
•

•

Multimedia
Application Control

Digital Technical Journal
M

Digital Equipment Corporation

.

.

.

.
.
.
.

.

.
.
.

.
.

.
.

.•.....

Volume 5 Number 2
Spring L993

v

........
.
.
.

.

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Do rot he a B. Cassady, Secretary

Production
Terri Auricri, Production Editor
Anne S. Karzeff, Typographer
Peter R. Woodbur)', Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
Richard .f. Holling,worth
Alan G. Nemeth
Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

Cover Design
Dithering and color space conversion are two

of the concepts discussed in "Video Rendering,"

which opens this issue's set of papers on multi­

media technologies. On the cover, the band

of blue across the bottom of the cover graphic

shO'ws the rectanf!.ular patterning created

by an ordered dither process using a popular

t·ecursive tessellation array The band of bur­

gundy across the top shows the superior pat­

terning of the same ot·dered dither process

with a newly designed void-and-cluster array,

which produces a higher quality image for dis­

play by eliminating the rectangular patterns

and the textures of white noise. The line illus­

tration overlaying these two arrays presents

two color spaces, one within the other: RGB

and YUV (lumincmce-chrominance space used

by television systems; Y axis not shO"wn). In the

color conversion process, data transmitted

in YUV space is converted to RGB space. The

cover design shows three faces of the RGB

space "lifted off" and infused with the colot·s

noted at each comer of the parallelepiped.

The cover concept and illustrations are

derived from the paper "Video Rendering"

by Bob Ulichney The design was imple­

mented by Linda Fa/vella ofQuantic

Communications, Inc.

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/D 10, Littleton, Massachusetts 01460.
Subscriptions to thejoumal are $40.00 (non-U.S. $60) for four issues and $75.00 (non­
U.S. $ll5) for eight issues and must be prepaid in U.S. funds. University and college pro­
fessors and Ph.D. students in the electrical engineering and computer science fields
receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technical journal at the published-by address.
Inquiries can also be sent electronically to OTJ®CRL.DEC.COM. Single copies and back
issues are available for $16.00 each from Digital Press of Digital Equipment Corporation,
129 Parker Street, Maynard, MA 01754. Recent back issues of the journal are also
available on the Internet at gatekeeper.dec.com in the directOry /pub/DEC/DECinfo/DTJ.

Digital employees may send subscription orders on the ENET to ROY AX :JOLRNAL.
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1993 Digital Equipment Cor poration . Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem­
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should nor be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.

ISSN 0898 -901X

Documentation Number EY-P963E-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, CDA,
COD/Repository, COHESION, CX, DDJF, DEC, DEC 3000 AXP, DEC �ilaGlance, DEC OSF/1
AXP, DECaudio , DECchip 21064, DECimage, DECnet, DECNIS, DECpc, DECspin,
DECstation, DECvideo, DECwindows, Digital, the Digital logo, GIGASWITCH, HSC50,
Megadoc, Open VMS, Open VMS AXP, Q-bus , RA, RV20, SQL Multimedia, TURBOchannel,
ULTRIX, UNIBUS, VAX, VAXstation, and VMS.

Apple, Macintosh, and QuickDraw are registered trademarks and QuickTime is a trade­
mark of Apple Computer, Inc.

Display PostScript is a registered trademark of Adobe Systems Inc.

DYI and JNDEO are registered trademarks and Intel is a trademark of Intel Corporation.

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

Lotus and 1 -2-3 are registered trademarks of Lotus Development Corporation.

Microsoft, M5-DOS, and Excel are registered trademarks and Video for Windows,
Windows, and Windows NT are trademarks of Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems.

Motif, OSF, and OSF/ 1 are registered trademarks and Open Software Foundation is a
trademark of Open Software Foundation, Inc.

Perceptics is a registered trademark and LascrStar is a trademark of Perccptics
Corporation.

SCO is a trademark of Santa Cruz. Operations, Inc.

Solaris, Sun, and Sun OS are registered trademarks and SPARCstation is a trademark of
Sun Microsystems, Inc.

SPARC is a registered trademark of SPARC International, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X video is a trademark of Parallax Graphics, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.

Book production was clone by Quantic Communications, Inc.

I Contents

7 Foreword
John A. Morse

9 Video Rendering
Robert Ulichney

19 Software Motion Pictures
Burkhard K. Neidecker-Lutz and Robert Ulichney

28 Digital Audio Compression
Davis Yen Pan

41 The Megadoc Image Document Management System
Jan B. te Kiefte, Robert Hasenaar, Joop W Mevius, and Theo H. van Hunnik

50 The Design of Multimedia Object Support in DEC Rdb
Mark F. Riley,James]. Feenan,Jr.,John L.Janosik,Jr., and T. K. Rengarajan

65 DECspin: A Networked Desktop Videocoriferencing Application
Lawrence B. Palmer and Ricky S. Palmer

77 LAN Addressingfor Digital Video Data
Peter C. Hayden

Multimedia

Application Control

84 CASE Integration Using ACA Services
Paul B. Patrick, Sr.

100 DEC @aGlance-Integration of Desktop Tools and
Manufacturing Process Iriformation Systems
David Ascher

1

I Editor's Introduction

Jane C. Blake
Managing Editor

This issue of the Digital Technical Journal features
papers on multimedia technologies and applica­
tions, and on uses of the Application Control
Architecture (ACA), Digital's implementation of the
Object Management Group's CORBA specification.

The high quality of today's television, film, and
sound recordings have set expectations for com­
puter-based multimedia; we expect high-quality
images, fast response times, good quality audio,
availability-including network transmission, and
all at "reasonable" cost. Bob Ulichney has written
about video image-rendering methods that are in
fact fast, simple, and inexpensive to implement. He
reviews a color rendering system and compares
techniques that address the problem of insufficient
colors for displaying video images. Dithering is one
of these techniques, and he describes a new algo­
rithm which provides good quality color and high­
speed image rendering.

The dithering algorithm is utilized in Software
Motion Pictures. SMP is a method for generating
digital video on desktop systems without the need
for expensive decompression hardware. Burkhard
Neidecker-Lutz and Bob Ulichney discuss issues
encountered in designing portable video compres­
sion software to display digital video on a range of
display types. SMP has been ported to Alpha AXP,
Sun, IBM, Hewlett-Packard, and Microsoft platforms.

Digitized data-video or audio-must be com­
pressed for efficient storage and transmission.
Davis Pan surveys audio compression techniques,
beginning with analog-to-digital conversion and
data compression. He then discusses the Motion
Picture Experts audio algorithm and the interesting
problem of developing a real-time software imple­
mentation of this algorithm.

Even compressed, digitized data takes up tre­
mendous amounts of storage space. A relational

2

database can not only store this data but provide
fast retrieval. Mark Riley, Jay Feenan, John Janosik,
and T.K. Rengarajan describe DEC Rdb enhance­
ments that support multimedia objects, i.e., text,
still frame images, compound documents, and
binary large objects.

Managing image documents is the subject of a
paper by Jan te Kiefte, Bob Hasenaar, Joop Mevius,
and Theo van Hunnik. Megadoc is a hardware and
software framework for building customized image
management applications quickly and at low cost.
They describe the UNIX file system interface to
WORM drives, a storage manager, and an image
application framework.

Distributing multimedia over a network presents
both engineering challenges and opportunities for
applications. DECspin is a real-time, desktop video­
conferencing application that operates over LANs or
WANs, using TCP/IP or DECnet protocols. Larry and
Ricky Palmer present an overview of the DECspin
graphical interface. They then address network
issues of real-time conferencing on non-real-time
networks and a solution to network congestion.

The transmission of full-motion video programs
to multiple users requires adaptations in many
parts of a client-server, LAN environment. Peter
Hayden's paper focuses on the specific problem of
efficient allocation of network addresses for the
transmission of digital video data on a LAN. He
reviews alternatives and describes a technique for
the dynamic allocation of multicast addresses.

The common theme of the two final papers is
ACA Services, Digital's implementation of the OMG's
Common Object Request Broker Architecture. Paul
Patrick has written an instructive paper on CASE
environment development utilizing ACA. Assuming
a multivendor, distributed environment, he dis­
cusses modeling of applications, data, and opera­
tions; application interfacing; and environment
management.

DEC @aGlance software is an implementation of
ACA that supports the integration of manufacturing
process information systems. David Ascher differ­
entiates between generic integration software and
@aGlance, and describes how ACA is used to inte­
grate independently developed applications.

The editors thank John Morse, engineering man­
ager, Corporate Research, and Mary Ann Slavin,
engineering manager, ACA, for their help in prepar­
ing this issue.

Biographies

David Ascher Dave Ascher joined Digital's Industrial Products Software
Engineering Group in 1977 to work on the DECDataway industrial multidrop
network. Since then, he has worked on distributed manufacturing systems as
a developer, group leader, and technical consultant, and as an architect of the
DEC @aGlance product. As a principal software engineer, Dave leads an effort to
develop DEC @aGlance service offerings. He holds a B.S. in psychology from City
College of New York and a Ph.D. in psychology from McMaster University,
Hamilton, Ontario.

James J. Feenan, Jr. Principal engineer Jay Feenan has been implementing
application code on database systems since 1978. Presently a technical leader for
the design and implementation of stored procedures in DEC Rdb version 6.0, he
has contributed to various Rdb and DBMS projects. Prior to joining Digital in
1984, he implemented Manufacturing Resource Planning systems and received
American Production and Inventory Control Society certification. Jay holds a B.S.
from Worcester Polytechnic Institute and an M.B.A. from Anna Maria College.
He is a member of the U.S. National Rowing Team.

Robert Hasenaar Bob Hasenaar is an engineering manager for the Megadoc
optical file system team, part of Digital's Workgroup Systems Software
Engineering Group in Apeldoorn, Holland. He has seven years' software engi­
neering experience in operating systems and image document management sys­
tems. Bob was responsible for the implementation of the first Megadoc optical
disk file system in a UNIX context. He has an M.Sc. degree in theoretical physics
from the University of Utrecht, Holland.

Peter C. Hayden Peter Hayden is an engineer in the Windows NT Systems
Group. He joined Digital in 1986 as a member of the FDDI team and led several
efforts contributing to the development of the FDDI technology and product set.
He then led the Personal Computing Systems Group's multimedia projects
before joining the Windows NT Systems Group in 1992. Before coming to Digital,
Peter worked on PBX development at AT&T Bell Laboratories. He holds a B.S. in
electrical engineering and an M.S. in computer science from Union College in
Schenectady, NY, and has several patent applications pending.

I

3

Biographies

4

John L. Janosik, Jr. A principal software engineer, John Janosik was the proj­
ect leader for DEC Rdb version 5.0, the Alpha AXP port version. John has been a
member of the Database Systems Group since joining Digital in 1988. Prior to
this, he was a senior software engineer for Wang Laboratories Inc. and worked
on PACE, Wang's relational database engine and application development envi­
ronment. John received a B.S in computer science from Worcester Polytechnic
Institute in 1983.

Joop W. Mevius A systems architect for the Megadoc system, Joop Mevius has
over 25 years' experience in software engineering. He has made contributions
in the areas of database management systems, operating systems, and image
document management systems. Joop has held both engineering management
positions and technical consultancy positions. He has an M.Sc. degree in mathe­
matics from the Technical University of Delft, Holland.

Burkhard K. Neidecker-Lutz Burkhard Neidecker-Lutz is a principal
engineer in the Distributed Multimedia Group of Digital's Campus-based
Engineering Center in Karlsruhe. He currently works on distributed multimedia
services for broadband networks. Burkhard contributed to the XMedia layered
product. Prior to that work he led the design of the NESTOR distributed learning
system. He joined Digital in 1988 after working for PCS computer systems.
Burkhard earned an M.S. in computer science from the University of Karlsruhe
in 1987.

Lawrence G. Pahner Larry Palmer is a principal engineer with the Networks
Engineering Architecture Group. He currently leads the DECspin project for the
PC and has been with Digital since 1984. Larry is one of three software develop­
ers who initiated the PMAX software project for the DECstation 3100 product by
porting the ULTRIX operating system to the MIPS architecture. He has a B.S. (high­
est honors, 1982) in chemistry from the University of Oklahoma and is a member
of Phi Beta Kappa. He is co-inventor for five patents pending on enabling soft­
ware technology for audio-video teleconferencing.

Ricky S. Pahner Ricky Palmer is a principal engineer with the Computer
Systems Group. He joined Digital in 1984 and currently leads the DECspin proj­
ect. Ricky is one of three software developers who initiated the PMAX software
project for the DECstation 3100 product by porting the ULTRIX operating system
to the MIPS architecture. He has a B.S. (high honors, 1980) in physics, a B.S. (1980)
in mathematics, and an M.S. (1982) in physics, all from the University of
Oklahoma. He is co-inventor for five patents pending on enabling software tech­
nology for audio-video teleconferencing.

Davis Yen Pan Davis Pan joined Digital in 1986 after receiving a Ph.D. in elec­
trical engineering from MIT. A principal engineer in the Alpha Personal Systems
Group, he is responsible for the development of audio signal processing algo­
rithms for multimedia products. He was project leader for the Alpha/OSF base
audio driver. He is a participant in the Interactive Multimedia Association Digital
Audio Technical Working Group, the ANSI X3L3.l Technical Working Group on
MPEG standards activities, and the ISO/MPEG standards committee. Davis is also
chair of the ISO/MPEG ad hoc committee of MPEG/audio software verification.

Paul B. Patrick, Sr. Paul Patrick is a principal software engineer in the ACA
Services Group. He leads Digital's implementation of the Object Management
Group's Common Object Request Broker Architecture. Previously, Paul helped
design COHESION, an integrated CASE environment based on the DECset architec­
ture. He also contributed to the development ofIPSE, an integrated project sup­
port environment based on the COD/Repository software, and designed and
implemented the MicroVAX 2000 synchronous controller diagnostic. Prior to
joining Digital, Paul held positions at GenRad Inc. and Norand Corp.

T. K. Rengarajan T. K. Rengarajan, a member of the Database Systems Group
since 1987, works on the KODA software kernel of the DEC Rdb system. He has
contributed in the areas of buffer management, high availability, OLTP perfor­
mance on Alpha AXP systems, and multimedia databases. Presently, he is working
on high-performance logging, recoverable latches, asynchronous batch writes,
and asynchronous prefetch for DEC Rdb version 6.0. Ranga holds M.S. degrees in
computer-aided design and computer science from the University of Kentucky
and the University of Wisconsin, respectively.

Mark F. Riley Consulting software engineer Mark Riley has been a member of
the Database Systems Group since 1989 and works on multimedia data type
extensions in Rdb/VMS. Prior to this, he worked for five years in the Image
Systems Group and developed parts of the DECimage Application Services
toolkit. Mark received a B.S.E.E. from Worcester Polytechnic Institute in 1980 and
an M.S. in engineering from Dartmouth College in 1982.

Jan B. te Kiefte Jan te Kiefte is technical director for Digital's Workgroup
Systems Software Engineering Group in Apeldoom, Holland. He has over 20
years' software engineering experience in compiler development and in the
development of office automation products. Jan has held both engineering man­
agement positions and technical consultancy positions. He has an M.Sc . degree
in mathematics from the Technical University of Eindhoven, Holland.

I

5

Biographies

6

Robert Ulichney Robert Ulichney received his Ph.D. (1986) in electrical engi­
neering and computer science from the Massachusetts Institute of Technology
and his B.S. (1976) in physics and computer science from the University of
Dayton, Ohio. He is a consulting engineer in Alpha Personal Systems, where he
manages the Codecs and Algorithms Group. Bob has nine patents pending for
his contributions to a variety of Digital products, is the author of Digital
Halftoning, published by The MIT Press, and serves as a referee for several tech­
nical societies including IEEE.

Theo M. van Hunnik Theo van Hunnik is an engineering project manager for
Digital's Workgroup Systems Software Engineering Group in Apeldoom, Holland.
He has over 20 years' software engineering experience in compiler development
and the development of office automation products. Theo has participated in
several international systems architecture task forces. He managed the develop­
ment team for RetrievAll, the Megadoc image application framework.

I Foreword

John A. Morse
Sr. Engineering Manager,
Corporate Research &
Architecture

In the late '80s, "multimedia" was a magic word.
It seduced us with glimpses of a brave new world
where audio and video technology merged with
computer technology. It promised us everything
from instant high-impact business presentations
to virtual reality. Words like "paradigm shift" and
"multibillion-dollar industry" were enough to snare
both the technophiles and the eager entrepreneurs
into believing that the world had suddenly
changed, and we were all going to get rich in the
process.

Somewhere on the way to the bank, reality set in,
and it wasn 't virtual. The reality is that multimedia is
a lot harder than it looks. Successful multimedia
requires a marriage between analog TV technology
and digital computer technology; it requires recon­
ciliation between a technical/professional market­
place and a consumer marketplace. As in any
marriage, a lot of hard work is required to make it
succeed, and much of that work is yet to be done.

For certain segments of the computer industry,
multimedia was relatively easy to implement and so
caught on quickly. The first successes have been at
the extremes of the cost spectrum-very low-end
desktop multimedia on the one hand, and very
high-end virtual reality systems on the other. This
has left Digital, with its traditional focus on the
middle, temporarily out of the game.

For desktop multimedia, all that is required is the
ability to capture and display video and audio. Since
machines like the Commodore Amiga were already
based more on TV technology than on computer
technology (for cost reasons). they could be quickly
and cheaply adapted to handle audio and motion
video. Thus desktop multimedia was born. The

CD-ROM, adapted from audio CD technology, was the
perfect storage medium for distribution of multi­
media content; and so for this market segment,
CD-ROM and multimedia became almost synonymous.
There has emerged a whole industry based around
the production of multimedia titles on CD-ROM.

At the high end, for purposes such as full-realism
aircraft simulation or virtual reality applications,
the solution was to use the highest performance
hardware available, at whatever expense. Typically,
high-end, three-dimensional graphics systems were
coupled either to supercomputers or to massively
parallel processor arrays. The result was, and still is,
impressive. But the cost is still so high that such vir­
tual reality systems are not yet commercially viable
except in specialized low-volume markets.

The vast area in the middle, into which all of
Digital's business falls, has developed very slowly.
The problem is that our business is based on a
model of enterprise-wide computation. The com­
puter systems we design and sell not only include
processors and displays but incorporate networks
and servers as well. To introduce multimedia into
such a model, one touches every aspect of the sys­
tem, from the desktop, through the network, and
back to the servers. At every turn, we have found
that the technology that has evolved over 30 to 40
years for handling numbers, text, and (more
recently) two-dimensional and three-dimensional
graphics is not quite right for video and audio.
Every component of the system, both hardware and
software, needs to change in some way. We need to
evolve to a model of networked client-server multi­
media computing. Change of this magnitude is a
slow process.

Two challenges are so pervasive that almost
every paper in this issue addresses them, each from
a different perspective. First of all, multimedia
involves the handling of large quantities of data.
Second, for many applications, that data must be
handled under very tight time constraints. The
resulting stress and strain on all components of the
system translates into a set of technical challenges
that has occupied us for the last four years and
promises to keep us busy through at least the rest of
this decade.

Depending on the picture quality chosen, it may
require from one million to one hundred million
bytes of storage to save each second of live video in
digital form. Since many applications of multi­
media, such as archiving television footage for
research or historic preservation purposes, will
need to save many hours of video, it is easy to see

7

Foreword

that multimedia quickly builds demand for many
gigabytes (1,000,000,000 bytes) of magnetic or opti­
cal disk storage. But storage is only part of the prob­
lem. Once such enormous amounts of data are
stored, the challenge becomes how to retrieve a
particular item of interest. Standard database tech­
niques are oriented toward retrieval of text and
numbers. Retrieval of audio and video information
will require new file and database techniques that
are only beginning to be understood.

An obvious application of multimedia technol­
ogy, once the networks are in place, is telecon­
ferencing. We can envision a day when we can
connect to anyone any place in the world via the
network and carry on a conversation with them,
while each of us sees the other in full-motion video,
using the audio and video capabilities of our desk­
top workstations and PCs. But realizing this vision

8

has proved surprisingly hard. People expect the
images they see to be synchronized with the sounds
they hear, and they expect delays to be no worse
than those experienced on a long-distance tele­
phone call. Unfortunately, data networks have been
designed to maximize throughput and reliability.
They do this at the expense of some delay in trans­
mission-delay that is annoying at best, and unac­
ceptable at worst, for teleconferencing applications.

Successful infusion of multimedia technology
into enterprise-wide computation is proving to
require change on a scale that almost no one antici­
pated. We at Digital are in the midst of this process
of change, and this issue of the Digital Technical
Journal is a snapshot, taken at one point in time, of
that process. Together, the papers describe some of
the toughest technical challenges that we face and
in many cases give glimpses into possible solutions.

Robert Ulichney I

Video Rendering

Video rendering, the process of generating device-dependent pixel data from
device-independent sampled image data, is key to image quality. System compo­
nents include scaling, color adjustment, quantization, and color space conversion.
This paper emphasizes methods that yield high image quality, are fast, and yet are
simple and inexpensive to implement. Particular attention is placed on the deriva­
tion and analysis of new multilevel dithering schemes. While permitting smaller
frame buffers, dithering also provides faster transport of the processed image to the
display-a key benefit for the massive pixel rates associated with full-motion video.

Perhaps the most influential characteristic govern­
ing the perceived value of a system that displays
images is the way the pictures look. Image appear­
ance is largely dependent upon the quality of render­
ing, that is, the process of taking device-independent
data and generating device-dependent data tailored
for a particular target display.

The topic of this paper is the processing of sam­
pled image data and not synthetic graphics. For
graphics rendering, primitives such as specifica­
tions of triangles are converted to displayable pic­
ture elements or pixels. The atomic elements
handled by a video rendering system are device­
independent pixels. Whereas a prerendered graph­
ics image can be compactly represented as a
collection of triangle vertices, prerendered video
achieves compaction by means of compression
techniques.

Sampling broadcast video requires a data rate of
more than 9 million color pixels per second; the
need of some relief for storage and networks is
clear. Video compression reduces redundancy in
the source image and thereby reduces the amount
of data to be transmitted. Dramatic reductions in
data rate can be achieved with little degradation in
image quality. The Joint Photographic Experts
Group (JPEG) standard for still frame and the
Motion Picture Experts Group (MPEG) and Px64
standards for motion video are current committee
compression techniques. 1 Several other non­
standard schemes exist, including a simple com­
pression method conducive to software-only
implementation. 2

Video rendering receives decompressed image
data as input. Since every decompressed pixel must
be processed, speed is essential. This paper focuses

Digital Tecbntcal]ournal Vol. 5 No. 2 Spring 1993

on rendering methods that are fast, simple, and
inexpensive to implement. Performance at video
rates can be achieved with minimal hardware or
even software-only solutions.

The Rendering Architecture section reviews the
components of a rendering system and examines
design trade-offs. The paper then presents details
of new and efficient dithering implementations.
Finally, video color mapping is discussed.

Rendering Architecture
Figure I illustrates the major phases of a video ren­
dering system: (1) filter and scale, (2) color adjust,
(3) quantize, and (4) color space convert.

In the first stage, the original image data must be
resampled to match the target window size. A sepa­
rate scaling system should be used for the horizon­
tal and vertical directions to handle the case where
the pixel aspect ratio must be changed. For exam­
ple, such asymmetric scaling is needed when the
target display expects square pixels and the original
pixels are not square.

The best filters to use in combination with scal­
ing have been determined from a perceptual point
of view.3 When limiting the bandwidth to reduce
the data rate, a Gaussian filter with a standard devi­
ation a = 0.30 X output period is recommended.
For interpolation, the filter preferred (because the
filtered results looked most like the original) was
a cascade of two: first, sharpen with a Laplacian
filter, and second, follow by convolution with a
Gaussian filter with a = 0.375 X input period.

A typical sharpening scheme can be expressed
by the following equation:

/ sharp [x,y] = l[x,y] - 13'1'[x,y] • l[x,y], (1)

9

Multimedia

DECOMPRESSED
IMAGE DATA

FILTER
AND SCALE

COLOR
ADJUST

QUANTIZE

COLOR
SPACE
CONVERT

RENDERED PIXELS

Figure 1 Image Rendering System

where /[x,y] is the input image, 'l'[x,y] is a digital
Laplacian filter, and "•" is the convolution operator.4
The nonnegative parameter 13 controls the degree
of sharpness, with 13 = 0 indicating no change in
sharpness. When enlarging, sharpening should
occur before scaling, and when reducing, sharpen­
ing should take place after scaling. The filtering dis­
cussed here is assumed to be two-dimensional,
which requires image line buffering. For economy,
horizontal-only filtering is sometimes used.

The simplest means of scaling is known as
nearest-neighbor scaling, and its simplest imple­
mentation is based on the Bresenham scan conver­
sion algorithm for drawing straight lines.5 This
algorithm can be applied to image scaling and per­
formed with only three registers and one adder.6
Further optimizations make this algorithm espe­
cially suited for real-time use.7

The second stage of rendering is color adjust,
most easily achieved with a look-up table (LUT).
Each color component uses a separate adjust LUT.
In the case of a luminance-chrominance color, an
adjust LUT for the luminance component controls
contrast and brightness, and LUTs for the chromi­
nance components control saturation.

For so-called true-color frame buffers with 24-bit
depths, visual artifacts that can result from insuffi­
cient amplitude resolution do not occur. With
smaller frame buffers, restricting the amplitude of

10

the color components red, green, and blue (RGB)

with a simple uniform quantizer causes false con­
tours to appear in slowly varying regions. This issue
leads to the third stage in the rendering system,
quantization.

The three basic classes of techniques for cir­
cumventing the problem of insufficient colors or
color memory are (1) histogram-based methods,
(2) chrominance-subsampled frame buffers, and
(3) dithering. All histogram-based methods, some­
times called palette selection, require two passes of
the entire image data: the first to acquire the his­
togram statistics to fabricate a three-dimensional
quantizer to N colors and the second to perform
the pixel assignments. Perhaps the fastest method
is the popularity algorithm, where a simple sort
finds the N colors with the highest frequency, and
all other colors are mapped to those. 8

A more compute-intensive method, but one that
in general performs much better, is the often-used,
median-cut algorithm.8 In this method, the color
space is repeatedly subdivided into smaller rectan­
gular solids at the median planes, with the goal that
each of the selected colors represent an equal num­
ber of colors in the image. The average of the colors
in each of the final regions is the color used in the
quantizer. A later, less compute-intensive variation
is the mean-split algorithm. Also, several clustering
techniques have been reported that result in less
quantization error than the above-mentioned meth­
ods. One method, for example, minimizes the sum
of the squares of the errors.9 In all cases, however,
color problems can occur in other application win­
dows because each frame requires a different color
map; the colors in the other windows become
scrambled in a different way for each color map.

One advantage of representing image data in a
luminance-chrominance space is that chrominance
requires less spatial resolution than luminance to
achieve excellent image quality. Visual perception
of differences in chrominance is much less than that
for luminance. The television standards have been
exploiting this fact for decades. The quantization
approach of using chrominance-subsampled frame
buffers is built on this fact, deferring conversion to
the RGB components until just after the data is read
for display.10, 11.12

Typical implementations of chrominance­
subsampled frame buffers average each of the
two chrominance values in a given luminance­
chrominance color representation over a region
that is either 2 by 2 or 4 by 4 pixels. Assuming 8 bits

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

of amplitude resolution per color component, the
2-by-2-pixel case results in an average of ((2 X 2 X 8
luminance bits) + (8 + 8 chrominance bits))/
(2 X 2 pixels) or 12 bits per pixel; similarly, the
4-by-4-pixel case results in 9 bits per pixel. This
approach requires expensive hardware to up-sam­
ple the chrominance components and convert the
color space at video rates. These nonstandard
frame buffers can also cause severe incompatibility
problems with most applications that expect RGB

frame buffers. While chrominance subsampled
frame buffers can accommodate most sampled nat­
ural images, thin-line graphics can be annihilated.

The third alternative for quantization is to use
a dithering method. Several methods exist that are
designed primarily for binary output, but all are
extendable to multilevel color.4,13,14,15 A "level" is a
shade of gray, from black to white, or a shade of
a color component, from black to the brightest
value. The basic principle of dithering is to use the
available subset of colors to produce, by judicious
arrangement, the illusion of any color in between.

Although neighborhood operations, most notably
error diffusion, produce good-quality dithering,
they are computationally complex and require
additional storage. For video processing, where
speed is essential, we turned our focus to those
dithering methods that are point operations, that is,
methods that operate on the current pixel only
without considering its neighbors. Each color com­
ponent of every pixel in the image has an associated
"noise" or dither amplitude that is added to it before
that component is passed to a uniform quantizer.

Historically, the first dithering method used for
video processing was white noise dithering, where
a pseudorandom number was added to each lumi­
nance value before quantization. This method was
practiced soon after the dawn of television.16

However, the low-frequency energy in white noise
causes undesirable textures and graininess.

A preferred method is the point process of
ordered dithering, where a deterministic noise
array tiles the plane in a periodic manner. Dither
arrays can be designed to minimize low-frequency
texture. The most popular are the so-called recur­
sive tessellation arrays.17. 18 These arrays yield results
superior to those of white noise dithering but suf­
fer from structured rectangular patterns.

A new ordered dither array design, called the
"void-and-cluster" method, eliminates both the low­
frequency textures of white noise and the rectangu­
lar patterns of recursive tessellation arrays.19 The

Digital Technical Journal Vol. 5 No. 2 Sp ring 1993

Video Rendering

name describes the dither array design process in
which voids and clusters are located and mitigated.

For the high-speed case of motion video, an
ordered dithering scheme has important advan­
tages over chrominance-subsampled frame buffers
and histogram-based approaches. Quantization by
dithering allows the use of conventional frame
buffers, does not require the time-consuming pro­
cess of making two passes over each frame (or
every Nth frame), does not cause other applications
to change color maps with every Nth frame, and
allows any number of colors to be selected at ren­
der time. Also, experiments have shown that the
image quality achieved by dithering is very compet­
itive with the other methods, when compared over
a range of sample images. Even when 24-bit frame
buffers are available, the increased speed of loading
three or four 8-bit color pointers or index values in
the time required to load a single 24-bit pixel makes
dithering a viable alternative in the design of desk­
top video systems.

By way of comparison, Figure 2 illustrates some
of the methods described in this section. A 240-by-
360-pixel, 8-bit monochrome image was rendered
to only two levels and displayed at 100 dots per inch
(dpi). Figure 2a depicts an image that was dithered
with white noise; in Figure 2b, the same image was
dithered using an 8-by-8 recursive tessellation
dither array; and Figure 2c shows the image
dithered with the new 32-by-32 void-and-cluster
array. To illustrate the effect of sharpening, Figure
2d shows the image in Figure 2c presharpened
using a digital Laplacian filter as in equation (1),

with a sharpening factor of 13 = 2.0. The goal of this
coarse example is to amplify the different effects.
The same methods apply to multilevel and color
output, where the resulting quality is much higher.

Fast Multilevel Dithering
This section presents the details of simple, yet pow­
erful new designs to perform multilevel ordered
dithering. The simplicity of these methods allows
for implementation with minimum hardware or
software only, yet guarantees output that preserves
the mean of the input. The designs are flexible in
that they allow dithering from any number of input
levels Iv;, to any number of output levels N,, , pro­
vided Iv; ~ N,,. Note that N; and N,, are not restricted
to be powers of two.

Each color component of a color image is treated
as an independent image. The input image L, can
have values

11

Multimedia

(a) Dither with a White Noise Threshold

(c) Dither with a 32-by-32 Void-and-cluster
Threshold Array

(b) Dither with an 8-by-8 Recursive
Tessellation Threshold Array

(d) Same as (c) with Laplacian Sharpening,
13 = 2.0

Figure 2 Examples of Rendering to Two Output Levels

L1 E {0,1,2, ... ,(~ - 1)),

and the output image L
0

can have values

L
0

E {0,1,2, ... , (!{,, - 1)).

A deterministic dither array of size M X N is used
that is periodic and tiles the entire input image. To
simplify addressing of this array, M and N should
each be powers of two. A dither template defines
the order in which dither values are arranged. The
elements of the dither template T have values

TE {0,1,2, ... , (~ - 1)),

12

where ~ is the number of template levels, which
represent the levels against which image input
values are compared to determine their mapping
to the output values. The dither template is thus
central to determining the nature of the resulting
dither patterns.

Figure 3 shows a dithering system that comprises
two memories and an adder. The system takes an
input level L1 at image location [x,y) and produces
output level L

0
at the corresponding location in the

dithered output image. The dither array is addressed
by x' andy', which represent the low-order bits of

Vol. 5 No. 2 Spring 1993 Digital TecbnicalJournal

x'

y'

DITHER
ARRAY

d[x',y']

Lj[x,yJ-'+' s[x,y] "' QUANTIZER Lo[x,y]
~ LUT

Figure 3 Dithering System with Two LUTs

the image address. The selected dither value
d[x; y 'J is added to the input level to produce the
sum s. This sum is then quantized by addressing a
quantizer LUT to produce the output level L

0
.

The trick to achieving mean-preserving dithering
is to properly generate the LUT values. The dither
array is a normalized version of the dither template
specified as follows:

(2)

where /J,.d, the step size between normalized dither
values, is defined as

and /J,.Q is the quantizer step size

(~-1)
/J,.Q = (No - 1).

(3)

(4)

Note that /J,.Q also defines the range of dither values.
The quantizer LUT is a uniform quantizer with N

0

equal steps of size /J,.Q.
The precise expressions in equations (2), (3), and

(4) were arrived at through extensive analysis of the
average output resulting from processing input
images of a constant value, over a wide range of N,,
N

0
, andN,.

x'

y· -

MODIFIED

Video Rendering

One-memory Dithering System
Using the above expressions, it is possible to sim­
plify the system by exchanging one degree of free­
dom for another. A bit shifter can replace the
quantizer LUT at the expense of forcing the number
of input levels N,, to be set by the system. For hard­
ware implementations, this design affords a consid­
erable cost reduction.

The system and method of Figure 3 assume that
N, is given as a fixed parameter, as is usually the case
with most imaging systems and file formats.
However, for image sources such as hardware that
generates synthetic graphics, arbitrarily setting N,
often has no effect on the amount of computation
involved. If an adjust LUT is used to modify the
image data, including a gain makes a "modified
adjust LUT." Figure 4 depicts such a system, where
Lr is the raw input level. The unadjusted or raw
input image can have the values

Lr E {0,1,2, ... ,(N,. - l)},

where N,. is the number of raw input levels, typi­
cally 256. Therefore, the modified adjust LUT must
impart a gain of

N,- 1
N,.-1'

To solve for N,, recall that in the method of Figure
3 the quantizer was defined to have equal steps of
size /J,.Q as defined in equation (4). The quantizer
LUT can be replaced by a simple R-bit shifter, if the
variable /J,.Q can be forced to be an exact binary
number,

/J,.Q = 2R.

N, can then be set by the expression

N, = (No - 1)2R + 1.

(5)

(6)

The integer R is the number of bits the R-bit
shifter shifts to the right to achieve quantization.
Specifying R in terms of N

0
, equation (6) becomes

DITHER
ARRAY

Lr[x,y] - ADJUST

d[x',y']

/";'\ s [x,y]
Lj[X,y]-\.!) "' R·BIT

SHIFTER
L0 [x,y]

LUT

Figure 4 One-memory Dithering System with an Adjust LUT and Bit Shifter

Digital Technical Journal Vol. 5 No. 2 Spring 1993 13

Multimedia

- (N;- 1)
R - log2 (~ _ l). (7)

To completely specify this problem requires speci­
fying the range for N,. It is reasonable to do this by
specifying the number of bits b by which the image
input values are to be represented. Specifying b
limits N, to the range

(8)

Parameter b will be a key value in specifying the
resulting system.

Given the two expressions, (7) and (8), and the
two unknowns, R and N,, a unique solution exists
because the range of N, is less than a factor of two,
and R and N, are integers. To solve for R, substitute
equation (6) for N, in equation (8). The resulting
equation is

2b-J < (N,, - 02R + 1 :s; 2b (9)

or

(10)

Since 2 :s; N,, :s; N,, the range of the expression in
equation (10) must be less than one. Hence, given
that R is an integer,

N, in equation (6) is now specified.
As an example, consider the case where N,,

equals 87 (levels), b equals 9 (bits), N, equals 1,024
(levels, for a 32-by-32 template), and N,. equals 256
(levels). Thus, R equals 2, and the R-bit shifter drops
the least-significant 2 bits. N, equals 345 (levels);
the dither array is normalized by equation (2) with
!ld = 1/256; and the gain factor to be included in the
modified adjust LUT is 344/255. This data is loaded
into the system represented by Figure 4 and uni­
formly maps input pixels across the 87 true output
levels, giving the illusion of 256 levels.

The output image that results from either of the
dithering systems illustrated in Figure 3 or Figure 4
appears to contain more effective levels than are
actually displayed. An effective level is either a per­
ceived average level that is dithered between two
true output levels or shades or an actual true out­
put level. A small number of template levels N, dic­
tates the resulting number of effective levels. When
N, is large, the number of effective levels is equal
to the number of input levels N,, because it is not

14

possible to display more effective outputs than
inputs. More precisely,

!lQ
(N

0
- 1) N, + 1 > 1

N,
Effective Levels = (12)

Note that !lQ/N, in equation (12) is equal to !la.
When !la< 1, the normalization of the dither array,
i.e., equation (2), results in integer truncated values
that are not all unique. At this point, the number of
effective levels saturates to N,.

Data Width Analysis
The design of an efficient dithering system, particu­
larly in hardware, depends on knowing the number
of bits required for all data paths in the system. This
section presents an analysis of the one-memory
dithering system shown in Figure 4.

The system input b, i.e., the bit depth of the
image input values, limits the data path for Ltfx,y].
The analysis shows the derivation of the precise bit
depths for the other data paths. In summary, the
derivation proves that the dither values in the
dither matrix memory require R bits, where Rmax =

(b - 1) and s = 1
1
+ d (and thus the R-bit shifter)

require only b bits.

Bits Needed for Dither Matrix The amount of
memory needed to store the dither matrix is an
important concern; dmax denotes the maximum
value. To determine dmax' substitute the maximum
value of T[x:y'], which is (N, - 1), into equation
(2). The resulting equation is

(13)

dmax, which depends on N,, thus has a value in the
range

(14)

For the case of a dither matrix with one value,
namely N, = 1, dmax equals the lower end of this
range. dmax equals the high end of the range for
large dither matrices, where 2R-i :s; N,. An impor­
tant observation is that for all values in the range of
expression (14), the number of bits needed is
exactly R.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

From equation (11), the value of R increases as N,,
decreases. The smallest possible value of N

0
is 2,

which is for bitonal output. In this case, the maxi­
mum value of R is

Rmax = int{logz(2b - l)} = (b - 1). (15)

So, the number of bits needed for the dither values
is R, which can be as large as (b - 1).

Bit Width of Adder Recall that s[x,y] = L1[x,y] +
d[x,y] . The number of bits needed for this sum
determines the size of the adder and the size of
the R-bit shifter. L1 can be at most (~ - 1) and, as
determined in the last section, dma:x can be at most
(zR - 1). So,

smax = (N1 - 1) + (2R - 1). (16)

From equation (6),

(N, - 1) = (N,, - 1)2R, (17)

which gives

Smax = 2R(N,, - 1) + (2R - 1) = 2RN,, - 1. (18)

We can express R in terms of N
0

by using equa­
tion (11):

R = int{log2(2b - 1) - log2 (N,, - 1)}. (19)

Each of the two terms in the equation (19) can be
expressed in terms of an integer part and a frac­
tional part:

where

0 < E1 < 1,

and

(21)

where K is an integer, and

O s; E2 < 1.

Now equation (19) can be rewritten as

R = (b - 1) - K + int{E1 - ei). (22)

e2 is largest when N
0

(an integer) is a large power of
2. Because N,, cannot be greater than~.

2b ~N,,.

This fact, combined with equations (20) and (21),
yields the further condition

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Video Rendering

Therefore, int{e1 - ei} in equation (22) must be
equal to zero, and the value of R becomes

R = b - 1 - K. (23)

We can express N,, in equation (18) in terms of the
same integer K of equation (21) by noting that

(24)

where

(25)

Observe that e3 is equal to 1, where N
0

is an exact
power of 2. Substituting

N = 2K+•,
0

and equation (23) into equation (18) gives

Smax = 2b-l -K 2K+•, - 1 = 2b-I+•, - 1. (26)

Because of the range of e3 in equation (25), the
range of smax must be

(27)

which requires exactly b bits.
As a check, the size of the shift register should

equal the number of bits required for N,, plus R. The
number of bits needed for N,, is

int{l + logz(N,, - 1)}. (28)

Using the expression in equation (21), this value
becomes

int{l + K + e2} = K + 1. (29)

So, the size of the shift register must be

(K + 1) + (b - 1 - K) = b bits,

which matches the maximum size of the sums.

Color Space Conversion
Referring once again to Figure l , consider the final
subsystem of a video rendering system-color
space convert. Assuming a frame buffer that is
expecting RGB data, color space conversion is not
necessary if the source data is already represented
in RGB, as in the case of graphics generation
systems. However, motion video is essentially
always transmitted and stored in a luminance­
chrominance space. Such a representation allows
subsampling of the chrominance, as mentioned ear­
lier, which reduces bandwidth requirements; all
video standards exploit this method of bandwidth
reduction. It is also more intuitive to color adjust in
a luminance-chrominance space.

15

Multimedia

Prior to proceeding to the quantize subsystem
shown in Figure 1, all color components must be at
the same final spatial resolution for a dithering
method to work correctly. Chrominance compo­
nents, then, need to be up-sampled to the same rate
as luminance components.

