
• AlphaServer Multiprocessing Systems
• DEC OSF/1 Symmetric Multiprocessing
• Scientific Computing Optimizations for Alpha

Digital Technical Journal
Digital Equipment Corporation

Volume 6 Number 3
Summer 1994

Cover Design
The cover design captures two major concepts

in this issue-symmetry and pamllelism. At the

hardware level, the AlphaServer multiprocess­

ing systems provide symmetrical access to hard­

ware system resources. As processors are added

to the multiprocessing system, the DEC OSF/1
operating system provides the parallelism that

allows applications to take advantage of the

added processor power. The KAP preprocessor

also provides parallelism, specifically for pro­

grams running on symmetric multiprocessing

systems. In each case, symmetry and parallel­

ism are among the keys to achieving designs

that offer the highest levels of performance.

The cover was designed by joe Pozerycki, Jr.,

of Digital's Design Group.

Editorial
Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
AnneS. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
Richard J. Hollingsworth
Alan G. Nemeth
Jean A. Proulx
Jeffrey H. Rudy
Stan Smits
Robert M. Supnik
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/Dl0, Littleton, Massachusetts 01460.
Subscriptions to the journal are $40.00 (non- U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technical journal at the published­
by address. I nquiries can also be sent electronically to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1 -800-DIGITAL
(1-800-344-4825). Recent back issues of the journal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital internet listings can
be obtained by sending an electronic mail message to info@digital.com.

Digital employees may order subscriptions through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright© 1994 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the journal.
ISSN 0898-90IX

Documentation Number E Y-S799E-TJ

The following are trademarks of Digital Equipment Corporation: Alpha, AlphaServer,
DEC, DEC Fortran, DEC OSF/1, DECpc, DECthreads, Digital, the DIGITAL logo, Micro VAX,
Open VMS, Storage Works, and ULTRIX.

CR AY-1 is a registered trademark ofCray Research, Inc.

Intel is a trademark oflntel Corporation.

KAP is a trademark of Kuck & Associates, Inc.

Microsoft and MS-DOS are registered trademarks and Windows NT is a trademark of
Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems, Inc.

Multimax is a trademark of Encore Computer Corporation.

Open Software Foundation is a trademark and OSF/ I is a registered trademark of Open
Software Foundation, Inc.

PAL is a registered trademark of Advanced Micro Devices, Inc.

SPECfp, SPECint, and SPECmark are registered trademarks of the Standard Performance
Evaluation Council.

SPICE is a trademark of the University of California at Berkeley.

TPC-A and TPC-C are trademarks of the Transaction Processing Performance Council.

UNIX is a registered trademark licensed exclusively by X/Open Company, Ltd.

Book production was clone by Quantic Communications, Inc.

I Contents

6 Foreword
Steve Holmes

8 Design of the AlphaServer Multiprocessor
Server Systems
Fidelma M. Hayes

20 The AlphaServer 21001/0 Subsystem
Andrew P. Russo

29 DEC OSF/1 Version 3.0 Symmetric
Multiprocessing Implementation
Jeffrey M. Denham, Paula Long, and
James A. Woodward

AlphaServer Multiprocessing Systems

DEC OSF/1 Symmetric Multiprocessing

Scientific Computing Optimizations for Alpha

44 DXML: A High-performance Scientific
Subroutine Library
Chandrika Karnath, Roy Ho, and Dwight P. Manley

57 The KAP Parallelizer for DEC Fortran and
DEC C Programs
Robert H. Kuhn, Bruce Leasure, and Sanjiv M. Shah

I Editor's Introduction

Jane C. Blake
Managing Editor

Designs that capitalize on Digital's 64-bit Alpha
RISC processors or that enhance the performance
of scientific applications are the subjects of papers
in this issue. Featured topics include the well­
received AlphaServer multiprocessing systems,
the DEC OSF/1 symmetric multiprocessing operat­
ing system, a high-performance math library, and
a preprocessor program developed by Kuck &
Associates, Inc.

To develop a price/performance leader for the
server market, designers of the AlphaServer 2100
and 2000 multiprocessing systems had to make
decisions that were at once creative, pragmatic,
and timely. Fidelma Hayes, an engineering manager
for the Server Group, presents an overview of these
h igh-performance servers that incorporate Alpha
RISC technology and PC-style 1/0 subsystems, and
support three operating systems-Microsoft's
Windows NT, DEC OSF/1, and OpenVMS. Because of
the engineering team's persistent focus on perfor­
mance, cost, and time-to-market, all these goals for
the AlphaServer systems were surpassed.

Introducing two PC buses in the AlphaServer
multiprocessing system was an important factor in
market success and an interesting engineering chal­
lenge. Andy Russo discusses the benefits of a dual­
level 1/0 structure that contains both the widely
used EISA bus and the newer high-performance
PCI bus that connects to a 128-bit multiprocessing
system bus. He describes several innovative tech­
niques that promote efficiency in the hierarchi­
cal bus structure, the advantages offered by the
selection of bus bridges (one custom ASIC and one
standard chip set), and the VO interrupt scheme
that combines familiar technology with custom
support logic.

2

The next paper presents the significant software
work done to ensure high performance and reliabil­
ity as CPUs are added to the 2100 and 2000 multipro­
cessing systems. Jeff Denham, Paula Long, and Jim
Woodward first review the foundations of DEC
OSF/1 version 3.0, Digital's implementation of UNIX
for the AlphaServer multiprocessing systems. They
then examine issues that arise when moving an
operating system from a uniprocessor to a shared­
memory SMP platform, in particular, the design
team's efforts in Jock-based synchronization and
algorithm modifications aimed at parallelism
within the operating system kernel.

The total impact of 64-bit RISC systems and oper­
ating system support for shared memory SMP plat­
forms is demonstrated by meeting the demands
of scientific and technical applications. A tool for
accelerating application performance on all Alpha
systems is the DXML Extended Math Library.
Chandrika Karnath, Roy Ho, and Dwight Manley
briefly discuss the role of mathematical libraries
and then present an overview of DXML compo­
nents, which include both public domain BLAS and
LAPACK libraries and Digital proprietary software.
Using example routines, they explain optimization
techniques that effectively exploit the memory
hierarchy and provide substantial performance
improvements.

Another tool for op timizing scientific application
performance is KAP, a preprocessor to parallelize
DEC Fortran and DEC C programs. As authors Bob
Kuhn, Bruce Leasure, and Sanjiv Shah from Kuck &
Associates describe it, the KAP product is a super­
optimizer, performing optimizations at the source
code level that go beyond those performed by the
compilers. Their paper reviews adaptations to KAP
for SMP systems and the key design aspects, such as
data dependence analysis and the selection of loops
to parallelize from among many in a program.

The editors thank Andrei Shishov, Mid-range
AlphaServers Program Manager, for his help in
developing this issue of the Journal.

Biographies

Jeffrey M. Denham A principal software engineer in the UNIX Software
Group, Jeffrey Denham is a contributor to the DEC OSF/1 version 3.0 symmetric
multiprocessing effort. Prior to this, he helped add POSIX.1 b features to the DEC
OSF/1 operating system and worked on the VAXELN real-time kernel. Jeff came to
Digital in 1986 from Raytheon Corporation. He holds a B.A. (1979) from Hiram
College, an M.A. (1980) from Tufts University, both in English, and an M.S. (1985)
in Technical Communication from Rensselaer Polytechnic Institute.

Fidehna M. Hayes As an engineering manager in the Server Group, Fidelma
Hayes led the development of the AlphaServer 2100 and AlphaServer 2000 sys­
tems. Prior to this work, she led the design of the DECsystem 5100. She has con­
tributed as a member of the development team for several projects, including
the DECsystem 5800 CPU, the PRISM system design, and the MicroVAX 3100.
Fidelma joined Digital in 1984 after receiving a bachelor's degree in electrical
engineering from University College Cork, Ireland. She is currently working
toward a master's degree in computer science at Boston University.

Roy Ho As a principal software engineer in Digital's High Performance
Computing Group, Roy Ho developed the signal-processing routines used in
DXML. Prior to this work, he was a member of the High Performance Computing
Technology Group. There he designed the clock distribution system for the VAX
fault-tolerant system and the delay estimation software package for the VAX
9000 system boards. Roy has B.S. (1985) and M.S. (1987) degrees in electrical engi­
neering from Rensselaer Polytechnic Institute. He joined Digital in 1987.

Chandrika Karnath Chandrika Karnath is a member of the Applied Computa­
tional Mathematics Group. She has designed and implemented the sparse linear
solver packages that are included in DXML. She has also optimized customer
benchmarks for Alpha systems. Chandrika holds a Bachelor of Technology in
electrical engineering (1981) from the Indian Institute of Technology, an M.S.
in computer science (1984) and a Ph.D. in computer science (1986), both from
the University of Illinois at Urbana-Champaign. She has published several papers
on numerical algorithms for parallel computers.

I

3

Biographies

4

-----·------- -----------

Robert H. Kuhn Robert Kuhn joined Kuck & Associates as the Director of
Products in 1992. His functions are to formulate technical business strategy and
to manage product deliveries. From 1987 to 1992, he worked at Alliant Computer
Systems, where he managed compiler development and application software
for parallel processing. Bob received his Ph.D. in computer science from
the University of Illinois at Champaign-Urbana in 1980. He is the author of
several technical publications and has participated in organizing various techni­
cal conferences.

Bruce Leasure Bruce Leasure, one of three founders of Kuck & Associates in
1979, serves as Vice President of Technology and is the chief scientist for the
company. As a charter member and executive director of the Parallel Computing
Forum (PCF), a standards-setting consortium, he was a leader in efforts to stan­
dardize basic forms of parallelism. The PCF subsequently became the ANSI X3H5
committee for Parallel Program Constructs for High-level Languages, which he
chaired. Bruce received B.S. and M.S. degrees in computer science from the
University of Illinois at Champaign-Urbana.

Paula Long Since joining Digital in 1986, Paula Long has contributed to vari­
ous operating system projects. Presently a principal software engineer with the
UNIX Software Group, she leads the development of symmetric multiprocessing
(SMP) capabilities for the DEC OSF/1 operating system. In previous positions, she
led the DEC OSF/1 real-time and DECWindows on VAXELN projects. Paula received
a B.s.c.s. from Westfield State College in 1983.

Dwight P. Manley Dwight Manley is a consulting software engineer in the
Applied Computational Mathematics Group. He joined the DXML Group in 1989
and continues to support and enhance the DXML and KAPF products. Since joining
Digital in 1979, he has worked on system measurement and modeling projects
and was responsible for all performance modeling of the VAX 9000 CPU design.
He is listed as a coinventor on 11 patents and as a coauthor of a paper on matrix
computation theory. Dwight has a B.S. in mathematics from the University of
Massachusetts and an M.S. in operations research from Northeastern University.

Andrew P. Russo Andy Russo is a principal hardware engineer in the Alpha
Server Group. Since joining Digital in 1983, Andy has been a project leader for
several internal organizations, including the Mid-range 1/0 Options Group, the
Fault Tolerant Group, and the Alpha Server Group. While at Digital, Andy
has contributed to the architecture and design of high-performance ASICs and
modules to provide a variety of end-product requirements. Andy holds several
patents and has authored two papers. He received a B.S. in computer engineer­
ing from Boston University.

Sanjiv M. Shah Sanjiv Shah received a B.S. in computer science and mathe­
matics (1986) and an M.S. in computer science and engineering (1988) from the
University of Michigan. In 1988, he joined Kuck & Associates' KAP development
group as a research programmer. He has since been involved in researching and
developing the KAP Fortran and C products and managing the KAP development
group. Currently, Sanjiv leads the research and development for parallel KAP
performance.

Jaines A. Woodward Principal software engineer James Woodward is a mem­
ber of the UNIX Software Group. He is responsible for DEC OSF/1 symmetric
multiprocessing (SMP) processor scheduling and base kernel support. In previ­
ous work, Jim led the ULTRIX SMP project and the VAX 8200, VAX 8800, and VAX

6000 ULTRIX operating system ports. He also wrote microcode for the VAX 8200
systems as a member of the Semiconductor Engineering Group. Jim joined
Digital in 1981 after receiving a B.S.E.E. from the University of Michigan.

I

5

I

6

Foreword

Steve Hohnes
Engineering Group
Manager, Server
Platform Development,
and Director, Office
Server Product Line

The engineering developments described in this
issue represent the second of many planned gener­
ations of products that will be designed to fulfi ll
Digital's Alpha vision. That vision is (a) to make
Alpha systems open, and (b) to deliver a rich set of
Alpha system products that lead the market both
in performance and price/performance. It is heart­
ening to see the vision being realized. It is yet more
heartening to see it unfolding simultaneously with
appreciable improvements in Digital's business
practices. These combined events have already
resulted in substantial market acceptance of
Digital's AlphaServer products.

The particular set of papers in this issue is for­
tuitous in that it demonstrates the large number
of individuals and range of engineering skills
required to bring about an industry phenomenon
such as Alpha. Included are papers focused on the
AlphaServer multiprocessing systems, on the sym­
metric multiprocessing implementation of the DEC
OSF/1 operating system, on the optimization of
mathematical subroutine libraries for the Alpha
architecture, and on the KAP preprocessor. If one
can imagine these technical efforts multiplied
manyfold, the scope of the Alpha undertaking
will emerge.

The first generation of products based on the
Alpha architecture was introduced in 1992. The
AlphaServer 2100 system and DEC OSF/1 SMP operat­
ing system, introduced in mid-1994, together repre­
sent the beginning of the second-generation Alpha
server products. The overarching development
goal was to give our present and future customers
a compelling reason to buy. The resultant direction
was to provide very low cost multiprocessing sys­
tem capability with industry-standard open 1/0
buses, in this case PCI and EISA. To capitalize on
these attributes and to ensure that a complete solu­
tion was delivered, the engineering teams main­
tained a customer-focused perspective. It is this
perspective that has enabled the AlphaServer 2100
to achieve rapid market acceptance.

Truly, though, the most significant achievement
for the present round of Alpha server products is
this: a whole new standard of price/performance
for the industry has been reached. Computing that
in the past could have been performed only with
very expensive high-end machines or extensive dis­
tributed networks is now performed by affordable
AlphaServer systems.

This price/performance breakthrough augments
Digital's strong capabilities.

• A truly open environment that supports UNIX and
Windows NT operating systems on Alpha systems

• The ongoing strength of the world's best full­
featured commercial operating system, the
OpenVMS system

• A world-class and worldwide service and deliv­
ery organization

• An extensive and growing network of channels

• Overall, Digital's renewed and meaningful com­
mitment to be responsive to the demands and
needs of the markets

This is a very exciting and productive time in
Digital's history.

If this were the end of the story, there would be
much of which to be proud. In fact, there is more to
come across the range of AlphaGeneration prod­
ucts, including workstations, PCs, clustering, oper­
ating systems, and networking. In the server area
specifically, the recently announced AlphaServer
2000 increases the price/performance lead of the
2100 system. Processor and cache upgrades have
increased the absolute performance of the family.
Just around the corner are similar advances for
other members of Digital's server products. A little
further away are significant enhancements in our
clustering capabilities and in our server manage­
ment tools.

I
All these developments are of direct and measur­

able benefit to our customers. All are guided by
what the markets are telling us they want. The
trend and pace of these enhancements will allow
Digital to continue to deliver on the promise of the
Alpha vision.

Performance measurements, for example,
SPECmark data and transaction-per-second tests,
and competitive comparisons support the state­
ments above. However, the case is made most con­
vincingly by the early acceptance and rapid ramp
up of AlphaServer 2100 system purchases by our
customers. In the highly competitive server arena,
success is being demonstrated daily.

I would like to take this opportunity to offer
a very enthusiastic thank-you to all whose work is
represented in the accompanying technical papers,
most especially to the AlphaServer 2100 develop­
ment team whose work I have had the privilege to
observe since the team's formation. The hard work
and dedication of everyone is recognized, appreci­
ated, and needed for the future.

This foreword will conclude in favor of the sub­
stantive papers that detail the technical contribu­
tions made by the authors and their colleagues. It is
my expectation that readers of this issue of the
Digital Technical Journal will gain useful technical
insights. It is my hope that they will also see, as I do,
that the future of Digital computing is bright.

7

Fide/ma M. Hayes I

Design of the AlphaServer
Multiprocessor Server Systems

Digital's AJphaServer multiprocessor systems are high-performance servers that
combine multiprocessing technology with PC-style 1/0 subsystems. The system
architecture allows four processing nodes, four memory nodes (up to a maximum
of 2 GB), and two 1/0 nodes. All nodes communicate through a system bus. The
system bus was designed to support multiple generations of Alpha processor tech­
nology. The architecture can be implemented in different ways, depending on the
size of the system packaging.

The AlphaServer 2100 (large pedestal) and the
AlphaServer 2000 (small pedestal) servers from
Digital combine multiprocessing Alpha technology
with an I/0 subsystem traditionally associated with
personal computers (PCs). The I/0 subsystem in the
AlphaServer systems is based on the Peripheral
Component Interconnect (PCI) and the Extended
Industry Standard Architecture (EISA) buses. All
AlphaServer products, including the AlphaServer
2100 cabinet version, share common technology
and support at least three generations of the Alpha
processor. In addition, the servers support three
operating systems: Microsoft's Windows NT version
3.5, and Digital's DEC OSF/1 version 3.0 (and higher)
and OpenVMS version 6.1 (and higher).

The AlphaServer systems are designed to be
general-purpose servers for PC local area network
(LAN) and database applications. All models of the
system use a common multiprocessing bus inter­
connect that supports different numbers of nodes,
depending on the system configuration. The systems
share a common CPU, memory, and I/0 architecture.
The number of CPUs, the amount of memory, the
number ofI/0 slots, and the amount of internal stor­
age vary depending on the mechanical packaging.
The flexibility of the architecture allows the quick
development of new and enhanced systems.

This paper discusses the transformation of a
set of requirements into high-performance, cost­
effective product implementations. The following
section describes the evolution of the AlphaServer
design from an advanced development project into
a design project. The paper then describes the CPU
module, the multiprocessor system bus, and the
memory module. Subsequent sections discuss

8

module and silicon technology and the high­
availability features incorporated into the design.
The paper ends with a performance summary and
conclusions about the project.

Concept Development
The engineering investigations of a client-server
system originated from a business need that Digital
perceived when it introduced the first systems
to incorporate the Alpha technology in late 1992.
Among Digital's first products in the server market
were the DEC 4000 high-performance departmental
system, the DEC 3000 deskside workstation/server,
and the EISA-based Alpha PC. The lack of an explic­
itly identified, general-purpose system for the mid­
range system market generated many requests from
Digital's MicroVAX II system customers. Requests
from these customers propelled the AlphaServer
product development effort.

From the beginning of the project, two major
constraints were evident: The schedule required
a product by mid-1994, and the budget was limited.
Accordingly, the product team was required to
leverage other developments or to find newer, less
costly ways of achieving the product goals. Work
on the AlphaServer systems started as a joint effort
between an advanced development team and a
business planning team. The business team devel­
oped market profiles and a list of features without
which the system would not be competitive. The
business team followed a market-driven pricing
model. The profit expected from the system dic­
tated the product cost for the system. This cost is
referred to as "transfer cost ." The business team's
cost requirement was critical: if it could not be met,

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

Design of the AlphaServer Multiprocessor Server Systems

the project would be canceled. Furthermore, the
entry-level system was required to

I. Support at least two CPUs, with performance for
a single CPU to yield 120 SPECmarks and 100+
transactions per second (TPS) on the TPC-A
benchmark.

2. Support at least I gigabyte (GB) of memory.

3. Support multiple 1/0 buses with at least six
option slots supported on the base system.

4. Provide high-availability features such as redun­
dant power supplies, redundant array of inex­
pensive disks (RAID), "warm swap" of drives, and
clustering.

5. Provide a number of critical system connec­
tivity options, including Ethernet, fiber distrib­
uted data interface (FDDI), and synchronous
controllers.

6. Support the Windows NT, the DEC OSF/1, and the
OpenVMS operating systems.

Given these criteria, the engineering team
decided to base the development of the new server
on concepts taken from two Digital products and
combine them with the enclosures, power sup­
plies, and options commonly associated with PCs.
The DEC 4000 server is a multiprocessor system
with a Futurebus+ 1/0 subsystem; it provided
the basis for the multiprocessor bus design. 1 The
DECpc 150 PC is a uniprocessor system with an EISA
1/0 subsystem; it provided a model for designing an
1/0 subsystem capable of running the Windows NT
operating system. The engineering team chose re­
style peripherals because of their low cost.

A strategic decision was made to incorporate the
emerging PCI bus into the product in addition to
the EISA bus. Major PC vendors had expressed high
interest in its development, and they believed the
PCI bus would gain acceptance by the PC commu­
nity. The PCI bus provides a high-performance, low­
cost I/0 channel that allows connections to many
options such as small computer systems interface
(SCSI) adapters and other common PC peripherals.

After the initial design had been completed, chang­
ing market and competitive environments imposed
additional requirements on the design team.

I. The initial transfer cost goal was reduced by
approximately 13 percent.

2. Support for a maximum of four processor mod­
ules was necessary.

Digital Technical Journal Vol. 6 No. 3 Summer 1994

To meet these new requirements, the design team
had to modify the system design during the product
development phase.

System Overview
The base architecture developed for Digital's
AlphaServer multiprocessor systems allows four
processing nodes, four memory nodes (up to a max­
imum of 2 GB), and two 1/0 nodes. All nodes com­
municate through a system bus. The system bus
was designed to support multiple generations of
Alpha processor technology. The architecture can
be implemented in different ways, depending on
the size of the system packaging. It is flexible
enough to meet a variety of market needs. Two
implementations of the architecture are the
AlphaServer 2100 and the AlphaServer 2000 prod­
ucts. Figure I is a block diagram of the AlphaServer
2100 implementation of the architecture.

In the AlphaServer 2100 large pedestal server,
the system bus supports eight nodes. It is imple­
mented on a backplane that has seven slots. The
seven slots can be configured to support up to
four processors. Due to the number of slots avail­
able, the server supports only 1 GB of memory
when four processors are installed. It supports
the full 2 GB of memory with three processors
or less. The eighth node, which is the system bus­
to-PCI bridge, is resident on the backplane. This
provides a 32-bit PCI bus that operates at 33 mega­
hertz (MHz). It is referred to as the primary PCI bus
on the system.

A second 1/0 bridge can be installed in one of
the system bus slots. This option, which will be
available in 1995, will provide a 64-bit PCI bus for
the system. A 64-bit PCI is an extension of a 32-bit
PCI bus with a wider data bus. It operates at 33 MHz
and is completely interoperable with the 32-bit PCI
specification. 2 Options designed for the 32-bit
PCI bus will also work in a 64-bit PCI slot.

EISA slots are supported through a bridge on the
primary PCI bus on the system. Only one EISA bus
can be supported in the system since many of the
addresses used by EISA options are fixed.3 Support
of a single EISA bus is not perceived as an issue given
the migration from the EISA bus to the much higher
performing PCI bus. The maximum supported
bandwidth on an EISA bus is 33 megabytes per
second (MB/s) versus the maximum bandwidth on
a 32-bit PCI bus of 132 MB/s. The EISA bus is used in
the system for support of older adapters that have
not migrated to PCI.

9

AlphaServer Multiprocessing Systems

Slots 4 and 5 may be used for
two additional memory modules
if CPU 2 is not installed.

Slot 1 accommodates
either expansion 1/0
module or CPU. SERIAL

~------------------- ------- CONTROL

SLOTS:

r=l~
L.::J LJJJ

PCI BUS - 32 BITS

I ETHERNET I 8

INTERRUPT CONTROLLER r---------------1
I 8259A-2 I

: DDDDDD I ~--------------J

8242
KEYBOARD - KEYBOARD

AND MOUSE
MOUSE - CONTROLLER

TOY
CLOCK

NV RAM

FLASH
ROM

BUS

1---- -------10 TO SPEAKER

-I OPERATOR CONTROL PANEL ~ 6~P

12c
CONTROLLER
8584

12c
PARALLEL
PORT

PARALLEL

0
NATIONAL FLOPPY
PC87312
CHIP

SERIAL PORT 0
SERIAL PORT 0

Figure 1 Block Diagram of the Ai,phaServer 2100 System Architecture

The AlphaServer 2000 small pedestal system sup­
ports five nodes on the system bus. The backplane
provides four system bus slots, allowing a maxi­
mum configuration of two processor modules and
two memory modules. The system bus-to-PCI
bridge resides on the backplane and is the fifth

10

node. A system bus slot can also be used to support
the optional second 1/0 bridge.

The AlphaServer 2100 cabinet system is a rack­
mountable version of the large pedestal
AlphaServer 2100 system. The rackmountable unit
provides a highly available configuration of the

Vol. 6 No. 3 Summer 1994 Digital Tecbnical]ournal

Design of the AlphaServer Multiprocessor Server Systems

pedestal system. It incorporates two separate back­
planes. One backplane supports eight system bus
nodes that are implemented as seven system
bus slots. The eighth node (the system bus-to-PCI
bridge) resides on the backplane. The second back­
plane provides the 1/0 slots. The number and
configuration of 1/0 slots are identical to the
AlphaServer 2100 pedestal system. The rackmount
unit provides minimal storage capacity. Additional
storage is supported in the cabinet version through
StorageWorks shelves. These storage shelves can
be powered independently of the base system
unit, providing a highly available configuration.

Table I gives the specifications for the
AlphaServer 2100 and the AlphaServer 2000
pedestal systems. Information on the cabinet
version is not included because its characteristics
are similar to the AlphaServer 2100 large pedestal

Table 1 AlphaServer System Specifications

Specifications Large Pedestal
AlphaServer
2100 System

Height, inches 27.6

Width, inches 16.9

Depth, inches 31.9

Maximum DC power output, 600
watts per supply

Number of system slots 7
Number of processors supported 4

Minimum memory 32MB
Maximum memory 2GB

Embedded 1/0 controllers supported 1
Optional 1/0 controllers supported 1

32-bit PCI slots 3
64-bit PCI slots (on separate 1/0 2
controller module)*

EISA slots 8

Serial ports 2

Parallel port

Ethernet ports (AUi and 10Base-T)

SCSI II controller 1

Removable media bays 3

Internal warm-swap drive slots 16

• Future option

Dig ita l Technical Journal Vol. 6 No. 3 Summer 1994

version. All multiprocessing members of the
AlphaServer family use the same processor and
memory modules and differ only in system packag­
ing and backplane implementations. This illustrates
the flexibility of the architecture developed for the
system and decreases the development time for
new models.

CPU Module
The CPU module contains an Alpha processor, a
secondary cache, and bus interface application
specific integrated circuits (ASICs). As previously
mentioned, the system architecture allows multiple
processor generations. Multiple variations of the
processor module are available for the system, but
different variations cannot be used in the same
system. Software has timing loops that depend on
the speed of the processor and cannot guarantee

Small Pedestal Comments
AlphaServer
2000System

23.8

16.9

25.6

400 Two possible per
system in either
redundant or current
shared mode

4

2

32MB
640MB

1
1

3
2

7
2

1

Not integral Up to 18 total network
to system ports supported on

system via PCI and
EISA options

1

2

8

11

Alp haServer Multiprocessing Systems

synchronization between processors of different
speeds. The CPU modules provide a range of perfor­
mance and cost options for the system owner.

The cost-focused processor module uses the
Alpha 21064 processor operating at 190 MHz. This
chip was designed with Digital's fourth-generation
complementary metal-oxide semiconductor (CMOS)
technology. It has separate on-chip caches for
instruction and data. The instruction cache holds 8
kilobytes (KB) of memory, and the data cache holds
8 KB. The 1-MB second-level data cache is imple­
mented in 15-nanosecond (ns) static random-access
memory (SRAM) devices. It is a write-back, direct­
mapped cache. The access time to the second-level
cache is a multiple of the CPU clock cycle. The use
of 15-ns SRAMs resulted in a read-and-write cycle
time of 26.3 ns to the second-level cache. This is a
five-times multiple of the CPU cycle time. The addi­
tional 11.3 ns is needed for round-trip etch delay
and address buffer delay. The use of 12-ns SRAMs
was considered, but the read-and-write cycle time
would have to decrease to 21 ns to improve perfor­
mance. The reduction of 3 ns was not sufficient to
meet the timing requirements of the module; there­
fore , the less costly 15-ns SRAMs were used.

Higher performance processor modules are also
available for the system. These modules are based
on the Alpha 21064A processor, which was
designed using fifth-generation CMOS technology.
The Alpha 21064A processor module operates at
275 MHz. The processor has separate on-chip
instruction and data caches. The 16-KB instruction
cache is direct mapped, and the 16-KB data cache is
a 2-way, set-associative cache. The backup cache
holds 4 MB of memory. The combination of higher
processor speed, larger internal on-chip caches,
and a large second-level cache reduces the number
of accesses to main memory and processes data at
a higher rate. As a result, the performance of the
system is increased by approximately 20 percent.

Multiprocessor System Bus
The technology developed for the system bus in the
DEC 4000 departmental server provided the basis
for the multiprocessor bus designed for the
AlphaServer system.1 The system bus in the DEC
4000 product has the following features:

1. The 128-bit multiplexed address and data bus
operates at a 24-ns cycle time. The bus runs
synchronously.

2. The bus supports two CPU nodes, four memory
nodes, and a single 1/0 node.

12

3. The bus supports addressing for block transfer
only. A block is 32 bytes of data.

4. 1/0 is treated as either primary or secondary.
Primary 1/0 refers to devices that could respond
without stalling the system bus. This designation
is restricted mainly to control and status regis­
ters (CSRs) that exist on system bus nodes, e.g.,
the 1/0 bridge.

5. All 1/0 on remote buses is referred to as secondary
1/0 and is accessed via a mailbox protocol.
Mailboxes were invented to hide slow accesses
to CSRs on remote 1/0 buses.

A CSR read could potentially take 1 to 10 micro­
seconds, which is very slow relative to the proces­
sor cycle time. The bus is "nonpended;' which
means it would stall during a slow access. When a
bus stalls, all accesses to CPUs and memories have
to wait until the CSR access is complete. This could
cause data to back up and potentially overflow. To
avoid this state, either the system bus or the soft­
ware device driver has to be pended.

A mailbox is a software mechanism that accom­
plishes "device driver pending." The processor
builds a structure in main memory called the mail­
box data structure. It describes the operation to be
performed, e.g. , CSR read of a byte. The processor
then writes a pointer to this structure into a mail­
box pointer register. The 1/0 node on the system
bus reads the mailbox data structure, performs the
operation specified, and returns status and any data
to the structure in memory. The processor then
retrieves the data from this structure and the trans­
action is complete. In this way, the mailbox proto­
col allows software pending of CSR reads; it also
allows the software to pass byte information that is
not available from the Alpha 21064A processor.4,5

Changes to the System Bus
Although the DEC 4000 system bus provided many
features desirable in a multiprocessor interconnect,
it did not meet the system requirements defined
during the concept phase of the AlphaServer proj­
ect. Two major hurdles existed. One was the lack of
support for four CPUs and multiple 1/0 nodes.
A second, more important issue was the incom­
patibility of the mailbox 1/0 structure with the
Windows NT operating system.

