktop to access any permitted 
application, regardless of its location or the platform 
on which it is running. The solution should allow the 
composition of new compound business functions by 
combining existing application transactions from mul­
tiple legacy systems and possibly new or downsized 
applications. The new user interface should accom­
plish this without disrupting the level of service pro­
vided to the users. 



All these requirements indicate the need for an 
intermediate architectural layer that provides for isola­
tion, switching, transaction semantics, composition of 
function, and location transparency. The resultant 
architecture has three tiers: the clients, the intermedi­
ate layer, and the existing legacy systems and new 
servers. 

Such an architecture is expected to last a consider­
able number of years. It is, therefore, essential that 
the architecture be based on modern but stable tech­
nologies and be flexible enough to accommodate 
technology evolution. 

The Three-tier Architecture 

The three-tier architecture consists of the following 
separate layers of systems and software: 

1. Clients 

2. Transactional middleware 

3. Systems ofrecord (legacy systems and new systems) 

The attributes of the proposed intermediate layer 
make this three-tier architecture more flexible than 
traditional two-tier client-server architectures. 

Tier 1 systems (clients) provide a desktop graphical 
user interface (GUI) to the end users. These systems 
have seamless access to a set of abstract transaction 
services in a location-transparent manner through an 
object request broker (ORB). The interface between 
tier 1 and tier 2 operates in a client-server manner. The 
security services in the ORB provide a security perime­
ter around the client. 

Tier 2 is the middleware layer that provides applica­
tion services to the clients. These services appear to the 
clients as business functions and may be transactional 
in nature. 

A single tier 2 business function can be composed of 
one or more transactions residing in different applica­
tions on tier 3. The location and native interfaces of 
these applications are hidden from the tier 1 desktop 
GUI clients by the tier 2 middleware. 

Tier 2 is designed to support the evolution of the 
application interfaces and protocols between tier 2 and 
tier 3. These interfaces will change as new technolo­
gies such as the Open Software Foundation's (OSF's) 
Distributed Computing Environment (DCE) and the 

Object Management Group's (OMG's) Common 
Object Request Broker Architecture ( CORBA) 
mature and become more widely available, and as tier 
3 applications are modified or new ones added.1,2 

Figure 1 shows the disposition of functions with 
intertier communications paradigms. 

A Standards-based Architecture 

Digital implemented the three-tier architecture using 
standards-based software to offer the highest level of 
interoperation with systems offered by other standards­
compliant vendors. Standards compliance also facili­
tates the porting of applications across platforms. 

The standards organizations most relevant to this 
architecture are 

• International Organization for Standardization 
(ISO) . 

• American National Standards Institute (ANSI) 

• Open Software Foundation 

• Object Management Group 

• X/Open Company Limited 

• Nippon Telegraph and Telephone's (NTT's) 
Multivendor Integration Architecture (MIA) and 
the Network Management Forum (NMF's) 
Service Providers' Integrated Requirements for 
Information Technology (SPIRIT), together 
referred to in this paper as MIA/SPIRIT3·4 

ISO and ANSI are true standards bodies. The other 
organizations are either influential industry consortia 
aimed at defining common standards for important 
emerging and maturing technologies driven by user 
needs or customer-driven consortia chartered to 
define common purchasing standards backed by sub­
stantial purchasing power. 

OSF's Distributed Computing Environment 
The Open Software Foundation's Distributed Com­
puting Environment is an important standard that 
defines a set of services and tools that support the cre­
ation, use, and maintenance of client-server applica­
tions in heterogeneous multivendor environments. 
The OSF has defined and assembled this technology; 
Digital is a major provider of components. As illus­
trated in Figure 2, the components of OSF's DCE are 

TIER 1 TIER 2 INTERFACE COMPLIANT 
CORBA· WITH MESSAGE-BASED 

TIER 3 

Figure 1 

-------. COMPLIANT.....-------. PROTOCOLS, DCE, OR -------
DESKTOP GUI 
CLIENTS 

.-1NT_ER_F_A_C_,E"'f TRANSACTIONAL _c_o_R_B_A ____ ___,~ NEW AND LEGACY 
MIDDLEWARE SYSTEMS 

Disposition of Functions with lntertier Communications Paradigms 

Digital Technical Journal Vol. 7 No. 1 1995 35 



APPLICATIONS 

[TI I DISKLESS SUPPORT I 
I DISTRIBUTED FILE SERVICE I 
I TIME 11 DIRECTORY I 

I REMOTE PROCEDURE CALLS 

I THREADS 

f­z 
w 
~ 
w 
('.) 
<{ 
z 
<{ 

~ 

I OPERATING SYSTEM AND TRANSPORT SERVICES I 

Figure 2 
OSF's Distributed Computing Environment 

• Remote procedure calls (RPCs) 

• DCE threads, which is a standardized multi­
threading service 

• Distributed time service, which synchronizes clock 
time across globally distributed systems 

• Cell directory service (CDS), which provides 
authentication, access control, and encryption, 
and uses a Kerberos-based private key security 
model 

• Global directory service, which provides directory 
services between cells using the X.500 standard 

• Distributed file service, which provides location-
transparent access to files across a network 

DCE has been rapidly adopted as a technology for dis­
tributed systems and is now available on a large num­
ber of vendor platforms, including Digital, IBM, 
Hewlett-Packard, Sun, and Microsoft. 

CORSA 
The Common Object Request Broker Architecture is 
a standard specification for the central communication 
and integration of software objects at the enterprise 
level and across enterprises. CORBA and its specifica-

tion were developed by the OMG, a consortium of 
information systems vendors, including Digital, 
Hewlett-Packard, HyperDesk, Symbios Logic (for­
merly NCR), Object Design, and SunSoft.s Digital's 
COREA-compliant product, namely ObjectBroker 
integration software, has been ported to the industry's 
leading range of platforms. 6 

The ObjectBroker product reduces the time and 
costs associated with providing access to critical busi­
ness applications across multivendor platforms. It 
allows legacy applications to be integrated into hetero­
geneous client-server environments without source 
code changes. 

Microsoft Corporation has developed a parallel 
approach as evidenced in its Object Linking and 
Embedding (OLE) software, which is focused on inte­
grating objects in a desktop environment.7 Microsoft 
and Digital are working to integrate the CORBA and 
OLE software into a combined architecture called the 
Common Object Model (COM), which allows the full 
interoperation of applications developed under either 
constituent architecture. 

X/Open Distributed Transaction Processing 
The X/ Open distributed transaction processing 
(DTP) committee is defining standards for DTP sys­
tems that use flat transactions. In Figure 3, the TX 
interface allows applications to coordinate global 
transactions via the transaction manager (TM); the XA 
interface connects the TM to resource managers 
(RMs), typically relational databases or file systems; 
and the XA+ interface connects the TM to communi­
cations resource managers ( CRMs). The interface 
between an application and a CRM is specific to the 
CRM type, of which three are defined. 

• Transactional remote procedure call (TxRPC), 
which is derived from the work led by Digital for 
the MIA/SPIRIT remote task invocation protocol 
( discussed in more detail later in this section). 

THIRD-GENERATION LANGUAGE APPLICATION I 
l soc TX 

XA -
RESOURCE TRANSACTION 
MANAGERS MANAGER 

Figure 3 
X/ Open Distributed Transaction Processing Model 

36 Digital Technical Journal Vol. 7 No. 1 1995 

XA+ ---
TxRPC 
XATMI, OR 

O·PEER PEER·T 

COMMUNICATIONS 
RESOURCE 
MANAGERS 

1 



• XATMI, which is a non-RPC-based client-server 
that originated with Unix System Laboratories' 
transaction processing monitor for the UNIX oper­
ating system, namely the Tuxedo product. 

• Peer-to-peer, by which messages are exchanged 
between applications. The messages are sent and 
received in an order based on prior agreement 
between the implementers of the applications. 
Peer-to-peer uses Common Programming Inter­
face for Communications ( CPI-C), which is derived 
from IBM's System Network Architecture (SNA) 
message-based protocol of the same name. 

MIA/SPIRIT 
MIA is a software architecture developed by a consor­
tium of five vendors under the sponsorship of NTT: 
Digital, IBM, Fujitsu, Hitachi, and NEC. MIA 
adopted existing industry standards and defined stan­
dards in areas where none were available. One of the 
areas most lacking in standards was DTP. NTT 
requested technology proposals and received 
responses from all the vendors in the consortium. 
Digital submitted its Application Control and 
Management System (ACMS) transaction processing 
monitor model and was selected to lead the develop­
ment of the specifications because of ACMS' modern, 
highly structured model and transaction processing 
application programming interface (API). 

MIA achieves application portability and interoper­
ability across a variety of vendor operating systems and 
platforms by using standardized APis as integrative 
constructs and by using standardized systems inter­
connection interfaces (Slls) for communication. 

Two significant MIA standards that Digital con­
tributed are 

• Structured Transaction Definition Language 
(STDL), which is a high-level programming lan­
guage suited to transactional client-server pro­
gramming8,9 

• Remote task invocation (RTI), a service definition 
and protocol for RPCs that are in a multivendor 
environment and that use the two-phase commit 
protocol 

As a follow-on to NTT's MIA, the work in the field 
of transaction processing standards has passed to the 
SPIRIT consortium, which is managed by the 
Network Management Forum. NMF's list of members 
includes telecommunications service providers, such 
as AT&T, BT, Deutsche Telekom, ETIS (itself a 
consortium that represents 27 European Postal, 
Telegraph, and Telephone Administrations), France 
Telecom, KDD, Telecom Italia, and Telefonica; com­
puter vendors, such as Digital, Hewlett-Packard, 
Fujitsu/ICL, Hitachi, IBM, NEC, Siemens Nixdorf, 

and Unisys; and software vendors, such as Microsoft 
and Oracle. The goal of the SPIRIT consortium is to 
produce a common, agreed-upon set of specifications 
for a general-purpose computing platform for the tele­
communications industry by July 1995. The com­
bined annual computing expenditures are estimated to 
exceed $20 billion. 

MIA/SPIRIT standards are working their way into 
international standards bodies. X/Open and the NMF 
have extended their collaborative agreement to 
include the work of SPIRIT in acknowledgment of the 
difficulties that diverging standards would create. 
X/Open publishes the SPIRIT documentation along­
side its own CAE specifications and guides. Further­
more, after conducting a survey of major transaction 
processing users, X/Open recently voted to use its 
fast-tracking process to accelerate progress in the 
adoption ofSTDL as an X/Open standard. 

Digital delivered a platform that supports STDL in 
January 1993, IBM offered STDL on the CICS plat­
form in the second quarter of 1993, and Hewlett­
Packard has made STDL available on Transarc 
Corporation's Encina transaction processing monitor. 
NEC, Hitachi, and Fujitsu have already shipped STDL 
platforms. Unisys plans to demonstrate a SPIRIT plat­
form with STDL in October 1995. 

In July 1994, an interoperability demonstration 
using STDL was conducted successfully in Tokyo, 
Japan. The demonstration, which also included RTI, 
involved systems provided by Hewlett-Packard and 
Fujitsu on Transarc Corporation's Encina transaction 
processing monitor, Digital on its Application Control 
and Management System/Cross-platform (ACMSxp) 
transaction processing monitor, and IBM on both the 
MVS/CICS and OS/2 platforms. 

Architecture Components 

Figure 4 illustrates the overall three-tier client­
server architecture. This section discusses the various 
components. 

Tier 1 Desktop Environment 
The architecture must provide for the connection of 
a wide variety of desktop platforms to the server layer, 
i.e., the tier 2 middleware services. This connection 
must be accomplished in a secure, extensible, reliable, 
and location-transparent manner. Standards-based 
solutions are always desirable and more effective over 
the multiyear life of an enterprise-wide solution. 
Digital therefore selected its CORBA-compliant 
ObjectBroker software as the mechanism to connect 
tier 1 clients to tier 2 middleware servers. 

CORBA provides a flexible approach to developing 
a distributed application by decoupling the client and 

Digital Technical Journal Vol. 7 No. l 1995 37 



38 

TIER 1 

TASK 
DESKTOP 
CLIENT 

SERVER ~ 

llll -
• DESKTOP CORBA 

CLIENT TASK ~ 

SERVER 

llll 
~ 

DESKTOP 
CLIENT USER CONTEXT 

KEY: 

llll MUL TITHREADED 

l SINGLE THREADED 

Figure 4 
Overall Three-tier Client-Server Architecture 

server portions of the application. COREA specifies a 
common set of interfaces that allows client programs 
to make requests to and receive responses from server 
programs without direct knowledge of the informa­
tion source or its location. COREA defines the ORB as 
an intermediary between clients and servers that 
delivers client requests to the appropriate server and 
returns the server responses to the requesting client. 
Figure 5 shows how the ORB allows a client applica­
tion to request a service without knowing where the 
server is located or how it will fulfill the request. 

In the COREA model, client applications need to 
know only what requests they can make and how to 
make the requests; they do not need to be coded with 
any implementation details about the server. Server 
programs need to know how to fulfill the requests but 
not how to return information to the client program. 
Clients using objects to request a service do not need 
to know which server will fulfill that request. The 
server fulfilling the request does not need to know 
which client initiated the request. The GUI clients can 
be developed using any tool that provides a call-level 
interface or an object-oriented interface to CORBA­
compliant client services on the specific platform. 

DIRECTS 
REQUESTS REQUEST 

CLIENT I SERVICE TO SERVER I SERVER I .. 
DIRECTS RETURNS 
RESPONSE RESPONSE 
TO CLIENT 

Figure 5 
CORBA Client-Server Request/ Response Flow 

Digital Technical Jo urnal Vol. 7 No. 1 1995 

TIER 2 TIER 3 

PROCESSING SERVER ~ i--- LEGACY 
SYSTEM 

EXECUTES SPECIFIC LEGACY l 
APPLICATION PROTOCOL 

PROCESSING SERVER t-i--- LEGACY 
SYSTEM 

EXECUTES SPECIFIC LEGACY l 
APPLICATION PROTOCOL 

LU 6.2, LU 6.1, ... 
TxRPC VIA DCE, ... 
Tx CORBA/COM 

Communications are conducted through RPCs. 
The RPCs are carried over a network transport, e.g., 
a transmission control protocol/internet protocol 
(TCP /IP) or a DECnet transport. The RPC connects 
with ObjectBroker's ORB, which then reroutes the 
RPC directly to the selected service instance. 

Digital expects future versions of its CORBA­
compliant ObjectBroker product to support OSF's 
DCE and thus provide standards-based directory, 
security, and RPC services. DCE provides rigorous 
security services for authenticating users, granting 
privileges, and controlling access to important net­
worked resources. These services are based on the 
highly secure Kerberos model, which is the standard 
security model for many financial institutions and a 
major reason why they have standardized on DCE. All 
interaction from tier 1 clients must go through the 
Kerberos-based DCE security perimeter. Desktop and 
mobile computer users log in to the DCE cell to gain 
their credentials for performing their business. DCE 
authenticates users and grants them the appropriate 
privileges and controlled access to the authorized busi­
ness functions . No clear-text passwords are required, 
even for mobile users who access the middleware layer 
by means of dial-up lines. Remote or mobile users are 
able to perform DCE login over a serial line internet 
protocol (SLIP) connection. Confidentiality is ensured 
by data encryption. 

Tier 2 Middleware Services 
The tier 2 middleware of this architecture is founded 
on the ACMSxp transaction processing monitor. The 
ACMSxp software product for transactional applica­
tions conforms to the X/ Open DTP and MIA/ SPIRIT 
standards previously described. The software is layered 



on DCE and the transaction manager and Structured 
File Services of the Encina toolkit. The primary API 
to the ACMSxp product is STDL, as defined by 
MIA/SPIRIT. 

STDL is used to define the control flow and transac­
tion demarcation of applications in a highly structured 
and modular fashion. In addition, STDL supports the 
features needed for RPC-based DTP. 

The ACMSxp software is structured in a three-part 
model, which is shown in Figure 6. The model sepa­
rates client presentation functions from transaction 
flow control and data access and processing functions, 
which are typically SQL database code or communica­
tions code to access legacy systems. A very important 
feature of ACMSxp is that the STDL compiler gener­
ates complete DCE client-server stubs, thus freeing 
the developer from having to perform complex pro­
gramming at the DCE level. 

ACMSxp applications comprise clients that call 
application task servers using DCE RPCs. The applica­
tion task servers execute the STDL programs in DCE 
multithreaded processes, maintaining the context of 
the users and performing the control flow and trans­
action semantics (two-phase commit protocol). 
Application tasks are free to call other tasks in the same 
group or in remote task groups that are reached 
through DCE directory services, either transactional 
( composable) or non transactional ( noncomposable ). 
Tasks can also call processing procedures that are 
grouped in single-threaded procedure servers. 
Processing procedures normally provide data access, 
typically by means of C, COBOL, and SQL in con­
junction with X/Open DTP-compliant databases. 
Processing procedures are also ideal for applications 
that communicate to legacy systems by means of 
message-based protocols, such as IBM's SNA Logical 
Unit 6.2 (LU 6.2). 

Figure 7 shows client tasks accessing data by means 
of Digital ACMSxp servers. Note that ACMSxp sup­
ports and manages pools (groups) of servers in a given 
class, i.e., servers that provide the same set of services. 

Figure 6 
ACMSxp Three-part Model 

CLIENT 
PRESENTATION 
FUNCTIONS 

TRANSACTION 
FLOW CONTROL 

Through the system management interface, operators 
can set and change dynamically the desired number of 
servers in a given pool. If a server fails, ACMSxp 
system management logs the event and automatically 
starts and activates a replacement server. 

Digital's ACMSxp transaction processing monitor, 
in conjunction with the ObjectBroker software, is 
used to implement the tier 2 middleware layer. 
ACMSxp clients are no more than simple business 
function call statements stripped of DCE program­
ming by the STDL client run-time services. ACMSxp 
clients are encapsulated in wrappers to make them 
CORBA objects accessible through the ObjectBroker 
software. These wrappered client processes can be 
declared as servers to the sophisticated ACMSxp trans­
action processing monitor system management. The 
system management can then be instructed to set 
dynamically the desired number of instances, to main­
tain that number in the event of failures, and to raise 
alerts. These ACMSxp client processes are wrappered 
to include the code that registers them as objects with 
the ORB as instances of CORBA implementations. 
When activated by ACMSxp system management, 
these processes register with the ORB and wait for 
requests for the tasks that they invoke. When stopped 
by ACMSxp system management, the processes dereg­
ister from the ORB. 

This architecture can be instantiated using Digital's 
CORBA-compliant ObjectBroker product with the 
ACMSxp transaction processing monitor, presenting 
the desktop clients on tier 1 with an object-oriented 
interface to business functions executing on tier 2. As 
shown in Figure 4, ObjectBroker is substituted for 
CORBA and tier 2 is implemented on the ACMSxp 
transaction processing monitor. An unlimited number 
of tier 2 nodes can be configured dynamically, started, 
and stopped. Transactional business functions can be 
distributed and replicated across the nodes as 
required. The clients gain access to these business 
functions in a completely location-transparent man­
ner. The interface to legacy systems is provided by 

DATA ACCESS 
AND 
PROCESSING 
FUNCTIONS 

DATABASES, 
FILES, ETC. 

LEGACY 
-r-i~ SYSTEMS 

C, COBOL, SOL 

Digital Technical Journal Vol. 7 No. 1 1995 39 



I 
I 

TASK 
CLIENT TASK 

SERVER 

TASK llll 
CLIENT • TASK . SERVER 

TASK llll 
CLIENT 

STOL 

KEY. 

llll MUL TITHREADED 

/ SINGLE THREADED 

Figure 7 
ACMSxp Application Components 

application code that resides in processing servers. 
The business functions are written as STOL tasks 

and can be composed of multiple legacy applica­
tion transactions. When tier 3 applications support 
standards-compliant TxRPC, transactions can be 
called directly as tasks in STOL from the tier 2 business 
functions. 

Security into tier 2 is handled by the O bjectBroker 
software. Within tier 2, security is enforced according 
to the rules of OS F's DCE. Security between tier 2 and 
tier 3 is mandated by the rules of each specific legacy 
system. 

To provide operational support for production 
applications, sophisticated system management fea­
tures were built into the ACMSxp product. A system 
management interface is available to any authorized 
operator on any node in the DCE cell. Through a sin­
gle director, all ACMSxp objects can be managed in 
multiple transaction processing systems on all nodes in 
the network. The managed objects include transaction 
processing systems, event logs, request sessions, 
servers, processes, interfaces, and procedures. For 
example, system managers can examine and change 
the properties and execution state of servers. The 
number of instances of a given server class can be set 
and changed dynamically without stopping the sys­
tem. ACMSxp system management can be induced to 
adopt servers that are normally external to its domain, 
such as the ObjectBroker method servers that provide 
the connection between the desktop clients and the 
transactional task servers in the ACMSxp product. 

Tier 3 Legacy Application Interfaces 
Intercommunications issues related to the differences 
between hardware and software architectures on dis­
parate platforms are addressed by technologies such as 
DCE. DCE supports RPCs that enable applications on 

40 Digital Technical Journal Vol. 7 No. 1 1995 

"' __;, 

PROCESSING 
~ SERVER l -t 

-
~ 

- PROCESSING 
~ SERVER l -

SOL, -LEGACY APPLICATION INTERFACE -

different platforms to interoperate by means of simple 
call statements with fully typed arguments. Data type 
differences between hardware architectures are 
bridged by the marshaling process that converts data 
to a canonical form and then to the target form as a 
normal process. Message-based protocols, such as LU 
6.2, cannot adequately deal with mixed data types and 
place a burden on the application programmer in a 
multivendor environment. 

The advent of reduced instruction set computer 
(RISC) architectures has exacerbated these problems. 
Gaps are frequently left in memory between variables 
in structures and records that contain mixed data 
types. These gaps in buffers, when processed by com­
pilers on RISC machines, render the buffers unmap­
pable unless redundant filler variables are added to the 
structure definitions. 

Each legacy application method is encapsulated in 
an ACMSxp server class that is invoked transactionally 
by a simple STOL call. Thus, the developer of the 
STOL transactional business functions is shielded 
from the complexities of the native interface to the 
legacy data. This approach permits future update of 
the method without affecting the existing business 
functions. 

The designer must select the most appropriate com­
munications protocol for each tier 3 legacy system. 
Whenever possible, an application interface should be 
selected that avoids the so-called "screen scraping" 
techniques, in which the application emulates a user 
interacting with existing terminal screen forms. 

For IBM mainframe systems, the SNA LU 6.2 pro­
tocol with Syncpoint Level 1 or 2 is often appropriate 
for interoperating with IBM transaction processing 
environments. This protocol may also be the appropri­
ate choice for legacy systems from other vendors. If 



the application message protocol is designed in a man­
ner that simulates a simple procedure call, future 
migration to an RPC model will be simplified. 

Recently, IBM has made DCE available on MVS ­
OpenEdition and has provided application support for 
both the CICS and Information Management System 
(IMS) transaction processing environments. This 
feature allows DCE client programs to invoke trans­
actions on the IBM mainframe by way of a DCE appli­
cation server provided by IBM. An appropriate DCE 
client could be included in a data access processing 
procedure of an ACMSxp processing server as an alter­
native to SNA LU 6.2. 

It should be noted that the desired throughput level 
for a given legacy system connection can be adjusted 
dynamically. An operator can use the system manage­
ment of the ACMSxp transaction processing monitor 
to reset the number of active servers in the pool that 
implements that connection. Also, any number of 
tier 2 nodes can be configured to provide that service 
within the middleware layer. New nodes can be placed 
in service without interrupting currently running 
nodes. 

Summary 

A three-tier, object-oriented client-server architecture 
that includes an open systems transaction processing 
monitor can provide a basis for connecting users and 
customers to existing enterprise transaction processing 
systems by means of reengineered desktop systems 
that support GUis. This approach provides 

• A clear separation of function, i.e., client activities 
are separate from middleware control and man­
agement functions 

• Data location transparency 

• Location transparency for application interfaces 
and topological independence 

• A means of defining new business functions by 
compounding existing transactions on different 
platforms, regardless oflocation 

• Flexibility to support the continuous evolution of 
systems without disruption to end users 

• Resilience to enhance overall availability 

• Unrestricted scaling of the system (through repli­
cation of components) for performance adapted 
to the business growth 

• A set of reusable objects to the tier 1 client 

References and Note 

1. Open Software Foundation DCE Application Devel­
opment Guide, Document No. ED-DCEAPDEVl -
1092-2 (Cambridge, Mass.: Open Software Foundation, 
1993). 

2. Common Object Request Broker Architecture Specifi­
cation, draft 29, revision 1.2 (Framingham, Mass.: 
Object Management Group, Document No. 93-12-43, 
December 1993). 

3. Multivendor Integration Architecture Technical 
Requirements, Division 1, Overview (Tokyo: Nippon 
Telegraph and Telephone Corporation Technology 
Research Department, Order No. TR550001, 1991 ). 

4. X/open Consortium Specification, SPIRIT Platform 
Blueprint (SPIRIT Issue 2.0, Volume 1.0), ISBN 1-
85912-059-8 (Reading, U.K.: X/Open Company Ltd., 
Network Management Forum, Document No. J401, 
1994). 

5. Symbios Logic is the former NCR Microelectronic 
Products Division of AT&T Global Information Solu­
tions Company. 

6. ObjectBroker Overview and Glossary (Maynard, 
Mass.: Digital Equipment Corporation, Order No. 
M -Q9KJA-TK, 1994). 

7. Microsoft Windows &MS-DOS Version 6.0, Chapter 11 
(Redmond, Wash.: Microsoft Press, 1993). 

8. SPIRIT Platform Blueprint, SPIRIT S1DL Language 
Specification Platform (SPIRIT Issue 2.0, Volume 
3.0), ISBN 1-85912-063-6 (Reading, U.K.: X/Open 
Company Ltd., Network Management Forum, Docu­
ment No. J403, 1994). 

9 . SPIRIT Platform Blueprint, SPIRIT S7DL Environment, 
Execution and Protocol Mapping Specification 
(SPIRIT Issue 2.0, Volume 3.0), ISBN 1-85912-064-4 
(Reading, U.K.: X/Open Company Ltd., Network 
Management Forum, Document No. ]404, 1994). 

Biographies 

Norman G. Depledge 
As manager of the Transaction Processing Design Consult­
ing Group within Digital's layered software organization, 
Norman Depledge is responsible for managing the tech­
nology transfer interface between the TP engineering 
functions, the field organization, and strategic customers 
on a worldwide basis. His background in computers spans 
33 years. He has held management positions in electrical 
engineering, software engineering, and marketing. For 
the past 18 years, he has specialized in on-line transaction 
processing at Honeywell, Bull, and Digital. Norman has an 
Honors Degree in electrical engineering from Manchester 
University, England, and holds three patents in electronic 
controls. 

Digital Technical Journal Vol. 7 No. I 1995 41 



42 

William A. Turner 
William Turner is a consultant in the Transaction Process­
ing Systems Group. He successfully constructed a working 
model and demonstration of an open, distributable, three­
tier client-server architecture with transaction semantics. In 
previous work, William was a consultant in the Northeast 
Region and in the New York Production Systems Resource 
Center. Before joining Digital in 1987, he held positions 
as a systems manager for Electric Mutual and as a technical 
support manager for Honeywell Information Systems. 
WilJiam received a B.S. in mathematics from Villanova 
University in 1966. 

Alexandra Woog 
As a consultant with Digital's Transaction Processing 
Systems Group, Alexandra Woog consults with customers 
on the design and implementation of production systems. 
In prior work, she was the product manager for Digital's 
Remote Transaction Router (RTR, in Switzerland), a unit 
manager for consulting services, and an operating systems 
specialist. 

Digital Technical Journal Vol. 7 No. l 1995 



The AlphaServer 8000 
Series: High-end Server 
Platform Development 

The AlphaServer 8400 and the AlphaServer 

8200 are Digital's newest high-end server 

products. Both servers are based on the 

300-MHz Alpha 21164 microprocessor and on 

the AlphaServer 8000-series platform archi­

tecture. The AlphaServer 8000 platform 

development team set aggressive system data 

bandwidth and memory read latency targets 

in order to achieve high-performance goals. 

The low-latency criterion was factored into 

design decisions made at each of the seven 
layers of platform development. The combi­

nation of industry-leading microprocessor 

technology and a system platform focused 
on low latency has resulted in a 12-processor 

server implementation-the AlphaServer 

8400-capable of supercomputer levels of 

performance. 

I 
David M. Fenwick 
Denis J. Foley 
William B. Gist 
Stephen R. VanDoren 
Daniel Wissell 

The new AlphaServer 8000 platform is the foundation 
for a series of open, Alpha microprocessor-based, 
high-end server products, beginning with the 
AlphaServer 8400 and AlphaServer 8200 systems and 
continuing through at least three generations of 
products. When combined with the power of the 
industry-leading 300-megahertz (MHz) Alpha 21164 
microprocessor, this innovative server platform offers 
the outstanding performance and price/performance 
required in technical and commercial markets.I In 
uniprocessor performance benchmark tests, the 
AlphaServer 8400/8200 SPECfp92 rating of 512 
is 1.4 times the rating of its nearest competitor, the 
SGI Power Challenge XL product. In multiprocessor 
benchmark tests of systems with 1 to 12 processors, 
the AlphaServer 8400 system posts SPECrate levels 
greater than 3.5 times those of the HP9000-800 
T500 system. In the category of cost for performance, 
NAS Parallel Class B SP benchmarks show that the 
AlphaServer 8400 system provides 1. 7 times the 
performance per million dollars of the SGI Power 
Challenge XL system:! Perhaps most impressive is the 
AlphaServer 8400 performance on the Lin pack n X n 
benchmark.3 With a Linpack nXn result of 5 billion 
floating-point operations (GFLOPS), a 12-processor 
AlphaServer 8400 achieves the performance levels of 
supercomputers such as the NEC SX-3/22 system and 
the massively parallel Thinking Machines CM-200 
system. 

There are two keys to the remarkable performance 
of the AlphaServer 8400 and AlphaServer 8200 
systems: the Alpha 21164 microprocessor chip and 
the AlphaServer 8000 platform architecture. This 
paper is concerned with the second of these, the 
AlphaServer 8000 platform architecture. Specifically, 
it discusses the principal design issues encountered 
and resolved in the pursuit of the aggressive per­
formance and product goals for the AlphaServer 
8000 series. The paper concludes with an evaluation 
of the success of this platform development based 
on the performance results of the first AlphaServer 
8000-series products, the AlphaServer 8400 and 
AlphaServer 8200 systems. 

Digital Technical Journal Vol. 7 No. 1 1995 43 



AlphaServer 8400 and AlphaServer 8200 
Product Goals 

The AlphaServer 8000 platform technical require­
ments were derived from a set of product goals. This 
set comprised minimum performance goals and a 
number of specific configuration and expandability 
requirements developed from Digital's server market­
ing profiles. The motivations that shaped the list of 
goals below were many. Support for legacy 1/0 sub­
systems and DEC 7000/10000 AXP compatibility, 
for example, was motivated by the need to provide 
Digital's customer installed base with a cost-effective 
upgrade path from 7000-series hardware to 
AlphaServer 8000-series hardware. The goals for low­
cost 1/0 subsystem, peripheral component intercon­
nect (PCI), and EISA support and for rackmount 
cabinet support were included to take advantage of 
emerging industry standards and open systems and 
their markets. The processor, J/0, and memory 
capacity goals were driven simply by the competitive 
state of the server market. 

• Provide industry-leading enterprise and open­
office server performance. 

• Provide twice the overall performance of the DEC 
7000/10000 AXP server products. 

• Support up to 12 Alpha 21164 processors. 

• Support at least 14 gigabytes (GB) of main 
memory. 

• Support multiple 1/0 port controllers-up to 
144 1/0 slots. 

• Provide a low-cost, integrated J/0 subsystem. 

• Support new, industry-standard PCI and EISA 
1/0 subsystems. 

• Continue to support legacy 1/0 subsystems, such 
as XMI and Futurebus+. 

• Make centerplane hardware compatible with an 
industry-standard rackmount cabinet. 

• Make centerplane hardware mechanically com­
patible with the DEC 7000/10000 AXP-series 
cabinet. 

Performance Goals and Memory Read 
latency Issues 

Although "providing industry-leading performance" 
and "doubling the performance" of an existing 
industry-leading server present excellent goals for the 
development of a new server, it is difficult to design to 
such nebulous goals. To quantify the actual technical 
requirements for the new AlphaServer 8000 platform, 
the design team utilized a performance study of the 
DEC 7000/10000 AXP systems and conducted a 

44 Digital Technical Journal Vol. 7 No. 1 1995 

detailed analysis of symmetric multiprocessing (SMP) 
system operation. As a result of the analyses, aggressive 
system data bandwidth and memory read latency goals 
were established, as well as a design philosophy that 
emphasized low memory read latency in all aspects of 
the platform development. This section addresses the 
read latency issues and goals considered by the design 
team. The 8000 platform development is the focus of 
the section following. 

Read latency is the time it takes a microprocessor to 
read a piece of data into a register in response to a load 
instruction. If the data to be read is found in a proces­
sor's cache, the read latency will typically be very small. 
If, however, the data to be read resides in a computer 
system's main memory, the read latency is typically 
much larger. In either case, a processor may have to 
wait the duration of the read latency to make further 
progress. The smaller the read latency, the less time a 
processor waits for data and thus the better the proces­
sor performs. 

Cache memories are typically used to minimize read 
latency. When caches do not work well, either because 
data sets are larger than the cache size or as the result 
of non-locality of reference, a computer system's 
processor- memory interconnect contributes signifi­
cantly to the average read latency seen by a processor. 
The system characteristics that help determine a 
processor's average read latency are the system's mini­
mum memory read latency and data bandwidth. 

A system's minimum memory read latency is the 
time required for a processor to fetch data from a sys­
tem's main memory, unencumbered by system traffic 
from other processors and 1/0 ports. As processors 
and 1/0 ports are added to a system, their competi­
tion for memory and interconnect resources tends to 
degrade the system's memory read latency from the 
minimum memory read latency baseline. A system's 
data bandwidth, i.e., the amount of data that a system 
can transfer between main memory and its processors 
and 1/0 ports in a given period oftime, will determine 
the extent to which processors and 1/0 ports will 
degrade each other's read latency. As data bandwidth 
increases, so too does a system's ability to support con­
current data references from various processors and 
J/0 ports. This increased bandwidth and concurrent 
data referencing serve to reduce competition for 
resources and, as a result, to reduce memory read 
latency. Thus we can conclude that the more available 
data bandwidth in a system, the closer the memory 
read latency will be to the minimum. This conclusion 
is supported by the results of a queuing model used to 
support the AlphaServer 8000 platform development. 
This queuing model, originally implemented to evalu­
ate bus arbitration schemes, outputs the average read 
latencies experienced by each processor in a system as 
the number of processors and the number of memory 



resources are varied. It is important to note that in 
this model memory resources, or banks, determine 
the amount of system bandwidth: the more memory 
banks, the more bandwidth. It is also important to 
note that the minimum read latency in this model 
is 168 nanoseconds (ns). The results of the model 
are shown in Table 1. These results clearly show that 
latency degrades as the number of system processors 
is increased and that latency improves as the sys­
tem's bandwidth-number of memory banks-is 
increased. 

Many technical market benchmarks, such as the 
Linpack benchmarks and the McCalpin Streams 
benchmark, stress a computer system's data band­
width capability. The regularity of data reference pat­
terns in these benchmarks allows a high degree of data 
prefetching. Consequently, data can be streamed into 
a processor from main memory so that a piece of data 
has an unnaturally high probability of being resident in 
the processor's cache when it is needed for some calcu­
lation. Ironically, this amounts to using smart software 
to minimize read latency. By reading a piece of data 
into a processor's cache before it is actually needed, 
the software presents the processor with a small cache 
read latency instead of a long memory latency when 
the data is needed. Thus the streaming techniques 
applied in these benchmarks allow processors in high­
bandwidth systems to stall for a full memory read 
latency period only when starting up a stream of data. 
Therefore memory latency can be amortized over 
lengthy high-bandwidth data streams, minimizing its 
significance. It is important to note, however, that 
although bandwidth is the system attribute that domi­
nates performance in these workloads, it dominates 
performance through its effect on read latency. 

Commercial workloads like the Transaction 
Processing Performance Council's benchmark suite, 
on the other hand, typically have more complex data 
patterns that frequently defy attempts to prefetch data. 
When some of these codes parse data structures, in 
fact, the address of each data access may depend on the 
results of the last data access. In any case where a 
processor must wait for memory read data to make 
progress, a system's memory read latency will deter­
mine the period of time that the processor will be 

Table 1 

stalled. Such stall periods directly affect the perfor­
mance of computer systems on commercial work­
loads. These assertions supported by a study on the 
performance of commercial workloads on Digital's 
Alpha 20164-based DEC 7000/1000 AXP server.4 

It is important to note here that the latency ills flagged 
in this study cannot be cured with raw system data 
bandwidth or software-enhanced latency reduction. 
Low memory latency alone can address the needs of 
these workloads. 

Comparable industry systems from IBM and 
Hewlett-Packard (HP) do not stress low memory 
latency system development in their respective RISC 
System/6000 SMP or Hawks (PA-8000-based) SMP 
systems.5,6 In fact, neither directly acknowledges mem­
ory latency as a significant system attribute. This mind 
set is reflected in the results: Based on IBM's docu­
mentation, we estimate the RISC System/6000 SMP's 
minimum main memory read latency to be in the 
neighborhood of 600 to 800 ns. 

IBM and HP do emphasize system bandwidth 
in their designs. HP provides a 960-megabyte-per­
second (MB/s) "runway" processor-memory bus in 
its Hawks system. The actual data bandwidth of this 
bus is slightly less than the quoted 960 MB/ s, since 
the bus is shared between address and data traffic. 
IBM, on the other hand, goes to the extent of applying 
a data crossbar switch in conjunction with a serial 
address bus to reach an 800-MB/ s rate in its RISC 
System/6000 SMP system. The actual attainable data 
bandwidth in IBM's system is determined by the 
bandwidth of its address bus. 

In the past, Digital's systems have shown much 
the same balance of bandwidth and latency as have 
their competitors. The DEC 7000/ 10000 AXP sys­
tem has a minimum main memory read latency of 
560 ns and a system data bandwidth of 640 MB/s. 
The AlphaServer 8000 platform, however, was devel­
oped with a marked emphasis on low memory read 
latency. This emphasis can be seen through nearly all 
phases of system development, including the system 
topology, clocking strategy, and protocol. This 
latency-oriented mindset is reflected in the results: 
The AlphaServer 8000 platform boasts minimum 
memory read latencies of 200 ns. The AlphaServer 

Average Read Latency as a Function of the Number of Processors and Bandwidth (Number of Memory Banks) 

Number of 
Processors 

1 
2 
4 
8 

2 Memory Banks 

185 
224 
358 
928 

Average Read Latency (Nanoseconds) 

4 Memory Banks 

179 
200 
253 
439 

6 Memory Banks 

177 
193 
230 
338 

Digital Technical Journal 

8 Memory Banks 

176 
190 
220 
299 

Vol. 7 No. 1 1995 45 



8400 and 8200 systems feature a minimum memory 
read latency of260 ns. To back up these latencies, the 
AlphaServer 8000 platform supports a tremendous 
2,100 MB/s of data bandwidth. The AlphaServer 
8400 and 8200 systems, although not capable of pro­
viding the full 2,100 MB/s, still provide 1,600 MB/s 
of bandwidth. This gives the systems less than half the 
memory latency of comparable industry systems while 
providing nearly twice the bandwidth. Furthermore, 
these attributes improve upon the DEC 7000/10000 
AXP attributes by factors of2 to 3. Although difficult 
to determine exactly how these attributes would trans­
late into overall system performance, they were 
accepted as sufficient to meet the AlphaServer 8000 
platform performance goals. A comparison of the 
maximum DEC 7000/10000 AXP SPECrates of 
approximately 25,000 integer and 40,000 floating 
point with the maximum AlphaServer 8400 
SPECrates of 91,580 integer and 14,0571 floating 
point indicates that these attributes were sound 
choices. 

AlphaServer 8000 Platform Development 

Referring to the AlphaServer 8000 platform as a 
"foundation" for a series of server products does 
not give a clear picture of what constitutes a server 
platform. The AlphaServer 8000 platform has both 
physical and architectural components. The physical 
component consists of the basic physical structure 
from which 8000-series server products are built. This 
includes power systems, thermal management sys­
tems, system enclosures, and a centerplane card cage 
that implements the interconnect between processor, 
memory and I/0 port modules. The processor, mem­
ory, and I/0 modules are printed circuit board (PCB) 
assemblies that can be implemented with varying com­
binations of processor, dynamic random-access mem­
ory (DRAM), and application-specific integrated 
circuit (ASIC) components. The assemblies are 
inserted into the platform centerplane card cage in 
varying configurations and in varying enclosures to 
create the various 8000-series products. The 
AlphaServer 8200 system, for example, comprises up 
to six Alpha 21164-based TLEP processor modules, 
TMEM memory modules, or ITIOP and TIOP I/0 
port modules in an industry-standard rack-mount sys­
tem. The AlphaServer 8400 system comprises up to 
nine TLEP processor modules, TMEM memory mod­
ules, or ITIOP and TIOP I/0 port modules in a DEC 
7000 AXP-style data center cabinet. 

The architectural component of the AlphaServer 
8000 platform consists primarily of a collection of 
technological, topological, and protocol standards. 
This collection includes the processor- memory inter­
connect strategy, the bus interface technology, the 

46 Digital Technical Journal Vol. 7 No. 1 1995 

clock technology and methodology, and the signaling 
protocols. For example, the TLEP, TMEM, and TIOP 
modules all implement bus interfaces in the same inte­
grated circuit (IC) packages with the same silicon tech­
nology and drive their common interconnect bus with 
the same standard bus driver cell. Furthermore, all 
these modules apply nearly identical clocking circuits 
and communicate by means of a common bus proto­
col. The ephemeral architectural standards that consti­
tute the "platform" specify exact physical requirements 
for designing the AlphaServer processor-memory­
I/0 port interconnect and the various modules that 
will populate it. It is important to note that the key to 
AlphaServer 8000 performance is found in these stan­
dards. As we explore the design decisions and trade­
offs that shaped the AlphaServer 8000 platform, it 
is this collection of architectural standards that we 
actually probe. 

Throughout this analysis of the AlphaServer 8000 
architecture, two themes frequently recur: low mem­
ory latency and practical engineering. As discussed in 
the context of the AlphaServer 8000 goals, low mem­
ory read latency was identified as the key to system 
performance. As such, low latency was factored into 
nearly every system design decision. Design decisions 
in general can be thought of as being resolved in one 
of two ways: by emphasizing Digital's superior silicon 
technology or by effecting architectural finesse . Use of 
superior technology is self-explanatory; it involves 
pushing leading-edge technology to simply over­
whelm and eli minate a design issue. Architectural 
finesse, on the other hand, typically involves a shift in 
operating mode or configuration that allows a prob­
lem to be avoided altogether. Practical engineering is 
the art of finding a balance between leading-edge 
technology and architectural finesse that produces the 
best product. 

Layered Platform Development 

Platform development typically involves a simple 
three-layer process: ( 1) determine a basic system 
topology, (2) establish the electrical means by which 
various computer components will transmit signals 
across the system topology, and (3) apply a signaling 
protocol to the electrical transmissions to give them 
meaning and to allow the computer components to 
communicate. System topology determines how 
processor, memory, and I/ 0 components of a com­
puter system are interconnected. Computer intercon­
nects may involve simple buses, multiplexed buses, 
switches, and multitiered buses. The electrical means 
for transmitting signals across a computer intercon­
nect may involve bus driver technology, switch tech­
nology, and clock technology. Signaling proto­
cols apply names to system interconnect signals and 



define cycles in which the signals have valid values. 
This naming and definition allows each computer 
component to understand the transmissions of other 
components. 

As the AlphaServer 8000 platform development 
progressed, this simple three-layer platform develop­
ment model was found to be insufficient. Efforts to 
achieve the low-latency performance goal and the sim­
ple product goals uncovered unexpected design issues. 
The resolution of these design issues led to the cre­
ation of a more robust seven-layer platform develop­
ment model. When certain multi-driver bus signals 
threatened the cycle time of the AlphaServer 8000 sys­
tem bus, for example, the system's latency goals were 
threatened as well. The practical solution to this multi­
driver signal problem was the creation of specific sig­
naling conventions for problematic classes of signals. 
This innovation led to the birth of the Signaling Layer 
of the development model. Similarly, when the inte­
gration of PCI I/0 into the system was found to con­
flict with primary protocol elements that were key to 
low latency processor-memory communication, the 
concept of a "superset protocol" was created. This led 
to the creation of the Superset Protocol Layer of the 
development model. The seven-layer platform devel­
opment model is contrasted with the simple three­
layer development model in Figure 1. 

The analysis of the AlphaServer 8000 platform 
design presented here traces the key system design 
decisions through each of the seven layers of the devel­
opment process. Each layer will be described in greater 
detail as this analysis proceeds. 

Figure 1 

PROTOCOL 
LAYER 

ELECTRICAL 
TRANSPORT 
LAYER 

PHYSICAL 
ARCHITECTURAL 
LAYER 

THREE-LAYER 
DEVELOPMENT 
MODEL 

SUPERSET 
PROTOCOL 
LAYER 

PRIMARY 
PROTOCOL 
LAYER 

CONSISTENCY 
CHECK 
LAYER 

SIGNALING 
LAYER 

ELECTRICAL 
TRANSPORT 
LAYER 

OPERATIONAL 
LAYER 

TOPOLOGICAL 
LAYER 

SEVEN-LAYER 
DEVELOPMENT 
MODEL 

Comparison of Conventional Three-layer Model with 
Seven-layer Platform Development Model 

Topological Layer 
Server-class computers typically comprise processor, 
memory, and I/0 port components. These compo­
nents are usually found in the form of PCB modules. 
A computer system's topology defines how these com­
puter components are interconnected. Computer 
topologies are many and varied. The IBM RISC 
System/6000 SMP, for example, links its modules by 
means of an address bus and a data switch. Its memory 
modules are grouped into a single memory subsystem 
with one connection to the address bus and one con­
nection to the data switch. The HP Hawks SMP sys­
tem, by comparison, links its modules by means of 
a single bus onto which address and data are multi­
plexed. The Hawks system also groups its memory 
into a single memory subsystem with one connection 
to the multiplexed bus.7 Digital's DEC 7000/ 10000 
AXP also uses a single multiplexed address and data 
bus. Unlike the IBM and HP systems, the DEC 
7000/10000 AXP system allows its memory to be 
distributed, with multiple connections to its multi­
plexed bus. 

None of the IBM, HP, or prior Digital systems meet 
the latency goals of the AlphaServer 8000 platform. 
Exactly how much system topology contributes to 
these systems' latencies is unclear. A multiplexed 
address and data bus certainly creates a system bottle­
neck and can contribute to latency. Likewise, unified 
memory subsystems can often have associated over­
head that can translate into latency. In addition to per­
formance issues, topologies such as the IBM switch­
based system have significant cost issues. If, for exam­
ple, a customer were to purchase a sparsely configured 
-two processors perhaps-IBM system, such a cus­
tomer would be required to pay for the switch support 
for up to eight processors. This creates a high system 
entry cost and a potentially lower incremental cost as 
functionality is added to the system. In a simple bused 
system, a customer pays only for what is needed to 
support the specific functionality required. This cre­
ates a more manageable entry cost and a smooth, if 
slightly steeper, incremental cost. From Digital's mar­
keting perspective, this makes a bused system prefer­
able, provided it can satisfy bandwidth and latency 
requirements. 

Uniprocessor computer topologies, an example 
of which is shown in Figure 2, typically exhibit the 
lowest memory read latencies of any computer class. 
As such, this simple uniprocessor topology was chosen 
as the basis from which to develop the AlphaServer 
8000 platform topology. In the uniprocessor model, 
processor chips communicate with DRAM arrays 
through separate address and data paths. These paths 
include address and data interfaces and buses. The 
AlphaServer 8000 topology was created by adding a 
second set of interfaces between the address and data 
buses and the DRAM array, and connecting additional 

Digital Technical Journal Vol. 7 No. I 1995 47 



Figure 2 

PROCESSOR 

ALPHA 
MICROPROCESSOR 

DATA ADDRESS 
INTERFACE INTERFACE 

DATA 
BUS 

DRAM ARRAY 

ADDRESS 
BUS 

Simple Uniprocessor System Topology 

microprocessors, memory arrays, and 1/0 ports to the 
buses by means of similar interfaces. The resultant 
topology is shown in Figure 3. This topology features 
separate address and data buses. These buses together 
are referred to as the AlphaServer 8000 system bus. 

The topology presented in Figure 3 is an abstract. 
To flesh out this abstract and measure it against spe­
cific system goals, signal counts, cycle times, and bus 
connection (slot) counts must be added. It is in this 
effort that practical engineering must be applied. To 
achieve the system's bandwidth goal, for example, the 
data bus could be implemented as a wide bus with 
a high clock frequency, or it could be replaced with a 
switch-based data interconnect, like that of the IBM 
RISC System/6000 SMP. The high-frequency bus 
presents a significant technological challenge in terms 
of drivers and clocking. This challenge grows as the 
number of bus slots grows. The growth of the tech­
nological challenge is a significant issue given the 
system's configuration goals. The switch interconnect, 
on the other hand, avoids the technological challenges 
by providing more data paths at lower clock frequen­
cies. The lower clock frequencies, however, can trans­
late directly into additional latency. Given the 
emphasis placed on memory latency and the advan­
tages associated with simple bused systems, the practi­
cal design choice was to adopt a wide, high-frequency 
data interconnect. The resultant AlphaServer 8000 
system bus fean1res 9 slots, an address bus that 
supports a 40-bit address space, and a 256-bit (plus 
error-correcting code [ECC]) data bus. To meet 
configuration goals, processor modules necessarily 
support at least two microprocessors per module, 
memory modules support up to 2 GB of DRAM stor­
age, and 1/0 port modules support up to 48 PCI 
slots. To meet performance goals, both buses must 
operate at a frequency ofl 00 MHz ( 10-ns cycle). 

The AlphaServer 8000 platform topology has a 
number of advantages. The most significant advantage 

48 Digital Technical Journal Vol. 7 No. l 1995 

is that memory read latency from any processor to any 
memory array is comparable to the latency of a 
uniprocessor system. The delay associated with two 
interfaces--one address interface and one data inter­
face-is all that is added into the path. In addition, the 
platform's simple bus topology features a low entry 
cost, a simple growth path (just insert another mod­
ule) and flexible configuration (just about any module 
can be placed in any slot). 

Operational Layer 
The Operational Layer is so named for lack of a better 
descriptor. The layer is actually a place to define a 
high-level system clocking strategy. This strategy has 
two key components: definition of target operating 
frequencies and definition of a design methodology to 
support operation across all the defined operating fre­
quencies. The design methodology component of this 
strategy may seem better suited for a higher order 
development layer, such as the Protocol Layer. 
However, because the methodology is logically associ­
ated with the system's operating frequency range and 
the operating frequency range provides a foundation 
for the Electrical Transport Layer, it seemed appropri­
ate to include both components of the strategy in the 
Operational Layer. 

In personal computer (PC)-class microprocessor 
systems, clock rates are typically slow ( 33 MHz to 66 
MHz). Complementary components capable of oper­
ating at these speeds are readily available, e.g., trans­
ceivers, static random-access memory (SRAM), ASIC, 
DRAM, and programmable array logic (PAL). 
Therefore entire PC systems are typically run synchro­
nously, i.e., the system logic (typically a motherboard) 
and the microprocessor run at identical clock speeds. 
Alpha processors, on the other hand, run at clock rates 
exceeding 250 MHz. The current state of comple­
mentary components makes running system logic at 
Alpha processor rates impractical if not impossible. 
Many of these components cannot perform internal 
fimctions at a 250-MHz rate, let alone transfers 
between components. 