Although the chromaticities of the RGB primaries
of the major television standards vary slightly, all
television systems transmit and store the color data

R

L

v

(Y-axis out)

y
w

(V-axis in)

u

B

u

in YUV space. Y represents the achromatic compo­
nent that is loosely called the luminance com­
ponent. (fhe term luminance has a specific
photometric definition that is not what is repre­
sented in a video Y component.) U and V are color
difference components, where U is proportional to
(Blue - Y) and V is proportional to (Red - Y).

Figure 5 is an orthographic projection of YUV
space. Inside the YUV rectangular solid is the

y
w

(L)

(U-axis out)

R

v

Figure 5 Feasible RGB Values in the YUV Color Space

16 Vol. 5 No. 2 Spring 1993 Digital Technical Journal

parallelepiped of "feasible" RGB space. Feasible RGB

points are those that are nonnegative and are not
greater than the maximum supported value. For ref­
erence, the corners of the RGB parallelepiped are
labeled black (K), white (W), red (R), green (G),
blue (B), cyan (C), magenta (M), and yellow (L). RGB

and YlN values are related linearly and can be inter­
converted by means of a 3-by-3 matrix multiply.

In the United States video broadcast system, the
chrominance plane (i.e., the U-V plane in Figure 5)
is rotated 33 degrees by introducing a phase in the
quadrature modulation of the chrominance signal.
The resulting rotated chrominance signals are
renamed I and Q (for inphase and quadrature), but
the unmodulated color space is still YlN.

Figure 6 shows the back end of a rendering sys­
tem that uses dithering as a quantization step prior
to color space conversion. A serendipitous conse­
quence of dithering is that color space conversion
can be achieved by means of table look-up. The
collective address formed by the dithered Y, U, and
V values is small enough to require a reasonably
sized color mapping LUT. There are two advantages
to this approach. First, a costly dematrixing opera­
tion is not required, and second, infeasible RGB val­
ues can be intelligently mapped back to feasible
space off-line during the generation of the color
mapping LUT.

This second advantage is an important one,
because 77 percent of the valid YlN coordinates
are in invalid RGB space, i.e., the space around the
RGB parallelepiped in Figure 5. Color adjustments
such as increasing the brightness or saturation can
push otherwise valid RGB values into infeasible
space. In alternative systems that perform color
conversion by dematrixing, out-of-bounds RGB val-

y
DITHER
SYSTEM

u
DITHER
SYSTEM

v
DITHER
SYSTEM

COLOR
MAPPING
LUT

RGB
COLOR
INDEX

Figure 6 System for Dithering Tbree-color
Components and Color Mapping
the Collective Result

Dtgttal Technical Journal Vol. 5 No. 2 Spring 1993

Video Rendering

ues are simply truncated. This operation effectively
maps colors back to feasible RGB space along lines
perpendicular to a parallelepiped surface illus­
trated in Figure 5, which can change the color in an
undesirable way. The use of a color mapping LUT

avoids these problems.

Summary
Video is becoming an increasingly important data
type for desktop systems. This is especially true as
distinctions between computing, consumer elec­
tronics, and communications continue to blur.
While many factors contribute to the impression
one has of the value of a product that displays infor­
mation, the way the images look can make the
biggest difference. This paper focuses on rendering
system designs that are fast, low cost, produce
good-quality video, and are conducive to hardware
or software implementation.

References

1. Special Issue on Digital Multimedia Systems,
Communications of the ACM, vol. 34, no. 1
(April 1991).

2. B. Neidecker-Lutz and R. Ulichney, "Software
Motion Pictures," Digital Technical Journal,
vol. 5, no. 2 (Spring 1993, this issue): 19-27.

3. W. Schreiber and D. Troxel, "Transformation
between Continuous and Discrete Represen­
tation of Images: A Perceptual Approach,"
IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAM[), vol. PAMI-7, no. 2
(1985): 178-186.

4. R. Ulichney, Digital Halftoning (Cambridge,
MA: The MIT Press, 1987).

5. J. Bresenham, "Algorithm for Computer Con­
trol of a Digital Plotter," IBM Systems Journal,
vol. 4, no. 1 (1965): 25-30.

6. E Glazer, "Fast Bitonal to Grayscale Image
Scaling," DEC-TR-505 (Maynard, MA: Digital
Equipment Corporation, June 1987).

7. R. Ulichney, "Bresenham-style Scaling," Pro­
ceedings of the IS&T Annual Conference
(Cambridge, MA, 1993): 101-103.

8. P. Heckbert, "Color Image Quantization for
Frame Buffer Display," Computer Graphics
AMC SIGGRAPH '82 Conference Proceedings,
vol. 16, no. 3 (1982): 297-307.

17

Multimedia

9. S. Wan, K. Wong, and P. Prusinkiewicz, "An
Algorithm for Multidimensional Data Cluster­
ing," ACM Transactions on Mathematical
Software, vol. 14, no. 2 (1988): 153-162.

10. C. Sigel, R. Abruzzi, and]. Munson, "Chro­
matic Subsampling for Display of Color
Images," Optical Society of America Topical
Meeting on Applied Vision, 1989 Technical
Digest Series, vol. 16 (1989): 158-161.

11. A. Luther, Digital Video in the PC Environ­
ment (New York, NY: Intertext Publications,
McGraw-Hill, 1989): 193-194.

12. L. Glass, "Digital Video Interactive," Byte (May
1989): 284.

13. P. Roetling, "Binary Approximation of Contin­
uous-tone Images," Photographic Sdence
and Engineering, vol. 21 (1977): 60-65.

14.]. Stoffel and]. Moreland, "A Survey of
Electronic Techniques for Pictorial Reproduc­
tion;' IEEE Transactions on Communica­
tions, vol. 29 (1981): 1898-1925.

18

15.]. Jarvis, C. Judice, and W Ninke, "A Survey of
Techniques for the Display of Continuous­
tone Pictures on Bilevel Displays," Computer
Graphics and Image Processing, vol. 5
(1976): 13-40.

16. W Goodall, "Television by Pulse Code Modu­
lation," Bell Systems Technical Journal, vol.
30 (1951): 33-49.

17. B. Bayer, "An Optimum Method for Two Level
Rendition of Continuous-tone Pictures, Pro­
ceedings of the IEEE International Confer­
ence on Communications, Conference
Record (1973): (26-11)-(26-15).

18. R. Ulichney, "Frequency Analysis of Ordered
Dither," Proceedings of the Society of Photo­
optical Instrumentation Engineers (SPIE),

vol. 1079 (1989): 361-373.

19. R. Ulichney, "The Void-and-cluster Method for
Dither Array Generation," The Society for
Imaging Science and Technology/Sympo­
sium on Electronic Imaging Science and
Technology (JS&T/SPIE) (February 1993).

Vol. 5 No. 2 Spring 1993 Digital Tecbntcal]ournal

Burkhard K. Neidecker-Lutz
Robert Ulichney

Software Motion Pictures

Software motion pictures is a method of generating digital video on genera/­
purpose desktop computers without using special decompression hardware. The
compression algorithm is designed for rapid decompression in software and gener­
ates deterministic data rates for use from C~ROM and network connections. The
decompression part offers device independence and integrates well with existing
window systems and application programming interfaces. Software motion pic­
tures features a portable, low-cost solution to digital video playback.

The necessary initial investment is one of the major
obstacles in making video a generic data type, like
graphics and text, in general-purpose computer
systems. The ability to display video usually requires
some combination of specialized frame buffer,
decompression hardware, and a high-speed network.

A software-only method of generating a video
display provides an attractive way of solving the
problems of cost and general access but poses chal­
lenging questions in terms of efficiency. Although
several digital video standards either exist or have
been proposed, their computational complexity
exceeds the power of most current desktop sys­
tems.1 In addition, a compression algorithm alone
does not address the integration with existing win­
dow system hardware and software.

Software motion pictures (SMP) is both a video
compression algorithm and a complete software
implementation of that algorithm. SMP was specifi­
cally designed to address all the issues concerning
integration with desktop systems. A typical applica­
tion of SMP on a low-end workstation is to play back
color digital video at a resolution of 320 by 240
pixels with a coded data rate of 1.1 megabits per
second. On a DECstation 5000 Model 240 HX work­
station, this task uses less than 25 percent of the
overall machine resources.

Together with suitable audio support (audio sup­
port is beyond the scope of this paper), software
motion pictures provides portable, low-cost digital
video playback.

The SMP Product
Digital supplies SMP in several forms. The most
complete version of SMP comes with the XMedia
Toolkit. This toolkit is primarily designed for devel­
opers of multimedia applications who include the

Digital TecbnicalJournal Vol. 5 No. 2 Spring 1993

SMP functionality inside their own applications.
Figure 1 shows the user controls as displayed on a
workstation screen. SMP players are also available
on Digital's freeware compact disc (CD) for use
with Alpha AXP workstations running the DEC
OSF/1 AXP operating system. In addition, SMP play­
back is included with several Digital products such
as the video help utility on the SPIN (sound picture
information networks) application, as well as other
vendors' products, such as the Medialmpact multi­
media authoring system. 2

In the XMedia Toolkit, access to the SMP functions
is possible through X applications, command line
utilities, and C language libraries. The applications
and utilities support simple editing operations,
frame capture, compression, and other functions.
Most of these features are intended for use by pro­
ducers of simple file formats called SMP clips.

The decompression functionality is offered as an
X toolkit widget that readily integrates into the
Open Software Foundation's (OSF) Motif-based
applications. Multiple SMP codecs (compressors/
decompressors) on a given screen all share the
same color resources with one another and with
the Display Postscript X-server extension, which is
offered by all major workstation vendors. It also
plays well with the standard color allocations used
in the Macintosh QuickDraw rendering system and
Microsoft Windows standard color allocations.

To facilitate flexible but simple access to entire
films of SMP frames, SMP defines SMP clips. Rather
than publishing that file format directly, all applica­
tions and widgets are accessed through an encap­
sulating library. This method allows future releases
to have application-transparent changes to the
underlying file structure and completely different
ways to store and obtain SMP frames.

19

Multimedia

SMP Play r 1

file !:_ink ~ptions !!_elp

...I repeat ~ Vol um•

4 \ • I I 0 __i__.:.

• J y t olor + bw

Figure 1 User Controls as Displayed on the
Workstation Screen

An example of the latter is the storage of SMP
clips directly in a relational database system in
which no files exist, such as SQL Multimedia. The
video data is stored directly in database records,
and the client receives the data through the stan­
dard remote database access protocols. At the
receiving client, the SMP clip library is used to gen­
erate a virtual SMP clip for the application program
by substituting a new read function.

The SMP product also contains image converters
that translate to and from the popular PBMPLUS fam­
ily of image formats, allowing import and export to
about 70 different image formats, including the
Digital Document Interchange Format (DDIF). This
allows the use of almost any image format as input
for creation of SMP clips.

Historica l Background and
Requirements
In 1989 Digital's Distributed Multimedia Group
experimented briefly with an algorithm called
color cell compression (CCC) that had been

20

described in 1986 by Campbell et aJ.3 CCC is a cod­
ing method that is optimized for rapid decom­
pression of color images in software. We built a
demonstrator that rapidly displayed CCC-coded
images in a loop to create a motion video effect.
The demonstrator then served as our study
vehicle to create a usable product for digital video
playback.

Performing digital video entirely in software
would stress the systems at all levels (1/0, proces­
sor, and graphics), so we needed to establish upper
bounds for what we could hope to achieve with our
desktop systems and workstations.

From the user's perspective, large sizes and high
frame rates are desirable. These features need to be
balanced with the limitations of real hardware. We
modeled the data path through which digital video
would have to flow in the system and measured the
available resources on the slowest system we
would use, a DECstation 2100. This workstation has
a 12.5-megahertz (MHz) MIPS R2000 processor and
a simple, 8-bit color frame buffer.

By merging this measurement with user feedback
concerning the smallest acceptable image size and
frame rate, we set our performance goal to play
back movies of size 240 by 320 on the slowest
DECstation processor with an 8-bit display at 15
frames per second. Smaller viewing sizes are almost
invisible on a typical high-resolution workstation
screen.

We settled for a frame rate of 15 frames per sec­
ond. This rate is reasonably smooth: to the human
eye, it appears as motion rather than separate
images. It can be generated easily from 30-frame
source material, such as standard video used in
North America and Japan, by taking every other
frame. Consequently, on the DECstation 2100 we
would have at most

12.5 x 106 clock cycles/second
(320 x 240 x 15) pixels/second = 10.85 clock

cycles
per pixel

Thus, we must average no more than (approxi­
mately) ten machine instructions to decode and
render each pixel to the screen.

In order to set our target for compression
efficiency, we looked at the volume of data and pos­
sible distribution methods. CD-ROM looked promis­
ing, and this data rate was also chosen by the
Motion Picture Experts Group (MPEG)-1 standard.4

Hence our coded data rate goal was to maintain

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

a coded data rate for this size and frame rate
that would allow playback from a CD-ROM. To
achieve this goal, we limited the coded data rate
for the video component to 135 to 142 kilobytes
per second for video, leaving 8 to 15 kilobytes per
second for audio. In addition, we had to limit fluc­
tuations of the coded data rate to allow sensible
use of bandwidth reservation protocols for play­
back over a network without complex buffering
schemes.

More interesting were the issues that became
apparent when we attempted to use the prototype
for real applications. The digital video material had
to be usable on a wide range of display types, and
due to its large volume, keeping specialized ver­
sions for different displays was prohibitive. We
would have to adapt the rendition of the coded
material to the device-dependent color capabilities
of the target display at run time.

Our design center used 8-bit color-mapped dis­
plays. These were (and still are) the most common
color displays, and the demonstrator was based
on them. Integration of the video into applications
in a multitasking environment necessitated that
computational as well as color resources were
available for use by other applications. The system
would have to perform cooperative sharing of
the scarce color resources on displays with limited
color capabilities.

From the perspective of portability, we needed
to conform to existing Xll interfaces, without any
hidden back doors into the window system. The
X Window System affords no direct way of writing
into the frame buffer. Rather, the MITSHM extension
is used to write an image into a shared memory seg­
ment, and then the X server must copy it into the
frame buffer. This method would impact our
already strained CPU budget for the codec opera­
tion. We would need to decompress video in our
code and have the X server perform a copy opera­
tion of the decompressed video to the screen, again
using the main CPU. Quick measurements showed
that the copy alone would use approximately 50
percent of the CPU budget for an 8-bit frame buffer,
and another 5 to 10 percent would be used by read­
ing the coded data from VO devices.

With approximately five clock cycles per pixel
yet to be rendered, it became clear why none of the
standard video algorithms was of any use for such a
task. We went back to the original CCC algorithm
and started the development of software motion
pictures.

Digital Technical journal Vol. 5 No. 2 Spring 1993

Software Motion Pictures

Comparison with Other
Video Mgorithms
Today (early 1993), a number of digital video com­
pression algorithms are in use. All of them are
guarded closely as proprietary and therefore
closed, and only one algorithm predates the devel­
opment of SMP. Although we could not build on
experiences with these for our work, we believe
the internal working on most of them is similar to
SMP with some additions.

A popular method for video compression is
frame differencing. Rather than each frame being
encoded separately, only those parts of the images
that have changed relative to a preceding (or
future) frame are encoded (together with the infor­
mation that the other blocks did not change). This
method works well for some input material, for
example, in video conferences where the camera
does not move. The method fails, however, on
almost all other video material.

To enable frame differencing on a wider range of
input scenes, a method known as motion estima­
tion is used by some algorithms. The encoder for an
image sequence performs a search for blocks that
have moved between frames and encodes the
motion. This search step is computationally very
expensive and usually defeats real-time encoding,
even for special-purpose hardware.

One of the earliest algorithms was digital video
interactive (DVI) from Intel/IBM. It comes in two
variations, real-time video (RTV) and production
level video (PLV). RTV uses an unknown block
encoding scheme and frame differencing. PLV
adds motion estimation to this. RTV is comparable
to SMP in compression efficiency, computationally
more expensive, and much worse in image quality.
PLV cannot be done in software and requires
special-purpose supercomputers for compression.
Compression efficiency of PLV is about twice as
good as SMP, and image quality is somewhat better.
The more recent INDEO video boards from Intel
useRTV.

In 1992 Apple introduced QuickTime, which
contains several video compression codecs. The
initial RoadPizza (RP) video codec uses simple
frame differencing and a block encoding similar to
CCC, but without the color quantization step. (This
is a guess based on the visual appearance and per­
formance characteristics.) Compression efficiency
of RP is three times worse than SMP, and image qual­
ity is comparable on 24-bit displays and much
worse than SMP on 8-bit displays. Performance is

21

Multimedia

difficult to compare since SMP does not yet run on
Macintosh computers.

The newer Compact Video (CV) codec intro­
duced in QuickTime version 1.5 is similar to CCC
with frame differencing and has compression
efficiency much closer to SMP. Image quality on
8-bit displays is still lower than SMP, and compres­
sion times are almost unusable (i.e., long).

The newest entry into the market for software
video codecs is the video l codec in Microsoft's
Video for Windows product. Very little is known
about it, but it seems to be close to CCC with frame
differencing. Finally, Sun Microsystems has included
CCC with frame differencing in their upcoming ver­
sion of the XIL imaging library.

Three well-known standards for image and video
compression have been established by the Joint
Photographic Experts Group (JPEG) and the Motion
Picture Experts Group (MPEG) committees of
the International Organization for Standardization
(ISO) and by the Comite Consultatif Internationale
de Telegraphique et Telephonique (CCITT). These
standards are computationally too expensive to be
performed in software in all but the most powerful
workstations today.

The Algorithm
The SMP algorithm is a pixel-based, lossy compres­
sion algorithm, designed for minimum CPU loading.
It features acceptable image quality, medium com­
pression ratios, and a totally predictable coded data
rate. No entropy-based or computationally expen­
sive transform-based coding techniques are used.
The downside of this approach is a limited image
quality and compression ratio; however, for a wide
range of applications, SMP quality is sufficient.

Block Truncation Coding
In 1978, the method referred to as block truncation
coding (BTC) was independently reported in the
United States by Mitchell, Delp, and Carlton and in
Japan by Kishimoto, Mitsuya, and Hoshida.3,5,6,7

BTC is a gray-scale image compression technique.
The image is first segmented into 4 by 4 blocks. For
each block, the 16-pixel average is found and used
as a threshold. Each pixel is then assigned to a high
or a low group in relation to this threshold. An
example of the first stage in the coding process is
shown in Figure 2a, in which the sample mean
is 101. Each pixel in the block is thus truncated to
l bit, based on this threshold (see Figure 2b).

22

12 14 15 23

62 100 201 204

190 195 240 41

20 48 206 45

(a) The average of these 16 pixels is JO 1.

0 0 0 0

0 0 1

1 1 1 0

0 0 0

(b) The average of 101 is used as a threshold
to segment the block.

Figure 2 Block Truncation Coding of
a4~4Block

For each of the two groups, the average is then
calculated again, giving a low average, a, and a high
average, b. Mathematically, the first and second sta­
tistical moments of the block are preserved.
Therefore, for a block of m pixels, with q pixels
greater than the sample mean i 2, and sample vari­
ance a2, it can be shown that

a= x - a Vq/(m-q)

b =x + a y(m-q)/q

More intuitively, the bit mask represents the
shape of things in the block, and the average lumi­
nance and contrast of the block contents are pre­
served. With this coding method, for blocks of 4 by
4 pixels and 8-bit gray values, a 16-bit mask and two
8-bit values encode the 16 pixels in 32 bits for a rate
of 2.0 bits per pixel.

Color Cell Compression
Lema and Mitchell first extended BTC to color
by employing a luminance-chrominance space.8

However, the direction taken by Campbell et al.
was computationally faster for decode.3 In this
approach, a luminance value is computed for each
pixel. As in the BTC algorithm, the sample mean of
the luminance in each 4 by 4 block is used to seg­
ment pixels into low and high groups based on
luminance values only. The 24-bit color values
assigned to the low and high groups are found by
independently solving for the 8-bit red, green , and

Vol. 5 No. 2 Spring 1993 Dig ital Technical Journal

blue values. This allows each block to be repre­
sented by a 16-bit mask and two 24-bit color values,
for a coding rate of 4 bits per pixel.

The 24-bit values are mapped to a set of 256 8-bit
color index values by means of a histogram-based
palette selection scheme known as the median cut
algorithm.9 Thus every block can be represented by
two 8-bit color indices and the 16-bit mask, yielding
2 bits per pixel; however, each image frame must
also send the table of 256 24-bit color values.

Software Motion Pictures Compression
With our goal of 320 by 240 image resolution play­
back at 15 frames per second, straight CCC coding
would have resulted in a data stream of more than
292 kilobytes per second, which is well beyond the
capabilities of standard CD-ROM drives. Thus SMP
needed to improve the compression ratio of CCC
approximately twofold.

Given that we could not apply any of the more
expensive compression techniques, we looked for
computationally cheap data-reduction techniques.
Since most of these techniques negatively impact
image quality, we needed a visual test bed to judge
the impact of each change.

We computed the images off-line for a short
sequence, frame by frame, and then preloaded the
images into the workstation memory. The player
program then moved the images to the frame buffer
in a loop, allowing us to view the results as they
would be seen in the final version. The use of this
technique provided two advantages. First, we
could discover motion artifacts that were invisible
in any individual frame. Second, we could judge the
covering aspects of motion, which tends to brush
over some defects that look objectionable in a still
frame.

At first , interframe or frame difference coding
looked like a reasonable technique for achieving
better compression results without sacrificing
image quality, but this was highly dependent on the
nature of the input material. Due to the low CPU
budget, we could not use any of the more elaborate
motion compensation algorithms, so even slight
movements in the input video material largely
defeated frame differencing. Typically, we achieved
only 10 percent better compression with inter­
frame coding, while introducing considerable
complexity to the compression and decoding oper­
ations. As a result, we dropped interframe coding
and made SMP a pure intraframe method, simplify­
ing editing operations and random access to

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Software Motion Pictures

digitized material. At the same time, this opened up
use of SMP for still image applications.

To reach our final compression ratio goal of
approximately 1 bit per pixel, we settled for a com­
bination of two subsampling techniques. Similar
techniques have been independently described by
Pins, who conducted an exhaustive search and eval­
uation of compression techniques.10 His findings
served as a check on our experiments.

Blocks with a low ratio of foreground-to-back­
ground luminance (a metric that can be interpreted
as contrast) are represented in SMP by a single color
and no mask. This reduces the coded representa­
tion to a single byte compared to 4 bytes in CCC,
which amounts to a fourfold subsampling of such
blocks. No chrominance information enters into
this decision. It is surprising, but even very marked
chrominance differences in foreground/background
pairs are readily accepted by the human eye.

With the introduction of a second kind of block,
additional encoding information was necessary to
distinguish normal (structured) CCC blocks from
the subsampled (flat) blocks. In the SMP encoding,
this is handled by a bitmap with one bit flagging
each block.

Because the adaptive subsampling alone did not
yield enough data reduction for our compression
goal, we added fixed subsampling for the struc­
tured blocks. The horizontal resolution of the
structured blocks in SMP is halved relative to CCC by
horizontally averaging two neighboring pixels,
which reduces the number of bits in the mask from
16 to 8. This reduction leads to blurred vertical
edges but looks reasonable for natural video
images. Fixed subsampling allowed the encoding of
structured blocks with 3 bytes instead of 4 bytes.

We reapplied these ideas to the original gray­
scale block truncation algorithm. We added a varia­
tion to the format that does not use a color look-up
table but interprets the foreground and background
colors directly as luminance values. Images com­
pressed in this format code gray-scale input mate­
rial more compactly (there is no need to transmit
the leading color look-up table as in CCC); they also
do not suffer from the quantization band effects
inherent in the color quantization used in the CCC
algorithm.

We varied the ratio of flat to structured blocks
to effect a trade-off between image quality and
compression ratio; however, the range of useful set­
tings is relatively small. If too few structured blocks
are allocated, the image essentially is scaled down

23

Multimedia

fourfold, which makes the image look very blocky.
If too many structured blocks are allocated, regions
of the image that have little detail are encoded with
unnecessary overhead. Over the wide range of
images we tested, allocating between 30 percent
and 50 percent of structured blocks worked best,
yielding a bit rate of 0.9 to 1.0 bits per pixel. For
color images, the overhead of the color table (768
bytes) must be added.

Decompression
The most challenging part of the design of the
SMP system, given the performance requirements,
is the decompression step. Efficient rendering
techniques of block-truncation coding are well
known for certain classes of output devices.3
SMP improves on the implementations described
in the literature by complementing the raw algo­
rithm with efficient, device-independent rendering
engines.3.5.s.m,n To maximize code efficiency, a sepa­
rate decompression routine is used for each display
situation, rather than using conditionals in a more
generic routine. The current implementation can
render to 1-, 8-, and 24-bit displays.

Decompression of BTC involves filling 4 by 4
blocks of pixels with two colors under a mask.
Because the size and alignment of the blocks is
known, a very fast, fully unrolled code sequence
can be used. Changes of brightness and contrast of
the image can be rapidly adapted to different view­
ing conditions by manipulating the entries of the
colormap of the SMP encoding. Most of the work
lies in adaptation of the color content of the decom­
pressed data to the device characteristics of the
frame buffer.

For displays with full-color capabilities (24-bit
true color), the process is straightforward. The
main problem is performing the copy of the decom­
pressed video to the screen. Since 24-bit data is usu­
ally allocated in 32-bit words, the amount of data to
copy is four times the 8-bit case. Typically, SMP
spends 90 percent of the CPU time in the screen
copy on 24-bit systems.

The more common and interesting case is to
decompress to an 8-bit color representation. Given
that SMP is an 8-bit, color-indexed format, it would
seem straightforward to download the SMP frame
color table to the window system color table and
fill the image with the pixel indices directly. This
method is impractical for two reasons. First, most
window systems (including Xll) do not allow
reservation of all 256 colors in the hardware color

24

tables. Typically, applications and window man­
agers use a few of the entries for system colors and
cursors. Quantizing down to a smaller number of
colors (such as 240) could overcome this drawback
to a certain degree; however, it would make the
SMP-coded material dependent on the device char­
acteristics of a particular window system.

The second and much more problematic aspect
is that the SMP frames in a sequence usually have
different color tables. Consequently, each frame
requires a change of color table that causes a kalei­
doscopic effect for the windows of other applica­
tions on the screen. In fact, flashing cannot be
eliminated within the SMP window itself.

Neither Xll nor other popular window systems
such as Microsoft Windows allow reload of the
color table and the content of an image at the same
time. Therefore, regardless of whether the color
table or image contents is modified first, a flashing
color effect takes place in the SMP window. It may
seem that the update would have to be done in a
single screen refresh time as opposed to simultane­
ously. This is true but irrelevant. Most window
systems do not allow for such fine-grain synchro­
nization; and for performance reasons, it was unre­
alistic to expect to be able to update the image in a
single, vertical blanking period.

Alternative suggestions to avoid this problem
have been proposed in the literature. One sugges­
tion is to use a single color table for the entire
sequence of frames. 10•11 This method is computa­
tionally expensive and fails for long sequences and
editing operations. Another proposes quantization
to less than half of the available colors or partial
updates of the color map and use of plane masks.11

This alternative is not particularly portable
between different window systems, and the use of
plane masks can have a disastrous impact on perfor­
mance for some frame-buffer implementations
such as the ex adapter in the DECstation product
line.

Neither of these methods addresses the issue of
monochrome displays or the use of multiple simul­
taneous SMP movies on a single display. (This effect
can be witnessed in Sun Microsystems' recent addi­
tion of CCC coding to their XIL library.) To keep
device influence out of the compressed material
and to enable the use of SMP on a wide range of
devices and window systems, a generic decoupling
step was added between the colors in the SMP
frame and the device colors used for rendition on
the screen.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

A well-known technique for matching color
images to devices with a limited color resolution is
dithering. Dithering trades spatial resolution for an
apparent increase in color and luminance resolu­
tion of the display device. The decrease in spatial
resolution is less of an issue for SMP images because
of their inherently limited spatial resolution capa­
bility. Thus the only challenge was the computa­
tional cost of performing dithering in real time.

Fortunately, we found a dithering algorithm that
allowed both good quality and high speed. 12 It
reduces quantization and mapping to a few table
look-up operations, which have a trivial hardware
implementation (random access memory) and a
reasonable software implementation with a few
adds, shifts, and loads.

The general software implementation of the
dithering algorithm takes 12 instructions in the
MIPS instruction set to map a single pixel to its out­
put representation. For SMP decoding, two differ­
ent colors at most are in each 4 by 4 block. With this
distribution, the cost of dithering is spread over the
16 pixels in each block.

Another optimization used heavily in the 8-bit
decoder is to manipulate 4 pixels simultaneously
with a single machine instruction. This technique
increases performance for decompressing and
dithering to 3.2 instructions per pixel in the MIPS

instruction set, including all loop overhead, decod­
ing of the encoded data stream, and adjusting con­
trast and brightness of the image (2.7 instructions
per pixel for gray-scale). This efficiency is achieved
by careful merging of the decoding, decompres­
sion, and dithering phases into a single block of
code and avoiding intermediate results written to
memory. The cost of the 1-bit and 24-bit decoders is
the same or lower (3.2 and 2.9 instructions per
pixel, respectively).

Compression
The SMP compressor takes an input image, a desired
coded image size, and an output buffer as argu­
ments. It operates in five phases:

• Input scaling (optional)

• Block truncation (luminance)

• Flat block selection

• Color quantization (color SMP only)

• Encoding and output writing

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Software Motion Pictures

Although the initial scaling is not strictly part of
the SMP algorithm, it is necessary for different input
sources. Fast scaling is offered as part of both the
library and the command-line SMP compressors.
Instead of simple subsampling, true averaging is
used to ensure maximum input image quality.

The block truncation phase makes two passes
through each 4 by 4 block of the input. The first
pass calculates the luminance of each individual
pixel and sums them to find the average luminance
of the entire block. The second pass partitions the
pixel pairs into the foreground and background
sets and calculates their respective luminance and
chrominance averages.

The flat-block-selection phase uses the desired
compression ratio to decide how many blocks can
be kept as structured blocks and how many need to
be converted to flat blocks. The luminance differ­
ence of the blocks is calculated, and blocks in the
low-contrast range are marked for transition to flat
blocks. Because the total average was calculated for
each block in the preceding phase, no additional
calculations are needed for the conversion of
blocks, and the mask is thrown away. Colors are
entered into a search structure during this phase.

The color quantization phase uses a median cut
algorithm, biased to ensure good coverage of the
color contents of the image rather than minimize
the overall quantization error. The bias method
ensures that small, colored objects are not lost due
to large, smoothly shaded areas getting the lion's
share of the color allocations. These small objects
often are the important features in motion
sequences and have a high visibility despite their
small size.

The final encoding phase builds the color table
and matches the foreground/background colors of
the blocks to the best matches in the chosen color
table.

The gray-scale compression can be much faster
because neither the quantization nor the matching
step need be performed. Also, only one-third of the
uncompressed video data is usually read in, making
gray-scale compression fast enough to enable real­
time compression on faster workstations and video­
conferencing type applications.

This speed is partly due to the 8-bit restriction in
the mask of each structured block. This restriction
permits the algorithm to store all intermediate
results of the block truncation step in registers on
typical reduced instruction set computer (RISC)
machines with 32 registers. The entire gray-scale

25

Multimedia

compression algorithm can be done on a MIPS
R3000 with 8 machine instructions per input pixel
on average, all overhead (except input scaling)
included.

Unfortunately, for color processing, SMP com­
pression remains an off-line, non-real-time pro­
cess, albeit a reasonably fast one at 220 instructions
per pixel. A 25-MHz R3000 processor can process
more than 40,000 frames in 24 hours (DECstation
5000 Model 200, 320 by 240 at 15 frames per sec­
ond, TX/PIP as frame grabber), equivalent to 45 min­
utes of compressed video material per day. The
more recent DEC 3000 AXP Model 500 workstation
improves this number threefold, so special-purpose
hardware for compression is unnecessary even for
colorSMP.

Portability
A crucial part of the SMP design for portability is the
placement of the original SMP codec on the client
side of the X Window System. This allows porting
and use of SMP on other systems, without being
at the mercy of a particular system vendor for inte­
gration of the codec into their X server or window
system.

This placement is enabled by the efficiency of the
SMP decompression engine, which allows many
spare cycles for performing the copy of the decom­
pressed, device-dependent video to the window
system.

Currently, SMP is offered as a product only on the
DECstation family of workstations, but it has been
ported to a variety of platforms, including

• DEC AXP workstations running the DEC OSF/1
AXP operating system

• Alpha AXP systems running the OpenVMS oper­
ating system

• DECpc AXP personal computers running the
Windows NT AXP operating system

• VAX systems running the VMS operating system

• Sun SPARCstation

• IBM RS/6000 system

• HP/PA Precision system

• SCO UNIX/Intel

• Microsoft Windows version 3.1

26

Generally, porting the SMP system to another plat­
form supporting the X Window System requires the
selection of two parameters (host byte order and
presence of the MITSHM extension) and then a com­
pilation. The same codec source is used on all the
above machines; no assembly language or machine­
specific optimizations are used or needed.

The port to Microsoft Windows shows that
the same base technology can be used with other
window systems, although parts specific to the win­
dow system had to be rewritten. The codec code is
essentially identical, but the extreme shortage of
registers in the 80x86 architecture and the lack of
reasonable handling of 32-bit pointers in C lan­
guage under Windows warrant a rewrite in assem­
bly language on this platform. We do not expect
this to be an issue on Windows version 3.2, due to
be released later in 1993.

Conclusion
Software motion pictures offers a cost-effective,
totally portable way of bringing digital video to the
desktop without requiring special investments for
add-on hardware. Combined with audio facilities,
SMP can be used to bring a complete video playback
to most desktop systems. The algorithm and imple­
mentation were designed to be used from CD-ROMs
as well as network connections. SMP seamlessly
integrates with the existing windowing system soft­
ware. Because of its potentially universal availabil­
ity, SMP can serve an important function as the
lowest common denominator for digital video
across multiple platforms.

Acknawledgments
We would like to thank all the people who have
contributed to making software motion pictures a
reality. Particular thanks go to Paul Tallett for writ­
ing the original demonstrator and insisting on the
importance of a color version. He also implemented
the VMS versions. Thanks also to European External
Research for making the initial research and later
product transition possible. Last but not least,
thanks to Susan Angebranndt and her engineering
team for their help and confidence in this work.

References

I. Special Issue on Digital Multimedia Systems,
Communications of the ACM, vol. 34, no. 4
(April 1991).

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

2. L. Palmer and R. Palmer, "DECspin: A Net­
worked Desktop Videoconferencing Applica­
tion," Digital Technical Journal, vol. 5, no. 2
(Spring 1993, this issue): 65-76.

3. G. Campbell et al., "Two Bit/Pixel Full Color
Encoding," SIGGRAPH'86 Conference Pro­
ceedings, vol. 20, no. 4 (1986): 215-223.

4. D. LeGall, "MPEG: A Video Compression Stan­
dard for Multimedia Applications," Communi­
cations of the ACM, vol. 34, no. 4 (April 1991):
47-58.

5. 0. Mitchell, E. Delp, and S. Carlton, "Block
Truncation Coding: A New Approach to
Image Compression," Conference Record,
IEEE International Conference Communica­
tions, vol. 1 Oune 1978): 12B.1.1-12B.1.4.

6. T. Kishimoto, E. Mitsuya, and K. Hoshida, "A
Method of Still Picture Coding by Using Statis­
tical Properties" (inJapanese), Proceedings of
the National Conference of the Institute of
Electronics and Communications Engineers
of Japan, no. 974 (March 1978).

7. E. Delp and 0. Mitchell, "Image Compression
Using Block Truncation Coding;' IEEE Trans-

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Software Motion Pictures

actions on Communications, vol. COM-27
(1979): 1335-1342.

8. M. Lema and 0. Mitchell, "Absolute Moment
Block Truncation Coding and Its Application
to Color Images," IEEE Transactions on Com­
munications, vol. COM-32, no. 10 (1984):
1148-1157.

9. P. Heckbert, "Color Image Quantization for
Frame Buffer Display," Computer Graphics
(AMC SIGGRAPH'82 Conference Proceedings),
vol. 16, no. 3 (1982): 297-307.

10. M. Pins, "Analyse und Auswahl von Algorith­
men zur Datenkompression unter besonderer
Beriicksichtigung von Bildem und Bildfol­
gen," Ph.D. thesis, University of Karlsruhe,
1990.

11. B. Lamparter and W. Effelsberg, "Digitale
Filmiibertragung und Darstellung im x­
Window-System," Lehrstuhl fiir Praktische
lnformatik IV, University of Mannheim, 1991.

12. R. Ulichney, "Video Rendering," Digital Tech­
nical Journal, vol. 5, no. 2 (Spring 1993, this
issue): 9-18.

27

Davis Yen Pan I

DigitalAudio Compression

Compared to most digital data types, with the exception of digital video, the data
rates associated with uncompressed digital audio are substantial. Digital audio
compression enables more efficient storage and transmission of audio data. The
many forms of audio compression techniques offer a range of encoder and decoder
complexity, compressed audio quality, and differing amounts of data compression.
The µ,-law transformation and ADPCM coder are simple approaches with low­
complexity, low-compression, and medium audio quality algorithms. The MPEG!
audio standard is a high-complexity, high-compression, and high audio quality
algorithm. These techniques apply to general audio signals and are not specifically
tuned for speech signals.

Digital audio compression allows the efficient stor­
age and transmission of audio data. The various
audio compression techniques offer different levels
of complexity, compressed audio quality, and
amount of data compression.

This paper is a survey of techniques used to com­
press digital audio signals. Its intent is to provide
useful information for readers of all levels of experi­
ence with digital audio processing. The paper
begins with a summary of the basic audio digitiza­
tion process. The next two sections present
detailed descriptions of two relatively simple
approaches to audio compression: µ,-law and adap­
tive differential pulse code modulation. In the fol­
lowing section, the paper gives an overview of a
third, much more sophisticated, compression
audio algorithm from the Motion Picture Experts
Group. The topics covered in this section are quite
complex and are intended for the reader who is
familiar with digital signal processing. The paper

,11111111 •.• ,IIIIIIIII' 00110111000 ...

concludes with a discussion of software-only real­
time implementations.

Digital Audio Data
The digital representation of audio data offers
many advantages: high noise immunity, stability,
and reproducibility. Audio in digital form also
allows the efficient implementation of many audio
processing functions (e.g., mixing, filtering, and
equalization) through the digital computer.

The conversion from the analog to the digital
domain begins by sampling the audio input in regu­
lar, discrete intervals of time and quantizing the
sampled values into a discrete number of evenly
spaced levels. The digital audio data consists of a
sequence of binary values representing the number
of quantizer levels for each audio sample. The
method of representing each sample with an inde­
pendent code word is called pulse code modulation
(PCM). Figure 1 shows the digital audio process .

11001100100 ... ··1111111111·
.• 111111111

ANALOG ANALOG
AUDIO PCM PCM AUDIO
INPUT ANALOG-TO-DIGITAL VALUES DIGITAL SIGNAL VALUES DIGITAL-TO-ANALOG OUTPUT

CONVERSION PROCESSING CONVERSION

Figure 1 Digital Audio Process

28 Vol. 5 No. 2 Spring 1993 Digital Technical Journal

According to the Nyquist theory, a time-sampled
signal can faithfully represent signals up to half the
sampling rate. 1 Typical sampling rates range from
8 kilohertz (kHz) to 48 kHz. The 8-kHz rate covers
a frequency range up to 4 kHz and so covers most of
the frequencies produced by the human voice. The
48-kHz rate covers a frequency range up to 24 kHz
and more than adequately covers the entire audible
frequency range, which for humans typically
extends to only 20 kHz. In practice, the frequency
range is somewhat less than half the sampling rate
because of the practical system limitations.

The number of quantizer levels is typically a
power of 2 to make full use of a fixed number of
bits per audio sample to represent the quantized
values. With uniform quantizer step spacing, each
additional bit has the potential of increasing the
signal-to-noise ratio, or equivalently the dynamic
range, of the quantized amplitude by roughly
6 decibels (dB). The typical number of bits per sam­
ple used for digital audio ranges from 8 to 16. The
dynamic range capability of these representations
thus ranges from 48 to 96 dB, respectively. To put
these ranges into perspective. if O dB represents the
weakest audible sound pressure level, then 25 dB
is the minimum noise level in a typical recording
studio, 35 dB is the noise level inside a quiet home,
and 120 dB is the loudest level before discomfort
begins. 2 In terms of audio perception, 1 dB is the
minimum audible change in sound pressure level
under the best conditions, and doubling the sound
pressure level amounts to one perceptual step in
loudness.

Compared to most digital data types (digital
video excluded), the data rates associated with
uncompressed digital audio are substantial. For
example, the audio data on a compact disc (2 chan­
nels of audio sampled at 44.1 kHz with 16 bits per
sample) requires a data rate of about 1.4 megabits
per second. There is a clear need for some form of
compression to enable the more efficient storage
and transmission of this data.

The many forms of audio compression tech­
niques differ in the trade-offs between encoder and
decoder complexity, the compressed audio quality,
and the amount of data compression. The tech­
niques presented in the following sections of this
paper cover the full range from the µ.-law, a low­
complexity, low-compression, and medium audio
quality algorithm, to MPEG/audio, a high-complex­
ity, high-compression, and high audio quality algo­
rithm. These techniques apply to general audio

Dtgttat Tecbnlcaljournal Vol. 5 No. 2 Spring 1993

Digital Audio Compression

signals and are not specifically tuned for speech sig­
nals. This paper does not cover audio compression
algorithms designed specifically for speech signals.
These algorithms are generally based on a model­
ing of the vocal tract and do not work well for non­
speech audio signals.3·4 The federal standards 1015
LPC (linear predictive coding) and 1016 CELP (coded
excited linear prediction) fall into this category of
audio compression.