The initial port of the Windows NT operating sys­
tem to the DECpc 150 PC assumed direct-mapped
1/0. With direct mapping the 1/0 is physically
mapped into the processor's memory map, and all

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

Design of the AlpbaServer Multiprocessor Server Systems

reads/writes to 1/0 space are handled as uncached
memory accesses. Clearly, this was incompatible
with the nonpended bus, which assumes the use of
mailboxes. Consequently, the designers studied the
advantages and disadvantages of using mailboxes
to determine if they should be supported in the
Windows NT operating system. They found that the
software overhead of manipulating the mailbox
structure made CSR accesses approximately three
times slower than direct accesses by the hardware.
Thus the CPU performing the 1/0 access waits
longer to complete. For this reason, the designers
chose not to use mailboxes.

The designers also had to ensure that the system
bus would be available for use by other processors
while the 1/0 transaction was completing. To satisfy
this requirement, they added a retry mechanism to
the system bus. The retry support was very simple
and was layered on top of existing bus signals.
A retry condition exists when the CPU initiates a
cycle to the 1/0 that cannot be completed in one
system bus transaction by the 1/0 bridge. The CPU

involved in the transaction is notified of the retry
condition. The CPU then "backs off" the multipro­
cessor bus and generates that transaction some
period of time later. Other processor modules can
access memory during the slow 1/0 transaction.
The retry procedure continues until the 1/0 bridge
has the requested data. At that stage, the data is
returned to the requesting CPU.

Byte Addressing Byte granularity had been han­
dled in the mailbox data structure. After the direct­
mapped 1/0 scheme was adopted, the designers
had to overcome the lack of byte addressability in
the Alpha architecture. Therefore, the designers
participated in a collaborative effort across Digital
to define a mechanism for adding byte address­
ability in the Alpha architecture. The new scheme
required the use of the four lower available Alpha
Ad:[08:05] address bits to encode byte masks and
lower order address bits for the PCI and EISA buses.
For more details, see the paper on the AlphaServer
2100 VO subsystem in this issue.6

The designers required a redefinition of the
address map. All 1/0 devices are now memory
mapped. The Alpha 21064A processor has a 34-bit
address field that yields an address space of 16 GB.
This 16-GB address region may be subdivided into
4-GB quadrants. Each quadrant can be individually
marked as cacheable or noncacheable memory The
DEC 4000 system architecture split the 16-GB region

Digital Technical Journal Vol. 6 No. 3 Summer 1994

in half: 8 GB was allocated as cacheable memory
space and the remaining 8 GB as noncacheable
space. Memory-mapped 1/0 devices are mapped
into noncacheable space. The decision to support
multiple 1/0 buses in the new systems together with
the decision to memory map all 1/0 (i.e., no mailbox
accesses) yielded a noncacheable memory require­
ment in excess of the 8 GB allocated in the DEC 4000
system. Therefore the designers of the AlphaServer
systems changed the address map and allocated a
single quadrant (4 GB) of memory as cacheable
space and the remaining 12 GB as noncacheable.
These 12 GB are used to memory map the 1/0.

Arbitration The bus used in the DEC 4000 system
supports two CPU nodes and a single 1/0 node. To
achieve the AlphaServer product goals of multiple
1/0 bridges and multiple CPU nodes, the designers
changed the address map to accommodate CSR
space for these extra nodes and designed a new
arbiter for the system. The arbiter includes
enhanced functionality to increase the perfor­
mance of future generations of processors. Some
key features of the arbiter are listed below.

1. The arbiter is implemented as a separate chip on
all processor modules. The logic was partitioned
into a separate chip to accommodate a flexible
architecture and to allow additional arbitrating
nodes in the future . As many as four arbiters can
exist in the system. Only one arbiter is enabled in
the system. It is on the processor installed in slot
2 of the system bus.

2. 1/0 node arbitration is interleaved with CPU node
arbitration. The arbitration is round robin and
leads to an ordering scheme of CPU 0, 1/0, CPU 1,
1/0, CPU 2, 1/0, CPU 3, 1/0. This scheme attempts
to minimize 1/0 latency by ensuring many arbi­
tration slots for VO devices. Processors still have
more than adequate access to the system bus due
to the nature of 1/0 traffic (generally bursts
of data in short periods of time). On an idle
bus, the arbiter reverts to a first-come, first­
served scheme.

3. The arbiter implements an exclusive access cycle.
This allows an arbitrating node to retain the use
of the system bus for consecutive cycles. This
cycle is used by the VO bridge in response to a PCI
lock cycle. A PCI lock cycle may be generated by a
device that requires an atomic operation, which
may take multiple transactions to complete. For
example, the AlphaServer 2100 and AlphaServer

13

AlphaServer Multiprocessing Systems

2000 systems use a PCI-to-EISA bridge chip set
(Intel 82430 chip set).7 This chip set requests
a lock cycle on PCI when an EISA device requires
an atomic read-modify-write operation.

The use of atomic read-modify-write operations
is common in older 1/0 adapter designs. The 1/0

bridge on the system bus requests an exclusive
access cycle from the arbiter. When it is granted, all
buffers in the path to memory are flushed and the
device has exclusive use of the PCI and the system
bus until its transaction is completed. The use of
this mode is not recommended for new adapter
designs due to the unfair nature of its tenure on the
system bus. It was implemented in the AlphaServer
product design to support older EISA devices.

Memory Module
Main memory is accessed over the system bus either
by processors (after missing in their on-board caches)
or by 1/0 nodes performing direct memory access
(DMA) transactions. They are called commanders.

The memory controller incorporates a number of
performance-enhancing features that reduce latency
in accessing the dynamic RAM (DRAM) array. One
concept used is called a stream buffer. Stream
buffers reduce the read latency to main memory.
Reads to main memory normally require 9 to 10
cycles on the system bus, depending on the speed of
DRAMs in the array. The use of stream buffers reduces
this time to 7 cycles. The stream buffers provide a
facility to load data fetched from the DRAM array
prior to the receipt of a read request for that data.

A stream is detected by monitoring the read
addresses from each commander on the system
bus. The logic simply keeps a record of the memory
addresses of the previous eight read transactions
from each commander and compares each subse­
quent read address to see if the new address is con­
tiguous to any of the recorded addresses. If a new
address is determined to be contiguous to any of
the previous eight addresses, a new stream is
declared. As a result, one of the stream buffers
is allocated to a new stream.

A stream buffer is implemented as a four-deep,
first-in, first-out (FIFO) buffer. Each entry in the
FIFO buffer is 32 bytes, which is equivalent to the
system bus line size. Each memory module con­
tains four stream buffers that can be allocated to dif­
ferent commanders. A least recently used (LRU)
algorithm is used to allocate stream buffers. When
a new stream is detected, or an existing stream is

14

empty, the stream buffer fills from the DRAM array
by using successive addresses from the head of the
stream. After a buffer has been allocated and some
amount of data has been placed in the FIFO buffer,
"hit" logic compares incoming read addresses from
the system bus to the stream address. If a compari­
son of these two addresses is successful, read data
is delivered from the memory module without
incurring the latency of accessing the DRAM array.

An invalidation scheme is used to ensure that the
stream buffers stay coherent. Write cycle addresses
are checked to see if they coincide with a stream
buffer address. If the write address is equal to
any address currently in the stream buffer, that
entire stream buffer is declared invalid. Once it is
invalidated, it can be reallocated to the next
detected stream.

Writes to main memory complete on the system
bus in six cycles, which is achieved using write
buffers in the memory controller. The write transac­
tions are essentially "dump and run." The total write
buffering available in each memory module is 64
bytes, which is large enough to ensure that the sys­
tem bus never has to stall during a write transaction.

The implementation of the memory module dif­
fers from the AlphaServer 2100 to the AlphaServer
2000 system. Both memory modules contain the
same memory controller ASICs, but the implemen­
tation of the DRAM array is different. Due to space
constraints on the AlphaServer 2100, the DRAM
array was implemented as a flat, two-sided surface­
mount module. On the AlphaServer 2000, single
in-line memory modules (SIMMS) were used for the
DRAM array. Memory module capacities vary from
32 MB to 512 MB. The AlphaServer 2100 system pro­
vides four system bus slots that can be populated
with memory modules. The maximum supported
configuration is 2 GB with four memory modules.
This limits the maximum system configuration to
three processors since one of the processor slots
must be used as a memory slot. The AlphaServer
2000 system provides two system bus slots that
can be populated with memory. The maximum
memory supported in this system is 640 MB. This
configuration consists of one 512-MB module and
one 128-MB module. The maximum memory con­
straint is dictated by the power and cooling avail­
able within this system package. The AlphaServer
2000 still supports two processor modules when
configured with maximum memory. Figure 2
shows a block diagram of the AlphaServer 2000
memory module.

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

Design of the AlphaServer Multiprocessor Server Systems

SERIAL CONTROL BUS
,

11
> TO MEMORY MODULES AND CPU MODULE

11

SERIAL CONTROL BUS I
EE PROM

I BANK 3
EIGHT X36 SIMMs I

ft ft
I BANK 2

EIGHT X36 SIMMs I
ft ft 11

I BANK 1
EIGHT X36 SIMMs I

ft ft 11 11

I BANKO
EIGHT X36 SIMMs I

~

11111111 II •
DATA PATH DATA PATH
128 DATA ADDRESS 128 DATA
AND 12 EDC ,-., AND CONTROL i<-,--- AND12EDC

DRIVERS

-------- --- ---- --- --- ----------- ---- ---- - - - - - --- - - -,
I

I
I
I

: I EVEN SLICE I •
: MEMORY CONTROLLER ASIC I SYSTEM BUS

J ODD SLICE I
I MEMORY CONTROLLER ASIC I

I + INTERFACE + ' . I
I I ... __________

---------------~------ --------- -----------'
I CLOCK I

BUFFERS

I

I '
< "

SYSTEM BUS TO MEMORY MODULE, 1/0 INTERFACE, AND CPU MODULES

Figure 2 Block Diagram of the AlphaServer 2000 Memory Module

Technology Choices
This section briefly discusses some of the decisions
and trade-offs made concerning module and silicon
technology used in the sy terns.

Module Technology
The designers partitioned the logic into modules for
two reasons: (1) Removable processor and memory
modules allow for installation of additional memory
and processors and (2) They also allow for easy
upgrade to faster processor speeds. Since modularity
adds cost to a system, the designers decided that the
1/0 subsystem (EISA and PCI logic) should reside on
the backplane. They deviated from this strategy for
the AlphaServer 2100 system design because the PCI­
to-EISA bridge was a new, unfamiliar design. Fixing
any problems with this chip set or any of the support-

Digital Technical Journal Vol. 6 No. 3 Summer 1994

ing logic would have required a backplane upgrade,
which is a time-consuming effort. For this reason,
the engineers chose to build an 1/0 module for the
AlphaServer 2100 system that contained the PCI-to­
EISA bridge; associated control logic; controllers for
mouse, keyboard, printer, and floppy drive; and the
integral Ethernet and SCSI controllers. This module
was eliminated in the AlphaServer 2000 system due
to the design stability of the 1/0 module.

The Metral connector specified by the
Futurebus+ specification was chosen for the sys­
tem bus implementation on the DEC 4000 product.
This choice was consistent with the design of the
DEC 4000 server, which is a Futurebus+ system.
Cost studies undertaken during the initial design of
the AlphaServer 2100 system showed that the cost
per pin of the Metral connector was high and added
a significant cost to the system. The team decided

15

AlphaServer Multip rocessing Systems

to investigate the use of either the PCI or the EISA
connector for the system bus, since both connec­
tors are used widely in the system. The PCI con­
nector is actually a variant of the MicroChannel
Architecture (MCA) connector used in microchan­
nel systems. SPICE simulations showed that it per­
formed better than the Metral connector on the
Future bus+. 8 The team chose a 240-pin version of
the connector for implementation because it met
the system requirements and had a low cost .

Due to the choice of the MCA connector, the
board thickness was limited to a maximum of 0.062
inches. An 8-layer layup was chosen for the module
technology. The processor modules had a require­
ment for both a 5.0-V supply and a 3.0-V supply.
The designers chose a split plane to distribute the
power rather than two separate power planes for
each voltage. Routing high-speed signals across the
split was minimized to reduce any emissions that
might arise from using a split plane. Testing later
validated this approach as emissions from this area
were minimal.

Silicon Technology
The system partitioning required the design of four
ASICs. These were the CPU bus interface ASIC, the
memory bus interface ASIC, the system arbiter, and
the system bus-to-PCI bridge. The DEC 4000 imple­
mentation of the Futurebus+ used an externally
supplied gate-array process that was customized to
meet the performance needs of the bus and the per­
formance goals of the first Alpha systems. Gate­
array costs are determined by the number of chips
that are produced on the chosen gate-array process.
The volume of chips produced by the gate-array
process for the DEC 4000 system was low because
the process was specially adjusted for that system
application. As a result, the volume of chips was
directly proportional to the volume of the DEC 4000
systems built. Therefore, the cost per component
produced by this process was relatively high.

If they had used this customized gate-array pro­
cess, the designers of the AlphaServer product
could not have met their cost goals. They needed
a more generic process that could produce chips
that many system vendors could use. This would
ensure that the line utilization was high and that
the cost per component was low. Therefore, they
changed the technology to one that is standard in
the industry. Gate-array process technology had
evolved since the DEC 4000 design, and a standard
technology that was capable of meeting the system

16

timing requirements was available. Extensive SPICE
simulations verified the process capability. ASICs
that were implemented with this process had no
difficulty meeting the bus timing.8

Another interesting feature of the analog design
on the AlphaServer 2100 system involves the sup­
port of 11 loads on the PCI. The PCI specification
recommends 10 loads as the "cookbook" design. 2

The system requirement on the AlphaServer 2100
was to support three PCI slots, the integral PCI­
Ethernet chip, the NCR810 (PCl-to-fast-SCSI con­
troller), and the PCl-to-EISA bridge. Each PCI
connector has been modeled to be equivalent to
two electrical loads. Taking account of the system
bus-to-PCI bridge and the additional load con­
tributed by the 1/0 module connector yielded a PCI
bus with 11 electrical loads. Extensive SPICE simu­
lations of the bus and careful routing to ensure
a short bus guaranteed that the new design would
meet the electrical specifications of the PCI bus.8

System Start-up
The design team incorporated many availability fea­
tures into the AlphaServer 2100 and AlphaServer
2000 servers. These included support of "hot-swap"
storage devices that can be removed or installed
while the system is operating, error correction code
(ECC)-protected memory, redundant power sup­
plies, and CPU recovery. Perhaps the most interest­
ing part of the design for availability was the
emphasis on ensuring that the system had enough
built-in recovery and redundancy to allow it to
remain in a usable or diagnosable state. Large sys­
tems sometimes have complicated paths in which
to access the initial start-up code, and a system fail­
ure in that path can leave the owner with no visible
failure indication. Moreover, in a multiprocessor
system with more than one CPU installed, it is
highly desirable to initialize the resident firmware
and the operating system even if all CPUs are not in
working order. The AlphaServer 2100 and 2000 sys­
tems employ two schemes to help achieve this goal.

The start-up code for the AlphaServer 2100 and
AlphaServer 2000 systems is located in flash read­
only memory (ROM), which resides on a peripheral
bus behind the PCI-to-EISA bridge. In starting up
a multiprocessing operating system, only one
processor is designated to access the start-up code
and initialize the operating system. This is referred
to as the primary processor. Accessing the start-up
code requires the processor, system bus, memory,
and most of the 1/0 subsystem to be functional.

Vol. 6 No. 3 Summer 1994 Digital Tecbnical Jour nal

Design of the AlphaServer Multiprocessor Seroer Systems

The AlphaServer systems have a number of fea­
tures that help make the start-up process more
robust. Each processor module contains a separate
maintenance processor implemented as a simple
microcontroller that connects to a serial bus on the
system. The serial bus is a two-wire bus that has
a data line and a clock line. On power-up the pro­
cessor module performs a number of diagnostic
tests and logs the results in an electrically erasable
programmable read-only memory (EEPROM) on the
module. This EEPROM resides on the serial bus. If
a CPU fails one of its power-up tests or if it has an
error logged in its EEPROM, then it is not allowed to
be the primary processor. Assume that four CPUs
are installed in the system; if only CPU O fails, then
CPU 1 is the primary processor. If CPU O and CPU 1
fail, then CPU 2 is the primary processor. If CPU 0,
CPU 1, and CPU 2 fail, then CPU 3 is the primary pro­
cessor. If all four CPUs fail, then CPU O is the primary
processor. If any one of the CPUs fails, a message is
displayed on the operator control panel to inform
the user that there is a problem. Any secondary CPU
that has failed is disabled and will not be seen by the
firmware console or the operating system. The pri­
mary processor then uses the system bus to access
the start-up code in the flash ROM.

The flash ROM may contain incorrect data. The
flash ROMs on many systems have a program
update, and errors from a power spike or surge can
be introduced into the ROM code during the update
procedure. User error is another common way to
introduce data error; for example, a user can acci­
dentally press a key while the update program is
running. Flash ROMs can also fail from intrinsic
manufacturing faults such as current leakage,
which will eventually convert a stored "1 " into a
stored "O," thus corrupting the program stored in
the flash ROMs. Many techniques in the industry
partially solve the problem of corrupted flash ROM
data. One well-known technique uses a checksum
and reports an error to the user if the data is not cor­
rect. Another technique provides a second set of
flash ROMs and a switch that the user manipulates
to transfer control to the new set in the event of
a failure. The designers studied many previously
used methods, but rejected them since they
required intervention by the user.

In the AlphaServer 2100 and the AlphaServer
2000 system design, the design team implemented
a scheme that did not require user intervention in
the event of flash ROM corruption. The system has
1 MB of flash ROM of which the first 512 KB contain

Digital Technical Journal Vol. 6 No. 3 Summer 1994

the system initialization code. This code is loaded
into main memory, and many data integrity tests are
performed. These include single and multiple bit
parity checks, various data correction code check­
ing, and a checksum calculation. The processor
detects an error if the checksum calculation fails,
i.e., if the calculated value is not equal to the stored
value. The processor then writes a value to a regis­
ter on the 1/0 module, which automatically changes
the address pointing to the flash ROM to a second
bank of flash ROM. This combination of hardware
and software support provides a way for the
AlphaServer 2100 system user to overcome any
flash ROM corruption.

Design Considerations for the
AlphaServer 2000 System
The design of the AlphaServer 2000 small pedestal
system followed the AlphaServer 2100 system.
Market pressures dictated the need for a smaller
system with a lower entry-level cost. The introduc­
tion of the smaller server was scheduled to coin­
cide with the release of the Windows NT version 3.5
operating system.

An examination of the AlphaServer 2100 develop­
ment schedule revealed the following interesting
points: (1) System power on occurred nine months
after the team was formed; (2) Initial system ship­
ments occurred eight months later; (3) The eight­
month time period was spent mainly in porting and
qualifying operating system software.

Based on these facts, the system designers
believed that the key to reducing the time-to-market
of the AlphaServer 2000 system was to eliminate the
dependency on synchronizing the design schedule
with an operating system release. Consequently, the
new system could not require any software changes
at the operating system level. Any changes would
have to be transparent to software. To achieve this,
the designers took advantage of a new feature in the
DEC OSF/1 and the OpenVMS operating systems
called dynamic system recognition (DSR).

A DSR machine is defined as a machine that
requires no new software development. Operat­
ing systems, however, require licensing; this
information is dependent upon the system model
number. There are two components to building
a DSR machine.

1. A programmer's view of the machine must be a
subset of an already supported machine. In the
case of the AlphaServer 2000, the designers

17

AlphaServer Multiprocessing Systems

decided to make it a subset of the AlphaServer
2100. A clear understanding of how the operat­
ing systems initialized the AlphaServer 2100 sys­
tem was critical to understanding what changes
could be made. A joint team of hardware and
software engineers examined various pieces of
the code to identify the areas of the system
design that could be changed. Investigations
revealed that the system bus configuration code
for the AlphaServer 2100 is somewhat generic.
It assumes a maximum of eight nodes, which is
the AlphaServer 2100 implementation. The 1/0
node to the primary PCI bus is expected to be
present. The presence of additional processors
and memories is detected by reading the CSR
space of each module. A module that is present
gives a positive acknowledgment. The design
team could therefore reduce the number of sys­
tem bus slots from seven to four. This had no
effect on the software since nonexistent slots
would merely be recognized as modules not
installed in the system.

The physical packaging of the AlphaServer 2000
also dictated that the number of 1/0 slots be
reduced from 11 (8 EISA and 3 PCI) to 10. Given
the industry trend toward PCI, the desirable mix
would have been 6 EISA slots and 4 PCI slots. The
PCI bus configuration code searched for as many
as 32 PCI slots, which is the number allowed
by the PCI specification. 2 After careful consid­
eration, the designers determined that the addi­
tion of another PCI slot would involve a change
in interrupt tables to accommodate the addi­
tional interrupts and vectors required by the
additional slot. Therefore, the team decided to
implement 3 PCI and 7 EISA slots.

2. The other component to building a DSR machine
is to provide the system model number to the
operating system so that licensing information
can be determined. The system resident code
that runs at start-up is referred to as the console.
The console and the operating systems commu­
nicate via a data structure known as the hard­
ware parameter block (HWRPB). The HWRPB is
used to communicate the model number to the
operating system, which uses this number to
provide the correct licensing information.

The AlphaServer 2000 system was completed in
approximately nine months. Qualification was not
dependent on the operating system schedules. By

18

building a DSR machine, the design team met the
project's time-to-market requirements.

Peiformance Summary
Table 2 summarizes the performance of the systems
described in this paper. The numbers are heavily
influenced by the processor speed, cache, memory,
and 1/0 subsystems. The systems exceeded the per­
formance goals specified at the beginning of the
project. In some cases the important benchmarks
that had been relevant in the industry changed dur­
ing the course of system development. In the trans­
action processing measurement, for example, the
TPC-A benchmark was superseded by the TPC-C
benchmark.

The AlphaServer 2100 server was the price­
performance leader in the industry at the time of its
introduction in April 1994. Successive improve­
ments in processor and 1/0 subsystems should help
the AlphaServer 2100 and 2000 products maintain
that position in the industry.

Table 2 System Performance

AlphaServer
2100 4/275

SPECint92' 200.1

SPECfp92" 291.1

AIM lllt
Number of AIMs 227.5
User loads 1941.2

Est imated TPSi 850

Notes:

* Single-processor system only

t Dual-processor system only

AlphaServer
2000 4/200

131.8

161.0

1n5
1516.0

660

i TPS is an abbreviation for transactions per second. These
numbers are estimated for a quad-processor system using
OpenVMS version 6.1 running Rdb.

Conclusions
The design team exceeded all the product require­
ments set at the beginning of the AlphaServer proj­
ect. The transfer cost of the final product was 10
percent better than the goal. The reduced cost was
achieved despite the erratic price levels for DRAMS,

which were much higher in 1994 than predicted
in late 1992.

Separate cost targets were established for each
portion of the system, and each design engineer
was responsible for meeting a particular goal.

Vol. 6 No. 3 Summer 1994 Digital TechntcalJour11al

Design of the AlphaServer Multiprocessor Server Systems

Constant cost reviews ensured that variances could
be quickly addressed. The requirement to run three
operating systems quickly expanded the size and
scope of the project. The operating system devel­
opers became an integral part of the design team.
Multiple reviews and open communication between
the hardware development team and the software
groups were essential to managing this work. The
hardware team performed system-level testing on
all three operating systems. This proved invaluable
in tracking down bugs quickly and resolving them
in either hardware or software.

The project team delivered the expected perfor­
mance and functionality on schedule. Develop­
ment time was allocated for new power and
packaging subsystems (using third-party design
companies), new modules, new ASICs, new system
firmware, and porting of three operating systems.
To attain the schedule, development tasks were
frozen at the beginning of the project. The tasks
were also categorized into three classes: mandatory,
nonessential, and disposable. Consequently, engi­
neers were able to make trade-offs when required
and maintain the integrity of the product. Another
key factor to meeting the schedule was the use of
knowledge and technology developed for previous
products. This yielded many benefits: less design
time, fewer resources required, known simulation
environment, and less time to a working prototype.

Acknowledgments
Many people contributed to the success of this proj­
ect. They spent long weekends and nights working
to a schedule and a set of requirements that many
thought were unachievable. The inspired dedica­
tion of team members made this project a reality.
Although not complete, the following list credits
those who were the most deeply involved: Vince
Asbridge, Kate Baumgartner, Rachael Berman,
Jack Boucher, John Bridge, Bob Brower, Harold
Buckingham, Don Caley, Steve Campbell, Dave
Carlson, Mike Chautin, Marco Ciaffi, Doug Field,
Rich Freiss, Nitin Godiwala, Judy Gold, Paul
Goodwin, Tom Hunt, PaulJacobi, SteveJenness,Jeff
Kerrigan, Will Kerchner, Jeff Metzger, John Nerl,
Mike O'Neill, Kevin Peterson, Bryan Porter,
Ali Rafiemeyer, Lee Ridlon, Andy Russo, Stephen
Shirron, Andrei Shishov, Gene Smith, Kurt Thaller,
Frank Touserkani, Vicky Triolo, and Ralph Ware.
Special thanks also to our manufacturing team in
Massachusetts, Canada, and Scotland.

Dig ital Technical Journal Vol. 6 No. 3 Summer 1994

References and Note

1. B. Maskas, S. Shirron, and N. Warchol, "Design
and Performance of the DEC 4000 AXP Depart­
mental Server Computing Systems," Digital
Technical Journal, vol. 4, no. 4 (Special Issue,
1992): 82-99.

2. PCI Local Bus Specification, Revision 2. 0 (Hills­
boro, OR: PCI Special Interest Group, Order No.
281446-001, April 1993).

3. E. Solari, ISA and EISA, Theory and Operation
(San Diego, CA: Annabooks, 1992).

4. R. Sites, ed., Alpha Architecture Reference Man­
ual (Burlington, MA: Digital Press, Order No.
EY-L520E-DP, 1992).

5. DECchip 21064 Microprocessor Hardware Refer­
ence Manual (Maynard, MA: Digital Equipment
Corporation, Order No. EC-N0079-72, 1992).

6. A. Russo, "The AlphaServer 2100 1/0 Subsystem,"
Digital Technical]ournal, vol. 6, no. 3 (Summer
1994, this issue): 20-28.

7. 82420/82430 PCJset JSA and EISA Bridges (Santa
Clara, CA: Intel Corporation, 1993).

8. SPICE is a general-purpose circuit simulator pro­
gram developed by Lawrence Nagel and Ellis
Cohen of the Department of Electrical Engineer­
ing and Computer Sciences, University of Cali­
fornia, Berkeley.

19

The AlphaServer 2100
1/0 Subsystem

Andrew P. Russo I

The AlphaServer 2100 I/0 subsystem contains a dual-level l/0 structure that
includes the high-powered PC/ local bus and the widely used EISA bus. The PC/ bus is
connected to the server's multiprocessing system bus through the custom-designed
bridge chip. The EISA bus supports eight general-purpose EISAI/SA connectors, pr<>­
viding connections to plug-in, industry-standard options. Data rate isolation, dis­
connected transaction, and data buffer management techniques were used to
ensure bus effidency in the l/0 subsystem. Innovative engineering designs accom­
plished the task of combining Alpha CPUs and standard-system l/0 devices.

Digital's AlphaServer 2100 server combines Alpha
multiprocessing technology with an 1/0 subsystem
typically associated with personal computers
(PCs). 1 The 1/0 subsystem on the AlphaServer 2100
system contains a two-level hierarchical bus struc­
ture consisting of a high-performance primary
VO bus connected to a secondary, lower per­
formance 1/0 bus. The primary 1/0 bus is a 32-bit
peripheral component interconnect (PCI) local bus
(or simply, PCI bus).2 The PCI bus is connected
to the AlphaServer 2100 system's multiprocessing
system bus through a custom application specific
integrated circuit (ASIC) bridge chip (referred to
as the T2 bridge chip). The secondary 1/0 bus is a
32-bit Extended Industry Standard Architecture
(EISA) bus connected to the PCI bus through a
bridge chip set provided by Intel Corporation.3
Figure 1 shows the 1/0 subsystem designed for the
AlphaServer 2100 product. The 1/0 subsystem
demonstrated sufficient flexibility to become the
1/0 interface for the small pedestal AlphaServer
2000 product and the rackmountable version of the
AlphaServer 2100 server.

This paper discusses the dual-level bus hierarchy
and the several 1/0 advantages it provides. The
design considerations of the 1/0 subsystem for the
AlphaServer 2100 server are examined in the sec­
tions that follow.

1/ 0 Support for EISA and PC/ Buses
The EISA bus enables the AlphaServer 2100 system
to support a wide range of existing EISA or Industry
Standard Architecture (ISA) 1/0 peripherals.4 The
EISA bus can sustain data rates up to a theoretical

20

limit of 33 megabytes per second (MB/s) at a clock
rate of 8.25 megahertz (MHz). In the current config­
uration for the AlphaServer 2100 product, the EISA
bus supports eight general-purpose EISA/ISA con­
nectors, and the EISA bridge chip set provides
connections to various low-speed, system-standard
1/0 devices such as keyboard, mouse, and time-of­
year (TOY) clock. For most system configurations,
the AlphaServer 2100 system's EISA bus provides
enough data bandwidth to meet all data throughput
requirements. In light of the new requirements for
faster data rates, however, the EISA bus will soon
begin to run out of bus bandwidth.

To provide for more bandwidth, the AlphaServer
2100 system also contains a PCI bus as its primary
bus. With data rates four times that of the EISA bus,
the PCI bus provides a direct migration path from
the EISA bus. The 32-bit PCI bus can sustain data
rates up to a theoretical limit of 132 MB/s at a clock
rate of 33 MHz. In the AlphaServer 2100 system
configuration, the PCI bus provides connections
to three general-purpose 32-bit PCI connectors, an
Ethernet device, a SCSI device, the PCI-to-EISA
bridge chip, and the T2 bridge chip.

