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I Editor's Introduction 

Jane C. Blake 
Managing Editor 

Designs that capitalize on Digital's 64-bit Alpha 
RISC processors or that enhance the performance 
of scientific applications are the subjects of papers 
in this issue. Featured topics include the well­
received AlphaServer multiprocessing systems, 
the DEC OSF/1 symmetric multiprocessing operat­
ing system, a high-performance math library, and 
a preprocessor program developed by Kuck & 
Associates, Inc. 

To develop a price/performance leader for the 
server market, designers of the AlphaServer 2100 
and 2000 multiprocessing systems had to make 
decisions that were at once creative, pragmatic, 
and timely. Fidelma Hayes, an engineering manager 
for the Server Group, presents an overview of these 
h igh-performance servers that incorporate Alpha 
RISC technology and PC-style 1/0 subsystems, and 
support three operating systems-Microsoft's 
Windows NT, DEC OSF/1, and OpenVMS. Because of 
the engineering team's persistent focus on perfor­
mance, cost, and time-to-market, all these goals for 
the AlphaServer systems were surpassed. 

Introducing two PC buses in the AlphaServer 
multiprocessing system was an important factor in 
market success and an interesting engineering chal­
lenge. Andy Russo discusses the benefits of a dual­
level 1/0 structure that contains both the widely 
used EISA bus and the newer high-performance 
PCI bus that connects to a 128-bit multiprocessing 
system bus. He describes several innovative tech­
niques that promote efficiency in the hierarchi­
cal bus structure, the advantages offered by the 
selection of bus bridges (one custom ASIC and one 
standard chip set), and the VO interrupt scheme 
that combines familiar technology with custom 
support logic. 
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The next paper presents the significant software 
work done to ensure high performance and reliabil­
ity as CPUs are added to the 2100 and 2000 multipro­
cessing systems. Jeff Denham, Paula Long, and Jim 
Woodward first review the foundations of DEC 
OSF/1 version 3.0, Digital's implementation of UNIX 
for the AlphaServer multiprocessing systems. They 
then examine issues that arise when moving an 
operating system from a uniprocessor to a shared­
memory SMP platform, in particular, the design 
team's efforts in Jock-based synchronization and 
algorithm modifications aimed at parallelism 
within the operating system kernel. 

The total impact of 64-bit RISC systems and oper­
ating system support for shared memory SMP plat­
forms is demonstrated by meeting the demands 
of scientific and technical applications. A tool for 
accelerating application performance on all Alpha 
systems is the DXML Extended Math Library. 
Chandrika Karnath, Roy Ho, and Dwight Manley 
briefly discuss the role of mathematical libraries 
and then present an overview of DXML compo­
nents, which include both public domain BLAS and 
LAPACK libraries and Digital proprietary software. 
Using example routines, they explain optimization 
techniques that effectively exploit the memory 
hierarchy and provide substantial performance 
improvements. 

Another tool for op timizing scientific application 
performance is KAP, a preprocessor to parallelize 
DEC Fortran and DEC C programs. As authors Bob 
Kuhn, Bruce Leasure, and Sanjiv Shah from Kuck & 
Associates describe it, the KAP product is a super­
optimizer, performing optimizations at the source 
code level that go beyond those performed by the 
compilers. Their paper reviews adaptations to KAP 
for SMP systems and the key design aspects, such as 
data dependence analysis and the selection of loops 
to parallelize from among many in a program. 

The editors thank Andrei Shishov, Mid-range 
AlphaServers Program Manager, for his help in 
developing this issue of the Journal. 
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Foreword 

Steve Hohnes 
Engineering Group 
Manager, Server 
Platform Development, 
and Director, Office 
Server Product Line 

The engineering developments described in this 
issue represent the second of many planned gener­
ations of products that will be designed to fulfi ll 
Digital's Alpha vision. That vision is (a) to make 
Alpha systems open, and (b) to deliver a rich set of 
Alpha system products that lead the market both 
in performance and price/performance. It is heart­
ening to see the vision being realized. It is yet more 
heartening to see it unfolding simultaneously with 
appreciable improvements in Digital's business 
practices. These combined events have already 
resulted in substantial market acceptance of 
Digital's AlphaServer products. 

The particular set of papers in this issue is for­
tuitous in that it demonstrates the large number 
of individuals and range of engineering skills 
required to bring about an industry phenomenon 
such as Alpha. Included are papers focused on the 
AlphaServer multiprocessing systems, on the sym­
metric multiprocessing implementation of the DEC 
OSF/1 operating system, on the optimization of 
mathematical subroutine libraries for the Alpha 
architecture, and on the KAP preprocessor. If one 
can imagine these technical efforts multiplied 
manyfold, the scope of the Alpha undertaking 
will emerge. 

The first generation of products based on the 
Alpha architecture was introduced in 1992. The 
AlphaServer 2100 system and DEC OSF/1 SMP operat­
ing system, introduced in mid-1994, together repre­
sent the beginning of the second-generation Alpha 
server products. The overarching development 
goal was to give our present and future customers 
a compelling reason to buy. The resultant direction 
was to provide very low cost multiprocessing sys­
tem capability with industry-standard open 1/0 
buses, in this case PCI and EISA. To capitalize on 
these attributes and to ensure that a complete solu­
tion was delivered, the engineering teams main­
tained a customer-focused perspective. It is this 
perspective that has enabled the AlphaServer 2100 
to achieve rapid market acceptance. 

Truly, though, the most significant achievement 
for the present round of Alpha server products is 
this: a whole new standard of price/performance 
for the industry has been reached. Computing that 
in the past could have been performed only with 
very expensive high-end machines or extensive dis­
tributed networks is now performed by affordable 
AlphaServer systems. 

This price/performance breakthrough augments 
Digital's strong capabilities. 



• A truly open environment that supports UNIX and 
Windows NT operating systems on Alpha systems 

• The ongoing strength of the world's best full­
featured commercial operating system, the 
OpenVMS system 

• A world-class and worldwide service and deliv­
ery organization 

• An extensive and growing network of channels 

• Overall, Digital's renewed and meaningful com­
mitment to be responsive to the demands and 
needs of the markets 

This is a very exciting and productive time in 
Digital's history. 

If this were the end of the story, there would be 
much of which to be proud. In fact, there is more to 
come across the range of AlphaGeneration prod­
ucts, including workstations, PCs, clustering, oper­
ating systems, and networking. In the server area 
specifically, the recently announced AlphaServer 
2000 increases the price/performance lead of the 
2100 system. Processor and cache upgrades have 
increased the absolute performance of the family. 
Just around the corner are similar advances for 
other members of Digital's server products. A little 
further away are significant enhancements in our 
clustering capabilities and in our server manage­
ment tools. 
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All these developments are of direct and measur­

able benefit to our customers. All are guided by 
what the markets are telling us they want. The 
trend and pace of these enhancements will allow 
Digital to continue to deliver on the promise of the 
Alpha vision. 

Performance measurements, for example, 
SPECmark data and transaction-per-second tests, 
and competitive comparisons support the state­
ments above. However, the case is made most con­
vincingly by the early acceptance and rapid ramp 
up of AlphaServer 2100 system purchases by our 
customers. In the highly competitive server arena, 
success is being demonstrated daily. 

I would like to take this opportunity to offer 
a very enthusiastic thank-you to all whose work is 
represented in the accompanying technical papers, 
most especially to the AlphaServer 2100 develop­
ment team whose work I have had the privilege to 
observe since the team's formation. The hard work 
and dedication of everyone is recognized, appreci­
ated, and needed for the future. 

This foreword will conclude in favor of the sub­
stantive papers that detail the technical contribu­
tions made by the authors and their colleagues. It is 
my expectation that readers of this issue of the 
Digital Technical Journal will gain useful technical 
insights. It is my hope that they will also see, as I do, 
that the future of Digital computing is bright. 

7 



Fide/ma M. Hayes I 

Design of the AlphaServer 
Multiprocessor Server Systems 

Digital's AJphaServer multiprocessor systems are high-performance servers that 
combine multiprocessing technology with PC-style 1/0 subsystems. The system 
architecture allows four processing nodes, four memory nodes (up to a maximum 
of 2 GB), and two 1/0 nodes. All nodes communicate through a system bus. The 
system bus was designed to support multiple generations of Alpha processor tech­
nology. The architecture can be implemented in different ways, depending on the 
size of the system packaging. 

The AlphaServer 2100 (large pedestal) and the 
AlphaServer 2000 (small pedestal) servers from 
Digital combine multiprocessing Alpha technology 
with an I/0 subsystem traditionally associated with 
personal computers (PCs). The I/0 subsystem in the 
AlphaServer systems is based on the Peripheral 
Component Interconnect (PCI) and the Extended 
Industry Standard Architecture (EISA) buses. All 
AlphaServer products, including the AlphaServer 
2100 cabinet version, share common technology 
and support at least three generations of the Alpha 
processor. In addition, the servers support three 
operating systems: Microsoft's Windows NT version 
3.5, and Digital's DEC OSF/1 version 3.0 (and higher) 
and OpenVMS version 6.1 (and higher). 

The AlphaServer systems are designed to be 
general-purpose servers for PC local area network 
(LAN) and database applications. All models of the 
system use a common multiprocessing bus inter­
connect that supports different numbers of nodes, 
depending on the system configuration. The systems 
share a common CPU, memory, and I/0 architecture. 
The number of CPUs, the amount of memory, the 
number ofI/0 slots, and the amount of internal stor­
age vary depending on the mechanical packaging. 
The flexibility of the architecture allows the quick 
development of new and enhanced systems. 

This paper discusses the transformation of a 
set of requirements into high-performance, cost­
effective product implementations. The following 
section describes the evolution of the AlphaServer 
design from an advanced development project into 
a design project. The paper then describes the CPU 
module, the multiprocessor system bus, and the 
memory module. Subsequent sections discuss 
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module and silicon technology and the high­
availability features incorporated into the design. 
The paper ends with a performance summary and 
conclusions about the project. 

Concept Development 
The engineering investigations of a client-server 
system originated from a business need that Digital 
perceived when it introduced the first systems 
to incorporate the Alpha technology in late 1992. 
Among Digital's first products in the server market 
were the DEC 4000 high-performance departmental 
system, the DEC 3000 deskside workstation/server, 
and the EISA-based Alpha PC. The lack of an explic­
itly identified, general-purpose system for the mid­
range system market generated many requests from 
Digital's MicroVAX II system customers. Requests 
from these customers propelled the AlphaServer 
product development effort. 

From the beginning of the project, two major 
constraints were evident: The schedule required 
a product by mid-1994, and the budget was limited. 
Accordingly, the product team was required to 
leverage other developments or to find newer, less 
costly ways of achieving the product goals. Work 
on the AlphaServer systems started as a joint effort 
between an advanced development team and a 
business planning team. The business team devel­
oped market profiles and a list of features without 
which the system would not be competitive. The 
business team followed a market-driven pricing 
model. The profit expected from the system dic­
tated the product cost for the system. This cost is 
referred to as "transfer cost ." The business team's 
cost requirement was critical: if it could not be met, 
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Design of the AlphaServer Multiprocessor Server Systems 

the project would be canceled. Furthermore, the 
entry-level system was required to 

I. Support at least two CPUs, with performance for 
a single CPU to yield 120 SPECmarks and 100+ 
transactions per second (TPS) on the TPC-A 
benchmark. 

2. Support at least I gigabyte (GB) of memory. 

3. Support multiple 1/0 buses with at least six 
option slots supported on the base system. 

4. Provide high-availability features such as redun­
dant power supplies, redundant array of inex­
pensive disks (RAID), "warm swap" of drives, and 
clustering. 

5. Provide a number of critical system connec­
tivity options, including Ethernet, fiber distrib­
uted data interface (FDDI), and synchronous 
controllers. 

6. Support the Windows NT, the DEC OSF/1, and the 
OpenVMS operating systems. 

Given these criteria, the engineering team 
decided to base the development of the new server 
on concepts taken from two Digital products and 
combine them with the enclosures, power sup­
plies, and options commonly associated with PCs. 
The DEC 4000 server is a multiprocessor system 
with a Futurebus+ 1/0 subsystem; it provided 
the basis for the multiprocessor bus design. 1 The 
DECpc 150 PC is a uniprocessor system with an EISA 
1/0 subsystem; it provided a model for designing an 
1/0 subsystem capable of running the Windows NT 
operating system. The engineering team chose re­
style peripherals because of their low cost. 

A strategic decision was made to incorporate the 
emerging PCI bus into the product in addition to 
the EISA bus. Major PC vendors had expressed high 
interest in its development, and they believed the 
PCI bus would gain acceptance by the PC commu­
nity. The PCI bus provides a high-performance, low­
cost I/0 channel that allows connections to many 
options such as small computer systems interface 
(SCSI) adapters and other common PC peripherals. 

After the initial design had been completed, chang­
ing market and competitive environments imposed 
additional requirements on the design team. 

I. The initial transfer cost goal was reduced by 
approximately 13 percent. 

2. Support for a maximum of four processor mod­
ules was necessary. 

Digital Technical Journal Vol. 6 No. 3 Summer 1994 

To meet these new requirements, the design team 
had to modify the system design during the product 
development phase. 

System Overview 
The base architecture developed for Digital's 
AlphaServer multiprocessor systems allows four 
processing nodes, four memory nodes (up to a max­
imum of 2 GB), and two 1/0 nodes. All nodes com­
municate through a system bus. The system bus 
was designed to support multiple generations of 
Alpha processor technology. The architecture can 
be implemented in different ways, depending on 
the size of the system packaging. It is flexible 
enough to meet a variety of market needs. Two 
implementations of the architecture are the 
AlphaServer 2100 and the AlphaServer 2000 prod­
ucts. Figure I is a block diagram of the AlphaServer 
2100 implementation of the architecture. 

In the AlphaServer 2100 large pedestal server, 
the system bus supports eight nodes. It is imple­
mented on a backplane that has seven slots. The 
seven slots can be configured to support up to 
four processors. Due to the number of slots avail­
able, the server supports only 1 GB of memory 
when four processors are installed. It supports 
the full 2 GB of memory with three processors 
or less. The eighth node, which is the system bus­
to-PCI bridge, is resident on the backplane. This 
provides a 32-bit PCI bus that operates at 33 mega­
hertz (MHz). It is referred to as the primary PCI bus 
on the system. 

A second 1/0 bridge can be installed in one of 
the system bus slots. This option, which will be 
available in 1995, will provide a 64-bit PCI bus for 
the system. A 64-bit PCI is an extension of a 32-bit 
PCI bus with a wider data bus. It operates at 33 MHz 
and is completely interoperable with the 32-bit PCI 
specification. 2 Options designed for the 32-bit 
PCI bus will also work in a 64-bit PCI slot. 

EISA slots are supported through a bridge on the 
primary PCI bus on the system. Only one EISA bus 
can be supported in the system since many of the 
addresses used by EISA options are fixed.3 Support 
of a single EISA bus is not perceived as an issue given 
the migration from the EISA bus to the much higher 
performing PCI bus. The maximum supported 
bandwidth on an EISA bus is 33 megabytes per 
second (MB/s) versus the maximum bandwidth on 
a 32-bit PCI bus of 132 MB/s. The EISA bus is used in 
the system for support of older adapters that have 
not migrated to PCI. 

9 



AlphaServer Multiprocessing Systems 

Slots 4 and 5 may be used for 
two additional memory modules 
if CPU 2 is not installed. 

Slot 1 accommodates 
either expansion 1/0 
module or CPU. SERIAL 

~------------------- ------- CONTROL 

SLOTS: 

r=l~ 
L.::J LJJJ 

PCI BUS - 32 BITS 

I ETHERNET I 8 

INTERRUPT CONTROLLER r---------------1 
I 8259A-2 I 
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CHIP 

SERIAL PORT 0 
SERIAL PORT 0 

Figure 1 Block Diagram of the Ai,phaServer 2100 System Architecture 

The AlphaServer 2000 small pedestal system sup­
ports five nodes on the system bus. The backplane 
provides four system bus slots, allowing a maxi­
mum configuration of two processor modules and 
two memory modules. The system bus-to-PCI 
bridge resides on the backplane and is the fifth 
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node. A system bus slot can also be used to support 
the optional second 1/0 bridge. 

The AlphaServer 2100 cabinet system is a rack­
mountable version of the large pedestal 
AlphaServer 2100 system. The rackmountable unit 
provides a highly available configuration of the 
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pedestal system. It incorporates two separate back­
planes. One backplane supports eight system bus 
nodes that are implemented as seven system 
bus slots. The eighth node (the system bus-to-PCI 
bridge) resides on the backplane. The second back­
plane provides the 1/0 slots. The number and 
configuration of 1/0 slots are identical to the 
AlphaServer 2100 pedestal system. The rackmount 
unit provides minimal storage capacity. Additional 
storage is supported in the cabinet version through 
StorageWorks shelves. These storage shelves can 
be powered independently of the base system 
unit, providing a highly available configuration. 

Table I gives the specifications for the 
AlphaServer 2100 and the AlphaServer 2000 
pedestal systems. Information on the cabinet 
version is not included because its characteristics 
are similar to the AlphaServer 2100 large pedestal 

Table 1 AlphaServer System Specifications 

Specifications Large Pedestal 
AlphaServer 
2100 System 

Height, inches 27.6 

Width, inches 16.9 

Depth, inches 31.9 

Maximum DC power output, 600 
watts per supply 

Number of system slots 7 
Number of processors supported 4 

Minimum memory 32MB 
Maximum memory 2GB 

Embedded 1/0 controllers supported 1 
Optional 1/0 controllers supported 1 

32-bit PCI slots 3 
64-bit PCI slots (on separate 1/0 2 
controller module)* 

EISA slots 8 

Serial ports 2 

Parallel port 

Ethernet ports (AUi and 10Base-T) 

SCSI II controller 1 

Removable media bays 3 

Internal warm-swap drive slots 16 

• Future option 
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version. All multiprocessing members of the 
AlphaServer family use the same processor and 
memory modules and differ only in system packag­
ing and backplane implementations. This illustrates 
the flexibility of the architecture developed for the 
system and decreases the development time for 
new models. 

CPU Module 
The CPU module contains an Alpha processor, a 
secondary cache, and bus interface application 
specific integrated circuits (ASICs). As previously 
mentioned, the system architecture allows multiple 
processor generations. Multiple variations of the 
processor module are available for the system, but 
different variations cannot be used in the same 
system. Software has timing loops that depend on 
the speed of the processor and cannot guarantee 

Small Pedestal Comments 
AlphaServer 
2000System 

23.8 

16.9 

25.6 

400 Two possible per 
system in either 
redundant or current 
shared mode 

4 

2 

32MB 
640MB 

1 
1 

3 
2 

7 
2 

1 

Not integral Up to 18 total network 
to system ports supported on 

system via PCI and 
EISA options 

1 

2 

8 

11 
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synchronization between processors of different 
speeds. The CPU modules provide a range of perfor­
mance and cost options for the system owner. 

The cost-focused processor module uses the 
Alpha 21064 processor operating at 190 MHz. This 
chip was designed with Digital's fourth-generation 
complementary metal-oxide semiconductor (CMOS) 
technology. It has separate on-chip caches for 
instruction and data. The instruction cache holds 8 
kilobytes (KB) of memory, and the data cache holds 
8 KB. The 1-MB second-level data cache is imple­
mented in 15-nanosecond (ns) static random-access 
memory (SRAM) devices. It is a write-back, direct­
mapped cache. The access time to the second-level 
cache is a multiple of the CPU clock cycle. The use 
of 15-ns SRAMs resulted in a read-and-write cycle 
time of 26.3 ns to the second-level cache. This is a 
five-times multiple of the CPU cycle time. The addi­
tional 11.3 ns is needed for round-trip etch delay 
and address buffer delay. The use of 12-ns SRAMs 
was considered, but the read-and-write cycle time 
would have to decrease to 21 ns to improve perfor­
mance. The reduction of 3 ns was not sufficient to 
meet the timing requirements of the module; there­
fore , the less costly 15-ns SRAMs were used. 

Higher performance processor modules are also 
available for the system. These modules are based 
on the Alpha 21064A processor, which was 
designed using fifth-generation CMOS technology. 
The Alpha 21064A processor module operates at 
275 MHz. The processor has separate on-chip 
instruction and data caches. The 16-KB instruction 
cache is direct mapped, and the 16-KB data cache is 
a 2-way, set-associative cache. The backup cache 
holds 4 MB of memory. The combination of higher 
processor speed, larger internal on-chip caches, 
and a large second-level cache reduces the number 
of accesses to main memory and processes data at 
a higher rate. As a result, the performance of the 
system is increased by approximately 20 percent. 

Multiprocessor System Bus 
The technology developed for the system bus in the 
DEC 4000 departmental server provided the basis 
for the multiprocessor bus designed for the 
AlphaServer system.1 The system bus in the DEC 
4000 product has the following features: 

1. The 128-bit multiplexed address and data bus 
operates at a 24-ns cycle time. The bus runs 
synchronously. 

2. The bus supports two CPU nodes, four memory 
nodes, and a single 1/0 node. 
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3. The bus supports addressing for block transfer 
only. A block is 32 bytes of data. 

4. 1/0 is treated as either primary or secondary. 
Primary 1/0 refers to devices that could respond 
without stalling the system bus. This designation 
is restricted mainly to control and status regis­
ters (CSRs) that exist on system bus nodes, e.g., 
the 1/0 bridge. 

5. All 1/0 on remote buses is referred to as secondary 
1/0 and is accessed via a mailbox protocol. 
Mailboxes were invented to hide slow accesses 
to CSRs on remote 1/0 buses. 

A CSR read could potentially take 1 to 10 micro­
seconds, which is very slow relative to the proces­
sor cycle time. The bus is "nonpended;' which 
means it would stall during a slow access. When a 
bus stalls, all accesses to CPUs and memories have 
to wait until the CSR access is complete. This could 
cause data to back up and potentially overflow. To 
avoid this state, either the system bus or the soft­
ware device driver has to be pended. 

A mailbox is a software mechanism that accom­
plishes "device driver pending." The processor 
builds a structure in main memory called the mail­
box data structure. It describes the operation to be 
performed, e.g. , CSR read of a byte. The processor 
then writes a pointer to this structure into a mail­
box pointer register. The 1/0 node on the system 
bus reads the mailbox data structure, performs the 
operation specified, and returns status and any data 
to the structure in memory. The processor then 
retrieves the data from this structure and the trans­
action is complete. In this way, the mailbox proto­
col allows software pending of CSR reads; it also 
allows the software to pass byte information that is 
not available from the Alpha 21064A processor.4,5 

Changes to the System Bus 
Although the DEC 4000 system bus provided many 
features desirable in a multiprocessor interconnect, 
it did not meet the system requirements defined 
during the concept phase of the AlphaServer proj­
ect. Two major hurdles existed. One was the lack of 
support for four CPUs and multiple 1/0 nodes. 
A second, more important issue was the incom­
patibility of the mailbox 1/0 structure with the 
Windows NT operating system. 

The initial port of the Windows NT operating sys­
tem to the DECpc 150 PC assumed direct-mapped 
1/0. With direct mapping the 1/0 is physically 
mapped into the processor's memory map, and all 
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reads/writes to 1/0 space are handled as uncached 
memory accesses. Clearly, this was incompatible 
with the nonpended bus, which assumes the use of 
mailboxes. Consequently, the designers studied the 
advantages and disadvantages of using mailboxes 
to determine if they should be supported in the 
Windows NT operating system. They found that the 
software overhead of manipulating the mailbox 
structure made CSR accesses approximately three 
times slower than direct accesses by the hardware. 
Thus the CPU performing the 1/0 access waits 
longer to complete. For this reason, the designers 
chose not to use mailboxes. 

The designers also had to ensure that the system 
bus would be available for use by other processors 
while the 1/0 transaction was completing. To satisfy 
this requirement, they added a retry mechanism to 
the system bus. The retry support was very simple 
and was layered on top of existing bus signals. 
A retry condition exists when the CPU initiates a 
cycle to the 1/0 that cannot be completed in one 
system bus transaction by the 1/0 bridge. The CPU 

involved in the transaction is notified of the retry 
condition. The CPU then "backs off" the multipro­
cessor bus and generates that transaction some 
period of time later. Other processor modules can 
access memory during the slow 1/0 transaction. 
The retry procedure continues until the 1/0 bridge 
has the requested data. At that stage, the data is 
returned to the requesting CPU. 

Byte Addressing Byte granularity had been han­
dled in the mailbox data structure. After the direct­
mapped 1/0 scheme was adopted, the designers 
had to overcome the lack of byte addressability in 
the Alpha architecture. Therefore, the designers 
participated in a collaborative effort across Digital 
to define a mechanism for adding byte address­
ability in the Alpha architecture. The new scheme 
required the use of the four lower available Alpha 
Ad:[08:05] address bits to encode byte masks and 
lower order address bits for the PCI and EISA buses. 
For more details, see the paper on the AlphaServer 
2100 VO subsystem in this issue.6 

The designers required a redefinition of the 
address map. All 1/0 devices are now memory 
mapped. The Alpha 21064A processor has a 34-bit 
address field that yields an address space of 16 GB. 
This 16-GB address region may be subdivided into 
4-GB quadrants. Each quadrant can be individually 
marked as cacheable or noncacheable memory The 
DEC 4000 system architecture split the 16-GB region 
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in half: 8 GB was allocated as cacheable memory 
space and the remaining 8 GB as noncacheable 
space. Memory-mapped 1/0 devices are mapped 
into noncacheable space. The decision to support 
multiple 1/0 buses in the new systems together with 
the decision to memory map all 1/0 (i.e., no mailbox 
accesses) yielded a noncacheable memory require­
ment in excess of the 8 GB allocated in the DEC 4000 
system. Therefore the designers of the AlphaServer 
systems changed the address map and allocated a 
single quadrant (4 GB) of memory as cacheable 
space and the remaining 12 GB as noncacheable. 
These 12 GB are used to memory map the 1/0. 