µAaw Audio Compression
The µ.-law transformation is a basic audio compres­
sion technique specified by the Comite Consultatif
Internationale de Telegraphique et Telephonique
(CCITI) Recommendation G.711.5 The transfor­
mation is essentially logarithmic in nature and
allows the 8 bits per sample output codes to cover a
dynamic range equivalent to 14 bits of linearly quan­
tized values. This transformation offers a compres­
sion ratio of (number of bits per source sample)/
8 to 1. Unlike linear quantization, the logarithmic
step spacings represent low-amplitude audio sam­
ples with greater accuracy than higher-amplitude
values. Thus the signal-to-noise ratio of the trans­
formed output is more uniform over the range of
amplitudes of the input signal. The µ.-law transfor­
mation is

255 - ln(l + µ.) X In (1 + µ.l x l) for x ~ 0 l
127

Y = 127
127 - ln(l + µ.) X In (1 + µ.l x l) for x < O

where m = 255, and xis the value of the input sig­
nal normalized to have a maximum value of 1. The
CCITI Recommendation G.711 also specifies a simi­
lar A-law transformation. The µ.-law transformation
is in common use in North America and Japan for
the Integrated Services Digital Network (ISDN)

8-kHz-sampled, voice-grade, digital telephony ser­
vice, and the A-law transformation is used else­
where for the ISDN telephony.

Adaptive Differential Pulse
Code Modulation
Figure 2 shows a simplified block diagram of
an adaptive differential pulse code modulation
(ADPCM) coder.6 For the sake of clarity, the figure
omits details such as bit-stream formatting, the pos­
sible use of side information, and the adaptation
blocks. The ADPCM coder takes advantage of the

29

Multimedia

D[n] (ADAPTIVE)
QUANTIZER

C[n]

Xp[n-1] (ADAPTIVE)
PREDICTOR

(ADAPTIVE)
DEQUANTIZER

(a) ADPCM Encoder

C[n] (ADAPTIVE) Dq[n] +
DEQUANTIZER

(ADAPTIVE)
PREDICTOR

(b) AD PCM Decoder

Figure 2 ADPCM Compression and
Decompression

Xp[n]

fact that neighboring audio samples are generally
similar to each other. Instead of representing each
audio sample independently as in PCM, an ADPCM
encoder computes the difference between each
audio sample and its predicted value and outputs
the PCM value of the differential. Note that
the ADPCM encoder (Figure 2a) uses most of the
components of the ADPCM decoder (Figure 2b) to
compute the predicted values.

The quantizer output is generally only a (signed)
representation of the number of quantizer levels.
The requantizer reconstructs the value of the quan­
tized sample by multiplying the number of quan­
tizer levels by the quantizer step size and possibly
adding an offset of half a step size. Depending on
the quantizer implementation, this offset may be
necessary to center the requantized value between
the quantization thresholds.

The ADPCM coder can adapt to the characteristics
of the audio signal by changing the step size of
either the quantizer or the predictor, or by chang­
ing both. The method of computing the predicted
value and the way the predictor and the quantizer
adapt to the audio signal vary among different
ADPCM coding systems.

Some ADPCM systems require the encoder to
provide side information with the differential

30

PCM values. This side information can serve
two purposes. First, in some ADPCM schemes
the decoder needs the additional information to
determine either the predictor or the quantizer
step size, or both. Second, the data can provide
redundant contextual information to the decoder
to enable recovery from errors in the bit stream
or to allow random access entry into the coded bit
stream.

The following section describes the ADPCM
algorithm proposed by the Interactive Multimedia
Association (IMA). This algorithm offers a compres­
sion factor of (number of bits per source sample)/
4 to 1. Other ADPCM audio compression schemes
include the CCITI Recommendation G.721 (32 kilo­
bits per second compressed data rate) and
Recommendation G.723 (24 kilobits per second
compressed data rate) standards and the compact
disc interactive audio compression algorithm.7.8

1be IMA ADPCM AJ,goritbm The IMA is a consor­
tium of computer hardware and software vendors
cooperating to develop a de facto standard for com­
puter multimedia data. The IMA's goal for its audio
compression proposal was to select a public­
domain audio compression algorithm able to pro­
vide good compressed audio quali ty with good
data compression performance. In addition, the
algorithm had to be simple enough to enable
software-only, real-time decompression of stereo,
44.1-kHz-sampled, audio signals on a 20-megahertz
(MHz) 386-class computer. The selected ADPCM
algorithm not only meets these goals, but is also
simple enough to enable software-only, real-time
encoding on the same computer.

The simplicity of the IMA AD PCM proposal lies in
the crudity of its predictor. The predicted value of
the audio sample is simply the decoded value of the
immediately previous audio sample. Thus the pre­
dictor block in Figure 2 is merely a time-delay
element whose output is the input delayed by one
audio sample interval. Since this predictor is not
adaptive, side information is not necessary for the
reconstruction of the predictor.

Figure 3 shows a block diagram of the quantiza­
tion process used by the IMA algorithm. The quan­
tizer outputs four bits representing the signed
magnitude of the number of quantizer levels for
each input sample.

Adaptation to the audio signal takes place only in
the quantizer block. The quantizer adapts the step
size based on the current step size and the quan­
tizer output of the immediately previous input.

Vol. 5 No. 2 Spring 1993 Dtgttal Technical Journal

Digital Audio Compression

BIT3 = 1;
SAMPLE = - SAMPLE

BIT 3 = 0 .. BIT2 = 1;
SAMPLE =

SAMPLE - STEP SIZE

BIT2 = 0
YES BIT 1 = 1;

>-----i~I SAMPLE =
SAMPLE - STEP SIZE/2

BIT 1 = 0

BITO = 0 .. DONE

Figure 3 IMA ADPCM Quantization

This adaptation can be done as a sequence of two
table lookups. The three bits representing the
number of quantizer levels serve as an index into
the first table lookup whose output is an index
adjustment for the second table lookup. This adjust­
ment is added to a stored index value, and the
range-limited result is used as the index to the sec­
ond table lookup. The summed index value is
stored for use in the next iteration of the step-size
adaptation. The output of the second table lookup
is the new quantizer step size. Note that given a
starting value for the index into the second table

LOWER THREE
BITS OF
a UANTIZER
OUTPUT FIRST

TABLE
LOOKUP

INDEX
ADJUSTMENT

+·0--
+

-

lookup, the data used for adaptation is completely
deducible from the quantizer outputs; side informa­
tion is not required for the quantizer adaptation.
Figure 4 illustrates a block diagram of the step-size
adaptation process, and Tables 1 and 2 provide the
table lookup contents.

IMA ADPCM: Error Recovery A fortunate side
effect of the design of this ADPCM scheme is
that decoder errors caused by isolated code word
errors or edits, splices, or random access of the
compressed bit stream generally do not have a

STEP
LIMIT VALUE SECOND SIZE
BETWEEN TABLE ,------+-

OAND 88 LOOKUP

DELAY FOR NEXT
ITERATION OF
STEP-SIZE

e---

ADAPTATION

Figure 4 IMA ADPCM Step-size Adaptation

Digital Technical Journal Vol. 5 No. 2 Spring 1993 31

Multimedia

Table 1 First Table Lookup for the IMA
ADPCM Quantizer Adaptation

Three Bits
Quantized Index
Magnitude Adjustment

000 -1
001 -1
010 -1
011 -1
100 2
101 4
110 6
111 8

disastrous impact on decoder output. This is usu­
ally not true for compression schemes that use
prediction. Since prediction relies on the correct
decoding of previous audio samples, errors in
the decoder tend to propagate. The next section
explains why the error propagation is generally

limited and not disastrous for the IMA algorithm.
The decoder reconstructs the audio sample, Xp[n] ,
by adding the previously decoded audio sample ,
Xp[n-I], to the result of a signed magnitude prod­
uct of the code word, C[n], and the quantizer step
size plus an offset of one-half step size:

Xp[n] = Xp[n-1] + step_size[n] X C'[n]

where C'[n] = one-half plus a suitable numeric
conversion of C[n] .

An analysis of the second step-size table lookup
reveals that each successive entry is about 1.1 times
the previous entry. As long as range limiting of the
second table index does not take place, the value
for step_size[n] is approximately the product of the
previous value, step_size[n - 1], and a function of
the code word, F(C[n - 1]) :

step_size[n] = step_size[n-1] X F(C[n- 1])

The above two equations can be manipulated
to express the decoded audio sample, Xp[n] , as a

Table 2 Second Table Lookup for the IMA ADPCM Quantizer Adaptation

Index Step Size Index Step Size Index Step Size Index Step Size

0 7 22 60 44 494 66 4,026
1 8 23 66 45 544 67 4,428
2 9 24 73 46 598 68 4,871
3 10 25 80 47 658 69 5,358
4 11 26 88 48 724 70 5,894
5 12 27 97 49 796 71 6,484
6 13 28 107 50 876 72 7,132
7 14 29 118 51 963 73 7,845
8 16 30 130 52 1,060 74 8,630
9 17 31 143 53 1,166 75 9,493

10 19 32 157 54 1,282 76 10,442
11 21 33 173 55 1,411 n 11,487
12 23 34 190 56 1,552 78 12,635
13 25 35 209 57 1,707 79 13,899
14 28 36 230 58 1,878 80 15,289
15 31 37 253 59 2,066 81 16,818
16 34 38 279 60 2,272 82 18,500
17 37 39 307 61 2,499 83 20,350
18 41 40 337 62 2,749 84 22,358
19 45 41 371 63 3,024 85 24,623
20 50 42 408 64 3,327 86 27,086
21 55 43 449 65 3,660 87 29,794

88 32,767

32 Vol. 5 No. 2 Spring 1993 Digital Technical Jounial

function of the step size and the decoded sample
value at time, m, and the set of code words
between time, m, and n

Xp[n] = xp[m] + step_size[m]
n i

x I {Il F(C[j])} x C'[i]
i=m+l J=m+l

Note that the terms in the summation are only
a function of the code words from time m+ 1
onward. An error in the code word, C[q], or a ran­
dom access entry into the bit stream at time q can
result in an error in the decoded output, X]J[q], and
the quantizer step size, step_size[q+ 1]. The above
equation shows that an error in Xp[m] amounts to
a constant offset to future values of X]J[n]. This
offset is inaudible unless the decoded output
exceeds its permissible range and is clipped.
Clipping results in a momentary audible distortion
but also serves to correct partially or fully the offset
term. Furthermore, digital high-pass filtering of the
decoder output can remove this constant offset
term. The above equation also shows that an error
in step_size[m+ 1] amounts to an unwanted gain or
attenuation of future values of the decoded output
XjJ[n]. The shape of the output wave form is
unchanged unless the index to the second step-size
table lookup is range limited. Range limiting results
in a partial or full correction to the value of the step
size.

The nature of the step-size adaptation limits the
impact of an error in the step size. Note that an
error in step_size[m+ l] caused by an error in a sin­
gle code word can be at most a change of (1.1)9, or
7.45 dB in the value of the step size. Note also that
any sequence of 88 code words that all have magni­
tude 3 or less (refer to Table 1) completely corrects
the step size to its minimum value. Even at the low­
est audio sampling rate typically used, 8 kHz, 88
samples correspond to 11 milliseconds of audio.
Thus random access entry or edit points exist
whenever 11 milliseconds of low-level signal occur
in the audio stream.

MPEG/Audio Compression
The Motion Picture Experts Group (MPEG) audio
compression algorithm is an International Organi­
zation for Standardization (ISO) standard for high­
fidelity audio compression. It is one part of a
three-part compression standard. With the other
two parts, video and systems, the composite

Digital Tecbn tcal]ournal Vol. 5 No. 2 Spring 1993

Digital Audio Compression

standard addresses the compression of synchro­
nized video and audio at a total bit rate of roughly
1.5 megabits per second.

Like µ,-law and ADPCM, the MPEG/audio compres­
sion is lossy; however, the MPEG algorithm can
achieve transparent, perceptually lossless com­
pression. The MPEG/audio committee conducted
extensive subjective listening tests during the
development of the standard. The tests showed
that even with a 6-to-1 compression ratio (stereo,
16-bit-per-sample audio sampled at 48 kHz com­
pressed to 256 kilobits per second) and under opti­
mal listening conditions, expert listeners were
unable to distinguish between coded and original
audio clips with statistical significance. Further­
more, these clips were specially chosen because
they are difficult to compress. Grewin and Ryden
give the details of the setup, procedures, and
results of these tests.9

The high performance of this compression algo­
rithm is due to the exploitation of auditory mask­
ing. This masking is a perceptual weakness of the
ear that occurs whenever the presence of a strong
audio signal makes a spectral neighborhood of
weaker audio signals imperceptible. This noise­
masking phenomenon has been observed and cor­
roborated through a variety of psychoacoustic
experiments.10

Empirical results also show that the ear has a lim­
ited frequency selectivity that varies in acuity from
less than 100 Hz for the lowest audible frequencies
to more than 4 kHz for the highest. Thus the audible
spectrum can be partitioned into critical bands that
reflect the resolving power of the ear as a function
of frequency. Table 3 gives a listing of critical band­
widths.

Because of the ear's limited frequency resolving
power, the threshold for noise masking at any given
frequency is solely dependent on the signal activity
within a critical band of that frequency. Figure 5
illustrates this property. For audio compression,
this property can be capitalized by transforming
the audio signal into the frequency domain, then
dividing the resulting spectrum into subbands that
approximate critical bands, and finally quantizing
each subband according to the audibility of quanti­
zation noise within that band. For optimal compres­
sion, each band should be quantized with no more
levels than necessary to make the quantization
noise inaudible. The following sections present
a more detailed description of the MPEG/audio
algorithm.

33

Multimedia

Table 3 Approximate Critical Band
Boundaries

Band Frequency Band Frequency
Number (Hz)* Number (Hz)*

0 50 14 1,970

95 15 2,340
2 140 16 2,720

3 235 17 3,280
4 330 18 3,840
5 420 19 4,690
6 560 20 5,440
7 660 21 6,375

8 800 22 7,690

9 940 23 9,375
10 1,125 24 11,625
11 1,265 25 15,375
12 1,500 26 20,250
13 1,735

• Frequencies are at the upper end of the band.

MPEG/ Audio Encoding and Decoding
Figure 6 shows block diagrams of the MPEG/
audio encoder and decoder.11,12 In this high-level
representation, encoding closely parallels the pro­
cess described above. The input audio stream
passes through a filter bank that divides the input
into multiple subbands. The input audio stream
simultaneously passes through a psychoacoustic
model that determines the signal-to-mask ratio of
each subband. The bit or noise allocation block
uses the signal-to-mask ratios to decide how to
apportion the total number of code bits available
for the quantization of the subband signals to mini­
mize the audibility of the quantization noise.

w
0
::>
I­
::;
[l_

::E
<

34

/ STRONG TONAL SIGNAL

REGION WHERE WEAKER
SIGNALS ARE MASKED

FREQUENCY

Figure 5 Audio Noise Masking

Finally, the last block takes the representation of
the quantized audio samples and formats the data
into a decodable bit stream. The decoder simply
reverses the formatting, then reconstructs the
quantized subband values, and finally transforms
the set of subband values into a time-domain audio
signal. As specified by the MPEG requirements,
ancillary data not necessarily related to the audio
stream can be fitted within the coded bit stream.

The MPEG/audio standard has three distinct lay­
ers for compression. Layer I forms the most basic
algorithm, and Layers II and III are enhancements
that use some elements found in Layer I. Each suc­
cessive layer improves the compression perfor­
mance but at the cost of greater encoder and
decoder complexity.

Layer I The Layer I algorithm uses the basic filter
bank found in all layers. This filter bank divides the
audio signal into 32 constant-width frequency
bands. The filters are relatively simple and provide
good time resolution with reasonable frequency
resolution relative to the perceptual properties of
the human ear. The design is a compromise with
three notable concessions. First, the 32 constant­
width bands do not accurately reflect the ear's criti­
cal bands. Figure 7 illustrates this discrepancy. The
bandwidth is too wide for the lower frequencies so
the number of quantizer bits cannot be specifically
tuned for the noise sensitivity within each critical
band. Instead, the included critical band with the
greatest noise sensitivity dictates the number of
quantization bits required for the entire filter band.
Second, the filter bank and its inverse are not loss­
less transformations. Even without quantization,
the inverse transformation would not perfectly
recover the original input signal. Fortunately, the
error introduced by the filter bank is small and
inaudible. Finally, adjacent filter bands have a signif­
icant frequency overlap. A signal at a single fre­
quency can affect two adjacent filter bank outputs.

The filter bank provides 32 frequency samples,
one sample per band, for every 32 input audio sam­
ples. The Layer I algorithm groups together 12 sam­
ples from each of the 32 bands. Each group of 12
samples receives a bit allocation and, if the bit allo­
cation is not zero, a scale factor. Coding for stereo
redundancy compression is slightly different and is
discussed later in this paper. The bit allocation
determines the number of bits used to represent
each sample. The scale factor is a multiplier that
sizes the samples to maximize the resolution of
the quantizer. The Layer I encoder formats the

Vol. 5 No. 2 Spring 1993 Digital Tecbr,ical Journal

Digital Audio Compression

PCM AUDIO BIT/NOISE
ENCODED

INPUT TIME-TO-FREQUENCY ALLOCATION, BIT-STREAM BIT STREAM
MAPPING FILTER

,___ -BANK
QUANTIZER, AND FORMATIING
CODING --I

I
I
I

PSYCHOACOUSTIC ANCILLARY DATA
~

MODEL (OPTIONAL)

(a) MPEG/Audio Encoder

ENCODED DECODED
BIT STREAM BIT-STREAM FREQUENCY FREQUENCY-TO-TIME PCM AUDIO

f----+- SAMPLE ,___
UNPACKING MAPPING

~ -I RECONSTRUCTION

I

y
ANCILLARY DATA
(IF ENCODED)

(b) MPEG/Audio Decoder

Figure 6 MPEG/ Audio Compression and Decompression

MPEG/AUDIO FILTER BANK BANDS

I I.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CRITICAL BAND BOUNDARIES

Figure 7 MPEG/ Audio Filter Bandwidths versus Critical Bandwidths

32 groups of 12 samples (i.e., 384 samples) into a
frame. Besides the audio data, each frame contains
a header, an optional cyclic redundancy code (CRC)
check word, and possibly ancillary data.

Layer II The Layer II algorithm is a simple
enhancement of Layer I. It improves compression
performance by coding data in larger groups. The
Layer II encoder forms frames of 3 by 12 by 32 =
1, 152 samples per audio channel. Whereas Layer I
codes data in single groups of 12 samples for each

Digital Tecbnical]ournal Vol. 5 No. 2 Sprtng 1993

subband, Layer II codes data in 3 groups of 12 sam­
ples for each subband. Again discounting stereo
redundancy coding, there is one bit allocation and
up to three scale factors for each trio of 12 samples.
The encoder encodes with a unique scale factor for
each group of 12 samples only if necessary to avoid
audible distortion. The encoder shares scale factor
values between two or all three groups in two
other cases: (1) when the values of the scale factors
are sufficiently close and (2) when the encoder
anticipates that temporal noise masking by the ear

35

Multimedia

will hide the consequent distortion. The Layer II
algorithm also improves performance over Layer I
by representing the bit allocation, the scale factor
values, and the quantized samples with a more effi­
cient code.

Layer III The Layer III algorithm is a much more
refined approach.I3.I4 Although based on the same
filter bank found in Layers I and II, Layer III compen­
sates for some filter bank deficiencies by process­
ing the filter outputs with a modified discrete
cosine transform (MDCT). Figure 8 shows a block
diagram of the process.

The MDCTs further subdivide the filter bank out­
puts in frequency to provide better spectral resolu­
tion. Because of the inevitable trade-off between
time and frequency resolution, Layer III specifies
two different MDCT block lengths: a long block of 36
samples or a short block of 12. The short block length
improves the time resolution to cope with tran­
sients. Note that the short block length is one-third
that of a long block; when used, three short blocks
replace a single long block. The switch between
long and short blocks is not instantaneous. A long
block with a specialized long-to-short or short-to­
long data window provides the transition mecha­
nism from a long to a short block. Layer III has three
blocking modes: two modes where the outputs of
the 32 filter banks can all pass through MDCTs with
the same block length and a mixed block mode
where the 2 lower-frequency bands use long blocks
and the 30 upper bands use short blocks.

Other major enhancements over the Layer I and
Layer II algorithms include:

SUBBAND O MDCT
WINDOW

PCM
AUDIO LAYER I SUBBAND 1 MDCT
INPUT AND WINDOW - LAYER II

FILTER
BANK

SUBBAND 31 MDCT
WINDOW

• Alias reduction - Layer III specifies a method of
processing the MDCT values to remove some
redundancy caused by the overlapping bands of
the Layer I and Layer II filter bank.

• Nonuniform quantization - The Layer III quan­
tizer raises its input to the 3/4 power before
quantization to provide a more consistent signal­
to-noise ratio over the range of quantizer values.
The requantizer in the MPEG/audio decoder
relinearizes the values by raising its output to
the 4/3 power.

• Entropy coding of data values - Layer III uses
Huffman codes to encode the quantized samples
for better data compression. is

• Use of a bit reservoir - The design of the Layer III
bit stream better fits the variable length nature of
the compressed data. As with Layer II, Layer III
processes the audio data in frames of 1,152 sam­
ples. Unlike Layer II, the coded data representing
these samples does not necessarily fit into a
fixed-length frame in the code bit stream. The
encoder can donate bits to or borrow bits from
the reservoir when appropriate.

• Noise allocation instead of bit allocation - The
bit allocation process used by Layers I and II only
approximates the amount of noise caused by
quantization to a given number of bits. The Layer
III encoder uses a noise allocation iteration
loop. In this loop, the quantizers are varied in an
orderly way, and the resulting quantization noise
is actually calculated and specifically allocated
to each subband.

Bx
ALIAS

MDCT REDUCTION
(ONLY FOR
LONG
BLOCKS)

MDCT

LONG, LONG-TO-SHORT
SHORT, SHORT-TO-LONG
WINDOW SELECT

LONG OR SHORT BLOCK
CONTROL (FROM
PSYCHOACOUSTIC MODEL)

Figure 8 MPEG/ Audio Layer III Filter Bank Processing, Encoder Side

36 Vol. 5 No. 2 Spring 1993 Digital Technical Journal

The Psychoacoustic Model
The psychoacoustic model is the key component of
the MPEG encoder that enables its high perfor­
mance.16.ms.19 The job of the psychoacoustic model
is to analyze the input audio signal and determine
where in the spectrum quantization noise will be
masked and to what extent. The encoder uses this
information to decide how best to represent the
input audio signal with its limited number of code
bits. The MPEG/audio standard provides two exam­
ple implementations of the psychoacoustic model.
Below is a general outline of the basic steps
involved in the psychoacoustic calculations for
either model.

• Time align audio data - The psychoacoustic
model must account for both the delay of the
audio data through the filter bank and a data
offset so that the relevant data is centered within
its analysis window. For example, when using
psychoacoustic model two for Layer I, the delay
through the filter bank is 256 samples, and the
offset required to center the 384 samples of a
Layer I frame in the 512-point psychoacoustic
analysis window is (512 - 384)/2 = 64 points.
The net offset is 320 points to time align the
psychoacoustic model data with the filter bank
outputs.

• Convert audio to spectral domain - The psy­
choacoustic model uses a time-to-frequency
mapping such as a 512- or 1,024-point Fourier
transform. A standard Hann weighting, applied
to audio data before Fourier transformation,
conditions the data to reduce the edge effects of
the transform window. The model uses this sep­
arate and independent mapping instead of the
filter bank outputs because it needs finer fre­
quency resolution to calculate the masking
thresholds.

• Partition spectral values into critical bands - To
simplify the psychoacoustic calculations, the
model groups the frequency values into percep­
tual quanta.

• Incorporate threshold in quiet - The model
includes an empirically determined absolute
masking threshold. This threshold is the lower
bound for noise masking and is determined in
the absence of masking signals.

• Separate into tonal and nontonal components -
The model must identify and separate the tonal

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Digital Audio Compression

and noiselike components of the audio signal
because the noise-masking characteristics of the
two types of signal are different.

• Apply spreading function - The model deter­
mines the noise-masking thresholds by applying
an empirically determined masking or spreading
function to the signal components.

• Find the minimum masking threshold for each
subband - The psychoacoustic model calculates
the masking thresholds with a higher-frequency
resolution than provided by the filter banks.
Where the filter band is wide relative to the criti­
cal band (at the lower end of the spectrum), the
model selects the minimum of the masking
thresholds covered by the filter band. Where the
filter band is narrow relative to the critical band,
the model uses the average of the masking
thresholds covered by the filter band.

• Calculate signal-to-mask ratio - The psycho­
acoustic model takes the minimum masking
threshold and computes the signal-to-mask
ratio; it then passes this value to the bit (or
noise) allocation section of the encoder.

Stereo Redundancy Coding
The MPEG/audio compression algorithm supports
two types of stereo redundancy coding: intensity
stereo coding and middle/side (MS) stereo coding.
Both forms of redundancy coding exploit another
perceptual weakness of the ear. Psychoacoustic
results show that, within the critical bands cover­
ing frequencies above approximately 2 kHz, the
ear bases its perception of stereo imaging more
on the temporal envelope of the audio signal than
its temporal fine structure. All layers support inten­
sity stereo coding. Layer III also supports MS stereo
coding.

In intensity stereo mode, the encoder codes
some upper-frequency filter bank outputs with a
single summed signal rather than send independent
codes for left and right channels for each of the 32
filter bank outputs. The intensity stereo decoder
reconstructs the left and right channels based only
on independent left- and right-channel scale fac­
tors. With intensity stereo coding, the spectral
shape of the left and right channels is the same
within each intensity-coded filter bank signal, but
the magnitude is different.

The MS stereo mode encodes the signals for left
and right channels in certain frequency ranges as
middle (sum of left and right) and side (difference

37

Multimedia

of left and right) channels. In this mode, the
encoder uses specially tuned techniques to further
compress side-channel signal.

Real-time Software Implementations
The software-only implementations of the µ.-law
and ADPCM algorithms can easily run in real time. A
single table lookup can do µ.-law compression or
decompression. A software-only implementation
of the IMA ADPCM algorithm can process stereo,
44.l-kHz-sampled audio in real time on a 20-MHz
386-class computer. The challenge lies in develop­
ing a real-time software implementation of the
MPEG/audio algorithm. The MPEG standards docu­
ment does not offer many clues in this respect.
There are much more efficient ways to compute
the calculations required by the encoding and
decoding processes than the procedures outlined
by the standard. As an example, the following sec­
tion details how the number of multiplies and addi­
tions used in a certain calculation can be reduced
by a factor of 12.

Figure 9 shows a flow chart for the analysis sub­
band filter used by the MPEG/audio encoder. Most
of the computational load is due to the second­
from-last block. This block contains the following
matrix multiply:

~ [c2 x 1+1) x Ck- 16) x n]
S(i) = "- Y(k) X cos

64 k=O

for i = 0 ... 31.

Using the above equation, each of the 31 values of
S(i) requires 63 adds and 64 multiplies. To optimize
this calculation, note that the M(i,k) coefficients
are similar to the coefficients used by a 32-point,
un-normalized inverse discrete cosine transform
(DCT) given by

~ [(2Xt+l)XkXfl]
f(i) = "- F(k) X cos

64 k=O

for i = 0 ... 31.

Indeed, S(i) is identical to.ft,) if F(k) is computed
as follows

F(k) = Y(16) fork = O;

= Y(k+ 16) + Y(16-k) fork = 1 .. . 16;

= Y(k+16) - Y(BO - k)fork = 17 . .. 31.

38

SHIFT IN 32 NEW SAMPLES
INTO 512-POINT FIFO BUFFER, X;

l
WINDOW SAMPLES:
FOR i = OTO 511, DOZ;= C; x X;

i
PARTIAL CALCULATION:

7
FOR i = 0 TO 63, DO Y; = L Z ; + 64j

J=O

l
CALCULATE 32 SAMPLES BY

63
MATRIX ING S;=L Y; x M ;k

k=O '

i
OUTPUT 32 SUBBAND SAMPLES

Figure 9 Flow Diagram of the MPEG/Audio
Encoder Filter Bank

Thus with the almost negligible overhead of com­
puting the F(k) values, a twofold reduction in mul­
tiplies and additions comes from halving the range
that k varies. Another reduction in multiplies and
additions of more than sixfold comes from using
one of many possible fast algorithms for the compu­
tation of the inverse ocr.20,21.22 There is a similar
optimization applicable to the 64 by 32 matrix mul­
tiply found within the decoder's subband filter
bank.

Many other optimizations are possible for both
MPEG/audio encoder and decoder. Such optimiza­
tions enable a software-only version of the MPEG/
audio Layer I or Layer II decoder (written in the C
programming language) to obtain real-time per­
formance for the decoding of high-fidelity mono­
phonic audio data on a DECstation 5000 Model 200.
This workstation uses a 25-MHz R3000 MIPS CPU
and has 128 kilobytes of external instruction
and data cache. With this optimized software, the
MPEG/audio Layer II algorithm requires an average
of 13.7 seconds of CPU time (12.8 seconds of user
time and 0.9 seconds of system time) to decode 7.47

Vol. 5 No. 2 Spring 1993 Digital Technical Jou,'nal

seconds of a stereo audio signal sampled at 48 kHz
with 16 bits per sample.

Although real-time MPEG/audio decoding of
stereo audio is not possible on the DECstation 5000,
such decoding is possible on Digital's workstations
equipped with the 150-MHZ DECchip 21064 CPU
(Alpha AXP architecture) and 512 kilobytes of exter­
nal instruction and data cache. Indeed, when this
same code (i.e., without CPU-specific optimization)
is compiled and run on a DEC 3000 AXP Model 500
workstation, the MPEG/audio Layer II algorithm
requires an average of 4.2 seconds (3.9 seconds of
user time and 0.3 seconds of system time) to
decode the same 7.47-second audio sequence.

Summary
Techniques to compress general digital audio sig­
nals include µ-law and adaptive differential pulse
code modulation. These simple approaches apply
low-complexity, low-compression, and medium
audio quality algorithms to audio signals. A third
technique, the MPEG/audio compression algorithm,
is an ISO standard for high-fidelity audio compres­
sion. The MPEG/audio standard has three layers of
successive complexity for improved compression
performance.

References

1. A. Oppenheim and R. Schafer, Discrete Time
Signal Processing (Englewood Cliffs, NJ:
Prentice-Hall, 1989): 80-87.

2. K. Pohlman, Principles of Digital Audio
(Indianapolis, IN: Howard W Sams and Co.,
1989).

3.]. Flanagan, Speech Analysis Synthesis and
Perception (New York: Springer-Verlag, 1972).

4. B. Atal, "Predictive Coding of Speech at Low
Rates," IEEE Transactions on Communica­
tions, vol. COM-30, no. 4 (April 1982).

5. CC/IT Recommendation G. 711: Pulse Code
Modulation (PCM) of Voice Frequencies
(Geneva: International Telecommunications
Union, 1972).

6. L. Rabiner and R. Schafer, Digital Processing
of Speech Signals (Englewood Cliffs, NJ:
Prentice-Hall, 1978).

Digital Tecbnical]ournal Vol. 5 No. 2 Spring 1993

Digital Audio Compression

7. M. Nishiguchi, K. Akagiri, and T. Suzuki,
"A New Audio Bit Rate Reduction System
for the CD-I Format," Preprint 2375, 8Jst
Audio Engineering Society Convention, Los
Angeles (1986).

8. Y Takahashi, H. Yazawa, K. Yamamoto, and
T. Anazawa, "Study and Evaluation of a New
Method of ADPCM Encoding," Preprint 2813,
86th Audio Engineering Society Convention,
Hamburg (1989).

9. C. Grewin and T. Ryden, "Subjective Assess­
ments on Low Bit-rate Audio Codecs," Pro­
ceedings of the Tenth International Audio
Engineering Society Conference, London
(1991): 91-102.

10.]. Tobias, Foundations of Modern Auditory
Theory (New York and London: Academic
Press, 1970): 159-202.

II. K. Brandenburg and G. Stoll, "The ISO/MPEG­
Audio Codec: A Generic Standard for Coding
of High Quality Digital Audio," Preprint 3336,
92nd Audio Engineering Society Conven­
tion, Vienna (1992).

12. K. Brandenburg and]. Herre, "Digital Audio
Compression for Professional Applications,"
Preprint 3330, 92nd Audio Engineering
Society Convention, Vienna (1992).

13. K. Brandenburg and]. D. Johnston, "Second
Generation Perceptual Audio Coding: The
Hybrid Coder," Preprint 2937, 88th Audio
Engineering Society Convention, Montreaux
(1990).

14. K. Brandenburg,]. Herre,]. D. Johnston,
Y Mahieux, and E. Schroeder, "ASPEC: Adap­
tive Spectral Perceptual Entropy Coding of
High Quality Music Signals," Preprint 3011,
90th Audio Engineering Society Convention,
Paris (1991).

15. D. Huffman, "A Method for the Construction
of Minimum Redundancy Codes;' Proceed­
ings of the IRE, vol. 40 (1962): 1098-1101.

16.]. D. Johnston, "Estimation of Perceptual
Entropy Using Noise Masking Criteria," Pro­
ceedings of the 1988 IEEE International Con­
ference on Acoustics, Speech, and Signal
Processing (1988): 2524-2527.

39

Multimedia

17. J. D. Johnston, "Transform Coding of Audio
Signals Using Perceptual Noise Criteria," IEEE

Journal on Selected Areas in Communica­
tions, vol. 6 (February 1988): 314-323.

18. K. Brandenburg, "OCF-A New Coding Algo­
rithm for High Quality Sound Signals," Proceed­
ings of the 1987 IEEE ICASSP (1987): 141-144.

19. D. Wiese and G. Stoll, "Bitrate Reduction of
High Quality Audio Signals by Modeling the
Ear's Masking Thresholds," Preprint 2970,
89th Audio Engineering Society Convention,
Los Angeles (1990).

40

20. J. Ward and B. Stanier, "Fast Discrete Cosine
Transform Algorithm for Systolic Arrays," Elec­
tronics Letters, vol. 19, no. 2 Oanuary 1983).

21. J. Makhoul, "A Fast Cosine Transform in One
and Two Dimensions," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol.
ASSP-28, no. 1 (February 1980).

22. W-H. Chen, C. H. Smith, and S. Fralick, "A Fast
Computational Algorithm for the Discrete
Cosine Transform," IEEE Transactions on
Communications, vol. COM-25 no. 9 (Septem­
ber 1977).

Vol. 5 No. 2 Spring 1993 Digital Technical journal

Jan B. te Kiefte
Robert Hasenaar

Joop W. Mevius
Theo H. van Hunnik

The Megadoc Image Document
Management System

Megadoc image document management solutions are the result of a systems
engineering effort that combined several disciplines, ranging from optical disk
hardware to an image application framework. Although each of the component
technologies may be fairly mature, combining them into easy-to-customize solu­
tions presented a significant systems engineering challenge. The resulting applica­
tion framework allows the configuration of customized solutions with low systems
integration cost and short time to deployment.

Electronic Document Management
In most organizations, paper is the main medium
for information sharing. Paper is not only a commu­
nication medium but in many cases also the carrier
of an organization's vital information assets. Whereas
the recording of information in document format is
done largely with help of electronic equipment,
sharing and distribution of that information is in
many cases still done on paper. Large-scale, paper­
based operations have limited options for tracking
the progress of work.

The computer industry thus has two opportunities:

1. Capture paper documents in electronic image
format (if using paper is a requirement)

2. Provide better tools for sharing and distribution
among work groups (if the use of paper can be
avoided)

Organizations that use electronic imaging, as
compared to handling paper, can better track work
in progress. Productivity increases (no time is
wasted in searching) and the quality of service
improves (response times are shorter and no infor­
mation is lost) when vital information is repre­
sented and tracked electronically.

Imaging is not a new technology (see Table 1).

Moreover, this paper does not document new base
technology. Instead, we describe the key compo­
nents of an image document management system in
the context of a systems engineering effort. This
effort resulted in a product set that allows the con­
figuration of customized solutions.

Those who first adopted the use of image tech­
nology have had to go through a long learning

Digital Technical Journal Vol. 5 No. 2 Spring 1993

curve-a computer with a scanner and an optical
disk does not fully address the issues of a large­
scale, paper-based operation. Early adopters of
electronic imaging experienced a challenge in
defining the right electronic document indexing
scheme for their applications. Even though the
technology is now mature, the introduction of a
document imaging system frequently leads to some
form of business process reengineering to exploit
the new options of electronic document manage­
ment. The Megadoc image document management
system allows the configuration of customer­
specific solutions through its building-block archi­
tecture and its built-in customization options.

The Megadoc system presented in this paper is
based on approximately 10 years of experience
with base technology, customer projects, and
everything in between. In those years, Megadoc
image document management has matured from
the technology delight of optical recording to an
application framework for image document man­
agement. This framework consists of hardware and
software components arranged in various architec­
tural layers: the base system, the optical file server,
the storage manager, and the image application
framework.

The base system consists of PC-based work­
stations, running the Microsoft Windows operating
system, connected to servers for storage manage­
ment and to database services for document index­
ing. Specific peripherals include image scanners,
image printers, optional full-screen displays, and
optional write once, read many (WORM) disks.

The optical file server abstracts from the differ­
ences between optical WORM disks and provides

41

Multimedia

Table 1 History of Image Document Management

1975 Philips Research combines a 12-inch (30.48-centimeter) videodisk for analog storage of facsimile
documents and high-resolution video monitors with a minicomputer for indexing in an experimental
image management system.

1979 Philips' image management system switches to digital technology through the availability of
WORM disks and random-access memory (RAM) chips {for refreshing a full-page video monitor).

1983 At the Hannover Fair (Hannover, Germany), Philips shows Megadoc, an image document
management system with WORM disks containing compressed document images. Dedicated
image document management solutions are introduced.

1988 Image document management transitions from dedicated image display technology as part of a
proprietary computer architecture to an open systems platform with PC-based image workstations.

1993 The image becomes just another document format that is used next to text-coded electronic
documents.

the many hundreds of gigabytes (GB) of storage
required in large-scale image document manage­
ment systems.

The storage manager provides storage and
retrieval functions for the contents of documents.
Document contents are stored in "containers," i.e.,
large, one-dimensional storage areas that can span
multiple optical disk volumes.

The Megadoc image application framework con­
tains three sublayers:

1. Image-related software libraries for scanning,
viewing, and printing

2. Application templates

3. A standard folder management application that
provides, with some tailoring by the end-user
organization, an "out-of-the-box" image docu­
ment management solution

The optical file server and the storage manager
store images in any type of document format.
However, to meet customer requirements with
respect to longevity of the documents, images
should be stored in compressed format according
to the Comite Consultatif Internationale de Tele­
graphique et Telephonique (CCITI) Group 4
standard.

In addition to image document management
solutions, Megadoc components are used to "image
enable" existing data processing applications. In
many cases, a data processing application uses
some means of identification for an application
object (e.g., an order or an invoice). This identifica­
tion relates to a paper document. Megadoc reuses
the application's identification as the key to the
image version of that document. Application pro­
gramming interfaces (APis) for terminal emulation

42

packages that are running the original application
in a window on the Megadoc image PC work­
stations allow integration with the unchanged
application.

The following sections describe the optical file
server, the storage manager, and the image applica­
tion framework.

Megadoc optical File Server
The Megadoc optical file server (OFS) software pro­
vides a UNIX file system interface for WORM disks.
The OFS automatically loads and unloads these
WORM volumes by jukebox robotics in a completely
transparent way. Thus, from an API perspective, OFS
implements a UNIX file system with a large on-line
file system storage capacity. Currently, up to 800 GB
can be reached with a single jukebox.

We implemented the OFS in three layers, as
shown Figure 1:

1. The optical disk filer (ODF) layer, which enables
storing data on write-once devices and provid­
ing a UNIX file system interface.

2. The volume manager (VM), which loads and
unloads volumes to and from drives in the juke­
boxes and communicates with the system opera­
tor for handling off-line volumes.

3. The device layer, which provides device-level
access to the WORM drives and to the jukebox
hardware. This layer is not discussed further in
this paper.

Optical Disk Filer
When we started to design the ODF, the chief
prerequisite was that it should adhere to the UNIX
file system interface for applications. The obvious

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

STORAGE
MANAGER OR
OTHER UNIX
APPLICATION

OPTICAL
FILE SERVER

JUKEBOX HARDWARE

Figure 1 The Three Software Layers of the
Optical File Server

benefit was that the designers would not have to
write their own utilities to, for example, copy data,
create new files, and make new directories. All
UNIX utilities would work as well on WORM devices
as on any other file system.

Current UNIX implementations provide two ker­
nel interfaces for integrating a new file system type
into the kernel: the file system switch (FSS), in UNIX
versions based on the System V Release 3; and the
virtual file system (VFS), in UNIX implementations
like the System V Release 4, Sunos, and OSF/1 oper­
ating systems. We introduced the optical disk filer
in the FSS and later ported it to the VFS.

The key challenge for the design of a file system
for write-once devices is to allow updates without
causing an "avalanche" of updates. Note that any
update to a sector on a WORM device forces a
rewrite of the full sector at another location. If
pointers to an updated sector exist on the WORM
device, sectors that contain those pointers have to
be rewritten, also. For example, if a file system
implementation is chosen where the list of data
blocks for a file, or just the sector location of such a
list, is part of the file's directory information, any
update to that file would cause a rewrite of the
directory sector and the sectors for the parent
directories, all the way up to the root directory.

A second issue to be addressed for removable
optical disks is performance. Access time for on-line
disks is at least eight times slower than for current

Digital Technical Journal Vol. 5 No. 2 Spring 1993

The Megadoc Image Document Management System

magnetic disks. (The average seek time for a WORM
device is 100 milliseconds; rotational delay is about
35 milliseconds.) Fetching a disk from a jukebox
storage slot, loading it, and waiting for spin-up
takes between 8 and 15 seconds, depending on the
type of jukebox.

Caching solves both issues. We decided that the
usual in-memory cache would not be sufficient for
the huge amounts of WORM data, and therefore, we
use partitions of magnetic disks for caching.