A close examination of the bus structure reveals
that the AlphaServer 2100 system actually contains
a three-level, hierarchical bus structure. In addition
to the PCI and EISA buses, the AlphaServer 2100 sys­
tem includes a 128-bit multiprocessing system bus,
as shown in Figure 1. Each bus is designed to adhere
to its own bus interface protocols at different data
rates. The system bus is 128 bits per 24 nanosec­
onds (ns); the PCI bus is 32 bits per 30 ns; and the
EISA bus is 32 bits per 120 ns. Each bus is required

Vol. 6 No. 3 Summer 1994 Digital 1ecbnical Journal

CPUs

11 SYSTEM BUS 128 BITS
<

11

THREE
BRIDGE
(T2 ASIC)

32-BIT
PCISLOTS

PCI BUS 11 11 32 BITS
<

11

BRIDGE
(INTEL)

EISA BUS 11 32 BITS
<

11

EIGHT
32-BIT EISA
SLOTS

MEMORY

11

SCSI
CHIP

11

11

SYSTEM
STANDARD
1/0 DEVICES

The AlphaServer 2100 //0 Subsystem

>

ETHERNET
CHIP

I~ .
1/0
SUBSYSTEM

Figure I l/0 Subsystem for the AlphaServer 2100 System

to provide a particular function to the system and
is positioned in the bus hierarchy to maximize
that efficiency. For example, the system bus is
positioned close to the CPUs and memory to maxi­
mize CPU memory access time, and the lower per­
formance 1/0 devices are placed on the EISA bus
because their timing requirements are less critical.
To maintain maximum bus efficiency on all three
buses, it is critical that each bus be able to perform
its various functions autonomously of each other.
In other words, a slower performing bus should not
affect the efficiency of a high-performance bus. The
section below discusses a few techniques that we
designed into the 1/0 subsystem to enable the buses
to work together efficiently

Using the Bus Hierarchy Efficiently
This section discusses the data rate isolation, dis­
connected transaction, data buffer management,
and data bursting techniques used to ensure bus
efficiency in the 1/0 subsystem.

Data Rate Isolation
The three-level bus hierarchy promotes data rate
isolation and concurrency for simultaneous opera­
tions on all three buses. The design of the bus
bridges helps to enable each bus to work indepen-

Digital Technical Journal Vol. 6 No. 3 Summer 1994

dently: it provides bus interfaces with extensive
data buffering that function at the same data rates
as the interfacing bus. For example, the T2 bridge
chip contains both a system bus interface and a PCI
bus interface that run synchronously to their
respective buses but are totally asynchronous to
each other. The data buffers inside the T2 bridge
chip act as a domain connector from one bus time
zone to the other and help to isolate the data rates
of the two buses.

Disconnected Transactions
Whenever possible, the bridges promote the use of
disconnected (or pended) protocols to move data
across the buses. Disconnected protocols decrease
the interdependencies between the different buses.
For example, when a CPU residing on the system
bus needs to move data to the PCI bus, the CPU does
so by sending its data onto the system bus. Here the
T2 bridge chip (see Figure 2) stores the data into
its internal data buffers at the system bus data
rate. The T2 bridge chip provides enough buffering
to store an entire CPU transaction. From the CPU's
p erspective, the transaction is completed as soon
as the T2 bridge chip accepts its data. At that point,
the T2 bridge chip must forward the data to the PCI
bus, independent of the CPU. In this way, the CPU

21

AlphaServer Multiprocessing Systems

SYSTEM BUS [:] PCIBUS
COMMANDER MASTER

SYSTEM
SYSTEM DMA READ,

PCI
BUS PCIBUS BUS, ,.

BUS BUFFER DMA WRITE, AND BUFFER
CORNER > , CORNER CONTROLLER PROGRAMMED CONTROLLER ,

128 LOGIC 32
LOGIC 1/0 BUFFERS

SYSTEM BUS [::] PCIBUS
RESPONDER TARGET

Figure 2 Block Diagram of the T2 Bridge Chip

is not required to waste bus bandwidth by waiting
for the transfer to complete to its final destination
on the PCI bus.

The T2 bridge chip implements disconnected
transactions for all CPU-to-PCI transactions and most
Per-to-memory transactions. In a similar fashion,
the PCHo-EISA bridge implements disconnected
transactions between the PCI bus and the EISA bus.

Data Buffer Management
In addition to containing temporary data buffering
to store data on its journey from bus to bus, each
bridge chip utilizes buffer management to allocate
and deallocate its internal data buffers from one
incoming data stream to another. In this way, a single
ASIC bridge design can efficiently service multiple
data streams with a relatively small amount of data
buffering and without impacting bus performance.

The T2 bridge chip contains 160 bytes of tempo­
rary data buffering divided across the three specific
bus transactions it performs. These three transac­
tions are (1) direct memory access (OMA) writes
from PCI to memory (system bus), (2) OMA reads
from memory (system bus) to PCI, and (3) pro­
grammed 1/0 (system bus) reads/writes by a CPU
from/to the PCI. The T2 bridge chip's data buffering
is organized into five 32-byte buffers. Two 32-byte
buffers each are allocated to the OMA write and
OMA read functions, and one 32-byte buffer is allo­
cated to the programmed 1/0 function. Each of
the three transaction functions contains its own
buffer management logic to determine the best use
of its available data buffering. Buffer management is
especially valuable in situations in which a PCI

22

device is reading data from memory on the sys­
tem bus. To maintain an even flow of data from
bus to bus, the buffer management inside the T2
bridge chip attempts to prefetch more read data
from memory while it is moving data onto the PCI.

Buffer management helps the bridges service bus
transactions in a way that promotes continuous
data flow that, in turn, promotes bus efficiency.

Burst Transactions
Using a bus efficiently also means utilizing as much
of the bus bandwidth as possible for "useful" data
movement. Useful data movement is defined as that
section of time when only the actual data is moving
on the bus, devoid of address or protocol cycles.
Maximizing useful data movement can be accom­
plished by sending many data beats (data per cycle)
per single transfer time. Sending multiple data
beats per single transfer is referred to as a "burst
transaction."

All three buses have the ability to perform burst
transactions. The system bus can burst as much as
32 bytes of data per transaction, and the PCI and
EISA buses can burst continuously as required.

Data bursting promotes bus efficiency and very
high data rates. Each bus bridge in the server is
required to support data bursting.

The Bus Bridges
In the previous section, we discussed certain
design techniques used to promote efficiency
within the server's hierarchical bus structure. The
section that follows describes the bus bridges in
more detail, emphasizing a few interesting features.

Vol. 6 No. 3 Summer 1994 Digital Tech11tcalJournal

The T2 Bridge Chip
The T2 bridge chip is a specially designed ASIC that
provides bridge functionality between the server's
multiprocessing system bus and the primary PCI
bus. (See Figures 1 and 2.) The T2 ASIC is a 5.0-volt
chip designed in complementary metal-oxide semi­
conductor (CMOS) technology. It is packaged in
a 299-pin ceramic pin grid array (CPGA).

As stated earlier, the T2 bridge chip contains a
128-bit system bus interface running at 24 ns and
a 32-bit PCI interface running at 30 ns. By using these
two interfaces and data buffering, the T2 bridge
chip translates bus protocols in both directions and
moves data on both buses, thereby providing the
logical system bus-to-PCI interface (bridge). In addi­
tion to the previously mentioned bridge features,
the T2 bridge chip integrates system functions such
as parity protection, error reporting, and CPU-to­
PCI address and data mapping, which is discussed
later in the section Connecting the Alpha CPU to the
PCI and EISA Buses.

The T2 bridge chip contains a sophisticated DMA
controller capable of servicing three separate PCI
masters simultaneously. The DMA controller sup­
ports different-size data bursting (e.g., single, multi­
ple, or continuous) and two kinds of DMA transfers,
direct mapped and scatter/gather mapped. Both
DMA mappings allow the T2 bridge chip to transfer
large amounts of data between the PCI bus and the
system bus, independent of the CPU.

Direct-mapped DMAs use the address generated
by the PCI to access the system bus memory directly.
Scatter/gather-mapped DMAs use the address gener­
ated by the PCI to access a table of page frame num­
bers (PFNs) in the system bus memory. By using the
PFNs from the table, the T2 bridge chip generates a
new address to access the data. To enhance the per­
formance of scatter/gather-mapped DMAs, the T2
bridge chip contains a translation look-aside buffer
(TLB) that contains eight of the most recently used
PFNs from the table. By storing the PFNs in the TLB,
the T2 bridge chip does not have to access the table
in system bus memory every time it requires a new
PFN. The TLB improves scatter/gather-mapped DMA
performance and conserves bus bandwidth. Each
entry in the TLB can be individually invalidated as
required by software.

The T2 bridge chip also contains a single VO data
mover that enables a CPU on the system bus to initi­
ate data transfers with a device on the PCI bus. The
1/0 data mover supports accesses to all the valid PCI
address spaces, including PCI 1/0 space, PCI mem-

Digital Technical Journal Vol. 6 No. 3 Summer 1994

The AlphaServer 2100 l/0 Subsystem

ory space, and PCI configuration space. The T2
bridge chip supports two 1/0 transaction types
when accessing PCI memory space: sparse-type
data transfers and dense-type data transfers. Sparse­
type transfers are low-performance operations
consisting of 8-, 16-, 24-, 32-, and 64-bit data trans­
actions. Dense-type transfers are high-performance
operations consisting of 32-bit through 32-byte data
transactions. Dense-type transfers are especially
useful when accessing 1/0 devices with large data
buffers, such as video graphics adapter (VGA) con­
trollers. A single PCI device mapped into PCI mem­
ory space can be accessed with either sparse-type
operations, dense-type operations, or both.

In addition to accessing the PCI, a CPU can access
various T2 bridge chip internal control/status regis­
ters (CSRs) for setup and status purposes. For maxi­
mum flexibility, all the T2 bridge chip's functions
are CSR programmable, allowing for a variety of
optional features. All CPU 1/0 transfers, other than
those to T2 bridge chip CSRs, are forwarded to the
PCibus.

Intel PCI-to-EISA Bridge Chip Set
The Intel PCI-to-EISA bridge chip set provides the
bridge between the PCI bus and the EISA bus.3 It inte­
grates many of the common 1/0 functions found in
today's EISA-based PCs. The chip set incorporates
the logic for a PCI interface running at a clock rate
of 30 ns and an EISA interface running at a clock
rate of 120 ns. The chip set contains a DMA con­
troller that supports direct- and scatter/gather­
mapped data transfers, with a sufficient amount of
data buffering to isolate the PCI bus from the EISA
bus. The chip set also includes PCI and EISA arbiters
and various other support control logic that pro­
vide decode for peripheral devices such as the flash
read-only memories (ROMs) containing the basic
1/0 system (BIOS) code, real-time clock, keyboard/
mouse controller, floppy controller, two serial
ports, one parallel port, and hard disk drive. In the
AlphaServer 2100 system, the PCl-to-EISA bridge
chip set resides on the standard 1/0 module, which
is discussed later in this paper.

Connecting the Alpha CPU to the PC/
and EISA Buses
In the next section, we discuss several interesting
design challenges that we encountered as we
attempted to connect PC-oriented bus structures to
a high-powered multiprocessing Alpha chassis.

23

AlphaServer Multiprocessing Systems

Address and Data Mapping
When a CPU initiates a data transfer to a device on
the PCI bus, the T2 bridge chip must first determine
the location (address) and amount of data (mask)
information for the requested transaction and then
generate the appropriate PCI bus cycle. This issue is
not straightforward because the PCI and EISA buses
both support data transfers down to the byte granu­
larity, but the Alpha CPU and the system bus provide
masking granularity only down to 32 bits of data.

To generate less than 32-bit addresses and byte­
masked data transactions on the PCI bus, the T2
bridge chip needed to implement a special decod­
ing scheme that converts an Alpha CPU-to-1/0 trans-

Table 1 CPU-to-PCI Read Size Encoding

action, as it appears on the system bus, to a cor­
rectly sized PCI transaction. Tables 1 and 2 give the
low-order Alpha address bits and Alpha 32-bit mask
fields and show how they are encoded to generate
the appropriate PCI address and data masks. By
using this encoding scheme, the Alpha CPU can per­
form read and write transactions to a PCI device
mapped in either PCI 1/0, PCI memory, or PCI
configuration space with sparse-type transfers.
(Sparse-type transfer sizes have 8-, 16-, 24-, 32-, or
64-bit data granularity.)

Another mapping problem exists when a PCI
device wants to move a byte of data (or anything
smaller than 32 bytes of data) into the system bus

Transaction EV _Addr[6:5] EV _Addr[4:3] Instructions PCI Byte PCI_AD[1 :OJ Data Returned
Size Enables to Processor,

(L) EV _Data[127:0]

8 bits 00 00 LOL 1110 00 OW_0:[07:00)

01 00 LOL 1101 01 OW_0:[015:08)

10 00 LOL 1011 10 OW _0:[023:016)

11 00 LOL 0111 11 OW_0:[031 :024)

16 bits 00 01 LOL 1100 00 OW _0:[079:064)

01 01 LOL 1001 01 OW_0:[087:072)

10 01 LOL 0011 10 OW_0:[095:080)

24 bits 00 10 LOL 1000 00 OW_ 1 :[023:00)

01 10 LOL 0001 01 OW_ 1 :[031 :08)

32 bits 00 11 LOL 0000 00 OW_ 1 :[095:064)

64 bits 11 11 LOQ 0000 00 OW_1 :[095:064)
0000 OW_1 :[0127:096)

Table 2 CPU-to-PCI Write Size Encoding

Trans- EV _Addr[6:5] EV _Addr[4:3] EV _Mask[7:0] (H) lnstruc- PCI Byte PCI_AD[1 :OJ Data Returned
action tions Enables to Processor,
Size (L) EV _Data[127:0]

8 bits 00 00 00000001 LOL 1110 00 OW_0:[07:00]

01 00 00000001 LOL 1101 01 OW _0:[015:08]

10 00 00000001 LOL 1011 10 OW _0:[023:016)

11 00 00000001 LOL 0111 11 OW_0:[031 :024)

16 bits 00 01 00000100 LOL 1100 00 OW_0:[079:064]

01 01 00000100 LOL 1001 01 OW_0:[087:072)

10 01 00000100 LDL 0011 10 OW_0:[095:080)

24 bits 00 10 00010000 LDL 1000 00 OW_ 1 :[023:00)

01 10 00010000 LOL 0001 01 OW_ 1 :[031 :08)

32 bits 00 11 01000000 LOL 0000 00 OW_1 :[095:064]

64 bits 11 11 11000000 LOQ 0000 00 OW_1 :[095:064]
0000 OW_1:(0127:096]

24 Vol. 6 No. 3 Summer 1994 Digital Technical journa l

memory. Neither the system bus nor its memory
supports byte granularity data transfers. Therefore,
the T2 bridge chip must perform a read-modify­
write operation to move less than 32 bytes of data into
the system bus memory. During the read-modify­
write operation, the T2 bridge chip first reads a full
32 bytes of data from memory at the address range
specified by the PCI device. 2 It then merges the old
data (read data) with the new data (PCI write data)
and writes the full 32 bytes back into memory.

ISA Fixed-address Mapping
We encountered a third interesting mapping prob­
lem when we decided to support certain ISA
devices with fixed 1/0 addresses in the AlphaServer
2100 system. These ISA devices (e.g., ISA local area
network [LAN] card or an ISA frame buffer) have
fixed (hardwired) memory-mapped 1/0 addresses
in the I-MB to 16-MB address range.

The ISA devices being discussed were designed
for use in the first PCs, which contained less than
1 MB of main memory. In these PCs, the 1/0 devices
had fixed access addresses above main memory in
the 1-MB to 16-MB address range. Today's PCs have
significantly more physical memory and use the
I-MB to 16-MB region as a part of main memory.
Unfortunately, these ISA devices were never
redesigned to accommodate this change. There­
fore, to support these ISA options, the PC designers
created 1/0 access gaps in main memory in the I-MB
to 16-MB address range. With this technology, an
access by a CPU in that address range is automati­
cally forwarded to the ISA device.

To remain compatible with the ISA community,
the T2 bridge chip also had to allow for a gap in
main memory at the I-MB to 16-MB address range so
that these addresses could be forwarded to the
appropriate ISA device.

BIOS Caching Compatibility
Today's Microsoft-compatible PCs provide another
performance-enhancing mechanism. We decided to
implement this function inside the T2 bridge chip
as well.

During system initialization, MS-DOS-based PCs
read several BIOS ROMs from their 1/0 space. Once
the RO Ms are read, their contents are placed in fixed
locations in main memory in the 512-kilobyte (KB)
to I-MB address range. The software then has
the ability to mark certain addresses within this
range as read cacheable, write cacheable, read
noncacheable, or write noncacheable. The basic

Digital Technical Journal Vol. 6 No. 3 Summer 1994

The AlphaServer 2100 l/0 Subsystem

intention is to mark frequently accessed sections
of code as read cacheable but write noncacheable.
In this way, read accesses "hit" in main memory (or
cache), and writes update the ROMs directly.

Interrupt Mechanism
No computer system would be complete without
providing a mechanism for an 1/0 device to send
interrupts to a CPU. The 1/0 interrupt scheme on
the AlphaServer 2100 system combines familiar
technology with custom support logic to provide
a new mechanism.

Electrical and architectural restrictions prohib­
ited the interrupt control logic from being directly
accessed by either the system bus or the PCI bus.
As a result, the interrupt control logic is physically
located on a utility bus called the XBUS. The XBUS
is an 8-bit slave ISA bus placed nearby the PCI-to-EISA
bridge chips.

The base technology of the 1/0 interrupt logic is
a cascaded sequence of Intel 8259 interrupt con­
trollers. The 8259 chip was chosen because it is a
standard, accepted, and well-known controller
used by the PC industry today. The use of the 8259
interrupt controller translated to low design risk as
well. Although the 8259 interrupt controller is not
new, its integration into a high-performance multi­
processing server, without incurring undue perfor­
mance degradation, required some novel thinking.

The integration of the 8259 interrupt controller
into the AlphaServer 2100 system presented two
considerable problems. First, the designers had
to satisfy the 8259 interface requirements in a way
that would have a minimal impact on the perfor­
mance of the interrupt-servicing CPU. The 8259
requires two consecutive special-acknowledge
cycles before it will present the interrupt vector.
To resolve this problem, we designed a set of
handshaking IACK programmable array logic (PAL)
devices. These PALs enhance the functions of the
8259 controllers as XBUS slaves. The interrupt­
servicing CPU performs only a single read to a desig­
nated address that is decoded to the XBUS. The IACK­
control PALs decode this read and then generate the
special, double-acknowledge cycles required to
access the vector. The PAL logic also deasserts
CHRDY, a ready signal to the ISA bus, so that the cycle
has ample time to proceed without causing a con­
formance error for a standard ISA slave cycle. When
the double acknowledge is complete and the vector
is guaranteed to be driven on the bus, the PALs
assert the CHRDY ready signal.

25

AlphaServer Multiprocessing Systems

The second problem involved the location of the
interrupt controller. As mentioned earlier, because
of electrical and architectural restrictions, the inter·
rupt controller was located on the XBUS near the
PCHo·EISA bridge chips. With the interrupt con·
troller located on the XBUS, an interrupt-servicing
CPU is required to perform a vector read that spans
two 1/0 bus structures. For this reason and its
potential effect on system performance, vector
reads had to be kept to a minimum, which is not
easy in a system that allows more than one CPU
to service a pending interrupt request.

Since the AlphaServer 2100 system can have as
many as four CPUs, all four CPUs can attempt to
service the same pending interrupt request at the
same time. Without special provisions, each CPU
would perform a vector read of the interrupt con·
troller only to find that the interrupt has already
been serviced by another CPU. Requiring each CPU
to perform a vector read of the interrupt controller
on the XBUS wastes system resources, especially
when each vector read spans two bus structures. Of
course, this problem could be resolved by assigning
only one CPU to service pending interrupts, but this
would negate the advantage of having multiple CPUs
in a system. To solve this problem, the T2 bridge
chip on the system bus implements special "passive­
release" logic that informs a CPU at the earliest possi­
ble time that the pending interrupt is being serviced
by another CPU. This allows the "released" CPU to
resume other, more important tasks.

The term passive release typically refers to a vec­
tor code given to an interrupt-servicing CPU during
a vector read operation. The passive-release code
informs the CPU that no more interrupts are pend·
ing. The special passive-release logic allows the T2
bridge chip to return the passive-release code to a
servicing CPU on behalf of the interrupt controller.
The T2 bridge chip performs this function to save
time and bus bandwidth.

After the designers implemented all the features
described above, they needed to address the prob·
lem of how to deal with all the slow, highly volatile,
"off-the-shelf" parts. To integrate these compo·
nents into the 1/0 subsystem, they invented the
standard 1/0 module.

The Standard 1/0 Module
As part of the development effort of the 1/0 subsys­
tem, the engineering team faced the challenge of
integrating several inexpensive, low-performance,
off-the-shelf, PC-oriented 1/0 functions (e.g., TOY

26

clock, keyboard, mouse, speaker) into a high­
performance Alpha multiprocessing system, with·
out affecting the higher performing architectural
resources. The multilevel 1/0 bus structure served
to alleviate the performance issues, but the develop­
ment of a PC-style 1/0 subsystem with off.the-shelf
components involved inherent risk and challenge.

To reduce the risks inherent with using new and
unfamiliar devices, such as the PCHo·EISA bridge
chip set, we chose to build an 1/0 module (called
the standard 1/0 module) that plugs into the
AlphaServer 2100 system backplane and contains
the PCHo·EISA bridge, associated control logic, con­
trollers for mouse, keyboard, printer, and floppy
drive as well as the integral Ethernet and SCSI con·
trollers. Without this plug-in module, fixing any
problems with the PCHO·EISA bridge chip set or
any of the supporting logic would have required
a backplane upgrade, which is a costly and time·
consuming effort.

The standard 1/0 module is relatively small, inex·
pensive both to manufacture and to modify, and
easily accessible as a field replaceable unit (FRU). As
shown in Figure 3, the standard 1/0 module con·
tains the following logic:

• PCI·tO·Ethernet controller chip

• PCHO·SCSI controller chip

• PCHo·EISA bridge chips

• Real-time clock speaker control

• 8-KB, nonvolatile, EISA-configuration, random·
access memory (RAM)

• l·MB BIOS flash ROM

• Keyboard and mouse control

• Parallel port

• FDC floppy controller

• Two serial ports

• I2C support: controller, expander, and ROM

• Intel 8259 interrupt controllers

• Ethernet station address ROM

• Reset and sysevent logic

• Fan speed monitor

• Remote fault management connector

• External PCI subarbiter

• 3.3-volt and - 5.0-volt generation

Vol. 6 No. 3 Summer 1994 Dtgttal Techntcal]ournal

PCIBUS

15-PIN
CONNECTOR

0
ETHERNET

ETHERNET
ROM
32 BYTES

DC1003
CHIP

The AlphaServer 2100 J/0 Subsystem

EISABUS

8

32

a-PINO
CONNECTOR

INTERRUPT
CONTROLLER

TO
SPEAKER

r-- --• ----1 I 8259A-2 I SCSI
NCR810
CHIP

I DODOO I ·----------' 12c
CONTROLLER
8584

12c
PARALLEL
PORT

IACK
CONTROLLER

FAN
ROTATION
MONITOR

8242
KEYBOARD -- KEYBOARD

PARALLEL

SYSTEM
RESET
GENERATION

AND MOUSE
MOUSE -- CONTROLLER

-5-V
GENERATION

3.3-V
GENERATION

SERIAL PORT Q
SERIAL PORT 0

Figure 3 The Standard J/0 Module

For the most part, all these functions were gener­
ated by using integrated, off-the-shelf components
at commodity p ricing. Solutions known to work
on other products were used as often as possible.
The flash memory resides on the EISA memory bus
and is controlled by the PCl-to-EISA bridge chip.
A simple multiplexing scheme with minimal hard­
ware enabled the server to address more locations
than the bridge chip allowed, as much as a full 1 MB
ofBIOS ROM. The National PC87312, which provides
the serial and parallel port control logic, and the
floppy disk controller reside directly on the ISA bus.
The rest of the devices are located on the XBUS (an

Digital Technical Joun1al Vol. 6 No. 3 Summer 1994

8-bit buffered slave ISA bus), with control managed
by the PCl-to-EISA bridge chips.

In addition, the common PC functions are
located at typ ical PC addresses to ease their integra­
tion and access by software. As expected, hardware
changes were required to the standard 1/0 module
during its hardware development cycle. However,
the standard VO module, which takes only minutes
to replace, provided an easy and efficient method of
integrating hardware changes into the AlphaServer
2100 system. We expect the usefulness of the stan­
dard 1/0 module to continue and hope that it will
provide an easy and inexpensive repair process.

27

AlphaServer Multiprocessing System s

Summary
The 1/0 subsystem on the AlphaServer 2100 system
contains a two-level hierarchical bus structure con­
sisting of a high-performance PCI bus connected to
a secondary EISA bus. The PCI bus is connected to
the AlphaServer 2100 system's multiprocessing sys­
tem bus through the T2 bridge chip. The secondary
1/0 bus is connected to the PCI bus through a stan­
dard bridge chip set. The 1/0 subsystem demon­
strated sufficient flexibility to become the I/0

interface for the small pedestal AlphaServer 2000
and the rackmountable version of the AlphaServer
2100 products.

Acknowledgments
The AlphaServer 2100 1/0 would not be what it is
today, without the dedicated, focused efforts of sev­
eral people. Although not complete, the following
list gives credit to those who were the most deeply
involved. Thanks to Fidelma Hayes for leading the
Sable effort; to Vicky Triolo for the Sable mother
board and her support of the T2 bridge chip effort;

28

to Rachael Berman for her unflagging support of
the standard 1/0 module; to Lee Ridlon for his much
needed early conceptual contributions; to Stephen
Shirron for driving Sable software 1/0 issues; to John
Bridge for cleaning up the second-pass T2; and to
Tom Hunt and Paul Rotker for their contributions
to the first-pass T2.

References

1. F. Hayes, "Design of the AlphaServer M ultiproces­
sor Server Systems," Digital Technical Journal,
vol. 6, no. 3 (Summer 1994, this issue): 8-19.

2. PC! Local Bus Specification, Revision 2. O (Hills­
boro, OR: PCI Special Interest Group, Order No.
281446-001, April 1993).

3. 82420/82430 PC/set ISA and EISA Bridges (Santa
Clara, CA: Intel Corporation, 1993).

4. E. Solari, ISA and EISA, Theory and Operation
(San Diego, CA: Annabooks, 1992).

Vol. 6 No. 3 Summer 1994 Digital Techntcal Journal

Jeffrey M. Denham
Paula Long

James A. Woodward

DEC OSF/1 Version 3.0 Symnietric
Multiprocessing Implenientation

The primary goal for an operating system in a symmetric multiprocessing (SMP)
implementation is to convert the additional computing power provided to the sys­
tem, as processors are added, into improved system performance without compro­
mising system quality. The DEC OSF/1 version].0 operating system uses a number
of techniques to achieve this goal. The techniques include algorithmic enhance­
ments to improve parallelism within the kernel and additional lock-based synchro­
nization to protect global system state. Synchronization primitives include spin
locks and blocking locks. An optional locking hierarchy was imposed to detect
latent symmetric multiprocessor synchronization issues. Enhancements to the ker­
nel scheduler improve cache usage by enabling soft affinity of threads to the proces­
sor on which the thread last ran; a load-balancing algorithm keeps the number of
runnable threads spread evenly across the available processors. A highly scalable
and stable SMP implementation resulted from the project.

The DEC OSF/1 operating system is a Digital product
based in part on the Open Software Foundation's
OSF/1 operating system.1 One major goal of the DEC
OSF/1 version 3.0 project was to provide a leader­
ship multiprocessing implementation of the UNIX
operating system for Alpha server systems, such as
the Digital AlphaServer 2100 product. This paper
describes the goals and development of this operat­
ing system feature for the version 3.0 release.

The DEC OSF/1 Version 3.0
Multiprocessing Project
Multiprocessing platforms like the AlphaServer
2100 product provide a cost-effective means of
increasing the computing power of a server. Addi­
tional computing capacity can be obtained at a
potentially significant cost advantage by simply
adding CPU modules to the system rather than by
adding a new system to a more loosely coupled
network-server arrangement. An effective execu­
tion of this server-scaling strategy requires signifi­
cant cooperation between the hardware and
software components of the system. The hardware
must provide symmetrical (i.e., equal) access to sys­
tem resources, such as memory and 1/0, for all pro­
cessors; the operating system software must
provide for enough parallelism in its major subsys­
tems to allow applications to take advantage of the

Digital Technical Journal Vol. 6 No. 3 Summer 1994

additional CPUs in the system. That is, the operating
system cost of multiprocessing must be kept low
enough to enable most of an additional CPU's com­
puting power to be used by applications rather
than by the operating system's efforts to synchro­
nize simultaneous access to shared memory by mul­
tiple processors.

Regarding hardware, the AlphaServer 2100 prod­
uct and the other Alpha multiprocessing platforms
provide the shared memory and symmetric access
to the system and 1/0 buses desired by the operat­
ing system designers. 2 The design allows all CPUs
to share a single copy of the operating system
in memory. The hardware also has a load-locked/
store-conditional instruction sequence, which pro­
vides both a mechanism for atomic updates to
shared memory by a single processor and an inter­
processor interrupt mechanism.

Given these hardware features, operating system
software developers have a great deal of freedom
in developing a multiprocessing strategy. The
approach used in DEC OSF/1 version 3.0 is called
symmetric multiprocessing (SMP), in which all pro­
cessors can participate fully in the execution of
operating system code. This symmetric design con­
trasts with asymmetric multiprocessing (ASMP), in
which all operating system code must be executed
on a single designated "master" processor. Such an

29

DEC OSF/1 Symmetric Multiprocessing

approach is undesirable because it provides inade­
quate utilization of additional "slave" processors
for most application mixes. By contrast, for the
DEC OSF/1 multiprocessing design, the concept of
a master processor applies only to the keeping of
the global system time and to other specialized uses
(such as supporting subsystems that are not yet
fully symmetric).

The SMP features in the DEC OSF/1 version 3.0
operating system are based on the joint work of
Carnegie Mellon University, for the Mach version
2.5 kernel, and the Open Software Foundation and
the Encore Computer Corporation, for the version
1.2 release of the OSF/1 operating system.3-6 From
this substantial technical base, the DEC OSF/1 mul­
tiprocessing project focused on achieving UNIX
leadership performance on targeted commercial
server applications, such as data servers (i.e., DBMS
and file servers) and compute servers. These appli­
cation domains tend to make heavy use of system
services. Therefore, shortcomings in the multipro­
cessing implementation become readily apparent
through the failure of these applications to gain sig­
nificant performance speedups as processors are
added to the server. The ideal benefit is, of course,
to obtain 100 percent of each additional processor
for the applications' use. In reality, a gain of 70 to 80
percent of the last CPU added is well worth the
incremental cost of the processor.

From the outset of the project, the engineering
team was empowered to enhance and augment the
OSF/1 version 1.2 code base to obtain this level of
multiprocessing performance for DEC OSF/1 ver­
sion 3.0. At the same time, it was required to main­
tain the system's stability and reliability. The team
was staffed by engineers with extensive multipro­
cessing and real-time operating system experience
inside and outside Digital. Quality assurance (Q/A)

and performance teams provided considerable
feedback as the product moved through its develop­
ment base levels.

The engineering team faced multiple technical
issues in the SMP implementation of the DEC OSF/1
operating system, including

• Analyzing concurrency and locking issues

• Adapting the base operating system for SMP

• Supporting a comprehensive lock package

• Adapting thread scheduling for SMP

• Ensuring a quality implementation

• Benchmarking progress in SMP performance

30

The remainder of this paper describes the high­
lights of the team's efforts in these areas.