Arbitration The bus used in the DEC 4000 system 
supports two CPU nodes and a single 1/0 node. To 
achieve the AlphaServer product goals of multiple 
1/0 bridges and multiple CPU nodes, the designers 
changed the address map to accommodate CSR 
space for these extra nodes and designed a new 
arbiter for the system. The arbiter includes 
enhanced functionality to increase the perfor­
mance of future generations of processors. Some 
key features of the arbiter are listed below. 

1. The arbiter is implemented as a separate chip on 
all processor modules. The logic was partitioned 
into a separate chip to accommodate a flexible 
architecture and to allow additional arbitrating 
nodes in the future . As many as four arbiters can 
exist in the system. Only one arbiter is enabled in 
the system. It is on the processor installed in slot 
2 of the system bus. 

2. 1/0 node arbitration is interleaved with CPU node 
arbitration. The arbitration is round robin and 
leads to an ordering scheme of CPU 0, 1/0, CPU 1, 
1/0, CPU 2, 1/0, CPU 3, 1/0. This scheme attempts 
to minimize 1/0 latency by ensuring many arbi­
tration slots for VO devices. Processors still have 
more than adequate access to the system bus due 
to the nature of 1/0 traffic (generally bursts 
of data in short periods of time). On an idle 
bus, the arbiter reverts to a first-come, first­
served scheme. 

3. The arbiter implements an exclusive access cycle. 
This allows an arbitrating node to retain the use 
of the system bus for consecutive cycles. This 
cycle is used by the VO bridge in response to a PCI 
lock cycle. A PCI lock cycle may be generated by a 
device that requires an atomic operation, which 
may take multiple transactions to complete. For 
example, the AlphaServer 2100 and AlphaServer 
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2000 systems use a PCI-to-EISA bridge chip set 
(Intel 82430 chip set).7 This chip set requests 
a lock cycle on PCI when an EISA device requires 
an atomic read-modify-write operation. 

The use of atomic read-modify-write operations 
is common in older 1/0 adapter designs. The 1/0 

bridge on the system bus requests an exclusive 
access cycle from the arbiter. When it is granted, all 
buffers in the path to memory are flushed and the 
device has exclusive use of the PCI and the system 
bus until its transaction is completed. The use of 
this mode is not recommended for new adapter 
designs due to the unfair nature of its tenure on the 
system bus. It was implemented in the AlphaServer 
product design to support older EISA devices. 

Memory Module 
Main memory is accessed over the system bus either 
by processors (after missing in their on-board caches) 
or by 1/0 nodes performing direct memory access 
(DMA) transactions. They are called commanders. 

The memory controller incorporates a number of 
performance-enhancing features that reduce latency 
in accessing the dynamic RAM (DRAM) array. One 
concept used is called a stream buffer. Stream 
buffers reduce the read latency to main memory. 
Reads to main memory normally require 9 to 10 
cycles on the system bus, depending on the speed of 
DRAMs in the array. The use of stream buffers reduces 
this time to 7 cycles. The stream buffers provide a 
facility to load data fetched from the DRAM array 
prior to the receipt of a read request for that data. 

A stream is detected by monitoring the read 
addresses from each commander on the system 
bus. The logic simply keeps a record of the memory 
addresses of the previous eight read transactions 
from each commander and compares each subse­
quent read address to see if the new address is con­
tiguous to any of the recorded addresses. If a new 
address is determined to be contiguous to any of 
the previous eight addresses, a new stream is 
declared. As a result, one of the stream buffers 
is allocated to a new stream. 

A stream buffer is implemented as a four-deep, 
first-in, first-out (FIFO) buffer. Each entry in the 
FIFO buffer is 32 bytes, which is equivalent to the 
system bus line size. Each memory module con­
tains four stream buffers that can be allocated to dif­
ferent commanders. A least recently used (LRU) 
algorithm is used to allocate stream buffers. When 
a new stream is detected, or an existing stream is 
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empty, the stream buffer fills from the DRAM array 
by using successive addresses from the head of the 
stream. After a buffer has been allocated and some 
amount of data has been placed in the FIFO buffer, 
"hit" logic compares incoming read addresses from 
the system bus to the stream address. If a compari­
son of these two addresses is successful, read data 
is delivered from the memory module without 
incurring the latency of accessing the DRAM array. 

An invalidation scheme is used to ensure that the 
stream buffers stay coherent. Write cycle addresses 
are checked to see if they coincide with a stream 
buffer address. If the write address is equal to 
any address currently in the stream buffer, that 
entire stream buffer is declared invalid. Once it is 
invalidated, it can be reallocated to the next 
detected stream. 

Writes to main memory complete on the system 
bus in six cycles, which is achieved using write 
buffers in the memory controller. The write transac­
tions are essentially "dump and run." The total write 
buffering available in each memory module is 64 
bytes, which is large enough to ensure that the sys­
tem bus never has to stall during a write transaction. 

The implementation of the memory module dif­
fers from the AlphaServer 2100 to the AlphaServer 
2000 system. Both memory modules contain the 
same memory controller ASICs, but the implemen­
tation of the DRAM array is different. Due to space 
constraints on the AlphaServer 2100, the DRAM 
array was implemented as a flat, two-sided surface­
mount module. On the AlphaServer 2000, single 
in-line memory modules (SIMMS) were used for the 
DRAM array. Memory module capacities vary from 
32 MB to 512 MB. The AlphaServer 2100 system pro­
vides four system bus slots that can be populated 
with memory modules. The maximum supported 
configuration is 2 GB with four memory modules. 
This limits the maximum system configuration to 
three processors since one of the processor slots 
must be used as a memory slot. The AlphaServer 
2000 system provides two system bus slots that 
can be populated with memory. The maximum 
memory supported in this system is 640 MB. This 
configuration consists of one 512-MB module and 
one 128-MB module. The maximum memory con­
straint is dictated by the power and cooling avail­
able within this system package. The AlphaServer 
2000 still supports two processor modules when 
configured with maximum memory. Figure 2 
shows a block diagram of the AlphaServer 2000 
memory module. 
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Figure 2 Block Diagram of the AlphaServer 2000 Memory Module 

Technology Choices 
This section briefly discusses some of the decisions 
and trade-offs made concerning module and silicon 
technology used in the sy terns. 

Module Technology 
The designers partitioned the logic into modules for 
two reasons: (1) Removable processor and memory 
modules allow for installation of additional memory 
and processors and (2) They also allow for easy 
upgrade to faster processor speeds. Since modularity 
adds cost to a system, the designers decided that the 
1/0 subsystem (EISA and PCI logic) should reside on 
the backplane. They deviated from this strategy for 
the AlphaServer 2100 system design because the PCI­
to-EISA bridge was a new, unfamiliar design. Fixing 
any problems with this chip set or any of the support-
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ing logic would have required a backplane upgrade, 
which is a time-consuming effort. For this reason, 
the engineers chose to build an 1/0 module for the 
AlphaServer 2100 system that contained the PCI-to­
EISA bridge; associated control logic; controllers for 
mouse, keyboard, printer, and floppy drive; and the 
integral Ethernet and SCSI controllers. This module 
was eliminated in the AlphaServer 2000 system due 
to the design stability of the 1/0 module. 

The Metral connector specified by the 
Futurebus+ specification was chosen for the sys­
tem bus implementation on the DEC 4000 product. 
This choice was consistent with the design of the 
DEC 4000 server, which is a Futurebus+ system. 
Cost studies undertaken during the initial design of 
the AlphaServer 2100 system showed that the cost 
per pin of the Metral connector was high and added 
a significant cost to the system. The team decided 
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to investigate the use of either the PCI or the EISA 
connector for the system bus, since both connec­
tors are used widely in the system. The PCI con­
nector is actually a variant of the MicroChannel 
Architecture (MCA) connector used in microchan­
nel systems. SPICE simulations showed that it per­
formed better than the Metral connector on the 
Future bus+. 8 The team chose a 240-pin version of 
the connector for implementation because it met 
the system requirements and had a low cost . 

Due to the choice of the MCA connector, the 
board thickness was limited to a maximum of 0.062 
inches. An 8-layer layup was chosen for the module 
technology. The processor modules had a require­
ment for both a 5.0-V supply and a 3.0-V supply. 
The designers chose a split plane to distribute the 
power rather than two separate power planes for 
each voltage. Routing high-speed signals across the 
split was minimized to reduce any emissions that 
might arise from using a split plane. Testing later 
validated this approach as emissions from this area 
were minimal. 

Silicon Technology 
The system partitioning required the design of four 
ASICs. These were the CPU bus interface ASIC, the 
memory bus interface ASIC, the system arbiter, and 
the system bus-to-PCI bridge. The DEC 4000 imple­
mentation of the Futurebus+ used an externally 
supplied gate-array process that was customized to 
meet the performance needs of the bus and the per­
formance goals of the first Alpha systems. Gate­
array costs are determined by the number of chips 
that are produced on the chosen gate-array process. 
The volume of chips produced by the gate-array 
process for the DEC 4000 system was low because 
the process was specially adjusted for that system 
application. As a result, the volume of chips was 
directly proportional to the volume of the DEC 4000 
systems built. Therefore, the cost per component 
produced by this process was relatively high. 

If they had used this customized gate-array pro­
cess, the designers of the AlphaServer product 
could not have met their cost goals. They needed 
a more generic process that could produce chips 
that many system vendors could use. This would 
ensure that the line utilization was high and that 
the cost per component was low. Therefore, they 
changed the technology to one that is standard in 
the industry. Gate-array process technology had 
evolved since the DEC 4000 design, and a standard 
technology that was capable of meeting the system 
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timing requirements was available. Extensive SPICE 
simulations verified the process capability. ASICs 
that were implemented with this process had no 
difficulty meeting the bus timing.8 

Another interesting feature of the analog design 
on the AlphaServer 2100 system involves the sup­
port of 11 loads on the PCI. The PCI specification 
recommends 10 loads as the "cookbook" design. 2 

The system requirement on the AlphaServer 2100 
was to support three PCI slots, the integral PCI­
Ethernet chip, the NCR810 (PCl-to-fast-SCSI con­
troller), and the PCl-to-EISA bridge. Each PCI 
connector has been modeled to be equivalent to 
two electrical loads. Taking account of the system 
bus-to-PCI bridge and the additional load con­
tributed by the 1/0 module connector yielded a PCI 
bus with 11 electrical loads. Extensive SPICE simu­
lations of the bus and careful routing to ensure 
a short bus guaranteed that the new design would 
meet the electrical specifications of the PCI bus.8 

System Start-up 
The design team incorporated many availability fea­
tures into the AlphaServer 2100 and AlphaServer 
2000 servers. These included support of "hot-swap" 
storage devices that can be removed or installed 
while the system is operating, error correction code 
(ECC)-protected memory, redundant power sup­
plies, and CPU recovery. Perhaps the most interest­
ing part of the design for availability was the 
emphasis on ensuring that the system had enough 
built-in recovery and redundancy to allow it to 
remain in a usable or diagnosable state. Large sys­
tems sometimes have complicated paths in which 
to access the initial start-up code, and a system fail­
ure in that path can leave the owner with no visible 
failure indication. Moreover, in a multiprocessor 
system with more than one CPU installed, it is 
highly desirable to initialize the resident firmware 
and the operating system even if all CPUs are not in 
working order. The AlphaServer 2100 and 2000 sys­
tems employ two schemes to help achieve this goal. 

The start-up code for the AlphaServer 2100 and 
AlphaServer 2000 systems is located in flash read­
only memory (ROM), which resides on a peripheral 
bus behind the PCI-to-EISA bridge. In starting up 
a multiprocessing operating system, only one 
processor is designated to access the start-up code 
and initialize the operating system. This is referred 
to as the primary processor. Accessing the start-up 
code requires the processor, system bus, memory, 
and most of the 1/0 subsystem to be functional. 
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The AlphaServer systems have a number of fea­
tures that help make the start-up process more 
robust. Each processor module contains a separate 
maintenance processor implemented as a simple 
microcontroller that connects to a serial bus on the 
system. The serial bus is a two-wire bus that has 
a data line and a clock line. On power-up the pro­
cessor module performs a number of diagnostic 
tests and logs the results in an electrically erasable 
programmable read-only memory (EEPROM) on the 
module. This EEPROM resides on the serial bus. If 
a CPU fails one of its power-up tests or if it has an 
error logged in its EEPROM, then it is not allowed to 
be the primary processor. Assume that four CPUs 
are installed in the system; if only CPU O fails, then 
CPU 1 is the primary processor. If CPU O and CPU 1 
fail, then CPU 2 is the primary processor. If CPU 0, 
CPU 1, and CPU 2 fail, then CPU 3 is the primary pro­
cessor. If all four CPUs fail, then CPU O is the primary 
processor. If any one of the CPUs fails, a message is 
displayed on the operator control panel to inform 
the user that there is a problem. Any secondary CPU 
that has failed is disabled and will not be seen by the 
firmware console or the operating system. The pri­
mary processor then uses the system bus to access 
the start-up code in the flash ROM. 

The flash ROM may contain incorrect data. The 
flash ROMs on many systems have a program 
update, and errors from a power spike or surge can 
be introduced into the ROM code during the update 
procedure. User error is another common way to 
introduce data error; for example, a user can acci­
dentally press a key while the update program is 
running. Flash ROMs can also fail from intrinsic 
manufacturing faults such as current leakage, 
which will eventually convert a stored "1 " into a 
stored "O," thus corrupting the program stored in 
the flash ROMs. Many techniques in the industry 
partially solve the problem of corrupted flash ROM 
data. One well-known technique uses a checksum 
and reports an error to the user if the data is not cor­
rect. Another technique provides a second set of 
flash ROMs and a switch that the user manipulates 
to transfer control to the new set in the event of 
a failure. The designers studied many previously 
used methods, but rejected them since they 
required intervention by the user. 

In the AlphaServer 2100 and the AlphaServer 
2000 system design, the design team implemented 
a scheme that did not require user intervention in 
the event of flash ROM corruption. The system has 
1 MB of flash ROM of which the first 512 KB contain 
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the system initialization code. This code is loaded 
into main memory, and many data integrity tests are 
performed. These include single and multiple bit 
parity checks, various data correction code check­
ing, and a checksum calculation. The processor 
detects an error if the checksum calculation fails, 
i.e., if the calculated value is not equal to the stored 
value. The processor then writes a value to a regis­
ter on the 1/0 module, which automatically changes 
the address pointing to the flash ROM to a second 
bank of flash ROM. This combination of hardware 
and software support provides a way for the 
AlphaServer 2100 system user to overcome any 
flash ROM corruption. 

Design Considerations for the 
AlphaServer 2000 System 
The design of the AlphaServer 2000 small pedestal 
system followed the AlphaServer 2100 system. 
Market pressures dictated the need for a smaller 
system with a lower entry-level cost. The introduc­
tion of the smaller server was scheduled to coin­
cide with the release of the Windows NT version 3.5 
operating system. 

An examination of the AlphaServer 2100 develop­
ment schedule revealed the following interesting 
points: (1) System power on occurred nine months 
after the team was formed; (2) Initial system ship­
ments occurred eight months later; (3) The eight­
month time period was spent mainly in porting and 
qualifying operating system software. 

Based on these facts, the system designers 
believed that the key to reducing the time-to-market 
of the AlphaServer 2000 system was to eliminate the 
dependency on synchronizing the design schedule 
with an operating system release. Consequently, the 
new system could not require any software changes 
at the operating system level. Any changes would 
have to be transparent to software. To achieve this, 
the designers took advantage of a new feature in the 
DEC OSF/1 and the OpenVMS operating systems 
called dynamic system recognition (DSR). 

A DSR machine is defined as a machine that 
requires no new software development. Operat­
ing systems, however, require licensing; this 
information is dependent upon the system model 
number. There are two components to building 
a DSR machine. 

1. A programmer's view of the machine must be a 
subset of an already supported machine. In the 
case of the AlphaServer 2000, the designers 
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decided to make it a subset of the AlphaServer 
2100. A clear understanding of how the operat­
ing systems initialized the AlphaServer 2100 sys­
tem was critical to understanding what changes 
could be made. A joint team of hardware and 
software engineers examined various pieces of 
the code to identify the areas of the system 
design that could be changed. Investigations 
revealed that the system bus configuration code 
for the AlphaServer 2100 is somewhat generic. 
It assumes a maximum of eight nodes, which is 
the AlphaServer 2100 implementation. The 1/0 
node to the primary PCI bus is expected to be 
present. The presence of additional processors 
and memories is detected by reading the CSR 
space of each module. A module that is present 
gives a positive acknowledgment. The design 
team could therefore reduce the number of sys­
tem bus slots from seven to four. This had no 
effect on the software since nonexistent slots 
would merely be recognized as modules not 
installed in the system. 

The physical packaging of the AlphaServer 2000 
also dictated that the number of 1/0 slots be 
reduced from 11 (8 EISA and 3 PCI) to 10. Given 
the industry trend toward PCI, the desirable mix 
would have been 6 EISA slots and 4 PCI slots. The 
PCI bus configuration code searched for as many 
as 32 PCI slots, which is the number allowed 
by the PCI specification. 2 After careful consid­
eration, the designers determined that the addi­
tion of another PCI slot would involve a change 
in interrupt tables to accommodate the addi­
tional interrupts and vectors required by the 
additional slot. Therefore, the team decided to 
implement 3 PCI and 7 EISA slots. 

2. The other component to building a DSR machine 
is to provide the system model number to the 
operating system so that licensing information 
can be determined. The system resident code 
that runs at start-up is referred to as the console. 
The console and the operating systems commu­
nicate via a data structure known as the hard­
ware parameter block (HWRPB). The HWRPB is 
used to communicate the model number to the 
operating system, which uses this number to 
provide the correct licensing information. 

The AlphaServer 2000 system was completed in 
approximately nine months. Qualification was not 
dependent on the operating system schedules. By 
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building a DSR machine, the design team met the 
project's time-to-market requirements. 

Peiformance Summary 
Table 2 summarizes the performance of the systems 
described in this paper. The numbers are heavily 
influenced by the processor speed, cache, memory, 
and 1/0 subsystems. The systems exceeded the per­
formance goals specified at the beginning of the 
project. In some cases the important benchmarks 
that had been relevant in the industry changed dur­
ing the course of system development. In the trans­
action processing measurement, for example, the 
TPC-A benchmark was superseded by the TPC-C 
benchmark. 

The AlphaServer 2100 server was the price­
performance leader in the industry at the time of its 
introduction in April 1994. Successive improve­
ments in processor and 1/0 subsystems should help 
the AlphaServer 2100 and 2000 products maintain 
that position in the industry. 

Table 2 System Performance 

AlphaServer 
2100 4/275 

SPECint92' 200.1 

SPECfp92" 291.1 

AIM lllt 
Number of AIMs 227.5 
User loads 1941.2 

Est imated TPSi 850 

Notes: 

* Single-processor system only 

t Dual-processor system only 

AlphaServer 
2000 4/200 

131.8 

161.0 

1n5 
1516.0 

660 

i TPS is an abbreviation for transactions per second. These 
numbers are estimated for a quad-processor system using 
OpenVMS version 6.1 running Rdb. 

Conclusions 
The design team exceeded all the product require­
ments set at the beginning of the AlphaServer proj­
ect. The transfer cost of the final product was 10 
percent better than the goal. The reduced cost was 
achieved despite the erratic price levels for DRAMS, 

which were much higher in 1994 than predicted 
in late 1992. 

Separate cost targets were established for each 
portion of the system, and each design engineer 
was responsible for meeting a particular goal. 
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Constant cost reviews ensured that variances could 
be quickly addressed. The requirement to run three 
operating systems quickly expanded the size and 
scope of the project. The operating system devel­
opers became an integral part of the design team. 
Multiple reviews and open communication between 
the hardware development team and the software 
groups were essential to managing this work. The 
hardware team performed system-level testing on 
all three operating systems. This proved invaluable 
in tracking down bugs quickly and resolving them 
in either hardware or software. 

The project team delivered the expected perfor­
mance and functionality on schedule. Develop­
ment time was allocated for new power and 
packaging subsystems (using third-party design 
companies), new modules, new ASICs, new system 
firmware, and porting of three operating systems. 
To attain the schedule, development tasks were 
frozen at the beginning of the project. The tasks 
were also categorized into three classes: mandatory, 
nonessential, and disposable. Consequently, engi­
neers were able to make trade-offs when required 
and maintain the integrity of the product. Another 
key factor to meeting the schedule was the use of 
knowledge and technology developed for previous 
products. This yielded many benefits: less design 
time, fewer resources required, known simulation 
environment, and less time to a working prototype. 
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The AlphaServer 2100 
1/0 Subsystem 

Andrew P. Russo I 

The AlphaServer 2100 I/0 subsystem contains a dual-level l/0 structure that 
includes the high-powered PC/ local bus and the widely used EISA bus. The PC/ bus is 
connected to the server's multiprocessing system bus through the custom-designed 
bridge chip. The EISA bus supports eight general-purpose EISAI/SA connectors, pr<>­
viding connections to plug-in, industry-standard options. Data rate isolation, dis­
connected transaction, and data buffer management techniques were used to 
ensure bus effidency in the l/0 subsystem. Innovative engineering designs accom­
plished the task of combining Alpha CPUs and standard-system l/0 devices. 

Digital's AlphaServer 2100 server combines Alpha 
multiprocessing technology with an 1/0 subsystem 
typically associated with personal computers 
(PCs). 1 The 1/0 subsystem on the AlphaServer 2100 
system contains a two-level hierarchical bus struc­
ture consisting of a high-performance primary 
VO bus connected to a secondary, lower per­
formance 1/0 bus. The primary 1/0 bus is a 32-bit 
peripheral component interconnect (PCI) local bus 
(or simply, PCI bus).2 The PCI bus is connected 
to the AlphaServer 2100 system's multiprocessing 
system bus through a custom application specific 
integrated circuit (ASIC) bridge chip (referred to 
as the T2 bridge chip). The secondary 1/0 bus is a 
32-bit Extended Industry Standard Architecture 
(EISA) bus connected to the PCI bus through a 
bridge chip set provided by Intel Corporation.3 
Figure 1 shows the 1/0 subsystem designed for the 
AlphaServer 2100 product. The 1/0 subsystem 
demonstrated sufficient flexibility to become the 
1/0 interface for the small pedestal AlphaServer 
2000 product and the rackmountable version of the 
AlphaServer 2100 server. 

This paper discusses the dual-level bus hierarchy 
and the several 1/0 advantages it provides. The 
design considerations of the 1/0 subsystem for the 
AlphaServer 2100 server are examined in the sec­
tions that follow. 

1/ 0 Support for EISA and PC/ Buses 
The EISA bus enables the AlphaServer 2100 system 
to support a wide range of existing EISA or Industry 
Standard Architecture (ISA) 1/0 peripherals.4 The 
EISA bus can sustain data rates up to a theoretical 
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limit of 33 megabytes per second (MB/s) at a clock 
rate of 8.25 megahertz (MHz). In the current config­
uration for the AlphaServer 2100 product, the EISA 
bus supports eight general-purpose EISA/ISA con­
nectors, and the EISA bridge chip set provides 
connections to various low-speed, system-standard 
1/0 devices such as keyboard, mouse, and time-of­
year (TOY) clock. For most system configurations, 
the AlphaServer 2100 system's EISA bus provides 
enough data bandwidth to meet all data throughput 
requirements. In light of the new requirements for 
faster data rates, however, the EISA bus will soon 
begin to run out of bus bandwidth. 

To provide for more bandwidth, the AlphaServer 
2100 system also contains a PCI bus as its primary 
bus. With data rates four times that of the EISA bus, 
the PCI bus provides a direct migration path from 
the EISA bus. The 32-bit PCI bus can sustain data 
rates up to a theoretical limit of 132 MB/s at a clock 
rate of 33 MHz. In the AlphaServer 2100 system 
configuration, the PCI bus provides connections 
to three general-purpose 32-bit PCI connectors, an 
Ethernet device, a SCSI device, the PCI-to-EISA 
bridge chip, and the T2 bridge chip. 

A close examination of the bus structure reveals 
that the AlphaServer 2100 system actually contains 
a three-level, hierarchical bus structure. In addition 
to the PCI and EISA buses, the AlphaServer 2100 sys­
tem includes a 128-bit multiprocessing system bus, 
as shown in Figure 1. Each bus is designed to adhere 
to its own bus interface protocols at different data 
rates. The system bus is 128 bits per 24 nanosec­
onds (ns); the PCI bus is 32 bits per 30 ns; and the 
EISA bus is 32 bits per 120 ns. Each bus is required 
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Figure I l/0 Subsystem for the AlphaServer 2100 System 

to provide a particular function to the system and 
is positioned in the bus hierarchy to maximize 
that efficiency. For example, the system bus is 
positioned close to the CPUs and memory to maxi­
mize CPU memory access time, and the lower per­
formance 1/0 devices are placed on the EISA bus 
because their timing requirements are less critical. 
To maintain maximum bus efficiency on all three 
buses, it is critical that each bus be able to perform 
its various functions autonomously of each other. 
In other words, a slower performing bus should not 
affect the efficiency of a high-performance bus. The 
section below discusses a few techniques that we 
designed into the 1/0 subsystem to enable the buses 
to work together efficiently 

Using the Bus Hierarchy Efficiently 
This section discusses the data rate isolation, dis­
connected transaction, data buffer management, 
and data bursting techniques used to ensure bus 
efficiency in the 1/0 subsystem. 