ODF WORM Layout To avoid duplicating previ­
ous efforts, we used classical UNIX file systems as
a guideline for the definition of ODF's WORM layout.
However, we had to add some indirect pointer
mechanisms to avoid update avalanches. Each file
system is mapped onto a single WORM partition.
These partitions are written sequentially, reducing
the free block administration to maintaining a cur­
rent write point.

The ODF reuses many notions from UNIX file sys­
tems, such as i-nodes, superblock, and the func­
tional contents of directory entries. 1 Applying
these UNIX notions to the optical file system
resulted in the following ODF characteristics:

• The superblock contains all global data for a file
system.

• Each i-node contains the block list and all the
attributes of a file except the file's name.

• An i-node number identifies each i-node.

• A directory is a special type of file.

• Entries in a directory map names to i-node
numbers.

A new notion in the ODF, as compared to UNIX
file systems, is the administration file (admin file).
One such file exists for each file system. The file is
sequential, and its contents are similar to the first
disk blocks in classical UNIX file systems: the first
extent contains the superblock, and all other
extents form a constantly growing array of i-nodes;
the i-node's number is the index of the i-node in the
file's i-node array. An important difference between
UNIX file systems and the ODF is that the 2-kilobyte
(kB), fixed-size extents of the ODF admin file are
scattered over the WORM device, instead of being
stored as a sequential array of disk blocks, as in
UNIX systems. As a result, any update to an i-node,
as a consequence of a file update, causes the invali­
dation of at most one admin file extent. Since
the logical index in the admin file of this i-node, i.e.,

43

Multimedia

the i-node number, does not change, the parent
directories do not have to be updated.

However, this scheme needs an additional indi­
rect pointer mechanism: a list of block numbers
representing the location of the admin file extents.
The ODF stores this list in the admin file's i-node
(aino). The aino is a sequential file that contains
slightly more than block numbers and is a sequence
of contiguous blocks on the WORM disk that con­
tain the same information. Hence, an update to an
admin file extent always invalidates the entire aino
on the WORM device, which makes the aino a more
desirable candidate for caching than the admin file
extents.

The following example, shown in Figure 2, illus­
trates the steps involved in reading logical block N
from the file with i-node number/:

1. Read the aino to obtain the block number of I's
admin file extent.

2. Read the admin file extent to get file /, which is
used to translate the logical block number N into
the physical block number !(NJ.

3. Read physical block /(NJ.

If the file system is in a consolidated state, i.e., all
data on the WORM disk is current, the aino and the
superblock are the last pieces of information writ­
ten to the WORM device, directly before the current
write point. Blocks written prior to the aino and
the superblock contain mainly user data but also
an occasional admin file extent, fully interleaved.
Figure 3 shows the WORM layout. Since ODF

requires the first admin file extent and the com­
plete aino to be in the cache, introducing a disk
with consolidated file systems to another system
requires searching the current write point, reading
the superblock, determining the aino length from
the superblock, and finally reading the aino itself.

AINO ADMIN FILE EXTENTS

SUPERBLOCK

i-NODE BLOCK 1

I

I
I

I

i-NODE BLOCK K cil __ _

Searching the current write point is a fairly fast
operation implemented through binary search and
hardware support, which allow the ODF to distin­
guish between used and unused data blocks of IK
bytes.

ODF Caching Caching in the ODF is file oriented.
We suggest a magnetic cache size of approximately
5 percent of the optical disk space. If data from a
file on a WORM disk is read, the ODF creates a cache
file and copies a contiguous segment of file data
from the WORM disk (64 kB in size, or less in the
case of a small file) to the correct offset in the cache
file. The cache file is the basis for all 1/0 operations
until removed by the ODF, after having rewritten all
dirty segments (i.e., updated or changed segments)
back to the WORM device. The ODF provides special
system calls (through the UNIX fcntl(2) interface)
to flush asynchronously dirty file segments to the
WORM device and to remove a file's cache file. The
flusher daemon monitors high and low watermarks
for dirty cache contents. The daemon flushes dirty
data to the optical disks. The flusher daemon
flushes data in a sequence that minimizes the num­
ber of WORM volume movements in a jukebox. The
ODF deletes clean data (i.e., data already present on
the optical disk) on a least-recently-used basis.

The admin file has its own cache file. The mini­
mum amount of admin file data to be cached is the
superblock. The ODF gradually caches the other
admin file extents, which contain the i-nodes, while
the file system is in use. The ODF writes i-node
updates to the WORM device as soon as all i-nodes in
the same admin file extent have their dirty file data
written to the WORM device. The aino has its own
cache file, also, and is always completely cached.
If all file data and i-nodes have been written to the
WORM device, the file system can be consolidated
by a special utility that writes aino and superblock

EXTENTS OF FILE I

EXTENTO

EXTENT 1

EXTENT N

Figure 2 Steps Involved in Gettingfrom the Aino to Extent N of File I

44 Vol. 5 No. 2 Spring 1993 Dtgttal Tecbntcal Journal

The Megadoc Image Document Management System

I
PREVIOUS CONSOLIDATION POINT

CURRENT CONSOLIDATION POINT"'\
WORM PARTITION: \

AINO' S' FILE DATA 18 [J] FILE DATA 18 [KJ AINO S EMPTY SECTORS

PREVIOUS AINO
AND SUPERBLOCK

\CURRENT i-NODE J
BLOCKS J AND K

CURRENT AINO I
AND SUPERBLOCK

Figure 3 WORM Layout for a Consolidated ODF File System

to the WORM device, hence creating a consolida­
tion point.

For reasons of modularity and ease of implemen­
tation, we chose the UNIX standard magnetic disk
file system implementation to perform the caching.
An alternative would have been to use a magnetic
disk cache with an optimized, ODF-specific struc­
ture. We opted for a small amount of overhead,
which would allow us to add a faster file system,
should one become available. Our performance
measurements showed a loss of less than 10 percent
in performance as compared to that of an ODF­
specific solution. The cache file systems on mag­
netic disk can be accessed only through the ODF
kernel component. Thus, in an active OFS system,
no application can access and, therefore, possibly
corrupt the cached data.

Volume Manager
In addition to hiding the WORM nature of the under­
lying physical devices, the OFS transparently moves
volumes between drives and storage slots in juke­
boxes that contain many volumes ("platters"). The
VM performs this function.

The essential characteristic of the volume man­
agement layer is its simple functionality, which
is best described as a "volume faulting device."
The interface to the VM consists of volume device
entries, each of which gives access to a specific
WORM volume in the system. For example, the vol­
ume device entry /dev/WORM_A gives access to the
WORM volume WORM_A. This volume device entry
has exactly the same interface as the usual device
entry such as /dev/worm, which gives access to
a specific WORM drive in the system, or rather
to any volume that happens to be on that drive at
that moment. Any access to a volume device, e.g.,
/dev/WORM_A, either passes directly to the drive on
which the volume (WORM_A) is loaded, or results in
a volume fault. This last situation occurs when the

Digital Tecbnicaljournal Vol. 5 No. 2 Spring 1993

volume is in a jukebox slot and not in a directly
accessible drive. Note that since /dev/WORM_A has
the same interface as /dev/worm, the OFS could
function without the VM layer in any system that
contains only one worm drive and one volume that
is never removed from that drive. However, since
this configuration is not a realistic option, the OFS
includes the VM layer.

The internal architecture of the VM is more com­
plicated than its functionality might indicate. The
VM consists of a relatively small kernel component
and several server processes, as illustrated in Figure
4. The kernel component is a pseudo-device driver
layer that receives requests for the volume devices,
e.g., /dev/WORM_A, and translates these requests
into physical device driver (/dev/worm) requests
using a table that contains the locations of loaded
volumes. If the location of a volume can be found in
the table, the 1/0 request is directly passed on to the
physical device. Otherwise, a message is prepared
for the central VM server process, and the volume
server and the requesting application are p ut in a
waiting state.

The volume server uses a file to translate volume
device numbers into volume names and locations.
It communicates with two other types ofVM server
processes: jukebox servers and drive servers. The
jukebox servers take care of all movements in
their jukebox. Drive servers spin up and spin down
their drive only on request from the volume server.

Storage Manager
The storage manager implements containers, as
mentioned in the Electronic Document Manage­
ment section. Large-scale document management
uses indexing of multiple storage and retrieval
attributes, typically with the help of a relational
database. Once the contents of a document are
identified through a database query on its attri­
butes, a single pointer to the contents is sufficient.

45

Multimedia

VOLUME MANAGEMENT

STORAGE
MANAGER OR
OTHER UNIX
APPLICATION

DRIVE
SERVERS

VOLUME
SERVER

JUKEBOX
SERVER

I UNIX USER SPACE

OPTICAL
DISK FILER

VOLUME
MANAGER
KERNEL
COMPONENT

I UNIX KERNEL SPACE

I
I JUKEBOX

GRIPPER
DRIVER

WORM
DRIVER

Figure 4 Global Architecture Showing the VM Component

Also, there is little need for a hierarchically struc­
tured file system. Containers provide large, flat
structures where the contents of a document are
uniquely defined by the container identification
and a unique identification within the container.
The document's contents identification is translated
by the storage manager in a path to a directory where
one or more contents files can be written. For multi­
page image documents, the Megadoc system stores
each page as a separate image file in a directory
reserved for the document. This scheme guarantees
locality of reference, avoiding unnatural delays
while browsing a multipage image document.

A container consists of a sequence of file sys­
tems, typically spanning multiple volumes. Due to
the nature of the OFS, no distinction has to be made
between WORM disk file systems and magnetic disk
file systems. The storage manager fills containers
sequentially, up to a configurable threshold for
each file system, allowing some degree of local
updates (e.g., adding an image page to an existing
document). As soon as a container becomes full, a
new file system can be added.

Containers in a system are network-level
resources. A name server holds container locations.
Relocation of the volume set of a container to
another jukebox, e.g., for load balancing, is possible
through system management utility programs and
can be achieved without changing any application's
indexing database.

RetrievAll-The Megadoc Image
Application Framework
Early Megadoc configurations required extensive
system integration work. RetrievAll is the second­
generation image application framework (IAF). The

46

first generation was based on delivery of source of
example applications. However, tracking source
changes appeared to be too big of an issue and ham­
pered the introduction of new base functionality.

In cooperation with European sales organi­
zations, we formulated a list of requirements for a
second-generation IAF. The framework must

l. Allow for standard applications. Standard appli­
cations, i.e., scan, index, store, and retrieve, cover
a wide range of customer requirements in folder
management. Tailoring standard applications
can be accomplished in one day, without pro­
gramming effort.

2. Be usable in system integration projects. The
IAF must provide APis for folder management,
allowing the field to build applications with
functionality beyond the standard applications
by reusing parts of the standard applications.

3. Allow image enabling of existing applications.
RetrievAll should allow the linkage of electronic
image documents and folders with entities, such
as order number or invoice number, in existing
applications. Existing applications need not
be changed and run on the image workstation
using a terminal emulator running at the image
workstation.

4. Accommodate internationalization. All text pre­
sented by the application to the end user should
be in the native language of the user. RetrievAll
should support more than one language simulta­
neously for multilingual countries.

5. Allow upgrading. A new functional release of
RetrievAll should have no effect on the customer­
specific part of the application.

Vol. 5 No. 2 Spring 1993 Dtgttal Technical Journal

6. Provide document routing. After scanning the
documents, RetrievAll should route references
to new image documents to the in-trays of users
who need to take action on the new documents.

Image Documents in
Their Production Cycle
Image documents start as hard-copy pages that
arrive in a mailroom, where the pages are prepared
for scanning. Paper clips and staples are removed,
and the pages are sorted, for example, per depart­
ment. An image batch contains the sorted stacks of
pages. The scanning application identifies batches
by a set of attributes. The scanning process offers
a wide variety of options, including scanning one
page or multiple pages, accepting or rejecting the
scanned image for image quality control, batch
importing from a scanning subsystem, browsing
through scanned pages, and controlling scanner
settings.

The indexing process regroups image pages of an
image batch into multipage image documents. Each
document is identified with a set of configurable
attributes and optionally stored in one or more
folders. Folders also carry a configurable set of
attributes. On the basis of the attribute values, the
document contents are stored in the document's
storage location (container).

Many users of RetrievAll applications use the
retrieve functions of the application only to
retrieve stored folders and documents. Folders and
documents can be retrieved by specifying some of
the attributes. RetrievAll allows the configuration
of query forms that represent different views on the
indexing database. The result of a query is a list of
documents or folders. For documents, the opera­
tions are view, edit, delete, print, show folder, and
put in folder. The Megadoc editor is used to view
and to manipulate the pages of the document
including adding new pages by scanning or import­
ing. For folders, the operations are list documents,
delete, and change attributes.

Document Routing Applications
A RetrievAll routing application is an extension to a
folder management application. A route defines
how a reference to a folder travels along in-trays of
users or work groups.

Systems Management
The following systems management functions sup­
port the RetrievAll package:

D igital Tech nical J ournal Vol. 5 No. 2 Spring 1993

The Megadoc Image Document Management System

• Container management

• Security, i.e., user and group permissions

• Logging and auditing

• Installation, customization, tailoring, and local­
ization

Architecture and Overview
As illustrated in Figure 5, the RetrievAll image appli­
cation framework consists of a number of modules.
Each module is a separate program that performs a
specific function, e.g., scanning or document index­
ing. Each module has an API to control its function­
ality, and some modules have an end-user interface.
Modules can act as building bricks under a control
module. For example, an image document capture
application uses

1. Scan handling, to let an end user scan pages into
a batch.

2. Scanner settings, to allow the user to set and
select the settings for a scanner. The user can
save specific settings for later reference.

3. Batch handling, to allow the end user to create,
change, and delete batches.

These three modules can operate together under
the control of the scan control module and in this
way form a document capture application. The
scan control module can, under control of a main
module, perform the document capture function
in a folder management application.

Modules communicate by means of dynamic data
exchange (DDE) interfaces provided in the
Microsoft Windows environment. Each module,
except the main module, can act as a server, and all
modules can act as clients in a DDE communication.

Main Module Any RetrievAll application has a
main module that controls the activation of major
functions of the application. These functions
include scanning pages into batches, identifying
pages from batches into multipage image docu­
ments and assigning documents to folders, and
retrieving documents and folders. The main mod­
ule presents a menu to select a major function. The
main module activates the control modules of the
major functions in an asynchronous way. For exam­
ple, the main module can activate a second major
function, e.g., retrieve, when the first major func­
tion, e.g., identification, is still active.

47

Multimedia

SCAN
HANDLING

SCANNER
SETIINGS

SCAN
CONTROL

BATCH
HANDLING

MEGADOC
EDITOR

RETRIEVAL
CONTROL

FOLDER
HANDLING

ROUTING
CONTROL

WORK ITEM
HANDLING

ROUTING

Figure 5 RetrievAll Module Overview

Control Modules Each major RetrievAll function
has a control module that can run as a separate
application. For example, when a PC acts as a scan
workstation, it is not necessary to offer all the func­
tionality by means of the main module. Control
modules can be activated as a server through the
DOE API with the main module as client or as a pro­
gram item from a Microsoft Windows program
group.

Server Modules All modules, with the exception
of the main module, act as ODE server modules.

Configuration files hold environment data for
each module. An application configuration file
describes which modules are in the configuration.
The layout of the configuration files is the same as
the WIN.INI file used by the Microsoft Windows
software, allowing the reuse of standard access
functions.

Making an Application
An application can be made by selecting certain
modules. Figure 5 gives an overview of the modules
used for the standard folder management applica­
tion. The installation program, which is part of the
standard applications, copies the appropriate mod­
ules to the target system and creates the configura­
tion files.

Modules can also be used with applications other
than the standard ones. Image enabling an existing
(i.e., legacy) application (see Figure 6), such as an
order entry application where the scanned images of
the orders should be included, entails the following:

48

• The existing application is controlled by a termi­
nal emulator program running in the Microsoft
Windows environment. This terminal emulator
program must have programming facilities with
DOE functions.

• While entering a new order into the system, the
image document representing the order is on
the screen. The function to include the image
can be mapped on a function key of the emula­
tor. Pressing the function key results in a ODE

request to the identification function of the
RetrievAll components. This ODE request passes
the identification of the document (as known in
the order entry application) to the identification
function.

Summary
This paper has provided an overview of the many
components and disciplines needed to build an
effective image document management system. We
discussed the details of the WORM file system, the
storage manager technology, and the image applica­
tion framework. Other aspects such as WORM

peripheral technology, software compression and
decompression of images, and the integration of
facsimile and optical character recognition tech­
nologies were not covered.

From experience, we know that different cus­
tomers have different requirements for image docu­
ment management systems. The same experience,
however, taught us to discover certain patterns
in customer applications; we captured these pat­
terns in the application framework. The resulting

Vol. 5 No. 2 Spring 1993 Digital Technical Jo11rnal

The Megadoc Image Document Management System

SCANNER
SETIINGS

ENCAPSULATED
LEGACY
APPLICATION

INDEX
CONTROL

INDEX
HANDLING

DOCUMENT
HANDLING

MEGADOC
EDITOR

RETRIEVAL
CONTROL

FOLDER
HANDLING

Figure 6 Image Enabling a Legacy Application

Reference framework allows us to build highly customized
applications with low system integration cost and
short time to deployment. Future directions are in
the area of enhanced folder management and inte­
grated distributed work flows.

1. M. Bach, The Design of the Unix Operating Sys­
tem, ISBN 0-13-201757-1 (Englewood Cliffs, NJ:
Prentice-Hall, 1986).

Digital Technical Journal Vol. 5 No. 2 Spring 1993 49

MarkERiley
JamesJ. Feenan,Jr.
John L.Janosik,Jr.

T. K. Rengarajan

The Design of Multimedia
Object Support in DEC Rdb

Storing multimedia objects in a relational database offers advantages over file
system storage. Digital's relational database software product DEC Rdb supports the
storing and indexing of multimedia objects- text, still frame images, compound
documents, audio, video, and any binary large object. After evaluating the existing
DEC Rdb version 3.1 for its ability to insert,Jetch, and process multimedia data, soft­
ware designers decided to modify many parts of Rdb and to use write-once optical
disks configured in standalone drive or jukebox configurations. Enhancements
were made to the buffer manager and page allocation algorithms, thus reducing
wasted disk space. Performance and capacity field tests indicate that DEC Rdb can
sustain a 200-kilobyte-per-second SQL fetch throughput and a 57. 7-kilobyte-per­
second SQI/Services fetch throughput, insert and fetch a 2-gigabyte object, and build
a 50-gigabyte database.

To accommodate the increasing demand for com­
puter storage and indexing of multimedia objects,
Digital supports multimedia objects in its DEC Rdb
relational database software product. This paper
discusses the improvements over version 3.1 and
presents details of the new features and algorithms
that were developed for version 4.1 and are used in
version 5.1. This advanced technology makes the
DEC Rdb commercial database product a precursor
of sophisticated database management systems.

Multimedia objects, such as large amounts of
text, still frame images, compound documents, and
digitized audio and video, are becoming standard
data types in computer applications. Devices that
scan paper, i.e., facsimile machines, are inexpensive
and ubiquitous. Devices that capture and play back
full-motion video and audio are just beginning to
reach the mass market. Capturing these objects for
use within a computer results in many large data
files. For example, one minute of digitized and com­
pressed standard TV-quality video requires approxi­
mately 50 megabytes (MB) of storage!

To date, relational databases have been used
successfully in storing, indexing, and retrieving
coded numbers and characters. Relational algebra
is an effective tool for reorganizing queries to
reduce the number of records, e.g., from 1 million
to 70 records, that an application program must
search to obtain the desired information. Other

50

database features, such as transaction processing,
locking, recovery, and concurrent and consistent
access, are essential to the successful operation of
numerous businesses. Electronic banking, credit
card, airline reservation, and hospital information
systems all rely on these features to query, main­
tain, and sustain business records.

However, although a business might have its
numbers and characters organized, controlled, and
managed in a computer database, maintaining the
paper and film storage media associated with
database records can be costly, both in dollars and
in human resources. Some estimates place the
worldwide data storage business at $40 billion, and
as much as 95 percent of the information is stored
on either paper or film. Currently, businesses such
as insurance, banking, engineering, and medicine
depend on human beings to manage the filing and
retrieval of these extensive paper and film archives.
Human error can result in the loss of paper and
film. Clearly, scanning the paper, storing the infor­
mation in a computer, and making this information
available over computer networks is a better way
to manage paper records. This scheme allows
(1) multiple copies to be distributed at once; (2) a
customer file to be electronically located and
retrieved in seconds, whereas to materialize a
paper folder can take days; and (3) properly
programmed computers to maintain these types

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

of information more efficiently and accurately than
humans can.

The idea of eliminating paper-based storage of
business records in favor of computer storage is
long-standing. However, only recently have techni­
cal developments made it practical to consider cap­
turing, storing, and indexing large quantities of
multimedia objects. Storage robots based on mag­
netic tape or optical disk can be configured in
the range of multiple terabytes (TB) at the low cost
of 45 cents per MB. Central processors based on
reduced instruction sets are getting fast enough to
process multimedia objects without having to rely
on digital signal coprocessors. Processor main
memory can be configured in gigabytes (GB).
Document management systems, which have
thrived over the past few years, deliver computer
scanning, indexing, storage, and retrieval across
local area networks.

Until now, most multimedia objects have been
stored in files. Document management systems
generally use commercial relational database tech­
nology to store the documents' index and attribute
information, where one attribute is the physical
location of the file. This approach has several disad­
vantages: considerable custom software must be
written and maintained to make the system appear
logically as one database; application programs
must be written against these proprietary software
interfaces; a system based on both files and a rela­
tional database is difficult to manage; two backup­
and-restore procedures must be learned and
applied; and complications in the recovery process
can occur, if the database and file system backups
are executed independently.

Notwithstanding these disadvantages, storing
multimedia objects in a relational database offers
several advantages over file system storage.

• Coding an application against one standard
interface structured query language (SQL) to
store object attribute data as well as multimedia
objects is easier than coding against both SQL to
manage attribute data and a file system to store
the multimedia object.

• The database requires only one tool to back up
and monitor data storage rather than two to
maintain the database and the file system.

• The database guarantees that concurrent users
see a consistent view of stored information. In
contrast to a file system, a database provides a

Digital TecbntcalJournal Vol . 5 No. 2 Spri ng 1993

The Design of Multimedia Object Supp ort in DEC Rdb

locking mechanism to prevent writers and read­
ers from interfering with one another in a gen­
eral transaction scheme. However, a file system
does offer locks to prevent readers and writers
from simultaneous file access.

• The database guarantees, assuming that proper
backup and maintenance procedures are fol­
lowed, that no information is lost as a result of
media or machine failure. All transactions com­
mitted by the database are guaranteed. A file sys­
tem can be restored only up to the last backup,
and any files created between the last backup
and the system failure are lost.

In the sections that follow, we present (1) the
results of an evaluation of DEC Rdb version 3.1 for
its ability to insert, fetch, and process multimedia
objects; (2) a discussion of the impact of optical
storage technology on multimedia object storage;
and (3) design considerations for optical disk sup­
port, transaction recovery, journaling, the physical
database, language, and large object data storage
and transfer. The paper concludes with the results
of DEC Rdb performance tests.

Evaluation of DEC Rdb as a
Multimedia Object Storage System
Given the premise that production systems need to
store multimedia objects, as well as numbers and
characters, in databases, the SQL Multimedia engi­
neering team members evaluated the following DEC

Rdb features to determine if the product could sup­
port the storage and retrieval of multimedia
objects:

• Large object read and write performance

• Maximum large object size

• Maximum physical capacity available for storing
large multimedia objects

The DEC Rdb product has always supported a
large object data type called segmented strings,
also known as binary large objects (BLOBs). The evo­
lution from support for BLOBS to a multimedia
database capability was logical and straightfor­
ward. In fact, the DEC Rdb version 1.0 developers
envisioned the use of the segmented string data
type for storing text and images in the database.

In evaluating DEC Rdb version 3.1, we came to a
variety of conclusions about the existing support
for storing and retrieving multimedia objects.
Descriptions of the major findings follow.

51

Multimedia

The DEC Rdb SQL, which is compliant with the
standards of the American National Standards
Institute (ANSI) and the International Organization
for Standardization (lSO), and SQUServices, which
is client-server software that enables desktop com­
puters to access DEC Rdb databases across the net­
work, did not support the segmented string data
type. Note that the most recent SQL92 standard
does not support any standard large object mecha­
nisms.1 Object-oriented relational database exten­
sions are expected to be part of the emerging SQL3
standard.2

The total physical capacity for storing large
objects and for mapping tabular data to physical
storage devices is insufficient. All segmented string
objects have to be stored in only one storage area in
the database. This specification severely restricts
the maximum size of a multimedia database and
thus impacts performance. One cannot store a large
number of X-rays or one-hour videos on a 2- to 3-GB
disk or storage area. Contention for the disk would
come from any attempt to access multimedia
objects, regardless of the table in which they are
stored. Although multiple discrete disks can be
bound into one OpenVMS volume set, thereby
increasing the maximum capacity, data integrity
would be uncertain. Losing any disk of the volume
would result in the loss of the entire volume set.

The maximum size of the database that DEC Rdb
can support is 65, 535 storage areas, where each area
can span 232 - 1 pages. That translates to 256 tera­
pages (i.e., 256 X 1012 pages) or 128 petabytes (PB)
(i.e., 128 X 1015 bytes). At a penny per megabyte, a
128-petabyte storage system would cost 1.28 billion
dollars!

The largest BLOB that DEC Rdb can maintain is 275
TB (i.e ., 275 X 1012 bytes). A data storage rate of
1 megabyte per second (MB/s) for motion video and

DATABASE KEY LOCATES
FIRST PAGE OF BLOB

•
BLOB POINTER

PAGE 1 TO BLOB
PAGE2

BLOB
PAGE2

audio translates into 8.7 years of video. However, as
mentioned previously, the maximum size and the
total number of objects that can be stored are lim­
ited. As part of system testing, we successfully
stored and retrieved a 2-GB object in a DEC Rdb data
field.

DEC Rdb uses a database key to reference individ­
ual segments stored in database pages. A BLOB
belongs to only one column of one row of a rela­
tion. The database key value that locates the first
segment is stored in the column of a table defined
to represent the BLOB data type. DEC Rdb imple­
ments segmented strings as singly linked lists of
segments. Therefore, version 3.1 must read a seg­
ment in order to find the next segment. This pro­
cess has two disadvantages: (1) random positioning
with a BLOB data stream is extremely slow, and (2)
BLOB pages cannot be prefetched asynchronously.
Figure 1 illustrates a DEC Rdb version 3.1 singly
linked list segmented string implementation.

BLOB data transfer performance of DEC Rdb ver­
sion 3.1 was promising. We were able to code a load
test that sustained 65 kilobytes per second (kB/s); a
fetch test sustained 125 kB/s. To put these measure­
ments in perspective, DEC Rdb is capable of insert­
ing more than one A4-size (210 millimeters [mm]
by 297 mm, i.e., approximately 8.25 by 11.75 inches)
scanned piece of paper per second and capable of
fetching more than two A4-size pieces of paper per
second. The test was conducted by writing and
reading 50-kB memory data buffers to and from
magnetic storage areas defined by the DEC Rdb soft­
ware. This experiment ignores the overhead of net­
work delays and compression.

DEC Rdb version 3.1 can write multiple copies
of BLOBs, one to the target database storage area
and one to each of the database journal files. The
journal files provide for transaction recovery and

POINTER
TO BLOB
PAGEN -

BLOB
PAGEN 0

Figure 1 Rdb Version 3.1 Singly Linked List Segmented String Implementation

52 Vol. 5 No. 2 Spring 1993 Dtgttal Technical Journal

system failures, such as disk drive failures. Database
journal files tend to be bottlenecks, because every
data transaction is recorded in the journal.
Therefore, writing large objects to journal files dra­
matically impacts both the size of the journal file
and the 1/0 to the journal file.

The volume of storage required for most modest
multimedia applications can be measured in tera­
bytes. A magnetic disk storage system 1 TB in size
is expensive to purchase and maintain. An alterna­
tive storage device that provided the capacity at a
much lower cost was required. We investigated the
possibility of using Digital's RV20 write-once opti­
cal disk drive and the RV64 optical library ("juke­
box") system based on the RV20 drives. We quickly
rejected this solution because the optical disk
drives were interfaced to the Q-bus and UNIBUS
hardware as tape devices. Since relational databases
use tape devices for backup purposes only and not
for direct storage of user data, these devices were
not suitable. Note that physically realizing and
maintaining a large data store is a problem for both
file systems and relational databases.

DEC Rdb version 3.1 does not support large
capacity write once, read many (WORM) devices,
which are suitable for storing large multimedia
objects. Version 3.1 has no optical jukebox support
either.

Storage Technology Impact
When we evaluated DEC Rdb version 3.1, a I-TB mag­
netic disk farm was orders of magnitude more
expensive than optical storage. Large format 12- or
14-inch (i.e., 30.5- or 35.6-centimeter) WORM opti­
cal disks have a capacity of 6 to 10 GB. The WORM

drives support removable media. These drives can
be configured in a jukebox, where a robot transfers
platters between storage slots and drives. A fully
loaded optical jukebox, which includes optical disk
drives and a full set of optical disk platters, of
approximately I-TB capacity costs about $400,000,
i.e., $0.40 per MB. By comparison, Digital's RABI
magnetic disk drive, for example, has a capacity
of 500 MB and costs $20,000. Thus, to store 1 TB of
data would require 2,000 RABI disk drives at a total
cost of $40 million, i.e., $40.00 per MB!

How big is one terabyte? Assume, conservatively,
that a standard business letter scanned and com­
pressed results in an object that is 50 kB in size.
Therefore, 1 TB can store 20 million business let­
ters, i.e., 40,000 reams of paper at 500 sheets per
ream. A ream is approximately 2 inches (51 mm)

D igital Technical Journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

high, so 1 TB is equivalent to a stack of paper 80,000
inches or 6,667 feet or 1.25 miles (2 kilometers)
high! The total volume of paper is 160 cubic yards
(122 cubic meters). A I-TB optical disk jukebox is
about 3 to 4 cubic yards (2.3 to 3 cubic meters).
Assuming TV-quality video, 1 TB can store 308
hours or approximately 12 days of video. Full­
motion video archives suitable for use in the broad­
cast industry require petabytes of mass storage.

The gap between affordable and practical config­
urations of optical disk jukeboxes and magnetic
disk farms has closed considerably since late 1992.
Juxtaposing equal amounts (700 GB) of magnetic
and optical storage, including storage device inter­
connects, installation, and interface software,
reveals that magnetic disk storage is about five
times more expensive than optical storage. The
major disadvantage of optical jukebox storage is
data retrieval latency related to platter exchanges.
This latency, which is approximately 15 seconds,
varies with the jukebox load and how data is
mapped to different platters.

Mass storage technology, including device inter­
connects, combines different classes of storage
devices into storage hierarchies. Storage manage­
ment software continues to be a challenging aspect
of large multimedia databases.

To provide 1 TB of mass storage capacity for rela­
tional database multimedia objects at reasonable
cost, we conducted a review of third-party optical
disk subsystems, hardware, and device drivers for
VAX computers running the OpenVMS operating
system. A characterization of the available optical
disk subsystems revealed three basic technical alter­
natives.

1. Low-level device drivers provided by the drive
and jukebox manufacturers.

2. Hardware and software that model the entire
capacity of an optical disk jukebox as one large
virtual address space.

3. Write-once optical disk drives interfaced as stan­
dard updatable magnetic disks. The overwrite
capability is provided at either the driver or the
file-system level, where overwritten blocks are
revectored to new blocks on the disk. For exam­
ple, consider a file of 100 blocks created as a sin­
gle extent on a WORM device. When requested to
rewrite blocks 50 and 51, the WORM file system
writes the new blocks onto the end of all blocks
written. The system also writes a new file header
that contains three file extents: blocks O to 49

53

Multimedia

stored in the original extent; blocks 50 to 51
stored in the new extent; and blocks 52 to 100
stored as the third extent. Obviously, files that
are updated frequently are not candidates for
WORM storage. However, immutable objects,
such as digitized X-rays, bank checks, and health­
benefit authorization forms, are ideal candidates
for WORM storage devices.

As a result of this investigation, we decided that
using write-once optical devices, interfaced as stan­
dard disk devices, was the best solution to provide
optical storage for multimedia object storage. This
functionality is being met with commercially avail­
able optical disk file and device drivers.

In the future, WORM devices may be superseded
by erasable optical or magnetic disks. However,
experts expect that WORM devices, like microfilm,
will continue to be useful for legal purposes.

Design Considerations
The tamperproof nature of WORM devices is an
asset but causes special problems in database sys­
tem design. The evaluation of DEC Rdb version 3.1
indicated that several features needed to be added
to the DEC Rdb product to make it a viable multime­
dia repository. This section describes the design of
the new multimedia features included in DEC Rdb
versions 4.1 through 5.1.

Mass Storage
DEC Rdb version 4.1 supports WORM optical disks
configured in standalone drive or jukebox configu­
rations. DEC Rdb permits database columns that
contain multimedia objects to be stored or mapped
to either erasable (magnetic or optical disk) or
write-once (optical disk) areas. The write-once
characteristic can be set and reset to permit the
migration of the data to erasable devices. No
changes to application programs are required to
use write-once optical disks, including jukeboxes.

The main design goals for WORM area support
were to

• Reduce wasted optical disk space by taking into
account the write-once nature of WORM devices

• Not introduce DEC Rdb application program­
ming changes for WORM areas

• Maintain the atomicity, consistency, isolation,
and durability (ACID) properties of transactions
for WORM devices

54

• Maintain comparable performance, allowing for
hardware differences between optical and mag­
netic devices

DEC Rdb uses the optical disk file system to cre­
ate, extend, delete, and close database storage files
on WORM devices. Although this approach uses the
block revectoring logic in the optical disk file sys­
tem, minimal space is wasted. When writing blocks
to WORM devices, DEC Rdb explicitly knows that
blocks can be written only once and bypasses the
revectoring logic in the optical disk file system.

Nonetheless, DEC Rdb software could waste
space in two major ways. First, when DEC Rdb cre­
ates a storage area on an erasable medium (e.g.,
a magnetic or erasable optical disk), the database
pages are initialized to contain a standard page for­
mat, with page numbers, area IDs, checksums, etc.
Preinitialized database pages help to determine cor­
rupted database pages. However, preinitializing
database pages on write-once media makes little
sense. The second way in which DEC Rdb could
waste write-once optical disk pages is to use stor­
age allocation bit maps for space management
(SPAM). SPAM pages are used to keep track of free
and used pages. As records are added to and deleted
from the database, the SPAM bit maps are constantly
updated. SPAM pages are maintained within each
database file. With write-once devices, a page can
be used only once. Again, it makes no sense to
update SPAM pages for write-once media.

To eliminate needlessly wasting space on write­
once media, DEC Rdb does not preinitialize WORM

pages. As a general rule, WORM areas should not
contain any updatable data structures. DEC Rdb
maintains WORM storage space allocation in the
database root file. The database root file should
always reside on a magnetic disk, because the root
file is frequently updated and magnetic disks yield
higher performance. The clusterwide object man­
ager mechanism ensures that the pointer to the end
of the written area is consistent across a cluster.

SPAM pages, although disabled for write-once
areas, are in fact allocated anyway. The reason
for allocating SPAM pages in a write-once area is to
provide the ability to migrate the contents of the
storage area to an erasable device. The SPAM pages
simply need to be rebuilt to reflect the space uti­
lization at the point of conversion.

This write-once characteristic was the basis for
several enhancements to the buffer manager and
page allocation algorithms. Given that a free WORM

page has never been written to, the buffer manager

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

simply materializes an initialized buffer in main
memory for write operations without having to
first read the page from disk. In the case of page
allocation for magnetic disks, DEC Rdb must scan
SPAM pages in search of enough free storage space
to satisfy a write operation. The scanning algorithm
is much simpler for write-once areas; to store new
records, DEC Rdb allocates one more page at the
end of the written portion of the area to a process.
DEC Rdb maintains such allocated pages in a queue
called the marked WORM page queue on a per­
process basis. Whenever a WORM page is written
to disk, that page is taken off the marked WORM
page queue. An attempt to store a record checks
the queue before allocating new WORM pages to
storage. Facilities exist to allocate many WORM
pages in one operation, thus minimizing the num­
ber of writes to the root file.

By explicitly taking into account the write-once
characteristic of the device, DEC Rdb greatly
reduces wasted space, keeping optical disk read
and write performance high.

Transaction Recovery
To understand the discussion of transaction recov­
ery, the concepts offirst- and second-class records
must be understood. Both alphanumeric records
and BLOB segments are stored in database pages.
Alphanumeric records are first-class records and
thus have identities in tables; these records are the
rows. First-class records are required to be on a
medium that permits update (either magnetic disk
or erasable optical disk). All relation tuples are first­
class records. Second-class records, such as BLOBs,
have no identities of their own. BLOBs can exist only
within the domain of an alphanumeric record and
are pointed to by first-class records. Second-class
records may be located in WORM areas.

Multimedia objects can be stored as second-class
records in either write-once or erasable areas.
However, due to transaction recovery constraints,
the rows of relations must be stored in magnetic
disks as first-class records.

If an update transaction against the database is
aborted, then the database must restore the state of
all database areas to pretransaction state. Regard­
less of the transaction recovery scheme employed,
e.g., hybrid undo-redo, the effects of an uncom­
mitted transaction to write-once media may have to
be undone.

By definition, a write transaction on write-once
media, once complete, can never be undone. In

Dtgttal Tecbntcal Journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

cases where a transaction fails and the transaction
has written data to a write-once area, DEC Rdb
employs a logical undo operation. This operation
de-references the database key that points to the
BLOB data written as part of the failed transaction.
An example helps to illustrate how the logical undo
operation works.

1. Consider row R of table T, which contains a col­
umn defined as data type BLOB.

2. The BLOB storage map indicates that the large
objects are stored in a write-once area.

3. A process starts a transaction and updates the
row storing a BLOB in the write-once area.

4. For some reason the transaction aborts.

5. Recovery nullifies the value of the database key
that locates the first page of the BLOB.

The write-once pages can never be reused and
will never again be allocated. Nothing points to or
references data written as part of an aborted
transaction.

This transaction recovery scheme introduces the
interesting phenomenon of WORM holes. Consider
the following scenario:

• A write-once area has the first 106 pages written
and allocated.

• Process X starts a transaction that writes a BLOB
segment to the write-once area.

• Page 107 is allocated for process X.

• Later in time, process Y starts a transaction to
store a BLOB in the same write-once area.

• Process Y causes pages 108 to 120 to be allo­
cated, data is written, the transaction commits,
and process Y disconnects from the database.

• At this point, process X decides to roll back its
transaction.

• Page 107 remains in a preinitialized state.

Page 107 can never be allocated to store BLOB data.
Recall that DEC Rdb manages space on write-once
devices by maintaining an end-of-area pointer to
keep track of pages that have been written. Zero­
filled pages that will never be allocated are called
WORM holes. WORM holes are interesting because
DEC Rdb utilities, such as verify, expect to find all
allocated pages in a standard format. The utilities
have been modified to ignore empty pages on
write-once areas.

55

Multimedia

Journaling Design Considerations
An effective database management system guar­
antees the recovery of a database to a consistent
state in the event of a major system failure, such
as media failure. Hence, full and incremental back­
ups must be performed at regular intervals, and
the database must record or keep a journal file of
transactions that occur between backups. In DEC
Rdb, the after image journal (AIJ) file records all
transactions against the database since the last
backup. Also, to recover from a system failure, the
database must keep track of all outstanding or
pending transactions. The recovery unit journal
(RUJ) file records the state and data associated with
all pending transactions.

Journal files are heavily utilized in a database
management system. Contention for the journal
files comes from every process that is updating
the database. To be completely recoverable, the
database management system must record BLOB
data, as well as alphanumeric data, to both the AIJ

and the RUJ files. Because multimedia objects are
large, eliminating the need to write these objects to
the journal files is desirable. The double-write trans­
action negatively impacts the performance of the
application storing the object and taxes the journal
file, one of the most burdened resources in the
database.

As discussed in the Transaction Recovery sec­
tion, DEC Rdb uses logical undo operations to undo
aborted transactions. In addition to the minimal
processing required to de-reference a database key
pointing to the WORM area pages, DEC Rdb automat­
ically disables RUJ log writes for WORM area records.
This is another advantage of using WORM devices
for multimedia objects.

Recording multimedia objects in the AIJ file is
not so straightforward. DEC Rdb uses the AIJ file
for media recovery, as well as for transaction
recovery. By definition, keeping a media recovery
journal forces twice the number of 1/0 operations,
each to a separate device. DEC Rdb must write
the multimedia object to the storage area desig­
nated for the multimedia object and write a copy of
the object to the AIJ file. If the primary storage
device that contains the object fails, the database
administrator can apply the last full backup of
the storage area, followed by any subsequent incre­
mental backups, and roll forward through the
AIJ journal file to recover the data. If a multi­
media database is to be completely recoverable
and consistent, then multimedia objects must be

56

recorded in the AIJ file. Since they can never be
erased, WORM optical disks might be the best
devices to write an object (or a journal file) to. Even
though a jukebox can misfeed and permanently
damage the media, disks in a jukebox can be disk
shadowed. The trade-off is doubling the 1/0 versus
risking data integrity. Rather than legislate a policy,
DEC Rdb permits applications to disable AIJ logging
for BLOBs, thus transferring the risk to individual
applications.

Database Physical Design Considerations
The original design of segmented strings specified
a singly linked list, where the segments were
written one at a time, as shown in Figure I. When
writing a new segment, the previous segment
had to be updated with a pointer value that identi­
fied the location of the new segment. For example,
to store a BLOB with two segments Rl and R2,
the old algorithm stored Rl, stored R2, and then
modified Rl to point to R2. Although this algorithm
does not waste space on a magnetic disk, it does
waste space on write-once optical disk. Segment
Rl must be rewritten to disk with a pointer to
segmentR2.