Analyzing Concurrency and
Locking Issues
Moving from a uniprocessor to a shared-memory,
symmetric multiprocessing platform places new
demands on an operating system. Multiple processes
running independently on separate processors can
access kernel data structures simultaneously. This
level of true concurrency is unobtainable on uni­
processor systems, where concurrency either
derives from the asynchronous execution of inter­
rupt service routines (ISRs) or is emulated through
the interleaving of processes on a time-share basis.
In the first case, synchronization is required for
data structures accessed by both mainline kernel
code and the ISR. The technique used to achieve
synchronization is to raise the processor interrupt
priority level (IPL), i.e., system priority level (SPL) in
UNIX parlance, in the mainline code to the level
used by the competing ISR, thus blocking the inter­
rupt that invokes the ISR. In the case of the virtual
concurrency provided by process time-sharing,
synchronization is achieved by allowing only one
process to be in kernel context at a time. The kernel
protects itself by p reventing context switching
(process preemption) until an executing process
has reached a safe point, i.e., usually when it is
about to leave kernel context. Other safe points
appear when a process must voluntarily block to
await the availability of some resource. These are
the synchronization strategies employed by tradi­
tional UNIX-based operating systems.

One powerful feature of the OSF/1 kernel pro­
vides a further level of concurrency, which compli­
cates the process of synchronizing access to kernel
data; that feature is kernel-based threads. The Mach
task/thread model allows multiple threads of exe­
cution to be active within a single task (process)
address space. Therefore, whereas an unthreaded
UNIX system has to protect data shared by multiple
processes, e.g., the scheduling queues, a threaded
kernel must protect all process-level data, which is
shared by all threads in the process.

Although in many ways a traditional UNIX system
from the user's point of view, the first version of the
DEC OSF/1 operating system departed from typical
UNIX practice by providing kernel-mode preemp­
tion in its real-time version of the kernel. This
enhancement, targeted to improve the respon­
siveness of the system to real-time events, allows

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DEC OSF/ 1 Version 3. 0 Symmetric Multiprocessing Implementation

preemptive priority-based context switching
between threads to occur at any point in kernel
execution that meets a set of criteria for preemp­
tion safety. These criteria have an immediate rele­
vance and applicability to the work of adapting the
OSF/1 uniprocessor code to a multiprocessing envi­
ronment. In the following discussion of preemp­
tion safety, each criterion for safe preemption is
presented as it relates and leads to an understand­
ing of correct multiprocessing synchronization.

Real-time thread preemption can occur only
when all three of the following conditions are met:

1. The processor SPL is zero. This state indicates
that all interrupts are enabled and implies that
no code is executing in an ISR or is modifying
kernel data shared with an ISR.

On a nonpreempting uniprocessor kernel, SPL
synchronization alone is adequate to protect
shared data structures. SPL is a processorwide
rather than a systemwide characteristic. Conse­
quently, raising the SPL to interrupt level is inade­
quate protection on a multiprocessing system,
in which one processor's SPL has no effect on
another's. The classic multiprocessing solution
to this problem is to combine SPL synchroniza­
tion with mutual-exclusion spin locks to block
out other processors as well as ISRs.

2. No simple locks (spin locks) are held. This state
is represented in the Mach and OSF/1 kernel
code by a call to the simple_lock() routine. This
call signifies that the code has entered a critical
section where shared data will be modified.
On a uniprocessor, calling the simple_lock()
routine actually increments a global spin lock
count; unlocking decrements that count. If the
count is zero, then an attempt to preempt the
current process can be made. In this uniproces­
sor implementation, no actual spin locks exist in
memory, and nothing is locked in the physical
sense of a lock bit being checked for a state of
zero or one.

By contrast, on a microprocessing system, real
locking, not lock counting, is required; there­
fore, spin locks occupy real memory. On a multi­
processing system, locking a spin lock involves
testing the lock location for a value of zero and
then atomically setting the value to one before
continuing into the critical code section,
assured of exclusive access. If another processor
finds the lock bit set (i.e., nonzero), it will

Digital Technical Journal Vol. 6 No. 3 Summer 1994

repeatedly test the lock location and thus "spin"
until the lock value becomes zero when
unlocked by its previous holder. Because proces­
sors make no progress while they attempt to
obtain a spin lock, such a lock is meant to be held
for bounded, hopefully brief periods. Extensive
or unbounded accesses require the use of com­
plex locks (blocking read/write locks) by which
a thread will sleep until a locked resource
becomes available and unlocked. (Sleeping to
obtain a complex lock is by definition a preemp­
tion point.)

3. The code is not funneled to the master processor.
This state is another way by which OSF/1 kernel
code delineates a critical code section. Funnel­
ing forces code to run on a single processor des­
ignated as the master processor. Funneling
allows device drivers and entire kernel subsys­
tems that have not been adapted to a concurrent­
execution environment with simple_lock() calls
to modify kernel data safely. On a preempting
uniprocessor, funneling is represented simply
as a per-thread flag that prevents preemption
when set; no context switching is required to
cause funneling.

By contrast, on a multiprocessing system, fun­
neling to the master processor may involve an
actual context switch from the funneling
thread's current processor-an expensive form
of synchronization. Prior to DEC OSF/1 version
3.0, all UNIX process subsystem components,
including the fork(), exec(), wait(), and exit()
routines and signal logic, were not safe for
preemption and were therefore funneled. All
modifications to process data structures could
occur only on the master processor. This situa­
tion eliminated concerns about access to those
structures from another processor but at the
same time virtually eliminated the parallelism of
the process subsystem. For example, for the fork
system calls, the list of active processes in the
system (allproc) was traversed in funneled code.
Clearly, funneling this fundamental resource
introduces significant latencies into the system's
response to scheduling events. In multiprocess­
ing terms, no process-level operations can exe­
cute in parallel.

The development of the DEC OSF/1 real-time ker­
nel leveraged the existing OSF/1 SPL, locking, and
funneling constructs to implement preemption on
uniprocessor Alpha systems. This work provided

31

DEC OSF/1 Symmetric Multiprocessing

a valuable product feature and was a preview of the
effort that would be required to adapt the OSF/1
code for the DEC 2000, 4000, and 7000 multipro­
cessing platforms. Supporting separate preemptive
kernels for three versions prior to DEC OSF/1
version 3.0, combined with the developers' experi­
ence on other multiprocessing systems (including
ULTRIX version 4 and an advanced development
project using MIPS multiprocessing platforms),
uncovered the following challenges and problems
that the team had to overcome to produce a com­
petitive multiprocessing product:

• Supporting two complete sets of kernel binary
objects-base and real-time-was burdensome
for the operating system engineers and awk­
ward for third-party developers. Therefore, the
DEC OSF/1 multiprocessing product team had to
strive to ship a single, unified set of kernel bina­
ries. This set should encompass the full range
of real-time features, including preemption and
POSIX fixed-priority scheduling. For that to be
practical, the resulting multiprocessing kernel
would have to perform as well on a uniproces­
sor as the non-SMP kernel.

• Diagnosing locking problems in the preemptive
kernel was expensive in developer time. The
process required painstaking inspection of
the simple-locking source code, which is often
disguised in subsystem-specific macros. Lock­
ing or unlocking a spin lock multiple times or
not unlocking it at all (usually in code loops)
would disable preemption well beyond the end
of a critical section or enable it before the end.
A coherent locking architecture with automated
debugging facilities was needed to ship a reliable
product on time. The lock-debugging facility
present in the original OSF/1 code was probably
inadequate for the task.

• Experiments with the real-time kernel revealed
unacceptable preemption latencies, especially
in funneled code paths. This deficiency indi­
cated that, when moved to a multiprocessing
platform, the existing kernel would fail to use
additional processors effectively. That is, the
kernel would not exhibit adequate parallelism
to scale effectively. Clearly, major work was
required to significantly increase parallelism in
the kernel. This task would likely involve remov­
ing most uses of funneling, eliminating some
spin locks, and adding other spin locks to create
a finer granularity of locking.

32

Adapting the Base operating System
for Symmetric Multiprocessing
Making the leap from a preemptive uniprocessor
kernel to an effective SMP implementation, built
from a single set of kernel binaries, required con­
tributions from the OSF/1 version 1.2 and the DEC

OSF/1 version 3.0 projects. Fundamental changes
were introduced into the system to support SMP.

The basic approach planned by the SMP project
team was first to bootstrap the DEC OSF/1 version
1.3 kernel on the existing Alpha multiprocessing
platforms. This task was accomplished by funneling
all major subsystems to a single processor while sta­
bilizing the underpinnings of the multiprocessing
system (i.e., the scheduler, the virtual memory sub­
system, the virtual file system, and the hardware
support) in the new environment. This approach
allowed the team to make progress in understand­
ing the scope of the effort while analyzing the
multiprocessing requirements of each kernel sub­
system. The in-depth analysis was necessary to
identify those subsystems in the kernel that
required modifications to run safely and efficiently
under SMP. As each subsystem was confirmed to
exhibit parallelism or was made parallel, it was
unfunneled and thus freed to run on any processor.
This process was iterative. If incorrectly paral­
lelized, a subsystem will reveal itself by (1) leaving
data incorrectly unprotected and thus open for cor­
ruption and (2) developing a deadlock, i.e., a situa­
tion in which each of two threads holds a spin lock
required by the other thread and thus neither
thread can take the lock and proceed.

The efforts at parallelizing the kernel fell into
two classes of modification: lock-based synchro­
nization to ensure multiprocessing correctness and
algorithmic changes to increase the level of paral­
lelism achieved.

Lock-based Synchronization
The code base on which the DEC OSF/1 product
is built, i.e., the Open Software Foundation's OSF/1
software, provides a strong foundation for SMP. The
OSF further strengthened this foundation in OSF/1
versions 1.1 and 1.2, when it corrected multiple
SMP problems in the code base and parallelized
(and thus unfunneled) additional subsystems. As
the multiprocessing bootstrap effort continued,
the team analyzed and incorporated the OSF/1 ver­
sion 1.2 SMP improvements into DEC OSF/1 version
3.0. As strong as this starting point was, however,
some structures in the system did not receive the

Vol. 6 No. 3 Summer 1994 Digital Techntcal]ournal

DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation

appropriate level of synchronization. The team cor­
rected these problems as they were uncovered
through testing and code inspection.

The DEC OSF/1 operating system uses a combina­
tion of simple locks, complex locks, elevated SPL,

and funneling to guarantee synchronized access to
system resources and data structures. Simple locks,
SPL, and funneling were described briefly in the
earlier discussion of preemption. Complex locks,
like elevated SPL, are used in both uniprocessor and
multiprocessor environments. These locks are usu­
ally sleep locks-threads can block while they wait
for the lock-which offer additional features,
including multiple-reader/single-writer access and
recursive acquisition.

An example of the use of each synchronization
technique follows:

• A simple lock is used to protect the kernel's call­
out (timer) queue. In an SMP environment, mul­
tiple threads can update the callout queue at the
same time, as each of them adds a timer entry
to the queue. Each thread must obtain the call­
out lock before adding an entry and release the
lock when done. The callout simple lock is also
a good example of SPL synchronization under
multiprocessing because the callout queue is
scanned by the system clock ISR. Therefore,
before locking the callout lock, a thread must
raise the SPL to the clock's IPL. Otherwise, the
thread holding the callout lock at an SPL of zero
can be interrupted by the clock ISR, which will
in turn attempt to take the callout lock. The
result is a permanent deadlock.

• A complex lock protects the file system direc­
tory structure. A blocking lock is required
because the directory lock holder must perform
1/0 to update the directory, which itself can
block. Whenever blocking can occur while
a lock is held, a complex lock is required.

• Funneling is used to synchronize access to the
ISO 9660 CD-ROM file system. 7 The decision to
funnel this file system was largely due to limita­
tions in the DEC OSF/1 version 3.0 schedule ;
however, the file system is a good choice for fun­
neling because of its generally slow operation
and light usage.

To ensure adequate performance and scaling as
processors are added to the system, an SMP imple­
mentation must provide for as much parallelism
through the kernel as possible. The granularity of

Digital Technical Journal Vol. 6 No. 3 Summer 1994

locks placed in the system has a major impact on
the amount of parallelism obtained.

During multiprocessing development, locking
strategies were designed to

• Reduce the total number of locks per subsystem

• Reduce the number of locks taken per subsys­
tem operation

• Improve the level of parallelism throughout the
kernel

At times, these goals clashed: enhancing paral­
lelism usually involves adding a lock to some struc­
ture or code path. This outcome conflicts with the
goal of reducing lock counts. Consequently, in prac­
tice, the process of successfully parallelizing a sub­
system involves striking a balance between lock
reduction and the resulting increase in lock granu­
larity. Often, benchmarking different approaches is
required to fine-tune this balance.

Several general trends were uncovered during
lock analysis and tuning. In some cases locks were
removed because they were not needed; they
were the products of overzealous synchronization.
For example, a structure that is private to a thread
may require no locking at all. Moreover, a data ele­
ment that is read atomically needs no locking. An
example of lo.ck removal is the gettimeofday() sys­
tem call, which is used frequently by DBMS servers.
The system call simply reads the system time, a 64-
bit quantity, and copies it to a buffer provided by the
caller. The original OSF/1 system call, running on a
32-bit architecture, had to take a simple lock before
reading the time to guarantee a consistent value. On
the Alpha architecture, the system call can read the
entire 64-bit time value atomically. Removing the
lock resulted in a 40 percent speedup.

In other cases, analyzing how structures are used
revealed that no locking was needed. For example,
an l/0 control block called the buf structure was
being locked in several device drivers while the
block was in a state that allowed only the device
driver to access it. Removing these unnecessary
locks saved one complex and one simple locking
sequence per 1/0 operation in these drivers.

Another effective optimization involved post­
poning locking until a thread determined that it had
actual work to do. This technique was used success­
fully in a routine frequently called in a transaction
processing benchmark. The routine, which was
locking structures in anticipation of following
a rarely used code path, was modified to lock only

33

DEC OSF/1 Symmetric Multiprocessing

when the uncommon code path was needed. This
optimization significantly reduced lock overhead.

To improve parallelism across the system, the
DEC OSF/1 SMP development team modified the lock
strategies in numerous other cases.

Al,gorithm Changes
In some instances, the effective migration of a sub­
system to the multiprocessing environment
required significant reworking of its fundamental
algorithms. This section presents three examples of
this work. The first example involves the rework
of the process management subsystem; the second
example is a new technique for a thread to refer to
its own state; and the third example deals with
enhancements in translation buffer coherency or
"shootdown."

Managing Processes and Process State Early ver­
sions of the DEC OSF/1 software maintained a set of
systemwide process lists, most notably proc (static
proc structure array), allproc (active process list),
and zomproc (zombie process list). These lists tend
to be fairly long and are normally traversed sequen­
tially. Operations involving access to these lists
include process-creation time (fork()) , signal post­
ing, and process termination. The original OSF/1
code protected these process lists and the individ­
ual proc structures themselves by means of funnel­
ing. This meant that virtually every system call that
involved process state, such as exit(), wait(),
ptrace() , and sigaction(), was also forced into
a single funnel. Experience with real-time preemp­
tion indicated that this approach would exact
excessive multiprocessing costs. Although it is pos­
sible to protect these lists with locks, the develop­
ment team decided that this basic portion of the
kernel must be optimized for maximum multi­
processing performance. The OSF also recognized
the need for optimization; they addressed the prob­
lem in OSF/1 version 1.2 by adopting a redesign
of the process management developed for their
Multimax systems by Encore Computer Corpora­
tion. The DEC OSF/1 team adopted and enhanced
this design for handling process lists, process man­
agement system calls, and signal processing.

The redesign replaces the statically sized array of
proc structures with an array of smaller process
identification (PID) entry structures. Each PID entry
structure potentially points to a dynamically allo­
cated proc structure. Under this new scheme, find­
ing the proc structure associated with a user PID
has been reduced to hashing the PID value to an

34

index into the PID entry array. The process state
associated with that PID (active, zombie, or nonexis­
tent) is maintained in the PID entry structure. This
allows process structures to be allocated dynami­
cally, as needed, rather than statically at boot time,
as before. Simple locks are also added to the process
structure to allow multiple threads in the process to
perform process management system calls and sig­
nal handling concurrently. These changes allowed
process management funneling to be removed
entirely, which significantly improved the degree of
parallelism in the process management subsystem.

Accessing Current Thread State One critical design
choice in implementing SMP on the DEC OSF/1 sys­
tem concerned how to access the state of the cur­
rently running thread. This state includes the
current thread's process, task, and virtual memory
structures, and the so-called uarea, which contains
the pageable UNIX state. Access to this state, which
threads require frequently as they run in kernel
context, must have low overhead. Further, because
the DEC OSF/1 operating system supports kernel­
mode preemption, the method for accessing the
current thread's state must work even if a context
switch to another CPU occurs during the access
operation.

The original OSF/1 code used arrays indexed by
the CPU number to look up the state of a running
thread. One of these arrays was the U_ADDRESS
array, which was used to access the currently active
uarea. The U_ADDRESS array was loaded at context
switch time and accessed while the thread exe­
cuted. Before the advent of multiprocessing, the
CPU number was a compile-time constant, so
that thread-state lookup involved simply reading
a global variable to form the pointer to the data.
Adding multiprocessing support meant changing
the CPU number from a constant to the result of
the WHAMI ("Who am I?") PALcode call to get the
current CPU number. (PALcode is the operating­
system-specific privileged architecture library
that provides control over interrupts, exceptions,
context switching, etc.8)

Using such global arrays for accessing the current
thread's state presented three shortcomings:

1. The WHAM! PALcode call added a minimum over­
head of 21 machine cycles on the AlphaServer
2100 server, not including further overhead due
to cache misses or instruction stream stalls. The
multiprocessing team felt that this was too large
a performance price to pay.

Vol. 6 No. 3 Summer 1994 Digital Tech11icalJottrnal

DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation

2. Allowing multiple CPUs to write sequential
pointers caused cache thrashing and extra over­
head during context switching.

3. Indexing by CPU number was not a safe practice
when kernel-mode preemption is enabled.
A thread could switch processors in the middle
of an array access, and the wrong pointer would
be fetched. Providing additional locking to pre­
vent this had unacceptable performance impli­
cations because the operation is so common.

These problems convinced the team that a new
algorithm was required for accessing the current
thread's state.

The solution selected was modeled on the way
the OpenVMS VAX system uses the processor inter­
rupt stack pointer to derive the pointer to per-CPU
state.9 In the OSF/1 system, each thread has its own
kernel stack. By aligning this stack on a power-of­
two boundary, a simple masking of the stack
pointer yields a pointer to the per-thread data, such
as the process control block (PCB) and uthread
structure. Any data item in the per-thread area can
be accessed with the following code sequence:

lda r16, MASK # Get mask value
bic sp, r16, rO # Mask stack pointer to

point to stack base
ldq rx, OFFSET(rO) # Add offset to base

and fetch item

Accessing thread state using the kernel stack
pointer solves all three problems with CPU-number­
based indexing. First, this technique has very low
overhead; accessing the current thread's data
involves only a simple masking operation and a read
operation. Second, using the kernel stack pointer
incurs no extra overhead during context switching
because the pointer has to be loaded for other uses.
Third, because thread stack areas are pages, no
cache conflicts exist between threads running on
different processors. Finally, the data access can
be preempted at any point, and the correct pointer
is still fetched. No processor-dependent state is
used to access the current thread state .

Interprocessor Translation Lookaside Buffer
Shootdown Alpha processors employ translation
lookaside buffers (TLBs) to speed up the translation
of physical-to-virtual mappings. The TLB caches
page table entries (PTEs) that contain virtual-to­
physical address mappings and access control infor­
mation. Unlike data cache coherency, which the

Digital Technical Journal Vol. 6 No. 3 Summer 1994

hardware maintains, TLB cache coherency is a task
of the software. The DEC OSF/1 system uses an
enhanced version of the TLB shootdown algorithm
developed for the Mach kernel to maintain TLB
coherency 10 First, a modification to the original
shootdown algorithm was needed to implement
the Alpha architecture's address space numbers
(ASNs). Second, a synchronization feature of the
original algorithm was removed entirely to enhance
shootdown performance. This feature provided
synchronization for architectures in which the
hardware can modify PTEs, such as the VAX plat­
form; the added protection is unnecessary for
the Alpha architecture.

The final shootdown algorithm is as follows. The
physical map (PMAP) is the software structure that
holds the virtual-to-physical mapping information.
Each task within the system has a PMAP; operating
system mappings have a special kernel PMAP. Each
PMAP contains a list of processors currently using
the associated address space. To initiate a virtual-to­
physical translation change, a processor (the initia­
tor) first locks the PMAP to prevent any other threads
from modifying it. Next, the initiator updates the PTE
mapping in memory and flushes the local TLB. The
processor then sends an interprocessor interrupt
to all other processors (the responders) that are
currently active in the same address space. Each
responder needs to acknowledge the initiator and
invalidate its own mapping. Once all responders
are accounted for, the initiator is free to continue
with the knowledge that all TLBs are coherent on
the system. The initiator marks nonactive proces­
sors' ASNs inactive, spins while it waits for other
processors to check in, and then unlocks the PMAP.
Figure 1 shows this final TLB shootdown algorithm
as it progresses from the initiating processor to the
potential responding processors.

Developing the Lock Package
Key to meeting the performance and reliability
goals for the multiprocessing portion of the DEC
OSF/1 version 3.0 release was the development of
a lock package with the following characteristics:

• Low execution and memory overhead

• Flexible support for both uniprocessor and
multiprocessor platforms, with and without
real-time preemption

• Automated debugging facilities to detect incor­
rect locking practices at run time

35

DEC OSF/1 Symmetric Multiprocessing

Initiator.

Lock the PMAP.
Update the translation map (PTE).
Invalidate the processor TLB entry.
Send an interprocessor interrupt to all

processors that are using the PMAP.

Mark the nonactive processors' ASNs inactive.
Spin while it waits for other processors to check in.
Unlock the PMAP.

Responders:

Acknowledge the shootdown.
Invalidate the processor TLB entry.
Return from the interrupt.

Figure I Translation Lookaside Buffer Shootdown Algorithm

• Statistical facilities to track the number of locks
used, how many times a lock is taken, and how
long threads wait to obtain locks

Of course, the overall role of the lock package
is to provide a set of synchronization primitives,
that is, the simple and complex locks described in
earlier sections. To support kernel-mode thread
preemption, DEC OSF/1 version 1.0 had extended
the lock package originally delivered with OSF/1

version 1.0. Early in the DEC OSF/1 version 3.0 proj­
ect, the development team extended the package
again to optimize its performance and to add the
desired debugging and statistical features.

As previously noted, a major goal for DEC OSF/1

version 3.0 was to ship a single version of its kernel
objects, instead of the base and real-time sets of
previous releases. Therefore, simple locks would
have to be compiled into the kernel, even for ker­
nels that would run only on uniprocessor systems.
Achieving this goal required minimizing the size of
the lock structure; it would be unacceptable to
have hundreds of kilobytes (KB) of memory dedi­
cated to lock structures in systems that did not use
such structures. Further, the simple lock and
unlock invocations required by the multiprocess­
ing code would have to be present for all platforms,
which would raise serious performance issues for
uniprocessor systems. In fact, in the original OSF/1

lock package, the CPU overhead cost of compiling
in the lock code was between 1 and 20 percent.
Compute-intensive benchmarks showed the cost to
be less than 5 percent, but the cost for multiuser
benchmarks was greater than 10 percent, which
represents an unacceptable performance degrada­
tion. To meet the goal of a single set of binaries, the

36

development team had to enhance the lock package
to be configurable at boot time. That is, the package
needed to be able to tailor itself to fit the configura­
tion and real-time requirements of the platform on
which it would run.

The lock package supplied by the OSF/1 system
was further deficient in that it did not support error
checking when locks were asserted. This deficiency
left developers open to the most common tormen­
tor of concurrent programmers, i.e., deadlocks.
Without error checking, potential system hangs
caused by locks being asserted in the wrong order
could go undetected for years and be difficult to
debug. A formal locking order or hierarchy for all
locks in the system had to be established, and the
lock package needed the ability to check the hierar­
chy on each lock taken.

These needs were met by introducing the notion
of lock mode to the lock package. Developers
defined the following five modes and associated
roles:

• Mode 0: No lock operations; for production
uniprocessor systems

• Mode 1: Lock counting only to manage kernel
preemption; for production real-time unipro­
cessor systems

• Mode 2: Locking without kernel preemption;
for production multiprocessing systems

• Mode 3: Locking with kernel preemption; for
production real-time multiprocessing systems

• Mode 4: Full lock debugging with or without
preemption; for any development system

Vol. 6 No. 3 Summer 1994 Digital Tech,iical Journal

DEC OSF/1 Version J.O Symmetric Multiprocessing Implementation

The default uniprocessor lock mode is O; the mul­
tiprocessing default is lock mode 2. Both selections
favor non-real-time production systems. The sys­
tem's lock mode, however, can be selected at boot
time by a number of mechanisms. Lock modes are
implemented through a dynamic lock configura­
tion scheme that essentially iqstalls the appropriate
set of lock primitives for the selected lock mode.
Installation is realized by patching the compiled-in
function calls, such as simple_lock(), to dispatch
to the corresponding lock primitive for the selected
lock mode. This technique avoids the overhead
of dispatching indirectly to different sets of lock
primitives for each call, based on the lock mode.
The compiled-in lock function calls to the lock
package are all entry points that branch to a call­
patching routine called simple_lock_patch(). This
routine changes the calling machine instruction to
be patched out (for lock mode 0) or to branch to
the corresponding primitive in the appropriate set
of actual primitives, and then branches there (for
lock modes I through 4). Thus, the overhead for
dynamically switching between the versions of sim­
ple lock primitives occurs only once for each code
path. In the case of lock mode 0, calls to simple
lock primitives are "back patched" out. Under this
model, uniprocessor systems pay a one-time cost to
invoke the simple lock primitives, after which the
expense of executing a lock primitive is reduced to
executing a few no-op instructions where the code
for the lock call once resided.

To address memory consumption issues and to
provide better system debug capabilities, the devel­
opers reorganized the lock data structures around
the concept of the lockinfo structure. This struc­
ture is an encapsulation of the lock's ordering (hier­
archical relationship) with surrounding locks and
its minimum SPL requirement. Lock debugging
information and the lock statistics were decoupled
from the lock structures themselves. To facilitate
the expression of a lock hierarchy, the developers
introduced the concept of classes and instances.
A lock class is a grouping of locks of the same type.
For example, the process structure lock constitutes
a lock class. A lock instance is a particular lock of
a given class. For example, one process structure
simple lock is an instance of the class process struc­
ture lock. Error checking and statistics-gathering
are performed on a lock-class basis and only i.n lock
mode 4.

Decoupling the lock debugging information
from the lock itself significantly reduced the sizes

Digital Technical Journal Vol. 6 No. 3 Summer 1994

of the simple and complex lock structures to 8 and
32 bytes, respectively. Embedded in both structures
is a 16-bit index into the lockinfo structure table
for that particular lock class. The lockinfo structure
is dynamically created at system startup in lock
mode 4. All classes in the system are assigned a rela­
tive position in a single unified lock hierarchy.
A lock class's position in the lockinfo table is also
its position in the lock hierarchy; that is, locks must
be taken in the order in which they appear in the
table. Lock statistics are also maintained on a per­
class basis with separate entries for each processor.
Keeping lock statistics per processor and separat­
ing this information by cache blocks eliminates
the need to synchronize lock-primitive access to
the statistics. This design, which is illustrated in
Figure 2, prevents negative cache effects that could
result from sharing this data.

Once this powerful lock package was opera­
tional, developers analyzed the lock design of their
kernel subsystems and attempted to place the locks
used into classes in the overall system lock hierar­
chy. The position of a class depends on the order in
which its locks are taken and released in relation to
other locks in the same code path and in the sys­
tem. At times, this static lock analysis revealed prob­
lems in existing lock protocols, in which locks were
taken in varying orders at different points in
the code. Clearly, the lock protocol needed to be
reworked to produce a consistent order that could
be codified in the hierarchy. Thus, the exercise of
producing an overall lock hierarchy resulted in

LOCK INSTANCES LOCK CLASS LOCK STATISTICS

: : I~-------
~ -------

CPU1

CPUN

Figure 2 Lock Structure

37

DEC OSF/ 1 Symmetric Multiprocess ing

a significant cleanup of the original multiprocess­
ing code base. To add a new lock to the system,
a developer would have to determine the hierarchi­
cal position for the new lock class and the mini­
mum SPL at which the lock must be taken.

Running the system in lock mode 4 and exercis­
ing code paths of interest provided developers with
immediate feedback on their lock protocols. Using
the hierarchy and SPL information stored in the run­
time lockinfo table, the lock primitives aggressively
check for a variety oflocking errors, which include
the following:

• Locking a lock out of hierarchical order

• Locking a simple lock at an SPL below the
required minimum

• Locking a simple lock already held by the caller

• Unlocking an unlocked simple lock

• Unlocking a simple lock owned by another CPU

• Locking a complex lock with a simple lock held

• Locking a complex lock at interrupt level

• Sleeping with a simple lock held

• Locking or unlocking an uninitialized lock

Encountering any of these types of violation
results in a lock fault, i.e., a system bug check that
records the information required by the developer
to quickly track down the lock error.

The reduction in lock sizes and the major
enhancement of the lock package enabled the team
to realize its goal of a single set of kernel binaries.
Benchmarks that compare a pure uniprocessor
kernel and a kernel in lock mode O that are both
running on the same hardware show a less than
3 percent difference in performance, a cost consid­
ered by the team to be well worth the many advan­
tages to returning to a unified kernel. Moreover, the
debugging capabilities of the lock package with
its hierarchical scheme streamlined the process of
lock analysis and provided precise and immediate
feedback as developers adapted their subsystems to
the multiprocessing environment.

Adapting the Scheduler for
Multiprocessing
The normal scheduling behavior, i.e., policy, of
the OSF/1 system is traditional UNIX time-sharing.
The system time-slices processes based on a time
quantum and adjusts process priorities to favor
interactive jobs over compute-intensive jobs. To

38

support the POSIX real-time standard, the DEC OSF/1

system incorporates two additional fixed-priority
scheduling policies: first in, first out (POLlCY_FIFO)

and round robin (POLlCY _RR).

A time-share thread's priority degrades with CPU

usage; the more recent the thread's CPU usage,
the more its priority degrades. (Note that OSF/1

scheduling entities are threads rather than pro­
cesses.) In contrast, a fixed-priority thread never
suffers priority degradation. Instead, a POLlCY_RR

thread runs until it blocks voluntarily, is preempted
by a higher-priority thread, or exhausts a quantum
(and even then, the round robin scheduling applies
only to threads of equal priority). A POLICY _FIFO

thread has no scheduling quantum; it runs until it
blocks or is preempted. These specialized policies
are used by real-time applications and by threads
created and managed by the kernel. Examples
of these kernel threads include the swapper and
paging threads, device driver threads, and network
protocol handlers. A feature called thread binding,
or hard affinity, was added to DEC OSF/1 version 3.0.
Binding allows a user or the kernel to force a thread
to run only on a specified processor. Binding sup­
ports the funneling feature used by unparallelized
code and the bind_to_cpu() system call.