Data Rate Isolation 
The three-level bus hierarchy promotes data rate 
isolation and concurrency for simultaneous opera­
tions on all three buses. The design of the bus 
bridges helps to enable each bus to work indepen-
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dently: it provides bus interfaces with extensive 
data buffering that function at the same data rates 
as the interfacing bus. For example, the T2 bridge 
chip contains both a system bus interface and a PCI 
bus interface that run synchronously to their 
respective buses but are totally asynchronous to 
each other. The data buffers inside the T2 bridge 
chip act as a domain connector from one bus time 
zone to the other and help to isolate the data rates 
of the two buses. 

Disconnected Transactions 
Whenever possible, the bridges promote the use of 
disconnected (or pended) protocols to move data 
across the buses. Disconnected protocols decrease 
the interdependencies between the different buses. 
For example, when a CPU residing on the system 
bus needs to move data to the PCI bus, the CPU does 
so by sending its data onto the system bus. Here the 
T2 bridge chip (see Figure 2) stores the data into 
its internal data buffers at the system bus data 
rate. The T2 bridge chip provides enough buffering 
to store an entire CPU transaction. From the CPU's 
p erspective, the transaction is completed as soon 
as the T2 bridge chip accepts its data. At that point, 
the T2 bridge chip must forward the data to the PCI 
bus, independent of the CPU. In this way, the CPU 
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SYSTEM BUS [:] PCIBUS 
COMMANDER MASTER 

SYSTEM 
SYSTEM DMA READ, 

PCI 
BUS PCIBUS BUS, ,. 

BUS BUFFER DMA WRITE, AND BUFFER 
CORNER > , CORNER CONTROLLER PROGRAMMED CONTROLLER , 

128 LOGIC 32 
LOGIC 1/0 BUFFERS 

SYSTEM BUS [::] PCIBUS 
RESPONDER TARGET 

Figure 2 Block Diagram of the T2 Bridge Chip 

is not required to waste bus bandwidth by waiting 
for the transfer to complete to its final destination 
on the PCI bus. 

The T2 bridge chip implements disconnected 
transactions for all CPU-to-PCI transactions and most 
Per-to-memory transactions. In a similar fashion, 
the PCHo-EISA bridge implements disconnected 
transactions between the PCI bus and the EISA bus. 

Data Buffer Management 
In addition to containing temporary data buffering 
to store data on its journey from bus to bus, each 
bridge chip utilizes buffer management to allocate 
and deallocate its internal data buffers from one 
incoming data stream to another. In this way, a single 
ASIC bridge design can efficiently service multiple 
data streams with a relatively small amount of data 
buffering and without impacting bus performance. 

The T2 bridge chip contains 160 bytes of tempo­
rary data buffering divided across the three specific 
bus transactions it performs. These three transac­
tions are (1) direct memory access (OMA) writes 
from PCI to memory (system bus), (2) OMA reads 
from memory (system bus) to PCI, and (3) pro­
grammed 1/0 (system bus) reads/writes by a CPU 
from/to the PCI. The T2 bridge chip's data buffering 
is organized into five 32-byte buffers. Two 32-byte 
buffers each are allocated to the OMA write and 
OMA read functions, and one 32-byte buffer is allo­
cated to the programmed 1/0 function. Each of 
the three transaction functions contains its own 
buffer management logic to determine the best use 
of its available data buffering. Buffer management is 
especially valuable in situations in which a PCI 
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device is reading data from memory on the sys­
tem bus. To maintain an even flow of data from 
bus to bus, the buffer management inside the T2 
bridge chip attempts to prefetch more read data 
from memory while it is moving data onto the PCI. 

Buffer management helps the bridges service bus 
transactions in a way that promotes continuous 
data flow that, in turn, promotes bus efficiency. 

Burst Transactions 
Using a bus efficiently also means utilizing as much 
of the bus bandwidth as possible for "useful" data 
movement. Useful data movement is defined as that 
section of time when only the actual data is moving 
on the bus, devoid of address or protocol cycles. 
Maximizing useful data movement can be accom­
plished by sending many data beats (data per cycle) 
per single transfer time. Sending multiple data 
beats per single transfer is referred to as a "burst 
transaction." 

All three buses have the ability to perform burst 
transactions. The system bus can burst as much as 
32 bytes of data per transaction, and the PCI and 
EISA buses can burst continuously as required. 

Data bursting promotes bus efficiency and very 
high data rates. Each bus bridge in the server is 
required to support data bursting. 

The Bus Bridges 
In the previous section, we discussed certain 
design techniques used to promote efficiency 
within the server's hierarchical bus structure. The 
section that follows describes the bus bridges in 
more detail, emphasizing a few interesting features. 
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The T2 Bridge Chip 
The T2 bridge chip is a specially designed ASIC that 
provides bridge functionality between the server's 
multiprocessing system bus and the primary PCI 
bus. (See Figures 1 and 2.) The T2 ASIC is a 5.0-volt 
chip designed in complementary metal-oxide semi­
conductor (CMOS) technology. It is packaged in 
a 299-pin ceramic pin grid array (CPGA). 

As stated earlier, the T2 bridge chip contains a 
128-bit system bus interface running at 24 ns and 
a 32-bit PCI interface running at 30 ns. By using these 
two interfaces and data buffering, the T2 bridge 
chip translates bus protocols in both directions and 
moves data on both buses, thereby providing the 
logical system bus-to-PCI interface (bridge). In addi­
tion to the previously mentioned bridge features, 
the T2 bridge chip integrates system functions such 
as parity protection, error reporting, and CPU-to­
PCI address and data mapping, which is discussed 
later in the section Connecting the Alpha CPU to the 
PCI and EISA Buses. 

The T2 bridge chip contains a sophisticated DMA 
controller capable of servicing three separate PCI 
masters simultaneously. The DMA controller sup­
ports different-size data bursting (e.g., single, multi­
ple, or continuous) and two kinds of DMA transfers, 
direct mapped and scatter/gather mapped. Both 
DMA mappings allow the T2 bridge chip to transfer 
large amounts of data between the PCI bus and the 
system bus, independent of the CPU. 

Direct-mapped DMAs use the address generated 
by the PCI to access the system bus memory directly. 
Scatter/gather-mapped DMAs use the address gener­
ated by the PCI to access a table of page frame num­
bers (PFNs) in the system bus memory. By using the 
PFNs from the table, the T2 bridge chip generates a 
new address to access the data. To enhance the per­
formance of scatter/gather-mapped DMAs, the T2 
bridge chip contains a translation look-aside buffer 
(TLB) that contains eight of the most recently used 
PFNs from the table. By storing the PFNs in the TLB, 
the T2 bridge chip does not have to access the table 
in system bus memory every time it requires a new 
PFN. The TLB improves scatter/gather-mapped DMA 
performance and conserves bus bandwidth. Each 
entry in the TLB can be individually invalidated as 
required by software. 

The T2 bridge chip also contains a single VO data 
mover that enables a CPU on the system bus to initi­
ate data transfers with a device on the PCI bus. The 
1/0 data mover supports accesses to all the valid PCI 
address spaces, including PCI 1/0 space, PCI mem-
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ory space, and PCI configuration space. The T2 
bridge chip supports two 1/0 transaction types 
when accessing PCI memory space: sparse-type 
data transfers and dense-type data transfers. Sparse­
type transfers are low-performance operations 
consisting of 8-, 16-, 24-, 32-, and 64-bit data trans­
actions. Dense-type transfers are high-performance 
operations consisting of 32-bit through 32-byte data 
transactions. Dense-type transfers are especially 
useful when accessing 1/0 devices with large data 
buffers, such as video graphics adapter (VGA) con­
trollers. A single PCI device mapped into PCI mem­
ory space can be accessed with either sparse-type 
operations, dense-type operations, or both. 

In addition to accessing the PCI, a CPU can access 
various T2 bridge chip internal control/status regis­
ters (CSRs) for setup and status purposes. For maxi­
mum flexibility, all the T2 bridge chip's functions 
are CSR programmable, allowing for a variety of 
optional features. All CPU 1/0 transfers, other than 
those to T2 bridge chip CSRs, are forwarded to the 
PCibus. 

Intel PCI-to-EISA Bridge Chip Set 
The Intel PCI-to-EISA bridge chip set provides the 
bridge between the PCI bus and the EISA bus.3 It inte­
grates many of the common 1/0 functions found in 
today's EISA-based PCs. The chip set incorporates 
the logic for a PCI interface running at a clock rate 
of 30 ns and an EISA interface running at a clock 
rate of 120 ns. The chip set contains a DMA con­
troller that supports direct- and scatter/gather­
mapped data transfers, with a sufficient amount of 
data buffering to isolate the PCI bus from the EISA 
bus. The chip set also includes PCI and EISA arbiters 
and various other support control logic that pro­
vide decode for peripheral devices such as the flash 
read-only memories (ROMs) containing the basic 
1/0 system (BIOS) code, real-time clock, keyboard/ 
mouse controller, floppy controller, two serial 
ports, one parallel port, and hard disk drive. In the 
AlphaServer 2100 system, the PCl-to-EISA bridge 
chip set resides on the standard 1/0 module, which 
is discussed later in this paper. 

Connecting the Alpha CPU to the PC/ 
and EISA Buses 
In the next section, we discuss several interesting 
design challenges that we encountered as we 
attempted to connect PC-oriented bus structures to 
a high-powered multiprocessing Alpha chassis. 
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Address and Data Mapping 
When a CPU initiates a data transfer to a device on 
the PCI bus, the T2 bridge chip must first determine 
the location (address) and amount of data (mask) 
information for the requested transaction and then 
generate the appropriate PCI bus cycle. This issue is 
not straightforward because the PCI and EISA buses 
both support data transfers down to the byte granu­
larity, but the Alpha CPU and the system bus provide 
masking granularity only down to 32 bits of data. 

To generate less than 32-bit addresses and byte­
masked data transactions on the PCI bus, the T2 
bridge chip needed to implement a special decod­
ing scheme that converts an Alpha CPU-to-1/0 trans-

Table 1 CPU-to-PCI Read Size Encoding 

action, as it appears on the system bus, to a cor­
rectly sized PCI transaction. Tables 1 and 2 give the 
low-order Alpha address bits and Alpha 32-bit mask 
fields and show how they are encoded to generate 
the appropriate PCI address and data masks. By 
using this encoding scheme, the Alpha CPU can per­
form read and write transactions to a PCI device 
mapped in either PCI 1/0, PCI memory, or PCI 
configuration space with sparse-type transfers. 
(Sparse-type transfer sizes have 8-, 16-, 24-, 32-, or 
64-bit data granularity.) 

Another mapping problem exists when a PCI 
device wants to move a byte of data ( or anything 
smaller than 32 bytes of data) into the system bus 

Transaction EV _Addr[6:5] EV _Addr[4:3] Instructions PCI Byte PCI_AD[1 :OJ Data Returned 
Size Enables to Processor, 

(L) EV _Data[127:0] 

8 bits 00 00 LOL 1110 00 OW_0:[07:00) 

01 00 LOL 1101 01 OW_0:[015:08) 

10 00 LOL 1011 10 OW _0:[023:016) 

11 00 LOL 0111 11 OW_0:[031 :024) 

16 bits 00 01 LOL 1100 00 OW _0:[079:064) 

01 01 LOL 1001 01 OW_0:[087:072) 

10 01 LOL 0011 10 OW_0:[095:080) 

24 bits 00 10 LOL 1000 00 OW_ 1 :[023:00) 

01 10 LOL 0001 01 OW_ 1 :[031 :08) 

32 bits 00 11 LOL 0000 00 OW_ 1 :[095:064) 

64 bits 11 11 LOQ 0000 00 OW_1 :[095:064) 
0000 OW_1 :[0127:096) 

Table 2 CPU-to-PCI Write Size Encoding 

Trans- EV _Addr[6:5] EV _Addr[4:3] EV _Mask[7:0] (H) lnstruc- PCI Byte PCI_AD[1 :OJ Data Returned 
action tions Enables to Processor, 
Size (L) EV _Data[127:0] 

8 bits 00 00 00000001 LOL 1110 00 OW_0:[07:00] 

01 00 00000001 LOL 1101 01 OW _0:[015:08] 

10 00 00000001 LOL 1011 10 OW _0:[023:016) 

11 00 00000001 LOL 0111 11 OW_0:[031 :024) 

16 bits 00 01 00000100 LOL 1100 00 OW_0:[079:064] 

01 01 00000100 LOL 1001 01 OW_0:[087:072) 

10 01 00000100 LDL 0011 10 OW_0:[095:080) 

24 bits 00 10 00010000 LDL 1000 00 OW_ 1 :[023:00) 

01 10 00010000 LOL 0001 01 OW_ 1 :[031 :08) 

32 bits 00 11 01000000 LOL 0000 00 OW_1 :[095:064] 

64 bits 11 11 11000000 LOQ 0000 00 OW_1 :[095:064] 
0000 OW_1:(0127:096] 
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memory. Neither the system bus nor its memory 
supports byte granularity data transfers. Therefore, 
the T2 bridge chip must perform a read-modify­
write operation to move less than 32 bytes of data into 
the system bus memory. During the read-modify­
write operation, the T2 bridge chip first reads a full 
32 bytes of data from memory at the address range 
specified by the PCI device. 2 It then merges the old 
data (read data) with the new data (PCI write data) 
and writes the full 32 bytes back into memory. 

ISA Fixed-address Mapping 
We encountered a third interesting mapping prob­
lem when we decided to support certain ISA 
devices with fixed 1/0 addresses in the AlphaServer 
2100 system. These ISA devices (e.g., ISA local area 
network [LAN] card or an ISA frame buffer) have 
fixed (hardwired) memory-mapped 1/0 addresses 
in the I-MB to 16-MB address range. 

The ISA devices being discussed were designed 
for use in the first PCs, which contained less than 
1 MB of main memory. In these PCs, the 1/0 devices 
had fixed access addresses above main memory in 
the 1-MB to 16-MB address range. Today's PCs have 
significantly more physical memory and use the 
I-MB to 16-MB region as a part of main memory. 
Unfortunately, these ISA devices were never 
redesigned to accommodate this change. There­
fore, to support these ISA options, the PC designers 
created 1/0 access gaps in main memory in the I-MB 
to 16-MB address range. With this technology, an 
access by a CPU in that address range is automati­
cally forwarded to the ISA device. 

To remain compatible with the ISA community, 
the T2 bridge chip also had to allow for a gap in 
main memory at the I-MB to 16-MB address range so 
that these addresses could be forwarded to the 
appropriate ISA device. 

BIOS Caching Compatibility 
Today's Microsoft-compatible PCs provide another 
performance-enhancing mechanism. We decided to 
implement this function inside the T2 bridge chip 
as well. 

During system initialization, MS-DOS-based PCs 
read several BIOS ROMs from their 1/0 space. Once 
the RO Ms are read, their contents are placed in fixed 
locations in main memory in the 512-kilobyte (KB) 
to I-MB address range. The software then has 
the ability to mark certain addresses within this 
range as read cacheable, write cacheable, read 
noncacheable, or write noncacheable. The basic 
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intention is to mark frequently accessed sections 
of code as read cacheable but write noncacheable. 
In this way, read accesses "hit" in main memory (or 
cache), and writes update the ROMs directly. 

Interrupt Mechanism 
No computer system would be complete without 
providing a mechanism for an 1/0 device to send 
interrupts to a CPU. The 1/0 interrupt scheme on 
the AlphaServer 2100 system combines familiar 
technology with custom support logic to provide 
a new mechanism. 

Electrical and architectural restrictions prohib­
ited the interrupt control logic from being directly 
accessed by either the system bus or the PCI bus. 
As a result, the interrupt control logic is physically 
located on a utility bus called the XBUS. The XBUS 
is an 8-bit slave ISA bus placed nearby the PCI-to-EISA 
bridge chips. 

The base technology of the 1/0 interrupt logic is 
a cascaded sequence of Intel 8259 interrupt con­
trollers. The 8259 chip was chosen because it is a 
standard, accepted, and well-known controller 
used by the PC industry today. The use of the 8259 
interrupt controller translated to low design risk as 
well. Although the 8259 interrupt controller is not 
new, its integration into a high-performance multi­
processing server, without incurring undue perfor­
mance degradation, required some novel thinking. 

The integration of the 8259 interrupt controller 
into the AlphaServer 2100 system presented two 
considerable problems. First, the designers had 
to satisfy the 8259 interface requirements in a way 
that would have a minimal impact on the perfor­
mance of the interrupt-servicing CPU. The 8259 
requires two consecutive special-acknowledge 
cycles before it will present the interrupt vector. 
To resolve this problem, we designed a set of 
handshaking IACK programmable array logic (PAL) 
devices. These PALs enhance the functions of the 
8259 controllers as XBUS slaves. The interrupt­
servicing CPU performs only a single read to a desig­
nated address that is decoded to the XBUS. The IACK­
control PALs decode this read and then generate the 
special, double-acknowledge cycles required to 
access the vector. The PAL logic also deasserts 
CHRDY, a ready signal to the ISA bus, so that the cycle 
has ample time to proceed without causing a con­
formance error for a standard ISA slave cycle. When 
the double acknowledge is complete and the vector 
is guaranteed to be driven on the bus, the PALs 
assert the CHRDY ready signal. 
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The second problem involved the location of the 
interrupt controller. As mentioned earlier, because 
of electrical and architectural restrictions, the inter· 
rupt controller was located on the XBUS near the 
PCHo·EISA bridge chips. With the interrupt con· 
troller located on the XBUS, an interrupt-servicing 
CPU is required to perform a vector read that spans 
two 1/0 bus structures. For this reason and its 
potential effect on system performance, vector 
reads had to be kept to a minimum, which is not 
easy in a system that allows more than one CPU 
to service a pending interrupt request. 

Since the AlphaServer 2100 system can have as 
many as four CPUs, all four CPUs can attempt to 
service the same pending interrupt request at the 
same time. Without special provisions, each CPU 
would perform a vector read of the interrupt con· 
troller only to find that the interrupt has already 
been serviced by another CPU. Requiring each CPU 
to perform a vector read of the interrupt controller 
on the XBUS wastes system resources, especially 
when each vector read spans two bus structures. Of 
course, this problem could be resolved by assigning 
only one CPU to service pending interrupts, but this 
would negate the advantage of having multiple CPUs 
in a system. To solve this problem, the T2 bridge 
chip on the system bus implements special "passive­
release" logic that informs a CPU at the earliest possi­
ble time that the pending interrupt is being serviced 
by another CPU. This allows the "released" CPU to 
resume other, more important tasks. 

The term passive release typically refers to a vec­
tor code given to an interrupt-servicing CPU during 
a vector read operation. The passive-release code 
informs the CPU that no more interrupts are pend· 
ing. The special passive-release logic allows the T2 
bridge chip to return the passive-release code to a 
servicing CPU on behalf of the interrupt controller. 
The T2 bridge chip performs this function to save 
time and bus bandwidth. 

After the designers implemented all the features 
described above, they needed to address the prob· 
lem of how to deal with all the slow, highly volatile, 
"off-the-shelf" parts. To integrate these compo· 
nents into the 1/0 subsystem, they invented the 
standard 1/0 module. 

The Standard 1/0 Module 
As part of the development effort of the 1/0 subsys­
tem, the engineering team faced the challenge of 
integrating several inexpensive, low-performance, 
off-the-shelf, PC-oriented 1/0 functions (e.g., TOY 
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clock, keyboard, mouse, speaker) into a high­
performance Alpha multiprocessing system, with· 
out affecting the higher performing architectural 
resources. The multilevel 1/0 bus structure served 
to alleviate the performance issues, but the develop­
ment of a PC-style 1/0 subsystem with off.the-shelf 
components involved inherent risk and challenge. 

To reduce the risks inherent with using new and 
unfamiliar devices, such as the PCHo·EISA bridge 
chip set, we chose to build an 1/0 module (called 
the standard 1/0 module) that plugs into the 
AlphaServer 2100 system backplane and contains 
the PCHo·EISA bridge, associated control logic, con­
trollers for mouse, keyboard, printer, and floppy 
drive as well as the integral Ethernet and SCSI con· 
trollers. Without this plug-in module, fixing any 
problems with the PCHO·EISA bridge chip set or 
any of the supporting logic would have required 
a backplane upgrade, which is a costly and time· 
consuming effort. 

The standard 1/0 module is relatively small, inex· 
pensive both to manufacture and to modify, and 
easily accessible as a field replaceable unit (FRU). As 
shown in Figure 3, the standard 1/0 module con· 
tains the following logic: 

• PCI·tO·Ethernet controller chip 

• PCHO·SCSI controller chip 

• PCHo·EISA bridge chips 

• Real-time clock speaker control 

• 8-KB, nonvolatile, EISA-configuration, random· 
access memory (RAM) 

• l·MB BIOS flash ROM 

• Keyboard and mouse control 

• Parallel port 

• FDC floppy controller 

• Two serial ports 

• I2C support: controller, expander, and ROM 

• Intel 8259 interrupt controllers 

• Ethernet station address ROM 

• Reset and sysevent logic 

• Fan speed monitor 

• Remote fault management connector 

• External PCI subarbiter 

• 3.3-volt and - 5.0-volt generation 
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Figure 3 The Standard J/0 Module 

For the most part, all these functions were gener­
ated by using integrated, off-the-shelf components 
at commodity p ricing. Solutions known to work 
on other products were used as often as possible. 
The flash memory resides on the EISA memory bus 
and is controlled by the PCl-to-EISA bridge chip. 
A simple multiplexing scheme with minimal hard­
ware enabled the server to address more locations 
than the bridge chip allowed, as much as a full 1 MB 
ofBIOS ROM. The National PC87312, which provides 
the serial and parallel port control logic, and the 
floppy disk controller reside directly on the ISA bus. 
The rest of the devices are located on the XBUS (an 
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8-bit buffered slave ISA bus), with control managed 
by the PCl-to-EISA bridge chips. 

In addition, the common PC functions are 
located at typ ical PC addresses to ease their integra­
tion and access by software. As expected, hardware 
changes were required to the standard 1/0 module 
during its hardware development cycle. However, 
the standard VO module, which takes only minutes 
to replace, provided an easy and efficient method of 
integrating hardware changes into the AlphaServer 
2100 system. We expect the usefulness of the stan­
dard 1/0 module to continue and hope that it will 
provide an easy and inexpensive repair process. 
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Summary 
The 1/0 subsystem on the AlphaServer 2100 system 
contains a two-level hierarchical bus structure con­
sisting of a high-performance PCI bus connected to 
a secondary EISA bus. The PCI bus is connected to 
the AlphaServer 2100 system's multiprocessing sys­
tem bus through the T2 bridge chip. The secondary 
1/0 bus is connected to the PCI bus through a stan­
dard bridge chip set. The 1/0 subsystem demon­
strated sufficient flexibility to become the I/0 

interface for the small pedestal AlphaServer 2000 
and the rackmountable version of the AlphaServer 
2100 products. 
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DEC OSF/1 Version 3.0 Symnietric 
Multiprocessing Implenientation 

The primary goal for an operating system in a symmetric multiprocessing (SMP) 
implementation is to convert the additional computing power provided to the sys­
tem, as processors are added, into improved system performance without compro­
mising system quality. The DEC OSF/1 version ].0 operating system uses a number 
of techniques to achieve this goal. The techniques include algorithmic enhance­
ments to improve parallelism within the kernel and additional lock-based synchro­
nization to protect global system state. Synchronization primitives include spin 
locks and blocking locks. An optional locking hierarchy was imposed to detect 
latent symmetric multiprocessor synchronization issues. Enhancements to the ker­
nel scheduler improve cache usage by enabling soft affinity of threads to the proces­
sor on which the thread last ran; a load-balancing algorithm keeps the number of 
runnable threads spread evenly across the available processors. A highly scalable 
and stable SMP implementation resulted from the project. 

The DEC OSF/1 operating system is a Digital product 
based in part on the Open Software Foundation's 
OSF/1 operating system.1 One major goal of the DEC 
OSF/1 version 3.0 project was to provide a leader­
ship multiprocessing implementation of the UNIX 
operating system for Alpha server systems, such as 
the Digital AlphaServer 2100 product. This paper 
describes the goals and development of this operat­
ing system feature for the version 3.0 release. 

The DEC OSF/1 Version 3.0 
Multiprocessing Project 
Multiprocessing platforms like the AlphaServer 
2100 product provide a cost-effective means of 
increasing the computing power of a server. Addi­
tional computing capacity can be obtained at a 
potentially significant cost advantage by simply 
adding CPU modules to the system rather than by 
adding a new system to a more loosely coupled 
network-server arrangement. An effective execu­
tion of this server-scaling strategy requires signifi­
cant cooperation between the hardware and 
software components of the system. The hardware 
must provide symmetrical (i.e., equal) access to sys­
tem resources, such as memory and 1/0, for all pro­
cessors; the operating system software must 
provide for enough parallelism in its major subsys­
tems to allow applications to take advantage of the 
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additional CPUs in the system. That is, the operating 
system cost of multiprocessing must be kept low 
enough to enable most of an additional CPU's com­
puting power to be used by applications rather 
than by the operating system's efforts to synchro­
nize simultaneous access to shared memory by mul­
tiple processors. 