Digital's DEC 7000/ 10000 AXP systems solved the 
problem of Alpha microprocessor and system clock 
disparity by running both the Alpha microprocessor 
and the DEC 7000/10000 AXP system hardware at 
their respective maximum clock rates and synchroniz­
ing address and data transfers between the micro­
processor and the system. Each time a transfer was 
synchronized, however, a synchronization latency 
penalty was added to the latency of the transfer. In the 
DEC 7000/10000 AXP system, two synchronization 
penalties-one for an address transfer to the system 
and one for a data transfer to the processor-are added 
to each memory read latency. With multiple data 
transfers, the data transfer from the system to the 
processor can be particularly large. When combined, 



I PROCESSOR3 I 1/0 PORT 3 

I PROCESSOR 2 I 1/0 PORT 2 

PROCESSOR 1 1/0 PORT 1 

I 
ALPHA 

I MICROPROCESSOR 

i - -I DATA I ADDRESS I - I DATA I ADDRESS I -INTERFACE INTERFACE INTERFACE INTERFACE 

i i i DATA BUS i i 
< 

ADDRESS BUS . 
< 

I t 
I I I ' I 

I I 

I DATA I ADDRESS I 
INTERFACE INTERFACE 

I 
DRAM ARRAY 

I 
MEMORY1 

Figure 3 
AlphaServer 8000 Multiprocessor System Topology 

the two penalties added nearly 125 ns to the DEC 
7000/10000 AXP read latency, or approximately 25 
percent of the total 560-ns latency. The same 125 ns, 
however, could add another 60 percent to the 
AlphaServer 8000 platform's lower target latency of 
200 OS. 

Given its latency goals, the AlphaServer 8000 plat­
form implements a clocking methodology that mini­
mizes synchronization penalties and thus minimizes 
read latency. This methodology involves clocking the 
entire AlphaServer system- up to the I/0 channels­
synchronous to the microprocessor in such a way 
that the Alpha microprocessor operates at a clock fre­
quency that is a direct multiple of the system clock 
frequency. With a 100-MHz ( 10-ns cycle) clock rate, 
for example, the AlphaServer 8000 could support 
a 200-MHz (5-ns cycle) Alpha processor using a 
2 X clock multiplier. Since the processor must still 
synchronize with a system clock edge when transfer­
ring address and data to the system, synchronization 
penalties are not eliminated altogether. They can, 
however, be limited to less than 10 ns, or 5 percent of 
the AlphaServer 8000 platform's total read latency. 

Synchronous clocking by means of clock multiples 
is not unique and innovative in and of itself. The 
uniqueness of the AlphaServer 8000 clocking strategy 
lies in its flexibility. Since the AlphaServer 8000 plat­
form must support at least three generations of Alpha 
processors to satisfy its product goals and the specific 

--

operating frequencies of those processors is difficult to 
predict, the AlphaServer 8000 platform must be capa­
ble of operating across a range of clock frequencies . 
Specifically the AlphaServer 8000 platform is capable 
of operating at clock frequencies between 62.5 MHz 
( 16-ns cycle) and 100 MHz ( 10-ns cycle). 

Operating across a range of frequencies may seem a 
trivial requirement to meet; if logic were designed to 
operate at a 10-ns cycle time, it should certainly con­
tinue to function electrically at a 16-ns cycle time. The 
real issues that this frequency range creates, however, 
are much more subtle. DRAMs, for exan1ple, require a 
periodic refresh. The refresh period for typical DRAM 
may be 50 milliseconds (ms). If a system were 
designed to a 10-ns clock rate, the system would be 
designed to initiate a DRAM refresh every 5,000,000 
cycles. If the system were to be slowed to a 16-ns clock 
rate, the system would initiate a DRAM refresh every 
80 ms based on the same 5,000,000 cycles. This could 
cause DRAMs to lose state and corrupt system opera­
tion. Similarly, DRAMs have a fixed read access time. 
The AlphaServer 8400/8200 TMEM module, for 
example, uses 60-ns DRAMs. If the DRAM's con­
troller is designed as a 7-cycle controller and clocked at 
a 10-ns clock rate, it would access the 60-ns DRAM in 
70 ns. If the system were slowed to a 16-ns clock rate, 
the system would, using the same controller, consume 
112 ns in accessing the same 60-ns DRAM. This appli­
cation of a single simple controller over a frequency 

Digital Technical Journal Vol. 7 No. 1 1995 49 



range directly increases the DRAM's read latency and 
decreases the DRAM's bandwidth. This non-optimal 
DRAM performance in turn directly increases the sys­
tem read latency and decreases the system bandwidth. 

The AlphaServer 8000 platform design addresses 
these issues by implementing controllers that can be 
reconfigured based on the system's specific operating 
frequency. The TMEM module, for example, imple­
ments a reconfigurable controller for sequencing the 
reads and writes of its DRAMs. This controller has 
three settings: one for cycle times between 10 ns and 
11.2 ns, one for cycle times between 11.3 ns and 12.9 
ns, and one for cycle times between 13 ns and 16 ns. 
Each setting accesses the DRAMs in differing numbers 
of system clock cycles, but all three modes access 
the DRAMs in approximately the same number of 
nanoseconds. By allowing flexible reconfiguration, 
this controller allows the TMEM to keep the DRAM's 
read latency and bandwidth as close to ideal as pos­
sible. Other examples of reconfigurable controllers 
are the TMEM's refresh timer and the TLEP's cache 
controller. 

It should be noted here that the AlphaServer 8000 
operating frequency range and processor-based fre­
quency selection account for the disparities between 
the AlphaServer 8000 platform's bandwidth capability 
and the AlphaServer 8400 and 8200 products' band­
width capabilities. The Alpha 21164 processor is the 
basis for the 8400 and 8200 products. This 300-MHz 
(3 .33-ns cycle) microprocessor, combined with a 4X 
clock frequency multiplier, sets the system clock fre­
quency at 75 MHz (13.3-ns cycle). This 13.3-ns cycle 
time, when applied to the 256-bit data bus, produces 
the 1,600 MB/s of data bandwidth. The cycle time 
increases the read latency of the 8400 and the 8200 to 
some extent as well, but the reconfigurable DRAM 
controllers help to mitigate th.is effect. 

Electrical Transport Layer 
When the bused system topology was selected in the 
Topological Layer of the AlphaServer 8000 platform 
development, a practical engineering decision was 
made to emphasize leading-edge technology as the 
means to accomplish our performance goals, as 
opposed to elegant architectural chicanery. It was 
observed in the topological discussion that, with the 
selected system topology, bus cycle time was critical to 
meeting the platform's performance goals. The 
Electrical Transport Layer of the platform develop­
ment involved selecting or developing the center­
plane, connector, clocking, and silicon interface 
technology that would allow the AlphaServer 8000 
system bus to operate at a 100-MHz clock frequency. 
The most innovative of the technological develop­
ments that resulted from this effort were the plat­
form's clocking system and its custom bus driver/ 
receiver cell. 

50 Digital Technical Journal Vol. 7 No. l 1995 

To put the AlphaServer 8000 100-MHz system bus 
goal in perspective, consider the operating frequencies 
of a number of today's highly competitive micro­
processors.8 The NexGen Nx586 operates at 93 MHz. 
The Intel Pentium, Cyrix Ml, and AMD KS all oper­
ate at 100 MHz. The Intel P6 operates at 133 MHz. 
In all these microprocessors, the 100+/- MHz oper­
ation takes place on a silicon die less than 1 inch 
square. To meet its goals, the AlphaServer 8000 sys­
tem bus must transfer data from an interface on a 
module in any slot on the system bus to an interface on 
another module in any other slot on the system bus 
across a 13-inch-long wire etch, with nine etch stubs 
and nine connectors, in the same 10 ns in which these 
microprocessors transfer data across I -inch dies. By 
any measure this is a daunting task. 

A breakdown of the elements that determine mini­
mum cycle time aptly demonstrates the significance of 
clock system design, bus driver design, and bus 
receiver design in the AlphaServer 8000 system bus 
development. Minimum bus cycle time is the mini­
mum time required between clock edges during which 
data is driven from a bus driver cell on one clock edge 
and is received into a bus receiver cell on the next clock 
edge. An equation for determining the minimum cycle 
time is shown below. 1'cmin is the minimum cycle time. 
'Tp,-op is the time, measured from a rising clock edge, 
that is required for a bus driver to drive a new bus sig­
nal level to all system bus receivers. Tserup is the time a 
bus receiver needs to process a new bus signal level 
before the signal can be clocked into the receiver cell. 
Ts1ww is the variation between the clock used to clock 
the bus driver and the clock used to clock the bus 
receiver. Tprop, Tserup, and Tskew must all be minimized 
to achieve the lowest possible cycle time. The value of 
Tskew is determined by the system clock design. The 
values of Tp,-0p and Tserup are determined by the bus 
driver/receiver cell design. 

1'cmin = 'Tp,-op + Tsetup + Tskew 

AlphaServer 8000 System Bus Interface To provide 
some context for the clock and bus driver/receiver 
discussions, it is necessary to briefly describe the stan­
dard AlphaServer 8000 system bus interface. Each 
AlphaServer 8000 module implements a standard 
system bus interface. This interface consists of five 
ASICs: one interfaces to the AlphaServer 8000 
address bus, and four interface to the AlphaServer 
8000 data bus.9 Each ASIC is implemented in 
Digital's 0.75-micrometer, 3.3-volt (V) complemen­
tary metal-oxide semiconductor (CMOS) technology 
and features up to 100,000 gates. Each ASIC is pack­
aged in a 447-pin interstitial pin grid array (IPGA) 
and features up to 273 user I/Os. 

Essential to the AlphaServer 8000 development 
were the speed of the CMOS interface ASIC technol­
ogy and the development team's ability to influence 



the ASIC design process. "Influencing the design 
process" translated to the ability to develop a standard 
cell design library and process that is for and in concert 
with the development of the AlphaServer 8000 plat­
form. The standard cell library, together with the 
CMOS silicon technology, provided the AlphaServer 
8000 platform's required speed; complex logic func­
tions (5 to 8 levels ofcomplex logic gates) can be per­
formed within a 10-ns cycle. "Influencing the design 
process" also translated to the ability to design a fully 
custom bus driver/receiver cell. Thus the develop­
ment team could create a custom driver/receiver cell 
tailored to the specific needs of the AlphaServer 8000 
system bus. 

Clock Technology The primary goal of the 
AlphaServer 8000 platform clock distribution system 
was to maintain a skew ( T.kew) as small as possible 
between any two clocks in the system, while delivering 
clocks to all clocked system components. The goal of 
minimum skew is consistent with attaining the lowest 
possible bus cycle time, the highest possible system 
data bandwidth, and the lowest possible memory read 
latency. It is important to note that in the AlphaServer 
8000 platform, skew between clocks is not simply 
measured at the clock pins of the various clocked 
components. Skew is measured and, more important, 
managed at the actual "point of use" of the clock, for 
example, at the clock pins of ASIC flip-flops. This is an 
important point when dealing with ASICs. Since dif­
ferent copies of even the same ASIC design can have 
different clock insertion delays, additional skew can be 
injected between clocks after the clocks pass their 
ASIC pins. 

The AlphaServer 8000 clock distribution system is 
implemented according to a two-tier scheme. The first 
tier, the system clock distribution, distributes a clean 
radio frequency (RF) sine wave clock to each system 
bus module. The second tier, the module clock distri­
bution, converts the system RF sine wave clock to a 
digital clock and distributes the digital clock to each 
module's components. The module clock distribution 
tier also manages the skew between the system RF sine 
wave clock and all copies of each module's digital 
clock by means of an innovative "remote delay com­
pensation" mechanism. The system clock distribution 
delivers clocks to the nine system bus module slots 
with a maximum of 40 picoseconds (ps) of skew. 
The module clock distribution delivers clocks to the 
various module components, most notably system 
bus interface ASICs, with a maximum of 980 ps of 
skew. The skew between any ASIC flip-flop on any 
AlphaServer 8000 module and any ASIC flip-flop on 
any other AlphaServer 8000 module is guaranteed to 
be less than 1,100 ps. 

The AlphaServer 8000 system clock distribution 
begins on the system clock module with a single-

ended RF oscillator, a constant impedance bandpass 
filter, and a nine-way power splitter. The power splitter, 
by way of the bandpass filter, produces nine spectrally 
clean, amplitude-reduced copies of the oscillator sine 
wave. These nine outputs are tightly matched in phase 
and amplitude. They are distributed to the nine system 
bus module connectors by means of matched-length, 
shrouded, controlled-impedance etch. This design 
provides the modules with low skew (30 to 40 ps), 
high-quality (greater than 20-decibel signal-to-noise 
ratio) clocks. 

The RF sine wave clock was an ideal selection for 
system clock distribution. By eliminating all high­
order harmonics, the edge rates and propagation times 
of the clock wave are fixed and predictable across the 
distribution network. This predictability eliminates 
variation in the clock as perceived by the clock receiver 
on each module, thus minimizing skew. It also greatly 
reduces constraints on the design of connectors, etch, 
termination, etc. 

The AlphaServer 8000 module clock distribu­
tion is a boilerplate design that is replicated on each 
AlphaServer 8000 module. On each module, the 
system sine wave clock is terminated by a single­
ended-to-dual-differential output transformer. This 
transformer produces two phase- and amplitude­
matched differential clocks that are fed into one or two 
AlphaServer 8000 clock repeater chips (DC285 
chips). These chips convert the sine wave clocks into 
CMOS-compatible digital clocks; distribute multiple 
copies of the digital clocks to various module com­
ponents, including the system bus interface ASICs; 
and perform remote delay clock regulation on each 
clock copy. 

The remote delay clock regulation is performed by a 
custom, digital delay-locked loop (DLL) circuit. This 
DLL circuit was devised specifically to deskew clocks 
all the way to their point of use in the system bus inter­
face ASICs. The principles ofDLL-based remote delay 
clock regulation are simple. The sum of the delays 
associated with (1) the clock repeater chips, (2) the 
module clock distribution etch, and (3) the ASIC 
clock distribution network constitutes the insertion 
delay of the ASIC point-of-use clock with respect to 
the system sine wave clock. With no clock regulation, 
this delay appears as skew between the system clock 
and the point-of-use ASIC clock. Between ASICs on 
different modules, a fixed portion of the clock inser­
tion delay will correlate and need not be factored into 
the overall system skew. Since the insertion delay can 
easily approach 7 ns, however, the variation in the 
insertion delays to different ASICs, which must be fac­
tored into the overall system skew, can also be signifi­
cant. To reduce the skew between the system sine 
wave clock and the point-of-use ASIC clock, the clock 
repeater uses a digital delay line to add delay to the 
clock repeater output clock. Enough delay is added so 

Digital Technical Journal Vol. 7 No. l 1995 51 



that the insertion delay plus the delay-line delay is 
equal to an integer multiple of the system clock. This 
delay moves the point-of-use clock ahead to a point 
where it again lines up with the system clock. As the 
system operates, the system and point-of-use clocks 
may drift apart. In response, the clock repeater adjusts 
its delay line to pull the clocks back together. This 
process of delaying clocks and dynamically adjusting 
the delay is called remote delay clock regulation. 
When the clock separation, or drift, is measured by a 
clock "replica loop" and the clock delay is inserted by 
means of a digital delay line, the process is called DLL­
based remote delay clock regulation.10 Using the clock 
repeater chips in this way, AlphaServer 8000 modules 
are able to achieve point-of-use to point-of-use skew 
of approximately 930 to 980 ps. Combined with the 
system module-to-module skew of 30 to 40 ps, this 
provides the quoted system-wide clock skew of no 
more than 1,100 ps. 

It is worth noting that although the AlphaServer 
clock repeater was primarily developed for use with 
system bus interface ASICs, it is a generally versatile 
part. It may, for instance, be used with non-ASIC parts 
such as transceivers and synchronous SRAMs. In these 
cases, the clock pin of the non-ASIC part is treated as 
the point of use of the clock. The clock repeater may 
also be used for precise positioning of clock edges. On 
the TLEP module, for example, the Alpha 21164 
microprocessor's system clock is synchronized to a 
clock repeater output by means of a digital phase­
locked loop (PLL) on the microprocessor. The Alpha 
21164's PLL operates in such a way that the 21164's 
clock is always in phase with or always trailing the sys­
tem (reference) clock. It can trail by as much as 2 ns. 
Such a large clock disparity in this fixed orientation can 
create setup time problems for transfers from the 
Alpha 21164 to the system and hold-time problems 
for transfers from the system to the Alpha 21164. The 
TLEP design addressed this problem by lengthening 
the replica loop associated with the Alpha 21164 clock 
and thereby shifting the microprocessor clock 1 ns 
earlier than the balance of the clock repeater output 
clocks. Since the Alpha 21164 clock was either in 
phase or 2 ns later than its associated clock repeater 
clock, which is 1 ns earlier than the rest of the clock 
repeater clocks, the 21164 clock now appears to be 
either 1 ns earlier or 1 ns later than the rest of the clock 
repeater system clocks. This centering of the module 
clocks with respect to the 21164 clock halves the 
required setup or hold margin.II, 12, 13, 14 

Bus Driver Technology Like the AlphaServer 8000 
clock system, the AlphaServer 8000 system bus driver/ 
receiver cell was specifically designed to minimize bus 
cycle time. As with the clock logic, the goal of mini­
mizing cycle time was a result of the effort to minimize 
system read latency and maximize system data band-

52 Digital Technical Journal Vol. 7 No. 1 1995 

width. In the effort to minimize the bus cycle time, 
the design of the AlphaServer 8000 bus driver/ 
receiver cell was focused on minimizing the propaga­
tion delay ( 1i,rop) of the system bus driver circuit and 
minimizing the setup time ( Tserup) of the system bus 
receiver. 

The AlphaServer 8000 system bus driver/receiver 
cell is a fully custom CMOS 1/0 cell, which incorpo­
rates a bus driver, a bus receiver, and an output flip­
flop and an input flip-flop in a single cell. Consisting of 
nearly 200 metal oxide semiconductor field-effect 
transistors (MOSFETs), the bus driver cell is powered 
by standard 3.3-V CMOS power, but drives the bus at 
a much lower 1.5-V level (i.e., voltage swings between 
O and 1.5 V). This low voltage output serves to reduce 
the bus driver's power consumption and permits com­
patibility with future CMOS technologies that are 
powered by voltages less than 3.3 V. Many of the bus 
driver cell's critical characteristics are "programma­
ble," such as the 1.5-V output, the receiver switching 
point, the driver's drive current limit, and the driver's 
rise and fall times. These values are programmed and, 
most important, are held constant by means of ref­
erence voltages and resistances external to the bus 
driver/receiver cell's ASIC package. They allow the 
cell to produce uniform, predictable, high-performance 
waveforms and to transmit and receive data in a clock 
cycle of 10 ns. 

The bus driver/receiver's high performance begins 
with its output flip-flop and driver logic. The output 
flip-flop is designed for minimum delay and is inte­
grally linked to the output driver. This configuration 
produces clock-to-output times of 0.5 ns to 1 ns. The 
output driver itself, with its programmable output 
voltage and edge rates, allows the shape of the output 
waveform to be carefully controlled. The cell's pro­
grammable values are set such that the AlphaServer 
system bus waveform balances the edge rate effects of 
increased crosstalk with increased propagation delay. 
Furthermore, the bus waveform is shaped in such a 
way that it allows incident wave transmission of sig­
nals. As such, a signal can be received on its initial 
propagation across the bus centerplane, as opposed to 
waiting for signal reflections to settle. All the driver 
characteristics serve to reduce bus settling time. When 
combined with the low dock-to-output time of the 
output flip-flop, this reduced settling time produces a 
very low driver circuit propagation delay (Ij,,.op)-

The bus driver/receiver cell's receiver and input 
flip-flop further contribute to its high performance. 
Designed with a programmable reference voltage, the 
receiver has a very precise switching point. Whereas 
typical receivers may have a 200-millivolt (mV) to 
300-mV switching window, the bus driver/ receiver 
cell's receiver has a switching window as small as 
40 m V. This diminished switching uncertainty directly 
reduces the receiver's maximum setup time. The input 



flip-flop's master latch is a sense-amplifier-based latch 
as opposed to a simple inverter-based latch. The sense 
amplifier, with its ability to resolve small voltage differ­
entials much faster than standard inverters, allows the 
master latch to determine its next state much more 
rapidly than a standard latch. This characteristic serves 
to reduce both the receiver's setup and hold time 
requirements. 

In general, the setup and hold time requirements of 
a state element are interrelated. The setup time, for 
example, can be reduced at the expense of hold time. 
Since setup time contributes to cycle time and hold 
time may not, reducing setup time is desirable. The 
AlphaServer 8000 bus driver/receiver cell requires 
at most 300 ps of combined setup and hold time. 
However, since the edge rates of the cell driver are so 
well controlled, the minimum propagation time for a 
bus signal is always guaranteed to exceed 300 ps. As 
a result, the bus receiver circuit is designed with all 
300 ps charged as hold time. This renders a minimized 
receiver setup time (Tsetup) ofO ps. 

The AlphaServer 8000 bus driver/receiver cells 
have a number of additional features that further 
reduce the propagation delay ( Ii,rop) of the driver cir­
cuit. The cell, for example, features in-cell bus termi­
nation, which provides the system bus with full, 
distributed termination. Simulations have shown that 
such distributed termination can provide an advantage 
of 500 ps over common end termination. The bus 
driver/receiver cell's termination resistance, like other 
cell parameters, is programmable and made identical 
throughout all system ASICs by means of a reference 
resistor external to each ASIC. 

The bus driver/receiver cell also features a special 
preconditioning function that improves the driver's 
propagation delay by as much as 1,500 ps. This feature 
causes all bus drivers to begin driving toward the 
opposite state each time they receive a new value from 
the bus. If the bus is changing state from one cycle to 
the next, the feature causes all drivers to begin driving 
the bus to a new state in the next cycle. In doing so, all 
bus driver cell drivers contribute current and acceler­
ate the bus transition. If the bus is not changing from 
one cycle to the next, the drivers simply push the state 
of the bus toward the opposite state, but only to a 
benign voltage well short of the switching threshold. 

All of the bus driver cell's programmable features, 
such as switching point, output voltage, edge rates, 
and termination resistance, make the bus driver cell a 
very stable and high-performance interface cell. The 
existence of these features, however, is an element of 
the bus driver cell's complementary process-voltage­
temperature (PVf) compensation function. PVf com­
pensation is meant to make a device's operating 
characteristics independent of variations in the semi­
conductor process, power supply voltage, and operat­
ing temperature. By applying PVf compensation in 

every AlphaServer system bus interface ASIC, bus dri­
ver cells in different ASICs, for example, can drive 
nearly identical system bus waveforms even if those 
ASICs come from manufacturing lots with varying 
speed characteristics. AlphaServer 8000 PVf compen­
sation is based on reference voltages and resistances 
provided by very precise, low-cost, module-level com­
ponents. The PVf compensation circuit measures 
these references and configures internal voltages and 
resistances so that all bus driver cells can operate uni -
formly and predictably. By creating predictability and 
thus reducing uncertainty and skew, bus cycle time is 
minimized. 

Signaling Layer 
Powerful though it may be, the AlphaServer 8000 bus 
driver/receiver cell is not without limitations. During 
its development, it was found that the bus driver cell 
could be developed to drive the AlphaServer 8000 sys­
tem bus in 10 ns under a limited number of condi­
tions. When the driver cell asserted a deasserted (near 
O V) bus line or deasserted a bus line that had been 
asserted (near 1.5 V) for only one cycle, for example, 
10-ns timing could readily be met. When the driver 
attempted to deassert a bus line that had been asserted 
for more than one cycle by multiple drivers, however, 
10-ns timing could not be met. These limitations have 
significant implications for protocol development. 
Protocols typically have a number of signals that can 
be driven by multiple drivers. These may include cache 
status signals and bus flow control signals. Protocols 
also typically include a number of signals that can be 
asserted for many cycles. These may include bank busy 
signals or arbitration request signals. Clearly the impli­
cations are that the limitations of the bus driver/ 
receiver cell would cause the system either to fall short 
of its cycle time and performance goals or to be inca­
pable of supporting a workable bus protocol. 

With the bus driver/receiver cell pushing tech­
nology to its limits, the solutions to this problem 
were extremely limited. The system cycle time could 
be slowed down to accommodate all signal transitions 
within a single cycle, regardless of the charge state of 
the signal line; or a signaling protocol could be devel­
oped that would avoid charging a signal to the point 
where it could not transition in 10 ns; or the physical 
topology of the system could be reconsidered with 
the goal of finding a new topology that met the system 
goals at a slower clock rate. The first option of slow­
ing the clock was clearly unacceptable; it could not 
satisfy the system's latency and bandwidth goals given 
the system's topology. The third option could poten­
tially satisfy the system's latency and bandwidth goals, 
but came at the expense of the favorable qualities 
of the simple bus outlined in the Topological Layer 
and at the risk that the new topology would suffer 
similar, unforeseen pitfalls. The option of developing a 

Digital Technical Journal Vol. 7 No. 1 1995 53 



signaling protocol, on the other hand, could satisfy the 
system's performance goals with little or no risk. A sig­
naling protocol was clearly the practical solution to the 
bus driver/receiver cell limitations. 

The Signaling Layer of the platform development 
model introduces the AlphaServer 8000 signaling pro­
tocol. This protocol was developed by creating a list of 
signal classes, based on driver counts and assertion and 
deassertion characteristics, and by associating a specific 
signaling protocol with each class. The signal classes 
and their protocols are listed in Table 2. As the 
AlphaServer 8000 primary protocol was developed, 
each bus signal was assigned a signal class. As 
AlphaServer 8400/8200 hardware was developed, 
each bus signal was designed to operate according to 
the signaling protocol associated with its signaling 
class. The system bus address and data signals, for 
example, fall into the second class of signals. As a 
result, the AlphaServer 8400/ 8200 modules are 
designed to leave tristate cycles between each address 
and data transfer on the system bus. 

The AlphaServer system bus cache status signals 
(TLSB_Shared and TLSB_Dirty) and the system 
bus flow control signals (TLSB_Hold and 
TLSB_Arb_Suppress) demonstrate a noteworthy para­
digm that results from the AlphaServer 8000 signaling 
protocol. All these signals are defined such that at 
times they must be asserted for multiple cycles. All 
these signals also fall into the fourth signal class, which 
expressly prohibits driving the signals for multiple 
cycles. When these two contradictory requirements 
exist, the result is a class of signals pulsed to indicate 
multiple cycles of constant assertion. Logic inside each 
AlphaServer 8000-based module must be designed 
to convert these pulsed signals to constantly asserted 
signals within its system bus interface. Note that when 
signals such as these are discussed in the protocol 

Table 2 
AlphaServer 8000 Signal Classes 

Signal 
Class 

1 

2 

3 

4 

Driver Count and Signal 
Assertion/Deassertion Characteristics 

Single driver with multiple receivers 

Multiple drivers with multiple receivers 

One driver at a time 

Multiple drivers with multiple receivers 

Many drivers at once possible 

Assertion time may differ from driver 
to driver 

Deassertion time is fixed 

Multiple drivers with multiple receivers 

Many drivers at once possible 

Timing is fixed 

54 Digital Technical Journal Vol. 7 No. l 1995 

sections of this paper, the term "asserted" is used to 
imply constant assertion, with the understanding that 
the signals may in fact be pulsed. 

Consistency Check Layer 

The Consistency Check Layer defines a method for 
maintaining system integrity. Specifically, it defines 
methods for detecting errors and inconsistencies in the 
system and, more important, methods for logging 
errors in the presence of historically disabling errors. 
Although it does not contribute directly to the 
AlphaServer 8000 platform's performance goals or 
stated product goals, the Consistency Check Layer 
contributes an extremely useful feature to the 
AlphaServer 8000 products. It is included in the paper 
for the sake of completeness in the analysis of the 
seven-layer platform development model. 

The AlphaServer 8000-based systems employ a 
number of error-checking mechanisms. These include 
transmit checks, sequence checks, assertion checks, 
and time-outs. If any error is detected by an 
AlphaServer 8000 module by means of these mecha­
nisms, the module responds by asserting a special 
"Fault" signal on the AlphaServer 8000 system bus. 
This Fault signal has the effect of partially resetting all 
system bus interfaces and processors, and trapping the 
processors to "machine check" error-handling rou­
tines. The partial reset clears all system state, with the 
exception of error registers. This resynchronizes all 
system bus interfaces and eliminates all potentially 
unserviceable transactions left pending in the system. 
Thus the system can begin execution of the machine­
check routines in a reset system. Although the routines 
are not guaranteed to be able to complete an error log 
in the presence of an error, it is believed that this 
mechanism will increase the probability of a successful 
error log. 

Signaling Protocol 

Never driven more than two consecutive cycles 

Tristate cycle on the bus when driver changes 

Never driven more than two consecutive cycles 

Value received on signal deassertion is 
unpredictable and must be ignored 

Tristate cycle on the bus when driver changes 

Never driven in two consecutive cycles 

Value received on signal deassertion is 
unpredictable and must be ignored 
Tristate cycle on the bus when driver changes 

Never driven in two consecutive cycles 



The AlphaServer 8000 platform's Fault error­
handling feature is particularly useful in recovering 
error state from a computer in a "hung" state. A com­
puter enters a hung state when an error occurs that 
stops all progress in the computer system. If a proces­
sor is waiting for a response to a read, for example, and 
the read response is not forthcoming due to an error, 
the system hangs while waiting for the response. The 
desktop model for error handling would require a sys­
tem reset to recover from such an error. The process of 
the system reset, however, would purge error state. 
The purge, in turn, makes error diagnosis extremely 
difficult. This desktop model is not unique to desktop 
systems. It is also employed in server-class machines 
such as Digital's DEC 7000/10000 AXP systems. 
Although this model may be acceptable on the desk­
top, it is most undesirable in an enterprise server 
system. The AlphaServer 8000-based systems use a 
time-out counter to detect a hung system and the 
Fault error-handling technique to recover an error log 
in the event of a hung system. The result is a robust 
error-handling system that is appropriate in an enter­
prise server. 

Primary Protocol Layer 
The Primary Protocol Layer of the platform develop­
ment assigns names and characteristics to the various 
system bus signals and uses these names and character­
istics to define higher-order system bus transactions 
and functions. System bus transactions may include 
reads of data from memory or writes of data to mem­
ory. These transactions are the primary business of 
a computer system and its protocol. If a system effi­
ciently executes read and write transactions, it will per­
form better than a system that does not. System bus 
functions may include mapping memory addresses 
to specific memory banks or arbitrating for access to 
system buses. These functions enable system bus trans­
actions to operate in environments with multiple 
processors arbitrating for access to the system bus and 
multiple banks of memory. 

AlphaServer 8000 system bus transactions relate 
directly into the platform's performance metrics. The 
system's memory read latency, for example, is equal to 
the time it takes for a processor to issue and complete a 
system bus read transaction. The number of system 

2 3 4 

PROCESSOR INTERFACE READ MEMORY 
ISSUES ARBITRATES DRIVEN BANK 
READ FOR ON DECODES 

ADDRESS SYSTEM READ 
BUS BUS ADDRESS 

Figure 4 
Components of Memory Read Latency 

bus transactions and their associated data that the sys­
tem bus can process in a given period of time define 
the system bus bandwidth. 

The components of a typical memory read transac­
tion are shown in a timeline in Figure 4. This timeline 
of components is based on a system that is an abstract 
of the DEC 7000/10000 AXP systems. To minimize 
a system's memory read latency, each component 
of the read transaction timeline must be minimized. 
Components 1, 3, 7, and 8 of the timeline are simply 
data and address transfers across buses and through 
interfaces. The delays associated with these compo­
nents are largely determined by system cycle time; they 
cannot be affected by the protocol to any great extent. 
Component 5 is the DRAM access time. It is mini­
mized by the reconfigurable controllers described in 
the Operational Layer. The remaining components, 
( 2) address bus arbitration, ( 4) memory bank decode, 
and ( 6) data bus arbitration, fall into the domain of the 
primary protocol. These elements must be designed to 
contribute minimal delay to the overall latency. 

The effects of protocol on a system's data band­
width are a little more difficult to quantify than the 
effects of protocol on memory read latency. In gen­
eral, the theoretical maximum system bandwidth is 
equal to either the sum of the bandwidths of the sys­
tem's memory banks or the maximum system bus 
bandwidth, whichever is smaller. If the system band­
width is limited by memory module bandwidth, it is 
essential to keep as many memory modules active as 
possible. If, for example, eight banks of memory are 
required to sustain 100 percent of the maximum sys­
tem bandwidth, but the system can support only four 
outstanding commands, only four banks can be kept 
busy and only 50 percent of the maximum bandwidth 
can be rendered. In another example, if 10 percent of 
the time this system freezes all but one bank of mem­
ory to perform special atomic functions on special data 
blocks, the system's bandwidth will suffer nearly a 10 
percent penalty (73/80 possible memory accesses ver­
sus 80/80 possible memory accesses). If the system 
bandwidth is limited by the bandwidth of the system 
bus, the maximum system bandwidth can be achieved 
only when the protocol allows system modules to 
drive data onto the system data bus in every available 
cycle on the data bus. When a processor reads a block 

5 

MEMORY 
ACCESSES 
DATA 
FROM 
DRAMS 

6 

MEMORY 
ARBITRATES 
FOR 
DATA 
BUS 

Digital Technical Journal 

7 8 

DATA INTERFACE 
DRIVEN FORWARDS 
ON DATA 
DATA BACK TO 
BUS PROCESSOR 

Vol. 7 No. 1 1995 55 



of data from a second processor's cache, for example, 
the second processor may have to stall the data bus to 
allow it to drive the read data onto the system's data 
bus as prescribed by the system protocol. A stall of the 
data bus translates into unused data bus cycles and 
degradation of real system bandwidth. Thus to maxi­
mize real system bandwidth, system bus and memory 
bank utilization must be maximized, and stalls in sys­
tem bus activity and stalls in memory bank activity 
must be minimized. 

The following sections begin with an overview of 
the basic AlphaServer 8000 platform protocol and 
how this basic protocol influences system perfor­
mance. This section is followed by a discussion of how 
the various protocol components identified as ele­
ments of memory read latency (i.e., memory bank 
mapping, address bus arbitration, and data bus arbitra­
tion) affect the latency. These sections conclude with a 
discussion of subblock write transactions and their 
effects on system bandwidth. 

AlphaServer 8000 Protocol Overview The platform 
development Topological Layer defined the 
AlphaServer 8000 system bus as having separate 
address and data buses. The AlphaServer 8000 system 
bus protocol defines how system bus transactions are 
performed using these two buses. According to the 
protocol, processor and I/0 port modules initiate 
read and write transactions by issuing read and write 
commands to the system address bus. These address 
bus commands are followed sometime later by an 
associated data transfer on the data bus. All data trans­
fers are initiated in the order in which their associated 
address bus commands are issued. Cache coherency 
information for each system bus transaction is broad­
cast on the system bus as each transaction's data bus 
transfer is initiated. Each data transfer moves 64 bytes 
of data ( only 32 bytes of which are valid for pro­
grammed I/0 transfers). Figure 5 shows an example 
of AlphaServer 8000 system bus traffic. In cycle 1 a 
read transaction, rO, is initiated on the system address 
bus. In cycle X, the data transfer for read r O is initiated 
on the system data bus by means of the system bus 
Send_Data signal, the assertion of which is indicated 

CYCLE 1 2 3 4 5 ... x X+1 

ADDRESS BUS ,o 
COMMAND 

w1 ,2 ... 
DATA BUS ... iO 
SEND_DATA 

CACHE 
STATUS ... 
DATA BUS 
FLOW CONTROL 

DATA BUS ... 

Figure 5 
AlphaServer 8000 System Bus Traffic 

56 Digital Technical Journal Vol. 7 No. I 1995 

X+ 2 

so 

n 

with a value of iO. As this data transfer is initiated, the 
status, sO, is also driven on the system bus. In cycle 
X + 2, all system bus modules have an opportunity to 
stall or to control the flow to the system data bus. In 
this example, the bus is not stalled, as indicated by a 
value of n. Finally, given that the bus is not stalled, the 
64 bytes ofread data associated with read rO are trans­
ferred across the system bus during cycles X + 5 and 
X +6. In addition to read rO, Figure 5 also illustrates 
the execution of a write, wl, and another read, r2. 
Note that data transfer initiation, data bus flow con­
trol, and data transfer are pipelined on the system data 
bus in the same order as their associated commands 
were issued to the address bus. Note further that this 
diagram represents 100 percent utilization of the sys­
tem data bus ( one data transfer every three cycles). 
With a 10-ns cycle time, this utilization would trans­
late to 2.1 GB per second of bandwidth. 

The AlphaServer system address bus uses two 
mechanisms to control the flow of system bus transac­
tions. First, processor and I/0 port modules are not 
allowed to issue commands to memory modules that 
are busy performing some DRAM access for a previ­
ously issued system bus transaction. The state of each 
memory bank is communicated to each processor by 
means of system bus Bank_Available signals. If a 
processor or I/0 port seeks access to a given memory 
bank and that memory bank's Bank_Available signal 
indicates that the bank is free, the processor or I/0 
port may request access to the address bus and, if 
granted access by the system arbitration logic, issue its 
transaction to the address bus. If a processor or I/0 
port seeks access to a given memory bank and that 
memory bank's Bank_Available signal indicates that 
the bank is not free, the processor or I/0 port will not 
request access to the system address bus. Thus, unless 
all memory banks are busy or unless the total of the 
busy memory banks includes all banks that are needed 
to service the system's processors and I/0 ports, the 
address bus will continue to transmit commands. The 
second mechanism for controlling the flow through 
the address bus is the system bus Arb_Suppress signal. 
If any system bus module runs out of any command/ 
address-related resource, such as command queue 

X + 3 X + 4 X+5
1
X+6 X+7 X + 8 X+9 X + 10 X + 11 X + 12 

i 1 i2 

s1 52 

n n 

,o ,o w1 w1 , 2 ,2 



entries, it can assert this signal and prevent the system 
arbitration logic from granting any more transactions 
access to the bus. The Arb_Suppress signal is useful, 
for example, in a system configuration with 16 mem -
ory banks but only eight entries worth of command 
queuing in a processor. 

The AlphaServer 8000 system data bus has its own 
flow-control mechanism, the system bus Hold signal, 
which is independent of the address bus flow-control 
mechanisms. The Hold signal, shown as Data Bus 
Flow Control in Figure 5, is asserted in response to the 
initiation of a data bus transfer. Normally, data bus 
transfers are initiated on the data bus when an 
AlphaServer 8000 memory module asserts the 
Send_Data signal. Send_Data is asserted by a memory 
module based on the state of the module's DRAMs: 
When servicing a read transaction, the memory will 
assert Send_Data when its DRAM read is complete; 
when servicing a write transaction, the memory will 
assert Send_Data as soon as its turn on the data bus 
comes up. Five cycles after the assertion ofSend_Data, 
some module drives data onto the data bus. If a mod­
ule is required to drive data in response to an assertion 
of Send_Data and is unable to do so, it will assert 
the Hold signal two cycles after the assertion of 
Send_Data. This may occur if a processor module 
must source read data from its cache and cannot fetch 
the data from the cache as quickly as the memory 
module can fetch data from its DRAMs. If, on the 
other hand, a module is required to receive data in 
response to an assertion ofSend_Data and is unable to 
do so, it too will assert the Hold signal two cycles after 
the assertion of Send_Data. This may occur if no 
receiving module's data buffers are available to receive 
data. Each module that asserts Hold two cycles after 
Send_Data will continue to assert Hold every other 
cycle-as prescribed by the AlphaServer 8000 signal­
ing protocol-until it is ready for the data transfer. 
Three cycles after all modules are ready and deassert 
the Hold line, data is finally transferred. Figure 6 
shows a read, r 0, that experiences one pulse of the 
system bus Hold signal. 

CYCLE 1 2 3 4 5 6 7 8 9 10 

ADDRESS BUS rO r1 r2 r3 r4 
COMMAND 

DATA BUS iO i1 
SEND_DATA 

CACHE so so 
STATUS 

DATA BUS H n 
FLOW CONTROL 

DATA BUS - -

Figure 6 

11 

s1 

n 

rO 

It is important to note that the address bus and the 
data bus have independent means and criteria for initi­
ating transactions and controlling the flow of transac­
tions. The address bus initiates address bus commands 
based on processor and 1/0 port module requests and 
controls the flow based on the state of address-related 
resources. The data bus initiates data transfers in the 
same order as the address bus transmitted commands 
by means of the Send_Data signal. Send_Data is usu­
ally asserted by a memory module based on the state 
of the module's DRAMs. The data bus flow is con­
trolled based on the state of various data-related 
resources. The differing means and criteria for initia­
tion and flow control allow the two buses to operate 
almost independently of one another. This indepen­
dence translates into performance because it allows the 
address bus to continue to initiate commands even as 
the data bus may be stalled because of a conflict. 
Continuous command initiation translates into more 
continuous system parallelism and thus more system 
bandwidth. Figures 6 and 7 illustrate this point. Both 
figures illustrate systems that are issuing a series of 
processor reads to blocks that must be sourced from 
another processor's cache. In both cases, processors 
require two more cycles than main memory banks to 
source read data. As such, two cycles of Hold assertion 
must periodically occur on the data bus. Figure 6 illus­
trates the operation of the AlphaServer 8000 system 
bus, showing that although the data bus had to be 
held in cycle 6, the address bus was able to continue 
issuing commands. As a result, each processor sourc­
ing data begins its read of cache data as soon as possi­
ble and is guaranteed to be ready to drive data without 
Hold cycles when its turn comes up on the data bus. 
With the illustrated series of five reads, the two Hold 
cycles result in a 12 percent degradation in system 
bandwidth. If the series of reads is lengthened toward 
infinity, the percent of degradation approaches 0. 
Figure 7 illustrates the operation of a rigidly slotted 
bus, like that of the DEC 7000/ 10000 AXP system, 
normalized to the AlphaServer 8000 topology. As 
shown, each time the data bus is stalled, so too is the 

12 13 14 15 16 17 18 19 20 21 22 23 24 

i2 ;3 i4 

s2 s3 s4 

n n n 

rO r1 r1 r2 r2 r3 r3 r4 r4 

Read with One Cycle of Hold - Five Reads Sourced by a Processor 

Digital Technical Journal Vol. 7 No. l 1995 57 



CYCLE 1 2 3 4 5 6 7 8 9 

ADDRESS BUS rO r1 r2 
COMMAND 

DATA BUS iO - - i1 
SEND_DATA 

CACHE so so 
STATUS 

DATA BUS H n 
FLOW CONTROL 

DATA BUS -

Figure 7 
Five Reads Sourced by a Processor in a Rigidly Slotted System 

address bus. This prevents the fourth and fifth reads 
from getting the headstart necessary to prevent subse­
quent stalls of the data bus. The result is a 20 percent 
degradation in performance for the five reads illus­
trated. If the series ofreads is lengthened toward infin­
ity, the percent of degradation settles to 18 percent. 
Clearly the AlphaServer 8000 approach produces 
superior data bandwidth characteristics. 

It is also important to note that the AlphaServer 
8000 address bus and data bus have different maxi­
mum bandwidths. Commands can be issued to the 
address bus every other cycle. With a 10-ns cycle time, 
this translates into 50 million commands per second. 
The data bus, on the other hand, can transfer one 
block of data every three cycles. With a 10-ns cycle 
time, this translates into 33.3 million data blocks 
per second. This excess of address bus bandwidth is 
useful in the development of low-latency arbitration 
schemes. 

Memory Bank Mapping Digital's previous server 
systems, like the VAX 6000 series and the DEC 
7000/10000 AXP series, have employed a common 
approach to address-to-memory-bank mapping. In 
this approach, all memory modules implement address 
range registers. As commands and addresses are trans­
mitted across the system bus, the memory banks com­
pare the addresses against their address range registers 
to determine if they must respond to the command. 
An address range comparison can involve a significant 
number of address bits and, as a result, can become 
logically complex enough to consume two 10-ns 
cycles of time. These two cycles can be added directly 
to memory read latency. 

The low-latency focus of the AlphaServer 8000 
platform prompted a change in bank mapping 
schemes. In AlphaServer 8000 systems, the address 
range registers have been moved onto the processor 
and 1/0 port modules. The range registers output a 
4-bit bank number that is shipped across the system 
bus with each command and address. Each memory 

58 Digital Technical Journal Vol. 7 No. I 1995 

10 

-

-

11 12 13 14 15 16 17 18 19 20 21 22 23 24 

- r3 r4 

i2 i3 - - i4 

s1 s2 s3 s3 s4 

n n H n n 

rO rO ,1 r1 r2 r2 - - r3 r3 

bank compares each bank number transmitted across 
the system bus to 4 bits in a programmable bank num­
ber register to determine if it should respond to the 
system bus command. 

This bank mapping logic configuration helps to 
reduce AlphaServer 8000 memory read latency. 
Because the bank mapping is done on the nodes that 
issue commands to the address bus, the lengthy 
address comparison can be done in parallel with 
address bus arbitration, eliminating its two-cycle delay 
from the memory read latency. The address compari­
son traditionally done in the memory bank logic is 
now replaced with a simple 4-bit comparison, which 
can easily be done in a single cycle. The overall effect is 
that the AlphaServer 8000 bank mapping protocol 
consumes at least one cycle less than Digital's tradi­
tional bank mapping protocol. This equates to one less 
cycle-IO ns minimum-of memory read latency. 

Address Bus Arbitration AlphaServer 8000 systems 
employ a distributed, rotating-priority arbitration 
scheme to grant access to their address buses. 
Processor and 1/0 port modules request access to the 
address bus based on requests from microprocessors 
and 1/0 devices, and on the state of the system's 
memory banks, as described in the section 
AlphaServer 8000 Protocol Overview. Each module 
evaluates the requests from all other modules and, 
based on a rotating list of module priorities, deter­
mines whether or not it is granted access to the bus. 
Each time a module is granted access to the bus, its 
priority is rotated to the lowest priority spot on the pri­
ority list. 

The AlphaServer 8000 arbitration scheme operates 
in a pipelined fashion. This means that modules 
request access to the bus in one cycle, arbitrate for 
access to the bus in the next cycle, and finally drive 
a command and address onto the bus one cycle later. 
In terms of processor-generated read requests, this 
means that, at best, a system bus read command can be 
driven onto the system address bus two cycles after its 



corresponding cache read miss is generated on the 
processor module. This adds two cycles of delay to the 
memory read latency. 

To reduce memory read latency in components 
associated with address bus arbitration, the 
AlphaServer 8000 platform employs a technique 
called "early arbitration." Early arbitration allows a 
module to request access to the address bus before it 
has determined ifit really needs access to the data bus. 
If the module is granted access to the address bus but 
determines that it does not need or cannot use the 
access, it will drive a No-Operation or NoOp com­
mand in the command slot that it is granted. This fea­
ture is particularly useful on processor modules. It 
allows a processor to request access to the bus for a 
read command in parallel with determining if the read 
command will hit or miss in the processor's cache. If 
the read results in a cache hit and the processor is 
granted access to the address bus, then the processor 
issues a NoOp command. If the read results in a cache 
hit and the processor is not granted access to the 
address bus, the processor discontinues requesting 
access to the bus. When applied in this manner, this 
feature can remove two cycles of delay from the mem­
ory read latency. This feature is also key to the 
AlphaServer 8000 memory bank decode feature that 
allows address-to-memory bank decode to proceed in 
parallel with system bus arbitration. This is to say, it 
allows a processor or I/0 port module to request 
access to the address bus before it can determine 
which memory bank it is trying to access and before it 
can determine if that memory bank is available. If a 
module is granted access to the bus and the bank it is 
trying to access is not available, then the module issues 
a NoOp command. If a module is not granted access 
to the bus and the bank it is trying to access is not 
available, then the module discontinues requesting 
access to the bus until the bank becomes available. 
When applied this way, this feature eliminates at least 
one cycle from the memory read latency, as described 
in the section Memory Bank Mapping. 

The excess address bus bandwidth noted in the 
protocol overview allows some amount of early arbi­
tration to take place without affecting system per­
formance. When system traffic increases, however, 
excessive early arbitration can steal useful address bus 
slots from nonspeculative transactions and as a result 
degrade bus bandwidth. In fact, in certain pathologi­
cal cases, excessive early arbitration by modules with 
high arbitration priority can permanently Jock out 
requests from lower priority modules. To eliminate 
the negative effect of early arbitration, the AlphaServer 
8000 employs a technique called "look-back-two" 
arbitration. This technique relies on the fact that mod­
ules must resolve all cache miss or bank availability 
uncertainties for early arbitrations within the two 
cycles required for an early request and its arbitration. 

This fact implies that any module that has been 
requesting access to the address bus for more than two 
consecutive cycles is requesting in a nonspeculative 
manner. As such, the AlphaServer 8000 arbiter keeps 
a history of address bus requests and creates two pri­
oritized groups of requests based on this history. It 
creates a high-priority group of requests from those 
requests that have been asserted for more than two 
cycles and a low-priority group of requests from those 
requests that have been asserted for two cycles or less. 
It applies the single set of rotating priorities, described 
above, to both sets of requests. If there are any 
requests in the high-priority group, the arbiter selects 
one of these based on the rotating priority set. If there 
are no high-priority requests, the arbiter selects a 
request from the lower priority group based on the 
rotating priority set. This functionality limits early 
arbitration to only those times when there are non­
speculative requests in the system. It allows the 
AlphaServer 8000 platform to take advantage of 
latency gains associated with early arbitration and 
processor and I/0 port based bank decode, without 
degrading bandwidth in the process. 

Data Bus Arbitration The AlphaServer 8000 data bus 
transfers blocks of data in the same order that the com­
mands corresponding to those blocks are issued on the 
address bus. This eliminates data bus arbitration per 
se. In-order data return is accomplished by a simple 
system of counters and sequence numbers. Each time 
a command is issued to the address bus, it is assigned a 
sequence number. Sequence numbers are assigned in 
ascending order. Each time a block of data is driven on 
the data bus, a data bus counter is incremented. Each 
module waiting to initiate a data transfer in response 
to some address bus command compares the sequence 
number associated with its command with the data 
bus counter. When a module's sequence number 
matches its data bus counter, it is that module's turn to 
initiate a data bus transfer. 

It is arguable that in-order data return is not the 
optimum data scheduling algorithm. If the scenario 
shown in Figure 6 were reshaped such that only read 
r O sourced data from another processor and the 
penalty for sourcing data from a processor were more 
severe- a longer data bus Hold requirement-the 
result would be more significant bandwidth degrada­
tion. This new scenario is illustrated in Figure 8. With 
more efficient data scheduling, it is conceivable that 
data bus utilization could be improved by using data 
slots abandoned under the sizable Hold window in 
Figure 8. The latter scenario is illustrated in Figure 9 . 
Clearly the system in Figure 9 has improved upon the 
bandwidth of the system in Figure 8. 

