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I Editor's Introduction 

Jane C. Blake 
Editor 

Ten years ago, a network of 200 nodes was con­
sidered very large with uncertain manageability. 
Today, Digital's networks accommodate 100,000 
nodes in open, distributed system environments 
and resolve the complexities of incompatibility 
among multivendor systems. Ten years from today, 
network systems comprising a million-plus nodes 
will be built based upon the Digital architectures 
and technologies described in this issue. 

John Harper provides an informative overview of 
advances made with each phase of the Digital Net­
work Architecture, now in Phase V. He describes 
the architectural layers and distinguishes Digital's 
approach to network services and management 
from that of others in the industry. His paper offers 
context for those that follow. 

The Phase V architecture provides the migration 
to open systems from previous phases of DECnet. In 
implementing Phase V, designers of two DECnet 
products for the OpenVMS and ULTRIX operating 
systems shared several goals: extend network access 
in a multivendor environment, use standard proto­
cols, and protect customers' software investments. 
Larry Yetto, Dotsie Millbrandt, Yanick Pouffary, Dan 
Ryan, and David Sullivan describe the DECnet/OSI 
for OpenVMS implementation and give details of 
the significantly different design of Phase V net­
work management. In their paper on DECnet/OSI 
for ULTRIX, Kim Buxton, Ed Ferris, and Andrew 
Nash stress the importance of the protocol switch 
tables in a multiprotocol environment. DECnet/OSI 
for ULTRIX incorporates OSI, TCP/IP, and X.25. 

In the broadly accepted TCP/IP protocol area, 
Digital has developed a high-performance TCP/IP 
implementation that takes advantage of the full FDDI 
bandwidth. K.K. Ramakrishnan and members of the 
development team review the characteristics of the 
Alpha AXP workstation, OSF/1 op erating system, the 
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protocols, and the network interface. They then 
detail the optimizations made for high performance. 

Routing data through networks with thousands 
of nodes is a very difficult task. Radia Perlman, Ross 
Callon, and Mike Shand describe how the Phase V 
routing architecture addresses routing complexity. 
Focusing on the IS-IS protocol, they pose problems 
a routing protocol could experience, present alter­
native solutions, and explain the IS-IS approach. 

The challenges in developing multiprotocol rout­
ing software for intemetworking across I.ANS, WANS, 
and dial-up networks are presented in the paper by 
Graham Cobb and Elliot Gerberg. They highlight 
the importance of the stability of the routing algo­
rithms, using the DEC WANrouter and DECNIS prod­
ucts as a basis for discussing alternative designs. 
Stewart Bryant and David Brash then focus on 
details of the high-performance DECNIS 500/600 
bridge/router and gateway. They discuss the archi­
tecture and the algorithm for distributed forward­
ing that increases scalable performance. Both the 
hardware and the software are described. 

In addition to routing, the subject of data transfer 
of high-speed, bursty traffic using a simplified form 
of packet switching is described. Robert Roden and 
Deborah Tayler discuss frame relay networks, their 
unique characteristics, and the care needed in pro­
tocol selection and congestion handling. 

The above discussions of data transfer and rout­
ing occur at the lower layers of the network archi­
tecture. Dave Robinson, Larry Friedman, and Scott 
Wattum present an overview of the upper layers 
and describe implementations that maximize 
throughput and minimize connection delays. 

Network management is critical to the reliable 
function of the network. As Mark Sylor, Frank 
Dolan, and Dave Shurtleff tell us in their paper, 
Phase V management is based on a new architec­
ture that encompasses management of the network 
and systems. They explain the decision to move 
management responsibility to the subsystem archi­
tecture, and also describe the entity model. The 
next paper elaborates on the director portion of the 
management architecture, called the DECmcc 
Management Director. Colin Strutt and Jim Swist 
review the design of this platform for developing 
management capabilities, the modularity of which 
allows future modules to be added dynamically. 

The editors thank John Harper for his help in 
selecting the content of this issue. 
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I Foreword 

Anthony G. Lauck 
Corporate Consultant 
Engineer and 
Technical Director, 
Networks Engineering 

Digital's fifth generation of computer networking 
products enters the market as computer net­
working technology enters its third decade as a 
practical technology. Digital's first four generations 
of DECnet products entered a marketplace that was 
oriented toward proprietary computer solutions 
and where networking grew slowly from a depart­
mental function to include a functional unit of an 
enterprise and, eventually, an entire enterprise. 
With networks confined to a department or func­
tion, there. was little need for heterogeneity. 
Engineering departments used Digital's mini­
computers linked by DECnet, while corporate busi­
ness applications ran on IBM mainframes accessed 
by SNA networks. Eventually these heterogeneous 
networks were linked by gateways which provided 
the necessary protocol conversions; but inte­
gration was never transparent-especially to the 
system and network managers. The number of 
computers in a network was limited by the scope 
of the department, function, or organization and 
by the cost of individual computers. Timesharing 
remained the dominant mode of computer use in 
these networks; there were significantly fewer 
computers in a network than users of the network. 

When Digital began its initial architectural work 
on DECnet Phase V, we realized that technological 
and economic limitations on network size were 
going away. Microprocessors were making it pos­
sible for each person to have a computer. Local 
area networks were making it possible for each 
computer to be conveniently and inexpensively 
connected. Early experience with embedded 
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computers in manufacturing applications at Digital 
and with some of our customers convinced us that 
the number of computers in a network could easily 
exceed the number of people using the network. A 
few communities, such as the worldwide high­
energy physics community, had built networks that 
extended beyond the bounds of a single enterprise. 
We saw that networks would need to have great 
scope and would need to support a great diversity 
of management. An architecture such as our DECnet 
Phase IV, which limited a single network to tens of 
thousands of nodes, would become too confining. 

Early computer networks were homogeneous in 
architecture and implementation, reflecting the 
proprietary nature of the computer industry at the 
time and also the difficulty of getting heteroge­
neous networks to work. Digital learned the diffi­
culties of heterogeneous networking back in the 
1970s when it developed DECnet Phase II and made 
a network work across a range of computer systems 
from a single vendor. By the early 1980s there were 
already multiple competing network architectures, 
some proprietary to organizations, some viewed as 
proprietary to a single nation. Different enterprises 
and different departments of a given enterprise had 
chosen different computer vendors, operating sys­
tems, and network architectures. Linking these 
together by gateways would be too cumbersome. 
These factors prompted for us the vision of a com­
mon network architecture, standardized on an inter­
national scope and appropriate to Digital's role as 
an international corporation. Many of the papers in 
this issue describe our realization of this vision. 

Our vision of a common networking architec­
ture gave us the basic requirements for DECnet 
Phase V -a scalable network architecture that is 
open and standardized internationally. Like earlier 
generations of DECnet, this architecture would be 
backward compatible with its predecessor, preserv­
ing our customers' investments in applications and 
network infrastructure. Implementing this vision 
of a homogeneous network architecture based on 
internationally standardized protocols and back­
ward compatibility with DECnet Phase IV proved to 
be a daunting task. It involved developing new net­
working technology, in particular new routing and 
addressing technology, standardizing this technol­
ogy in the international community, and imple­
menting it across a full range of products. 

While Digital continued to work on its vision, 
networking expanded vigorously across the entire 
computer industry. Protocols appeared in niches: 
vendor based, operating system based, industry 



based. Users needed connectivity between these 
niches, providing market pull for expansion from 
initial niches. The result is today's world of multi­
protocol computer networks. Digital's next genera­
tion of networking products also reflects this 
multiprotocol reality. Host networking products 
support several protocol families and are con­
structed to isolate many of the differences between 
network protocols from users. Network infrastruc­
ture products such as routers and network manage­
ment software support this diversity more fully, 
reflecting the need for the infrastructure to support 
all the types of network traffic. Many papers in this 
issue relate to our participation in this complex 
reality. 

Computer networks have become an essential 
part of many organizations. These networks must 
be dependable and must not be bottlenecks. In its 
fifth generation of networking products, Digital has 
stressed robustness and performance. In designing 
Digital's router products, we placed great emphasis 
on robustness and network stability, particularly 
under conditions of traffic overload. These are not 
qualities that our customers will necessarily appre­
ciate unless they have experienced their absence 
in an overloaded network. New applications and 
larger data storage mandate higher host networking 
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throughput. High-speed local area networks, such 
as FDDI, together with high-speed RISC processors, 
such as Alpha AXP, create the expectation of high­
performance host networking. Achieving this level 
of performance takes more than fast hardware, 
however. It requires careful attention to details 
of protocol implementation and interaction with 
network interface hardware, the processor and 
memory system, and the operating system. Sev­
eral papers in this issue describe how Digital 
has achieved leadership in network robustness and 
performance. 

Networking depends on a variety of underlying 
communications technologies and services. This 
issue of the Digital Technical Journal concentrates 
on how these underlying technologies can be used 
to build large-scale computer networks; earlier 
issues described such underlying communications 
technologies as Ethernet and FDDI. This issue does, 
however, include one paper on a new wide area 
technology and service, Frame Relay, and how it 
can be used by computer networks. Many other 
new communications technologies and common 
carrier services are in the process of being inte­
grated into Digital's family of networking products. 
These will be described in future issues of the 
journal. 
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Overview of Digital's 
Open Networking 

John Harper I 

The principal element of Digitals open networking family of products is the DECnet 
computer network. In its latest form, DECnet supports very large networks of more 
than 100,000 nodes and incorporates industry standards such as OSI and TCP/IP. To 
meet the design goals of the Digital Network Architecture, the structure of DECnet is 
divided into layers with defined relationships between layers. Since its introduction 
in 1974, DECnet has evolved in parallel with the standards for open networking. 
Digital has contributed to the formation of networking standards, and the stan­
dards have, in turn, influenced the design of DECnet. 

In 1974, Digital shipped the industry's first general­
purpose networking product for distributed com­
puting. The DECnet computer network was the 
embodiment of the vision that small systems work­
ing together could become an alternative to main­
frame computing. Prior to that time, networking 
products had been aimed at solving some specific 
problem and had often been closely integrated 
with a particular application. In contrast, DECnet 
allowed any application to share data with all oth­
ers. Whereas previous networking products in the 
industry had concentrated on connecting terminals 
to hosts, DECnet provided peer-to-peer networking 
for the first time. By doing this, it anticipated the 
client-server computing style that is now common­
place and established client-server computing as a 
viable approach. 

DECnet built on work that had been done in the 
research community. The internet protocol, funded 
by the Advanced Research Projects Agency (ARPA), 
was of particular relevance.• This too was aimed at 
providing general-purpose distributed computing 
and later evolved into the well-known TCP/IP (trans­
mission control protocol/internet protocol) proto­
col suite. In 1974, however, it was still a research 
topic. 

In the same year, International Business Machines 
Corporation announced its Systems Network 
Architecture (SNA).2 The comparison between SNA 
and DECnet is interesting because SNA was designed, 
not surprisingly, to support mainframe computing. 
It focused principally on connecting many rela­
tively unintelligent devices, such as terminals and 
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remote job entry stations, into a single computer. 
Only after several years did SNA allow more than 
one mainframe to exist in the same network. Its 
original goal was to address the proliferation of 
application-specific protocols that allowed a termi­
nal connected to the network to use one applica­
tion only. 

This paper presents a short history of the DECnet 
networking product, defining each phase of its evo­
lution in terms of its contribution to distributed 
computing. It explores the development of DECnet 
Phase V, the current implementation, and discusses 
the principles of Digital's layered architecture. The 
paper then describes the layers of DECnet, the 
importance of naming services, and the role of 
network management. 

A Short History of DECnet 
The development of DECnet has proceeded by 
phases. Each phase has represented a major step in 
the evolution of the product family. The initial 
products, later referred to as Phase I, revealed some 
unexpected problems in building a range of prod­
ucts across different systems that would all work 
together. One of the consequences was the creation 
of a distinct Network Architecture Group. Their job 
was to produce detailed specifications of the proto­
cols and interfaces to be used without constraining 
the implementers to build products in some particu­
lar way. At that time, software portability was practi­
cally unheard of, and each different hardware or 
software environment had its own completely sepa­
rate implementation. Phase II of DECnet, introduced 

Vol. 5 No. 1 Winter 1993 Digital Technical Journal 



in 1978, provided full interoperability between the 
different implementations, thanks to adherence to 
a rigorously specified architecture. 

At this stage, systems still had to be directly con­
nected to each other if they were to communicate. 
Phase III, which appeared in 1981, introduced the 
ability to route messages through any number 
of links and intermediate systems to reach a desti­
nation. DECnet again used a technique from the 
research networks, a dynamic adaptive routing 
algorithm, which computed the best route to a des­
tination automatically as the physical connectivity 
of the network changed. Competing products at 
the time (such as SNA) required routes to be com­
puted and entered manually, including backup 
routes for use in the event of failure of a link or 
a system in the network. 

Phase III also included full remote management 
and reflected the gradual emergence of standards 
for computer networking by supporting X.25 
packet switching networks as one means for con­
necting systems.3 A Phase III network could contain 
up to 255 nodes. 

The invention oflocal area networks (LANs), and 
in particular the Ethernet, was to have a huge 
impact on the use of networking. 4 For the first time 
it was cheap and simple to connect a system to the 
network. Prior to LANs, only wide area network 
technology was used, even when the systems were 
physically next to each other. DECnet Phase IV, 
which appeared in 1984, added support for the 
Ethernet and allowed networks to contain up to 
64,000 nodes. 

The Evolution of open Networking 
When DECnet appeared in 1974, all its networking 
protocols were "proprietary; that is, they had been 
developed by Digital and remained under Digital's 
control. At that time there were no standards or 
publicly defined network protocols. Work on stan­
dards for this purpose began during the 1970s, and 
in 1978 the Comite Consultatif Internationale de 
Telegraphique et Telephonique (CCITI) published 
its Recommendation X25.3 This document defined 
a standard way of connecting a computer to a 
network that would permit free communication 
between all attached computers. X.25 networks 
were typically expected to be provided by a public 
carrier such as a telephone company. 

The appearance of this standard prompted the 
question, "Now that our computers can talk to each 
other, what are they going to say?" Simply permit-
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ting them to send data to each other was of no use 
unless they could also understand it and make some 
use of it. DECnet, for example, included protocols 
for transferring files and for remote terminal access 
as well as the base protocols for transferring data. 

Thus the idea of open systems interconnection 
(OSI) was born. OSI was the most ambitious effort 
in the history of standards. Its goal was to develop a 
complete set of standard protocols that would 
allow computers not only to exchange data but also 
to make meaningful use of it in their applications. 
The work was undertaken by the International 
Organization for Standardization (ISO). This organi­
zation has representatives from all major countries 
and is thus able to draw upon their extensive expe­
rience in research and commercial networking. 

By 1984, when DECnet Phase IV became available, 
the work on OSI had made substantial progress. The 
architectural model had been published as an inter­
national standard, and standardization of many of 
the protocols was at an advanced stage.5 It was also 
becoming clear that the future of computer net­
works depended on the ability to communicate 
without regard to who was the supplier of a system. 
Ad hoc solutions, such as the DECnet/SNA gateway, 
existed for communication between different net­
work architectures.6 OSI, however, held the prom­
ise of being a general solution. It was feared that the 
alternative to OSI would be the adoption of a ven­
dor-specific architecture as a de facto solution, and 
that that architecture would inevitably be SNA. The 
internet family of protocols, colloquially known as 
TCP/IP, had not yet become the force it is today.7 

Detailed examination of the OSI protocols 
showed that they formed a suitable basis for the 
evolution of DECnet. This was not surprising, since 
the ISO had incorporated Digital's basic concepts 
into OSI, rather than the different ideas put forth by 
the public network operators. A number of defi­
ciencies were identified, but these could be reme­
died by contributing more of Digital's technology 
to the standards process. For example, all the 
network-layer routing protocols used in OSI were 
contributed by Digital. Thus the decision was made 
that the next phase of DECnet, Phase V, would use 
the OSI standards as much as possible. The existing 
proprietary protocols would be retained only for 
the purpose of backward compatibility. 

During the development of the architecture and 
products for Phase V, another event of great signifi­
cance took place. During the 1980s, TCP/IP emerged 
as an alternative solution for open networking. This 
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development was prompted by the explosion in the 
use of workstations based on the UNIX system style 
of computing. The architectural model of Phase V 

allowed a relatively straightforward integration of 
these protocols into the products, although a great 
deal of necessary software was written. Since OSI 
and TCP/IP were never designed to work together, 
allowing them to coexist in the same network 
demanded considerable creativity.8 

Goals of DECnet Phase V 
The design of DECnet Phase V had three principal 
goals: 

• To allow networks to grow to be very large, with 
one million systems as a practical target 

• To use standard protocols to the maximum 
extent possible 

• To support a distributed-system mode of opera­
tion in which the systems cooperate more 
closely than in traditional networking 

The 64,000-node size limit of Phase IV was far 
from posing a practical problem in 1984, but it was 
then foreseen that computer networks in large 
enterprises would approach this limit by the end of 
the decade. Indeed, this happened with Digital's 
internal network, which grew to over 100,000 
nodes on Phase IV with the use of innovative man­
agement techniques. The node size limitation was 
imposed primarily by the size of the addresses 
used, which was 16 bits. Addresses in OSI networks 
can be as long as 20 bytes, which removes the 
immediate limitation. Very large networks, how­
ever, need more than large addresses to support 
100,000 nodes or more. For example, the Phase IV 

routing algorithm has certain inherent weaknesses 
that start to appear for networks at the Phase IV size 
limit. For this reason, Phase V employs a different 
routing algorithm, which readily supports net­
works of millions of nodes.9 This algorithm has 
subsequently been adopted as the international 
standard for routing in OSI networks and, with mod­
ifications, for TCP/IP networks.10,11 

Management of very large networks also requires 
special attention. DECnet has always provided a 
high degree of automated management compared 
to other network architectures, but as a network 
increases in size, the burden of tracking the config­
uration increases disproportionately. Assigning 
addresses to nodes was a manual procedure in 
Phase IV, and maintaining the correspondence 
between node names and their addresses was 
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performed separately in each system. A goal for 
Phase v was to provide a robust, distributed naming 
service throughout the network. Furthermore, 
nodes would be allowed to genernte their own 
addresses in a reliable and unambiguous way and to 
register themselves in this naming service. Thus a 
new system can be connected to the network with­
out any administrative procedure, if network secu­
rity policies permit. 

At a more detailed level, the architecture has a set 
of goals that have evolved over time to include the 
following. 

• Conceal network operation from the user. The 
internal operation of a large network is inevitably 
complex, but to the user it should appear simple. 

• Support a wide range of applications. 

• Support a wide range of communications facili­
ties: LANs, wide area leased lines, X.25 networks, 
etc. 

• Support a wide range of network topologies. 

• Use standards wherever feasible rather than pro­
prietary protocols. For cases in which standards 
are evolving but are not yet finished, ensure that 
future migration is as smooth as possible. 

• Require minimum management intervention. 

• Be manageable. Not all functions can be auto­
mated; for example, some depend on the organi­
zational policy of the user. In such cases 
management should be as simple as possible 
and should not impose any particular style of 
management. 

• Permit growth without disruption. 

• Permit migration between versions. Each phase 
of DECnet is guaranteed to work with the next 
and previous phases, so that the systems in the 
network can be upgraded over a long period. It 
would be inconceivable to upgrade thousands of 
systems overnight. 

• Be extensible to new developments in technology. 

• Be highly available in the face of line or system 
failure or even, to the extent possible, operator 
error. 

• Be highly distributed. The major functions of the 
Digital Network Architecture (DNA), such as 
routing and network management, are not cen­
tralized in a single system in the network. This in 
turn increases availability. 
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• Allow for security functions, such as authentica­
tion of remote users and access control. 

Architectural Principles 
DNA is a layered architecture. The necessary func­
tions are divided into related and logically coherent 
groups called layers. The layers are built on top of 
one another, so that each layer makes use of services 
provided by the one below it. To meet the goals of 
DNA, particularly those relating to flexibility, the 
structure of a layered architecture is essential. 

Figure I illustrates the principles of a layer in the 
terminology of the OSI reference model.5 These 
principles apply to any layer; in Figure I they are 
shown applied to the transport layer. Each commu­
nicating system contains its own element of the 
layer, called the transport entity. These entities 
communicate with each other through the trans­
port protocol. This protocol is conveyed using the 
services of the next lower layer, in this case, the 
network layer. For this purpose the most important 
service is the one that conveys data without regard 
to its contents. Other services are also provided, for 
example, connection management services. The 
transport layer also provides a well-defined trans­
port service to its user, in this case, the session layer. 
The detailed mechanisms and protocols of the layer 
are hidden from the layers above and below, so that 
the layer above sees only a well-defined service. 

This independence of the mechanisms used per­
mits substantial changes to be made to the mecha­
nisms and protocols of a layer without affecting the 
adjacent layers. This very important property is 
called layer independence. It has been extensively 
exploited in the development of DECnet to allow 
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protocols to be enhanced or even completely 
replaced. 

The principles of layered architecture were 
defined in a rigorous way by the OSI reference 
model, building on previous work such as DECnet 
and the TCP/IP protocol family. The original layer 
structure of DNA was defined in Phase I and has 
changed only a little since then. It corresponds to 
the lower layers of OSI as well as the layers of TCP/IP. 

The Layers of DECnet 
Figure 2 shows the layers of DECnet Phase V The 
lower layers are the physical, data link, network, 
and transport layers. They provide a universal, reli­
able service for moving data from one system to 
another. Many different underlying means of physi­
cal communication can be used, with their associ­
ated protocols, including: 

• Ethernet LANs and the equivalent standard (IEEE 
802.3, ISO 8802-3) 

• Token ring I.ANS (IEEE 802.5) 

• Wide area links running over leased links at any 
appropriate speed 

• X.25 wide area networks 

The network and transport layers unify the ser­
vice provided by these disparate physical networks 
and allow communication across any mixture of 
different facilities. 

Protocols from different protocol suites may be 
used, including OSI, TCP/IP, and DECnet Phase IV, 
but the structure of the layers is the same in 
each case. This facilitates interworking in mixed­
protocol networks. 

------- - ------+-----------
SYSTEM 1 I SYSTEM 2 

I 

TRANSPORT ,--~TR_A_N_S_P_O_R~T~P_R_O_T_O_C_O_L __ , TRANSPORT 
ENTITY ENTITY 

I 
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--------------+--- - ----- - -
NETWORK I 
SERVICE 

• • I I 
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PHYSICAL COMMUNICATION PROVIDED 
BY UNDERLYING LAYERS 

Figure 1 Elements of a Layer of DECnet Architecture 
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The upper layers of DECnet, the session, pre­
sentation, and application layers, make use of the 
reliable transport service to provide application­
oriented functions, such as file transfer or elec­
tronic mail. Again, different protocol suites are 
supported, although in this case there are historical 
reasons for the different layer structures that exist. 

The Physical Layer 
The physical layer is concerned essentially with the 
electrical or other physical aspects of communica­
tion. It converts electrical or other signaling into 
binary data (i.e., bits) and vice versa. 

In DECnet, this layer has always been viewed 
as the province of standards for devices such as 
modems and LANs. These standards may have an 
extremely complicated internal structure, as is the 
case for some of the emerging high-speed, wide 
area network standards, but this complexity is not 
visible to the layers above. 

The Data Link Layer 
The data link layer provides a reliable communi­
cation path between directly connected systems 
in the network. Its protocols can detect errors 
introduced by the physical layer (for example, from 
electrical disturbance). For media known to exhibit 
a high error rate, such as analog links, the data link 
layer also provides error-correcting mechanisms. 

DECnet supports a variety of protocols in the 
data link layer, depending on the nature of the phys­
ical link and the need to accommodate existing 
technologies. 

The Network Layer 
The network layer provides the means to move data 
from one system to another, without regard to the 
nature of the connections between them. It finds a 
route through multiple systems and physical paths 

APPLICATION LAYER 

PRESENTATION LAYER 

SESSION LA YER 

TRANSPORT LAYER 

NETWORK LAYER 

DATA LINK LAYER 

PHYSICAL LA YER 

Figure 2 The Layers of DECnet 
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as necessary for any particular pair of communicat­
ing systems. In DECnet, systems that move data 
through the network without being involved in the 
details of the communication are called routers. 

A key element in this layer is the network 
address. Every system in the network has a unique 
address. Every system can communicate with every 
other system in the network, whether it is adjacent 
or located on the other side of the world. OSI pro­
vides an addressing scheme that allows every 
system in the world to have a unique address.12 It 
may also give some hints to find a route to the 
system. Previous versions of DECnet (Phase IV and 
before) used a different addressing scheme. Phase v 
includes a way to map these addresses into the OSI 
scheme. 

In addition to protocols for carrying user data 
between communicating systems, the network 
layer also contains protocols for finding routes 
between systems. The routing protocols used in 
DECnet Phase V are international standards, but the 
technology was developed by Digital and sub­
sequently submitted to the relevant standards 
organizations. 10,11,13 

The network layer has a complex internal struc­
ture that allows one network to use the connec­
tions provided by another. For example, some of 
the links in a DECnet network may be provided by a 
public X.25 network, which is also providing links 
in other private networks. 

The Transport Layer 
The transport layer provides a reliable end-to-end 
service between two communicating systems, con­
cealing from its users the detailed way in which this 
is achieved. Unlike the layers below it, the transport 
layer is present only in the end systems communi­
cating with each other. Thus it allows the end sys­
tems to take full responsibility for the quality of the 
communications. The functions of the transport 
layer include 

• Recovery from data loss, for example, when 
the network layer fails to deliver a packet due to 
congestion 

• Flow control, so that the transmitter does not 
send data into the network faster than the 
receiver can accept it 

• Segmentation and reassembly of user messages, 
so that the necessary division of data into dis­
tinct messages sent through the network does 
not limit the size of messages as seen by the user 
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• Congestion avoidance, so that data transmitters 
can adjust their rate of transmission into the 
network in reaction to congestion indications 
from the network layer 

DECnet supports three protocols in the transport 
layer: the network services protocol (NSP), defined 
for previous phases of DECnet; the OSI transport 
protocol; and TCP from the internet protocol 
suite.7,14 

Upper Layer Protocols 
The OSI model defines three distinct layers above 
the transport layer: the session, presentation, and 
application layers. 

• The session layer organizes the structure of mes­
sage exchanges. For example, it provides half­
duplex semantics and allows checkpoints to be 
established for recovery from system failure. 

• The presentation layer deals with the existence 
of different data representations in different sys­
tems. It allows a mutually acceptable transfer 
syntax to be established which each communi­
cating system will be able to convert to and from 
its internal representation. 

• The application layer contains protocol elements 
specific to a particular application, such as file 
transfer. It also provides a structure that allows 
applications to be built that use multiple proto­
cols in a coordinated fashion. 

The DECnet Phase IV and TCP/IP protocol stacks, 
which are also supported by DECnet Phase V, do not 
have this structure. Rather, the functions of theses­
sion and presentation layers are built into the appli­
cation protocols as needed. 

All three protocol suites support a wide variety 
of applications, in addition to allowing a user the 
flexibility to develop custom applications. Typical 
applications include 

• File transfer and access 

• Virtual terminal 

• Electronic mail 

• Remote procedure calls 

Naming Services 
The protocols in the lower layers operate in terms 
of addresses which are, for practical purposes, sim­
ply bit strings. Their format is heavily constrained 
by the protocols, and their value is constrained by 
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the network topology or hardware. These addresses 
are not at all user friendly, nor are they intended to 
be. The human users of a network need access in 
terms of something which they can remember and 
which makes sense to them, which is to say a name. 
Computers in the network therefore need to be 
able to take a name and change it to an address, and 
vice versa for incoming traffic. 

DECnet Phase IV had a very simple approach to 
this problem. Since it was aimed at small- to 
medium-sized networks, it was practical for each 
system to store the complete set of names and 
addresses. Administrative procedures, such as regu­
lar file transfers, could be used to ensure that all 
systems were kept up-to-date. 

DECnet Phase V was designed to allow much 
larger networks to be built, while both OSI and 
TCP/IP are designed to support networks on a 
global scale. The administrative problems and stor­
age requirements of the Phase IV approach make it 
unusable for very large networks. A further compli­
cation arises as networks span multiple organiza­
tions, since no single central site can have 
management responsibility for the complete set of 
names. Therefore, a different approach is needed. 

The limitations of the Phase IV approach were 
recognized when this version of DECnet was in the 
design phase, and work was started on the Digital 
Distributed Name Service (DECdns). DECdns has 
been available as an optional component of DECnet 
Phase IV for some time. It provides 

• Distribution: All naming information does not 
have to be stored at a single point in the 
network. 

• Replication: Information can be held in more 
than one place, giving resilience in the face of 
system or network failures. 

• Dynamic updating: Information can be changed 
at anytime. 

• Automatic updating: Changed or new informa­
tion is automatically propagated throughout the 
network. 

• Hierarchical naming: A name can have multiple 
components to reflect an administrative or other 
organizational structure. 

The development of the DECnet and DECdns 
products has been closely linked, and each is 
designed to make maximum use of the other. When 
they are used together, DECnet can provide com­
plete autoconfiguration of a new node in the 
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network, such that no manager or user needs 
explicit knowledge of the address of a node. Once 
a name is assigned, the node can keep the naming 
service up-to-date both with the initial assignment 
of an address and any subsequent changes. It is also 
possible for a DECnet system to operate without 
DECdns. 

The TCP/IP protocol suite also includes a naming 
service, with similar properties to DECdns. It is 
called the domain name system, or DNS. At the 
highest level, names are assigned by a global author­
ity to countries and to other large groupings of 
organizations. Within countries, they are assigned 
to particular organizations such as companies. 
These organizations can then assign names that may 
have further components reflecting their internal 
structure. 

Work on a naming service for OSI has lagged 
behind the other protocol suites, but the most 
important elements have been available since 1988 
in a standard generally called X.500 (after the first 
of a series of CCITT recommendations that define 
the OSI directory). The X.500 standard defines the 
structure of names and the protocols to be used to 
access the naming service, but it does not include 
the mechanisms required for automatic updating 
and maintenance of the service itself.15 Work on 
standards for these functions is currently at an 
advanced stage. Like the DNS system for TCP/IP, the 
X.500 standard allocates the highest level of the 
structure to countries and then to organizations 
within countries. Its design pays particular atten­
tion to the needs of electronic mail (the X.400 pro­
tocol family). In contrast to DECdns and DNS, which 
assign names to computer systems, the structure of 
X.500 names extends to the level of naming individ­
uals within a coherent naming framework. 

DECnet supports all these naming services, in 
conjunction with their respective protocol stacks. 

Distributed Network Management 
In early computer networks, management was per­
formed "out of band." This meant that if any com­
munication between sites was needed to keep the 
network running, some means other than the 
network (for example, the telephone) was used. It 
was soon realized that much of the time, the 
network itself provided the most effective way to 
communicate management information, either to 
investigate a problem or to modify the configura­
tion. DECnet has included the ability to manage 
itself in this way since Phase ill. 
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The most obvious requirement for such a scheme 
is a protocol that can carry management informa­
tion through the network. Such a protocol fits natu­
rally into the application layer, where it can make 
use of the services provided by the other layers. 

A further requirement is a well-defined structure 
for the information that is to be conveyed. A net­
work architecture is constantly evolving, and it 
must be possible to add new information (for exam­
ple, for a new kind of data link) into the protocol. 

Finally, the specific information elements, such 
as the fault counters to use in conjunction with a 
particular protocol, must be defined. 

The management model and protocol used in 
earlier versions of DECnet were unsuitable for the 
needs of Phase V due to the many different protocol 
combinations that were to be supported. Hence, a 
new management model was defined. For a long 
time, this was called the Entity Model and was 
subsequently published as Digital's Enterprise 
Management Architecture (EMA).16 This model takes 
an object-oriented approach to modeling the infor­
mation needed for management. It is completely 
flexible and is not restricted to the management of 
the network itself; it has since been applied to man­
agement of the computer systems themselves. 

At the same time, Digital adopted an early draft of 
the protocol under development for OSI manage­
ment, the common management information pro­
tocol (CMIP). The structure of the CMIP protocol 
accommodates the flexibility allowed in EMA. 

The management information needed for each 
protocol is defined in the same architecture docu­
ment as the protocol itself. The modular structure 
of EMA allows this to be accomplished without con­
flict between management information defined for 
different protocols. In addition to the information 
specific to particular protocols (such as parameters 
of the protocol operation or counters), there are 
also representations of the relationship between 
protocol elements, such as user to provider. 

EMA provides a clear distinction between two 
roles in the management of a network: the agent 
and the manager. The agent corresponds to the 
thing being managed and is part of the same system. 
The manager is typically elsewhere and communi­
cates with the agent using the network and the 
management protocols. The manager role is taken 
by user interface programs. These may be simple, 
like the network control language (NCL), a basic 
command line utility appropriate for simple 
networks, or they may be extremely powerful. 
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DECmcc, for example, is a Digital product that pro­
vides the facilities appropriate to the management 
of networks throughout an enterprise. 

If the network is being used to manage itself, the 
possibility exists for a kind of "deadly embrace," in 
which the communication path needed to fix a 
problem is itself unavailable due to that same prol>­
lem. DECnet has been designed to minimize the like­
lihood and practical impact of this risk. The 
operation of the network layer is of vital impor­
tance in this regard. As long as a physical communi­
cation path is working, it will virtually always be 
able to correct a fault, even if the fault is due to a 
previous incorrect management operation. 

The TCP/IP protocol suite also provides a manage­
ment capability through the simple network man­
agement protocol (SNMP).7 Although both the 
protocol and the information model underlying it 
are considerably simpler than EMA, comparable 
facilities exist for many purposes. To the extent 
possible, DECnet implementations are designed to 
be managed through SNMP as well as through using 
the DECnet management protocol. 

The standards for management associated with 
OSI protocols are still under development. Digital 
has made extensive contributions based on its own 
architecture, and the resulting standards bear a 
strong resemblance to EMA. Standards exist for the 
CMIP protocol and for the management model, but 
specification of the specific elements of manage­
ment information needed for particular protocols 
have yet to be completed. 

Conclusions and Future Capability 
In 1974, DECnet was the first networking product to 
provide general-purpose , peer-to-peer communi­
cations. With the availability of Phase V, DECnet has 
become the first fully standards-based family of 
network products. It incorporates all available stan­
dards from the OSI and TCP/IP protocol suites in a 
way that provides the system integration and the 
performance traditionally associated only with pro­
prietary network products. Achieving this migra­
tion to standards has involved a phenomenal effort, 
but this price has now been paid. Technology and 
the standards that reflect it are in a constant state of 
development. The future of DECnet will consist of 
relatively frequent and modest incremental 
changes that incorporate these new developments. 
Already major developments in areas such as nam­
ing (X.500), transaction processing, and manage­
ment are finding their way into the products. 
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At the same time, there is an increasing need 
for Digital networking products to incorporate 
widely used, nonstandard protocols, especially 
for interconnection with personal computers and 
other desktop devices. Fortunately, the modular 
architecture developed for Phase V makes it 
relatively easy to do this in the same incremental 
fashion. 

DECnet has changed out of all recognition from 
its early versions, yet it can still support the same 
application programs that were built in the 1970s, 
as well as client/server applications that are still 
emerging. The basic physical technology that sup­
ports networking has also undergone enormous 
changes, from 2,400-bit-per-second modems to 
Ethernet and fiber distributed data interface (FDDI), 
yet DECnet makes this all transparent to the user. In 
another 20 years we can expect these technologies 
to have developed as much again, or more, and we 
can expect too that DECnet will continue to adapt 
to match them. 
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The DECnet/OS/for OpenVMS 
Version 5.5 Implementation 

The DECnet/OS/for OpenVilfS version 5.5 product implements a functional Digital 
Network Architecture Phase V networking product on the OpenVilfS system. This 
new software product ensures that all existing OpenVilfS application programs uti­
lizing published interfaces to DECnet-VAX Phase IV operate without modification 
over the new DECnet product. The components of DECnet/OS/for OpenVilfS version 
5.5 include the new interprocess communication interface. The design goals and 
implementation strategy were redefined for network management, the session con­
trol layer, and the transport layer. The configuration utility was structured into 
several files that are easy to read. 

The DECnet Phase V networking software presented 
the DECnet-VAX development team with a major chal­
lenge. Although the Digital Network Architecture 
(DNA) has always corresponded to the lower layers 
of open systems interconnection (OSI), the Phase V 
architecture has substantial differences from Phase 
IV in many layers. For example, the session control 
layer now contains a global name service.1 

DECnet Phase V also added new network man­
agement requirements for all layers. In most cases, 
the existing Phase IV code could not be adapted to 
the new architecture; it had to be redesigned and 
rewritten. This presented the engineers with the 
opportunity to restructure and improve the older 
pieces of code that have been continually modified 
and enhanced since the first release of DECnet-VAX. 
Due to the large installed customer base, however, 
it also presented a huge compatibility problem. We 
could not simply drop the old in favor of the new; 
we needed to ensure that the customers' DECnet­
VAX applications would continue to be supported. 

This paper gives an overview of the design of 
the base components in the new DECnet/OSI for 
OpenVMS version 5.5 product. It then presents 
details about the internals of the network manage­
ment, session control, and transport layers. Finally, 
the new configuration tool designed for DECnet/ 
OSI for OpenVMS version 5.5 is discussed. Unless 
otherwise noted in this paper, the term DECnet/OSI 
for OpenVMS refers to version 5.5 of the product. 
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High-level Design 
Numerous goals were identified during the design 
phase of the base components for the DECnet/OSI 
for OpenVMS software. Foremost among these 
goals was to conform to the DNA Phase V architec­
ture and to support image-level compatibility for 
existing Phase IV applications. Care was also taken 
in the design to allow the product to be extensible 
to accommodate the ongoing work with industry 
standards. 

Design Overview 
The queue 1/0 request ($QIO) application program­
ming interfaces (APis) for the VAX OSI transport ser­
vice and DECnet-VAX are already defined and widely 
used by network applications. To ensure that exist­
ing applications would continue to work, these 
interfaces were modified in a compatible fashion. 
As a result, not all of the capabilities of Phase V 
could be added to the existing APis. A new API, the 
interprocess communication interface ($IPC), was 
developed to support all the functions defined in 
the Phase V session control layer. In addition, the 
$IPC interface was designed to allow for future 
capabilities. 

The $QIO and $IPC interfaces interpret the appli­
cation's requests and communicate them to the 
DNA session control layer through a kernel mode 
system interface called session services. In the ini­

tial release of DECnet/OSI for OpenVMS, the VAX OSI 
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transport service joined its $QIO interface to the 
stack at the network layer_ The first follow-on 
release will fully support this APL It will be rewrit­
ten to interface directly to the common OSI trans­
port module. 