Regarding hardware, the AlphaServer 2100 prod­
uct and the other Alpha multiprocessing platforms 
provide the shared memory and symmetric access 
to the system and 1/0 buses desired by the operat­
ing system designers. 2 The design allows all CPUs 
to share a single copy of the operating system 
in memory. The hardware also has a load-locked/ 
store-conditional instruction sequence, which pro­
vides both a mechanism for atomic updates to 
shared memory by a single processor and an inter­
processor interrupt mechanism. 

Given these hardware features, operating system 
software developers have a great deal of freedom 
in developing a multiprocessing strategy. The 
approach used in DEC OSF/1 version 3.0 is called 
symmetric multiprocessing (SMP), in which all pro­
cessors can participate fully in the execution of 
operating system code. This symmetric design con­
trasts with asymmetric multiprocessing (ASMP), in 
which all operating system code must be executed 
on a single designated "master" processor. Such an 
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approach is undesirable because it provides inade­
quate utilization of additional "slave" processors 
for most application mixes. By contrast, for the 
DEC OSF/1 multiprocessing design, the concept of 
a master processor applies only to the keeping of 
the global system time and to other specialized uses 
(such as supporting subsystems that are not yet 
fully symmetric). 

The SMP features in the DEC OSF/1 version 3.0 
operating system are based on the joint work of 
Carnegie Mellon University, for the Mach version 
2.5 kernel, and the Open Software Foundation and 
the Encore Computer Corporation, for the version 
1.2 release of the OSF/1 operating system.3-6 From 
this substantial technical base, the DEC OSF/1 mul­
tiprocessing project focused on achieving UNIX 
leadership performance on targeted commercial 
server applications, such as data servers (i.e., DBMS 
and file servers) and compute servers. These appli­
cation domains tend to make heavy use of system 
services. Therefore, shortcomings in the multipro­
cessing implementation become readily apparent 
through the failure of these applications to gain sig­
nificant performance speedups as processors are 
added to the server. The ideal benefit is, of course, 
to obtain 100 percent of each additional processor 
for the applications' use. In reality, a gain of 70 to 80 
percent of the last CPU added is well worth the 
incremental cost of the processor. 

From the outset of the project, the engineering 
team was empowered to enhance and augment the 
OSF/1 version 1.2 code base to obtain this level of 
multiprocessing performance for DEC OSF/1 ver­
sion 3.0. At the same time, it was required to main­
tain the system's stability and reliability. The team 
was staffed by engineers with extensive multipro­
cessing and real-time operating system experience 
inside and outside Digital. Quality assurance (Q/A) 

and performance teams provided considerable 
feedback as the product moved through its develop­
ment base levels. 

The engineering team faced multiple technical 
issues in the SMP implementation of the DEC OSF/1 
operating system, including 

• Analyzing concurrency and locking issues 

• Adapting the base operating system for SMP 

• Supporting a comprehensive lock package 

• Adapting thread scheduling for SMP 

• Ensuring a quality implementation 

• Benchmarking progress in SMP performance 
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The remainder of this paper describes the high­
lights of the team's efforts in these areas. 

Analyzing Concurrency and 
Locking Issues 
Moving from a uniprocessor to a shared-memory, 
symmetric multiprocessing platform places new 
demands on an operating system. Multiple processes 
running independently on separate processors can 
access kernel data structures simultaneously. This 
level of true concurrency is unobtainable on uni­
processor systems, where concurrency either 
derives from the asynchronous execution of inter­
rupt service routines (ISRs) or is emulated through 
the interleaving of processes on a time-share basis. 
In the first case, synchronization is required for 
data structures accessed by both mainline kernel 
code and the ISR. The technique used to achieve 
synchronization is to raise the processor interrupt 
priority level (IPL), i.e., system priority level (SPL) in 
UNIX parlance, in the mainline code to the level 
used by the competing ISR, thus blocking the inter­
rupt that invokes the ISR. In the case of the virtual 
concurrency provided by process time-sharing, 
synchronization is achieved by allowing only one 
process to be in kernel context at a time. The kernel 
protects itself by p reventing context switching 
(process preemption) until an executing process 
has reached a safe point, i.e., usually when it is 
about to leave kernel context. Other safe points 
appear when a process must voluntarily block to 
await the availability of some resource. These are 
the synchronization strategies employed by tradi­
tional UNIX-based operating systems. 

One powerful feature of the OSF/1 kernel pro­
vides a further level of concurrency, which compli­
cates the process of synchronizing access to kernel 
data; that feature is kernel-based threads. The Mach 
task/thread model allows multiple threads of exe­
cution to be active within a single task (process) 
address space. Therefore, whereas an unthreaded 
UNIX system has to protect data shared by multiple 
processes, e.g., the scheduling queues, a threaded 
kernel must protect all process-level data, which is 
shared by all threads in the process. 

Although in many ways a traditional UNIX system 
from the user's point of view, the first version of the 
DEC OSF/1 operating system departed from typical 
UNIX practice by providing kernel-mode preemp­
tion in its real-time version of the kernel. This 
enhancement, targeted to improve the respon­
siveness of the system to real-time events, allows 

Vol. 6 No. 3 Summer 1994 Digital Technical Journal 



DEC OSF/ 1 Version 3. 0 Symmetric Multiprocessing Implementation 

preemptive priority-based context switching 
between threads to occur at any point in kernel 
execution that meets a set of criteria for preemp­
tion safety. These criteria have an immediate rele­
vance and applicability to the work of adapting the 
OSF/1 uniprocessor code to a multiprocessing envi­
ronment. In the following discussion of preemp­
tion safety, each criterion for safe preemption is 
presented as it relates and leads to an understand­
ing of correct multiprocessing synchronization. 

Real-time thread preemption can occur only 
when all three of the following conditions are met: 

1. The processor SPL is zero. This state indicates 
that all interrupts are enabled and implies that 
no code is executing in an ISR or is modifying 
kernel data shared with an ISR. 

On a nonpreempting uniprocessor kernel, SPL 
synchronization alone is adequate to protect 
shared data structures. SPL is a processorwide 
rather than a systemwide characteristic. Conse­
quently, raising the SPL to interrupt level is inade­
quate protection on a multiprocessing system, 
in which one processor's SPL has no effect on 
another's. The classic multiprocessing solution 
to this problem is to combine SPL synchroniza­
tion with mutual-exclusion spin locks to block 
out other processors as well as ISRs. 

2. No simple locks (spin locks) are held. This state 
is represented in the Mach and OSF/1 kernel 
code by a call to the simple_lock( ) routine. This 
call signifies that the code has entered a critical 
section where shared data will be modified. 
On a uniprocessor, calling the simple_lock( ) 
routine actually increments a global spin lock 
count; unlocking decrements that count. If the 
count is zero, then an attempt to preempt the 
current process can be made. In this uniproces­
sor implementation, no actual spin locks exist in 
memory, and nothing is locked in the physical 
sense of a lock bit being checked for a state of 
zero or one. 

By contrast, on a microprocessing system, real 
locking, not lock counting, is required; there­
fore, spin locks occupy real memory. On a multi­
processing system, locking a spin lock involves 
testing the lock location for a value of zero and 
then atomically setting the value to one before 
continuing into the critical code section, 
assured of exclusive access. If another processor 
finds the lock bit set (i.e., nonzero), it will 
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repeatedly test the lock location and thus "spin" 
until the lock value becomes zero when 
unlocked by its previous holder. Because proces­
sors make no progress while they attempt to 
obtain a spin lock, such a lock is meant to be held 
for bounded, hopefully brief periods. Extensive 
or unbounded accesses require the use of com­
plex locks (blocking read/write locks) by which 
a thread will sleep until a locked resource 
becomes available and unlocked. (Sleeping to 
obtain a complex lock is by definition a preemp­
tion point.) 

3. The code is not funneled to the master processor. 
This state is another way by which OSF/1 kernel 
code delineates a critical code section. Funnel­
ing forces code to run on a single processor des­
ignated as the master processor. Funneling 
allows device drivers and entire kernel subsys­
tems that have not been adapted to a concurrent­
execution environment with simple_lock( ) calls 
to modify kernel data safely. On a preempting 
uniprocessor, funneling is represented simply 
as a per-thread flag that prevents preemption 
when set; no context switching is required to 
cause funneling. 

By contrast, on a multiprocessing system, fun­
neling to the master processor may involve an 
actual context switch from the funneling 
thread's current processor-an expensive form 
of synchronization. Prior to DEC OSF/1 version 
3.0, all UNIX process subsystem components, 
including the fork( ), exec( ), wait( ), and exit( ) 
routines and signal logic, were not safe for 
preemption and were therefore funneled. All 
modifications to process data structures could 
occur only on the master processor. This situa­
tion eliminated concerns about access to those 
structures from another processor but at the 
same time virtually eliminated the parallelism of 
the process subsystem. For example, for the fork 
system calls, the list of active processes in the 
system (allproc) was traversed in funneled code. 
Clearly, funneling this fundamental resource 
introduces significant latencies into the system's 
response to scheduling events. In multiprocess­
ing terms, no process-level operations can exe­
cute in parallel. 

The development of the DEC OSF/1 real-time ker­
nel leveraged the existing OSF/1 SPL, locking, and 
funneling constructs to implement preemption on 
uniprocessor Alpha systems. This work provided 
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a valuable product feature and was a preview of the 
effort that would be required to adapt the OSF/1 
code for the DEC 2000, 4000, and 7000 multipro­
cessing platforms. Supporting separate preemptive 
kernels for three versions prior to DEC OSF/1 
version 3.0, combined with the developers' experi­
ence on other multiprocessing systems (including 
ULTRIX version 4 and an advanced development 
project using MIPS multiprocessing platforms), 
uncovered the following challenges and problems 
that the team had to overcome to produce a com­
petitive multiprocessing product: 

• Supporting two complete sets of kernel binary 
objects-base and real-time-was burdensome 
for the operating system engineers and awk­
ward for third-party developers. Therefore, the 
DEC OSF/1 multiprocessing product team had to 
strive to ship a single, unified set of kernel bina­
ries. This set should encompass the full range 
of real-time features, including preemption and 
POSIX fixed-priority scheduling. For that to be 
practical, the resulting multiprocessing kernel 
would have to perform as well on a uniproces­
sor as the non-SMP kernel. 

• Diagnosing locking problems in the preemptive 
kernel was expensive in developer time. The 
process required painstaking inspection of 
the simple-locking source code, which is often 
disguised in subsystem-specific macros. Lock­
ing or unlocking a spin lock multiple times or 
not unlocking it at all (usually in code loops) 
would disable preemption well beyond the end 
of a critical section or enable it before the end. 
A coherent locking architecture with automated 
debugging facilities was needed to ship a reliable 
product on time. The lock-debugging facility 
present in the original OSF/1 code was probably 
inadequate for the task. 

• Experiments with the real-time kernel revealed 
unacceptable preemption latencies, especially 
in funneled code paths. This deficiency indi­
cated that, when moved to a multiprocessing 
platform, the existing kernel would fail to use 
additional processors effectively. That is, the 
kernel would not exhibit adequate parallelism 
to scale effectively. Clearly, major work was 
required to significantly increase parallelism in 
the kernel. This task would likely involve remov­
ing most uses of funneling, eliminating some 
spin locks, and adding other spin locks to create 
a finer granularity of locking. 
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Adapting the Base operating System 
for Symmetric Multiprocessing 
Making the leap from a preemptive uniprocessor 
kernel to an effective SMP implementation, built 
from a single set of kernel binaries, required con­
tributions from the OSF/1 version 1.2 and the DEC 

OSF/1 version 3.0 projects. Fundamental changes 
were introduced into the system to support SMP. 

The basic approach planned by the SMP project 
team was first to bootstrap the DEC OSF/1 version 
1.3 kernel on the existing Alpha multiprocessing 
platforms. This task was accomplished by funneling 
all major subsystems to a single processor while sta­
bilizing the underpinnings of the multiprocessing 
system (i.e., the scheduler, the virtual memory sub­
system, the virtual file system, and the hardware 
support) in the new environment. This approach 
allowed the team to make progress in understand­
ing the scope of the effort while analyzing the 
multiprocessing requirements of each kernel sub­
system. The in-depth analysis was necessary to 
identify those subsystems in the kernel that 
required modifications to run safely and efficiently 
under SMP. As each subsystem was confirmed to 
exhibit parallelism or was made parallel, it was 
unfunneled and thus freed to run on any processor. 
This process was iterative. If incorrectly paral­
lelized, a subsystem will reveal itself by (1) leaving 
data incorrectly unprotected and thus open for cor­
ruption and (2) developing a deadlock, i.e., a situa­
tion in which each of two threads holds a spin lock 
required by the other thread and thus neither 
thread can take the lock and proceed. 

The efforts at parallelizing the kernel fell into 
two classes of modification: lock-based synchro­
nization to ensure multiprocessing correctness and 
algorithmic changes to increase the level of paral­
lelism achieved. 

Lock-based Synchronization 
The code base on which the DEC OSF/1 product 
is built, i.e., the Open Software Foundation's OSF/1 
software, provides a strong foundation for SMP. The 
OSF further strengthened this foundation in OSF/1 
versions 1.1 and 1.2, when it corrected multiple 
SMP problems in the code base and parallelized 
(and thus unfunneled) additional subsystems. As 
the multiprocessing bootstrap effort continued, 
the team analyzed and incorporated the OSF/1 ver­
sion 1.2 SMP improvements into DEC OSF/1 version 
3.0. As strong as this starting point was, however, 
some structures in the system did not receive the 
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appropriate level of synchronization. The team cor­
rected these problems as they were uncovered 
through testing and code inspection. 

The DEC OSF/1 operating system uses a combina­
tion of simple locks, complex locks, elevated SPL, 

and funneling to guarantee synchronized access to 
system resources and data structures. Simple locks, 
SPL, and funneling were described briefly in the 
earlier discussion of preemption. Complex locks, 
like elevated SPL, are used in both uniprocessor and 
multiprocessor environments. These locks are usu­
ally sleep locks-threads can block while they wait 
for the lock-which offer additional features, 
including multiple-reader/single-writer access and 
recursive acquisition. 

An example of the use of each synchronization 
technique follows: 

• A simple lock is used to protect the kernel's call­
out (timer) queue. In an SMP environment, mul­
tiple threads can update the callout queue at the 
same time, as each of them adds a timer entry 
to the queue. Each thread must obtain the call­
out lock before adding an entry and release the 
lock when done. The callout simple lock is also 
a good example of SPL synchronization under 
multiprocessing because the callout queue is 
scanned by the system clock ISR. Therefore, 
before locking the callout lock, a thread must 
raise the SPL to the clock's IPL. Otherwise, the 
thread holding the callout lock at an SPL of zero 
can be interrupted by the clock ISR, which will 
in turn attempt to take the callout lock. The 
result is a permanent deadlock. 

• A complex lock protects the file system direc­
tory structure. A blocking lock is required 
because the directory lock holder must perform 
1/0 to update the directory, which itself can 
block. Whenever blocking can occur while 
a lock is held, a complex lock is required. 

• Funneling is used to synchronize access to the 
ISO 9660 CD-ROM file system. 7 The decision to 
funnel this file system was largely due to limita­
tions in the DEC OSF/1 version 3.0 schedule ; 
however, the file system is a good choice for fun­
neling because of its generally slow operation 
and light usage. 

To ensure adequate performance and scaling as 
processors are added to the system, an SMP imple­
mentation must provide for as much parallelism 
through the kernel as possible. The granularity of 
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locks placed in the system has a major impact on 
the amount of parallelism obtained. 

During multiprocessing development, locking 
strategies were designed to 

• Reduce the total number of locks per subsystem 

• Reduce the number of locks taken per subsys­
tem operation 

• Improve the level of parallelism throughout the 
kernel 

At times, these goals clashed: enhancing paral­
lelism usually involves adding a lock to some struc­
ture or code path. This outcome conflicts with the 
goal of reducing lock counts. Consequently, in prac­
tice, the process of successfully parallelizing a sub­
system involves striking a balance between lock 
reduction and the resulting increase in lock granu­
larity. Often, benchmarking different approaches is 
required to fine-tune this balance. 

Several general trends were uncovered during 
lock analysis and tuning. In some cases locks were 
removed because they were not needed; they 
were the products of overzealous synchronization. 
For example, a structure that is private to a thread 
may require no locking at all. Moreover, a data ele­
ment that is read atomically needs no locking. An 
example of lo.ck removal is the gettimeofday( ) sys­
tem call, which is used frequently by DBMS servers. 
The system call simply reads the system time, a 64-
bit quantity, and copies it to a buffer provided by the 
caller. The original OSF/1 system call, running on a 
32-bit architecture, had to take a simple lock before 
reading the time to guarantee a consistent value. On 
the Alpha architecture, the system call can read the 
entire 64-bit time value atomically. Removing the 
lock resulted in a 40 percent speedup. 

In other cases, analyzing how structures are used 
revealed that no locking was needed. For example, 
an l/0 control block called the buf structure was 
being locked in several device drivers while the 
block was in a state that allowed only the device 
driver to access it. Removing these unnecessary 
locks saved one complex and one simple locking 
sequence per 1/0 operation in these drivers. 

Another effective optimization involved post­
poning locking until a thread determined that it had 
actual work to do. This technique was used success­
fully in a routine frequently called in a transaction 
processing benchmark. The routine, which was 
locking structures in anticipation of following 
a rarely used code path, was modified to lock only 

33 



DEC OSF/1 Symmetric Multiprocessing 

when the uncommon code path was needed. This 
optimization significantly reduced lock overhead. 

To improve parallelism across the system, the 
DEC OSF/1 SMP development team modified the lock 
strategies in numerous other cases. 

Al,gorithm Changes 
In some instances, the effective migration of a sub­
system to the multiprocessing environment 
required significant reworking of its fundamental 
algorithms. This section presents three examples of 
this work. The first example involves the rework 
of the process management subsystem; the second 
example is a new technique for a thread to refer to 
its own state; and the third example deals with 
enhancements in translation buffer coherency or 
"shootdown." 

Managing Processes and Process State Early ver­
sions of the DEC OSF/1 software maintained a set of 
systemwide process lists, most notably proc (static 
proc structure array), allproc (active process list), 
and zomproc (zombie process list). These lists tend 
to be fairly long and are normally traversed sequen­
tially. Operations involving access to these lists 
include process-creation time (fork( ) ) , signal post­
ing, and process termination. The original OSF/1 
code protected these process lists and the individ­
ual proc structures themselves by means of funnel­
ing. This meant that virtually every system call that 
involved process state, such as exit( ), wait( ), 
ptrace( ) , and sigaction( ), was also forced into 
a single funnel. Experience with real-time preemp­
tion indicated that this approach would exact 
excessive multiprocessing costs. Although it is pos­
sible to protect these lists with locks, the develop­
ment team decided that this basic portion of the 
kernel must be optimized for maximum multi­
processing performance. The OSF also recognized 
the need for optimization; they addressed the prob­
lem in OSF/1 version 1.2 by adopting a redesign 
of the process management developed for their 
Multimax systems by Encore Computer Corpora­
tion. The DEC OSF/1 team adopted and enhanced 
this design for handling process lists, process man­
agement system calls, and signal processing. 

The redesign replaces the statically sized array of 
proc structures with an array of smaller process 
identification (PID) entry structures. Each PID entry 
structure potentially points to a dynamically allo­
cated proc structure. Under this new scheme, find­
ing the proc structure associated with a user PID 
has been reduced to hashing the PID value to an 
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index into the PID entry array. The process state 
associated with that PID (active, zombie, or nonexis­
tent) is maintained in the PID entry structure. This 
allows process structures to be allocated dynami­
cally, as needed, rather than statically at boot time, 
as before. Simple locks are also added to the process 
structure to allow multiple threads in the process to 
perform process management system calls and sig­
nal handling concurrently. These changes allowed 
process management funneling to be removed 
entirely, which significantly improved the degree of 
parallelism in the process management subsystem. 

Accessing Current Thread State One critical design 
choice in implementing SMP on the DEC OSF/1 sys­
tem concerned how to access the state of the cur­
rently running thread. This state includes the 
current thread's process, task, and virtual memory 
structures, and the so-called uarea, which contains 
the pageable UNIX state. Access to this state, which 
threads require frequently as they run in kernel 
context, must have low overhead. Further, because 
the DEC OSF/1 operating system supports kernel­
mode preemption, the method for accessing the 
current thread's state must work even if a context 
switch to another CPU occurs during the access 
operation. 

The original OSF/1 code used arrays indexed by 
the CPU number to look up the state of a running 
thread. One of these arrays was the U_ADDRESS 
array, which was used to access the currently active 
uarea. The U_ADDRESS array was loaded at context 
switch time and accessed while the thread exe­
cuted. Before the advent of multiprocessing, the 
CPU number was a compile-time constant, so 
that thread-state lookup involved simply reading 
a global variable to form the pointer to the data. 
Adding multiprocessing support meant changing 
the CPU number from a constant to the result of 
the WHAMI ("Who am I?") PALcode call to get the 
current CPU number. (PALcode is the operating­
system-specific privileged architecture library 
that provides control over interrupts, exceptions, 
context switching, etc.8) 

Using such global arrays for accessing the current 
thread's state presented three shortcomings: 

1. The WHAM! PALcode call added a minimum over­
head of 21 machine cycles on the AlphaServer 
2100 server, not including further overhead due 
to cache misses or instruction stream stalls. The 
multiprocessing team felt that this was too large 
a performance price to pay. 
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2. Allowing multiple CPUs to write sequential 
pointers caused cache thrashing and extra over­
head during context switching. 

3. Indexing by CPU number was not a safe practice 
when kernel-mode preemption is enabled. 
A thread could switch processors in the middle 
of an array access, and the wrong pointer would 
be fetched. Providing additional locking to pre­
vent this had unacceptable performance impli­
cations because the operation is so common. 

These problems convinced the team that a new 
algorithm was required for accessing the current 
thread's state. 

The solution selected was modeled on the way 
the OpenVMS VAX system uses the processor inter­
rupt stack pointer to derive the pointer to per-CPU 
state.9 In the OSF/1 system, each thread has its own 
kernel stack. By aligning this stack on a power-of­
two boundary, a simple masking of the stack 
pointer yields a pointer to the per-thread data, such 
as the process control block (PCB) and uthread 
structure. Any data item in the per-thread area can 
be accessed with the following code sequence: 

lda r16, MASK # Get mask value 
bic sp, r16, rO # Mask stack pointer to 

point to stack base 
ldq rx, OFFSET(rO) # Add offset to base 

and fetch item 

Accessing thread state using the kernel stack 
pointer solves all three problems with CPU-number­
based indexing. First, this technique has very low 
overhead; accessing the current thread's data 
involves only a simple masking operation and a read 
operation. Second, using the kernel stack pointer 
incurs no extra overhead during context switching 
because the pointer has to be loaded for other uses. 
Third, because thread stack areas are pages, no 
cache conflicts exist between threads running on 
different processors. Finally, the data access can 
be preempted at any point, and the correct pointer 
is still fetched. No processor-dependent state is 
used to access the current thread state . 

Interprocessor Translation Lookaside Buffer 
Shootdown Alpha processors employ translation 
lookaside buffers (TLBs) to speed up the translation 
of physical-to-virtual mappings. The TLB caches 
page table entries (PTEs) that contain virtual-to­
physical address mappings and access control infor­
mation. Unlike data cache coherency, which the 

Digital Technical Journal Vol. 6 No. 3 Summer 1994 

hardware maintains, TLB cache coherency is a task 
of the software. The DEC OSF/1 system uses an 
enhanced version of the TLB shootdown algorithm 
developed for the Mach kernel to maintain TLB 
coherency 10 First, a modification to the original 
shootdown algorithm was needed to implement 
the Alpha architecture's address space numbers 
(ASNs). Second, a synchronization feature of the 
original algorithm was removed entirely to enhance 
shootdown performance. This feature provided 
synchronization for architectures in which the 
hardware can modify PTEs, such as the VAX plat­
form; the added protection is unnecessary for 
the Alpha architecture. 

The final shootdown algorithm is as follows. The 
physical map (PMAP) is the software structure that 
holds the virtual-to-physical mapping information. 
Each task within the system has a PMAP; operating 
system mappings have a special kernel PMAP. Each 
PMAP contains a list of processors currently using 
the associated address space. To initiate a virtual-to­
physical translation change, a processor (the initia­
tor) first locks the PMAP to prevent any other threads 
from modifying it. Next, the initiator updates the PTE 
mapping in memory and flushes the local TLB. The 
processor then sends an interprocessor interrupt 
to all other processors (the responders) that are 
currently active in the same address space. Each 
responder needs to acknowledge the initiator and 
invalidate its own mapping. Once all responders 
are accounted for, the initiator is free to continue 
with the knowledge that all TLBs are coherent on 
the system. The initiator marks nonactive proces­
sors' ASNs inactive, spins while it waits for other 
processors to check in, and then unlocks the PMAP. 
Figure 1 shows this final TLB shootdown algorithm 
as it progresses from the initiating processor to the 
potential responding processors. 