The goal of a multiprocessing operating system in
scheduling threads is to run the top N priority
threads on N processors at any given time. A simple
way to accomplish this would be to schedule
threads that are not bound to a CPU in a single, global
run queue and schedule bound threads in a run
queue local to its bound processor. When a proces­
sor reschedules, it would select the highest-priority
thread available in the local orthe global run queue.

Scheduling threads out of a global run queue is
highly effective at keeping the N highest-priority
threads running; however, two problems arise with
this approach:

1. A single run queue leads to contention between
processors that are attempting to reschedule, as
they race to lock the run queue and remove the
highest-priority thread.

2. Scheduling with a global run queue does not
take advantage of the cache state that a thread
builds on the CPU where it last ran. A thread that
migrates to a different processor must reload its
state into the new processor's cache. This can
substantially degrade performance.

To help preserve cache state and reduce wasteful
global run queue contention, the developers

Vol. 6 No. 3 Summer 1994 Digital Tecbnical Journal

DEC OSF/ I Version 3. 0 Symmetric Multiprocessing Implementation

enhanced the multiprocessing scheduler by adding
two new scheduling models: a soft -affinity sched·
uling model for time-share threads and a last·
processor-preference model for fixed-priority
threads. Under these models, each processor sched·
ules time-share and bound threads in its local run
queue, and it schedules unbound fixed-priority
threads out of a global run queue.

Fixed-priority threads scheduled from a global
run queue are able to run as soon as possible. This
behavior is required for high-priority tasks like
kernel threads and real-time applications. The last­
processor-preference model gives a fixed-priority
thread a preference for running on the processor
where it last r,m; if that processor is busy, the thread
runs on the next available processor. Each time·
share thread is softly bound to the processor on
which it last ran; that is, the thread shows an affinity
for that processor. Unlike funneling or user bind­
ing, which support hard (mandatory) affinity, soft
affinity allows a thread to run elsewhere if it is
advantageous, i.e., if such activity balances the load.
Otherwise, the softly bound thread tries to return
to the processor where it last ran and where its
recent cache state may still reside.

Under load, however, a soft affinity model used
alone can degenerate to a state where one proces·
sor builds up a large queue of threads, leaving the
other processors with little to do and thus dimin·
ishing the performance of the multiprocessing sys­
tem. To mitigate these side effects of soft affinity,
developers paired the soft affinity feature with the
ability to load-balance the runnable threads in the
system. To keep the load of time-share jobs spread
evenly across processors, the scheduler must peri·
odically load-balance the system. In addition to dis­
tributing threads evenly across the local run queues
in the system, this load-balancing activity must

• Cost no more in processing time than it saves

• Prevent excessive thread movement among
processors

• Recognize and effectively accommodate changes
in the job mix

To implement load balancing, each processor
maintains a time-share load average, i.e., the aver·
age local run queue depth over the last five sec­
onds. Each processor updates its own load average
on each system clock tick. Processors also keep
track of the time they spend handling interrupts
and running fixed-priority threads, which are not
accounted for in the local run queue depth. Taking

Digital Technical Journal Vol. 6 No. 3 Summer 1994

a processor's total potential execution time for a
scheduling period and subtracting from this time
the interrupt-processing and fixed-priority run
times yields the total time available on a processor
(processor ticks available) to run time-share threads.
In the worse case, a processor could be completely
consumed by fixed-priority threads and/or inter·
rupt processing and have no time to run time-share
threads. In this extreme case, the scheduler should
give no time-share load to that processor.

Adding the time-share load averages of all proces­
sors determines the aggregate time-share load for
the system. Similarly, summing the processor ticks
available yields the total time available on the sys­
tem for handling time-share tasks. Using this data,
the scheduler calculates the desired load for each
processor once per second, as follows:

Desired
load

Processor ticks System time-share
available X load

System ticks available

Load balancing is called for when at least one pro­
cessor is above and one is below its desired load by
a minimal amount. If this condition arises, then
those processors under their desired loads are
declared to be "out of balance." The next time an
out-of-balance processor reschedules, it will try to
take a thread from the local run queue of a proces­
sor that is above its desired load ("thread stealing").
A processor can declare itself back in balance when
its current load is above its desired load or when
there are no eligible threads to steal. Figure 3 shows
a simplified load-balancing scenario, in which a
processor below its desired load steals a thread
from a processor above its desired load.

To help preserve the cache benefits of soft affin·
ity, a thread is eligible for stealing only when it has
not run on its current processor for some config·
urable number of clock ticks. After this time has
elapsed without a thread running, the chance of it
having significant cache state remaining has dimin­
ished sufficiently that the thread is more likely to
benefit from migrating to another processor and
running immediately than from waiting longer to
run on its current processor.

To demonstrate that soft affinity with load bal­
ancing improves multiprocessing performance
through cache benefits and the elimination of run
queue contention, developers ran a simple test pro­
gram. The program, which writes 128 KB of data,
yields the processor, and then reads the same data
back, was run on a four-processor DEC 7000 system.

39

DEC OSF/1 Symmetric Multiprocessing

CPU 1 CPU 2 CPU N

5 CPU 1 IS 3 4
OUT OF

CURRENT LOAD
(NUMBER OF
THREADS)

BALANCE

4 4 ... 4 DESIRED LOAD

LOCAL LOCAL LOCAL
RUN RUN RUN
QUEUE CPU 2 QUEUE QUEUE

STEALS

ITV I
ONE THREAD

I FROM CPU 1

EN
HIGHEST PRIOR
THREAD BETWE
LOCAL RUN au
AND GLOBAL R
WINS THE PROC

EUES
UN QUEUE

ESSOR
I I

GLOBAL
RUN
QUEUE

Figure 3 Load Balancing

Table 1 shows the results of running multiple
versions of this program with and without soft affin­
ity and load balancing in operation. Performance
benefits appear only when multiple copies of the
program begin piling up in the run queues at
the 16-job level. Prior to this point, each job keeps
running on the same processor, i.e., the cache it had
just filled still had its data cached when the pro­
gram read it back- the ideal case. At the 16 -job
level, the four processors must be time-shared. The
jobs that are running with soft affinity now benefit
significantly because they continue to run on the
same processor and thus find some of their cache
state preserved from when they last ran. The sys­
tems that schedule from a global run queue provide
no such benefit. Jobs take longer to complete, since
they are likely to run on a different processor
for each time slice and find no cache state that they
can reuse.

The soft affinity and load-balancing features
improved many other multiuser benchmarks. For
example, a transaction processing benchmark
showed a 17 percent performance improvement.

Focusing on Quality
The error-checking focus of the lock package is just
one example of how the DEC OSF/1 version 3.0 proj­
ect focused on the quality and stability of the prod­
uct. Most members of the multiprocessing team
had been involved in an SMP development effort
prior to their DEC OSF/1 effort. This past experi­
ence, coupled with the difficult ies other vendors
had experienced with their own multiprocessing
implementations, reinforced the need to have a
strong quality focus in the SMP project .

Developers took multiple steps to ensure that
the SMP solution delivered in DEC OSF/1 version 3.0
would be production quality, including

Table 1 Benefits of Soft Affinity with Load Balancing (SA/LB)

Number Time with SA/LB Time without Benefit from
of Jobs (Seconds) SA/LB (Seconds) SA/LB (Percent)

1 25.9 26.0 0
4 25.9 26.0 0

16 106.5 141.9 25

40 Vol. 6 No. 3 Summer 1994 Digital TechnicalJournal

DEC OSF/ I Version 3. 0 Symmetric Multiprocessing Implementation

• Code reviews

• Lock debugging

• In-line assertion checking

• Multithreaded test suite development for SMP
qualification

The base kernel code was reviewed for multi­
processing correctness. During this review phase,
checks were made to ensure that the proper level of
synchronization was employed to protect global
data structures. Numerous defects were uncovered
during this process and corrected. Running code
with lock checking enabled provided empirical
evidence of the incremental improvements of the
multiprocessing implementation.

Beyond code reviews and lock debugging, inter­
nal consistency checks (assertions) were coded
into the kernel to verify correctness of operations
at key points. Assertion checking was enabled dur­
ing the development process to ensure that the ker­
nel was functioning correctly; it was then compiled
out for the production version of the kernel.

In parallel with the operating system develop­
ment effort, new component tests were designed
to force as much concurrency as possible through
particular code paths. The core of the test suite is
a thread-race library, which consists of a set of rou­
tines that can be used to construct multithreaded
system-call exercisers. The library provides the
ability to commence multiple test instances simul­
taneously. The individual tests are then combined
to form focused subsystem tests and systemwide
tests. These tests have been used to uncover multi­
ple race conditions in the operating system.

The UNIX development organization had a four­
processor DEC 7000 system deployed in its develop­
ment environment for more than 7 months prior
to releasing the SMP product. This system has been
extremely stable, with few complaints from the
user community. Extensive internal and external
field testing produced similar results.

Measuring Multiprocessing
Performance Outcomes
The major functionality delivered with SMP is
improved performance through application con­
currency. The goal of the SMP project was to
provide leadership performance in the areas of
compute and data servers. To gauge success in this
effort, several industry-standard benchmarks were

Digita l Technical journal Vol. 6 No. 3 Summer 1994

utilized. These benchmarks include SPECrate_lNT92,
SPECrate_FP92, and AIM Suite III.

SMP performance is measured in terms of the
incremental performance gained as processors are
added to the system. Adding processors by no means
guarantees increased system performance. Systems
that have 1/0 or memory limitations rarely benefit
from introducing additional CPUs. Systems that are
compute bound tend to have the largest potential
for gain from additional processors. Note that large,
monolithic applications tend to see little perfor­
mance improvement as processors are added
because such applications employ little concur­
rency in their designs.

Performance tuning for SMP was an iterative pro­
cess that can be characterized as follows:

I. Collect and analyze performance data.

• CPU utilization across the processors

• Lock statistics

• 1/0 rates

• Context switch rates

• Kernel profiling

2. Identify areas that require improvement.

3. Prototype changes.

4. Incorporate changes that demonstrate improve­
ment.

5. Repeat steps 1 through 4.

In reality, the process has two stages for each
benchmark. The initial phase was devoted to driv­
ing the system to become compute bound. The sec­
ond phase improved code efficiencies.

Figures 4 and 5 show that, as expected, the
SPECrate_lNT92 and SPECrate_FP92 benchmarks
scale almost linearly. Both of these benchmarks
are compute intensive and make only nominal
demands on the operating system.

AIM Suite III is a multiuser benchmark that
stresses multiple components of an operating sys­
tem, including the virtual memory system, the
scheduler, UNIX pipes, and the 1/0 subsystem.
Figure 6 shows AIM III results for one and four pro­
cessors, with a resulting 3.27 to 4 scaling factor.
This equates to a greater than 80 percent scaling
factor, a figure well within the goals for this bench­
mark at first multiprocessing release. Efforts to pro­
duce still better results are under way.

AIM Suite III scaling appears to be gated by a
single test in the AIM Suite III benchmark, i.e.,

41

DEC OSF/1 Symmetric Multiprocessing

NUMBER OF PROCESSORS

KEY:

ALPHASERVER 2100 4/200 SYSTEM

D DEC 7000 MODEL 600 SYSTEM

Note that the DEC 7000 Model 600 system has a 4-MB secondary
cache and the AlphaServer 2100 4/200 system has a 1-MB
secondary cache.

6

5

KEY:

Figure 4 SPECrate Integer Scaling for
Four-CPU Systems

4
NUMBER OF PROCESSORS

ALPHASERVER 2100 4/200 SYSTEM

D DEC 7000 MODEL 600 SYSTEM

6

Note that the DEC 7000 Model 600 system has a 4-MB secondary
cache and the AlphaServer 2100 4/200 system has a 1-MB
secondary cache.

Figure 5 SPECrate Floatingpoint Scaling for
Four-CPU Systems

directory search. The goal of this test is to create
and remove a set of files across a limited number of
directories. 10 Because these operations require
updating directory information, only one thread of
execution can perform these operations on a direc­
tory at a time. Some improvements have been
applied to mitigate this contention, but this single
test still impacts the overall scaling results.

42

f- 4
::::,
0..
I
(!)

6 3 ,..J
a:
I
f-
::?

~2

~
:::?
w
>1

~
w
a:

0

KEY:

3.27
SCALING
FACTOR

10 20 30 40 50 60 70 80 90 100

NUMBER OF AIM Ill USERS

FOUR DEC 7000 MODEL 640 CPUs

ONE DEC 7000 MODEL 640 CPU

Figure 6 AIM Suite III Scaling

Conclusion
The focus of the first release of SMP capabilities for
the DEC OSF/1 operating system was to provide
leadership SMP performance without compromis­
ing overall system quality. The project team accom­
plished this goal by carefully modifying the base
operating system to take advantage of the additional
processing power provided. The team paid particu­
lar attention to synchronization, parallel algorithms,
and error and inconsistency detection.

Work for future releases will continue to focus
on performance and quality improvements. Other
areas of investigation include features such as
processor sets, stopping and starting CPUs, and
more flexible handling of interrupts as processors
are added.

Acknowledgments
Virtually every phase of this project depended on
the teamwork and coop eration of multiple groups
with the UNIX Software Group. The authors wish
to acknowledge the tireless efforts and accomplish­
ments of that entire organization in making DEC
OSF/1 version 3.0 and SMP a reality. In particular, we
would like to acknowledge the following contribu­
tors who were involved in the SMP project from its
earliest stages: Tim Burke, Dan Christians, Scott
Cranston, Richard Flower, Heather Gray, Gerri
Harter, Tim Hoskins, Chet Juszczak, Stan Luke,
Shashi Mangalat, Joe Martin , Ron Menner, Brian
Nadeau, Ernie Petrides, Rajul Shah, Dave Stanley,
and Tony Verhulst.

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DEC OSFI I Version 3. 0 Symmetric Multiprocessing Implementation

Note and References

1. The OSF/1 operating system, based on
Carnegie Mellon University's Mach version 2.5
kernel, is developed and distributed by the
Open Software Foundation. The DEC OSF/1
operating system, based in part on the OSF/1
system, is developed and distributed by Digital
Equipment Corporation. To further clarify the
relationship between the two products, DEC
OSF/1 versions 1.0, 1.2, 1.3, 2.0, and 2.1 include
code mainly from the OSF/1 version 1.0 soft­
ware. DEC OSF/1 version 3.0 includes code
from the OSF/1 version 1.1 and 1.2 software.

2. E Hayes, "Design of the AlphaServer Multi­
processor Server Systems," Digital Technical
Journal, vol. 6, no. 3 (Summer 1994, this
issue): 8-19.

3. R. Rashid, "Threads of a New System (Mach:
A Multiprocessor Operating System)," UNIX

Review(August 1986): 37-49.

4. M. Accetta et al., "Mach: A New Kernel
Foundation for Unix Development," USENIX

Summer Proceedings (August 1986): 93-112.

Digital Technical Journal Vol. 6 No. 3 Summer 1994

5. Open Software Foundation, Design of the
OSF/1 Operating System (Englewood Cliffs,
NJ: Prentice-Hall, 1993).

6. S. Mangalat and D. Bolinger, "Parallelizing
Signal Handling and Process Management in
OSF/1," USENIX Symposium Proceedings
(November 1991): 105-122.

7. Information Processing-Volume and File
Structure of CD-ROM for Information Inter­
change, ISO 9660 (Geneva: International
Organization for Standardization, 1988).

8. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

9. R. Garnache and K. Morse, "VMS Symmetric
Multiprocessing," Digital Technical Journal,
vol. 1, no. 7 (August 1988): 57-63.

10. D. Black et al., "Translation Lookaside Buffer
Consistency: A Software Approach," Proceed­
ings of the Third International Conference
on Architectural Support for Programming
Languages and Operating Systems (1989).

43

Chandrika Karnath
Roy Ho

Dwight P. Manley

DXML: A High-performance
Scientific Subroutine Library

Mathematical subroutine libraries for science and engineering applications are an
important tool in high-performance computing. By identifying and optimizing
frequently used, numerically intensive operations, these libraries help in reducing
the cost of computation, enhancing portability, and improving productivity. The
Digital extended Math Library is a set of public domain and Digital proprietary
software that has been optimized for high performance on Alpha systems. in this
paper, DXML and the issues related to library software technology are described.
Specific examples illustrate how algorithms can be optimized to take advantage of
the architecture of Alpha systems. Modern algorithms that effectively exploit the
memory hierarchy enable DXML routines to provide substantial improvements in
performance.

The Digital extended Math Library (DXML) is a set
of mathematical subroutines, optimized for high
performance on Alpha systems. These subroutines
perform numerically intensive subtasks that occur
frequently in scientific computing. They can there­
fore be used as building blocks for the optimization
of various science and engineering applications in
industries such as chemical, aerospace, petroleum,
automotive, electronics, finance, and transportation.

In this paper, we discuss the role of mathematical
software libraries, followed by an overview of
the contents of the Digital extended Math Library.
DXML includes optimized versions of both the stan­
dard BLAS and LAPACK libraries as well as libraries
designed and developed by Digital for signal pro­
cessing and the solution of sparse linear systems
of equations. Next, we describe various aspects of
library software technology, including the design
and testing of DXML subroutines. Using key routines
as examples, we illustrate the techniques used
in the performance optimization of the library.
Finally, we present data that demonstrates the per­
formance improvement obtained through the use
ofDXML.

The Role of Math Libraries
Early mathematical libraries concentrated on sup­
plementing the functionality provided by the
Fortran compilers. In addition to routines such as
sin and exp, which were included in the run-time

44

math library, more complicated special functions,
linear algebra algorithms, and Fourier transform
algorithms were included in the software layer
between the hardware and the user application.

Then, in the early 1970s, there was a concerted
effort to produce high-quality numerical software,
with the aim of providing end users with implemen­
tations of numerical algorithms that were stable,
robust, and accurate. This led to the development
of several math libraries, with the public domain
UNPACK and EISPACK libraries for the solution of
linear and eigen systems, setting the standards for
future development of math software. 1-4

The late 1970s and early 1980s saw the availability
of advanced architectures, including vector and
parallel computers, as well as high-performance
workstations. This added another facet to the devel­
opment of math libraries, namely, the implemen­
tation of algorithms for high efficiency on an
underlying architecture.

The effort to produce mathematical software thus
became a task of building bridges between numeri­
cal analysts, who devise algorithms, computer archi­
tects, who design high-performance computer
systems, and computer users, who need efficient,
reliable software for solving their problems. Con­
sequently, these libraries embody expert knowledge
in applied mathematics, numerical analysis, data
structures, software engineering, compilers, oper­
ating systems, and computer architecture and

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DXML: A High-performance Scientific Subroutine Library

are an important programming tool in the use of
high-performance computers.

Modern superscalar RISC architectures with
floating-point pipelines, such as the Alpha, have
deep memory hierarchies. These include floating­
point registers, multiple levels of caches, and virtual
memory. The significant latency and bandwidth dif­
ferences between these memory levels imply that
numerical algorithms have to be restructured to
make effective use of the data brought into any one
level. The performance of an algorithm is also sus­
ceptible to the order in which computations are
scheduled as well as the higher cost associated with
some operations such as floating-point square-root
and division.

The architecture of the Alpha systems and the
technology of the Fortran and C compilers usually
provide an efficient computing environment with
adequate performance. However, there is often
room for improvement, especially in engineering
and science applications, where vast amounts of
data are processed and repeated operations are per­
formed on each data element. One way to achieve
these improvements is through the use of opti­
mized subroutine libraries.

The Digital eXtended Math Library is a collection
of routines that performs frequently occurring,
numerically intensive operations. By identifying
such operations and optimizing them for high per­
formance on Alpha systems, DXML provides several
benefits to the computational scientist.

• It allows definition of functions at a sufficiently
high level and therefore optimization beyond
the capabilities of the compiler.

• It makes the architecture of the systems more
transparent to the user.

• It improves productivity by providing easy
access to highly optimized, efficient code.

• It enhances the portability of user software
through the support of standard libraries and
interfaces.

• It promotes good software engineering practice
and avoids duplication of work by identifying
and optimizing common functions across sev­
eral application areas.

Overview of DXML
DXML contains almost 400 user-callable routines,
optimized for Alpha systems.s This includes both
software developed by Digital as well as the BLAS
and LAPACK libraries. Most routines are available

Digital Tecbntcal]ournal Vol. 6 No. 3 Summer 1994

in four versions: real single precision, real double
precision, complex single precision, and complex
double precision.

DXML is available on both OpenVMS and DEC
OSF/1 operating systems. Its routines can be called
from either Fortran or C, provided the difference in
array storage between these languages is taken into
account. DXML is available as a shareable library,
with a simple interface, enabling easy access to the
routines. On DEC OSF/1 systems, DXML supports the
IEEE floating-point format. On OpenVMS systems,
either the IEEE floating-point format or the VAX
F-float/G-float format can be selected.

DXML routines can be broadly categorized into
the following four areas:

• BLAS. The Basic Linear Algebra Subroutines include
the standard BLAS and Digital enhancements.

• LAPACK. The Linear Algebra PACKage includes
linear and eigen-system solvers.

• Signal processing. This includes fast Fourier
transforms (FFfs), convolution, and correlation.

• Sparse linear system solvers. These include
direct and iterative solvers.

Of these, the signal-processing library and the
sparse linear system solvers are designed, devel­
oped, and optimized by Digital. The majority of the
BLAS routines and the LAPACK library are versions of
the public domain standard that were optimized for
the Alpha architecture. By supporting the industry
standard interfaces of these libraries, DXML pro­
vides both portability of user code and high perfor­
mance of the optimized software.

We next provide a brief description of the func­
tionality provided by each subcomponent of DXML.
Further details are available in the Digital extended
Math Library Reference Manual.5

VLIB
The vector library consists of seven double­
precision routines that perform operations such as
sine, cosine, and natural logarithm, on data stored
as vectors.

BLAS 1
The Basic Linear Algebra level I subprograms per­
form low-granularity operations on vectors that
involve one or two vectors as input and return
either a vector or a scalar as output.6 Examples of
BLAS I routines include dot product, index of the
maximum element in a vector, and so on.

45

Scientific Computing Optimizations for Alpha

BLAS 1 Extensions (BLAS 1 E)
Digital has extended the functionality of the BLAS 1
routines by including 13 similar operations. These
include index of the minimum element of a vector,
sum of the elements of a vector, and so on.

BLAS 1 Sparse (BLAS 1 SJ
DXML also includes nine routines that are sparse
extensions of the BLAS 1 routines. Of these, six are
from the sparse BLAS 1 standard and three are
enhancements.7 These routines operate on two
vectors, one of which is sparse and stored in a com­
pressed form. As most of the elements in a sparse
vector are zero, both computational time and mem­
ory are reduced by storing and operating on only
the nonzeros. BLAS IS routines include construc­
tion of a sparse vector from the specified elements
of a dense vector, dot product, and so on.

BLAS2
The BLAS level 2 routines perform operations of
a h igher granularity than the level 1 routines.8 These
include matrix-vector operations such as matrix­
vector product, rank-one and rank-two updates,
and solutions of triangular systems of equations.
Various storage schemes are supported, including
general, symmetric, banded, and packed.

BLAS3
The BLAS level 3 routines perform matrix-matrix
operations, which are of a higher granularity than
the BLAS 2 operations. These routines include
matrix-matrix product, rank-k updates, solution of
triangular systems with multiple right-hand sides,
and multiplication of a matrix by a triangular matrix.
Where appropriate, these operations are defined
for matrices that may be general, symmetric, or tri­
angular. 9 The functionality of the public domain
BLAS 3 library has been enhanced by three addi­
tional routines for matrix addition, subtraction,
and transpose.

LAPA CK
DXML includes the standard Linear Algebra
PACKage, LAPACK, which supersedes the UNPACK
and EISPACK packages by extending the functional­
ity, using algorithms with higher accuracy, and
improving the performance through the use of
the optimized BLAS library. 10 LAPACK can be used
for solving many common linear algebra prob­
lems, including solution of linear systems, li near
least-squares problems, eigenvalue problems, and

46

singular value problems. Various storage schemes
are supported, including general, band, tridiagonal,
symmetric positive definite, and so on.

Signal Processing
The signal-processing subcomponent of DXML
includes FFTs, convolutions, and correlations.
A comprehensive set of Fourier transforms is
provided, including

• FFTs in one, two, and three dimensions

• FFTs in forward and inverse directions

• Multiple one-dimensional transforms

There is no limit on the number of elements being
transformed, though the performance is best when
the data length is a power of 2. Popular storage for­
mats for the input and output data are supported,
allowing for possible symmetry in the output data
and consequent reduction in the storage required.
Further efficiency is provided through the use of
the three-step FFT, which separates the process
of setting up and deallocating the internal data
structures from the actual application of the FFT.
This results in significant performance gain when
repeated application of FFTs is required.

The convolution and correlation routines in
DXML support both periodic (circular) and nonperi­
odic (linear) definition. A discrete summing tech­
nique is used for calculation. Special versions of the
routines allow control of output options such as
the range of coefficients computed, scaling of the
output, and addition of the output to an array.

All FFT, convolution, and correlation routines are
available in both single and double precision and
support both real and complex data.

Sparse Iterative Solvers
DXML includes a set of routines for the iterative solu­
tion of sparse linear systems of equations using pre­
conditioned, conjugate-gradient-like methods.11,12
A flexible user interface, based on a matrix-free for­
mulation of the solver, allows a choice among vari­
ous solvers, storage schemes, and preconditioners.
This formulation permits the user to define his or
her own preconditioner and/or storage scheme for
the matrix. It also allows the user to store the
matrix using one of the storage schemes defined
by DXML and/or use the preconditioners provided.
A driver routine provides a simple interface to the
iterative solvers when the DXML storage schemes
and preconditioners are used.

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DXML: A High-performance Scientific Subroutine Library

The different iterative methods provided are
(1) conjugate gradient, (2) least-squares conjugate
gradient, (3) biconjugate gradient, (4) conjugate­
gradient squared, and (5) generalized minimum
residual. Each method supports various applica­
tions of the preconditioner: left, right, split, and
no preconditioning.

The matrix can be stored in the symmetric diago­
nal storage scheme, the unsymmetric diagonal stor­
age scheme, or the general storage (by rows)
scheme. Three preconditioners are provided for each
storage scheme: diagonal, polynomial (Neumann),
and incomplete LU with zero diagonals added.

A choice of four stopping criteria is provided,
in addition to a user-defined stopping criterion.
The iteration process can be controlled by setting
various input parameters such as the maximum
number of iterations, the degree of polynomial pre­
conditioning, the level of output provided, and the
tolerance for convergence. These solvers are avail­
able in real double precision only.

Sparse Skyline Solvers
The sparse skyline solver library in DXML includes
a set of routines for the direct solution of a sparse
linear system of equations with the matrix stored
using the skyline storage scheme.13.I4 The following
functions are provided.

• LDU factorization, which includes options for
the evaluation of the determinant and inertia,
partial factorization, statistics on the matrix, and
options for handling small pivots.

• Solve, which includes multiple right-hand sides
and solves systems involving either the matrix or
its transpose.

• Norm evaluation, including I-norm, infinity­
norm, Frobenius norm, and the maximum abso­
lute value of the matrix.

• Condition number estimation, which includes
both the I-norm and the infinity norm.

• Iterative refinement, including the component­
wise relative backward error and the estimated
forward error bound for each solution vector.

• Simple and expert drivers.

This functionality is provided for each of the fol­
lowing storage schemes:

• For symmetric matrices:

- Profile-in storage mode

- Diagonal-out storage mode

Digital Technical Journal Vol. 6 No. 3 Summer 1994

• For unsymmetric matrices:

- Profile-in storage mode

- Diagonal-out storage mode

- Structurally symmetric profile-in storage
mode

These solvers are available in real double precision
only

Software Considerations
As with any software effort, many software engi­
neering issues were encountered during the design
and development of DXML. Some issues were spe­
cific to math libraries such as the numerical accu­
racy and stability of the routines, while others were
more general such as the design of a user interface,
testing of the software, error checking, ease of use,
and portability. We next discuss some of these key
design issues in further detail.

Designing the Interface
The first task in creating a library was to decide the
functionality, followed by the design of the inter­
face. This included both the naming of the subrou­
tines as well as the design of the parameter list. For
each subcomponent in DXML, the calling sequence
was designed to be consistent across all routines
in that subcomponent. In the case of the BLAS and
LAPACK libraries, the public domain interface was
maintained to enable portability of user code.

For the routines added by Digital, the routine
names were chosen to indicate the function being
performed as well as the precision of the data.
Furthermore, the parameter lists were chosen
to provide a simple interface, yet allow flexibility
for the sophisticated user. For example, the sparse
solvers require various real and integer parameters.
By using arrays instead of scalar variables, a more
concise interface that did not vary from routine
to routine was obtained. In addition, all solver
routines have arguments for real and integer work
arrays, even if these are not used in the code. This
not only provides a uniform interface but also acts
as a placeholder for work arrays, should they be
required in the future .

Accuracy
The numerical accuracy of the routines in DXML is
dependent on the problem size as well as the algo­
rithm used, which may vary within a routine. Since
performance optimization often changes the order
in which a computation is performed, identical
results between the DXML routines and the public

47

Scientific Computing Optimizations for Alpha

domain BLAS and LAPACK routines may not occur.
The accuracy of the results obtained is checked by
ensuring that the optimized versions of the BLAS

and LAPACK routines pass the public domain tests
to within the specified tolerance.

Error Processing
Most of the routines in DXML trap usage errors and
provide sufficient information so that the user can
identify and fix the problem. The low-level, fine­
grained computational routines, such as the BLAS

level I, do not provide this function because the
overhead of testing and error trapping would seri­
ously degrade the performance.

In the case of BLAS 2, BLAS 3, and LAPACK, the pub­
lic domain error-reporting mechanism has been
maintained. If an input argument is invalid, such as
a negative value for the order of the matrix, the rou­
tine prints out an error message and stops. If a fail­
ure occurs in the course of the algorithm, such as
a matrix being singular to working precision, an
error flag is set and control is returned to the call­
ing program.

The signal-processing routines report success or
failure using a status function value. Further infor­
mation on the error can be obtained by using a user­
callable routine that prints out an error message and
an error flag. The user documentation indicates the
actions to be taken to recover from the error.

In the case of the sparse solvers, error is indi­
cated by setting an error flag and printing an appro­
priate message if the printing option is enabled.
Control is always returned to the calling program.

Testing
DXML routines are tested for correctness and accu­
racy using a regression test suite. This includes
both test code developed by Digital, as well as the
public domain test codes for BLAS and LAPACK.
These codes are used not only during the imple­
mentation and performance optimization of the
routines, but also during the building of the com­
plete library from each of the subcomponents.