If we impose the dependency between the two
stores that R2 must be stored before Rl, the store
dependency for BLOBs becomes a reverse order
of segments. Storing segments in reverse order
requires buffering all segments of a multimedia
object. Whereas buffering the entire object in main
memory may be feasible for small multimedia
objects, main memory is not large enough to buffer
audio and video data objects. The singly linked
list method that DEC Rdb used prior to version 4.1
is not well suited for WORM devices. Therefore, we
redesigned the format of BLOBs in WORM areas to
eliminate the need to buffer large amounts of data.

The new design replaces the singly linked list
with BLOB segment pointer arrays and BLOB data
segments. The segment pointer array maintains
a list of database keys that locate each segment, in
order, for a BLOB, as illustrated in Figure 2. Because
segment pointer arrays are stored as a singly linked
list, the pointer arrays can become large.
Application data is stored in BLOB data segments.
The new method buffers and writes the BLOB seg­
ment pointers to disk after assigning the segmented
string to a record.

Besides eliminating the waste problem for write­
once devices, the segment pointer array has other
advantages. DEC Rdb reads the pointer array into

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DATABASE KEY LOCATES
FIRST PAGE OF BLOB
THAT CONTAINS POINTER
ARRAY LOCATING THE
OTHER BLOB PAGES

t
POINTER TO SEGMENT 1

POINTER TO SEGMENT 2

POINTER TO SEGMENT 3

The Design of Multimedia Object Support in DEC Rdb

DATABASE KEY

DATABASE KEY

DATABASE KEY

BLOB
PAGE3

BLOB
PAGE2

BLOB
PAGE 1

DATABASE KEY
POINTER TO SEGMENT N t-------.----.

ARRAY TERMINATOR
BLOB
PAGEN

Figure 2 Rdb Version 4.2 Pointer Array Segmented String Implementation

memory when an application accesses a BLOB. DEC
Rdb can, therefore, quickly and randomly address
any segment in the BLOB. Also, DEC Rdb can begin
to load segments into main memory before the
application requests them. This feature benefits
applications that sequentially access an object,
such as playing a video game.

Storage Map Enhancements for BLOBs
Designers addressed several issues related to stor­
age mapping. The major problems solved involved
capacity and system management, jukebox perfor­
mance, and the failover of full volumes.

Capacity and System Management DEC Rdb can
map user data, represented logically as tables, rows,
and columns, into multiple files or storage areas.
Besides increasing the amount of data that can
be stored in the database, spreading data across
multiple devices reduces contention for disks and
improves performance. However, as mentioned in
the section Evaluation of DEC Rdb as a Multimedia
Data Storage System, prior to DEC Rdb version 4.1,
only one storage area could be used for storing
BLOB data. All BLOB columns in the database were
implicitly mapped into the single area, which
severely limited the maximum amount of multi­
media data that could be stored in DEC Rdb.

Prior to new multimedia support for BLOBS, DEC
Rdb restricted the direct storage of a particular
table column to one DEC Rdb storage area (i.e., file).
This partitioning control is accomplished by means
of the DEC Rdb storage map mechanism, as shown
in the following code example:

Digital Technical]ournal Vol. 5 No. 2 Spring 1993

Create storage map BLOB_MAP
Store Lists

in RESUME_AREA
for (PLACEMENT_HISTORY,

CANDIDATES.RESUME)
in PHOTO_AREA

for (CANDIDATES.PICTURE)
in RDB$SYSTEM;

This code directs the BLOB data from the table
PLACEMENT_HISTORY and the column RESUME of
the table CANDIDATES to be stored in the area
RESUME_AREA and the BLOB column PICTURE of
the table CANDIDATES to be stored in the area
PHOTO _AREA. The remaining BLOB data in the
database is stored in the default RDB$SYSTEM area.

Restricting the storage of all BLOBs across the
entire database schema to a single file or database
area was clearly undesirable. The size of the area
would be limited to the largest file that could be
created by the OpenVMS operating system and the
mass storage devices available. The limited map­
ping of one BLOB area mapped to one disk
can be circumvented by using the OpenVMS sys­
tem's Bound Volume Set mechanism. This mecha­
nism allows n discrete disks to be bound into one
logical disk. DEC Rdb can then create a single stor­
age area on the logical disk that spans the bound
set of disks.

However, although the volume set mechanism
solves the problem oflimited area mapping, serious
limitations exist in the database system administra­
tion and recovery processes. All database-related
facilities operate at the granularity of a database
storage area. Thus, if one disk in a IO-disk volume
set is defective, DEC Rdb would have to restore all

57

Multimedia

10 disks. Not only does restoring data on function­
ing disks waste processing time, but during the
restore operation, applications are stalled for access
at the area level. This situation introduces concur­
rency problems for on-line system operations.

DEC Rdb version 4.1 and successive versions
solve the capacity problem by (1) permitting the
definition of multiple BLOB storage areas, (2) bind­
ing discrete storage areas into storage area sets, and
(3) providing the ability to map or to vertically
partition individual BLOB columns to areas or area
sets. Applications can set aside a disk or a set of
disks for storing employee photographs, X-rays,
video, etc. The alphanumeric data and indexes
can be stored in separate areas as well. Figure 3
depicts the employee photograph column being
mapped to the EMP _PHOTO_l, EMP _PHOT0_2, and
EMP _PHOT0_3 storage area set. All alphanumeric
data in the table EMPLOYEES is assumed to be
mapped to storage area A.

Coding this example results in

Create storage map BLOB_MAP
Store Lists

i n (EMP_PHOT0_1,EMP_PHOT0_2,
EMP_PHOT0_3)

for (EMPLOYEES.PHOTOGRAPH)
in RDB$S YSTE M;

This code directs the BLOB data, i.e., the column
PHOTOGRAPH from the table EMPLOYEES, to be

TABLE: EMPLOYEES

\

NAME ADDRESS ... PHOTOGRAPH

DICK 456 IMAGE OBJECT

FRED 123 IMAGE OBJECT

.
MARY 789 IMAGE OBJECT

\
, ALPHANUMERIC DATA / , BLOBS I

\ MAPPED TO / \ MAPPED ,'
' SEPARATE 1 'TO AREA '
\ STORAGE ,' \ SET /

\ AREA / \ ,'
\ I \ I

\ I \ I
\ I

\ I
\ I

\ I
\ I

RDB STORAGE
AREA A

"

ROB STORAGE
EMP_PHOT0_1

ROB STORAGE
EMP _PHOT0_2

RDBSTORAGE
EMP _PHOT0_3

STORAGE
AREA
SET

Figure 3 DEC Rdb BLOB Storage Area Sets

58

stored in the three specified areas EMP _PHOTO_l,
EMP _PHOT0_2, and EMP _PHOT0_3.

The ability to define multiple BLOB storage areas
and to bind discrete areas into a storage set elimi­
nates the BLOB storage capacity limitation in DEC
Rdb. Consider the storage problem of storing 1 MB
of medical X-rays as part of a patient record. Prior to
DEC Rdb version 4.1, the limited one-BLOB storage
area could store approximately 2,000 X-rays on a
2-GB disk device. The features included in version
4.1 allow the creation of a DEC Rdb storage area set
that spans multiple disk devices. Also, adding stor­
age areas or disks to a storage area set can expand
the capacity initially defined for the column.

Jukebox Performance Problems When a storage
area set is defined using the SQL storage map state­
ment, DEC Rdb implements a random algorithm
to select a discrete area or disk from the set to store
the next object. Since multiple processes access
multimedia objects across the entire set, a random
algorithm that evenly distributes data across the
disks in the area set reduces contention for any
one disk.

Using a random algorithm to select from a set
of platters in a jukebox is extremely inefficient.
A jukebox comprises one to five disk drives with 50
to 150 shelf slots where optical disk media is stored.
A storage robot exchanges optical disk platters
between drives and storage slots. As described ear­
lier, a full platter exchange-spin down the platter
currently in the drive, eject the platter, insert a new
platter, spin up the new platter-takes approxi­
mately 15 seconds. Each optical disk surface, i.e.,
side of a platter, is modeled as a discrete disk to the
OpenVMS operating system. Consider, for example,
ten storage areas defined on optical disks in the
jukebox and mapped into a storage area set. All
patient X-rays from a single table in the database are
to be stored in this area set. Each new X-ray inserted
in the database causes DEC Rdb to randomly select a
disk surface in the jukebox, which probably results
in a platter exchange. Consequently, each X-ray
insertion takes 15 seconds!

The solution to the jukebox performance prob­
lem was not to eliminate random storage area selec­
tion, which works successfully with fixed-spindle
devices. Rather, the solution was to accommodate
an alternate algorithm that sequentially filled the
disks in an area set. Using DEC Rdb, applications can
specify random or sequential loading of storage
area sets as part of the storage map statement.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

Contention for a single optical disk in a jukebox is
a far more desirable situation, with respect to
latency, than causing one platter exchange per
object stored.

When multiple users simultaneously issue
requests to read multimedia objects stored in a
jukebox, long delays occur, whether the storage
area is loaded sequentially or randomly. Using a
transaction monitor to serialize access to the
database helps eliminate jukebox thrashing and
improve the aggregate performance of the database
engine.

Failover of Full Volumes The introduction of
storage area sets gave rise to another problem:
What happens when one area in the set becomes
full? Normally, within the DEC Rdb environment,
disk errors that result from trying to exceed the
allocated disk space are signaled to the application
so that the transaction can be rolled back (dis­
carded). When related to storage area sets, how­
ever, the error is just an indication that a portion of
the disk space allocated to the column has been
exhausted and that processing should continue.
Also, since multimedia objects tend to be exceed­
ingly large, great amounts of data may have already
exhausted cache memory and been written back to
the WORM media, even though the database trans­
action has not committed. Handling such an error
by signaling to the application and expecting the
application to roll back and retry the transaction
would result in the waste of a large number of
device blocks that have already been burned. Thus,
DEC Rdb had to implement a new scheme.

DEC Rdb now implements full failover of an area
within the area set. Thus, when an area becomes
full, DEC Rdb traps the error, selects a new area in
the set, and writes the remaining portion of the
BLOB being written to the new area. This area
failover works whether the storage allocation is
random or sequential. In addition, the area that
is now full is marked with the attribute of full, and
the clusterwide object manager of DEC Rdb main­
tains this attribute consistently throughout the
cluster. Consequently, writers to the database will
consider the area unavailable for future BLOB store
operations. Further, the DEC Rdb database manage­
ment utilities can remove the attribute if additional
space is made available to the database area (e.g., if
DEC Rdb moves BLOBs from area A to another copy
of area A that resides on a device with twice the
capacity).

Dtgttal Technical Journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

Language Design Considerations
SQL, the ISO/ANSI standard relational database
structured query language, is well suited to
expressing queries against alphanumeric data
yet hardly begins to address the needs of multi­
media objects. Putting aside the fact that sampled
data (i.e., a scanned image) is more difficult to
query than coded data (e.g., text coded in ASCII),
SQL cannot provide data compression and ren­
dition capabilities for multimedia objects.
Multimedia object processing is better suited to
a language like C or C+ + . Ideally, SQL would sup­
port the ability to define objects and to associate
methods with those objects. SQL3 is a new version
of the SQL standard that the standards organizations
are just beginning to work on. SQL3 contains the
mechanism to define abstract data types and to exe­
cute external procedures as part of SQL statements.
However, SQL3 will not become a standard for four
to five years.

As discussed previously, DEC Rdb SQL lacks
support for the segmented string or BLOB data
type that was available in the Rdb relational engine.
A new DEC Rdb SQL data type, LIST OF BYTE
VARYING, was designed based on the native Rdb
segmented string data type. The data access mecha­
nism for the LIST OF BYTE VARYING data type is
a list cursor, which operates like a table cursor­
open the cursor, fetch segments of a BLOB, and
close the cursor. This new data type with asso­
ciated access mechanism was also added to
SQUServices. SQUServices software enables remote
clients on a network, such as personal com­
puters, to attach to remote DEC Rdb databases.
The ability to scroll or to randomly position the
list cursor allows positioning at a particular data
segment within the multimedia object stream with­
out having to physically read through the entire
data stream.

Although applications can program directly to
list cursors, this interface was cumbersome and did
not offer any object typing or processing. The list
cursor mechanism does not present the straightfor­
ward byte-stream interface that is common in most
file systems. Applications want to store objects,
such as images and compound documents, not
BLOBs. Data compression was another important
consideration. Multimedia objects should be com­
pressed on the client side of the network; then,
compressed bits are transferred through the net­
work, servers, and disks. The objects should be
decompressed when they are to be rendered for

59

Multimedia

display. Finally, the enormous size of multimedia
objects saturates main memory resources on per­
sonal computers, so application developers must
use disk storage to buffer as well as persistently
store multimedia objects.

The limitations of the UST OF BYTE VARYING data
type and the list cursor data access mechanism led
to the development of multimedia object exten­
sions. SQL Multimedia is an object library that oper­
ates against SQL and SQUServices. SQL Multimedia
allows application developers to classify or type
multimedia data types (e.g., IMAGE, TEXT, and
COMPOUND_DOCUMENl) and to specify the data
format within a type or class. Because no widely
agreed upon multimedia object encodings or for­
mats exist, we decided not to limit the types of data
encoding or formats that could be stored in the
database. For example, the database can store an
image in Digital Document Interchange Format
(DDIF) or Tagged Image File Format (TIFF). The
option of defining a canonical encoding and format
for each object class was too restrictive.

In both the SQL and the SQUServices versions,
the SQL Multimedia insert and fetch calls operate
within the bounds of a transaction. All multimedia
objects enjoy the same rights and privileges as
alphanumeric data types in the database, with
respect to concurrent access, recovery, etc.

A process that attaches to a DEC Rdb database
can specify that an authorization identifier or a
default identifier be created and referenced by the
"RDB$HANDLE" symbolic label. A transaction can
be started explicitly or a default transaction begins.
To operate within the bounds of the default trans­
action, the SQL Multimedia routines required
access to the default authorization identifier
RDB$HANDLE. A new SQL compile time switch, for
the SQL module language and precompilers, causes
this identifier to be defined in a global address
space. The SQL Multimedia routines can thus access
the value of the identifier. If a distributed transac­
tion identifier is not passed to the SQL Multimedia
routines, the SQL Multimedia operation is executed
using the default transaction.

SQL Multimedia improves the cumbersome list
cursor interface by supporting the following object
sources and destinations:

• The entire object sourced from or deposited to
main memory

• The object buffered through main memory

• A file

60

SQL Multimedia handles file 1/0 operations
across many different software environments,
including the MS-DOS, Windows, Macintosh,
ULTRIX, and OpenVMS operating systems. SQL
Multimedia preserves file attributes on insert oper­
ations. For example, the Macintosh file system's
resource fork, which contains the name and ver­
sion of the application to be launched when the
object is accessed by a user, is preserved. If another
Macintosh user fetches the object to a local file,
then SQL Multimedia restores the file including
the resource fork. Assuming the second user has
the same application, the user can now access
and manipulate the multimedia object, e.g., a com­
pound document or a QuickTime video file. Rules
and default file organizations exist for the case
where a user inserted a file from an OpenVMS
system and another user causes the object to be
fetched to a different client file system, say on a
PC. Application programmers can direct SQL
Multimedia to override the default file attributes.

Although SQL Multimedia handles disparate file
system 1/0, at present, it does not convert multime­
dia object formats or encodings. Images captured
and stored in DEC Rdb in DDIF are delivered to each
client in DDIF.

SQL Multimedia makes it easy for application
programmers to insert and fetch compound docu­
ments to and from the database. The buffered
1/0 data stream conforms to Digital's Compound
Document Architecture (CDA) stream management
interface. Fetching a compound document using
the buffered 1/0 interface, SQL Multimedia returns
the address of a procedure entry mask, a data buffer
pointer, and the buffer length. These returned argu­
ments can be passed to the CDA viewer in the
DECwindows environment. The viewer then repeat­
edly calls the SQL Multimedia buffer-fill procedure
until the object has been transferred to the viewer
and displayed.

In addition, SQL Multimedia provides object­
specific processing for image and text objects. Disk
image objects formatted according to DDIF and
main memory objects formatted according to
Digital's image toolkit DECimage Application
Services (DAS) can be processed on either fetch
or insert operations. SQL Multimedia leverages
the capabilities of DAS software to provide image
processing, e.g., compression, decompression,
scaling, and dithering. When an image is inserted
or fetched, SQL Multimedia object processing
arguments permit the specification of image

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

process steps and parameters. The DAS toolkit
supports Comite Consultatif Internationale de
Telegraphique et Telephonique (CCITT) compres­
sion (a ubiquitous compression standard for fac­
simile machines) for bitonal images and Joint
Photographic Experts Group (JPEG) compression
(an ISO/ANSI standard) for multispectural images.

To improve application performance, SQL
Multimedia can generate multiple rendered ver­
sions of an image that are stored in a single database
field. Therefore, a user can store the original image,
retaining its fidelity, and also store a miniature
version of the image for fast access or browsing pur­
poses. For example, consider a personnel applica­
tion where 90 percent of the fetches for employee
photographs are to be displayed in a passport-size
format on an employee information form. If
the capture portion of the application stored the
original employee photograph and directed SQL
Multimedia to generate and store a passport-size
rendered version in addition to the original, at fetch
time, the 1/0 operations required to transmit the
image to the employee form would be reduced.
Storing multiple rendered versions would also elim­
inate using CPU time to scale the fetched image.

System Testing and Evaluation
After the multimedia engineering of the DEC Rdb
product was complete, we conducted several test­
ing activities to determine the performance and
capacity boundaries. The performance work pre­
sented is not complete but is offered as an indica­
tion of the multimedia object access capabilities of
the DEC Rdb software.

In the debit credit domain, the Transaction
Processing Performance Council (TPC) tests pro­
vide a standard procedure to measure the perfor­
mance of one database as compared to another.
However, no standard multimedia database per­
formance tests exist. The performance of a DEC
Rdb multimedia database is influenced by many
variables, including the processor, mass storage
medium, database design, object sizes, and work­
load. The performance data presented in this paper
should be used only as a guide.

Performance Testing
For performance testing we used a VAX 6360 pro­
cessor (relatively slow by today's standards) config­
ured with 128 MB of main memory, an HSC50
storage interconnect processor with 16 RA 70

Digital Technical Journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

magnetic disks, 6 RA92 magnetic disks, and 2 ESE20
solid-state disks. The total mass storage available
for building databases was 10 GB. We evaluated
the SQL performance of DEC Rdb version 4.2 Field
Test 1 (FTl) and SQL Multimedia version 1.0 Field
Test 2 (FT2), and generated the SQI./Services remote
client data fetch and insert performance data for
DEC Rdb version 4.1 Field Test 4 and SQL Multimedia
version 1.0 FT2.

This performance data should be used as a guide­
line, because the field-test software contained
implementation errors that affected performance
but were corrected in the released products. As pre­
sented in Table 1, using the released version of DEC
Rdb, we are able to sustain a 300-kB/s throughput
from a magnetic disk DEC Rdb storage area, across
an Ethernet network, to a DECstation 5240 work­
station. This test demonstrates fetching a software
motion pictures (SMP) video clip out of the data­
base for display on an ULTRIX-based workstation.3
Although the video was sampled at 15 frames per
second, we can play back the video clip at 20
frames per second! The performance measured for
an SQUServices fetch was 5T7 kB/s, as shown in
Table 2. We expect to conduct similar performance
tests on a DEC 7000 AXP processor.

The performance test inserted and fetched 50-kB
records. Fifty kilobytes is a conservative estimate of
a compressed A4-size piece of paper, probably the
most prevalent object to be stored in multimedia
databases. For both the distributed SQI./Services
client and the local SQL interface, 50-kB main mem­
ory buffers were the sources and destinations for
the inserts and fetches.

We built several 50-MB databases, varying data­
base design parameters such as page and buffer
sizes, to determine the fastest set of parameters
for the large object performance test. Using the
largest page and buffer sizes yielded the best perfor­
mance. The database table was organized into three
columns: two key columns and a BLOB column. The
BLOB column was mapped to a storage area set con­
sisting of multiple magnetic storage disks.

After we established the best database organiza­
tion, we built many 3- to 10-GB databases by

• Varying the number of processes executing
insert and fetch operations

• Varying the number of tables in the database

• Varying the number of inserts and fetches per
transaction

61

Multimedia

Table 1 SQL Performance

SOL Insert Performance

Number of Processes
Performing Insert Number of
Operations Tables

1

1 1

1 1
3 3

6 6

10 10

SOL Fetch Performance

Number of Processes
Performing Fetch Number of
Operations Tables

1 1

1 1

1

Table2 SOL/Services Performance

SOL/Services Insert Performance

Number of Processes
Performing Insert Number of
Operations Tables

1 1

4 4

SOL/Services Fetch Performance

Number of Processes
Performing Fetch Number of
Operations Tables

1 1
4 4

• Enabling and disabling AIJ journaling

• Inserting and fetching from an SQUServices
client or using SQL for local database access

When we conducted the performance tests, the
computer was dedicated to our task; no other activ-
ity was taking place. A simple contention test,
where multiple readers simultaneously fetch

62

Number of Inserts Throughput
per Transaction AIJ (kB/s)

1 No 83.0

10 No 103.4

1 Yes 48.0

10 Yes 55.9
32 No 295.3

32 No 533.7

32 No 601.5

Number of Fetches Throughput
per Transaction AIJ (kB/s)

10 No 194.0

1 No 184.0

1 Yes 181.0
10 Yes 192.5

Number of Inserts Throughput
per Transaction AIJ (kB/s)

1024 No 44.0

32 No 91.9

Number of Fetches Throughput
per Transaction AIJ (kB/s)

1024 No 57.7

32 No 142.3

objects from a single table, and a more complicated
update test, where multiple writers are simultane­
ously updating one table, have yet to be fabricated
and run.

To put some of the performance results pre­
sented in Table 1 into perspective: the tested config­
uration can sustain approximately 600 kB of insert
bandwidth, which translates into twelve 50-kB

Vol. 5 No. 2 Spring 1993 Digital Technical Jour,1al

A4-size pieces of paper per second. Even a single
process scanning paper at 103.4 kB/s can keep up
with some of the fastest paper scanners available.

Also, scanning both sides of a compressed bank
check (scanned at 200 dots per square inch) results
in an object size of about 20 kB. Therefore, the par­
ticular configuration we tested could store 30
checks per second with multiple processes, and
6 checks per second with a single process.

Capacity Testing
We conducted two capacity tests. The first stored
and fetched a 2-GB object in a DEC Rdb field, and the
second built a 50-GB database. A 2-GB known pat­
tern was generated in virtual memory. DEC Rdb
wrote this object, with no Al), to a field in an empty
database. The BLOB column was mapped to three
disks, totaling 2.5 GB of storage. To avoid having to
sustain storage area or file extensions, the storage
area set was defined to be 2.3 GB. DEC Rdb was able
to successfully insert and fetch the 2-GB object.

To demonstrate the capacity that could be
achieved with SQL Multimedia, DEC Rdb, and opti­
cal storage, we built a 50-GB database. The hard­
ware configuration consisted of the following:

• A VAX 4000 Model 500, with 6 GB of magnetic
disk and 128 MB of main memory

• A Kodak Automated Disk Library Model 6800,
with 100 GB of storage (with a maximum capac­
ity of 1.2 TB)

• DEC Rdb version 4.2 Field Test O

• SQL Multimedia version 1.0 FT2

• Perceptics LaserStar optical disk software

Starting with a backup of a 2-GB manufacturing
database that was used by Digital's Mass Storage
Group, DEC Rdb added an SQL Multimedia column
to a table that contained over 550,000 rows. DEC
Rdb then mapped the column to five platters, mod­
eled as ten 9.5-million-block (5.1-GB) magnetic
disks to the OpenVMS operating system, using the
sequential load algorithm. An update table cursor
was devised that returned between 2,000 to 3,000
rows. Using SQL Multimedia, DEC Rdb inserted
images representing the disk assembly process
until the storage was full.

Conclusion
The multimedia features that have been added to
Rdb are in direct support of the increasing demand
for computer data storage and indexing of multi-

Digital Technical journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

media object types (i.e., text, still images, com­
pound documents, audio, and video). Relational
database systems must expand mass storage device
support, database physical database design, lan­
guage functionality, and performance to manage
the variety of today's information. The development
of this advanced technology in Digital's DEC Rdb
product provides desktop computer-to-optical
disk jukebox integration by means of a commercial
database. As multimedia technology matures, data­
bases must address the need to store and index
information beyond numbers and characters.

The work accomplished to support multimedia
objects in DEC Rdb is just "the tip of the iceberg."
Current multimedia capabilities are able to success­
fully manage the majority of document and still
frame applications. However, improvement in
capacity and performance are required before the
database can serve multiple channels of video and
audio data. As the SQL standard evolves to incorpo­
rate a more object-oriented mechanism, much of
the SQL Multimedia functionality will migrate to
using standard interfaces to define, operate on, and
query abstract data types.

Acknowledgments
A large number of people from various disciplines
contributed to the success of this multimedia
database project, including Becky Jacobs, Michael
Sawyer, John Lacey, Cheri Jones, Bruce Mills, Steve
Hagan, Ian Smith, Susan Hillson, Peter Spiro,]. M.
Smith, Jim Gray, Dave Lomet, Rudy Downs, Ken
Cross (Perceptics), Chris Eastland, Mase Merchant,
Scott Matsumoto, Paul Carmen (Eastman Kodak),
Jim Lewis (Eastman Kodak), and Marilyn Gulliksen.

References

1. American National Standard for Informa­
tion Systems-Database Language-SQL, ANSI
X3.135-1992 (New York, NY: American National
Standards Institute, 1992) and

Information Technology-Database Language­
SQL, ISO/IEC 9075: 1992 (Geneva: International
Organization for Standardization, 1992).

2.]. Melton, ed., Database Language SQL (SQL3),
ISO/ANSI Working Draft, ANSI X3H2-93-091 and
ISO/IEC JTC1/SC21/WG3/DBL YOK-003 (February
1993).

3. B. Neidecker-Lutz and R. Ulichney, "Software
Motion Pictures;' Digital Technical Journal,
vol. 5, no. 2 (Spring 1993, this issue): 19-27.

63

Multimedia

General References

SQL Extensions
K. Meyer-Wegener, V Lum, and C. Wu, "Image
Management in a Multimedia Database System,"
Proceedings of the IFIP TC 2/WG 2.6 Working Con­
ference on Visual Database Systems, Tokyo, Japan
(1989): 497-523.

M. Stonebreaker, "The Design of the POSTGRESS

Storage System," Proceedings of the 13th Interna­
tional Conference on Very Large Databases,
Brighton, U.K. (1987): 289-300.

M. Stonebreaker and L. Rowe, The POSTGRESS
Papers, Memorandum No. UCB/ERL M86/85 (Berke­
ley, CA: University of California, 1986).

Object Storage Management
M. Stonebreaker, "Persistent Objects in a Multi­
Level Store," Proceedings of the ACM SIGMOD Inter­
national Conference on Management of Data,
Denver, CO (1991): 2-11.

64

WORM Devices
D. Maier, "Using Write-Once Memory for Database
Storage," Proceedings of the ACM SIGMOD/SIGACT
Conference on Principles of Database Systems
(PODS) (1982).

S. Christodoulakis et al., "Optical Mass Storage
Systems and Their Performance," IEEE Database
Engineering (March 1988).

S. Christodoulakis and D. Ford, "Retrieval Perfor­
mance Versus Disk Space Utilization on WORM

Optical Disks," Proceedings of the ACM SIGMOD
International Conference on Management of
Data, Portland, OR (1989): 306-314.

Storage Management for Large Objects
A. Biliris, "The Performance of Three Database
Storage Structures for Managing Large Objects,"
Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Diego,
CA (1992): 276-285.

Vol . 5 No. 2 Spring 1993 Digi tal Technical Journal

Lawrence G. Palmer
Ricky S. Palmer

DECspin: A Networked
Desktop Videoconferencing
Application

The Sound Picture Information Networks (SPIN) technology that is part of the
DECspin version 1. 0 product takes digitized audio and video from desktop comput­
ers and distributes this data over a network to form real-time conferences. SPIN uses
standard local and wide area data networks, adjusting to the various latency and
bandwidth differences, and does not require a dedicated bandwidth allocation.
A high-level SPIN protocol was developed to synchronize audio and video data
and thus alleviate network congestion. SPIN performance on Digital's hardware
and software platforms results in sound and pictures suitable for carrying
on personal communications over a data network. The Society of Technical
Communication chose the DECspin version 1. 0 application as a first-place recipient
of the Distinguished Technical Communication Award in 1992.

In late 1990, we began to design a software product
that would allow people to see and hear one
another from their desktop computers. The result­
ing DECspin version 1.0 application takes digitized
audio and video data from two to eight desktops
and distributes this data over a network to form
real-time conferences. The product name rep­
resents the four major communication elements
that unite into one cohesive desktop applica­
tion, namely, sound, picture, information, and
networks. The overall technology is referred to as
SPIN. This paper first presents an introduction to
conferencing and gives a brief overview of the
framework on which SPIN was developed. The
paper then details SPIN's graphical user interface.
Although the high-level protocol (which is the
application layer of the International Organization
for Standardization/Open Systems Interconnection
[ISO/OSI] model) that SPIN uses to synchronize
distributed audio and video is proprietary, a gen­
eral discussion of how SPIN uses standard data
networks for conferencing is presented. Perfor­
mance data for DECspin version 1.0 running on
a DECstation 5000 Model 200 workstation with
DECVideo and DEcaudio hardware follows the dis­
cussion of network considerations. Finally, the
paper summarizes the future direction of desktop
conferencing.

Dig ital Technical Journal Vol. 5 No. 2 Spring 1993

Introduction to Conferencing
When the SPIN project started, standalone telecon­
ferencing products were available but not for desk­
top computers. Typically, the products offered
cost as much as $150,000, required scheduled con­
ference rooms and operators, and needed leased
telephone lines. These systems did not operate as
part of a corporate computer data network but
instead required dedicated, switched 56-kilobit­
per-second (kb/s), Tl (LS-megabit-per-second
[Mb/s]), and T3 (45-Mb/s) public telephone compo­
nents in order to operate. Originally designed
as two-way conference units, these teleconferenc­
ing products later included hardware to multiplex
several equally equipped systems. In addition,
the enhanced systems included custom logic to
implement a hardware compressor/decompressor
(codec) that reduced digital video data rates suffi­
ciently to use leased telephone lines.

During the last several years, other conferencing
systems have been demonstrated. The Pandora
research project by Olivetti Research resulted in
an excellent desk-to-desk conferencing system.
Although the Pandora system was expensive per
user and did not use existing network protocols, it
did prove the viability of using a digital conferenc­
ing system from one's office and demonstrated the
natural progression from room conferencing to

65

Multimedia

office conferencing. This system served as a good
example for our own emerging desktop model,
DECspin version 1.0.

Throughout this same period, several compres­
sion standards suitable for video capture and
playback have evolved and been implemented. The
Joint Photographic Experts Group (JPEG) industry­
standard algorithm results in intraframe compres­
sion of frames of high-quality video (on the order of
25 to l). 1,2 This algorithm is well suited for either
single-frame capture or motion-frame capture of
video information. This form of compression is
most appropriate for real-time video capture and
playback where low (i.e., frame-by-frame) latency
is required.

The Motion Picture Experts Group (MPEG) stan­
dard results in interframe compression of motion
video.3 This algorithm is well suited for motion­
frame capture of video because only the differences
between successive frames are stored. Interframe
compression is appropriate for video capture and
playback where real-time low latency is not
required.

The H.261 standard results in interframe com­
pression of motion video that is most responsive to
the demands placed on capturing live video for dis­
semination over low-bandwidth public telephone
networks.4 This compression is suitable for video
capture and playback with reasonable latency but is
not quite real-time in nature. H.261 is the standard
used most in the teleconferencing systems on the
market today.

Finally, the last few years have also witnessed
the emergence of dramatic new base computer and
network technologies. Reduced instruction set
computer (RISC)-based workstations supply the
needed processing power and VO bandwidth to
process large and continuous amounts of data, and
fiber distributed data interface (FDDI) technology
results in 100-megabit-per-second local area net­
works for the desktop. Consequently, the SPIN
development project got under way to provide a
novel and innovative software application that
could take advantage of the powerful new systems
and networks.

Overview of Underlying
Hardware and Software
We came up with the SPIN project in response to
the question: How can we communicate easily
with graphics, video, and audio on the desktop
as well as over both local and wide geographical

66

area networks? Video help documentation, textual
help, and audio help are used on the desktop to
communicate how the application works. Sound,
picture, graphics, and network elements are all
woven together to provide better communication
among conference participants.

Early in 1991, we received our first prototype of
the DECvideo TURBOchannel frame buffer, which
included the necessary hardware to input and cap­
ture an analog video signal, to digitize the signal,
and to display the pixel information on the screen.
The frame buffer was special in that it displayed
8-bit pseudocolor, 8-bit gray-scale, and 24-bit true­
color graphical data simultaneously. This feature
allowed captured video data to be displayed with­
out data dithering.

Dithering is the process of converting each pixel
of video data to a form that matches a limited
number of available colormap entries. Most work­
station frame buffers are 8-bit pseudocolor. Hence,
digitized, 24-bit true-color video data for display
would need pixel-by-pixel conversion. Algorithms
exist that could be used to accomplish this conver­
sion. However, a better SPIN conference, in terms
of frame rate and picture quality, was achieved by
performing no software dithering, thus relying
on the ability of the DECvideo hardware to display
24-bit true-color video or 8-bit gray-scale video.5 In
addition, the DECVideo hardware could scale down
the incoming video image in real time so that fewer
pixels (i.e., less data) represented the original
image.

Concurrently, SPIN used a DEcaudio TIJRBOchannel
card that could sample an input analog audio signal
from a microphone and deliver an 8-kilohertz digi­
tized audio bit stream. The DECaudio hardware
could also convert a digital audio stream for output
to an analog speaker or external amplifier. A
DECstation 5000 Model 200 with DECaudio and
DECVideo components provided the core hardware
capability used in SPIN development work.

In addition to these new hardware capabilities,
the SPIN effort needed new underlying base soft­
ware capabilities. The DECVideo hardware required
the Xv video extension to the X Window System to
allow for the display and capture of video data. (The
Xv extension was jointly developed by base system
graphics and MIT Project Athena teams.) The
DECaudio component used the AudioFile audio
server, developed by Digital's Cambridge Research
Laboratory, to capture and play back digital audio
data.

Vol. 5 No. 2 Spring 1993 Digital TechnicalJournal

DECspin: A Networked Desktop Videoconferencing Application

A prototype software base was created to make
fundamental measurements of video and audio data
manipulation within the workstation and over a
network. Testing the prototype over a 100-Mb/s
FDDI network and a 10-Mb/s Ethernet network
demonstrated that a conferencing product running
over existing network protocols was possible.

The SPIN Application
SPIN is a graphical multimedia communications
tool that allows two to eight people to sit at their
desktop computers and communicate both visually
and audibly over a standard computer data net­
work. The user interface employs a telephone-like
"push" model that allows a user to place an audio­
only, video-only, or audio-video call to another
desktop computer user. Here, the term "push"
means that SPIN conference participants control all
aspects of the digitized data they send onto a net­
work. Thus, users can feel confident about the secu­
rity of their audio and video information. A caller
initiates all calls to other users, and a call recipient
must agree to accept an incoming SPIN call. Because
all data is in the digital domain, this model makes it
almost impossible to use SPIN to eavesdrop on
another person. Placing a wiretap on a person's call
would involve intercepting network packets, sepa­
rating data from protocol layers, and then reassem­
bling data into meaningful information. If the
network data were encrypted, interception would
be impossible. SPIN also provides other communi­
cation services, such as an audio-video answering
machine, messaging, audio-video file creation,
audio help, and audio-video documentation.
Figure 1 shows a screen capture of a SPIN session in
progress, using the DECspin version 1.0 application.

The product is easy to learn and to use. The
graphical user interface is implemented on top of
Motif software. Motif provides the framework for
the SPIN international user interface. A model was
chosen in which all actions taken by a user are
implemented by push buttons that activate pop-up
menus. The SPIN application does not use pull­
down menus, because they require language­
specific text strings to identify the purpose of an
entry and thus require translation for different
countries. Also, pull-down menus are intended for
short-term interaction, and SPIN menus usually
require more long-term interaction. All push­
button icons are pictorial representations of the
intended function. For example, the main window
has a row of five push buttons, each of which

Digital Technical Journal Vol. 5 No. 2 Spring 1993

activates a specific function of the application and
is shown in Figure 1.

In the main window, the first button from the left
contains a green circle with a vertical white bar, the
international symbol for exit. This button appears
in the same location in each of the pop-up win­
dows. It is used to exit the window or, in the main
window, to exit the application.

The second button from the left is labeled with
the communication icon. This button is used to
select the call list shown in Figure 2. The call list
contains the various buttons and widgets used to
place a call to another user, to create and play back
SPIN files, and to display a list of received SPIN mes­
sages, if any exist. The list provides a way to play
and manage audio-video answering machine mes­
sages. For example, to place a call to another user
on the network requires just three steps.

1. Enter the computer network name of the
machine and user into SPIN's phone database as
"user@desktop." A string representing some­
thing more understandable to a novice is also
allowed, e.g., "user@desktopl.dec.com" becomes
"user@desktopl.dec.com Firstname Lastname at
Digital Equipment Corporation."

2. Select whether the call is to be sound only,
picture only, or both. The toggle push buttons
under the large note icon control audio select;
those under the large eye icon control video
select. Once the call is established, these but­
tons can be set or unset by clicking a mouse or
using a touch-screen monitor and are useful
for muting the audio portion or freezing frames
of the video portion.

3. To establish a two-way network connection,
press the call push button under the connection
icon (which is labeled with two arrows going in
opposite directions) that appears next to the
desired call recipient. If the person called is
logged on, a ring dialog box appears on the
call recipient's screen and a bell rings. If the call
recipient is not available, a dialog box appears on
the caller's screen asking whether the caller
wishes to leave a message. The caller can then
choose to leave a message or not.

Depending on the individual settings, users can
see and hear one another in multiple windows
on the screen. To connect all conference partici­
pants in a mesh, press the "join" push button,
which has a triangular icon.

67

Multimedia

D

D

D

D

userl'ldesktopl

user@desktop2

user@desktopl

user<tdesktop4

. QI Ult

ID

~

= ==;;;.II [ij]

2&6 x 192

IID]

[rfil]

~,

: lnfmmdan

[II] Version 1.0

Overview

Demonstration

Figure 1 Sample SPIN Session

30.0

68 Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DECspin: A Networked Desktop Videoconferencing Application

DECspln: call List

user l@desktop 1

D user2@desktop2

D user3@desktop3

D user4@desktop4

D userS@desktops

D user6@desktop6

D user7@desktop7

JOIN

11-Lll ~~ SELECT AUDIO
~~SELECT VIDEO

I [1

RECORD -d.J..11
A FILE I ~ jtusr/tmp/,ecord.spn

~rlf,__11
~.,...., _

11
1/ _u_sr_/ _tm_p_/_p_la_v_ s_p_n ____ QDJ_n_~,~~_,~ ~~~:.rES

Figure 2 SPIN Call List Pop-up Window

Returning to the main window, the middle push
button is the SPIN control button. As shown in
Figure 3, the SPIN control pop-up window contains
slide bars that, from top to bottom, allow the caller
to set maximum capture frame rate, hue, color sat­
uration, brightness, contrast, speaker output vol­
ume, and microphone pickup gain. At the bottom
of the control window are buttons for selecting
compression and rendering.

To the right of the control button in the main
window is the status icon button. Pressing this but­
ton causes the status pop-up window shown in
Figure 4 to appear. The status window displays,
below the camera icon, the active size of the cap­
tured video area in pixels. Beneath these dimen­
sions is a vertical slide bar that indicates the average
frames-per-second (frames/s) capture rate sampled
over a five-second interval. To the right of the
camera icon is the connection icon, under which
appears the number of active connections. Below
this number are the sound and picture icons, under

Digital Technical Journal Vol. 5 No. 2 Spring 1993

which appear the number of active audio connec­
tions and the number of active'video connections,
respectively. The second slide bar indicates the
result of sampling the average outgoing bandwidth
consumption (measured in Mb/s) of the application
on the network. This measurement is also updated
every five seconds.

Finally, the fifth push button (on the far right) in
the main window is the information button. By
pressing this button and selecting the type of on­
line information desired, the user can access the
documentation pop-up windows, as illustrated in
Figure 5. Within each documentation window are
several topics and two columns of toggle push but­
tons that can be used to obtain either textual docu­
mentation or video documentation. The video
documentation comprises short videos that
contain expert help about the operation of the
application.

As a final level of help, all push buttons and wid­
gets within the application have associated audio

69

Multimedia

DECSpln: control

30.0 FAST
c·v~·-": .. _-.. .

--------- rr=v=iJ ~ FRAME
~ RATE :..•.-_ ~-~ -:__-:_ -

• -- - ,:r ,..
-. -

- .. -.. -
·-~~- =~ -

-~ ~~ ---t. RENDERIN~
BLACK- COLOR
AND-WHITE

Figure 3 SPIN Control Pop-up Window

tracks that tell the user what the buttons and
widgets do within their context in the application.
To activate the audio tracks, the user must first
select the button or widget and then press the Help
key on the keyboard.

Network Considerations
SPIN uses standard data networks to transport the
information that composes a conference. Data net­
works are usually private networks that a user com­
munity maintains. Such networks often include a
number of individual networks joined together by
bridges and routers. Unlike public telephone net­
works, which are most frequently used for phone
calls, private networks are used for a variety of
computer data needs, including file transfers,
remote logins, and remote file systems. However,

70

telephone networks often provide the long­
distance lines used to make up private wide area
data networks.