Developing the Lock Package 
Key to meeting the performance and reliability 
goals for the multiprocessing portion of the DEC 
OSF/1 version 3.0 release was the development of 
a lock package with the following characteristics: 

• Low execution and memory overhead 

• Flexible support for both uniprocessor and 
multiprocessor platforms, with and without 
real-time preemption 

• Automated debugging facilities to detect incor­
rect locking practices at run time 

35 



DEC OSF/1 Symmetric Multiprocessing 

Initiator. 

Lock the PMAP. 
Update the translation map (PTE). 
Invalidate the processor TLB entry. 
Send an interprocessor interrupt to all 

processors that are using the PMAP. 

Mark the nonactive processors' ASNs inactive. 
Spin while it waits for other processors to check in. 
Unlock the PMAP. 

Responders: 

Acknowledge the shootdown. 
Invalidate the processor TLB entry. 
Return from the interrupt. 

Figure I Translation Lookaside Buffer Shootdown Algorithm 

• Statistical facilities to track the number of locks 
used, how many times a lock is taken, and how 
long threads wait to obtain locks 

Of course, the overall role of the lock package 
is to provide a set of synchronization primitives, 
that is, the simple and complex locks described in 
earlier sections. To support kernel-mode thread 
preemption, DEC OSF/1 version 1.0 had extended 
the lock package originally delivered with OSF/1 

version 1.0. Early in the DEC OSF/1 version 3.0 proj­
ect, the development team extended the package 
again to optimize its performance and to add the 
desired debugging and statistical features. 

As previously noted, a major goal for DEC OSF/1 

version 3.0 was to ship a single version of its kernel 
objects, instead of the base and real-time sets of 
previous releases. Therefore, simple locks would 
have to be compiled into the kernel, even for ker­
nels that would run only on uniprocessor systems. 
Achieving this goal required minimizing the size of 
the lock structure; it would be unacceptable to 
have hundreds of kilobytes (KB) of memory dedi­
cated to lock structures in systems that did not use 
such structures. Further, the simple lock and 
unlock invocations required by the multiprocess­
ing code would have to be present for all platforms, 
which would raise serious performance issues for 
uniprocessor systems. In fact, in the original OSF/1 

lock package, the CPU overhead cost of compiling 
in the lock code was between 1 and 20 percent. 
Compute-intensive benchmarks showed the cost to 
be less than 5 percent, but the cost for multiuser 
benchmarks was greater than 10 percent, which 
represents an unacceptable performance degrada­
tion. To meet the goal of a single set of binaries, the 
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development team had to enhance the lock package 
to be configurable at boot time. That is, the package 
needed to be able to tailor itself to fit the configura­
tion and real-time requirements of the platform on 
which it would run. 

The lock package supplied by the OSF/1 system 
was further deficient in that it did not support error 
checking when locks were asserted. This deficiency 
left developers open to the most common tormen­
tor of concurrent programmers, i.e., deadlocks. 
Without error checking, potential system hangs 
caused by locks being asserted in the wrong order 
could go undetected for years and be difficult to 
debug. A formal locking order or hierarchy for all 
locks in the system had to be established, and the 
lock package needed the ability to check the hierar­
chy on each lock taken. 

These needs were met by introducing the notion 
of lock mode to the lock package. Developers 
defined the following five modes and associated 
roles: 

• Mode 0: No lock operations; for production 
uniprocessor systems 

• Mode 1: Lock counting only to manage kernel 
preemption; for production real-time unipro­
cessor systems 

• Mode 2: Locking without kernel preemption; 
for production multiprocessing systems 

• Mode 3: Locking with kernel preemption; for 
production real-time multiprocessing systems 

• Mode 4: Full lock debugging with or without 
preemption; for any development system 
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The default uniprocessor lock mode is O; the mul­
tiprocessing default is lock mode 2. Both selections 
favor non-real-time production systems. The sys­
tem's lock mode, however, can be selected at boot 
time by a number of mechanisms. Lock modes are 
implemented through a dynamic lock configura­
tion scheme that essentially iqstalls the appropriate 
set of lock primitives for the selected lock mode. 
Installation is realized by patching the compiled-in 
function calls, such as simple_lock( ), to dispatch 
to the corresponding lock primitive for the selected 
lock mode. This technique avoids the overhead 
of dispatching indirectly to different sets of lock 
primitives for each call, based on the lock mode. 
The compiled-in lock function calls to the lock 
package are all entry points that branch to a call­
patching routine called simple_lock_patch( ). This 
routine changes the calling machine instruction to 
be patched out (for lock mode 0) or to branch to 
the corresponding primitive in the appropriate set 
of actual primitives, and then branches there (for 
lock modes I through 4). Thus, the overhead for 
dynamically switching between the versions of sim­
ple lock primitives occurs only once for each code 
path. In the case of lock mode 0, calls to simple 
lock primitives are "back patched" out. Under this 
model, uniprocessor systems pay a one-time cost to 
invoke the simple lock primitives, after which the 
expense of executing a lock primitive is reduced to 
executing a few no-op instructions where the code 
for the lock call once resided. 

To address memory consumption issues and to 
provide better system debug capabilities, the devel­
opers reorganized the lock data structures around 
the concept of the lockinfo structure. This struc­
ture is an encapsulation of the lock's ordering (hier­
archical relationship) with surrounding locks and 
its minimum SPL requirement. Lock debugging 
information and the lock statistics were decoupled 
from the lock structures themselves. To facilitate 
the expression of a lock hierarchy, the developers 
introduced the concept of classes and instances. 
A lock class is a grouping of locks of the same type. 
For example, the process structure lock constitutes 
a lock class. A lock instance is a particular lock of 
a given class. For example, one process structure 
simple lock is an instance of the class process struc­
ture lock. Error checking and statistics-gathering 
are performed on a lock-class basis and only i.n lock 
mode 4. 

Decoupling the lock debugging information 
from the lock itself significantly reduced the sizes 
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of the simple and complex lock structures to 8 and 
32 bytes, respectively. Embedded in both structures 
is a 16-bit index into the lockinfo structure table 
for that particular lock class. The lockinfo structure 
is dynamically created at system startup in lock 
mode 4. All classes in the system are assigned a rela­
tive position in a single unified lock hierarchy. 
A lock class's position in the lockinfo table is also 
its position in the lock hierarchy; that is, locks must 
be taken in the order in which they appear in the 
table. Lock statistics are also maintained on a per­
class basis with separate entries for each processor. 
Keeping lock statistics per processor and separat­
ing this information by cache blocks eliminates 
the need to synchronize lock-primitive access to 
the statistics. This design, which is illustrated in 
Figure 2, prevents negative cache effects that could 
result from sharing this data. 

Once this powerful lock package was opera­
tional, developers analyzed the lock design of their 
kernel subsystems and attempted to place the locks 
used into classes in the overall system lock hierar­
chy. The position of a class depends on the order in 
which its locks are taken and released in relation to 
other locks in the same code path and in the sys­
tem. At times, this static lock analysis revealed prob­
lems in existing lock protocols, in which locks were 
taken in varying orders at different points in 
the code. Clearly, the lock protocol needed to be 
reworked to produce a consistent order that could 
be codified in the hierarchy. Thus, the exercise of 
producing an overall lock hierarchy resulted in 

LOCK INSTANCES LOCK CLASS LOCK STATISTICS 

: : I~-------
~ -------

CPU1 

CPUN 

Figure 2 Lock Structure 
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a significant cleanup of the original multiprocess­
ing code base. To add a new lock to the system, 
a developer would have to determine the hierarchi­
cal position for the new lock class and the mini­
mum SPL at which the lock must be taken. 

Running the system in lock mode 4 and exercis­
ing code paths of interest provided developers with 
immediate feedback on their lock protocols. Using 
the hierarchy and SPL information stored in the run­
time lockinfo table, the lock primitives aggressively 
check for a variety oflocking errors, which include 
the following: 

• Locking a lock out of hierarchical order 

• Locking a simple lock at an SPL below the 
required minimum 

• Locking a simple lock already held by the caller 

• Unlocking an unlocked simple lock 

• Unlocking a simple lock owned by another CPU 

• Locking a complex lock with a simple lock held 

• Locking a complex lock at interrupt level 

• Sleeping with a simple lock held 

• Locking or unlocking an uninitialized lock 

Encountering any of these types of violation 
results in a lock fault, i.e., a system bug check that 
records the information required by the developer 
to quickly track down the lock error. 

The reduction in lock sizes and the major 
enhancement of the lock package enabled the team 
to realize its goal of a single set of kernel binaries. 
Benchmarks that compare a pure uniprocessor 
kernel and a kernel in lock mode O that are both 
running on the same hardware show a less than 
3 percent difference in performance, a cost consid­
ered by the team to be well worth the many advan­
tages to returning to a unified kernel. Moreover, the 
debugging capabilities of the lock package with 
its hierarchical scheme streamlined the process of 
lock analysis and provided precise and immediate 
feedback as developers adapted their subsystems to 
the multiprocessing environment. 

Adapting the Scheduler for 
Multiprocessing 
The normal scheduling behavior, i.e., policy, of 
the OSF/1 system is traditional UNIX time-sharing. 
The system time-slices processes based on a time 
quantum and adjusts process priorities to favor 
interactive jobs over compute-intensive jobs. To 
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support the POSIX real-time standard, the DEC OSF/1 

system incorporates two additional fixed-priority 
scheduling policies: first in, first out (POLlCY_FIFO) 

and round robin (POLlCY _RR). 

A time-share thread's priority degrades with CPU 

usage; the more recent the thread's CPU usage, 
the more its priority degrades. (Note that OSF/1 

scheduling entities are threads rather than pro­
cesses.) In contrast, a fixed-priority thread never 
suffers priority degradation. Instead, a POLlCY_RR 

thread runs until it blocks voluntarily, is preempted 
by a higher-priority thread, or exhausts a quantum 
(and even then, the round robin scheduling applies 
only to threads of equal priority). A POLICY _FIFO 

thread has no scheduling quantum; it runs until it 
blocks or is preempted. These specialized policies 
are used by real-time applications and by threads 
created and managed by the kernel. Examples 
of these kernel threads include the swapper and 
paging threads, device driver threads, and network 
protocol handlers. A feature called thread binding, 
or hard affinity, was added to DEC OSF/1 version 3.0. 
Binding allows a user or the kernel to force a thread 
to run only on a specified processor. Binding sup­
ports the funneling feature used by unparallelized 
code and the bind_to_cpu( ) system call. 

The goal of a multiprocessing operating system in 
scheduling threads is to run the top N priority 
threads on N processors at any given time. A simple 
way to accomplish this would be to schedule 
threads that are not bound to a CPU in a single, global 
run queue and schedule bound threads in a run 
queue local to its bound processor. When a proces­
sor reschedules, it would select the highest-priority 
thread available in the local orthe global run queue. 

Scheduling threads out of a global run queue is 
highly effective at keeping the N highest-priority 
threads running; however, two problems arise with 
this approach: 

1. A single run queue leads to contention between 
processors that are attempting to reschedule, as 
they race to lock the run queue and remove the 
highest-priority thread. 

2. Scheduling with a global run queue does not 
take advantage of the cache state that a thread 
builds on the CPU where it last ran. A thread that 
migrates to a different processor must reload its 
state into the new processor's cache. This can 
substantially degrade performance. 

To help preserve cache state and reduce wasteful 
global run queue contention, the developers 
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enhanced the multiprocessing scheduler by adding 
two new scheduling models: a soft -affinity sched· 
uling model for time-share threads and a last· 
processor-preference model for fixed-priority 
threads. Under these models, each processor sched· 
ules time-share and bound threads in its local run 
queue, and it schedules unbound fixed-priority 
threads out of a global run queue. 

Fixed-priority threads scheduled from a global 
run queue are able to run as soon as possible. This 
behavior is required for high-priority tasks like 
kernel threads and real-time applications. The last­
processor-preference model gives a fixed-priority 
thread a preference for running on the processor 
where it last r,m; if that processor is busy, the thread 
runs on the next available processor. Each time· 
share thread is softly bound to the processor on 
which it last ran; that is, the thread shows an affinity 
for that processor. Unlike funneling or user bind­
ing, which support hard (mandatory) affinity, soft 
affinity allows a thread to run elsewhere if it is 
advantageous, i.e., if such activity balances the load. 
Otherwise, the softly bound thread tries to return 
to the processor where it last ran and where its 
recent cache state may still reside. 

Under load, however, a soft affinity model used 
alone can degenerate to a state where one proces· 
sor builds up a large queue of threads, leaving the 
other processors with little to do and thus dimin· 
ishing the performance of the multiprocessing sys­
tem. To mitigate these side effects of soft affinity, 
developers paired the soft affinity feature with the 
ability to load-balance the runnable threads in the 
system. To keep the load of time-share jobs spread 
evenly across processors, the scheduler must peri· 
odically load-balance the system. In addition to dis­
tributing threads evenly across the local run queues 
in the system, this load-balancing activity must 

• Cost no more in processing time than it saves 

• Prevent excessive thread movement among 
processors 

• Recognize and effectively accommodate changes 
in the job mix 

To implement load balancing, each processor 
maintains a time-share load average, i.e., the aver· 
age local run queue depth over the last five sec­
onds. Each processor updates its own load average 
on each system clock tick. Processors also keep 
track of the time they spend handling interrupts 
and running fixed-priority threads, which are not 
accounted for in the local run queue depth. Taking 

Digital Technical Journal Vol. 6 No. 3 Summer 1994 

a processor's total potential execution time for a 
scheduling period and subtracting from this time 
the interrupt-processing and fixed-priority run 
times yields the total time available on a processor 
(processor ticks available) to run time-share threads. 
In the worse case, a processor could be completely 
consumed by fixed-priority threads and/or inter· 
rupt processing and have no time to run time-share 
threads. In this extreme case, the scheduler should 
give no time-share load to that processor. 

Adding the time-share load averages of all proces­
sors determines the aggregate time-share load for 
the system. Similarly, summing the processor ticks 
available yields the total time available on the sys­
tem for handling time-share tasks. Using this data, 
the scheduler calculates the desired load for each 
processor once per second, as follows: 

Desired 
load 

Processor ticks System time-share 
available X load 

System ticks available 

Load balancing is called for when at least one pro­
cessor is above and one is below its desired load by 
a minimal amount. If this condition arises, then 
those processors under their desired loads are 
declared to be "out of balance." The next time an 
out-of-balance processor reschedules, it will try to 
take a thread from the local run queue of a proces­
sor that is above its desired load ("thread stealing"). 
A processor can declare itself back in balance when 
its current load is above its desired load or when 
there are no eligible threads to steal. Figure 3 shows 
a simplified load-balancing scenario, in which a 
processor below its desired load steals a thread 
from a processor above its desired load. 

To help preserve the cache benefits of soft affin· 
ity, a thread is eligible for stealing only when it has 
not run on its current processor for some config· 
urable number of clock ticks. After this time has 
elapsed without a thread running, the chance of it 
having significant cache state remaining has dimin­
ished sufficiently that the thread is more likely to 
benefit from migrating to another processor and 
running immediately than from waiting longer to 
run on its current processor. 

To demonstrate that soft affinity with load bal­
ancing improves multiprocessing performance 
through cache benefits and the elimination of run 
queue contention, developers ran a simple test pro­
gram. The program, which writes 128 KB of data, 
yields the processor, and then reads the same data 
back, was run on a four-processor DEC 7000 system. 
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Figure 3 Load Balancing 

Table 1 shows the results of running multiple 
versions of this program with and without soft affin­
ity and load balancing in operation. Performance 
benefits appear only when multiple copies of the 
program begin piling up in the run queues at 
the 16-job level. Prior to this point, each job keeps 
running on the same processor, i.e., the cache it had 
just filled still had its data cached when the pro­
gram read it back- the ideal case. At the 16 -job 
level, the four processors must be time-shared. The 
jobs that are running with soft affinity now benefit 
significantly because they continue to run on the 
same processor and thus find some of their cache 
state preserved from when they last ran. The sys­
tems that schedule from a global run queue provide 
no such benefit. Jobs take longer to complete, since 
they are likely to run on a different processor 
for each time slice and find no cache state that they 
can reuse. 

The soft affinity and load-balancing features 
improved many other multiuser benchmarks. For 
example, a transaction processing benchmark 
showed a 17 percent performance improvement. 

Focusing on Quality 
The error-checking focus of the lock package is just 
one example of how the DEC OSF/1 version 3.0 proj­
ect focused on the quality and stability of the prod­
uct. Most members of the multiprocessing team 
had been involved in an SMP development effort 
prior to their DEC OSF/1 effort. This past experi­
ence, coupled with the difficult ies other vendors 
had experienced with their own multiprocessing 
implementations, reinforced the need to have a 
strong quality focus in the SMP project . 

Developers took multiple steps to ensure that 
the SMP solution delivered in DEC OSF/1 version 3.0 
would be production quality, including 

Table 1 Benefits of Soft Affinity with Load Balancing (SA/LB) 

Number Time with SA/LB Time without Benefit from 
of Jobs (Seconds) SA/LB (Seconds) SA/LB (Percent) 

1 25.9 26.0 0 
4 25.9 26.0 0 

16 106.5 141.9 25 
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• Code reviews 

• Lock debugging 

• In-line assertion checking 

• Multithreaded test suite development for SMP 
qualification 

The base kernel code was reviewed for multi­
processing correctness. During this review phase, 
checks were made to ensure that the proper level of 
synchronization was employed to protect global 
data structures. Numerous defects were uncovered 
during this process and corrected. Running code 
with lock checking enabled provided empirical 
evidence of the incremental improvements of the 
multiprocessing implementation. 

Beyond code reviews and lock debugging, inter­
nal consistency checks (assertions) were coded 
into the kernel to verify correctness of operations 
at key points. Assertion checking was enabled dur­
ing the development process to ensure that the ker­
nel was functioning correctly; it was then compiled 
out for the production version of the kernel. 

In parallel with the operating system develop­
ment effort, new component tests were designed 
to force as much concurrency as possible through 
particular code paths. The core of the test suite is 
a thread-race library, which consists of a set of rou­
tines that can be used to construct multithreaded 
system-call exercisers. The library provides the 
ability to commence multiple test instances simul­
taneously. The individual tests are then combined 
to form focused subsystem tests and systemwide 
tests. These tests have been used to uncover multi­
ple race conditions in the operating system. 

The UNIX development organization had a four­
processor DEC 7000 system deployed in its develop­
ment environment for more than 7 months prior 
to releasing the SMP product. This system has been 
extremely stable, with few complaints from the 
user community. Extensive internal and external 
field testing produced similar results. 

Measuring Multiprocessing 
Performance Outcomes 
The major functionality delivered with SMP is 
improved performance through application con­
currency. The goal of the SMP project was to 
provide leadership performance in the areas of 
compute and data servers. To gauge success in this 
effort, several industry-standard benchmarks were 
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utilized. These benchmarks include SPECrate_lNT92, 
SPECrate_FP92, and AIM Suite III. 

SMP performance is measured in terms of the 
incremental performance gained as processors are 
added to the system. Adding processors by no means 
guarantees increased system performance. Systems 
that have 1/0 or memory limitations rarely benefit 
from introducing additional CPUs. Systems that are 
compute bound tend to have the largest potential 
for gain from additional processors. Note that large, 
monolithic applications tend to see little perfor­
mance improvement as processors are added 
because such applications employ little concur­
rency in their designs. 

Performance tuning for SMP was an iterative pro­
cess that can be characterized as follows: 

I. Collect and analyze performance data. 

• CPU utilization across the processors 

• Lock statistics 

• 1/0 rates 

• Context switch rates 

• Kernel profiling 

2. Identify areas that require improvement. 

3. Prototype changes. 

4. Incorporate changes that demonstrate improve­
ment. 

5. Repeat steps 1 through 4. 

In reality, the process has two stages for each 
benchmark. The initial phase was devoted to driv­
ing the system to become compute bound. The sec­
ond phase improved code efficiencies. 

Figures 4 and 5 show that, as expected, the 
SPECrate_lNT92 and SPECrate_FP92 benchmarks 
scale almost linearly. Both of these benchmarks 
are compute intensive and make only nominal 
demands on the operating system. 

AIM Suite III is a multiuser benchmark that 
stresses multiple components of an operating sys­
tem, including the virtual memory system, the 
scheduler, UNIX pipes, and the 1/0 subsystem. 
Figure 6 shows AIM III results for one and four pro­
cessors, with a resulting 3.27 to 4 scaling factor. 
This equates to a greater than 80 percent scaling 
factor, a figure well within the goals for this bench­
mark at first multiprocessing release. Efforts to pro­
duce still better results are under way. 

AIM Suite III scaling appears to be gated by a 
single test in the AIM Suite III benchmark, i.e., 
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Figure 4 SPECrate Integer Scaling for 
Four-CPU Systems 
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6 

Note that the DEC 7000 Model 600 system has a 4-MB secondary 
cache and the AlphaServer 2100 4/200 system has a 1-MB 
secondary cache. 

Figure 5 SPECrate Floatingpoint Scaling for 
Four-CPU Systems 

directory search. The goal of this test is to create 
and remove a set of files across a limited number of 
directories. 10 Because these operations require 
updating directory information, only one thread of 
execution can perform these operations on a direc­
tory at a time. Some improvements have been 
applied to mitigate this contention, but this single 
test still impacts the overall scaling results. 
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Conclusion 
The focus of the first release of SMP capabilities for 
the DEC OSF/1 operating system was to provide 
leadership SMP performance without compromis­
ing overall system quality. The project team accom­
plished this goal by carefully modifying the base 
operating system to take advantage of the additional 
processing power provided. The team paid particu­
lar attention to synchronization, parallel algorithms, 
and error and inconsistency detection. 

Work for future releases will continue to focus 
on performance and quality improvements. Other 
areas of investigation include features such as 
processor sets, stopping and starting CPUs, and 
more flexible handling of interrupts as processors 
are added. 
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DXML: A High-performance 
Scientific Subroutine Library 

Mathematical subroutine libraries for science and engineering applications are an 
important tool in high-performance computing. By identifying and optimizing 
frequently used, numerically intensive operations, these libraries help in reducing 
the cost of computation, enhancing portability, and improving productivity. The 
Digital extended Math Library is a set of public domain and Digital proprietary 
software that has been optimized for high performance on Alpha systems. in this 
paper, DXML and the issues related to library software technology are described. 
Specific examples illustrate how algorithms can be optimized to take advantage of 
the architecture of Alpha systems. Modern algorithms that effectively exploit the 
memory hierarchy enable DXML routines to provide substantial improvements in 
performance. 

The Digital extended Math Library (DXML) is a set 
of mathematical subroutines, optimized for high 
performance on Alpha systems. These subroutines 
perform numerically intensive subtasks that occur 
frequently in scientific computing. They can there­
fore be used as building blocks for the optimization 
of various science and engineering applications in 
industries such as chemical, aerospace, petroleum, 
automotive, electronics, finance, and transportation. 

In this paper, we discuss the role of mathematical 
software libraries, followed by an overview of 
the contents of the Digital extended Math Library. 
DXML includes optimized versions of both the stan­
dard BLAS and LAPACK libraries as well as libraries 
designed and developed by Digital for signal pro­
cessing and the solution of sparse linear systems 
of equations. Next, we describe various aspects of 
library software technology, including the design 
and testing of DXML subroutines. Using key routines 
as examples, we illustrate the techniques used 
in the performance optimization of the library. 
Finally, we present data that demonstrates the per­
formance improvement obtained through the use 
ofDXML. 

The Role of Math Libraries 
Early mathematical libraries concentrated on sup­
plementing the functionality provided by the 
Fortran compilers. In addition to routines such as 
sin and exp, which were included in the run-time 
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math library, more complicated special functions, 
linear algebra algorithms, and Fourier transform 
algorithms were included in the software layer 
between the hardware and the user application. 

Then, in the early 1970s, there was a concerted 
effort to produce high-quality numerical software, 
with the aim of providing end users with implemen­
tations of numerical algorithms that were stable, 
robust, and accurate. This led to the development 
of several math libraries, with the public domain 
UNPACK and EISPACK libraries for the solution of 
linear and eigen systems, setting the standards for 
future development of math software. 1-4 

The late 1970s and early 1980s saw the availability 
of advanced architectures, including vector and 
parallel computers, as well as high-performance 
workstations. This added another facet to the devel­
opment of math libraries, namely, the implemen­
tation of algorithms for high efficiency on an 
underlying architecture. 

The effort to produce mathematical software thus 
became a task of building bridges between numeri­
cal analysts, who devise algorithms, computer archi­
tects, who design high-performance computer 
systems, and computer users, who need efficient, 
reliable software for solving their problems. Con­
sequently, these libraries embody expert knowledge 
in applied mathematics, numerical analysis, data 
structures, software engineering, compilers, oper­
ating systems, and computer architecture and 
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are an important programming tool in the use of 
high-performance computers. 

Modern superscalar RISC architectures with 
floating-point pipelines, such as the Alpha, have 
deep memory hierarchies. These include floating­
point registers, multiple levels of caches, and virtual 
memory. The significant latency and bandwidth dif­
ferences between these memory levels imply that 
numerical algorithms have to be restructured to 
make effective use of the data brought into any one 
level. The performance of an algorithm is also sus­
ceptible to the order in which computations are 
scheduled as well as the higher cost associated with 
some operations such as floating-point square-root 
and division. 

The architecture of the Alpha systems and the 
technology of the Fortran and C compilers usually 
provide an efficient computing environment with 
adequate performance. However, there is often 
room for improvement, especially in engineering 
and science applications, where vast amounts of 
data are processed and repeated operations are per­
formed on each data element. One way to achieve 
these improvements is through the use of opti­
mized subroutine libraries. 