DECnet/OSI for OpenVMS implements each layer 
of the Phase V architecture in separate modules. 
These modules require a well-defined interface to 
communicate. This is supplied by the new inter­
rupt-driven VAX communication interface. This 
interface defines the rules used by cooperating VAX 
communication modules to exchange information. 
The upper VAX communication modules consume 
a set of services, and the lower modules provide 
services. The lower VAX communication modules 
define the explicit messages and commands that 
are passed between the modules. This definition is 
then referred to as the lower layer's VAX communi­
cation interface. For example, the transport layer 
provides a service to the session control layer. 
Transport is the lower module, and session is the 
upper. The rules for how the interface works are 
defined by the VAX communication interface itself, 
but the commands and services supplied by the 
transport layer are defined by that layer. As a result, 
the interface between the session and transport 
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layers is referred to as the transport VAX communi­
cation interface_ 

To comply with the new Enterprise Management 
Architecture (EMA), each of the modules supplies 
one or more manageable entities to network man­
agement. This is accomplished by the EMA agent 
(EMAA) management facility. EMAA supplies both an 
entity interface to the individual modules and an 
EMAA interface to the network. This interface is dis­
cussed further in the Network Management section. 

Figure 1 shows the components of the DECnet/ 
OSI for OpenVMS product and their logical relation­
ship to each other. 

Implementation of the Modules 
Each DECnet/OSI for OpenVMS base component is 
implemented in one of three ways. The most promi­
nent method is through OpenVMS executive load­
able images. These loadable images are all placed in 
the SYS$LOADABLE_IMAGES system directory during 
installation and loaded as part of the NET$STARTUP 
procedure, which the Open VMS system runs during 
a system boot. 

The two $QIO interfaces must operate within the 
OpenVMS 1/0 subsystem. As a result, they are both 
coded as device drivers and loaded during 
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Figure 1 DECnet/OSI for OpenVMS Base Components 
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NET$STARTUP by the SYSGEN utility. Once started, 
they can create a VAX communication interface 
port to the appropriate modules to process their 
network requests. 

The third way a component can be implemented 
is as a standard Open VMS image or shareable image. 
These images include NET$ACP.EXE, which is 
started as a system process by NET$STARTUP, and 
NCL.EXE, which is the utility that supplies the 
network control language (NCL) interface to 
users. Other images, such as NET$MIRROR.EXE, are 
started by the network software in a separate pro­
cess when a network request is received for the 
application. 

Implementation of the Base Image 
The base image, SYS$NE1WORK_SERVICES.EXE, has 
been present on all Open VMS systems since version 
5.4. The OpenVMS system loads this executive 
image early in the boot cycle. The default file 
shipped with OpenVMS is a stub that simply sets a 
system cell during initialization to indicate that the 
older Phase IV code is loaded. This system cell can 
then be interrogated through an OpenVMS system 
service or from a Digital Command Language (DCL) 
command line to determine which version of the 
DECnet software is loaded. 

When the DECnet/OSI for OpenVMS product is 
installed, the base image is replaced with the Phase 
V version. The new image sets the system cell to 
indicate that Phase V is loaded. It provides a host of 
common services, including EMAA, to the remain­
ing system components. It also contains the code 
used to implement the Phase V node agent required 
by EMA on each node. Each of the remaining 
DECnet/OSI for Open VMS components makes use of 
the base image by vectoring through a system cell 
to the desired function. 

Network Item Lists 
The DECnet/OSI for OpenVMS modules pass large 
amounts of data between themselves. This 
exchange requires an efficient means to encode and 
move the data. Conversions are expensive opera­
tions; therefore a decision was made to use the 
same structure for all the interfaces within the base 
components. The structure chosen, a network item 
list, is a simple length/tag/value arrangement in 
which the tags are defined in a common area 
between sharing modules. Network item lists are 
very easily extended as new functions are added to 
the software. Since they contain no absolute 
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addresses, they are also position independent. This 
has the advantage of making it easy to copy or move 
them when necessary. 

Network item lists are used between all VAX com­
munication modules, by EMAA, and by the session 
services interface. They are also presented to user­
written applications through the $IPC interface, 
thus allowing the interface to be expanded as more 
protocols and standards are implemented in the 
DECnet network. 

Network Management 
This section discusses the DECnet/OSI for OpenVMS 
network management design and network manage­
ment functions implemented in Phase V. 

Network Management Design 
The key to Phase V network management design is 
the EMA Entity Model, which defines the standard 
management structure, syntax, and interface to be 
used by each manageable object. The DECnet/OSI 
for Open VMS EMA framework is built on this model 
and defines the components required for a system 
manager to perform actions on managed objects, 
both locally and across a network. The EMA frame­
work consists of the following components. 

• A director interface, through which user com­
mands called directives are issued 

• A management protocol module that carries 
directives to the node where the object to be 
managed resides 

• An agent that decodes the directive into specific 
actions and passes that information to the man­
aged object 

• An entity, the object to be managed 

For a full understanding of the DECnet/OSI for 
OpenVMS network management implementation, 
the reader should first understand the EMA model. 
Details on the EMA model can be found in the paper 
on management architecture in this issue.2 

In the DECnet/OSI for Open VMS network manage­
ment design, the components and their division of 
function generally follow the EMA framework. 
There are, however, a few exceptions. Figure 2 
shows the DECnet/OSI for OpenVMS components 
that implement the EMA model and other Phase V 
management functions. 

The NCL utility provides the EMA director func­
tion. The NCL image processes user commands into 
management directives. It also displays the 
responses that are returned. 
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Figure 2 Network Management Components 

The common management information protocol 
(CMIP) requester library routines provide part of 
the management protocol module functions. These 
include encoding a management directive into 
CMIP, transmitting it to the designated node, and 
receiving the response. The CMIP requester rou­
tines are implemented as part of NCL, not as a sepa­
rate management protocol module. 

A CMIP listener server process, CML.EXE, pro­
vides the remainder of the management protocol 
module function. It receives a management direc­
tive and passes it to the agent. When the agent 
returns a response, CML transmits the response to 
the originating node. 

The DECnet/OSI for OpenVMS EMA agent, EMAA, 
accepts management directives from CML, dis­
patches them to the requested entity, and returns 
responses to CML. EMAA also extends this concept 
by actually performing the management directives 
in some cases. 

Entities are not strictly a part of network manage­
ment. They do, however, receive management 
directives from EMAA in DECnet/OSI for OpenVMS. 
They must be able to carry out the directives and 
return the results of the operation to EMAA. 

In DECnet Phase V, an event is the occurrence of 
an architecturally defined normal or abnormal con­
dition. Events detected by entities are posted to an 
event dispatcher, which passes them to a local or 
remote event sink. If remote, a CMIP event protocol 
is used. In DECnet/OSI for OpenVMS, the event 
dispatcher image, NET$EVENT_DISPATCHER.EXE, 
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implements the event dispatching and event sink 
functions. 

The data dictionary is a binary compilation 
of architecturally defined codes for all known 
Phase V management entities, the manageable 
attributes of each entity, and the actions that can be 
performed. It also contains information necessary 
to encode this information into Abstract Syntax 
Notation Number I (ASN.l), required for the CMIP 
protocol. 

Finally, there is the maintenance operations 
protocol (MOP). Although MOP is not an EMA com­
ponent, it is a component of DNA. It performs 
low-level network operations such as down-line 
loading and up-line dumping. 

Network Management Implementation 
The most visible differences between DECnet Phase 
IV and DECnet Phase V arise from adherence to 
the EMA architecture. This section discusses the 
replacement functions implemented in Phase V. 

The NCL Utility The network control program 
has been replaced in Phase V with the NCL utility. 
NCL provides a highly structured management syn­
tax that maps directly to the EMA specifications for 
each compliant entity. In an NCL command, the 
hierarchy of entities from the node entity to the 
subentity being managed must be specified. For 
example, the following command shows the local 
area network (LAN) address attribute of a routing 
circuit adjacency entity. 
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NCL> Show Node DEC:.zko.Ilium -
Routing Circuit Lan-0 Adjacency -
rtg$0002 LAN Address 

The command contains the node entity name, 
DEC:.zko.llium; the module entity within the node, 
routing; the name of the circuit subentity of rout­
ing, lan-0; the name of the adjacency subentity of 
circuit, rtg$0002; and finally the attribute name. 

To issue management commands from a DECnet/ 
OSI for OpenVMS system, a user invokes the NCL 
utility. NCL parses commands into fragments called 
tokens, containing ASCII strings. It uses the data dic­
tionary to translate these into management codes 
for directives, entities, and attributes. NCL then con­
structs a network item list from this information 
and invokes the CMIP requester send function. 

CMIP requester functions are implemented as a 
set of library routines that are linked with the NCL 
utility. Underneath this caller interface, the CMIP 
routines establish a connection over DNA session 
control to the destination node's CMIP listener. The 
directive is then encoded into a CMIP message and 
passed to the destination. 

NCL now posts the first CMIP requester receive 
call. More than one receive call may be needed to 
obtain all the response data. As soon as a partial 
response is available, the receive function decodes 
the CMIP messages into network item lists and 
passes them back to NCL. NCL translates these into 
displayable text and values and directs the output 
to the user's terminal or a log file. If the partial 
response is not complete, NCL then loops and 
issues another call to the CMIP requester receive 
function. 

The CMIP requester functions are optimized for 
the local node case. If the destination node is speci­
fied as "O" (the local node), the CMIP requester func­
tions interface directly to the EMAA interface, 
skipping the CMIP encoding, decoding, and the 
round trip across the network. 

The CMIP Listener The CMIP listener is imple­
mented as a server process, similar to the Phase IV 
network management listener. When an incoming 
connection request for CML is received, a process is 
created to run the CML image. The CML image uti­
lizes the DNA session control interface to accept 
the connection and receive the CMIP encoded 
directive. It then uses the data dic tionary to decode 
the message into a network item list. EMAA is then 
invoked to process the directive and return any 
required response from the entity. Once CML 
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has received all portions of the response from 
EMAA, encoded them into CMIP, and transmitted 
them back to the requesting node, the CML image 
terminates. 

EMAA, the EMA Agent The management struc­
ture imposed by EMA contains common directives 
that must be supported by all entities. A design goal 
for EMAA was to provide a common management 
facility with support for common operations such 
as show or set. EMAA can perform these functions 
against an entity's management data structures, 
thereby freeing each entity from separately imple­
menting them and simplifying the entity's code 
requirements. This approach was successfully 
implemented, though at the cost of a more complex 
agent implementation and a set of registration 
macro instructions colloquially known as the 
"macros from hell." 

The above interface between EMAA and the enti­
ties is known as the full interface. Not all develop­
ment groups' coding entities were interested in this 
approach; thus, EMAA also provides a basic inter­
face. An entity specifies which interface to use dur­
ing its initialization when it registers with EMAA. 
For an entity that uses the basic interface, EMAA 
simply passes the directive information to the des­
ignated entity and expects response data returned. 

The choice of interface must be made by the 
module-level entity. If the entity uses the full inter­
face, it must register its management structure, 
including all subentities and attributes, with EMAA. 
For these entities, EMAA processes the network 
item list passed by CML. It creates a data structure 
for each subentity instance, specifying the 
attributes, any values supplied, and the actions to 
be performed. EMAA p asses this to the designated 
entity, which uses tables set up during initialization 
to call the appropriate action routine for the direc­
tive. By default, these action routines are set up as 
callbacks into EMAA itself, thereby allowing EMAA 
to perform the task. With either the basic or the full 
interface , a separate response is required for each 
subentity instance specified by a directive. EMAA 
calls CML iteratively through a coroutine call to 
pass response data back to CML. 

The Event Dispatcher Phase IV event logging 
allowed events to be sent to a sink on one node. In 
Phase V, the event dispatcher supports multiple 
sinks that can be local or on any number of remote 
nodes. Event filtering can be applied on the out­
bound streams of events, filtering events before 
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they are transmitted to a sink. This provides a mech­
anism to direct different types of events to different 
sinks. 

An event sink is the destination for an event mes­
sage. A node can have multiple sinks, each accept­
ing events from any number of remote nodes. Event 
filtering can be applied to the inbound streams of 
events at the event sink. An event message that 
passes is sent to the sink, which uses the data dic­
tionary to format it into ASCII character strings. It is 
then output to the sink client, which may be a con­
sole, printer, or file. 

An optimization is used when an event is gener­
ated on a node and the destination sink is on the 
same node. In this case, the event bypasses the out­
bound stream and is queued directly to the event 
sink. The DECnet/OSI for OpenVMS product, in the 
default configuration for a local node, defines one 
outbound stream directed to a sink on the local 
node and defines the console as the sink client. 

An event relay provides compatibility with Phase 
IV nodes. This important function permits a Phase V 
event sink to log messages from Phase IV or Phase V 
DECnet systems. Event relay is a session control 
application that listens for DECnet Phase IV event 
messages. It encapsulates each Phase IV event mes­
sage in a Phase V event message and posts it to the 
event dispatcher, using the same service that other 
DECnet/OSI for Open VMS entities use to post events. 

Maintenance Operations Protocol The NET$MOP 
process is the DECnet/OSI for OpenVMS implemen­
tation of the DNA maintenance operations proto­
col. MOP uses the services of the local and wide 
area data link device drivers to perform low-level 
network operations. MOP can down-line load an 
operating system image to a VMScluster satellite 
node and respond to remote requests from a 
network device to down-line load or up-line dump 
an image. MOP also supports management direc­
tives that allow a system manager to load or boot a 
remote device, monitor system identification mes­
sages, perform data link loopback tests, or open a 
terminal 1/0 communications channel to a device's 
console program. 

The primary design goal of the MOP implementa­
tion was to respond quickly and with low system 
overhead to remote requests from devices to down­
line load an image. In some network configura­
tions, a power failure and restoration can cause 
hundreds of devices to request a down-line load at 
the same time. The Phase IV implementation was 
known to have difficulty handling this, so the new 
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implementation of MOP was designed for multi­
threaded operation. This means there is only one 
MOP process per node, and it processes multiple 
concurrent operations by creating a separate 
thread for each management directive, program 
request, or dump request received. Moreover, all 
management data required to service MOP requests 
is contained in MOP-specific management data 
structures, designed to be searched quickly. When a 
request is received, MOP can promptly ascertain 
whether the required information to service the 
request is available and make a response. 

Session Control Implementation 
The design of the DECnet/OSI for Open VMS session 
control layer is based on goals defined by both the 
session control architecture and the DECnet user 
community. These goals include 

• Compatibility. The DECnet-VAX product has a 
large customer base with major investments in 
DNA applications. The session control layer sup­
ports these applications without requiring a 
relink of the object code. 

• Performance. Transmit and receive operations 
across the network must be as efficient as possi­
ble. Minimal overhead is introduced by the ses­
sion control layer in making each transport 
protocol available to applications. 

• Extensible. The session control layer design 
allows for future additions to the architecture. 

• New features. The session control layer takes full 
advantage of the new naming and addressing 
capabilities of Phase V DNA. 

• Improved management. The session control 
layer complies with EMA, allowing it to be man­
aged from anywhere throughout the network. 

Session Control Design 
The session control layer is divided into several log­
ical components, $QIO, $IPC, NET$ACP, common 
services, and network management. $QIO and $IPC 
provide the APis required to communicate across 
the network. $QIO is fully compatible with all 
Phase IV DECnet-VAX applications; however, it does 
not allow access to the full set of features available 
in DECnet/OSI for OpenVMS. These new features, 
and any future additions, are available only through 
the new $IPC interface. 

The two APis are consumers of session con­
trol services provided by the common services 
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component. This component provides all the 
network functions defined in Phase V to the APis 
above it. In order to do this, the common services 
component makes use of both the NET$ACP and 
network management portions of the session con­
trol layer. 

Figure 3 shows the session layer components and 
their relationships to each other. 

Session Control AP Is 
DECnet Phase IV restricted node names to six char­
acters in length. In DECnet-VAX the $QIO interface 
was the only means by which an application could 
make calls to the session control layer. This inter­
face also enforced the six-character name limit. 
With the advent of Phase V, this restriction no 
longer applies. It is possible for a node running 
Phase V to be unreachable by a Phase IV-style six­
character node name. As a consequence, the $QIO 
interface was extended to allow full name repre­
sentations of a node. 

The $IPC interface is a new interface that incor­
porates all the functions of the $QIO interface, 
along with extensions made to the session control 
architecture. This item-list-driven interface pro­
vides a cleaner, more extensible interface and 
allows for easy conversion of $QIO applications. 
The $QIO interface uses a network control block 
(NCB) and a network function block (NFB) to hold 
data. This data is easily mapped to items in a 
network item list. Also, the function codes used 
by $QIO can be easily mapped to $IPC function 
codes. As new requirements arise, supported items 
can be added to the list without impacting the exist­
ing values. 

The $IPC interface also supplies some new fea­
tures not available in $QIO. Phase V DNA uses the 
Digital Distributed Name Service (DECdns) to store 
information about nodes and applications in a 
global namespace. Once an application declares 

NETWORK 
MANAGEMENT SERVICES 

NET$ACP COMMON ~ _ ____. ......___ 

TRANSPORT 
LAYER 

Figure 3 Session Design 
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itself in the global namespace, $IPC enables session 
control to maintain its address attribute. This 
address attribute contains all the information nec­
essary to define where the application resides on 
the network. $IPC can then be used by the client 
side of an application to connect to a server 
through a single global name, instead of using a 
node name and application name pair. This enables 
the client side of an application to communicate 
with its server without knowing where the server 
currently resides. 

$IPC supports a new means of accessing a node 
by its address. In Phase IV, addresses were limited 
to 63 areas with 1,023 nodes in each area. The 
address of each node could be represented with 
a 16-bit integer. The $QIO interface supports a form 
of node name in which the 16-bit address is con­
verted into the ASCII representation of the decimal 
equivalent. This is not sufficient to address all Phase 
V nodes, so a new function called "connect-by­
address tower" is available through $IPC. The 
address tower is discussed further in the Common 
Services Component section. 

Yet another feature of $IPC is the ability to trans­
late a node's address into the name of the node as 
registered in the global namespace. In Phase IV the 
address-to-name translation was a management 
function. Furthermore, the translation was local to 
the node on which it was performed. 

Session Control Network Management 
The session control layer makes use of the full 
EMAA entity interface to support all entities defined 
by the session control architecture. These include 
the session control entity itself, as well as the appli­
cation, transport service, port, and tower mainte­
nance subentities. Each of these entities contains 
timers, flags, and other control information used by 
the session control layer during its operation. They 
also contain counters for the events generated by 
the session control layer. 

The application subentity is of special interest. 
This entity is the equivalent of the Phase IV object 
database. It allows the system manager to register 
an application with session control to make it avail­
able for incoming connections. This entity is also 
used to control the operation of the application 
and select the types of connections that can be sent 
or received by it. 

Common Services Component 
The common services component is the hub for 
session control. It is responsible for performing 
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tasks that are not specific to the $IPC or $QIO 
interfaces. These tasks include managing transport 
connections on behalf of session control users, 
mapping from a DECdns object name to addresses, 
selecting communication protocols supported by 
both the local and remote end systems, maintaining 
the protocol and address information correspond­
ing to local objects in the namespace, and activating 
(or creating) processes to service incoming con­
nect requests. 

The NET$ACP process is used to provide the com­
mon services component with process context. 
The NET$ACP image itself is nothing more than a set 
of queues and an idle loop. When the session con­
trol layer is loaded, it creates user-mode and kernel­
mode tasks. A queue is assigned for each task, and 
the NET$ACP process attaches to the task when it is 
started. When the session component needs to exe­
cute in the context of a process and not on the 
interrupt stack, it builds a work queue entry, 
queues it to the appropriate task queue, and wakes 
up the NET$ACP. The NET$ACP finds the address of 
the desired routine in the work queue entry and 
executes it. This routine can be located anywhere 
that is addressable by the process, but it is usually 
contained within the session control loadable 
image. The common services component makes 
use of the NET$ACP for reading files, creating 
network processes, and making calls to the DECdns 
clerk. It also makes use of the process for functions 
that require large amounts of memory. By perform­
ing these tasks in the NET$ACP process, session con­
trol is able to use process virtual memory even 
though it is implemented as an executive loadable 
image. 

The tower set data structure plays a key role 
in session control. A tower set consists of one or 
more towers. Each tower represents a protocol 
stack and is composed of three or more floors, as 
shown in Figure 4. The lowest floors in the tower 
correspond to the DNA routing, transport, and ses­
sion control layers; they are used to identify proto­
col and associated address information to be used 

at that layer. When viewed as a whole, the tower set 
describes a combination of protocols supported 
on a node. The session control layer on every 
DECnet/OSI for OpenVMS system not only uses this 
information to communicate with remote nodes, 
but is also responsible for building a tower set to 
represent that local system. Once built, this tower 
set is placed in the namespace as the attribute for 
the node. 

The session control interfaces allow the user to 
specify a node in many ways. A node can be speci­
fied as a Phase IV-style node name, a Phase IV-style 
address, a DECdns full name, or a tower set. The 
three forms of name representations are mapped to 
the corresponding tower set by making calls to the 
DECdns clerk to obtain the node's tower set 
attribute. Once the tower set is in hand, it can be 
used to communicate with the session control layer 
on the remote node. 

The tower set for a remote node and the tower 
set for the local node are used in conjunction 
to determine if both nodes support a common 
tower. If a common tower is found, session control 
attempts to establish a connection to the remote 
node using that tower. If the connection fails, the 
comparison continues. If another matching tower 
is found, the connection attempt is repeated. This 
continues until the connection is established or the 
tower sets are exhausted. 

Use of DECdns 
The session control layer uses DECdns objects for 
all global naming. These objects are used in two dif­
ferent ways: they can represent a node or a global 
application. A node object is a global representa· 
tion of a node in a DECdns namespace. Each node 
object contains attributes that identify the location 
of a node. Foremost in this list of attributes is the 
DNA$Towers attribute. The DNA$Towers attribute 
contains the tower set for the node and is written 
automatically by the session control layer when 
DECnet/OSI for OpenVMS is configured and started. 
Once created, this attribute is updated by session 
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Figure 4 Tower Design 
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control to reflect the current supported towers for 
the node. 

When the session control layer builds the tower 
set for the DECdns node object, it creates a tower 
for each combination of supported protocols and 
network addresses on the node. If the node sup­
ports two transports and three network addresses, 
the tower set is generated with six towers. It always 
places the CML application protocol floor on top of 
the session control floor. The address information 
for the session control floor is then set to address 
the CML application. The transport address infor­
mation is set to address DNA session control, and 
the routing information of each tower in the set is 
set to one of the supported network addresses for 
the node. 

The node object DNA$Towers attribute contains 
data that completely describes the node. Since ses­
sion control supports node addresses and Phase 
IV-style node names, soft links are created in the 
namespace to map from a Phase V network service 
access point (NSAP) or a Phase IV-style node name 
(node synonym) to the node object. These links can 
then be used by the session control layer as alter­
nate paths to the node object. 

An application object is a global representation 
of an application. The DNA$Towers attribute of this 
object contains a set of address towers used to 
address the application. The routing and transport 
floors for each tower in this set are used in the same 
manner as for the node object. The address informa­
tion in the session floor, however, addresses the 
application, not CML. Once set, the information in 
this tower set is not maintained unless the applica­
tion issues a register object call through the $IPC 
interface. If this is done, session control maintains 
the tower in the same manner as it does for the 
node object. 

Transport Implementation 
The DECnet/OSI for OpenVMS product supports 
two transport protocols: the open systems inter­
connection transport protocol (OSI TP) and the 
network service protocol (NSP). Each transport 
protocol, or group of logically associated protocols, 
is bundled as a separate but equivalent VAX commu­
nication module. This approach accomplishes 
many goals. The more notable ones include 

• Isolating each module as a pure transport engine 

• Defining and enforcing a common transport 
user interface to all transports 
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• Providing extensible constructs for future trans­
port protocols, i.e ., providing a set of transport 
service libraries 

• Eliminating previous duplication in adjacent 
layers (session and network routing layers) 

• Providing backward compatibility with exist­
ing Phase IV transport protocol engines 
(NETDRIVER/NSP and VAX OSI transport service) 

Transport Layer Design 
A transport VAX communication module has two 
components, a protocol engine and the transport 
service libraries. The service libraries are common 
code between modules and are linked together 
with each engine to form an executive loadable 
image. The three elements of DECnet/OSI for 
OpenVMS transport, the NSP protocol engine, the 
OSI protocol engine, and the transport service 
libraries, are linked into two images. Figure 5 
shows the relationship of these elements. 

The specific functions provided by a transport 
engine depend on the protocol. The generic role of 
NSP and the OSI transport layer is to provide a reli­
able, sequential, connection-oriented service for 
use by a session control layer. The design provides a 
common transport interface to both NSP and the 
OSI transport layer. This enables NSP and OSI trans­
port (class 4) to be used interchangeably as a DNA 
transport. As future transport protocols are devel­
oped, they can be easily added into this design. 

The DECnet/OSI for OpenVMS transport design 
places common functions in the service libraries 
for use by any protocol engine that needs them. 
Any functions that are not specific to a protocol are 
performed in these libraries. Separating these func­
tions enables new protocols to be implemented 
more quickly and allows operating-system-specific 
details to be hidden from the engines. 
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I I I 
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Figure 5 Logical Transport Components 
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The NSP transport VAX communication module 
operates only in the DNA stack and supports 
only DNA session control. Due to an essentially 
unchanged wire protocol, NSP is completely com­
patible with Phase IV implementations. 

The OSI transport VAX communication module 
implements the International Organization for 
Standardization (ISO) 8073 classes 0, 2, and 4 proto­
cols. It can operate on a pure OSI stack in a multi­
vendor environment. The OSI transport is also 
completely compatible with the Phase IV VAX OSI 
transport service implementation and operates on 
the DNA stack supporting DNA session control. 

Transport Engines The transport VAX communi­
cation modules provide a transport connection 
(logical link) service to the session layer. The con­
nection management is designed to ensure that 
data on each logical link is handled independently 
from data on other logical links. Data belonging to 
different transport connections is never mixed, nor 
does a blockage of data flow on one connection 
prevent data from being handled on another. 

The transport VAX communication modules are 
state table driven. Each transport engine uses a 
state/event matrix to determine the address of an 
appropriate action routine to execute for any 
state/event combination. As a transport connection 
changes state, it keeps a histogram of state transi­
tions and events processed. 

Service Libraries The following functions are 
common to many protocols and are implemented 
in the service libraries. 

• Transfer of normal data and expedited data from 
transmit buffers to receive buffers 

• Fragmentation of large messages into smaller 
messages for transmission and the reconstruc­
tion of the complete message from the received 
fragments 

• Detection and recovery from loss, duplication, 
corruption, and misordering introduced by 
lower layers 

The key transport service library is the data 
transfer library. This library gives a transport engine 
the capability to perform data segmentation and 
reassembly. Segmentation is the process of breaking 
a large user data message into multiple, smaller 
messages (segments) for transmission. Reassembly 
is the process of reconstructing a complete user 
data message from the received segments. To use 
the data transfer library, a protocol engine must 
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provide a set of action routines. These action rou­
tines hold the protocol-specific logic to be applied 
to the data handling process. 

Network Services Phase V provides two types of 
network services: connectionless (CLNS) and con­
nection-oriented (CONS). CLNS offers a datagram 
facility, in which each message is routed to its desti­
nation independently of any other. CONS estab­
lishes logical connections in the network layer over 
which transport messages are then transmitted. 

Transport running over CLNS has a flexible inter­
face. It opens an association with the CLNS layer and 
is then able to solicit the CLNS layer to enter a trans­
port protocol data unit (TPDU) into the network. 
When admission is granted, transport sends as 
many TPDUs as possible at that time. Incoming 
TPDUs are posted to transport as they are received 
by the CLNS layer. Both NSP and OSI transports run 
over the CLNS layer. 

Transport running over CONS has a more rigid 
interface. Once a network connection is estab­
lished with the CONS layer, each transport request 
has to be completed by the CONS layer. Thus trans­
port, when running over CONS, is not able to trans­
mit all its TPDUs at once. Each transmit must be 
completed back to transport before the next can 
commence. Also, if transport is to receive incoming 
TPDUs, a read must be posted to the CONS layer. The 
OSI transport runs over the CONS layer, but the NSP 
protocol was designed specifically for CLNS and 
does not operate over CONS. 

Differences between Phase JV and Phase V 
Transport Protocol Engines 
Flow control policy is an important difference 
between the VAX OSI transport service and the 
DECnet/OSI for OpenVMS implementation. The VAX 
OSI transport service implements a pessimistic 
policy that never allocates credit representing 
resources it does not have. The OSI transport proto­
col, on the other hand, implements a more opti­
mistic policy that takes advantage of buffering 
available in the pipeline and the variance in data 
flow on different transport connections. It makes 
the assumption that transport connections do not 
consume all allocated credit at the same time. 
Other enhancements to the OSI transport protocol 
include conformance to EMA network manage­
ment, compliance with the most recent ISO specifi­
cations, and participation in DECnet/OSI for 
OpenVMS VMScluster Alias. 
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The two main differences between the Phase IV 
and Phase V NSP implementations are conformance 
to the EMA management model, and, once again, 
flow control. In Phase IV, NSP does not request flow 
control and uses an XON/XOFF mechanism. This 
results in large fluctuations in throughput. Phase V 
NSP has been enhanced to request segment flow 
control. This mechanism enables each side of a 
transport to determine when it can send data seg­
ments. Due to this difference in flow control policy, 
Phase V NSP throughput converges to a maximum 
value. 

Future Direction of Transports 
The DECnet/OSI for Open VMS transport design pro­
vides a common transport user interface to all 
transports and places common functions in the 
transport service libraries. This approach provides 
extensibility; it allows future transports to be easily 
incorporated as they emerge in the industry. This 
common interface can also be used to provide an 
API that interfaces directly to a transport. DECnet/ 
OSI for Open VMS engineering is currently looking at 
providing such an APL 

Configuration 
Design on the new configuration tools was started 
by collecting user comments about the Phase IV 
tools and desirable features for the new tool. This 
data was collected from customer communication 
at DECUS, through internal notes files, and through 
internet news groups. 

The first goal agreed upon was to create configu­
ration files that are easy to read; inexperienced 
Phase V network managers may be required to read 
and understand these files. Next, the tool must be 
structured. The configuration is divided into sev­
eral files with recognizable file names rather than 
one potentially unmanageable one. Each file con­
tains the initialization commands needed to initial­
ize one network entity. Finally, the configuration 
tool should be extensible. New commands, enti­
ties, or other information can easily be added to the 
configuration. 

Configuration Design 
The main configuration tool is a DCL command pro­
cedure (NET$CONFIGURE.COM). This procedure 
generates NCL script files, which are executed dur­
ing network start-up, to initialize the network. In 
general, each script file initializes one entity within 
DECnet/OSI for OpenVMS. It is possible, however, 
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for scripts to contain information for numerous 
entities. For example, the NSP transport initializa­
tion script contains commands to create an 
instance of the session control transport service 
provider entity, which enables the session layer to 
use the protocol. The procedure can extract infor­
mation about the configuration by using the 
NET$CONVERT_DATABASE utility to translate an 
existing Phase IV configuration contained in the 
Phase IV permanent databases. Alternatively, it can 
prompt the user for the information needed to 
allow basic operation of the node. 

The first time NET$CONFIGURE is executed, all 
the questions, except for the node's full name and 
its Phase IV address, have default choices. If the 
defaults are chosen, the node operates properly 
once the network has started. When appropriate, 
NET$CONFIGURE also calls other configuration 
tools to configure the DECdns client and the Digital 
Distributed Time Service (DECdts), and to perform 
various network transition functions. 

Once the initial configuration has been per­
formed, customization of components is available. 
Subsequent execution of the NET$CONFIGURE pro­
cedure will present the user with a menu that 
allows specific subsections of the configuration to 
be done, for example, adding or deleting MOP 
clients or session control applications, changing 
the name of the node, or controlling the use of 
communications devices. 

General help is available while running 
NET$CONFIGURE. If the user does not understand 
any individual query, responding with a "?" (ques­
tion mark) provides a brief explanation. 

The scripts created by NET$CONFIGURE 
are computed. A checksum is computed by 
NET$CONFIGURE for each script file, and it is stored 
in a database along with the answers entered for all 
other configuration questions. This allows the 
NET$CONFIGURE procedure to detect whether a 
script has been modified by an outside source. If 
this condition is detected, NET$CONFIGURE warns 
the user that user-specific changes made to the par­
ticular script may be lost. 

If a user has modified the NCL scripts, 
NET$CONFIGURE cannot guarantee that the infor­
mation will be retained after future executions of 
the procedure. An attempt is made to maintain the 
changes across new versions. In all cases, previous 
scripts are renamed before the new scripts are gen­
erated. This allows the user to verify that cus­
tomized change was transferred to the new script. 
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If not, the saved version can be used to manually 
replace the change. 

Node Configuration NET$CONFIGURE asks only 
one question that is directly related to the node 
entity. It asks for the node's DECdns full name and 
sets the node's name. Since the namespace nick­
name is a required component of the full name 
answer, it also allows the procedure to determine 
the namespace in which to configure DECdns. 

The node synonym default is generated by using 
the first six characters of the last simple name of the 
node's full name. If the user entered the full name, 
USN:.Norfolk.Destroyer.Spruance.DD125, the syn­
onym default would be DD 125. The user is free to 
change this information as long as the response is a 
legal Phase IV-style name. If present, the transition 
tools make use of this synonym when the node is 
registered in the DECdns namespace. 

Data Link/Routing The NET$CONFIGURE proce­
dure contains a table of all valid data link devices 
supported by DECnet/OSI for OpenVMS. When the 
data link/routing configuration module is called, 
the system configuration is scanned. Any valid 
devices found on the system are presented to the 
user for addition to the configuration. The only 
exceptions are asynchronous data link devices. The 
user must specifically request asynchronous sup­
port for these devices to be configured. 

Configuration is mandatory for broadcast data 
link media since these devices are shareable and 
users other than DECnet/OSI for OpenVMS may 
request the device. For synchronous devices, the 
user has the choice to configure the device for use 
by DECnet/OSI for OpenVMS. If a device is config­
ured, a choice between the Digital data communi­
cations message protocol (DDCMP) or high-level 
data link control (HDLC) as data link protocol must 
also be made. 

Each data link device configured requires a name 
for the device and a name for the corresponding 
routing circuit. The defaults for these names 
are generated by using the protocol name, e.g., car­
rier sense multiple access-collision detection 
(CSMA-CD), HDLC, or DDCMP, along with a unit num­
ber. The user may override the default with any 
valid simple name. This allows the user to set the 
data link and routing circuit names to be more 
descriptive in their environment; for example, 
HDLC_SYNC_TO_BOSTON for a data link and 
CONNECTION_TO_BOSTON_DR500 for a routing 
circuit. 
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Transport/Session Control NET$CONFIGURE sup­
ports the NSP and OSI transports. The procedure 
configures both transports by default, but allows 
the user to select only one. Commands are gener­
ated in the start-up scripts to initialize both the 
transports and the session control transport ser­
vice provider entity instances, which allow the ses­
sion control layer to use them. 

If OSI transport is configured, default templates 
are created to allow the installation verification 
procedures for the OSI applications to operate suc­
cessfully. The user also has the option of creating 
specific connection option templates for use with 
OSI applications. 

All default session control applications, e.g., 
file access listener (FAL), mail, or phone, are config­
ured in the same way as they are with the DECnet­
VAX Phase IV configuration tool. The user has the 
option to allow access to each application through 
a default account or not. The only queries made by 
the configuration tool are about the creation of the 
user account for the application. 

DECdts Configuration The DECdts configuration 
is performed by a call to the DTSS$CONFIGURE 
procedure. DTSS$CONFIGURE prompts the user 
to choose between universal coordinated time 
(UTC) or local time, which is UTC plus or minus 
the time-zone differential factor (TDF). If local time 
is chosen, then the procedure prompts for the 
continent and time zone on that continent to use. 
This information is needed to compute the TDF. 
The DTSS$CONFIGURE tool creates its own NCL 
scripts. These scripts are not maintained by 
NET$CONFIGURE, and no checksums are computed 
or stored for them. 

Configuration To configure DECdns, the network 
software must be in operation so that the DECdns 
software may use it. The NET$CONFIGURE proce­
dure attempts to start the network once it has cre­
ated the necessary scripts. Once the network has 
been started, the NET$CONFIGURE procedure calls 
DNS$CONFIGURE, passing it the node full name that 
was entered by the user. The full name contains the 
namespace nickname that the user wishes to use. 
DNS$CONFIGURE then uses the DECdns advertiser to 
listen on the broadcast media for a name server that 
is advertising the same namespace nickname. If a 
match is made, DECdns creates an initialization NCL 
script with the needed instructions to configure 
the DECdns clerk at the next system boot. It then 
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tells the advertiser to configure against the same 
namespace. 

If the namespace nickname cannot be matched, 
the user is given alternatives. First, a list of the 
current namespaces advertised on the broadcast 
media, along with the LOCAL: namespace is offered. 
LOCAL: is a special case used in lieu of the standard 
client-server configuration. The LOCAL namespace 
makes use of the client cache to store a small num­
ber of nodes locally 

If a choice is not made from the list, the user is 
queried to see if an attempt should be made to con­
figure to a name server that may be located on a 
data link other than the broadcast media. If yes, 
then a valid address must be provided to the 
DNS$CONFIGURE tool so that it may connect to the 
name server on the remote node. 

If no options are chosen at this point, a final 
choice of creating a name server on the local node 
is presented. Since DECnet/OSI for OpenVMS must 
configure the DECdns clerk, if the answer is still no, 
the procedure returns to the original list of known 
namespaces and starts again. 

Transition Tools Once DECdns is configured, the 
transition tools are used to create the correct 
namespace directory configuration. If a new 
namespace has been created and selected for use, 
the tools populate the directories with the node 
information from the Phase IV DECnet database 
found on the system. Most often, the tools simply 
register the node with the DECdns name server 
along with the node synonym that was provided by 
the user during the node configuration portion of 
NET$CONFIGURE. 

The transition tools also assist the user when 
renaming the node or changing from one name­
space to another. They copy subdirectory informa­
tion from the node's old DECdns directory to the 
new directory structure on the new namespace or 
within the same namespace, if the user only 
changed the node's name. 