The test codes check each routine extensively,
including checks for error exits, accuracy of the
results obtained, invariance of read-only data and
the correctness of all paths through the code. As
the complete regression tests take over 20 hours
to execute, two input data sets are used: a short one
that tests each routine and can be used to make a
quick check that all subcomponents compiled and
built correctly, and a long data set that tests each
path th rough a routine and is thus more exhaustive.

48

Many of the routines, such as the FFTs and BLAS 3,
are tested using random input data. However, some
routines, such as the sparse solvers, operate on spe­
cific data structures or matrices with specific prop­
erties. These have been tested using matrices
generated from the finite difference discretization
of partial differential equations or using the matri­
ces in the Harwell-Boeing test suite.15

Another aspect to the DXML regression test pack­
age is the inclusion of a performance test gauge.
This software tests the performance of key routines
in each component of DXML and is used to ensure
that the performance of DXML routines is not
adversely affected by changes in compilers or the
operating systems.

Performance Trade-offs
The design and optimization of the routines in
DXML often prompted a trade-off between perfor­
mance on one hand, and accuracy and generality
on the other. Although every effort has been made
not to sacrifice accuracy for performance, the
reordering of computations during performance
optimization may lead to results before optimiza­
tion that are not bit-for-bit identical to the results
after optimization. In other cases, performance has
been sacrificed to ensure generality of a routine.
For example, although the matrix-free formulation
of the iterative solvers permits the use of any sparse
matrix storage scheme, it could result in a slight
degradation in performance due to less efficient
use of the instruction cache and the inability to
reuse some of the data in the registers.

Performance Optimiza tion
DXML routines have been designed to provide high
performance on the Alpha systems. i6 These
routines are tailored to take advantage of the sys­
tem characteristics such as the number of floating­
point registers, the size of the primary and
secondary data caches, and the page size. This opti­
mization involves changes to data structures and
the use of new algorithms as well as the restructur­
ing of computation to effectively manage the mem­
ory hierarchy

Several general techniques are used across all
DXML subcomponents to improve the perfor­
mance . 17 These include the following techniques:

• Unrolling loops to make better use of the
floating-point pipelines

• Reusing data in registers and caches whenever
possible

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DXML: A High-performance Scientific Subroutine Library

• Managing the data caches effectively so that the
cache hit ratio is maximized

• Accessing data using stride-I computation

• Using algorithms that exploit the memory hierar­
chy effectively

• Reordering computations to minimize cache and
translation buffer thrashing

Although many of these optimizations are done by
the compiler, occasionally, for example in the case
of the skyline solver, the data structures or the
implementation of the algorithm are such that they
do not lend themselves to optimization by the com­
piler. In these cases, explicit reordering of the com­
putations is required.

We next discuss these optimization techniques as
used in specific examples. All performance data is
for the DEC 3000 Model 900 system using the DEC
OSF/1 version 3.0 operating system. This work­
station uses the Alpha 21064A chip, running at 275
megahertz (MHz). The on-chip data and instruction
caches are each 16 kilobytes (KB) in size, and the
secondary cache is 2 megabytes (MB) in size.

In the next section, we compare the perfor­
mance of DXML BLAS and LAPACK routines with the
corresponding public domain routines. Both ver­
sions are written in standard Fortran and compiled
using identical compiler options.

Optimization of BLAS 1
BLAS I routines operate on vector and scalar data
only. As the operations and data structures are sim­
ple, there is little opportunity to use advanced data
blocking and register reuse techniques. Neverthe­
less, as the plots in Figure 1 demonstrate, it is pos­
sible to optimize the BLAS 1 routines by careful
coding that takes advantage of the data prefetch
features of the Alpha 21064A chip and avoids data­
path-related stalls. 16, 1s

Generally, the DXML routines are 10 percent to 15
percent faster than the corresponding public
domain routines. Occasionally, as in the case of
DDOT for very short, cache-resident vectors, the
benefits can be much greater.

The shapes of the plots in Figure 1 rather dramat­
ically demonstrate the benefits of data caches. Each
plot shows very high performance for short vectors
that reside in the 16-KB, on-chip data cache, much
lower performance for data vectors that reside in
the 2-MB, on-board secondary data cache, and even
lower performance when the vectors reside com­
pletely in memory.

Digital Techntcaljournal Vol. 6 No. 3 Summer 1994

250

200

~150

g
u.
:::;; 100

50

I

I

I · . \
I

I

I

o~~~~~~ ~~~~-'-~--'-~~.__~..._
6 a 10 12 14 16 1a 20

VECTOR LENGTH (AS POWER OF 2)
KEY:

-- BLAS DAXPY
- - - - DXML DAXPY
.......... BLAS DDOT
- ·- · - DXML DDOT

Figure 1 Performance of BLAS 1 Routines
DDOT and DAXPY

Optimization of BLAS 2

22

BLAS 2 routines operate on matrix, vector, and
scalar data. The data structures are larger and more
complex than the BLAS 1 data structures and the
operations more complicated. Accordingly, these
routines lend themselves to more sophisticated
optimization techniques.

Optimized DXML BLAS 2 routines are typically 20
percent to 100 percent faster than the public domain
routines. Figure 2 illustrates this performance
improvement for the matrix-vector multiply routine,
DGEMV, and the triangular solve routine, DTRSV.8

The DXML DGEMV uses a data-blocking technique
that asymptotically performs two floating-point
operations for each memory access, compared to
the public domain version, which performs two
floating-point operations for every three memory
accesses.19 This technique is designed to minimize
translation buffer and data cache misses and maxi­
mize the use of floating-point registers.16, is,20 The
same data prefetch considerations used on the BLAS
1 routines are also used on the BLAS 2 routines.

The DXML version of the DTRSV routine partitions
the problem such that a small triangular solve oper­
ation is performed. The result of this solve opera­
tion is then used in a DGEMV operation to update the
remainder of the vector. The process is repeated
until the final triangular update completes the
operation. Thus the DTRSV routine relies heavily on
the optimizations used in the DGEMV routine.

49

Scientific Computing Optimizations for Alpha

140
l
l

120 l
l
l
l

100 l
l
I

~ 80
0 _,
u.
~ 60

40

'

'
' ' ' ' ' ' ---.... ~,

''--
~-~ -_·: :.- -

20
.... :-:-;:..~ =-~- -·-- - .,.:.:::;_-_

0 200 400 600 800

ORDER OF VECTORS/MATRICES
KEY:

-- BLAS DGEMV
- - - - DXML DGEMV
·········· BLAS DTRSV
- · - · - DXML DTRSV

1000

Figure 2 Performance of BLAS 2 Routines
DGEMV and DTRSV

As with BLAS 1 routines, BLAS 2 routines benefit
greatly from data cache. Although the effect is less
dramatic for the BLAS 2 routines, Figure 2 clearly
shows the three-step profile observed in Figure 1.
Best performance is achieved when both matrix
and vector fit in the primary cache. Performance is
lower but flat over the region where the data fits
on the secondary board level cache. The final per­
formance plateau is reached when data resides
entirely in memory.

Optimization of BLAS 3
BLAS 3 routines operate primarily on matrices. The
operations and data structures are more compli­
cated that those of BLAS 1 and BLAS 2 routines.
Typically, BLAS 3 routines perform many computa­
tions on each data element. These routines exhibit a
great deal of data reuse and thus naturally lend them­
selves to sophisticated optimization techniques.

DXML BLAS 3 routines are generally two to ten
times faster than their public domain counterparts.
The plots in Figure 3 show these performance dif­
ferences for the matrix-matrix multiply routine,
DGEMM, and the triangular solve routine with multi­
ple right-hand sides, DTRSM.9

All performance optimization techniques used
for the DXML BLAS 1 and BLAS 2 routines are used
on the DXML BLAS 3 routines. In particular, data­
blocking techniques are used extensively. Portions

50

180
~',

~
I 160 I

... __ _ _
I

140 I - ·- ·- ·- ·-·- ·- ·­~ - - -- ·- ·- ·-·- ·- ·- ·
120

~100
0
-' I

~ 80 I

20

0

KEY:

200

- - BLAS DGEMM
- - - - DXML DGEMM
.......... BLAS DTRSM
- · - · - DXML DTRSM

400 600 800 1000
ORDER OF MATRICES

Figure 3 Performance of BLAS 3 Routines
DGEMM and DTRSM

of matrices are copied to page-aligned work areas
where secondary cache and translation buffer
misses are eliminated and primary cache misses are
absolutely minimized.

As an example, within the primary compute loop
of the DXML DGEMM routine, there are no transla­
tion buffer misses, no secondary cache misses, and,
on average, only one primary cache miss for every
42 floating-point operations. Performance within
this key loop is also enhanced by carefully using
floating-point registers so that four floating-point
operations are performed for each memory read
access. Much of the DXML BLAS 3 performance
advantage over the public domain routines is a
direct consequence of a greatly improved ratio of
floating-point operations per memory access.

The DXML DTRSM routine is optin1ized in a man­
ner similar to its BLAS 2 counterpart, DTRSV. A small
triangular system is solved. The resulting matrix
is then used by DGEMM to update the remainder of
the right-hand-side matrix. Consequently, most
of the DXML DTRSM performance is directly attrib­
utable to the DXML DGEMM routine. In fact, the tech­
niques used in DGEMM pervade DXML BLAS 3
routines.

Figure 3 illustrates a key feature of DXML BLAS 3
routines. Whereas the performance of public
domain routines degrades significantly as the
matrices become too large to fit in caches, DXML

Vol. 6 No. 3 Summer 1994 Digttal Technical Journal

DXML: A High-performance Scientific Subroutine Library

routines are relatively insensitive to array size,
shape, or orientation. s.9 The performance of a DXML

BLAS 3 routine typically reaches an asymptote and
remains there regardless of problem size.

Optimization of LAPACK
The LAPACK subroutine library derives a large
part of its high performance by using the opti­
mized BLAS as building blocks. 10 The DXML ver­
sion of LAPACK is largely unmodified from the
public domain version. However, in the case of
the factorization routine for general matrices,
DGETRF, we have introduced changes to the
algorithm to improve the performance on Alpha
systems.

For example, while the original public domain
DGETRF routine uses Crout's method to factor a
matrix, the DXML version uses a left-looking
method.11 Left-looking methods make better use
of the secondary cache and translation buffers than
the Crout method. Furthermore, the public domain
version of the DLASWP routine swaps a single
matrix row across an entire matrix. This is a very
bad technique for RISC machines; it causes severe
cache and translation buffer thrashing. To avoid
this, the DXML version of DLASWP performs all
swaps within columns, which makes much better
use of the caches and the translation buffer and
results in a much improved performance of the
DXML DGETRF routine.

The DGETRS routine was not modified. Its perfor­
mance is solely attributable to use of optimized
DXML routines.

Figure 4 shows the benefits of the optimizations
made to DGETRF and the BLAS routines. DGETRF
makes extensive use of the BLAS 3 DGEMM and
DTRSM routines. The performance of DXML DGETRF

improves with increasing problem size largely
because DXML BLAS 3 routines do not degrade in the
face oflarger problems.

The plots of Figure 4 also show the performance
of DGETRS when processing a single right-hand-side
vector. In this case, DTRSV is the dominant BLAS
routine, and the performance differences between
the public domain and DXML DGETRS routines
reflect the performance of the respective DTRSV
routines. Finally, although not shown, we note that
the performance of DXML DGETRS is much better
than the public domain version when many right­
hand sides are used and DTRSM becomes the domi­
nant BLAS routine.

Digital Technical Journal Vol. 6 No. 3 Summer 1994

140

120

100

60

40

, ,
I

I
I

I

, ,
,­, ,

~---. --'-'--~=-------·-·-· -·- ·- ·-
20 -·- ·--.

0 200 400 600 800 1000
ORDER OF VECTORS/MATRICES

KEY:

-- BLAS DGETRF
- - - - DXML DGETRF
·········· BLAS DGETRS
- • - · - DXML DGETRS

Figure 4 Performance of LAPACK Routines
DGETRF and DGETRS (WA = N + I)

Optimization of the
Signalprocessing Routines
We illustrate the techniques used in optimizing
the signal-processing routines using the one­
dimensional, power-of-2, complex FFT.21 The algo­
rithm used is a version of Stockham's autosorting
algorithm, which was originally designed for vector
computers but works well, with a few modifica­
tions, on a RISC architecture such as Alpha.22,23

The main advantage in using an autosorting algo­
rithm is that it avoids the initial bit-reversal permu­
tation stage characteristic of the Cooley-Tukey
algorithm or the Sande-Tukey algorithm. This stage
is implemented by either precalculating and load­
ing the permutation indices or calculating them
on-the-fly. In either case, substantial amounts of
integer multiplications are needed. By avoiding
these multiplications, the autosorting algorithm
provides better performance on Alpha systems.

This algorithm does have the disadvantage that
it cannot be done in-place, resulting in the use
of a temporary work space, which makes more
demands on the cache than an algorithm that can be
done in-place. However, this disadvantage is more
than offset by the avoidance of the bit-reversal stage.

The implementation of the FFT on the Alpha
makes effective use of the hierarchical memory of
the system, specifically, the 31 usable floating-point

51

Scientific Computing Optimizations for Alpha

registers, which are at the lowest, and therefore the
fastest, level of this hierarchy. These registers are
utilized as much as possible, and any data brought
into these registers is reused to the extent possible.
To accomplish this, the FFT routines implement the
largest radices possible for all stages of the power­
of-2 FFT calculation. Radix-8 was used for all stages
except the first, utilizing 16 registers for the data
and 14 for the twiddle factors. 21 For the first stage,
as all twiddle factors are 1, radix-16 was used.

Figure 5 illustrates the performance of this algo­
rithm for various sizes. Although the performance
is very good for small data sizes that fit into the pri­
mary, 16-KB data cache, it drops off quickly as the
data exceeds the primary cache. To remedy this, a
blocking algorithm was used to better utilize the
primary cache.

The blocking algorithm, which was developed
for computers with hierarchical memory systems,
decomposes a large FFT into two sets of smaller
FFTs.24 The algorithm is implemented using four
steps:

1. Compute NI sets of FFTs of size N2.

2. Apply twiddle factors.

3. Compute N2 sets of FFTs of size NL

4. Transpose the NI by N2 matrix into an N2 by Nl
matrix.

200

180

160

rn 140
a::
9 120
u..
:::; 100

80

40L-~-'--~~'--~-'-~~.._~_._~~..._~_._
6 8 10 12 14 16 18 20

SIZE OF FFT (AS POWER OF 2)

KEY:

- - AUTOSORTING
- - - - BLOCKING

Figure 5 Performance of 1-D Complex FF/'

52

In the above, N = NI X N2. Steps (1) and (3) use
the autosorting algorithm for small sizes. In
step (2), instead of precomputing all N twiddle
factors, a table of selected twiddle factors is com­
puted and the rest calculated using trigonometric
identities.

Figure 5 compares the performance of the block­
ing algorithm with the autosorting algorithm. Due
to the added cost of steps (2) and (4), the maximum
computation speed for the blocking algorithm
(115 million floating-point operations per second
[Mflops] at N=212) is lower than the maximum
computation speed of the autosorting algorithm
(192 Mflops at N= 29). The crossover point
between the two algorithms is at a size of approxi­
mately 2K, with the autosorting algorithm perform­
ing better at smaller sizes. Based on the length of
the FFT, the DX.ML routine automatically picks the
faster algorithm. Note that at N =216, as the size
of the data and workspace exceeds the 2-MB
secondary cache, the performance of the blocking
algorithm drops off.

Optimization of the Skyline Solvers
A skyline matrix (Figure 6) is one where only the
elements within the envelope of the sparse matrix
are stored. This storage scheme exploits the fact
that zeros that occur before the first nonzero ele­
ment in a row or column of the matrix, remain
zero during the factorization of the matrix, pro­
vided no row or column interchanges are made. 14

Thus, by storing the envelope of the matrix, no
additional storage is required for the fill-in that
occurs during the factorization. Though the sky­
line storage scheme does not exploit the sparsity
within the envelope, it allows for a static data
structure, and is therefore a reasonable compro­
mise between organizational simplicity and com­
putational efficiency.

In the skyline solver, the system, Ax= b, where A
is an N by N matrix, and b and x are N-vectors, is
solved by first factorizing A asA=W U, where L and
U are unit lower and upper triangular matrices, and
Dis a diagonal matrix. The solution xis then calcu­
lated by solving in order, Ly=b, Dz=y, and Ux=z,
where y and z are N-vectors.

In our discussion of performance optimization,
we concentrate on the factorization routine as it is
often the most time-consuming part of an applica­
tion . The algorithm implemented in DX.ML uses a
technique that generates a column (or row) of the

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

DXML: A Highperformance Scientific Subroutine Library

Figure 6 Skyline Column Storage of
a Symmetric Matrix

factorization using an inner product formulation.
Specifically, for a symmetric matrix A, let

A =(M
V T

where the symmetric factorization of the leading
(N - 1) by (N - 1) leading principal submatrix M
has already been obtained as

M= U'ftDMUM

Since the vector v, oflength (N - 1), and the scalar
s are known, the vector w, oflength (N - 1) and the
scalar d can be determined as

w = D-,JU-J'v

and

The definition of w indicates that a column of the
factorization is obtained by taking the inner prod­
uct of the appropriate segment of that column with
one of the previous columns that has already been
calculated. Referring to Figure 7, the value of the
element in location (i,j) is calculated by taking
the inner product of the elements in column j
above the element in location (i,j) with the corre­
sponding elements in column i. The entire column

Dig ital Technical Journal Vol. 6 No. 3 Summer 1994

COLUMN i COLUMN j

t t

-----·n
------~ l

LENGTH OF THE
INNER PRODUCT
FOR THE
EVALUATION
OF ELEMENT (i, j)

-ROWi

Figure 7 Unoptimized Skyline
Computational Kernel

j is thus calculated starting with the first nonzero
element in the column and moving down to the
diagonal entry.

The optimization of the skyline factorization is
based on the following two observations 2s.26:

• The elements of column j, used in the evalua­
tion of the element in location (i,j), are also
used in the evaluation of the element in location
(i+l,j).

• The elements of column i, used in the evalua­
tion of the element in location (i,j), are also
used in the evaluation of the element in location
(i,j + I).

Therefore, by unrolling both the inner loop on i
and the outer loop onj, twice, we can generate the
entries in locations (i,j), (i+ 1,j), (iJ+ 1), (i+ l,j+ 1)
at the same time, as shown in Figure 8. These four
elements are generated using only half the memory
references made by the standard algorithm. The
memory references can be reduced further by
increasing the level of unrolling. This is, however,
limited by two factors:

• The number of floating-point registers required
to store the elements being calculated and the
elements in the columns.

• The length of consecutive columns in the
matrix, which should be close to each other to
derive full benefit from the unrolling.

Based on these factors, we have unrolled to a depth
of 4, generating 16 elements at a time.

53

Scientific Computing Optimizations for Alpha

LENGTH OF THE

!
INNER PRODUCT
FOR THE PARTIAL
EVALUATION OF
ELEMENTS (i, j)
(i + 1, j), (i,j+ 1)
and (i + 1, j + 1)

~ROW i
ROW (i+1)

Figure 8 Optimized Skyline
Computational Kernel

A similar technique is used in optimizing the for­
ward elimination and the backward substitution.

Table 1 gives the performance improvements
obtained with the above techniques for a symmet­
ric and an unsymmetric matrix from the Harwell­
Boeing collection.15 The characteristics of the matrix
are generated using DXML routines and were
included because the performance is dependent on
the profile of the skyline. The data presented is for
a single right -hand side, which has been generated
using a known random solution vector.

The results show that for the matrices under con­
sideration, the technique of reducing memory
references by unrolling loops at two levels leads to
a factor of 2 improvement in performance.

Summary
In this paper, we have shown that optimized mathe­
matical subrout ine libraries can be a useful tool in
improving the performance of science and engi­
neering applications on Alpha systems. We have

Table 1 Performance Improvement in the Solution of Ax=b, Using the Skyline Solver on the
DEC 3000 Model 900 System

Harwell-Boeing matrix15

Description

Storage scheme

Matrix characteristics
Order
Type

Condition number estimate
Number of nonzeros
Size of skyline
Sparsity of skyline
Maximum row (column) height
Average row (column) height
RMS row (column) height

Factorization time (in seconds)
Before optimization
After optimization

Solution time (in seconds)
Before optimization
After optimization

Maximum component-wise
relative error in solution
(See equation below.)

max I x(i) - x(i) I

I x(i) I

Example 1

BCSSTK24

Stiffness matrix of the Calgary
Olympic Saddledome Arena

Symmetric diagonal-out

3562
Symmetric

6.37E+ 11
81736
2031722
95.98%
3334
570.39
1135.69

66.80
35.02

0.82
0.43

0.16E- 5

Example 2

ORSREG1

Jacobian from a model of
an oil reservoir

Unsymmetric profi le-in

2205
Unsymmetric with
structural symmetry
1.54E+ 4
14133
1575733
99.10%
442 (442)
357.81 (357.81)
395.45 (395.45)

23.12
13.02

0.32
0.17

0.50E-10

where x(i) is the i-th component of the true solution, and x(i) is the i-th component of the calculated solut ion.

54 Vol. 6 No. 3 Summer 1994 Digital Tech nical journal

DXML: A High-performance Scientific Subroutine Library

described the functionality provided by DXML,
discussed various software engineering issues
and illustrated techniques used in performance
optimization.

Future enhancements to DXML include symmet­
ric multiprocessing support for key routines,
enhancements in the areas of signal processing and
sparse solvers, as well as further optimization of
routines as warranted by changes in hardware and
system software.

Acknowledgments
DXML is the joint effort of a number of individuals
over the past several years. We would like to
acknowledge the contributions of our colleagues,
both past and present. The engineers: Luca Broglio,
Richard Chase, Claudio Deiro, Laura Farinetti, Leo
Lavin, Ping-Charng Lue, Joe O'Connor, Mark
Schure, Linda Tella, Sisira Weeratunga and John
Wilson; the technical writers: Cheryl Barabani,
Barbara Higgins, Marll McDonald, Barbara Schott
and Richard Wolanske; and the management: Ned
Anderson, Carlos Baradello, Gerald Haigh, Buren
Hoffman, Tomas Lofgren, Vehbi Tasar and David
Velten. We would also like to thank Roger Grimes at
Boeing Computer Services for making the Harwell­
Boeing matrices so readily available.

References

1. W Cowell, ed., Sources and Development of
Mathematical Software (Englewood Cliffs,
NJ: Prentice-Hall, 1984).

2. D. Jacobs, ed., Numerical Software- Needs
and Availability (New York: Academic Press,
1978).

3.]. Dongarra,]. Bunch, C. Moler, and G. Stewart,
UNPACK Users' Guide (Philadelphia: Society
for Industrial and Applied Mathematics
[SIAM], 1979).

4. B. Smith et al., Matrix Eigensystem
Routines-EISPACK Guide (Berlin: Springer­
Verlag, 1976).

5. Digital extended Math Library Reference
Manual (Maynard, MA: Digital Equipment
Corporation, Order No. AA-QOMBB-TE for VMS
and AA-QONHB-TE for OSF/1).

Digital Technical Journal Vol. 6 No. 3 Summer 1994

6. C. Lawson, R. Hanson, D. Kincaid, and
E Krogh, "Basic Linear Algebra Subprograms
for Fortran Usage," ACM Transactions on
Mathematical Software, vol. 5, no. 3 (Septem­
ber 1979): 308-323.

7. D. Dodson, R. Grimes, and]. Lewis, "Sparse
Extensions to the FORTRAN Basic Linear Alge­
bra Subprograms," ACM Transactions on
Mathematical Software, vol. 17, no. 2 (June
1991): 253-263.

8.]. Dongarra,]. DuCroz, S. Hammarling, and
R. Hanson, "An Extended Set of FORTRAN
Basic Linear Algebra Subprograms," ACM
Transactions on Mathematical Software,
vol. 14, no. 1 (March 1988): 1-17.

9.]. Dongarra,]. DuCroz, S. Hammarling, and
I. Duff, "A Set of Level 3 Basic Linear Alge­
bra Subprograms," ACM Transactions on
Mathematical Software, vol. 16, no. 1 (March
1990): 1-17.

10. E. Anderson et al., LAPACK Users' Guide
(Philadelphia: Society for Industrial and
Applied Mathematics [SIAM], 1992).

11.]. Dongarra, I. Duff, D. Sorensen, and H. van
der Vorst, Solving Linear Systems on Vector
and Shared Memory Computers (Philadel­
phia: Society for Industrial and Applied Math­
ematics [SIAM], 1991).

12. R. Barrett et al., Templates for the Solution of
Linear Systems: Building Blocks for Iterative
Methods (Philadelphia: Society for Industrial
and Applied Mathematics [SIAM], 1993).

13. C. Felippa, "Solution of Linear Equations with
Skyline Stored Symmetric Matrix;' Computer
and Structures, vol. 5, no. 1 (April 1975): 13-29.

14. I. Duff, A. Erisman, and]. Reid, Direct Methods
for Sparse Matrices (New York: Oxford
University Press, 1986).

15. I. Duff, R. Grimes, and]. Lewis, "Sparse
Matrix Test Problems," ACM Transactions on
Mathematical Software, vol. 15, no. 1 (March
1989): 1-14.

55

Scientific Computing Optimizations for Alpha

16. Alpha AXP Architecture and Systems, Digital
Technical Journal, vol. 4, no. 4 (Special Issue
1992).

17. K. Dowd, High Perfonnance Computing
(Sebastopol, CA: O'Reilly & Associates, Inc.,
1993).

18. DECchip 21064-AA Microprocessor-Hard­
ware Reference Manual (Maynard, MA:
Digital Equipment Corporation, Order No.
EC-N0079-72, October 1992).

19.]. Dongarra and S. Eisenstat, "Squeezing the
Most Out of an Algorithm in CRAY FORTRAN,"
ACM Transactions on Mathematical Soft­
ware, vol. 10, no. 3 (September 1984):
219-230.

20. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

21. H. Nussbaumer, Fast Fourier Transfonns and
Convolution Algorithms, Second Edition
(New York: Springer Verlag, 1982).

56

22. D. Bailey, "A High-performance FFT Algorithm
for Vector Supercomputers," The Interna­
tional Journal of Supercomputer Applica­
tions, vol. 2, no. 1 (Spring 1988): 82-87.

23. P. Swarztrauber, "FFT Algorithms for Vector
Computers," Parallel Computing, vol. 1, no. 1
(August 1984): 45-63.

24. D. Bailey, "FFTs in External or Hierarchical
Memory," The Journal of Supercomputing,
vol. 4, no. 1 (March 1990): 23-35.

25. 0. Storaasli, D. Nguyen, and T. Agarwal,
"Parallel-Vector Solution of Large-Scale Struc­
tural Analysis Problems on Supercomputers,"
American Institute of Aeronautics and
Astronautics (AIAA) Journal, vol. 28, no. 7
(July 1990): 1211-1216.

26. H. Samukawa, "A Proposal of Level 3 Interface
for Band and Skyline Matrix Factorization Sub­
routine," Proceedings of the 1993 ACM Inter­
national Conference on Super Computing,
Tokyo, Japan (July 1993): 397-406.

Vol. 6 No. 3 Summer 1994 Digital Technical journal

The KAP Parallelizer
for DEC Fortran and
DEC C Programs

Robert H. Kuhn
Bruce Leasure
Sanjiv M. Shah

The KAP preprocessor optimizes DEC Fortran and DEC C programs to achieve their
best performance on Digital Alpha systems. One key optimization that KAP per­
forms is the parallelization of programs for Alpha shared memory multiprocessors
that use the new capabilities of the DEC OSF/1 version 3.0 operating system with
DECthreads. The heart of the optimizer is a sophisticated decision process that
selects the best loop to parallelize from the many loops in a program. The preproces­
sor implements a robust data dependence analysis to determine whether a loop is
inherently serial or parallel. · In engineering a high-quality optimizer, the designers
specified the KAP software architecture as a sequence of modular optimization
passes. These passes are designed to restructure the program to resolve many of the
apparent serializations that are artifacts of coding in Fortran or C. End users can
also annotate their DEC Fortran or DEC C programs with directives or pragmas to
guide KAP's decision process. As an alternative to using KAP's automatic paral­
lelization capability, end users can explicitly identify parallelism to KAP using the
emerging industry-standard X3H5 directives.

The KAP preprocessor developed by Kuck &
Associates, Inc. (KAI) is used on Digital Alpha sys­
tems to increase the performance of DEC Fortran
and DEC C programs. KAP accomplishes this by
restructuring fragments of code that are not effi­
cient for the Alpha architecture. Essentially a super­
optimizer, KAP performs optimizations at the
source code level that augment those performed
by the DEC Fortran or DEC C compilers. 1

To enhance the performance of DEC Fortran and
DEC C programs on Alpha systems, KAI engineers
selected two challenging aspects of the Alpha archi­
tecture as KAP targets: symmetric multiprocessing
(SMP) and cache memory. An additional design goal
was to assist the compiler in optimizing source
code for the reduced instruction set computer
(RISC) instruction processing pipeline and multiple
functional units.

This paper discusses how the KAP preprocessor
design was adapted to parallelize programs for SMP
systems running under the DEC OSF/1 version 3.0
operating system. This version of the DEC OSF/1
system contains the DECthreads product, Digital's
POSIX-compliant multithreading library. The first

Digital Tecbntcal]ournal Vol. 6 No. 3 Summer 1994

part of the paper describes the process of mapping
parallel programs to DECthreads. The paper then
discusses the key techniques used in the KAP
design. Finally, the paper presents examples of how
KAP performs on actual code and mentions some
remaining challenges. Readers with a compiler
background may wish to explore Optimizing Super­
compilers for Supercomputers for more details on
KAP's techniques. 2

In this paper, the term directive is used inter­
changeably to mean directive, when referring to DEC
Fortran programs, and pragma, when referring to
DEC C programs. The term processor generally rep­
resents the system component used in parallel pro­
cessing. In discussions in which it is significant to
distinguish the operating system component used
for parallel processing, the term thread is used.