What Figure 9 cannot show are all the implica­
tions of out-of-order data transfers. With as many as 
16 outstanding transactions (8 in the AlphaServer 

Digital Technical Journal Vol. 7 No. l 1995 59 



CYCLE 1 2 3 4 5 6 7 8 9 10 

ADDRESS BUS rO ,1 , 2 r3 r4 
COMMAND 

DATA BUS iO 
SEND_DATA 

CACHE so so so 
STATUS 

DATA BUS H H H 
FLOW CONTROL 

DATA BUS - -

Figure 8 
Bandwidth Degradation as a Result ofln-Order Data Transfers 

CYCLE 1 2 3 4 5 6 7 8 9 10 

ADDRESS BUS rO ,1 ,2 r3 r4 
COMMAND 

DATA BUS i1 i2 
SEND_DATA 

CACHE s1 
STATUS 

DATA BUS n 
FLOW CONTROL 

DATA BUS 

Figure 9 
Improved Bandwidth with Out-of-Order Data Transfers 

8400/8200) active in the system at any one time, the 
task of producing a logic structure capable of retiring 
the transactions in order is enormous. Furthermore, 
the retiring of transactions out of order complicates the 
business of maintaining coherent, ordered memory 
updates. Finally, it was felt that the parallelism made 
possible by the independent address and data bus 
would help to mitigate many of the negative effects 
associated with the in-order data transfers. For these 
reasons, a practical decision was taken to transfer data 
on the system data bus in the order that the associated 
commands were issued to the system address bus. 

Subblock Writes To support a range of 1/0 subsys­
tems, AlphaServer 8000 1/0 port modules must sup­
port writes of data as small as longwords ( 32 bits), 
words ( 16 bi ts), and bytes. Given the AlphaServer 
system bus block size of 64 bytes, these writes are 
referred to as subblock writes. The execution of a sub­
block write consists of reading a block of data from a 
system memory bank, overwriting just the portion of 
the block addressed by the subblock write, and writing 
the entire block back to memory. The difficulty with 
performing this operation arises when a "third-party" 
module- defined here as a module other than the one 
performing the subblock write-modifies the block 
between the read portion of the subblock write and 
the write portion of the subblock write. To correctly 

60 Digital Technical Journal Vol. 7 No. l 1995 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 

i1 i2 i3 i4 

so so s 1 s2 s 3 

H n n n 

- - - - - - rO ro r3 r3 r4 r4 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 

iO i3 i4 

s2 so s3 s4 

n 

, 1 

n n n 

,1 ,2 ,2 rO rO r3 r3 r4 r4 

complete the subblock write, the 1/0 port module 
must merge the subblock write data into the block as it 
was after the third-party module modified it. This 
problem can be resolved in one of two ways: ( 1) by 
means of a small cache on the 1/0 port module 
that updates the 1/0 port's copy of the block based on 
the third-party write, or (2) by means of an atomic 
read-modify-write that disallows the third-party write 
altogether. 

In an ideal world, 1/0 port modules would imple­
ment a small one-block cache for the purpose of sub­
block writes. This cache would allow the 1/0 module 
performing the subblock write to update its copy of 
the block targeted by the subblock write with modi­
fied data from third-party modules. Unfortunately, 
not all processors broadcast modified data to the 
system. Many processors, for example, use a read­
invalidate protocol. In a read-invalidate protocol, 
when a processor wishes to modify a block, it issues a 
command that invalidates all other copies of that block 
in the system and then modifies the block of data in its 
cache. If such an invalidate command invalidated the 
block in an 1/0 port module's subblock write cache, 
the 1/0 port module would be forced to re-read the 
block. There is no guarantee, however, that another 
invalidate will not occur between the re-read of the 
block and the write of merged data back to memory. 



As such, the I/0 port module may never be able to 
complete the subblock write. I/0 port caching is 
therefore not a workable solution. 

Atomic read-modify-write sequences disallow third­
party writes to a given block between the read portion 
of a sub block write and the write portion of a sub block 
write. As such, the atomic read-modify-write sequence 
does guarantee the timely completion of a subblock 
write. Implementations of atomic read-modify-write 
sequences are designed to disallow accesses to some 
size portion of the memory region that contains the 
subblock address, between the read and write portions 
of the subblock write. The size of the memory region 
can vary from a single block of data to a single bank of 
memory to the entirety of memory. If the size of the 
memory region is small, such as a single data block, 
design complexity is significant; but the impact of 
locking out access to a single block of memory is 
insignificant to bandwidth. Conversely, if the size of 
the memory region is large, such as the entirety of 
memory, design complexity is insignificant; but the 
impact of locking out accesses to the entirety of mem­
ory for any period of time can be significant to system 
bandwidth. 

The AlphaServer 8000 platform supports atomic 
read-modify-write sequences by locking out accesses 
within memory-bank-sized memory regions. This 
middle ground memory-region size provides the 
AlphaServer 8000 with a practical balance between 
design complexity and system bandwidth. The 
AlphaServer 8000 platform implements memory 
bank granularity atomic read-modify-write accesses 
by means of special Read_Bank_Lock and 
Write_Bank_Unlock address bus commands, and by 
leveraging the existing memory bank flow control 
mechanisms. Specifically, Read_Bank_Lock com­
mands function like normal read commands, except 
that their targeted memory banks are left busy after 
the read transaction is complete. Memory banks 
locked by Read_Bank_Lock commands remain busy 
until a Write_Bank_Unlock command is issued from 
the same module that issued the Read_Bank_Lock 
command. While a memory bank is busy, no module 
other than the module that locked the bank by means 
of a Read_Bank_Lock command will even request 
access to the bank, as required by standard arbitration 
protocol. This approach provides for atomic read­
modify-write sequences and coherent subblock writes. 
This protocol works regardless of the number ofl/0 
modules in the system and regardless of arbitration 
priorities. 

Superset Protocol Layer 
The AlphaServer 8000 primary protocol provides all 
the basic constructs required to perform basic system 

functions, such as memory reads and writes, local reg­
ister reads and writes, and mailbox-based I/0 register 
reads and writes. The protocol performs these basic 
functions with a high level of efficiency and perfor­
mance. Some additional functionality, such as PCI 
direct-programmed I/0 register accesses, can be func­
tionally satisfied by the primary protocol but cannot 
be satisfied in a way that does not severely degrade the 
performance of the entire AlphaServer 8000 system. 
As such, the AlphaServer 8000 platform allows for 
Superset Protocols, i.e., protocols that are built upon 
the basic constructs ( reads and writes) of the 
AlphaServer 8000 primary protocol. 

PCI direct-programmed I/0 register reads can take 
more than a microsecond to complete. If these reads 
were completed by means of the AlphaServer 8000 
nonpended, strictly ordered primary protocol, the 
AlphaServer system data bus would be stalled for a full 
microsecond each time a PCI programmed I/0 read 
was executed. Such stalls would have a disastrous effect 
on system bus bandwidth and system performance. 

The PCI programmed I/0 problem is solved on the 
AlphaServer 8000 platform by implementing a PCI­
specific pended read protocol using the simple read 
and write commands already included in the basic 
AlphaServer 8000 primary protocol. This special 
superset protocol works as follows: 

• When a microprocessor issues a PCI programmed 
I/0 read, the read is issued to the AlphaServer 
8000 system bus as a register read. This read is 
pended with a unique identification number that 
is associated with the issuing processor by driving 
the identification number on the system bank 
number lines when the register read command is 
issued to the system address bus. The bank num­
ber lines are otherwise unused during register 
accesses. The issuing processor also sets a flag, 
indicating that it has issued a PCI programmed 
I/0 read command. 

• The I/0 port module interfacing to the addressed 
PCI local bus responds to the register read by for­
warding the read to the PCI, storing the processor 
identification number specified by the address bus 
bank number lines and driving "dummy data" 
onto the data bus in the register read's associated 
data slot. The value of the dummy data is irrele­
vant; it is ignored by all system bus modules and 
is typically whatever was left in the I/0 ports 
register read buffer as a result of the last read it 
serviced. 

• When the PCI local bus returns read data to the 
I/0 port module, the I/0 module issues a regis­
ter write to a special PCI read-data-return register 
address on the system bus. This write is pended 

Digital Technical Journal Vol. 7 No. 1 1995 61 



with the issuing processor's identification num­
ber, which was stored by the 1/0 port module. 
This identification number is again pended by 
driving it onto the system bank number lines as 
the register write command is issued to the system 
address bus. The PCI read data is returned in the 
data cycle associated with this register write. 

• When a processor module identifies a register 
write that addresses the PCI read-data-return reg­
ister address, it checks the state of its PCI read flag 
and compares the value driven in the system bank 
number lines with its unique identification num­
ber. If the PCI read flag is set and the value on the 
bank number lines matches the processor's identi­
fication number, then the processor completes the 
PCI programmed 1/0 read with the data supplied 
by the register write. 

The AlphaServer 8000 PCI programmed 1/0 read 
superset protocol allows AlphaServer 8000 systems to 
complete PCI programmed 1/0 reads without stalling 
system buses. Furthermore, it allows AlphaServer sys­
tems to support PCI 1/0 in such a way that system bus 
modules not participating in the superset transaction 
need not be alerted to the presence of special bus 
transactions and therefore need not contain logic 
that recognizes and responds to these special cases. 
This approach demonstrates a practical way to sim­
plify overall system design without affecting system 
performance. 

AlphaServer 8400 and AlphaServer 8200 Systems 

The AlphaServer 8400 and 8200 systems are the first 
products based on the AlphaServer 8000 platform. 
The AlphaServer 8200 system is an "open office"-class 
server (i.e., the AlphaServer 8200 can be located in any 
office area, for example, where photocopier machines 
are typically placed). It features up to six system bus 
modules in an industry-standard 47.5-centimeter 
(19-inch) rackmount cabinet. The 8200 system can 
support up to six 300-MHz Alpha 21164 micro­
processors, 6 GB of main memory, and 108 PCI 1/0 
slots. The AlphaServer 8400 system is an "enterprise" -
class server (i.e., a machine on which a business can be 
run). It features up to nine system bus modules in a 
DEC 7000-style cabinet. It can support up to twelve 
300-MHz Alpha 21164 microprocessors, 14 GB of 
main memory, and 144 PCI 1/0 slots. 

The clock frequencies of both the AlphaServer 8400 
system and the AlphaServer 8200 system are deter­
mined by the clock frequency of the 300-MHz ( 3.33-ns 
cycle time) Alpha 21164 microprocessor chip. Both 
systems use a 4 X clock multiplier to arrive at a system 
clock frequency of 75 MHz (13.3-ns cycle time). At 

62 Digital Technical Journal Vol. 7 No. 1 1995 

this speed, the systems feature 265-ns minimum read 
latencies and 1,600 MB/s of data bandwidth. 

Both systems are based on the same set of 
AlphaServer 8000 architecturally compliant system 
bus modules. In addition, both systems support a new 
PCI 1/0 subsystem designed specifically for these 
classes of systems. The constituent modules and 1/0 
subsystems that compose the AlphaServer 8400 and 
the AlphaServer 8200 systems are as follows. 

7ZEP Processor Module-Each TLEP processor 
module supports two 300-MHz Alpha 21164 micro­
processors. Each Alpha 21164 processor is paired with 
a 4-MB external cache. This cache is constructed with 
10-ns asynchronous SRAMs. The cache latency to first 
data is 20 ns, and with one 3.33-ns processor cycle of 
wave pipelining, its maximum bandwidth is 915 MB/s. 
The TLEP module operates with a 75-MHz (13.33-ns 
cycle time) clock frequency. 

TMEM Memory Module- Each TMEM memory 
module is implemented with two equal-sized DRAM 
banks. TMEM modules are available in 128-MB, 
256-MB, 512-MB, 1024-MB, and 2048-MB sizes. 
The TMEM module is designed to operate at a 100-
MHz ( 10-ns cycle time) clock frequency. 

TIOP I/0 Port Module-The TIOP module inter­
faces the AlphaServer 8000 system bus to four 1/0 
channels, called "hoses." Each hose can interface to 
one XMI, Futurebus+, or PCI/EISA 1/0 subsystem. 
Each TIOP can support up to 400 MB/s of 1/0 
data bandwidth and is designed to operate at a 
100-MHz (10-ns cycle time) clock frequency. 

mop Integrated I/0 Port Module-The ITIOP 
module interfaces the AlphaServer 8000 system bus to 
one hose 1/0 channel and one semipreconfigured PCI 
local bus, which is integrated onto the ITIOP module. 
The integrated PCI bus features one single-ended 
small computer systems interface (SCSI) controller, 
three Fast Wide Differential SCSI controllers, one NI 
port, and optional FDDI and NVRAM controllers. 
Each ITIOP can support up to 200 MB/s of I/0 data 
bandwidth and is designed to operate at a 100-MHz 
( 10-ns cycle time) clock frequency. 

PC/A PC! I/0 Subsystem-The PCIA PCI I/0 
subsystem consists ofhose-to-PCI adapter logic and a 
12-slot PCI local bus. This 12-slot bus is created from 
4-slot PCI buses interfaced such that they appear as a 
single bus. The high slot count provides the connec­
tivity essential in an enterprise-class server. The PCIA 
optimizes direct memory access (DMA) reads by 
means of the PCI Read_ Memory_Multiple com­
mand. The Read_Miss_Multiple command allows the 
PCIA to stream DMA read data from memory to the 
PCI bus. Consequently, the PCIA can increase DMA 
read bandwidth, offsetting any latency penalties that 
result from the AlphaServer 8000 platform's multi­
level I/0 architecture. The PCIA's adapter logic 



includes a 32K entry map RAM for converting PCI 
addresses ( 32 bits) to AlphaServer 8000 system bus 
addresses ( 40 bits). This map RAM features a five­
entry, fully associative translation cache. 

AlphaServer 8400 and AlphaServer 8200 
Performance 

A number of performance benchmarks have been run 
on the AlphaServer 8400 and AlphaServer 8200 sys­
tems. The results of some of these benchmarks are 
summarized in Table 3. 

The AlphaServer SPECint92 and SPECfp92 ratings 
demonstrate outstanding performance. In both rat­
ings, the AlphaServer 8400 system performance is 
over 3.5 times the ratings of the HP9000-800 T500 
system. The SPECfp92 rating of 512 is 1.4 times 
its nearest competitor, the SGI Power Challenge XL 
system. Similarly, a six-processor AlphaServer 8400 

Table 3 

system achieves the same 1,900 million floating­
point operations per second (MFLOPS) as an eight­
processor SGI Power Challenge XL system. Finally, 
the AlphaServer 8400 system's 5-GFLOPS Linpack 
nxn result is beyond the performance of all other 
open systems servers, placing the AlphaServer at 
supercomputer performance levels with systems such 
as the NEC SX-3 / 22 system and the massively parallel 
Thinking Machines CM-200 system. 

Acknowledgments 

Several members of the AlphaServer 8000 Develop­
ment Team in addition to the authors were key con­
tributors to the generation of this technical article. 
These individuals are John Bloem, Elbert Bloom, 
Dick Doucette, Dave Hartwell, Rick Hetherington, 
Dale Keck, and Rich Watson. 

AlphaServer 8400 and 8200 System Performance Benchmark Results 

Benchmark Processor 
Name Count Units AlphaServer 8200 AlphaServer 8400 

SPECint92 341.4 341.4 

SPECfp92 512.9 512.9 

SPECrate_int92 8551 8551 

6 50788 50788 

12 not applicable 91580 

SPECrate_fp92 11981 11981 

6 71286 71286 

12 not applicable 140571 

Unpack 1oox100 MF LOPS 140.3 140.3 

Unpack 1000x 1000 MF LOPS 410.5 410.5 

6 MFLOPS 1821 1902 

8 MFLOPS not applicable 2282 

12 MFLOPS not applicable 2675 

Unpack nx n 1 MFLOPS 428.3 428.3 

6 MF LOPS 2445 2445 

12 GFLOPS not applicable 5.0 

AIMIII 8 Al Ms not applicable 1649.8 
Performance Rating 

AIMIII 8 Maximum quantity not applicable 9384 
User Loads 

AIMIII 8 Jobs/min not applicable 16168.2 
Throughput 

Mccalpin Copy 1 MB/s not available 186.29 
8 MB/s not applicable 898.61 

Mccalpin Scale 1 MB/s not available 174.4 
8 MB/s not applicable 829.74 

Mccalpin Sum 1 MB/s not available 198.3 
8 MB/s not applicable 891.84 

Mccalpin Triad 1 MB/s not available 195.15 
8 MB/s not applicable 982.13 

Digital Technical Journal Vol. 7 No. I 1995 63 



64 

References 

1. W. Bowhill et al., "Circuit Implementation of a 300-
MHz, 64-bit Second-generation CMOS Alpha CPU," 
Digital Technicaljournal, vol. 7, no. 1 (1995, this 
issue): 100-118. 

2. S. Saini and D. Bailey, "NAS Parallel Benchmarks 
Results 3-95," Report NAS-95-011 (Moffet Field, 
Calif.: Numerical Aerodynamic Simulation Facility, 
NASA Ames Research Center, saini@nas.nasa.gov, 
April 1995 ). 

3. J. Dongarra, "Performance of Various Computers 
Using Standard Linear Equations Software," Docu­
ment Number CS-89-85, available on the Internet 
from Oak Ridge National Laboratory, netlib@ornl.gov, 
April 13, 1995. 

4. Z. Cventanovic and D. Bhandarkar, "Characterization 
of Alpha AXP Performance Using TP and SPEC 
Workloads," Proceedings of the 1994 International 
Symposium on Computer Architecture: 60-70. 

5. J. Nicholson, "The RISC System/6000 SMP System," 
COMPCON '95, March 1995: 102-109. 

6. L. Staley, "A New MP HW Architecture for Technical 
and Commercial Environments," COMPCON '95, 
March 1995: 129- 132. 

7. B. Allison and C. van Ingen, "Technical Description of 
the DEC 7000 and DEC 1000 AXP Family," Digital 
Technical journal, vol. 4, no. 4 (Special Issue 1992 ): 
100-110. 

8. L. Gwennap, "Intel's P6 Uses Decoupled Superscalar 
Design," Microprocessor Report, February 16, 1995: 
15. 

9. J. Basmaji et al., "Digital's High-performance CMOS 
ASIC," Digital Technical Journal, vol. 7, no. 1 
( 1995, this issue): 66-76. 

10. R. Watson, H . Collins, and R. Iknaian, "Clock Buffer 
Chip with Absolute Delay Regulation Over Process 
and Environmental Variations," 1992 Custom Inte­
grated Circuits Conference, paper 25.2: 1-5. 

11. E. Davidson, "Delay Factors for Mainframe Comput­
ers," Proceedings of the 1991 Bipolar Circuits and 
Technology Meeting: 116-123. 

12. D. Cox et al., "VLSI Performance Compensation for 
Off-Chip Drivers and Clock Generation," Proceed­
ings of IEEE 1989 Custom Integrated Circuits 
Conference: 14.3.1-14.3.4. 

13. D. Chengson et al., "Dynamically Tracking Clock 
Distribution Chip with Skew Control," 1990 Custom 
Integrated Circuits Conference Proceedings: 
15.6.1- 15.6.4. 

14. M. Johnson et al., "A Variable Delay Line Phase 
Locked Loop for CPU-Coprocessor Synchroniza­
tion," JSSCC88 Proceedings: 142- 143. 

Digital Technical Journal Vol. 7 No. 1 1995 

Biographies 

David M. Fenwick 
Dave Fenwick is the AlphaServer 8000-series system 
architect. As leader of the advanced development group 
and of the design team, he has been responsible for def­
inition of the product and its characteristics, and for the 
system implementation. Dave moved from Digital's 
European Engineering organization in 1985 to join 
the U.S.-based VAXBI program and subsequently was 
processor architect for the VAX 6000 vector processor. 
A consulting engineer, he holds 3 major U.S. patents 
and has 13 patent applications pending. He received an 
Honours Degree in electrical and electronic engineering 
from Loughborough University of Technology, United 
Kingdom. 

Denis J. Foley 
A principal hardware engineer in the AlphaServer group, 
Denis is the project leader for the TLEP CPU module. 
He joined Digital in Clonmel, Ireland, in 1983 after 
receiving a bachelor's degree in electrical engineering from 
University College Cork, Ireland. He has contributed to 
the development of several communications and comput­
ing projects. Currently, he is working on the design of 
a CPU module for the AlphaServer 8000 platform that is 
based on the next generation of the Alpha microprocessor. 
Denis is listed on 12 patent applications that relate to his 
work on the AlphaServer CPU and bus designs. 

William B. Gist 
Bill Gist's recent responsibility was the development of the 
high-performance 1/0 system bus circuit architecture for 
the AlphaServer 8000-series ASICs. A principal engineer 
and a member of the Server Platform Development Group, 



he is currently developing high-performance 1/0 archi­
tectures for low-cost plastic packaging technologies. Join­
ing Digital in 1977, he began work on PDP-11 systems 
development and later became a member of the VAX 
6000-series engineering team, focusing on clock chip 
development and vector processor ASIC development. 
Bill has a B.S. degree in electrical engineering from 
Worcester Polytechnic Institute and holds three patents 
for the AlphaServer 8000-series 1/0 circuit architecture. 

Stephen R. VanDoren 
In 1988, Steve VanDoren came to Digital to work with 
the VAX 6000 vector processor design team. He later 
joined an advanced development team responsible for eval­
uating system technology requirements for what would 
become the AlphaServer 8000 series of products. During 
the AlphaServer project, he lead the design of the address 
interface on the TLEP processor module. He is listed as 
a coinventor on 10 patents filed on the AlphaServer 8000-
series architectural features. Steve is currently working on 
new server processor designs. He is a member of Eta Kappa 
Nu and Tau Beta Pi and holds a B.S. degree in computer 
systems engineering from the University of Massachusetts. 

Daniel Wissell 
Consulting engineer Dan Wissell has more than 20 years 
of computer industry experience in analog and digital cir­
cuit design and test. While at Digital, he has worked on 
the VAXcluster and DEC 7000/ 1000 systems development 
teams, and more recently he contributed to the AlphaServer 
8000-series design effort. He is recognized within Digital 
as an expert in the areas of distributed power systems, 
on-module energy management, and high-speed clock 
systems. Dan holds three patents and has filed several 
patent applications for his work on current and future 
Digital products. He has degrees in engineering from 
Kean College and the Milwaukee School of Engineering. 

Digital Technical Journal Vol. 7 No. l 1995 65 



Digital's High­
performance 
CMOS ASIC 

A high-performance ASIC has been developed 

to serve as the interface for the 10-ns bus in 

the new AlphaServer 8000 series server systems 

from Digital. The CMOS standard-cell alternative 

(CSALT) technology provides a timing-driven 

layout methodology together with a correct­

by-construction approach for managing the 

complex device physics issues associated with 

state-of-the-art CMOS processes. The timing­

driven layout is coupled with an automated 

standard-cell design approach to bring the 

complete design process directly to the logic 

designer. 

66 Digital Technical Journal Vol. 7 No. I 1995 

I 
Jean H . Basmaji 
Kay R. Fisher 
Frank W. Gatulis 
Herbert R. Kolk 
James F. Rosencrans 

Today, high-performance microprocessors designed 
with complementary metal-oxide semiconductor 
(CMOS) processes are much more demanding on the 
support logic used to interface them to the rest of the 
system. Microprocessors, like Digital Semiconductor's 
Alpha 21164 chip, are extending the external logic 
cycle times to the point where custom-integrated 
circuits are necessary to realize the full performance 
potential. The CMOS standard-cell alternative 
(CSALT) technology developed at Digital satisfies 
these high-performance needs without resorting to 
a complex, custom design process. 

CSALT technology provides a timing-driven layout 
methodology together with a correct-by-construction 
approach for managing the complex device physics 
issues associated with state-of-the-art CMOS pro­
cesses. The timing-driven layout is coupled with 
an automated standard-cell design approach to bring 
the complete design process directly to the logic 
designer. Using CSALT, logic designers can take their 
application-specific integrated circuit (ASIC) designs 
from a concept on their desktops to a completed 
layout that is ready for fabrication. 

Other design approaches address portions of the 
process, but the CSALT tool suite is complete and 
automated. Many ASIC vendors transfer the logic 
designs to a different set of engineers, using different 
tools and skills, to complete the physical implementa­
tion before post-layout timing analysis can take place. 
Any problems encountered after the layout tend to 
result in the design being returned to the logic design­
ers. The artificial boundary erected between logic 
designers and layout implementers can result in delays. 
In complex designs, multiple iterations may be neces­
sary before the design converges into an acceptable 
solution. This convergence process becomes more 
complicated with the introduction of synthesized 
logic, because the process is extended to include the 
synthesis tools. 

CSALT's timing-driven methodology eliminates the 
need for the many chip layout specialists and ASIC 
vendor experts who normally complete a multichip 
project. In addition, the timing-driven methodology 
eliminates the need for the traditional chip floorplan­
ning step in which the designer maps the logical 



design onto the physical chip architecture. The floor­
planning step often becomes a critical and time­
consuming effort when the design is being optimized 
for performance. 

The automated and batch-driven CSALT meth­
odology can turn a logically complete design into 
a working, timing-correct chip layout within three 
compute-intensive days. Previous platform develop­
ment projects used industry-standard ASICs, manual 
layouts, and hundreds of manual cell placements to 
meet the tight design timing requirements within their 
high-performance ASICs. These methods typically 
added months to the layout phase of these projects. 
CSALT's timing-driven layout was specifically devel­
oped to address these high-performance requirements 
and to make the complete design process available to 
logic designers. 

This paper discusses some implementation pieces of 
CSALT technology and emphasizes the unique timing­
driven approach and results. It explains the goals that 
were established for CSALT development as well as 
several features of the physical technology. The paper 
concludes with a discussion of the layout process oper­
ations and the process controller. 

The Need for CSALT 

During the technology evaluation phase of the 
AlphaServer 8000 series platform, various ASIC tech­
nology vendors were evaluated and compared against 
the aggressive performance needs demanded by the 
platform's designs and the customization that was 
necessary within these technologies to meet system 
bus timing. Based on the experience of developing 
designs for the previous platform generation and due 
to the anticipated months of iterative and interactive 
manual place and route necessary to meet timing, it 
became clear that technology was a high-risk item to 
the program. Requirements for the AlphaServer 8000 
series systems exceeded the performance capabilities of 
existing ASIC technologies and the available CAD 
tools. In addition, access to the internal silicon struc­
ture of the ASICs was required to customize bus inter­
face drivers. The risk and cost of developing these 
capabilities through working with ASIC vendors 
would have added months of valuable schedule time 
to the program. 

As a result, the decision was made to focus the effort 
on CSALT technology and to move it from its advanced 
development stage to a production-quality one. Given 
the selection criteria that were emphasized, a set of 
goals was established for the CSALT development: 

• Incorporate an integrated timing-constrained 
driven placement. 

• Implement technology in a 3.3-volt (V) stable 
CMOS process. 

• Eliminate chip floorplanning and let timing con -
straints drive the placement. 

• Eliminate manual interaction in the tools to reduce 
design time and defects. 

• Develop very conservative layout rules to eliminate 
the need for cross talk and electromigration analysis. 

• Automate the development and characterization of 
cell elements including thorough checking. 

• Deliver more robust and accurate prediction of chip 
performance through integrated SPICE simulation 
and expanded cell library performance tables.1 

• Use proven algorithms and software whenever 
possible. 

Overview and Description 

T he front-end logic design and verification process is 
based on the ASIC standard tools for gate array design 
that include schematics capture, timing and logic veri­
fication, pre-layout delay estimation, and post-layout 
delay feedback and analysis. The performance data for 
the library elements is housed in lookup tables that 
have multiple slope/intercept data entries based on 
output drive loading as well as input edge rate delay 
correction factors. Unique delays are calculated for 
each cell instance. CSALT supports a low-skew bal­
anced clock distribution net. 

The back-end layout tools for CSALT include sev­
eral internally generated tools as well as research tools 
from academia. The heart of the place-and-route 
process is TimberWolf from the University of 
Washington.2 One of the important features of the 
TimberWolf tools is their ability to be constraint­
driven. These constraints are automatically generated 
from the timing verification step and then passed to 
the TimberWolf tools. TimberWolf prioritizes these 
critical path nets during the placement process in an 
attempt to meet the timing requirements. Constraints 
can also be manually generated through a separate 
user-generated file that feeds into the process. Once 
parameter files and constraint files are established, the 
place-and-route process proceeds in a completely 
automated and batch-driven mechanism all the way 
to a completely verified design layout file (DLF). The 
speed of the process execution is limited only by 
the batch queues available and the performance of the 
underlying processor type. 

The silicon fabrication process relies on Digital 
Semiconductor's CMOS line. All the physical design 
and process fabrication rules are built into the layout 
tools and driven through the parameter files specified at 
start-up. CSALT has built-in correct-by-construction 
custom design rules that guarantee all aspects of the 
automated layout to be free from any design rule vio­
lation. The tools account for all aspects of the physical 

Digital Technical Journal Vol. 7 No. 1 1995 67 



design, such as electromigration rules, coupling capac­
itance effects on timing, as well as analysis of any elec­
trical hot spots resulting from excessive logic switching 
in a dense localized area. 

Physical Technology 

The ASIC designs targeted for this technology needed 
to meet the physical, electrical, and thermal require­
ments of the AlphaServer 8000 series platform. The 
system functions that the ASIC designs satisfy belong 
to three classes: 

• Class I-Interface between the system bus and 
the CPU 

• Class 2-Interface between the CPU and the local 
1/0 

• Class 3-Interface between the local 1/0 and the 
Peripheral Component Interconnect (PCI) 

An enhanced ASIC design style was used to reduce 
the time to market and to minimize design and verifi­
cation resources. The enhancements to the conven­
tional ASIC design (such as timing-driven layout and 
automated incorporation of SPICE delays) signifi­
cantly improved ease of design for high-performance, 
100-megahertz (MHz) very large-scale integration 
(VLSI) chips.1 

Several features of the CSAL T physical technology 
and their advantages are discussed in the following 
sections. 

Low-skew Clock Distribution 
There is one low-skew, single-phase clock net distribu­
tion available to the user. This is implemented through 
three stages. First, the buffered input clock receiver 
drives two high-power cells located on opposite sides 
of the chip. In the second stage, the high-power cells 
drive a central trunk that bisects the die and delivers 
the clock signals to each half row. In the third stage, 
separate local clock buffers in each half row are con­
nected to the central trunk and deliver the clock sig­
nals to all logic elements in that particular half row. 

Skew in this distributed net is controlled through 
automatic load balancing on the local clock buffers 
along each row. Cell capacitive loads are calculated for 
each row, and appropriate balance cells are added to 
bring the capacitive loads to a predefined value. This 
method equalized delays across the chip with less than 
100 picoseconds (ps) of skew. 

Other clock distributions, however, are available to 
the user. These clock nets are distributed through 
a single high-power cell driving a metal trunk along 
the chip. Skew within these clocks can be on the order 
of 300 ps, although this skew is more dependent on 
loading and cell distribution for each particular design. 

68 Digital Technical Journal Vol. 7 No. I 1995 

5.0-V Compatible VO Cells 
CSALT arrays developed in Digital's fourth-generation 
CMOS process are powered by a 3.3-V supply for both 
I/0 and internal core. CSALT ASICs can receive but 
not send 5.0-V 1/0. The input receivers for both the 
bidirectional and the input-only cells have transistor­
transistor logic (TTL) input levels and can be used in 
either a 3.3-V or a 5.0-V signaling environment. The 
CSALT PCI interface cell meets the PCI 5.0-V specifi­
cation, without requiring the external module termi­
nation recommended by most ASIC vendors. 

Performance-tuned Library Elements 
The performance targets for the cell elements in 
CSALT were determined from a number of sources. 
First, previous ASIC designs, library performance, and 
heuristics were used to establish a baseline. The heuris­
tics of the number of cell logic levels between two state 
elements in the DEC 7000 platform designs were ana­
lyzed. Second, the fourth-generation CMOS silicon 
process, electrical interconnect data, and transistor 
properties were used to arrive at new scaled estimates 
based on unit load, cell timing, and interconnect delay. 
Third, cycle times and system skews of the target plat­
form were used to determine a new estimate of the 
levels oflogic that can be placed between two state ele­
ments. The analyses resulted in the generation of base­
line performance targets that were used in the design of 
an ASIC library tuned to cycle lOOK gates at 100 MHz. 

Delay Calculation 

CSALT post-layout timing analysis and net delay gen­
eration are based on conservative approximations and 
consist of six uncorrelated, additive components: 

1. Intrinsic gate delay (also referred to as intercept) 

2. Effect oflumped total net capacitance on delay 

3. Effect of input edge rate on delay 

4. Setup/hold time 

5. Effect of input edge rate on setup time 

6. Wire transit delay 

The first five components are derived for each 
standard-cell type from lookup tables created using 
SPICE simulation.1 The sixth component, wire transit 
delay, is calculated during layout for each net in each 
CSALT design using a specific methodology for 
bounding the solution.3 

Both worst-case and best-case analyses are per­
formed and are guaranteed to be more conservative 
than SPICE, because components 1, 2, and 6 of delay 
are measured in a conservative fashion. Paths that fail 
this timing analysis are then simulated with SPICE. 
These paths are automatically extracted from the 
timing analysis result files and submitted for SPICE 



simulation. The results of SPICE simulation are then 
back-annotated into timing analyses, and the design is 
reanalyzed using SPICE accuracy for delays on critical 
path nets that had failed previously. This strategy 
allows us to time designs quickly with the accuracy of 
SPICE where needed.I 

SPICE Library Characterization 
The entire cell timing data set and cell performance 
tables are generated automatically through a suite of 
automated tools called SPICE Library Characteri­
zation (SLiC). SLiC's automated procedure will create 
SPICE input files to fully characterize a library 
of CSALT cells, execute SPICE on these files, and 
post-process the results into a format readable by the 
timing tools.I 

For cell delay slopes and intercepts, the SLiC 
process produces delay tables for each input-to-output 
path combination through each library macrocell. 
This is done by simulating in SPICE with 11 discrete 
output capacitance values attached to the cell output. 
The total range ofloads is broken into four windows, 
and a best-fit line through each window is determined. 
Each line is then translated so that all discrete points 
within the window fall on or below this line ( for worst­
case parameters) or above this line ( for best-case 
parameters). This translation is one mechanism for 
ensuring timing conservatism. Figure 1 shows the 
CSALT library performance approximation. 

For edge-rate effect on delay, SLiC measures output 
edge rates for each of the 11 capacitance values 
attached to each output cell described above and 
stores them. In addition, SLiC creates ten simulations 
for each input-to-output path through each library 

>-
:'.5 
w 
Cl 

KEY: 

LOAD 

BEST-FIT MAXIMUM DELAY PARAMETER 

BEST-FIT MINIMUM DELAY PARAMETER 

~ SPICE SIMULATION 

Figure 1 
CSALT Library Performance Approximation 

LOAD 
RANGE 

macrocell to model the range of input edge rates that 
the macrocell is expected to see. These two sets of data 
are used to create ( 1) a table of delay additives to gate 
propagation delay as a function of input edge rate and 
(2) a table of output edge rates as a function of gate 
propagation delay. These tables are then used during 
the timing analysis step. 

The last component of delay, wire transit delay, is 
the only one not determined by SLiC. During layout, 
the bounds on the transit delay through every net are 
calculated. These bounds are generated very quickly 
and are quite accurate for short and lightly loaded 
nets. For longer, more heavily loaded nets, SLiC calcu­
lates more conservative bounds. 3 This conservatism 
contributes to inaccuracy in path timing and is the pri­
mary reason why another methodology was developed 
for determining more accurate delays with SPICE.1 

This alternative methodology for calculating delay 
has been verified through comparisons of thousands 
of path delays with SPICE. In all cases, the timing was 
found to be conservative. Sixty-five percent of all cal­
culated delays are within 10 percent of SPICE predic­
tion, and virtually all delays are within 20 percent. This 
methodology complements the power of the fast turn­
around time of static timing analysis tools by modeling 
the delays more accurately and closely to SPICE pre­
diction. Large chips can be analyzed in less than one 
hour and be fully timed in a few hours if any SPICE 
simulation oflarge nets becomes necessary.1 

Constraint Generation Overview 

After each timing verification run, a report is generated 
listing all paths that fail and detailing all nets and primi­
tives. within each of these failing paths. This informa­
tion is then iteratively processed through an algorithm 
to shorten each net in the path proportionately to its 
original length in the path, such that it satisfies the 
allowable time requirement. First, the allowable total 
wire delay in a path is calculated in picoseconds: 

W = MaxTimelimit - "'i,ceilPrimitiveDe/ays 
- SetupTime 

where Wis the total allowable wire delay for an individ­
ual failing path, MaxTimelimit is the cycle time that 
the failing path needs to meet, Ce//PrimitiveDe/ays is 
the intrinsic delay through all the primitives that exist in 
the failing path, and SetupTime is the setup time 
required by the state element that ends the failing path. 

Then every net in the path is apportioned according 
to its contribution in the current (failing) total wire 
delay: 

(
NetFai/ingDe/ay) 

NetNewDelay = W A IP h W'i" ctua at ire 

Digital Technical Journal Vol. 7 No. 1 1995 69 



where NetNewDelay is the allowable delay on a par­
ticular net in a failing path, NetFailingDelay is 
the actual delay on a net within a failing path, and 
Actua!PathWire is the total accumulated wire delay of 
all nets in the failing path. 

Since wires can be shared by more than one failing 
path, a change in the length of a wire in one path will 
cause other paths that have the same wire as an element 
to be scheduled for recalculation. A wire length may 
change several times before it is stable. During recalcu­
lation, the smaller wire produced is the one that will be 
used. This iteration algorithm continues until no nets 
are scheduled for reevaluation, and convergence is 
achieved. The number of iterations can be limited if 
convergence is not achieved in a timely manner. 

At completion, NetNewDelays are then converted 
into wire lengths: 

NetLength = 

NetNewDelay - ( SlopeOjDriver X L Gateload) 

SlopeOjDriver X CapUL 

where Netlength is the calculated net constraint in unit 
length, SlopeOfDriuer is the slope of the cell driving 
the failing net in unit time per capacitance, Gateload 
is the sum capacitance of all cells tied to that net, and 
CapUL is the capacitance per unit length for intercon­
nect metal. 

Netlength is then compared to a quench value, and 
the larger of the two is used as the new net constraint 
feeding back to a new layout. Quench values define 
the minimum wire length that a net can have, based on 
the number of pins (fan-out) in that net. 

Physical Die Architecture 

The CSALT die architecture, as shown in Figure 2, 
consists of the following sections: 
• I/0 cells-The outermost region where the I/0 

cells are located is also called the pad ring. Bonding 
pads are built into the I/0 cells. 

• High-power and decouple cells-This region of the 
array, also called the high-power ring, is filled pre­
dominantly with decouple cells. This region also 
allows for placement of a limited number of high­
power driver cells designed to drive heavily loaded 
nets such as clock lines and reset lines. 

• Core-This region holds the majority of the logic 
in the array implemented as standard cells. All these 
cells are the same height but vary in width accord­
ing to functional complexity. Core cells are arranged 
in rows numbered from the bottom of the array. The 
number of rows in the core is a design-dependent 
variable. The space between the rows varies from 
row to row and is used for routing channels. 

70 Digital Technical Journal Vol. 7 No. l 1995 

TOP 

1/0RING 

MINI-MOAT 

HIGH-POWER AND DECOUPLE CELLS 

MOAT 

ROW - n ••• . .. 
~ 
z 

CORE :::, CORE a: 
I-

ROW-1 ••• . .. 

BOTIOM 

Figure 2 
CSALT Die Architecture 

Generally, power to the core is distributed by cell 
abutment on metal 3 over the cell rows. Horizontal 
signal routing in the core channels takes place on 
metal 2. Metal 1 is used for vertical core routing. 
To route in the vertical direction, the rows contain 
feeds. By design, many standard cells have vertical 
feeds to provide pass through. In addition, a stan­
dard feed cell can be automatically inserted by the 
layout tools when the demand for feeds is high. 
I/0 bristles for each of the core cells are made avail­
able on the top and bottom of the cells to enhance 
mutability. 

• Trunk-The region splitting the core into left and 
right halves is referred to as the trunk. The trunk is 
a routing region used primarily to route clocks and 
power signals down the center of the core. These 
signals are then distributed to the left and right 
sides of the core on a row-by-row basis. 

• Ring-Although not indicated in Figure 2, the 
term ring refers to the I/0 ring, the mini-moat, 
and the high-power ring regions as a group. Even 
though the physical size of the ring is fixed, the 
total dimensions are determined by the package 
size of the array. The size of the ring establishes the 
available area remaining in the center of the array 
for the moat and the core. 

• Mini-moat-The mini-moat is the region separat­
ing the I/0 ring from the high-power ring. The 
layout process uses this region to route a small 
number of high fan-out nets that drive cells in the 
I/0 ring. Layout parameters control the assign­
ment of nets to the mini-moat. 



• Moat-The moat is a routing region used by the 
layout tools for attaching the ring to the core. The 
size of the moat is determined by the amount of 
space that is left over when the core and trunk are 
placed and routed. Small arrays (low gate counts) 
result in small cores and large moat areas, and large 
arrays (high gate counts) result in large cores and 
small moat areas. During the layout oflarge chips, 
it is possible for the core to become so large that 
not enough moat space remains to make all the 
necessary routing connections. 

Figure 3 is a photomicrograph of a CSALT die for 
one of the CPU gate arrays used in the AlphaServer 
8000 series server systems. 

Placement and Routing 

The function of the layout tool suite is to provide 
a fully placed and routed array that meets or exceeds all 
the design timing criteria and that satisfies all electrical 
and physical layout rules required to release the array 
for mask generation. Several place-and-route features 
are discussed in the following sections. 

Constraint-driven Layout System 
When an array is submitted to layout, it is accompa­
nied by a set of timing constraints. Timing constraints 
can be thought of as estimated restrictions, on a per­
net basis, for the amount of metal lengths allowed to 
interconnect the net in the layout. These constraints 
drive the TimberWolf placement tool and are ulti­
mately responsible for the placement of core cells 

·r 
~~-

.,...,._ 

; . : .. _: 

.-~ 

. :~~ 
Ji 
·~i! 
!I~~ 

-!:: 

i '. ,!J 

Figure 3 
Photomicrograph of a CSALT Die 

in the final layout. Because a working design may not 
be achieved on the first layout iteration, the overall 
CSALT methodology provides mechanisms for ana­
lyzing post-layout timing delays and for generating 
a refined set of constraints that can be fed back into the 
layout for another pass. The layout process is iterated 
in this manner until it converges on a layout solution 
that meets the timing constraints. 

Routability 
To ensure 100 percent routing, the routing process 
had to be kept simple, which required substantial plan­
ning during development of the chip architecture 
described above. As a result, the following elements of 
the architecture were defined: ( 1) Pins are available on 
both the top and the bottom of the cells; ( 2) Power 
and clock connections are defined by cell abutment; 
and ( 3) Total routing of the chip is divided into four 
areas ( the core, the moat, the ring, and the megacell 
interface). This plan kept the routing problems similar 
from chip to chip, which allowed the routing tools to 
focus on particular solutions. 

Quick Turnaround Time 
One significant feature of the CSALT layout process is 
that it can complete a layout without manual interven­
tion, saving time over manual processes. CSALT con­
sistently demonstrated that the CAD suite can provide 
completed layouts in three to ten days from the time 
the wirelist enters the layout process. An array that has 
been in layout for ten days is likely to be one that is dif­
ficult to time and that has required four to six layout 
iterations to converge. 

Cross-talk Effect Inclusion 
In recent generations of ASIC technologies, intercon­
nect metal widths and pitches have been shrinking 
while the clock frequencies have been on the rise. This 
raised some concerns about on-chip cross-talk effect 
due to the ability of signals traveling on one wire 
to affect the speed of signals traveling on adjacent or 
victim wires. In extreme cases, this cross talk can cause 
signals to spike on the victim wires. CSALT method­
ology compensates for such effects on wire delay cal­
culation, and the compensation is integrated into the 
layout process. 

The integration is implemented by factoring in 
a coupling capacitance extracted from layout and by 
using a worst-case signal-switching scenario. Conser­
vative factors were chosen after analysis of cross talk on 
a representative cross section of CSALT layouts, using 
different routing pitches on signal interconnect metal 
2. The goal was to find the right balance between 
metal pitch, area used, and chip timing. The study 
resulted in an optimum pitch definition of 3.75 

Digital Technical Journal Vol. 7 No. I 1995 71 



micrometers (µm) for metal 2, and a coupling capaci­
tance multiplier of 2. The core area increase, from that 
of using the minimum pitch for metal 2 at 2.625 µm, 
was less than 10 percent for the largest design. 
However, overall die area increase was negligible due 
to the designs being 1/0-ring-limited in nature. 

Free of Electromigration 
When the current density in the aluminum intercon­
nect used in today's high-density CMOS processes is 
too high, a detrimental physical phenomenon occurs. 
This phenomenon causes metal reliability problems 
in which metal molecules slowly migrate, resulting in 
open/short circuits inside ASICs. To eliminate the 
need for a long and manually tedious process of 
looking for these problems after layout, the CSALT 
strategy is to avoid electromigration problems dur­
ing layout through analysis and implementation of 
built-in conservative layout disciplines. 

Analysis of several CSALT arrays resulted in an 
increase in the contact capacity and the definition of 
maximum output load limits for each macrocell. The 
limit set was a maximum of 130 unit loads (7.8 pico­
farads [pF]) switching at maximum frequency ( 100 
MHz). In addition to that limit being available to 
designers during the design phase for proper fan-out 
implementation, the tools automatically flag all nets 
that exceed the limit. 

A number of other features are designed into the 
CSALT process to guarantee that layouts are free from 
electromigration problems: 

• Library data tables are used to dynamically assign 
metal widths and corresponding contact sizes 
according to driver strengths and loads. This elimi­
nates electromigration problems for dynamically 
sized metal routes such as clock nets and other high 
fan-out nets. 

• The bulk of the power distribution is achieved by 
cell abutment. Cell power rails are conservatively 
designed to handle the largest row's current 
demand. 

• As a final check on correctness, one of the layout 
process steps incorporates a hot row tool. This tool 
flags any rows in the core whose cells collectively 
exceed a predetermined current threshold defined 
by the handling capability of the power cells in 
the rows. This information is used to flag a poten­
tial electromigration situation in the contact struc­
ture, distributing power from the trunk to the 
row. When the row is flagged, the user manually 
reviews the result files and analyzes the row. Out 
of 15 separate designs completed, not one had to 
be changed due to flagged hot rows. This is due 
to the extremely conservative assumption used by 

72 Digital Technical Journal Vol. 7 No . 1 1995 

the tool-it assumes all logic is switching at maxi­
mum frequency. 

Correct-by-construction Concept 
As it applies to all the critical device issues (for exam­
ple, electromigration, cross talk, hot carrier injection, 
and latch up), acceptance of the concept of a layout 
being correct by construction has dramatically 
reduced turnaround time in the layout process by 
eliminating the need to perform these analysis opera­
tions on each array. Why does it work for CSAL T? 
It works because the CSALT layout process is very 
deterministic, and correctness has been verified on 
a cross section of arrays. In the final analysis, all arrays 
use the same cells from a well-defined and character­
ized library. The architecture of the die is the same in 
all arrays. As a result, variation is likely to enter the sys­
tem only during the routing process. This process 
incorporates conservative layout rules and checks to 
avoid and detect potential failure mechanisms. 

CSALT Layout Process 

As shown in Figure 4, the layout process encompasses 
five basic assembly and check operations: full wirelist 
preparation, pad-ring assembly, core assembly, chip 
assembly, and verification. 

1. During wirelist preparation, the input wirelist is 
analyzed, names are manipulated to conform to lay­
out naming conventions, and the design is parti­
tioned into pad-ring and core components. 

2. During pad-ring assembly, 1/0 and high-power 
cell/slot assignments are made according to bond­
ing requirements. The ring is then globally routed. 

3. During core assembly, floorplanning for the trunk 
and any random-access memory (RAM) devices 
takes place; timing constraints from several sources 
(pre-layout, user defined, current layout, and pre­
vious layouts) are merged into a worst-case set 
of composite constraints that are used by the 
TimberWolf tool to place and globally route 
the core. Also during this step, the balanced clock 
system and scan chain are synthesized and globally 
routed. The SCAR channel router is then used 
to route the standard-cell portion of the core. If 
the design contains RAMs, they are then placed in 
their floorplanned locations, globally routed, and 
finally attached to the core using the area router, 
Chameleon. 

4. During chip assembly, the interfaces between the 
core, moat, and pad ring are refined. Chameleon is 
used to perform final routing of the ring and the 
moat. Thus far the chip has been completely placed 
and routed using cell outlines containing only 



I SE;o I 
FULL WIRELIST 

WI REUST PREPARATION 
PREPARATION 
AND 
PARTITIONING 

--- ----
PAD-RING 
ASSEMBLY 

---
CORE PLACE ----, 
AND ROUTE 
PREPARATION 

CORE 
ASSEMBLY TIMBERWOLF 

PLACE AND 
GLOBAL ROUTE 

--- - -

CHIP RING AND 

CHIP 
MOAT PREPARATION 

ASSEMBLY 

----
VERIFICATION 

INTERCONNECT 
VERIFICATION 
WIRELIST 
PREPARATION 

PHYSICAL VERIFICATION 
INTERCONNECT VERIFICATION/ 
DESIGN RULE CHECK 

Figure4 
CSALT CAD Layout Overview 

r,. TOPAZ 
I 
I 

: PATHSPICE 

L.---

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-l 
I 
I 
I 
I 
I 
I 
I 
I 

-1. 

dimension information, relative coordinates of bris­
tles, and bristle names. The ring and core cell out­
lines are now replaced with the actual cell layout 
information from the Library, and a complete design 
layout file for the chip is produced. As the file is 
generated, alignment block and substrate ring data 
is added to make the physical representation file 
ready for mask set production. 

5. The following procedures occur during the verifica­
tion phase of the layout: 

• Physical design rules are checked. 

• A wirelist comparison is performed to ensure 
that the layout file is an exact match to the logi­
cal representation of the design. 

• apacitance information from the layout file is 
extracted, and the process proceeds to calculate 
a conservative metal delay (including compensa­
tion for cross talk) for each net in the layout. 
These post-layout metal delays are fed back into 
the timing verification process. In addition, 
SPICE is run on clock nets and other critical nets 
predefined by the user, and the delays are made 
available for timing analyses. 1 

The entire process runs automatically and, when 
possible, steps are run concurrently. Manual interven­
tion is unnecessary and is discouraged; it is used only 
during tool debugging or special customization. 

Process Controller 

CSALT's fully automated process controller (PC) 
ensures optimum use of system resources, orchestrates 
the entire layout process, provides all necessary data 
management functions, and provides the user with 
a very simple set of commands for operating an other­
wise complex process. 

The power of the PC is in its continuous dynamic 
decomposition of every layout into parallel batch 
streams. The PC runs the entire layout process in 
batch mode, taking full advantage of opportunities 
to use multiple processors and run independent parts 
of the layout process in parallel streams. Because it 
hides all the CAD and process complexity from a user, 
no previous CAD or layout skills are required to iterate 
layouts once initial layout parameters have been estab­
lished for a given array. 

Figure 5 illustrates the flow for the CSALT layout 
process. (A and B indicate connectivity points.) Each 
name in the process flow represents the name of a sin­
gle process step. Execution of the layout process 
is controlled by a single command procedure called 
CSALT place and route (CPR). Although other CPR 
command line options exist, CPR is most often used 
in its simplest and most powerful form, CPR PC. This 
command causes CPR to invoke the dynamic PC that 
will analyze the current relationships of a layout data­
base and begin automatic execution of the layout 
process from the next eligible process step. 