Summary 
The DECnet/OSI for OpenVMS version 5.5 product 
implements all layers of the DNA Phase V architec­
ture. This extends the OpenVMS system to a new 
degree of network access by supplying standard OSI 
protocols. The product also protects the large 
investment in network software that OpenVMS 
users currently hold. This is done by fully support­
ing the extensive selection of applications available 
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for Phase IV DECnet-VAX. In addition, the design of 
DECnet/OSI for OpenVMS is structured in a way that 
will ease the introduction of new standards as they 
come available. 
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The ULTRIX Implementation 
of DECnet/OSI 

The DECnet/OSI for ULTRIX software was developed to allow the ULTRIX operating 
system and ULTRIX workstation software systems to operate in a multivendor, multi­
protocol network based on open standards. It operates in a complex networking 
environment that includes OSI, DECnet Phase Iv, X.25, and TCP/IP protocols. BSD 
sockets and protocol switch tables provide the entry points that define interfaces for 
protocol modules. The DECnet/OSI for ULTRIX software incorporates Digital's 
Enterprise Management Architecture, which provides a framework on which to 
consistently manage the various components of a distributed system. The DECnet/ 
OSI for ULTRIX software provides a set of powerful tools and a system that can be 
extended to include new functions as they are incorporated in the OSI standard. 

DECnet/OSI for ULTRIX is an end system imple­
mentation that supports the open systems inter­
connection (OSI) protocol through the Digital 
Networking Architecture (DNA) Phase V software. 
This implementation provides several features 
and programming environments that are consistent 
with the UNIX system philosophy of networking. 
Ease of use, extensibility, and portability were key 
design goals during product development. Opera­
tion of DECnet/OSI for ULTRIX software in a complex 
networking environment provides coexistence and 
interaction with the transmission control proto­
col/internet protocol (TCP/IP), DECnet Phase IV, 
X.25, and multivendor OSI networks. 

The paper "Overview of Digital 's Open 
Networking" (in this issue) provides a suitable 
introduction to DECnet/OSI concepts. 1 For more 
details concerning standard Berkeley Software 
Distribution (BSD) networking concepts, the 
reader is referred to the general references listed at 
the end of this paper. 

This paper provides an overview of DECnet/OSI 
for ULTRIX software. It discusses some of the design 
decisions made during product development, 
including the use of protocol switch tables. It 
describes the system's five communication 
domains, emphasizing the X.25, data link, and OSI 
domains. The paper continues with a discussion of 
application programming interfaces, interfaces 
into kernel modules, and a network management 
interface established for extensibility. It concludes 
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with a description of network management and 
network configuration. 

System Overview 
DECnet/OSI for ULTRIX is an end system implemen­
tation of the OSI network architecture and Digital's 
DNA Phase V. The DNA Phase V architecture pro­
vides a framework for incorporating OSI protocols 
as defined by the International Organization for 
Standardization (ISO) into DECnet/OSI products. 
DECnet/OSI for ULTRIX software is integrated into 
the ULTRIX kernel and layered on existing ULTRIX 
interfaces. This software allows the ULTRIX operat­
ing system and ULTRIX workstation software (UWS) 
systems to operate in a multivendor, multiprotocol 
network based on open standards. 

The DECnet/OSI for ULTRIX software p rovides the 
following network services: 

• Base networking software, which includes trans­
port services, network layer services, X.25, and 
local area and wide area device driver support as 
described in the ISO Reference Model and DNA. 2 

• Network management software, incorporating 
the Digital Enterprise Management Architecture. 

• Application programming interfaces to support 
user development of distributed applications. 

• DECnet application software. DNA session con­
trol bridges DECnet applications such as file 
transfer (dcp,dls,drm), remote login (dlogin), 
and mail to transport layer services. 
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• DECdns, Digital's distributed name service, 
which provides a location-independent naming 
facility. This service is used by DNA session 
control to provide node name-to-address 
translations.3 

• Digital's distributed time service, DECdts. This 
time synchronization service is required by many 
distributed applications such as DECdns to main­
tain a consistent time base for their operations. 

• OSI applications software, including file transfer, 
access, and management (FTAM) and virtual 
terminal protocol (Vf P) support. 

System Goals and Devewpment 
A major goal of DECnet/OSI for ULTRIX was to sup­
port large multivendor, multiprotocol networks, 
including coexistence of OSI and TCP/IP on an 
ULTRIX uws system. Coexistence includes the abil­
ity to share system resources and to provide a con­
sistent set of services to users of both the OSI and 
internet protocols. Another goal was to provide 
connectivity between OSI and TCP/IP networks 
through the implementations of gateways and 
hybrid stacks. 

Interoperability between DECnet/OSI and DECnet 
Phase IV products was required to maintain con­
nectivity during network transition to OSI. A frame­
work for the development of new OSI applications 
such as FTAM was another requirement. As in the 
DECnet-ULTRIX Phase IV implementation, program­
ming and user interfaces needed to be consistent 
with the ULTRIX and UNIX systems environment. 

Wherever possible, code was to be shared with 
other development projects. For this reason, soft­
ware development engineers used the C program­
ming language and aimed to produce a portable 
implementation. This was particularly important 
for the X.25 implementation, which would be used 
in other products. The code was structured to mini­
mize system-specific references and dependencies. 
Code that interfaced directly to the BSD system was 
isolated in separate modules, and use of system­
specific devices such as timers and buffers was hid­
den behind generic macros or subroutines. 

In addition, the software was designed to be 
extensible so that future OSI protocols could be 
added. To achieve extensibility, interfaces were 
established between the various components. 
These include application programming interfaces, 
interfaces into each kernel module, and a network 
management interface. New protocols could be 
more easily added by supporting these interfaces. 
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DECnet/OSI for ULTRIX development began with a 
collection of eight distinct projects, each with its 
own goals, schedules, and priorities. These projects 
were developed across engineering organizations, 
and spanned three continents. They consisted of 
X.25, wide area device drivers, FTAM, VTP, DECdts, 
DECdns, OSI applications kernel (OSAK), and the 
DECnet/OSI base components. 

Early in development, it was realized that no indi­
vidual project could be successful without achiev­
ing success at a systems level for the DECnet/OSI for 
ULTRIX product. This realization caused a change in 
the way the DECnet/OSI for ULTRIX projects 
approached engineering development. Our focus 
switched to providing a common set of goals and 
one integrated schedule. Priorities for individual 
projects were reevaluated in the context of the 
system goals and schedule. It was critical to have a 
set of well-defined interfaces; any change to these 
interfaces could have a major system impact. 
Communication between all projects was essential. 
A significant amount of time was built into the 
schedule for system integration, as well as compo­
nent integration. 

Kernel Networking Environment 
The DECnet/OSI for ULTRIX kernel implementation 
was designed to be consistent with other ULTRIX 
networking implementations such as the TCP/IP and 
Local Area Transport (LAT). The networking struc­
ture is based on the BSD networking subsystem. 4 

The ULTRIX networking environment allows pro­
tocol components to be insulated from each other. 
One important aspect of this networking system is 
the use of protocol switch tables. These tables con­
tain the entry points for various protocol modules 
in the system, as shown in Figure 1. DECnet/OSI for 
ULTRIX uses these entry points to define interfaces 
for each protocol module. This means that there are 
no direct calls from one protocol component into 
another, an important consideration when new 
layers must be integrated. Moreover, one protocol 
module does not access another's databases. Infor­
mation is accessed from a module only through the 
defined interface. 

Insulating protocol modules from each other is 
advantageous for various reasons. As long as a pro­
tocol module supports a generic interface, it can 
act as a service provider for multiple users, which 
allows a system to support multiple configurations. 
For example, X.25 or high-level data link control 
(HDLC) may be configured into the kernel only 
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PROTOCOL SWITCH TABLE 
ELEMENT 0: ,.......~~~~~~~~---. 

SOCKET TYPE 

PROTOCOL FAMILY 

PROTOCOL NUMBER 
DOMAIN LIST ... 

! FUNCTION ENTRY 
POINTS: 
pr_input() 

DOMAIN FAMILY 
pr_output() 
pr_ctlinput() 

DOMAIN NAME 
pr_ctloutput() 
pr_usrreq() 

POINTER TO 
BEGINNING OF 
DOMAIN PROTOCOL 
SWITCH TABLE 

pr_init() 
pr_fastimo() 
pr_slowtimo() 
pr_drain() 

POINTER TO [ ... l 
END OF 
DOMAIN PROTOCOL 
SWITCH TABLE 

SOCKET TYPE 

PROTOCOL FAMILY 
POINTER TO NEXT 
DOMAIN ENTRY PROTOCOL NUMBER 

I 
... 

FUNCTION ENTRY 

t POINTS: 
pr_input() 
pr_output() 
pr_ctlinput() 
pr_ctloutput() 
pr_usrreq() 
pr_init() 
pr_fastimo() 
pr_slowtimo() 
pr_drain() 

Figure I Domains and Protocol Switch Tables 

when those services are needed. New protocol 
modules can be easily added. If token ring support 
is added as one of the broadcast devices, using the 
same interface as the carrier sense multiple access 
with collision detection (CSMA/CD) and fiber dis­
tributed data interface (FDDI) modules, little or no 
change will be required to the network layer. 

Modularity is another advantage. Complexity can 
be reduced and problems can be isolated more eas­
ily when interfaces between each protocol module 
are carefully defined. For example, defining a 
network management interface for each protocol 
removes the requirement for network management 
to access protocol module databases directly. 
Network management code does not need to 
understand the internal organization of a module or 
the locking strategies that may be required to 
access the data. 
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To make use of the protocol switch table entry 
points, some minor enhancements were required. 
An extension was made to the control output inter­
face to allow requests from kernel-level protocol 
modules and network management. The interface 
was further extended to allow protocol modules to 
use a port option to identify themselves as clients 
of the service provider, to acquire information 
from the service provider, or to modify the service 
provider's behavior. Network management uses a 
different option passed through the control output 
interface to manage kernel entities. 

The control input interface was also enhanced. 
This interface provides two arguments: a request 
and a pointer to one or more arguments to be inter­
preted as a function of the request. Originally, this 
routine was used to notify IP of events, where each 
event had its own unique request value. To allow 
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DECnet/OSI protocols to use this interface without 
adding several new request values, a general­
purpose request was introduced. This request is 
used by a service provider to interrupt one or more 
of its clients to inform them of a change in service. 
As part of the argument list, the service provider 
passes a value indicating the exact nature of the 
event being communicated. As an example, the 
network layer uses this mechanism to inform the 
transport layer modules of a change to the set 
of network addresses. Similarly, X.25 uses this 
interface to provide status about specific network 
connections. 

The ULTRIX/BSD networking system organizes 
protocols into communication domains. The pur­
pose of a communication domain is to group 
together common properties necessary for process­
to-process communication. As an example, the 
X.25 domain was designed to provide a full set of 
X.25 services that can be selected by client proto­
cols. It includes the socket and protocol switch 
table interfaces necessary for user-level and kernel­
level clients, X.25 accounting, profile loading, and 
trace utilities. 

The components of DECnet/OSI for ULTRIX may 
be combined in different ways depending on the 
configuration requirements of individual cus­
tomers. A multiple domain approach was chosen to 
allow the various products and their development 
to be separated from one another. For example, 
network management software was placed in a sep­
arate domain to allow the X.25 and wide area 
network device driver (WANDD) products to be 
managed without installing DECnet/OSI for ULTRIX. 
Similarly, the OSI domain protocols may operate 
without the X.25 or WANDD products configured 
into the system. 

Five domains were established: 

1. The DECnet domain (AF _DECnet) is retained to 
provide backward compatibility to existing 
DECnet-ULTRIX Phase IV applications. 

2. The data link domain (AF _DIJ) contains all the 
data link protocols, including Logical Link 
Control (ISO 8802-2), CSMA/CD, FDDI, and HDLC. 
For DECnet/OSI for ULTRIX, the AF _DIJ domain 
provides access to the drivers for kernel modules 
as well as user applications. 

3. The X.25 domain (AF_X25) contains the proto­
cols necessary to access X.25 networks. 

4. The OSI domain (AF_OSI) contains the higher­
level DECnet/OSI protocols, i.e., DNA session 
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control, network services protocol (NSP), OSI 
transport, DNA Phase V routing. 

5. The network management domain (AF _NETMAN) 
contains all the network management functions. 
These functions can be used to manage any DNA 
networking product. 

Data Link Domain 
Under DECnet-ULTRIX Phase IV, the routing proto­
col module accessed the drivers directly. In the OSI 
implementation, data link interface (DU) modules 
interface to the device drivers and act as service 
providers to network layer clients such as routing. 
This decision was made to minimize specific 
DECnet/OSI support needed in the ULTRIX operat­
ing system device drivers. This allows changes to be 
made more easily, and it provides a central location 
for common data link protocol code as well as 
network management code. 

The AF _DIJ domain provides a common interface 
to broadcast data links such as CSMA/CD and FDDI. 
Modules implementing new broadcast data link 
technologies can be added at any time by conform­
ing to the DU interface. DU provides support for ISO 
802.2 class I, type 1 functions; these may be used by 
any broadcast module. Other 802.2 classes are han­
dled by passing frames directly to the client module. 

The point-to-point protocols consist of HDLC 
and the Digital data communications message pro­
tocol (DDCMP). ULTRIX relies on the DDCMP sup­
port provided by hardware devices. However, a 
DDCMP software module exists to interface these 
devices to network management. HDLC, on the 
other hand, is entirely implemented as a software 
module operating over a device driver. Similar 
interfaces are provided by each protocol. 

X25Domain 
To ensure consistency with the goals and require­
ments of DECnet/OSI for ULTRIX, several design 
alternatives were considered for integrating X.25 
into ULTRIX, including porting a previous Digital 
implementation of X.25, the VAX Packet Switch 
Interconnect. These alternatives were rejected 
because they were not consistent with the DECnet/ 
OSI for ULTRIX implementation and BSD networking 
in general. A new version ofX.25 was implemented 
in the C language using the protocol switch table 
infrastructure. This approach provided enough 
flexibility to allow the ULTRIX X.25 code to be easily 
ported to other product environments such as the 
WANrouter 250. 
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The X.25 components of DECnet/OSI for ULTRIX 
are provided as part of a wider X.25 strategy that 
can support multiple protocol suites, such as 
DECnet/OSI, TCP/IP, and International Business 
Machine Corporation's Systems Network Archi­
tecture (SNA). Under DECnet/OSI for ULTRIX, X.25 is 
used in two configurations. It provides the connec­
tion oriented network services (CONS) support to 
the OSI transport layer (ISO 8208, ISO 8878), and it 
can be used as a subnetwork for the connectionless 
network service (CLNS) layer. When used with 
TCP/IP networks, X.25 can be used as a subnetwork 
for the IP (Request for Comment [RFC] 877). 

The interface to X.25 services was designed to be 
accessed by other kernel components. The proto­
col switch table was used to implement this inter­
face. Components such as OSI connectionless 
network protocol and OSI transport make direct 
use of the kernel protocol switch interface with no 
intervening software layer. 

Access by user-level applications to X.25 occurs 
through the BSD socket interface. The processing 
requirements of the socket layer and the kernel 
layer provided by the protocol switch are consider­
ably different. To reduce the complexity of the ker­
nel interface, an X.25 socket converter module was 
provided. The socket converter module manages 
issues such as queuing data at the socket interface 
and converting between protocol switch table rou­
tines and socket-layer calls. The converter module 
is treated as a client of the kernel interface. 

Direct access to the X.25 kernel interface from 
IP was not possible due to TCP/IP development 
constraints. Instead, an IP device converter was 
supplied with ULTRIX X.25. This X.25-IP interface 
module appears as a device driver to IP. Further­
more, IP can be configured to use X.25 without 
requiring changes to the TCP/IP software. The 
pseudo-driver establishes an X.25 call when data is 
sent to the X.25 device. After the IP data has been 
transmitted, the X.25 connection is maintained to 
reduce the overhead and cost of X.25 call setup 
when the next IP data packet is sent. Configuration 
of the X.25 IP device is performed using standard 
ifconfig management commands. 

OS/Domain 
The AF_OSI domain contains the routing module, 
the transport modules, and DNA session control. 
The routing module is an end system implementa­
tion that adheres to the Digital Network 
Architecture (Phase VJ Network Routing Layer 
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Functional Specification, version 3.0.0 . It provides 
support for the ISO Connectionless Network 
Service (ISO 8473), End System to Intermediate 
System Routing Exchange Protocol (ISO 9542), and 
Phase IV routing. "Ping," a network loopback func­
tion specified in Amendment X: Addition of an 
Echo Function to ISO 8473 and in RFC 1139, is pro­
vided as a diagnostic tool to test network access to 
anode. 

Routing can be configured to operate over 
the data link entities previously mentioned as well 
as X.25. As an end system, DECnet/OSI for ULTRIX 
does not route protocol data units (PDUs). It can, 
however, operate over multiple circuits simultane­
ously, which allows load balancing across circuits 
and network redundancy. Phase V routing is capa­
ble of autoconfiguring to one or more network 
addresses. 5 

OSI transport (ISO 8072, ISO 8073) and NSP are 
the two transport modules supported. Both can 
be configured to operate over CLNS. However, only 
OSI transport can be configured to operate over 
CONS/X.25. OSI transport class 4 is supported 
over CLNS, and classes 0, 2, and 4 are supported 
over CONS/X.25. OSI transport also provides a con­
nectionless transport service (CLTS) to its users. 
CLTS is a datagram service that operates over CLNS. 

OSI transport supports two client interfaces and 
NSP supports one. Both support an interface to DNA 
session control supplied by the protocol switch 
table entry points. OSI user applications directly 
access OSI transport through X/Open transport 
interface (XTI).6 XTI specifies a transport service 
interface that is independent of the transport 
provider. On the ULTRIX implementation, XTI is a 
library interface implemented using the socket 
layer. It is discussed in more detail later in the sec­
tion Application Programming Interfaces. 

OSI transport can have multiple clients, and it 
identifies each client by an address called the trans­
port selector. When OSI transport processes an 
incoming connect request, it uses the selector to 
determine which client should receive notification 
of the request. 

The DNA session control protocol engine was 
implemented as part of NSP for the DECnet-ULTRIX 
Phase IV release. It is now implemented as a sepa­
rate entity to allow operation over multiple trans­
ports (NSP and OSI transport). This modification 
created a subtle problem. DNA session control 
resides between the transport layers and the socket 
layer. However, both transport modules and DNA 
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session control need access to the socket. DNA ses­
sion control needs access when performing con­
nection control, and the transport modules need 
access when appending transmit or receive buffers 
to the socket queues. Since the socket is actually 
open to DNA session control, a mechanism was cre­
ated to relay the socket pointer to the transport 
modules. This information is passed through the 
control output interface as part of the port option. 

Application Programming Interfaces 
To ease the transition of applications from Phase IV 
to DECnet/OSI, the Phase IV socket interface and 
programming library were retained. Applications 
using these interfaces will continue to work. This 
allows programmers time to modify their applica­
tions to use the new interfaces and the capabilities 
provided with DECnet/OSI for ULTRIX. 

New application programming interfaces (APis) 
were developed. These APis include a DNA Phase V 
session control programming library, an X.25 pro­
gramming library, an X.25 socket interface, and 
an XTI interface. They allow programmers to 
write network applications that use DECnet/OSI 
capabilities. 

DNA Session Control Library 
Through the use of the DNA Phase V session control 
library and DECdns, applications can provide loca­
tion-independent services to the network. DNA 
session control stores information about an appli­
cation and its services in an object in the DECdns 
namespace. Client applications can access these 
services by referencing the object name without 
knowing the current location of the service. 

DNA Phase V session control applications also 
have the option of operating over various transport 
services and network services. The library gives 
the application programmer the flexibility of speci­
fying the particular combination of services to be 
used. As an alternative, the library can determine 
the possible combinations of protocols that are sup­
ported on both the local and remote systems. This 
is done by accessing the addressing information 
stored in DECdns for each of these systems. If any 
combinations of protocols exist, DNA session con­
trol tries each of them in succession until a connec­
tion is established. 

The DNA Phase V session control programming 
library is designed to be extensible. Instead of using 
a calling sequence with numerous parameters, one 
parameter is passed on all calls. This parameter is 
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an extensible data structure that consists of both 
input and output arguments. It allows new argu­
ments to be added by appending fields to the end of 
the data structure. 

The library is designed to support multithreaded 
application development. If a threads programming 
interface is supported on the ULTRIX operating 
system, programmers are able to write applications 
that have multiple control paths executing in paral­
lel. This is useful in writing a network server appli­
cation that frequently needs to handle requests 
from multiple clients. A single server application 
can process requests in parallel instead of creating 
additional processes to service each request. 
Multithreaded support in the library was accom­
plished by removing the use of static and global 
data by the library. Information is returned in 
dynamically allocated memory, which the applica­
tions are responsible for freeing. 

X.25 Interfaces 
Two programming interfaces are provided for the 
X.25 component. A socket interface is provided for 
fu ll access to X.25 features in a manner compatible 
with BSD UNIX. This allows applications to make use 
of a direct socket interface to both TCP/IP and X.25. 

An X.25 programming library was created to pro­
vide a portable programming interface that could 
be used for access to X.25 across current and future 
Digital implementations. The format of calls to the 
X.25 library was constructed on lines more compat­
ible with the interface defined in the DNA X.25 
access architecture than that available through the 
socket interface. 

XTI Library 
The XTI library has been extended to provide a 
framework for developing OSI applications. XTI 
provides a transport-independent programming 
interface that is standard across UNIX operating sys­
tems. On ULTRIX, XTI was implemented to provide a 
portable interface for writing TCP/IP applications. 
In DECnet/OSI for ULTRIX, the implementation was 
extended to provide support for OSI transport, 
including both connection oriented transport ser­
vice (COTS) and CLTS. In addition to supporting the 
standard XTI calls, service routines were imple­
mented. These routines provide a mechanism to 
build and access addressing information needed 
within XTI. The addressing information consists of 
transport selectors, network addresses, and inter­
net ports. 
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Support for the Internet RFC 1006 specification 
was also added to the XTI library.7 This specification 
allows OSI applications to run over the TCP/IP pro­
tocol suite. RFC 1006 defines a mechanism for OSI 
transport class O (TPO) messages to be mapped 
across a TCP connection. OSI applications can be 
written to communicate over either TCP/IP net­
works or OSI networks, using the same APL 

An RFC 1006 daemon was implemented to work 
in conjunction with the XTI library to handle 
incoming connection establishment. To allow mul­
tiple OSI applications to bind to the same RFC 1006 
TCP port, a simple protocol exchanges file descrip­
tors and a few basic messages between the XTI 
library and the daemon, using UNIX domain sock­
ets. RFC 1006 specifies that a TCP connection be 
completed and a TPO connect request be received 
before an OSI application server can be selected to 
process the incoming connect. The daemon hides 
the TCP connection and effectively blocks the OSI 
application server until the TPO connect request 
occurs. 

Network Management 
DECnet/OSI network management is completely dif­
ferent from the management provided for DECnet 
Phase IV. It is based on the Enterprise Management 
Architecture (EMA), which provides a framework to 
consistently manage the various components mak­
ing up a distributed system.8 DECnet/OSI for ULTRIX 
network management consists of a director, an 
event logger, an agent access module, and an agent 
for each manageable protocol entity. Figure 2 
shows the network management environment. 

The director, network control language (NCL), 
provides the user interface that allows network 
management commands to be entered. NCL 

USER-LEVEL ENTITY 

encodes the network management commands 
using the common management information proto­
col (CMIP). The encoded directives are passed to 
the common management listener (CML). CML, in 
turn, passes the directives to the appropriate agent 
in a form the agent can understand. On the ULTRIX 
implementation, when the connection between 
NCL and CML is local, a pipe is used. When NCL 
needs to connect to a remote CML, an OSI network 
connection is established. 

The event logger (EVL) takes event messages 
generated by agents and sends them to either a local 
sink or a remote event sink. A local sink is a process 
that is executing locally, but a remote event sink is 
executing on a system elsewhere in the network. In 
the latter case, the CMIP protocol is used to convey 
the event message. Events are typically displayed 
on the console or in a file. 

The DECnet/OSI for ULTRIX network management 
implementation is designed to be modular and 
extensible. The data dictionary, a key component, 
describes all the management attributes of each 
entity. The data dictionary is a dynamically extensi­
ble database and is used by all network manage­
ment applications. NCL uses the data dictionary to 
parse command lines and display output. CML uses 
the data dictionary to decode/encode CMIP proto­
col messages from/to NCL, and EVL uses it to display 
an event locally. Information about new attributes 
or entire entities can be added to the data dictio­
nary without modifying the network management 
applications. Thus layered products can easily add 
support for new manageable objects. 

The network management environment in 
DECnet/OSI for ULTRIX is essentially a message pass­
ing scheme, as shown in Figure 2. Like the data dic­
tionary, it was designed to be extensible and 

SERVICE 
PROVIDER AGENT 0 --..., USER CML USER EVL 

SOCKET LAYER 

Figure 2 Network Management 

AF_NETMAN 

KERNELCML 

KERNEL EVL 

40 Vol. 5 No. 1 Winter 1993 Digital Technical Journal 



generic. All manageable, DNA-architected entities 
use this environment. At the core is a switch, kernel 
CML. Kernel CML passes messages between user 
CML and any DNA entity. User CML and kernel CML 
communicate through the socket layer. User-level 
agents, in turn, communicate with CML using the 
socket-layer interface, and kernel-level agents com­
municate with CML through the control output 
routine for the entity 

User-level agents can send multiple responses to 
a single request, but kernel-level agents can send 
only one response per request. Because user-level 
agents reside in process space and are separated 
by the socket layer, their transactions can be asyn­
chronous. Transactions of kernel-level agents, on 
the other hand, must be synchronous. When called, 
they must process the request and return a single 
response. Whenever multiple responses are to be 
returned, as in a wild-card operation, the agent 
relies on being invoked again by kernel CML for 
each of the response messages. This programming 
precludes the possibility of exhausting system 
buffers while conveying information about a large 
number of subentities. Kernel CML stops requesting 
additional responses from a kernel entity when it 
detects that the socket receive queue is full. Once 
there is more room on the queue, it resumes the 
wild-card operation. 

The network management environment pro­
vides a core set of routines as an aid to processing 
and building the syntax for each message. It also 
provides routines that assist in wild-card process­
ing. Agents that make use of these routines need 
not be aware of the physical structure of each mes­
sage. This has several benefits. It provides a com­
mon set of code that is not duplicated from entity 
to entity If there is a problem, it is corrected in one 
location instead of several. Also, it makes the imple­
mentation more portable. The message passing 
scheme uses the local operating system's network 
buffers. When changing from one operating system 
to another, the buffering needs to change only in 
the common code and not in each of the agents. 

Entities may need to originate event messages 
bound for the EVL. The mechanism providing this 
support is basically the same as the message passing 
scheme previously described. A kernel EVL switch 
receives event messages from either a user-level or 
kernel-level agent and passes the event up to its 
counterpart through the socket layer. With this 
mechanism, however, messages flow in only one 
direction, from the entity to the event logger. 
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The ULTRIX Implementation of DECnet/OSI 

In DECnet/OSI, some significant architectural 
changes were made to the maintenance operations 
protocol (MOP). As in Phase IV, the current imple­
mentation supports down-line loading and up-line 
dumping over FDDI and CSMA/CD devices. These 
functions are now performed by using the MOP ver­
sion 4.0 protocol over ISO 8802-2 or MOP version 3.0 
over Ethernet. As part of implementing the new 
protocol, support for down-line loading CMIP 
scripts was added. These are used by remote sys­
tems such as DECnet/OSI routers to perform 
network management initialization. Client informa­
tion is kept in a MOP-specific database. By keeping 
entity-specific information modular and distinct, 
the DECnet/OSI for ULTRIX MOP implementation is 
consistent with EMA. This contrasts with the 
DECnet-ULTRIX Phase IV implementation, which 
stores MOP client information in the DECnet nodes 
database. 

Applications Supported 
The DECnet Phase IV applications continue to be 
provided with the DECnet/OSI for ULTRIX product. 
These include the file transfer utility, dcp, the 
remote terminal utility, dlogin, and the mail utility 
These DECnet applications have been modified to 
use the DECnet/OSI for ULTRIX programming inter­
face and to take advantage of the new DNA Phase V 
capabilities. They can accept DECdns full names for 
node names and run over both the NSP and OSI 
transport. The DECnet-internet gateway is also pro­
vided as part of the product. The gateway provides 
bidirectional network access between DECnet and 
internet systems. It allows DECnet and TCP/IP users 
to communicate through their respective file trans­
fer, remote login, and mail facilities. 

New OSI applications were written to provide 
similar capabilities to the DECnet applications. 
They allow users to access files and terminal emula­
tion in a multivendor environment. These OSI appli­
cations include FTAM, VTP, and X.29 terminal 
support. Just as the DECnet-internet gateway is pro­
vided, OSI applications provide their own gateways 
to link OSI and internet.9 

ULTRIX X.25 includes X.29 terminal support. A 
packet assembler/disassembler (PAD) provides out­
going access. Thus PAD allows terminal emulation 
for X.25 connections to remote hosts in much the 
same way that the VTP does in a full OSI stack. For 
incoming X.29 calls, a UNIX daemon creates an X.29 
login process or activates an application based on 
X.29. 
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Installation and Configuration 
DECnet/OSI for ULTRIX networking software allows 
the use of OSI addressing and access to global 
naming services. It provides new network man­
agement utilities and the ability to configure a 
network stack in many different ways. For example, 
in configuring X.25, many attributes can be set to 
allow conformance to many public and private 
packet-switched data networks. The new capabili­
ties add a degree of complexity to the process of 
configuring the networking software. To simplify 
this process, configuration was separated from 
installation. Installation occurs when files are 
moved from the distribution media to the target 
system. Configuration is the process of providing 
information to make the networking subsystem 
operational. 

The ULTRIX DECnet/OSI and X.25 setup utilities 
provide two modes of configuration, basic and 
advanced. The DECnet/OSI for ULTRIX setup basic 
configuration process asks a limited number of 
questions and is designed for the user who will be 
installing DECnet/OSI for ULTRIX on a workstation 
connected to a local area network. The advanced 
configuration process and X.25 setup utility pro­
vide more configuration choices for the network 
manager who will be installing DECnet/OSI for 
ULTRIX in a server configuration, or who will 
require more detailed network configurations. 

X.25 and wide area network device driver setup 
utilities supply a mechanism for configuring TCP/IP 
or DECnet/OSI for ULTRIX to run over X.25 or syn­
chronous data links. For a more unified approach to 
configuring an OSI stack, these setup utilities are 
integrated with the DECnet/OSI for ULTRIX setup 
advanced process. These setup utilities add a logi­
cal abstraction above the EMA, which helps to 
reduce complexity. For each manageable entity on 
the system, NCL scripts are generated through 
default assumptions and responses to configura­
tion questions. 

Network configuration is accomplished with 
shell scripts and network management scripts. 
These mechanisms initialize manageable entities. 
At system start-up, the decnetstartup script is exe­
cuted from within re.local. This invokes the various 
NCL scripts to configure the networking software. 
One or more NCL scripts can be modified indepen­
dently of the configuration utilities to change 
attributes of the manageable entities. As an alterna­
tive, the setup utilities can be rerun to modify the 
scripts. In addition, responses to configuration 
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questions are stored in a file to provide default 
answers to simplify subsequent reconfiguration. 

Summary 
The design of DECnet/OSI for ULTRIX was a challeng­
ing endeavor that resulted in a rich set of capabili­
ties and a system on which to build new functions. 
It operates in a complex networking environment 
that includes OSI, DECnet Phase IV, X.25, and TCP/IP 
protocols. DECnet/OSI for ULTRIX software allows 
OSI applications to function in TCP/IP networks. 
RFC 1006 supports the operation of OSI applica­
tions using TCP/IP connections, and RFC 877 allows 
TCP/IP to be configured over X.25. In addition, a set 
of gateways allows intercommunication between 
DECnet/OSI and TCP/IP networks. 

The DECnet/OSI for ULTRIX system was also 
designed to be extended to include new functions 
as they are incorporated into the OSI standards. 
New protocol components can be added and used 
without changing existing components or net­
work management. In addition, the software was 
designed to be portable. The DECnet/OSI for ULTRIX 
software has been ported to the DEC OSF/1 AXP 
operating system, and DECnet/OSI version 1.0 for 
DEC OSF/1 AXP was released in March 1993. 

DECnet/OSI for ULTRIX demonstrates Digital's 
continuing commitment to provide the OSI proto­
col on platforms based on open systems. The 
ULTRIX system was the first end system to include 
products that followed the DNA OSI strategy. These 
systems can interoperate with either DECnet Phase 
IV systems or other OSI systems. As with DECnet 
Phase IV, DECnet/OSI for ULTRIX continues to pro­
vide a set of components consistent with the UNIX 
philosophy of networking. 
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The combination of the Alpha AXP workstations, the DEC FDD/controller/ 
TURBOchannel network interface, the DEC OSF/ I operating system, and a stream­
lined implementation of the TCP/IP and UDP/IP delivers to user applications almost 
the full FDDI bandwidth of 100 Mb/s. This combination eliminates the network I/0 
bottleneck for distributed systems. The TCP/IP implementation includes extensions 
to TCP such as support for large transport windows for higher performance. This is 
particularly desirable for higher-speed networks and/or large delay networks. The 
DEC FDDicontroller/TURBOchannel network interface delivers full bandwidth to the 
system using DMA, and it supports the patented point-to-point, full-dupl.ex FDDI 
mode. Measurement results show UDP performance is comparable to TCP. Unlike 
typical BSD-derived systems, the UDP receive throughput to user applications is also 
maintained at high load. 

We have seen significant increases in the band­
width available for computer communication net­
works in the recent past. Commercially available 
local area networks (LANs) operate at 100 megabits 
per second (Mb/s), and research networks are run­
ning at greater than 1 gigabit per second (Gb/s). 
Processor speeds have also seen dramatic increases 
at the same time. The ultimate throughput deliv­
ered to the user application, however, has not 
increased as rapidly. This has led researchers to 
say that network I/0 at the end system is the next 
bottleneck. 1 

One reason that network I/0 to the application 
has not scaled up as rapidly as communication link 
bandwidth or CPU processing speeds is that mem­
ory bandwidth has not scaled up as rapidly even 
though memory costs have fallen dramatically. 
Network I/0 involves operations that are memory 
intensive due to data movement and error check­
ing. Scaling up memory bandwidth, by making 
memory either wider or faster, is exp ensive. 
The result has been an increased focus on the 
design and implementation of higher-performance 
network interfaces, the re-examination of the 
implementation of network 1/0, and the considera-
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tion of alternative network protocols to achieve 
higher performance.2,3,4 

This paper describes the work we did to remove 
the end system network 1/0 bottleneck for current 
commercially available high-speed data links, such 
as the fiber distributed data interface (FDDI).5,6 We 
used the conventional internet protocol suite of 
transmission control protocol/internet protocol 
(TCP/IP) and the user datagram protocol/internet 
protocol (UDP/IP) on Alpha AXP hardware and soft­
ware platforms.7.8,9 The specific hardware platform 
was the DEC 3000 AXP Model 500 workstation with 
the DEC FDDicontroller/TIJRBOchannel adapter 
(DEFTA). The software platform was the DEC OSF/1 
operating system version 1.2 using the TCP and UDP 
transport protocols. The combination of the Alpha 
AXP workstations, the DEFTA adapter, the DEC OSF/1 
operating system, and a streamlined implementa­
tion of the TCP/IP and UDP/IP delivers to user appli­
cations essentially the full FDDI bandwidth of 100 
Mb/s. 

While the DEC FDDicontroller/TIJRBOchannel 
network interface is lower cost than previous FDDI 
controllers, it also delivers full bandwidth to the 
system using direct memory access (DMA). In 
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addition, it supports the patented point-to-point, 
full-duplex FDDI mode. This allows a link to be used 
with 100 Mb/s in each direction simultaneously, 
which increases throughput in some cases and 
reduces latency compared to the standard FDDI ring 
mode. 

Incremental work for data movement and check­
sums has been optimized to take advantage of the 
Alpha AXP workstation architecture, including 
64-bit support, wider cache lines, and the coher­
ence of cache blocks with DMA. Included in the 
TCP/IP implementation are extensions to TCP 
recently recommended by the Internet Engineering 
Task Force (IETF), such as support for large trans­
port windows for higher performance. 10 This is 
particularly desirable for high-speed networks 
and/or large delay networks. 

We feel that good overload behavior is also 
important. Workstations as well as hosts acting as 
servers see substantial load due to network I/0. 
Typical implementations of UDP/IP in systems based 
on the UNIX operating system are prone to degrada­
tion in throughput delivered to the application as 
the received load of traffic to the system increases 
beyond its capacity. Even when transmitting UDP/IP 
packets from a peer transmitter with similar capa­
bilities, the receiver experiences considerable 
packet loss. In some cases, systems reach receive 
"livelock," a situation in which a station is only 
involved in processing interrupts for received pack­
ets or only partially processing received packets 
without making forward progress in delivering 
packets to the user application. 11 Changes to the 
implementation of UDP/IP and algorithms incorpo­
rated in the DEFTA device driver remove this type of 
congestion loss at the end system under heavy 
receive load. These changes also eliminate unfair­
ness in allocation of processing resources, which 
results in starvation (e.g., starving the transmit 
path of resources). 

The next section of this paper discusses the char­
acteristics of the Alpha AXP workstations, the DEC 
OSF/1 operating system, and the two primary trans­
port protocols in the internet protocol suite, TCP 
and UDP. We provide an overview of the implemen­
tation of network VO in a typical UNIX system using 
the Berkeley Software Distribution (BSD) to moti­
vate several of the implementation enhancements 
described in the paper. 12 

The section on Performance Enhancements and 
Measurements Results then describes the specific 
implementation enhancements incorporated in 
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the DEC OSF/1 operating system version 1.2 to 
improve the performance of TCP and UDP. This 
section also provides measurement results for TCP 
and UDP with DEC 3000 AXP workstations running 
DEC OSF/1 version 1.2 in a few different configura­
tions. Also included are measurements with TCP 
and UDP with Digital's patented full-duplex mode 
for FDDI, which can potentially increase through­
put and reduce latency in FDDI LANs with point-to­
point links (which can also be used in switched 
FDDI LANs). A few implementation ideas currently 
under study are also presented in the section on 
Experimental Work. 

System Characteristics 
The project to improve the implementation of 
Digital's TCP/IP and UDP/IP (the internet protocol 
suite) networking was targeted on the DEC 3000 
AXP Model 500 workstation, running the DEC OSF/1 
operating system version 1.2. Since we were inter­
ested in achieving the highest performance pos­
sible on a commercially available data link, we 
chose FDDI, and used the DEC FDDicontroller/ 
TURBOchannel adapter (DEFTA) to communicate 
between the Alpha AXP workstations. In this sec­
tion, we describe the features of the workstations, 
relevant characteristics of FDDI, the internet pro­
tocol suite, and the DEC OSF/1 operating system 
itself, relative to the networking implementa­
tion. The architectural features of the Alpha AXP 

workstations as well as the DEC FDDicontroller/ 
TURBOchannel adapter are shown in Figure 1. 