The Digital eXtended Math Library is a collection 
of routines that performs frequently occurring, 
numerically intensive operations. By identifying 
such operations and optimizing them for high per­
formance on Alpha systems, DXML provides several 
benefits to the computational scientist. 

• It allows definition of functions at a sufficiently 
high level and therefore optimization beyond 
the capabilities of the compiler. 

• It makes the architecture of the systems more 
transparent to the user. 

• It improves productivity by providing easy 
access to highly optimized, efficient code. 

• It enhances the portability of user software 
through the support of standard libraries and 
interfaces. 

• It promotes good software engineering practice 
and avoids duplication of work by identifying 
and optimizing common functions across sev­
eral application areas. 

Overview of DXML 
DXML contains almost 400 user-callable routines, 
optimized for Alpha systems.s This includes both 
software developed by Digital as well as the BLAS 
and LAPACK libraries. Most routines are available 
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in four versions: real single precision, real double 
precision, complex single precision, and complex 
double precision. 

DXML is available on both OpenVMS and DEC 
OSF/1 operating systems. Its routines can be called 
from either Fortran or C, provided the difference in 
array storage between these languages is taken into 
account. DXML is available as a shareable library, 
with a simple interface, enabling easy access to the 
routines. On DEC OSF/1 systems, DXML supports the 
IEEE floating-point format. On OpenVMS systems, 
either the IEEE floating-point format or the VAX 
F-float/G-float format can be selected. 

DXML routines can be broadly categorized into 
the following four areas: 

• BLAS. The Basic Linear Algebra Subroutines include 
the standard BLAS and Digital enhancements. 

• LAPACK. The Linear Algebra PACKage includes 
linear and eigen-system solvers. 

• Signal processing. This includes fast Fourier 
transforms (FFfs), convolution, and correlation. 

• Sparse linear system solvers. These include 
direct and iterative solvers. 

Of these, the signal-processing library and the 
sparse linear system solvers are designed, devel­
oped, and optimized by Digital. The majority of the 
BLAS routines and the LAPACK library are versions of 
the public domain standard that were optimized for 
the Alpha architecture. By supporting the industry 
standard interfaces of these libraries, DXML pro­
vides both portability of user code and high perfor­
mance of the optimized software. 

We next provide a brief description of the func­
tionality provided by each subcomponent of DXML. 
Further details are available in the Digital extended 
Math Library Reference Manual.5 

VLIB 
The vector library consists of seven double­
precision routines that perform operations such as 
sine, cosine, and natural logarithm, on data stored 
as vectors. 

BLAS 1 
The Basic Linear Algebra level I subprograms per­
form low-granularity operations on vectors that 
involve one or two vectors as input and return 
either a vector or a scalar as output.6 Examples of 
BLAS I routines include dot product, index of the 
maximum element in a vector, and so on. 
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BLAS 1 Extensions (BLAS 1 E) 
Digital has extended the functionality of the BLAS 1 
routines by including 13 similar operations. These 
include index of the minimum element of a vector, 
sum of the elements of a vector, and so on. 

BLAS 1 Sparse (BLAS 1 SJ 
DXML also includes nine routines that are sparse 
extensions of the BLAS 1 routines. Of these, six are 
from the sparse BLAS 1 standard and three are 
enhancements.7 These routines operate on two 
vectors, one of which is sparse and stored in a com­
pressed form. As most of the elements in a sparse 
vector are zero, both computational time and mem­
ory are reduced by storing and operating on only 
the nonzeros. BLAS IS routines include construc­
tion of a sparse vector from the specified elements 
of a dense vector, dot product, and so on. 

BLAS2 
The BLAS level 2 routines perform operations of 
a h igher granularity than the level 1 routines.8 These 
include matrix-vector operations such as matrix­
vector product, rank-one and rank-two updates, 
and solutions of triangular systems of equations. 
Various storage schemes are supported, including 
general, symmetric, banded, and packed. 

BLAS3 
The BLAS level 3 routines perform matrix-matrix 
operations, which are of a higher granularity than 
the BLAS 2 operations. These routines include 
matrix-matrix product, rank-k updates, solution of 
triangular systems with multiple right-hand sides, 
and multiplication of a matrix by a triangular matrix. 
Where appropriate, these operations are defined 
for matrices that may be general, symmetric, or tri­
angular. 9 The functionality of the public domain 
BLAS 3 library has been enhanced by three addi­
tional routines for matrix addition, subtraction, 
and transpose. 

LAPA CK 
DXML includes the standard Linear Algebra 
PACKage, LAPACK, which supersedes the UNPACK 
and EISPACK packages by extending the functional­
ity, using algorithms with higher accuracy, and 
improving the performance through the use of 
the optimized BLAS library. 10 LAPACK can be used 
for solving many common linear algebra prob­
lems, including solution of linear systems, li near 
least-squares problems, eigenvalue problems, and 
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singular value problems. Various storage schemes 
are supported, including general, band, tridiagonal, 
symmetric positive definite, and so on. 

Signal Processing 
The signal-processing subcomponent of DXML 
includes FFTs, convolutions, and correlations. 
A comprehensive set of Fourier transforms is 
provided, including 

• FFTs in one, two, and three dimensions 

• FFTs in forward and inverse directions 

• Multiple one-dimensional transforms 

There is no limit on the number of elements being 
transformed, though the performance is best when 
the data length is a power of 2. Popular storage for­
mats for the input and output data are supported, 
allowing for possible symmetry in the output data 
and consequent reduction in the storage required. 
Further efficiency is provided through the use of 
the three-step FFT, which separates the process 
of setting up and deallocating the internal data 
structures from the actual application of the FFT. 
This results in significant performance gain when 
repeated application of FFTs is required. 

The convolution and correlation routines in 
DXML support both periodic (circular) and nonperi­
odic (linear) definition. A discrete summing tech­
nique is used for calculation. Special versions of the 
routines allow control of output options such as 
the range of coefficients computed, scaling of the 
output, and addition of the output to an array. 

All FFT, convolution, and correlation routines are 
available in both single and double precision and 
support both real and complex data. 

Sparse Iterative Solvers 
DXML includes a set of routines for the iterative solu­
tion of sparse linear systems of equations using pre­
conditioned, conjugate-gradient-like methods.11,12 
A flexible user interface, based on a matrix-free for­
mulation of the solver, allows a choice among vari­
ous solvers, storage schemes, and preconditioners. 
This formulation permits the user to define his or 
her own preconditioner and/or storage scheme for 
the matrix. It also allows the user to store the 
matrix using one of the storage schemes defined 
by DXML and/or use the preconditioners provided. 
A driver routine provides a simple interface to the 
iterative solvers when the DXML storage schemes 
and preconditioners are used. 
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The different iterative methods provided are 
(1) conjugate gradient, (2) least-squares conjugate 
gradient, (3) biconjugate gradient, (4) conjugate­
gradient squared, and (5) generalized minimum 
residual. Each method supports various applica­
tions of the preconditioner: left, right, split, and 
no preconditioning. 

The matrix can be stored in the symmetric diago­
nal storage scheme, the unsymmetric diagonal stor­
age scheme, or the general storage (by rows) 
scheme. Three preconditioners are provided for each 
storage scheme: diagonal, polynomial (Neumann), 
and incomplete LU with zero diagonals added. 

A choice of four stopping criteria is provided, 
in addition to a user-defined stopping criterion. 
The iteration process can be controlled by setting 
various input parameters such as the maximum 
number of iterations, the degree of polynomial pre­
conditioning, the level of output provided, and the 
tolerance for convergence. These solvers are avail­
able in real double precision only. 

Sparse Skyline Solvers 
The sparse skyline solver library in DXML includes 
a set of routines for the direct solution of a sparse 
linear system of equations with the matrix stored 
using the skyline storage scheme.13.I4 The following 
functions are provided. 

• LDU factorization, which includes options for 
the evaluation of the determinant and inertia, 
partial factorization, statistics on the matrix, and 
options for handling small pivots. 

• Solve, which includes multiple right-hand sides 
and solves systems involving either the matrix or 
its transpose. 

• Norm evaluation, including I-norm, infinity­
norm, Frobenius norm, and the maximum abso­
lute value of the matrix. 

• Condition number estimation, which includes 
both the I-norm and the infinity norm. 

• Iterative refinement, including the component­
wise relative backward error and the estimated 
forward error bound for each solution vector. 

• Simple and expert drivers. 

This functionality is provided for each of the fol­
lowing storage schemes: 

• For symmetric matrices: 

- Profile-in storage mode 

- Diagonal-out storage mode 
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• For unsymmetric matrices: 

- Profile-in storage mode 

- Diagonal-out storage mode 

- Structurally symmetric profile-in storage 
mode 

These solvers are available in real double precision 
only 

Software Considerations 
As with any software effort, many software engi­
neering issues were encountered during the design 
and development of DXML. Some issues were spe­
cific to math libraries such as the numerical accu­
racy and stability of the routines, while others were 
more general such as the design of a user interface, 
testing of the software, error checking, ease of use, 
and portability. We next discuss some of these key 
design issues in further detail. 

Designing the Interface 
The first task in creating a library was to decide the 
functionality, followed by the design of the inter­
face. This included both the naming of the subrou­
tines as well as the design of the parameter list. For 
each subcomponent in DXML, the calling sequence 
was designed to be consistent across all routines 
in that subcomponent. In the case of the BLAS and 
LAPACK libraries, the public domain interface was 
maintained to enable portability of user code. 

For the routines added by Digital, the routine 
names were chosen to indicate the function being 
performed as well as the precision of the data. 
Furthermore, the parameter lists were chosen 
to provide a simple interface, yet allow flexibility 
for the sophisticated user. For example, the sparse 
solvers require various real and integer parameters. 
By using arrays instead of scalar variables, a more 
concise interface that did not vary from routine 
to routine was obtained. In addition, all solver 
routines have arguments for real and integer work 
arrays, even if these are not used in the code. This 
not only provides a uniform interface but also acts 
as a placeholder for work arrays, should they be 
required in the future . 

Accuracy 
The numerical accuracy of the routines in DXML is 
dependent on the problem size as well as the algo­
rithm used, which may vary within a routine. Since 
performance optimization often changes the order 
in which a computation is performed, identical 
results between the DXML routines and the public 
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domain BLAS and LAPACK routines may not occur. 
The accuracy of the results obtained is checked by 
ensuring that the optimized versions of the BLAS 

and LAPACK routines pass the public domain tests 
to within the specified tolerance. 

Error Processing 
Most of the routines in DXML trap usage errors and 
provide sufficient information so that the user can 
identify and fix the problem. The low-level, fine­
grained computational routines, such as the BLAS 

level I, do not provide this function because the 
overhead of testing and error trapping would seri­
ously degrade the performance. 

In the case of BLAS 2, BLAS 3, and LAPACK, the pub­
lic domain error-reporting mechanism has been 
maintained. If an input argument is invalid, such as 
a negative value for the order of the matrix, the rou­
tine prints out an error message and stops. If a fail­
ure occurs in the course of the algorithm, such as 
a matrix being singular to working precision, an 
error flag is set and control is returned to the call­
ing program. 

The signal-processing routines report success or 
failure using a status function value. Further infor­
mation on the error can be obtained by using a user­
callable routine that prints out an error message and 
an error flag. The user documentation indicates the 
actions to be taken to recover from the error. 

In the case of the sparse solvers, error is indi­
cated by setting an error flag and printing an appro­
priate message if the printing option is enabled. 
Control is always returned to the calling program. 

Testing 
DXML routines are tested for correctness and accu­
racy using a regression test suite. This includes 
both test code developed by Digital, as well as the 
public domain test codes for BLAS and LAPACK. 
These codes are used not only during the imple­
mentation and performance optimization of the 
routines, but also during the building of the com­
plete library from each of the subcomponents. 

The test codes check each routine extensively, 
including checks for error exits, accuracy of the 
results obtained, invariance of read-only data and 
the correctness of all paths through the code. As 
the complete regression tests take over 20 hours 
to execute, two input data sets are used: a short one 
that tests each routine and can be used to make a 
quick check that all subcomponents compiled and 
built correctly, and a long data set that tests each 
path th rough a routine and is thus more exhaustive. 
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Many of the routines, such as the FFTs and BLAS 3, 
are tested using random input data. However, some 
routines, such as the sparse solvers, operate on spe­
cific data structures or matrices with specific prop­
erties. These have been tested using matrices 
generated from the finite difference discretization 
of partial differential equations or using the matri­
ces in the Harwell-Boeing test suite.15 

Another aspect to the DXML regression test pack­
age is the inclusion of a performance test gauge. 
This software tests the performance of key routines 
in each component of DXML and is used to ensure 
that the performance of DXML routines is not 
adversely affected by changes in compilers or the 
operating systems. 

Performance Trade-offs 
The design and optimization of the routines in 
DXML often prompted a trade-off between perfor­
mance on one hand, and accuracy and generality 
on the other. Although every effort has been made 
not to sacrifice accuracy for performance, the 
reordering of computations during performance 
optimization may lead to results before optimiza­
tion that are not bit-for-bit identical to the results 
after optimization. In other cases, performance has 
been sacrificed to ensure generality of a routine. 
For example, although the matrix-free formulation 
of the iterative solvers permits the use of any sparse 
matrix storage scheme, it could result in a slight 
degradation in performance due to less efficient 
use of the instruction cache and the inability to 
reuse some of the data in the registers. 

Performance Optimiza tion 
DXML routines have been designed to provide high 
performance on the Alpha systems. i6 These 
routines are tailored to take advantage of the sys­
tem characteristics such as the number of floating­
point registers, the size of the primary and 
secondary data caches, and the page size. This opti­
mization involves changes to data structures and 
the use of new algorithms as well as the restructur­
ing of computation to effectively manage the mem­
ory hierarchy 

Several general techniques are used across all 
DXML subcomponents to improve the perfor­
mance . 17 These include the following techniques: 

• Unrolling loops to make better use of the 
floating-point pipelines 

• Reusing data in registers and caches whenever 
possible 
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• Managing the data caches effectively so that the 
cache hit ratio is maximized 

• Accessing data using stride-I computation 

• Using algorithms that exploit the memory hierar­
chy effectively 

• Reordering computations to minimize cache and 
translation buffer thrashing 

Although many of these optimizations are done by 
the compiler, occasionally, for example in the case 
of the skyline solver, the data structures or the 
implementation of the algorithm are such that they 
do not lend themselves to optimization by the com­
piler. In these cases, explicit reordering of the com­
putations is required. 

We next discuss these optimization techniques as 
used in specific examples. All performance data is 
for the DEC 3000 Model 900 system using the DEC 
OSF/1 version 3.0 operating system. This work­
station uses the Alpha 21064A chip, running at 275 
megahertz (MHz). The on-chip data and instruction 
caches are each 16 kilobytes (KB) in size, and the 
secondary cache is 2 megabytes (MB) in size. 

In the next section, we compare the perfor­
mance of DXML BLAS and LAPACK routines with the 
corresponding public domain routines. Both ver­
sions are written in standard Fortran and compiled 
using identical compiler options. 

Optimization of BLAS 1 
BLAS I routines operate on vector and scalar data 
only. As the operations and data structures are sim­
ple, there is little opportunity to use advanced data 
blocking and register reuse techniques. Neverthe­
less, as the plots in Figure 1 demonstrate, it is pos­
sible to optimize the BLAS 1 routines by careful 
coding that takes advantage of the data prefetch 
features of the Alpha 21064A chip and avoids data­
path-related stalls. 16, 1s 

Generally, the DXML routines are 10 percent to 15 
percent faster than the corresponding public 
domain routines. Occasionally, as in the case of 
DDOT for very short, cache-resident vectors, the 
benefits can be much greater. 

The shapes of the plots in Figure 1 rather dramat­
ically demonstrate the benefits of data caches. Each 
plot shows very high performance for short vectors 
that reside in the 16-KB, on-chip data cache, much 
lower performance for data vectors that reside in 
the 2-MB, on-board secondary data cache, and even 
lower performance when the vectors reside com­
pletely in memory. 
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Optimization of BLAS 2 

22 

BLAS 2 routines operate on matrix, vector, and 
scalar data. The data structures are larger and more 
complex than the BLAS 1 data structures and the 
operations more complicated. Accordingly, these 
routines lend themselves to more sophisticated 
optimization techniques. 

Optimized DXML BLAS 2 routines are typically 20 
percent to 100 percent faster than the public domain 
routines. Figure 2 illustrates this performance 
improvement for the matrix-vector multiply routine, 
DGEMV, and the triangular solve routine, DTRSV.8 

The DXML DGEMV uses a data-blocking technique 
that asymptotically performs two floating-point 
operations for each memory access, compared to 
the public domain version, which performs two 
floating-point operations for every three memory 
accesses.19 This technique is designed to minimize 
translation buffer and data cache misses and maxi­
mize the use of floating-point registers.16, is,20 The 
same data prefetch considerations used on the BLAS 
1 routines are also used on the BLAS 2 routines. 

The DXML version of the DTRSV routine partitions 
the problem such that a small triangular solve oper­
ation is performed. The result of this solve opera­
tion is then used in a DGEMV operation to update the 
remainder of the vector. The process is repeated 
until the final triangular update completes the 
operation. Thus the DTRSV routine relies heavily on 
the optimizations used in the DGEMV routine. 
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As with BLAS 1 routines, BLAS 2 routines benefit 
greatly from data cache. Although the effect is less 
dramatic for the BLAS 2 routines, Figure 2 clearly 
shows the three-step profile observed in Figure 1. 
Best performance is achieved when both matrix 
and vector fit in the primary cache. Performance is 
lower but flat over the region where the data fits 
on the secondary board level cache. The final per­
formance plateau is reached when data resides 
entirely in memory. 

Optimization of BLAS 3 
BLAS 3 routines operate primarily on matrices. The 
operations and data structures are more compli­
cated that those of BLAS 1 and BLAS 2 routines. 
Typically, BLAS 3 routines perform many computa­
tions on each data element. These routines exhibit a 
great deal of data reuse and thus naturally lend them­
selves to sophisticated optimization techniques. 

DXML BLAS 3 routines are generally two to ten 
times faster than their public domain counterparts. 
The plots in Figure 3 show these performance dif­
ferences for the matrix-matrix multiply routine, 
DGEMM, and the triangular solve routine with multi­
ple right-hand sides, DTRSM.9 

All performance optimization techniques used 
for the DXML BLAS 1 and BLAS 2 routines are used 
on the DXML BLAS 3 routines. In particular, data­
blocking techniques are used extensively. Portions 
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Figure 3 Performance of BLAS 3 Routines 
DGEMM and DTRSM 

of matrices are copied to page-aligned work areas 
where secondary cache and translation buffer 
misses are eliminated and primary cache misses are 
absolutely minimized. 

As an example, within the primary compute loop 
of the DXML DGEMM routine, there are no transla­
tion buffer misses, no secondary cache misses, and, 
on average, only one primary cache miss for every 
42 floating-point operations. Performance within 
this key loop is also enhanced by carefully using 
floating-point registers so that four floating-point 
operations are performed for each memory read 
access. Much of the DXML BLAS 3 performance 
advantage over the public domain routines is a 
direct consequence of a greatly improved ratio of 
floating-point operations per memory access. 

The DXML DTRSM routine is optin1ized in a man­
ner similar to its BLAS 2 counterpart, DTRSV. A small 
triangular system is solved. The resulting matrix 
is then used by DGEMM to update the remainder of 
the right-hand-side matrix. Consequently, most 
of the DXML DTRSM performance is directly attrib­
utable to the DXML DGEMM routine. In fact, the tech­
niques used in DGEMM pervade DXML BLAS 3 
routines. 

Figure 3 illustrates a key feature of DXML BLAS 3 
routines. Whereas the performance of public 
domain routines degrades significantly as the 
matrices become too large to fit in caches, DXML 
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routines are relatively insensitive to array size, 
shape, or orientation. s.9 The performance of a DXML 

BLAS 3 routine typically reaches an asymptote and 
remains there regardless of problem size. 

Optimization of LAPACK 
The LAPACK subroutine library derives a large 
part of its high performance by using the opti­
mized BLAS as building blocks. 10 The DXML ver­
sion of LAPACK is largely unmodified from the 
public domain version. However, in the case of 
the factorization routine for general matrices, 
DGETRF, we have introduced changes to the 
algorithm to improve the performance on Alpha 
systems. 

For example, while the original public domain 
DGETRF routine uses Crout's method to factor a 
matrix, the DXML version uses a left-looking 
method.11 Left-looking methods make better use 
of the secondary cache and translation buffers than 
the Crout method. Furthermore, the public domain 
version of the DLASWP routine swaps a single 
matrix row across an entire matrix. This is a very 
bad technique for RISC machines; it causes severe 
cache and translation buffer thrashing. To avoid 
this, the DXML version of DLASWP performs all 
swaps within columns, which makes much better 
use of the caches and the translation buffer and 
results in a much improved performance of the 
DXML DGETRF routine. 

The DGETRS routine was not modified. Its perfor­
mance is solely attributable to use of optimized 
DXML routines. 

Figure 4 shows the benefits of the optimizations 
made to DGETRF and the BLAS routines. DGETRF 
makes extensive use of the BLAS 3 DGEMM and 
DTRSM routines. The performance of DXML DGETRF 

improves with increasing problem size largely 
because DXML BLAS 3 routines do not degrade in the 
face oflarger problems. 

The plots of Figure 4 also show the performance 
of DGETRS when processing a single right-hand-side 
vector. In this case, DTRSV is the dominant BLAS 
routine, and the performance differences between 
the public domain and DXML DGETRS routines 
reflect the performance of the respective DTRSV 
routines. Finally, although not shown, we note that 
the performance of DXML DGETRS is much better 
than the public domain version when many right­
hand sides are used and DTRSM becomes the domi­
nant BLAS routine. 
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Optimization of the 
Signalprocessing Routines 
We illustrate the techniques used in optimizing 
the signal-processing routines using the one­
dimensional, power-of-2, complex FFT.21 The algo­
rithm used is a version of Stockham's autosorting 
algorithm, which was originally designed for vector 
computers but works well, with a few modifica­
tions, on a RISC architecture such as Alpha.22,23 

The main advantage in using an autosorting algo­
rithm is that it avoids the initial bit-reversal permu­
tation stage characteristic of the Cooley-Tukey 
algorithm or the Sande-Tukey algorithm. This stage 
is implemented by either precalculating and load­
ing the permutation indices or calculating them 
on-the-fly. In either case, substantial amounts of 
integer multiplications are needed. By avoiding 
these multiplications, the autosorting algorithm 
provides better performance on Alpha systems. 

This algorithm does have the disadvantage that 
it cannot be done in-place, resulting in the use 
of a temporary work space, which makes more 
demands on the cache than an algorithm that can be 
done in-place. However, this disadvantage is more 
than offset by the avoidance of the bit-reversal stage. 

The implementation of the FFT on the Alpha 
makes effective use of the hierarchical memory of 
the system, specifically, the 31 usable floating-point 
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registers, which are at the lowest, and therefore the 
fastest, level of this hierarchy. These registers are 
utilized as much as possible, and any data brought 
into these registers is reused to the extent possible. 
To accomplish this, the FFT routines implement the 
largest radices possible for all stages of the power­
of-2 FFT calculation. Radix-8 was used for all stages 
except the first, utilizing 16 registers for the data 
and 14 for the twiddle factors. 21 For the first stage, 
as all twiddle factors are 1, radix-16 was used. 

Figure 5 illustrates the performance of this algo­
rithm for various sizes. Although the performance 
is very good for small data sizes that fit into the pri­
mary, 16-KB data cache, it drops off quickly as the 
data exceeds the primary cache. To remedy this, a 
blocking algorithm was used to better utilize the 
primary cache. 

The blocking algorithm, which was developed 
for computers with hierarchical memory systems, 
decomposes a large FFT into two sets of smaller 
FFTs.24 The algorithm is implemented using four 
steps: 

1. Compute NI sets of FFTs of size N2. 

2. Apply twiddle factors. 

3. Compute N2 sets of FFTs of size NL 

4. Transpose the NI by N2 matrix into an N2 by Nl 
matrix. 
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In the above, N = NI X N2. Steps (1) and (3) use 
the autosorting algorithm for small sizes. In 
step (2), instead of precomputing all N twiddle 
factors, a table of selected twiddle factors is com­
puted and the rest calculated using trigonometric 
identities. 

Figure 5 compares the performance of the block­
ing algorithm with the autosorting algorithm. Due 
to the added cost of steps (2) and ( 4), the maximum 
computation speed for the blocking algorithm 
(115 million floating-point operations per second 
[Mflops] at N=212) is lower than the maximum 
computation speed of the autosorting algorithm 
(192 Mflops at N= 29). The crossover point 
between the two algorithms is at a size of approxi­
mately 2K, with the autosorting algorithm perform­
ing better at smaller sizes. Based on the length of 
the FFT, the DX.ML routine automatically picks the 
faster algorithm. Note that at N =216, as the size 
of the data and workspace exceeds the 2-MB 
secondary cache, the performance of the blocking 
algorithm drops off. 

Optimization of the Skyline Solvers 
A skyline matrix (Figure 6) is one where only the 
elements within the envelope of the sparse matrix 
are stored. This storage scheme exploits the fact 
that zeros that occur before the first nonzero ele­
ment in a row or column of the matrix, remain 
zero during the factorization of the matrix, pro­
vided no row or column interchanges are made. 14 

Thus, by storing the envelope of the matrix, no 
additional storage is required for the fill-in that 
occurs during the factorization. Though the sky­
line storage scheme does not exploit the sparsity 
within the envelope, it allows for a static data 
structure, and is therefore a reasonable compro­
mise between organizational simplicity and com­
putational efficiency. 