Results and Conclusion 

CSALT gate array technology was used extensively 
during the development of the AlphaServer 8000 
server systems. This design methodology removed the 
product's critical dependency on the place-and-route 
portion of the design process. As a result, timing­
correct ASIC layouts were produced in fewer than 72 
hours. In addition, the CSALT ASIC logic designers 
had access to the proven 3.3-V silicon structures 

Digital Technical Journal Vol. 7 No. l 1995 73 



74 

UNPACK 
FLAT 
PREP 
GWLHACK 
CLOCKCHK 
UNBUNDLE 

MULTIASIGN 

Figure 5 

GWLMOD_CHIP 

GWLDIFF 

FCHIP 
SPICECONVERT 
NMERGE_CHIP1 

HLR (PG) 

CSAL T CAD Process Flow Diagram 

Digital Technical Journal 

SCA 
FRAM 
SIDESPACE 
FIXNElWT 
MCHAMMER 
TWOLF 
CTV7PP1 
FTWREROUTE 
GROUTER 
CTV7PP2 
FAR 
SYN 

P2R 
UNTANGLE 
SMALLPLOTBLOCK 
SCAR 
ADSFIXALL 
MORPH 
ACMORPH 

RE CONN 
CARING 
ACRI NG 

PROMOAT 
MOAT 

A2D PADRING 

Vol. 7 No. l 1995 

PLOTCHIP 

WDPCLOCK 
SPXCLOCK 
SPMCLOCK 
CLOCK_WLB 

PLOTSCR 
"SMALL COLOR ROUTE" 

PLOTSBR 
"SMALL B/W ROUTE" 

PLOTLBR 
"LARGE B/W ROUTE" 

PLOTSCB 
"SMALL COLOR BLOCK" 



developed by Digital Semiconductor. CSALT's timing­
driven layout approach for designing and implement­
ing a high-performance ASIC made the AlphaServer 
8000 server systems' aggressive IO-nanosecond bus 
speed a reality, with minimum risk.4 

Although CSALT's implementation pieces may not 
be unique, the approach that was taken to link the set 
of front-end design tools with the back-end layout has 
proven to be unique, with unmatched results. No 
ASIC vendor today (January 1995) can provide logic 
designers with the ability to do their own automated, 
timing-correct layouts from their desktops. 

In less aggressive designs, a large number of working 
layout solutions exist. The number of these solutions 
starts to shrink when the technology is more aggres­
sively used. Iterative timing-driven layout efficiently 
searches through the matrix of possible solutions to 
find a working layout. Coupling timing-driven layout 
with logic synthesis can bring us very close to achieving 
the "silicon compiler" goals of automatically produc­
ing working designs from high-level logic descriptions. 

Acknowledgments 

The authors would like to acknowledge the efforts of 
the following people, without whom the project 
would not have been successful: Meaghan Engdahl, 
Dave Caffo, and Paul Janson. We would also like 
to acknowledge other members of the CSALT team: 
Linda Greska, Kevin Gamache, Dennis Litwinetz, Bill 
Gist, Dave Vanderbeek, John Drasher, John Kennedy, 
and certainly Dick Davis and Darrel Donaldson for 
their CSALT vision. We would also like to acknowl­
edge Professor Carl Sechen and Bill Swartz for their 
continued TimberWolf support. 

References and Notes 

1. SPICE is a general-purpose circuit simulator program 
developed by Lawrence Nagel and Ellis Cohen of the 
Department of Electrical Engineering and Computer 
Sciences, University of California at Berkeley. 

2. TimberWolfMixed Macro/Standard Cell Floorplanning 
and Routing Package is a public domain automatic lay­
out package. Developed and directed by Professor Carl 
Sechen from July 1986 through June 1992 at Yale Uni­
versity and later at the University of Washington, it is 
currently maintained and supported by TimberWolf 
Systems, Inc., Dallas, Texas. 

3. J. Rubenstein, P. Penfield, and M. Horowitz, "Signal 
Delay in RC Tree Networks," IEEE Transactions on 
Computer-aided Design of Integrated Circuits and 
Systems, CAD-2 (3) (July 1983): 202- 211. 

4. D. Fenwick, D. Foley, W. Gist, S. VanDoren, and 
D. Wissell, "The AlphaServer 8000 Series: High-end 
Server Platform Development," Digital Technical 
Journal, vol. 7, no. 1 ( 1995, this issue): 43- 65. 

Biographies 

Jean H. Basmaji 
Jean Basmaji is a hardware consulting engineer in the 
Server Platform Development Group. As the CSALT 
development project leader and ASIC technology man­
ager, he was responsible for the transition of the CSALT 
technology project from advanced development to pro­
duction. Jean has been the technical director of com­
puter-aided engineering and design verification testing 
for the Server Platform Development Group since the 
introduction ofDigital's first multiprocessing computer, 
the VAX 6200 system. Jean joined Digital in 1978 after 
receiving a B.S.E.E. from Lowell Technological Institute 
in 1977. 

Kay R. Fisher 
Kay Fisher joined Digital in 1973 as a hardware instructor 
and course developer. He has more than 20 years of soft­
ware engineering experience in the areas of memory testing, 
fault-tolerant multicomputer systems, and VAX systems. 
Currently a principal software engineer in the Alpha and 
VAX Servers Group, Kay is responsible for the process 
control software for Digital's CAD system. His code runs 
programs in parallel and synthesizes clock drivers, net­
works, and scan chains. Kay received a B.S. in computer 
science (magna cum laude, 1978) from Boston University­
Metropolitan College. 

Frank W. Gatulis 
As supervisor of the CAD segment of the CSALT technol­
ogy team, consultant engineer Frank Gatulis is responsible 
for defining and implementing automated layout tools and 
processes. A graduate of Don Bosco Technical Institute, 
he also attended the B.S.E.E. program at Northeastern 
University. Frank has also supervised the I/0 diagnostic 

Digital Technical Journal Vol. 7 No. I 1995 75 



76 

team for DECsystem 10 and DECsystem 20 products 
as well as the development of the console-based fault 
detection system and automated isolation tool suite 
used on the VAX 8600 and VAX 8650. His architecture 
segments strategies were used to fabricate and test 
multichip units in VAX 9000 systems. Before joining 
Digital in 1973, Frank worked at EG&G where he 
developed real-time picture acquisition, processing, 
and compression software. 

flerbertR... I<olk 
A consulting software engineer who specializes in chip 
routing, Herb Kolk currently supports and enhances the 
CSALT layout process. Prior to that, he was the architect 
of the Chameleon router, which was used for routing gate 
arrays, multichip modules, and CPU boards for the VAX 
9000. This router is still being used in the CSALT process. 
Before joining Digital in 1983, Herb designed software 
systems for the Communications Systems Division of GTE. 
Herb received a B.S.E.E. (with honors) from the Rochester 
Institute ofTechnology in 1973. 

James F. R..osencrans 
Jim Rosencrans is a principal hardware engineer in the 
AlphaServer Engineering Group. As the ASIC technol­
ogist for server system development, Jim supports the 
AlphaServer 8000 series design teams and acts as liaison 
for both the teams and test engineering. In addition to 
leading the CSAL T rnicropackaging definition and design, 
he contributed to the development ofCSALT technology. 
His previous work includes contributions to ASIC and 
ASIC/silicon technology selection, definition, and design 
support. Before joining Digital in 1988, Jim was with NCR 
Microelectronics, where he worked on custom and CMOS 
ASIC design and silicon process development. A member 
of IEEE, Jim received a B.S.E.E. from the University of 
Wisconsin in 1980. 

Digital Technical Journal Vol. 7 No. 1 1995 



The Second-generation 
Processor Module for 
AlphaServer 2100 
Systems 

The second-generation KN470 processor module 
for AlphaServer 2100 systems performs signifi­
cantly better than the first-generation KN460 
module and was designed to be swap-compatible 
as an upgrade. The KN470 processor module 
derives its performance improvements from the 
enhanced architecture of Digital's new Alpha 
21 164 microprocessor, the synchronous design 
of the third-level cache and system interface, 
the implementation of a duplicate tag of the 
third-level cache, and the implementation of 
a write-invalidate cache coherence protocol 
for the multiprocessor system bus. Additional 
design features such as read-miss pipelining, 
system bus grant parking, hidden coherence 
transactions to the duplicate tag, and Alpha 
21164 microprocessor write transactions to the 
system bus back-off and replay were combined 
to produce a higher performance processor 
module. The scope of the project required imple­
menting functionality in system components 
such as the memory, the backplane, the system 
bus arbiter, and the 1/0 bridge, which shipped 
one year ahead of the KN470 module. 

I 
Nitin D. Godiwala 
Barry A. Maskas 

The second-generation KN470 processor module for 
AlphaServer 2100 systems achieves a higher perfor­
mance than the first-generation KN460 module while 
maintaining compatibility with the AlphaServer 2100 
system environment. This paper describes the proces­
sor module project and the resulting design. Topics 
discussed are the elements that contribute to the com­
patibility and to the higher performance: coherence 
protocol, system bus protocol, system bus arbitration, 
system interface and shared data, and docking. Some 
key design trade-offs are described. The paper con­
cludes with a performance summary that presents 
measured attributes of the higher performance 
KN470 processor in the context of the AlphaServer 
2100 family. 

When the AlphaServer 2100 product family was 
being defined in late 1992, the processor module 
performance-over-time roadmap projected three per­
formance variations based on increasing the dock rate 
of the Alpha 21064 microprocessor.1 These modules 
were to be compatible with Digital's mid-range multi­
processor system bus and would support enhanced 
functionality such as direct-mapped 1/0, up to four 
microprocessors, an 1/0 bridge to 32-bit Peripheral 
Component Interconnect (PCI) and Extended Indus­
try Standard Architecture (EISA) buses, and an 1/0 
expansion option module with an 1/0 bridge to a 
64-bit PCI bus.2 Two members of the DEC 4000 
processor design team were assigned to deliver this 
first-generation processor module. At this time, there 
was no goal to develop a second-generation processor 
module. Therefore, the remainder of the team 
designed the arbiter chip and the enhancements 
required in the processor-module system interface 
chips and at the same time contributed to the Alpha 
21164 microprocessor development effort. 

Goals for contributions to the Alpha 21164 micro­
processor development effort were partitioned into 
short- and longer-term goals. A short-term goal was to 
define a system for the new Alpha microprocessor. 3 The 
related longer-term goal was to ensure that the Alpha 
21164 microprocessor could operate in that defined 
system. An architectural study resulted in a proposal 
and a project plan to develop a second-generation 
processor module that extended the performance and 

Digital Technical Journal Vol. 7 No. 1 1995 77 



longevity of the AlphaServer 2100 family. In addition, 
the remainder of the team made requests of the Alpha 
21164 microprocessor team to incorporate specific 
legacy-related AlphaServer 2100 functions such as 
support for 32-byte cache blocks, control of 1/0 
address space read merging, and completion of mem -
ory barriers on the Alpha 21164 microprocessor. The 
business management team accepted the proposal and 
the project plan. The Alpha 21164 microprocessor 
team agreed to support the functionality requests. The 
design team staffing was completed by March 1993, 
and detailed design work began in May 1993. The 
design team's goal was to have a processor module 
ready to accept the Alpha 21164 microprocessor for 
installation when the microprocessor first became 
available. The team met this goal. 

Since the first- and second-generation processor 
modules would operate in the same enclosure and with 
the same power supply, the size and shape (i.e., form 
factor), cooling demands, and power consumption 
of the new module had to be compatible with those of 
the first-generation module. Because of the presence 
of an on-chip, write-back second-level cache and an 
estimated longer access time to that cache from the 
system bus, the Alpha 21164 microprocessor architec­
ture adopted an invalidate-on-write cache coherence 
protocol. The Alpha 21064 microprocessor supported 
an off-chip, write-back second-level cache that has 
a faster access time from the system bus. This faster 
access time enabled the implementation of a good­
performing update-on-write cache coherence proto­
col. Support of these snooping, multiprocessor system 
bus coherence protocols required enhancements to 
the system bus transaction types. This resulted in minor 
logic changes to the memory interface chips and to the 
1/0 bridge chip.4,5 These changes were defined and 
implemented in time for the first-generation system 
power-on. Hence, the system components, the 1/0 
bridge chip, the memory modules, and the system 
bus and backplane are compatible with the first- and 
second-generation processors. This basic difference in 
the system bus coherence protocols prevented the sys­
tem from supporting the coexistence of the first- and 
second-generation processor modules because such 
a configuration has asymmetric attributes. Alpha oper­
ating system software does not support asymmetric 
multiprocessing; symmetry is assumed. 

Another project goal was to maintain the 
AlphaServer 2100 family's position among the indus­
try's leading high-performance server systems. This 
goal was achieved by exploiting the Alpha 21164 
microprocessor's performance through the design of 
the processor module's third~level cache, by imple­
menting a full-duplicate tag of this cache, and by 
implementing a synchronous clocking scheme. 
Combining the processor design attributes with 
a pipelined read transaction of a faster read-access 

78 Digital Technical Journal Vol. 7 No. 1 1995 

system memory module enabled the team to achieve 
the project's goal of designing a higher performance 
processor module and multiprocessor system. 

Overview of the Processor Module 

The KN470 processor module provides an operational 
environment for the Alpha 21164 microprocessor. 
This environment, which is similar to that of the first­
generation KN460 processor module environment, 
includes the following: 

• Alpha 21164 microprocessor-a superscalar, 
superpipelined implementation of the Alpha archi­
tecture with low average cycles per instruction 
because ofits four-instruction issue 

• B-cache-a module or third-level write-back cache 

• System interface-two application-specific inte­
grated circuit (ASIC) chips that interface the Alpha 
21164 microprocessor, B-cache, and duplicate tag 
store to the system bus 

• Duplicate tag store-a tag store of the third-level 
write-back cache 

• System bus clock repeater that provides system bus 
synchronous clocks to the module 

• System bus arbiter that determines which system 
bus node can access the system bus 

• Serial control bus subsystem that includes clock and 
reset control circuitry, a microcontroller with a 
serial interface, serial read-only memory with 
power-on firmware bits, and nonvolatile memory 
for processor configuration parameters 

Figure 1 shows a block diagram of the KN470 
processor module. 

The Alpha 21164 microprocessor is organized with 
an on-chip 8-kilobyte (KB) primary instruction cache 
and an 8-KB write-through data cache, which are 
referred to as first-level caches. In addition, a 96-KB, 
second-level, three-way, set-associative write-back 
cache is implemented on the chip. 

The module design includes a B-cache or third-level 
cache to minimize the miss penalty and to be config­
urable through the use of various densities of similarly 
packaged static random-access memory (RAM) chips. 
Such a design enabled final product definition late in 
the verification process based on static RAM costs and 
delivered performance from the B-cache. The size of 
the B-cache is either 1, 2, 4, 8, or 16 megabytes (MB). 
Each B-cache entry stores 32 bytes of data and the 
associated tag bits and is called a cache block. To facili­
tate read-fill data and victim-write data exchange with 
the system interface, the Alpha 21164 microprocessor 
and the system interface share the B-cache data port. 
The B-cache is controlled by the Alpha 21164 micro­
processor, which has its second-level cache configured 



A 

SYSTEM BUS 

SYSTEM BUS ARBITRATION -
ARBITER 

t SERIAL 
CLOCK AND SYSTEM !--. CONTROL SYSTEM BUS 
SUPPORT CIRCUITRY BUS CLOCK 

t 
REPEATER 

+ 
DUPLICATE SYSTEM 
TAG STORE -- DTAG DATA 

BUS 

ALPHA 21164 
MICROPROCESSOR 

MASK<3:0> 

CMD<3:0>+PARITY 
ADDR<39:4> 

CONTROL_IN 
CONTROL_OUT 

DATA<127:0> 
CHECK<15:0> 

TAG_C (VSDP) 
I TAG<30:20> 

i i 
INDEX<25:4>, I B-CACHE I 

CONTROLS 1 1, 2, 4, 8, OR 16 MB 

Figure 1 
Block Diagram of the KN470 Processor Module 

to operate in 32-byte instead of 64-byte cache block 
mode. This 32-byte mode of operation for the 
second-level cache was the most complex request 
made of the Alpha 21164 microprocessor design 
team. However, this design element was required to 
achieve the AlphaServer 2100 compatibility goal. 

The system interface is a common boundary 
between the system bus, the Alpha 21164 micro­
processor, and the third-level cache. The system inter­
face provides the protocol and circuitry for the Alpha 
21164 microprocessor to read or write devices con­
nected to the system bus. Conversely, the system inter­
face provides the protocol and circuitry for the 
processor module to respond to read or write transac­
tions from the system bus. The system interface com­
prises two identical bit slices of an ASIC. The ASICs 
operate as even and odd slices, based on a mode-select 
pin on the module. The system interface selects the 
operating mode of the arbiter chip. It also encodes the 
system bus transaction type as read or write and then 
supplies a control signal to the arbiter chip. The arbiter 
chip must know the present system bus transaction 
type to remain synchronized with the system bus 

t TAG CONTROLS 

INDEX<25:4> 
BUS<127:0> 

' 

SYSTEM BUS 
CONTROL 

SYSTEM INTERFACE 
2 BIT-SLICE ASICS 

INTERRUPTS 
AND ERRORS 

SYSTEM BUS 
INITIALIZATION 

" 

events and to know when to sample new requests for 
the system bus. 

The module maintains a duplicate copy of tag con -
trol bits of each B-cache block in the duplicate tag 
store_ The duplicate tag store is controlled by the 
system interface and is time multiplexed between sys­
tem bus requests and Alpha 21164 microprocessor 
requests. This ability to pipeline transactions to the 
duplicate tag store from the Alpha 21164 micro­
processor and the system bus allowed the Alpha 
21164 microprocessor's requests to fill predictable 
time slots in parallel to the system bus transactions, 
hidden from the system bus. This is called cycle­
stealing because the coherence transactions requested 
by the Alpha 21164 microprocessor do not require 
arbitration for or use of the system bus cycles. Cycle­
stealing provided more useful system bus bandwidth 
while at the same time reduced the Alpha 21164 
microprocessor latency for coherence transactions to 
the duplicate tag store. 

The clock repeater chips generate complementary 
metal-oxide semiconductor (CMOS)- level clocks 
from positive emitter-coupled logic (PECL)-driven 

Digital Technical Journal Vol. 7 No. 1 1995 79 



backplane clocks. These CMOS-level clocks are skew 
regulated and distributed to the module's compo­
nents. The Alpha 21164 microprocessor has digital­
lock-loop circuitry, which aligns the Alpha 21164 
microprocessor's interface clock to the reference 
clocks that run to all other module components. This 
scheme is basically the synchronous clocking scheme. 

The module includes the system bus arbiter chip. 
The decision to locate this chip on the processor 
instead of the backplane stemmed from concerns over 
compatibility between the first- and second-generation 
processor arbitration algorithms supported by this 
chip. The system bus arbiter chip was designed and fab­
ricated for the first-generation processor and included 
the functionality of the second-generation processor. 
The chip design was completed prior to the design 
of the KN470 processor module's system interface. 
To minimize the chance of design error, the team 
performed extensive simulations to help the project 
realize a full-function, second-pass chip for use in the 
first- and second-generation processor modules. 

The KN470 processor module implements the sys­
tem bus reset control and serial control bus subsys­
tems, with minor modifications, that were designed 
for the first-generation processor module. 

Cache Coherence Protocol 

To improve the in-system performance of the Alpha 
21164 microprocessor and its write-invalidate cache 
coherence protocol, the KN470 module implements 
a duplicate tag store of the B-cache. The Alpha 21164 
microprocessor has two levels of on-chip cache that are 
maintained as a subset of the B-cache. This discussion 
assumes that the first- and second-level caches remain 
coherent with the B-cache and duplicate tag store. 
Operations performed by the Alpha 21164 micro­
processor and system interface maintain the B-cache 
and duplicate tag store subset rule for the on-chip 
caches. The duplicate tag store and the B-cache each 
keep three control bits to maintain coherence with the 
on-chip caches and also with system memory and other 
module caches. The three control bits are called valid 
(V), shared (S), and dirty (D). A combination of con­
trol bits makes up a state of a cache block. The five pos­
sible cache block states are as follows: 

1. VSD = 000 A cache block is either empty or 
removed from the B-cache and hence invalid. 

2. VSD = 100 A cache block is the only cached copy 
in the system. 

3. VSD = 101 A cache block is valid, and this copy 
has been modified more recently than the copy in 
memory. 

4. VSD = 110 A valid cache block may also be 
in another cache. This processor must write or 

80 Digital Technical Journal Vol. 7 No. I 1995 

broadcast write modifications of this block to the 
system bus. 

5. VSD = 111 A valid cache block may also be in 
another cache, and the copy of this block has been 
modified more recently than the copy in memory. 

Cache state transitions are synchronized to system 
bus transaction cycles because the system bus is the 
common point of coherence and coherence conflict 
resolution. 

When the Alpha 21164 microprocessor requests 
a transaction for a cache block to be read or filled from 
system memory into the B-cache and on-chip caches, 
the cache block state is set to VSD = 100 in the dupli­
cate tag store, the B-cache, and the on-chip caches. 
The first-level instruction and write-through data 
caches must maintain only a valid bit. The second-level 
write-back cache must maintain the VSD bits consis­
tent with the B-cache and the duplicate tag store. 

If an Alpha 21164 microprocessor's read trans­
action request is of the type intent-to-modify, then 
the cache block state makes a direct transition to 
VSD = 101. A block in the valid state ofVSD = 100 
will make a transition to VSD = 101 when an Alpha 
21164 microprocessor's request to modify the cache 
state has reached the point of coherence, i.e., the sys­
tem bus. However, the duplicate tag store is maintain­
ing coherence with the system bus, so this request 
must find a nonconflicting cycle to effect the state 
transition. If another processor reads the same block 
before this processor's request has reached the point of 
coherence, then the cache block state makes a transi­
tion to VSD = 110. In this case, the system interface 
updates the shared state to VSD = 110 for the read 
with intent-to-modify transaction before the block is 
modified. Because the block is shared, this processor's 
request to modify the block must now also become 
a broadcast write transaction to the system bus. Once 
the modified block is written to the system bus, 
the next state transition is to VSD = 100. The broad­
cast write transaction is sometimes referred to as an 
unsharing transaction. 

Once a cache block state is valid, i.e., VSD = 100, it 
can be invalidated or set to the state VSD = 000 from 
the system bus by another processor's read with 
intent-to-modify or by a write transaction to that 
block. The Alpha 21164 microprocessor does not 
allow an update of write data from the system bus but 
instead invalidates the block. Invalidation requires the 
duplicate tag store, the B-cache, and the on-chip 
caches to clear their V state. Implementation of system 
bus write transactions that cause block invalidation is 
required to support the cache coherence protocol of 
the Alpha 21164 microprocessor. 

By filtering out system bus transactions that do not 
alter the coherence states of the Alpha 21 164 micro­
processor, the duplicate tag store serves to minimize 



the frequency with which the system bus transactions 
interrupt the microprocessor operations. Without the 
duplicate tag store filtering, the Alpha 21164 micro­
processor would have to be interrupted on every system 
bus transaction, thus limiting the system performance. 

System Bus Protocol 

The KN470 processor module incorporates both an 
enhanced system bus protocol and a system bus arbiter 
that minimizes the arbitration latency. 

Enhancement of Transactions 
For the first-generation AlphaServer 2100 processor, 
the system bus protocol is the same as the one imple­
mented in the DEC 4000 system. This system bus pro­
tocol is a snooping bus protocol in which all bus 
participants are required to monitor system bus trans­
actions and to keep their cached copy of memory 
coherent. For the second-generation processor, the 
designers enhanced the DEC 4000 system bus proto­
col to support the write-invalidate cache coherence 
protocol of the Alpha 21164 microprocessor. 

The DEC 4000 system bus protocol supports four 
types of transactions: read, write, exchange, and 
no operation. The exchange transaction performs a 
victim-write transaction to one memory location and 
a read transaction of another memory location. The 
two transactions are separated by the common lower 
18 bits of address. The exchange transaction combines 
read transactions and victim-write transactions into 
one transaction, sharing the address cycle of the sys­
tem bus. The exchange transaction is used to evict 
modified cache blocks from the caches back to system 
memory to allow a replacement block with a different 
tag to be allocated. 

To support the second-generation processor's 
write-invalidate coherence protocol, transactions were 
added to the first-generation system bus protocol. 
These added transactions were needed to signal other 
processors and the J/0 bridge chip to invalidate 
a block when a block was being read for the purpose of 
being modified. The exclusive-read and exclusive­
exchange transactions were added to the four first­
generation transaction types. The exclusive-read 
transaction is the read transaction that also causes 
cache invalidation by a bystander processor module 
and the 1/0 bridge chip of the block being read. The 
exclusive-exchange transaction is the exchange trans­
action that also causes cache invalidation by a 
bystander processor module and the 1/0 bridge chip 
of the block being read. 

The KN470 module implemented the exclusive 
transaction types to establish private ownership of a 
block. Establishing private ownership to a previously 
shared block enables write transactions to complete 
without having to broadcast write transactions back 

to the system bus. This occurs because the block is 
invalidated by bystanders who were sharing the block. 

The enhancements of the system bus transaction 
types did not affect the memory module. The imple­
mentation of the exclusive indication signal was such 
that memory would decode a read or exchange trans­
action and not know of the exclusive signaling. Because 
the 1/0 bridge chip caches translation addresses for 
direct memory access of devices on the PCI or EISA 
buses, minor modifications were designed into the I/0 
bridge chip to support these enhanced commands. 

Minimization of Arbitration Latency 
The system bus arbiter implemented a bus grant park­
ing or pregrant signaling scheme that minimized the 
arbitration timing overhead. This scheme combined 
with the pipelining of the read-miss commands from 
the Alpha 21164 microprocessor enabled the system 
bus interface to use the available memory bandwidth. 

The arbiter for the first-generation processor fol­
lowed the protocol used in the DEC 4000 system. The 
arbiter samples the requests and then issues the grants 
according to round-robin arbitration rules. The arbi­
tration rules allow processor modules to have fair access 
to the system bus. The elapsed time from when a 
processor makes a system bus request to the arbiter 
until it receives a grant is referred to as the arbitration 
cycle or arbitration overhead. The arbitration overhead 
increases the memory and direct-mapped 1/0 access 
latency, as well as the cache-miss penalty. Typically, the 
arbitration overhead for each processor appears low in 
a multiprocessor system in which bus utilization is 
extremely high. The appearance of low arbitration 
overhead results from the time the system bus waits to 
finish a transaction before the arbiter can issue the next 
grant. However, the arbitration overhead may be as 
high as 20 percent of the transaction time in a system 
configuration in which one processor module is con­
suming the available grants from the arbiter. 

The arbiter used by the second-generation proces­
sor pregrants or parks a grant to the processor module 
whenever the system bus goes idle. This feature elimi­
nates arbitration overhead. The result is a lower miss 
penalty and an ability to sustain a continuous stream of 
read transactions when the bus is not utilized by other 
system bus nodes. This arbiter enhancement does not 
cost additional arbitration overhead for other requests 
because the cost of unparking a grant was eliminated 
through the signaling protocol. This signaling proto­
col enabled the pregranted signal to be negated at the 
same time a new grant signal is asserted. 

The Alpha 21164 microprocessor is capable of 
pending read-miss requests to the system interface. 
These read transaction requests sometimes have an 
associated victim that must be displaced by the 
requested read data. By pipelining these requests in 
relation to the system bus grants, a continuous stream 

Digital Technical Journal Vol. 7 No. I 1995 81 



of back-to-back system bus read or exchange transac­
tion requests can flow because of the parked grant. 
Since the Alpha 21164 microprocessor is capable of 
continued execution while miss requests are pended, 
the processor designers had to carefully schedule the 
use of the B-cache. The fill data coming from system 
memory and the Alpha 21164 microprocessor are in 
contention for use of the B-cache. The system inter­
face minimizes the time that the B-cache is allocated to 
accept the fill data while maintaining the flow of com­
mands into the read miss transaction pipeline from the 
Alpha 21164 microprocessor. By allowing the micro­
processor to have access to the B-cache before and 
after each fill, a continuous flow of transactions was 
realized. The continuous flow of transactions uses the 
available system bus bandwidth. 

Handling of Shared Data 

A shared-database environment in which write trans­
actions are prominent uses the system bus exclusive 
transaction types to establish ownership of the cache 
blocks. These transaction types minimize the system 
bus bandwidth usage by avoiding write broadcast 
transactions of modified blocks. 

In a multiprocessor environment, a block that is 
valid in more than one cache is called a shared block. 
The coherence state ofa shared block is VSD = 110. 
The following example summarizes the problem asso­
ciated with a write transaction to a shared cache block 
in a system bus protocol without the exclusive transac­
tion types. 

Processor A has a modified but unshared cache 
block with state VSD = 101. Processor B wants to 
write the cache block that Processor A has modified. 
Processor B issues a read transaction on the system bus 
and then must immediately follow the read transaction 
with a write broadcast transaction of the modified 
data. The write broadcast transaction must be issued 
by Processor B because the read transaction was 
shared. At the end of the two bus transactions that it 
issued, Processor B's cache block state will be VSD = 
101. Processor A has invalidated its cache block. Thus, 
two bus transactions were required from Processor B 
to write the modified cache block. With fair arbitra­
tion, however, Processor B may not have access to the 
system bus after the read transaction. The write trans­
action may be blocked, thus creating other coherence 
situations. If two or more processors in a system are 
trying to write the same block, Processor B may not 
get access to the system bus to complete the write 
transaction. The system is potentially in deadlock. 

The system bus protocol implemented by the 
KN470 enables the write transaction to complete but 
requires only one system bus exclusive-read transac­
tion. In response to the Alpha 21164 microprocessor's 
request to modify a cache block, the processor initiates 

82 Digital Technical Journal Vol. 7 No. l 1995 

an exclusive-read transaction on the system bus. Other 
processor modules responding to this exclusive-read 
transaction provide the data if their block is dirty, but 
regardless of the dirty state, they also invalidate their 
cache block. The invalidation eliminates the shared 
state. If no other processor module has a dirty block, 
the data is returned from the system memory. The 
processor module that is issuing an exclusive-read 
transaction sets its cache block state to VSD = 101 as 
it fills. The write transaction that is pending in the 
processor can complete without broadcasting a write 
transaction to the system bus. 

A system bus that does not support the exclusive 
transaction types requires a shared write transaction to 
a block to be decomposed into two system bus transac­
tions. This can result in system bus bandwidth satura­
tion. A system bus that supports the exclusive 
transaction types requires only one system bus transac­
tion. In a shared-data environment in which write 
transactions to shared data are the prominent cause of 
cache misses, support for the exclusive transaction 
types helps preserve bus bandwidth. Also, the deadlock 
scenario presented above does not exist. The KN470 
processor write transactions to a cached block consume 
only one system bus transaction and can always com­
plete. The invalidate window does not exist during the 
time it takes for the write transaction to complete. 

The system bus protocol implemented by the 
KN470 module allows forward progress during shared 
write transactions in the system. However, system soft­
ware is expected to avoid repetitive write transactions 
to blocks that are shared without some higher level 
ownership protocol. Write transactions, if issued to 
a shared block by several processors, consume bus 
bandwidth and trigger false invalidations for 
bystanders. This may hinder forward progress and 
affect system performance. 

Support of an Interlock Mechanism 

The system interface implements an address lock reg­
ister as specified in the Alpha Architecture Reference 
Manual to support software synchronization opera­
tions.6 The address lock register in the system interface 
has a signal that reflects the state of a valid bit to the 
Alpha 21164 microprocessor. The microprocessor 
manages the lock address register in the system inter­
face based on sampling this signal during fill transac­
tions from the system bus. 

The Alpha 21164 microprocessor has an internal 
lock register that is maintained consistent with the 
lock register in the system interface, which is referred 
to as the external lock register. The external lock regis­
ter is a backup copy of the Alpha 21164 microproces­
sor's lock register and is used only when instruction 
stream prefetching causes the locked address to be 
evicted from the B-cache. The execution of a load with 



lock instruction by an Alpha 21164 microprocessor 
results in a transaction that sets both internal and 
external lock flags and lock address registers. 

The external lock flag is cleared by the system 
interface if the lock address matches the system bus 
address of either a write transaction or an exclusive 
transaction. The internal lock flag is cleared by the 
Alpha 21164 microprocessor due to system bus probe 
transactions from the write or exclusive transaction to 
a valid cache block. 

The lock address resolution is a single-aligned 
32-byte block and is consistent with the size of cache 
blocks in this system. The Alpha 21164 microproces­
sor has 64-byte internal lock register resolution. Since 
the address of a load to memory and the correspond­
ing store to memory must both be within the same 
16-byte aligned region, the difference in the resolu­
tion of the internal and the external lock registers was 
determined to be insignificant to performance.6 

The KN470 Module and System Bus Clocking 

The KN470 module implements a low-cost synchro­
nous clocking scheme. The scheme exploits the system 
bus clocking to run the Alpha 21164 microprocessor 
synchronous to the system bus. This scheme compen-

CLOCK_IN L - OSCILLATOR ARBITRATION 

CLOCK_IN H - 6, 7, 8, 9 X CHIP 
TPH11 L 
TPHl1 H 

REFERENCE CLOCK 

ALPHA21164 
MICROPROCESSOR 

SYSCLK1 H ~41.66MHZ 

SYSCLK2 H ~ PHASE ALIGNED 
TOTPHl1 H 

Figure 2 
KN470 Clocking Scheme 

sates for the half-cycle correction phase of the Alpha 
21164 microprocessor's digital lock loop (DLL). 

The AlphaServer 2100 system interconnect has an 
edge-to-edge clock architecture, and it implements an 
edge-to-edge data transfer scheme. The microproces­
sor has an internal DLL that synchronizes to a refer­
ence clock supplied by the clock repeater chip. Instead 
of trying to precisely control the clock skew across four 
different chips, data valid windows are set around the 
edge-to-edge data transfer clock edges to avoid setup 
or hold-time issues. This simpler clocking scheme 
takes advantage of the four delivered clock edges per 
cycle from the clock repeater chips. It also enables a 
simpler synchronous boundary between the Alpha 
21164 microprocessor and the system interface. The 
synchronous clocking improves data transfer rates, 
lowers the miss penalty, and improves the pipeline effi­
ciency among the components of the system. 

Figure 2 shows the clocking scheme that is imple­
mented on the KN470 module. The Alpha 21164 
microprocessor accepts a differential clock at twice the 
desired internal clock frequency. The oscillator for the 
processor runs at 6, 7, 8, or 9 times the 41.66 mega­
hertz (MHz) system bus clock frequency. The DLL 
subtracts one half of an internal clock cycle to maintain 
phase alignment with the system bus reference clock. 

~ 

REPLICA LOOP 
BALANCED TO - ALPHA21164 

+- MICROPROCESSOR 

t 
LOOP LOOP 41.66 MHZ 
OUT IN PHl1 H, PHl3 H 

TPHl1 H SYSTEM BUS 

>---- TPHl1 L CLOCK PHl1 L, PHl3 L 

f 
TPHl3 H REPEATER 

TPHl3 L CHIPS 

SYSTEM 

+ BUS 

TPHl3 L TPHl3 H 

- TPHl1 H 
TPHl1 L i-- TPHl1 H 

INTERFACE ASIC-1 

t 
TPHl3 L TPHl3 H 

- TPHl1 H 
TPHl1 L i-- TPHl1 H 

INTERFACE ASIC-2 

v 

Digital Technical Journal Vol. 7 No. I 1995 83 



This DLL scheme assumes that the internal clock fre­
quency runs slightly faster than the system bus clock 
frequency. Given these scaling rates, the interface 
between the Alpha 21164 microprocessor and the sys­
tem interface are locked at the system bus clock rate. 

The AlphaServer 2100 backplane distributes PECL­
level system bus clocks PHI! L and PHI! H, and 
PHI3 Land PHI3 H differentially to each module on 
the system bus. Each module receives, terminates, and 
capacitively couples the clock signals into PECL-to­
CMOS-level converters to provide four edges per sys­
tem bus clock cycle. This level conversion is completed 
in the clock repeater chips. System bus handshake and 
data transfers occur from clock edge to clock edge and 
thus form a primary clock in the system. The remain­
ing three edges in a clocking cycle are secondary 
clocks. The clock repeater chip, a custom CMOS clock 
chip, provides module-to-module clock skew of less 
than 1 nanosecond ( ns) and is implemented to provide 
skew-regulated clock copies to be consumed by com­
ponents on the module. The skew regulation is main­
tained by the repeater chip through the use of a 
feedback path or replica loop of the primary clock 
path. The KN470 module uses this clock repeater chip 
to generate the references for synchronous clocking 
from a central point. 

Components on the module are clocked by outputs 
from the clock repeater chips. The clock repeater chips 
generate six copies of the primary clock TPHI 1 H. 
TPHil H clocks are distributed as follows: one copy 
to the Alpha 21164 microprocessor, two copies to 
each of the two system interface ASICs, and one copy 
to the system bus arbiter chip. The Alpha 21164 
microprocessor uses its copy of the primary clock as a 
reference clock for its DLL. The data transfers between 
the microprocessor and the system interface are edge­
to-edge transfers and are referenced to the primary 
clock. The clock repeater chip generates three sec­
ondary clocks: TPHil L, TPHI3 H, and TPHI3 L. 
The clock-edge relationships among these four clocks 
are specified such that each clock edge is 90 degrees 
out of phase with the other two clock edges. The rela­
tionships among the different clock phases are shown 
in Figure 3 for the case of the Alpha 21164 oscillator 
with a frequency six times that of the system bus clock. 
The system interface uses all three secondary clocks for 
on-chip data transfers, whereas the arbiter chip uses 
one secondary clock, TPHI 1 L. 

This synchronous clocking scheme works well if the 
driver turn-on and turn-off times are extremely fast for 
all components. However, the technologies selected 
could not guarantee such speed. The Alpha 21164 

i------ 24-NS SYSTEM BUS CYCLE TIME ___ ___, 

...J 
< 

TPH13 L 

TPH11 L 

TPHl3 H 

TPHl1 H 
(TOASIC-1) 

2 TPHl1 H 
~ (TO ASIC-2) 

TPHl1 H 
(TO ARBITRATION CHIP) 

TPHl1 H 
(TO ALPHA 21164) 

250 MHZ 
(4·NS DELTA) 
(ALPHA 21164 CYCLE TIME) 

SYSCLK1/2 H 

t----- 12NS----1---- 12NS -----+---- 12NS ---~ 

...... _ _ _ SIGNIFICANT RISING CLOCK EDGES - - -~• 

Figure 3 
Relationships among Different Clock Phases 

84 Digital Technical Journal Vol. 7 No . 1 1995 



microprocessor driver turn-on and turn-off times are 
fast, but the ASICs have slow turn-on and turn-off 
times. To compensate for the fast and slow driver char­
acteristics, the edge-to-edge clocking scheme required 
a modification. The Alpha 21164 microprocessor uses 
its copy of TPHil H as the reference clock edge 
to align its SYSCLKl/2 H-generated interface out­
put clocks. Though SYSCLKl/2 H does not physi­
cally connect to the system interface, the Alpha 21164 
microprocessor uses the internal copy of the 
SYSCLKl/2 H edge to either drive data or receive 
data. The system interface uses its copy of the refer­
ence clock as the data receive edge for signaling from 
the Alpha 21164 microprocessor. To drive the data 
to both the microprocessor and the B-cache, the sys­
tem interface uses the TPHI3 L secondary clock, 
which is phase-delayed 90 degrees from the primary 
clock TPHil H. 

The above clocking scheme achieves single-clock, 
edge-to-edge data transfer rates without imposing 
overly strict constraints on clock routing and layout. 
The scheme can withstand larger than 1 ns of clock 
skew and compensates for the Alpha 21164 micro­
processor's DLL half-cycle correction between the ref­
erence clock and SYSCLKl /2 H. 

Design Trade-offs 

The KN470 module design achieved aggressive sched­
ule goals and achieved lower cost by means of the bit­
slice design of the system interface. Also, the higher 
performance goal was realized while keeping the 
design complexity at a moderate level. 

The bit-slice design of the system interface was 
motivated by the organization of the Alpha 21164 
microprocessor's 64-bit error-correcting code­
protected data bus. This forced at least a 64-bit slice 
organization. Other organizations were found to have 
too many pins or would have encountered system bus 
signal integrity problems because of long stubs and 
additional loads. The decision to also include the 
address and control functions was further motivated 
by the project's human resource constraints and its 
spending constraints. Designing one ASIC as a slice to 
implement the 128-bit-wide system interface was 
found to be the best choice. 

The system interface controls the address and data 
paths between the Alpha 21164 microprocessor and 
the system bus. The system interface does not stall the 
system bus on transactions that require cache state 
changes in the B-cache. Instead, the interface posts 
a pended request to the processor for changing the 
cache state of the B-cache. The system interface stalls 
the system bus when the processor has not acknowl­
edged a previously pended request and the present 
transaction on the system bus needs a cache state 
change request. At the cost of increased complexity, 

the design could have been implemented such that the 
system bus would not stall in the absence of acknowl­
edgments of previously pended requests. This level 
of complexity avoided the more complex issues of 
managing a queue of block invalidate, set block to 
shared, and read block transaction requests. 

The KN4 70 module design implements a scheme of 
write transaction back-off or replay that exploits the 
transaction replay queue of the Alpha 21164 micro­
processor. This replay functionality helps the system 
interface handle cache state changes when simultane­
ous requests to write to the system bus and to invali­
date from the system bus are made to the same cache 
block. The designers simplified the cache coherence 
management and logic design by avoiding the use of 
a pended write transaction in the system interface, 
which would have required a one-block write cache. 

A write transaction from the Alpha 21164 micro­
processor to the system bus is not considered com­
plete until the system bus is granted. This nonpended 
scheme for write transactions enables write transaction 
replay from the Alpha 21164 microprocessor and 
avoids the requirement for the system interface to pre­
serve logic states if a system bus transaction takes 
precedence. When the system bus transaction takes 
precedence, the system interface removes the arbitra­
tion request, signals the Alpha 21164 microprocessor 
to replay the write transaction, and flushes all states 
associated with the write transaction. The Alpha 21164 
microprocessor must determine whether the write 
transaction has been affected by the change in its cache 
state and then decide to replay the write transaction or 
to perform another transaction such as a read transac­
tion to revalidate the block. 

Removing a system bus request from the arbiter 
chip rather than converting the write transaction to a 
no-operation transaction avoided a livelock condition. 
The livelock condition could have resulted from the 
system interface's completion of a no-operation trans­
action and re-requesting the system bus to complete 
the write transaction. While waiting for the grant to 
this second arbitration request, the system bus could 
force the Alpha 21164 microprocessor to replay the 
write again. In addition to avoiding the livelock condi­
tion, the replay scheme has the additional benefit of 
conserving bandwidth by not issuing no-operation 
transactions while the system bus interface is waiting 
for the Alpha 21164 microprocessor to replay the 
write transaction. 

Removing a system bus request in response to 
other bus transactions reduces the probability of a 
timely completion of the write transaction from the 
Alpha 21164 microprocessor. More complex design 
approaches increase the probability that the write 
transaction will complete, but they do not guarantee 
the completion. This is a result of the uncertain time 
for a response from the Alpha 21164 microprocessor 

Digital Technical Journal Vol. 7 No. l 1995 85 



to replay the write transaction in relation to the next 
system bus grant. The designers chose the simpler 
implementation to reduce logic design complexity and 
verification time. 

Performance of AlphaServer 2100 Systems with 
KN470 Modules 

To validate the improved performance goal of the 
KN470 processor module in AlphaServer 2100 sys­
tems running Digital UNIX (formerly DEC OSF/1) 
version 3.2B, project engineers measured several 
industry-standard benchmarks. A brief description of 
each benchmark follows. Table l lists the benchmarks 
that were run on an AlphaServer 2100 Model 5/250 
system, the number of processor modules in a config­
uration for each benchmark, the measured estimates 
or unaudited results of the benchmark, and the per­
formance gain. Performance gain is reported as a ratio 
of the KN470 result to the top-performing, first­
generation KN460 result. The ratios demonstrate that 
the KN470 processor module achieves the primary 
project goal by providing more performance to 
AlphaServer 2100 systems than the first-generation 
KN460 processor. 

The AlphaServer 2100 Model 5/250 system uses 
the KN470 processor module that incorporates the 
Alpha 21164 microprocessor operating at 250 MHz 
with a 4-MB B-cache. The AlphaServer 2100 Model 
4/275 system uses the KN460 processor module with 
the Alpha 21064 microprocessor operating at 275 
MHz with a 4-MB B-cache. The AlphaServer 2100 

Table 1 

system remained fixed as the processor models were 
swapped for these performance measurements. 

The Standard Performance Evaluation Corporation 
(SPEC) was formed to identify and create objective 
sets of applications-oriented tests, which can serve as 
common reference points. SPEC CINT92 is a good 
base indicator of CPU performance in a commercial 
environment. This benchmark is the geometric mean 
of ratios by which the six benchmarks in this suite 
exceed the performance of the reference machine. 
SPEC CFP92 may be used to compare floating-point 
intensive environments, typically engineering and 
scientific applications. SPEC CFP92 is the geometric 
mean of ratios by which the 14 benchmarks in this 
suite exceed the performance of the reference machine. 
SPEC Homogeneous Capacity Method benchmarks 
test multiprocessor efficiency. They provide a fair mea­
sure for the processing capacity of a system, namely, 
how much work the system can perform in a given 
amount of time. The SPECrate is a capacity measure. 
It is not a measure of how fast a system can perform 
any task but of how many of those tasks the system 
completes within an arbitrary time interval. 

Developed by AIM Technology, the AIM Suite III 
Benchmark Suite was designed to measure, evaluate, 
and predict UNIX multiuser system performance. The 
benchmark suite uses 33 functional tests, and these 
tests can be grouped to reflect the computing activities 
of various types of applications. The AIM Performance 
Ratings identify the maximum performance of the 
system under optimum usage of CPU, floating-point, 
and disk caching. At a system's peak performance, an 

Performance Data for an AlphaServer 2100 System That Incorporates the KN470 Processor Module 

Performance Gain 
Number of Processor Expressed As a Ratio of 
Modules per AlphaServer 2100 Model 5/250 Performance 

Benchmark Configuration Model 5/250 to Model 4/275 Performance 

SPEC CINT92 
SPECint92 1 277 1.4 
SPECrate_int92 4 24,996 1.4 

SPEC CFP92 
SPECfp92 1 410 1.4 
SPECrate_fp92 4 37,926 1.4 

AIM Suite Ill Benchmark Suite Performance (Estimated) 
Performance Rating 2 396 
Maximum User Loads 2,400 1.4 
Performance Rating 4 719 
Maximum User Loads 3, 100 1.3 

UNPACK (MFLOPS) 
1000 X 1000 4 1,022 1.6 

Mccalpin 
copy 2 171 1.28 
scale 2 169 1.27 
sum 2 162 1.25 
triad 2 162 1.27 

86 Digital Technical Journal Vol. 7 No. 1 1995 



increase in the workload will cause a deterioration in 
performance. The AIM Maximum User Load Rating 
identifies system capacity under heavy multitasking 
loads, where disk performance also becomes a signifi­
cant factor. Throughput is the total amount of work 
the system processes, measured in jobs per minute. 
Maximum throughput is the point at which the system 
is able to process the most jobs per minute. 

The UNPACK benchmark is a linear equation solver 
written in FORTRAN. UNPACK programs consist of 
floating-point additions and multiplications of matri­
ces. The UNPACK 1000 X 1000 solves a l,OOO-by-
1,000 matrix of simultaneous linear equations. The 
result is a measure of the execution rate in millions of 
floating-point operations per second (MFLOPS). 

The McCalpin benchmark is a public domain set of 
programs that measures the effective memory band­
width available to each processor in MB per second. 
The four parts of this benchmark, which are shown in 
Figure 4, perform a double-precision operation j 
times, where j increments 2 million times. Often, the 
four numbers are averaged to show an effective mem­
ory bandwidth rating for the configuration. 

Table 2 shows estimated AIM Suite III Benchmark 
Suite performance scaling for AlphaServer configura­
tions of one to four processor modules. These results 
validate improvements in the ability ofKN470 proces­
sor modules to scale in multiprocessor configurations. 

Summary 

The implementation of the write-invalidate coherence 
protocol combined with synchronous clocking, a 
duplicate tag store, and pipelining cache-miss requests 

copy cCj) = aCj) 
scale bCj) = 3.0 * cCj) 

sum cCj) = aCj) + bCj) 
triad aCj) = b(j) + 3.0 * cCj) 

Figure4 
The Four Parts of the McCalpin Benchmark 

Table 2 

led to a more efficient use of the system bus band­
width. A higher complexity design could have been 
realized but only at the risk of missing schedule dead­
lines. The KN470 processor development project 
achieved the goals of AlphaServer 2100 compatibility 
and performance improvement that were established 
early in the project. 

Acknowledgments 

The development of this new generation of processor 
and its integration into the AlphaServer 2100 family 
required the outstanding dedication and contribu­
tions from many individuals. The authors wish to 
extend a large thank you to Steve Holmes for believing 
in and supporting this project. The authors also wish 
to acknowledge the key contributors to the project. 
The core design team of Chet Pawlowski, Jim Padgett, 
Judy Weiss Prescott, and Gary Zeltser devoted long 
hours from the concept development through the 
empirical verification and the manufacturing startup 
of this processor module and system model. The veri­
fication team of Abdollah Ataie, Erik Debriae, 
Norbert Eng, Jeff Metzger, Don Caley, Dick Beaven, 
and Ginny Lamere proved the design's integrity. Andy 
Ebert provided the ASIC test strategy and applications 
support. Peter Woods and Traci Post were responsible 
for the serial control subsystem and diagnostics. 
Stephen Shirron made the Open VMS system boot on 
the new machine, and Kevin Peterson and Harold 
Buckingham provided the firmware and console bits 
and consultation regarding software issues. Janet 
Walsh and Jeff Kerrigan contributed operations 
support. Steve Brooks, Rich Freiss, and Dean Gagne 

;copy a to c 
;multiply c times 3, store 
; result in b 
;add a to band store inc 
;multiply c times 3, add to 
; b, store result in a 

AIM Suite Ill Benchmark Suite Performance Scaling (Estimated) 

AlphaServer 2100 System 

Number of Processor Modules 2 3 4 
Maximum Throughput Jobs/Minute 2, 178 3,882 5,249 7,047 
Model 5/250 Scaling 1.0 1.8 2.4 3.2 

Maximum Throughput Jobs/Minute 1,451 2,229 2,998 3,587 
Model 4/275 Scaling 1.0 1.5 2.1 2.5 

Digital Technical Journal Vol. 7 No. 1 1995 87 



88 

developed the operating system software that supports 
this system. Simon Steely, Zarka Cvetanovic, and John 
Shakshober carried out performance analysis and 
validations. John Edmondson, Pete Bannon, Anil 
Jain, and Paul Rubinfeld designed the KN470-specific 
functionality in the Alpha 21164 microprocessor. 

References 

1. F. Hayes, "Design of the AlphaServer Multiprocessor 
Server Systems," Digital Technical Journal, vol. 6, 
no. 3 (Summer 1994): 8-19. 

2. B. Maskas, S. Shirron, and N. Warchol, "Design and 
Performance of the DEC 4000 AXP Departmental 
Server Computing Systems," Digital Technical 
Journal, vol. 4, no. 4 (Special Issue 1992): 82-99. 

3. J. Edmondson et al., "Internal Organization of the 
Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS 
RlSC Microprocessor," Digital Technical Journal, 
vol. 7, no. 1 (1995, this issue): 119- 135. 

4. J. Hennessy and D. Patterson, Computer Architecture: 
A Quantitative Approach (San Mateo, Calif.: Morgan 
Kaufmann, 1990): 467- 474. 