The Alpha AXP System 
The Alpha AXP workstation, DEC 3000 AXP Model 
500 was chosen for our research. The system is 
built around Digital's 21064 64-bit, reduced instruc­
tion set computer (RISC) microprocessor. 

Digital's 21064 Microprocessor The DECchip 
21064 CPU chip is a RISC microprocessor that is fully 
pipelined and capable of issuing two instructions 
per clock cycle. 13.•4 The DECchip 21064 micropro­
cessor can execute up to 400 million operations 
per second. The chip includes 

• An 8-kb direct-mapped instruction cache with 
a 32-byte line size 

• An 8-kb direct-mapped data cache with a 
32-byte line size 

• Two associated translation buffers 

• A four-entry (32-byte-per-entry) write buffer 
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Figure 1 The Al,pha AXP Workstation-CPU, Memory Subsystem, and the 
FDD/controller/TURBOchannelAdapter 

• A pipelined 64-bit integer execution unit with a 
32-entry register file 

• A pipelined floating-point unit with an addi-
tional 32 registers 

The DEC 3000 AXP Model 500 Workstation The 
DEC 3000 AXP Model 500 workstation is built 
around the DECchip 21064 microprocessor running 
at 150 megahertz (MHz).15 In addition to the on-chip 
caches, there is an on-board second-level cache of 
512 kilobytes (kB). Main memory can be from 32 MB 
to 256 MB (1 GB with 16 MB dynamic random-access 
memories [DRAMs]). The memory bus is 256 bits 
plus error-correcting code (ECC) wide and has a 
bandwidth of 114 MB/s. Standard on the system is 
also a 10-Mb/s Ethernet interface (LANCE). For con­
nection to external peripherals there is an on-board 
small computer systems interface (SCSI)-2 interface 
and six TIJRBOchannel slots with a maximum 1/0 
throughput of 100 MB/s. One of the TIJRBOchannel 
slots is occupied by the graphics adapter. 

The system uses the second-level cache to help 
minimize the performance penalty of misses and 
write throughs in the two relatively smaller pri­
mary caches in the DECchip 21064 processor. The 
second-level cache is a direct-mapped, write-back 
cache with a block size of 32 bytes, chosen to match 
the block size of the primary caches. The cache 
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block allocation policy allocates on both read 
misses and write misses. Hardware keeps the cache 
coherent on DMAs; DMA reads probe the second­
level cache, and DMA writes update the second­
level cache, while invalidating the primary data 
cache. More details of the DEC 3000 AXP Model 500 
AXP workstation may be obtained from "The 
Design of the DEC 3000 AXP Systems, Two High­
performance Workstations." 15 

DEC OSF/1 Operating System 
DEC OSF/1 operating system version 1.2 for Alpha 
AXP systems is an implementation of the Open 
Software Foundation (OSF) OSF/1 version 1.0 and 
version 1.1 technology The operating system is a 
64-bit kernel architecture based on Carnegie­
Mellon University's Mach version 2.5 kernel. 
Components from 4.3 BSD are included, in addition 
to UNIX System Laboratories System V interface 
compatibility. 

Digital's version of OSF/1 offers both reliability 
and high performance. The standard TCP/IP and 
UDP/IP networking software, interfaces, and proto­
cols remain the same to ensure full multivendor 
interoperability. The software has been tuned and 
new enhancements have been added that improve 
performance. The interfaces between the user 
application and the internet protocols include both 
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the BSD socket interface and the X/Open Transport 
Interface. 12 The internet implementation condi­
tionally conforms to RFC 1122 and RFC 1123.16, 17 

Some of the networking utilities included are 
Telnet; file transfer protocol (FTP); the Berkeley "r" 
utilities (rlogin, rep, etc.); serial line internet proto­
col (SUP) with optional compression; Local Area 
Transport (LAT); screend, which is a filter for con­
trolling network access to systems when DEC OSF/1 
is used as a gateway; and prestoserve, a file system 
accelerator that uses nonvolatile RAM to improve 
Network File System (NFS) server response time. 
The implementation also provides a STREAMS inter­
face, the transport layer interface, and allows for 
STREAMS (SVID2) and sockets to coexist at the data 
link layer. There is support for STREAMS drivers to 
socket protocol stacks and support for BSD drivers 
to STREAMS protocol stacks via the data link 
provider interface. 

The OSF/ 1 Network Protocol 
Implementation 
The overall performance of network 1/0 of a work­
station depends on a variety of components: the 
processor speed, the memory subsystem, the host 
bus characteristics, the network interface and 
finally, and probably the most important, software 
structuring of the network 1/0 functions. To under­
stand the ways in which each of these aspects influ­
ences performance, it is helpful to understand the 
structuring of the software for network 1/0 and the 
characteristics of the computer system (processor, 
memory, system bus). We focus here on the struc­
turing of the end system networking code related 
to the internet protocol suite in the DEC OSF/1 oper­
ating system, following the design of the net­
working code (4.3 BSD-Reno) in the Berkeley UNIX 
distribution. S.9,12 

A user process typically interfaces to the net­
work through the socket layer. The protocol mod­
ules for UDP, TCP (transport layers) and IP (network 
layer) are below the socket layer in the kernel of the 
operating system. Data is passed between user pro­
cesses and the protocol modules through socket 
buffers. On message transmission, the data is typi­
cally moved by the host processor from user space 
to kernel memory for the protocol layers to packet­
ize and deliver to the data link device driver for 
transmission. The boundary crossing from user to 
kernel memory space is usually needed in a general­
purpose operating system for protection purposes. 
Figure 2 shows where the incremental overhead for 
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packet processing, based on packet size, occurs in a 
typical BSD 4.3 distribution. 

The kernel memory is organized as buffers of var­
ious types. These are called mbufs. They are the pri­
mary means for carrying data (and protocol 
headers) through the protocol layers. The protocol 
modules organize the data into a packet, compute 
its checksum, and pass the packet (which is a set of 
mbufs chained together by pointers) to the data 
link driver for transmission. From these kernel 
mbufs, the data has to be moved to the buffers on 
the adapter across the system bus. Once the adapter 
has a copy of the header and data, it may return an 
indication of transmit completion to the host. This 
allows the device driver to release the kernel mbufs 
to be reused by the higher layers for transmitting or 
for receiving packets (if buffers are shared between 
transmit and receive). 

While receiving packets, the adapter moves the 
received data into the host's kernel mbufs using 
DMA. The adapter then interrupts the host proces­
sor, indicating the reception of the packet. The data 
link driver then executes a filter function to enable 
posting the packet to the appropriate protocol pro­
cessing queue. The data remains in the same kernel 
mbufs during protocol processing. Buffer pointers 
are manipulated to pass references to the data 
between the elements processing each of the proto­
col layers. Finally, on identifying the user process of 
the received message, the data is moved from the 
kernel mbufs to the user's address space. 

Another important incremental operation per­
formed in the host is that of computing the check­
sum of the data on receive or transmit. Every byte 
of the packet data has to be examined by the pro­
cessor for errors, adding overhead in both CPU pro­
cessing and memory bandwidth. One desirable 
characteristic of doing the checksum after the data 
is in memory is that it provides end-to-end protec­
tion for the data between the two communicating 
end systems. Because data movement and check­
sum operations are frequently performed and exer­
cise components of the system architecture 
(memory) that are difficult to speed up signifi­
cantly, we looked at these in detail as candidates for 
optimization. 

The Internet Protocol Suite: 
TCP/IP and UDP/IP 
The protocols targeted for our efforts were TCP/IP 
and UDP/IP, part of what is conventionally known as 
the internet protocol suite.7.9 
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Figure 2 The incremental data operations occur in three places: (1) when the data is moved 
using DMA between the kernel and the network adapter memory, (2) when a checksum is computed 

for the data, and (3) when the data is copied between the user process and the kernel. 

TCP is a reliable, connection-oriented, end­
to-end transport protocol that provides flow­
controlled data transfer. A TCP connection contains 
a sequenced stream of data octets exchanged 
between two peers. TCP achieves reliability 
through positive acknowledgment and retransmis­
sion. It achieves flow control and promotes effi­
cient movement of data through a sliding window 
scheme. The sliding window scheme allows the 
transmission of multiple packets while awaiting the 
receipt of an acknowledgment. The number of 
bytes that can be transmitted prior to receiving an 
acknowledgment is constrained by the offered win­
dow on the TCP connection . The window indicates 
how much buffering the receiver has available for 
the TCP connection (the receiver exercises the flow 
control). This window size also reflects how much 
data a sender should be prepared to buffer if 
retransmission of data is required. The size of the 
offered window can vary over the life of a connec­
tion. As with BSD systems, DEC OSF/1 currently 
maintains a one-to-one correspondence between 
window size and buffer size allocated at the socket 
layer in the end systems for the TCP connection. An 
erroneous choice of window size, such as one too 
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small, or one leading to nonbalanced sender and 
receiver buffer sizes, can result in unnecessary 
blocking and subsequent inefficient use of available 
bandwidth. 

TCP divides a stream of data into segments for 
transmission. The maximum segment size (MSS) is 
negotiated at the time of connection establishment. 
In the case of connections within the local net­
work, TCP negotiates an MSS based on the maximum 
transmission unit (MTV) size of the underlying 
media. (For IP over FDDI the MTU is constrained to 
4,352 octets based on the recommendation in RFC 
1390.18) TCP calculates the MSS to offer, by subtract­
ing from this MTV, the number of octets required 
for the most common IP and TCP header sizes. 

The implementation of TCP/IP in DEC OSF/1 
follows the 4.3 BSD-Reno implementation of TCP. 
Included is the use of dynamic round-trip time 
measurements by TCP, which maintains a timer 
per connection and uses adaptive time-outs for set­
ting retransmission timers. The implementation 
includes slow start for reacting to congestive loss 
and optimizations such as header prediction and 
delayed acknowledgments important for network 
performance.19 DEC OSF/1 version 1.2 also includes 
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recent extensions to TCP for accommodating 
higher-speed networks. 10 TCP's performance may 
depend upon the window size used by the two 
peer entities of the TCP connection. The product of 
the transfer rate (bandwidth) and the round-trip 
delay measures the window size that is needed to 
maximize throughput on a connection. 

In the TCP specification RFC 793, the TCP header 
contains a 16-bit window size field which is the 
receive window size reported to the sender. 9 Since 
the field is only 16 bits, the largest window size that 
is supported is 64K bytes. Enhancing the original 
specification, RFC 1323 defines a new TCP option, 
window scale, to allow for larger windows. 10 This 
option contains a scale value that is used to increase 
the window size value found in the TCP header. 

The window scale option is often recommended 
to improve throughput for networks with high 
bandwidth and/or large delays (networks with large 
bandwidth-delay products). However, it also can 
lead to higher throughput on LANs such as an FDDI 
token ring. Increased throughput was observed 
with window sizes larger than 64K bytes on an FDDI 
network. 

The TCP window scale extension maps the 16-bit 
window size field to a 32-bit value. It then uses the 
TCP window scale option value to bit-shift this 
value, resulting in a new maximum receive window 
size value. The extension allows for windows of up 
to 1 gigabyte (GB). To facilitate backward compati­
bility with existing implementations, both peers 
must offer the window scale option to enable win­
dow scaling in either direction. Window scale is 
automatically turned on if the receive socket buffer 
size is greater than 64K bytes. A user program can 
set a larger socket buffer size via the setsockopt() 
system call. Based on the socket buffer size, the ker­
nel implementation can determine the appropriate 
window scale factor. 

Similar to the choice of large window sizes, the 
use of large TCP segments, i.e., those approaching 
the size of the negotiated MSS, could give better 
performance than smaller segments. For a given 
amount of data, fewer segments are needed (and 
therefore fewer packets). Hence the total cost of 
protocol processing overhead at the end system is 
less than with smaller segments. 

The internet protocol suite also supports the 
user datagram protocol or UDP. UDP performance 
is important because it is the underlying protocol 
for network services such as the NFS. UDP is a 
connection-less, message-oriented transport layer 
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protocol that does not provide reliable delivery or 
flow control. The receive socket buffer size for UDP 
limits the amount of data that may be received and 
buffered before it is copied to the user's address 
space. Since there is no flow control, the UDP 
receiver may have to discard the packet if it receives 
a large burst of messages and there is no socket 
buffer space. 

If the receiver is fast enough to allow the user 
application to consume the data, the loss rate is 
very low. However, most BSD-derived systems today 
experience heavy packet loss for UDP even when 
the receiving processor is the same speed as the 
transmitter. Furthermore, since UDP has no flow 
control, there is no mechanism to assure that all 
transmitted data will be received when the trans­
mitter is faster than the receiver. We describe our 
implementation of UDP to avoid this behavior, so 
that packet loss is minimized. 

Data Link Characteristics: FDDI 
FDDI is a 100 Mb/s LAN standard that is being 
deployed commercially. It uses a timed-token 
access method and allows up to 500 stations to be 
connected with a total fiber length of 200 kilo­
meters. It allows for both synchronous and asyn­
chronous traffic simultaneously and provides a 
bound for the access time to the channel for both 
these classes of traffic. 

The timed-token access method ensures that all 
stations on the ring agree to a target token rotation 
time (TTRT) and limit their transmissions to this tar­
get. 20 With asynchronous mode (the most widely 
used mode in the industry at present), a node can 
transmit only if the actual token rotation time (TRT) 
is less than the target. 

The basic algorithm is that each station on the 
ring measures the time since it last received the 
token. The time interval between two successive 
receptions of the token is called the TRT. On a 
token arrival, if a station wants to transmit, it com­
putes a token holding time (THT) as: THT = TTRT -
TRT. The TTRT is agreed to by all the stations on the 
ring at the last time that the ring was initialized (typ­
ically happens when stations enter or leave the 
ring) and is the minimum of the requested values by 
the stations on the ring. If THT is positive, the sta­
tion can transmit for this interval. At the end of 
transmission, the station releases the token. If a sta­
tion does not use the entire THT allowed, other sta­
tions on the ring can use the remaining time by 
using the same algorithm. 
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A number of papers relating to FDDI have 
appeared in the literature, and the reader is encour­
aged to refer to "Performance Analysis of FDDI 
Token Ring Networks: Effect of Parameters and 
Guidelines for Setting ITRT ;' for more details. 21 

Network Adapter Characteristics 
The DEC FDDicontroller/TURBOchannel adapter, 
DEFTA, is designed to be a high-performance adap­
ter capable of meeting the full FDDI bandwidth. It 
provides OMA capability both in the receive and 
transmit directions. It performs scatter-gather on 
transmit. The adapter has 1 MB of packet buffering. 
By default, half the memory is used for receive 
buffering; one-fourth of the memory is allocated for 
transmit buffering; and the remaining memory is 
allocated for miscellaneous functions, including 
buffering for FD DJ's station management (SMT). The 
memory itself is not partitioned, and the adapter 
uses only as much memory as necessary for the 
packets. It avoids internal fragmentation and does 
not waste any memory. 

The receive and transmit OMA operations are 
handled by state machines, and no processor is 
involved in data movement. The OMA engine is 
based on the model reported by Wenzel. 22 The main 
concept of this model is that of circular queues 
addressed by producer and consumer indices. 
These indices are used by the driver and the adapter 
for synchronization between themselves; they indi­
cate to each other the availability of buffers. For 
example, for receiving packets into the kernel 
memory, the device driver produces empty buffers. 
By writing the producer index, it indicates to the 
adapter the address of the last buffer produced and 
placed in the circular queue for receiving. The 
adapter consumes the empty buffer for receiving an 
incoming packet and updates the consumer index 
to indicate to the driver the last buffer that it has 
consumed in the circular queue. The adapter is 
capable of full-duplex FDDI operation. Finally, 
FDDI's SMT processing is performed by a processor 
on board the adapter, with the adapter's receive and 
transmit state machines maintaining separate 
queues for SMT requests and responses. 

To obtain high performance, communication 
adapters also try to minimize the amount of over­
head involved in transferring the data. To improve 
performance, the DEFTA FDDI port interface (inter­
face between the hardware and the operating 
system's device driver) makes efficient use of host 
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memory data structures, minimizes overhead 1/0 
related to the port interface, and minimizes inter­
rupts to the host system. 

The Port Architecture contains several unique 
features that optimize adapter/host system perfor­
mance. These features include the elimination of 
much of the control and status information trans­
ferred between the host and adapter; the organiza­
tion of data in host memory in such a way as to 
provide efficient access by the adapter and the host; 
and the use of an interrupt mechanism, which elim­
inates unnecessary interrupts to the host. 

The design also optimizes performance through 
careful organization of data in host memory. Other 
than the data buffers, the only areas of host memory 
that are shared by the host and the adapter are the 
queues of buffer descriptors and the area in which 
the adapter writes the consumer indices. The 
adapter only reads the buffer descriptors; it never 
writes to this area of host memory. Thus the impact 
on host performance of the adapter writing to an 
area in memory, which may be in cache memory, is 
eliminated. On the other hand, the area in host 
memory where the adapter writes its consumer 
indices is only written by the adapter and only read 
by the host. Both the receive data consumer index 
and transmit data consumer index are written to 
the same longword in host memory, thus possibly 
eliminating an extra read by the host of information 
that is not in cache memory. Furthermore, the pro­
ducer and consumer indices are maintained in dif­
ferent sections of memory (different cache lines) to 
avoid thrashing in the cache when the host and the 
adapter access these indices. 

The device driver is also designed to achieve high 
performance. It avoids several of the problems asso­
ciated with overload behavior observed in the 
past. 23 We describe some of these enhancements in 
the next section. 

Performance Enhancements atul 
Measurements Results 
We describe in this section the various perfor­
mance enhancements included in the DEC OSF/1 
operating system version 1.2 for Alpha AXP systems. 
In particular, we describe the optimizations for 
data movement and checksum validation, the 
implementation details to provide good overload 
behavior within the device driver, the TCP enhance­
ments for high bandwidth-delay product networks, 
and the UDP implementation enhancements. 
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We also present measurement results showing 
the effectiveness of the enhancements. In most 
cases the measurement environment consisted of 
two Alpha AXP workstations (DEC 3000 AXP Model 
500) on a private FDDI token ring, with a DEC FDDI 
concentrator. The tests run were similar to the 
well-known ttcp test suite, with the primary 
change being the use of the slightly more efficient 
send and receive system calls instead of read and 
write system calls. We call this tool inett within 
Digital. The throughputs obtained were at the user 
application level, measured by sending at least 
10,000 user messages of different sizes. With UDP, 
these are sent as distinct messages. With TCP, algo­
rithms used by TCP may concatenate multiple mes­
sages into a single packet. Time was measured using 
the system clock with system calls for resource 
usage. We also monitored CPU utilization with 
these system calls, and made approximate (often 
only for relative comparison) conclusions on the 
usage of resources with a particular implementa­
tion alternative. 

Optimizations for bcopy() and 
in_checksum() Routines 
In TCP/UDP/IP protocol implementations, every 
byte of data generally must pass through the 
bcopy() and in_checksum() routines, when there 
is no assistance provided in the network interfaces. 
There are some exceptions: the NFS implementa­
tions on DEC OSF/1 avoid the bcopy() on transmit 
by passing a pointer to the buffer cache entry 
directly to the network device driver, and UDP 
may be configured not to compute a checksum 
on the data. Digital's implementations turn on the 
UDP checksum by default. Even with the above 
exceptions, it is important that the bcopy() and 
in_checksum() routines operate as efficiently as 
possible. 

To write efficient Alpha AXP code for these rou­
tines, we used the following guidelines: 

• Operate on data in the largest units possible 

• Try to maintain concurrent operation of as many 
independent processor units (CPU, memory 
reads, write buffers) as possible 

• Keep to a minimum the number of scoreboard­
ing delays that arise because the data is not yet 
available from the memory subsystem 

• Wherever possible, try to make use of the Alpha 
AXP chip's capability for dual issue of instructions 
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For network 1/0, the bcopy() routine is called to 
transfer data between kernel mbuf data structures 
and user-supplied buffers to read( )/write()/ 
send( )/recv( ) calls. 

The bcopy() routine was written in assembler. 
This routine always attempts to transfer data in the 
largest units possible consistent with the alignment 
of the supplied buffers. For the optimal case, this 
would be one quadword (64 bits) at a time. The rou­
tine uses a simple load/store/decrement count loop 
that iterates across the data buffer as 

ldq t 1 , OCaO) ;get next quadword 
;(64 bits) 

addq aO, 8 ;move on source pointer 
stq t1, O Ca 1) ;store quadword 
addq a1, 8 ;move on pointer 
subq t2, 8 ;reduce byte count 
bne t2, 1 b ;loop ti l l done 

Several attempts were made to improve the per­
formance of this simple loop. One design involved 
unrolling the loop further to perform 64 bytes of 
copying at a time, while reading ahead on the sec­
ond cache line. Another involved operating on four 
cache lines at once, based on concerns that a sec­
ond quadword read of a cache line may incur the 
same number of clock delays as the first cache miss, 
if the second read is performed too soon after the 
first read. However, neither of these approaches 
produced a copy routine that was faster than the 
simple loop described above. 

The TCP/UDP/IP suite defines a 16-bit one's com­
plement checksum (in_checksum( )), which can be 
performed by adding up each 16-bit element and 
adding in any carries. Messages must (optional for 
UDP) have the checksum validated on transmission 
and reception. 

As with bcopy( ), performance can be improved 
by operating on the largest units possible (i.e., 
quadwords). The Alpha AXP architecture does 
not include a carry bit, so we have to check if 
a carry has occurred. Because of the nature of 
the one's complement addition algorithm, it is not 
necessary to add the carry in at each stage; we just 
accumulate the carries and add them all in at the 
end. By operating on two cache lines at a time, we 
may start the next computation while the carry 
computation is under way, accumulate all the 
carries together, then add them all into the result 
(with another check for carry) at the end of pro­
cessing the two cache lines. This results in four 
cycles per quadword with the addition of some end­
of-loop computation to process the accumulated 
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carries. Interleaving the checksum computation 
across two cache lines also allows for some dual­
issue effects that allow us to absorb the extra end­
of-loop computation. 

DEFTA Device Driver Enhancements 
Preliminary measurements performed with the DEC 
FDDicontroller/TURBOchannel adapter (DEFTA) and 
the OSF/1 device driver combination on DEC 3000 
AXP Model 500 workstations indicated that we 
were able to receive the full FDDI bandwidth and 
deliver these packets in memory to the data link 
user. Although we show in this paper that the DEC 
OSF/1 for Alpha AXP system is able to also deliver the 
data to the user application, we ensure that the 
solutions provided by the driver are general enough 
to perform well even on a significantly slower 
machine. When executing on such a slow system, 
resources at the higher protocol layers (buffering, 
processing) may be inadequate to receive packets 
arriving at the maximum FDDI bandwidth, and the 
device driver has to deal with the overload. One of 
the primary contributions of the DEFTA device 
driver is that it avoids receive livelocks under very 
heavy receive load. 

First, the queues associated with the different 
protocols are increased to a much larger value (512) 
instead of the typical size of 50 entries. This allows 
us to ride out transient overloads. Second, to man­
age extended overload periods, the driver uses the 
capabilities in the adapter to efficiently manage 
receive interrupts. The driver ensures that packets 
are dropped in the adapter when the host is starved 
of resources to receive subsequent packets. This 
minimizes wasted work by the host processor. The 
device driver also tends to trade off memory for 
computing resources. The driver allocates page­
size mbufs (SK bytes) so that we minimize the over­
head of memory allocation, particularly for large 
messages. 

For transmitting packets, the driver takes advan­
tage of the DEFTA's ability to gather data from differ­
ent pieces of memory to be transmitted as a single 
packet. Up to 255 mbufs in a chain (although typi­
cally the chain is small, less than 5) may be trans­
mitted as a packet. In the unusual case that a chain 
of mbufs is even longer than 255, we copy the last 
set of mbufs into a single large page-size mbuf, and 
then hand the packet to the device for transmis­
sion. This enables applications to have considerable 
flexibility, without resulting in extraneous data 
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movement operations to place data in contiguous 
memory locations. 

In addition, the driver implements a policy to 
achieve transmit fairness. Although the operating 
system's scheduling provides fairness at a higher 
level, the policies within the driver allow for prog­
ress on transmits even under very heavy receive 
overload. Although the Alpha AXP systems are capa­
ble of receiving the full FDDI bandwidth, the 
enhanced transmit fairness may still be a benefit 
under bursty receive loads during which timely 
transmission is still desirable. In addition, as trans­
mission links become faster, this feature will be 
valuable. 

Wherever possible, all secondary activities­
excluding the transmit and receive paths-have 
been implemented using threads. Scheduling sec­
ondary activity at a lower priority does not impact 
the latency of transmit and receive paths. 

Improvements to the TCP/IP 
Protocol and Implementation 
The initial TCP window size is set to a default or to 
the modified value set by the application through 
socket options. TCP in BSD 4.3 performed a round­
ing of the socket buffer, and hence the offered 
window size, to some multiple of the maximum 
segment size (MSS). The implementation in BSD 4.3 
performed a rounding down to the nearest multiple 
of the MSS. The MSS value is adjusted, when it is 
greater than the page size, to a factor of the page 
size. 

When using a socket buffer size of 16K bytes, 
the rounding down to a multiple of the MSS on 
FDDI results in the number of TCP segments out­
standing never exceeding three. Depending on 
the application message size and influenced by 
one or more of both the silly window syndrome 
avoidance algorithms and the delayed acknowl­
edgment mechanism, throughput penalties can be 
incurred.16•24 

Our choice in this area was to perform a round­
ing up of the socket buffer, and hence window size. 
This enabled existing applications to maintain per­
formance regardless of changes to the buffering 
performed by the underlying protocol. For exam­
ple, applications coded before the rounding of the 
buffer was implemented may have specified a 
buffer size at some power of 2. We believe it also 
allows better performance when interoperating 
with other vendors' systems and provides behavior 
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that is more consistent to the user (they get at least 
as much buffering as they request). 

A buffer size of 4K bytes has long been obsolete 
for TCP connections over FDDI. Digital chose to 
increase this buffer to 16K bytes for ULTRIX support 
of FDDI. With a socket buffer of 16K bytes, even 
when rounding up is applied, the amount of data is 
limited to 17,248 octets per round-trip time. We 
found that the throughput over FDDI is limited by 
the window size. This is due to the effects of 
scheduling data packet processing and acknowl­
edgments (ACKs), the interactions with window 
flow control, and FDDI's token access protocol 
(described below).23,25 

With memory costs decreasing considerably, 
we no longer consider the 16K byte default to 
be an appropriate trade-off between memory 
and throughput. Based on measurements for dif­
ferent values of the window size, we feel that the 
default window size of 32K bytes is reasonable. 
Increasing the window size from 16K bytes to 
32K bytes results in an increase of the peak 
throughput over FDDI from approximately 40 Mb/s 
to approximately 75 Mb/s. However, increasing the 
window size beyond 32K bytes allowed us to 
increase the throughput even further, which led us 
to the incorporation of the TCP window scale 
extension. 

Window Scale Extensions f or TCP The imple­
mentation of TCP in DEC OSF/1 version 1.2 is based 
on the BSD 4.3 Reno distribution. In addition, we 
incorporated the TCP window scale extensions 
based on the model proposed in RFC 1323.10 Our 
work followed the implementation placed in the 
public domain by Thomas Skibo of the University of 
Illinois. 

The TCP window scale extension maps the 16-bit 
window size to a 32-bit value. The TCP window 
scale option occupies 3 bytes and contains the type 
of option (window scale), the length of the option 
(3 bytes), and the "shift-count." The window scale 
value is a power of 2 encoded logarithmically. The 
shift-count is the number of bits that the receive 
window value is right-shifted before transmission. 
For example, a window shift-count of 3 and a win­
dow size of 16K would inform the sender that 
the receive window size was 128K bytes. The 
shift-count value for window scale is limited to 14. 
This allows for windows of (216+ 214) = 230 = 1 GB. 

To facilitate backward compatibility with existing 
implementations, both peers must offer the win-
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dow scale option to enable window scaling in 
either direction. 

The window scale option is sent only at con­
nection initialization time in an <SYN> segment. 
Therefore the window scale value is fixed when the 
connection is opened. Since the window scale 
option is negotiated at initialization time, only a bit­
shift to the window is added to the established path 
processing and has little effect on the overall cost 
of processing a segment. 

Changes made to the OSF/1 TCP implementation 
for using the window scale option include the addi­
tion of the send window shift-count field and 
receive window shift-count field to the TCP control 
block. TCP processing was modified: the receive 
window shift-count value was computed based on 
the receive socket buffer size, and the window 
scale option is sent with the receive window shift­
count. A modification at connection initialization 
time allows the received shift-count value to be 
stored in the send window shift-count, if TCP 
receives an <SYN> segment containing a window 
scale option. The receive window shift-count field 
is assigned to the window scale option that is sent 
on the <SYN, ACK> segment. When the TCP enters 
established state for the connection, window 
scale is turned on if both sides have sent <SYN> seg­
ments with window scale. For every incoming seg­
ment, the window field in the TCP header is 
left-shifted by the send window shift-count. For 
every outgoing segment, the window field in the 
TCP header is right-shifted by the receive window 
shift-count. 

Measurement Results with TCP with Alpha AXP 
Workstations We used the inett tool to measure 
the throughput with TCP on the DEC OSF/1 operat­
ing system between two DEC 3000 AXP Model 500 
workstations on a private FDDI ring. We observed 
that as the window size increased from 32K bytes to 
150K bytes, the throughput generally increased for 
message sizes greater than 3,072 bytes. For example, 
for a user message size of 8, 192 bytes, the through­
put with a window size of 32K bytes was 72.6 Mb/s 
and increased to 78.3 Mb/s for a window size of 64K 
bytes. The TCP throughput rose to 94.5 Mb/s for a 
window size of 150K bytes. For window sizes 
beyond 150K bytes, we did not see a substantial, 
consistent improvement in throughput between 
the two user applications in this environment. 

We believe that window scale is required to 
achieve higher throughputs-even in a limited 
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FDDI token ring of two stations-based on the inter­
actions that occur between the token holding time, 
the scheduling of activities in the operating system, 
and the behavior of TCP. The default value for TfRT 
is set to 8 milliseconds. 21 The end system is able to 
transmit packets at essentially the full FDDI band­
width of 100 Mb/s, thus potentially consuming 
about 350 microseconds (including CPU and 
network interface times) to transmit a maximum­
sized FDDI TCP segment of 4,312 bytes. During the 
8 milliseconds, the source is able to complete the 
entire protocol processing of about 23 to 24 seg­
ments (approximately lOOK bytes). 

Further overlap of user data and protocol pro­
cessing of packets can occur while the data link is 
transmitting and the sink is generating acknowledg­
ments, if there is adequate socket buffer space in 
the source system. Thus, with the additional win­
dow of approximately 20K bytes to 30K bytes, the 
source system is able to pre-process enough seg­
ments and provide them to the adapter. The adapter 
may begin transmitting when the token is returned 
to the sender (after it receives a set of acknowledg­
ments), while the source CPU is processing the 
acknowledgments and packetizing additional user 
data. With up to 150K bytes of socket buffer (and 
hence window), there is maximal overlap in pro­
cessing between the CPU, the adapter, and the FDDI 
token ring, which results in higher throughput. 
This also explains why no further increases in the 
window size resulted in any significant increase in 
throughput. 

Figure 3 shows the throughput with TCP between 
two DEC 3000 AXP Model 500 workstations on an 
isolated FDDI token ring for different message sizes 
for socket buffer sizes of 32K, 64K, and 150K bytes. 
For 150K bytes of socket buffer, the peak through­
put achieved was 94.5 Mb/s. For all message sizes, 
we believe that the CPU was not fully utilized. 
Application message sizes that are slightly larger 
than the maximum transmission unit size tradition­
ally display some small throughput degradation 
due to additional overhead incurred for segmenta­
tion and the subsequent extra packet processing. 
We do not see this in Figure 3 because the CPU is 
not saturated (e.g., approximately 60 percent uti­
lized at message sizes of BK bytes), and therefore 
the overhead for segmentation does not result in 
lower throughput. 

So too, application message sizes that are larger 
than the discrete memory buffer sizes provided by 
the memory allocator should incur small amounts 
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of extra overhead due to the necessity of chaining 
such buffers. Figure 3 also shows that the through­
put degradation in this case is small. 

Improvements to the UDP/IP 
Protocol Implementation and 
AfeasurementResults 
UDP is a connection-less, message-oriented trans­
port, with no assurances of reliable delivery. It also 
does not provide flow control. Unlike TCP, the UDP 
transmitter does not buffer user data. Therefore 
user messages are transmitted directly as packets 
on the FDDI. When user messages are larger than 
the MTU size of the data link (4,352 bytes), IP frag­
ments the data into multiple packets. To provide 
data integrity, UDP uses the one's complement 
checksum for both data as well as the UDP header. 

In our experience, the receive throughput to 
applications using UDP/IP with BSD-derived systems 
is quite poor due to many reasons, including the 
lack of flow control. Looking at the receive path of 
incoming data for UDP, we see that packets (poten­
tially fragments) of a UDP message generate a high­
priority interrupt on the receiver, and the packet is 
placed on the network layer (IP) queue by the 
device driver. The priority is reduced, and a new 
thread is executed that processes the packet at the 
IP layer. Subsequently, fragments are reassembled 
and placed in the receiver's socket buffer. There is a 
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finite IP queue and also a finite amount of socket 
buffer space. If space does not exist in either of 
these queues, packets are dropped. Provided space 
exists, the user process is then woken up to copy 
the data from the kernel to the user's space. If 
the receiver is fast enough to allow the user applica­
tion to consume the data, the loss rate is low. 
However, as a result of the way processing is sched­
uled in UNIX-like systems, receivers experience 
substantial loss. CPU and memory cycles are con­
sumed by UDP checksums, which we enable by 
default for OSF/1. This overhead in addition to the 
overhead for data movement contributes to the 
receiver's loss rate. 

Table 1 shows the receive throughput and mes­
sage loss rate with the original UDP implementation 
of OSF/1 for different message sizes. We modified the 
way in which processing is performed for UDP in the 
receiver in DEC OSF/1 version 1.2. We reorder the 
processing steps for UDP to avoid the detrimental 
effects of priority-driven scheduling, wasted work, 
and the resulting excessive packet loss. Not only do 
we save CPU cycles in processing, we also speed up 
the user application's ability to consume data, par­
ticularly as we go to larger message sizes. Table 1 
gives the receive throughput and message loss rate 
with DEC OSF/1 version 1.2 incorporating the 
changes in UDP processing we have implemented. 

UDP throughput was measured between user 
applications transmitting and receiving different 
size messages. Figure 4 shows the throughput at the 
transmitter, which is over 96 Mb/s for all message 
sizes over 6,200 bytes and achieves 97.56 Mb/s for 
the message size of SK bytes used by NFS. During 
these measurements, the transmitting CPU was still 
not saturated and the FDDI link was perceived to be 
the bottleneck. Therefore, to stress the source 
system further, we used two FDDI adapters in the 

system to transmit to two different receivers on 
different rings. Figure 4 also shows the aggregate 
transmit throughput of a single DEC 3000 AXP 
Model 500 workstation transmitting over two FDDI 
rings simultaneously to two different sinks. The 
source system is capable of transmitting signifi­
cantly over the FDDI bandwidth of 100 Mb/s. For the 
typical NFS message size of 8, 192 bytes, the aggre­
gate transmit throughput was over 149 Mb/s. The 
throughput of the two streams for the different 
message sizes, indicates that, for the most part, 
their individual throughputs were similar. This 
showed that the resources in the transmitter were 
being divided fairly between the two applications. 
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Table 1 UDP Receive Characteristics with Peer Transmitter Transmitting at Maximum Rate 

UDP Receive Before 
Message 
Size 
(bytes) 

128 

51 2 

1024 

4096 

81 92 

Changes 
Throughput 
(Mb/s) 

0.086 
0.354 

0.394 

9.5 
NA* 

Message 
Loss Rate 

98.8% 

98.5% 

99.16% 

90.26% 
NA* 

* NA: Benchmark did not finish because of significant packet loss in that experiment. 
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UDP Receive After 
Changes 

Throughput Message 
(Mb/s) Loss Rate 

0.64 83.1 % 

15.14 35.1 5% 
23.77 46.86% 

96.91 1.08% 

97.01 0.56% 
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Measurements of TCP/IP and UDP/IP with 
FDDI Full-duplex Mode 
Earlier we observed that the behavior of TCP in par­
ticular depended on the characteristics of the 
timed-token nature of FDDI. One of the modes 
of operation of FDDI that we believe will become 
popular with the deployment of switches and the 
use of point-to-point FDDI is that of full-duplex 
FDDI. Digital's full-duplex FDDI technology, which 
is being licensed to other vendors, provides the 
ability to send and receive simultaneously, resulting 
in significantly higher aggregate bandwidth to the 
station (200 Mb/s). More important, we see this 
technology reducing latency for point-to-point 
connections. There is no token rotating on the ring, 
and the station does not await receipt of the token 
to begin transmission. A station has no restrictions 
based on the token-holding time, and therefore it is 
not constrained as to when it can transmit on the 
data link. The DEC FDDicontrollerfruRBOchannel 
adapter (DEFTA) provides the capability of full­
duplex operation. We interconnected two DEC 
3000 AXP Model 500 workstations on a point-to­
point link using the DEFTAs and repeated several of 
the measurements reported above. 

One of the characteristics observed was that the 
maximum throughput with TCP/IP between the 
two Alpha AXP workstations, even when using the 
default 32K bytes window size, reached 94.47 Mb/s. 
Figure 5 shows the behavior of TCP throughput 
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Figure 5 TCP Throughput as a Function 
of Window Size: Two DEC 3000 
AXP Model 500 Workstations 
with Full-duplex FDDI 

with full-duplex FDDI operation for different win­
dow sizes of 32K, 64K, and 150K bytes (when win­
dow scale is used). The throughput is relatively 
insensitive to the variation in the window size. For 
all these measurements, however, we maintained 
the value of the maximum socket buffer size to be 
150K bytes. When using a smaller value of the maxi­
mum socket buffer size (64K bytes), the through­
put drops to 76 Mb/s (for a window size of 32K 
bytes) as shown in Figure 5. 

Although we removed one of the causes of limit­
ing the throughput (token-holding times), full­
duplex operation still exhibits limitations due to 
scheduling the ACK and data packet processing and 
the resulting lack of parallelism in the different 
components in the overall pipe (the two CPUs of 
the stations, the adapters, and the data link) with 
small socket buffers. Increasing the maximum 
socket buffer allows for the parallelism of the work 
involved to provide data to the protocol modules 
on the transmitter. 