The use of data networks allows conferencing
data to be treated as would any other type of data.
SPIN requires no special low-level networking pro­
tocols to transmit its data and uses the transmission
control protocol/internet protocol (TCP/IP) or the
DECnet protocol. Also, SPIN requires no changes to
existing operating systems. When performing the
prototype work for the SPIN application, we were
not certain whether the real-time nature of confer­
encing could be accomplished on inherently
non-real-time networks and operating systems.
Consequently, we developed a special high-layer
synchronization conferencing protocol, called the
SPIN protocol, that uses existing data networks.

Vol. 5 No. 2 Spring 1993 Dtgttal Technical Journal

DECspin: A Networked Desktop Videoconferendng Application

AVERAGE
FRAME RATE
IN FRAMES
PER SECOND

~ --+ ~ TOTAL NUMBER

o, OFCALLS

II ~1]1~11 ,~, 6~1:~T~JEM:~~10 O~· CHANNELS

~ TOTAL NUMBER
OF ACTIVE VIDEO
CHANNELS

AVERAGE NETWORK
BANDWIDTH USAGE
IN MEGABITS PER
SECOND

Figure 4 SPIN Status Pop-up Window

This protocol is responsible for the synchronization
of audio and video information. The SPIN protocol
monitors the flow of data to the network in order
to alleviate network congestion when detected. As
the network becomes congested, the protocol
makes the decision to withhold further video data,
since video is the largest consumer of network
bandwidth. This withholding of video data is a key
feature of the SPIN protocol, because it allows a
conference to vary the video frame rate on a user­
by-user basis. Thus, video bandwidth can scale to
the lesser of either the bandwidth available or the
number of frames/s of video bandwidth that a given
platform can sustain.

If the withholding of video corrects the network
congestion, video data is once again allowed in the
conference. If not, the SPIN protocol delays audio
data and stores it in a buffer until the network is
able to handle this data. If the network outage lasts
approximately 10 seconds, audio data is lost.
Periods of audio silence are used as a means of
recovery from periods of network congestion.

Digital Tecb11ical Jour11al Vol. 5 No. 2 Spring 1993

Thus, variable video frame rates along with this
treatment of audio data allow for the graceful degra­
dation of a conference as the network becomes
busy.

SPIN has been demonstrated over a variety of
public and private data networks including
Ethernet (10 Mb/s), FOOi (100 Mb/s), Tl (1.5 Mb/s),
T3 (45 Mb/s), cable television (10 Mb/s, more cor­
rectly, Ethernet running over two 6-megahertz
cable television channels), switched multimegabit
data service (SMDS) (1.5 or 45 Mb/s), asynchronous
transfer mode (ATM) (150 Mb/s), and frame relay
(1.5 or 45 Mb/s). Some of these networks are local
or metropolitan area technologies, i.e., local area
networks (I.ANS), whereas others are wide area
technologies, i.e., wide area networks (WANs), as
illustrated in Figure 6.

Each type of network provides SPIN with differ­
ent latency and bandwidth characteristics. SPIN

makes corresponding adjustments to a conference
to account for these differences and does not
require a dedicated bandwidth allocation to carry

71

Multimedia

SELECT OVERVIEW POP-UP WINDOW

: lnfonnation

Version 1.0

Overview
JDJ
~ [D

~ SELECT VIDEO <> Start a Conference Demonstration V__....--:;;. DOCUMENTATION

Use a Feature <> Introduction

<) Network

-
~~~~=.:-=--=-~~~~~~~~~-t~ ~ SELECTTEXT <> Solve a Problem DOCUMENTATION 

<) 
Glossary 

<> 
Browse 

Figure 5 SPIN Information Pop-up Windows 

on a conference. lf a given network supports band­
width allocation, this feature only enhances SPIN's 
ability to ddiver video and audio information. 

WANs may use a router to interconnect two or 
more LANs. SPIN has been tested on a number of 
routers with mixed results, i.e., some routers cor­
rectly handle SPIN's bidirectional traffic pattern 
whereas others do not. Since some routers do not 
correctly handle bidirectional data traffic without 
packet loss, wide area routers must be individually 
tested with SPIN to verify proper operation. Some 
router problems were traced to the use of old 
firmware or software. Consequently, SPIN acted 
like a diagnostic tool in pointing out these prob­
lems. For example, running the SPIN application 
with audio only, a<.:ross Digital's private IP network, 
yidds varied results. Digital's IP network is an exam­
ple of an open network, with routers from most 
router vendors. We traced most instances of poor 
SPIN p erformance to old or obsolete routers (some 
in service for the last six years without upgrades). 
These routers usually dropped packets when rout­
ing between adjacent Ethernet networks that were 
only 10 percent busy. After these routers were 

72 

upgraded to the DECNIS family of routers, the SPIN 
application functioned correctly, even on con­
gested networks. 

To demonstrate daily use of SPIN, we created a 
metropolitan area network (MAN). Figure 7 shows 
the network topology, which spanned the states of 
New Hampshire and Massachusetts. The test bed 
allowed us to demonstrate our FDDI products, 
including end-station FDDI adapter cards, multi­
mode FDDI wiring concentrators, and single-mode 
FDDI wiring concentrators. SPIN was used in 30 
workstations, two of which were attached to large­
screen projection units in conference rooms. 

Performance 
The conference quality achieved when running the 
SPIN application depends on many factors. The 
available network bandwidth, the processor speed, 
the desired frame-rate specification, the compres­
sion setting, the picture size, and how the pictures 
are rendered all affect the quality of the conference. 
Table 1 contains performance data for DECspin ver­
sion 1.0 at various combinations of settings for 
these factors. 

Vol. 5 No. 2 Spring 1993 Digital Technical j ournal 



DECspin: A Networked Desktop Videoconferendng Application 

FDDI LAN 

DECCONCENTRATOR 500 r----1 DECCONCENTRATOR 500 

(a) IAN Usage of SPIN 

ETHERNET LAN 
DECNIS 600 i--------

ETHERNET LAN 

--------t DECNIS 600 
ETHERNET LAN 

(b) WAN Usage of SPIN 

Figure 6 IAN and WAN Usage of SPIN 

gil 
g NASHUA, NH g 

g 
) I 11, LITILETON, MA 

D 
~~~~~~ 

lOlg
g D MAYNARD. MA

)DI, ~~~~~~

FDDI
(54 MILES, SINGLE-MODE FIBER)

Figure 7 Digital's MAN Test Bed for SPIN

Digital Technical Journal Vol. 5 No. 2 Spring 1993 73

Multimedia

Table 1 SPIN Performance on a DECstation 5000 Model 200 with
DECvideo and DECaudio Hardware

Width x Height Frames/s (Bit
(Pixels) Render/Compression Network rate in Mb/s)

256 x 192 Black and White/ No FDDI 10 (4.0)
256 x 192 Black and White/ Yes FDDI 16 (1.5)
256 x 192 Color/ No FDDI 3 (5.0)
256 x 192 Color/Yes FDDI 10 (4.0)

160 x 120 Black and White/ No FDDI 19 (3.0)
160 x 120 Black and White/ Yes FDDI 25 (0.9)
160 x 120 Color/No FDDI 12 (6.0)
160 x 120 Color/Yes FDDI 19 (3.0)

256 x 192 Black and White/ No Ethernet 9 (3.8)
256 x 192 Black and White/ Yes Ethernet 16 (1.5)
256 x 192 Color/No Ethernet 2 (3.0)
256 x 192 Color/Yes Ethernet 8 (3.0)

160 x 120 Black and White/ No Ethernet 19 (3.0)
160 x 120 Black and White/ Yes Ethernet 25 (0.9)
160 x 120 Color/ No Ethernet 8 (5.0)
160 x 120 Color/Yes Ethernet 19 (3.0)

Using a DECNIS Router (Ethemet-to-Router-to-T1-to-Router-to-Ethernet)

256 x 192 Black and White/ No
256 x 192 Black and White/ Yes
256 x 192 Color/ No
256 x 192 Color/Yes

160 x 120 Black and White/ No
160 x 120 Black and White/ Yes
160 x 120 Color/No
160 x 120 Color/Yes

As shown in Table 1, we tested SPIN performance
using two basic picture sizes: 256 by 192 pixels and
160 by 120 pixels. The tests were performed over
both Ethernet and FDDI networks for black-and­
white and color cases. Also noted in the table is
whether or not software compression was enabled
for a specific test case. The far right column shows
the frame rate achieved for the different combina­
tions and also summarizes the network bandwidth
consumed in each test. The table is presented pri­
marily to give a sampling of the frame rate and,
hence, the level of visual quality achieved for a spe­
cific combination of parameters. Frame rates affect
an observer's ability to detect change within a
sequence of frames. With a slow frame rate, the
resulting video sequence may appear choppy and
incomplete, whereas a normal frame rate (24 to 30
frames/s) leads to a smoothly varying video
sequence with even continuity from one sequence
to another. The frame rates in Table 1 below about 6
to 7 frames/s are considered low quality. Those in
the 8-to-19-frames/s range are considered good
quality, and those in the 20-to-30-frames/s range

74

T1 4 (1.4)
T1 15 (1.4)
T1 1 (1.4)
T1 4 (1.4)

T1 10 (1.4)
T1 25 (0.9)
T1 3 (1.4)
T1 10 (1 .4)

are high-quality video. The best cases in Table 1 are
those that used software compression to deliver a
pleasing frame rate with the least amount of net­
work bandwidth consumed together with some
degradation of individual frame quality The soft­
ware compression was tuned to provide nearly the
same frame quality as the uncompressed case.

Table 1 also shows performance data measured
using a DECNIS router. As noted earlier, wide area
usage of SPIN depends on a router with correct algo­
rithms for handling of bidirectional continuous
stream traffic. The DECNIS family of routers can
supply the full Tl bandwidth when presented with
bidirectional SPIN traffic. Other routers on which
SPIN was tested typically delivered only 25 to 50
percent of the Tl bandwidth. Note that this was
only true on the particular routers we tested and
that routers other than DECNIS routers may also be
able to deliver full Tl bandwidth for this particular
traffic pattern.

Hardware compression technology mentioned in
the section Overview of Underlying Hardware and
Software reduces the bandwidth requirements for

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DECspin: A Networked Desktop Videoconferencing Application

conferencing. Experimentation with motion JPEG
compression (using the Xv extension with com­
pression functions on an Xvideo frame buffer
board) has shown that at a resolution of 320 by 240
pixels, true-color frames can be used at 15 to 20
frames/s at a bit rate of just under 1.0 Mb/s. This bit
rate produces a good- to high-quality conference
with very low latency. H.261 and MPEG technology
result in similar frame rates and picture size at
about one-half the bandwidth but higher overall
latency. Using motion JPEG as the example, high­
quality conferences require about I Mb/s per
connection. If all conferences are to be high qual­
ity, this bit rate allows I two-party conference
on a Tl connection, 5 two-party conferences on an
Ethernet segment, and 50 two-party conferences
on an FDDI network. Using GIGASWITCH FDDI
switches, more than 500 two-party conferences
can take place simultaneously on a network. More
users could be supported on Tl, Ethernet, or
GIGASWITCH networks, if lower-quality confer­
ences are acceptable.

Co11Clusion
It became clear during the development and
deployment of SPIN that high cost per user limits
the widespread use of the application. The cost of
video for DECspin version 1.0 adds about $8,000 to
the price of a workstation. Audio for version 1.0
adds about $2,000 per workstation. These costs,
which are prohibitive to most potential users of
the technology, do not include the network cost
impact.

Digital's Alpha AXP family of computers come
with audio input and output hardware as part of the
base workstation. In spring 1993, Digital released to
the Internet community a version of DECspin that
uses this hardware to carry on audio-only confer­
ences and shows the user a voice waveform instead
of a video image. This version eliminates the add-on
hardware cost for audioconferencing. A new low­
cost video option would go far to reduce the add-on
cost for video and facilitate a wider use of the SPIN
application.

The SPIN application and its associated protocol
have been demonstrated on Digital and non-Digital
computers, operating systems, and networks. In
particular, SPIN has been shown on SPARC worksta­
tions running Solaris software. Additionally, SPIN
has been demonstrated on a personal computer
using the Microsoft Multimedia Extensions (MME)
to Windows software. This platform provides a

Digital Technical Journal Vol. 5 No. 2 Spring 1993

very large user community of potential SPIN users
and dramatically drops the price per user compared
with the original product. Interoperability among
platforms and a common user interface give Digital
a leadership position in this fast-forming market.

Today, high-quality conferencing can scale to
hundreds of seats on a LAN with lower-quality con­
ferencing scaling to larger, more geographically dis­
persed networks. Several factors will lead to the
widespread use of this technology: better and less­
expensive hardware, programmable codecs, and
higher-speed and less-costly cross-country net­
works. Less-expensive video hardware allows many
users to upgrade their systems to include video,
while programmable compression technology
allows users to achieve improvements in picture
quality, compression transcoding, and lower net­
work needs. Higher-capacity and less-costly cross­
country networks allow more users to access
conferencing services. Ultimately, even homes will
have better computer connectivity and bandwidth.
As these changes occur, and we believe they will,
desktop conferencing can become the interactive
telephone of the twenty-first century.

Acknowledgments
The authors wish to acknowledge and thank all the
members of the close team that worked on the SPIN
project and made the DECspin version 1.0 product a
success. Key individuals in this effort were Diane
LaPointe, Beverly Oliphant, Jonathan George,
Garrett Van Siclen, and Jack Toto. We would also
like to thank early supporters of the product
efforts, including Jim Miller, Karl Pieper, and Jim
Cocks. In addition, we extend our thanks to Walt
Ronsicki, Videhi Mallela, Nathalie Rounds, and the
rest of the team who established the FDDI test bed;
to Dick Bergersen, who handled the quality assur­
ance for DECspin version 1.0 and gave the team
excellent feedback on the product; and to Tom
Levergood and the other members of Digital's
Cambridge Research Laboratory who gave us sup­
port and assistance in regard to the AudioFile audio
server. Finally, we would also like to offer thanks to
our management, particularly Bill Hawe and John
Morse, who are strong advocates and supporters of
our product efforts.

References

1. Digital Compression and Coding of Continuous­
Tone Still Images, Part 1, Requirements and

75

Multimedia

Guidelines, ISO/IECJfCl Committee Draft 10918-1
(Geneva: International Organization for Stan­
dardization/International Electrochemical Com­
mission, February 1991).

2. Digital Compression and Coding of Continu­
ous-Tone Still Images, Part 2, Compliance Test­
ing, ISO/IEC)TCl Committee Draft 10918-2
(Geneva: International Organization for Stan­
dardization/International Electrochemical Com­
mission, Summer 1991).

3. Coding of Moving Pictures and Assodated
Audio, Committee Draft Standard ISO 11172,
ISO/MPEG 90/176 (Geneva: International Organi­
zation for Standardization, December 1990).

4. Video Codec for Audiovisual Services at Px64
Kb/s, CCITI Recommendation H.261, CDM XV-R

37-E (Geneva: International Telecommunica­
tions Union, Comite Consultatif Internationale

76

de Telegraphique et Telephonique [CCITI],

August 1990).

5. R. Ulichney, "Video Rendering," Digital Techni­
cal Journal, vol. 5, no. 2 (Spring 1993, this issue):
9-18.

General References

L. Palmer and R. Palmer, "Desktop Meeting," LAN

Magazine, vol. 6, no. 11 (November 1991).

TURBOchannel Hardware Spedfication (Palo Alto,
CA: Digital Equipment Corporation, TRI/ADD

Program, 1990).

Open Software Foundation, Inc., OSF/Motif, Pro­
grammer's Reference, Release 1.1 (Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1991).

R. Scheifler,]. Gettys, and R. Newman, X Window
System C Library and Protocol Reference (Bedford,
MA: Digital Press, 1988).

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

LAN Addressingfor
Digital Video Data

Peter C Hayden I

Multicast addressing was chosen over the broadcast address and unicast address
mechanisms for the transmission of video data over the LAN. Dynamic allocation of
multicast addresses enables such features as the continuous playback of full
motion video over a network with multiple viewers. Design of this video data trans­
mission system permits interested nodes on a LAN to dynamically allocate a single
multicast address from a pool of multicast addresses. When the allocated address is
no longer needed, it is returned to the pool. This mechanism permits nodes to use
fewer multicast addresses than are required in a traditional scheme where a
unique address is allocated for each possible function.

The transmission of digital video data over a local
area data network (LAN) poses some particular
challenges when multiple stations are viewing the
material simultaneously. This paper describes the
available addressing mechanisms in popular LANs
and how they alleviate problems associated with
multiple viewing. It also describes a general mecha­
nism by which nodes on a LAN can dynamically allo­
cate a single multicast address from a pool of
multicast addresses, and subsequently use that
address for transmitting a digital video program to a
set of interested viewers.

Project Goals
The objective of this project was to design a mecha­
nism suitable for providing the equivalent of broad­
cast television using computers and a local area
data network in place of broadcast stations, air­
waves, and televisions. The resulting system had to
provide access to broadcast, closed circuit, and on­
demand video programs throughout an enterprise

.. h L I SERVER I I CLIENT I

using its computers and data network. The use of
computer equipment installed for data transmis­
sion would eliminate the need to invest in cable 1V
wiring throughout a building.

The basic system would consist of two primary
components. One computer, or set of computers,
would act as a video server by transmitting video
program material, in digital form, onto the data net­
work. Other computers, acting as clients, would
receive the transmitted video program and present
it on the computer's display. Figure 1 depicts such a
configuration.

The variety of video source material suggests that
servers may be equipped in several ways. For exam­
ple, accessory hardware can receive broadcast
video programs; hardware and software can con­
vert analog video into digital format; and hardware
and software can compress the digital video for effi­
cient use on a personal computer and data net­
work. 1,2,3 Figure 2 shows a server equipped to
handle different types of video program sources.

LOCAL AREA

I L
NETWORK

• TRANSMITTED
DATA STREAM

I CLIENT I I CLIENT I
TRANSMITTING RECEIVING NOT RECEIVING RECEIVING
DIGITAL VIDEO DIGITAL VIDEO DATA DIGITAL VIDEO

Figure I Client-seroer System for Video Data Transmission

Dtgttal Tecbntcal Journal Vol. 5 No. 2 Spring 1993 77

Multimedia

LOCAL AREA NETWORK

ANALOG
VIDEO
SOURCES

NETWORK
INTERFACE

t

DIGITIZER

MAIN
PROCESSOR

COMPRESSION
HARDWARE

C)

MAGNETIC
DISK
STORAGE

STORED
DIGITAL
VIDEO

TV OR PERSONAL COMPUTER

CABLE
TUNER

Figure 2 Types of Video Program Sources

Video program material is categorized as live,
e.g., the current program broadcasting on a televi­
sion network, or stored and played on demand,
e.g. , a recorded training session. In both cases, it is
desirable for more than one client to be able to
monitor or view the transmitted video program.

To implement the client-server system described
above, many technical hurdles had to be overcome.
This paper, however, focuses on one narrow but
critical aspect, the addressing method used on the
LAN for delivery of the digital video data. The char­
acteristics of digital video and the need for multiple
stations to receive programs from a wide range of
possible sources combined to create some interest­
ing challenges in devising a suitable addressing
method.

Choosing an Addressing Method
To transmit digital video over a data network, an
effective addressing mechanism had to be chosen
that would satisfy the project's goals. Most LANs
support three basic data addressing mechanisms:
broadcast, unicast, and multicast.4.5.6.7 Each method
of transmitting digital video over a LAN has charac­
teristics that are both attractive and undesirable.

Broadcast addressing uses a special reserved des­
tination address. By convention, data sent to this
address is received by all nodes on the LAN.
Transmitting digital video data to the broadcast
address serves the purpose of permitting multiple
clients to receive the same transmitted video pro­
gram while permitting the server to transmit the
data once to a single address. Viewed another way,
this convention is a significant disadvantage

78

because all stations receive the data whether they
are interested or not. Compressed digital video rep­
resents from 1 to 2 megabits per second of data;
therefore nodes not expecting to receive the video
data are impacted by its unsolicited arrival.1·3 As a
further complication, when two or more video pro­
grams are playing simultaneously, stations receive 1
to 2 megabits per second or more of data for each
video program. This renders many systems inoper­
ative. Furthermore, LAN bridges pass broadcast
messages between LAN segments and cannot con­
fine digital video data to a LAN segment.8 As a result
of these drawbacks, use of the broadcast address is
unsuitable for transmission of digital video data.

Unicast addressing sends data to one unique
node. The use of unicast addressing eliminates the
problems encountered with broadcast addressing
by confining receipt of the digital video data to a
single node. This approach works quite well as long
as only one node wishes to view the video program.
If multiple clients wish to view the same program,
then the server has to retransmit the data for each
participating client. As the number of viewing
clients increases, this approach quickly exhausts
the server's capacity and congests the LAN. Because
unicast addressing cannot practically support one
server in conjunction with multiple clients, it too is
unsuitable for transmission of digital video data.

Multicast addressing uses addresses designated
to simultaneously address a group of nodes on a
LAN. Nodes wishing to be part of the addressed
group enable receipt of data addressed to the multi­
cast address. This characteristic makes multicast
addressing the ideal match for the simultaneous

Vol. 5 No. 2 Spring 1993 Digital TecbntcalJournal

transmission of digital video data to multiple client
nodes without sending it to uninterested nodes.
Furthermore, many network adapters provide
hardware-based filtering of multicast addresses,
which permits high-performance rejection/
selection of data based on the destination multicast
address.? Because of these advantages, multicast
addressing was selected as the mechanism for trans­
mission of digital video data.

Multicast Addressing Considerations
Together with its advantages, multicast addressing
brought significant problems to be overcome. The
problems were in the assignment of multicast
addresses to groups of nodes, all of which are inter­
ested in the same video program. If a single multi­
cast address were assigned for all stations
interested in receiving any video program, then
only interested stations would receive data. All par­
ticipating stations, however, would receive all pro­
grams playing at any given time. If multiple
programs were playing, each station would receive
data for all programs even though it is interested in
the data for only one of the programs. The obvious
solution is to allocate a unique multicast address for
each possible program. The following sections
examine various allocation methods.

Traditional Address Allocation
Traditionally, a standards committee allocates mul­
ticast addresses, each of which serves a specific
purpose or function. For example, a specific multi­
cast address is allocated for Ethernet end-station
hello messages, and another is allocated for fiber
distributed data interface (FDDI) status reporting
frames. 10, 11, 12 Each address serves one explicit func­
tion. This static allocation breaks down when a
large number of uses for multicast addresses fall
into one category.

It clearly is not possible to allocate a unique
multicast address for all possible video programs
for several reasons. At any given time, hundreds
of broadcast programs are playing throughout
the world, and thousands of video programs
and clips are stored in video libraries. Countless
more are being created every minute. Assigning a
unique address to each possible video program
would exhaust the number of available addresses
and be impossible to administer. Furthermore,
it would waste multicast addresses since only
those programs currently playing on a given
LAN (or extended LAN) need an assigned address.

Digital Technical Journal Vol. 5 No. 2 Spring 1993

LAN Addressing/or Digital Video Da,ta

A technique, therefore, is needed by which a block
of multicast addresses is permanently allocated for
the purpose of transmitting video programs on a
computer network, and individual addresses are
dynamically allocated from that block for the dura­
tion of a particular video program.

Dynamic Allocation Method
A dynamic allocation method should have several
characteristics to transmit video programs on a
LAN. These desired characteristics

1. Must be consistent with current allocation pro­
cedures used by standards bodies like the IEEE

2. Should be fully distributed and not require a
central database (improves reliability)

3. Must support multiple clients and multiple
servers

4. Must operate correctly in the face of LAN per­
turbations like segmentation, merging, server
failure, and client failure

It is clearly desirable to use a dynamic allocation
mechanism that does not require changes to the
way addresses are allocated by standards commit­
tees. Changes to protocols only create another level
of administrative complexity. Instead, a single set of
addresses should be allocated on a permanent basis
for use in the desired application. Drawn from a
pool of addresses, these allocated addresses could
be dynamically assigned to video programs as they
are requested for playback. When playback was
complete, the address would be returned to the
pool.

Regardless of which allocation mechanism is
adopted, it needs to support multiple servers and
multiple clients. This implies that some form of
cooperation exists between the servers to prevent
multiple servers from allocating the same address
for two different video programs. One node could
act as a central clearinghouse for the allocation of
addresses from the pool, but the overall operation
of the system would then be susceptible to failure
of that node. The preferred approach is a fully dis­
tributed mechanism that does not require a central­
ized database or clearinghouse.

LANs tend to be constantly changing their config­
urations, and nodes can enter and leave a network
at any time. As a result, an allocation mechanism
must be able to withstand common and uncommon
perturbations in the LAN. It must accommodate

79

Multimedia

events such as the segmentation of a LAN into two
LANs when a bridge becomes inactive or discon­
nected, joining of two LANs into one when a bridge
is installed or becomes reactivated, and failure or
disconnection from the LAN at any time by both
server and client nodes.

Other Multicast Allocation Methods
A variety of different group resource allocation
mechanisms exist, and the one most nearly applica­
ble to transmitting digital video over a LAN is used
in the internet protocol (IP) suite. Deering dis­
cusses extensions to the internet protocols to sup­
port multicast delivery of internet data grams.13
In his proposal, multicast address selection is algo­
rithmically derived from the multicast IP address
and yields a many-to-one mapping of multicast
IP addresses to LAN multicast address. As a conse­
quence, there is no assurance that any given multi­
cast address will be allocated solely for the use of
a single digital video transmission. This undermines
the goal of using multicast addressing to direct the
heavy flow of data to only those stations wishing to
receive the data. Deering discusses the need for
allocation of transient group address and alludes to
the concepts presented in this paper.

Model for .Dyna,mically Allocating
Multicast Addresses
Given the overall goals of the project and the
desired characteristics of the application, the fol­
lowing model was developed. It transmits digital
video on a data network using dynamically allo­
cated multicast addresses. First, simple operational
cases on the LAN are described. Then complicated
scenarios dealing with network misoperations are
addressed.

It should be noted that the protocols described
address the location of video program material as
well as the allocation of multicast addresses for
delivery of that material. Because of the one-to-one
correspondence between video material and
address allocation, it is convenient to combine
these two functions into a single protocol; how­
ever, the focus of this paper remains on the address
allocation aspects of the protocol.

Multicast Address Pool
This model assumes a set of n multicast addresses
permanently allocated and devoted to it. The
addresses are obtained through the normal process

80

for allocation of multicast addresses through the
IEEE. All clients and servers participating in this
protocol use the same set of addresses. For the sake
of this discussion, these addresses are denoted as
Al, A2, ... An. Address Al is always used by the par­
ticipating stations for exchange of information nec­
essary to control the allocation of the remaining
addresses for use by the participating stations. The
remaining addresses A2 through An form the pool
of available multicast addresses.

Server Announcements
All servers capable of transmitting digital video
data continuously announce their presence and
capabilities by transmitting a message at a predeter­
mined interval; for example, a message is addressed
to Al every second. In these announcements, the
servers include information identifying their gen­
eral capabilities, data streams they are currently
transmitting, and data streams they are capable of
transmitting.

A server's general capabilities include its name
and network address(es). Other useful information
can also be announced, but it is not relevant to
this discussion. To identify the data streams cur­
rently being transmitted, the server describes
the data and the multicast address to which each
data stream is being transmitted. In this way, it
announces those multicast addresses that the sta­
tion is currently using, along with a description of
the associated video program. The data streams the
server is capable of transmitting are identified by
some form of a description of the data stream.

Identifying Servers and
Available Programs
With each server continuously announcing the pro­
gram material available for playback, clients wish­
ing to receive a particular data stream can monitor
the server announcements being sent to address
Al. By receiving these announcements, a client can
ascertain the address of each server active on the
LAN, the data streams currently being transmitted
by each server and the multicast address to which
each is being transmitted, and the data streams
available for transmission.

With a large repository of program material,
it could easily become impractical to announce
all available material. In this case, the announce­
ments could be used only to locate available
servers, and an inquiry protocol or database search

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

mechanism could be used to locate available mate­
rial more efficiently.

Once a client identifies a server that is offering
the desired data stream, it can request that the
server begin transmission. The client sends a mes­
sage identifying the desired playback program
material. In response, the server allocates a unique
multicast address, includes the new material and
multicast address in its announcement messages,
and begins transmitting the program material.

Address AJ,location and Tracking
Each server maintains a table containing the usage
of each of the A2 to An addresses. Each address is
tagged as either currently used or available for use.
When a server receives a client's request for trans­
mission of a new data stream, the server selects a
currently unused multicast address and includes
the address and data stream description in its
announcements of data streams currently being
transmitted. After sending two announcements,
the server begins transmitting the data to the cho­
sen multicast address. Sending two announcements
before beginning transmission provides client
nodes with ample time to ascertain the address to
which the data will be sent and to enable reception
of the video program.

In addition to sending announcement messages,
the servers also listen to the announcements from
other servers to keep track of all multicast
addresses currently in use on the LAN. Each time a
server receives an announcement message from
another server, it notes the addresses being used
and marks them all as used in its table. This pre­
vents a server from allocating an address already
used by another server and eliminates the need for
a central database or clearinghouse.

If a server observes that it is using the same
address as another server, then the server moves
its data transmission to another address if and only
if its node address is numerically lower than the
other server's node address. The new address is
allocated exactly as it would be if the server were
beginning to transmit the data stream for the first
time. This algorithm resolves conflicts where two
or more servers choose the same available multi­
cast address at the same time. In addition, it
resolves a similar conflict that occurs when two
separate LAN segments become joined and two
servers suddenly find they are using the same multi­
cast address.

Digital Technical Journal Vol. 5 No. 2 Spring 1993

LAN Addressingfor Digital Video Data

Clashing allocations of multicast addresses can be
held to a minimum if servers allocate an address at
random from the remaining pool of addresses rather
than all servers allocating in the same fixed order.

Identifying and Stopping Playback
After a client requests playback of new material, it
can then examine the server's announcements, and
when the desired data stream appears as being
transmitted by the server, the client can begin
receiving data from the advertised multicast
address. At this point, any other client stations on
the LAN can also receive the same video program by
enabling receipt of the same address.

When no more clients wish to view a partic­
ular program, a mechanism is needed to inform
a server to stop transmission and return the asso­
ciated address to the free pool. Two alternative
approaches were considered to stop playback; one
was chosen for several reasons.

In the first approach, each server tracks the num­
ber of clients that have requested a particular pro­
gram by simply counting the number of requests
for that program. In addition, clients are required to
notify the server when they are finished viewing.
The server then continues to transmit the material
until all interested clients have indicated they are
no longer interested in viewing. This approach has
two problems. If a viewing client node is reset or
disconnected, or if its message to end viewing is
lost, the server could lose track of the number of
viewing clients and never stop playing a particular
program. The second problem, which is more of a
nuisance, is that clients have to request playback of
a program even if it is already playing to enable the
servers to track the number of viewers.

In the preferred approach, interested clients
periodically remind the server that they wish to
continue viewing the program. Servers then simply
keep playing the material until no client expresses
interest for some period of time. For example,
clients could reiterate their interest in a program
every second, and a server could continue transmit­
ting a requested program until it did not receive a
reminder for 3 seconds. This time lapse would
accommodate lost reminder messages from clients,
and client failure would result in transmission ter­
mination within 3 seconds. In addition, when all
clients had finished viewing the material, the
server, multicast address, and consumed network
bandwidth would be released within 3 seconds,

81

Multimedia

making them available for other uses. Selection of
the actual timer value depends on the desired bal­
ance between ongoing consumption of network
resources (bandwidth and multicast addresses)
after all receiving parties have stopped viewing the
data, and network, end system, and server resource
consumption caused by more frequent reminder
messages.

Changing Multicast Addresses
Aside from receiving and processing the data for a
video program, client stations must also continue
to examine the server announcement messages and
remain alert to possible changes in the multicast
address to which the received program is being
transmitted. As noted above, address allocation can
change at any time due to merging of LAN segments
or duplicate allocation by two servers. Anytime a
client notes a change in address, it must stop receiv­
ing data on the previous address and resume receiv­
ing with the new address. A momentary disruption
in playback is likely to occur, but such disturbances
are infrequent because only merging LANs cause
duplicate allocations of addresses in the middle of
playback.

Under the circumstances described earlier, a
client can find itself receiving two data streams on
the same multicast address for some finite time
period until the servers resolve the allocation of
that address. Clients can gain immunity to this situ­
ation by noting the source address of the server that
originally provided the data stream, and discarding
all data received on the multicast address that is not
from the source address. With this improvement,
clients can easily distinguish the data stream of
interest from another which might momentarily
appear addressed to the same multicast address.

The allocation and resolution of multicast
address use can be improved if servers send their
announcements at an increased rate for some time
period after a new data stream begins transmitting
or when a data stream changes address. Such accel­
erated announcements permit client stations to
more quickly identify the address of a requested
data stream, and more quickly identify when a data
stream has moved from one address to another.
They also permit servers to more quickly identify
instances of clashing multicast addresses and
resolve them. For example, the announcement
interval could be increased from 1 second to one­
quarter second for a 2-second duration and
resumed at I-second intervals.

82

Extension to Interconnected LANs
The described protocols and allocation methods
function correctly across multiple LANs intercon­
nected by bridges since bridges nominally forward
multicast traffic. Many bridge implementations per­
mit management control over the forwarding of
multicast data. This can unintentionally interfere
with the desired operation of this protocol, but
it can also as serve as a useful tool to confine data
traffic to particular LAN segments. Another prac­
tical consideration in the particular application
described here is the ability of a bridge to forward
the large amounts of data traffic involved in digital
video without detrimentally impacting the time­
dependent nature of the data.

Extending the protocols to a wide area network
is a more difficult procedure. Routers do not for­
ward multicast traffic, but they could if used as
proxy nodes between LANs. Router forwarding
performance tends to be even lower than bridge
forwarding rates, which discourages the operation
of this system over a router.

Conclusions
Dynamic allocation of multicast addresses is criti­
cal to enable features such as the continuous play of
full motion video over a network with multiple
viewers. It is not feasible (or at least is very difficult)
for a server to transmit a data stream individually
to all clients wishing to receive it. If, on the other
hand, the desired data stream is transmitted to the
broadcast address, all stations on the LAN have to
receive an enormous volume of data whether they
are interested or not. It is highly desirable not
to inundate uninterested clients with video data
streams, but to send them to clients that want to
receive specific video data streams in which they
are interested.

Multicast addresses are well suited (in fact
designed) for transmission to some arbitrary group
of stations. To prevent a client that is receiving one
video stream from being inundated by other video
streams, a unique multicast address is required
for each unique data stream. Since there are infi­
nite individual data streams to choose from, it is
impossible to allocate a unique multicast address
for every data stream. A mechanism to allocate
a unique multicast address from a finite set of
addresses for the duration of the data stream is the
ideal choice. The described mechanism also has the
attractive characteristic that it is completely dis­
tributed; there is no central agent for allocation of

Vol . 5 No. 2 Spring 1993 Digital Technical Journal

multicast addresses; therefore it is more reliable as
servers join and leave the LAN.

Although transmission of digital video data has
prompted this system design, the basic mechanism
for dynamically allocating multicast addresses can
be applied to any application with similar needs.

Acknowledgments
I would like to acknowledge the assistance of
John Forecast of Digital's Networks and Commu­
nications Group in enumerating the necessary
pathological conditions in this work and for acting
as a sounding board for proposed solutions.

References

1. K. Harney, M. Keith, G. Lavelle, L. Ryan, and
D. Stark, "The i750 Video Processor: A Total
Multimedia Solution," Communications of
the ACM, vol. 34, no. 4 (April 1991).

2. G. Wallace, "The JPEG Still Picture Compres­
sion Standard;' Communications of the ACM,
vol. 34, no. 4 (April 1991).

3. D. Le Gall, "MPEG: A Video Compression Stan­
dard for Multimedia Applications," Communi­
cations of the ACM, vol. 34, no. 4 (April 1991).

4. Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and
Physical Layer Specification (New York:
The Institute of Electrical and Electronics
Engineers, Inc., 1986).

5. Fiber Distributed Data Interface-Token
Ring Media Access Control (New York:
American National Standards Institute, 1987).

Digital Technical Journal Vol. 5 No. 2 Spring 1993

LAN Addressing for Digital Video Data

6. Token Ring Access Method and Physical
Layer Specifications (New York: The Institute
of Electrical and Electronics Engineers, Inc.,
1986).

7. Token-Passing Bus Access Method and Physi­
cal Layer Specifications (New York: The Insti­
tute of Electrical and Electronics Engineers,
Inc., 1986).

8. Local Area Network MAC (Media Access
Control) Bridges, IEEE Standard 802.l(d)
(New York: The Institute of Electrical and
Electronics Engineers, Inc., 1990).

9. MC68838 Media Access Controller User's
Manual (Phoenix, Arizona: Motorola, Inc.,
1992).

10. Logical Link Control, ANSI/IEEE Standard
802.2-1985, ISO/DIS 8802/2 (New York:
The Institute of Electrical and Electronics
Engineers, Inc., 1985).

11. A Primer to FDDL· Fiber Distributed Data
Interface (Maynard, MA: Digital Equipment
Corporation, Order No. EC-H0750-42 LKG,
1991).

12. FDDI Station Management-Draft Proposed
American National Standard (New York:
American National Standards Institute,
June 25, 1992).

13. S. Deering, "Host Extensions for IP Multicast­
ing," Internet Engineering Task Force, RFC
1112 (August 1989).

83

Paul B. Patrick, Sr. I

CASE Integration Using
ACA Services

Digital uses the object-oriented software Application Control Architecture (ACA)
Services to address the problems associated with data access, interapplication com­
munication, and work flow in a distributed, multi vendor CASE environment. The
modeling of applications, data, and operations in ACA Services provides the foun­
dation on which to build a CASE environment. ACA Services enables the seamless
integration of CASE applications ranging from compilers to analysis and design
tools. ACA Services is Digital's implementation of the Object Management Group's
(OMG) Common Object Request Broker Architecture (COREA) spedfication.

Based on work accomplished in many computer­
aided software engineering (CASE) projects, this
paper describes how Digital's object-oriented
Application Control Architecture (ACA) Services
can be used to construct a CASE environment. The
paper begins with an overview of the types of CASE
environments currently available. It describes the
object-oriented technique of modeling applica­
tions, data, and operations and then proceeds to
discuss design and implementation problems that
might be encountered during the integration pro­
cess. The paper concludes with a discussion of
environment management.

CASE Environment Description
Today's CASE environments are required to operate
in network environments that consist of geographi­
cally distributed hardware manufactured by multi­
ple vendors. In such environments, access to data,
metadata, and the functions that operate on this
data must be as seamless as possible. This can be
accomplished only when well-architected proto­
cols exist for the exchange of information and con­
trol. These protocols need not be defined at the
level of network packets, but rather as operations
that have well-defined, platform-independent inter­
faces to predictable behaviors.

In addition to utilizing the various applications,
environments deal with how applications are orga­
nized or grouped within a project and how work
flows between applications and within the environ­
ment as a whole. These concepts are discussed
later in the paper as are the different sty les of in te­
gration that an application can employ.

84

Data integration, i.e., information sharing, is vital
to any CASE environment because it reduces the
amount of information users must enter. However,
data integration must be accompanied by a mecha­
nism that allows control to pass from one applica­
tion to another. This mechanism, commonly called
control integration, provides a means by which
the appropriate application can be started and
requested to perform an operation on a piece of
information. Control integration is also used to
exchange information between cooperating appli­
cations, regardless of their geographic locations.
These two integration mechanisms used in tandem
can solve many of the problems presented by a dis­
tributed, multivendor CASE environment.

ACA Services is Digital's implementation of the
Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA) specification.
ACA Services is designed to solve problems asso­
ciated with application interaction and remote data
access in distributed, multivendor environments
such as the CASE environments just described. This
support includes the remote invocation of applica­
tions and components without the need for multi­
ple logins or the use of terminal emulators. The
encapsulation features of ACA Services allow the
use of applications not designed for distributed
environments. ACA Services can also be configured,
in a way transparent to the application, for use on a
local host.

The central focus of a CASE environment is on
how easily functions such as compiling, building,
and diagramming can be performed. The functions
available form the foundation on which the

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

environment is constructed. Therefore, the first
step in the design of a CASE environment is to deter­
mine what functions to offer. The applications cur­
rently available to support these functions may be
integrated using one of two paradigms: application­
oriented or data-oriented.

Application-oriented Paradigm
CASE environments that follow the application­
oriented paradigm focus on standalone applica­
tions used to develop software such as editors,
compilers, and version managers. Application­
oriented environments normally comprise a col­
lection of applications that support the necessary
functions. In application-oriented environments,
integration tends to be focused on direct communi­
cation between two different applications. In this
paradigm, the requesting application knows which
class of application can be used to satisfy a par­
ticular request. Environments that present an
application-oriented paradigm to the user require
the user to have knowledge of the applications that
can be used to perform specific tasks.

As the level of task complexity increases, it
becomes increasingly important to build environ­
ments that utilize a paradigm focused on the data
associated with the task being done and not on the
applications used to perform the task. The realiza­
tion of this problem has brought about the exis­
tence of data-centered environments.

Data-oriented Paradigm
CASE environments that use a data-oriented para­
digm are centered around the data associated with
the task the user is performing. To accomplish
a task in such environments, operations are per­
formed on a data object. Using the object being
addressed, the operation, and preferences supplied
by the user, the environment determines which
application will be used to perform the requested
operation. Thus, the requesting application requires
no knowledge about which application implements
an operation. This paradigm is extremely useful in
CASE environments because of the diversity of
objects and range of applications available to per­
form certain operations.