5. A. Russo, "The AlphaServer 2100 1/0 Subsystem," 
Digital Technical Journal, vol. 6, no. 3 (Summer 
1994): 20-28. 

6. R. Sites, ed., Alpha Architecture Reference Manual 
(Burlington, Mass.: Digital Press, Order No. EY-1520E­
DP, 1992). 

Biographies 

Nitin D. Godiwala 
Nitin Godiwala is a principal engineer in Digital's Server 
Product Development Group. His area of expertise is 
digital system architecture and pipelined machines. As 
a contributor to the AlphaServer 2100 server product, 
he was the project leader and principal architect of the 
arbitration ASIC and the system interface ASICs for the 
Alpha 21064 and 21164 microprocessor-based proces­
sor modules. In previous work, he was a principal archi­
tect and designer of the system interface ASIC for the 
DEC 4000 processor module. Before coming to Digital 
in 1986, Nitin worked for Analogic Corp., Gould Modicon, 
and Honeywell Inc. He received a B.E. from Bombay 
University and an M.S. in computer and electrical engi­
neering from the University of Wisconsin, Madison. 
He holds four patents and has eight patents pending. 

Digital Technical Journal Vol. 7 No. l 1995 

Barry A. Maskas 
A consultant engineer in Digital's Server Product Devel­
opment Group, Barry Maskas was the project leader 
responsible for the development of the Alpha 21164 
microprocessor-based AlphaServer 2100 and 2000 pro­
cessors and systems. He is currently involved in further 
Alpha-based server system development work. In earlier 
work, Barry was the project leader and architect for the 
DEC 4000 system bus, backplane, and processor modules 
and for the architecture and development of custom VLSI 
peripheral chip sets for VAX 4000 and MicroVAX systems. 
He was also co-designer of the MicroVAX II processor 
and memory modules. Barry joined Digital in 1979 after 
receiving a B.S.E.E. from Pennsylvania State University. 
He holds eight patents. 



The Design and 
Verification of the 
AlphaStation 600 
5-series Workstation 

The AlphaStation 600 5-series workstation 
is a high-performance, uniprocessor design 
based on the Alpha 21164 microprocessor and 
on the PCI bus. Six CMOS ASICs provide high­
bandwidth, low-latency interconnects between 
the CPU, the main memory, and the 1/0 sub­
system. The verification effort used directed, 
pseudorandom testing on a VERILOG software 
model. A hardware-based verification technique 
provided a test throughput that resulted in a 
significant improvement over software tests. 
This technique currently involves the use of 
graphics cards to emulate generic OMA devices. 
A PCI hardware demon is under development to 
further enhance the capability of the hardware­
based verification. 

I 
John H . Zurawski 
John E. Murray 
Paul J. Lemmon 

The high-performance AlphaStation 600 5-series 
workstation is based on the fastest Alpha microproces­
sor to date-the Alpha 21164.1 The 1/0 subsystem 
uses the 64-bit version of the Peripheral Component 
Interconnect (PCI) and the Extended Industry 
Standard Architecture (EISA) bus. The AlphaStation 
600 supports three operating systems: Digital UNIX 
(formerly DEC OSF/1), OpenVMS, and Microsoft's 
Windows NT. This workstation series uses the 
DECchip 21171 chip set designed and built by 
Digital. These chips provide high-bandwidth, low­
latency interconnects between the CPU, the main 
memory, and the PCI bus. 

This paper describes the architecture and features 
of the AlphaStation 600 5-series workstation and the 
DECchip 21171 chip set. The system overview is first 
presented, followed by a detailed discussion of the 
chip set. The paper then describes the cache and mem­
ory designs, detailing how the memory design evolved 
from the workstation's requirements. The latter part 
of the paper describes the functional verification of the 
workstation. The paper concludes with a description 
of the hardware-based verification effort. 

System Overview 

The AlphaStation 600 5-series workstation consists of 
the Alpha 21164 microprocessor, a third-level cache 
that is external to the CPU chip, and a system chip set 
that interfaces between the CPU, the memory, and the 
PCI bus. The DECchip21171 chip set consists of three 
designs: a data slice, one PCI interface and memory­
control chip ( called the control chip), and a miscella­
neous chip that includes the PCI interrupt logic and 
flash read-only memory (ROM) control. The Intel 
82374 and 82375 chip sets provide the bridge to the 
EISA bus.2 Figure 1 shows a block diagram of the 
workstation. 

The SysData bus transfers data between the proces­
sor, the CPU's tertiary cache, and the data slices. 
The 128-bit-wide SysData bus is protected by error­
correcting code (ECC) and is clocked every 30 
nanoseconds (ns). The data slices provide a 256-bit­
wide data path to memory. Data transfers between the 

Digital Technical Journal Vol. 7 No. 1 1995 89 



REAL-TIME 
CLOCK 
051287 

OPERATOR 
CONTROL 
PANEL PCD8584 

FRONT PANEL 
LCD DISPLAY 

EISA 
CONFIGURATION 
RAM 

KEYBOARD AND 
MOUSE 8242 

PCI TO SCSI CARD 

OPTION SLOTS: 
3- 64-BIT PCI 
1 • 32-BIT PCI 
1· PCIIEISA 
3, EISA 

X-BUS 
~--F_LO_P_P_Y_DR_IV_E--...o 

i---S=E=R~IAL~PO~R~T-o 

COMBO SERIAL PORT O 4 T CHIP ,...._ ____ _ 

BUFFER 87312 PARALLEL PORT 

l
HEADPHONES it-' 

AUDIO 

¢::Pc=,=Bu=s=::===~ :~~E 1¢:=E=isA=B=u=s=:'..J 
64-BIT 

Figure 1 

ar 
SYSDATA 
128-BIT 
ECC 

DATA 
SLICE 

110 
DATA 
BUS 

AlphaStation 600 5-series Workstation Block Diagram 

PCI and the processor, the external cache (typically 
4 megabytes [MB]), and memory take place through 
the control chip and four data slices. The control chip 
and the data slices communicate over the 64-bit, ECC­
protected I/0 data bus. 

The major components and features of the system 
board are the following: 

• The Alpha 21164 microprocessor supports all 
speed selections from 266 to 333 megahertz 
(MHz). 

• The plug-in, external write-back cache (2 MB to 
16 MB) has a block size of 64 bytes. Access time is 
a multiple of the processor cycle time and is 
dependent on the static random-access memory 
(SRAM) part used. With 12-ns SRAMs, typical 
access times are 24 ns for the first 128 bits of data, 
21 ns for remaining data. 

• The system board contains a 256-bit data path to 
memory (284 megabytes per second [MB/s] for 
sustained CPU reads of memory). 

90 Digital Technical Journal Vol. 7 No. I 1995 

CONTROL SIGNALS 

MEMORY BANK O 

• From 32 MB to 1 gigabyte (GB) of main memory 
can be used in industry-standard, 36-bit, single 
in-line memory modules (SIMMs). All memory 
banks support single-sided and double-sided 
SIMMs. 

• Eight option slots are available for expansion: four 
PCI, three EISA, and one PCI/EISA shared slot. 
The system design minimized logic on the mother 
board in favor of more expansion slots, which 
allow customers to configure to their require­
ments. The system uses option cards for small 
computer systems interface (SCSI), Ethernet, 
graphics, and audio. 

• The system supports 64-bit PCI address and data 
capability. 

• Due to its synchronous design, the system's 
memory, cache, and PCI timing are multiples of 
processor cycle time. 

• The system provides an X bus for the real-time 
clock, keyboard controller, control panel logic, 
and the configuration RAM. 



Data Slice Chips 
Four data slice chips implement the primary data path 
in the system. Collectively, the data slices constitute a 
32-byte bus to main memory, a 16-byte bus to the 
CPU and its secondary cache, and an 8-byte bus to the 
control chip (and then to the PCI bus). 

Figure 2 shows a block diagram of the data slice 
chip. The data slice contains internal buffers that pro­
vide temporary storage for direct memory access 
(DMA), 1/0, and CPU traffic. A 64-byte victim buffer 
holds the displaced cache entry for a CPU fill opera­
tion. The Memory-Data-In register accepts 288 bits 
(including ECC) of memory data every 60 ns. This 
register clocks the memory data on the optimal 15-ns 
clock to reduce memory latency. The memory data 
then proceeds to the CPU on the 30-ns, 144-bit 
bidirectional data bus. A set offour, 32-byte 1/0 write 
buffers help maximize the performance of copy opera­
tions from memory to 1/0 space. A 32-byte buffer 
holds the 1/0 read data. Finally, there are a pair of 
DMA buffers, each consisting of three 64-byte storage 
areas. DMA read operations use two of these three 
locations: the first holds the requested memory data, 
and the other holds the external cache data in the case 
of a cache hit. DMA writes use all three locations: one 
location holds the DMA write data, and the other two 
hold the memory and cache data used during a DMA 
write merge. 

VICTIM 
BUFFER 

CPU VICTIM PATH 

The data slice allows for simultaneous operations. 
For instance, the 1/0 write buffers can empty to the 
control chip (and then to the PCI) while a concurrent 
read from CPU to main memory is in progress. 

Control Chip 
The control chip controls the data slices and main 
memory and provides a fully compliant host inter­
face to the 64-bit PCI local bus. The PCI local bus 
is a high-performance, processor-independent bus, 
intended to interconnect peripheral controller com­
ponents to a processor and memory subsystem. The 
PCI local bus offers the promise of an industry­
standard interconnect, suitable for a large class of com­
puters ranging from personal computers to large 
servers. 

Figure 3 shows a block diagram of the control chip. 
The control chip contains five segments oflogic: 

• The address and command interface to the Alpha 
21164 microprocessor 

• The data path from the PCI bus to the data slices 
by means of the 1/0 data bus 

• DMA address logic, including a 32-entry scatter/ 
gather (S/ G) map (This is discussed in the section 
Scatter/Gather Address Map.) 

• Programmed 1/0 read/write address logic 

• The memory address and control logic 

TO THE 
o----. ::,~ MEMORY 

BANKS 

CPU READ MISS PATH 

DATA 
FROM/TO 
21164CPU 

I 

1/0 READ 110 READ 
BUFFER PATH 

1/0 WRITE 
PATH 

"---------

Figure2 
Data Slice Block Diagram 

110 DATA 
BUS (TO 
CONTROL 
CHIP) 

DMA 
READ 
PATH 

I 

DMA READ DATA PATH 

DMA 
WRITE 
PATH 

------------1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PCI I 
WRITE MEMORY B·CACHE I 

----- - ----- ------• 

: __ __ ____ _ __ _ ___ DMA READ/WRITE BUFFERS _ _ ___ __ _ __ _ _ ____ 
1 

Digital Technical Journal Vol. 7 No. I 1995 91 



1/0 DATA BUS 
(TO DATA SLICES) 

r--------------------------
' 21164 COMMAND AND ADDRESS LOGIC PCI DATA-PATH 

COMMAND AND LOGIC 
ADDRESS r<I-+------- -----, 
FROM/TO 
21164 CPU 

MEMORY 1/0 

FLUSH 
ADDRESS 

PORT PORT 

MEMORY 
LOGIC 

MEMORY 
CONTROL 

ADDRESS AND 
CONTROL 

OMA READ/WRITE 
AND TLB MISS ADDRESS 

VO ADDRESS LOGIC 

BYPASS PATH 

1/0ADDRESS 
QUEUE 

1/0 READ PATH 

PCIDATA 
BYPASS 

DEVICE 
PCI TARGET SELECT 
WINDOW 
LOGIC 

OMA WRITE PATH PCI DATA/ 
- ~--+-..____. ADDRESS •-------< 

1/0 READ/WRITE 
ADDRESS FOR PCI 

OMA ADDRESS LOGIC 

SCATIERIGATHER TLB 

REGISTER 

PCI 
BUS 

~--------------------J '----------------------------

Figure 3 
Control Chip Block Diagram 

CPU Interface A three-deep queue can hold two out­
standing read requests, together with the address of 
a victim block associated with one of these read 
requests. During a OMA write, the Flush Address reg­
ister holds the address of the cache block that the CPU 
must move to memory (and invalidate in the cache). 
In this manner, the system maintains cache coherency 
during OMA write operations. 

PCI Address Space Windows PCI devices use address 
space windows to access main memory. During discus­
sions with the developers of the operating system, we 
determined that four PCI address space windows 
would be desirable. EISA devices use one window. 
S/G mapping uses a second. The third window 
directly maps a contiguous PCI address region to a 
contiguous region of main memory. The fourth win­
dow supports 64-bit PCI addresses. Future system 
designs may provide more than 4 GB of main memory, 
thus requiring the 64-bit address window. 

DMA Write Buffering The control chip provides a 
single-entry, 64-byte OMA write buffer. Once the 
buffer is full, the data is transferred to the OMA buffers 
in the data slices. The design can support 97-MB/ s 
OMA write bandwidth from a 32-bit PCI device. 

92 Digital Technical Journal Vol. 7 No. 1 1995 

OMA Read Buffering In addition to the two 64-byte 
buffers inside the data slice, the control chip has two 
32-byte OMA read buffers. These buffers prefetch 
OMA read data when the initiating PCI read com­
mand so indicates. This arrangement provides data to 
a 64-bit PCI device at a rate of more than 260 MB/s. 

Scatter/Gather Address Map The S/G mapping 
address table translates contiguous PCI addresses to 
any arbitrary memory address on an 8-kilobyte (KB) 
granularity. For software compatibility with other 
Alpha system designs, the S/ G map uses a translation 
lookaside buffer (TLB).3 The designers enhanced the 
TLB: First, each of the eight TLB entries holds four 
consecutive page table entries (PTEs). This is useful 
when addressing large 32-KB contiguous regions on 
the PCI bus. For instance, the NCR810 PCI-to-SCSI 
device requires nearly 24 KB of script space.4 Second, 
software can lock as many as one half of the TLB 
entries to prevent the hardware-controlled replace­
ment algorithm from displacing them. This feature 
reduces TLB thrashing. 

Programmed 1/0 (PIO) Writes The designers focused 
on improving the performance of the functionality 
that allows a processor to copy from memory to I/0 



space. High-end graphics device drivers use this func­
tionality to load the graphics command into the 
device's first-in, first-out (FIFO) buffer. The data slice 
has four buffers, and the control chip contains the cor­
responding four-entry address queue. Four buffers 
hold enough 1/0 write transactions to mask the 
latency of the processor's read of memory. The control 
chip provides two additional 32-byte data buffers. 
While one drives data on the PCI bus, the other 
accepts the next 32 bytes of data from the data slices. 

Memory Controller The memory controller logic in 
the control chip supports as many as eight banks of 
dynamic random-access memory (DRAM). The cur­
rent memory backplane, however, provides for only 4 
banks, allowing from 32 MB to 1 GB of memory. The 
memory controller supports a wide range of DRAM 
sizes and speeds across multiple banks in a system. 
Registers program the DRAM timing parameters, the 
DRAM configuration, and the base address and size 
for each memory bank. The memory timing uses a 15-
ns granularity and supports SIMM speeds ranging 
from 80 ns down to 50 ns. 

Cache Design 

The Alpha 21164 microprocessor contains significant 
on-chip caching: an 8-KB virtual instruction cache; an 
8-KB data cache; and a 96-KB, 3-way, set-associative, 
write-back, second-level mixed instruction and data 
cache. The system allows for an external cache as a 
plug-in option. This cache is typically 2 MB to 4 MB in 
size, and the block size is 64 bytes. The access time for 
the external cache depends on the CPU frequency and 
the speed variant of the cache. Typically, the first data 
requires 7 to 8 CPU cycles; subsequent data items 
require 1 or 2 fewer cycles. The actual value depends 
on both the minimum propagation time through the 
cache loop and on the CPU cycle time. The external 
cache data bus is 16 bytes wide, providing almost 
1 GB/ s of bandwidth with a 333-MHz CPU and a 
5-cycle cache access. 

The processor always controls the external cache, 
but during a cache miss, the system and the processor 
work together to update the cache or displace the 
cache victim. For an external cache miss, the system 
performs four 16-byte loads at 30 ns. Any dirty cache 
block is sent to the victim buffer in the data slices, in 
parallel with the read of memory. Fast page-mode 
memory writes are used to write the victim into mem­
ory quickly. (This is discussed in the section Memory 
Addressing Scheme.) 

During DMA transactions, the system interrogates 
the CPU for relevant cache data. There is no duplicate 
tag in the system. DMA reads cause main memory to 
be read in parallel with probes of the CPU's caches. If 
a cache probe hits, the cache data is used for the DMA 

read; otherwise main memory data is used. Each DMA 
write to memory results in a FLUSH command to the 
CPU. If the block is present in any of the caches, then 
the data is sent to the DMA buffers in the data slice 
and the cache blocks are invalidated. This cache data is 
discarded if the DMA write is sent to a complete block. 
In the case of a DMA write to a partial block, the DMA 
write data is merged with cache data or the memory 
data as appropriate. In this manner, the system main­
tains cache coherency, removing this burden from the 
software. 

Memory Bandwidth 

The memory bandwidth realized by the CPU depends 
on a number of factors. These include the cache block 
size, the latency of the memory system, and the data 
bandwidth into the CPU. 

Cache Block Size 
The Alpha 21164 microprocessor supports either a 
32- or 64-byte cache block size. The AlphaStation 600 
workstation uses the 64-byte size, which is ideal for 
many applications, but suffers on certain vector-type 
programs with contiguous memory references.5 An 
example of a larger block size design is the RISC 
System/6000 Model 590 workstation from Inter­
national Business Machines Corporation.6 This design 
supports a 256-byte cache block size, allowing it to 
amortize a long memory latency by a large memory 
fetch. For certain vector programs, the Model 590 
performs well; but in other applications, the large 
block size wastes bandwidth by fetching more data 
than the CPU requires. 

The AlphaStation 600 provides a hardware fea­
ture to gain the benefit of a larger block size when 
appropriate. The Alpha 21164 microprocessor can 
issue a pair of read requests to memory. If these two 
reads reside in the same memory page, the control 
chip treats them as a single 128-byte memory read. In 
this way, the system approximates the benefit of a 
larger block and achieves 284 MB/s of memory read 
bandwidth. 

Memory Latency 
The 180-ns memory latency consists of five parts. 
First, the address is transferred from the microproces­
sor to the control chip in 15 ns. The control chip sends 
the memory row-address pulse 15 ns later, and the 
data is received by the data slices 105 ns later. The data 
slices require 15 ns to merge the wider memory data 
onto the narrower SysData bus, and the last 30 ns are 
spent updating the external cache and loading the 
Alpha 21164 microprocessor. 

Although the 105 ns to access the memory may 
appear to be generous, the designers had to meet the 
significant challenge of implementing the required 

Digital Technical Journal Vol. 7 No. 1 1995 93 



1 GB of memory with inexpensive 36-bit SIMMs. The 
JEDEC standard for these SIMMs only specifies the 
pinning and dimensions. It does not specify the etch 
lengths, which can vary by many inches from vendor 
to vendor. Neither does it specify the electrical loading 
distribution, nor the DRAM type or location ( 1-bit 
parts have 2 data loads whereas 4-bit parts have a sin­
gle, bidirectional load). With a 1-GB memory system, 
the loading variation between a lightly loaded memory 
and a fully loaded memory is significant. All these fac­
tors contributed to significant signal-integrity prob­
lems with severe signal reflections. The memory 
mother-board etch was carefully placed and balanced, 
and numerous termination schemes were investigated 
to dampen the signal reflections. 

Data Bandwidth 
The SysData bus transfers data between the processor, 
the tertiary cache, and the data slices. This 128-bit bus 
is clocked every 30 ns to satisfy the write timing of the 
external cache and to be synchronous with the PCI 
bus. Typical memory DRAM parts cycle at 60 ns, thus 
requiring a 32-byte-wide memory bus to match the 
bandwidth of the SysData bus. The data slice chips 
reduce each 32-byte-wide memory data transfer to 
two 16-byte transfers on the SysData bus. Conse­
quently, the memory system is logically equivalent to 
a 2-way interleaved memory design. 

New memory technologies with superior data 
bandwidths are becoming available. Synchronous 
DRAMs are an exciting technology, but they lack a 
firm standard and are subject to a significant price pre­
mium over plain 5-volt DRAM parts. Extended-data­
out (EDO ) DRAMs allow greater burst memory 
bandwidth, but the latency to the first data is not 
reduced. Consequently, the memory bandwidth to 
the CPU is not significantly improved. The major 
advantage of using EDO parts is their easier memory 
timing: The output data of EDO parts is valid for a 
longer period than standard DRAMs. In addition, an 
EDO memory can be cycled at 30 ns, which allows a 

31 

128-bit memory width instead of the 256-bit width. 
The designers would have used EDO parts had they 
been available earlier. 

Memory Addressing Scheme 

The adopted addressing scheme helps improve mem­
ory bandwidth. Whenever the CPU requests a new 
block of data, the write-back cache may have to dis­
place current data (the victim block) to allow space for 
the incoming data. The writing of the victim block to 
memory should occur quickly, otherwise it will 
impede the CPU's request for new data. 

Figure 4 shows the method used to address the 
external cache and memory. The CPU address <31 :6> 
directly accesses the cache: the low-order bits <19:6> 
form the index for a 1-MB cache, and the remaining 
bits <31 :20> form the cache tag. The CPU address 
does not directly address memory. Instead, the mem­
ory address interchanges the index portion of the 
address field with the tag portion. The number of 
address bits interchanged depends on the row and col­
umn dimensions of the DRAM used. 

For the sake of discussion, assume a 4-megabit 
(Mb) DRAM configured with 11 row address bits and 
11 column address bits. Hence, bits <30:20> inter­
change with bits <16:6>, and the remaining bits select 
the memory bank. This addressing scheme has the fol­
lowing effect: a CPU address that is incrementing by 
units of 1 MB now accesses consecutive memory loca­
tions. DRAM memory provides a fast addressing 
mode, called page mode, whenever accessing consecu­
tive locations. For a 1-MB cache, objects separated by 
a multiple of 1 MB correspond to cache victim blocks. 
Consequently, a CPU read request of memory that 
involves a victim write to memory gains the benefit of 
page mode and proceeds faster than it would with a 
traditionally addressed memory. 

Although this address scheme is ideal for CPU 
memory accesses, it creates the converse effect for 
DMA transactions. It scatters consecutive DMA blocks 

6 5 0 CPU 

BLOCK OFFSET PHYSICAL 
.._~~ ....,...~~~~~~ ~~......,.~~~~ ....... ~~~~ ........ ADDRESS 

31 20 19 

TAG 

BANK SELECT ROW 

Figure4 
Memory Address Scheme 

94 Digital Technical Journal Vol. 7 No. I 1995 

INDEX 

COLUMN 

6 
CACHE 
ADDRESS 



by 1 MB in memory. These locations fall outside the 
DRAM page-mode region, resulting in lower perfor­
mance. The solution is to enlarge the memory blocks; 
for example, start the memory interchange at bit <8> 
instead of bit <6>. This compromise allows 256-byte 
DMA bursts to run at full speed. Slightly fewer victim 
blocks, however, gain the benefit of page mode. 

The bit assignment for this address scheme depends 
on the row and column structure of the DRAM part 
and on the external cache size. Power-on software 
automatically configures the address-interchange 
hardware in the system. 

Design Considerations 

In this section, we discuss the design choices made 
for system clocking, timing verification, and the 
application-specific integrated circuit (ASIC) design. 

System Clocking 
The chip set is a synchronous design: The system clock 
is an integer multiple of the CPU cycle time. 
Consequently, the PCI clock, the memory clock, and 
the cache loop are all synchronous to each other. The 
designers avoided an asynchronous design for two rea­
sons. It suffers from longer latencies due to the syn­
chronizers, and it is more difficult to verify its timing. 

Unlike the memory controller, which uses a double­
frequency clock to provide a finer 15-ns resolution for 
the memory timing pulses, the synchronous design of 
the chip set uses a single-phase clock. This simplified 
clocking scheme eased the timing verification work. 
Phase-locked-loop (PLL) devices control the clock 
skew on the system board and in the ASICs. The PLL 
in the ASICs also generates the double-frequency 
clock. 

Timing Verification 
The complete system was verified for static timing. 
A signal-integrity tool similar to SPICE was used to 
analyze all the module etch and to feed the delays into 
the module timing verification effort. The final ASIC 
timing verification used the actual ASIC etch delays. 
This process was so successful that the actual hardware 
was free of any timing-related bug or signal-integrity 
problem. 

ASIC Design 
The chip designers chose to implement the gate array 
using the 300K technology from LSI Logic Corpo­
ration. The control chip uses over lOOK gates, and 
each data slice consumes 24K gates. Originally, the 
designers considered the slower 1 OOK technology, but 
it proved unable to satisfy the timing requirements for 
a 64-bit-wide PCI bus. 

The designers used the VERILOG hardware 
description language to define all the logic within the 
ASICs. Schematics were not used. The SYNOPSIS 
gate-synthesizer tool generated the gates. The design­
ers had to partition the logic into small 3,000 to 8,000 
gate segments to allow SYNOPSIS to complete within 
12 to 15 hours on a DECstation 5000 workstation. 
Currently, the same synthesis requires 1 hour on the 
AlphaStation 600 5/260. The designers developed a 
custom program that helped balance the timing con­
straints across these small gate segments. This allowed 
the SYNOPSIS tool to focus its attention on the seg­
ments with the greatest potential for improvement. 

Performance 

Table 1 gives the bandwidths of the workstation for 
the 32-bit and 64-bit PCI options. A structural simula­
tion model verified this data, using a 180-ns memory 
latency and a 30-ns system clock. The 285-MB/s read 
bandwidth of the CPU memory is impressive consid­
ering that the memory system is 1 GB. Eventually, the 
memory size will reach 4 GB when 64-Mb memory 
chips become available. 

The 1/0 write bandwidth is important for certain 
30 graphics options that rely on PIO to fill the 
command queue. Current high-end graphics devices 
require approximately 80 MB/s to 100 MB/s. The 
213 MB/s of 1/0 write bandwidth on the 64-bit PCI 
can support a double-headed 30 graphics configura­
tion without saturating the PCI bus. Other 30 graph­
ics options use large DMA reads to fill their command 
queue. This approach offers additional bandwidth at 
263 MB/s. The system did not optimize DMA writes 
to the same extent as DMA reads. Most options are 
amply satisfied with 100 MB/s of bandwidth. 

Table 1 
Bandwidth Data 

Transaction 32-bit 64-bit 
Type PCI PCI 

CPU memory read: 
64 bytes 284 284 
1/0 write: 
Contiguous 32 bytes 119 213 
Random 4 bytes 44 44 
1/0 read: 
4 bytes 12 12 
32 bytes 56 56 
DMA read: 
64 bytes 79 112 
8 KB 132 263 
DMAwrite: 
64 bytes 97 102 

Digital Technical Journal Vol. 7 No. I 1995 95 



Table 2 gives the performance for several bench­
marks. The data is for a system with a 300-MHz 
processor and a 4-MB cache built out ofl2-ns SRAM 
parts. The SPECmark data is preliminary and clearly 
world-class. The UNPACK data is for double­
precision operands. Even greater performance is pos­
sible with faster cache options (for instance, a cache 
using 8-ns parts) and faster speed variants of the 
Alpha 21164 microprocessor. 

Functional Verification 

The functional verification is an ongoing effort. 
Three factors contribute to the need for greater, more 
efficient verification. First, the design complexity of 
each new project increases with the quest for more 
performance. Next, the quality expectations are ris­
ing-the prototype hardware must boot an operating 
system with no hardware problems. Finally, time to 
market is decreasing, providing less time for func­
tional verification. 

A number of projects at Digital have successfully 
used the SEGUE high-level language for functional 
verification.3,7 SEGUE allows simple handling ofran­
domness and percentage weightings. As an example, a 
code sequence may express that 30 percent of the 
DMA tests should target the scatter/gather TLB, and 
that the DMA length should be selected at random 
from a specified range. Each evocation of SEGUE gen­
erates a test sequence with different random varia­
tions. These test sequences are run across many 
workstations to achieve a high throughput. The proj­
ect used 20 workstations for 12 months. 

The test suite focused on the ASIC verification in 
the context of the complete system. It was not a goal 
to verify the Alpha 21164 microprocessor; neither was 
the EISA logic verified ( this logic was copied from 
other projects). The test environment used the 
VERILOG simulator and included the Alpha 21164 
behavioral model, a PCI transactor ( a bus functional 
model), and a memory and cache model. The SEGUE 
code generated C-language test programs for CPU­
to-memory and CPU-to-I/0 transactions, as well as 
DMA scripts for the PCI transactor. 

The goal of verification went beyond ensuring that 
the prototype hardware functioned correctly. The 

Table 2 
Benchmark Performance 

Benchmark 

SPECint92 
SPECfp92 

UNPACK 100 X 100 
UNPACK 1000 X 1000 

96 Digital Technical Journal 

Performance 

331 
503 

144 
380 

Vol. 7 No. l 1995 

major objective was to ensure that the hardware is reli­
able many years hence, when new, as yet undeveloped, 
PCI options populate the system. Today, the PCI bus 
uses only a small number of expansion option cards. It 
is quite probable that a perfunctory verification of the 
PCI logic would result in a working system at the time 
of hardware power-on and for many months there­
after. It is only as more option cards become available 
that the likelihood of system failure grows. Conse­
quently, the verification team developed a detailed PCI 
transactor and subjected the PCI interface in the con -
trol chip to heavy stressors. The complexity of the PCI 
transactor far exceeds that of the PCI interface logic 
within the ASIC. The reason is that the ASIC design 
implements only the subset of the PCI architecture 
appropriate to its design. The PCI transactor, how­
ever, has to emulate any possible PCI device and thus 
must implement all possible cases. Furthermore, it 
must model poorly designed PCI option cards (the 
word "should" is common in the PCI specification). 

The verification experience included the following: 

• Directed tests. Specific, directed tests are needed 
to supplement pseudorandom testing. For exam­
ple, a certain intricate sequence of events is best 
verified with a specific test, rather than relying on 
the random process to generate the sequence by 
chance. 

• Staff hours. In prior projects, the hardware team 
exceeded the verification team in size. Over the 
years, the importance of verification has grown. 
On this project, twice as much time was spent on 
the verification effort as on the hardware coding. 

• Degree of randomness. Pure randomness is not 
always desirable. For instance, an interesting test 
can be conducted when a DMA write and a CPU 
read target the same block in memory ( although, 
for coherency reasons, not the same data). 
Random addresses are unlikely to create this 
interaction; instead careful address selection is 
necessary. 

• Error tests. The pseudorandom test process added 
a different error condition, such as a PCI address­
ing error, within each test. The hardware logic, 
upon detecting the error, would vector by sending 
an interrupt to the error-handling code. The han­
dler would check if the hardware had captured the 
correct error status and, if it had, would resume 
the execution of the test program. This strategy 
uncovered bugs when the hardware continued 
functioning after an error condition, only to fail 
many cycles later. 

• Hardware simulation accelerator. The project 
team did not use a hardware simulation accelera­
tor for a number of reasons. In the early phase of 



verification, bugs are so frequent that there is no 
value in finding more bugs. The limiting resource 
is the isolation and fixing of the bugs. Second, 
porting the code onto the hardware simulator 
uses resources that are better spent improving the 
test suite: running poor tests faster is of no value. 
Finally, the hardware-based verification technique 
offers far greater performance. 

• Bug curve. The project team maintained a bug 
curve. The first-pass ASIC was released when the 
bug curve was falling but was still above zero. The 
tests were structured to test the important func­
tionality first. This allowed verification to con­
tinue while the operating system developers 
debugged their code on the prototype. To help 
this strategy, any performance-enhancement logic 
in the ASICs could be disabled in case an error was 
discovered in that logic. Experience on prior pro­
jects had shown that such logic has a predilection 
toward bugs. 

Hardware-based Verification 

The hardware-based verification was developed to 
achieve a significant, five-orders-of-magnitude improve­
ment in test throughput. The CPU performs pseudo­
random memory and 1/0-space transactions, and a 
number of PCI graphics options emulate generic PCI 
devices. The hardware-based verification has so far 
uncovered three bugs. To further improve this tech­
nique, a hardware PCI demon is under development. 
This device has the capability to mimic any PCI device. 

The random nature of the test suite means that the 
bug curve has a long tail: The probability of finding 
the next bug decreases as each bug is discovered. For 
example, an earlier project team discovered the last 
bug after six months but needed only one week to find 
the penultimate bug. Greater test throughput helps 
uncover the final bug( s) sooner. Our project team 
achieved greater throughput by migrating the test 
strategy onto the actual hardware. 

A self-checking, pseudorandom, test-generating 
program runs on the hardware, testing the memory, 
the cache, and the PCI. On detecting a mismatch, the 
software triggers a digital analyzer connected to visi­
bility points on the hardware. Currently, a number 
of PCI graphics cards are emulating different DMA 
devices. Eventually, a custom PCI test device, the PCI 
demon, will replace the graphics cards and provide 
greater flexibility and functionality ( especially with 
regard to error cases). 

The software-based verification, running across 20 
workstations, averaged approximately 100 DMA 
transactions per minute (with concurrent memory and 
PIO activity). The hardware-based verification runs 60 
million comparable DMA transactions per minute per 

workstation. This 5-orders-of-magnitude improve­
ment suggests that all the tests performed in the past 
12 months of software-based verification can be com­
pleted during the hardware-based debugging in 5 
minutes. 

A secondary, but very useful, advantage of hardware­
based testing is the ability to stress the chips electri­
cally. For instance, by selecting a data pattern of l's 
and O's for the DMA, memory, and PIO tests, verifica­
tion engineers can severely test the capability of the 
chips to switch simultaneously. 

Hardware Test Strategy 
The SEGUE software proved not to be useful for the 
hardware-based verification effort. Instead new soft­
ware was written in the C language for the following 
reasons: 

• Verification must have full control of the hardware 
and thus cannot run on top of an operating sys­
tem. Consequently, SEGUE and the operating 
system functionality are not available. 

• Unlike the software environment, visibility into 
the logic signals is restricted in the hardware envi­
ronment. The test software has to be written to 
make debugging simpler. 

• One possible strategy is to download the SEGUE 
tests onto the hardware and thus treat the hard­
ware as a ;imulation accelerator. However, the 
resultant performance improvement is small: The 
SEGUE code takes 2 minutes to generate a 1-hour 
software-simulation run. These tests run across 20 
workstations with a resultant throughput of 1 test 
every 3 minutes. Assuming the same test executed 
in zero time on the hardware, the total test time 
would equal 1 test every 2 minutes-a minor 
improvement. 

The hardware-based verification software relies on 
the following rationale: The hardware is almost totally 
bug free, and any remaining bugs are most likely to be 
due to a rare interaction of events. Indeed, one of the 
bugs discovered was a special-case DMA prefetch coin­
ciding with a memory refresh. Consequently, no test is 
likely to detect more than one bug. For instance, if a 
DMA operation suffers an error, then it is unlikely that 
a subsequent, identical DMA operation will suffer an 
error. The second DMA will experience a different set 
ofinteractions inside the chip set. 

The adopted test environment has two graphics 
cards, each performing identical DMA operations to 
two different regions of memory. Because of the serial 
nature of the PCI bus, however, these cards will 
perform the DMA operations at different times. 
Furthermore, other traffic on the PCI bus (for 
instance, the CPU will be executing random PIO) will 
further randomize the cards' behavior. While the 

Digital Technical Journal Vol. 7 No. l 1995 97 



OMA transactions run, self-checking, random CPU 
traffic to memory and 1/0 will also run. These events 
provide the random mix of interacting instructions. At 
the completion of the test, a miscomparsion of the two 
OMA write regions indicates an error. 

Graphics Demon 
A number of PCI option cards were investigated as 
potential PCI demon cards. The requirements for a 
PCI demon card are twofold: it must be able to per­
form OMA of various lengths, and it must have mem­
ory for the storage of OMA and PIO data. The DEC 
ZLXp_El graphics card was selected because it offers 
the following advantages: 

• Independent OMA. Most PCI options start a 
DMA operation instantly after the CPU has writ­
ten to a specific register in the option. This is 
undesirable because it makes it impossible to 
emulate options that start DMA operations 
autonomously (e.g., a network card). To break 
this coupling, the test program should first make 
the graphics card paint a portion of the screen. 
While the graphics device is busy, the graphics 
command FIFO buffer is filled with the DMA 
commands. The graphics device will not start the 
DMA until it has finished painting. Furthermore, 
the delay is programmable by varying the number 
of pixels painted. 

• Programmable OMA. The graphics card allows 
the DMA to be any size, whereas most PCI 
options are constrained to a fixed length. 
Moreover, it is possible to arrange for PCI discon­
nects on a DMA read. The graphics card modifies 
incoming data with the contents of the frame 
buffer ( e.g., frame buffer = frame buffer XOR 
data). This feature throttles the internal band­
width of the graphics card, which disconnects it 
from the PCI. 

• Frame buffer. The graphics frame buffer is the tar­
get of the DMA and PIO operations. A useful soft­
ware debugging feature was to observe the frame 
buffer while running the tests. 

PC/Demon 

The PCI demon is designed to mimic any possible PCI 
device. Software has total control of the behavior of 
the device, including the assertion of error conditions 
(e.g., parity errors on any specified data word). The 
architecture of the PCI demon is very simple so that 
the debugging of the PCI demon is straightforward. 
(The objective is to find bugs in the chip set and not in 
the PCI demon.) Consequently, the complexity in 
using the PCI demon is completely in the software. 

The ideal architecture of a PCI demon is a large 
memory whose output drives the PCI data and control 
signals directly; the software programs the desired PCI 

98 Digital Technical Journal Vol. 7 No. 1 1995 

operation by loading the appropriate pattern into this 
memory. In reality, the architecture of the PCI demon 
has to diverge from this ideal model for at least two 
reasons. First, the PCI demon has to be able to emu­
late the fastest possible PCI device, and this forces the 
use of an ASIC. However, ASICs have limited memory 
capacity. It is desirable to store the scripts for many 
thousands of OMAs in this memory. The scripts are 
approximately 100-bits wide (64-bit PCI data and 
control) and require several megabytes of memory. 
This memory requirement forces the design to use 
external memory. Second, the PCI architecture has a 
few handshake control signals that require the use of 
a fast state machine. 

The PCI demon has the functionality to act as a his­
togram unit (a PCI event counter). Internal counters 
measure timing information such as DMA latency and 
the frequency of specified PCI transactions. The PCI 
demon observes these states by snooping the PCI bus. 

Summary 

The AlphaStation 600 5-series workstation offers high 
compute performance, together with substantial 1/0 
subsystem performance. The project team designed a 
low-cost, 1-GB memory system with a 180-ns mem­
ory latency. Timing verification and placement of the 
plug-in, external cache resulted in a workstation with 
considerable flexibility in memory expansion, cache 
variants, and 1/0 option slots. 

The most time-consuming portion of the project 
was the functional verification. To date, different test 
programs have run concurrently across 20 high­
performance workstations, day and night, for over 12 
months. The release of the prototype chip set 
occurred after 5 months of verification; this chip set 
successfully booted the operating system. The remain­
ing 7 months of verification were focused on the lower 
priority functionality (e.g., error cases and slow mem­
ory configurations). 

The hardware-based verification approach proved 
its value by uncovering three bugs. The most signifi ­
cant bug involved the interaction of a number of 
events, including an optimized, prefetching DMA read 
and a memory refresh. The verification process helped 
create a very high quality product. 

Acknowledgments 

Many individuals contributed to the success of this 
project. The design was a team effort involving far 
more people in many diverse groups than can be 
acknowledged here. However, recognition is due to 
the core hardware and verification team: Ed Arthur, 
Connie Bielawski, Ernie Crocker, Tracey Gustafson, 
J. Grady, John Hackenberg, Rick Hagen, Randy 
Hinrichs, Laura Mendyke, Sudhin Mishra, Sandy 



McPherson, Jim Nietupski, Sub Pal, Nick Paluzzi, 
Rick Rudman, Jim Reilley, Manoo Siarkowski, Bob 
Stewart, Hugh Kurth, Tony Camuso, Jim Hamel, 
Rick Calcagni, Carl Mower, Peter Spacek, and Ned 
Utzig. 

References 

1. J. Edmondson et al., "Internal Organization of the 
Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS 
RISC Microprocessor," Digital Technical Journal, 
vol. 7, no. 1 (1995, this issue): 119-135. 

2. 2420/82430 PC/ ISA and EISA Bridges (Santa Clara, 
Calif.: Intel Corporation, 1993). 

3. S. Nadkarni et al., "Development ofDigital's PCI Chip 
Sets and Evaluation Kit for the DECchip 21064 Micro­
processor," Digital Technical Journal, vol. 6, no. 2 
(Spring 1994): 49-61. 

4. NCR 53C8JO Data Manual (Dayton, Ohio: NCR 
Corporation, 1992). 

5. A. Agarwal, Analysis of Cache Performance for 
Operating Systems and Multiprogramming (Boston: 
Kluwer Academic Publishers, 1989). 

6 . S. White and S. Dhawan, "POWER2: Next Generation 
of the RISC System/6000 Family," IBM Journal of 
Research and Development, vol. 38, no. 5 (September 
1994). 

7. W. Anderson, "Logical Verification of the NVAX CPU 
Chip Design," Digital Technical Journal, vol. 4, no. 3 
(Summer 1992): 38-46. 

Biographies 

John H . Zurawski 
John Zurawski was the system architect for the 
AlphaStation 600 5-series workstation. Prior to this 
project, John was the system architect for the DECstation 
5000 series of MIPS R4000 workstations. He has also led 
the verification effort for the DEC 3000 workstation and 
led the team that designed the floating-point unit for the 
VAX 8800 family. John holds a B.Sc. degree in physics 
(1976), and M.Sc. (1977) and Ph.D. (1980) degrees in 
computer science, all from Manchester University. John 
is a member ofIEEE. He holds seven patents and has 
published six papers on computer technology. He joined 
Digital in 1982 after completing post-doctoral research 
at Manchester University. 

John E. Murray 
A consulting engineer in the Alpha Personal Systems 
Group, John Murray was the logic design architect for the 
AlphaStation 600 5-series. In previous work, John led the 
design team for the instruction fetch and decode unit on 
the VAX 9000 system. Prior to joining Digital in 1982, he 
was with ICL in the United Kingdom. He holds eleven 
patents. 

PauI J. Lenunon 
Paul Lemmon joined Digital in 1987; he is a principal engi­
neer. Paul was the ASIC team leader and the architect of 
the control ASIC for the AlphaStation 600 5-series. He was 
previously employed at Datapoint, where he was a design 
engineer/project engineer. Paul received a B.S. in electrical 
engineering from Ohio State University in 1980. He holds 
two patents. 

Digital Technical Journal Vol. 7 No. l 1995 99 



Circuit Implementation 
of a 300-MHz 64-bit 
Second-generation 
CMOS Alpha CPU 

A 300-MHz, custom 64-bit VLSI, second­

generation Alpha CPU chip has been developed. 

The chip was designed in a 0.5-µm CMOS 

technology using four levels of metal. The die 

size is 16.5 mm by 18.1 mm, contains 9.3 million 

transistors, operates at 3.3 V, and supports 

3.3-V /5.0-V interlaces. Power dissipation is 50 W. 
It contains an 8-KB instruction cache; an 8-KB 

data cache; and a 96-KB unified second-level 
cache. The chip can issue four instructions per 

cycle and delivers 1,200 mips/600 MFLOPS 

(peak). Several noteworthy circuit and imple­

mentation techniques were used to attain the 

target operating frequency. 

100 Digital Tech nical Journal Vol. 7 No. 1 1995 

I 
William J. Bowhill, Shane L. Bell, 
Bradley J. Benschneider, Andrew J. Black, 
Sharon M. Britton, Ruben W. Castelino, 
Dale R. Donchin, John H. Edmondson, 
H arry R. Fair, ID, Paul E. Gronowski, 
Anil K. Jain, Patricia L. Kroesen, 
Marc E. Lamere, Bruce J. Loughlin, 
Shekhar Mehta, Robert 0. Mueller, 
Ronald P. Preston, Sribalan Santhanam, 
Timothy A. Shedd, Michael J. Smith, 
Stephen C. Thierauf 

The Alpha 21164 chip is a 300-megahertz (MHz), 
quad-issue, custom very large-scale integration (VLSI) 
implementation of the Alpha architecture that delivers 
peak performance of 1,200 million instructions per 
second (mips)/600 million floating-point operations 
per second (MFLOPS). The chip is designed in a 
0.5-micrometer (µm) complementary metal-oxide 
semiconductor (CMOS) technology using four levels 
of metal . The die measures 16.5 millimeters (mm) by 
18.1 mm and contains 9.3 million transistors. It oper­
ates at 3.3 volts (V) and supports 3.3-V and 5.0-V 
interfaces. The chip dissipates 50 watts (W) at 300 
MHz (internal clock frequency). Switching noise on 
the power supplies is controlled by an on-chip distrib­
uted coupling capacitance between power and ground 
of 160 nanofarads (nF). The chip contains an 8-kilobyte 
(KB ), first-level (Ll ) instruction cache; an 8-KB Ll 
data cache; and a 96-KB second-level ( L2 ) unified data 
and instruction cache. 

This paper focuses on the circuit implementation 
of the Alpha 21164 CPU. Space does not permit a 
description of the complete design process utilized 
throughout the project. Instead, some of the signifi­
cant circuit design challenges encountered during the 
project are discussed. The paper begins with an intro­
ductory overview of the chip microarchitecture. It 
continues with a description of the floorplan and the 
physical layout of the chip. The next section discusses 
the clock distribution and latch design. This is fol­
lowed by an overview of the circuit design strategy and 
some specific circuit design examples. The paper con­
cludes with information about design (physical and 
electrical) verification and CAD tools. 

Microarchitecture Overview 

The Alpha 21164 chip is a completely new implemen­
tation of the Alpha architecture. Figure 1 shows a 
block diagram of the Alpha 21164 chip. The micro­
processor consists of five functional units: the instruc­
tion fetch, decode, and branch unit (I-box); the 
integer execution unit (E-box); the memory manage­
ment unit (M-box); the cache control and bus inter­
face unit (C-box); and the floating point unit (F-box). 



---------
I-BOX : E-BOX 

, ---- : M-BOX L2 C-BOX 
I 40-BIT 

1 1--~>--~ --· S-CACHE ADDRESS 

u 
LJ 

INSTRUCTION 
FETCH, 
DECODE, 
AND 
BRANCH UNIT 

PIPELINE O 

PIPELINE 1 

: F-BOX 
I 

' MULTIPLY 
PIPELINE 

ADD 
PIPELINE 

I 
I 

-· 

MERGE 
LOGIC I 

I L3 
I I 

96-KB BUS 
I I INTERFACE BACKUP , ________ , 

WRITE-BACK 
UNIT CACHE 

L1 
(OPTIONAL) 

D-CACHE 

t 
8-KB 128-BIT DATA 
WRITE-
THROUGH 

________________ _ _______ 128BITS __ __ ___ _J 

Figure 1 
Block Diagram of the Alpha 21164 Functional Units 

The chip contains three on-chip caches: the instruc­
tion cache (I-cache); the data cache (D-cache); and 
the second-level (unified data and instruction) cache 
(S-cache ). The microprocessor uses a seven-stage 
pipeline for integer and memory operations and a 
nine-stage pipeline for floating-point operations. 
Pipeline stages are referred to as SO to SB for the 
remainder of this paper. 

The I-box fetches instructions from the 8-KB virtual, 
direct-mapped, physical Ll I-cache. It decodes and 
issues instructions to the E-box, M-box, and F-box. It 
maintains state for all pipeline stages to track outstand­
ing register writes. The I-box can decode and issue up 
to four instructions per cycle. The E-box contains two 
64-bit pipelines. The first pipeline contains an adder 
and a Boolean logic unit. The second pipeline contains 
an adder, a Boolean logic unit, a shifter, and a multi­
plier. Most integer instructions execute in one cycle. 
The F-box contains a floating-point multiply pipeline 
and a floating-point add pipeline. The M-box executes 
all load and store instructions. The 8-KB, direct­
mapped, write-through, Ll D-cache has two read 
ports, which allow two load instructions to execute in 
parallel. The C-box processes memory accesses sent by 
the M-box and manages all cache coherence protocol 
functions. It also controls the L2 unified cache and an 
optional external (off-chip) backup cache. A detailed 
discussion of the chip microarchitecture is presented 
in another paper in this issue.I 

Floorplan Overview 

With 9.3 million transistors and a die size very close to 
the manufacturing limit, floorplanning of the Alpha 
21164 chip was a critical activity during development. 
Power and ground distribution, as well as clock rout-

ing and signal busing, were also major factors in devel­
oping a viable floorplan. The floorplan was developed 
early in the project and was regularly monitored and 
kept up-to-date. Chip area estimates were made using 
several different methods. The area estimates of the 
caches were determined by creating trial layout struc­
tures. Major sections of the integer and floating-point 
execution units were estimated using data from previ­
ous designs and trial layout. The control logic areas 
were estimated using data from logic and layout syn­
thesis CAD tools. 

Figure 2 is a photomicrograph of the chip with 
overlays showing the major functional units and pin 
locations. The major functional units were positioned 
to minimize critical signal propagation delays and the 
length of global buses. The I-box, E-box, and M-box 
were aligned to allow the routing of the data between 
these sections in a common data path. Since the C-box 
interfaces with most of the other functional units, it 
was situated along the bottom of the chip to accom­
modate different signal routing needs. The address 
pins for the memory interface were placed at the bot­
tom of the chip to keep them in close proximity to the 
C-box and M-box, thereby reducing routing and 
latency. Due to the significant data routing between 
the S-cache, C-box, and pins, the placement of these 
sections was critical. Both the 128-bit-wide S-cache 
data array and the 128-bit-wide C-box data path were 
split into two halves, each containing the upper and 
lower 64 bits. This minimized the routing between 
the C-box, the S-cache, and the data pins along the 
two sides of the chip. 

The D-cache and the I-cache were arranged to 
allow 128-bit-wide data access to the S-cache. The 
I-cache and D-cache were placed above and below the 
S-cache, respectively, and centered within the chip as 

Digital Technical Journal Vol. 7 No. 1 1995 101 



Figure 2 
Floorplan of the Alpha 21164 Chip 

much as possible. The S-cache was implemented with 
metal 4 read and write buses spanning the entire 
height. This provided the access needed to both the 
top and bottom of the S-cache for routing to the 
I-cache and D-cache. 

The D-cache supports two loads per cycle, requir­
ing a dual-ported read design. The D-cache was 
implemented as two single-ported caches containing 
identical data instead of one dual-ported cache. The 
major consideration that led to this decision was the 
ability to share the single-ported design with the 
I-cache. Sharing the design also reduced the overall 
analysis and verification required. 

Interconnect routing was another important part of 
the floorplanning process. Four metal layers were 
available for routing. The lower metal layers, metal 1 
and metal 2, were used for local transistor hookup and 
signal routing. The upper metal layers, metal 3 and 

102 Digital Technical Journal Vol. 7 No. 1 1995 

" 0 
C'i 

"' v 
(/) 
z 
1l: 
~ 
15 

metal 4, were used primarily for clock, power, and 
ground distribution. When necessary, the upper metal 
layers were also used to route critical signals and long 
buses. The metal orientations were chosen to accom­
modate both the cache structures and the data paths 
of the functional units. With reference to Figure 2, 
metal 2 and metal 4 lines were arranged to run verti­
cally and metal 1 and metal 3 were arranged to run 
horizontally. Most of the global routing was done by 
hand. Local cell routing was done by hand with some 
assistance from auto-routing CAD tools. 