In the skyline solver, the system, Ax= b, where A 
is an N by N matrix, and b and x are N-vectors, is 
solved by first factorizing A asA=W U, where L and 
U are unit lower and upper triangular matrices, and 
Dis a diagonal matrix. The solution xis then calcu­
lated by solving in order, Ly=b, Dz=y, and Ux=z, 
where y and z are N-vectors. 

In our discussion of performance optimization, 
we concentrate on the factorization routine as it is 
often the most time-consuming part of an applica­
tion . The algorithm implemented in DX.ML uses a 
technique that generates a column (or row) of the 
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Figure 6 Skyline Column Storage of 
a Symmetric Matrix 

factorization using an inner product formulation. 
Specifically, for a symmetric matrix A, let 

A =(M 
V T 

where the symmetric factorization of the leading 
(N - 1) by (N - 1) leading principal submatrix M 
has already been obtained as 

M= U'ftDMUM 

Since the vector v, oflength (N - 1), and the scalar 
s are known, the vector w, oflength (N - 1) and the 
scalar d can be determined as 

w = D-,JU-J'v 

and 

The definition of w indicates that a column of the 
factorization is obtained by taking the inner prod­
uct of the appropriate segment of that column with 
one of the previous columns that has already been 
calculated. Referring to Figure 7, the value of the 
element in location (i,j) is calculated by taking 
the inner product of the elements in column j 
above the element in location (i,j) with the corre­
sponding elements in column i. The entire column 
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j is thus calculated starting with the first nonzero 
element in the column and moving down to the 
diagonal entry. 

The optimization of the skyline factorization is 
based on the following two observations 2s.26: 

• The elements of column j, used in the evalua­
tion of the element in location (i,j), are also 
used in the evaluation of the element in location 
(i+l,j). 

• The elements of column i, used in the evalua­
tion of the element in location (i,j), are also 
used in the evaluation of the element in location 
(i,j + I). 

Therefore, by unrolling both the inner loop on i 
and the outer loop onj, twice, we can generate the 
entries in locations (i,j), (i+ 1,j), (iJ+ 1), (i+ l,j+ 1) 
at the same time, as shown in Figure 8. These four 
elements are generated using only half the memory 
references made by the standard algorithm. The 
memory references can be reduced further by 
increasing the level of unrolling. This is, however, 
limited by two factors: 

• The number of floating-point registers required 
to store the elements being calculated and the 
elements in the columns. 

• The length of consecutive columns in the 
matrix, which should be close to each other to 
derive full benefit from the unrolling. 

Based on these factors, we have unrolled to a depth 
of 4, generating 16 elements at a time. 
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A similar technique is used in optimizing the for­
ward elimination and the backward substitution. 

Table 1 gives the performance improvements 
obtained with the above techniques for a symmet­
ric and an unsymmetric matrix from the Harwell­
Boeing collection.15 The characteristics of the matrix 
are generated using DXML routines and were 
included because the performance is dependent on 
the profile of the skyline. The data presented is for 
a single right -hand side, which has been generated 
using a known random solution vector. 

The results show that for the matrices under con­
sideration, the technique of reducing memory 
references by unrolling loops at two levels leads to 
a factor of 2 improvement in performance. 

Summary 
In this paper, we have shown that optimized mathe­
matical subrout ine libraries can be a useful tool in 
improving the performance of science and engi­
neering applications on Alpha systems. We have 

Table 1 Performance Improvement in the Solution of Ax=b, Using the Skyline Solver on the 
DEC 3000 Model 900 System 

Harwell-Boeing matrix15 

Description 

Storage scheme 

Matrix characteristics 
Order 
Type 

Condition number estimate 
Number of nonzeros 
Size of skyline 
Sparsity of skyline 
Maximum row (column) height 
Average row (column) height 
RMS row (column) height 

Factorization time (in seconds) 
Before optimization 
After optimization 

Solution time (in seconds) 
Before optimization 
After optimization 

Maximum component-wise 
relative error in solution 
(See equation below.) 

max I x(i) - x(i) I 

I x(i) I 

Example 1 

BCSSTK24 

Stiffness matrix of the Calgary 
Olympic Saddledome Arena 

Symmetric diagonal-out 

3562 
Symmetric 

6.37E+ 11 
81736 
2031722 
95.98% 
3334 
570.39 
1135.69 

66.80 
35.02 

0.82 
0.43 

0.16E- 5 

Example 2 

ORSREG1 

Jacobian from a model of 
an oil reservoir 

Unsymmetric profi le-in 

2205 
Unsymmetric with 
structural symmetry 
1.54E+ 4 
14133 
1575733 
99.10% 
442 (442) 
357.81 (357.81) 
395.45 (395.45) 

23.12 
13.02 

0.32 
0.17 

0.50E-10 

where x(i) is the i-th component of the true solution, and x(i) is the i-th component of the calculated solut ion. 
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described the functionality provided by DXML, 
discussed various software engineering issues 
and illustrated techniques used in performance 
optimization. 

Future enhancements to DXML include symmet­
ric multiprocessing support for key routines, 
enhancements in the areas of signal processing and 
sparse solvers, as well as further optimization of 
routines as warranted by changes in hardware and 
system software. 
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The KAP Parallelizer 
for DEC Fortran and 
DEC C Programs 

Robert H. Kuhn 
Bruce Leasure 
Sanjiv M. Shah 

The KAP preprocessor optimizes DEC Fortran and DEC C programs to achieve their 
best performance on Digital Alpha systems. One key optimization that KAP per­
forms is the parallelization of programs for Alpha shared memory multiprocessors 
that use the new capabilities of the DEC OSF/1 version 3.0 operating system with 
DECthreads. The heart of the optimizer is a sophisticated decision process that 
selects the best loop to parallelize from the many loops in a program. The preproces­
sor implements a robust data dependence analysis to determine whether a loop is 
inherently serial or parallel. · In engineering a high-quality optimizer, the designers 
specified the KAP software architecture as a sequence of modular optimization 
passes. These passes are designed to restructure the program to resolve many of the 
apparent serializations that are artifacts of coding in Fortran or C. End users can 
also annotate their DEC Fortran or DEC C programs with directives or pragmas to 
guide KAP's decision process. As an alternative to using KAP's automatic paral­
lelization capability, end users can explicitly identify parallelism to KAP using the 
emerging industry-standard X3H5 directives. 

The KAP preprocessor developed by Kuck & 
Associates, Inc. (KAI) is used on Digital Alpha sys­
tems to increase the performance of DEC Fortran 
and DEC C programs. KAP accomplishes this by 
restructuring fragments of code that are not effi­
cient for the Alpha architecture. Essentially a super­
optimizer, KAP performs optimizations at the 
source code level that augment those performed 
by the DEC Fortran or DEC C compilers. 1 

To enhance the performance of DEC Fortran and 
DEC C programs on Alpha systems, KAI engineers 
selected two challenging aspects of the Alpha archi­
tecture as KAP targets: symmetric multiprocessing 
(SMP) and cache memory. An additional design goal 
was to assist the compiler in optimizing source 
code for the reduced instruction set computer 
(RISC) instruction processing pipeline and multiple 
functional units. 

This paper discusses how the KAP preprocessor 
design was adapted to parallelize programs for SMP 
systems running under the DEC OSF/1 version 3.0 
operating system. This version of the DEC OSF/1 
system contains the DECthreads product, Digital's 
POSIX-compliant multithreading library. The first 
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part of the paper describes the process of mapping 
parallel programs to DECthreads. The paper then 
discusses the key techniques used in the KAP 
design. Finally, the paper presents examples of how 
KAP performs on actual code and mentions some 
remaining challenges. Readers with a compiler 
background may wish to explore Optimizing Super­
compilers for Supercomputers for more details on 
KAP's techniques. 2 

In this paper, the term directive is used inter­
changeably to mean directive, when referring to DEC 
Fortran programs, and pragma, when referring to 
DEC C programs. The term processor generally rep­
resents the system component used in parallel pro­
cessing. In discussions in which it is significant to 
distinguish the operating system component used 
for parallel processing, the term thread is used. 

The Parallelism Mapping Process 
Figure 1 shows the input modes and major phases 
of the compilation process. Parallelism is repre­
sented at three levels in programs using the KAP 
preprocessor on an Alpha SMP system. The first two 
are input to the KAP preprocessor; the third is the 
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Figure 1 Parallelism Mapping Process 

representation of parallelism that KAP generates. 
The three levels of parallelism are 

1. Implicit parallelism. Starting from DEC Fortran 
or DEC C programs, KAP automatically detects 
parallelism. 

2. Explicit high-level parallelism. As an advanced 
feature, users can provide any of three forms: 
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KAP guiding directives, KAP assertions, or X3H5 
directives. KAP guiding directives give KAP hints 
on which program constructs to parallelize. KAP 
assertions are used to convey information about 
the program that cannot be described in the DEC 
Fortran or DEC C language. This information can 
sometimes be used by KAP to optimize the pro­
gram. Using X3H5 directives, the user can force 
KAP to parallelize the program in a certain way.3 

Voi. 6 No. 3 Summer 1994 Digital Technical Journal 



The KAP Parallelizer for DEC Fortran and DEC C Programs 

3. Explicit low-level parallelism. KAP translates 
either of the above forms to DECthreads with the 
help of an SMP support library. (Ibe user could 
specify parallelism directly, using DECthreads; 
however, KAP does not perform any optimiza­
tion of source code with DECthreads. Therefore, 
the user should not mix this form of parallelism 
with the others.) 

Because the user can employ parallelism at any 
of the three levels, a discussion of the trade-offs 
involved with using each level follows. 

From DEC Fortran or DEC C Programs 
The KAP preprocessor accepts DEC Fortran and DEC 
C programs as input. Although starting with such 
programs requires the compilers to intelligently 
utilize a high-performance SMP system, there are 
several reasons why this is a natural point at which 
to start. 

• Lots of software. Since DEC Fortran and DEC C 
are de facto standards, there exists a large base of 
applications that can be parallelized relatively 
easily and inexpensively. 

• Ease of use. Given the high rate at which hard­
ware costs are decreasing, every workstation may 
soon have multiple processors. At that point, it 
will be critical that programming a multiproces­
sor be as easy as programming a single processor. 

• Portability. Many software developers with 
access to a multiprocessor already work in a het­
erogeneous networking environment. Some sys­
tems in such an environment do not support 
explicit forms of parallelism (either X3H5 or 
DECthreads). The developers would probably 
like to have one version of their code that runs 
well on all their systems, whether uniprocessor 
or multiprocessor, and using DECthreads would 
cause their uniprocessors to slow down. 

• Maintainability. Using an intricate programming 
model of parallelism such as X3H5 or DECthreads 
makes it more difficult to maintain the software. 

KAP produces KAP-optimized DEC Fortran or DEC 
C as output. This fact is important for the following 
reasons: 
• Performance. Users can leverage optimizations 

from both Digital's compilers and KAP. 

• Integration. Users can employ all of Digital's per­
formance tools. 
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• Ease of use. Expert users like to "tweak" the 
output of KAP to fine-tune the optimizations 
performed. 

With KAP Guiding Directives, KAP 
Assertions, or X3H5 Directives 
Although the automatic detection of parallelism is 
frequently within the range of KAP capabilities on 
SMP systems, in some cases, as described below, 
users may wish to specify the parallelism. 

• In the SMP environment, coarse-grained paral­
lelism is sometimes important. The higher in the 
call tree of a program a preprocessor ( or com­
piler, as well) operates, the more difficult it is 
for a preprocessor to parallelize automatically. 
Even though the KAP preprocessor performs 
both inlining and interprocedural analysis, the 
higher in the call tree KAP operates, the more 
likely it is that KAP will conservatively assume 
that the parallelization is invalid. 

• Sometimes information that is available only at 
run time precludes the preprocessor from auto­
matically finding parallelism. 

• Occasionally, experts can fine-tune the paral­
lelism to get the highest efficiency for programs 
that are run frequently. 

• For software that is more portable between sys­
tems, it is sometimes important to get repeatable 
parallel performance or to indicate where paral­
lelism has been applied. In such cases, explicit 
parallelism may be preferable. 

Three mechanisms are available to the user for 
directing KAP to parallelism. The first mechanism 
uses KAP guiding directives to guide KAP to the 
preferred way to parallelize the program. The sec­
ond mechanism uses KAP assertions. The third 
mechanism uses X3H5-compliant directives to 
directly describe the parallelism. The first two 
mechanisms differ significantly from the third. With 
the first two, KAP analyzes the program for the feasi­
bility of parallelism. With the third, KAP assumes 
that parallelism is feasible and restricts itself to man­
aging the details of implementing parallelism. In 
particular, the user does not have to be concerned 
with either the scoping of variables across proces­
sors, i.e., designating which are private and which 
are shared, or the synchronization of accesses to 
shared variables. 4 KAP guiding directives will not be 
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discussed in this paper. KAP assertions and how they 
are implemented are discussed later in the section 
Advanced Ways to Affect Dependences. A descrip­
tion of the X3H5 directives follows. 

The X3H5 model of parallelism is well struc­
tured; all operations have a begin operation-end 
operation format. The parallel region construct 
identifies the fork and join points for parallel 
processing. Parallel loops identify units of work 
to be distributed to the available processors. The 
critical section and one processor section con­
structs are used to synchronize processors where 
necessary. Table I shows the X3H5 directives as 
implemented in KAP. 

To the DEC OSF/1 Operating System 
with DECthreads 
Although KAP does not optimize programs that use 
DECthreads directly, there may be some benefits to 
specifying parallelism explicitly using DECthreads. 

• DECthreads allows a user to construct almost any 
model of parallel processing fairly efficiently. 
The high-level approaches described above are 
limited to loop-structured parallel processing. 
Some applications obtain more parallelism by 
using an unstructured model. It can even be 
argued that for some cases, unstructured paral­
lelism is easier to understand and maintain. 

• A user who invests the time to analyze exactly 
where parallelism exists in a program may wish 
to forego the benefits mentioned above and to 
capture the parallelism in detail with DECthreads. 
In that manner, no efficiency is lost because the 
preprocessor misses an optimization. 

• The POSIX threads standard to which DECthreads 
conforms is available on several platforms. 

Table 1 X3H5 Directives As Implemented in KAP 

Because this standard is broadly adopted and 
language independent, it is only slightly less 
portable than implicit parallelism. 

The KAP preprocessor translates a program in 
which KAP has detected implicit parallelism or a pro­
gram in which the user explicitly directs parallelism 
to DECthreads. KAP performs this translation in two 
steps. First, it translates the internal representation 
into calls to a parallel SMP support library. Second, 
the support library makes calls to DECthreads. 

The SMP support library implements various 
aspects of X3H5 notation, as can be seen by com­
paring Tables I and 2. 

In the parallelism translation phase, KAP signifi­
cantly restructures a program by moving the code 
in a parallel region to a separate subroutine. A call 
to the SMP support library replaces the parallel 
region. This call references the new subroutine. 
KAP examines the scope of each variable used in 
the parallel region and, if possible, converts each 
variable to a local variable of the new subroutine. 
Otherwise, the variable becomes an argument to 
the subroutine so that it can be passed back out of 
the parallel region. 

Converting variables to local variables makes 
accessing these variables more efficient. A variable 
that is referenced outside the parallel region cannot 
be made local and must be passed as an argument. 

Shared Memory Multiprocessor 
Architecture Concerns 
Given its parallelism model, the KAP preprocessor 
requires operating system and hardware support 
from the system for efficient parallel execution. 
There are three areas of concern: thread creation 
and scheduling, synchronization between threads, 
and data caching and system bus bandwidth. 

Function X3H5 Directives 

To specify regions of parallel execution 

To specify parallel loops 

To specify synchronized sections of code 
such that all processors synchronize 

To specify that all processors execute sequentially 

To specify that only the first processor executes 
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C*KAP* PARALLEL REGION 
C*KAP* END PARALLEL REGION 

C*KAP* PARALLEL DO 
C*KAP* END PARALLEL DO 

C*KAP* BARRIER 

C*KAP* CRITICAL SECTION 
C*KAP* END CRITICAL SECTION 

C*KAP* ONE PROCESSOR SECTION 
C*KAP* END ONE PROCESSOR SECTION 
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Table 2 KAP SMP Support Library 

C Entry Point Name 
Fortran 
Name Function 

OSF/1 DECthreads 
Subroutines Used 

_kmp_enter_csec 
_kmp_exit_csec 
_kmp_fork 

mppecs 
mppxcs 
mppfrk 

To enter a critical section 
To exit a critical section 
To fork to several threads 

pthread_mutex_lock 
pthread_mutex_unlock 
pthread_attr_create, 
pthread_create 

_kmp_fork_active mppfkd To inquire if already 
parallel 

(none) 

_kmp_en d mppend To join threads pthread_join, 
thread_detac h 

_kmp_enter_onepsec mppbop To enter a single 
processor section 

pthread_mutex_lock, 
pthread_mutex_unlock 

_ kmp_exit_onepsec mppeop To exit a single 
processor section 

pthread_mutex_lock, 
pthread_mutex_unlock 

_kmp_b a rrier mppbar To execute a barrier wait pthread_mutex_lock, 
pthread_cond_wait, 
pthread_ mutex_ unlock 

Thread Creation and Scheduling Thread cre­
ation is the most expensive operation. The X3H5 
standard minimizes the need for creating threads 
through the use of parallel regions. The SMP sup­
port library goes further by reusing threads from 
one parallel region to the next. The SMP support 
library examines the value of an environment vari­
able to determine how many threads to use. The 
appropriate scheduling of threads onto hardware 
processors is extremely important for efficient 
execution. The support library relies on the 
DECthreads implementation to achieve this. For 
the most efficient operation, the library should 
schedule at most one thread per processor. 

Synchronization between Threads In the KAP 

model of parallelism, threads can synchronize at 

• A point where loop iterations are scheduled 

• A point where data passes between iterations 
(for collection of local reduction variables only) 

• A barrier point leaving a work-sharing construct 

• Single processor sections 

Two versions of the SMP support library have been 
developed: one with spin locks for a single-user 
environment and the second with mutex locks for 
a multiuser environment. Either library works in 
either environment; however, using the spin lock 
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version in a single-user environment yields the 
most efficient parallelism. 

Using spin locks in a multiuser environment may 
waste processor cycles when there are other users 
who could use them. Using mutex locks for a single­
user environment creates unnecessary operating 
system overhead. In practice, however, a system 
may shift from single-user to multiuser and back 
again in the course of a single run of a large pro­
gram. Therefore, KAP supports all lock-environment 
combinations. 

Data Caching and System Bus Bandwidth 
Multiprocessor Alpha systems support coherent 
caches between processors. 5 To use these caches 
efficiently, as a policy, KAP localizes data as much 
as possible, keeping repeated references within 
the same processor. Localizing data reduces the 
load on the system bus and reduces the chances of 
cache thrashing. 

When all the processors simultaneously request 
data from the memory, system bus bandwidth can 
limit SMP performance. If optimizations enhance 
cache locality, less system bus bandwidth is used, 
and therefore SMP performance is less likely to be 
limited. 

KAP Technology 
This section covers the issues of data dependence 
analysis, preprocessor architecture, and the selec­
tion of loops to parallelize. 
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Data Dependence Analysis-The Kernel 
of Parallelism Detection 
DEC Fortran and DEC C have standard rules for the 
order of execution of statements and expressions. 
These rules are based on a serial model of program 
execution. Data dependence analysis allows a com­
piler to see where this serial order of execution can 
be modified without changing the meaning of the 
program. 

Types of Dependence KAP works with the four 
basic types of dependence: 6 

1. Flow dependence, i.e., when a program writes 
a variable before it reads the variable 

2. Antidependence, i.e., when a program reads 
a variable before it writes the variable 

3. Output dependence, i.e. , when a program 
writes the same variable twice 

4. Control dependence, i.e., when a program state­
ment depends on a previous conditional 

Because dependences involve two actions on the 
same variable, for example, a write and then a read, 
KAP uses the term dependence arc to represent 
information flow, in this example from the write to 
the read. 

Since these dependences can prevent paralleliza­
tion, KAP uses various optimizations to eliminate 
the different dependences. For example, an optimi­
zation called scalar renaming removes some but 
not all antidependences. 

Loop-related Dependences When dependences 
occur within a loop, the control flow relations are 
captured with direction vector symbols tagged to 
each dependence arc. 2 The transformations that 
can be applied to a loop depend on what depen­
dence direction vectors exist for that loop. The 
symbols used in KAP and their meanings are 

= The dependence occurs within the same loop 
iteration. 

> The dependence crosses one or several itera­
tions. 

< The dependence goes to a preceding iteration 
of the loop. 

* 
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The dependence relation between iterations is 
not clear. 

or a combination of the above, for example, 

<> The dependence is known not to be on the 
same iteration. 

When a dependence occurs in a nested loop, KAP 

uses one symbol for each level in the loop nest. A 
dependence is said to be carried by a loop if the cor­
responding direction vector symbol for that loop 
includes <,>, or *. 

In the following program segment 

1 for (; = 1 ; i<=n; i++) { 

2 temp a[iJ; 
3 a[i] = b[i]; 
4 b[i] = temp; } 

there is a flow dependence from statement 2 to 
statement 4. There is an antidependence from state­
ment 2 to statement 3 and from statement 3 to 
statement 4. There are control dependences from 
statement 1 to statements 2, 3, and 4 because exe­
cuting 2, 3, and 4 depends on the i < = n condition. 
All these dependences are on the same loop itera­
tion; their direction vector is =. 

Some dependences in this program cross loop 
iterations. Because temp is reused on each itera­
tion, there is an output dependence from statement 
2 to statement 2, and there is an antidependence 
from statement 4 to statement 2. These two depen­
dences are carried by the loop in the program seg­
ment and have the direction vector >. 

Data Dependence Analysis The purpose of depen­
dence analysis is to build a dependence graph, i.e., 
the collection of all the dependence arcs in the pro­
gram. KAP builds the dependence graph in two 
stages. First, it builds the best possible conservative 
dependence graph.7 Then, it applies filters that 
identify and remove dependences that are known 
to be conservative, based on special circumstances. 

What does the phrase "best possible conserva­
tive dependence graph" mean? Because the values 
of a program's variables are not known at prepro­
cessing time, in some situations it may not be clear 
whether a dependence actually exists. KAP reflects 
this situation in terms of assumed dependences 
based on imperfect information. Therefore, a 
dependence graph must be conservative so that 
KAP does not optimize a program incorrectly. On 
the other hand, a dependence graph that is too con­
servative results in insufficient optimization. 

In building the best possible dependence graph, 
KAP uses the following optimizations: constant 
propagation, variable forward substitution, and 
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scalar expansion. KAP does not, however, leave the 
program optimized in this manner unless the opti­
mizations will improve performance. 

Advanced Ways to Affect Dependences When 
there are assumed dependences in the program, 
KAP may not have enough information to decide on 
parallelism opportunities. KAP implements two 
techniques to mitigate the effects of imperfect 
information at preprocessing time: assertions and 
alternate code sequences. 

Assertions, which are similar to directives in syn­
tax, are used to provide information not otherwise 
known at preprocessing time. KAP supports many 
assertions that have the effect of removing assumed 
dependences. Table 3 shows KAP assertions and 
their effects. S.9 When the user specifies an asser­
tion, the information contained in the assertion is 
saved by a data abstraction called the oracle. When 
an optimization requests that a data dependence 
graph be built for a loop, the dependence analyzer 
inquires whether the oracle has any information 
about certain arcs that it wants to remove. 

When accurate information is not known at com­
pile time, a few KAP optimizations generate two 
versions of the source program loop: one assumes 
that the assumed dependence exists; the other 
assumes that it does not exist. In the latter case, KAP 
can apply subsequent optimizations, such as paral-

Table 3 KAP Assertions 

Assertion 

[NO] ARGUMENT ALIASING 
[NO] BOUNDS VIOLATIONS 
CONCURRENT CALL 

Specifiers 

lelizing the loop. KAP applies the two-version loop 
optimizations selectively to avoid dramatically 
increasing the size of the program. However, the 
payback of parallelizing a frequently executed loop 
warrants their use. 

For example, the KAP C pointer disambiguation 
optimization is employed in cases in which C point­
ers are used as a base address and then incremented 
in a loop. Neither the base address of a pointer nor 
how many times the pointer will be incremented is 
usually known at compile time. At run time, how­
ever, they can be computed in terms of a loop 
index. KAP generates code that checks the range of 
the pointer references at the tail and at the head of 
a dependence. If the two ranges do not overlap, the 
dependence does not exist and the optimized code 
is executed. 

KAP Preprocessor Architecture 
A controversial control architecture decision in 
KAP is to organize the preprocessor as a sequence 
of passes, generally one for each optimization per­
formed. This design decision was controversial 
because of the following concerns: 

• Run-time inefficiency would occur in process­
ing programs because each pass would sweep 
through the intermediate representation for the 
program being processed, causing some amount 
of virtual memory thrashing. 