The application and the data paradigms can
coexist in a single CASE environment, and in fact ,
tightly integrated CASE environments exploit the
strengths of each paradigm. A text editor can be
used to illustrate this point. Typically, when the
contents of a source file need to be modified, an

Digital Technical Journal Vol. 5 No. 2 Spring 1993

CASE Integration Using ACA Services

edit operation is sent to the object representing the
file . However, a debugger may also use the same
editor to display source code. The operation to
position the cursor on a particular line is sent
directly to the text editor application, rather than
to a data object such as the line. An environment
with such a split focus avoids the expense and com­
plexity of presenting a complete object-oriented
interface to the environment and results in the
existence of both application- and data-oriented
paradigms.

Regardless of which paradigms and applications
a CASE environment uses, the primary focus of the
environment is on the objects and on the opera­
tions that are defined on those objects. Therefore,
after determining what functions to offer, the sec­
ond step in designing a CASE environment is to
understand how applications, data, and operations
are modeled using an object-oriented approach, in
particular the one provided by ACA Services.

CASE Integration in
Object-oriented Terms
Describing environments using object-oriented
techniques can simplify the design of an environ­
ment. Techniques such as abstraction and poly­
morphism can be used to describe the objects
that comprise the environment, the operations that
can be performed on those objects, and any rela­
tionships that exist between objects. Further­
more, using these techniques makes it possible to
describe an environment as a set of classes and ser­
vices for each class. ACA Services performs the role
of the method dispatcher, matching an object and
an operation with the function in an application
that can implement that operation. To realize the
benefits of this approach requires constructing
models for the applications, data, and operations
that will be present in the environment.

Modeling Applications and
Application Relationships
Applications that are integrated into an environ­
ment can provide various functions or services to
other members of the environment. The number of
services an application provides depends not only
on the capabilities of the application but also on
the way it is modeled. These services are stand­
alone pieces that can be plugged into a system to
perform specific functions. An application can
define a single operation whose sole function is to
start the application; an application can export the

85

Application Control

entry points of its callable interface; or an applica­
tion can define sets of operations for each type of
object it manipulates. In support of application
modeling, ACA Services provides the concepts of
application classes, methods, and method servers.
Figure 1 illustrates the relationships among the var­
ious pieces of information used to model an appli­
cation in ACA Services. 1

In ACA Services, the definition of an application is
divided into two pieces: interface and implementa­
tion. The interface definition is concerned with the
publicly visible aspects of the application. These
include class definitions for the objects that the
application manipulates, a class definition for the
application itself, and definitions of operations that
the application supports. The operations, which
represent the functions provided by the applica­
tion, are modeled as messages on the application
class definition. These messages define a consistent
interface to various implementations of the opera­
tions. Placement of the application class definition
affects the behaviors this definition inherits. This is
sometimes called classification. The classification

O,N O,N
~--- APPLICATION 1----- ~

1,N METHOD 1,N
SERVER

APPLICATION DATA CLASS
CLASS

O,N O,N

METHOD

O,N
MESSAGE

O,N

Figure 1 ACA Services Metadata Model

86

of each component of an application depends on
whether a component contains a superset or a sub­
set of the functions contained in the components
of other applications in the environment.

Once the application's components have been
classified, the integrator must determine how the
application will make its capabilities available to
the environment: as an operating system script, as a
callable interface, or as an executable image. The
implementation definition represents the actual
implementation of the application. An application
may comprise a number of executable files and
shared libraries. Typically, only the executable file
used to start the application is modeled as a method
server. If the functions of the application are pro­
vided through a shared library or image, only the
shared library is modeled as a method server.

The implementation of the functions or services
exported to the environment are modeled as meth­
ods. Methods describe the callable interfaces or
operating system scripts that implement a particu­
lar operation and are associated with only one
method server. 2 During the method selection pro­
cess, the messages defined for the application and
the objects it manipulates are mapped onto one or
more methods.

Modeling Data and Data Relationships
Data modeling is another significant aspect of creat­
ing CASE environments, especially environments
that utilize a data-oriented paradigm. Identifying
the data objects that the application uses is a key
element in the process of integrating that applica­
tion. The list of data objects should include those
objects for which the application provides a ser­
vice, as well as those objects on which the applica­
tion makes requests. The variety and quantity of
data objects can vary from application to applica­
tion and depend on an application's capabilities
and the paradigm utilized. To support the modeling
of data objects, ACA Services uses the concept of
data classes. Note that, rather than provide instance
management for data objects, ACA Services pro­
vides a means to represent the data classes used by
an application as metadata.

Because environments that utilize a data­
oriented paradigm may contain many data classes,
ACA Services organizes the data classes into an inheri­
tance hierarchy. This hierarchy allows responsi­
bilities, such as operations and attributes, to be
inherited by other data classes. Data classes found
in an ACA Services inheritance hierarchy are related

Vol. 5 No. 2 Spring 1993 Digital Technical J ou rnal

to one another through an "is-kind-of" relationship.
A class that has an "is-kind-of" relationship with
one or more superclasses must support all opera­
tions defined on the superclasses from which it
inherits.3 A subclass is not limited to those opera­
tions and attributes defined by a superclass but may
have other operations, as well as refinements to
inherited operations and attributes.

Modeling Operations
As mentioned previously, operations are modeled
as messages in the CASE environment. The name of
the message describes the type of operation. Some
messages are data oriented, i.e., Edit, Reserve, and
Copy, whereas other messages are application ori­
ented, i.e., ExecuteCommand and TerminateServer.
Messages provide a consistent abstraction of the
functions provided by applications. This abstrac­
tion allows the details of how a function is
implemented to be hidden from the requesting
application. Since ACA Services supports more than
one implementation for a single message, it also
provides a means to hide various implementations.

The developer should anticipate different imple­
mentations of a message within the environment
and be aware that a message may apply to a variety
of classes. The developer must consider how the
operation on an object might be used by various
applications and in future environments.4 In this
way, adding new types of objects to an environment
requires only minor changes, if any, to applications
that are already integrated.

Operation Interactions The semantics of a mes­
sage dictates which particular interaction model is
to be used. ACA Services can be used to construct
a number of different interaction models: syn­
chronous request, asynchronous request, and
request/reply, as shown in Figure 2. The syn­
chronous request interaction model, shown in
Figure 2a, is useful when serial operations originate
from a single source. This model blocks the execu­
tion of the client application during a request.
Control is returned to the client application only
after the server application receives and executes
the request and outputs data, if any.

The asynchronous request interaction model,
shown in Figure 2b, is useful in situations where
the client can process other work until the server
application completes the request. This model is
especially beneficial when the requested operation
takes a considerable amount of time to complete or
if the server is busy with other requests. Execution

Digital Tecbntcaljournal Vol. 5 No. 2 Spring 1993

CASE Integration Using ACA Seroices

of the client application is blocked only for the
amount of time required to deliver the request.
Client execution resumes once the request has
been delivered. Upon completing the processing of
the request, the server application notifies the
client application of the completion and returns
any output data.

The request/reply interaction model, shown in
Figure 2c, is most appropriate for requests whose
implementations cannot perform the operations
required to obtain the necessary output data.
Gateway and message-forwarding applications are
examples of applications for which this type of
interaction model is best suited. In this model, the
message that represents the request cannot have
any output arguments and must pass an application
handle to itself. The server application uses the
application handle to return any output informa­
tion to the requester by sending a message that rep­
resents the reply. In a request/reply model, a single
reply message should be defined for returning infor­
mation, thus reducing the number of messages an
application must support.

Message Arguments A message argument for
passing the object being manipulated need not be
defined. ACA Services automatically passes the
object to which the message was sent to the
method. Each method routine can access the object
through a structure containing context informa­
tion for the current invocation.

The arguments of a message should not be
designed around a specific instance of an applica­
tion, nor should they imply how an object is physi­
cally stored. To help meet these design criteria, all
references to an object should be passed as instance
handles. In this way, the application that receives
the instance reference can use it directly for sub­
sequent operations on that object. In addition,
when defining the message arguments, developers
should consider other applications that could be
instances of a particular class and possibly used as
replacements.

However, all instances of an application do not
have the same set of capabilities. To support the var­
ious capabilities, the developer may have to define
additional arguments to represent bit masks and
flags. An argument list or an item list can be used
to pass information about different data types or
quantities. The message design should not require
implementation-specific information for proper
application operation; this design implies that rea­
sonable defaults accommodate any unspecified

87

Application Control

CLIENT APPLICATION SERVER APPLICATION

.
Reserve() - foo.c

ACAS_lnvokeMethod(); CMS_ReserveMthd()
{

.
if (status != SUCCESS) · ---------------- return(SUCCESS); . }

(a) Synchronous Request

CLIENT APPLICATION SERVER APPLICATION

.
Browse() - foo.c

ACAS_lnvokeMethod(); LSE_BrowseMthd()
{ .

return();
. .

}

CompletionCallback() · ---------------- return(SUCCESS);
{ }

.
}

(b) Asynchronous Request

CLIENT APPLICATION SERVER APPLICATION

. Connect() - Gateway
ACAS_lnvokeMethod(); MVS_ConnectMthd() . { . . .
return(); return(SUCCESS);
} }

ReplyMthd() Reply() - Client
LU62_ConnectAck()

{ . { . .
return(); return();
} }

(c) Request/Reply

Figure 2 Operation Interaction Models

information. In cases where proper operation of an
application requires implementation-specific infor­
mation, the most suitable design is to use the con­
text object as a place to store the default values.
With such a design, the application no longer needs
to use hard-coded default values and can be cus­
tomized for the environment.

Integration Frameworks
A number of issues must be resolved in the con­
struction of a CASE environment before the first line
of code can be written. Many of these issues center

88

around the modeling of objects in the environment.
As discussed in the previous section, abstraction is
used to hide much of the actual implementation of
the operations on objects from the requesting
application. However, additional context may be
required for further operations. If the application is
using an application-oriented paradigm, most oper­
ations are directed to an application class that pro­
vides the service. In cases where a data-oriented
paradigm is used, the application typically directs
operations to the data class of which the object is
an instance.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

Besides the application and data objects found in
the environment, the designer must also take into
consideration the other components of the CASE
environment itself. Figure 3 shows the major com­
ponents of a CASE environment: activities, applica­
tions, application and data interfaces, work flow
management, and handle management. Each com­
ponent represents a particular aspect of the overall
environment. The components are introduced in
this section and described in detail elsewhere in
the paper, as indicated.

Activities provide the basic work structure for a
particular task within an environment. Each activ­
ity comprises one or more applications and a num­
ber of data objects, forming a single composite
object. Applications within an activity operate
through the application interfaces. The section
Application Integration describes the principles of
an activity and includes a discussion of the sharing
of applications within and among other activities.

Application interfaces, illustrated in Figure 3 as
arrows connecting the various applications, form
the primitives by which integration is accom­
plished. Some of the more general concepts for
application interfaces were discussed in the sec­
tion Modeling Operations; these concepts are
described in detail in the section Styles of
Application Interfacing.

Finally, the section Environment Management
addresses how to manage the flow of work within
the environment. This section describes the
management of instance and application handles,
the use of storage classes as a means to provide
data transformations, and the management of
events within the environment. To better under­
stand each of these topics requires the follow-

CASE Integration Using ACA Seroices

ing basic information about various aspects of the
environment.

Adding New Implementations
Updates to the environment may include adding
new application classes, data classes that the new
application supports, method definitions for the
application, and possibly a method server defini­
tion. As described earlier in the paper, ACA Services
uses data and application classes to represent the
different classifications of data and application
objects found in an environment. Storage classes
represent the classifications of storage and how
objects are referenced in the environment. Each
class, i.e., data, application, and storage, contains a
list of messages that represent the operations that
can be performed on the class.

Digital's CASE environment, COHESION, was
designed to present a data-oriented perspective to
the user. An initial level of integration was achieved
by utilizing this same data-oriented approach to
application integration. Implementation of a data­
oriented approach required that method maps for
messages on data classes contain an indirect refer­
ence to an abstract application class.s Figure 4 illus­
trates this concept by showing two different
messages: the Edit message, which uses an indirect
method reference, and the Browse message, which
uses a direct method reference. An indirect method
reference has two parts separated by the character
'@': first, the name of the message to be sent; and
second, the name of the class on which to send the
message. Although not commonly done, an indirect
method reference allows the original message to be
mapped to another message on a different class,
given that both messages have arguments of the

CASE ENVIRONMENT

ACTIVITY

ACTIVITY

Figure 3 Components of a CASE Environment

Digital Technical Journal Vol. 5 No. 2 Spring 1993 89

Application Control

OBJECT

DATA_OBJECT METHOD

FILE Vi_Browse

APPLICATION

Editor

~
~

Browser

,, .. METHOD MAP .. ~

vi '.. Vi Create .. ,
~ ----_.::_-_-:::

___ ,' .. METHOD MAP .. ~
' _:'~-~~!!e ,

--;, M;T~~~~~p"~
Context Object ' _~i:-~:~-.. ,

Table User_Preferences
Edit @ Editor = View @ Vi

End Table

Figure 4 Direct and Indirect Method References

same type, direction, and order. Both messages
must also return the same type of object.

On encountering an indirect method reference,
ACA Services first looks at tables in the context
object for an attribute that matches the reference. If
such an attribute is found, ACA Services uses the
attribute value to determine the class and message
that should be checked next. Thus, users can pro­
vide a mapping to their preferred application for the
operation. If no matching attribute is found, ACA
Services uses the message and class specified in the
indirect method reference as the next place to
check.

The approach used in COHESION has many advan­
tages over specifying either a direct reference to a
method or an indirect reference to a specific appli­
cation class. This approach does not limit the user's
ability to specify application preferences associ­
ated with using direct references to methods, nor
does it burden the installation of the application
with determining all the data classes that will need
to be updated (as required with indirect references
to a specific application class). In addition, the
approach allows the application developer to do the
least amount of work and still provide the maximum
level of support for user preferences in applications.

Using ACA Services, the application developer
must create an application class definition for each

90

CASE application to be added. Consequently, the
class hierarchy contains both abstract and instance
classes. The application class is required to contain
all the messages defined on its superclass, plus any
additional messages that the application supports.
The method map of each message on an application
class should contain a direct reference to the
method that implements the operation. Although
better than the other alternatives, the COHESION
approach has no default implementation unless one
is explicitly specified in a context object. To over­
come this problem, an entry for each message
defined on the abstract application class must be
created in one of the context objects. The values
for these entries point to the corresponding mes­
sage on the class of application used as the default
implementation.

Common Classes
Common classes for a CASE environment provide
CASE application developers with a description
about how an application fits into the environ­
ment, the behaviors the application must support,
and the messages that result in those behaviors.
The notion of plug-and-play in the environment
is achieved through the use of common classes.
An implementation that adheres to the descrip­
tion of a particular class of applications can be

Vol. 5 No. 2 Spring 1993 Digital Technical Joun1al

easily switched with another implementation that
adheres to the same application class semantics.

Programs like COHESION are working toward
a set of common classes for CASE environments.
The set currently defined contains classes for many
types of data and applications found in CASE envi­
ronments focused on the coding and testing phases
of the software development process. A graphical
view of the data portion of the hierarchy is shown
in Figure 5. The hierarchy is partially based on the
hierarchy found in ATIS, a standard for tool integra­
tion, and utilizes the strength of the ATIS data
model.6 (Shaded boxes indicate the classes that are
specific to ATIS.) Encompassing the ATIS model, the
hierarchy presents a uniform data model for the

DATA OBJECT

ELEMENT

VERSIONABLE

CONTAINER VERSION

DIRECTORY

CASE Integration Using ACA Services

integration of data throughout the CASE environ­
ment. The set of classes, although not exhaustive,
serves as a basis on which a CASE environment can
be built. Extensions of the hierarchy will occur as
new classes of applications and their associated
data objects are integrated into the environment by
independent software vendors, customers, and
other CASE vendors.

Most data classes are subclasses of the data class
SOURCE_FlLE, because the initial data class imple­
mentation was targeted at a CASE environment
consisting of editors, compilers, builders, and ana­
lyzers. Additional data classes for both file and
nonfile objects will be added when applications
that provide and manipulate these objects are

RELATION

VERSION
RELATION

EVENT

PARTITION PERSISTENT
PROCESS

ACTIVITY AGGREGATE
CODE
MANAGEMENT

FILE
DIRECTORY

OBJECT FILE

LISTING FILE

LOG FILE

COL CRL HELP

COMPOSITE

DIAGNOSTIC
FILE

SCRIPT FILE

EXECUTABLE
FILE

MACRO MESSAGE TPU

Note: Shaded boxes indicate A TIS-specific classes.

UIL

Figure 5 Hierarchy of CASE Common Data Classes

Digital Technical Jo11rnal Vol. 5 No. 2 Spring 1993 91

Application Control

integrated into the environment. A number of data
classes represent composite objects such as tests
and activities. These data classes are used to hide
how the object is physically stored in the environ­
ment. Classes that represent composite objects
have attributes with values that are actually other
objects. For example, the test data class typically
has attributes that represent the result of a test run,
an operating system script or program used to per­
form the test, and a benclunark against which a test
run is comp ared. Each of these attributes may have
as a value a reference to the file object that contains
the actual data.

The portion of the hierarchy that is used to spec­
ify application classes contains only abstract appli­
cation classes, as shown in Figure 6. These classes
provide structure, but more important, they define
the operations that are inherited by any application
that is an instance of a class. Abstract classes are
provided for a number of the applications found in
CASE environments that deal with the coding and
testing functions. The hierarchy does not contain
any classes that represent particular instances of an
application. Such application classes exist only
when applications are installed in the environment.

Consistent Integration Inteiface
Many CASE vendors are building products for a
number of different environments, including elec­
tronic publishing, office automation, computer­
aided design, and computer-aided manufacturing,
in addition to CASE. Therefore, vendors must decide
how to integrate these applications into the various

ACTIVITY
MANAGER

ANALYZER

PERFORMANCE
ANALYZER

BROWSER

BITMAP

MACRO

TEXT

environments. Until now, most integration was
accomplished by linking one application with
another, which resulted in tightly coupled applica­
tions. However, such applications tend to be unable
to operate independently, without the other mem­
ber. Also, each coupled member tends to have
its own application programming interface (API).
Integration performed in this manner results in an
application that must maintain code to support
multiple APis, if the application is to work in a num­
ber of environments. Such support can increase the
maintenance cost and the time and effort required
to integrate with other implementations of applica­
tions and environments. Other by-products of this
approach are an increased image size and a need to
rerelease software when a dependent application
changes. The degree to which rerelease occurs
varies with the platform and operating system.

ACA Services can be used to minimize the num­
ber of interfaces that an application must maintain
without removing functionality; a common API
provides the interface to all potential functionality.
The ACA Services API, along with a set of com­
mon classes, allows the same level of interaction
between applications that can be accomplished
through a private API, without the negative side
effects previously described. Through the use of
common classes, an application can integrate with
multiple implementations of another application
without requiring a separate effort for each. On
platforms where dynamic loading of libraries or
shareable images are supported, applications can
use ACA Services to locate the appropriate library,

SYSTEM
BUILDER

MESSAGE

VERSION
MANAGER

DATA
MANAGER

TRANSLATOR

CONFIGURATION
MANAGER

OBJECT FILE CONVERTER

TPU UIL

Figure 6 Hierarcl.ry of CASE Common Application Classes

92 Vol. 5 No. 2 Spring 1993 Digital Tecbnicaljor,rnal

find the proper entry point, and transfer control to
the appropriate routine. ACA Services also provides
a transparent mechanism for encapsulating applica­
tions that have no callable interfaces. Use of this
mechanism extends the number of applications
that can be integrated and removes the need to
develop operating system-specific code to start
applications.

Styles of Application Interfacing
Creating an interface to an application that is to be
integrated is different from integrating an applica­
tion into an environment. Application interfacing
deals with the public interface or interfaces that
the application provides to another application. In
turn, these interfaces provide the primitives that
can be used in the integration of applications.

Application interfaces can be created in various
ways, with differing levels of effort. Software devel­
opers can design new applications to utilize all the
capabilities of ACA Services. Existing applications
can also take advantage of the full capability of
ACA Services, if the source code to the application
is available and if the application can be easily
adapted to use an event-driven model. However,
even if the source code to an application is not
available, applications can still be integrated into
the environment using ACA Services. If the applica­
tion has a callable interface, a server can be written
that receives messages and calls the appropriate API
routines. If the application does not have a callable
interface, the application can be integrated by
encapsulation through the use of an operating sys­
tem script. The remainder of this section describes
how to use each of these techniques to create an
interface through which the application can be
integrated into a CASE environment.

Application Modifications
An existing application can easily be adapted to use
ACA Services, if the source code to the application
is available. With minimal changes, an application
that utilizes an event-driven design, like that used
by most window-based applications, can operate as
an application server. The actual modifications
required to provide ACA Services support differ
across applications, but for most window-based
applications the changes are similar. As an illustra­
tion of this style of integration, consider an editor.

Most editors are implemented as event-driven
applications, which allows easy integration

Digital Technical Journal Vol. 5 No. 2 Sprtng 1993

CASE Integration Using ACA Services

because the structure of the code requires no major
changes. To register the current executing instance
of the application with ACA Services, a call to the
ACAS_RegisterServer routine must be added to the
application's initialization routine. During the pro­
cess of run-time registration, ACA Services registers
various information about the application, includ­
ing the identifier of the process in which the appli­
cation is executing, the owner of the process, and
the class- and instance-unique identifiers for the
application. As part of the registration, an applica­
tion can specify an abstract name by which it can
be located and the routines to be called when an
ACA Services event arrives, e.g., when the server
is instructed to shut down or when a session ends.

Once registered with ACA Services, the applica­
tion must enter its event dispatching loop. Because
many applications have existing event dispatching
mechanisms, ACA Services has been designed for
easy integration with most mechanisms. ACA
Services provides this support by allowing the
application to define a routine called the event
notifier, which is called at signal level each time an
ACA Services event occurs. The event notifier rou­
tine places an event on the applications work
queue for the ACA Services event. Upon encounter­
ing the event, the application's event dispatcher
routine calls the ACAS_Dispatch routine to allow
ACA Services to dispatch the appropriate method or
management routine for the event. A description of
how ACA Services dispatches operation requests
follows.

Application Servers
When the application to be integrated does not
have a user interface but provides a callable inter­
face, integration is best accomplished by creating
an application server. Considered a form of encap­
sulation, an application server provides a consis­
tent programming interface to the application. An
application server provides jacket routines that use
the application's callable interface, hiding the
actual details of this interface. This technique is also
used to create applications that have a clean separa­
tion of presentation and functions.

Applications that implement persistent data
stores, such as databases, code managers, and
repositories, are prime candidates for this style of
integration. By using an application server to
access persistent data stores, a requesting appli­
cation need not know how the data store is

93

Application Control

implemented and which implementation is to be
used. This technique promotes the reuse of existing
functions contained in the environment regardless
of the actual implementation of the function.
Digital's Code Management System (DEC/CMS) and
COD/Repository software are examples of applica­
tions that have been integrated using the appli­
cation server technique. Figure 7 illustrates the
typical structure of the various components
involved in this style of integration.

As shown in Figure 7, the integration process
involves the following steps. (1) An invoke from the
client application of the message "Reserve" on the
object "foo.c" goes through the resolution code and
(2) out the transport to the server application. This
may result in starting the server application, if no
server was available to service the request. (3) The
server application's main routine calls the event
dispatcher and waits for work to arrive, when the
server is started. (4) When the "Reserve" message
arrives on the transport, the transport notifies the
server application, (5) causing the event dispatcher
to dispatch the "Reserve" message by calling the
method dispatcher routine. (6) The method dis­
patcher routine calls the appropriate method inter­
face routine. (7) The method interface routine does
any work required to call the appropriate callable
interface routine. (8) When the callable interface
routine returns control to the method interface
routine, the routine can perform any work neces­
sary before (9) returning control to the method
dispatcher routine. (10) The method dispatcher
routine then puts any arguments to be returned in

APPLICATION PROCESS

CLIENT APPLICATION

DATA TYPE/UST CALLS ACAS_lnvokeMethod{Reserve,foo.c)

• t (1)

RESOLUTION CODE
DATA TYPE/UST CODE

• (2)

TRANSPORT
I•

the proper format and sends this information to the
transport, which actually sends the information
back to the client application.

Using the DEC/CMS application server as an exam­
ple, the software developer must create a main rou­
tine to (1) perform any setup requ ired to use the
callable interface and (2) register the existence of
the server with ACA Services. Registration includes
specifying the method dispatcher routine, which is
generated by ACA Services, so that the appropriate
method routine will be dispatched for the message
received.

A method routine exists for each operation that
the server is capable of performing. The set of
method routines is analogous to the operating sys­
tem script for compilation used to explain applica­
tion encapsu lation later in this section. Because the
DEC/CMS application server is not an operating sys­
tem script, message arguments are passed into the
method routine directly. As mentioned earlier in
the section CASE Integration in Object-oriented
Terms, the object on which the current operation is
to be performed is available to the method routine
through the use of the invocation context struc­
ture. Information about the object, such as its class,
name, and generation, can be obtained by calling
the ACAS_ParseinstanceHandle routine. The class
of the object can then be used to determine if the
object is an element under version control, a collec­
tion, or a group.

The name of the object and its generation are
contained in the reference data field of the instance
handle that represents the object. Because each

SERVER PROCESS

APPLICATION SERVER

MAIN ROUTING
1(3) INITIALIZATION CODE

' EVENT DISPATCHER
• (4)

(5) I
~ 1-. TRANSPORT t (10)

I

1(6)
METHOD DISPATCHER + (9)

- • I
METHOD INTERFACE • I

I (7l I (Bl
t

CALLABLE INTERFACE
I

Figure 7 Block Diagram of a Code Management System Application Server

94 Vol. 5 No. 2 Spring 1993 Digital Technical Journal

different code management system has its own
representation of generation, it was necessary to
create a canonical format to represent all imple­
mentations. Therefore, the method must convert
the canonical generation representation to a format
that is native to the implementation, i.e., DEC/CMS

specific. In addition, any method that returns a ref­
erence to a versioned object must convert the
native generation representation to its canonical
format. Table I shows how an object reference can
be mapped between its canonical and DEC/CMS­

specific formats.
Once the necessary information about the object

has been retrieved and converted to a format native
to the implementation, the method can call to the
appropriate callable interface routine, possibly
based on the object's data class. Once the call com­
pletes, the method must convert any objects to be
returned into a canonical format, at which point
the method can return the status of the operation
and output arguments.

Application Encapsulation
Encapsulation, the simplest integration technique,
is appropriate for applications that do not have a
callable interface or in cases where no source code
is available. Compilers are an ideal candidate for
this style of integration, because they perform syn­
chronous operations. Encapsulation of compilers
provides a consistent programming interface to any
compiler that is integrated into the environment,
regardless of the qualifiers used to specify particu­
lar compilation options. This technique can also be
used to provide a generic compile command that is
platform independent. Encapsulation of a compiler
is best accomplished through the use of an operat­
ing system script. Figure 8 illustrates an example of
an encapsulated compiler.

Table 1 Converting Generation
Representations

Canonical
Format

UTIL.C(10:BL7:3)

DISPATCH.C(1)

DUMP.832(1 :A:8)

GRAPH.BAS

Native Representation
Object Object
Name Generation

UTIL.C

DISPATCH.C

DUMP.832

GRAPH.BAS

1083

1
1A8

1+

Digital Tecbntcal Journal Vol. 5 No. 2 Sprtng 1993

CASE Integration Using ACA Services

COMPILE FOO.C - COMPILE()- FOO.C ACAS SCRIPT /DEBUG -
/NOOPT

SERVER

$ @SYS$LIBRARY:COMPILE.COM %INSTANCE()

APPUCONT GET ARGUMENT DEBUGNALUE = DBG
IF DBG = ' TRUE"
THEN

DBG_QUAL = ' /DEBUG'
ENDIF

CC 'P1 'DBG_QUAL

Figure 8 .Example of an EncapsulaJed Compiler

The purpose of an operating system script for
compilation is to convert the generic compilation
qualifiers, which are passed as message arguments,
into the compiler-specific options. The /DEBUG

and /NOOPT qualifiers shown in Figure 8 are exam­
ples of generic compilation qualifiers. Many operat­
ing system scripting languages limit the number of
parameters that can be passed on the command
line. The compilation scripts avoid these limita­
tions by passing the name of the file to be com­
piled as the only command line parameter, as
shown in the command @SYS$UBRARY:COMPILE.COM

%INSTANCE() in Figure 8. ACA convenience com­
mands, such as APPi/CONT GET ARGUMENT, are used
to retrieve and set the values of the message argu­
ments in the operating system script. When all the
switch values are gathered, the operating system
script converts the generic values into specific
qualifiers. Finally, the actual command line is con­
structed and executed. This same technique can
also be used to encapsulate linkers and any other
types of applications where no source code or
callable interface is available. When applications
provide a callable interface, even tighter integration
can be achieved by creating an application server.

Application Integration
Integration of applications goes beyond the inter­
faces that applications present to the environment;
it concerns how applications interact with one
another. Integration also takes into account the
policies used in an environment to allow a collec­
tion of applications to be grouped into a single
composite object. This section discusses concepts
such as an activity; locating an application within
an activity, context sharing, and the sharing of
applications across multiple activities.

95

Application Control

Activity Participation
Since more than one activity may be active at
any given time, an activity must be able to locate
the other applications participating in the activ­
ity. Data-oriented environments provide a means
to loosely couple the various data and applica­
tion objects into a single composite object. The
COHESION integrated environment refers to this
composite object as an activity. The implementa­
tion of an activity differs depending upon the envi­
ronment: ATIS uses a persistent process; file
system- based environments generally use a direc­
tory hierarchy; and environments built on a private
data store can use a data file. In the COHESION envi­
ronment, an activity is represented as an ACA

Services context object that contains attributes that
reference a directory hierarchy. The context object
is used to set up the execution environment in
which a set of applications will operate and to
locate other applications that are executing within
the activity.

Locating Activity Applicatiorzs
The ability to locate an application that is executing
in an activity allows for reuse of the application by
other applications executing in that same activity.
Such locating provides for better utilization of
applications and reduces the amount of context
that must be propagated from one application to
another. To locate an application within an activity,
an application must have registered its presence in
the activity. When registering with ACA Services,
the application must specify the activity name as
the value of the attribute ACAS_SERVER_ REGISTRY.

The application must also register itself with the
event manager to allow centralized management of
the activity and to participate in the flow of work
within the activity.

CASE applications determine if they are execut­
ing within an activity by checking for the existence
of the environment variable ACTMTY_NAME. If this
environment variable exists, its value is the activity
identifier. To allow an activity to extend beyond a
single host and to support different activities with
the same name, the activity is identified by a unique
identifier.

Sharing within Activities
Applications executing within an activity operate
in a common context. ACA Services provides a set
of mechanisms that can be used to provide
this common context. The environment variable

%

ACTIVITY _NAME is defined each time a method
server is started in the COHESION environment. The
method server definition specifies as the value of
the start-up environment attribute, the names of
the context tables and attributes that are . to be
defined as environment variables upon start-up.

Another way of providing a common context
across an activity is to propagate context object
tables and attributes as implicit arguments to
method servers. Specifying this information as
implicit arguments instructs ACA Services to propa­
gate these attributes to the context object of the
method server servicing the request.

The context object can also be used directly to
create a common context across an activity, i.e., by
holding information that needs to be shared. This
information can include references to directories,
preferences of applications, and default values.

Sharing between Activities
Reusing applications that are active within an activ­
ity reduces the overall system resources required to
perform the activity. However, a problem occurs
when two or more activities are active at the same
time and require the same application. With the
addition of windowed interfaces and the need to
utilize other services, application sizes have greatly
increased. Consequently, it is often impractical to
expect a separate instance of an application to be
associated with each activity that is active.

In order for an application to be shared between
multiple activities, the application needs a means
by which to determine if a request is part of an
ongoing dialog with another application or is the
beginning of a new dialog. These dialogs, called
"sessions," represent a conversation between a pair
of applications. Each time a client application
makes a request to a new application server, a ses­
sion is established and an identifier is associated
with the session. ACA Services passes the session
identifier to the server application.

The management of sessions can be accom­
plished by using the session ID as a lookup key into
a list of structures that represent the active ses­
sions. When the server application locates the
structure associated with the session identifier, the
application can establish the appropriate context
for that session. In the example of DEC/CMS applica­
tion server, the structure would contain the handle
to the library associated with the session.

ACA Services also notifies an application server
when a session is to be terminated between a client

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

and a server application. When notified, the appli­
cation server determines the appropriate course of
action. Using the CMS example, the server releases
any cached information it has kept about the ses­
sion, closes the specific CMS library, and then frees
the library data block.

Environment Management
After defining application interfaces and integrat­
ing applications into an activity, CASE environment
developers must focus on the management of the
environment as a whole. This includes the manage­
ment of references to applications and data, the
transformation of object references into platform­
specific formats, and the flow of work within the
environment.

Handle Management
In the CASE environment, objects are the targets of
all operations. Sending a message to an object
requires understanding how to create and manage
references to the object. Since ACA Services does
not manage instances of objects, it uses references
to instances of objects. These references take the
form of instance and application handles, which
reference data and application objects, respec­
tively. Proper management of these handles leads to
more efficient use of application objects, thus
reducing the amount of network resources and
memory consumed by the application. Appropriate
handle management can also enhance performance
and guarantee predictable behavior.

Instance Handles
The creation of an object reference is performed by
calling the ACAS_CreatelnstanceHandle routine.
ACA Services (1) creates an instance handle from
the information passed as arguments to the routine,
(2) allocates memory to the handle and manages
this memory, and (3) sends a message to a storage
class, if one was specified.

To avoid creating numerous copies of an instance
handle, each with its own memory, a cache
of objects should be used. This is especially
true in CASE environments that use the data­
oriented paradigm. Each object structure con­
tains pointers to both the previous and the next
object structure in the queue. The structure also
contains values for the location and reference
data fields that were passed as arguments to the
ACAS_CreatelnstanceHandle routine and, thus,

Dtgtta l Technical Journal Vol. 5 No. 2 Spring 1993

CASE Integration Using ACA Services

allows for the unique identification of an object in
the cache across multiple hosts. In addition to the
location and reference data, the structure contains
a pointer to the instance handle returned from the
call to the ACAS_ CreatelnstanceHandle routine.
Reuse of the instance handle saves the time
required to create the handle, including any over­
head associated with using storage classes. Reuse
also reduces the total amount of memory required.
However, instance handles are not the only handles
that require management; application handles need
to be managed as well.

Application Handles
Application handles are references to appli­
cation objects. Each application handle can
represent one or more method servers. A method
server can generate a handle by calling the
ACAS_CreateApplicationHandle routine, or the
ACAS_InvokeMethod routine can return an applica­
tion handle as an output argument. As with
instance handles, application handles can be
passed as arguments to a message. Management of
application handles is similar to the management
of instance handles. Each entry in the cache of
application handles contains the location of the
application and the name of the class of appli­
cation. The entry also contains a pointer to the
application handle and a count of the number of
outstanding references to the handle. Freeing an
application handle results in the termination of all
sessions between the client and any method
servers referenced by the handle; it also releases all
memory associated with the handle.

Each instance handle should be associated with a
corresponding application handle. This association
allows the application handle to be reused when
sending additional requests to the application con­
cerning the data object. An application handle asso­
ciated with a cache entry can be used to make the
request. Failure to find the application in the cache
could indicate that the appropriate invocation flag
should be used to obtain an application when call­
ing the ACAS_InvokeMethod routine.

As described, proper handle management can
result in better performance, better resource uti­
lization, and predictable behavior within the envi­
ronment. However, handle management does not
deal with how to create an object reference that,
when presented to an application on a remote host,
is in a format native to that platform. For this capa­
bility, we must turn to storage classes.

97

Application Control

Data Transformations Using
Storage Classes
Distributed CASE environments, whether homoge­
neous or heterogeneous, must concern themselves
with the representation of object references that
are shared among different applications. File speci­
fications exemplify this problem. Given multiple
hosts, it is unlikely that two hosts have the same
path to a specified file, even if both hosts are of
the same platform type. Consider the scenario in
which Application A sends the Edit message to the
file object $PROJ4: [PROJECf.SRC]SORT.C, resulting
in a request of Application B to edit the contents of
the file. The problem becomes complicated if
Application B is executing on a different platform
type than Application A.

To solve the problem, the environment can uti­
lize the functionality provided by ACA Services stor­
age classes. Storage classes provide a mechanism
for translating an object's reference data from one
file system representation to another. A solution
to the scenario described involves implementing a
set of methods that would be executed when the
object reference uses a storage class.

The SC_COHESION storage class is a CASE-specific
storage class, which is a refinement of the SC_FILE
storage class provided by ACA Services. As a refine­
ment, SC_COHESION inherits all the messages defined
on its parent storage class, including the messages
Setinstance and Getinstance. The methods for these
two messages provide an implementation for map­
ping file system specifications from platform­
specific formats to platform-independent formats
and back again. The storage class methods do this by
utilizing device and directory information, called
directory mappings, found in the context object.

The directory mappings stored in the context
object provide a means to associate a physically
shared directory path with a network path name.
The network path name is a platform-independent
name that, when presented to a remote platform,
can be mapped into a format native to the platform
receiving the request. A network path name and its
mapping are stored as an attribute-value pair in the
PATHNAME_REGISTRY table of a context object.

The directory mapping functionality allows ref­
erences to file objects to be passed between appli­
cations on different hosts in a way independent of
the platform. This same scheme can also be used to
convert object references in object identifiers, such
as ATIS element IDs for use with the COD/Repository
software. In the implementation for the file system,

98

the method associated with the Setlnstance mes­
sage must determine the data class of the object ref­
erence, as well as transform the reference data into
its network format. The determination can be made
in a number of ways, the most common of which
is to base the class on the extension of the file.
Although not the most accurate method of deter­
mining the class, this approach does meet the needs
of many files.

Work Row Management
ACA Services manages the various instances of exe­
cuting applications but does not understand the
concept of an activity. Therefore, managing the
applications within the activity requires the use of
an application that understands this concept. The
event manager, which acts as a central registry of
active applications and their associated activities,
can provide a simple form of work flow manage­
ment within the environment. However, the event
manager is used only in a limited capacity in the
COHESION integrated environment. In COHESION,
the event manager is notified each time an applica­
tion is started or stopped in an activity. The applica­
tion provides an application handle to itself, which
is used by the event manager to notify the applica­
tion of events of interest. The use of the event man­
ager removes the need for an application to forward
certain messages, as a result of an event in the envi­
ronment, to all applications with which it has been
communicating. Removing the need to forward
messages reduces both the chances of loops form­
ing in a set of applications and any communication
deadlocks between applications.

Events and Triggers
On registration, an application can express interest
in being notified about particular events. Events
are categorized into two classes: system events
and application events. System events affect the
overall operation of the environment. These events
include shutdown and changes in activities. All
applications in the COHESION environment are
notified of the system events for activity shutdown,
iconification, and deiconification. Application
events occur when the state of an object in the envi­
ronment changes. File modification or completion
of a build step are typical examples of application
events. Other applications in an activity can use
these events for synchronization or as notifications
that cause a change in behavior. Such notifications
have traditionally been called triggers.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

For example, in a simple build system such as the
make utility, events can create a work flow that
would automatically compile and link an applica­
tion when one module changes. If the build process
completes successfully, the work flow automati­
cally starts the debugger to debug the newly built
executable file. If the build fails, the work flow
loads the faulty module into a program editor and
positions the cursor to the line where the error
occurred.

Summary
ACA Services can be used to resolve many problems
encountered in a distributed, multivendor environ­
ment. The object-oriented approach provided by
ACA Services can aid in the construction of a CASE

environment that promotes the plug-and-play con­
cept across a number of different platforms and
network transports. ACA Services provides a means
of developing client-server applications and of
abstracting the network dependencies away from
the developer. This feature, together with the use of
storage classes and data marshaling, can help to
exchange information in a heterogeneous environ­
ment. At the same time, ACA Services can provide a
consistent programming interface to all compo­
nents in the system. The dynamic nature of ACA

Services allows new components to be added to the
environment without the need to rebuild the entire
environment. The flexibility of ACA Services allows
its use to construct a CASE environment regardless
of the integration paradigm used and while sup­
porting a number of interaction models. ACA

Digital Tecbntcal Journal Vol. 5 No. 2 Spring 1993

CASE Integration Using ACA Services

Services provides the infrastructure necessary to
integrate the large number of existing applications
into distributed, heterogeneous environments.

Acknowledgments
The author wishes to thank Jackie Kasputy, Chip
Nylander, and Gayn Winters for their invaluable
insights and contributions on distributed, multi­
vendor CASE environments.

References

1. E. Yourdon, Modern Structured Analysis (Engle­
wood Cliffs, NJ: Yourdon Press, 1989).

2. DEC ACA Services System Integrator and
Programmer's Guide (Maynard, MA: Digital
Equipment Corporation, Order No. AA-PQK.MA­

TE, 1992).

3. G. Booch, Object Oriented Design with Applica­
tions (Redwood City, CA: Benjamin/Cummings
Publishing Company, 1991).

4. R. Wirfs-Brock, B. Wilkerson, and L. Wiener,
Designing Object-Oriented Software (Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1990).

5. DEC ACA Services Reference Manual (Maynard,
MA: Digital Equipment Corporation, Order No.
AA-PQK.LA-TE, 1992).

6.]. Liu, "Future Direction for Evolution of IRDS

Services Interface," X3H4/92-161, Proposed spec­
ification submitted to ANSI X3H4 and ISO IRDS,

1992.

99

David Ascher I

DEC @aGlance-Integration of
Desktop Tools and Manufacturing
Process Information Systems

The DEC @aGlance architecture supports the integration of manufacturing process
information systems with the analysis, scheduling, design, and management tools
that are used to improve and manage production. DEC @aGlance software com­
prises a set of run-time libraries, an application development tool kit, and exten­
sions to popular spreadsheet applications, all implemented with Digitals
object-oriented Application Control Architecture (Alil) Services. The tool kit helps
developers produce DEC @aGlance client and server applications that will interop­
erate with other independently developed DEC @aGlance applications. Spreadsheet
extensions (add-ins) to Lotus 1-2-3 for Windows and to Microsoft F.xcel for Windows
allow users to access real-time and historical data from DEC @aGlance servers. With
DEC@aGlance software, control engineers and other manufacturing process profes­
sionals can use familiar desktop tools on a variety of platforms and have simple,
interactive, and transparent access to current and past process data in their plants.