The upper metal layers are organized as a fine­
pitched regular grid structure placed over the entire 
chip. The typical drawn line width used in this grid is 
12 µm. Power and ground lines are alternated with a 
single clock line interspersed every few pairs. A limited 
number of critical signals and buses are also routed in 
metal 3 and metal 4. In the pad ring, metal 4 is used to 



route power and ground into the chip from the pads, 
and input and output signal wires are routed circum­
ferentially in metal 3. 

The fine pitch of the power grid allowed its place­
ment and hookup to be deferred until most of the cell 
layout was complete. Therefore, individual cell layout 
was done independently of the main grid. The local 
power, ground, and clock lines in cells were connected 
to vertically routed metal 2 lines. These metal 2 lines 
were designed to be long enough to span two or more 
of the metal 3 grid lines, which allowed the eventual 
connection to the grid. 

Cell hookup to the grid was automatically gener­
ated using an in-house CAD tool that accepted nodal 
layout extracts of the power, ground, and clock nodes. 
It connected the grids by placing a maximum number 
of contacts between metal 4 and metal 3, and metal 3 
and metal 2. All contacts placed by the tool met the 
process design rules. 

Clock Distribution Scheme and Latch Design 

The Alpha 21164 chip enhanced the clock distribu­
tion mechanism and verification techniques that were 
developed during the design of the first-generation 
Alpha microprocessor chip, the DECchip 21064.2 

A global, single-wire clock (CLK) is distributed over 
the chip. The design quality of the clock signal was 
critical to meeting the fast cycle time goal of the Alpha 
21164 chip. (Note that the high state of the clock 
signal is identified as the A-phase, and the low state of 
the clock signal is considered the B-phase. ) 

Figure 3 is a circuit schematic of the clock gener­
ation circuitry. The chip recei\'.es a 2 X differential 
emitter-coupled logic (ECL) oscillator clock signal 
( up to 600 MHz) that is divided by two and then 
routed to the center of the chip. It is then buffered up 
through 6 inverter levels and fanned-out to 24 invert­
ers through a balanced tree to drive the PRE_CLK 
signal in metal 3 to the right and left banks of the final 
stage clock drivers. These final buffers are located 
between the second-level caches and the outside edge 
of the execution core. The final clock driver has 4 more 
levels of inverter buffering before it drives the single­
wire CLK signal that is formed using a metal 3 and 
metal 4 grid. Figure 4 is a schematic showing the 
placement of the CLK grid. 

There are 44 final clock drivers per side. The place­
ment of these drivers was based on local clock loading. 
There are also 12 conditional clock drivers per side, 
with each activating a single S-cache subarray. Each 
clock buffer is surrounded by decoupling capacitance 
to reduce switching noise. The last clock driver 
inverter has a total gate width of 58 centimeters (cm). 
It drives a load of 3.75 nF of gate and interconnect 

capacitance. The clock distribution system consumes 
about 20 W, approximately 40 percent of the total 
chip power. 

The two banks of final clock drivers, coupled with 
the size of the clock network, complicated the clock 
skew analysis. The precise method of calculating clock 
skew requires a SPICE model of the entire network 
from input oscillator signal through the drivers and 
the entire metal grid. 3 This approach was not pos­
sible due to the size of the network. Instead, the 
three main components of clock skew were quantified: 
(1) PRE_CLK driver and PRE_CLK RC delay varia­
tions, ( 2 ) final CLK driver transistor delay variations, 
and (3) RC delay through the metal grid. A SPICE 
model of the PRE_CLK drivers and network was sim­
ulated to identify the differences in arrival time of the 
PRE_ CLK signal at the input to the final drivers.3 The 
simulations showed that any delay variations devel­
oped in this portion were equalized by strapping the 
inputs and outputs of the final driver inverters. The net 
result was that the PRE_CLK network contributes 
only IO picoseconds (ps) to the total skew. 

The next source of variability affecting clock skew 
was the difference in transistor characteristics among 
the final stage drivers. There are actually two causes of 
this variation: layout-related effects and systemic intra­
die process variations. Although the layout-related 
effects can be controlled in the design, the process 
variations cannot. To limit channel length variations 
that result from layout differences, a joint effort was 
undertaken with the process development group to 
define a modular block for the driver layout. This 
block was then repeated as many times as necessary to 
achieve the required total driver size while keeping the 
polysilicon spacing, density, and orientation constant. 

Since it was not possible to model the metal 3 and 
metal 4 grid with the drivers in SPICE, extensive RC 
delay simulation of the clock grid alone was done 
based on resistance and capacitance values extracted 
from layout.3 The drive impedance of each clock driver 
was modeled as an equivalent resistance in the net­
work. The skew between the first and last latch receiv­
ing the CLK signal is 90 ps. The instruction and 
execution units all see the CLK signal within 65 ps, 
which is well within the design goal. Figure 5 shows 
the clock RC delay as a function of the X and Y loca­
tions on the chip. 

The development of standard latches was an impor­
tant aspect of the Alpha 21164 implementation 
process. The primary goal of the latch design was to 
produce a fast circuit that would use the device area 
efficiently and that could be used in a wide variety of 
instances. To minimize the chip verification effort, a 
standard latch library was developed early in the 
design process. This library set the standards for latch 

Digital Technical Journal Vol. 7 No. I 1995 103 



I 
~ 

I 
I 

..__.) 
I 
I 
I 
~ 

I 
I 

.._.J 
I 
I ~ 
I ~ 

w ._.__, 1i: 
I I Cl 

~ I G 
~ ~ g 

I (.) 
l:; I ~ 
~ ~ 6 z I f:= ;a I o I 
O I z .,_~ 8 

I ~ 
I 

.._.J 
I 
I 
I ._.__, 
I 
I 
~ 

I 
I 

I\ CLK 
I\ 
I\ 

>>> 

FROM CLOCK 
GENERATOR 
CIRCUIT 

CLK I\ 
I\ 
I\ 

<<< 
r - - - - - 1 • 1- - - - - -

1 
I ~I ; ...... :S I I ~ I~ I~ I~ I 
I :;:1 ~ ~ :;: I I • 1::. 1::. I~ I 
I ~ • 1 ~, I PRE-CLK PRE-CLK ,. ,. • I 
I h,-----~--- -----+-------HI I 
I I ,~-----+<>-'---

O o I --- I o o I ................ I I 
0 

0 

Cf) 
a: 
w 
> 
1i: 
Cl 
:,( 
(.) 

g 
(.) 

~ 

0 

0 

I 

I 
I 
I 

I 

I 
I 
I 

I 
I 
I 

~~ J~-

I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 

0 0 

0 0 

Cf) 
a: 
w 
> 
1i: 
Cl 
:,( 

8 
.J 
(.) 

~ 

0 0 : ~~ ~ r<J- : 0 0 

H------+-~+-~+-~-1'-1-------------'--11 O O 0 0 

I O O : ~~ r- : 0 0 

t-+------+--~+-~+-~-----------'--<11~----+HI,--

- - - - -<l-l..::t I • • • • I ::::::::,..1 1 ;:;:;:!:" I 

I 
I 
~ 
I 
I 

~ '---
I 
I 
I 
I 

...................... I L...:. _: _ ...... _ ~ I \--.. - --' 
: 3; ~ =: 
I .::::'. _~_ ~ ~ J 

<<< >>> 
v 

GRID OF METAL 3 AND METAL 4 
(OMITIED FOR CLARITY) 

<<< >>> 
v 

~ CLK 

Figure 3 
Schematic of Clock Distribution System 

usage and allowed designers to utilize latches that had 
already been verified over a range of operating condi­
tions and process corners. 

The Alpha 21164 chip uses level-sensitive, transmis­
sion gate latches as shown in Figure 6. Two basic types 
of latches were developed: A-latches (Figures 6a and 
6c) and B-latches (Figures 6b and 6d). The A-latches 
are open when CLKis high, and the B-latches are open 
when CLK is low. The latch input inverter can be 
replaced by a logic gate (shown in Figures 6c and 6d), 
thus reducing gate delays in other logic. This style of 
latch is very fast and area-efficient, yet it does have an 
inherent race-through problem. It was estimated that 

104 Digital Technical Journal Vol. 7 No. 1 1995 

CLK ~ 

the use of this latch style yields a 10 percent improve­
ment in speed over the 2 1064 microprocessor. 

The adcli tional skew in the clock, resulting from the 
local clock buffer delay, increases the possibility that 
data could race through a pair of latches during the 
transition of the clock. Although the overall skew of 
the internal clock is low, this was not considered suffi­
cient to avoid race conclitions. Two significant steps 
were taken to guarantee that no race could exist 
between latches. First, the buffered clock inside the 
latch was sized to minimize the additional skew result­
ing from its delay. Second, rules and verification tools 
were developed to make sure that the design includes 



PADS FROM CLOCK GENERATOR CIRCUIT 

- -- - - - -- - ----------... - - ------- - 1- I ~;--i----1 : ,- I 
I I-CA I 
I I -- --- ---- - --- --- -' 

I I 

1 - ( Lk Ho ~ CLk 
I . A 

~ 

I 

- - - -
I I 

1: I I I 

I I I I 

: (J)I '" (/) 
II: I I a: I I II: 
w w w 

S-CACHE >1 I ii: I E-B ) X 12: S-CACHE 
a: I ~ a: 
0 1 "' 0 

I :,.:: I I )< I l ::S:: 
() 

y 
() 

0 1 I 0 
(/) -l 11 I ii: I 

_J (/) 

0 U1, () 0 
<I: 

~ I F BC >X I st I ~ <I: 
a. N ~ a. 

I I I I 
I I ,_ 

=-== =~ I ' - -- --
I I I I 

I I I I 

1: I 
I 

I 
I 

I I I M-BOX I 

I : I I 
I II I 

I 
I I 

I - -- - -- - I u I I C LI< I ~ -- - ------- , I I I I I I I _ JI I I I I 
I - ---- - -- - J -- -- - - - - - -- -
I : 1 I 11: I 
1S-CACHE111 I jl: I 

I TAGS I I I D-C1 CHE I (-8 j )( 

I II C' -E 0) II 
I I 

:1 
I 

I II •----- ----- ----1- ----
I I I ----- ---- - - ; 

I I I I 1 _ _ ___ _ 1 ·- _,_ _ - - - - ----- t- - -- --- -- -- ~ - -
PADS 

Figure4 
Metal 3 and Metal 4 Clock Grid 

• .!: 

s 
48 LU c ... 
04 

72 

eo 

Figure 5 
Clock RC Delay 

Digital Technical Journal Vol. 7 No. 1 1995 105 



DIN_A DOUT_A 

CLK 

(a) A-latch 

DIN1_A DOUT_A 

DIN2_A 

CLK 

(c) AND Gate A-latch 

Figure 6 
Alpha 21164 Standard Latch Examples 

at least one additional gate delay between all latches, 
thus guaranteeing a race-free design. Designers had 
the option of designating these gates as logic functions 
or simple inverters. The delay did not affect critical 
speed paths, since critical paths tended to have more 
than one delay between latches. 

Circuit Design Strategy 

Due to the complexity of the Alpha 21164 chip and 
the large size of the design team, a comprehensive 
design methodology was developed . A design guide 
was created to provide a consistent set of rules and 
methods for the development of circuit schematics 
and layout. This document helped ensure that all 
designers worked under the same design assumptions. 
In addition, it relieved time-consuming analysis of 
each circuit by providing guidelines and "rules of 
thumb" that guaranteed correct operation and mini­
mized the possibility of reliability problems. 

Guidelines for common circuit structures such as 
complementary, cascade, dynamic, and static circuits 
were created by characterizing their behavior over all 
process corners. Adequate noise margins were ensured 
by specifying operating envelopes for such design 
parameters as device size, stack height, and beta ratio. 
Reliability guidelines were specified for electromigra­
tion, hot carrier effects, and substrate charge injection. 
Most circuits were designed within the rules specified 
in the guide; however, a few circuit designs violated 
the rules. These designs were allowed only when per­
formance and area advantages would be gained. These 

106 Digital Technical Journal Vol. 7 No. 1 1995 

CLK 

DIN_B DOUT_B 

(b) B-latch 

CLK 

DIN1 B DOUT_B 

DIN2_B 

(d) OR Gate B-latch 

exceptions were carefully verified for functionality and 
reliability. 

An extensive suite of in-house CAD tools was used 
to aid and structure the design process. In all cases, the 
tools supplemented the design process and automated 
repetitive work. Engineering judgment and iterative 
use of the software were required to create the final 
production schematics. Tools that aided schematic 
generation included a schematic editor, a logic synthe­
sis tool, and a device-sizing tool. Post-schematic tools 
included a latching methodology checker, a circuit 
verifier that highlighted design methodology viola­
tions, and a timing verifier that analyzed potential crit­
ical speed paths. The use of the design tools varied 
across the chip, based on the degree of customized 
logic required. For example, the I-box did not rely 
heavily on the synthesis tools because of the need for 
optimized circuit structures. However, the C-box 
used the synthesis tools extensively to produce base­
line schematics, which were then modified by hand 
as necessary. 

Circuit Design Examples 

The designers of the Alpha 21164 chip were faced 
with a number of implementation challenges. The 
most significant challenge was to design a chip that 
could run at 300 MHz, 50 percent faster than the 
previous Alpha implementation.2 Device scaling, 
process development, and architectural improvements 
delivered part, but not all, of the required speedup. 
The additional improvement had to be obtained using 



circuit design techniques. Other challenges included a 
much more complicated microarchitecture and the 
reduction in latency of a number of instructions from 
the previous implementation. Finally, the large phys­
ical size of the chip also led to challenges in circuit 
design and power management. 

The following sections describe several circuit 
design challenges encountered during the implemen­
tation of the Alpha 21164 chip. 

I-box Design-Issue Stage Dynamic Dirty/Bypass Logic 
The issue stage of the I-box coordinates the release 
of instructions into the E-box, F-box, and M-box 
pipelines. The deep pipelines and sophisticated mem -
ory management unit along with the high clock 
frequency presented significant challenges to the 
implementation team. The Alpha 2ll64 microarchi­
tecture allows up to 37 instructions to be in progress 
at the same time (7 integer operates, 9 floating oper­
ates, and 21 loads that missed). Superscalar issue of 
4 instructions requires that 8 operands and 4 new des­
tinations must be checked against these 37 outstand­
ing instructions in every cycle. In addition, 44 bypass 
paths are built into the E-box and F-box pipelines in 
the Alpha 21164 chip. Each of the 8 operands must be 
checked against several of these bypass paths to ensure 
that the most up-to-date data is forwarded to the issu­
ing instruction. 

The register comparisons were implemented using 
domino logic. A5 each instruction is issued, its destina­
tion register address is decoded into a 31-bit mask that 
is entered into a shift register that mimics the appro­
priate execution pipeline. Checks are performed for 
stalls and bypasses by selecting the appropriate masks 
from each level of the shift register and comparing 
them to the register addresses of the new instructions. 
Integer and floating-point instructions are handled in 
separate 31-bit-wide data paths. 

Decoding the register addresses allows a logical OR 
of several destinations to create "dirty" bit masks, 
greatly reducing the required number of comparators. 
This reduction in comparators more than compen­
sates for the additional logic involved in carrying the 
decoded register addresses for all pipe stages ( 31 bits 
versus 6 bits for encoded register numbers). With this 
scheme, all stall calculations are performed using only 
38 comparators. Bypass detection is performed in a 
manner similar to the stall generation using an addi­
tional 44 comparators, one for each E-box and F-box 
bypass path. 

The implementation of the comparators requires 
three domino stages (see Figure 7). The first stage is 
a two-input dynamic multiplexer that selects the 
operand/destination decode field for the new instruc­
tion or the field of the previous cycle's instruction if 
a stall was detected. The dirty bit mask is created in a 
similar dynamic OR structure. The second domino 

stage is a bit-wise AND function of the operand/desti­
nation decode mask and the dirty bit mask followed by 
a zero detector (logical OR of the 31 bits). A transmis­
sion gate forms a second AND function in this stage 
that qualifies the detected register conflict with an 
instruction valid signal. The third domino stage is used 
to further qualify the detected conflict with instruction 
type decode information and to start a logical OR of 
the 38 conflict outputs into a single stall wire. In the 
case of bypasses, the third domino stage is used to 
priority-encode the bypasses so that only the most up­
to-date data is bypassed. 

Special attention was given to several circuit design 
issues when the domino logic was implemented. 
Careful preplanning of the routing provided large 
lateral spacing on the dynamic lines to reduce cou­
pling. Noise margins were protected by ensuring that 
all dynamic inputs were driven from local inverters 
with a common ground reference. Charge-share prob­
lems in the large second domino stage (31-bit-wide 
AND-OR function) were minimized due to the fact 
that only a single bit will be set in the new instruction's 
operand decode bit mask, which is used as the upper 
input in the 31 AND stacks. Therefore, only a single 
internal node may charge-share with the large output 
capacitance. 

Another critical concern in such a large dynamic 
structure was power consumption. The logic was 
implemented in such a way as to minimize the number 
of nodes that discharge each phase. To minimize 
short-circuit currents, the second and third domino 
stages are precharged by means of matched delay sig­
nals. These self-timed precharged lines also help to 
minimize clock loading since CLK is used to precharge 
only the first stage. 

E-box Design-Bypass Logic 
The E-box presented a number of interesting circuit 
challenges. The Alpha 21164 implementation con­
tains two integer pipelines, as compared to one in the 
21064. This significantly increased the circuit design 
complexity associated with providing result bypassing 
from all functional units. 

The E-box bypass logic is responsible for supplying 
input operand data to the functional units in both 
integer pipelines. Input operand data can be supplied 
from the register file or bypassed from the output of 
any pipeline stage in the E-box (Figure 8). Functional 
operations are performed in pipeline stage 4 (S4), and 
register file writes occur in stage 6 (S6). Without 
bypass logic, instructions that require data from the 
pipeline would have to be stalled until the data reaches 
S6 and is written into the register file. These stalls 
would impact the integer performance severely. 
Therefore, the ability to bypass operand data from 
pipeline stages S4 through S6 was critical to obtaining 
high integer performance. 

Digital Technical Journal Vol. 7 No. 1 1995 107 



CLK INSTRUCTION TYPE<2:0> 

FLOATING POINT STALL QUALi FY STALL 

STALL_H 
OTHER DATA ,- - -- -- -- - -
DEPENDENCY STALLS : 

EXAMPLE - INTEGER AO 
OPERAND DATA DEPENDENCY 
STALL CALCULATION 

VDD I 

I 
DATA DEPENDENCY STALL , 

NON DATA 
DEPENDENCY STALLS 

MUX<UPPER PRE> 

CONFLICT DETECTION 
ON OTHER OPERANDS 
OF THIS INSTRUCTION FINAL DOMINO 

AND LATCH 
(THIRD DOMINO) 

--,_ - --------------------, 
- - - - - - - - - - - - - - - - - - - ,,--E-+--<E--+--- -------+- TO ADDITIONAL 

MUX<VALID> CONFLICT/BYPASS = VALID_INSTRUCTION :_ -: ::::::::::: ::::::::~ CHECKS 

' 0 
'i 
v 

0 
z 
< a: 
w 
Q. 

0 
' ~ 

DECODER<30> -------------, 
_____ __ ______ J 

"" ...J 
(.) 

MUX<30> 
I --
1 

MUX<LOWER PRE> 

- -----------, -----, - ----------- -----' I ...J 
I I 

...J ...J 
"" ...J ...J 
...J < < 
(.) ~ ~ 

DIRTY<30> --- ------ - - --- --. TO BYPASS DETECTION 
AND DESTINATION SHIFT 
REGISTERS 

--- ------------' 

"" ...J 
(.) 

- -~f!"~~Q~ - - - - • LOADO_DEST <0> 

I LOAD1_DEST <0> } FROM 
IMUL DEST <0> DESTINATION 

: LOA~_MISSES<O> ~~~7sTERS 
I 

____________ J 

OPERAND DECODING RECIRCULATE LOGIC 
(FIRST DOMINO) I J1~lci I D~~~~:g~ I DIRTY BIT MASK I 

PRECHARGE (SECOND DYNAMIC OR OF ALL DIRTY REGISTERS 
DOMINO) 

Figure 7 
Domino Logic for Issue Scoreboard 

Four 64-bit dual-rail operand buses are used to 
bypass data. Two buses in each pipeline are used to 
supply A and B operand data to the functional units. 
The buses are controlled by the BYPASS_ENABLE_L 
signals generated in the I-box and are driven during 
the B-phase (see Figure 9 ). A typical operand bus dri­
ver is shown as well as the shifter operand bus driver. 
The shifter driver is unique because it has byte zap ( set 
byte to zero) logic capability. 

Data is read from the operand buses during the early 
portion of the A-phase by operand bus receivers 
located at the input of each functional unit. The 
receiver is a dynamic gate structure that can be con -
figured to receive one or more inputs and generate 
a logical function output. The adder uses the logical 
function capability to generate propagate and kill 
signals. 

The operand bus is precharged by a delayed A-phase 
clock. This delay allows the dynamic bus receiver gate 
to act as a latch and eliminates the need for a true 
B-latch (see Figure 9 ). During the beginning of the 
A-phase, operand data propagates through the 
receiver and is captured by the receiver gate output 
latch node before the delayed A-phase · clock pre­
charges the operand bus. Once the operand bus is 
precharged, the latch node is decoupled from the 
operand bus. 

l 08 Digital Technical Journal Vol. 7 No. l 1995 

{"N) 

E-box Design- 64-bit Shifter 
The E-box shifter executes all 64-bit shift, extract, 
insert, and zap ( set to zero) instructions on both little 
and big endian data types using a 128-bit right-only 
shifter. All shift instructions take one cycle to execute, 
an improvement of one cycle relative to the 21064 
design. 

The data path portion of the shifter logic uses 
dynamic and cascode circuitry to read the operand 
buses, to present the data to either the low or high 
64 bits of data, and to sign-extend the high 64 bits, 
when necessary, in the A-phase. In the B-phase, the 
input data is shifted, a byte zap is performed when 
necessary, and the result is driven onto the result bus. 
The result can be bypassed onto an operand bus. 
Right shifts are performed by loading the A-operand 
data into the low 64 bits and shifting based on the 
value of the B-operand; left shifts are performed by 
loading the A-operand data into the high 64 bits and 
shifting based on the two's complement of the value of 
the B-operand. The shifter array is implemented as a 
differential dynamic gate. The layout uses metal 1 for 
the input data, metal 2 for the output value, and metal 
3 for the shift amount. 

The chief improvement in this design over the 
21064 design is the single-phase generation of the 65 
shift enable signals and byte zap mask. The shift enable 



Cl) 
UJ 
Cl) 
::i 
co 

~ 
< a 
0 z 
~~ 
UJ 1-
c.. z 
o~ 
co UJ 
o...J 
zc.. 
<'.:2 
<8 
0 0 
UJ z 
z< 
::::i UJ 
UJ ::i 
C..II'. - .... c..~ 

,,.. 

v 

,--------------------
: REGISTER FILE : 
I I 

I 
~ READ (S3) READ (S3) ~ 

I I 
I I 
I WRITE (S6) ' ----- . -------. -----l 
,--------------------

PIPELINE O 

! FUNCTIONAL UNITS (S4) : I 

i RESULT BUS 

I I PIPELINE STAGE (SS) 
I 

I I 
I + I 
I I I 
I I PIPELINE STAGE (S6) I 
I ·---------+---------
--------------------, 

PIPELINE 1 I 
I 
I 

: FUNCTIONAL UNITS (S4) : 
I 
I 

t RESULT BUS 

I 
PIPELINE STAGE (SS) 

l 
I I 

+ 
I PIPELINE STAGE (S6) 

I 
I I I 
----------~---------l 

Figure 8 
E-box Pipeline 

~ 

v 

Cl) 
UJ 
Cl) 
::i 
co 

s 
a 
0 
z 
~i=' 
UJ z 
a.. UJ 
0'.:2 
co UJ 
a...J 
z c.. 
<'.:2 
<8 
;.:a 
UJ z 
z< 
::::i UJ 
UJ ::i 
C..II'. 
- 1-c..~ 

generation is accomplished by combining the shift 
requirements of the extract and insert instructions 
with the B-operand decode logic for normal shifts. 
An 8-bit shifter is used to implement the byte zap 
mask to achieve the single-phase goal. The 8-bit zap 
mask shifter is built using differential dynamic logic. 
Its control resembles that of the 64-bit shifter, 
employing cascade data input circuitry and dynamic 
decode logic. The shift amount is determined from 
the B-operand or bits in the instruction based on the 
opcode. 

Cache Design-Power Savings 
Special design considerations were given to the three 
caches on the Alpha 21164 chip because they com -
prise, by far, the largest number of devices and have 
the greatest impact on yield. Since the caches are 
accessed frequently, the power consumption of the 
caches was also a cause for concern. 

The 8-KB I-cache includes two pairs of fuse­
programmable redundant rows to offset any yield 

loss. The D-cache leverages the I-cache design by 
combining two of these caches to form a single, dual­
read-ported, 8-KB data cache. The D-cache employs 
the same row redundancy scheme as the I -cache. The 
Alpha 21164 chip also contains the S-cache, which 
is a large, second-level cache for both data and instruc­
tions. The S-cache data array is organized into 24 
banks of 4 KB each. Twelve banks are placed on the 
left and right sides of the chip. Figure 10 shows the 
arrangement of the banks on the right side. Each bank 
of both the tag and data arrays implements row redun­
dancy. The S-cache data array also implements column 
redundancy. 

Pipeline processing of the S-cache allows the inclu­
sion of power-saving features. The S-cache operates in 
a four-stage pipeline: two stages for tag lookup and 
modification, and two for data access and transfer. 
Address decoding during the tag lookup results in the 
clocking of only 2 of the 8 banks in each of the 3 sets 
( 6 of 24 in the whole cache). The bit lines and sense 
amplifiers in the disabled 18 banks are frozen in the 
precharge mode, consuming minimal power. 

Hit signals from the tag-lookup logic control the 
word lines and sense amplifiers of the six enabled 
banks. Therefore, of the six banks enabled, only the 
two banks for the set that hit are activated and dis­
charged. This design results in an estimated power 
savings oflO W. 

System Clock Design-Synchronization 
The Alpha 21164 chip is designed to accommodate 
multiprocessor systems using a synchronous bus. This 
requires the synchronization of the Alpha 21164 
chip's generated reference clock (SYS_CLK} to the 
systems-generated reference clock (REF _CLK). To 
achieve the maximum system performance, this must 
be done with as little error as possible. 

In other designs, this synchronization is achieved 
using an on-chip phase-locked loop (PLL}.4 However, 
the on-chip noise environment of the Alpha 21164 
could cause excessive PLL jitter. Jitter can reduce the 
width of a clock phase and create a pulse too narrow to 
clock on-chip logic. This uncertainty would dictate 
slO\ving the clock frequency, thus reducing system 
performance. 

The design challenge was to find a low-risk digital 
solution that would meet the high-frequency per­
formance requirements of the Alpha 21164. To meet 
this challenge, a state machine PLL (SMPLL) was 
designed. This all-digital approach has much better 
noise immunity than a traditional PLL, but it does 
introduce a quantizing error, or skew, into the system 
clock timing. This skew can complicate system timing 
but has minimal impact on CPU performance, since 
it allows the Alpha 21164 chip to run at the highest 
possible clock frequency. 

Digital Technical Journal Vol. 7 No . 1 1995 109 



TYPICAL OPERAND OPERAND BUS RECEIVER r----------------------, 
BUS DRIVER I ,---------------- CLK I 

LATCH 
NODE 

CLK 

I-BOX BYPASS 
LOGIC ENABLE_L 

A-LATCH 

E-BOX DATA_H 
PIPE 0/1 A-LATCH 

I 

BUS - L 

BUS - H 

I 
I 

I 
1: 
1: 
1, ' 

r \ , ,------~-------------
' ' LOGIC ---------------- ' ' 

Cl) 

SHIFTER OPERAND ::::> 
BUS DRIVER 

ID 

' ' ' ' ' ' ' ' 
SHF_OUT H ,--------------- BUS_L Cl z ' 

E·BOX 
PIPEO 
LOGIC 

E-BOX 
ZAP_H 

A-LATCH SHIFT SHF_OUT_L 
LOGIC 

ZAP_L 

BYPASS 
I-BOX ENABLE_L 
LOGIC 

A-LATCH 

CLK 

I <I: 
BUS_H a: 

w 
a.. 

I 0 
<I: 
0 
w 
z 
::::; 
w 
a.. 
a: 

' ' ' ' 

BUS (HOR L) 

A-LATCH 

----------------
INVERTER (SINGLE INPUT) 

OR 

PRECHARGE LOGIC 
I ] 
I I 

TRISTATE DRIVER (N·INPUT MUX) 

BUS (HOR L) 

CLK I I 

I I BUS L -
I 
I 
I BUS_H 

BUS (HOR L) 

I 
I i _________________________ J 

Figure 9 
E-box Bypass Bus 

Figure 11 shows a functional block diagram of the 
SMPLL. The Alpha 21164 generates a system bus 
clock (SYS_CLK) by dividing the internal CLK by a 
preprogrammed amount. This SYS_CLK is then 
aligned to the system-generated reference clock 
(REF_CLK). To do this, the frequency of REF_CLK 
must be slightly lower than that of SYS_ CLK. A phase 
detector compares the arrival of the rising edge of 
REF_CLK with the rising edge of SYS_CLK. If the 
edges are coincident, the SMPLL stretches SYS_CLK 
by the period of the chip oscillator. Thus, the rising 
edge of REF _CLK always leads the rising edge of 
SYS_CLK. However, because SYS_CLK is slightly 
faster than REF_CLK, the rising edge ofSYS_CLK will 
eventually catch up to REF_ CLK. When this happens, 
the phase detector once again stretches SYS_CLK, and 
the process of catching up starts anew. 

The SMPLL design takes advantage of the on-chip 
clock divider circuitry by suppressing the divide for a 
single count whenever a phase alignment is required. 
This scheme adjusts the phase alignment in increments 
of 1.67 nanoseconds ( ns) ( assuming a 600-MHz input 
clock) and allows the rising edge of the REF_CLK, 
measured at the input pin of the Alpha 21164, to coin­
cide with the SYS_CLK to within 1.67 ns. 

110 Digital Technical Journal Vol. 7 No. 1 1995 

Physical and Electrical Verification 

The ability to verify the layout ofa 9 .3-million·transistor 
VLSI chip, both physically and electrically, without 
hampering its performance or impacting its develop­
ment schedule, was a primary concern from the outset 
of the project. Many new techniques were developed 
to accomplish this task. Some of the more significant 
advances are discussed in the following section. 

Physical Layout Verification 
The size and complexity of the Alpha 21164 dictated 
the use of physical assembly methods that did not 
require the CAD tool suite to verify the complete chip 
layout database in one pass. 

Full-custom designs like the Alpha 21164 chip are 
composed oflarge blocks ofrandom logic that are not 
easily divisible into highly repetitive instantiations of 
common cells. Because of the relatively few instances 
of repetitive structures, there was no need to design 
using a deep cell hierarchy. Similar to previous, large, 
full-custom designs, the Alpha 21164 floorplan 
divided the chip along major box boundaries. 5 This 
partitioning reduced the device count per partition, 
allowing each to be verified independently . . 



: CONDITIONAL CLOCK GENERATION : ,_! DETAILS FOR SET 3 . -----------------~---:} SET3 
1 (WIRING NOT SHOWN) • I NOT SHOWN ·----------------------J ·------------- ----------------

___ J 

: CONDITIONAL CLOCK GENERATION : 
I 

DETAILS FOR SET 2 . -----------------~---:} 
1 (WIRING NOT SHOWN) I I NOT SHOWN ·----------------------J ·------------- ----------------· ___ J 

SET2 

I j I 

• CONDITIONAL CLOCK GENERATION : ~ BANK3 
I . -----------------------· 

I j I 

: CONDITIONAL CLOCK GENERATION : H BANK2 

·-----------------------· 
I I 

: CONDITIONAL CLOCK GENERATION : H BANK1 

·----------------------J 
PRECHARGE .-- ---------------- -i 

t: l . PRECHARGE DEVICES I 

g? ·--~---------------- ·-J 

----------------(.) •••• •••1 I I 
I\ LU 

I WORD I I 4-KBBANK I 
'.? ...J 

LU 
: LINE : ':: ~---------------- -J v Cf) ·--------------- . ...J I- I DECODER I I I 

:i: 0- :i: •---,1---.J I 
COLUMN MUX I 

I ,....._ 
(!) ·--~---------------- -J a: ENABLE ,--Cl ~ ----------------Cl 

~ SENSE 
I 

<I: I SENSE AMP I ·--~---------------- ·-J 

SET 1 

.-- ---------------- -i 
CONDITIONAL CLOCK I M4 BUS INTERFACE I 

GENERATION BANKO 
, __ 

~---------------- _J 

PRE_CLK 0,1,2 64-BIT WRITE BUS 64-BIT READ BUS 

Figure 10 
Schematic of Right Half of L2 Cache Data Arrays 

CLOCK CLOCK INVERTER 
RECEIVER CHAIN 

Figure 11 

OSC_IN_H OSC_CLK_H 

EXTERNAL 
OSCILLATOR 

600.1 MHZ 

OSC_IN_L 

SYS_CLK 

75.0125 MHZ 

CLK 

OSC_CLK_L 

STUTTER 
CONTROL 

300.05 MHZ 

REF_CLK 
PHASE DETECTOR 

75.000 MHZ 

SMPLL Block Diagram 

The Alpha 21164 cache partitions, containing 7.2 
million of the 9. 3 million total devices, are, in them­
selves, very large and difficult to verify. Accordingly, all 
three caches were designed and assembled hierarchi­
cally. Specifically, each cache bank contains several ref­
erences to the same precharge, decoder, control, and 
random access memory (RAM) array logic and layout, 
which are then instantiated to form the overall cache. 
Subdividing the cache partitions into major hierarchi-

DIVIDE BY 2 
LOGIC 

SYS_CLK_GEN 
(DIVIDE BY N) 

CLK 

300.05 MHZ 

SYS_CLK 

75.0125 MHZ 

cal blocks reduced the device count per block. In addi­
tion, since each bank was identical, only the devices 
within one bank needed to be verified. 

Although the hierarchical method is typically used 
in semicustom designs, it was new for Digital's full ­
custom microprocessors. Prior to the development of 
the Alpha 21164, the caches were designed and veri­
fied without an established hierarchy, as was the rest of 
the chip. Digital's CAD tools handled large databases 

Digital Technical Journal Vol. 7 No. 1 1995 111 



without hierarchy; the layout verification methods 
were trusted; and the percentage of duplicated cir­
cuitry was small. Consequently, there had been no 
prior compelling need to design with deep hierarchies. 

Toward the end of the chip developmemt, using a 
considerable amount of computer resources, all three 
Alpha 21164 cache layouts were also verified without 
hierarchy to prove the new hierarchical method and 
CAD tools. The large size of the Alpha 21164 made it 
the prime candidate for verifying new hierarchical veri­
fication tools (which were run concurrently with the 
traditional ones). Table 1 compares the processing 
time of the S-cache for both the nonhierarchical and 
the hierarchical verification methods. The hierarchical 
approach resulted in a significant improvement in 
CPU time. 

Capacitive Coupling and Carrier Injection Verification 
Since capacitive coupling between adjacent signals can 
have a disastrous effect on the logical functionality and 
long-term reliability of a design, it was a major con­
cern throughout the project. When adjacent nodes 
switch, coupling between them can result in their logic 
state being degraded or lost by adding or removing 
charge to or from the coupled node. For static cases, 
coupling results in a loss in performance, since the 
node recovers state if the chip cycle time is slowed. For 
dynamic nodes, however, state may be lost, leading to 
a logic failure that occurs regardless of cycle time. 

Interconnect coupling capacitance can also lead to 
voltage excursions above the power supply voltage 
(\fJoJ and below ground (~) on signals in the chip. 
For the case of an excursion below ~, the n-type 
source/drains connected to the signal become forward 
biased, injecting minority carriers (electrons) into the 
substrate. If these minority carriers are collected by 
N-diffusions connected to dynamic nodes, the charge 
stored on the dynamic node can be corrupted, as 
shown in Figure 12. Similarly, excursions above lfJv 
forward bias p-type source/drains, which can also lead 
to data corruption. 

An extensive set of CAD tools was used to identify 
potential coupling and charge injection problems. In 

Table 1 
Alpha 211 64 S-cache Verification Compute Time 

Non hierarchical Hierarchical 
Operation Processing Processing 

Netlist extraction 11 hours 6 hours 

Netlist comparison 6 hours 30 minutes 

Geometric 
verification 18 hours 10 minutes 

112 Digital Technical Journal Vol. 7 No. 1 1995 

the case of injection checks, a circuit wirelist of the 
chip was extracted from the layout that included X-Y 
location coordinates for all transistors. An electrical 
analysis, using capacitances extracted from layout, was 
then run to identify all nodes that made voltage excur­
sions outside the power supply voltages and that were 
potential minority carrier injectors. Once these nodes 
were identified, the CAD tool, which referenced the 
coordinates from the extracted wirelist, checked all cir­
cuitry in the vicinity of the injectors to ensure that 
there were no dynamic nodes present that could be 
corrupted. When a potential corruption problem was 
found, a layout fix was implemented to eliminate the 
coupling causing the injection. If the coupling could 
not be reduced or eliminated, a diffusion collector tied 
to a power rail was placed between the injector and the 
dynamic node (Figure 13). 

Antenna-induced Device Damage Analysis 
During the metal etch process, when interconnect is 
being formed from a blanket layer of metal, stray 
charge from the etch plasma can be captured by the 
visible metal. The charge is collected on any polysili­
con gate capacitors attached to the node. If enough 
charge is collected, the gate voltage may rise high 
enough for tunneling into the gate oxide to occur. 
This new concern, called antenna-induced device 
damage, can cause breakdown of the gate oxide, tran -
sistor threshold voltage shifts, and long-term reliability 
problems. 

Antenna-induced device damage can be prevented 
if an alternate path is provided for the collected charge. 
A diode connection on the antenna node, such as a 
diffusion connection in either the well or the sub­
strate, acts as such a path. Although all nodes in the 
Alpha 21164 chip have a diode connection, this con­
nection may not be present at the first or second met­
alization steps, thereby allowing damage to occur. The 
magnitude of the damage is dependent on the antenna 
ratio, defined as the ratio between the area of the 
visible metal layer being processed and the area of 
the gates attached to that node through lower-level 
connecting layers. 

To analyze the chip, a special computer-based lay­
out design rule check was developed. This check 
extracted partial node layout as it would appear during 
each metalization-patterning etch step and filtered all 
nodes that did not have a diode shunt connection. For 
these nodes, antenna ratios were computed and com­
pared to their corresponding ratio limit. To reduce the 
antenna ratio of a failing node, the antenna metal was 
broken into sections and metal jumpers, which were 
placed in the next-higher adjacent metal layer, to con­
nect the sections into a single node. This reduced the 
charge-collecting area for the section of interconnect 



Figure 12 

N+ 

DYNAMIC NODE WITH 
Vss STORED "1" CHARGE 

\ 
N+ 

CHARGE COLLECTED BY 
DEPLETION REGION OF 
NEARBY TRANSISTOR 

p- EPI SUBSTRATE 

Dynamic Node Corruption Caused by Minority Carrier Injection 

that had the polysilicon gate attached and, as a result, 
reduced the antenna ratio. If this approach was not 
feasible or did not reduce the antenna ratio adequately, 
a diffusion diode was attached to the offending 
antenna to shunt the charge away. 

Electromigration Reliability Analysis 
The methods and algorithms used to perform the 
electromigration (EM) analysis on the Alpha 21164 
chip have greatly improved since previously reported. 5 

The chief enhancements are the analysis of unidirec­
tional and bidirectional current flow, the addition of 
thermal heating models, and the introduction of sta­
tistical electromigration budgeting. 

From a design perspective, one of the main 
improvements in EM analysis was the introduction of 
unidirectional and bidirectional current flow limits. 
Unidirectional current is the flow of current in one 
direction, for example in wires connecting devices to 
power or ground. The segment of wire connecting a 

DYNAMIC NODE WITH 

NODE COUPLED 
BELOW GROUND Vss 

1 I 
N+ N+ 

INJECTED MINORITY CARRIERS 

complementary logic gate to its load is considered 
bidirectional since the current flows toward the load to 
charge its capacitance and flows back to the driver as 
the capacitance is discharged. The bidirectional behav­
ior of current has been shown to improve EM reliabil­
ity by at least a factor of two. This is a tremendous 
benefit as nearly all on-chip signal wiring is bidirec­
tional. (Power supply metal is not and must be treated 
accordingly. ) 

The most stringent EM requirement is meeting 
the traditional average current density limit of 2.0 
milliampere/ µm 2• Statistical electromigration bud­
geting ( SEB) was used for the first time during design 
verification to assess the impact of allowing small por­
tions of the Alpha 21164 design to exceed the fixed 
EM average current limits.6 Statistical parameters char­
acterizing EM risk for the 0.5-µm CMOS interconnect 
process were combined with the average node cur­
rents and layout geometry to compute the magnitude 
of the EM risk of all design rule violations taken 

NODE COUPLED 
Vss STORED "1" CHARGE Voo BELOW GROUND Vss 

\ 
N+ 

p- EPI SUBSTRATE 

Figure 13 

N+ 

DIFFUSION 
COLLECTOR 

Dynamic Node Protected from Minority Carrier Injection 

1 I 
N+ N+ 

INJECTED MINORITY CARRIERS 

Digital Technical Journal Vol. 7 No. 1 1995 113 



together. Only those violations that added significant 
risk were required to be fixed. This reduced design 
verification time and retained performance advantages 
while ensuring that the Alpha 21164 design met its 
chip-level reliability goals. 

Conclusion 

The implementation details of the Alpha 21164 
microprocessor have been described. The custom 
VLSI chip contains 9 .3 million transistors, including a 
96-KB second-level cache, in an area of299 mm2. The 
chip implements the Alpha instruction set architecture 
and can issue up to four instructions at a time. It 
reaches a peak execution rate of 1.2 billion instruc­
tions per second (bips) and 600 MFLOPS. The Alpha 
21164 is the fastest and highest-performance micro­
processor designed to date in the industry.7 

The chip achieved its performance goal of300-MHz 
operation in a 0.5-µm CMOS technology by employ­
ing a fine-pitch, low-resistance power grid; a low-skew 
clock distribution network; fast latches; and high­
speed circuit techniques. Extensive verification of the 
functionality, electrical circuits, and physical layout was 
performed to ensure the functionality and reliability of 
the design. The chip operates from a 3.3-V supply and 
dissipates 50 W. It is easily air-cooled using conven­
tional technology. First-pass silicon was functional and 
booted three operating systems running on a number 
of different system platforms. 

Acknowledgments 

We would like to acknowledge the contributions of 
many people who helped make this chip possible. 
These include William Herrick and Paul Rubinfeld for 
management and project support; Alan Cave and 
Radenko Cvijetic for invaluable CAD assistance; and 
Larry Bair, Narain Arora, Len Gruber, and Bjorn 
Zetterlund for device and technology modeling. 
Designers include Randy Allmon, Roy Badeau, Pete 
Bannon, Todd Benninghoff, Randel Blake-Campos, 
Derek Brasili, Kevin Broch, Todd Broch, Mike 
Charnoky, Beth Cooper, Dan Dever, Rob Dupcak, 
Tim Fischer, Frank Fox, Rich Fromm, Bruce Gieseke, 
Mary Gowan, Charles Hightower, Jim Keller, John 
Kowaleski, Tim Mast, Anthony Murphy, John Mylius, 
Andy Olesin, Tung Pham, Nate Raughley, Don 
Priore, Vidya Rajagopalan, Steve Strickland, Chandra 
Somanathan, Jon White, Gil Wolrich, and the authors 
of this paper. Custom layout was done by Picco Aires, 
Sandy Carroll, JeffCeparski, Danielle DeMarse, Gina 
Franceschi-Bean, Mark Gaetz, Natasha Geagan, Jerry 
Heath, Susan Lowell, Tom McDermott, Karen 
McFadden, Rich Matthew, Stephanie Miller, Sue 

114 Digital Technical Journal Vol. 7 No. 1 1995 

Moore, Brian Mulhollen, Dave Olson, Marie Riley, 
Avraham Shenvald, Chad Stark, Marc Tareila, Lang 
Tran, and Greg Williams. 

References and Note 

1. J. Edmondson et al., "Internal Organization of the 
Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS 
RISC Microprocessor," Digital Technical Journal, 
vol. 7, no. I (1995, this issue): 119-135. 

2. D. Dobberpuhl et al ., "A 200-MHz 64-bit Dual-issue 
CMOS Microprocessor," Digital Technical Journal, 
vol. 4, no. 4 (Special Issue 1992): 35- 50. 

3. SPICE is a general-purpose circuit simulator program 
developed by Lawrence Nagel and Ellis Cohen of the 
Department of Electrical Engineering and Computer 
Sciences, University of California at Berkeley. 

4. K. Kurita et al., "PLL-Based BiCMOS On-Chip Clock 
Generator for Very High-Speed Microprocessor," IEEE 
Journal of Solid State Circuits, vol. 26, no. 4 (April 
1991): 585-589. 

5. D. Donchin et al., "The NVAX CPU Chip: Design Chal­
lenges, Methods, and CAD Tools," Digital Technical 
Journal, vol. 4, no. 3 (Summer 1992): 24--37. 

6 . J. Kitchin, "Statistical Electromigration Risk Budgeting 
for Reliable Design and Verification in a 300MHz 
Microprocessor," Digest of Technical Papers, VLSI 
Circuits Symposium, 1995. 

7. "Digital Leads the Pack with 21164," Microprocessor 
Report, vol. 8, no. 12 (September 1994): 1, 6-10. 

Biographies 

William J. Bowhill 
William Bowhill is a consultant engineer in Digital 
Semiconductor's High Performance CPU Group. He 
co-led the implementation of the Alpha 21164 CPU and 
represented the design organization during the develop­
ment of the 0.5-µm CMOS process in which the chip is 
fabricated. His previous responsibilities include technical 
contributions to both the VAX 6000 Model 400 and 
Model 600 chip sets. Before joining Digital in 1985, he 
worked for Standard Telecommunications Laboratories, 
Harlow, England, where he designed VLSI chips for 
telecommunication applications. Bill received a B.Eng. 
(honors) in electronic engineering from the University 
ofLivcrpool in 1981. 



Shane L. Bell 
Shane Bell joined Digital after receiving a B.S. in computer 
systems engineering from the University of Massachusetts 
at Amherst in 1993. As a hardware engineer in Digital 
Semiconductor, he worked on the integer execution unit 
of the Alpha 21164 CPU. He is currently involved in the 
design of another high-performance microprocessor. Shane 
is a member of Eta Kappa Nu, Tau Beta Pi, and IEEE. 

Bradley J. Benschneider 
Brad Benschneider is a principal hardware engineer in 
Digital Semiconductor. He was responsible for designing 
various sections of the memory management unit on the 
21164, as well as defining the latching methodology for 
the chip. He is currently leading the implementation effort 
of the memory management unit for the next-generation 
Alpha CPU. Since joining Digital in 1987, he has con­
tributed to several custom chip designs in the VAX 6000 
family and the early Alpha implementations. He received 
a B.S.E.E. from the University of Cincinnati, has one 
patent, and has co-authored four papers. 

Andrew J. Black 
Andy Black is a senior hardware engineer in Digital's Palo 
Alto Design Center, where he is designing the bus interface 
unit for the StrongARM PDA microprocessor chip. During 
his work on the Alpha 21164 CPU, he was a member of 
the design team for the memory management unit and 
contributed to the chip's clock design. Andy joined Digital 
in 1992 after working for International Solar Electric 
Technology. He received a B.S.E.E. from Pennsylvania 
State University and an M.S.E.E. from the University of 
Southern California. Andy is a member ofIEEE, Tau Beta 
Pi, and Eta Kappa Nu. 

Sharon M. Britton 
Sharon Britton is a principal hardware engineer in Digital 
Semiconductor. She received a B.S.E.E. from Boston 
University in 1983 and an M.S.E.E. from MIT in 1990. 
She joined Digital in 1983 to work on the design and 
development of optical disk drive controllers. Since joining 
Digital Semiconductor in 1990, Sharon has contributed to 
the design of the floating-point unit on the 21064 CPU 
chip and led the implementation of the load/store unit for 
the Alpha 21164 CPU. She is currently a member of the 
design team working on the instruction issue unit for the 
next-generation Alpha chip. 

Ruben W. Castelino 
Before receiving a B.S.E.E. from the University of 
Cincinnati in 1988, Ruben Castelino was a co-op student 
at Digital working on a chip set for the VAX 6000 Model 
200. Currently a senior hardware engineer in Digital 
Semiconductor, he was a codesigner of the cache control 
and bus interface unit for the Alpha 21164 CPU. Prior 
to that, he worked on the instruction fetch, decode, and 
branch unit for the NVAX chip and performed implemen­
tation work for the NVAX virtual instruction cache. Ruben 
is currently a codesigner of the cache control and bus inter­
face unit for a new Alpha microprocessor. 

Dale R. Donchin 
Dale Donchin is an engineering manager and technical 
contributor in Digital Semiconductor. He designed several 
circuits related to the clock and cache and contributed to 
and led CAD tool use for the Alpha 21164 CPU. He is 
presently performing these duties for the development of 
the next-generation Alpha microprocessor. Dale joined 

Digital Technical Journal Vol. 7 No. 1 1995 115 



Digital in 1978 and was previously a development manager 
in the RSX Operating System Group. Dale holds a B.S.E.E. 
(1976, honors) and an M.S.E.E. (1978) from Rutgers 
University College of Engineering and is a member of 
IEEE and ACM. 

John H. Edmondson 
John Edmondson is a consultant engineer in Digital 
Semiconductor. He was the architecture leader of the 
design team for the Alpha 21164 microprocessor. 
Previous to that work, he was a member of the design 
team for the VAX 6000 Model 600 microprocessor. 
Prior to joining Digital in 1987, John worked at 
Canaan Computer Corporation and Massachusetts 
General Hospital. John received a B.S.E.E. from the 
Massachusetts Institute of Technology in 1979. 

Harry R. Fair, III 
Harry Fair is a senior i 11 iware engineer in Digital 
Semiconductor's Advanced Development Group and is 
currently working on the design of the instruction issue 
unit for a high-performance microprocessor. Harry came 
to Digital in 1985 as a co-op student and worked on the 
VAX 6000 Model 400 chip set. He joined Digital after 
receiving a B.S.E.E. froFJ. Purdue University in 1989. 
Since then he has contributed to the NVAX and NVAX+ 
microprocessor designs and most recently was a member 
of the design teams for the integer execution unit and 
memory management unit of the Alpha 21164. Harry 
is a member ofIEEE. 

Paul E. Gronowski 
Paul Gronowski joined Digital in 1984 afi:er receiving a 
B.S. degree in electrical engineering from the University 
of Cincinnati. During the past 10 years with Digital 
Semiconductor, he has contributed to the design of several 

116 Digital Technical Journal Vol. 7 No. 1 1995 

high-performance microprocessors. For the Alpha 21164 
CPU, he was responsible for the integer execution unit 
and led the physical chip verification effort. He is currently 
responsible for the technical design and management of 
the next-generation processor. He is the co-author of sev­
eral ISSCC papers and holds one patent. 

Anil K Jain 
Anil Jain, a consulting engineer in Digital Semiconductor, 
led the implementation of the external interface unit on 
the Alpha 21164 microprocessor. Prior to this, he was the 
project leader for the floating-point unit on the NVAX 
microprocessor. He also made technical contributions 
on the CVAX microprocessor and on device modeling 
ofDigital's first CMOS process. Anil received a B.S.E.E. 
from Punjab Engineering College (1978) and an M.S.E.E. 
from the University of Cincinnati (1980). He holds three 
patents. 