The Parallelism Mapping Process
Figure 1 shows the input modes and major phases
of the compilation process. Parallelism is repre­
sented at three levels in programs using the KAP
preprocessor on an Alpha SMP system. The first two
are input to the KAP preprocessor; the third is the

57

Scient ific Computing Op timizations for Alpha

1---------, -----------------------,
I IMPLICIT PARALLELISM I I EXPLICIT HIGH-LEVEL PARALLELISM I

I
I

I I
I ORDINARY DEC I

FORTRAN OR
I DEC C PROGRAM I
I I
L. ________ I

I
I
I
I
I

~
KAP SCALAR
OPTIMIZATIONS

KAP PARALLELISM
DETECTION AND
OPTIMIZATION

KAP GUIDING
DIRECTIVES

KAP ASSERTIONS

DEPENDENCE
ANALYSIS

X3H5 DIRECTIVES I
I

-- _ J

KAP PARALLELISM I-+---------------------'
TRANSLA TION

------ -----1
: EXPLICIT LOW-LEVEL PARALLELISM I

I KAP-OPTIMIZED I
I FORTRAN OR I

C OUTPUT FILE I
I
L ___________ _j

DEC FORTRAN
OR DEC C
COMPILER

APPLICATION
LIBRARY

KAP SMP SUPPORT
LIBRARY

DEC OSF/1 V3.0 OPERATING SYSTEM
WITH DECTHREADS

KAP PREPROCESSOR

Figure 1 Parallelism Mapping Process

representation of parallelism that KAP generates.
The three levels of parallelism are

1. Implicit parallelism. Starting from DEC Fortran
or DEC C programs, KAP automatically detects
parallelism.

2. Explicit high-level parallelism. As an advanced
feature, users can provide any of three forms:

58

KAP guiding directives, KAP assertions, or X3H5
directives. KAP guiding directives give KAP hints
on which program constructs to parallelize. KAP
assertions are used to convey information about
the program that cannot be described in the DEC
Fortran or DEC C language. This information can
sometimes be used by KAP to optimize the pro­
gram. Using X3H5 directives, the user can force
KAP to parallelize the program in a certain way.3

Voi. 6 No. 3 Summer 1994 Digital Technical Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

3. Explicit low-level parallelism. KAP translates
either of the above forms to DECthreads with the
help of an SMP support library. (Ibe user could
specify parallelism directly, using DECthreads;
however, KAP does not perform any optimiza­
tion of source code with DECthreads. Therefore,
the user should not mix this form of parallelism
with the others.)

Because the user can employ parallelism at any
of the three levels, a discussion of the trade-offs
involved with using each level follows.

From DEC Fortran or DEC C Programs
The KAP preprocessor accepts DEC Fortran and DEC
C programs as input. Although starting with such
programs requires the compilers to intelligently
utilize a high-performance SMP system, there are
several reasons why this is a natural point at which
to start.

• Lots of software. Since DEC Fortran and DEC C
are de facto standards, there exists a large base of
applications that can be parallelized relatively
easily and inexpensively.

• Ease of use. Given the high rate at which hard­
ware costs are decreasing, every workstation may
soon have multiple processors. At that point, it
will be critical that programming a multiproces­
sor be as easy as programming a single processor.

• Portability. Many software developers with
access to a multiprocessor already work in a het­
erogeneous networking environment. Some sys­
tems in such an environment do not support
explicit forms of parallelism (either X3H5 or
DECthreads). The developers would probably
like to have one version of their code that runs
well on all their systems, whether uniprocessor
or multiprocessor, and using DECthreads would
cause their uniprocessors to slow down.

• Maintainability. Using an intricate programming
model of parallelism such as X3H5 or DECthreads
makes it more difficult to maintain the software.

KAP produces KAP-optimized DEC Fortran or DEC
C as output. This fact is important for the following
reasons:
• Performance. Users can leverage optimizations

from both Digital's compilers and KAP.

• Integration. Users can employ all of Digital's per­
formance tools.

Digital Technical Journal Vol. 6 No. 3 Summer 1994

• Ease of use. Expert users like to "tweak" the
output of KAP to fine-tune the optimizations
performed.

With KAP Guiding Directives, KAP
Assertions, or X3H5 Directives
Although the automatic detection of parallelism is
frequently within the range of KAP capabilities on
SMP systems, in some cases, as described below,
users may wish to specify the parallelism.

• In the SMP environment, coarse-grained paral­
lelism is sometimes important. The higher in the
call tree of a program a preprocessor (or com­
piler, as well) operates, the more difficult it is
for a preprocessor to parallelize automatically.
Even though the KAP preprocessor performs
both inlining and interprocedural analysis, the
higher in the call tree KAP operates, the more
likely it is that KAP will conservatively assume
that the parallelization is invalid.

• Sometimes information that is available only at
run time precludes the preprocessor from auto­
matically finding parallelism.

• Occasionally, experts can fine-tune the paral­
lelism to get the highest efficiency for programs
that are run frequently.

• For software that is more portable between sys­
tems, it is sometimes important to get repeatable
parallel performance or to indicate where paral­
lelism has been applied. In such cases, explicit
parallelism may be preferable.

Three mechanisms are available to the user for
directing KAP to parallelism. The first mechanism
uses KAP guiding directives to guide KAP to the
preferred way to parallelize the program. The sec­
ond mechanism uses KAP assertions. The third
mechanism uses X3H5-compliant directives to
directly describe the parallelism. The first two
mechanisms differ significantly from the third. With
the first two, KAP analyzes the program for the feasi­
bility of parallelism. With the third, KAP assumes
that parallelism is feasible and restricts itself to man­
aging the details of implementing parallelism. In
particular, the user does not have to be concerned
with either the scoping of variables across proces­
sors, i.e., designating which are private and which
are shared, or the synchronization of accesses to
shared variables. 4 KAP guiding directives will not be

59

Scientific Computing Optimizations for Alpha

discussed in this paper. KAP assertions and how they
are implemented are discussed later in the section
Advanced Ways to Affect Dependences. A descrip­
tion of the X3H5 directives follows.

The X3H5 model of parallelism is well struc­
tured; all operations have a begin operation-end
operation format. The parallel region construct
identifies the fork and join points for parallel
processing. Parallel loops identify units of work
to be distributed to the available processors. The
critical section and one processor section con­
structs are used to synchronize processors where
necessary. Table I shows the X3H5 directives as
implemented in KAP.

To the DEC OSF/1 Operating System
with DECthreads
Although KAP does not optimize programs that use
DECthreads directly, there may be some benefits to
specifying parallelism explicitly using DECthreads.

• DECthreads allows a user to construct almost any
model of parallel processing fairly efficiently.
The high-level approaches described above are
limited to loop-structured parallel processing.
Some applications obtain more parallelism by
using an unstructured model. It can even be
argued that for some cases, unstructured paral­
lelism is easier to understand and maintain.

• A user who invests the time to analyze exactly
where parallelism exists in a program may wish
to forego the benefits mentioned above and to
capture the parallelism in detail with DECthreads.
In that manner, no efficiency is lost because the
preprocessor misses an optimization.

• The POSIX threads standard to which DECthreads
conforms is available on several platforms.

Table 1 X3H5 Directives As Implemented in KAP

Because this standard is broadly adopted and
language independent, it is only slightly less
portable than implicit parallelism.

The KAP preprocessor translates a program in
which KAP has detected implicit parallelism or a pro­
gram in which the user explicitly directs parallelism
to DECthreads. KAP performs this translation in two
steps. First, it translates the internal representation
into calls to a parallel SMP support library. Second,
the support library makes calls to DECthreads.

The SMP support library implements various
aspects of X3H5 notation, as can be seen by com­
paring Tables I and 2.

In the parallelism translation phase, KAP signifi­
cantly restructures a program by moving the code
in a parallel region to a separate subroutine. A call
to the SMP support library replaces the parallel
region. This call references the new subroutine.
KAP examines the scope of each variable used in
the parallel region and, if possible, converts each
variable to a local variable of the new subroutine.
Otherwise, the variable becomes an argument to
the subroutine so that it can be passed back out of
the parallel region.

Converting variables to local variables makes
accessing these variables more efficient. A variable
that is referenced outside the parallel region cannot
be made local and must be passed as an argument.

Shared Memory Multiprocessor
Architecture Concerns
Given its parallelism model, the KAP preprocessor
requires operating system and hardware support
from the system for efficient parallel execution.
There are three areas of concern: thread creation
and scheduling, synchronization between threads,
and data caching and system bus bandwidth.

Function X3H5 Directives

To specify regions of parallel execution

To specify parallel loops

To specify synchronized sections of code
such that all processors synchronize

To specify that all processors execute sequentially

To specify that only the first processor executes

60

C*KAP* PARALLEL REGION
C*KAP* END PARALLEL REGION

C*KAP* PARALLEL DO
C*KAP* END PARALLEL DO

C*KAP* BARRIER

C*KAP* CRITICAL SECTION
C*KAP* END CRITICAL SECTION

C*KAP* ONE PROCESSOR SECTION
C*KAP* END ONE PROCESSOR SECTION

Vol. 6 No. 3 Summer 1994 Digital Tech11 ica.l Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

Table 2 KAP SMP Support Library

C Entry Point Name
Fortran
Name Function

OSF/1 DECthreads
Subroutines Used

_kmp_enter_csec
_kmp_exit_csec
_kmp_fork

mppecs
mppxcs
mppfrk

To enter a critical section
To exit a critical section
To fork to several threads

pthread_mutex_lock
pthread_mutex_unlock
pthread_attr_create,
pthread_create

_kmp_fork_active mppfkd To inquire if already
parallel

(none)

_kmp_en d mppend To join threads pthread_join,
thread_detac h

_kmp_enter_onepsec mppbop To enter a single
processor section

pthread_mutex_lock,
pthread_mutex_unlock

_ kmp_exit_onepsec mppeop To exit a single
processor section

pthread_mutex_lock,
pthread_mutex_unlock

_kmp_b a rrier mppbar To execute a barrier wait pthread_mutex_lock,
pthread_cond_wait,
pthread_ mutex_ unlock

Thread Creation and Scheduling Thread cre­
ation is the most expensive operation. The X3H5
standard minimizes the need for creating threads
through the use of parallel regions. The SMP sup­
port library goes further by reusing threads from
one parallel region to the next. The SMP support
library examines the value of an environment vari­
able to determine how many threads to use. The
appropriate scheduling of threads onto hardware
processors is extremely important for efficient
execution. The support library relies on the
DECthreads implementation to achieve this. For
the most efficient operation, the library should
schedule at most one thread per processor.

Synchronization between Threads In the KAP

model of parallelism, threads can synchronize at

• A point where loop iterations are scheduled

• A point where data passes between iterations
(for collection of local reduction variables only)

• A barrier point leaving a work-sharing construct

• Single processor sections

Two versions of the SMP support library have been
developed: one with spin locks for a single-user
environment and the second with mutex locks for
a multiuser environment. Either library works in
either environment; however, using the spin lock

Digital Technical Journal Vol. 6 No. 3 Summer 1994

version in a single-user environment yields the
most efficient parallelism.

Using spin locks in a multiuser environment may
waste processor cycles when there are other users
who could use them. Using mutex locks for a single­
user environment creates unnecessary operating
system overhead. In practice, however, a system
may shift from single-user to multiuser and back
again in the course of a single run of a large pro­
gram. Therefore, KAP supports all lock-environment
combinations.

Data Caching and System Bus Bandwidth
Multiprocessor Alpha systems support coherent
caches between processors. 5 To use these caches
efficiently, as a policy, KAP localizes data as much
as possible, keeping repeated references within
the same processor. Localizing data reduces the
load on the system bus and reduces the chances of
cache thrashing.

When all the processors simultaneously request
data from the memory, system bus bandwidth can
limit SMP performance. If optimizations enhance
cache locality, less system bus bandwidth is used,
and therefore SMP performance is less likely to be
limited.

KAP Technology
This section covers the issues of data dependence
analysis, preprocessor architecture, and the selec­
tion of loops to parallelize.

61

Scientific Computing Optimizations for Alpha

Data Dependence Analysis-The Kernel
of Parallelism Detection
DEC Fortran and DEC C have standard rules for the
order of execution of statements and expressions.
These rules are based on a serial model of program
execution. Data dependence analysis allows a com­
piler to see where this serial order of execution can
be modified without changing the meaning of the
program.

Types of Dependence KAP works with the four
basic types of dependence: 6

1. Flow dependence, i.e., when a program writes
a variable before it reads the variable

2. Antidependence, i.e., when a program reads
a variable before it writes the variable

3. Output dependence, i.e. , when a program
writes the same variable twice

4. Control dependence, i.e., when a program state­
ment depends on a previous conditional

Because dependences involve two actions on the
same variable, for example, a write and then a read,
KAP uses the term dependence arc to represent
information flow, in this example from the write to
the read.

Since these dependences can prevent paralleliza­
tion, KAP uses various optimizations to eliminate
the different dependences. For example, an optimi­
zation called scalar renaming removes some but
not all antidependences.

Loop-related Dependences When dependences
occur within a loop, the control flow relations are
captured with direction vector symbols tagged to
each dependence arc. 2 The transformations that
can be applied to a loop depend on what depen­
dence direction vectors exist for that loop. The
symbols used in KAP and their meanings are

= The dependence occurs within the same loop
iteration.

> The dependence crosses one or several itera­
tions.

< The dependence goes to a preceding iteration
of the loop.

*

62

The dependence relation between iterations is
not clear.

or a combination of the above, for example,

<> The dependence is known not to be on the
same iteration.

When a dependence occurs in a nested loop, KAP

uses one symbol for each level in the loop nest. A
dependence is said to be carried by a loop if the cor­
responding direction vector symbol for that loop
includes <,>, or *.

In the following program segment

1 for (; = 1 ; i<=n; i++) {

2 temp a[iJ;
3 a[i] = b[i];
4 b[i] = temp; }

there is a flow dependence from statement 2 to
statement 4. There is an antidependence from state­
ment 2 to statement 3 and from statement 3 to
statement 4. There are control dependences from
statement 1 to statements 2, 3, and 4 because exe­
cuting 2, 3, and 4 depends on the i < = n condition.
All these dependences are on the same loop itera­
tion; their direction vector is =.

Some dependences in this program cross loop
iterations. Because temp is reused on each itera­
tion, there is an output dependence from statement
2 to statement 2, and there is an antidependence
from statement 4 to statement 2. These two depen­
dences are carried by the loop in the program seg­
ment and have the direction vector >.

Data Dependence Analysis The purpose of depen­
dence analysis is to build a dependence graph, i.e.,
the collection of all the dependence arcs in the pro­
gram. KAP builds the dependence graph in two
stages. First, it builds the best possible conservative
dependence graph.7 Then, it applies filters that
identify and remove dependences that are known
to be conservative, based on special circumstances.

What does the phrase "best possible conserva­
tive dependence graph" mean? Because the values
of a program's variables are not known at prepro­
cessing time, in some situations it may not be clear
whether a dependence actually exists. KAP reflects
this situation in terms of assumed dependences
based on imperfect information. Therefore, a
dependence graph must be conservative so that
KAP does not optimize a program incorrectly. On
the other hand, a dependence graph that is too con­
servative results in insufficient optimization.

In building the best possible dependence graph,
KAP uses the following optimizations: constant
propagation, variable forward substitution, and

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

scalar expansion. KAP does not, however, leave the
program optimized in this manner unless the opti­
mizations will improve performance.

Advanced Ways to Affect Dependences When
there are assumed dependences in the program,
KAP may not have enough information to decide on
parallelism opportunities. KAP implements two
techniques to mitigate the effects of imperfect
information at preprocessing time: assertions and
alternate code sequences.

Assertions, which are similar to directives in syn­
tax, are used to provide information not otherwise
known at preprocessing time. KAP supports many
assertions that have the effect of removing assumed
dependences. Table 3 shows KAP assertions and
their effects. S.9 When the user specifies an asser­
tion, the information contained in the assertion is
saved by a data abstraction called the oracle. When
an optimization requests that a data dependence
graph be built for a loop, the dependence analyzer
inquires whether the oracle has any information
about certain arcs that it wants to remove.

When accurate information is not known at com­
pile time, a few KAP optimizations generate two
versions of the source program loop: one assumes
that the assumed dependence exists; the other
assumes that it does not exist. In the latter case, KAP
can apply subsequent optimizations, such as paral-

Table 3 KAP Assertions

Assertion

[NO] ARGUMENT ALIASING
[NO] BOUNDS VIOLATIONS
CONCURRENT CALL

Specifiers

lelizing the loop. KAP applies the two-version loop
optimizations selectively to avoid dramatically
increasing the size of the program. However, the
payback of parallelizing a frequently executed loop
warrants their use.

For example, the KAP C pointer disambiguation
optimization is employed in cases in which C point­
ers are used as a base address and then incremented
in a loop. Neither the base address of a pointer nor
how many times the pointer will be incremented is
usually known at compile time. At run time, how­
ever, they can be computed in terms of a loop
index. KAP generates code that checks the range of
the pointer references at the tail and at the head of
a dependence. If the two ranges do not overlap, the
dependence does not exist and the optimized code
is executed.

KAP Preprocessor Architecture
A controversial control architecture decision in
KAP is to organize the preprocessor as a sequence
of passes, generally one for each optimization per­
formed. This design decision was controversial
because of the following concerns:

• Run-time inefficiency would occur in process­
ing programs because each pass would sweep
through the intermediate representation for the
program being processed, causing some amount
of virtual memory thrashing.

Primary Effect

DO (<specifier>)

DO PREFER (<specifier>)
[NO] EQUIVALENCE
HAZARD

SERIAL, CONCURRENT
SERIAL, CONCURRENT

Removes assumed dependence arcs

Removes assumed dependence arcs

Removes assumed dependence arcs
Guides selection of loop order strongly

Guides selection of loop order loosely
Removes assumed dependence arcs
(Fortran only)

[NO] LAST VALUE
NEEDED (<specifier>)

PERMUTATION
(< specifier>)
NO RECURRENCE
(< specifier>)
RELATION (<specifier>)

NO SYNC

Variable names for
which [no] last
value is needed
Names of permutation
variables

Names of recurrence
variables

Relation loop index
known to be true

Digital Technical Journal Vol. 6 No. 3 Summer 1994

Tunes the parallel code and
sometimes removes assumed
dependences

Removes assumed dependence arcs

Removes assumed dependence arcs

Removes assumed dependence arcs

Tunes the parallel code which is
produced

63

Scientific Computing Optimiza tion s for Alpha

• Added software development cost would be
incurred because the KAP code that loops
through the intermediate representation would
be repeated in each pass.

The second concern has been dispelled. The
added modularity of KAP, provided by its multipass
structure, has saved development time as KAP has
grown from a moderately complex piece of code to
an extremely complex piece of code.

The KAP preprocessor uses more than 50 major
optimizations. The pass structure has helped to
organize them. In some cases, such as cache man­
agement, one optimization is broken into several
passes. KAP performs some basic optimizations,
e.g., deadcode elimination, more than once in dif­
ferent ways. In some cases, such as scalar expan­
sion, KAP performs an optimization to uncover
other optimizations and then performs the reverse
optimization to tighten up the program again.

The run-time efficiency issue is still of interest.
There is always some benefit to making the prepro­
cessor smal !er and faster.

Selecting Loops to Parallelize
Parallelizing a loop can greatly enhance the perfor­
mance of the program. Testing whether a loop can
be parallelized is actually quite simple, given the
data dependence analysis that KAP performs. A loop
can be parallelized if there are no dependence arcs
carried by that loop. The situation, however, can be
more complicated. If the program contains several
nested loops, it is important to pick the best loop to
parallelize. Additionally, it may be possible not only
to parallelize the loop but also to optimize the loop
to enhance its performance. Moreover, the loops in
a program can be nested in very complex structures
so that there are many different ways to parallelize
the same program. In fact, the best option may be
to leave all the loops serial because the overhead of
parallel execution may outweigh the performance
improvement of using multiple processors.

The KAP preprocessor optimizes programs for
parallelism by searching for the optimum program
in a set of possible configurations, i.e., ways in
which the original program can be transformed for
parallel execution. (In this regard, KAP optimizes
programs from a classical definition of numerical
optimization.) There is an objective function for
evaluating each configuration. Each member of
the set of configurations is called a loop order. The

64

optimum program is the loop order whose objec­
tive function has the highest performance score, as
discussed later in this section.

Descriptions of loop orders, the role of depen­
dence analysis, and the objective function, i.e., how
each program is scored, follow.

Loop Orders A loop order is a combination of
loop transformations that the KAP preprocessor has
performed on the program. The loop transforma­
tions that KAP performs while searching for the
optimal parallel form are

• Loop distribution

• Loop fusion

• Loop interchange

Loop distribution splits a loop into two or more
loops. Loop fusion merges two loops. Loop fusion
is used to combine loops to increase the size of the
parallel tasks and to reduce loop overhead.

Loop interchange occurs between a pair of loops.
This transformation takes the inner loop outside the
outer loop, reversing their relation. If a loop is triply
nested, there are three factorial (3!), i.e., six, differ­
ent ways to interchange the loops. Each order is
arrived at by a sequence of pairwise interchanges.

To increase the opportunities to interchange
loops, KAP tries to make a loop nest into one that is
perfectly nested. This means that there are no exe­
cutable statements between nested loop state­
ments. Loop distribution is used to create perfectly
nested loops.

KAP examines all possible loop orders for each
loop nest. Each loop nest is treated independently
because no transformations between loop nests
occur at this phase of optimization.

For example, an LU factorization program con­
sists of one loop nest that is three deep and not per­
fectly nested. Figure 2 shows the loop orders. Loop
order (a) is the original LU program. The KAP pre­
processor first distributes the outer loop in loop
orders (b) and (c). Next, KAP performs a loop inter­
change on the second loop nest which is two deep,
as shown in loop order (d). Then, KAP interchanges
the third loop nest in loop orders (e) through (i).
Note that KAP eliminates some loop orders, (i) for
example, when the loop-bound expressions cannot
be interchanged. As explained above, there are six
different loop orders because the nest is triply

Vol. 6 No. 3 Summer 1994 Digital Tecbnicaljournal

The KAP Parallelizer for DEC Fortran and DEC C Programs

(a) ORIGINAL LU (OUTLINED):
do i=1,n

/*Invert Eliminator*/

do lc=i+1,n
/*Compute Multipliers*/

enddo
do j=i+1,n

do lc=i+1,n
/*Update Matrix*/

enddo
end do

enddo

(d) FOR SECOND NEST INTERCHANGE
SECOND do i LOOP:

do lc=1,n
do i=1,lc-1

/*Compute Multipliers*/

REEXAMINE LOOP ORDERS
(e) THROUGH (i)

(b) DISTRIBUTED do i LOOP:
do i=1,n

/*Invert Eliminator*/
enddo

do i=1,n
do lc=i+1,n

/*Compute Multipliers* /
enddo

do j=i+1,n
do lc=i+1,n

/*Update Matrix*/
enddo

enddo
enddo

(c) DISTRIBUTE do i LOOP AGAIN:
do i=1,n

/*Invert Eliminator*/
do i =1,n

do lc=i+1,n
/*Compute Multipliers*/

do i=1,n
do j=i+1,n

do lc=i+1,n
/*Update Matrix*/

(e) FOR THIRD NEST
INTERCHANGE do i AND do j:

(g) FOR THIRD NEST
INTERCHANGE do j AND do k:

do j=1,n do i=1,n
do i=1,j-1 do k=i+1,n

do lc=i+1,n do j=i+1,n
/*Update Matrix*/ /*Update Matrix*/

(f) FOR THIRD NEST INTERCHANGE
do i AND do k:

Loop Order Rejected -­
New bounds split loop.
do j=1,n

do lc=2,j
do i =1,lc-1

/*Update Matrix*/
do lc=j,n

do i =1,j-1
/ *Update Matrix*/

(h) FOR THIRD NEST
INTERCHANGE do i AND do k:

do k=1,n
do i=1,k-1

do j=i+1,n
/*Update Matrix*/

(i) FOR THIRD NEST INTERCHANGE
do i AND do j:

Loop Order Rejected -­
New bounds split loop.
do lc=1,n

do j=2,lc
do i=1,lc-1

/ *Update Matrix* /
do j = lc,n

do i=1,lc - 1
/*Update Matrix*/

Figure 2 Loop Orders/or LU Factorization

Digital Tecbnicaljournal Vol. 6 No. 3 Summer 1994 65

Scientific Computing Optimizations for Alpha

nested. Since the loop nest in (d) was originally
nested with the triply nested loop at the outermost
do loop, KAP will reexamine these six loop orders
after the interchange in (d).

Dependence Analysis for Loop Orders Before a
loop order can be evaluated for efficiency, KAP deter­
mines the validity of the loop order. A loop order is
valid if the resulting program would produce equiva­
lent behavior. KAP tests validity by examining the
dependences in the dependence graph according to
the transformation being applied.

For example, the test for loop interchange validity
involves searching for dependence direction vec­
tors of a certain type. The direction vector(<,>)
indicates that a loop interchange is invalid. The
direction vectors (< :), (" ,>), or(","), if present, also
indicate that the loop interchange may be invalid.

Evaluation of a Loop Order After the KAP prepro­
cessor determines that a loop order is valid, it
scores the loop order for performance. KAP consid­
ers two major factors: (1) the amount of work that
will be performed in parallel and (2) the memory
reference efficiency.

The memory reference efficiency of a loop order
can degrade performance so much that it out­
weighs the performance gained by executing a
loop in parallel. On an SMP, if a processor refer­
ences one word on a cache line, it should reference
all the words contiguously on that line. In Fortran,
a two-dimensional array reference, A(ij), should be
parallelized so that the j loop is parallel and each
processor references contiguous columns of mem­
ory. If a loop order indicated that the i loop is paral­
lel, this reference would score low. If a loop order
indicated that the j loop is parallel, it would score
high. The score for the loop order is the sum of
the scores for all the references, and the highest­
scoring loop order is preferred.

The score for a loop order depends on which
loops in the order can be parallelized. For a given
loop nest, there may be several (or no) loops that
can be parallelized. The first step is to determine
if any loops can be parallelized. If multiple loops
can be parallelized, KAP selects the best one. KAP
chooses at most one loop for parallel execution.

KAP tests loops to determine whether they can
be executed in parallel by analyzing both the state­
ments in the loop and the dependence graph. The
loop may contain certain statements that block
concurrentization. 1/0 statements or a call to a func-

66

tion or subroutine are examples. (Users can code
KAP assertions to flag these statements as paralleliz­
able.) Second, data dependence conditions may
preclude parallelization. In general, a loop that car­
ries a dependence is not parallelizable . (In some
cases, the user may override the data dependence
condition by allowing synchronization between
loop iterations.) Finally, the user may give asser­
tions that indicate a preference for making a loop
parallel or for keeping it serial.

Barring data dependence conditions that would
prevent parallelization, the amount of work that will
be performed in parallel determines the score of par­
allelizing a loop. (The user can also specify with a
directive that loops should not be parallelized unless
they score greater than a specified value.) In this
manner, KAP prefers to parallelize outer loops or
loops that are interchanged to the outside because
they contain the most work to amortize the over­
head of creating threads for parallelism.

The actual parallelization process is even more
complex than this discussion indicates. KAP applies
a number of optimizations to improve the quality of
the parallel code. If there is a reduction operation
across a loop, KAP parallelizes the loop. Too much
loop distribution can decrease program efficiency,
so loop fusion is run to try to coalesce loops.

Performance Analysis
How does the KAP preprocessor perform on real
applications? The answer is as complex as the soft­
ware written for these applications. Consider the
real-world example, DYNA3D, which demonstrates
some KAP strengths and weaknesses.

DYNA3D is nonlinear structural dynamics code
that uses the finite element analysis method. The
code was developed by the Lawrence Livermore
National Laboratory Methods Development Group
and has been used extensively for a broad range
of structural analysis problems. DYNA3D contains
about 70,000 lines of Fortran code in more than
700 subroutines.

When KAP is being used on a large program, it
is sometimes preferable to concentrate on the
compute-intensive kernels. For example, KAP devel­
opers ran six of the standard benchmarks for
DYNA3D through a performance profiling tool and
isolated two groups of three subroutines that
account for approximately 75 percent of the run
time in these cases. This data is shown in Table 4.

KAP's performance on some of these key subrou­
tines appears in Table 5. KAP parallelized all the

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

The KAP Parallelizer for DEC Fortran and DEC C Programs

Table 4 Performance Profiles of Six DYNA30 Problems

Problem Profile (First Two Initials of the
Subroutine and Percent of Run Time)

Key Call
Sequences*

NIKE2D
Example

ST 19%, FO 15%, FE 12%, PR 10%, HG 7%, HR 5% (a) and (b)

Cylinder Drop

Bar Impact

Impacted Plate

Single Contact

Clamped Beam

ST 20%, FO 15%, FE 11 %, PR 10%, HG 7%, HR 5%

WR 17%, ST 7%, FE 6%

(a) and (b)

None of interest

(c) SH 22%, TN 16%, TA 16%, YH 14%, BL 7%

YH 24%, SH 21 %, TN 7%, TA 7%, BL 6%

EL 12%, SH 12%, TN 8%, TA 8%, BL 6%
(c)

(c)

'Call Sequences

(a) ST is called; ST calls PR; and then FE is called.

(b) HR is called; HR calls HG; and then FO is called.

(c) BL calls SH, then TA, and then TN.

Table 5 KAP's Performance on Key Subroutines

Subroutine Number of Number of Loops Maximum
Nest Depth

Number of Loops
after Fusion Loops Parallelized

STRAIN 5 5
PRTAL 9 9

FELEN 6 6

FORCE 9 9

HRGMD 5 5

HGX 4 4

loops in these subroutines. Since DYNA3D was
designed for a CRAY-1 vector processor, it is perhaps
to be expected that the KAP preprocessor would
perform well. KAP, however, is intended for a
shared memory multiprocessor rather than for
a vector machine. For this reason, KAP does more
than parallelize the loops. The entries in the col­
umn labeled "Number of Loops after Fusion" show
how KAP reduced loop overhead by fusing as many
loops together as it could. KAP fused the five loops
in subroutine STRAIN into three loops and fused all
nine loops in subroutine PRTAL.

Another example of KAP's optimization for an
SMP system is that in the doubly nested loop cases,
such as subroutine FORCE (see Figure 3), the
KAP preprocessor automatically selects the outer
loop for parallel execution. In contrast, a vector
machine such as the CRAY-1 prefers the inner loop.

Because the kernels of DYNA3D code span multi­
ple subroutines, cross compilation optimization is
suggested. There are three ways to do this: inlining,
interprocedural analysis, and directives specifying
that the inner subroutines can be concurrentized.

Dtgttal Technical Journal Vol. 6 No. 3 Summer 1994

1

2

1

3

1

2

3

1

s u b r o u t i n e F O R C E OUTER LOOP

do 60 n = 1,nnc
------- PARALLELIZED

lcn = lczc + n + nh12 - 1
iO = ia(lnc)
i1 = ia(lcn + 1) - 1

cdir$ ivdep
do 50 i = iO, i1

e(1,ix(i))
e(1,ix1(i)) + ep11(i)

50 continue

60 continue

Figure 3 Parallel Loop Selection

Using KAP's inlining capability gives KAP the
most freedom to optimize the program because
in this manner KAP can restructure code across
subroutines.

Figure 4 shows part of the call sequence of sub­
routine SOLDE. (Subroutine SOLDE contains call

67

Scientific Computing Optimizations for Alpha

subroutine SOLDE

ca LL HRGMD -----.........
s u b r o u t i n e H R GM D "-. WHOLE CALL

SEQUENCE

ca LL HGX ---; INLINED

ca LL FORCE___/

Figure 4 Inlining a Kernel

to enable inlining automatically to depth two of
subroutine SOLDE because it contains calls to many
other subroutines that are not in the kernel. Here,
the user specified the subroutines to inline on the
command line. When the user specified inlining,
KAP fused all the loops in subroutines HRGMD, HGX,

and FORCE to minimize loop overhead, and then it
parallelized the fused loop.

sequence (b) of Table 4.) Subroutine SOLDE calls
subroutine HRGMD which calls subroutine HGX.