Observing the UDP/IP throughput between the 
DEC 3000 AXP Model 500 workstations, we found a 
slight increase in the transmit throughput over the 
normal FDDI mode. For example, the UDP transmit 
throughput for BK messages was 97.93 Mb/s as com­
pared to 97.56 Mb/s using a single ring in normal 
FDDI mode. This improvement is due to the absence 
of small delays for token rotation through the sta­
tions as a result of using the full-duplex FDDI mode. 

Experimental Work 
We have continued to work on further enhancing 
the implementation of TCP and UDP for DEC OSF/1 
for Alpha AXP. We describe some of the experimen­
tal work in this section. 

Experiments to Enhance the Transmit and 
Receive Paths for TCP/IP 
The bcopy() and in_checksum() routine optimiza­
tions minimize the incremental overhead for packet 
processing based on packet sizes. The protocol pro­
cessing routines (e.g., TCP and IP) also minimize the 
fixed per-packet processing costs. 

All TCP output goes through a single routine, 
tcp_output( ) , which often follows the TCP pseu­
docode in RFC 793 very closely.9 A significant por­
tion of its implementation is weighed down by 
code that is useful only during connection start-up 
and shutdown, flow control, congestion, retrans­
missions and persistence, processing out-of­
band data, and so on. Although the actual code 
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that handles these cases is not executed every time, 
the checks for these special cases are made on 
every pass through the routine and can be a non­
trivial overhead. 

Rather than check each case separately, the 
TCP/IP code was modified to maintain a bit mask. 
Each bit in the mask is associated with a special con­
dition (e.g., retransmit, congestion, connection 
shutdown, etc.). The bit is set whenever the cor­
responding condition occurs (e.g., retransmit 
time-out) and reset when the condition goes away. 
If the bit mask is 0, the TCP/IP code executes 
straightline code with minimal tests or branches, 
thus optimizing the common case. Otherwise, it 
simply calls the original routine, tcp_output, to 
handle the special conditions. Since the conditions 
occur rarely, setting and resetting the bits incurs 
less overhead than performing the tests explicitly 
every time a packet is transmitted. Similar ideas 
have been suggested byVanJacobson.26 

Additional efficiency is achieved by precomput­
ing packet fields that are common across all packets 
transmitted on a single connection. For example, 
instead of computing the header checksum every 
time, it is partially precomputed and incrementally 
updated with only the fields that differ on a packet­
by-packet basis. 

Another example is the data link header compu­
tation. The original path involved a common rou­
tine for all devices, which queues the packet to the 
appropriate driver, incurs the overhead of multi­
plexing multiple protocols, looking up address res­
olution protocol (ARP) tables, determining the data 
link formats, and then building the header. For TCP, 
once the connection is established, the data link 
header rarely changes for the duration of the con­
nection. Hence at connection setup time, the data 
link header is prebuilt and remembered in the TCP 
protocol control block. When a packet is transmit­
ted, the data link header is prefixed to the IP header, 
and the packet is directly queued to the appropriate 
interface driver. This avoids the overhead associ­
ated with the common routine. Network topology 
changes (e.g., link failures) may require the data 
link header to be changed. This is handled through 
retransmission time-outs. Whenever a retransmit 
time-out occurs, the prebuilt header is discarded 
and rebuilt the next time a packet has to be sent. 

Some parameters are passed from TCP to IP 
through fields in the mbufs. Combining the layers 
eliminates the overhead of passing parameters and 
validating them. Passing parameters is a nontrivial 
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cost, since in the original implementation, some 
data was passed as fields in the mbuf structure. 
Because these were formatted in network byte 
order, building and extracting them incurred over­
head. Moreover, the IP layer does not have to per­
form checks for special cases that are not applicable 
to the TCP connection. For example, no fragmenta­
tion check is needed since the code for TCP has 
already taken care to build a packet within the 
allowed size limits. 

In a similar fashion to the transmit path, a 
common-case fast path code was implemented for 
the receive side. This mimics the most frequently 
executed portions of the TCP/IP input routines, and 
relegates special cases and errors to the original 
code. Special cases include fragmented packets, 
presence of IP options, and noncontiguous packet 
headers. Combining error checking across TCP and 
IP also eliminates additional overhead. For exam­
ple, length checks can be used to detect the pres­
ence of options that can be passed to the original 
general case path. 

These fast path optimizations were implemented 
in an experimental version of the OSF/1 operating 
system. TCP measurements on the experimental 
version of OSF/1 running on two systems commu­
nicating over a private FDDI ring indicate that, 
when both the input and output fast path segments 
are enabled on the two systems, throughput is 
improved for almost all message sizes. 

Experiments to Enhance UDP/IP 
Processing 
An enhancement for UDP/IP processing with which 
we experimented was to combine the data copying 
and checksum operations. This has been attempted 
in the past. 27 The primary motivation is to reduce 
memory bandwidth utilization and perform the 
checksums while the data is in the processor during 
the data movement. To allow us to do this, we intro­
duce a new UDP protocol-specific socket option 
that allows users to take advantage of this optimiza­
tion. When a user application posts a receive buffer 
after enabling this socket option, we invoke a com­
bined copy and checksum routine on receiving a 
packet for that user. In the infrequent case when 
the checksum fails, we restore the user 1/0 struc­
ture and zero the user buffer so that inappropriate 
data is not left in a user's buffer. Preliminary perfor­
mance measurements indicate significant reduc­
tion in CPU utilization for UDP receives when using 
this socket option. 
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Experiments to Eliminate the Data Copy 
from User to Kernel Space 
As observed earlier, data movement operations add 
significant overhead on the end system. One 
method to reduce the cost of data movement for 
a send operation, prototyped on an experimen­
tal version of the OSF/1 operating system, is to 
replace the data copy from user space to the kernel 
socket buffer by a new virtual memory page remap 
function. Instead of copying the data from physical 
pages in the user map to physical pages in the kernel 
map, the physical pages associated with the user 
virtual address range in the user map are remapped 
to kernel virtual addresses. The pages associated 
with the new kernel virtual addresses are then 
masqueraded through the network as mbufs. 
Preliminary results indicate that a virtual memory 
mapping technique can be used on the OSF/1 oper­
ating system to significantly reduce the overhead 
associated with the transmission of messages. 

The underlying design of the remap operation 
affects application semantics and performance. 
The semantics of the application are affected by 
which underlying page remap operation is 
selected. Performance may also be affected by the 
implementation of the page map operation and 
how well certain TCP/IP configuration variables are 
tuned to match the processor architecture and the 
network adapter capabilities. 

Two types of remap operations were proto­
typed: page steal and page borrow. The page steal 
operation, as the name implies, steals the pages 
from the user virtual address space and gives the 
pages to the kernel. The user virtual addresses are 
then mapped to demand-zero pages on the next 
page reference. In the page steal operation, the 
user ends up with demand zero pages. On the other 
hand, in the borrow page operation, the same phys­
ical pages are given back to the user. If the user 
accesses a page that the kernel was still using, the 
user process either "sleeps," waiting for that page to 
become available or (depending upon the imple­
mentation) receives a copy of the page. For the 
page borrow operation, the user buffer size must 
be greater than the socket buffer size, and the user 
buffer must be referenced in a round-robin fashion 
to ensure that the application does not sleep or 
receive copies of the page. 

Both the page steal and the page borrow opera­
tions change the semantics of the send( ) system 
calls, and some knowledge of these new semantics 
of the send system calls needs to be reflected in the 
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application. The application's buffer allocation and 
usage is dependent upon how the underlying 
remap operation is implemented. An important 
consideration is the impact on the application pro­
gramming interface. In particular, the extent to 
which the semantics of the send system calls (e.g., 
alignment requirements for the user message 
buffer) need to change to support the remap opera­
tions is an area that is currently under study. 

The page remap feature has not yet been incorpo­
rated in the DEC OSF/1 version 1.2 product. Inclusion 
of this feature in the product is expected to reduce 
CPU utilization. While page remapping does reduce 
the cost of processing a packet, the design issues 
outlined above impact applications. To achieve 
performance benefits and application portabil­
ity across multiple heterogeneous open systems, 
future work continues in this area. In addition, inte­
grated hardware solutions to reduce the cost of the 
copy operation are also under investigation. 

The performance numbers presented in this 
paper did not include the improvements described 
in this section on experimental work. We anticipate 
that the overall performance would see substantial 
improvement with the inclusion of these changes. 

Conclusions 
Increases in communication link speeds and 
the dramatic increases in processor speeds have 
increased the potential for widespread use of dis­
tributed computing. The typical throughput deliv­
ered to applications, however, has not increased as 
dramatically. One of the primary causes has been 
that network 1/0 is intensive on memory band­
width, and the increases in memory bandwidths 
have only been modest. We described in this paper 
an effort using the new Alpha AXP workstations and 
the DEC OSF/1 operating system for communication 
over FDDI to remove this 1/0 bottleneck from the 
end system. 

We described the characteristics of the DEC 3000 
AXP Model 500 workstation which uses Digital's 
Alpha AXP 64-bit RISC microprocessor. With the use 
of wider access to memory and the use of multilevel 
caches, which are coherent with DMA, the memory 
subsystem provides the needed bandwidth for 
applications to achieve substantial throughput 
while performing network 1/ 0 . 

We described the implementation of the internet 
protocol suite , TCP/IP and UDP/IP, on the DEC OSF/1 
operating system. One of the primary characteris­
tics of the design is the need for data movement 
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across the kernel-user address space boundary. In 
addition, both TCP and UDP use checksums for the 
data. Both these operations introduce increasing 
overhead with the user message size and comprise 
a significant part of the total processing cost. We 
described the optimizations performed to make 
these operations efficient by taking advantage of 
the wider cache lines for the systems and the use of 
64-bit operations. 

We incorporated several optimizations to the 
implementation of TCP in the DEC OSF/1 operating 
system. One of the first was to increase the default 
socket buffer size (and hence the window size) 
used by TCP from the earlier, more conservative 
4K bytes to 32K bytes. With this, the throughput of 
a TCP connection over FDDI between two Alpha 
AXP workstations reached 76.6 Mb/s. By increasing 
the window size even further, we found that the 
throughput increases essentially to the full FDDI 
bandwidth. To increase the window size beyond 
64K bytes requires the use of recent extensions to 
TCP using the window scale option. The window 
scale option, which is set up at the connection ini­
tialization time, allows the two end systems to use 
much larger windows. We showed that, when using 
a window size of 150K bytes, the peak throughput 
of the TCP connection increases to 94.5 Mb/s. 

We also improved the performance of UDP 
through implementation optimizations. Typical 
BSD-derived systems experience substantial loss at 
the receiver when two peer systems communicate 
using UDP. Through simple modifications in the 
processing for UDP and reordering the processing 
steps, we improved the delivered throughput to the 
receiving application substantially. The UDP receive 
throughput at the application achieved was 97.56 
Mb/s for the typical NFS message size of SK bytes. 
Even at this throughput, we found that the CPU of 
the transmitter was not saturated. When a transmit­
ter was allowed to transmit over two different rings 
(thus removing the communication link as the bot­
tleneck) to two receivers, a single Alpha AXP work­
station (DEC 3000 AXP Model 500) is able to 
transmit an aggregate throughput of more than 149 
Mb/s for a message size of SK bytes. 

We also described throughput measurements 
with the FDDI full-duplex mode between two Alpha 
AXP workstations. With full-duplex mode there are 
no latencies which are associated with token rota­
tion, lost token recovery, or limitations on the 
amount of data transmitted at a time as imposed by 
the FDDI timed-token protocol. As a result, with 
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full-duplex mode there are performance improve­
ments. With TCP, we achieve a throughput of 94.5 
Mb/s even with the default socket buffer of 32K 
bytes. This is smaller than the buffer size needed in 
token passing mode to achieve the same level of 
throughput. Since the link becomes the bottleneck 
at this point, there is no substantial increase in 
throughput achieved with the use of window scal­
ing when FDDI is being used in full-duplex mode. 
An increase in peak transmit throughput with UDP 
is also seen when using FDDI in full-duplex mode. 

Finally, a few implementation ideas currently 
under study were presented. 
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Digital developed the intennediate system-to-intennediate system (IS-IS) intra­
domain routing infonnation exchange protocol for the DECnet Phase V network 
layer architecture. This protocol, which has been adopted vy the International 
Organization for Standardization, is based on a link state routing algorithm. The 
benefits derived from the Is-IS protocol include a self stabilizing method for reliable 
link state packet distribution, a hierarchical network structure to support larger 
networks, protocols for efficiently utilizing local area networks, and simultaneous 
support for multiple network layer protocols. 

The network layer architecture has three basic com­
ponents. The first concerns the transmission of 
data packets from one end system (a host) to a 
remote end system, regardless of whether or not 
these packets are sent by way of routers. The main 
features of this component are packet formats and 
addressing. Standards for these features are defined 
in the connectionless network layer protocol 
(CLNP), adopted by the International Organization 
for Standardization (ISO), and in the internet proto­
col (IP), the equivalent standard in the transmission 
control protocol/internet protocol (TCP/IP) suite.1•2 

The second component relates to handshaking 
between neighbors (i.e., directly connected sys­
tems) and mapping network layer addresses to data 
link layer addresses. The ISO protocol that performs 
this function is the end system-to-intermediate 
system (ES-IS) protocol.3 The address resolution and 
internet control message protocols provide most of 
the same functionality in the TCP/IP protocol 
suite.4,5 

The third component of the network layer archi­
tecture pertains to routing. The routing protocol 
developed for Digital's DECnet Phase V network 
architecture and adopted by the ISO is the interme­
diate system-to-intermediate system (IS-IS) intra­
domain routing information exchange protocol.6 

The architecture for DECnet Phase V allows sup­
port of many network layer protocols, i.e., CINP, IP, 
Novell Net Ware, and AppleTalk. 7 Each network 
layer suite has its own protocols for the first two 
components of the network layer architecture. 
DECnet Phase V support for a particular network 
layer suite implies support for such protocols. 
Consequently, end systems that implement an exist­
ing network layer protocol need not be modified to 
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operate with DECnet Phase V routers (i.e., interme­
diate systems). This paper briefly discusses data 
packet formats, types of routing control packets, 
and neighbor handshaking protocols and then 
focuses on the third component of the network 
layer architecture, concentrating on the IS-IS rout­
ing protocol. 

Support for any network protocol suite can be 
added easily to the IS-IS routing protocol. DECnet 
Phase V routing products currently support the 
DECnet Phase IV, CLNP/DECnet Phase V, and the IP 
protocols. Support for the Novell NetWare, XNS, 
and AppleTalk protocols is under investigation. 

Data Packet Formats 
A network layer data packet carries data, usually 
generated by higher-layer protocols, between host 
systems. The purpose of the network routing layer 
is to correctly deliver data packets to their destina­
tions. To accomplish this task, additional pieces of 
information are required; these are carried in the 
header of the data packet. The most important 
function of the header is addressing. Each data 
packet must uniquely identify the source and desti­
nation addresses for the packet. Other important 
functions include: checksumming, to ensure that 
transmission errors are detected; fragmentation 
and reassembly, to allow the transmission of large 
packets over links that can support only smaller 
packets; error reporting, to notify someone should 
an error occur; security, to identify special security 
requirements of packets; quality of service mainte­
nance, to ensure that the correct level of service is 
provided; and congestion notification, to notify the 
source and destination should congestion occur 
along the path of a data packet . 
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The DECnet Phase IV architecture uses a propri­
etary packet format for data exchange. The DECnet 
Phase V architecture continues to support this for­
mat to allow compatibility with existing Phase IV 
systems. However, DECnet Phase V uses the ISO 
CLNP standard for communication between DECnet 
and open systems interconnection (OSI) systems. 
Use of this standard protocol also permits DECnet 
Phase V systems to communicate with other ven­
dors' end systems that implement the ISO standard. 
In addition, communication using IP is possible 
with systems that implement the TCP/IP suite. 

DECnet Phase IV employs a 16-bit network layer 
addressing scheme. When using the CLNP, the 
addresses, known as network service access point 
(NSAP) addresses, vary in length up to 20 octets. 
Defining a common mapping procedure allows a 
DECnet Phase IV address to be expressed as an 
equivalent ISO NSAP address. Similarly, an ISO NSAP 
address thus derived, and therefore Phase IV com­
patible, may be converted back to the original 
Phase IV address. Converting the source and desti­
nation addresses and the packet formats enables 
any DECnet Phase IV packet to be translated into a 
CLNP packet and back again. Therefore, two DECnet 
Phase IV systems can communicate over a portion 
of a network that supports only the CLNP. Similarly, 
two DECnet/OSI (or even pure OSI) systems can 
communicate over a portion of the network that 
supports DECnet Phase IV, provided that the 
addresses chosen are Phase IV compatible. 

Overview of Routing Control Packets 
The IS-IS protocol uses three basic types of packets: 

1. Hello Packet. The protocol uses Hello packets to 
keep track of neighbors. Routers determine the 
identity of neighbors and periodically check the 
status of the link to that neighbor by exchanging 
Hello packets. 

2. Link State Packet. Link State Packets (LSPs) list, 
for each neighbor of the node issuing the LSP, the 
ID of that neighbor and the cost of the link to it. 
This list includes both router neighbors and end­
system neighbors. The cost of the link is assigned 
by the network manager to reflect the desirabil­
ity of using that link. A number of factors deter­
mine the cost, including throughput capacity 
and the monetary cost associated with using the 
link. 

3. Sequence Number Packet. Sequence Number 
Packets (SNPs) are used to ensure that neighbor-
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ing routers have the same notion of what is the 
most recent LSP from every other router. There 
are two types of SNPs: the Complete Sequence 
Number Packet (CSNP) and the Partial Sequence 
Number Packet (PSNP). 

The CSNP lists all LSPs present in the issuing 
router's LSP database, together with their 
sequence numbers, and is used to synchronize 
LSP databases. The CSNP is transmitted upon link 
start-up on point-to-point links and periodically 
on a local area network (LAN). This use of the 
CSNP to ensure LSP database consistency of all 
routers on the LAN is described in more detail in 
the section Efficient Use of LANs. 

The PSNP lists only a few LSPs and is used to 
explicitly acknowledge or request one or more 
LSPs. 

Neighbor Handshaking Protocols 
The architecture for DECnet Phase V uses the ES-IS 
protocol to enable routers and end systems on a 
LAN to learn about each other's presence. Every end 
system periodically multicasts an End System Hello 
protocol data unit (PDU) to the multicast address 
"All Intermediate Systems." This POU contains the 
end system's NSAP address and permits the receiv­
ing routers to create an entry that maps the NSAP 
address to the corresponding data link address 
from which the POU was received. The routers use 
this information to deliver data PDUs to the end sys­
tems and also to communicate the existence of the 
end systems to other routers by means of the rout­
ing protocols. 

In a similar manner, all routers periodically 
multicast an Intermediate System Hello to the multi­
cast address "All End Systems." This data permits the 
end systems to determine the data link addresses 
of all routers on the LAN. In the absence of other 
information, an end system will transmit any data 
PDUs destined for another system to one of the 
routers it has discovered. However, the router to 
which the data PDU is sent may not be the best path. 
Indeed, direct transmission of the data POU to the 
destination system may be possible, if the source 
and destination systems are on the same LAN. In 
such cases, the router concerned sends a Redirect 
PDU back to the source end system. The Redirect 
contains the data link address to use for this NSAP 
address, which the end system can then use for sub­
sequent transmissions. 

The ES-IS protocol replaces the proprietary 
DEcnet Phase IV initialization protocol for use 
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between the DECnet and OSI systems. However, 
operation of the DECnet Phase IV protocol is still 
necessary to enable handshaking between DECnet 
Phase IV and DECnet Phase V systems. To avoid con­
fusion, the Phase IV initialization messages trans­
mitted by Phase V systems have a version number 
that is acceptable to only Phase IV systems. Such 
messages are ignored by other Phase V systems. 

Routing Protocols, with Emphasis on 
the IS-IS Protocol 
Routing protocols are used to calculate the path, 
i.e ., the route, that a data packet will take through a 
network. Typically, a routing protocol dynamically 
adjusts to network problems, such as failed links or 
routers, to ensure that the network continues to 
operate in a robust manner. Use of dynamic routing 
protocols also eases installation and configuration, 
because routes are calculated by means of the algo­
rithm, not the user. 

The two main types of dynamic routing proto­
cols are distance vector and link state. Many rout­
ing protocols are based on distance vector routing, 
for example, DECnet Phase III, DECnet Phase IV, and 
the routing information protocol (RIP).8 In a dis­
tance vector protocol, each router is responsible 
for keeping track of and informing its neighbors 
about its distance (i.e ., total cost) to each destina­
tion. The router computes its distance to each des­
tination based on its neighbors' distances to each 
destination. The only information a router has to 
know a priori is its own ID and the cost of its links 
to each neighbor. 

Consider the distance vector routing example 
shown in Figure 1. Suppose a router R with five 
ports is configured with costs c1, c2 , c3 , c4 , and c5 for 
each of the ports, respectively. Further suppose 
that the neighbor on port 1 informs R that it is d 1 

from some destination D, the neighbor on port 2 
informs R that it is d2 from D, and so forth. R can 
then figure out its own distance to destination D. 
If the destination is R itself, then R's distance to Dis 
0. Otherwise, R's distance to D is the minimum 
value of c, + d,, for i = 1 through 5. If R receives a 
packet addressed to destination D, R should for­
ward the packet through the port with minimum 
total cost to D. 

Because of their slower convergence rate, dis­
tance vector protocols generally provide lower per­
formance than link state protocols. Distance vector 
protocols adapt to changes in topology less quickly 
than link state protocols, and until the protocol 

64 

TO 
DESTINATION D 

TO 
DESTINATION D 

TO 
DESTINATION D 

Figure 1 Distance Vector Routing 

adapts to such a change, routing can be disrupted. 
The main reason for this convergence problem 
stems from incorrect information. When changes 
such as link failures occur in the network, the infor­
mation that each node transmits to its neighbors is 
only that node's current impression of the distance 
to each destination, which may be incorrect infor­
mation. Consequently, the distance vector algo­
rithm may take several iterations to converge to the 
correct routes. 

The first deployed link state routing protocol 
was developed by Bolt Beranek and Newman (BBN) 
for the Advanced Research Projects Agency 
Network (ARPANFI).9,10 In link state routing, each 
router determines its local status and then con­
structs an LSP, defined earlier in the section 
Overview of Routing Control Packets. This LSP is 
transmitted (or "flooded") to all the other routers, 
which are responsible for storing the most recently 
generated LSP from each router. 11 (If the large size of 
the network makes it impractical for the LSP 
database to contain information for every other 
router, the network can be made hierarchical, as 
described in the Hierarchy section.) All routers (or 
all routers in an area, when hierarchical routing is 
used) then compute routes based on a complete 
topology. Figure 2 illustrates an example of link 
state routing, with a router R determining the state 
of its neighbors and then broadcasting this informa­
tion by means of Hello Neighbor messages. 

Link state algorithms respond rapidly and consis­
tently to changes in networks, as compared with 
distance vector algorithms. Once the LSPs have 
been distributed, each router can calculate routes 
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without further reference to the other routers. The 
results are more stable routing and lower consump­
tion of link bandwidth and router CPU. Therefore, 
the design of the IS-IS routing algorithm was based 
on the original BBN link state routing algorithm, 
which used an algorithm known as the shortest 
path first (SPF) to calculate the routes. 12 

The IS-IS protocol corrected many deficiencies 
and added extra functionality. 

1. The IS-IS protocol provides a more stable method 
for reliably distributing LSPs. The ARPANET 
method was an early algorithm that used exces­
sive overhead and was unstable in rare cir­
cumstances. The IS-IS protocol design uses a 
self-stabilizing protocol for I.SP distribution that 
requires much less bandwidth. 

2. The IS-IS protocol can be used in a hierarchical 
manner to support larger networks. 

3. The ARPANET method assumed all connections 
were point-to-point links. Many nodes can be 
connected with a LAN. Modeling a LAN as a fully 
connected set of nodes attached with point-to­
point links would be extremely inefficient. The 
IS-IS routing protocol incorporates protocols for 
efficiently utilizing LANs. 

4. Given that a router has limited memory, the 
network can grow beyond a size that the router 
can support. If the router failed simply because 
its I.SP database overflowed the available space, 
network management could not be used to 
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reconfigure the router. If the router continued 
to operate and based the routing on an incom­
plete database, loops might form and adversely 
affect routes that traverse that router. The IS-IS 
protocol has mechanisms that enable overloaded 
routers to remain reachable for network man­
agement. 

5. Certain control packets can get very large. The 
IS-IS protocol has mechanisms for ensuring that 
fragments of a control packet can be dealt with 
independently rather than required to be fully 
reassembled first. 

6. The IS-IS routing protocol can support many 
network layer protocols simultaneously. This 
support is known as Integrated IS-IS.13 

Hierarchy 
As a network grows, several factors may overload 
the routing protocol: the I.SP database may become 
too large to fit into memory; computing routes may 
require too much CPU; the task of keeping the I.SP 
databases up-to-date may consume too much band­
width; or the network may be unstable because link 
changes are frequent. To deal with these factors, 
the IS-IS protocol allows the network to be parti­
tioned into areas. Within an area, the level 1 routers 
keep track of all the nodes and links. Level 2 routers 
keep track of the location of the areas but are not 
concerned with the detail inside the areas. A level 2 
router can also act as a level l router in one area. 

To use the IS-IS protocol in a hierarchical way, it is 
convenient for the network layer addresses to be 
topologically hierarchical. Figure 3 illustrates the 
structure of an IS-IS address. All nodes in a particu­
lar area have the same value for the area address 
field of their address. A level l router looks at the 
area address portion of the destination address in a 
packet. If this field matches the router's area, the 
router assigns the packet a path based on the ID 
portion of the address. Otherwise, the router 
routes the packet toward a level 2 router, which 
directs the packet to the correct area. 

The IS-IS protocol treats the last octet of the 
address as a selector, which is used only for 
demultiplexing multiple network users within the 

AREA ADDRESS ID SEL 

Figure 3 IS-IS Address Structure 
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destination system. The selector field can therefore 
be ignored with respect to IS-IS routing. 

In general, the area address itself is hierarchically 
subdivided. This structure is useful for address 
administration and for routing between routing 
domains, for example, different corporations, 
which may be interconnected by means of a public 
network. However, from the point of view of IS-IS 
operation, the entire area address is a single identi­
fier for the area. 

In a network of global dimensions, possibly com­
prising millions of addresses, the ability to use hier­
archical addressing is essential to help provide 
some of the topological information. This address­
ing scheme is analogous to the use of country codes 
in international telephone numbers, which allows 
calls to be routed to other countries without com­
plete knowledge of the internal structure of all the 
telephone systems in the world. 

Efficient Use of LANs 
All routers connected to a LAN are neighbors. If the 
routing protocol was simply to consider all pairs of 
nodes on the LAN as neighbors, then each router on 
the LAN would issue an I.SP listing every node on 
the LAN. In addition, the I.SP distribution would be 
inefficient if each router had to transmit every I.SP 
to all other routers on the LAN and then receive 
acknowledgments from all these same routers. 

The IS-IS protocol dramatically reduces the 
required size of the I.SP database by considering the 
LAN as a pseudonode. Each router then claims to 
have one link to the pseudonode, rather than a link 
to every other router on the LAN. Only the pseudo­
node claims to have links to all the end systems on 
the LAN. 

This approach requires that an I.SP be transmitted 
for the pseudonode itself, and thus some router 
on the LAN has to take on the responsibility for 
transmitting the packet for the pseudonode. The 
router with the numerically highest priority (or, 
in the event of a tie, the highest data link address) 
is elected the designated router (DR). The DR gives 
a name to the LAN by appending an octet to its 
own ID. 

For example, assume a LAN has 5 routers and 100 
end systems, as shown in Figure 4. Let R5 be the 
elected DR. R5 might name the LAN R5.17. In that 
case, Rl, R2, R3, R4, and R5 each issue an I.SP listing 
the neighbor R5.17. R5 will issue a second I.SP, from 
source R5.17, listing Rl, R2, R3, R4, R5, and all the 
end systems (El through ElOO) as neighbors. 
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Figure 4 Local Area Network 

The IS-IS protocol also contains special features 
to allow efficient distribution of LSPs on the LAN. 
IS-IS does not require explicit acknowledgments to 
LSPs on the LAN. Instead, a router that has an I.SP to 
forward to the LAN simply multicasts the I.SP to the 
other routers. A router that receives an I.SP on the 
LAN will not multicast the same I.SP on the LAN. 
Theoretically, if no packets get lost, only a single 
router would issue an I.SP on the LAN. 

However, packets do get lost, so the detection of 
lost LSPs is important. IS-IS detects lost LSPs by hav­
ing the DR periodically broadcast a summary of the 
I.SP database in a CSNP. Based on the CSNP, a receiv­
ing router can determine whether it has missed an 
I.SP (in which case it will explicitly request the I.SP 
from the DR), or it has a more recent I.SP than the DR 
has (in which case the receiving router will multi­
cast the I.SP on the LAN to the other routers). 

Da,tabase Overload 
An implementation of a router typically has a finite 
amount of storage for the I.SP database. Therefore, 
the router could receive an I.SP and not be able to 
store it. The space may be inadequate for two rea­
sons. First, the network may experience a static 
overload, i.e., the network may have become so 
large that the router cannot store the I.SP database. 
Second, an ordering of events can temporarily 
make the I.SP database larger than necessary, caus­
ing a temporary overload. For example, the DR on a 
large LAN may fail. The DR's previous pseudonode 
I.SP is still in the other routers' databases. The new 
DR on the LAN will give the LAN a new ID and 
attempt to purge the previous pseudonode I.SP. 
However, until the purge is complete, other routers 
will have to temporarily store twice as much infor­
mation about that LAN. 

Without considering this storage problem, a 
router implementation might employ any of the fol­
lowing strategies: the router might fail and recover 
only with operator intervention; the router might 
fail and reboot; or the router might ignore the 
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temporary overload and perform routing in the 
best way possible. 

Each of these possible strategies is undesirable. If 
a router fails and needs human intervention to 
recover, routing will be disrupted longer than neces­
sary if the problem is only temporary. Crashing and 
automatically rebooting is desirable if the overload 
is very short-lived (so the overload condition is cor­
rected before the router has rebooted). Otherwise, 
this strategy can cause long-term instability, since 
after rebooting, the router starts to exchange rout­
ing information with neighbors, only to eventually 
overload and fail again. Routing based on an incom­
plete LSP database can be dangerous and can cause 
widespread misrouting and/or routing loops. 

IS-IS solves the storage problem by requiring a 
router that cannot store its LSP database to set an 
overload flag in its own LSP. Other routers then 
treat that router as an end system and route to that 
router but not through that router. Thus, the over­
loaded router is available through network manage­
ment. If the router has not needed to refuse an LSP 
from a neighbor for a period of a minute (or as con­
figured by network management), the router will 
clear the flag in its LSP. Thus, if the problem is tem­
porary, the network will recover without human 
intervention. An important feature of this solution 
is that changing the flag does not change the size of 
the LSP database and hence does not lead to oscilla­
tion of the overloaded condition. 

Limiting the Size of 
Routing Control Packets 
Some IS-IS packets (specifically, LSPs and CSNPs) 
may become too large to be transmitted as single 
packets. Consequently, the packets may split into 
several packets for transmission. 

An LSP can become very large if a router has many 
neighbors. However, this situation is rarely an issue, 
except for the pseudonode LSP for a LAN. The IS-IS 
protocol avoids such large LSPs, which would need 
to be fragmented for transmission across each link 
and then reassembled at each router. The protocol 
has the LSP source break the LSP into individual frag­
ments, each with its own unique ID and sequence 
number. The ID of the LSP is no longer simply the ID 
of the router issuing the LSP but has an additional 
octet appended to the router's ( or pseudonode's) ID 
indicating the fragment number. Each fragment is 
independently flooded to the other routers. Only in 
the route computation is any connection made 
between the fragments of a router's LSP. 
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A CSNP can become large as well, since it 
includes the range of source addresses of LSPs to 
which it refers. If the range indicates x through y, 
then all LSPs with source IDs between x and y will 
be included and only those LSPs. Absence of an LSP 
that lies within the range implies that the issuing 
router has no knowledge of that LSP. Therefore, the 
IS-IS protocol can take action based on a CSNP frag­
ment without waiting for all fragments. If a CSNP 
fragment is lost, then a lost LSP in that fragment's 
source address range might not be detected until 
the next time a CSNP fragment listing the ID of the 
lost LSP is transmitted. 

Support of Multiple Protocols 
with IS-IS 
Extending the IS-IS protocol to support multiple 
protocol suites is relatively straightforward. The 
OSI version of the IS-IS protocol supports routing 
for OSI CLNP, which also implies support for DECnet 
Phase V (since Phase V user data packets are identi­
cal to CLNP packets at the network layer). DECnet 
Phase V routing extends IS-IS to allow support for 
DECnet Phase V and for Phase IV-Phase V inter­
operability. Also, Digital worked on the Internet 
Engineering Task Force (IETF) to define the exten­
sion to IS-IS for support of IP .13 

To understand how the OSI IS-IS protocol can be 
extended to support multiple protocol suites, con­
sider what the IS-IS protocol provides. For example, 
consider a level 1 router within an area. The IS-IS 
routing protocol allows this router to know the 
identity and up/down status of the other routers 
and links in the area and which routers in the area 
are level 2 routers. IS-IS calculates routes to all other 
routers in the area. IS-IS also provides a number of 
important background functions, such as allowing 
information to be reliably broadcast between the 
routers in the area and allowing up/down status to 
be periodically checked. In addition, IS-IS allows 
each router to know which OSI addresses are reach­
able by means of each other router. (At level 1, the 
router would list the NSAPs of all its end-system 
neighbors; at level 2, the router would list all the 
areas and address prefixes it can reach.) IS-IS there­
fore already has most of the information needed to 
calculate routes for additional routing protocols. 

To add routing support for another protocol 
suite such as IP, the IS-IS protocol is updated to 
announce the addresses that are reachable by 
means of that protocol suite. For example, to add IP 
support to IS-IS, a new field is defined in the LSPs to 
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announce IP addresses, expressed in ordered pairs 
of the form (IP address, subnet mask). This allows 
IP addresses and OSI (i.e., DECnet Phase V) 
addresses to be assigned independently, while 
still allowing most of the overhead functions 
required by a routing protocol, such as checking 
link status and propagating the information, to be 
performed only once for all supported protocol 
suites. 

If all routers support a particular protocol, the 
data packets for that protocol can be transmitted in 
native mode, i.e., no additional header is required. 
If some routers do not support a particular proto­
col, then the packet must be encapsulated in a net­
work layer header for a network layer protocol that 
all the IS-IS routers do support. In DECnet Phase V, 
all the routers support both IP and CLNP, so these 
two protocols are transmitted in native mode. 
However, if support for another protocol is added, 
for instance AppleTalk support, then the routers 
that have AppleTalk neighbors need to be able to 
parse AppleTalk packets. However, other routers 
will not need to be modified. To facilitate knowing 
when to encapsulate, IS-IS routers announce which 
protocols they support in their IS-IS packets. Also, 
routers that support the AppleTalk protocol and 
have AppleTalk neighbors list in their LSPs that they 
can reach certain AppleTalk destinations. 

The IS-IS packets are encoded such that a router 
can ignore information pertaining to protocol 
suites that the router does not support but can cor­
rectly interpret the rest of the IS-IS packet. Assume 
that RI and R2 are the only two routers in an area 
that support the AppleTalk protocol. RI and R2 
therefore announce in their LSPs which AppleTalk 
destinations they can reach. RI and R2 use a format 
for including AppleTalk information in IS-IS LSPs 
that other routers in the same area can forward but 
will otherwise ignore. Assume R2 receives an 
AppleTalk packet for forwarding with destination 
D3, reachable through RI. Then R2 encapsulates 
the packet as data inside a CLNP (or IP) packet with 
destination RI. When RI receives the packet, it 
removes the CLNP header and forwards the packet 
to D3. If RI and R2 are adjacent, or if all the routers 
along the path from R2 to RI support the AppleTalk 
protocol, then encapsulation of AppleTalk packets 
inside CLNP packets would not be necessary. Thus, 
encapsulation occurs automatically only when 
needed for transmission through routers that do 
not support the protocol of the data packet to be 
forwarded. 
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Using one integrated routing protocol to route 
packets from multiple protocol suites has signifi­
cant advantages over using a separate routing pro­
tocol for each suite. Probably the most important 
advantage is that only one routing protocol needs 
to be managed and configured. A single coordi­
nated routing protocol can respond to network 
problems, such as link failures, in an efficient man­
ner, improves bandwidth utilization, and minimizes 
the CPU and memory requirements in routers. Also, 
integrated routing allows automatic encapsulation 
and eliminates the need for manual configuration 
of where and when to encapsulate. 

Summary 
IS-IS is a powerful and robust routing protocol. 
Many aspects are innovative and have been copied 
by other routing protocols. When looked at as a 
whole, the algorithms may appear complex, but 
when examined individually, the designated router 
election, the LSP propagation, and the LSP database 
overload procedure, for example, are all quite sim­
ple. IS-IS provides efficient routing for a variety of 
protocol suites, currently including DECnet Phase 
IV, CLNP/DECnet Phase v, and IP. 
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Digital's Multiprotocol 
Routing Software Design 

The implementation of Digital's multiprotocol routing strategy required address­
ing various technical design issues, principally the stability of the distributed rout­
ing algorithms, network management, performance, and interactions between 
routing and bridging. Developers of Digital's DEC WANrouter and DECNIS products 
enhanced real-time kernel software, implemented performance-centered protocol 
software, and used high-coverage, high-quality testing and simulation methods to 
solve problems related to these issues. In particular, a packet management strategy 
ensured that queuing requirements were met to guarantee the stability of the rout­
ing algorithms. Also, network management costs were minimized lJy down-line 
loading software, using a menu-driven configuration program, and careful moni­
toring. Router performance was optimized lJy maximizing the packet forwarding 
rate while minimizing the transit delay. 