Patricia L. Kroesen 
A principal engineer in Digital Semiconductor, Patricia 
Kroesen is currently a circuit designer of the cache 
controller and 1/0 interface section for the next­
generation Alpha microprocessor. In her work on the 
Alpha 21164, she was an implementer on the floating­
point unit and optimized the clock distribution system for 
the PASS2 release. Since joining Digital in 1988, Patty has 
also worked on advanced development efforts of bipolar 
and GaAs chips. She has a B.S.E.E. from the University of 
Michigan and an M.S.E.E. from Polytechnic Institute. She 
holds one patent and has co-authored several papers. 

Marc E. Lamere 
A principal hardware engineer in Digital Semiconductor, 
Marc Lamere is currently a CMOS circuit designer for the 
next-generation Alpha microprocessor. In his work on the 



Alpha 21164, he was responsible for the integer execution 
unit shifter and other circuit designs as well as the physical 
and electrical verification of the chip. Marc joined Digital 
in 1984 as an ECL circuit designer on the VAX 9000 proj­
ect and helped design custom and semicustom bipolar 
chips. He holds a B.S.E.E. (1983) from Rensselaer 
Polytechnic Institute and an M.S.E.E. (1988) from 
Northeastern University. 

Bruce J. Loughlin 
Consultant engineer Bruce Loughlin was responsible for 
the signal integrity design for the Alpha 21164 chip. Since 
joining Digital in 1975, Bruce has contributed to many 
projects, including the clock design of the DEC 3000 
workstation, corporate FCC shielding strategy, design of 
the FDDI physical interface, and disk servo writing equip­
ment for the R80 Winchester disks. From 1971 to 1975, 
Bruce was a member of the Eclipse design team at Data 
General. Prior to that, he was the vice president of 
engineering for Data Technology Inc., a company he 
cofounded in 1961. Bruce holds B.S. degrees in electrical 
engineering and mechanical engineering and an M.S. 
in aeronautics and astronautics, all from MIT. 

Shekhar Mehta 
Shekhar Mehta is a senior hardware engineer in Digital 
Semiconductor's High Performance Computing Group. 
He designed the miss address file on the memory 
subsystem of the Alpha 21 164 CPU and was responsible 
for the electromigration checks of the chip. He is currently 
leading the design of the caches on a future Alpha micro­
processor. Before joining Digital in 1988, Shekhar was an 
engineer at Larsen & Toubro, Bombay, India. H e received 
an M.S.E.E. from the University ofWisconsin at Madison 
(1988). 

Robert 0. Mueller 
Rob Mueller joined Digital in 1990 after receiving a B.S. 
in computer and systems engineering from Rensselaer 
Polytechnic Institute. As a senior hardware engineer in 
Digital Semiconductor, he is currently involved in the 
design and implementation of the pad ring for a new Alpha 
microprocessor. In his work on the Alpha 21 164 chip, Rob 
contributed to the design, implementation, and electrical 
verification of the pad ring, the cache control, and the bus 
interface unit. 

Ronald P. Preston 
Ronald Preston is a principal engineer in Digital 
Semiconductor. Since joining Digital in 1988, he has 
worked on the design of several microprocessors and was 
the implementation leader for the instruction unit on the 
Alpha 21164. Ron was also responsible for the architecture 
and implementation of the issue/ bypass/ scoreboard logic. 
Ron is the coauthor of several articles on hot carrier analy­
sis of CMOS circuits. He received a B.S.E.E. in 1984 and 
an M.S.E.E. in 1988, both from Rensselaer Polytechnic 
Institute. Ron is a member of Eta Kappa Nu and IEEE. 

Sribalan Santhanam 
Sri Santhanam received a B.E. in electrical engineering 
from Anna University, Madras, India, in 1987, and an 
M.S.E. degree in computer science and engineering from 
the University of Michigan in 1989. He joined Digital 
as a design engineer for Digital Semiconductor, responsible 
for the full-custom design and development ofhigh­
performance CMOS VLSI processors. Sri worked on the 
design of the floating-point unit of the 21064 CPU and 
the design of the cache control unit of the Alpha 21164 
CPU. He is currently a member of the Low Power Alpha 
Group where he is involved in the design of a low-power 
microprocessor. 

Digital Technical Journal Vol. 7 No. 1 1995 117 



Timothy A. Shedd 
Before receiving a B.S.E.E. from Purdue University in 
1992, Tim Shedd was a co-op student at Digital working 
on several VAX CPUs as well as the floating-point unit of 
the 21064 CPU. He is now a hardware engineer in Digital 
Semiconductor's Advanced Development Group. Tim 
contributed to the circuit design of the Alpha 21164 
microprocessor's instruction issue unit and is currently 
working on the memory management unit of the next­
generation Alpha CPU. Tim is a member of Tau Beta Pi 
and Eta Kappa Nu. 

Michael J. Smith 
A principal engineer in Digital Semiconductor, Michael 
Smith was a member of the instruction unit design team 
for the Alpha 21164 microprocessor, responsible for 
tloorplanning, logic, and circuit design. Prior to this, 
he was involved in the design of two memory controller/ 
bus adapter chips for the VAX 4000 Models 300 and 
600. Currently he is a member of the bus interface and 
instruction unit teams of the next-generation Alpha micro­
processor. Michael joined Digital in 1986 after receiving a 
B.S.E.E. from the Rochester Institute ofTechnology. 

Stephen C. Thierauf 
Stephen Thierauf joined Digital in 1976. As a consulting 
hardware engineer in Digital Semiconductor, Stephen 
is currently responsible for 1/0 circuit design, on- and 
off-chip signal integrity, and 1/0 modeling for Alpha 
microprocessors and PCI peripherals. He has designed or 
led the circuit design for a number of high-performance 
telecommunication and peripheral chips. Previous respon­
sibilities include 1/0 circuit design and system-level signal 
integrity analysis, micropackaging analysis, and micropack­
aging design for numerous high-performance microproces­
sors and peripherals. He is a member ofIEEE. 

118 Digital Technical Journal Vol. 7 No. 1 1995 



Internal Organization 
of the Alpha 21164, 
a 300-MHz 64-bit 
Quad-issue CMOS 
RISC Microprocessor 
A new CMOS microprocessor, the Alpha 21164, 
reaches 1,200 mips/600 MFLOPS (peak perfor­
mance). This new implementation of the Alpha 
architecture achieves SPECint92/SPECfp92 
performance of 345/505 (estimated). At these 
performance levels, the Alpha 21164 has 
delivered the highest performance of any 
commercially available microprocessor in 
the world as of January 1995. It contains 
a quad-issue, superscalar instruction unit; 
two 64-bit integer execution pipelines; two 
64-bit floating-point execution pipelines; and 
a high-performance memory subsystem with 
multiprocessor-coherent write-back caches. 

I 
John H. Edmondson, Paul I. Rubinfeld, 
Peter J. Bannon, Bradley J. Benschneider, 
Debra Bernstein, Ruben W. Castelino, 
Elizabeth M. Cooper, Daniel E. Dever, 
Dale R. Donchin, Timothy C. Fischer, 
Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer, 
Ronald P. Preston, Vidya Rajagopalan, 
Chandrasekhara Somanathan, 
Scott A. Taylor, Gilbert M. Wolrich 

Overview of the Alpha 21164 

The Alpha 21164 microprocessor is now a product of 
Digital Semiconductor. The chip is the second com­
pletely new microprocessor to implement the Alpha 
instruction set architecture. It was designed in Digital's 
0.5-micrometer (µm ) complementary metal-oxide 
semiconductor (CMOS) process. First silicon was pow­
ered on in February 1994; the part has been commer­
cially available since January 1995. At SPECint92/ 
SPECfp92 ratings of 345 /505 (estimated), the Alpha 
21164 achieved new heights of performance. 

The performance of this new implementation 
results from aggressive circuit design using the latest 
0.5-µm CMOS technology and significant architec­
tural improvements over the first Alpha implementa -
tion. 1 The chip is designed to operate at 300 MHz, an 
operating frequency 10 percent faster than the previ­
ous implementation (the DECchip 21064 chip) 
would have if it were scaled into the new 0.5-µm 
CMOS technology.2 Relative to the previous imple­
mentation, the key improvements in machine organi­
zation are a doubling of the superscalar dimension to 
four-way superscalar instruction issue; reduction of 
many operational latencies, including the latency in 
the primary data cache; a memory subsystem that does 
not block other operations after a cache miss; and a 
large, on-chip, second-level, write-back cache. 

The 21164 microprocessor implements the Alpha 
instruction set architecture. It runs existing Alpha pro­
grams without modification. It supports a 43-bit vir­
tual address and a 40-bit physical address. The page 
size is 8 kilobytes (KB ). 

In the following sections, we describe the five func­
tional units of the Alpha 21164 microprocessor and 
relate some of the design decisions that improved the 
performance of the microprocessor. First, we give an 
overview of the chip's internal organization and 
pipeline layout. 

Internal Organization 
Figure 1 shows a block diagram of the chip's five func­
tional units: the instruction unit, the integer function 
unit, the floating-point unit, the memory unit, and 
the cache control and bus interface unit ( called the 

Digital Technical Journal Vol. 7 No. I 1995 119 



..... 
tv 
0 

PIPELINE STAGES --

I S-1 

I 
I 
I 
I 
I 
I 
I 

l~T~:A~~:~ 

so 

8-KB, 32-BYTE 
BLOCK, 
DIRECT-MAPPED 
INSTRUCTION 
CACHE 

INSTRUCTION 
CACHE 
ADDRESS LOGIC 

INSTRUCTION FETCH/DECODE UNIT 

51 

INSTRUCTION 
BUFFER 

INSTRUCTION 
TRANSLATION 
BUFFER 

48-ENTRY 
ASSOCIATIVE 

52 

INSTRUCTION 
SLOT 
LOGIC 

SJ 54 SS 56 

FLOATING-POINT EXECUTION UNIT 

FLOATING· 
POINT >---­
DIVIDER 

FLOATING-POINT ADD PIPE AND DIVIDER 

FLOATING-POINT MULTIPLY PIPE 

FLOATING-POINT 
STORE DATA 

-------.--------~----;~ INTEGER UNIT 
STORE DATA 

ADD, LOG, SHIFT, LO. 
ST. IMUL. CMP, 
CMOV. BYTE, WORD 

ADD, LOG, LD, BR, 
CMP, CMOV 

57 SB 
59 

INTEGER EXECUTION UNIT 

TO FLOATING-POINT UNIT 

Figure 1 

64-ENTRY ASSOCIATIVE 
DUAL -PORTED 

MISS 
ADDRESS 
FILE 

6 DATA MISSES 

4 INSTRUCTION 
INSTRUCTION STREAM MISS (PHYSICAL ADDRESS) STREAM ~--+-------------~....,..----~-.---- --+-I MISSES 

WRITE BUFFER 

STORE - SIX 32-BYTE 
DATA ENTRIES 

MEMORY ADDRESS TRANSLATION UNIT 

Five Functional Units on the Alpha 21164 Microprocessor 

96-KB, 64-BYTE BLOCK, 
3-WAY, SET-ASSOCIATIVE 
SECOND-LEVEL CACHE 
(S-CACHE) 

DATAFROM:l 
PINS I 

I l INSTRUCTION AND DATA 
I FILLS --
1 

I 

~ 
........ L .....•........ , . . . . 

----.1 1-MB TO 64-MB DIRECT-MAPPED • 
: BACKUP CACHE (B-CACHE) : . . ·- ------,---------..... ----· 

ADDRESS TO PINS 

BUS ADDRESS 
FILE 

~--,--o·I TWO ENTRIES 

CACHE CONTROL ANO BUS INTERFACE UNIT 



C-box). The three on-chip caches are also shown. The 
instruction cache and data cache are primary, direct­
mapped caches. They are backed by the second-level 
cache, which is a set-associative cache that holds 
instructions and data. 

Alpha 21164 Pipeline 
The Alpha 21164 pipeline length is 7 stages for integer 
execution, 9 stages for floating-point execution, and 
as many as 12 stages for on-chip memory instruction 
execution. Additional stages are required for off-chip 
memory instruction execution. Figure 2 depicts 
the pipeline for integer, floating-point, and memory 
operations. 

Instruction Unit 

The instruction unit contains an 8-KB, direct-mapped 
instruction cache, an instruction prefetcher and asso­
ciated refill buffer, branch prediction logic, and an 
instruction translation buffer (ITB). 

The instruction unit fetches and decodes instruc­
tions from the instruction cache and dispatches them 
to the appropriate function units after resolving all 
register and function-unit conflicts. It controls pro­
gram flow and all aspects of exception, trap, and inter­
rupt handling. In addition, it manages pipeline control 

for the integer and floating-point units, controlling all 
data bypasses and register file writes. 

The instruction cache has 32-byte blocks. The 
cache tags hold virtual address information. Its tags 
also support PALcode through a bit which indicates 
that the tag contains a physical address. (PAL stands 
for privileged architecture library and refers to physi­
cally addressed code executed in a privileged hardware 
mode that implements an architecturally defined inter­
face between the operating system and the hardware. ) 

Instruction Pipeline 
The first four pipeline stages of the Alpha 21164 
microprocessor are the instruction unit pipeline stages, 
stage O through stage 3. The logic in the stage before 
stage O is normally considered to operate in stage 1 of 
the pipeline. In that stage, the new instruction cache 
address is calculated either by incrementing the previ­
ous address or by selecting a new address in response to 
a predicted or actual flow change operation. 

During stage 0, the 8-KB instruction cache is 
accessed. It returns a naturally aligned block of four 
instructions ( 16 bytes) with 20 bits of previously 
decoded instruction information (5 bits per instruc­
tion). The precalculated decode information is used in 
stage 1 for branch and jump processing and in stage 2 
for instruction slotting. 

..------- READ INSTRUCTION CACHE 

Figure 2 

~-- BUFFER INSTRUCTIONS, DECODE BRANCHES, 
DETERMINE NEXT INSTRUCTION CACHE ADDRESS 
SLOT: STEER TO EXECUTION PIPELINE 

DETERMINE WHETHER INSTRUCTIONS CAN ISSUE 
READ INTEGER REGISTER FILE 

..----- FIRST INTEGER PIPELINE STAGE 

SECOND INTEGER PIPELINE STAGE 
WRITE INTEGER REGISTER FILE 

INTEGER PIPELINE 

..-------- READ FLOATING-POINT REGISTER FILE 

..------- FIRST FLOATING-POINT PIPELINE STAGE 
LAST FLOATING-POINT OPERATE STAGE, 
WRITE FLOATING-POINT REGISTER FILE 

....... -.-"-T---.-........ -, 

USE DATA CACHE DATA, WRITE STORE 
DATA TO DATA CACHE, BEGIN 

SECOND-LEVEL CACHE TAG ACCESS 
END SECOND-LEVEL CACHE TAG ACCESS 

FLOATING-POINT PIPELINE 

CALCULATE VIRTUAL ADDRESS, BEGIN DATA CACHE READ 
END DATA CACHE READ, TRANSLATE VIRTUAL ADDRESS IN OTB 

BEGIN SECOND-LEVEL CACHE DATA ACCESS ----' 
END SECOND-LEVEL CACHE DATA ACCESS----~ 

BEGIN DATA CACHE FILL -----~ 
END DATA CACHE FILL-------~ 

USE SECOND-LEVEL CACHE DATA -----------' 

Alpha 21164 Pipeline Stages 

Digital Technical Journal Vol. 7 No. 1 1995 121 



In stage 1, the four-instruction block is copied into 
one entry of the two-entry instruction buffer (IB). 
Also in stage 1, the instruction cache and ITB each 
check for hits, and the branch-and-jump prediction 
logic determines new fetch addresses. 

The main function of stage 2 is steering each 
instruction to an appropriate function unit. This 
process, called instruction slotting, resolves all static 
execution conflicts. The instruction slotter accepts the 
next four-instruction block from the IB into a staging 
register at the beginning of stage 2 and routes the indi­
vidual instructions to the appropriate functional 
pipelines as it advances them to stage 3. If the block 
contains certain mixes of instruction types, it is able to 
slot all four instructions in a single cycle. Otherwise, it 
advances as many instructions as possible in the first 
cycle. The remaining instructions in the block are slot­
ted during subsequent cycles. Instructions are slotted 
strictly in program order. A new four-instruction block 
enters stage 2 when every instruction in the prior 
block has been slotted and advanced to stage 3. 

The issue stage operates in stage 3. It performs all 
dynamic conflict checks on the set of instructions 
advanced from stage 2. The issue stage contains a com­
plex register scoreboard to check for read-after-write 
and write-after-write register conflicts. This stage also 
detects function-unit-busy conflicts, which can occur 
because the integer multiplier and floating-point divider 
are not fully pipelined. The register scoreboard logic 
detects all integer and floating-point operand bypass 
cases and sends the necessary bypass control signals. 

The issue stage issues instructions to the appropriate 
function units unless it encounters a dynamic conflict. 
If a conflict occurs, the instruction and logically subse­
quent instructions are stalled (not issued). A stall in 
stage 3 also stalls the advance of the next set of slotted 
instructions from stage 2. This stall ends when all 
instructions in stage 3 have been issued. 

To perform conflict checking and to handle excep­
tions (including traps and interrupts), the instruction 
unit tracks the instructions issued during stage 4 
through stage 8. The instruction unit sends register 
file write strobes and addresses to the integer and 
floating-point register files for instructions that reach 
the retire point (stage 6) without an exception. In the 
event of an exception, write strobes .are withheld 
(gated) to prevent incomplete instructions from 
updating the register file. These instructions do not 
complete either because they caused an exception or 
because they are in the "shadow" of an exception. The 
shadow of an exception includes all instructions that 
are in the pipeline when an exception is recognized 
but are logically subsequent to the instruction taking 
the exception. 

The issue stage stalls for a single cycle to permit the 
integer multiplier or floating-point divider to return 
a result into its associated pipeline. This is necessary 

122 Digital Technical Journal Vol. 7 No. 1 1995 

because the register files do not have extra write ports 
dedicated to receiving these results. The issue stage 
also stalls for one cycle in similar cases to permit data 
fills for load instructions that missed in the data cache 
to write to the register file and data cache. The issue 
stage stalls indefinitely when necessary to execute the 
trap barrier and memory barrier instructions. 

No-op Instructions 
New instructions are shifted into the slotting and issue 
stages when a given stage becomes completely empty. 
Compared to an ideal design in which instructions are 
shifted to fill a given stage partially, this design has a 
slightly increased average cycles-per-instruction ratio. 
We considered the alternative in which instructions are 
shifted in as slots become available. This alternative 
would have created critical paths that would increase 
the CPU cycle time by approximately 10 percent. An 
evaluation of our trace-driven performance model 
showed that the alternative did not reduce the cycles­
per-instruction ratio enough to compensate for the 
reduction in cycle time. As a result, we chose the sim­
pler and faster design. 

Compilers and assembly language programmers can 
insert no-op instructions to minimize and, in most 
cases, to eliminate any negative performance effect. To 
facilitate this process, the Alpha 21164 microprocessor 
handles three different kinds of no-op instruction. 

The first two kinds of no-op instruction are the 
integer no-op (NOP) and the floating-point 
no-op (FNOP). NOP (BIS R31,R31,R31) can issue 
in either integer execution pipeline. FNOP ( CPYS 
F31,F31,F31) can issue in either floating-point execu­
tion pipeline. The compiler uses these to improve per­
formance when two instructions would be slotted 
together even though they cannot issue in the same 
cycle. If one instruction in a pair is dependent on the 
other, issuing them together guarantees the second 
will stall in the issue stage and prevent later instruc­
tions from entering that stage. The compiler inserts a 
NOP or FNOP to delay the issue of the second instruc­
tion. With this improvement, the second instruction 
can be issued with later instructions. 

The third kind of no-op instruction, the universal 
no-op (UNOP), is detected in stage 2. UNOP 
[LDQ_U R31,0(Rnn)] is discarded in stage 2 so that 
it does not require an issue slot in either pipeline. 
UNOP allows compilers to align instructions without 
the unnecessary use of pipeline issue slots. For exam­
ple, the compiler can align the target of a branch with­
out necessarily slowing execution of the fall-through 
path to that branch. 

Instruction Prefetcher and Refill Buffer 
The instruction prefetcher operates in parallel with the 
instruction cache. When an instruction is not in eitl1er 
the instruction cache or refill buffer, the prefetcher 



generates a stream of 32-byte instruction block fetch 
requests to fill the 4-entry refill buffer with instruction 
data. Each instruction block contains 8 instructions. 
Fetched instruction data is stored in the refill buffer 
when it is returned. Four-instruction subblocks of 
instruction data are moved from the refill buffer to the 
IB when needed. At that time, the instruction cache is 
also updated. If this data movement empties an entry 
in the refill buffer, an additional fetch request is initi­
ated. Fetched instruction data is buffered in the refill 
buffer rather than the instruction cache to avoid evict­
ing valid cache blocks unnecessarily. 

The refill buffer is a type of stream buffer. Each 
entry stores a virtual address and has a comparator so 
the refill buffer can be probed for instruction data on 
a cache miss. Instruction fetching begins only if an 
access misses in both the instruction cache and the 
refill buffer. Fetching stops when any instruction flow 
change occurs (i.e., branch, jump, exception, etc.). It 
also stops if at any time the instructions needed in 
stage 1 are found in the instruction cache. 

The combination of the on-chip, 96-KB second­
level cache and the instruction prefetcher significantly 
reduces the benefit of enlarging the instruction cache 
beyond its current size of8 KB. The prefetcher gener­
ates requests at a high rate. Because it is on-chip, the 
second-level cache has the bandwidth to handle 
requests quickly and with relatively little effect on 
data-stream requests. In general, the performance 
benefit from making the instruction cache larger is 
very small. This is one of the benefits of the two-level 
on-chip cache hierarchy. 

Instruction Stream Address Translation and the 
Instruction Translation Buffer 
The instruction unit contains a 48-entry, fully associa­
tive instruction translation buffer (ITB) that holds 
instruction stream address translations and protection 
information. Each entry in the ITB can map 1, 8, 64, 
or 512 contiguous 8-KB pages. 

During stage 1, the ITB entries are checked for 
a match with the program counter (PC). If the page is 
found, its protection bits are checked against the cur­
rent operating mode. If the page is not found, an ITB 
miss trap occurs. If the page is found in the ITB and 
the access is an instruction cache miss, the ITB supplies 
the physical page address to the prefetcher. 

Branch and Jump Prediction 
The branch prediction logic examines the block of 
instructions coming from the instruction cache or 
refill buffer during stage 1. It checks the block for con­
trol instructions ( taken conditional branches, jumps, 
subroutine return instructions, and other flow-change 
instructions) and calculates the new fetch address. 
Since the new fetch address is available at the end of 
stage 1, the read of the instruction cache for the target 

instruction occurs in the next cycle. This means the 
control instruction is in stage 2 at the same time as the 
target instruction is in stage 0, resulting in a one-cycle 
branch delay that creates an empty cycle in the 
pipeline. The IB quashes this empty cycle if any stall 
occurs ahead ofit in the pipeline. 

The branch prediction logic predicts conditional 
branch instructions using a branch history table with 
2Kentries addressed by low-order bits of the PC. Each 
is a two-bit counter that increments when branches are 
taken and decrements when branches are not taken. 
The counter saturates at the top and bottom counts. 
A branch is predicted to be taken if the current 
counter value is one of the two highest counts; other­
wise, it is predicted to be not-taken. This method is 
more effective than the method used in the first Alpha 
microprocessor (which had only one bit of history per 
entry), partly because it reduces the misprediction rate 
for typical loop branches by half. 

A 12-entry return address stack is used to predict 
the target address on subroutine returns (i.e., RET, 
JSR._COROUTINE) and returns from PALcode. Each 
entry stores 11 bits of address, which is sufficient to 
address the 8-KB instruction cache. The upper 32 bits 
of the target address are predicted by using the value in 
the instruction cache tag that is addressed by the 
return address stack. The same basic mechanism is 
used to predict the full target address of jump and 
jump-type subroutine call instructions since the Alpha 
architecture provides a hint field in these instructions 
that indicates the target cache address. 

The Alpha 21164 microprocessor recovers from 
incorrect branch and PC predictions by taking a mis­
predict trap when the incorrectly predicted branch or 
jump-type instruction executes in the execution unit. 
For a typical branch misprediction, the execution time 
is five cycles longer. 

Replay Traps 
In a replay trap, the instruction unit prevents comple­
tion of a given instruction by trapping the instruction 
and then restarting execution immediately with that 
instruction. The trap mechanism prevents completion 
of subsequent instructions. This mechanism replays 
the instruction from the beginning of the Alpha 
21164 pipeline. It is used when a stall after stage 3 
would otherwise be required. 

There are three main reasons stalls are not imple­
mented for stages later than stage 3. The ability to stall 
adds complexity to clocking circuits, particularly in 
execution unit data paths. In addition, it adds control 
complexity. An example of this is a stalled two-input 
function unit in which one input operand is invalid. To 
end the stall, certain latches must be enabled while 
others are not, because the valid data must be held in 
one pipeline latch while the invalid data is replaced 
in another. Finally, adding stall logic would create 

Digital Technical Journal Vol. 7 No. 1 1995 123 



additional critical paths. The elimination of stalls 
beyond stage 3 and the use of the replay trap mecha­
nism avoid these complexities. 

The replay trap mechanism is used for a number of 
unusual memory instruction conflicts and memory 
unit resource overruns. For example, the load-miss­
and-use replay trap is used when a load misses in the 
data ~ache and a dependent instruction issues exactly 
two cycles after the load. The issue decision for such 
a dependent instruction is made prior to the actual 
determination of cache hit, so a hit is predicted. If 
this prediction is wrong, the dependent instruction is 
restarted from the front of the pipeline and will arrive 
at the issue stage one cycle before data arrives from the 
second-level cache. Because the instruction arrives 
before the data, there is no performance loss due to 
the trap mechanism. 

Integer Function Unit 

The integer function unit executes integer operate 
instructions, calculates virtual addresses for all load 
and store instructions, and executes all control instruc­
tions except floating-point conditional branches. It 
includes the register file and several integer functional 
subunits, most of which are contained in two parallel 
four-stage pipelines. Both pipelines contain an adder 
and a Boolean logic unit. The first pipeline contains 
the shifter, and the second pipeline contains the con­
trol instruction execution unit. The first pipeline also 
attaches to the partially pipelined integer multiplier, 
which operates in the background. Except for the issue 
cycle and a cycle to return the result, the first pipeline 
and integer multiplier operate in parallel. 

Integer Register File and Bypasses 
The integer register file is read during stage 3 and writ­
ten in stage 6. Bypass paths are implemented to allow 
all subunits other than the multiplier to receive and use 
the result of a previous instruction from stage 4, 5, or 6 
of either pipeline. Due to implementation constraints, 
the multiplier can only receive bypassed data from stage 
6 of the pipeline. This increases multiply latency by as 
many as two cycles when multiply input operands are 
produced by preceding integer operate instructions. 

The integer register file contains 40 registers: the 32 
integer registers specified by the architecture ( RO 
through R31) with R31 always reading as O; and 8 
shadow registers available to PALcode as scratch space. 
The register file is accessed by 4 read ports (2 for each 
pipeline) and 2 write ports ( 1 for each pipeline). 

Instruction Latencies 
Most instructions executed in the integer function 
unit have a latency of 1 cycle. These instructions exe­
cute in stage 4. The conditional move instruction has 
a latency of2 cycles. It executes in stage 4 and stage 5. 

124 Digital Technical Journal Vol. 7 No. l 1995 

Multiply latency depends on the data size and the 
operation being performed. Thirty-two-bit multiplies 
have an 8-cycle latency, and the multiplier can start 
a second multiply after 4 cycles, provided that the 
second multiply has no data dependency on the first. 
Sixty-four-bit signed multiplies have a 12-cycle 
latency; the 64-bit multiply unsigned high instruction 
has a 14-cycle latency; and for both of these 64-bit 
multiplies, the multiplier can start a nondependent 
multiply after 8 cycles. 

Because of a special bypass, compare and Boolean 
logic instructions can have a latency of O cycles when 
a conditional move or a branch test input operand is 
the result of an immediately preceding compare or 
Boolean logic instruction. The integer unit uses the 
bypass to allow dual issue of the producer and con­
sumer in this case. 

To realize the full benefit from the increased issue 
width relative to the first Alpha microprocessor, the 
DECchip 21064, it is critical to reduce operational 
latencies. & the issue width increases, the cost in 
instruction execution opportunities for a given latency 
increases. In the integer unit, the following latencies 
are reduced relative to the 21064: the shifter latency 
( from 2 cycles to 1 ), the byte and word operation 
latencies (from 2 cycles to 1), and the multiplier 
latency (from 19 to 23 cycles in the 21064 to 8 to 16 
cycles in the Alpha 21164). Also the special bypass 
for conditional instructions reduces that latency from 
1 cycle in the 21064 to O cycles in the Alpha 21164. 
For the most part, these latency reductions are 

. achieved by circuit design improvements. 

Integer Load and Store Instructions 
Integer load instructions issue in either pipeline and as 
many as two can issue per cycle. Integer store instruc­
tions issue in the first pipeline only. For integer load 
instructions that hit in the data cache, the data is mul­
tiplexed into the output of stage 5 of the pipeline in 
which the load issued; the data is then written to the 
register file through the write port associated with that 
pipeline. For integer load instructions that miss in the 
data cache, the data is returned later by the memory 
subsystem. The data is then multiplexed into the out­
put of stage 5 as before, and the instruction unit 
inserts a properly timed NOP cycle by stalling the issue 
stage for one cycle to make the pipeline's register write 
port available. 

Floating-point Unit 

The floating-point unit consists of the floating-point 
register file and two pipelined functional subunits: an 
add pipeline that executes all floating-point instruc­
tions except for multiply, and a multiply pipeline that 
executes floating-point multiplies. All IEEE and VAX 



rounding modes are done in hardware, including 
IEEE round to plus and minus infinity. 

Pipeline Structure and Operation Latencies 
Each floating-point subunit on the Alpha 21164 CPU 
chip contains three functional stages implemented in 
four pipeline stages, stage 5 through stage 8. The 
floating-point register file is read in stage 4 and written 
at the end of stage 8. Figure 3 depicts the physical lay­
out of the floating-point unit. Figure 4 shows the 
pipelining of instructions executed in the floating­
point unit. 

As in the integer unit, latency is reduced in the 
floating-point unit relative to the previous Alpha 
implementation. The latency of all floating-point 
operate instructions, except floating-point divide, is 4 
cycles. In the DECchip 21064, most floating-point 
operations take 6 cycles. The floating-point divide 
latency varies depending on the input data values. For 
a single-precision divide, the latency is reduced from 
34 cycles in the 21064 to an average of 19 in the 
21164; and for a double-precision divide, it is reduced 
from 63 cycles to an average of 31. As discussed previ­
ously, reducing latency is important as issue width 
increases. As in the integer unit, the reduced latency is 
achieved mostly by circuit design improvements. 

Register File and Bypasses 
The floating-point register file has nine ports: two read 
ports and one write port per functional unit for source 
and destination operand accesses, one read port for 
floating-point stores, and two write ports to support 
two floating-point loads per cycle. Bypass paths forward 
data from each of the four write buses in the floating­
point register file to each of the five read buses. 

I 

MULTIPLY STAGE 3 

MULTIPLY STAGE 2 

MULTIPLY STAGE 1 

64 

64-BIT REGISTER FILE 

64 

DIVIDER 

ADD STAGE 1 I 
ADD STAGE 2 t 
ADD STAGE3 

I 

LOAD/STORE FORMAT 

Figure 3 

64 64 

64 64 64 64 64 

f 64 f64 t 64 

D-CACHE 
LOAD/STORE 
BUSES 

Physical Layout of the Floating-point Unit 

Floating-point Load and Store Instructions 
In Alpha microprocessors, floating-point numbers are 
stored in one format in memory and in another format 
in the floating-point registers. Floating-point load and 
store instructions convert from one format to the 
other as they move the data. In the Alpha 21164 
pipeline, floating-point input operands are read from 
the floating-point register file one cycle later than inte­
ger input operands are read from the integer register 
file. This skew provides an extra cycle for floating­
point load data format conversion. 

Floating-point load and store instructions first issue 
to the integer unit for address calculation. The issue 
restrictions are exactly the same as for integer load or 
store instructions. For floating-point load instructions, 
the data is written to the register file using one of the 
two write ports reserved for that purpose. When a con­
flict for these write ports occurs between a write due to 
a new load that hit in the data cache and a write due 
to a previous load that missed, the conflict is resolved 
by forcing the new load to miss in the data cache. 

Add Pipeline 
The key components of the add pipeline design are the 
fast fraction adder, operand data-path alignment, nor­
malization shift detection, sticky-bit calculation, and 
round-adder design. The fast-adder design operates in 
a single phase (one phase equals one-half of a CPU 
cycle). It is used in the function stage 1 and stage 3 
fraction adders. To reduce formatting and rounding 
complexity, the least significant bits in fractions are 
aligned to one of two different bit positions: one for 
single-precision data (IEEE S and VAX F) and 4-byte 
integers, and one for double-precision data (IEEE T, 
and VAX G and D) and 8-byte integers. 

For effective subtracts with exponent differences of 
- 1, 0, or 1, a new normalization shift detect algo­
rithm uses three leading bit chains to examine stage 1 
input operands to determine the required normaliza­
tion shift. The normalization shift amount is chosen 
by comparing the least significant bit of one exponent 
to the least significant bit of the other. 

The sticky bit for adds and subtracts is determined 
by comparing the exponent difference with an encoded 
value for the number of trailing zeros in the fraction 
being aligned. 

The stage 3 round adder operates in one cycle and 
consists of a fraction adder and an output selector. The 
fraction adder takes one phase and adds two operands 
plus rounding bits based on the round mode. The 
selector assembles the fraction result based on global 
carry-and-propagate information from the adder. It 
also examines the adder result alignment and performs 
a final normalization shift of as much as one bit left or 
right. The exponent result is also selected in stage 3 
before the complete result is sent to the register file 
write bus and bypass logic. 

Digital Technical Journal Vol. 7 No. 1 1995 125 



PIPELINE 
STAGES S4 SS S6 S7 S8 

FLOATING- I REGISTER i BYPASS r- I I I r-+' ~: ~1i~ISTER I 
POINTADD FILEREAD' FORMAT STAGE1--STA~E2- ' STAGE3 : WRITE 
PIPE OPERATE I I I I I BYPASS 

FLOATING- I : I 3X ADD : I -t-' I I REGISTER I 
POINT REGISTER , BYPASS BOOTH ... : .. 1---- -+--MULTIP~YARRAY :-ROUNDI ADD--l ~~7TE 
MULTIPLY PIPE FILE READ: RECODE I 1 1 ,---

OPERATE BYPASS 

FLOATING­
POINTLOAD 
(DATA CACHE 
HIT) 

DATA CACHE READ I 
DRIVE I I I REGISTER I 
DATA TO :_ FORMAT __ : FILE WRITE 
FLOATING- 1 CONVERSION 1 ---
POINT UNIT ' I I BYPASS 

FLOATING­
POINT 
STORE 

Figure4 

I 
I I FORMAT I DRIVE I REGISTER ', BYPASS CONVERSION

0 

DATA TO 
FILE READ I DATA 

I GENERATE I CACHE 
PARITY 

Floating-point Unit Pipeline 

Multiply Pipeline 
Multiplication is done using radix-eight Booth encod­
ing, which requires 18 partial products to be summed.3 

The first stage of the multiply pipeline is used to create 
three times the multiplicand and to determine the 
Booth encodings. The multiplier array is composed 
ofl4 rows of carry-save adders that perform the addi­
tion of multiplicands. The carry and sum outputs of 
the array are reduced by combining carry-save adders 
and then are passed through a half adder to facilitate 
rounding. 

The sticky bit for multiplication is determined by 
summing the number of trailing zeros in both 
operands. The carry output from the less significant 
product bits is used by the round selector of the multi­
ply pipeline to determine the correct final product. 

Divider 
Floating-point divide instructions issue into the add 
pipeline. The operands are immediately passed to the 
divider. Instruction issue to the add pipeline continues 
while a divide is in progress until the result is ready. At 
that point, the issue stage in the instruction unit stalls 
one cycle to allow the quotient to be sent to the round 
adder and then be written into the register file . 

The divider uses a normalizing nonrestoring algo­
rithm that determines 1 to 4 bits of quotient per cycle, 
averaging 2.4 quotient bits per cycle.4 Implementation 
of this algorithm requires that an exact partial remain­
der be produced every cycle. The implementation uses 
a fast adder that produces its result in half of a cycle. 

Memory Unit 

The memory unit contains a fully associative, 64-entry, 
data translation buffer (DTB ); an 8-KB, direct­
mapped, primary data cache; a structure called the miss 
address file (MAF); and a write buffer. It processes load, 
store, and memory barrier instructions. 

126 Digital Technical Journal Vol. 7 No. 1 1995 

DATA CACHE WRITE 

The write-through data cache has 32-byte blocks 
and 2 read ports. Its tags hold physical address data. 

The memory unit receives as many as 2 virtual 
addresses from the integer unit each cycle. Because it 
has 2 read ports, the DTB can translate both virtual 
addresses to physical addresses and detect memory 
management faults. (Like the ITB, each entry in the 
DTB can map 1, 8, 64, or 512 contiguous 8-KB pages.) 

Load instructions access the data cache and return 
data to the register file if there is a hit. The latency for 
loads that hit in the data cache is two cycles. Again, 
latency is reduced relative to the DECchip 21064 
microprocessor where the latency is three cycles for 
loads that hit. The reduced latency was achieved by 
circuit design improvements. Reducing this latency is 
particularly important as issue width increases because 
of the frequent use ofloads in programs. 

For loads that miss, the physical addresses are sent 
to the MAF, where they wait to be sent to the C-box. 
Store instructions write the data cache if there is a hit; 
they are always placed in the write buffer, where they 
wait to be sent to the C-box. 

Memory Unit Pipeline Structure 
Virtual address calculation begins in the integer unit 
early in stage 4. The data cache access begins later in 
stage 4 and completes early in stage 5. Address trans­
lation is done in parallel with data cache access. Data 
cache hit is determined late in stage 5. If the access 
hits, the data is written to the register file (for a load 
access) or the cache ( for a store access) in stage 6. In 
the case of a data cache miss, the memory access 
advances to pipeline stages in the C-box. 

Miss Address File 
The MAF consists of two sections that store data. The 
first section holds load misses (called DREADs) in six 
entries, and the other section holds instruction fetch 
addresses ( called IREFs) in four entries. For DREADs, 



the MAF stores the physical address, destination regis­
ter, and instruction type (integer/floating-point, 
4-byte/8-byte/IEEE-S-Type/VAX-G-Type, etc.). For 
IREFs, the MAF stores only the physical address. 

Buffered accesses in the MAF and write buffer are 
sent to the C-box at a peak rate of one every other 
cycle. DREADs have highest priority, writes have the 
next highest priority, and IREFs have lowest priority. 

When the C-box returns data for a DREAD, the 
memory unit provides the destination register and 
instruction type information from the MAF. This 
information is then used to convert the data to its 
in-register format, to determine which registers to 
write, and to update the register scoreboard in the 
instruction unit. The DREAD entry is removed from 
the MAF when the second half of the data fill arrives. 

The C-box returns IREF data directly to the 
instruction unit's cache and refill buffer. The IREF 
entry is removed from the MAF as soon as the com­
mand has been accepted by the C-box. 

Merging Capability One key performance feature of 
the MAF is that it merges multiple load misses that 
access the same 32-byte block of memory into a single 
C-box DREAD request. One load instruction requests 
at most 8 bytes of a 32-byte memory block. As many 
as 4 load misses can be merged into 1 DREAD request. 
This improves latency and reduces unnecessary band­
width consumption in the second-level cache. 

To implement merging, the MAF merge logic 
detects any load miss address to a block that has already 
been queued in the DREAD section of the MAF. The 
logic then adds the new destination register to the 
existing request. Merging is limited to 1 load miss per 
naturally aligned 8-byte portion of the 32-byte block. 
Also, merging is permitted only for load misses with 
identical instruction types. The memory unit allocates 
a new DREAD entry in the MAF only for load misses 
that do not merge. The merge logic supports the peak 
load instruction issue rate. It can merge as many as 
2 load misses per cycle into the DREAD section and 
can merge loads that issue together. 

The MAF merge capability is an integral part of the 
two-level cache hierarchy design. It can reduce the rate 
of memory read operations from two loads per cycle in 
the integer pipelines to one read every other cycle 
in the second-level cache pipeline. By doing so, the 
MAF makes the full bandwidth of the second-level 
cache available to the program. 

The MAF can hold as many as 6 D READs that can 
represent as many as 21 loads. (The theoretical maxi­
mum is 24 loads; this limit is a by-product of the over­
flow prevention algorithm.) Requests are sent to the 
C-box in the order in which they were allocated in 
the MAF. Accesses in the second-level cache can 
hit underneath (behind) second-level cache misses, 

allowing data fills to be returned in a different order 
than they were sent to the C-box. 

Two-level Data Cache Many workloads benefit more 
from a reduced latency in the data cache than from 
a large data cache. We considered a single-level design 
for a large data cache. For circuit reasons, physically 
large caches are slower than small caches. To achieve a 
reduced latency, we chose a fast primary cache backed 
by a large second-level cache. As a result, the effective 
latency of reads is better in the Alpha 21164 CPU chip 
than it would have been in a single-level design. 

The two-level data cache has other benefits. The 
two-level design makes it reasonable to implement set 
associativity in the second-level cache. Set associativity 
enables power reduction by making data set access 
conditional on a hit in that set. The two-level design 
also allows the second-level cache to hold instructions, 
which makes a larger instruction cache unnecessary. 

In addition, the two-level design was simpler. 
Because performance studies showed that the Alpha 
21164 CPU chip should have write-back caching on­
chip, the data cache in the single-level design would 
have been write-back. Also, because ofits larger size, it 
would have been virtually addressed, which would 
have required a solution to the synonym problem. 
Finally, it would have been difficult to make the single 
large cache set-associative without adding latency. The 
two-level design eliminated all these issues. 

Write Buffer 
The write buffer contains 6 entries; each entry holds as 
many as 32 bytes of data and one physical address. 
It accumulates store instructions written to the same 
32-byte block by merging them into 1 entry. It can 
merge 1 store instruction per cycle, matching the peak 
store instruction issue rate. The write buffer places 
no restrictions on merging until a write is sent to the 
second-level cache. At that time, the write buffer stops 
merging to that entry. 

Once an entry from the write buffer has been sent 
to the C-box, several steps may be required to com­
plete the write, depending on the presence of the 
memory block in the second-level cache and its cache 
coherence state. The C-box signals the memory unit 
upon completion of a store operation, and then the 
memory unit removes the corresponding entry from 
the write buffer. 

Access Ordering 
The memory unit guarantees that all memory accesses 
to the same address are processed in the order given by 
the instruction stream. This is a design problem in any 
nonblocking memory subsystem design. Load misses 
that conflict with a store, and stores that conflict with 
a load miss, set conflict bits that prevent the issue of 

Digital Technical Journal Vol. 7 No. 1 1995 127 



the DREAD or write until all conflicts have been 
cleared. If a store matches a valid entry in the write 
buffer and cannot merge with that entry, it is allocated 
a new entry that is prevented from being sent to the 
C-box until the earlier write is completed. 

Memory Barrier Instructions 
The memory unit implements the memory barrier 
(MB ) instruction by retiring all previous load misses 
and writes before sending the MB to the bus interface 
unit. The instruction unit stalls new memory instruc­
tions until the MB has been completed. 

The memory unit implements the write memory 
barrier (WMB) instruction as follows: When the WMB 
is executed, the memory unit marks the last write that 
is pending at that time. Writes added after that time 
are added behind the WMB mark. They are not sent 
to the C-box until all writes ahead of the WMB mark 
are completed. Unlike the MB instruction, execution 
of the WMB instruction does not require any stalls in 
the instruction unit. 

Replay Traps in the Memory Unit 
The memory unit forces a replay trap if a new load or 
write would cause the buffer to overflow. It also forces 
a replay trap when a store that hits in the data cache 
is followed by a load to exactly the same location in 

the next cycle. In this case, because the store writes the 
data cache in stage 6, the data from the store would 
not yet be available to the load. 

Cache Control and Bus Interface Unit 

The cache control and bus interface unit or C-box 
contains the second-level cache and the following sub­
units: the second-level cache arbiter unit (SAU), the 
bus interface unit sequencer (BSQ), the victim address 
file (VAF), the bus interface unit address file (BAF), 
the write buffer unit (WBU), and the system probe 
arbiter (SPA). Figure 5 shows the functional units of 
the C-box. 

The C-box provides the interface to the system for 
access to memory and I/0. It provides full support for 
multiprocessor systems using a cache coherence pro­
tocol (described later in this section). It manages the 
second-level cache and an optional off-chip third-level 
cache, both of which are multiprocessor-coherent 
write-back caches. 

The SAU arbitrates the requests for access to the 
second-level cache. The BSQ requests to write data fill 
(due to previous second-level cache misses ). The VAF 
requests read accesses of deallocated second-level 
cache blocks that have been modified ( called victims). 
The SPA requests access for external cache coherence 

M-BOX/8-KB DUAL-PORTED DATA CACHE 

ADDA 

INDEX 

<25:4> 

Figure 5 

OFF-CHIP 
CACHE 

Functional Units of the C-box 

128 Digital Technical Journal 

MISSO 

MISS1 

VICTIM O 

VICTIM 1 

VICTIM O DATA 

VICTIM 1 DATA 

<39:4> 

UNIFIED, 
3-WAY, 
96-KB 
SECOND­
LEVEL 
CACHE 

VICTIM DATA 128 

COMMAND AND 
ADDRESS FROM 
THE EXTERNAL 
SYSTEM 

SYSTEM INTERFACE 

Vol. 7 No. 1 1995 

128 

6-ENTRY 
WRITE 
BUFFER 

128 

128 

128 

DATA 



transactions. The memory unit requests access for 
DREAD, IREF, and write requests. Highest priority is 
given to the BSQ, followed by the VAF, and then the 
SPA; lowest priority is given to the memory unit. 

The BSQ controls data movement to and from the 
Alpha 21164 microprocessor. It accesses the optional 
off-chip third-level cache. It communicates with the 
system to request data that is not cached, to write back 
deallocated cache blocks that have been modified, 
to carry out coherence transactions, and to perform 
1/0 accesses. 

The VAF reads and holds victims from the second­
level cache and data for memory broadcast writes, 1/0 
writes, and external cache coherence commands that 
require data from the second-level cache. It has two 
entries for victims, each of which holds the address and 
data for a victim. These victims are written back to 
third-level cache or memory when the BSQ is idle 
or sooner if necessary to maintain cache coherence. 
These entries also hold data for memory broadcast 
writes and 1/0 writes. A separate buffer holds data for 
external cache coherence commands that require data 
from the second-level cache. 

The WBU handles second-level cache writes and 
cooperates with other C-box subunits to maintain 
cache coherence. 

The SPA receives cache coherence requests from the 
external system environment. To fulfill these coher­
ence requests, it accesses the second-level cache and, if 
the off-chip cache is present, cooperates with the BSQ 
to access the off-chip cache. It then sends an appropri­
ate response to the external system. 

Second-level Cache and Optional Off-chip Cache 
The C-box manages the on-chip second-level cache 
and the optional off-chip cache. Both are write-back, 
and both are mixed instruction and data caches. If it 
is present, the off-chip cache is a third-level cache. The 
second-level cache is 96 KB in size and is 3-way 
set-associative. The off-chip cache is direct-mapped 
and can be configured to sizes ranging from 1 mega­
byte (MB) to 64 MB. The off-chip cache is not set­
associative because it is not feasible given pin-count 
constraints. The tags in both caches hold physical 
address data and coherence state bits for each block. 

The block size for the off-chip cache is configurable 
to 32 bytes or 64 bytes. The second-level cache has 
1 tag per 64-byte block. It can be configured to oper­
ate with 64-byte blocks or with 32-byte subblocks. 

The second-level cache tags contain bits to record 
which 16-byte data words within the block or sub­
block have been modified since the block was brought 
on-chip. When a block or subblock is copied back to 
the off-chip cache, only modified 16-byte data words 
are transferred. This reduces the time required to write 
back second-level cache victims in many cases. 

Transaction Handling 
A maximum of 2 second-level cache misses can be 
queued in the BAF for external access in the off-chip 
cache and memory. The BAF merges read requests to 
32-byte blocks within the same 64-byte block. 

For simplicity, only one operation to a given 
second-level cache address is allowed in the BAF at 
a time, except when the two requests merge. A new 
request with a second-level cache address that matches 
an existing request in the BAF is aborted. Similarly, 
requests that require VAF entries when the VAF is full 
are aborted, and new requests are aborted when the 
BAF is full. If a request is aborted, the memory unit 
retries the request repeatedly until it is accepted. 
Accesses to second-level blocks that are partially valid 
because they are being filled are aborted repeatedly 
until the data fill completes. 

Maintaining Cache Coherence 
The Alpha 21164 CPU chip uses a cache coherence 
protocol implemented in hardware to provide full sup­
port for multiprocessor systems. The instruction cache 
is virtual and is not kept coherent by the hardware. 
(The Alpha architecture requires software to manage 
instruction cache coherence.) The data cache is a sub­
set of the second-level cache. If the off-chip cache is 
present, then the second-level cache is a subset of the 
off-chip cache. 

Three state bits record the coherence state of each 
block or subblock in the second-level cache and the 
off-chip cache: the valid bit, the shared bit, and 
the dirty bit. The valid bit indicates that the block con­
tains valid data. The shared bit indicates that the block 
may be cached in more than one CPU's cache. The 
dirty bit indicates that the memory copy of the block 
is not correct and the cache block must eventually 
be written back. These state bits allow the follow­
ing states to be encoded for a given cache block or 
subblock: invalid, exclusive-unmodified, exclusive­
modified, shared-unmodified, and shared-modified. 

The system bus interface is the coherence reference 
point in the system. Any request to modify the state of 
a block is arbitrated at this bus before the block is 
changed. For example, when the Alpha 21164 CPU 
chip must write to a block in the second-level cache 
that is in the exclusive-unmodified state, the BSQ 
sends a request to the system to change the state of the 
block to the exclusive-modified state. The C-box waits 
for the system to acknowledge the request, and then 
retries the write. If another processor reads the same 
block before the request is acknowledged, the block 
is instead changed to the shared-unmodified state. In 
that situation, the Alpha 21164 CPU chip subse­
quently sends a full-block memory write on the system 
bus that causes all other processors to invalidate their 
copy of the block and leaves the block in the exclusive­
unmodified state in this processor. 

Digital Technical Journal Vol. 7 No. 1 1995 129 



Second-level Cache Transaction Flows 

DREADs, IREFs, and writes from the memory unit 
access the second-level cache after winning arbitration 
in the memory unit and the SAU. The second-level 
cache is fully pipelined. Figure 6 shows an example of 
a read that is followed by a write as both hit in the cache. 

For the read access shown in Figure 6, the pipeline 
stages are the following. The SAU arbitrates in stage 5; 
the second-level cache tag store is read in stage 6; the 
hit is determined in stage 7; and the requested data is 
read from the cache data store in stage 8 and sent on 
the 128-bit-wide read data bus (R-bus) in stage 9. The 
second half of the 32-byte block is read and sent in the 
next pipeline cycle. The R-bus data is received by the 
integer unit, the floating-point unit, or the instruction 
unit, depending on the access type. 