Then subroutine SOLDE calls subroutine FORCE.
KAP supports inlining to an arbitrary depth.
Inlining in KAP can be automatic or controlled from
the command line. In this case, we did not want

In some cases, the user can make simple restruc­
turing changes that improve KAP's optimizations.
Figure 5 shows a case in which fusion was blocked
by two scalar statements between a pair of loops.
The first loop does not assign any values to the vari­
ables used to create these scalars, so the user can
move the assignments above the loop to enable KAP
to fuse them.

Finally, the user can elect to specify the paral­
lelism directly. Figure 6 shows subroutine STRAIN
with X3H5 directives used to describe the

68

subroutine STRAIN
~ o 5 i = L f t , L L t MOVE UP

su b r o u i ne STRAIN
dt1d2 = .5 * dt1
crho = .0625 * rhoCLft)
do 5 i = Lft,llt : -=:/TATEMENTS e nddo

dt1d2 = .5 * dt1
er. o = .0625 * r.ho(lft) enddo
do 6 i Lft,Llt

end do

ALL c"kap• STATEMENTS
ARE X3H5 EXPLICIT
PARALLEL DIRECTIVES.

do 6 i =

enddo

Figure 5 Assisted Loop Fusion

subroutine STRAIN
c*kap* parallel region
c*kap*& shared(dxy,dyx,d1)
c*kap*& Local (i,dt1d2)
c*kap* parallel do

do 5 i = lft,llt
dyx(i) = •••

5 continue
c*kap* end parallel do
c*kap* barrier

dt1d2 = .••
c*kap* parallel do

do 6 i = lft,llt

lft,Llt

d1 = dt1d2 * (dxy(i) + dyx(i))
6 continue
c *kap* end parallel do
c*kap* end parallel region

Figure 6 X3H5 Explicit Parallelism

Vol. 6 No. 3 Summer 1994 Digital Technical journal

The KAP Parallelizer f or DEC Fortran and DEC C Programs

parallelism. In this case, the user elected to keep
the same unfused loop structure as in the original
code. This case is not dramatically less efficient
than the fused version because the parallel region
causes KAP to fork threads only once.

A very sophisticated example of KAP usage occurs
when a user inputs a program to KAP that has
already been optimized by KAP. This is an advantage
of a preprocessor that does not apply to a compiler
because a preprocessor produces source code out­
put. In this case, the statements shown in Figure 6
were generated by KAP to illustrate X3H5 paral­
lelism. A user may want to perform some hand opti­
mization on this output, such as removing the
barrier statement, and then optimize the modified
program with KAP again.

Challenges That Remain
Although the KAP preprocessor is a robust tool that
performs well in a production software develop­
ment environment, several challenges remain.
Among them are adding new languages, further
enhancing the optimization technology, and
improving KAP's everyday usability.

As the popular programming languages evolve,
KAP evolves also. KAI will soon extend KAP support
for DEC Fortran to Fortran 90 and is developing C++
optimization capabilities.

In optimization technology, KAI's goal is to make
an SMP server as easy to use as a single-processor
workstation is today. "Automatic Detection of Par­
allelism: A Grand Challenge for High-Performance
Computing" contains a leading-edge analysis of par­
allelization technology. 10 The research reported
shows that further developing current techniques
can improve optimization technology. These tech­
niques frequently involve the grand challenge of
compiler optimization-whole program analysis.

In a much more pragmatic direction, the KAP
preprocessor should be integrated with Digital's
compiler technology at the intermediate represen­
tation level. Such integration would increase pro­
cessing efficiency because the compiler would not
have to reparse the source code. In addition, inte­
gration would increase the coordination between
KAP and the compiler to improve performance for
the end user.

Increasing the usability of the KAP preprocessor,
however, benefits the end user directly. KAP
engineers frequently talk to beta users and encour­
age feedback. The following are examples of user
comments:

Dig ital Technical Journal Vol. 6 No. 3 Summer 1994

• Optimizing programs is difficult when no sub­
routine in the program takes more than a few
percent of the run time. As its usability in this
area improves, KAP will become a substantial pro­
ductivity aid. If a program is generally slow, opti­
mizing repeated usage patterns will allow the
programmer to use a comfortable programming
style and still expect peak system performance.

• Increasing feedback to the user would improve
KAP's usability. When KAP cannot perform an
optimization, often the user can help in several
ways (e.g., by providing more information at
compile time, by changing the options or direc­
tives, or by making small changes to the source
code). KAP does not always make it clear to the
user what needs to be done. Providing such feed­
back would improve KAP's usability.

• Integration with other performance tools would
be useful. Alpha systems have a good set of per­
formance monitoring tools that can provide
clues about what to optimize in a program and
how. The next release of the KAP preprocessor
will provide some simple tools that a user can
employ to integrate KAP with tools like prof and
to track down performance differences.

On a final note, the fact that KAP does not speed
up a program should not always be cause for disap­
pointment. Some programs already run as fast as
possible without the benefit of a KAP preprocessor.

Acknowledgments
We wish to acknowledge the Lawrence Livermore
National Laboratory Methods Development Group
and other users for providing applications that give
us insight into how to improve the KAP preproces­
sor. We would like to thank those at Digital who
have been instrumental in helping us deliver
KAP on the DEC OSF/1 platform, especially Karen
DeGregory, John Shakshober, Dwight Manley, and
Dave Velten. Everyone at Kuck & Associates partici­
pated in the making of this product but of special
note are Mark Byler, Debbie Carr, Ken Crawford,
Steve Healey, David Nelson, and Sree Simhadri.

References

1. D. Blickstein et al., "The GEM Optimizing
Compiler System," Digital Technical journal,
vol. 4, no. 4 (Special Issue 1992): 121-136.

69

Scientific Computing Optimizations for Alpha

2. M. Wolfe, Optimizing Supercompilers for
Supercomputers (Cambridge, MA: MIT Press,
1989).

3. Parallel Processing Model for High Level Pro­
gramming Languages, ANSI X3H5 Document
Number X3H5/94-SD2, 1994.

4. P. Tu and D. Padua, "Automatic Array Privatiza­
tion," Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Com­
puting, vol. 768 of Lecture Notes in Com­
puter Science (New York: Springer-Verlag,
1993): 500-521.

5. B. Maskas et al., "Design and Performance of
the DEC 4000 AXP Departmental Server Com­
puting System," Digital Technical Journal,
vol. 4, no. 4 (Special Issue 1992): 82-99.

6. R. Allen and K. Kennedy, "Automatic Transla­
tion of FORTRAN Programs to Vector Form,"

70

ACM Transactions on Programming Lan­
guages and Systems, vol. 9, no. 4 (October
1987): 491-542.

7. U. Banerjee, Dependence Analysis for Super­
computing (Norwell, MA: Kluwer Academic
Publishers, 1988).

8. KAP for DEC Fortran for DEC OSF/ 1 AXP User
Guide (Maynard, MA: Digital Equipment
Corporation, 1994).

9. KAP for C for DEC OSF/ 1 AXP User Guide
(Maynard, MA: Digital Equipment Corpora­
tion, 1994).

10. W Blume et al., "Automatic Detection of Paral­
lelism: A Grand Challenge for High-Perfor­
mance Computing," CSRD Report No. 1348
(Urbana, IL: Center for Supercomputing
Research and Development, University of
Illinois at Urbana-Champaign, 1994).

Vol. 6 No. 3 Summer 1994 Dtgttal Technical Journal

I Further Readings

The Digital Technical Journal
publishes papers that explore
the technological foundations
of Digital's major products.
Each Journal focuses on at least
one product area and presents
a compilation of refereed papers
written by the engineers who
developed the products. The con­
tent for the Journal is selected
by the Journal Advisory Board.
Digital engineers who would
like to contribute a paper to the
Journal should contact the editor
at RDVAX::BLAKE.

Topics covered in previous issues of the
Digital Technical journal are as follows:

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 21071/21072 PCI Chip
Sets/DLT2000 Tape Drive
Vol. 6., No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking/Open VMS
AXP System Software/Alpha AXP PC Hardware
Vol. 6., No. 1, Winter 1994, EY-Q011E-1J

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-1521 E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Digital Technical Journal Vol. 6 No. 3 Summer 1994

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXduster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-Cl97E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-C196E-DP

Distributed Systems
Vol. 1, No. 9,June 1989, EY-C179E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-C166E-DP

CVAX-based Systems
Vol. 1, No. 7, August 1988, EY-6742E-DP

Software Productivity Tools
Vol. 1, No. 6, February 1988, EY-8259E-DP

VAXduster Systems
Vol. 1, No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-6711E-DP

Networking Products
Vol. 1, No. 3, September 1986, EY-6715E-DP

MicroVAX II System
Vol. 1, No. 2, March 1986, EY-3474E-DP

VAX 8600 Processor
Vol. 1, No. 1, August 1985, EY-3435E-DP

71

Further Readings

Subscriptions and &ck Issues
Subscriptions to the Digital Technical Journal
are available on a prepaid basis. The subscription
rate is $40.00 (non-U.S. $60.00) for four issues
and $75.00 (non-u.s. $115.00) for eight issues.
Orders should be sent to Cathy Phillips, Digital
Equipment Corporation, 30 Porter Road LJ02/D 10,
Littleton, Massachusetts 01460, U.S.A., Telephone:
(508) 486-2538, FAX: (508) 486-2444. Inquiries
can be sent electronically to dtj@digital.com.
Subscriptions must be paid in U.S. dollars, and
checks should be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Digital
Technical Journal are available for $16.00
each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the
Journal are available on the Internet at
http://www.digital.com/info/D1J/home .html.
Complete Digital Internet listings can be
obtained by sending an electronic mail
message to info@digital.com.

Digital Research Laboratory Reports
Reports published by Digital's research labora­
tories can be accessed on the Internet through
the World Wide Web or FTP. For access informa­
tion on the electronic or hard-copy versions
of the reports, see http://gatekeeper.dec.com/
hypertext/info/era. reports.html.

Digital Product Information
Readers of the Journal can keep up-to-date on
Digital's products and services by subscribing
to the Digital Reference Service. To receive cur­
rent information on all Digital's products and
services on a regular basis, contact the Digital
Reference Service, P.O. Box 6464, Holliston, MA

01746. Within the United States, call (800) 494-4377
or (508) 429-5515, extension 765. Outside the United
States, call (508) 429-3015 or send a facsimile to
(508) 429-6921.

Technical Books and Papers
by Digital Authors
Applications of Petri Nets in Manufacturing
Systems Modeling, Control, and Performance
Analy sis, Alan A. Desrochers and Robert Y. Al-Jaar,
IEEE Press, New York, 1994 (ISBN 0-87942-295-5).

72

This practical, highly specialized book presents
theory and examples that clearly show how to use
the Petri net approach to model, control, and then
analyze the performance of these complex systems.
This book also brings together newly documented
applications of Petri nets in Japan and Europe and
makes them available to practitioners worldwide.

From this book, the reader will learn how to model
complex manufacturing systems using Petri nets;
analyze the performance of the overall manufactur­
ing system in terms of production rates, machine
utilization, average in-process inventory, and other
measures; generate control software from the Petri
net model of an automated manufacturing system;
and synthesize Petri net models for large automated
manufacturing systems.

Applications of Petri Nets in Manufacturing
Systems Modeling, Control, and Performance
Analysis will be of particular interest to researchers
in manufacturing systems engineering and individ­
uals involved in production planning and control,
plant layout and design, and scheduling of manu­
facturing operations.

R. Abugov and K. Zinke, "Prioritization of Defect
Reduction Activity by Yield Impact," 1994 SEMICON
Ultraclean Manufacturing Conference (October
1994).

M. Ackerman and R. Buckland, "Multiple Matrices
for a Marketing QFD," Fifth Symposium on Quality
Function Deployment (June 1994).

M. Ackerman and R. Buckland, "Successful QFD
Application at Digital: Unique Approaches and
Applications of QFD to Address Business Needs,"
Fifth Sy mposium on Quality Function
Deployment (June 1994).

H. Ali,]. Steele,]. Bosco, and G. Bartlett, "Electro­
mechanical Study of 'No-Clean ' Flux Corrosivity,"
Proceedings of the Eighth Electronic Materials
and Processing Congress (August 1993).

R. Allmon, "Design of Portable Systems," Pro­
ceedings of the IEEE Custom Integrated Circuits
Conference (May 1994).

P. Anick, "Adapting a Full-text Information Retrieval
System to the Computer Troubleshooting Domain,"
Proceedings of the Seventeenth Annual Interna­
tional ACM-SIGIR Conference on Research and
Development in Information Retrieval (July 1994).

Vol. 6 No. 3 Summer 1994 Digital Technical journal

N. Arora and B. Doyle, "Modeling the I-V Charac­
teristics of Fully Depleted SOI MOSFETs Including
Self Heating;' IEEE International Silicon-on­
Insulator Conference Proceedings (October 1994).

N. Arora, B. Doyle, and D. Krakauer, "SPICE Model
and Parameters for Fully Depleted SOI MOSFETs,
Including Self-heating;' IEEE Electron Device Letters
(October 1994).

N. Arora, R. Rios, and C. Huang, "Impact of Poly­
silicon Depletion Effect on Circuit Performance
for 0.35µ, CMOS Technology," Proceedings of the
Twenty-fourth European Solid State Device
Research Conference (September 1994).

D. Bhavsar and]. Edmondson, "Testability Strategy
of the Alpha AXP 21164 Microprocessor," Proceed­
ings of the IEEE International Test Conference
(October 1994).

S. Bilotta and D. Proctor, "Development of a Manu­
facturable Low Pressure ROXNOX Oxidation Pro­
cess," Advanced Semiconductor Manufacturing
Conference and Workshop Proceedings
(November 1994).

C. Brench and B. Archambeault, "Proposed Stan­
dard EMI Modeling Problems," IEEE International
Symposium on Electromagnetic Compatibility
(August 1994).

C. Brench, "Heatsink Radiation as a Function of
Geometry;' IEEE International Symposium on
Electromagnetic Compatibility (August 1994).

C. Brench, "Shield Degradation in the Presence
of External Conductors," IEEE International
Symposium on Electromagnetic Compatibility
(August 1994).

]. Clement and A. Enver, "Modeling Electromigration­
induced Stress Buildup Due to Nonuniform Tem­
perature," Materials Reliability in Microelectronics
IV Symposium Proceedings (April 1994).

W Cronin,]. Hutchison, K. Ramakrishnan, and
H. Yang, "A Comparison of High-speed LANs,"
Proceedings of the IEEE Nineteenth Conference on
Local Computer Networks (October 1994).

W Dubie, "Networds: The Impact of Electronic
Text-Processing Utilities on Writing," Journal of
Social and Evolutionary Systems (November 1994).

Digital Technical Journal Vol. 6 No. 3 Summer 1994

]. Edmondson and P. Rubinfeld, "An Overview of
the 21164 Alpha AXP Microprocessor," Hot Chips VI
Symposium (August 1994).

I

T. Fox, "The Design of High-Performance Micropro­
cessors at Digital," Thirty-first Design Automation
Conference Proceedings (June 1994).

]. Grodstein, E. Lehman, H. Harkness, and
W Grundmann, "Optimal Latch Mapping and
Retiming within a Tree," IEEE/ACM Interna­
tional Conference on Computer-aided Design
(November 1994).

C. Gross, "Method for Selecting Semiconductor
Equipment Using Empowered Teams;' Advanced
Semiconductor Manufacturing Conference and
Workshop Proceedings (November 1994).

T. Guay, "CASE-based Reasoning for Knowledge
Acquisition Suggestions," International Journal
of Artificial Intelligence Tools (July 1994).

S. Jong, "Exploring Paths toward Quality Infor­
mation," Forty-first Annual Society for Technical
Communication (May 1994).

C.Juszczak and D. Lebel, "NFS Version 3-Design
and Implementation," Summer 1994 USENIX

Technical Conference (June 1994).

D. Krakauer and K. Mistry, "Circuit Interactions
During Electrostatic Discharge;' IEEE Electrical
Over Stress/Electrostatic Discharge Symposium
Proceedings (September 1994).

]. Lloyd, "Electromigration Failure of Narrow Al
Alloy Conductors Containing Stress Voids,"
Materials Reliability in Microelectronics IV
Symposium Proceedings (April 1994).

]. Lloyd, "Electromigration Failure in Thin Film Con­
ductors," Materials Reliability in Microelectronics
IV Symposium Proceedings (April 1994).

P. Martino and G. Freedman, "Predicting Solder
Joint Shape by Computer Modeling," Proceedings
of the Forty-fourth Electronic Components and
Technology Conference (May 1994).

T. Moore, "A Test Process Optimization and Cost
Modeling Toot;' Proceedings of the IEEE Interna­
tional Test Conference (October 1994).

73

Further Readings

D. Morin, T. Comard, M. Joshi, and K. Sprague,
"Calculating Error of Measurement on High-speed
Microprocessor Test," Proceedings of the IEEE

International Test Conference (October 1994).

G. Papadeas and D. Gauthier, "An On-line Data
Collection and Analysis System for VLSI Devices
at Wafer Probe and Final Test," Proceedings of the
IEEE International Test Conference (October 1994).

M. Piasecki, K. Orvek, R. Jones, and S. Dass, "Deep
lN Technology for 0.35 µ.m Lithography," 1994 IEEE

Lithography Workshop (September 1994).

K. Ramakrishnan and P Biswas, "Performance
Benefits of Nonvolatile Caches in Distributed File
Systems," Concurrency: Practice and Experience
(July 1994).

K. Ramakrishnan and H. Yang, "The Ethernet
Capture Effect: Analysis and Solution," Proceed­
ings of the IEEE Nineteenth Conference on Local
Computer Networks (October 1994).

K. Ramakrishnan and H. Yang, "FIFO Design for
a High-speed Network Interface," Proceedings
of the IEEE Nineteenth Conference on Local
Computer Networks (October 1994).

R. Razdan and K. Brace, "PRISC Software Accelera­
tion Techniques," IEEE International Conference
on Computer Design: VLSI in Computers and
Processors (October 1994).

A. Sathaye, "Application of Supervisor Synthesis
for Controlled Time Petri Nets to Real-time Data­
base Systems," 1994 American Control Conference
(June 1994).

S. Sathaye, "Conventional and Early Token Release
Scheduling Models for the IEEE 802.5 Token Ring,"
Journal of Real-Time Systems (May 1994).

S. Sathaye, "A Real-time Scheduling Framework
for Packet-switched Networks," Fourteenth Inter­
national Conference on Distributed Computing
Systems (June 1994).

C. Schiebl, "Application of EDX Spectroscopy
to Accurate Nondestructive Measurement of
CoSi Film Thicknesses during Semiconductor
Processing," Twenty-eighth Annual Microbeam
Analysis Society Meeting (August 1994).

74

C. Schiebl, "Continuous Fluorescence Correction
Factor for Layered Specimen," Twenty-eighth
Annual Microbeam Analysis Society Meeting
(August 1994).

C. Schiebl, "Secondary Depth Distribution Gener­
ated by Characteristic Fluorescence in Multilayer
Samples for Use in Quantitative EPMA," Twenty­
eighth Annual Microbeam Analysis Society
Meeting (August 1994).

J. Seyyedi, "Soldered Joint Reliability for Interstitial
Pin Grid Array Packages," Journal of Sutjace Mount
and Related Technologies Group (October 1994).

H. Soleimani, "An Investigation of Phosphorous
Transient Diffusion in Silicon below the Solid Solu­
bility Limit and at a Low Implant Energy," Journal
of the Electrochemical Society (August 1994).

K. Steeples and D. Chang Kau, "Multiply Charged,
Channeled, Ion Implantation," Tenth International
Conference on Ion Implantation Technology
(June 1994).

K. Steeples, D. Chang Kau, M. Andreoli, and
K. Mistry, "Rapid Implementation of a LATID

Process," Tenth International Conference on
Ion Implantation Technology (June 1994).

N. Sullivan and S. Arsenault, "SEM/EDS Analysis
Method for Bare Silicon Particle Monitor Wafers,"
Advanced Semiconductor Manufacturing
Conference and Workshop Proceedings
(November 1994).

N. Sullivan and R. Newcomb, "Critical Dimension
Measurement in the SEM: Comparison of Backscat­
tered vs. Secondary Electron Detection," Proceed­
ings of the International Society of Photo-Optical
Instrumentation Engineers (SPIE): Integrated Cir­
cuit Metrology, Inspection, and Process Control
VIII (February 1994).

B. Thomas, "OpenVMS 1/0 Concepts: Kernel
Processes," Digital Systems Journal (July 1994).

B. Thomas, "OpenVMS 1/0 Concepts: Software,"
Digital Systems Journal (July 1994).

B. Thomas and K. Morse, "OpenVMS AXP 1/0 Con­
cepts," Digital Systems Journal (June 1994).

Vol. 6 No. 3 Summer 1994 Digital Technical journal

A. Torabi, M. Mallary, and S. Marshall, "The Effect
of Rise Time and Field Gradient on Nonlinear Bit
Shift in Thin Film Heads," The Sixth Joint MMM­
lntermag Conference (June 1994).

A. Torabi, M. Mallary, S. Marshall, S. Batra, and
S. Ramaswamy, "Performance Evaluation of Differ­
ent Pole Geometries in Thin Film Heads," The Sixth
Joint MMM-lntermag Conference (June 1994).

M. Tsuk, "FASIBENRY: A Multipole-accelerated
3-D Inductance Extraction Program; IEEE Trans­
actions on Microwave Theory and Techniques
(September 1994).

M. Tsuk and R. Evans, "Modeling and Measure­
ment of the Power Distribution System of a High­
performance Computer System," IEEE Topical
Meeting on Electrical Performance of Electronic
Packaging (October 1993).

R. Ulichney, "Halftone Characterization in the
Frequency Domain," The Sodety for Imaging
Science and Technology's (JS&T's) Forty-seventh
Annual Conference (May 1994).

Digital Technical Journal Vol. 6 No. 3 Summer 1994

R. Ulichney, "The Void-and-cluster Method for
Dither Array Generation," Proceedings of the
International Sodety of Photo-Optical Instru­
mentation Engineers (SPIE) (September 1993).

M. Utt, "A System for Discovering Relationships
by Feature," Proceedings of the Seventeenth
Annual International ACM-SIGIR Conference
on Research and Development in Information
Retrieval (July 1994).

J. Vicente, "Network Capacity Planning," CMG '93
Conference (December 1993).

A. Villani, "Cohesive Mechanical Behavior of
Adhesive Materials;' Proceedings of the 1993 ASME
International Electronics Packaging Conference:
Advances in Electronic Packaging 1993 (October
1993).

I

J. Yang, "Reliability Performance of an R3000-Based
MCM for Desktop Workstations," International Elec­
tronics Packaging Conference (September 1993).

W Zahavi, "Modeling the Performance Budget,"
Computer Measurement Group Proceedings
(CMG '93) (September 1993).

75

I Recent Digital U S. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original pub­
lished patent.

4,592,072 R.E. Stewart

5,210,834 W. Beach and J. Zurawski

5,210,874 P. Karger

5,212,650 D.HooperandS.Kundu

5,212,783 S. Sherman

5,214,770 R. Ramanujan, P. Bannon,
and S. Steely

5,216,413 L. Seiler, J. Pappas, and
R. Rose

5,218,684 D. Hayes and V Triolo

5,218,712 D. Bhandarkar, W. Cardoza,
D. Cutler, D. Orbits, and
R. Witek

5,220,468 M. Sidman

5,220,674 W. Morgan, D. Cobb, G. Bell,
and A. Carlson

5,221 ,422 S. Das and J. Khan

5,222,029 D.HooperandS.Kundu

5,222,223 R. Hetherington, D. Webb,
T. Fossum, J. Murray, and
D. Manley

5,222,224 S. Arnold, S. Delahunt,
M. Flynn, T. Fossum,
R. Hetherington, and
D. Webb

5,226,170 P. Rubinfeld

5,228,129 S. Bryant and M. Harwood

5,230,067 B.Buch

5,230,071 B. Newman

5,230,072 D. Smith and K. O'Rourke

5,230,079 R. Grondalski

76

Decoder for Self-Clocking Serial Data Communications

High Speed Transfer of Instructions from a Master to
a Slave Process

Cross-Domain Call System in a Capability Based Digital
Data Processing System

Procedure and Data Structure for Synthesis and Trans­
formation of Logic Circuit Designs

System Which Directionally Sums Signals for Identifying
and Resolving Timing Inconsistencies

System for Flushing Instruction-Cache Only When
Instruction-Cache Address and Data-Cache Address Are
Matched and the Execution of a Return-from-Execution­
or-Interrupt Command

Apparatus and Method for Specifying Windows with Priority
Ordered Rectangles in a Computer Video Graphics System

Memory Configuration System

Providing a Data Processor with a User-mode Accessible
Mode of Operations in Which the Processor Performs
Processing Operations without Interruption

Disk Drive with Constant Bandwidth Automatic Gain Control

Local Area Print Server for Requesting and Storing Required
Resource Data and Forwarding Printer Status Message to
Selected Destination

Lithographic Technique Using Laser Scanning for Fabrication
of Electronic Components and the Like

Bitwise Implementation Mechanism for a Circuit Design
Synthesis Procedure

Method and Apparatus for Ordering and Queueing Multiple
Memory Requests

Scheme for Insuring Data Consistency between a Plurality
of Cache Memories and the Main Memory in a Multiprocessor
System

Interface between Processor and Special Instruction
Processor in Digital Data Processing System

Synchronous Communication Interface for Reducing the
Effect of Data Processor Latency

Bus Control Circuit for Latching and Maintaining Data
Independently of Timing Event on the Bus Until New
Data Is Driven Onto

Method of Controlling the Variable Baud Rate of Peripheral
Devices

System for Managing Hierarchical Information in a Digital
Data Processing System

Massively Paralle l Array Processing System with Processors
Selectively Accessing Memory Module Locations Using Address
in Microword or in Address Register

Vol. 6 No. 3 Summer 1994 Digital Technical Journal

5,235,693

5,237,574

5,239,635

5,247,398
5,249,187

5,249,293

5,251,322

5,255,367

5,261,113

5,266,409

5,267,175

5,276,892

5,278,840

5,280,617

5,287,463

5,291,581

5,297,283

5,301,329
5,303,380

5,305,462

5,313,467

5,317,717

J. Lynch, K. Chinnaswamy,
P. Goodwin, J. Tessari, and
M. Gagliardo

L. Weng

R.E. Stewart, T.E. Leonard,
and S.T. Lee

M. Sidman

W. Bruckert and T. Bissett

B. Schreiber, C. Cockcroft,
M. Ozur, R. Bismouth, and
D. Doherty

P. Doyle, J. Ellenberger,
E. Jones, D. Carver, S. DiPirro,
B. Gerovac, W. Armstrong,
E. Gibson, R. Shapiro,
K. Rushforth, and W.C. Roach

W. Bruckert, T. Bissett,
D. Mazur, and]. Munzer

N. P.Jouppi

P.H. Schmidt and J.C. Angus

D. Hooper

A.S. Olesin and R.M. Supnik

D. Bhandarkar, W. Cardoza,
D. Cutler, D. Orbits, and
R. Witek

R.F. Brender and B.R. Brett

R.C. Frame and F.A. Zayas

D. Bhandarkar, W. Cardoza,
D. Cutler, D. Orbits, and
R. Witek

D. Cutler, J. Kelly, and
F. Perazzoli

R.C. Frame and F.A. Zayas

B. Foster, G. Brown, J. Piazza,
J. Tenny, B. Nelson,
W. Van Roggen, and
P. Anagnostopoulos

R. Grondalski

G. Varghese, M. Fine, A. Smith,
and R. Szmauz

D. Bhandarkar, W. Cardoza,
D. Cutler, D. Orbits, and
R. Witek

Method and Apparatus for Reducing Buffer Storage in
a Read-Modify-Write Operation

Error-resilient Information Encoding

Virtual Address to Physical Address Translation Using Page
Tables in Virtual Memory

Automatic Correction of Position Demodulator Offsets

Dual Rail Processors with Error Checking on 1/0 Reads

Computer Network Providing Transparent Operation
on a Compute Server and Associated Method

Method of Operating a Computer Graphics System Including
Asynchronously Traversing Its Nodes

Fault Tolerant, Synchronized Twin Computer System with
Error Checking of 1/0 Communication

Apparatus and Method for a Single Operand Register Array
for Vector and Scalar Data Processing Operations

Hydrogenated Carbon Compositions

Database Access Mechanism for Rules Utilized by a Synthesis
Procedure for Logic Circuit Design

Destination Control Logic for Arithmetic and Logic Unit for
Digital Data Processor

Apparatus and Method for Data Induced Condition Signalling

I

Automatic Program Code Generation in a Compiler System for
an Instantiation of a Generic Program Structure and Based on
Formal Parameters and Characteristics of Actual Parameters

Method and Apparatus for Transferring Information over
a Common Parallel Bus Using a Fixed Sequence of Bus
Phase Transitions

Apparatus and Method for Synchronization of Access
to Main Memory Signal Groups in a Multiprocessor Data
Processing System

Object Transferring System and Method in an Object Based
Computer Operating System

Double Unequal Bus Timeout

System for Processing Data to Facilitate the Creation
of Executable Images

Mechanism for Broadcasting Data in a Massively Parallel
Array Processing System

Integrated Communication Link Having Dynamically
Allocatable Bandwidth and Protocol for Transmission
of Allocation Information over the Link

Apparatus and Method for Main Memory Unit Protection
Using Access and Fault Logic Signals

Digital Tecbntcal]ournal Vol. 6 No. 3 Summer 1994 77

Call for Authors
from Digital Press

Digital Press has become an imprint of Butterworth-Heinemann, a major inter­

national publisher of professional books and a member of the Reed Elsevier

group. Digital Press remains the authorized publisher for Digital Equipment

Corporation: the two companies are working in partnership to identify and pub­

lish new books under the Digital Press imprint and create opportunities for

authors to publish their work.

Digital Press remains committed to publishing high-quality books on a wide

variety of subjects. We would like to hear from you if you are writing or thinking

about writing a book.

Contact: Frank Satlow

Publisher

Digital Press

313 Washington Street

Newton, MA 02158
Tel: (617) 928-2649
Fax: (617) 928-2640
fps@world.std.com

ISSN 0898-901X

Prin� in U.S.A. BY.S7991!-TJ/9j 01 14 14.� Copyright 0 Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design of the AlphaServer Multiprocessor Server Systems
	The AlphaServer 2100 I/O Subsystem
	DEC OSF/1 Version 3.0 Symmetric Multiprocessing Implementation
	DXML: A High-performance Scientific Subroutine Library
	The KAP Parallelizer for DEC Fortran and DEC C Programs
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