Digital's implementation of multiprotocol routing 
software enables internetworking across complex 
topologies including local and wide area networks 
(LANs and WANs) and dial-up networks. Evolving 
from Digital's successful tradition in DECnet Phase 
IV networks, the implementation of multiprotocol 
routing currently supports numerous protocol and 
packet types including 

• DECnet Phase IV 

• Transmission control protocol/internet proto­
col (TCP/IP) 

• Novell NetWare internetwork packet exchange 
(IPX) protocol 

• AppleTalk protocol suite 

• OSI CLNS, the open systems interconnection 
protocol for providing the connectionless-mode 
network service 

• X.25, the packet switching standard specified 
by the Comite Consultatif Internationale de 
Telegraphique et Telephonique (CCITT) 

Additional extensions for Digital's DECnet Phase V 
and ADVANTAGE-NE1WORKS architecture require­
ments are also supported by Digital's multiprotocol 
routers. 1,2 Many of these routers incorporate bridg­
ing technology, thus providing integrated bridging 
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routers. This paper describes the most significant 
technical problems encountered and the solutions 
implemented when many internetworking opera­
tions are integrated into Digital's multiprotocol 
router system designs. 

Digital's Router Product Overview 
Digital's multiprotocol router products comprise 
two types: (1) access routers, which allow access to 
WAN services from branch offices for large LAN and 
WAN integration networks, and (2) backbone 
routers, which provide high-speed packet switch­
ing services for the network backbone of multiple 
types of high-speed media. Backbone sites offer a 
backbone network that often consolidates high­
speed WAN lines, e.g., Tl, T3, and SMDS. For high­
speed local sites, backbone routers provide 
high-speed switching for many LAN ports and 
types, i.e., Ethernet, fiber distributed data interface 
(FDDI), and token ring. This section briefly dis­
cusses some of Digital's access routers-the DEC 
WANrouter 500, DEC WANrouter 250, and DEC 
WANrouter 90 products-and backbone routers­
the DECNIS 500 and DECNIS 600 products. 

The DEC WAN router 500 is one of Digital 's access 
routers and has been available in the marketplace 
since 1986. Originally a DECnet Phase IV-only 
router, this router has been upgraded and now 
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offers multiprotocol routing that includes DECnet 
Phase IV, TCP/IP, and OSI. Additional support exists 
in this access router for common WAN services such 
as X.25 and frame relay. The DEC WANrouter 500 is a 
fixed-port configuration router offering one Tl 
WAN port and one Ethernet LAN port. This configu­
ration permits branch office LANs to interconnect 
to backbone routers over relatively high-speed Tl 
lines. The DEC WANrouter 500 has an important 
place in router industry history as it was the first 
router ever to support the integrated intermediate 
system-to-intermediate system (Integrated IS-IS) 
routing algorithm.3 

The DEC WANrouter 250, another of Digital's 
access routers, is significant due to its high density 
of WAN ports and its support for asynchronous WAN 
data link protocols. These two major features com­
bine with the multiprotocol routing software to 
provide a router for the newly emerging computer 
networking needs of mobile computers. The increas­
ing use of personal computers, including mobile 
laptop computers, has led to the development of 
new techniques for networking such remote com­
puters. The DEC WANrouter 250 provides eight WAN 
ports with dial-in access for the internetworking of 
such remote and mobile computers. 

The introduction of LAN hub technology has pro­
duced a need for new small router products for 
these platforms. Digital's DEChub 90 Ethernet back­
plane product set includes the DEC WANrouter 90 
access router shown in Figure 1. One feature of 
the DEChub 90 technology is that this router can 
be configured to reside within the hub itself or 
as a standalone module. In addition, this router 
is completely self-contained and extremely small 
(i.e., similar in size to a VHS videocassette). Many 
WAN access services, such as X.25 network access, 

Figure 1 DEC WANrouter 90 Access Router 
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are provided for the DEChub 90 with the DEC 
WANrouter 90 router. 

The DECNIS 500 and DECNIS 600 (see Figure 2) 
bridging and routing products are Digital's highest 
performing and most flexible platforms. These 
backbone routing systems offer the power and 
interfaces necessary to meet the bridging and rout­
ing requirements of complex, high-speed net­
works, e.g., Ethernet, FDDI, Tl/El, and T3/SMDS.4 

Router Software Development Methods 
Software development for routing systems requires 
real-time kernel software, performance-centered 
protocol software development implementation, 
and high-coverage, high-quality testing and simula­
tion methods. This section briefly describes some 
key techniques used in these development areas 
for the DEC WANrouter and DECNIS engineering 
programs. 

Kernel Software 
Digital has developed and refined different kernels 
with common interfaces to address the real-time 
software design environments required for their 
routers. A common router interface model has 

Figure 2 DECNIS 600 Backbone Router 
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permitted different kernels to be turned to specific 
platforms as required. In some cases, a common 
portable kernel was developed that permitted quick 
retargeting of the total router software in support 
of short time-to-market development needs. 

Software Implementation 
The following techniques were used in the devel­
opment of the DEC WANrouter and DECNIS router 
software: 

1. Implementing software directly from proprietary 
or standards-based architecture specifications 

2. Licensing software from suppliers, e.g., external 
corporate software providers and government­
funded university software projects 

3. Importation of software from other implementa­
tions, i.e., host sources such as the ULTRIX, Open 
Software Foundation (OSF), and OpenVMS systems 

Digital has developed special-purpose, high-
performance implementations of the Integrated 
IS-IS routing protocol. In addition, specific software 
kernels provide control and extensions for the spe­
cial features required. Engineers enhanced the real­
time software kernels with software interfaces 
commonly found in public domain software (e.g., 
the Berkeley Software Development [BSD] UNIX 
socket model and system services). The inclusion 
of such interfaces has accelerated the addition of 
new software from external sources. 

Common router software has been developed for 
use across Digital's many internetworking plat­
forms. The majority of this routing software, which 
is independent of the underlying hardware, has 
been developed to support the evolving standards 
of portability. For each platform, the performance­
intensive and hardware-specific code have been 
customized to maximize the design center for each 
instance of a router product architecture. 

Router Software Design Issues 
Many technical problems had to be resolved when 
building Digital's multiprotocol routers. The fol­
lowing sections describe the most significant issues 
and how they were addressed in the DECNIS 600 
backbone router, as an example of router software 
design. These issues were 

1. Stability of the distributed routing algorithms 

2. Network management 

72 

3. Performance 

4. Interactions between routing and bridging 

Memory size and usage and congestion control 
are also key issues. However, this paper does does 
not describe them in depth. Briefly, the amount of 
memory available is a major constraint on any router 
implementer. Usually, memory is largely consumed 
by code and by the databases the router must main­
tain to calculate the best route. In the case of routers 
that also perform connection-oriented functions 
(e.g., X.25 gateways and terminal servers), signifi­
cant amounts of memory may be taken up by the 
per-connection state and counter information. 

Since it is essential for routers in the network to 
agree on the best route to a destination, all such 
routers must be able to handle the route database 
for that network. Digital's router designs have an 
automatic shutdown mechanism that takes effect 
should a router run out of memory in which to 
store routing information. This mechanism pre­
vents routing loops. 

To control OSI congestion, the router must deter­
mine whether or not a packet experienced conges­
tion by calculating the average transmission queue 
length over time. This calculation must be per­
formed in an efficient real-time manner. Thus, for 
the DEC WANrouter and DECNIS products, Digital 
designed and implemented algorithms specific to 
the particular queue structures and hardware 
design. 

Stability of the Distributed 
Routing AJ,gorithms 
Distributed routing algorithm stability was the 
most important issue considered in the design of 
Digital's router systems. A system design must guar­
antee successful results in support of routing con­
trol protocols even when the router is operating 
under a high load: 

Whatever protocol is used, dynamic routing 
requires that all nodes that make decisions on how 
to forward data should agree on the correct path. 
Otherwise, data packets will be discarded (e.g., if 
sent to a node that does not know how to reach the 
destination) or may loop (e.g., if two routers each 
believe the other is the correct next node on the 
path to the ultimate destination, then the packet 
will loop between the two routers). 

If network configurations never changed, and 
lines and routers never got overloaded, then 
guaranteeing successful results would be easy. 
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Unfortunately, actual networks are complex. In 
practice, for each protocol, the correct path agree­
ment is reached using an algorithm distributed 
between multiple independent routers and operat­
ing on ever-changing data. 

The distributed algorithm must converge rapidly 
so that when network conditions change, the new 
route is agreed upon quickly. However, the algo­
rithm must also be stable. When changes occur at 
a fast rate or when the algorithm is trying to com­
plete or has just completed, the algorithm must still 
converge to a consistent state between all the 
routers involved. In this way, the network remains 
useful. In addition, while the network is changing, 
a router or a line may suddenly be presented with 
an excessive load of packets to forward (e.g., 
because a routing loop occurred transiently). This 
situation must not be allowed to disturb the stabil­
ity of the routing algorithm. 

The stability of a well-designed routing algo­
rithm is directly related to how well the algorithm 
meets the following main requirements: 

• Line speed. The effective speed of lines between 
routers (allowing for error correction by the 
data link protocol or the modem) must be high 
enough to allow the routers to rapidly exchange 
routing control information. The maximum 
bandwidth required for routing control traffic 
can be calculated from the size of the network.5 
In a network of 4,000 end nodes, 100 level 1 
routers, and 400 level 2 routers, approximately 
one Link State Packet (LSP) will be received 
every second. This LSP may contain 1,500 bytes, 
which would use a line bandwidth of 12,000 bits 
per second. This aspect of stability is under the 
control of the network designer; line speeds and 
network size must be continuously monitored 
and related. 

• Processing power. The router CPU must be fast 
enough to forward routing updates to neighbor­
ing routers with minimum delay and must be 
able to recalculate the forwarding database 
quickly. Of course, this requirement relates only 
to that portion of the CPU time available for rout­
ing functions. A router that is also doing another 
job (e.g., acting as a file server) will have less CPU 
power available, unless routing is given priority 
over the other functions. Consequently, most 
networks now use dedicated routers instead of 
attempting to have routing tasks share the CPU 
with other functions. 
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• Queuing. The most important stability factor is 
to make sure that the systems are self-stabilizing. 
As the problem gets worse, progress to the solu­
tion should not become slower. For example, as 
the network configuration changes more 
rapidly, the calculation of the best route must 
not get slower. To meet this requirement, the 
routers must be careful about queuing data and 
routing control messages internally so that 
excessive or unusual data forwarding loads do 
not affect the processing of routing control mes­
sages. Otherwise, when a network problem 
overloads a router, the routing algorithm may 
never converge to fix the problem. 

Figure 3 illustrates a case where an incorrectly 
designed router (one that gives priority to data 
forwarding over routing control message recep­
tion and processing) could cause a permanent 
routing loop and thus isolate a portion of 
the network. In this example, node A is send­
ing a large amount of data to node F over 
the high-speed Tl line. The lower-speed 
(64 kilobit-per-second [kb/s]) line is available 
as a backup line. Because the backup line runs 
at only 64 kb/s, node C need only be a low­
power router. For example, a router rated at 
128 packets per second would be sufficient 
because a fully saturated full-duplex 64-kb/s 
line with 128-byte packets handles 128 packets 
per second. 

NODE F 

LAN 

FAST SLOW 
ROUTER NODED NODE E ROUTER 

Tl LINE 64-kb/s LINE 

FAST 
NODES NODEC 

SLOW 
ROUTER ROUTER 

LAN 

NODE A 

Figure 3 Network Instability 
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Consider what happens if the Tl line fails. 
Router B notices immediately and begins to for­
ward data to router C. Initially, however, router 
C still believes the best route to node F is over 
the Tl line and so forwards the data back to 
router B. B resends the data to C and so on; a 
routing loop has been created. This problem is 
common during routing transitions. The loop 
will be broken as soon as router C runs the deci­
sion process and updates its routing tables. 
However, if router C is incorrectly designed and 
gives priority to forwarding data, then the unex­
pectedly large amount of data will "swamp" the 
router and prevent it from running the decision 
process. 

In addition, since router C is only a low-speed 
router, it will be forced to discard many data 
packets. Eventually, the transport connections 
between node A and node F will fail, because 
packets are not being delivered (presumably 
causing the applications to fail). This situation 
will reduce the number of packets being intro­
duced into the loop. However, each packet can 
go around the loop many times, thus generating 
a high load. In this example, if nodes are set up 
such that a packet can travel the loop 64 times (a 
common value), then introducing only two 
packets into the loop per second will continue 
to swamp router C. Any node on the LAN might 
be sending those packets to discover when 
access to the remote LAN is restored. The effect 
is a long-lived routing loop that isolates the 
whole LAN, even though there was supposed to 
be a backup link available. 

• Memory usage. Activities less important than 
routing should not consume the memory neces­
sary for routing control processes to carry out 
their function. Even in a dedicated router, some 
lesser activities will be in progress. For example, 
network management and accounting are 
important activities, but they are not as critical 
as maintaining network stability- without a sta­
ble network, network management and account­
ing will fail. Therefore, other activities should 
not starve the routing control processes of mem­
ory. Consequently, traditional memory pools are 
not an appropriate way to allocate critical mem­
ory within the router; routing memory usage 
must be preallocated. 
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The remainder of this section describes the 
impact of the requirements on processing power, 
queuing, and memory allocation on the design of 
the DEC WANrouter and DECNIS products. 

Requirements on Processing Power 
The Digital Network Architecture (DNA) routing 
architecture requires that routing updates be prop­
agated within 1 second of arriving and that the for­
warding database calculation take no more than 
5 seconds.5 The forwarding database calculation is 
CPU-intensive, but the time is proportional to the 
number of links reported in LSPs. To meet the DNA 
requirement, various measurements were made for 
each product to determine the number of links the 
decision process could handle per second. This 
information indicates, for each product, the maxi­
mum number of links allowed in the network. Note 
that this number does not directly limit the number 
of nodes permitted in the network; a large network 
with an efficient connection strategy may have 
fewer links than a small network in which every 
node is connected directly to every other. 

The update process latency requirement means 
that the CPU time must be fairly allocated between 
the decision process and the update process. If the 
update process was required to wait until the deci­
sion process had completed, then the delays on for­
warding LSPs would be too large (i.e., 6 seconds). 

We considered three possible solutions. 

1. Process priorities. Give the update process a 
strictly higher priority than the decision process 
so that the database can be updated as required. 
The main issues to resolve are synchronizing 
access to the shared LSP database and allowing 
the decision process to complete, if a faulty 
router generates LSPs at an excessive rate. 

2. Timeslicing. As in a traditional timesharing 
system, allow both processes to run simulta­
neously, thus sharing the CPU. This solution 
also requires synchronizing access to the LSP 
database. 

3. Voluntary preemption. The decision process 
periodically checks to see if the update process 
is required and, if so, dispatches to it. This check 
can occur at time intervals frequent enough to 
meet the latency requirements and at times con­
venient to the decision process so that no syn­
chronization problems occur. 
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To avoid the synchronization problems, Digital's 
DECNIS 600 software developers chose the third 
solution for two reasons. 

1. Synchronization issues often cause problems 
that are serious and difficult to debug in com­
plex systems. By avoiding these issues entirely, 
we simplified the software and increased its 
reliability. 

2. The addition of synchronization mechanisms 
for parallel tasks can decrease the performance 
of the total system (for example by causing 
excessive rescheduling operations). Using vol­
untary preemption allowed a very efficient solu­
tion that still met the architectural requirements. 

Requirements on Queuing 
Queuing constraints ensure that high loads do not 
cause routing control information to be discarded. 
Initially, separating the data for forwarding from 
routing control messages might appear to be the 
logical solution to preserving routing control infor­
mation. However, this solution works only if the 
router can process all the routing control messages 
without getting behind. 

Many practical routers, including the DEC 
WANrouter products, do not have a CPU that is 
fast enough to guarantee such processing perfor­
mance. Digital's routers can guarantee to meet 
the timing requirements on the decision and 
update processes (even under worst-case loads), 
but if that load is combined with a flood of End­
node Hello messages, Router Hello messages, and 
other control traffic, then some of those messages 
have to be discarded or queued for later processing. 
Since there might be 1,000 or more nodes on the 
LAN, the worst situation would be if all these nodes 
were to decide to send Hello messages at the same 
time. 

Careful software design means that the routers 
can meet the network stability requirements and 
still not lose connectivity to end nodes on the LAN. 
For the DEC WANrouter software, Digital designed 
and implemented a packet management policy that 
differentiates between routing packet types to 
meet their respective processing requirements for 
network stability. The following list summarizes 
the classes of packet types: 

• Data 

• End-node Hello messages 

• Router Hello messages 
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• Link State Packets and their acknowledgments, 
Sequence Number Packets (SNPs) and Complete 
Sequence Number Packets (CSNPs) 

The parameters controlling the minimum and 
maximum numbers of packets to be used for each 
differentiated type are carefully calculated based 
on their architected behavior and the network · 
configurations supported by each product. For 
example, a router's architected design center for 
supporting a given maximum number of adjacent 
routers on an attached LAN will affect the policy 
selected for managing the Router Hello message 
queues and packet buffers. Such mechanisms are 
implemented to guarantee that, for network stabil­
ity, forwarding performance, and network conver­
gence, the minimum levels of forward progress per 
packet type are met. 

This packet management policy uses both buffer 
pools and queuing to implement the required poli­
cies. Inbound traffic is placed on queues that are 
serviced using variants of round-robin algorithms. 
These algorithms give different weightings to each 
queue to ensure that progress is made for every 
packet type, although at different rates.6 For exam­
ple, for every data packet processed, the router may 
process 5 LSPs, 5 End-node Hellos, and 10 Router 
Hellos. The actual weightings used are selected 
when the software is designed and depend on the 
performance characteristics and expected network 
configuration of each product. 

Some alternatives that were considered are 

• Alternative buffer pools. A completely separate 
pool can be used for each of the different types 
of packets. The disadvantage is that in small con­
figurations or ones that are not _under heavy 
stress, the pool of buffers available for forward­
ing is limited unnecessarily. 

• Strict priorities. Setting strict priorities for 
processing different types of routing control 
messages is undesirable, because a flood of one 
type of routing control message could cause 
another type to be ignored for a long time. In 
such a case, it is better to process some of each 
type of message than to give one type absolute 
priority. 

In the DECNIS routers, several queues exist at the 
boundaries between the different DECNIS proces­
sors. 4 Digital designed a mechanism for these 
queues similar to that described for the DEC 
WANrouter products. When the network interface 
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cards, i.e., linecards, receive a packet destined to be 
passed to the management processor card (MPC), 

they analyze the packet and tell the MPC whether it 
is data, routing control , bridging control, or system 
control (which includes linecard responses to com­
mands from the MPC). Thus, queues analogous to 
those described for the DEC WANrouters are used at 
all the interfaces within the system. For example, 
the assistance processor on the MPC recognizes the 
different types of messages and queues them on 
separate internal queues. 

Requirements on Memory Allocation 
Routers must have sufficient buffer space to handle 
the routing control messages. Consequently, all of 
Digital's router products guarantee this memory 
allocation. To preserve these buffers, the DECNIS 

MPC implements buffer swapping between layers, 
as illustrated in Figure 4. The data link layer must 
never be starved of buffers; otherwise, packets 
regarded as important by routing may be discarded 
without ever being received. To ensure that an ade­
quate number of buffers is available to the data link 
layer, the MPC gives the data link a certain number 
of buffers and maintains that number. Every time a 
buffer is passed from the data link layer to the rout­
ing layer, another buffer is swapped back in return. 
If routing currently has no free buffers, it selects a 
less in1portant packet to discard (freeing up the 
buffer containing the packet). In this way, the data 
link layer always has buffers available. 

In the DECNIS linecard buffers, the arrangements 
are similar to those just described, but the details 
differ. The linecards and the MPC perform buffer 
swapping among themselves. 4 
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Network Management 
Some of the highest costs involved in running a 
network are those related to obtaining and main­
taining trained and experienced network managers 
and operators. Minimizing these costs requires 
routers that can be easily and efficiently managed. 
The major network management issues are 

• Installation/loading. How are software updates 
distributed and installed? How long does the 
router take to load after a power failure? 

• Configuration. How is the software told about 
changes to the lines or the network parameters? 
Does the network require a reboot to change 
information? 

• Monitoring. How does the manager get immedi­
ate reports of problems and unexpected changes, 
and long-term reports of traffic patterns and 
usage for network planning? 

• Control. How can the manager shut down a line 
or even a whole router? 

• Problem solving. What tools are available to 
detect the problem and then to investigate and 
correct the problem? 

In all networks, though, a remote management 
capability is essential. Skilled network manage­
ment staff may not be available at all sites (e.g., a 
small branch office). In fact, some sites may have 
no staff at all (e.g., a lights-out computing center). 

Installation and Loading 
All DEC WANrouter and DECNIS products update 
their software by down-line loading new software 
over the network. In the case of the DECNIS, the 
software is stored in nonvolatile memory and so 
does not need to be reloaded on each boot. 
However, the DEC WANrouter products down-line 
load the software each time they are booted. 

Digital considered two other alternatives. 

• Read-only memory (ROM). This means of distri­
bution has the disadvantage of being expensive 
to modify and difficult to replace remotely. 

• Floppy disk or other interface on the router. This 
mechanism increases cost and reduces reliability. 
Loading from a floppy disk may also be slower 
than loading over a network. Again, remote 
updating may not be p ossible, and physical 
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security issues (e.g., preventing unauthorized 
users from supplying uncontrolled router soft­
ware) may be introduced. 

For the DECNIS product, Digital chose to use 
nonvolatile memory, e .g., flash random-access 
memory (RAM), for fast and reliable loading com­
bined with backup down-line load operation when 
software updates are required. The down-line load 
can be from a DECnet system using the mainte­
nance operations protocol (MOP) or from a TCP/IP 
host using the boot protocol (BOOTP) and the triv­
ial file transfer protocol (TFTP).1 The down-line 
load provides an easy way to update software when 
required; the software can be installed on a load 
host using any of the standard software distribution 
mechanisms (e.g., CD-ROM, magnetic tape, or the 
network). 

Configuration 
Configuring a router is notoriously difficult. 
Therefore, Digital developed a tool to assist the 
network manager with configuration. Each of 
the DEC WANrouter and DECNIS products comes 
with a configuration program. This menu-driven 
program leads the network manager through a 
series of forms to define the information needed to 
configure the router or to modify an existing 
configuration. On-line help is available, and steps 
may be retraced. Consequently, the network man­
ager has no need to learn the network control 
language (NCL). 

Digital used formal human factors testing during 
the design and development of the configurators to 
ensure that these tools were of high quality. Human 
interface testing continued through the router's 
customer field trials and provided additional feed­
back on our configurators' ease of use. 

One thing that Digital did not originally antici­
pate is that users now tend to see the configurators 
as the user interface for the product. The configura­
tor is often a customer's main means of interacting 
with the router and thus is an essential part of the 
product. Once people have used the configurator, 
they no longer regard it as an optional feature. 

Monitoring 
Digital's routers are fully manageable using Phase V 
network management. They all respond to 
NCL commands and can be managed using the 
DECmcc program, Digital's Enterprise Management 
Architecture (EMA)-compliant director. Therefore, 
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DECmcc added-value functional modules are 
available for performance analysis and historical 
data recording. The DECmcc design enables these 
functions to work without changing the router 
design. 

Many users, however, are now investing in man­
agement stations that use the simple network 
management protocol (SNMP). Thus, for monitor­
ing purposes, Digital already implements basic 
read-only SNMP management, which is being 
enhanced over time to add more information. 

Control 
Whether managed by the NCL or the DECmcc 
director, access is controlled using passwords. 
In addition, Digital is focused on offering full 
SNMP management for the router products. As well 
as providing the standard public management 
information, Digital is defining private man­
agement information to allow unique features of 
the routers to be controlled. We designed the 
internal management interfaces of the routers to 
allow us to write modules that are manageable from 
both the SNMP and the common management infor­
mation protocol (CMIP), with minimal effort and 
duplication. 

Problem Solving 
One of the most time-consuming, and hence expen­
sive, parts of a network manager's job is problem 
solving. Fortunately, many of the tools and tech­
niques used for this task were required for debug­
ging and testing router implementations and thus 
already exist. 

Building initially on debugging and testing expe­
rience, and later on discussions with users, Digital 
has produced problem-solving guides for each DEC 
WANrouter and DECNIS product. These guides take 
the user through a step-by-step description of how 
to isolate and fix a problem. We have conducted 
human factors testing on these guides and have 
investigated different modes of making this infor­
mation available. The DECNIS guide is currently 
available in hard copy and also in an on-line 
Bookreader form that allows moving through the 
flow to be automated using hot spots. Digital is cur­
rently evaluating Hypertext technology to further 
improve the usability. One main tool for problem 
solving is the common trace facility (CTF), a soft­
ware tool that causes the router to record and dis­
play packets that are sent and received. Analysis 
routines automatically format the packets. Having 
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the CTF is comparable to having a built-in line or 
LAN analyzer. The CTF is the main diagnostic tool 
used by Digital's service engineers when investigat­
ing a problem and also by the development engi­
neers when debugging software. 

Digital's routers also include diagnostic and 
maintenance facilities, which include loopback 
testing over all interfaces and low-level, limited, 
remote management directly at the data link 
layer. The remote management capabilities allow 
monitoring of counters from an adjacent node and 
also allow an adjacent node to force a reboot if a 
suitable password is supplied. This latter operation 
is referred to as a MOP boot (previously known as a 
MOP trigger in DECnet Phase IV). 1 

A MOP boot command may be the final attempt 
by a network manager to fix a problem with a 
router without having to go physically on site. For 
that reason, the command must be recognized and 
acted upon regardless of what else may be happen­
ing in the router. In the DECNIS routers, the MOP 
boot command is recognized by the linecards. In 
the DEC WANrouter, the MOP boot command is spe­
cially actioned by the lower layers of the software 
to make sure it is honored even if the higher layers 
have failed in some way or if the system is under an 
enormous load. 

We also support the "TCP/IP ping" utility (more 
formally, ICMP Echo) and the similar "OSI ping" util­
ity. These tools are commonly used for diagnosing 
reachability problems. 

Router Performance 
Today's large-scale computer data networks rely on 
bridge router components for the networks' total 
level of performance and quality of service. As 
such, data network designers and network man­
agers must be knowledgeable about their chosen 
router platform's performance characteristics. This 
section of the paper discusses the performance 
aspects of Digital's routers. 

Performance Metrics 
In support of developing common metrics across 
the internetworking router industry, the Internet 
Engineering Task Force (IETF) has set up a 
Benchmarking Methodology Working Group, 
which has dev~loped definitions for router perfor­
mance.7 Three key metrics defined by this group 
provide the background for our discussion of 
Digital's router software design. 

78 

• Throughput-the maximum (forwarding) rate 
at which none of the offered frames (packets) 
are dropped by the device (i.e., packets per 
second) 

• Frame loss rate-the percent of frames (packets) 
that should have been forwarded by the network 
device (router) while under a constant load but 
which were not forwarded due to lack of 
resources (i.e., percent packets lost) 

• Latency-for store-and-forward devices (i.e., 
routers), the time interval beginning when the 
last bit of the input frame reaches the input port 
and ending when the first bit of the output frame 
is seen on the output port (i.e., units of time) 

In the design of Digital's router software and sys­
tems, a balance has been targeted with maximizing 
the packet throughput forwarding rates while 
minimizing the packet latency. Some vendors mis­
takenly compare loss-free throughput rates with 
forwarding rates that have high loss rates. Such 
comparisons must be studied carefully, because 
they do not compare route performance measures 
of equal impact to the total network. To reiterate, 
the throughput forwarding rate occurs only at the 
point when the frame loss rate is zero percent. 
Digital's routers target throughput designs which, 
as much as possible, run at "wire speed" with zero 
frame loss rates. Regardless of the throughput value 
quoted, router comparison should reference com­
mon packet loss rates because network applica­
tions need to retransmit any packets that are lost by 
the routers. 

In general, the throughput, loss-free forwarding 
rate is the optimum value for discussions of router 
forwarding performance. The other critical value is 
the stability of the router under heavy overload. 
A "receive livelock" condition occurs when the 
offered load, i.e., input packets received for subse­
quent forwarding by a given router, reaches the 
point where the delivered throughput, i.e., packets 
actually forwarded, decreases to zero.8,9 Real-time 
systems, such as routers, have the potential to live­
lock under traffic loads above their throughput 
peaks. However, it is extremely important that 
routing implementations avoid such responses 
to post-throughput saturation. In the case of 
Digital's routers, in all architectures and products, 
the routers do not livelock but remain stable even 
when the applied input load to a router exceeds the 
peak throughput forwarding packet rate. This key 
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performance measure of router devices remains 
an underlying design characteristic of all Digital 
DECNIS and DEC WANrouter network devices. 

Packet Throughput/Forwarding Rate 
Digital's routing platforms offer a range of through­
put measures. For each platform, the throughput is 
the most often quoted value used to characterize 
the router's aggregate capabilities. In the case of the 
DECNIS 600, an aggregate throughput of 80,000 
packets per second is offered.10 In smaller routers, 
the WAN line interface rates (i.e., 64 kb/s and Tl) 
are often the limiting factor for the aggregate 
throughput. The software in all cases is optimized 
for the given router platforms mix of WAN and LAN 
interfaces. 

Since the forwarding rate is the most important 
performance metric for a router, Digital carefully 
optimized the designs of its multiprotocol routers 
to allow data forwarding to occur as fast as possible. 
On the DEC WANrouter products, we handle all the 
forwarding on a central CPU with little hardware 
assistance. In the DECNIS products, forwarding and 
filtering operations are handled by linecards. A 
hardware assist for the performance-critical 
forwarding function's address lookup is used on 
DECNIS routers in support of requirements for very 
high-speed packet switching.4 On each linecard, a 
streamlined software kernel has been developed 
along with all the required software. The linecard 
software kernel and modules were carefully con­
structed to have the minimum number of instruc­
tions and the lowest number of execution cycles 
necessary to perform the high-speed forwarding 
and filtering operations. On the DECNIS MPC, the 
software kernel is also fully capable of the routing 
forwarding operations. However, this kernel is 
mainly required to provide the software processing 
for the remaining non-performance-intensive oper­
ations of the router's software (i.e., the processing 
of updates to the router topology database and the 
network management commands/received pack­
ets). This partitioning of processing of received 
packets in the DECNIS router system permits such 
routers, and the networks that they comprise, to 
remain highly stable when traffic overloads occur. 

For the DEC WANrouter software, the forwarding 
operation has no hardware assist. Software lookup 
assist algorithms have been researched and imple­
mented to help meet the performance-intensive 
requirement. As in the microcoded DECNIS linecard 
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adapter software, the software is highly tuned for 
performance. To minimize the additional mainte­
nance overhead associated with highly tuned soft­
ware, the amount of such code is kept to a 
minimum. The DEC WANrouter software design is 
an example of how Digital carefully balanced prod­
uct performance requirements and product devel­
opment and maintenance costs to meet the 
required price/performance goals for its router 
product family. 

Packet Latency (Transit Delay) 
The next most frequently specified performance 
requirement is packet latency or packet transit 
delay. For bridge/router devices, this measurement 
clearly depends on software and hardware timings. 
However, the definition of latency utilized corre­
sponds directly to the• 'losen system's design. 

The previously quoted IETF definition for store­
and-forward devices can be further refined to 
accommodate differing device designs. The IETF 
working group clarifies the difference between a 
"store-and-forward device" and a "bit-forwarding 
device" internal design model for a router. The 
latter design model is often referred to as a "cut­
through" design and requires a different definition 
than previously listed for store-and-forward 
devices. The definition of latency used for this 
cut-through model is the time interval starting 
when the end of the first bit of the input frame 
reaches the input port and ending when the start 
of the first bit of the output frame is seen on the 
output port.7 

The issue that distinguishes the two models is 
whether or not processing starts prior to the packet 
being completely received. However, another key 
point is whether or not the packet received can be 
sent out for transmission prior to complete recep­
tion. When reception, forwarding, and transmis­
sion can occur in parallel, the design is referred to 
as cut-through . For Digital's router designs, the 
DECNIS does process reception and forwarding 
in parallel prior to a packet being completely 
received. However, the DECNIS does not start trans­
mission until a packet is completely received. Thus, 
the DECNIS latency model uses the original store­
and-forward definition of the IETF. 

In the case of the DEC WANrouter software, the 
model and definition used is again store-and-for­
ward. The factors that control the packet latency in 
the DEC WANrouter design are as follows: 
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1. Receiving the packet. The packet must be com­
pletely received. 

2. Performing the forwarding operation. This fac­
tor includes packet verification, analyzing the 
packet, performing any required address 
lookup, performing any required packet modifi­
cations, and queuing the packet for transmission 
on the destination interface. 

3. Congestion queuing. If the destination interface 
is not idle, the packet will have to be queued 
before transmission. Some transit delay measure­
ments use only uncongested media interfaces 
connected to the router. However, latency mea­
surements must be made to measure the poten­
tial latency delays due to congestion at the router 
output interface. The packet latency due to 
queue occupation delays is also included here. 
Congestion avoidance algorithms have been 
implemented to minimize this congestion delay. 

4. Transmitting the packet. This factor is usually 
dominated by the time taken to clock the bits of 
the packet out of the interface but also includes 
media access times, i.e., delays due to another 
node already using a common connection. 

We now examine how the DEC WANrouter and 
DECNlS routers separately minimize the transit delay. 

The DEC WANrouters minimize the packet recep­
tion and transmission portions by allowing hard­
ware to perform these functions using direct 
memory access (DMA). Because these systems have 
only a single processor, the forwarding delay is min­
imized by the same fast-path optimizations used to 
improve the forwarding rate. 

On the other hand, the optimizations for the 
DECNlS routers are slightly different for the various 
linecards. The DEC WANcontroller 622 card has no 
DMA, and the linecard on-board processor is 
involved in receiving each byte of the packet. We 
parse the header as soon as there is enough infor­
mation to do so. For example, the data link packet 
type field is decoded before the network address 
bytes have been received, and the network address 
lookup is initiated as soon as the address has been 
received (i.e., before the data has been received). 
The address lookup is then performed by the 
address recognition engine hardware without fur­
ther involvement from the software. 

The DEC WANcontroller 618 card and the DEC 
LANcontroller 601 and 602 cards all receive packets 
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one segment at a time. Internally, these cards use 
small fixed-size buffers that are linked together as 
necessary to store a whole packet. Again, they per­
form the analysis and forwarding lookup as soon as 
the data is available (i.e., when the first segment is 
received). 

Thus, for a large packet, the entire forwarding 
decision will have been made before the last byte 
has been received. However, note that until the last 
byte has been received, it is not known whether the 
cyclic redundancy check (CRC) is correct or the 
packet has been corrupted. So the packet is not 
actually passed to the destination linecard until that 
check has been completed. As discussed before, 
this design is still store-and-forward, rather than 
cut-through. The DECNlS design goals were easily 
met without using cut -through; however, Digital 
has used the cut-through design on a number of 
LAN host-based adapters. 

When a packet is to be transmitted, certain 
changes must be made in the data. For example, the 
IP and OSI protocols require that tin1e-to-live fields 
and, in some cases, other options be modified. 
Bridged packets may need address bits modified or 
conversion between Ethernet and IEEE 802 forms. 
As with reception, all DEC WANcontrollers perform 
these operations as the data is transmitted. All cards 
have hardware assistance for recalculating header 
checksums and CRCs. 

These features are designed to reduce the for­
warding delay as much as possible, so that the tran­
sit delay is mainly controlled by the time it takes to 
receive and send the packet. The type of architec­
ture that best describes the DECNIS design is a data­
flow, which blends traditional store-and-forward 
designs with newer cut-through designs. This data­
flow architecture processes packets in a distrib­
uted manner (i.e., linecards process packets) 
without transmitting packets prior to complete 
reception validation of these packets. This design 
limits the forwarding of packets that are found to 
be in error, whereas the similar full cut-through 
design would propagate invalid packets. 

Interaction between Routing 
and Bridging 
Designing a combined router and bridge product is 
complicated by the relationship between the rout­
ing and bridging functions. 11 A received packet 
must be subjected to either the bridge forwarding 
or the routing forwarding process (or maybe both). 
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Several designs are possible and are illustrated in 
Figure 5. 

(a) Protocol split. In this design, some protocols 
are bridged, e.g., Local Area Transport (LAD, 
and others are routed, e.g., TCP/IP. The bridging 
and routing functions are completely separate; 
they merely share line interfaces. Every packet 
received is passed to either routing (if intended 
for a protocol that is being routed) or bridging. 

(b) Integrated with one interface. In this design, 
the routing function is modeled as being 
layered on top of the bridging function. 
Theoretically, packets are subjected to the 
bridging process and then, if they are 
addressed to the router, subjected to the rout­
ing process. In this form of the model, the 
router uses a single logical interface seemingly 
connected to a private LAN contained within 
the bridge/router. 

(c) Integrated with multiple interfaces. This 
design is similar to the integrated design with 
one interface, but the router uses all the avail­
able interfaces and logically connects to the 
same extended LAN multiple times. 

Each design model has advantages and disadvan­
tages, and we considered all three models for 
the design of the DECNIS routers. The protocol­
splitting model has the advantage of simplicity. The 
major disadvantage is that any particular protocol 
must be either bridged or routed. The integrated 
models have the disadvantage ofrequiring specific 
management to prevent a routed protocol from 
also being bridged. In most cases, a protocol is 
being routed specifically to avoid the problems 
associated with bridging. The model with one inter­
face also has the disadvantage that the network 
manager may get confused attempting to work out 
which interface is being used for routing. We chose 
the protocol-splitting model because of its effec­
tiveness and ease of use. 

Special Considerations of the 
DECNIS Architecture 
We have discussed special features of the DECNIS 

system architecture. Now we present some addi­
tional DECNIS software design issues. 

Control and Management of Linecards 
Each linecard is a separate software environment 
and must be managed and controlled by the man­
agement processor. The main tasks required are 
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(c) Integrated with multiple interfaces. Tbe 
routing function uses all intetf aces to 
attach to the extended IAN multiple times. 

Figure 5 Bridge/Routing Design 

• "Watchdog" polling. In a standalone network 
server product, it is necessary to guard against 
the software getting caught in an infinite loop 
and hence not responding to management and 
control messages. The management processor is 
protected by a hardware watchdog timer, but 
the linecards do not have a timer. To protect the 
linecard software, we designed the management 
processor software to poll each linecard every 
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400 milliseconds (ms). If there is no response, 
we reset the card. 

• Counters. The network interface cards handle 
data forwarding and therefore must maintain the 
required counters (e.g., the number of data bytes 
received). However, to avoid requiring the 
linecard to maintain 64-bit counters (which 
costs memory and requires 64-bit arithmetic), 
the management processor maintains the full 
counters and polls the linecards frequently 
enough to guarantee that the on-card counters 
do not wrap. Each counter is sized to support 
the design of the management processor polling 
every 400 ms. 

• Control. When a data link protocol or a routing 
protocol is started or stopped on an interface, 
the management processor receives the 
network management command and issues 
appropriate control messages to the network 
interface card. 