For data returned to the integer unit or the floating­
point unit, the data cache fill begins in stage 10 and 
completes in stage 11. The register file write occurs in 
stage 11. An instruction that is dependent on the load 
can begin execution in the next cycle. In this case, the 
load latency is eight cycles. 

For the write access shown in Figure 6, the pipeline 
stages are the following. The SAU arbitrates in stage 5; 
the tag store is read in stage 6; the hit is determined, 
and data is sent on the 128-bit write data bus (W-bus) 
in stage 7; and the cache is written in stage 8. As 
before, the second half of the 32-byte write occurs in 
the next pipeline cycle. 

A second-level cache miss that results in a victim 
provides an interesting case for discussion. Here, we 
must determine which set to fill and then remove the 
victim before data can be returned from the off-chip 
cache. Figure 7 shows an example of a DREAD that 
misses in the second-level cache, creating a victim, and 
then hits in the off-chip cache. The example shown is 
the fastest possible. In this case, the BSQ is idle so the 
BAF is bypassed and the address is sent immediately to 
the off-chip cache. The access time for the off-chip 
cache is four CPU cycles. 

As shown in Figure 7, the DREAD wins arbitration 
in stage 5, and the miss is detected in stage 7. The set 
picked by the random replacement algorithm contains 
modified data (a victim). Since the block size in the 
second-level cache is 64 bytes, two 32-byte victim read 
sequences are needed to copy the entire victim into 
the on-chip victim buffer. The two victim reads arbi­
trate at high priority to ensure that the victim is copied 

PIPELINE 
STAGE SS S6 S7 

READ ARB TAG HIT 

before the data fills from the off-chip cache overwrite 
the locations. 

The Alpha 21164 CPU chip begins sending the off­
chip cache address in stage 8 (because ofBAF bypass, 
as described above). The tag and data are clocked into 
the Alpha 21164 chip at the beginning of stage 12. 
The BSQ arbitrates speculatively for a single cycle on 
the second-level cache pipeline to reserve a cycle on 
the R-bus. That cycle is used to send the data from the 
off-chip cache to the execution units and data cache. 

If the access hits in the off-chip cache, the BSQ arbi­
trates to fill the second-level cache. The fill transaction 
takes a single cycle in the pipeline to write the tag store 
in stage 6 and the data store in stage 8. 

The second victim read sequence occurs after the 
first data fill. Because of this, the first victim read 
sequence always reads the data location overwritten by 
the first data fill. 

PALcode 
The Alpha architecture defines the privileged archi­
tecture library code (PALcode) as a set of software 
routines that interface an operating system to a spe­
cific Alpha implementation. PALcode presents the 
operating system with an architecturally defined inter- . 
face that is the same in all implementations even 
though the underlying hardware designs can be very 
different. PALcode currently exists to interface the 
Alpha 21164 microprocessor to the Windows NT, 
Digital UNIX (formerly DEC OSF/1), and Open VMS 
operating systems. 

When the processor is executing PALcode, it is in 
PAL mode. PAL mode is entered upon execution of 
the CALLPAL instruction and upon the occurrence of 
interrupts, exceptions, and certain kinds of traps. The 
PALcode entry point is a hardware dispatch to a loca­
tion that is determined by the entering event. In PAL 
mode, instructions are fetched from physical memory 
without address translation. Also, five PAL support 
instructions are enabled that give access to all hard­
ware registers and special load/ store access to virtual 
and physical memory. PAL mode is exited by execut­
ing a PAL instruction called HW_REI. 

To meet performance goals, a number of PAL fea­
tures are included in the Alpha 21164 microprocessor. 
For example, the integer register file contains eight 
shadow registers that map over R8 through Rl 4 
and R25 in PAL mode. Although this overmapping 

SB S9 810 

RAM A-BUS RAM A-BUS 

WRITE ARB TAG HIT/W-BUS RAM W-BUS RAM 

Figure 6 
Second-level Cache Read/Write Flow 

130 Digital Technical Journal Vol. 7 No. 1 1995 



DREAD I SS 

I 
S6 57 I SB I 59 I 510 I 511 

ARB TAG MISS (RAM 0) (A-BUS 0) (A-BUS 1) 
(RAM1) 

OFF-CHIP ACCESS l CACHE INDEX ON PINS (WITH BYPASS) 

SS 56 
VICTIM1 ARB TAG 

VICTIM 2 

SS S6 57 
FILL DATA CACHE ARB 

FILL SECOND-LEVEL CACHE 

Figure 7 
Second-level Cache Miss Sequence with Fastest Fill Possible 

is normally enabled in PAL mode, it can be disabled 
through a hardware control register. This speeds 
PALcode entry and exit, because PALcode is free to 
use these registers without saving and restoring state. 
The shadow register mapping is designed to avoid 
overmapping any register used to pass data from the 
operating system to PALcode or vice versa. 

Several of the operating systems that run on Alpha 
systems access memory management page tables 
through virtual memory. s The Alpha 21164 micro­
processor contains hardware to speed processing of 
the PALcode for translation buffer miss. These 
PALcode routines access virtually mapped page tables. 
The hardware calculates the virtual address of the 
page table entry (PTE) based on the miss address and 
the address of the page table base. This eliminates the 
instruction sequence required for this calculation. 
PALcode then executes a load instruction to this vir­
tual address to fetch the required PTE. This load is 
performed using a PAL instruction that signals a vir­
tual PTE fetch. If this load misses in the DTB, a special 
PALcode trap routine is dispatched to fill the DTB 
using a multilevel, physical-address access method. 
After that, the original virtual PTE read is restarted 
and will succeed. 

Testability Features 

The Alpha 21164 microprocessor incorporates several 
testability features. Some enhance chip test, and some 
features provide useful module test capability.6 

Repairable On-chip RAMs 
The Alpha 21164 microprocessor requires large 
random-access memory (RAM) arrays for its on-chip 
caches. To improve yield, the instruction and data cache 
arrays have spare rows and the second-level cache has 
spare rows and spare columns. 

I 
512 

I 
513 

I 
514 

I 
l TAG AND FIRST DATA LATCHED 

SB 59 510 
RAMO A-BUS O A-BUS 1 

RAM1 

SS S6 
SB I 59 I 510 I ARB TAG RAMO A-BUS O A-BUS 1 

RAM1 

SB S9 
A-BUS 

SS 56 57 SB 
ARB TAG· W-BUS DATA-

WRITE WRITE 

A working instruction cache is necessary for most 
chip test programs. Consequently, it is automatically 
tested by built-in self-test (BiSt) and automatically 
repaired by built-in self-repair (BiSr). During wafer 
probe, the test result is serially shifted off-chip for per­
manent repair by laser. Upon chip reset, BiSt of the 
instruction cache occurs automatically, but BiSr is not 
necessary if the chip has been repaired. 

The data cache and second-level caches are tested by 
programs loaded into the instruction cache during 
wafer probe. These programs condense the test results 
and write them off-chip to be captured by the tester 
for subsequent laser repair. 

Chip Logic Testability 
To enhance core logic testability, the Alpha 21164 
microprocessor contains dual-mode registers that can 
operate as scan registers or as linear feedback shift reg­
isters (LFSRs). The scan mode is used for initialization, 
for scanning out signatures, and for debugging. The 
LFSR mode is used for manufacturing test. 

Module Manufacturing 
The Alpha 21164 microprocessor implements the 
IEEE 1149 .1 standard for supporting testing during 
module manufacturing. The supported instructions 
are EXTEST, SAMPLE/PRELOAD, BYPASS, CLAMP, 
andHIGHZ. 

Summary 

The internal organization of the Alpha 21164, a new, 
high-performance Alpha microprocessor, has been pre­
sented. Mechanisms designed to enhance the CPU's 
performance combined with the CPU's clock speed 
of 300 MHz produce an extremely high-performance 
microprocessor. First silicon of the Alpha 21164 
CPU chip was produced in February 1994, and three 

Digital Technical Journal Vol. 7 No. 1 1995 131 



different operating systems were successfully booted 
on the first-pass silicon. The part became commer­
cially available in January 1995. It achieved the perfor­
mance level of 345 SPECint92 and 505 SPECfp92 
(estimated), a performance level unmatched by com­
mercially available microprocessors. 

Acknowledgments 

The authors wish to acknowledge George Chrysos, 
Robert Cohn, Zarka Cvetanovic, Kent Glossop, Lucy 
Hamnett, Steve Hobbs, John Shakshober, and Paula 
Smith for their work in producing to the estimates of 
SPEC benchmark performance quoted in this paper. 

References 

1. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual-issue 
CMOS Microprocessor," Digital Technical Journal, 
vol. 4, no. 4 (Special Issue 1992): 35-50. 

2. W. Bowhill et al., "Circuit Implementation of a 300-MHz 
64-bit Second-generation CMOS Alpha CPU," Digital 
Technical Journal, vol. 7, no. 1 (1995, this issue): 
100-118. 

3. E. Swartzlander, ed., Computer Arithmetic (New York: 
Dowden, Hutchinson, and Ross, 1980). 

4. 0. MacSorley, "High-speed Arithmetic in Binary Com­
puters," Proceedings IRE, vol. 49 (1961 ): 67-91. 

5. R. Sites, ed., Alpha Architecture Reference Manual 
(Burlington, Mass.: Digital Press, 1992). 

6. D. Bhavsar and J. Edmondson, "Testability Strategy of 
the Alpha 21164 Microprocessor," International Test 
C01iference (October 1994): 50-59. 

Biographies 

John H. Edmondson 
John Edmondson is a consultant engineer in Digital Semi­
conductor. He was the architecture leader of the design 
team for the Alpha 21164 microprocessor. Previous to that 
work, he was a member of the design team for the VAX 
6000 Model 600 microprocessor. Prior to joining Digital 
in 1987, John worked at Canaan Computer Corporation 
and Massachusetts General Hospital. John received a 
B.S.E.E. from the Massachusetts Institute ofTechnology 
in 1979. ' 

132 Digital Technical Journal Vol. 7 No. 1 1995 

Paul I. Rubinfeld 
Paul Rubinfeld was the engineering manager on the Alpha 
21164 microprocessor project. During the last 16 years at 
Digital, he has worked on VAX and PDP-11 CPU develop­
ment projects and a single-instruction, multiple-data, mas­
sively parallel processor system. Paul received a B.S. and 
an M.S. in electrical engineering from Carnegie Mellon 
University, where he helped build the Cm* multiproces­
sor. Paul is a senior engineering manager within Digital 
Semiconductor. 

Peter J. Bannon 
Pete Bannon is a consulting engineer in Digital Semicon­
ductor. He has participated in the design or verification 
of several microprocessor chips and was a member of the 
Alpha 21164 architecture team. He joined Digital in 1984 
after receiving a B.S. (special honors) in computer system 
design from the University of Massachusetts. He holds 
three patents for VAX CPU design and has filed six patent 
applications for the Alpha 21164. 

Bradley J. Benschneider 
Brad Benschneider is a principal hardware engineer in 
Digital Semiconductor. He was responsible for designing 
various sections of the memory management unit on the 
21164, as well as defining the latching methodology for 
the chip. He is currently leading the implementation effort 
of the memory management unit for the next-generation 
Alpha CPU. Since joining Digital in 1987, he has con­
tributed to several custom chip designs in the VAX 6000 
family and the early Alpha implementations. He received 
a B.S.E.E. from the University of Cincinnati, has one 
patent, and has coauthored four papers. 



Debra Bernstein 
Debra Bernstein is a consultant engineer in Digital 
Semiconductor. Her work !has spanned tlhe areas of 
architecture, performance, simulation, logic design, 
firmware, PALcode, verification, and !hardware debug 
for four generations of Digital CPUs. Deb is currently 
working on tlhe !hardware and software components of 
a PC-based multimedia solution. Slhe received a B.S. in 
computer science (1982, cum laude) from tlhe University 
of Massaclhusetts. 

Ruben W. Castelino 
Before receiving a B.S.E.E. from tlhe University of Cincinnati 
in 1988, Ruben Castelino was a co-op student at Digital 
working on a chip set for tlhe VAX 6000 Model 200. Cur­
rently a senior !hardware engineer in Digital Semicon­
ductor, lhe was a codesigner oftlhe caclhe control and bus 
interface unit for tlhe Alpha 21164 CPU. Prior to tlhat, he 
worked on tlhe instruction fetclh, decode, and branch unit 
for the NVAX chip and performed implementation work 
for the NVAX virtual instruction cache. Ruben is currently 
a codesigner of the cache control and bus interface unit 
for a new Alpha microprocessor. 

Elizabetlh M. Cooper 
Betlh Cooper received B.S. degrees (summa cum Iaude) 
in electrical engineering and computer science from 
Washington University in St. Louis ( 1985) and an M.S. 
degree in computer science from Stanford University 
(1995). She is a member of Eta Kappa Nu. She joined 
Digital in 1985 and has worked on tlhe implementations 
of several CMOS VAX and Alpha CPUs since tlhen. Beth 
was tlhe lead cache designer on tlhe Alpha 21164 micro­
processor. She is currently a principal hardware engineer 
in tlhe Palo Alto Design Center. 

Daniel E. Dever 
Since joining Digital in 1988, Dan Dever has worked 
on the design and logic verification oftlhe CMOS VAX 
microprocessors as well as tlhe 21064 and 21164 Alpha 
microprocessors. Dan is currently involved in the design 
of the memory management unit for tlhe next-generation 
Alpha microprocessor. He received a B.S. in electrical 
engineering from tlhe University of Cincinnati in 1988. 

Dale R. Donclhin 
Dale Donchin is an engineering manager and technical 
contributor in Digital Semiconductor. He designed several 
circuits related to tlhe clock and cache and contributed to 
and led CAD tool use for tlhe Alpha 21164 CPU. He is 
presently performing tlhese duties for tlhe development 
of the next-generation Alpha microprocessor. Dale joined 
Digital in 1978 and was previously a development manager 
in tlhe RSX Operating System Group. Dale holds a B.S.E.E. 
(1976, honors) and an M.S.E.E. (1978) from Rutgers 
University College of Engineering and is a member of 
IEEE and ACM. 

Timotlhy C. Fischer 
Tim Fischer is a senior hardware engineer in Digital Semi­
conductor. He is currently working on tlhe instruction issue 
logic for the next-generation Alpha microprocessor. Prior 
to tlhis, Tim worked on the design oftlhe Alpha 21164 
floating-point unit, tlhe NVAX+ bus interface unit, and 
tlhe NVAX clocks and patchable control store. He has 
coautlhored several papers. Tim joined Digital in 1989 
after receiving an M.S. in computer engineering from 
the University of Cincinnati. 

Digital Technical Journal Vol. 7 No. 1 1995 133 



Anil K. Jain 
Anil Jain, a consulting engineer in Digital Semiconductor, 
led the implementation of the external interface unit on the 
Alpha 21164 microprocessor. Prior to this, he was the proj­
ect leader for the floating-point unit on the NVAX micro­
processor. He also made technical contributions on the 
CVAX microprocessor and on device modeling ofDigital's 
first CMOS process. Anil received a B.S.E.E. from Punjab 
Engineering College (1978) and an M.S.E.E. from the 
University of Cincinnati ( 1980). He holds three patents. 

Shekhar Mehta 
Shekhar Mehta is a senior hardware engineer in Digital 
Semiconductor's High Performance Computing Group. 
He designed the miss address file on the memory sub­
system of the Alpha 21164 CPU and was responsible for 
the electromigration checks of the chip. He is currently 
leading the design of the caches on a future Alpha micro­
processor. Before joining Digital in 1988, Shekhar was 
an engineer at Larsen & Toubro, Bombay, India. He 
received an M.S.E.E. from the University ofWisconsin 
at Madison ( 1988 ). 

Jeanne E. Meyer 
Since joining Digital in 1989, Jeanne Meyer has worked on 
the implementation, behavioral modeling, and logic verifi­
cation of several microprocessor chips. In her work on the 
Alpha 21164 CPU, she was responsible for PALcode verifi­
cation, maintenance, and support. She also contributed to 
the microarchitecture definition and behavioral model of 
the chip's memory management unit. She is currently lead­
ing the design of the memory management unit for a new 
Alpha microprocessor. Jeanne received a B.S.E.E. (summa 
cum laude, 1982) from the University of Cincinnati. She 
holds two patents. 

134 Digital Technical Journal Vol. 7 No. 1 1995 

Ronald P. Preston 
Ronald Preston is a principal engineer in Digital Semicon­
ductor. Since joining Digital in 1988, he has worked on 
the design of several microprocessors and was the imple­
mentation leader for the instruction unit on the Alpha 
21164. Ron was also responsible for the architecture and 
implementation of the issue/bypass/ scoreboard logic. 
Ron is the coauthor of several articles on hot carrier analy­
sis of CMOS circuits. He received a B.S.E.E. in 1984 and 
an M.S.E.E. in 1988, both from Rensselaer Polytechnic 
Institute. Ron is a member of Eta Kappa Nu and IEEE. 

Vidya Rajagopalan 
Vidya Rajagopalan is currently with Quantum Effect 
Design Inc. Prior to joining QED, she was a member of 
Digital's Semiconductor Engineering Group, where she 
worked on the Alpha 2 1164 and 21064 microprocessor 
designs. Vidya received an M.S. in electrical engineering 
from the University of Maryland, College Park, and a B.E. 
from Visvesvaraya Regional College of Engineering, 
Nagpur, India. 

Chandrasekhara Somanathan 
Chandrasekhara Somanathan received an M.B.A. from 
Northeastern University in 1994, an M.S. in computer 
science from the Rochester Institute of Technology in 
1984, and a B.S. in electrical and electronics engineering 
from BITS, Pilani, India in 1982. While at Digital from 
1985 to 1994, he designed the cache controller unit of 
the Alpha 21164 RISC microprocessor, and the floating­
point and cache controller units of the VAX 6000/ 400 
CISC microprocessor; he also developed Digital's MOS 
timing analysis CAD software. He is currently with HaL 
Computer Inc., developing high-performance SPARC 
RISC microprocessors. 



Scott A . Taylor 
Scott Taylor joined Digital in 1993 after receiving a B.S. 
degree in electrical engineering from the University of 
Illinois. He was involved with the functional verification 
of the memory, cache control, and external interface 
units on the Alpha 2 1164 microprocessor. Scott has also 
worked on CPU test pattern generation and debug as 
well as on-chip cache repair strategies. He is currently 
contributing to the verification of the next generation 
of Alpha high-performance microprocessors. 

Gilbert M. Wolrich 
A consultant engineer in Digital Semiconductor, Gil 
Wolrich was the leader and architect for the floating­
point unit on the Alpha 21164 chip. He received 
a B.S.E.E. from Rensselaer Polytechnic Institute and 
an M.S.E.E. from Northeastern University. 

Digital Technical Journal Vol. 7 No. 1 1995 135 



Functional Verification 
of a Multiple-issue, 
Pipelined, Superscalar 
Alpha Processor - the 
Alpha 21164 CPU Chip 
Digital's Alpha 21164 processor is a complex 
quad-issue, pipelined, superscalar implemen­

tation of the Alpha architecture. Functional 
verification was performed on the logic design 
and the PALcode interface. The simulation-based 

verification effort used implementation-directed, 
pseudorandom exercisers, supplemented with 

implementation-specific, hand-generated tests. 

Extensive coverage analysis was performed to 
direct the verification effort. Only eight logical 

bugs, all unobtrusive, were detected in the first 
prototype design, and multiple operating sys­

tems were booted with these chips in a proto­

type system. All bugs were corrected before any 
21164-based systems were shipped to customers. 

136 Digital Technical Journal Vol. 7 No. 1 1995 

I 
Michael Kantrowitz 
Lisa M. Noack 

The Alpha 21164 microprocessor is a quad-issue, 
superscalar implementation of the Alpha architecture. 
The CPU chip required a rigorous verification effort 
to ensure that there were no logical bugs. World-class 
performance dictated the use of many advanced archi­
tectural features, such as on-chip virtual instruction 
caching with seven-bit address space numbers (ASNs), 
an on-chip dual-read ported data cache, out-of-order 
instruction completion, an on-chip three-way set­
associative write-back second-level cache, support for 
an optional third-level write-back cache, branch pre­
diction, a demand-paged memory management unit, 
a write buffer unit, a miss-address file unit, and a com­
plicated bus interface unit with support for various 
CPU-system clock ratios, system configurations, and 
third-level cache parameters.1 

Functional verification was performed by a team of 
engineers from Digital Semiconductor whose primary 
responsibility was to detect and eliminate the logical 
errors in the Alpha 21 164 design. The detection and 
elimination of timing, electrical, and physical design 
errors were separate efforts conducted by the chip 
design team.2 

Extensive functional verification prior to releasing 
the first-pass design to the manufacturing process is 
a common technique used to ensure that time-to­
market goals are met for complex processors. 
Increasingly, these verification efforts are relying on 
pseudorandom test generation to improve the quality 
of the verification effort. These techniques have been 
in use at Digital for more than seven years and are also 
used elsewhere in the industry and in academia. 3- 6 

This paper describes a functional verification effort 
that significantly extended pseudorandom testing with 
extensive coverage analysis and some hand-generated 
tests to produce working first-pass parts. 

Goals 

The verification team had several key goals. Goals for 
first-pass silicon included ensuring that the first proto­
types could boot the operating system and providing a 
vehicle for debugging of system-related hardware and 
software. An additional goal was to execute a test to 
check every block of logic and every function in the 



chip to ensure that no serious functional bugs 
remained. The goal for second-pass silicon was to be 
bugfree so that these chips could be shipped to cus­
tomers for use in revenue-producing systems. Secon­
dary goals included assisting in the verification of 
Privileged Architecture Library code (PALcode) and 
keeping manufacturing test patterns in mind when cre­
ating the verification environment and writing tests. 

Modeling Methodology 

Several different model representations of the Alpha 
21 164 CPU were developed for testing prior to proto­
types. The verification team primarily used a register­
transfer-level (RTL) model of the Alpha 21164 CPU 
chip. This model accurately represented the detailed 
logic of the design and delivered very high simulation 
performance. 

Modeling Environment 
The design team wrote the RTL model in the C pro­
gramming language. The model represented all 
latches and combinatorial logic of the design and was 
accurate to the dock-phase boundary. The C pro­
gramming language was chosen because C provides 
the speed and flexibility needed for a large-scale 
design. Digital's CAD group designed a user interface 
for access into the RTL model of the Alpha 21164 
CPU. The C command line interface (CCLI) allowed 
access into the variables used to define signals and to 
the routines that represented the actual design. It pro­
vided the ability to create binary traces of signals for 
postprocessing analysis and debugging. A standard set 
of macro-instructions simplified bit manipulation of 
signals with arbitrary widths. 

The use of C also allowed the team to simulate 
portions of the gate-level design in the structural 
simulator, CHANGO, and to perform cycle-by-cycle 
comparisons with various states in the RTL model. 
These simulations, called shadow-mode simulations, 
were fully utilized for testing the various functional 
units of the chip. 

Pseudosystem Models 
The verification team developed several models to 
interface to the Alpha 21164 CPU RTL model and 
to allow testing of interactions with pseudosystems to 
occur. The C language provided a level of flexibility 
in the creation of these models that was not available 
on previous verification projects. One area in which 
this flexibility was fully utilized was in the formation 
of a sparsely populated memory model. By using 
a dynamic tree data structure rather than a static array, 
the cache, duplicate tag store, and memory system 
models could be written to support the full range 
of 64-bit addressing. Hence, tests could be created 
to use any set of addresses without restrictions. In 

addition, comparisons with the reference model could 
be drawn from the entire contents of memory. This 
significantly enhanced the ability to detect possible 
errors in the design. 

The verification engineers created a system model 
(the X-box) to simulate transactions on the pin bus. 
The X-box model provided a means to mimic the real 
system behavior that the Alpha 21164 CPU would 
encounter when used with a variety of different plat­
forms. The team used C to develop an X-box model 
that could be connected to every possible config­
uration and mode setting of the Alpha 21164 CPU 
chip. This allowed all modes of the Alpha 21164 
CPU to be tested with a single, multipurpose system 
interface model. The X-box also performed many of 
the checks needed to ensure the proper operation 
of the system bus. 

Strategy 

The verification strategy employed multiple tech­
niques to achieve full functional verification of the 
Alpha 21164 chip. The primary technique used was 
pseudorandom exercisers. These programs generated 
pseudorandom instruction sequences, executed the 
sequences on both the 21164 model and a reference 
model, and compared the results. A second major 
technique used focused, hand-generated tests to cover 
specific areas of logic. Other methods consisted of 
design reviews, executing existing tests and bench­
marks, and a few static analysis techniques. Figure 1 
shows the general flow for a single simulation. 

This strategy was deployed in three parts: the try­
anything phase, the test-planning phase, and the struc­
tured completion phase. Devising a test plan was not 
the first step. During the early stage of the project, the 
primary goal was to stabilize the design as quickly as 
possible. Any major bug that would have had an 
impact on the architectural definition of the chip was 
uncovered. Circuit design and layout could then com­
mence without fear of major revisions later. If time had 
been spent structuring detailed test plans, less time 
would have been given to actual testing, and at this 
point in the design, careful thought was not needed to 
find bugs. 

The main purpose of the try-anything phase was to 
exercise as much functionality of the design as possible 
in the shortest time in order to stabilize the design 
quickly. This phase began even before the RTL model 
was ready, with the construction of the pseudorandom 
exerciser programs. The pseudorandom exercisers and 
the RTL model were debugged together. This pro­
duced an atmosphere of intensity and challenge in 
which everyone was required to interact constantly to 
help identify the source of problems. This had a sec­
ondary benefit of bringing the design and verification 
teams closer together. 

Digital Technical Journal Vol. 7 No. 1 1995 137 



SEGUE-BASED 
PSEUDORANDOM 
TEST-CASE 
GENERATOR 

REFERENCE 
MODEL(ISP) 
SIMULATION 

STATE 
COMPARISON 
FAILURE 

SEGUE-BASED 
PSEUDORANDOM 
CONFIGURATION 
GENERATOR 

DESIGN UNDER 
TEST (RTL) 
SIMULATION 

ASSERTION 
CHECKER 
FAILURE 

COMPARE 
RESULTS 

COLLECT 
SIGNAL TRACES 

FAILURE FINAL CHECKS 
ANALYZE TRACES 
FOR COVERAGE 
(SAVES) 

SUCCESS 

Figure 1 
Design Verification Test Environment 

COVERAGE 
STATISTICS 

Once the design stabilized and the bug rate 
declined, the design team began focusing on circuit 
design and layout, and the verification team took a 
step back and created a test plan. The purpose of the 
test plan was to ensure that the verification team 
understood what needed to be verified. The test plan 
provided a mechanism for reviewing what would be 
tested with the design team. The joint review ensured 
that the verification team did not miss important 
aspects of the design. The test plan also allowed a way 
for the design team to raise issues around specific 
problem areas in the design or areas that employed 
special logic that were not obvious from the specifica­
tion. Finally, the test plan provided a means for sched· 
uling and prioritizing the rest of the verification effort. 

The test plan consisted of a description of every fea· 
ture or function of the design that needed to be tested, 
inclucling any special design features that might 
require special testing. It clid not describe how the test 
would actually be created. Past experience had incli· 
cated that test plans describing the specific sequence 
of instructions needed to test chip features quickly 
became outdated. Instead, the test plan focused on the 
"what," not the "how." 

138 Digital Technical Journal Vol. 7 No. 1 1995 

The final verification step was the structured com· 
pletion phase. During this time, each item from the 
test plan was analyzed and verified. The analysis con· 
sisted of deciding which mechanism was appropriate 
for covering that particular piece of the design. This 
might consist of a focused test, a pseudorandom exer· 
ciser with coverage analysis, or an assertion checker. As 
the verification of each item was completed, a review 
was held with the design and architecture teams to 
examine what was verified and how it was done. In this 
way, any problems with the verification coverage were 
identified. 

Test Stimulus 

Both focused and pseudorandom exercisers were used 
during the verification of the Alpha 21164 chip. More 
than 400 focused tests were created during the verifi· 
cation effort, covering a wide variety of chip functions. 
Six clifferent pseudorandom exercisers were used. One 
was a general-purpose exerciser that provided cover­
age of the entire architecture. Each of the other five 
exercised a specific section of the chip in a pseudo ran· 
domway. 

The one general-purpose exerciser used was pro· 
vided by a separate group and generated pseudoran­
dom streams of instructions, data, and chip state. Its 
focus was at the architectural level and generated 
pseudorandom stimulus that would work on any 
implementation of the Alpha architecture. 

Almost all focused design verification tests (DVTs) 
were written using Alpha assembly code. This pro­
vided the right level of abstraction to avoid the need 
to toggle ones and zeros clirectly on each pin, yet 
allowed specific control over the timing of transactions 
and instruction sequences that would not be possible 
from a compiled language. The macro-preprocessor 
feature of the Alpha macro-assembler was used heavily. 
This allowed the assembly-level programs to be con­
structed in a modular manner. 

Pseudorandom Testing 

Pseudorandom testing offers several advantages in 
the verification of increasingly complex chips. These 
include producing test cases that would be time­
consuming to generate by hand, and provicling the 
ability to generate multiple simultaneous events that 
would be extremely clifficult to think of explicitly. 

Exercisers 
In support of the pseudorandom testing strategy, vari· 
ous exercisers were created that focused on clifferent 
aspects of the chip. The following areas were targeted 
explicitly: 



• Branching 

• Data-pattern-dependent transactions 

• Floating-point unit 

• Traps 

• Cache and memory transactions 

Fundamentally, each exerciser was the same. The 
exerciser would create pseudorandom assembly­
language code, run the code on the model under test 
and a reference model, collect results from each, and 
compare the results from both model runs. Any errors 
or discrepancies were then reported to the user. 

The reference model used, called the ISP model, 
was a very high-level abstraction of the Alpha architec­
ture written in the C language. The core of this model 
was created during the design of the 21064, the first 
Alpha processor. It was modified sli~htly to inc~ude 
Alpha 21164 specific features such as mternal register 
definitions. The ISP model integrated the same sparsely 
populated memory model used in the ps~udosyst~m 
model in such a way that the freedom m creatmg 
addresses could be duplicated. 

SEGUE, a text generation/expansion tool, was 
used extensively to create pseudorandom code and 
configurations. Each exerciser used SEGUE templates 
to generate code. Variables were passed to the SEGUE 
templates that would determine what pe:centage of 
certain events or instructions would occur m the resul­
tant code. Users would vary the percentages and cre­
ate additional templates to target their exercisers to 
certain portions of the chip. An exerciser could focus 
only on loads and stores, or templates could b~ crea~ed 
that would generate trapping code. The venficatton 
engineers had the flexibility to create whatever code 
was needed. The verification engineers worked closely 
with the designers to understand the details of the 
logic. As a result, cases could be generat.ed tha.t would 
thoroughly test the functions being designed mto the 
Alpha 21164 CPU chip. 

Configuration Selection 

Each test, either pseudorandom or focused, also made 
use of a configuration control block ( CCB) parameter 
file. The CCB was used to set up the type of system 
that would be emulated for a given simulation. The 
parameter file consisted of variables that could be 
weighted to make certain system events occur or _to 
cause certain configurations to be chosen. Once agam, 
SEGUE scripts were utilized to create the command 
files that controlled these events. Examples of the type 
of events that could be chosen were single-bit error­
correcting code (ECC) errors, interrupts, the presence 
of an external cache, the ratio between the system 
clock and the CPU internal clock rate, cache size and 
configuration, and other bus-interface timing events. 
These and other events were varied throughout the 

course of the project to ensure that the chip could be 
run in real systems using any given configuration. 

The configuration chosen was guided through the 
use of a parameter file that contained various parame­
ters and weightings to be utilized by SEGUE. Once 
a configuration was chosen using the parameter file, 
it was processed to produce two files used in the simu­
lation. The first was a CCLI control file used to set 
up state internal to the pseudosystem-level model. 
The second file was loaded into the memory model to 
be used by the DVT and to provide information acces­
sible through assembly code regarding the configura­
tion type. 

Simulation 

Once the pseudorandom code and configuration had 
been generated, the test was loaded into the. model 
under test or into the ISP model to use as the stimulus. 
ADVT loader was created for both models that would 
interpret selected data in the CCB and determine the 
memory locations where the test should be located. 
The additional information encoded in the CCB 
included whether the test ran in I/0, where handlers 
should be placed, and what page mapping was used. 

After a DVT was loaded, the simulation would start. 
A PALcode reset handler was executed first. It read 
information from the CCB and loaded various regis­
ters with the configurations specified. The DVT was 
executed after the PALcode completed. 

Capturing Random Events 

In some cases, pseudorandom exercisers were used 
to capture events that were unlikely to occur and 
that would have been difficult to obtain by a focused 
test. By using a new tool ( called FIGS), engineers were 
able to use the pseudorandom exercisers and postpro­
cessing to look for events that were needed to achieve 
coverage of the various functions in the F-box. When 
the event occurred, the event could be saved and 
re-created for future regression testing. 

Correctness Checking 

A variety of mechanisms were used for checking 
whether the model behaved correctly. Some hand­
crafted tests had comparisons built-in to verify that 
they generated the expected answer. This self-che~k­
ing mechanism, however, is difficult t.o include ~th 
pseudorandom testing. Three categones of checki~g 
mechanisms were developed that could work with 
pseudorandom or focused tests. These were c~ecks 
performed during simulation of a model, postsimu­
lation checks done automatically every time a model 
completes executing, and test-specific po~tsimulation 
checks. In all cases, adjusting the checking mecha­
nisms to eliminate reporting false errors was important 
to keep the debugging time low. 

Digital Technical Journal Vol. 7 No. l 1995 139 



The RTL model was augmented with a wide variety 
of built-in assertion checkers. These were active any 
time the model was run; they verified that various 
assertions and rules of behavior were not violated at 
any time during the test execution. Assertion checkers 
ranged from the simple to the complex and were 
added to the model by both the design and verifica -
tion teams. Some assertion checkers were added as the 
initial model was coded, and others were added as 
needed to ensure that certain situations did not occur. 
Examples of simple assertion checkers include watch­
ing for a transition to an illegal state in a state machine, 
or watching for the select lines of a multiplexer ( MUX) 
to choose an unused MUX input. More complex asser­
tion checkers were used that required explicit knowl­
edge about illegal sequences. For example, the system 
bus had a complicated set of checkers attached to it 
that checked for violations of the bus protocol. 

When a test completed executing on the model, 
several end-of-run checks were done automatically. 
One simple check was to verify that the test reached 
its normal completion point and had not ended pre­
maturely. Complete cache coherency checks were per­
formed to ensure that all three levels of cache contents 
were consistent with the memory image. 

A variety of very powerful end-of-run checks were 
used. These compared the results of running a test on 
the model and on the ISP model. Information about 
the state of the model was saved while the test was 
executing and then compared with its equivalent from 
the ISP model. State that was compared in this way 
included a trace of the program counter (PC), a trace 
of the updates made to each architectural register, and 
the final memory image upon completion of a test. 

The main problems encountered with this tech­
nique were due to inconsistencies between the ISP 
model and the Alpha 21164 design. The ISP model 
was used across multiple Alpha design projects. It pro­
vided architecturally correct results but had no con­
cept of timing, pipelining, or caching. Several features 
of the Alpha 21164 implementation were difficult to 
verify with this reference machine. 

In the Alpha architecture, arithmetic traps are impre­
cise, in that they might not be reported with the exact 
PC that caused them. Since the ISP model had no con­
cept of timing, it reported traps at a different time than 
the real design. Thus, the checking mechanisms 
needed to be intelligent enough to take this possibility 
into account. Arithmetic traps also presented a prob­
lem because the destination register of certain types of 
traps is unpredictable after a trap occurs. Combined 
with the imprecise nature of traps, unpredictable values 
could propagate to other registers, making comparison 
against the reference machine difficult. Normally, cer­
tain software conventions would be followed to control 
these aspects of the architecture. To achieve the full 
benefit from pseudorandom testing, however, no 

140 Digital Technical Journal Vol. 7 No. l 1995 

restrictions were placed on which registers or instruc­
tion sequences could be used. Instead, an elaborate 
method was devised for tracking which registers were 
unpredictable at any given time. This information was 
then used to filter false mismatches. 

Optional checks made on a per-test basis could be 
viewed as more complicated assertion checks. These 
were performed by tracing internal signals. The spe­
cific signals to trace were selected based on the par­
ticular postprocessing to be done. Then, by using 
a library ofroutines (called SAVES) to simplify access­
ing and manipulating these signal traces, particular 
interactions and protocols were verified. These could 
be viewed as assertion checks, but they were more 
complicated than the built-in variety. One example 
involved representing the behavior of a large section of 
the design as a single, complicated state machine. The 
behavior of this state machine could be compared with 
the 1/0 behavior of the actual design section. Another 
example was the representation of the branch­
prediction algorithm in a more abstract form than the 
actual model. The behavior of the abstract algorithm 
was compared with the behavior of the model itself. 

Coverage Analysis 

The primary difficulty with functional verification 
is that it is virtually impossible to know when the veri­
fication effort is complete. Completing a predeter­
mined set of tests merely indicates that the tests are 
complete, not that the design has been fully tested. 
Monitoring the bug rate provides useful information, 
but a low bug rate might indicate that the testing 
is not exercising the problem areas. To alleviate this 
problem and provide increased visibility into the com­
pleteness of the verification effort, extensive coverage 
analysis of the focused tests and pseudorandom exer­
cisers was done. Two types of coverage checking were 
used: information gathered while a model was exe­
cuting, and information gathered by postprocessing 
signal traces. 

While a model was executing, information was 
being stored about the occurrence of simple events. 
For example, a record was kept on the number of 
times the machine issued instructions to four pipes 
simultaneously, the number of times the translation 
buffers filled up, or the number of times stalls 
occurred. Since the chip operated in random configu­
rations, a record was also kept about the configuration 
information such as the B-cache size and timing 
selected, the system interface options, and timing. At 
the end of every model run, this recorded information 
was written to a database to collect statistics across 
multiple runs. 

In addition to these simple coverage checks, more 
elaborate coverage analysis was done through postpro­
cessing. By using the SAVES library, signal traces were 



collected while the model was executing; these were 
later analyzed for the specific occurrence of predefined 
events. The events were composed of complicated 
timing relationships among signals. Often, two­
dimensional matrices were created, in which each axis 
of the matrix represented a list of events. Thus, the 
occurrence patterns of every event in one list could be 
visualized happening with every event in the second 
list. For example, it was verified that every type of 
system command (read, invalidate, set-shared, etc. ) 
occurred followed by every type of bus response 
(ACK, NOACK, etc. ). 

Automatic coverage-checking methods were also 
used. The most common was a state machine coverage 
analyzer. It was a goal to verify that every state/arc 
transition in every state machine was being exercised. 
Programs were automatically generated to search the 
trace files for these transitions and record the infor­
mation about what was and was not covered. This 
concept was extended to sections of the chip that were 
not designed as simple state machines. As described 
above, one large section of the design was represented 
as a single, monolithic state machine to provide an 
independent reference for the correct outputs of the 
section. This conceptual state machine was processed 
through the coverage analysis tool. Although the tran­
sitions that were checked did not map directly to the 
physical design, they did provide an excellent indi­
cation of how well that section of the design had been 
tested. 

The trace analysis tools could accumulate data 
across multiple simulation runs. The data was analyzed 
periodically, and areas that were lacking coverage were 
identified. This allowed the identification of trends in 
the coverage and provided an understanding as to how 
well the pseudorandom exercisers were exercising the 
chip. With this insight, pseudorandom exercisers were 
modified or new focused tests were created to improve 
the test coverage. Running pseudorandom exercisers 
with coverage analysis proved to be a very powerful 
technique in functional verification. 

Bug Trends 

During the Alpha 21164 CPU verification effort 
more than 600 bugs were logged and tracked befor~ 
first-pass parts were manufactured. Figure 2 shows the 
bug rate achieved as a function of time for the duration 
of the project. To track bugs, an action tracking system 
was set up. Tracking of bugs started after all the sub­
sections of the RTL-level model had been integrated 
and a small subset of tests was run successfully. Since 
many areas of the model were ready before others, the 
action tracking system does not represent all the issues 
raised. However, it is interesting to look at the trends 
presented by the data. 

(fJ 
(.'.) 

70 

60 

ffi 50 
u.. 
0 40 
a: 
UJ 

§l 30 
:::, 
z 

20 

Figure 2 
Bug Rate as a Function ofTime 

The first trend to consider is the effectiveness of the 
pseudorandom and focused efforts. As shown in 
Figure 3, more than half the bugs were found using 
pseudorandom techniques. Furthermore, one-third of 
the bugs found by the focused effort were in the error­
handling functionality of the design, which had poor 
pseudorandom test coverage. 

Bugs were thought to have been introduced in 
a variety of ways. Figure 4 shows the breakdown of the 
causes of bugs. The majority occurred in implement­
ing the architectural ideas that were decided upon for 
the project. 

Figure 5 shows the various detection mechanisms 
that were used to detect bugs. As in the past, assertion 
checkers placed in the design to quickly detect when 
something is not correct are the most successful. 

Results and Conclusions 

As of September 1, 1994, eight logical bugs were 
found in the first-pass Alpha 21164 CPU design. Only 
one of these impacted normal system operation, but it 
did not occur very often. The first two issues were 

PS EU DORAN DOM 
TEST 

FOCUSED TEST 

STATIC TEST I 

OTHER 

61% 

7% 

PERCENTAGE OF TOTAL BUGS FOUND 

Figure 3 
Effectiveness of Class of Test 

Digital Technical Journal Vol. 7 No. 1 1995 141 



IMPLEMENTATION 
ERROR 

C PROGRAMMING 
MISTAKE 

PALCODE ERROR 

ARCHITECTURAL 
CONCEPTION 

BACK-ANNOTATION 
OF MODEL (TO MATCH 

SCHEMATICS) 

DOCUMEINTATIONI 
SPECIFICATION 

SCHEMATIC ENTRY 

PROGRAMMABLE I 
LOGIC PROGRAMM ING 

ERROR 

POOR 
COMMUNICATION 

OTHER 

Figure 4 
Introduction of Bugs 

ASSERTION CHECKER 

SELF-CHECKING TEST 

CACHE COHERENCY 
CHECK 

REGISTER FILE TRACE 
COMPARE 

MEMORY STATE 
COMPARE 

MANUAL INSPECTION 
OF SIMULATION 

OUTPUT 

SIMULATION HANG 

ARCHITECTURAL 
EXERCISER BUil T-IN 

CHECKS 

PC TRACE COMPARE 

SAVES CHECK 

SIMULATOR BUILT-IN 
ERROR MESSAGE 

Figure 5 

61% 

PERCENTAGE OF TOTAL BUGS 

34% 

PERCENTAGE OF TOTAL BUGS 

Effectiveness of Bug Detection Mechanisms 

142 Digital Technical Journal Vol. 7 No. 1 1995 

found while debugging test patterns on the tester; the 
third was a variation on a known restriction; the fourth 
occurred in a rare prototype system configuration that 
was found through pseudorandom simulation test­
ing (which had continued even after the design was 
released to manufacturing); the fifth was a race condi­
tion between two events that rarely were stimulated in 
simulation; the sixth was a performance-related issue 
on the pin interface that was found by thinking about 
the design; the seventh was a very specific set of events 
that resulted in a system hang; and the last was related 
to not responding appropriately to an error condition. 

These bugs escaped detection for the following 
reasons: 

• An exerciser running on a simulator was slow to 
encounter the conditions that would evoke the 
bug. Many conditions needed to occur concur­
rently, but all of them occurred infrequently. 

• An assertion checker did not work properly. 

• Comparisons between the RTL model and the 
structural model missed the bug. 

All bugs were fixed before any systems were shipped 
to customers. 

Details of these bugs follow. Included is information 
about how the bug was detected, a hypothesis on why 
the bug eluded detection before first-pass chips were 
fabricated, and lessons learned from the detection and 
elimination of the bug. 

1. One bug was found by an exerciser running on the 
second-pass RTL model. A cache line victim failed 
to write back on a B-cache index match because 
a bypass occurred at the same time. This bug 
existed only in 32-byte cache mode and B-cache 
speed configurations of 4, 5, and 6. This bug could 
have been found in the first-pass model if this case 
had been generated pseudorandomly. Running 
many cases is crucial with a pseudorandom testing 
strategy. Given unlimited time and computation 
cycles, this bug might have been found earlier. 

2. A second bug was caused by the B-cache read/ 
write timing being off by one cycle. This bug could 
have caused multiple drivers to drive the data bus at 
one time. An assertion checker for this bug was in 
the RTL model, but the checker itself was not 
working properly. In the future, assertion checkers 
should be verified by causing the failure to occur 
and watching to see that it detects the case. In some 
cases, assertion checkers are written to flag an error 
for events that should never happen. Forcing an 
illegal situation to occur can be very difficult. 

3. Another bug was found by an exerciser when 
a WRITE_BLOCK command was preceded by a 
single-cycle idle_BC signal assertion. This issue was 



directly related to a specific B-cache speed and was 
related to another system configuration restriction. 
This issue caused a restriction to be added, but the 
design was not changed. 

4. If the B-cache sequencer is performing a bypass 
immediately after a command loads in the B-cache 
address file and a reference is coming down the 
S-cache pipe, the B-cache index could change in 
back-to-back cycles. The index should change only 
every other cycle. An assertion checker should have 
been written to test for this situation and make sure 
it never occurred. 

5. The performance-monitoring logic that counted 
load merges was not counting these events cor­
rectly. This bug was not in the RTL model but only 
in the actual implementation. Possibly, more RTL­
to-CHANGO comparisons needed to be run on 
this section oflogic. 

6. Because of an LDxL/STxC bug, an invalidate to a 
locked address was not detected as a hit against the 
LDxL address. As a result, an STxC passed when it 
should have failed. This bug could have been 
detected if a focused test had been written with very 
specific timing of a FILL and an LDxL hitting the 
S-cache in consecutive cycles. Gaining control of 
this interaction on the system bus was not possible, 
however, and random simulations were relied upon 
to achieve this case. This was a rare event in the ran­
dom simulations, but parameters could have been 
adjusted to make this occur more often. 

7. For one specific system configuration, a READ or 
FLUSH command sent by the system to the Alpha 
21164 chip could cause the system to hang. For 
this to happen, three specific events, all with very 
tight timing windows, needed to occur. We could 
have found this bug during simulation if we had 
emphasized this type of condition during the 
pseudorandom testing. 

8. When responding to a command, the system had 
the option of asserting an error signal instead of its 
normal response. The error signal acted as an inter­
rupt request to the Alpha 21164 chip. Under cer­
tain conditions, and for a narrow window of time, 
this error signal was not properly recognized. 
Testing of error conditions was a project goal but 
not a high priority compared to testing normal 
events. This bug could have been found earlier if 
additional error-mode tests had been run. 

The above issues were fairly minor and all have been 
fixed in the version of the design that will be released 
to customers. The use of pseudorandom testing was 
very successful. Many major, complicated bugs were 
found over the course of the project that would never 

have been found using a focused effort. Because of the 
number of system configurations possible, a verifi ­
cation effort that consisted only of focused testing 
would have been impossible. 

Acknowledgments 

The Alpha 21164 functional verification effort was 
performed by a team of engineers from the SEG 
microprocessor verification group. Members of this 
team included Homayoon Akhiani, David Asher, 
Darren Brown, Rick Calcagni, Erik DeBriae, Jim Ellis, 
Bill Feaster, Mariano Fernandez, Jim Huggins, Mike 
Kantrowitz, Ginger Lin, Chris Mikulis, Lisa Noack, 
Ray Ratchup, Carol Stolicny, Scott Taylor, and 
Jonathan White. The CCLI user interface would not 
have been possible without John Pierce. Walker 
Anderson provided quality guidance through all 
phases of the project. The Alpha Architecture Group 
RAX team (Matt Baddeley, Larry Camilli, Ed 
Freedman, Joe Rantala, Pravin Santiago, Lucy 
Tancredi, Steve Torchia), once again, provided and 
supported an effective verification tool. Lastly, the suc­
cess of the project and the final quality of the Alpha 
21164 chip logical design are as much a tribute to the 
work of the architecture and design teams as they are 
to the work of the verification team. 

References 

1. J. Edmondson et al., "Internal Organization of the 
Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS 
RISC Microprocessor," Digital Technical Journal, 
vol. 7, no. 1 (1995, this issue): 119-135. 

2. W. Bowhill et al., "Implementation of a 300-MHz 
64-bit Second-generation CMOS Alpha CPU," Digital 
Technical Journal, vol. 7, no. 1 (1995, this issue ): 
100-118. 

3. W. Anderson, "Logical Verification of the NVAX CPU 
Chip Design," Digital Technical Journal, vol. 4, no. 3 
(Summer 1992): 38-46. 

4. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, 
M. Leibowitz, and V. Schwartzburd, "Verification of 
the IBM RISC System/6000 by a Dynamic Biased 
Pseudo-random Test Program Generator," IBM Systems 
Journal, vol. 30, no. 4 (1991): 527-538. 

5. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C-Y. Lin, and 
A. Wiemann, "Design Verification of the HP 9000 
Series 700 PA-RISC Workstations," Hewlett-Packard 
Journal (August 1992): 34-42. 

6. D. Wood, G. Gibson, and R. Katz, "Verifying a Multi­
processor Cache Controller Using Random Test Gener­
ation," IEEE Design and Test of Computers (August 
1990): 13-25. 

Digital Technical Journal Vol. 7 No. 1 1995 143 



L 

Biographies 

Michael Kantrowitz 
A principal engineer, Mike Kantrowitz is currently leading 
the verification effort for a new Alpha microprocessor and 
developing new verification tools and methods. Prior to 
this project, Mike was co-leader of the 21164 chip verifica­
tion, responsible for the instruction fetch and execute units. 
He has also contributed to the verification of the Mariah, 
NVAX+, 21064 floating-point unit, and FAVOR vector 
unit. Before joining Digital in 1988, Mike worked at 
Raytheon Company. He has a B.S.E.E. from Stevens 
Institute ofTechnology and an M.S.E.E. from Worcester 
Polytechnic Institute. Mike is a member ofIEEE. 

Lisa M. Noack 
A principal engineer, Lisa Noack is currently co-leading 
the chip verification effort for a new Alpha microprocessor. 
Prior to this work, Lisa was a co-leader of the 21164 chip 
verification and was responsible for memory, cache, and 
system interface units. Lisa has also contributed to the 
verification of the NVAX+ and NEXMI chips and the PVN 
module and chip set. Before she joined Digital in 1989, 
Lisa was employed at Data General Corporation as a design 
engineer responsible for the system design ofI/0 subsys­
tems and various gate array design projects. She earned 
her B.S. and M.S. degrees in computer engineering from 
Syracuse University. 

144 Digital Technical Journal Vol. 7 No. 1 1995 



mamaomo· 

ISSN 0898-901X 

Printed in U.S.A. EY-T l 35E-TJ/ 95 06 14 15.0 Copyright © Digital Equipment Corporation. All Rights Reserved. 


	Front cover
	Contents
	In Memoriam
	Editor's Introduction
	Foreword
	DB Integrator: Open Middleware for Data Access
	ACMSxp Open Distributed Transaction Processing
	An Open, Distributable, Three-tier Client-Server Architecture with Transaction Semantics
	The AlphaServer 8000 Series: High-end Server Platform Development
	Digital's High-performance CMOS ASlC
	The Second-generation Processor Module for AlphaServer 2100 Systems
	The Design and Verification of the AlphaStation 600 5-series Workstation
	Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU
	Internal Organization of the Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS RlSC Microprocessor
	Functional Verification of a Multiple-issue, Pipelined, Superscalar Alpha Processor - the Alpha 21164 CPU Chip
	Back cover