Primary Effect 

DO (<specifier>) 

DO PREFER (<specifier>) 
[NO] EQUIVALENCE 
HAZARD 

SERIAL, CONCURRENT 
SERIAL, CONCURRENT 

Removes assumed dependence arcs 

Removes assumed dependence arcs 

Removes assumed dependence arcs 
Guides selection of loop order strongly 

Guides selection of loop order loosely 
Removes assumed dependence arcs 
(Fortran only) 

[NO] LAST VALUE 
NEEDED (<specifier>) 

PERMUTATION 
(< specifier>) 
NO RECURRENCE 
(< specifier>) 
RELATION (<specifier> ) 

NO SYNC 

Variable names for 
which [no] last 
value is needed 
Names of permutation 
variables 

Names of recurrence 
variables 

Relation loop index 
known to be true 
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Tunes the parallel code and 
sometimes removes assumed 
dependences 

Removes assumed dependence arcs 

Removes assumed dependence arcs 

Removes assumed dependence arcs 

Tunes the parallel code which is 
produced 
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• Added software development cost would be 
incurred because the KAP code that loops 
through the intermediate representation would 
be repeated in each pass. 

The second concern has been dispelled. The 
added modularity of KAP, provided by its multipass 
structure, has saved development time as KAP has 
grown from a moderately complex piece of code to 
an extremely complex piece of code. 

The KAP preprocessor uses more than 50 major 
optimizations. The pass structure has helped to 
organize them. In some cases, such as cache man­
agement, one optimization is broken into several 
passes. KAP performs some basic optimizations, 
e.g., deadcode elimination, more than once in dif­
ferent ways. In some cases, such as scalar expan­
sion, KAP performs an optimization to uncover 
other optimizations and then performs the reverse 
optimization to tighten up the program again. 

The run-time efficiency issue is still of interest. 
There is always some benefit to making the prepro­
cessor smal !er and faster. 

Selecting Loops to Parallelize 
Parallelizing a loop can greatly enhance the perfor­
mance of the program. Testing whether a loop can 
be parallelized is actually quite simple, given the 
data dependence analysis that KAP performs. A loop 
can be parallelized if there are no dependence arcs 
carried by that loop. The situation, however, can be 
more complicated. If the program contains several 
nested loops, it is important to pick the best loop to 
parallelize. Additionally, it may be possible not only 
to parallelize the loop but also to optimize the loop 
to enhance its performance. Moreover, the loops in 
a program can be nested in very complex structures 
so that there are many different ways to parallelize 
the same program. In fact, the best option may be 
to leave all the loops serial because the overhead of 
parallel execution may outweigh the performance 
improvement of using multiple processors. 

The KAP preprocessor optimizes programs for 
parallelism by searching for the optimum program 
in a set of possible configurations, i.e., ways in 
which the original program can be transformed for 
parallel execution. (In this regard, KAP optimizes 
programs from a classical definition of numerical 
optimization.) There is an objective function for 
evaluating each configuration. Each member of 
the set of configurations is called a loop order. The 
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optimum program is the loop order whose objec­
tive function has the highest performance score, as 
discussed later in this section. 

Descriptions of loop orders, the role of depen­
dence analysis, and the objective function, i.e., how 
each program is scored, follow. 

Loop Orders A loop order is a combination of 
loop transformations that the KAP preprocessor has 
performed on the program. The loop transforma­
tions that KAP performs while searching for the 
optimal parallel form are 

• Loop distribution 

• Loop fusion 

• Loop interchange 

Loop distribution splits a loop into two or more 
loops. Loop fusion merges two loops. Loop fusion 
is used to combine loops to increase the size of the 
parallel tasks and to reduce loop overhead. 

Loop interchange occurs between a pair of loops. 
This transformation takes the inner loop outside the 
outer loop, reversing their relation. If a loop is triply 
nested, there are three factorial (3!), i.e., six, differ­
ent ways to interchange the loops. Each order is 
arrived at by a sequence of pairwise interchanges. 

To increase the opportunities to interchange 
loops, KAP tries to make a loop nest into one that is 
perfectly nested. This means that there are no exe­
cutable statements between nested loop state­
ments. Loop distribution is used to create perfectly 
nested loops. 

KAP examines all possible loop orders for each 
loop nest. Each loop nest is treated independently 
because no transformations between loop nests 
occur at this phase of optimization. 

For example, an LU factorization program con­
sists of one loop nest that is three deep and not per­
fectly nested. Figure 2 shows the loop orders. Loop 
order (a) is the original LU program. The KAP pre­
processor first distributes the outer loop in loop 
orders (b) and (c). Next, KAP performs a loop inter­
change on the second loop nest which is two deep, 
as shown in loop order (d). Then, KAP interchanges 
the third loop nest in loop orders (e) through (i). 
Note that KAP eliminates some loop orders, (i) for 
example, when the loop-bound expressions cannot 
be interchanged. As explained above, there are six 
different loop orders because the nest is triply 
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(a) ORIGINAL LU (OUTLINED): 
do i=1,n 

/*Invert Eliminator*/ 

do lc=i+1,n 
/*Compute Multipliers*/ 

enddo 
do j=i+1,n 

do lc=i+1,n 
/*Update Matrix*/ 

enddo 
end do 

enddo 

(d) FOR SECOND NEST INTERCHANGE 
SECOND do i LOOP: 

do lc=1,n 
do i=1,lc-1 

/*Compute Multipliers*/ 

REEXAMINE LOOP ORDERS 
(e) THROUGH (i) 

(b) DISTRIBUTED do i LOOP: 
do i=1,n 

/*Invert Eliminator*/ 
enddo 

do i=1,n 
do lc=i+1,n 

/*Compute Multipliers* / 
enddo 

do j=i+1,n 
do lc=i+1,n 

/*Update Matrix*/ 
enddo 

enddo 
enddo 

(c) DISTRIBUTE do i LOOP AGAIN: 
do i=1,n 

/*Invert Eliminator*/ 
do i =1,n 

do lc=i+1,n 
/*Compute Multipliers*/ 

do i=1,n 
do j=i+1,n 

do lc=i+1,n 
/*Update Matrix*/ 

(e) FOR THIRD NEST 
INTERCHANGE do i AND do j: 

(g) FOR THIRD NEST 
INTERCHANGE do j AND do k: 

do j=1,n do i=1,n 
do i=1,j-1 do k=i+1,n 

do lc=i+1,n do j=i+1,n 
/*Update Matrix*/ /*Update Matrix*/ 

(f) FOR THIRD NEST INTERCHANGE 
do i AND do k: 

Loop Order Rejected -­
New bounds split loop. 
do j=1,n 

do lc=2,j 
do i =1,lc-1 

/*Update Matrix*/ 
do lc=j,n 

do i =1,j-1 
/ *Update Matrix*/ 

(h) FOR THIRD NEST 
INTERCHANGE do i AND do k: 

do k=1,n 
do i=1,k-1 

do j=i+1,n 
/*Update Matrix*/ 

(i) FOR THIRD NEST INTERCHANGE 
do i AND do j: 

Loop Order Rejected -­
New bounds split loop. 
do lc=1,n 

do j=2,lc 
do i=1,lc-1 

/ *Update Matrix* / 
do j = lc,n 

do i=1,lc - 1 
/*Update Matrix*/ 

Figure 2 Loop Orders/or LU Factorization 
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nested. Since the loop nest in (d) was originally 
nested with the triply nested loop at the outermost 
do loop, KAP will reexamine these six loop orders 
after the interchange in (d). 

Dependence Analysis for Loop Orders Before a 
loop order can be evaluated for efficiency, KAP deter­
mines the validity of the loop order. A loop order is 
valid if the resulting program would produce equiva­
lent behavior. KAP tests validity by examining the 
dependences in the dependence graph according to 
the transformation being applied. 

For example, the test for loop interchange validity 
involves searching for dependence direction vec­
tors of a certain type. The direction vector(<,>) 
indicates that a loop interchange is invalid. The 
direction vectors ( < :), (" ,> ), or(","), if present, also 
indicate that the loop interchange may be invalid. 

Evaluation of a Loop Order After the KAP prepro­
cessor determines that a loop order is valid, it 
scores the loop order for performance. KAP consid­
ers two major factors: (1) the amount of work that 
will be performed in parallel and (2) the memory 
reference efficiency. 

The memory reference efficiency of a loop order 
can degrade performance so much that it out­
weighs the performance gained by executing a 
loop in parallel. On an SMP, if a processor refer­
ences one word on a cache line, it should reference 
all the words contiguously on that line. In Fortran, 
a two-dimensional array reference, A(ij), should be 
parallelized so that the j loop is parallel and each 
processor references contiguous columns of mem­
ory. If a loop order indicated that the i loop is paral­
lel, this reference would score low. If a loop order 
indicated that the j loop is parallel, it would score 
high. The score for the loop order is the sum of 
the scores for all the references, and the highest­
scoring loop order is preferred. 

The score for a loop order depends on which 
loops in the order can be parallelized. For a given 
loop nest, there may be several (or no) loops that 
can be parallelized. The first step is to determine 
if any loops can be parallelized. If multiple loops 
can be parallelized, KAP selects the best one. KAP 
chooses at most one loop for parallel execution. 

KAP tests loops to determine whether they can 
be executed in parallel by analyzing both the state­
ments in the loop and the dependence graph. The 
loop may contain certain statements that block 
concurrentization. 1/0 statements or a call to a func-
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tion or subroutine are examples. (Users can code 
KAP assertions to flag these statements as paralleliz­
able.) Second, data dependence conditions may 
preclude parallelization. In general, a loop that car­
ries a dependence is not parallelizable . (In some 
cases, the user may override the data dependence 
condition by allowing synchronization between 
loop iterations.) Finally, the user may give asser­
tions that indicate a preference for making a loop 
parallel or for keeping it serial. 

Barring data dependence conditions that would 
prevent parallelization, the amount of work that will 
be performed in parallel determines the score of par­
allelizing a loop. (The user can also specify with a 
directive that loops should not be parallelized unless 
they score greater than a specified value.) In this 
manner, KAP prefers to parallelize outer loops or 
loops that are interchanged to the outside because 
they contain the most work to amortize the over­
head of creating threads for parallelism. 

The actual parallelization process is even more 
complex than this discussion indicates. KAP applies 
a number of optimizations to improve the quality of 
the parallel code. If there is a reduction operation 
across a loop, KAP parallelizes the loop. Too much 
loop distribution can decrease program efficiency, 
so loop fusion is run to try to coalesce loops. 

Performance Analysis 
How does the KAP preprocessor perform on real 
applications? The answer is as complex as the soft­
ware written for these applications. Consider the 
real-world example, DYNA3D, which demonstrates 
some KAP strengths and weaknesses. 

DYNA3D is nonlinear structural dynamics code 
that uses the finite element analysis method. The 
code was developed by the Lawrence Livermore 
National Laboratory Methods Development Group 
and has been used extensively for a broad range 
of structural analysis problems. DYNA3D contains 
about 70,000 lines of Fortran code in more than 
700 subroutines. 

When KAP is being used on a large program, it 
is sometimes preferable to concentrate on the 
compute-intensive kernels. For example, KAP devel­
opers ran six of the standard benchmarks for 
DYNA3D through a performance profiling tool and 
isolated two groups of three subroutines that 
account for approximately 75 percent of the run 
time in these cases. This data is shown in Table 4. 

KAP's performance on some of these key subrou­
tines appears in Table 5. KAP parallelized all the 
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Table 4 Performance Profiles of Six DYNA30 Problems 

Problem Profile (First Two Initials of the 
Subroutine and Percent of Run Time) 

Key Call 
Sequences* 

NIKE2D 
Example 

ST 19%, FO 15%, FE 12%, PR 10%, HG 7%, HR 5% (a) and (b) 

Cylinder Drop 

Bar Impact 

Impacted Plate 

Single Contact 

Clamped Beam 

ST 20%, FO 15%, FE 11 %, PR 10%, HG 7%, HR 5% 

WR 17%, ST 7%, FE 6% 

(a) and (b) 

None of interest 

(c) SH 22%, TN 16%, TA 16%, YH 14%, BL 7% 

YH 24%, SH 21 %, TN 7%, TA 7%, BL 6% 

EL 12%, SH 12%, TN 8%, TA 8%, BL 6% 
(c) 

(c) 

'Call Sequences 

(a) ST is called; ST calls PR; and then FE is called. 

(b) HR is called; HR calls HG; and then FO is called. 

(c) BL calls SH, then TA, and then TN. 

Table 5 KAP's Performance on Key Subroutines 

Subroutine Number of Number of Loops Maximum 
Nest Depth 

Number of Loops 
after Fusion Loops Parallelized 

STRAIN 5 5 
PRTAL 9 9 

FELEN 6 6 

FORCE 9 9 

HRGMD 5 5 

HGX 4 4 

loops in these subroutines. Since DYNA3D was 
designed for a CRAY-1 vector processor, it is perhaps 
to be expected that the KAP preprocessor would 
perform well. KAP, however, is intended for a 
shared memory multiprocessor rather than for 
a vector machine. For this reason, KAP does more 
than parallelize the loops. The entries in the col­
umn labeled "Number of Loops after Fusion" show 
how KAP reduced loop overhead by fusing as many 
loops together as it could. KAP fused the five loops 
in subroutine STRAIN into three loops and fused all 
nine loops in subroutine PRTAL. 

Another example of KAP's optimization for an 
SMP system is that in the doubly nested loop cases, 
such as subroutine FORCE (see Figure 3), the 
KAP preprocessor automatically selects the outer 
loop for parallel execution. In contrast, a vector 
machine such as the CRAY-1 prefers the inner loop. 

Because the kernels of DYNA3D code span multi­
ple subroutines, cross compilation optimization is 
suggested. There are three ways to do this: inlining, 
interprocedural analysis, and directives specifying 
that the inner subroutines can be concurrentized. 
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s u b r o u t i n e F O R C E OUTER LOOP 

do 60 n = 1,nnc 
------- PARALLELIZED 

lcn = lczc + n + nh12 - 1 
iO = ia(lnc) 
i1 = ia(lcn + 1) - 1 

cdir$ ivdep 
do 50 i = iO, i1 

e(1,ix(i)) 
e(1,ix1(i)) + ep11(i) 

50 continue 

60 continue 

Figure 3 Parallel Loop Selection 

Using KAP's inlining capability gives KAP the 
most freedom to optimize the program because 
in this manner KAP can restructure code across 
subroutines. 

Figure 4 shows part of the call sequence of sub­
routine SOLDE. (Subroutine SOLDE contains call 
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subroutine SOLDE 

ca LL HRGMD -----......... 
s u b r o u t i n e H R GM D "-. WHOLE CALL 

SEQUENCE 

ca LL HGX ---; INLINED 

ca LL FORCE___/ 

Figure 4 Inlining a Kernel 

to enable inlining automatically to depth two of 
subroutine SOLDE because it contains calls to many 
other subroutines that are not in the kernel. Here, 
the user specified the subroutines to inline on the 
command line. When the user specified inlining, 
KAP fused all the loops in subroutines HRGMD, HGX, 

and FORCE to minimize loop overhead, and then it 
parallelized the fused loop. 

sequence (b) of Table 4.) Subroutine SOLDE calls 
subroutine HRGMD which calls subroutine HGX. 

Then subroutine SOLDE calls subroutine FORCE. 
KAP supports inlining to an arbitrary depth. 
Inlining in KAP can be automatic or controlled from 
the command line. In this case, we did not want 

In some cases, the user can make simple restruc­
turing changes that improve KAP's optimizations. 
Figure 5 shows a case in which fusion was blocked 
by two scalar statements between a pair of loops. 
The first loop does not assign any values to the vari­
ables used to create these scalars, so the user can 
move the assignments above the loop to enable KAP 
to fuse them. 

Finally, the user can elect to specify the paral­
lelism directly. Figure 6 shows subroutine STRAIN 
with X3H5 directives used to describe the 
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subroutine STRAIN 
~ o 5 i = L f t , L L t MOVE UP 

su b r o u i ne STRAIN 
dt1d2 = .5 * dt1 
crho = .0625 * rhoCLft) 
do 5 i = Lft,llt : -=:/TATEMENTS e nddo 

dt1d2 = .5 * dt1 
er. o = .0625 * r.ho(lft) enddo 
do 6 i Lft,Llt 

end do 

ALL c"kap• STATEMENTS 
ARE X3H5 EXPLICIT 
PARALLEL DIRECTIVES. 

do 6 i = 

enddo 

Figure 5 Assisted Loop Fusion 

subroutine STRAIN 
c*kap* parallel region 
c*kap*& shared(dxy,dyx,d1) 
c*kap*& Local (i,dt1d2) 
c*kap* parallel do 

do 5 i = lft,llt 
dyx(i) = ••• 

5 continue 
c*kap* end parallel do 
c*kap* barrier 

dt1d2 = .•• 
c*kap* parallel do 

do 6 i = lft,llt 

lft,Llt 

d1 = dt1d2 * (dxy(i) + dyx(i)) 
6 continue 
c *kap* end parallel do 
c*kap* end parallel region 

Figure 6 X3H5 Explicit Parallelism 
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parallelism. In this case, the user elected to keep 
the same unfused loop structure as in the original 
code. This case is not dramatically less efficient 
than the fused version because the parallel region 
causes KAP to fork threads only once. 

A very sophisticated example of KAP usage occurs 
when a user inputs a program to KAP that has 
already been optimized by KAP. This is an advantage 
of a preprocessor that does not apply to a compiler 
because a preprocessor produces source code out­
put. In this case, the statements shown in Figure 6 
were generated by KAP to illustrate X3H5 paral­
lelism. A user may want to perform some hand opti­
mization on this output, such as removing the 
barrier statement, and then optimize the modified 
program with KAP again. 

Challenges That Remain 
Although the KAP preprocessor is a robust tool that 
performs well in a production software develop­
ment environment, several challenges remain. 
Among them are adding new languages, further 
enhancing the optimization technology, and 
improving KAP's everyday usability. 

As the popular programming languages evolve, 
KAP evolves also. KAI will soon extend KAP support 
for DEC Fortran to Fortran 90 and is developing C++ 
optimization capabilities. 

In optimization technology, KAI's goal is to make 
an SMP server as easy to use as a single-processor 
workstation is today. "Automatic Detection of Par­
allelism: A Grand Challenge for High-Performance 
Computing" contains a leading-edge analysis of par­
allelization technology. 10 The research reported 
shows that further developing current techniques 
can improve optimization technology. These tech­
niques frequently involve the grand challenge of 
compiler optimization-whole program analysis. 

In a much more pragmatic direction, the KAP 
preprocessor should be integrated with Digital's 
compiler technology at the intermediate represen­
tation level. Such integration would increase pro­
cessing efficiency because the compiler would not 
have to reparse the source code. In addition, inte­
gration would increase the coordination between 
KAP and the compiler to improve performance for 
the end user. 

Increasing the usability of the KAP preprocessor, 
however, benefits the end user directly. KAP 
engineers frequently talk to beta users and encour­
age feedback. The following are examples of user 
comments: 
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• Optimizing programs is difficult when no sub­
routine in the program takes more than a few 
percent of the run time. As its usability in this 
area improves, KAP will become a substantial pro­
ductivity aid. If a program is generally slow, opti­
mizing repeated usage patterns will allow the 
programmer to use a comfortable programming 
style and still expect peak system performance. 

• Increasing feedback to the user would improve 
KAP's usability. When KAP cannot perform an 
optimization, often the user can help in several 
ways (e.g., by providing more information at 
compile time, by changing the options or direc­
tives, or by making small changes to the source 
code). KAP does not always make it clear to the 
user what needs to be done. Providing such feed­
back would improve KAP's usability. 

• Integration with other performance tools would 
be useful. Alpha systems have a good set of per­
formance monitoring tools that can provide 
clues about what to optimize in a program and 
how. The next release of the KAP preprocessor 
will provide some simple tools that a user can 
employ to integrate KAP with tools like prof and 
to track down performance differences. 

On a final note, the fact that KAP does not speed 
up a program should not always be cause for disap­
pointment. Some programs already run as fast as 
possible without the benefit of a KAP preprocessor. 
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I Recent Digital U S. Patents 

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied 
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original pub­
lished patent. 

4,592,072 R.E. Stewart 

5,210,834 W. Beach and J. Zurawski 

5,210,874 P. Karger 

5,212,650 D.HooperandS.Kundu 

5,212,783 S. Sherman 

5,214,770 R. Ramanujan, P. Bannon, 
and S. Steely 

5,216,413 L. Seiler, J. Pappas, and 
R. Rose 

5,218,684 D. Hayes and V Triolo 

5,218,712 D. Bhandarkar, W. Cardoza, 
D. Cutler, D. Orbits, and 
R. Witek 

5,220,468 M. Sidman 

5,220,674 W. Morgan, D. Cobb, G. Bell, 
and A. Carlson 

5,221 ,422 S. Das and J. Khan 

5,222,029 D.HooperandS.Kundu 

5,222,223 R. Hetherington, D. Webb, 
T. Fossum, J. Murray, and 
D. Manley 

5,222,224 S. Arnold, S. Delahunt, 
M. Flynn, T. Fossum, 
R. Hetherington, and 
D. Webb 

5,226,170 P. Rubinfeld 

5,228,129 S. Bryant and M. Harwood 

5,230,067 B.Buch 

5,230,071 B. Newman 

5,230,072 D. Smith and K. O'Rourke 

5,230,079 R. Grondalski 
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a Slave Process 
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Resource Data and Forwarding Printer Status Message to 
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Lithographic Technique Using Laser Scanning for Fabrication 
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Bitwise Implementation Mechanism for a Circuit Design 
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Method and Apparatus for Ordering and Queueing Multiple 
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Scheme for Insuring Data Consistency between a Plurality 
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Method of Controlling the Variable Baud Rate of Peripheral 
Devices 

System for Managing Hierarchical Information in a Digital 
Data Processing System 

Massively Paralle l Array Processing System with Processors 
Selectively Accessing Memory Module Locations Using Address 
in Microword or in Address Register 
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5,235,693 
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5,239,635 
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5,249,187 

5,249,293 

5,251,322 

5,255,367 

5,261,113 

5,266,409 
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5,276,892 

5,278,840 

5,280,617 

5,287,463 

5,291,581 

5,297,283 

5,301,329 
5,303,380 

5,305,462 

5,313,467 

5,317,717 
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P. Goodwin, J. Tessari, and 
M. Gagliardo 

L. Weng 

R.E. Stewart, T.E. Leonard, 
and S.T. Lee 

M. Sidman 

W. Bruckert and T. Bissett 

B. Schreiber, C. Cockcroft, 
M. Ozur, R. Bismouth, and 
D. Doherty 

P. Doyle, J. Ellenberger, 
E. Jones, D. Carver, S. DiPirro, 
B. Gerovac, W. Armstrong, 
E. Gibson, R. Shapiro, 
K. Rushforth, and W.C. Roach 

W. Bruckert, T. Bissett, 
D. Mazur, and]. Munzer 

N. P.Jouppi 

P.H. Schmidt and J.C. Angus 

D. Hooper 

A.S. Olesin and R.M. Supnik 

D. Bhandarkar, W. Cardoza, 
D. Cutler, D. Orbits, and 
R. Witek 

R.F. Brender and B.R. Brett 

R.C. Frame and F.A. Zayas 

D. Bhandarkar, W. Cardoza, 
D. Cutler, D. Orbits, and 
R. Witek 

D. Cutler, J. Kelly, and 
F. Perazzoli 

R.C. Frame and F.A. Zayas 

B. Foster, G. Brown, J. Piazza, 
J. Tenny, B. Nelson, 
W. Van Roggen, and 
P. Anagnostopoulos 

R. Grondalski 

G. Varghese, M. Fine, A. Smith, 
and R. Szmauz 

D. Bhandarkar, W. Cardoza, 
D. Cutler, D. Orbits, and 
R. Witek 

Method and Apparatus for Reducing Buffer Storage in 
a Read-Modify-Write Operation 

Error-resilient Information Encoding 

Virtual Address to Physical Address Translation Using Page 
Tables in Virtual Memory 

Automatic Correction of Position Demodulator Offsets 

Dual Rail Processors with Error Checking on 1/0 Reads 

Computer Network Providing Transparent Operation 
on a Compute Server and Associated Method 

Method of Operating a Computer Graphics System Including 
Asynchronously Traversing Its Nodes 

Fault Tolerant, Synchronized Twin Computer System with 
Error Checking of 1/0 Communication 

Apparatus and Method for a Single Operand Register Array 
for Vector and Scalar Data Processing Operations 

Hydrogenated Carbon Compositions 

Database Access Mechanism for Rules Utilized by a Synthesis 
Procedure for Logic Circuit Design 

Destination Control Logic for Arithmetic and Logic Unit for 
Digital Data Processor 

Apparatus and Method for Data Induced Condition Signalling 

I 

Automatic Program Code Generation in a Compiler System for 
an Instantiation of a Generic Program Structure and Based on 
Formal Parameters and Characteristics of Actual Parameters 

Method and Apparatus for Transferring Information over 
a Common Parallel Bus Using a Fixed Sequence of Bus 
Phase Transitions 

Apparatus and Method for Synchronization of Access 
to Main Memory Signal Groups in a Multiprocessor Data 
Processing System 

Object Transferring System and Method in an Object Based 
Computer Operating System 

Double Unequal Bus Timeout 

System for Processing Data to Facilitate the Creation 
of Executable Images 

Mechanism for Broadcasting Data in a Massively Parallel 
Array Processing System 

Integrated Communication Link Having Dynamically 
Allocatable Bandwidth and Protocol for Transmission 
of Allocation Information over the Link 

Apparatus and Method for Main Memory Unit Protection 
Using Access and Fault Logic Signals 
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