Distributed Forwarding 
Each linecard normally handles the forwarding of 
bridged and routed data without involving the man­
agement processor. This design requires a different 
approach to meeting the stability requirements 
from that described for the DEC WANrouter devices. 

For example, the DEC WANrouter products dis­
card data packets to meet the routing stability 
requirements. This discard is limited by the packet 
management mechanisms to guarantee a minimum 
level of forwarding performance for the other rout­
ing packets, even under worst-case conditions such 
as those caused by network topology changes. The 
DECNIS routers do not normally have to discard 
packets, because the network interface cards can 
continue to forward data while the management 
processor handles the routing protocol operations. 
In addition, correctly designed linecard software 
guarantees that control traffic is passed to the MPC, 
even in cases where the software is also passing 
large amounts of data traffic to the MPC. 

Conclusion 
This paper describes the complex nature of the 
design decisions required in the development of 
Digital's multiprotocol router systems and soft­
ware. The issues and solutions discussed show how 
many conflicting technical requirements can be 
addressed. One example of such a conflict is related 
to the designs goals for the performance of Digital's 
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multiprotocol routers. While on one hand achiev­
ing extremely high system throughput (i.e., the 
DECNIS 600 router supports a forwarding through­
put rate of over 80,000 packets per second), the 
DECNIS 600 design also addresses the equally criti­
cal metric of router stability (i.e., the DECNIS 600 
product remains stable under extreme network 
loads). io This balancing of requirements is key to 
justifying Digital's approach toward router product 
engineering. As summarized in his recent book on 
computer systems performance analysis, Raj Jain 
states that 

The performance of a network ... is measured by 
the speed (throughput and delay), accuracy (error 
rate) and availability of the packets sent.12 

Routers that can forward packets but cannot 
remain stable under heavy loads, or meet the 
requirements for bursty packet rates as required by 
many of the newer network applications (e.g., 
packet-based videoconferencing systems such as 
Digital's DECspin product), will fail to satisfy cus­
tomers.13 As such, Digital provides a well-tuned, 
optimized total network solution with DECNIS 600 
routers and DECspin products. This synergy of 
Digital's network applications and network infra­
structure components is the ultimate justification 
for the multiprotocol router design decisions out­
lined in this paper. 

Acknowledgments 
Many engineers in Australia, England, Ireland, and 
the United States participated in the design and 
implementation of the Digital's multiprotocol 
routers. We wish to thank all of them. 

References 

1. DECnet Digital Network Architecture (Phase 
V) General Description (Maynard, MA: Digital 
Equipment Corporation, Order No. EK­
DNAPV-G0-001, 1987). 

2. ]. Martin and]. Leben, DECnet Phase V (Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1992). 

3. R. Perlman, R. Callon, and M. Shand, "Routing 
Architecture," Digital Technical journal, vol. 
5, no. 1 (Winter 1993, this issue): 62-69. 

4. S. Bryant and D. Brash, "The DECNIS 500/600 
Multiprotocol Bridge Router and Gateway," 
Digital Technical Journal, vol. 5, no. 1 
(Winter 1993, this issue): 84-98. 

Vol. 5 No. 1 W{nter 1993 Digital Technical Journal 



5. DECnet Digital Network Architecture (Phase 
VJ Network Routing Layer Functional Speci­
fication (Maynard, MA: Digital Equipment 
Corporation, Order No. EK-DNA03-FS001, 
1991). 

6. E. Coffman,Jr., and P. Denning, Operating Sys­
tems Theory (Englewood Cliffs, NJ: Prentice­
Hall, Inc., 1973): 169. 

7. S. Bradner, "Benchmarking Terminology 
for Network Interconnection Devices," Inter­
net Engineering Task Force RFC 1242 (July 
1991). 

8. K. Ramakrishnan and W Hawe, "The Work­
station on the Network: Performance Consid­
erations for the Communications Interface;' 
IEEE Computer Society Technical Committee 
on Operating Systems, vol. 3, no. 3 (Fall 
1989): 29-32. 

Digital Technical Journal Vol. 5 No. 1 Winter 1993 

Digital's Multiprotocol Routing Software Design 

9. K. Ramakrishnan, "Scheduling Issues for 
Interfacing for High Speed Networks," 
Proceedings of Globecom '92, IEEE Global 
Telecommunications Conference, Session 
18.04, Orlando, FL (December 1992): 622-626. 

10. S. Bradner, "Interop Fall 1992 Router Perfor­
mance Study," technical presentation, Har­
vard University, 1992. 

11. W Hawe, M. Kempf, and A. Kirby, "The 
Extended Local Area Network Architecture 
and LANBridge 100;' Digital Technical Jour­
nal, vol. 1, no. 3 (September 1986): 54-72. 

12. R. Jain, The Art of Computer Systems Perfor­
mance Analysis, ISBN 0-471-50336-3 (New 
York: John Wiley & Sons, 1991): 23. 

13. R. Palmer and L. Palmer, "DECspin: Net­
worked Multimedia Conferencing for the 
Desktop," Digital Technical Journal, vol. 5, 
no. 2 (Spring 1993, forthcoming). 

83 



Stewart E Bryant 
David L.A. Brash 

The DECNIS 500/600 Multiprotocol 
Bridge/Router and Gateway 

The DECNIS 500/600 high-performance multiprotocol bridge/router and gateway 
are described. The issues affecting the design of routers with this class of perfor­
mance are outlined, along with a description of the architecture and implementa­
tion. The system described uses a distributed forwarding algorithm and a 
distributed buffer management algorithm executed on plug-in linecards to achieve 
scalable performance. An overoiew of the currently available linecards is provided, 
along with performance results achieved during system test. 

The DEC Network Integration Server 500 and 600 
(DECNIS 500/600) products are general-purpose 
communications servers integrating multiprotocol 
routing, bridging, and gateway functions over an 
evolving set of local and wide area interfaces. The 
product family is designed to be flexible, offering a 
wide range of performance and functionality. 

The basic system consists of a Futurebus+ based 
backplane, a management processor card (MPC), 
and a packet random-access memory (PRAM) card 
with a centralized address recognition engine (ARE) 
for forwarding routed and bridged traffic. Network 
interface cards or linecards are added to provide 
network attachment. The DECNIS 500 provides two 
linecard slots, and the DECNIS 600 provides seven 
linecard slots. The applications run from local 
memory on the MPC and linecards. PRAM is used to 
buffer packets in transit or destined to the system, 
itself. 

The system was developed around distributed 
forwarding on the linecards to maximize perfor­
mance. Software provides forwarding on the 
linecard for internet protocol (IP), DECnet, and 
open systems interconnection (OSI) traffic using 
integrated IS-IS (intermediate system to intermedi­
ate system) routing, along with bridging functional­
ity for other traffic. The management processor 
controls the system, including loading and dump­
ing of the linecards, administering the routing and 
bridging databases, generating routing and bridging 
control traffic, and network management. X.25 
functionality, both for routing data and as an 
X.25 gateway, and routing for AppleTalk and IPX 
are supported on the management processor. 
Performance measurements on a system config-
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ured with 14 Ethernets have demonstrated a for­
warding performance of 80,000 packets per second 
as a router or a bridge. 

This paper discusses the issues involved in the 
design of a fast bridge/router. It presents the pro­
cessing considerations that led us to design the dis­
tributed forwarding system used in the DECNIS 
500/600 products. The paper then details the hard­
ware and software design and concludes with a per­
formance summary. 

Fast Bridge/ Router Design Issues 
There are a number of conflicting constraints on 
the design of a bridge/router. It must simultane­
ously forward packets, participate in the process of 
maintaining a global view of the network topology, 
and at all times be responsive to network manage­
ment. This requires a sophisticated hardware 
and/or software design capable of striking the cor­
rect balance between the demands imposed by 
these constraints. 

The need to make optimum use of the transmis­
sion technology is emphasized by the high link tar­
iffs in Europe and the throughput demands of 
modern high-performance computing equipment. 
Therefore, the router designer must find methods 
of forwarding packets in the minimum number of 
CPU instructions in order to use modern transmis­
sion technology to best advantage. In addition to 
high performance, low system latency is required. 
The applications that run across networks are often 
held up pending the transfer of data. As CPU perfor­
mance increases, the effects of network delay play 
an increasingly significant role in determining the 
overall application performance. 
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Another aspect of forwarding that requires atten­
tion is data integrity. Many protocols used in the 
local area network (LAN) have no data protection 
other than that provided by the data link checksum. 
Thus careful attention must be paid to the design 
of the data paths to minimize the periods when the 
data is unprotected. The normal technique in bridg­
ing is to leave the checksum intact from input to 
output. However, more advanced techniques are 
needed, as this simple approach is not possible 
when translating between dissimilar LAN types. 

Two particular operations that constrain the per­
formance of the forwarding process are packet 
parsing and address lookup. In a multiprotocol 
router, a variety of address formats need to be vali­
dated and looked up in the forwarding table. The 
most powerful address format in popular use is the 
OSI NSAP (network service access point), but this is 
the most complex to parse, with up to 20 octets to 
be analyzed as a longest-match sequence extracted 
from padding fields. In a bridge, supporting the 
rapid learning of media access control (MAC) 
addresses is another requirement. To provide con­
sistently high performance, these processes bene­
fit from hardware assistance. 

Although the purpose of the network is the trans­
mission of data packets, the most critical packets 
are the network control packets. These packets are 
used to determine topological information and to 
communicate it to the other network components. 
If a data packet is lost, the transport service retrans­
mits the packet at a small inconvenience to the 
application. However, if an excessive number of 
network control packets are lost, the apparent 
topology, and hence the apparent optimum paths, 
frequently change, leading to the formation of rout­
ing loops and the generation of further control 
packets describing the new paths. This increased 
traffic exacerbates the network congestion. Taken 
to the extreme, a positive feedback loop occurs, in 
which the only traffic flowing is messages trying to 
bring the network back to stability. 

As a result, two requirements are placed on the 
router. First, the router must be able to identify and 
process the network control packets under all over­
load conditions, even at the expense of data traffic. 
Second, the router must be able to process these 
packets quickly enough to enable the network to 
converge on a consistent view of the network 
topology. 

As networks grow to global scale, the possibility 
emerges that an underperforming router in one 
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part of the world could cause incorrect network 
operation in a different geographical region. A 
bridge/router must therefore be designed to pro­
cess all network control traffic, and not export its 
local congestion problems to other parts of the 
network: a "good citizenship" constraint. To 
achieve this, the router needs to provide processing 
and filtering of the received traffic at line rates, in 
order to extract the network control traffic from 
the data traffic under worst-case conditions. In 
some cases, careful software design can accom­
plish this; however, as line speeds increase, hard­
ware support may be required. Once the control 
traffic has been extracted, adequate processing 
power must be provided to ensure that the 
network converges quickly. This requires a suitable 
task scheduling scheme. 

Another requirement of a bridge/router is that it 
remain manageable under all circumstances. If the 
router is being overloaded by a malfunctioning 
node in the network, the only way to relieve the sit­
uation is to shut down the circuit causing the over­
load. To do this, it must be able to extract and 
process the network management packets despite 
the overload situation. Cobb and Gerberg give more 
information on routing issues. 1 

Architecture 
To address the requirements of a high-performance 
multiprotocol bridge/router with the technology 
currently available, we split the functional require­
ments into two sets: those best handled in a dis­
tributed fashion and those best handled centrally. 

The data link and forwarding functions represent 
the highest processing load and operate in suffi­
ciently local context that they can be distributed to 
a processor associated with a line or a group of 
lines. The processing requirements associated with 
these functions scale linearly with both line speed 
and number of lines attached to the system. Some 
aspects of these per-line functions, such as link ini­
tialization and processing of exception packets, 
require information that is available only centrally 
or need a sophisticated processing environment. 
However, these may be decoupled from the critical 
processing path and moved to the central process­
ing function. 

In contrast to the lower-level functions, the man­
agement of the system and the calculation of the 
forwarding database are best handled as a central­
ized function, since these processes operate in 
the context of the bridge/router as a whole. The 
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processor workload is proportional to the size of 
the network and not the speed of the links. 
Network protocols are designed to reduce the 
amount of this type of processing, both to minimize 
control traffic bandwidth and to permit the con­
struction of relatively simple low-performance 
routers in some parts of the network. 

These processing considerations led us to design 
the DECNIS 500/600 as a set of per-line forwarding 
processors, communicating on a peer-to-peer basis 
to forward the normal packets that comprise the 
majority of the network traffic, plus a central 
management processor. Although this processor 
behaves, in essence, like a normal monoprocessing 
bridge/router, its involvement in forwarding is lim­
ited to unusual types of packet. 

Having split the functionality between the 
peer-to-peer forwarding processors and the man­
agement processor, we designed a buffer and 
control system to efficiently couple these pro­
cessors together. The DECNIS 500/600 products 
use a central PRAM of 256-byte buffers, shared 
among the linecards. Ownership of buffers is 
passed from one linecard to another by a swap, 
which exchanges a full buffer for an empty 
one. This algorithm improved both the fairness 
of buffer allocation and the performance of the 
buffer ownership transfer mechanism. Fractional 
buffers much smaller than the maximum packet 
sizes were used, even though this makes the sys­
tem more complicated. The consequential econ­
omy of memory, however, made this an attractive 
proposition. 

Analysis of the forwarding function indicated 
that to achieve the levels of performance we 
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required, we would need hardware assistance in 
parsing and looking up network addresses. 
Considerations of economy of hardware cost, 
board area, and bus bandwidth led us to a single ARE 
shared among all linecards. This address parser has 
sufficient performance to support a DECNIS 600 
server fully populated with linecards that support 
each link with a bandwidth of up to 2 x 10 megabits 
per second. Above this speed, local address caches 
are required. 

Distributed Forwarding 
In understanding the distributed forwarding pro­
cess used on the DECNIS 500/600, it is convenient to 
first consider the forwarding of routing packets, 
and then to extend this description to the process­
ing of other packet types. In the routing forwarding 
process, as shown in Figure 1, the incoming packets 
are made up of three components: the data link 
header, the routing header, and the packet body. 

The receive process (RXP) terminates the data 
link layer, stripping the data link header from the 
packet. The routing header is parsed and copied 
into PRAM unmodified. Any required changes are 
made when the packet is subsequently transmitted. 
The information needed for this is placed in a data 
structure called a packet descriptor, which is writ­
ten into space left at the front of the first packet 
buffer. The packet body is copied into the packet 
buffer, continuing in other packet buffers if 
required. 

The destination network address is copied to the 
ARE, which is also given instructions on which 
address type needs to be parsed. The RXP is now 
free to start processing another incoming packet. 
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Figure 1 Distributed Forwarding 
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When the address lookup process has completed, 
the RXP is able to read from the ARE the forwarding 
parameters needed to complete the processing of 
the packet. These parameters contain information 
about the output port and channel to use, the desti­
nation data link address for the next hop, and any 
translation information. The RXP combines this 
information with some information saved from pars­
ing the packet to build the packet descriptor in PRAM. 

The RXP builds a set of ring vectors for the 
packet, one for each buffer used. Each ring vector 
contains a pointer to the PRAM buffer used, plus 
some additional information used to decide on 
which queue the buffer should be stored and to 
determine its relative importance to the system. 
During congestion, this information is used by the 
linecards to discard the least important packets 
first. These ring vectors are then exchanged with 
the transmit process (TXP) on the output linecard, 
which queues them ready for transmission. Before 
the TXP starts to process a packet for transmission, 
it reads the descriptor from the first PRAM buffer. 
From the information in the descriptor, the TXP is 
able to build the data link header, determine the 
routing header translation requirements, and locate 
a number of fields in the header ( such as the OSI seg­
mentation and quality of service fields) without 
having to reparse the header. The TXP builds the 
data link header, reads the routing header from 
PRAM, makes the appropriate modifications, and 
then completes the packet by reading the packet 
body from PRAM. 

Since the transmit packet construction follows 
the packet transmission order byte for byte, imple­
mentations can be built without further intermedi­
ate transmission buffering. Linecards need only 
provide sufficient transmit buffering to cover the 
local latency requirements. In one instance, a 
linecard has significantly less than a full packet 
buffer. This small buffering requirement implies 
reduced system latency and makes available a num­
ber of different implementation styles. 

If the RXP discovers a faulty packet, a packet with 
an option that requires system context to process, 
or a packet that is addressed to this system (includ­
ing certain multicast packets), it queues that packet 
to the management processor in exactly the same 
way that it would have queued a packet for trans­
mission by a TXP. The MPC contains a full-function 
monoprocessor router that is able to handle these 
exception cases. Similarly, the MPC sends packets 
by presenting them to the appropriate TXP in 
exactly the same format as a receiver. 
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The bridge forwarding process operates in a fash­
ion similar to the routing forwarding process, 
except that the data link header is preserved from 
input port to output port, and only the data link 
header is parsed. 

Buffer System 
A schematic description of the DECNIS 500/600 
buffer system is shown in Figure 2. The RXPs have 
only sufficient buffering to cope with the latencies 
that must be sustained in their various stages of 
packet processing. All long-term storage of packets 
takes place while the packet is owned by the TXP. 
When an RXP has finished processing a packet, it 
swaps the PRAM buffers containing the packet for 
the same number of empty buffers owned by the 
TXP that transmits the packet. Only if the TXP is able 
to replace these buffers with empty buffers does 
the transfer of ownership take place. If the swap 
cannot complete due to lack of free buffers, the RXP 
reuses these buffers for another packet. In this way, 
no transmitter is able to accumulate buffers and 
thereby prevent a receiver from receiving packets 
intended for other output ports. 

The design of an efficient buffer transfer scheme 
is an important aspect of a high-performance multi­
processor router. We solved this problem by using a 
set of single writer/single reader rings, with one 
ring associated with each pair-wise exchange of 
buffers that can take place in the system. Thus each 
TXP has associated with it one ring for each of the 
RXPs in the system (including its own), plus one for 
the management processor. When an RXP has a 
buffer to swap, it reads the next transfer location in 
its ring corresponding to the destination TXP. If it 
finds a free buffer, it exchanges that buffer with the 
one to be sent, keeping the free buffer as a replace­
ment. The transferred information consists of a 
pointer to the buffer, its ownership status, and 
some information to indicate the type of informa­
tion in the buffer. This structure is known as a ring 
vector. A single-bit semaphore is used to indicate 
transfer of ownership of a ring vector. 

The buffer transfer scheme schematic shown in 
Figure 2 illustrates how this works. Each transmit 
port (TXa or TXb) has a ring dedicated to each of the 
receivers in the system (RXa and RXb). RXa swaps 
ring vectors to the "a" rings on TXa and TXb, and 
RXb swaps ring vectors to the "b" rings on TXa and 
TXb. 

During buffer transfer, the TXP runs a scavenge 
process, scanning all its rings for new buffers, queu­
ing these buffers in the transmit queues (TXQs) 
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Figure 2 Movement of Buffer Ownership 

specified by the ring vector, and replacing the 
entries in the ring from the local free list. The buffer 
type information enables the transmit linecard to 
quickly determine the importance of the buffer. 
Thus if the linecard runs short of buffers due to 
congestion, it is able to discard less important pack­
ets in preference to those packets required to pre­
serve the stability of the network. 

Through judicious optimization of the ring vector 
encodings, we were able to condense this ring swap 
transaction into a single longword read followed by 
a single longword write for each buffer swap, for all 
unicast traffic. For multicast traffic , a second long­
word was required. To reduce the amount of bus 
traffic and the processor time associated with the 
scavenge process, the random-access memory 
(RAM) that holds the rings is physically located on 
the transmit linecard. Hardware is used to watch 
the rings for activity and report this to the TXP. 

Analysis of the traffic patterns indicated that con­
siderable economies in PRAM could be made if we 
fragmented long packets over a number of buffers. 
We achieved a satisfactory compromise between 
the processing overhead associated with buffer 
management and memory efficiency through the 
use of 256-byte buffers. With this buffer size, a large 
fraction of the packets are contained within a single 
buffer. When a linecard is driven into output con­
gestion, it is no longer certain that a complete set of 
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packet buffers will be swapped. We therefore had 
to introduce a simple protocol to ensure that a 
packet was queued for transmission only if it had 
been fully transferred to the transmitting linecard. 
To cope with dissimilar swap and scavenge process 
speeds, we had to stage the transfer of buffers. 
Thus, the TXPs collect a complete set of buffers 
from an RXP before queuing the packet for trans­
mission; this process is called binning. In this way, a 
partial transfer due to congestion or a slow receiver 
does not block the progress of other ports in the 
system. 

Bridging needs a mechanism to support the 
distribution of flooded and multicast packets to 
multiple output ports. In some distributed systems, 
this function is handled by replicating the packet 
via a copy process. In other systems, the packet 
is handled by a central multicast service. The 
use of a central multicaster gives rise to synchro­
nization issues when a destination address moves 
from the unknown to the learned state. Replica­
tion by the linecards is not practical in this architec­
ture since the linecards do not hold a local copy 
of the buffer after it has been copied to PRAM. 
We therefore use a system in which multicast 
buffers are loaned to all the transmit linecards. 
A "scoreboard" of outstanding loans is used to 
record the state of each multicast buffer. When 
a buffer is returned from all its borrowers, it is 
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added to the multicast free queue and made 
available for reuse. The loan process and the return 
process are similar to the normal swap and scav­
enge process, but the ring vector is extended 
slightly to include the information needed for rapid 
dereferencing. 

Centralized Resources 
Three central resources are used in the DECNIS 
500/600 products: MPC, PRAM, and ARE. Central­
izing these resources reduced both the cost and the 
complexity of the system. There are two ways of 
building a distributed processing router. In one 
method, the router consists of a federation of full­
function routers, each a separate network node. An 
alternative method is to employ a partially central­
ized design in which only one processor is the 
router in the traditional sense. The central proces­
sor is the focus for network management, calcu­
lating the forwarding table and being a central 
repository for the context of the router, and the 
peripheral processors undertake the majority of 
the forwarding work. An analysis of the cost and 
complexity both from a system and a network per­
spective led us to choose the latter approach. Thus 
the MPC provides all the software functionality 
necessary to bind the collection of forwarding 
agents located on the linecards together to form a 
router. To the rest of the network, the system 
appears indistinguishable from a traditionally 
designed router. The processing capability and 
memory requirements of the MPC are those associ­
ated with a typical medium-performance multi­
protocol bridge/router. 

We had a choice of three locations for the PRAM: 
distributed among the receiving linecards, dis­
tributed among the transmitting linecards, or 
located centrally. Locating the buffering at the 
receiver would have meant providing the maxi­
mum required transmitter buffering for each trans­
mitter at every receiver. Locating the long-term 
packet buffering at the transmitters would have 
meant staging the processing of the packets by stor­
ing them at the receiver until the transmit port was 
determined and then transferring them to the 
appropriate transmitting linecard. This would have 
increased the system latency, the receiver complex­
ity, and its workload. An analysis of the bus traffic 
indicated that for a router of this class, there would 
be adequate bus bandwidth to support the use of a 
centrally located, single shared packet buffer mem­
ory. With this approach, however, every packet 
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crosses the bus twice, rather than once as in the 
other approaches. Nevertheless, we chose to base 
the system around a single packet memory, and win 
the consequential economies in both linecard cost 
and board area. 

An analysis of the processing power needed to 
parse and look up a network address led us to con­
clude that the linecards would need some form of 
assistance if the processing power associated with 
each line was to be constrained to a reasonably 
cost-effective level. This assistance is provided by 
the ARE. Some advanced development work on the 
design of hardware search engines showed that it 
was possible to design a single address parser pow­
erful enough to be shared among all the linecards. 
This search engine was adaptable enough to parse 
the complex structure of an OSI NSAP, with its two 
right-justified padded fields and its longest-match 
semantics. In addition, the engine was able to cope 
with the other routing protocol address formats 
and the learning requirements of bridging. By cen­
tralizing the forwarding database, we also avoided 
the processing and bus overhead associated with 
maintaining several distributed forwarding data­
bases and reduced the cost and board area require­
ments of the linecards. 

The bus bandwidth and lookup rate needed to 
support multiple fiber distributed data interface 
(FDDI) linecards would place an excessive burden 
on the system. For FDDI, therefore, we equip the 
central lookup engine with a linecard-resident 
address cache. 

DECNIS 500/600 Hardware Design 
There are three primary systems in the DECNIS 
500/600: the backplane, together with its interface 
circuitry, the system core functions contained in 
the MPC and the PRAM, and the various linecards. In 
this section, we describe the hardware design of 
each of these. 

Backplane and Interface Logic 
The DECNIS 500/600 backplanes are based on the 
Futurebus+ standard using 2.1-volt (V) terminated 
backplane transceiver logic (BTI). 2,3 Although 
all current cards use 32-bit data and address paths, 
the DECNIS 600 backplane has been designed to 
support 64-bit operation as well. 

Common to all current modules except the PRAM 
card, the basic backplane interface consists of two 
applications specific integrated circuits (ASICs), 
BTI transceivers, and a selection of local memory 

89 



DECnet Open Networking 

and registers, as shown in Figure 3. The two ASICs 
are a controller and a data-path device. The con­
troller requests the bus via central arbitration, 
controls the transceivers, and runs the parallel 
protocol state machines for backplane access. The 
data-path device provides two 16-bit processor 
interfaces (ports T and R), multiple direct memory 
access (DMA) channels for each processor port with 
byte packing, unpacking, frame check sequence 
(FCS) and checksum support, and backplane 
address decode logic. 

On the backplane, four OMA channels are pro­
vided per processor port. Two channels offer full­
duplex data paths, and the other two are double 
buffered, configurable to operate in either direc­
tion, and optimized for bulk data transfer. OMA 
write transfers occur automatically when a block 
fills. Similarly, DMA prefetch reads occur automati­
cally on suitably configured empty blocks. The 
double-buffered channels allow bus transactions to 
happen in parallel with processor access to the 
other block. All data transfers between the proces-
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sor and the OMA channel are done under direct 
control of the processors, with the processors read­
ing or writing every byte of data to or from the OMA 
streams. This direct control arrangement makes the 
design of the hardware simpler, avoiding the need 
for ASIC OMA support on the processor buses. More 
important, the use of processor read and write 
cycles makes the behavior of the system determinis­
tic and ensures that the processor has the correct 
context at the completion of all operations, regard­
less of the outcome. 

The data-path ASIC also provides command/ 
status registers (CSRs) and a local bus containing the 
control interface for the second ASIC, ring vector 
memory (RVMEM), the geographical address, boot 
read-only memory (ROM), and nonvolatile battery­
backed RAM (BBRAM) for error reporting. The 
RVMEM and some of the registers are accessible 
from the backplane. All resources can be accessed 
from either processor port. The device arbitrates 
internally for shared resources and has several 
other features designed to assist with efficient data 
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transfers, e.g., a summary register of write activity 
to the RVMEM. 

The data-path device can be driven from a single 
processor port (port T) for use in simpler, low­
speed linecards. In addition, the architecture 
supports two data-path devices (primary and sec­
ondary) served by a common controller connected 
to the local bus of the primary device. Each data­
path device adopts a different node identifier in the 
backplane address space. 

Dedicated lines on the backplane are provided 
for power status, temperature sensing, and other 
system requirements. 

Processor and Memory Modules 
The MPC has two processors, a main processor and 
a uniprocessor version of the common backplane 
interface. The main processor, a VAX device, is in 
overall command of the system and provides all the 
management and forwarding services found in a 
monoprocessor router. The 16-bit, processor-based 
backplane interface frees the main processor from 
time-critical backplane-associated tasks. 

A block diagram of the memory module is shown 
in Figure 4. Separate dynamic RAM (DRAM) arrays 
are used for data buffering and the forwarding 
database associated with the ARE. Ring structures in 
static memory are used to allow the linecards to 
post requests and read responses from the ARE, 
which is based on the TRIE system originally devel­
oped for text retrieval.4,5 

An ASIC was developed for the ARE; it was 
extended to include some of the other module con­
trol logic, e.g., PRAM refresh control and the syn­
chronous portion of the Futurebus+ backplane 
interface. 

Network Interface Cards-Linecards 
The DECNIS 500/600 products currently offer syn­
chronous communications, Ethernet, and FDDI 
adapters, all using variants of the standard back­
plane interface. 

Two synchronous communication adapters are 
available: a two-line device operating at up to 2.048 
megabits per second, and a higher fan-out device 
supporting up to eight lines at a reduced line rate of 
128 kilobits per second. All lines are full duplex 
with modem control. The lower-speed adapter uses 
a uniprocessor architecture to drive three industry­
standard serial communications controllers (secs). 
The data and clocks for the channels, along with an 
extra channel for multiplexed modem control, are 
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connected to a remote distribution panel using a 
2-meter umbilical cord. Panels are available to sup­
port eight lines using the RS232, EIA422, or V.35 elec­
trical interface. A four-line multistandard variant 
allows mixed electrical interfaces from a single 
adapter at a reduced fan-out. The multistandard 
panel uses a 50-pin cable common to other commu­
nication products from Digital. 

The two-line device uses a four-processor inter­
face as shown in Figures 3 and 5. The sec is an ASIC 
device designed specifically for the data-flow style 
of processing adopted in the system architecture. It 
is closely coupled to the data-path ASIC and proces­
sors for optimal throughput. The hardware design 
has minimal dependency between the transmit and 
receive tasks, recognizing the limited coupling 
required by acknowledged data link protocols such 
as high-level data link control (HDLC). State infor­
mation is exchanged between processors using a 
small dual-ported RAM in the sec. In addition, each 
sec and associated processors operate as a separate 
entity, resulting in consistent performance when 
forwarding both on and off the module. Two 50-pin 
multistandard interfaces (EIA422 and V.35 only) are 
provided on the module handle. 

Several Ethernet adapters are available. A single­
port thick-wire adapter uses a dual-processor archi­
tecture (primary R and T ports in Figure 3), along 
with a discrete implementation, to interface the 
Ethernet and its associated buffer (tank) memory. 
This design was reengineered to put the tank mem­
ory interface (TMI) into an ASIC, resulting in a dual­
port (full implementation of the interface shown 
in Figure 3 plus two Ethernet interfaces) adapter 
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derivative. This adapter is available in two variants 
supporting thick-wire, and ThinWire wiring 
schemes. 

As shown in Figure 6, the FDDI adapter (DEC 
FDDicontroller 621) is a two-card option designed 
to cope with the high filtering and forwarding rates 
associated with FDDI. The hardware includes a fil­
tering engine closely coupled to the FDDI chip set, 
a synchronous interconnect between the two 
cards, and a multichannel DMA engine for data 
transfer through the device. The DMA engine main­
tains tank memory under reduced instruction set 
computing (RISC) processor control, and can be set 

up and monitored with minimal processor over­
head. Data is transferred to or from buffers in PRAM 
to the tank memory, where complete packets are 
kept in contiguous address space. A second DMA 
channel transfers complete packets in a single burst 
to or from the buffer memory on the line interface 
card. 

Traffic processing between buffer memory 
and the ring is done in hardware. A third DMA 
path is used to prefetch and then burst transfer 
packet header information from tank memory 
into the RISC processor subsystem for packet pro­
cessing. The DMA engine, which includes tank 
memory arbitration, can queue multiple com­
mands and operate all DMA channels in parallel. 
The 32-bit RISC subsystem provides the linecard 
processing, communicating with the bus interface 
processor using dual-ported RAM. Modular connec­
tivity is offered for different physical media. The 
module also supports dual-attach and optical­
bypass options. 

DECNIS 500/600 Software Design 
This section describes the software design of the 
DECNIS 500/600. The structure of the management 
processor software is first described. The structure 
of the linecard receiver and transmitter is then 
discussed, followed by details on how we 
expanded the design to forward multicast packets . 
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Management Processor Software 
The DECNIS 500/600 MPC software structure, as 
shown in Figure 7, consists of a full-function 
bridge/router and X.25 gateway, together with the 
software necessary to adapt it to the DECNIS 

500/600 environment. The control code module, 
which includes the routing, bridging, network 
management, and X.25 modules, is an extended ver­
sion of Digital's WANrouter 500 software. These 
extensions were necessary to provide configura­
tion information and forwarding table updates to 
the DECNIS 500/600 environment module. This 
module hides the distributed forwarding function­
ality from the control module. Thus the control 
module is provided with an identical environment 
on both the MicroServer and DECNIS 500/600 
platforms. 

The major component of the DECNIS 500/600 
environment module contains the data link initial­
ization code, the code to control the linecards, and 
the code to transform the forwarding table updates 
into the data structures used by the ARE. A second 
component of the environment module contains 
the swap and scavenge functions necessary to 
communicate with the linecards. Because of the 
real-time constraints associated with swap and scav­
enge, this function is split between the manage­
ment processor on the MPC and an assist processor. 

ROUTING 
BRIDGING 

The control code module was designed as a 
full-function router; thus we are able to introduce 
new functionality to the platform in stages. If a 
new protocol type is to be included, it can be 
initially executed in the management processor 
with the linecards providing a framing or data link 
service. At a later point, the forwarding compo­
nents can be moved to the linecards to provide 
enhanced performance. The management proces­
sor software is described in more detail elsewhere 
in this issue.1 

Linecard Reception 
The linecard receiving processes are shown in 
Figure 8. The receiver runs four processes: the main 
receive process (RXP), the receive buffer system 
ARE process (RXBA), the receive buffer system 
descriptor process (RXBD), and the swap process. 

The main receive process, RXP, polls the line 
communications controller until a packet starts to 
become available. The RXP then takes a pointer to a 
free PRAM buffer from the free queue and parses 
the data link header and the routing header, copy­
ing the packet into the buffer byte-by-byte as it does 
the parse. From the data link header, the RXP is able 
to determine whether the packet should be routed 
or bridged. Once this distinction has been made, 
the routing destination address or the destination 
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MAC address is also copied to the ARE, together with 
some information to tell the ARE which database to 
search. The ARE provides hardware assistance to 
the bridge learning process. To prevent this hard­
ware from inadvertently learning an incorrect 
address, the ARE is not allowed to start a MAC 
address lookup until the RXP has completely 
received the packet and has ensured that the check­
sum was correct. This restriction does not apply to 
routing addresses, which may be looked up before 
the packet has been completely received, thus 
reducing latency. 

In the case of a routing packet, the data link 
header is discarded; only the routing header and 
the packet body are written to the buffer in PRAM. 
The source MAC address or, in the case of a multi­
channel card, the channel on which the packet 
was received is stored for later use. A number of 
other protocol-specific items are stored as well. 
All this information is used later to build the 
descriptor. The buffer pointer is stored on the pre­
address queue until it can be reconciled with the 
result of the address lookup. In the case of an 
acknowledged data link such as HDLC, the receiver 
exports the latest acknowledgment status to the 
transmit process. 
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The receive buffer system ARE process, RXBA, 
polls the ARE for the result of the address lookup 
and stores the result in an internal data structure 
associated with its corresponding p acket. The 
buffer pointer and the buffer pointers for any other 
buffers used to store the remainder of a long packet 
are then moved onto the RX-bin queue. Since the 
RXP and RXBA processes, the ARE search engine, and 
the link transmission process are asynchronous, the 
system is designed to have a number of pending ARE 
results, which are completed at an indeterminate 
time. This means that the reconciliation of lookup 
results and buffers may happen before or after the 
whole packet has been received. Because of the 
possibility of an error in the packet, no further 
action can be taken until the whole packet has actu­
ally been received and all its buffers have been 
moved to the the queue labeled RX-bin. 

If this staging process were not used, we would 
need to provide a complex abort mechanism to 
purge erroneous packets from the swap, scavenge, 
and transmit processes. Under load, the rate at 
which we poll the ARE has been engineered to be 
exactly once per lookup request. A poll failure will 
increase the backlog in the pre-address queue, 
which should not grow above two packets. This 

Vol. 5 No. 1 Winter 1993 Digital Technical Journal 



The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway 

algorithm mmmuzes the Futurebus+ bandwidth 
expended in unsuccessful ARE poll operations. 
When the receiver is idle, the poll rate increases 
and the outstanding packets are quickly processed 
to dear the backlog. 

The receive buffer system descriptor process, 
RXBD, writes the packet descriptor onto the front of 
the first PRAM buffer of the packet. The descriptors 
are protocol specific, requiring a callback into the 
protocol code to construct them. After the descrip­
tor has been written, the buffer pointers are passed 
to the source queue, ready for transfer to the desti· 
nation linecard by the swap process. The buffer is 
then swapped with the destination linecard as 
described in the section Buffer System, and the 
resultant free buffer is added to the free queue. 

As an example of the information contained in a 
descriptor, Figure 9 shows an OSI packet buffer 
together with its descriptor as it is written into 
PRAM. The descriptor starts with a type identifier 
to indicate that it is an OSI packet. This is followed 
by a flags field and then a packet length indicator. 
The ARE flags indicate whether packet translation 
to DECnet Phase IV is required. The destination port 
is the linecard to which the buffer must be passed 
for transmission . The next hop physical address 
is the MAC address of the next destination (end 
system or router) to which the packet must be 
sent if the output circuit is a LAN; otherwise, it is 
the physical or virtual channel on a multiplexed 
output circuit. The segmentation offset informa­
tion is used to locate the segmentation information 
in the packet in case the output circuit is required 
to segment the packet when the circuit comes to 
transmit the packet. This is followed by the byte 
value and position of the quality of service (QOS) 

option, the field used to carry the DECbit conges· 
tion state indicator. 

The transmitter requires easy access to these 
fields since their modified state has to be reflected 
in the checksum field, near the front of the routing 
header. The source linecard number, reason, and 
last hop fields are needed by the management pro­
cessor in the event that the receiving linecard is 
unable to complete the parsing operation for any 
reason. This information is also necessary in the 
generation of redirect packets (which are gener­
ated by the management processor after normal 
transmission by the destination linecard). 

Linecard Transmission 
The linecard transmitter function consists of five pro­
cesses: the scavenge rings process, the scavenge bins 
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Figure 9 OSI Packet Buffer and Descriptor 
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process, the transmit buffers system select process 
(TXBS), the main transmit process (TXP), and the 
TXB release process. These are shown in Figure 10. 

The scavenge rings process scans the swap rings 
for new buffers to be queued for transmission, 
replacing them with free buffers. Buffers are queued 
in reassembly bins ( one per destination ring) so 
that only complete packets are queued in the hold­
ing queues. The process tries to replenish the desti­
nation rings from the port-specific return queues, 
but failing this it uses the free list. The primary use 
of the port-specific return queues is in multicasting 
(see the section Linecard Multicasting). 

The scavenge bins process scans the reassembly 
bins for complete packets and transfers them to the 
holding queues. Since different protocols have dif­
ferent traffic characteristics, the packets are queued 
by protocol type. 