At a chemical plant that has been producing nylon
using the same process for over 35 years, the lead
control engineer told an interviewer that what he
likes about his job is that "it is totally different every
day." 1 To an outside observer, the operation of a
process plant, such as a refinery or paper plant,
appears to be an unchanging flow of materials
into a tightly controlled and repetitive process
that produces a continuous flow of unvarying
product-24 hours a day, 365 days a year. In reality,
the operation of these plants is far more complex
and challenging, involving constant adjustment to
changing conditions, aging equipment, and varia­
tions in raw materials, as well as constant monitor­
ing for equipment malfunctions.

The operation of a large process plant involves
the functioning of numerous valves, switches,
pumps, other actuators, and sensors measuring and
controlling the levels, pressures, temperatures, and
flows of various materials through a complex series
of pipes, tubes, tanks, and vessels. In addition to
detecting and managing failures in these compo­
nents, a large proportion of the personnel in the
plant is involved in process and product improve­
ment. The personal computer or workstation
and an array of sophisticated desktop tools allow

100

data to be analyzed, visualized, manipulated, and
explored in ways that support creative problem
solving. Getting timely information about the pro­
cess into the appropriate problem-solving tools is,
however, difficult. This paper begins with some
background about manufacturing process infor­
mation systems and the need for access to system
data. The paper then describes the development of
DEC @aGlance software and the choice and use of
Application Control Architecture (ACA) Services to
solve the problem of integrating independently
developed applications in the manufacturing
space.2

Background
In large manufacturing facilities, the production
process is controlled through the use of advanced
automation systems. These systems may track thou­
sands of temperatures, flows, pressures, and levels
and can drive hundreds of pumps, valves, and other
actuators. To implement control strategies, such
systems may compute large numbers of complex,
dynamic control algorithms. Usually, additional sys­
tems measure various physical properties of the
product, such as color, weight, viscosity, thickness,
and moisture content. Supervisory control systems

Vol. 5 No. 2 Spring 1993 D igital TecbntcalJournal

DEC @aGlance-lntegration of Desktop Tools and Manufacturing Process Infonnation Systems

often coordinate parts of a complex process, as
well as implement higher-level control and produc­
tion strategies and keep historical records of key
process variables.

The control of a large plant is usually imple­
mented through strategies that allow the control
problem to be divided into smaller parts, as illus­
trated in Figure 1. Each piece of the system is
responsible for the control of a subsystem (e.g.,
steam generation and distribution, or cooling flu­
ids), a part of the process (e.g., premixing, material
storage, or reaction), or an area of the plant (e.g.,
packaging line, product stream, or finished goods
management). Within each subsystem, there is typi­
cally a hierarchy of control. The lowest-level com­
ponents control activities that require responses
within less than a second to as much as one minute
(direct control). The next level of systems control
activities that require responses within less than
a few minutes (distributed control). Above this
level of response are systems that control activities
that may not change for long periods or that imple­
ment control algorithms that involve measurements
from more than one lower-level system (super­
visory control). At the plant level, additional

PROCESS
HISTORIAN

ADVANCED
CONTROL

control systems may exist to implement control
algorithms that reflect changes in the markets for
products, market opportunities, and fluctuations in
raw material availability and composition, along
with the information about the process that is sup­
plied by the lower-level systems (high-level con­
trol). Scattered among these levels may be various
additional systems that schedule preventive main­
tenance, identify equipment failures, and advise on
process improvements-all based on information
about process from the other systems in the plant.

Distributed control systems include an operator
console that consists of multicolor displays, push
buttons, warning lights and buzzers, a touch screen
or trackball, and industrialized keyboards with as
many as a 36 special function keys. The displays
allow an operator to oversee all parts of the process
for which the operator is responsible. Typical dis­
plays show recent trends of key variables and mimic
diagrams showing the current state of the manufac­
turing equipment (e.g., valve positions and tank lev­
els) and of the material flowing through the
process. The keyboard and other input devices
allow the operator to select displays, request
reports, and modify control settings. Response to

ARTIFICIAL
INTELLIGENCE
SYSTEMS

HIGH-LEVEL
CONTROL

SUPERVISORY
SUPERVISORY CONTROL
MONITORING
AND CONTROL HISTORICAL ,_ _ _,

PROCESS
DATABASE

REAL-TIME
PROCESS
DATABASE

LOOP
CONTROLLER

PUMP GAUGE VALVE

DISTRIBUTED
CONTROL
SYSTEM

LOOP
CONTROLLER

DISTRIBUTED
DISTRIBUTED CONTROL
CONTROL
SYSTEM

LOOP
CONTROLLER

DIRECT
CONTROL

SENSORS AND
ACTUATORS

Figure 1 Typical Levels of Control in a Process Plant

Dtgttal Technical Journal Vol. 5 No. 2 Spring 1993 101

Application Control

problem or alarm conditions and modification of
the process to change the product are effected
through the console.

Process operators are responsible for maintain­
ing the routine operation of a plant. Operators use
the control system to change process parameters in
order to produce different mixes or variants of the
product, or to respond to an equipment failure by
rerouting material around nonoperational process
equipment.

To perform their functions, manufacturing plant
production and engineering support personnel
(e.g., control engineers, process engineers, produc­
tion supervisors, production planners, mainte­
nance supervisors, and manufacturing engineers)
also need access to information in the control and
supervisory systems. These professionals regularly
access information contained in multiple manufac­
turing systems and have an occasional interest in
particular measurements or parameters within
other parts of the process. The functions of these
manufacturing plant personnel include

• Complex problem analysis and solution.
Locating sources of product or process variation
involves analyzing information from different
parts of the process that may be under the con­
trol of different automation systems. Comparing
the flow that exits one part of the process
with the flow that then enters the subsequent
part, for example, could disclose a faulty flow
meter, a previously unknown temperature con­
trol problem, or a leak.

• Product improvement. Improving product qual­
ity and consistency involves investigating how
the product is affected by existing variations
in the production process. For example, investi­
gation may involve the study of a process vari­
able that cannot be measured directly but can be
calculated from the values of other process vari­
ables. Examining sets of variables over time and
exploring possible relationships may result in
discovering combinations of process variables
that yield unexpected effects on product
attributes.

• Process improvement. Improvements in process
yield and process reliability and reduction of
waste and hazardous by-products may involve
the study of historical data values from the pro­
cess. Studying measurements obtained from
multiple control systems may also result in pro­
cess improvements.

102

• Resource optimization. Usually, process plants
are capable of producing different grades of
product, as well as mixtures of end products.
An oil refinery, for example, produces various
grades of fuel oil and also home heating and
lubricating oils, all from a single process. While
the operators adjust the equipment to control
the product mix, a process planner or produc­
tion manager determines the best production
schedule based on customer orders and the effi­
cient use of the process equipment.

Process information is available to operators
and engineers who are trained to work with the
various control and management systems in the
plant. Using proprietary tools for each system
allows reports to be generated and specific types
of analyses to be performed on the data contained
within each of these systems. However, extracting
the data from these systems to an engineer's desk­
top for analysis by generic tools, such as spread­
sheets and statistical analysis packages, is difficult
or even impossible. Lack of console- and tool­
specific training is another obstacle to accessing
process information.

Manufacturing Process Information
Systems and Desktop Systems:
Goals and Barriers
Production and engineering support personnel
want to be able to use the desktop tools of their
choice to explore and analyze data from manufac­
turing systems. Spreadsheets, simulation tools,
report generators, visualization tools, statistical
analysis tools, planning tools, charting tools, and
graphic-generation tools have all become accepted
parts of the array of computer-aided techniques and
tools available to the contemporary knowledge
worker. The interactive, easy-to-use graphical user
interface, which can run on relatively inexpensive
platforms under the complete control of the end
user, has not only encouraged the wide use of these
desktop tools but also enhanced their effectiveness.
These tools stimulate professionals to creatively
explore the character of large amounts of data and
thus support the discovery of previously unex­
pected patterns and relationships.

The further an end user's primary function is
from production, the more likely it is that such a
user will want access to multiple systems. System
interfaces, which may differ widely and are gener­
ally oriented toward production use, discourage
users from making ad hoc inquiries into the system.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DEC @aGlance-lntegration of Desktop Tools and Manufacturing Process Information Systems

Consequently, manufacturing system data may not
be easily accessible to users of the many desktop
tools available for such purposes as decision sup­
port, research, analysis, and simulation.

Today, the use of data from the manufacturing
process in planning, reporting, and managing the
operation of a plant is hampered by the difficulty in
accessing the data from plant control and process
information systems. It is typical for a production
supervisor who needs data from a control system
to request the data from a process operator. Once
in hand, the data is then manually entered into a
spreadsheet or other desktop tool for analysis. The
results of the analysis often require entering new
parameter values into the control system. This task
is typically performed by another person, trained
to use the control system, who transcribes the val­
ues from a hard copy of the tool's output. The pro­
cess is time-consuming, costly, and error prone.
Problem-solving activities are limited to those that
can justify the trouble and expense involved in sim­
ply accessing the data.

Existing Integration Efforts
The desire to use data from the control systems
to analyze and improve the understanding and con­
trol of the manufacturing process has spawned
a variety of efforts since the late 1980s. This work
has attempted to ease the transfer of information
between computing systems and control systems.
However, the resulting products and standards are
not oriented toward supporting ad hoc inquiries
and, therefore, are not widely used.

Many currently available manufacturing systems
may be connected to the plant network, but with­
out standard higher-level interfaces, access to these
systems remains limited.3-7 Through such network
connections, some manufacturing systems pro­
vide limited access to OpenVMS and/or DOS system
users. However, the access is typically restricted to
the use of unique, proprietary programming inter­
faces or to proprietary tools targeted at performing
a manufacturing-related function, such as statistical
quality control. Usually, interfaces are supplied
only on a specific operating system or on limited
versions of a specific operating system.

In some systems, it is possible to extract a table of
data values into a file using a common representa­
tion and file format (such as Lotus Development
Corporation's WKl) that can then be imported into
a spreadsheet on an IBM-compatible PC. This tech­
nique obviates the need for hard-copy output and

Digital Tecbnical Journal Vol. 5 No. 2 Spring 1993

simplifies transcription but still requires that a
specialist extract the data using proprietary inter­
faces. In addition, the data may need to be con­
verted from string to numeric format to be usable
within a particular spreadsheet.

The International Organization for Standard­
ization standard Manufacturing Messaging Speci­
fication (IS9506 or MMS) addresses the problem
of data exchange between applications and dedi­
cated manufacturing systems (referred to in the
standard as manufacturing devices).8 Although
some manufacturers of programmable controllers
(that is, dedicated control systems that are pri­
marily used in discrete manufacturing industries)
offer MMS capabilities, the process industry manu­
facturers and their control system suppliers have
not widely accepted MMS. Use of the standard
has been perceived as expensive, inefficient, and
oriented primarily toward the needs of discrete
manufacturing. A committee of the Instrument
Society of America (ISA) is developing a companion
standard (ISA 72.02) to use with MMS in communi­
cating with distributed control systems in process
manufacturing.9 An important aspect of this pro­
posed standard is a data model that describes the
organization and types of data in a distributed con­
trol system.

Requirements for Integration
Digital designed the DEC @aGlance architecture not
to be a generic application integration mechanism
but rather to support the integration of popular
desktop tools with manufacturing process informa­
tion systems. An application that complies with the
architecture can be installed on any system within
a network, run, and immediately exchange data
with other compliant applications. Some key char­
acteristics of the environment that helped to drive
the architecture are

• Multiple vendors. Although, MS-DOS personal
computers are the most popular desktop envi­
ronment, VAXstation, Macintosh, and UNIX work­
stations have a clear presence in particular
departments and in certain large customer sites.

• Multiple software developers. The applications
to be integrated are products of many compa­
nies that build manufacturing systems and desk­
top tools. The software development groups in
these companies focus on core application and
human interface issues rather than on integra­
tion issues.

103

Application Control

• A large variety of desktop applications and user
interfaces. Each class of desktop application
has a different way of interacting with users.
Spreadsheets, for example, have very different
user interfaces from statistical packages and data
visualization packages. Some applications have
elaborate macro languages, whereas others are
almost entirely graphically driven.

• Multiple types of large networks. In the typical
process manufacturing facility, large networks
are already in place. While many plants use
DECnet for their network, an increasing number
of plants are choosing to use the transmission
control protocol/internet protocol (TCP/IP),
and some plan to migrate to Open Systems
Interconnection (OSI) networks (including
Digital's DECnet Phase V) from multiple vendors.
PC IANs are also becoming popular.

• Conservative computing strategies. Large
manufacturing facilities cannot afford to halt
operation to make major changes in their
production-related computing systems and net­
works. Such facilities look to standards-based
products as a way of achieving stability and of
ensuring confidence in the longevity of a partic­
ular technology.

Architectural Issues
Simply stated, the problem that the DEC @aGlance
architecture attempts to address is, how can a
set of existing applications running on heteroge­
neous platforms, distributed across a variety of
networks, and developed by different vendors
(with only peripheral interest in integration) be
easily integrated? A good understanding of both
the nature of the applications involved and how end
users would use them if they were integrated is
important for evaluating potential answers to the
question.

The applications that we considered integrating
can be divided into two groups: those that "own"
manufacturing data, i.e., the manufacturing control
systems, and those that are consumers of that data,
i.e., the desktop tools. From the viewpoint of an
end user, some aspects of the relationship between
a desktop tool and a manufacturing control applica­
tion must be considered in order to accomplish
work goals. End users in this environment are
primarily concerned about the manufacturing
process, the equipment controlling the process,

104

and the state of materials within the process. These
users have little or no interest in such aspects
as network topologies and protocols, operating
systems, and byte ordering on different hardware
platforms.

Some major concerns of the end user that the
architecture should address are

• The identity of the manufacturing control sys­
tem. Generally, a large plant is controlled
through the use of several control systems, each
of which might control a part of the process,
such as refining or packaging, or an aspect of the
plant operation, such as steam distribution or
waste reprocessing. A particular data point
resides in a single manufacturing control system.
The user should be able to specify precisely
which manufacturing system is to supply the
data values. The architecture should be capable
of establishing a relationship with the specific
application that owns the data of interest to the
user. The end user should not have to specify
either the network node, the operating system,
or the hardware platform on which the applica­
tion is running. Neither should the end user have
to specify the network communication proto­
cols required.

• The length of the relationship between the desk­
top tool and the manufacturing control applica­
tion. The relationship should be able to remain
active for multiple transactions to allow end
users to work interactively with desktop tools
to explore possibilities. For example, end users
may want to examine different data points or the
same data point over various time intervals.
Thus, usage of a desktop tool could involve mul­
tiple requests for data from a manufacturing
control application. Establishing a relationship
between applications over a network is time­
consuming, and therefore establishing long­
lived relationships would be advantageous. The
ability to continuously monitor a set of points
and have their values reported on a time or
change basis is another desirable feature that
would require the establishment of long-lived
relationships.

• Multiple access to the applications. Applica­
tion relationships should not be exclusive.
Each application should be able to have concur­
rent relationships with several partner applica­
tions. Each desktop tool may require data from

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DEC @aGlance-Integration of Desktop Tools and Manufacturing Process Information Systems

several manufacturing systems, and conversely,
several users of desktop tools may · need to
access the same control system simultaneously.
The relationships between desktop tools and
manufacturing control systems is illustrated in
Figure 2.

• The data model. Applications should agree about
how to reference data and about data types.
Within the context of this environment, a rela­
tively simple data model exists in the draft stan­
dard ISA 72.02. Data should always be converted
to types appropriate to the local system and to
the application. A spreadsheet user should not
have to manually convert strings into numeric
values.

• The user interface. Application integration
should not require the use of any particular
desktop user interface, such as the X Window
System or DECwindows software, or even the
existence of a windowing system. Also, the user
interface of the manufacturing data application
should be of no concern to the desktop user.

Single Client-server Connection

CLIENT
- - - - - - - - -- - - - -,
-, :

I I

SERVER

Multiserver Connection

Mulliclient Connection

Figure 2 Relationships between Desktop Tools
and Manufacturing Control Systems

Digital Technical Journal Vol. 5 No. 2 Spring 1993

Usage Model
To help us understand how a user might go about
employing the capabilities that we were consider­
ing, we developed a simple usage model. We based
the model on the scenario that an end user makes a
series of ad hoc inquiries into the state of a process.
We assumed that the user was familiar with the
manufacturing process but not necessarily expert
in all the details of the process. The user would
know, for. example, what the major areas of the
plant were called and what functions they per­
formed but might not know the internal reference
identifier of every flow meter in each control sys­
tem. We focused on how the user of a spreadsheet
tool might reasonably expect to proceed to get data
into a spreadsheet and how services that we might
provide could aid in exploring the data.

The information within a manufacturing system
consists of the many parameters and measurements
that the system uses to monitor and control the pro­
cess. Generally, this data is organized into blocks,
each one related to a particular part of the process,
such as flow, level, temperature, or pressure. As the
typical data block in Figure 3 illustrates, every
block has a unique name or tag that can be used for
reference purposes.

In control systems, tag names are assigned as part
of the configuration. Large plants use a naming con­
vention to ensure the assignment of unique tag
names to the thousands of blocks spread through­
out the plant and over several control systems. In
addition to the tag, the block contains attributes
such as the parameters of the control algorithm,
measured input values, unit conversion algorithm
identifiers. The data model proposed by the ISA

72.02 committee describes seven types of blocks,
each with a standard set of attributes with associ­
ated names and data types.

BLOCK TYPE
TAG NAME
DESCRIPTOR
ANALOG PROCESS VALUE
ANALOG CURRENT VALUE
HI ALARM LIMIT
LO ALARM LIMIT
PROPORTIONAL
INTEGRAL
DERIVATIVE
ENGINEERING UNIT

Figure 3 A Typical Data Block in a
Manufacturing Control System

105

Application Control

This usage model allows a user to easily deter­
mine the tag names recognized by a particular
manufacturing system. To examine the data values
associated with a specific tag, the user needs to
know the valid attributes. (All blocks do not have
the same attributes, e.g., an analog loop control
block has more attributes than a simple digital mon­
itoring block.) Once the tag names and their valid
attributes are known, the user can inquire about
current values as well as historical values.

The use of operating prototypes, including simu­
lated servers and a simple spreadsheet, advanced
the development of the usage model. The proto­
types were shared with potential end users and
application developers at customer visits and indus­
try trade shows. Feedback obtained from demon­
strations and discussions of the usage model helped
expand and refine the services.

Architecture
The DEC @aGlance architecture defines two kinds
of applications, a set of services for accessing data
in the control systems, a data specification model,
and some basic types of data. The application
classes are (1) manufacturing data servers and
(2) clients. Typical manufacturing data servers are
the manufacturing control system applications.
Typical clients include desktop tools such as
spreadsheets and statistical analysis tools, as well as
production planning, production scheduling, and
other production management applications. An
application may be a client in relation to one appli­
cation and a server in relation to another.

A data point is specified to DEC @aGlance appli­
cations by the name of a server, a tag name, and an
attribute name. A data point has a current value and
may also have historical values (if the manufactur­
ing system has a historian capability). A current
value is the most recent available value of a parame­
ter or measurement within the system. A historical
value is a value that the data point had at some time
in the past. A historical value is specified by the
name of a server, a tag name, an attribute name, and
the time associated with the value.

The services defined by the DEC @aGlance archi­
tecture fall into one of four functional categories:
configuration information, data value exchange,
monitoring, or management. Each service defines
an operation that may be requested by one applica­
tion of a partner application. The services defined
are not necessarily the same functions that an end
user requests.

106

Configuration Information
One service is defined for requesting the tag names
that the server finds in the control system's
database. An additional service returns a list of
attribute names that are defined for a specified tag
name or a list of tag names.

Data Value Exchange
Services are defined for reading and for writing
current and historical data point values. For current
values, services support reading or writing either
a list or a table of data point values. A read or write
list request specifies pairs of tag names and
attributes. A read or write request for a table of data
point values specifies a list of names and a list
of attributes. The table of data points consists of
all tag names paired with their corresponding
attributes. Both the list and the table requests can
be used to read or write a single data point, collaps­
ing to either a list or a table of one data point.

By using the DEC @aGlance services to get lists of
tag names, attribute names, and data point values,
and the name of a server, an end user can generate
a wide range of ad hoc queries without knowing
much about the control system in advance. A com­
mon data point attribute is the descriptor, which
characterizes the function of the data point, e.g.,
south tank level. Thus, it is a fairly straightforward
task to use DEC @aGlance services to build a list of
tag names and descriptors that provide a basis for
further inquiries.

The services for historical data values are defined
to deal with tables of historical values for a list of
data points. Historical data service requests specify
a list of tag name and attribute pairs and a time
specification that is applied to all the data points.
The time specification consists of a start time, a
time interval, and the number of intervals for which
values are to be returned.

Monitoring
Monitoring is useful for reading the values of a
set of data points at intervals in time or when a sig­
nificant change in value occurs for any of the data
points. A graphical display program can run on
a desktop system and make minimal use of the net­
work and computing resources while maintaining
an accurate representation of what is occurring in
the manufacturing process. Monitoring could also
be used to update a spreadsheet at regular time
intervals or whenever a particular process variable
changes.

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DEC @aGlance-Integration of Desktop Tools and Manufacturing Process Infonnation Systems

No standard definitions exist for what consti­
tutes a significant change in value. Definitions sup­
ported for various systems include (a) detection of
change outside of a specified range or "dead band,"
(b) change by more than some percentage of the
previously reported value, and (c) change by more
than some percentage of a fixed value. Therefore,
the service is defined to support monitoring and
reporting of changes on a time basis or on some
other basis that is specific to the data server appli­
cation. Whenever the requested monitor condition
is fulfilled, the data server application uses a moni­
tor update service to send the new data point val­
ues to the original client application. Since the
server initiates monitor update requests, the usual
relationship between the client and the server is
temporarily reversed.

Management
Connection management services are provided to
establish a connection, to terminate a connection,
and to test a connection.

Implementation Considerations
Using existing networking and application integra­
tion technologies to implement the DEC @aGlance
architecture was important both in terms of
reducing development efforts and improving com­
patibility with existing environments. Technol­
ogy used in the implementation had to provide
as many as possible of the capabilities described
in the architecture while imposing minimal restric­
tions on the end-user operating and network
environments and on the developers of the appli­
cations. In addition, it was desirable that the under­
lying technologies offer capabilities that could

SPREADSHEETS
STATISTICAL
ANALYSIS

support future enhancements to the DEC @aGlance
architecture.

The DEC @aGlance architecture allows an existing
desktop tool to be integrated with existing manu­
facturing control systems, as shown in Figure 4. The
architecture effectively combines the functional
capabilities of the desktop tool for analysis, visual­
ization, computation, etc., with the capabilities of
the manufacturing control system for monitoring
and controlling a manufacturing process. The indi­
vidual applications were, of course, originally
designed and written without any knowledge of
each other's existence. Therefore, to facilitate inte­
gration efforts, implementation of DEC @aGlance
software should localize and minimize required
changes to the applications.

A network protocol such as DECnet, the transmis­
sion control protocol/internet protocol (TCP/IP), or
one of the local area network (LAN) protocols could
have provided the network services required
for DEC @aGlance's interapplication communica­
tions. However, this approach lacks a mechanism
for locating servers on the network, requires
DEC @aGlance to support the multiple network
protocols that exist in the manufacturing environ­
ment, requires DEC @aGlance to include data type
conversion between application platforms, and
necessitates the development of monitoring and
management tools unique to DEC @aGJance. A bet­
ter approach is to use an existing product that is
available on an appropriate set of platforms, sup­
ports an appropriate set of networks, and already
solves these problems.

A remote procedure call (RPC) mechanism
appears to have many of the capabilities that
the DEC @aGlance architecture requires. RPC

OTHER
GRAPHICS (Al, AVS, ...)

VMS 11 UL TRIX/OSF MACINTOSH I VMS I
UL TRIX/OSF VMS MS-DOS I

- UL TRIX/OSF - - -VMS UL TRIX/OSF
VMS MS-DOS

UL TRIX/OSF VMS UL TRIX/OSF
SUN OS

I I I I
I I

PROCESS SUPERVISORY PROCESS REAL-TIME
CONTROL SYSTEM DATA EXPERT
SYSTEM HISTORIAN SYSTEM

PROCESS DATA SERVERS

Figure 4 Integrating Desktop Tools and Manufacturing Systems

Digital Technical Journal Vol. 5 No. 2 Spring 1993 107

Applicatio n Control

mechanisms provide for location of a partner or
server application, and they provide data type con­
version and reliable network services. The RPC
model of application integration, however, is actu­
ally more appropriate for the distribution of a single
application across multiple systems in a network.
This use implies a simple, static relationship
between the parts of an application: one part is
always a client that requests the execution of a pro­
cedure, and the other part is always an RPC server
that executes the procedure and returns the results.
In such a relationship, each request generates a sin­
gle response. This model would be poorly suited
for supporting the DEC @aGlance monitoring ser­
vice. When DEC @aGlance was being developed, no
commercially available RPC implementation ran on
the key platforms, the OpenVMS and Microsoft
Windows environments. Furthermore, no one had
announced their intention to produce a portable
implementation that would be available on the
wide range of platforms that we considered impor­
tant for future versions of DEC @aGlance software.

Digital's ACA Services was chosen as the basis
for implementing DEC @aGlance software because
it implements an application integration model
that closely matches the requirements of the
DEC @aGlance environment. ACA Services supplies
many capabilities required of the integration mech­
anism including

• Abstraction of functions from implementations

• The ability to encapsulate existing applications

• Location of partner applications on a variety of
networks

• Establishment and management of reliable, long­
lived communication links

• The ability to easily add new applications to the
system

• The ability to easily install new versions of exist­
ing applications in the system

• The correct handling of data type conversions
between heterogeneous systems

• Commercial availability of portable interfaces
on OpenVMS, Microsoft Windows, Macintosh,
and a wide variety of UNIX platforms from multi­
ple vendors

The class hierarchy capabilities of ACA Services
allow the creation of new combinations of appli­
cations integrated to provide new capabilities
without additional coding. Thus, a new class of

108

server can be defined to offer the capabilities of
a DEC @aGlance data server as well as additional
capabilities. The older DEC @aGlance servers would
actually provide the DEC @aGlance services while,
transparent to the client applications, the new
server would make the new capabilities available.

ACA Services has been selected as a major com­
ponent of the Object Management Group's (OMG)
Object Request Broker, which in turn has been
selected as a part of the Open Software Founda­
tion's (OSF) Distributed Computing Environment
(DCE). ACA Services is designed to be independent
of the type of network that provides the interappli­
cation communications services and currently
works over both DECnet and TCP/IP networks, the
networks most commonly found in manufacturing
environments. Therefore, applications using ACA
Services need not be concerned about network
communications.

ACA Services is supported on the OpenVMS,
Microsoft Windows, Macintosh, and Sunos operat­
ing systems, the most often used platforms in this
application space. In fact, ACA Services is the only
application integration mechanism currently avail­
able on all these platforms. Moreover, ACA Services
supports the kind of asynchronous services
required by DEC @aGlance.

Although it provides many important compo­
nents of the required integration service, ACA
Services does not completely solve the integration
problem. ACA Services is a tool intended to be used
to integrate applications; it does not define the data
model nor does it define the set of services that
applications are to provide. Application integrators
are expected to define (1) the classes of applica­
tions that provide sets of services, (2) the services,
and (3) the meaning and type of data to be
exchanged by applications using the services.

DEC @aGlance Software:
The Tool Kit and Add-ins
As shown in the DEC @aGlance component diagram
in Figure 5, DEC @aGlance software uses ACA
Services as a basic application integration facility.
Above ACA Services, DEC @aGlance adds definitions
of a class of manufacturing data server applications
(servers), a set of definitions of the services pro­
vided by the servers, and definitions of the data ref­
erence model.

ACA Services provides a general capability to
integrate sets of applications. DEC @aGlance soft­
ware provides a set of routines that are specifically

Vol. 5 No. 2 Spri ng 1993 Digital Technical Journal

DEC @aGlance-Integration of Desktop Tools and Manufacturing Process Information Systems

DESKTOP APPLICATION

CALLABLE INTERFACE

(SLOTS FOR DATA ACCESS ROUTINES)

IMPLEMENTATION l
DEVELOPER'S KIT

DEC @AGLANCE
CLIENT

CLIENT LINK TEMPLATE

ACA SERVICES

NETWORK TRANSPORT (DECNET, TCP/IP, ETC.) NAS

ACA SERVICES

SERVER LINK TEMPLATE

SERVER

1

DEVELOPER'S KIT

DEC @AGLANCE

IMPLEMENTATION (SLOTS FOR DATA ACCESS ROUTINES)

CALLABLE INTERFACE

PROCESS DATA SOURCE

Figure 5 DEC @aGlance Components

designed to simplify the implementation of the set
of services that DEC @aGlance supports. For server
applications, DEC @aGlance software supplies a set
of callback points, as well as callable routines for
declaring callbacks, filtering strings, and support­
ing monitoring activities. For client applications,
DEC @aGlance software supplies a set of callable
routines for requesting each of the defined ser­
vices, as well as callback points in support of moni­
tor updates.

The DEC @aGlance server library also supports
a test connectivity capability used to verify that an
interapplication relationship can be established to
the server application. This capability simplifies
the diagnosis of problems encountered during both
server development and client-server installation.

To reduce dependence upon properly written
server code , the test connectivity capability oper­
ates entirely within the library. Thus, once a server
calls the DEC @aGlance initialization routine, and
if the server is still running, this service should
function properly in response to requests from

Digital Technical Journal Vol. 5 No. 2 Spring 1993

DEC @aGlance clients. Proper functioning includes
verifying the installation and configuration of the
network and of the ACA Services and DEC @aGlance
run-time components of the systems on which the
client and server applications reside.

Software add-ins, i.e., extensions, for two pop­
ular spreadsheet applications, Lotus 1-2-3 for
Windows and Microsoft Excel for Windows, are
also DEC @aGlance products. These add-ins allow
users of the spreadsheets to request data from man­
ufacturing data servers by means of the spread­
sheets' macro facilities. The add-ins provide a
dialog box to guide untrained users through the
process of constructing a DEC @aGlance macro.
Once built, a macro can be executed one or more
times, modified if necessary, and saved in a work­
sheet for reuse at some other time.

Toof Kit
The tool kit was developed to encourage the rapid
and successful development of DEC @aGlance appli­
cations by third parties. Successful applications are

109

Application Control

those that interoperate with other DEC @aGlance
applications upon delivery to a customer site with
no additional coding, no application recompila­
tion, and no application rebuilding.

The key components of the tool kit are

• A DEC @aGlance client or server library

• Example code

• ACA Services definition files for the DEC @aGlance
class and methods

• Simple test facilities

• The DEC @aGlance Programmer's Guide10

The ACA Services definition files contain the
information required to define the manufacturing
data server class and the services that members of
the class support. Supplying the definitions in this
form ensures strict consistency among all server
and client developers with regard to these defi­
nitions. The routines in the DEC @aGlance client
and server libraries use these definitions. The
DEC @aGlance libraries contain all the code required
to establish and maintain an ACA Services session.

Server Applications
A server application built with the tool kit has three
major components: an initialization section, the con­
trol system-specific section, and the DEC @aGlance
section. The initialization section simply declares
the server's name to the DEC @aGlance application,
declares a set of callback points, and enters a dis­
patch loop. The server name is the name that client
applications can use to interact with this server.
The callback points are the code entry points to
which DEC @aGlance dispatches in response to the
receipt of service requests from the client applica­
tions. For a server, callback points exist for the fol­
lowing services:

• Get a list of tag names

• Get a list of attribute names

• Get a list of data point values

• Get a table of data point values

• Put a list of data point values

• Put a table of data point values

• Get a table of historical values

• Put a list of historical values

• Register a monitor request

110

• Cancel a monitor request

• Initiate a session

• Terminate a session

• Execute a server-specific request

• Terminate the server

The control system-specific section consists of
code modules that execute calls to the control sys­
tem application programming interface (API). These
modules have to convert parameters to and from
the DEC @aGlance format and the control system­
specific format. The entry point of each module is
declared as a callback point during initialization.

In addition, callable routines are provided for
sending monitor updates and for session manage­
ment. The DEC @aGlance section of the server is
contained entirely within a library of callable
server routines. This section handles all interac­
tions with ACA Services, including server registra­
tion and session management. It also handles the
dispatch of incoming requests to the callback rou­
tines and a number of housekeeping tasks for
which each server developer would otherwise
have to develop and implement solutions. The
DEC @aGlance section also responds to test con­
nectivity requests.

Almost all vendors of manufacturing systems
have applications that execute calls to the control
system API, but such applications are typically
driven off a command language or menu interface.
Conversion of these applications to a DEC @aGlance
server is relatively easy; some vendors have created
a simple DEC @aGlance server in as little time as
one day.

Client Applications
The typical DEC @aGlance client application is built
on an existing desktop tool. Desktop tools provide
a user interface for performing some class of
generic function such as decision support, statisti­
cal analysis, quality control, or production schedul­
ing. Other types of applications that could make
use of process data, such as report generators,
batch schedulers, and maintenance tracking sys­
tems, can also provide the basis of DEC @aGlance
client applications. Adding DEC @aGlance support
to an existing tool allows the user to treat data from
DEC @aGlance manufacturing data servers like data
entered manually or from other data sources.

A DEC @aGlance client application incorporates
the DEC @aGlance client routine library, which

Vol. 5 No. 2 Spring 1993 Digital Technical Journal

DEC @aGlance-Integration of Desktop Tools and Manufacturing Process Information Systems

provides callable routines for initialization and for
each of the following DEC @aGlance services:

• Get a list of tag names

• Get a list of attribute names

• Get a list of data point values

• Get a table of data point values

• Put a list of data point values

• Put a table of data point values

• Get a table of historical values

• Put a list of historical values

• Initiate a monitor request

• Cancel a monitor request

• Initiate a session

• Terminate a session

• Execute a server-specific request

• Terminate the server

• Terminate the client

In addition, support routines help monitor updates.
To support the DEC @aGlance monitoring capa­

bility, a client application must have some server
characteristics. Once a monitoring request has
been initiated, the server issues monitor update
requests when the monitoring condition is satis­
fied. The monitor update requests are received by
the client application using the same callback
mechanism that the server uses when servicing
client requests.

A typical client calls the DEC @aGlance initializa­
tion routine and then continues to perform its nor­
mal functions. When a DEC @aGlance service is
requested through the user interface or other

A B c
1 UNIT41 APV ASP

2 TIC001 134.7 140.0

3 LIC001 65.3 50.0

4 FI001 185.8 -

5 FRC005 65.6 50.0

6 TRC085 145.4 145.0

mechanism, the application simply formats the
request and calls the appropriate DEC @aGlance
service request routine. Upon completion of the
routine, status (and if requested, data) is returned
from the server application. If data is returned that
is to be further processed by the client application,
the application moves the data to its workspace in
preparation for additional processing.

DEC @aGlance Lotus 1-2-3 for
Windows and Microsoft Excel Add-ins
Whereas most manufacturing control systems pro­
vide a callable library that allows the development
of applications that access the data in the system,
some desktop tool applications have mechanisms
that allow for extension of their capabilities in the
field. Spreadsheet applications such as Lotus 1-2-3
and Microsoft Excel support the use of add-in mod­
ules to add external functions and external macro
capabilities. Add-ins for these two spreadsheets are
available as DEC @aGlance software products.

With the add-ins, spreadsheet users can access
most DEC @aGlance services and thus can

• Fill a range of cells with a list of tag names from
a server

• Fill a range of cells with a list of attribute names
associated with a range of tag names in a server

• Fill a range of cells with a list of data point values

• Fill a range of cells with a table of data point
values, as shown in Figure 6

• Write a list of data point values to a server

• Write a table of data point values to a server

• Fill a range of cells with a table of historical
values for a specific time interval

• Write a list of historical values

D E

ALM ST DESC

- FEED TEMP

HIGH FEED LEVEL

RATE+ FEED RATE

HIGH HIGH REFLUX RATE

NONE REFLUX TEMP

Figure 6 A Table of Data Point Values in a Spreadsheet

Digital Technical Journal Vol. 5 No. 2 Spring 1993 111

Application Control

The interface for the add-ins was designed to sup­
port ad hoc inquiries. A dialog box guides the end
user through the process of supplying the approp­
riate parameters for a selected function . Where
appropriate, defaults are suggested based upon the
previous inquiry.

Summary
DEC @aGlance software has been specifically
designed to make it easy for users of desktop tools
to access, explore, and analyze data from dis­
tributed control systems, supervisory control sys­
tems, and other common systems used to run
manufacturing processes. An analysis of the infor­
mation environment and the ways in which end
users want to access the data led to the refinement
of the architectural requirements. The analysis also
led to the decision to use ACA Services as the appro­
priate mechanism for integrating desktop and man­
ufacturing control applications. The creation of a
usage model and rapid deployment of prototypes
were instrumental in the analysis. To promote
widespread availability of plug-compatible appli­
cations that use DEC @aGlance, a developer's tool
kit was created. The tool kit contains libraries of
DEC @aGlance routines that both simplify and
encourage proper and consistent usage of ACA
Services to integrate DEC @aGlance applications.

DEC @aGlance add-ins for the popular spread­
sheet programs Lotus 1-2-3 for Windows and
Microsoft Excel for Windows were developed also.
With the add-in, users can interactively explore
data in plant manufacturing control systems from
within a familiar spreadsheet, as well as write
reusable worksheet macros for performing
repeated tasks like report generation.

Acknowledgments
The author gratefully acknowledges the contribu­
tions of the members of the DEC @a Glance develop­
ment team: Judie Dow, Bob Harrison, Nick Miller,
Ramesh Swaminathan, Patrick Taber, and the lead
developer, Charlie Trageser. I would also like to
thank Steve Dawson, for introducing our group to
the problem and generally educating me about the
process manufacturing environment; Chuck Kukla,
for introducing me to his research on how people
work in manufacturing and for his work with cus­
tomers and control vendors that helped lead to
the design of the product; Jim Thompson, for
pushing and pulling all the strings that it took at
every stage of the effort to bring the concept to

112

a marketable product; and Mike Renzullo and Alan
Ewald of the ACA Services Development Group, for
their support.

References

I. This quotation was taken from the transcript
of an interview conducted by C. Kukla et al.,
who have published the results of their study
in "Usability Turning Technology into Tools,"
Designing Effective Systems: A Tool Approach,
P. Adler and T. Winograd, eds. (New York, NY:
Oxford University Press, 1992).

2. DEC ACA Services System Integrator and
Programmer's Guide (Maynard, MA: Digital
Equipment Corporation, Order No. AA-PFYUA­
TE, 1992).

3. CM50N User Manual, Order No. CMll-320
(Phoenix, AZ: Honeywell Industrial Controls
and Automation, 1991).

4. Computer/Highway Interface Package
(CHIP) User Guide, Part No. D001093X012
(Marshalltown, IA: Fisher Controls Interna­
tional, Inc., 1987).

5. AIM Connectivity Software User's Manual
(Houston, TX: W. R. Biles and Associates, Inc.,
1992).

6. S/2 SCADA System Description, Document
No. SD2.0001 (Dallas, TX: Texas Instruments,
Industrial Systems Division, 1988).

7. PI System Plant Information System Techni­
cal Overview (San Leandro, CA: Oil Systems,
Inc., 1990).

8. Manufacturing Messaging Specification,
ISO/IEC 9506 (Geneva: International Organiza­
tion for Standardization/International Elec­
trochemical Commission, 1990).

9. Manufacturing Messaging Spedfication:
Companion Standard for Process Control,
ISA 72.02 (Research Triangle Park, NC: Instru­
ment Society of America, 1993).

10. DEC @aGlance Programmer's Guide (May­
nard, MA: Digital Equipment Corporation,
Order No. AA-PQB8A-TK, 1992).

Vol. 5 No. 2 Spring 1993 Digital Tech11tcal]ournal

mamaamar�

ISSN 0898-90lX

Pnntcd i n U . S . A . EY-P9(, 3 E - D P/93 0 8 02 1 7 .0 Copyright () Digital Equipment Corporat ion. A l l R ights Reserved.

· · � : =· ·: :: \:-�·� :::·� ;·�-: r�: � ;=i�:.�.
•

•
•

• • • • • • • I • ._ '\ •; ,/' : ._ ._• . . . :· : .
.... : ·: : : : : :-�·:...-:.; �-; �. ·: · . . : . ·. ·:: : =:��- � :· .. ; =:·.:. � .

: : . . : :":·:_:·:\·�=��:
·
; ;-��1 · - : · . ; . : :-• •

• • : . : • •
•

• • -: '! .. � •
• • ·.-. -. : ... :·; : : :· :. : : :.� � ·.� : · . . - - : · �. . . . · ·

• • • • • • • • • • • I • • • , . . .· .· .· . . . ·.· :. ·: ·.·. : ·: � / ,· : . . . · . ·. · .. ·. ·. ·. ·.· �· �·.· .. -. �·.· . . . · ·.· .. ·. · . . · � :

. . .

.. _.,, ..

. .
. ·-=- ~
I • • • ,

... •••• I

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Video Rendering
	Software Motion Pictures
	Digital Audio Compression
	The Megadoc Image Document Management System
	The Design of Multimedia Object Support in DEC Rdb
	DECspin: A Networked Desktop Videoconferencing Application
	LAN Addressing for Digital Video Data
	CASE Integration Using ACA Services
	DEC @aGlance - Integration of Desktop Tools and Manufacturing Process Information Systems
	Back cover