The TXBS process dequeues the packets from 
these holding queues round-robin by protocol 
type. This prevents protocols with an effective 
congestion control algorithm from being pushed 
into congestion backoff by protocol types with no 
effective congestion control. It also allows both 
bridged and routed protocols to make progress 
despite overload. The scavenge bins and TXBS 

PENDING PACKET RELEASE 
ACKNOWLEDGMENT QUEUE 

:IlIJ---: 

COMMUNICATIONS 
CONTROLLER .....-----'---, 

TRANSMIT 
PACKET 

-llE TXP -llE 
ACKNOWLEDGE 
FROM RECEIVER 

TXBS 

processes between them execute the DECbit con­
gestion control and packet aging functions. By 
assuming that queuing time in the receiver is mini­
mal, we are able to simplify the algorithms by exe­
cuting them in the transmit path. New algorithms 
had to be designed to execute these functions in 
this architecture. 

The TXP process transmits the packet selected by 
TXBS. TXP reads in the descriptor, prepending the 
data link header and transmitting the modified 
routing header. When transmitting a protocol that 
uses explicit acknowledgments, like HDLC, the 
transmitted packet is transferred to the pending 
acknowledgment queue to wait for acknowl­
edgment from the remote end. Before transmit­
ting each packet, the transmitter checks the cur­
rent acknowledgment state indicated by the 
receiver. If necessary, the transmitter either moves 
acknowledged packets from the pending acknowl­
edged queue to the packet release queue, or, if 
it receives an indication that retransmission is 
required, moves them back to the transmit packet 
queue. 

The TXB release process takes packets from 
the prerelease queue and separates them into a 
series of queues used by the swap process. Simple 
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Figure 10 Linecard Transmit Processes 
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unicast packets have their buffers returned to 
the transmitter free pool. The multicast packets 
have their buffers placed on the port-specific 
queue for the source linecard, ready for return to 
their originating receiver. Packets intended for 
return to the management processor are also 
queued separately 

Linecard Multicasting 
A bridge multicast or flooded buffer must be trans­
mitted by a number of linecards. This is achieved by 
swapping a special type of ring vector, indicating 
that the buffer is only on loan to the transmitting 
linecard and must be returned to its owner upon 
completion. In addition to the normal packet type, 
fragmentation, and buffer identification informa­
tion, the ring vector contains local referencing 
information indicating where it is stored on the 
multicast heap. The receiver keeps a record of 
which multicast buffers are on loan to which trans­
mitters. The scavenge process notes in which ring 
it found the ring vector. After transmission, the TXB 
release process places the ring vector on the corre­
sponding port-specific return queue. These ring 
vectors are then preferentially returned to their 
owner via the swap process. As the receiver gets 
these buffers back, it checks them off against a 
scoreboard of issued buffers. When a buffer is 
received from all destination linecards to which it 
was loaned, the buffer is moved back on the free 
list. For this to work successfully, some buffers 
must be set aside specifically for use by the multi­
cast process. 

Debugging the System 
Extensive simulation was performed during system 
development. A model based on VHDL (a hardware 
description language used for simulation and logic 
synthesis) was built to simulate the queues, pro­
cesses, bus accesses, and bus latency for the fast for­
warding paths. Models were developed for the 
different styles of linecards, and many different 
traffic scenarios (packet size, packet type, packet 
rates) were simulated to verify the original thinking 
and architectural assumptions. In addition, simula­
tion was performed on the software to measure 
code correctness and execution times. Gate arrays 
and modules were both functionally simulated and 
timing verified; analog modeling techniques were 
used to verify signal integrity of the backplane and 
selected etches. 
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The linecard processors used have a serial port 
and masked ROM embedded in the device. The 
internal ROM was programmed with a simple boot 
and console procedure. Provisions for a debug con­
sole via a ribbon cable to the module were devel­
oped, allowing a terminal connection to be made 
from the management processor to any linecard 
processor. Each processor on a module is software 
selectable from the console, which allows limited 
access functions to peek and poke memory maps, 
set break points, and step through the code. The 
system was enhanced by developing a breakout box 
and workstation environment that could connect 
to multiple linecards, offering multiple windows to 
different modules in parallel. The code executed 
under this regime ran at full speed. The environ­
ment allowed remote access, which proved useful 
between the two main module development sites 
in England and Ireland when problems required 
close cooperation between the two groups. 

Perfonnance 
Performance measurements have been made on the 
DECNIS 500/600 products for DECnet Phase IV, 

DECnet Phase V (OSI), IP, and bridged traffic. For a 
detailed description of the measurement methodol­
ogy and a comparison between the performance of 
the DECNIS 500/600 and competing bridge/routers, 
the reader is referred to independent test results 
compiled by Bradner.6 

A summary of the LAN performance measured by 
Bradner and the WAN performance measured by 
ourselves is shown in Tables l, 2, and 3. Table 1 
shows the Ethernet-to-Ethernet forwarding 
throughput for minimum-sized packets. These 
measurements show the maximum forwarding per­
formance with no packet loss. The use of a no-loss 
figure for comparison between different designs is 
important because this represents the maximum 
throughput usable by a network application. If the 
applications attempt to run at more than the loss­
free rate, the packet loss causes the transport proto­
cols to back off to the loss-free operating point. The 
Ethernet-to-Ethernet figures indicate the near lin­
ear scalability of performance with number of 
lines. Ethernet forwarding performances of this 
magnitude are well in excess of those required to 
operate on any practical LAN. The correctness soft­
ware ensures the reception of any routing packets 
for a significant period after these rates are 
exceeded. 
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Table 1 64-byte Ethernet-to-Ethernet 
Packet Throughput 

Protocol Number of Ports 
1 4 6 

Bridge 13,950 48,211 80,045 

IP 13,362 51,960 79,452 

DECnet 9,330 34,164 53,746 

OSI 6,652 25,891 38,837 

Table 2 FDDl-to-FDDI Throughput 

,--- Packet Size ---, 
64 Byte 2048 Byte 

Throughput 

Maximum pps* 

Bandwidth 

16% 

56,869 

Note: pps = packets per second 

76% 

4,352 

85.5 Mb/s 

Table 3 WAN-to-WAN Performance for 
Routed Traffic 

....---- Measured Percentage ---, 
Line Util ization 

DECnet DECnet 
NPDU Size Phase IV Phase V (OSI) IP 

46 96% 95% 93% 
128 99% 99% 98% 

512 100% 100% 100% 
1450 100% 100% 100% 
Note: NPDU = network packet data unit 

Measurements also indicated that the unidirec­
tional and bidirectfonal forwarding performances 
are substantially the same, which is not the case for 
all router designs. This is of more than academic sig­
nificance. Poorly designed Ethernet subsystems do 
not provide adeq4ate transmit processing power 
under conditions 9f receive overload. Such subsys­
tems suffer from a condition known as "live-lock." 
In this condition, the receiver uses up all the pro­
cessing cycles, thus preventing the transmitter 
from attempting the transmission that would force 
a collision on the Ethernet and thereby restore fair 
operation. 

The FDDI forwarding performance is shown in 
Table 2. These measurements were also taken at the 
zero-loss operating point and indicate industry­
leading performance results. 
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The performance of the WANcontroller 622 run­
ning at 2 megabits per second is shown in Table 3. 
These measurements were taken using HDLC (with 
acknowledgments) as the data link, with a packet 
overhead of+ 19 octets for Phase IV and +6 octets 
for OSI and IP. These results indicate that the lines 
were running close to saturation. 
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Frame Relay Networks 

RobertJ. Roden 
Deborah Tayler 

Frame relay networks reduce the cost of transmission lines and equipment and 
improve network petformance and response time. Designed for transmission lines 
with a low error rate, frame relay networks provide minimal internal checking, 
and consequently, error detection and recovery is implemented in the attached user 
systems. The Frame Relay Bearer Service was developed specifically as a data ser­
vice to handle high-volume, bursty traffic by means of high-speed packet transmis­
sion, minimal network delay, and efficient use of network bandwidth. The frame 
protocol supports the data transfer phase of the Service; the frame relay header and 
the local management interface are sources of congestion avoidance mechanisms. 
Current implementations include the StrataCom /PX FastPacket digital networking 
system, which provides the frame relay network, and Digital's DECNIS 500/600 and 
DEC WANrouter 100/500 software for attaching user equipment. 

Today's communications networks are built using 
high-speed digital trunks that inherently provide 
high throughput, minimal delay, and a very low 
error rate. Such transmission networks supply 
highly reliable service without the overhead of 
error control functions. Frame relay is a packet­
mode transmission network service that exploits 
these network characteristics by minimizing the 
amount of error detection and recovery performed 
inside the network. 

This paper explains the nature of the Frame Relay 
Bearer Service (FRBS) and provides details of the 
interface defined for attaching user equipment. 
The implications for higher-layer protocols in the 
user equipment are also considered. 

Following this tutorial, the paper introduces 
some current implementations. As an example 
of equipment used to construct a frame relay 
network, the technology deployed by the 
StrataCom integrated packet exchange (IPX) 

FastPacket range of equipment is described. Access 
to a frame relay network is typically via a router, 
as is illustrated in the discussion of two Digital 
products: 

• The DECNIS V2.l software, i.e., network integra­
tion server, for either the DECNIS 500 or the DEC­

NIS 600 hardware units (abbreviated as DECNIS 

500/600) 
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• The DEC WANrouter Vl.O software for either the 
DEMSB or the DEMSA hardware units (subse­
quently referred to as the WANrouter 100/500) 

The paper concludes with a brief discussion of 
activities related to the further development of 
frame relay technology. 

The Frame Relay Bearer Service 
The FRBS was developed specifically as a data ser­
vice to handle high-volume, bursty traffic. The ser­
vice was designed to provide high-speed packet 
transmission, minimal network delay, and efficient 
use of network bandwidth. 1 Local area network 
(LAN)-to-LAN wide area intemetworking is a typical 
application. 

The packet-based frame relay technology uses a 
combination of features from existing standards for 
X.25 packet switching and time division multi­
plexed (TDM) circuit switching.2 Frame relay pro­
vides an X.25-like statistical interface but with 
lower functionality (in terms of error correction 
and flow control) and hence higher throughput, 
because most processing requirements have been 
removed. At the same time, frame relay has the 
higher speed and lower delay qualities of TDM cir­
cuit switching without the need for dedicated full­
time devices and circuits and wasted time slots 
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when no data is being transmitted. The fact that the 
FRBS need not provide error detection/correction 
and flow control relies on the existence of intelli­
gent end-user devices, the use of controlling proto­
col layers (CP~), and high-speed and reliable 
communication systems. Access to the FRBS is via a 
frame relay interface defined between data circuit­
terminating equipment (DCE) on the network side 
and data terminal equipment (DTE) on the user 
side. A typical frame relay configuration is shown 
in Figure 1. 

In 1990, four vendors-StrataCom, Digital 
Equipment Corporation, Cisco Systems, and 
Northern Telecom-collaborated on developing a 
specification called the Frame Relay Specification 
with Extensions.3 This document, edited by 
StrataCom, introduced a local management inter­
face (LMI) to provide control procedures for perma­
nent virtual circuits (PVCs). The LMI was structured 
into a basic, mandatory part and a number of 
optional extensions. It focused on PVCs for frame 
relay point-to-point connections rather than on 
switched virtual connections (SVCs), because SVCs 
are not well suited for LAN interconnection. 

Subsequently, standards have emerged in this 
area that adopt the basic form of the LMI, without 
the optional extensions, as an annex for PVC control 
procedures. These standards do differ, however, 
in some respects. First, the recent standards have 
specified primary rate access (PRA) for the physi­
cal interface rather than Comite Consultatif 

International de Telegraphique et Telephonique 
(CCrIT) Recommendation V.35 for wideband electri­
cal signaling, which was adopted in the or iginal 
joint document.4 Second, the standards include sig­
naling support for SVCs. The frame relay service is 
being standardized by both the American National 
Standards Institute (ANSI) committee , ANSI TISI, 
and the CCITI. 

Frame Protocol 
ANSI used the earlier work as a basis for developing 
the frame protocol to support the data transfer 
phase of the FRBS.5 This protocol op erates at the 
lowest sublayer of the data link layer of the 
International Organization for Standardization/ 
Open Systems Interconnection (ISO/OSI) seven­
layer reference model. The protocol is based on a 
core subset of link access protocol D (LAP-D), 
which is used in the Integrated Services Digital 
Network (ISDN). The frame protocol specifies the 
following characteristics of the frame relay proto­
col data unit (PDU) or frame: 

• Frame delimiting, alignment, and transparency, 
provided by h igh-level data link control (HDLC) 
flags and zero-bit insertion/extraction. 

• Framed integrity verification , provided by a 
frame check sequence (FCS). The FCS is gener­
ated using the standard 16-bit CCITI cyclic 
redundancy check (CRC) polynomial. 

LAN SEGMENT ....i.--..... ---
ROUTER 

FRAME RELAY 
INTERFACE 

FRAME RELAY FRAME RELAY at 
INTERFACE FRAME RELAY INTERFACE 

ROUTER lv-~~ ~~-v1 ....... ~ s- E_R_v_1c_E~~~:'--~~~~~ ROUTER 

LAN SEGMENT LAN SEGMENT 
FRAME RELAY 
INTERFACE 

ROUTER 

LAN SEGMENT ___ ...._ __ _ 

Figure 1 Typical Frame Relay Configuration 
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• Frame relay addressing, using headers of 2, 3, or 
4 octets in length. Figure 2 shows the frame relay 
header formats. An extended address (E/A) bit is 
reserved in each octet to indicate whether or not 
the octet is the last one in the header. 

Most of the header represents the data link con­
nection identifier (DLCI), which identifies the 
frame's virtual circuit. The header may also con­
tain a DLCI or control indicator (D/C) to indicate 
whether the remaining six bits are to be inter­
preted as lower DLCI bits or as control bits. For 
alignment with LAP-D, the header also contains a 
bit to discriminate between commands and 
responses (C/R). This bit is not used for support­
ing frame relay access. 

The DLCI influences the routing of the frame to 
the desired destination. The DLCI is also used to 
multiplex PVCs onto the physical link and 
enables each endpoint to communicate with 
multiple destinations by means of a single 
network access. DLCis may have either global or 
local significance in the network. In the global 
case, the scope of the DLCI extends throughout 
the network such that a particular DLCI always 
identifies the same destination, thus making the 
frame relay network look more like a LAN. In the 
local case, the scope of the DLCI is limited to the 
particular interface. When local DLCis are used, 
the same DLCI can be reused at another interface 
to represent a different connection. 

• Congestion control and avoidance information. 
The frame relay header also contains the forward 
explicit congestion notification (FECN) bit, the 

DLCI (6 HIGH-ORDER BITS) 

Frame Relay Networks 

backward explicit congestion notification 
(BECN) bit, and the discard eligibility (DE) indica­
tor, which are discussed in the Congestion 
Avoidance section. 

Permanent Virtual Circuit 
Control Procedures 
Frame relay PVCs provide point-to-point connec­
tions between users. Although the PVCs are set up 
for long periods of time, they can still be con­
sidered virtual connections because network 
resources (i.e., buffers and bandwidth) are not con­
sumed unless data is being transferred. 

For interface management purposes, the frame 
relay interface includes control procedures based 
on the LMI definition contained in the original 
multivendor specification. These procedures use 
messages carried over a separate PVC identified by 
an in-channel signaling DLCI. The management mes­
sages are transferred across the interface using data 
link unnumbered information frames, as defined 
in CCITI Recommendation Q.922.6 The messages 
use a format similar to that defined in CCITI 
Recommendation Q.931 for ISDN signaling in sup­
port of call control and feature invocation. 1 Each 
message is formed from a set of standardized infor­
mation elements defining the message type and 
associated parameters. The control procedures per­
form three main functions: 

• Link integrity verification initiated by the user 
device and maintained on a continuous basis. 
This function allows each entity to be confident 
that the other is operational and that the physical 
link is intact. 

CIR E/A = 0 

DLCI (4 LOW-ORDER BITS) I FECN I BECN DE EIA = 1 

DLCI (6 HIGH-ORDER BITS) CIR E/A = 0 

DLCI (4 BITS) I FECN I BECN DE EIA=O 

DLCI (6 LOW-ORDER BITS) DIC E/A = 1 

DLCI (6 HIGH-ORDER BITS) CIR EIA=O 

DLCI (4 BITS) I FECN I BECN DE EIA=O 

DLCI (7 BITS) EIA =0 

DLCI OR CONTROL (6 LOW-ORDER BITS) DIC EIA= 1 

Figure 2 Frame Relay Header Formats 
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• When requested by the user, full status network 
report providing details of all PVCs. The user 
would normally request such a report at start-up 
and then periodically. 

• Notification by the network of changes in indi­
vidual PVC status, including the addition of a PVC 
and a change in PVC state (active/inactive). 

The management protocol is defined in Annex 
D of ANSI Tl.617, with equivalent functionality 
also defined in CCITT Recommendation Q.933, 
AnnexA.8,9 

E:ffect on Higher-level Protocols 
Frame relay provides a multiplexed PVC interface 
and, with regard to routing software, can be mod­
eled as a set of point-to-point links. However, the 
characteristics of the frame relay service differ from 
normal point-to-point links. The major differences 
are as follows: 

• Round-trip delay across a frame relay network is 
normally longer than the delay across a dedi­
cated point-to-point link. 

• PVC throughput can be as high as 2 megabits per 
second (Mb/s), whereas many existing leased 
lines operate at lower rates. 

• A single frame relay interface can have multiple 
virtual connections (each one going to a dif­
ferent destination) as compared to the tradi­
tional point-to-point link, which supports a 
single connection. 

Given the specific characteristics just described, 
a frame relay interface may have many more pack­
ets in transit than a conventional point-to-point 
link. Consequently, an acknowledged data link pro­
tocol whose procedures include retransmission of 
data frames is of limited use in this environment. 
For a large number of virtual connections, the mem­
ory required to store the data frames pending 
acknowledgment would be prohibitive. In addition, 
if frames are being discarded due to congestion in 
the frame relay subnetwork, the retransmission 
policy would increase, rather than recover from, 
this congestion. Instead, an unacknowledged data 
link layer should be used. 

Using an unacknowledged data link protocol has 
implications for the routing layer operating over 
frame relay. In particular, the data link can no 
longer be considered reliable, and the routing pro­
tocol must accommodate this characteristic. 
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Congestion Avoidance 
When a frame relay network becomes congested, 
network devices have no option but to drop frames 
once their buffers become full. With an unacknowl­
edged data link layer, the user device will not be 
informed if a data frame is lost. This lack of explicit 
signaling when operating over frame relay net­
works places a requirement on the higher protocol 
layers in the end-system equipment. The OSI trans­
port layer protocol demonstrates how to deal with 
this type of characteristic. The destination end 
system's transport implementation detects data loss 
and requests the source to retransmit the frame. 
The implementation reduces the source's credit to 
one, thus closing the source's transmit window 
and, in effect, reducing traffic through the con­
gested path. 

Frame relay networks are prone to congestion. 
Consider the scenario shown in Figure 3. Note that 
the committed information rate (CIR) represents 
minimum guaranteed throughput. In the configura­
tion shown, the network device can support two 
PVCs: one running at 64 kilobits per second (kb/s) 
and the other at 128 kb/s. With no back pressure 
applied across the frame relay interface, in the 
worse case, the network device will become con­
gested. The router can send frames into the 
network or a particular PVC at 1 Mb/s that will then 
be forwarded at a much slower rate. Once the 
network device's buffers are full, it will discard 
frames. As a result, routing and bridging control 
messages may be lost, thus causing the routing 
topology to become unstable. Since this, in tum, 
will likely lead to looping packets, a network melt­
down could result. 

In addition, if data frames are lost, the higher­
layer protocols in the end system (e.g., the OSI 

transport layer) discover this situation and retrans­
mit the lost frames. Repeated transmission of the 
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Figure 3 Example Configuration of Frame Relay 
Interface Rate and Permanent Virtual 
Circuit Throughput 
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same data causes the effective end-to-end through­
put to drop well below the minimum guaranteed 
throughput. 

The frame relay header has several mechanisms 
that can be used to apply the appropriate back pres­
sure to prevent congestion. 

• The FECN bit is set by the network when a frame 
experiences congestion as it traverses the 
network. In OSI and DECnet Phase V environ­
ments, this bit can be mapped onto the conges­
tion-experienced bit in the header of the 
network layer POU. This POU, when subse­
quently delivered to the destination, allows the 
destination to discover that the path is con­
gested and to notify the source transport to 
decrease its window and thus place less demand 
on the network. Standardization work is cur­
rently under way to add similar support to the 
transmission control protocol/internet protocol 
(TCP/IP). 

• The BECN bit is set by the network when a frame 
traverses a congested virtual circuit in the oppo­
site direction. This indicator is not perfect, 
because there is no guarantee that traffic will be 
generated in this direction on the virtual circuit. 
A source that detects it is transmitting on a con­
gested path is expected to reduce its offered 
load. 

• The DE bit, if set, indicates that during conges­
tion the frame should be the first discarded. The 
procedures for deciding to set this bit are 
not clearly defined. This bit could be set by 
(1) the entry node of the network, e.g., when 
the input offered load is too high, or (2) the 
source user equipment, e .g., to discriminate data 
frames from the more important routing control 
messages. 

Other methods can be used to avoid the conse­
quences of congestion and hence frame loss. The 
LMI defined in the multivendor frame relay specifi­
cation contained an optional extension that 
included a threshold notification bit in the PVC sta­
tus information element of one of the messages. 
The threshold notification bit provided a means of 
allowing a network device to asynchronously 
inform a user device that a particular PVC connec­
tion was congested. The user device could then 
stop transmitting data on the connection until the 
network device informed it that the congestion was 
alleviated. 
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Since the loss of routing control messages can 
cause network instability, an alternative approach 
is to adopt manual configuration. Static network 
configurations use reachable addresses to provide 
routing information such that the transmission 
of routing control traffic is not required. Conse­
quently, the routing behavior is independent of the 
performance of the network. 

In addition, the user device could implement 
rate-based transmission to ensure that virtual cir­
cuits are not congested. However, a means of notify­
ing the user device of the CIR of a virtual circuit was 
included only as an optional extension in the LMI 
specification, and use of such a method would 
destroy one of the major benefits of frame relay, i.e., 
the capability to allocate bandwidth on demand. 

In practice, network devices have limited inter­
nal buffering to store frames; this is reflected in the 
CIR assigned to PVCs. Consequently, data loss occurs 
if user devices consistently transmit data on a PVC 
faster than its associated CIR. Adequate procedures 
and CPLs that cope with congested situations have 
yet to be developed and standardized. As a result, 
such situations may lead to unfairness in a multi­
vendor environment where those users who sup­
port congestion avoidance will lose bandwidth to 
those who do not. 

Products 
Below we describe examples of frame relay prod­
ucts: the StrataCom IPX FastPacket equipment, 
which provides the frame relay network; and 
Digital's DECNIS 500/600 and WANrouter 100/500, 
which support the frame relay service by accessing 
the interface as user equipment. 

The StrataCom !PX FastPacket 
Product Family 
The StrataCom IPX FastPacket product family can 
be used to build networks that support both cir­
cuit-mode voice and data as well as frame relay. 
Within the network, the StrataCom IPX FastPacket 
nodes communicate using a technique based on 
cell switching, which involves the transmission of 
small, fixed-length cells. Additional, high-level 
functions provide services on top of the basic trans­
mission network. StrataCom uses a hardware-based 
switching technique resulting in very high-speed 
switching (100,000 to 1,000,000 cells per second). 
With such high throughputs and low delays, these 
networks have been used for carrying voice, video, 
and data traffic. 
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The StrataCom IPX FastPacket network is config­
ured by network management to provide the 
required virtual circuits between users. The 
StrataCom cell switching mechanism adopts a sin­
gle-cell format for the transmission of all types of 
information, with each cell containing addressing 
information. Routing tables within the network 
nodes use this addressing information to forward 
the traffic along the desired virtual circuit. Since in 
any particular connection the path used for the 
sequence of cells is always the same, cell ordering is 
maintained. Intelligent interfaces at the edge of the 
network provide the functions required for spe­
cific services such as voice and data. 

Figure 4 illustrates the concept employed by 
StrataCom of building service-specific functions on 
top of a common cell switching technology. The fig­
ure shows examples of various types of external 
interfaces. 

For the frame relay interface, StrataCom sup­
ports the optional features defined to address con­
gestion. The IPX FastPacket node provides the 
optional explicit congestion indicators defined in 
the frame header, which are set based on averaging 
queues that build up in the IPX FastPacket nodes in 
the network. Support is also provided for the 
optional threshold notification feature defined as 
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The DECNIS and WANrouter implementations use 
the point-to-point protocol (PPP) for the transmis­
sion of multiprotocol datagrams over point-to­
point links. PPP is defined in Requests for Comment 
(RFCs) 1331 and 1332, with bridging extensions 
specified in RFC 1220; support for DECnet Phase IV 
is defined in RFC 1376 and for OSI in RFC 1377. 10 -14 

Congestion avoidance procedures include support 
for both the threshold notification signal in the LMI 
(when available) and the FECN. The threshold notifi­
cation signal causes the end system to modify its 
rate of data transmission. Receipt of a frame with 
the FECN bit set causes the equivalent bit in the 
network layer POU header to be set, which in turn 
causes the end systems to reduce their offered traf­
fic. The BECN and DE bits are never set or examined. 

Related Activities 
Various committees are involved in activities related 
to the frame relay technology. These activities 
include standards work, specifications, and efforts 
to address technical issues such as interoperability. 

Standards 
The overall frame relay network architecture is 
defined in ANSI Tl.606, Frame Relay Bearer 
Service-Architectural Framework and Service 
Description. 1 Access is provided by the frame relay 
interface, which is defined in various ANSI stan­
dards for both permanent and switched virtual cir­
cuits. ANSI Tl.618, DSSI-Core Aspects of Frame 
Protocol for Use with Frame Relay Bearer Service 
contains a definition of the protocol for exchanging 

Frame Relay Networks 

frames across the interface, as well as annexes 
concerned with local management (e.g., notifica­
tion of PVC status).5 Although all implementations 
to date have focused on a PVC-based interface, SVC 
access is defined in ANSI Tl.617, DSSI-Signaling 
Specification for Frame Relay Bearer Service. 8 

Each of these TISI standards has an equivalent 
CCITI recommendation, as shown in Table l. 

Other Current Activities 
The Internet Engineering Task Force (IETF) is 
developing specifications for RFCs related to 
the frame relay technology. A specification called 
Multiprotocol Interconnect over Frame Relay 
defines an encapsulation mechanism for support­
ing multiple protocols over frame relay networks. 
To allow use of the simple network management 
protocol (SNMP), an experimental management 
information base (MIB) for frame relay DTEs is also 
under development. 

To promote the frame relay technology, a Frame 
Relay Forum has been set up in both North America 
and Europe. A technical committee has been estab­
lished to address issues related to the technology in 
terms of its interoperability and evolution in multi­
vendor environments. This committee actively par­
ticipates with the standards bodies and develops 
implementation agreements and interoperability 
test procedures. Work continues to define a 
network-to-network control interface, multicast­
ing capabilities, multiple protocol encapsulation, 
and interworking with other technologies, such as 

Table 1 Current Status of Frame Relay Standardization 

Standard ANSI Status CCITT Status Remarks 

Architecture T1.606 Standard 1.233 Standard Replaces 1.222 
and SVC 
Description 

Congestion Addendum Standard 1.370 Standard 
Management to T1.606 
Principles 

Data T1.618 Standard Q.922 Standard Most important 
Transfer- (Annex A f rame relay 
Core Aspects corresponds standard 

to T1 .61 8) 

Access T1.617 Standard Q.933 Standard 
Signaling 
forSVCs 

Management Included Standard Included Standard Concepts 
Procedures in T1 .61 7 in Q.933 accepted 
for PVCs Annex D Annex A in CCITI 
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the switched multimegabit data service (SMDS) 

defined by Bell Communications Research, Inc. 15 

The cell switching adopted by StrataCom within 
their network is expected to change over time to 
conform with emerging CCITI recommendations 
for broadband ISDN. 16 These recommendations 
cover asynchronous transfer mode (ATM), which 
defines a standard cell structure and ATM adaptation 
layers (AALs) for particular higher-level functions. 

Summary 
Frame relay is a simplified form of packet-mode 
switching that, at least in theory, provides access 
to high bandwidth on demand, direct connectivity 
to all other points in the network, and consump­
tion of only the bandwidth actually used. Thus, 
to the customer, the frame relay technology offers 
a reduction in the cost of transmission lines 
and equipment and improved performance and 
response time. 

Routers connected to a frame relay network can 
consider the multiplexed, PVC interface as a set of 
point-to-point links. The special characteristics of a 
frame relay network require that special care be 
taken in selecting the data link protocols and in 
handling congestion. 
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An Implementation of the OSI 
Upper Layers andApplications 

Above the transport layer, the open systems interconnection (OSI) basic reference 
model describes several application standards supported by a common upper layer 
protocol stack. Digital's higJ:rpeifonnance implementation of the upper layers of the 
protocol stack concentrates on maximizing data throughput while minimizing con­
nection establishment delay. An additional benefit derived from the implementa­
tion is that, for nonnal data exchanges, the delivery delay is also minimized. The 
implementation features of Digital's two OSI applications-file transfer, access, and 
management (FE4M) and virtual tenninal (VT)-include the use of common code 
to facilitate portability and efficient buffer management to improve perjonnance. 

The open systems interconnection (OSI) basic 
reference model defined in the International 
Organization for Standardization standard ISO 7498-1 
specifies a layered protocol model consisting of 
seven layers. 1 By convention, the first four layers­
physical, data link, network, and transport-are 
referred to as the lower layers. 2 These layers pro­
vide a basic communication service by reliably 
transferring unstructured user data through one or 
more networks. The remaining layers-session, 
presentation, and application-build on the lower 
layers to provide services that structure data 
exchanges and maintain information in data 
exchanges to support distributed applications. 
These three layers are known collectively as the 
upper layers. 

This paper first gives an overview of the OSI 
upper layers and of two application standards-file 
transfer, access, and management (FTAM) and virtual 
terminal (VT). The discussion that follows concen­
trates on the features of Digital's implementation of 
the upper layers and the two applications, with 
emphasis on novel implementation approaches. 

Summary of OSI Upper 
Layer Standards 
The application-independent parts of the OSI upper 
layers are defined in the following standards: 

• ISO 8326 and ISO 8327 -Session Connection 
Oriented Service and Protocol 

• ISO 8822 and ISO 8823-Presentation Connec­
tion Oriented Service and Protocol 
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• ISO 8824-Abstract Syntax Notation One (ASN.l) 

• ISO 8825-Basic Encoding Rules (BER) 

• ISO 8649 and ISO 8650-Association Control 
Service Element (ACSE) 

This section gives an overview of the services 
defined in these standards. The later sections File 
Transfer, Access, and Management Implementation 
and Virtual Terminal Implementation discuss two 
application-specific standards. 

Session Layer 
The transport layer service facilitates the exchange 
of unstructured bytes (i.e., octets) of data. How­
ever, exchanges between components of a distrib­
uted application are often structured. The function 
of the session layer is to standardize some of the 
common exchanges by supplying services that add 
structure to the transport layer exchanges. 

The session-connection-oriented service has the 
three phases typical of all connection-oriented ser­
vices: connection establishment, data transfer, and 
connection release. All structuring of the data 
exchanges occurs in the data transfer phase and is 
accomplished by using either tokens or synchro­
nization. Hence, the connection establishment and 
release phases are not discussed further in this 
paper. 

Tokens are used to control which peer session 
user of a session connection is permitted to invoke 
a particular service or group of services. The 
session layer also provides services to exchange 
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tokens between peer session users. There are four 
types of tokens. 

1. Data, for controlling half-duplex data exchanges 

2. Release, for controlling which session user can 
initiate the release of a session connection 

3. Synchronize-minor, for controlling the issuing 
of the minor synchronization service 

4. Major/Activity, for controlling the issuing of 
major synchronization and activity services 

For example, when the data token has been nego­
tiated on a session connection, session data can be 
sent only by the end that currently has the token. 
Exchanging the data token between the session 
users provides a half-duplex data service. 

The data transfer phase provides synchroniza­
tion by allowing session users to insert major and 
minor synchronization points into the data being 
transmitted. Optionally, each direction of flow can 
have its own set of synchronization points. 

Figure 1 illustrates a data exchange structured as 
a single dialog unit. A dialog unit begins at a major 
synchronization point and terminates either at a 
new major synchronization point or by the release 
of the session connection. Further structure is pos­
sible within the dialog unit by inserting minor syn­
chronization points. 

The session synchronization services allow 
applications to insert synchronization points into 
their data exchanges. These points are application 
specific. The session service also provides a resyn­
chronization service to allow a session user to 
request its peer to resynchronize to an earlier 
synchronization point, for example, to a previous 
point in a file transfer. 

Activities provide an additional structuring ser­
vice. An activity represents a logical piece of work. 
At any moment in time, there is at most one activity 
per session connection. However, several activities 
can exist during the lifetime of a session connec­
tion, and an activity can span session connections. 
The synchronization services can be used with 
activities services. 

------- DIALOG UNIT ------+-

MAJOR 

108 

MINOR MINOR MINOR MAJOR 

Figure 1 Data F.xchange Structured 
as a Dialog Unit 

Presentation Layer 
Different computer architectures and compilers 
use different internal representations (i.e., con­
crete syntax) for data values. Therefore, conversion 
between representations is necessary when com­
municating between dissimilar architectures. The 
intent of the presentation layer is to allow commu­
nicating peers to negotiate the data representation 
to be used on a presentation connection. 

The presentation standards, ISO 8822 and ISO 

8823, distinguish between abstract syntax and 
transfer syntax. Abstract syntax is the definition of 
a data type independent of its representation. 
Typically, data types are defined using the ASN.l 

standard, ISO 8824, which was developed for this 
purpose. ASN.l has a number of primitive data 
types, including INfEGER, REAL, and BOOLEAN, as well as 
a collection of constructed data types, including SET 

and SEQUENCE OF. These primitive and constructed 
data types can be used to define the abstract syntax 
of complex data types such as application protocol 
data units. 

A transfer syntax is the external communication 
representation of an abstract syntax. Values from 
the abstract syntax are encoded according to the 
rules defined in the transfer syntax. A common way 
to define a transfer syntax is in terms of encoding 
rules. For example, these rules may indicate how an 
INTEGER value is represented or how to encode a 
SEQUENCE OF data type. A widely used transfer syntax 
is the basic encoding rules specification, ISO 8825. 

An abstract syntax can be encoded using differ­
ent transfer syntaxes, of which there are many The 
role of the presentation layer is to negotiate the set 
of abstract syntaxes to be used on a particular pre­
sentation connection and to select a compatible 
transfer syntax for each of these abstract syntaxes. 
This process ensures that both peers agree on the 
data representation to be used in data exchanges. 

Application Layer 
The application layer supports distributed interac­
tive processing, that is, the communication aspects 
of distributed applications such as FTAM (defined 
by ISO 8571), directory service (defined by ISO 

9594), and VT (defined by ISO 9040 and ISO 9041). 
Unlike for the session and presentation layers, 
numerous application layer protocols and services 
exist-at least as many as there are distributed 
applications. 

The application layer structure specified in 
ISO 9545 defines a model for combining these 
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protocols in the same system. The functions for a 
particular application are grouped together to form 
an application service element (ASE). FfAM, vr, and 
directory service are examples of ASEs and are the 
basic building blocks of the application layer. One 
or more ASEs are combined to form an application 
entity (AE). An AE represents a set of communica­
tion resources and can be thought of as a program 
on a disk. An invocation of an AE (i.e., execution of 
the program) can contain one or more instances of 
an ASE with one or more application associations, 
i.e., application layer connections. The AE specifica­
tion also defines the rules for interaction between 
ASEs operating over the same association as well as 
interactions between associations. 

An ASE required by all applications is called the 
association control service element (ACSE). The 
ACSE, defined by ISO 8649 and ISO 8650, is the ser­
vice and protocol required to establish an applica­
tion association. Therefore, an AE always contains 
at least the ACSE. 

An application association is mapped onto a pre­
sentation connection; no other application associa­
tion can share this presentation connection. In this 
way, applications gain access to the presentation 
and session data phase services. 

New OSI Upper Layer Implementation 
Digital's implementation of the OSI upper layers, 
namely OSAK, includes session, presentation, and 
ACSE services. Users of OSAK can thus establish 
application associations and use session and pre­
sentation services during the data transfer phase. 

Aims 
In 1988, when Digital decided to produce a new 
version of OSAK, three aims were considered 
paramount: high performance, maintainability, and 
portability 

Performance High performance of the OSI upper 
layers is essential to producing competitive OSI 
products. Because all OSI applications use these 
upper layers, the performance of OSAK affects these 
applications. Therefore, OSAK aims to maximize 
data throughput and to minimize connection estab­
lishment delays. This improved performance is 
achieved by maximizing the use of the communica­
tion pipe and minimizing the local processing 
requirements. The process involves 
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1. Amalgamating upper layer state tables. The ser­
vices provided by the presentation and session 
layers are similar. Also, connection establish­
ment and release in the ACSE is basically the same 
as in the other two upper layers. Therefore, the 
three state tables can be combined into a single 
state table, thus improving performance by 
reducing the overhead. This amalgamation elim­
inates the need to manage links between state 
tables, requires all predicates to be tested in only 
one place, and generates only one state transi­
tion or action per inbound event. 

2. Treating the presentation service P-DATA as a 
special case. The presentation service P-DATA 
is the most frequently used service, and hence, 
its performance has the greatest impact on data 
throughput. By fast-laning the processing of the 
P-DATA service, the normal overheads associated 
with the combined state table processing are 
avoided. 

3. Good buffer management. The new application 
programming interface (API) to OSAK enables 
efficient use of buffers. We eliminated all copy­
ing of user data within OSAK by taking advantage 
of user buffers. On an outbound service, an 
OSAK user is requested to leave space at the start 
of the user data. If there is sufficient space, we 
add the OSI upper layer protocol control infor­
mation (PCI) to the user buffer. This buffer is 
then sent to the transport provider. Otherwise, 
we allocate an OSAK-specific buffer using a user­
supplied memory allocation routine. 

Before receiving an inbound service, the user 
must pass at least one user buffer to OSAK. This 
buffer is used to receive the inbound transport 
event (both user data and upper layer PCI). The 
upper layer PCI is decoded before the user 
buffers are returned. In addition to being 
extremely efficient, this approach has the advan­
tage of allowing OSAK users to exert inbound 
flow control; if OSAK is not given any buffers, no 
transport events will be received. Also, this buf­
fering scheme simplifies resource management 
in OSAK. As OSAK does not have any of its own 
resources, they all come from OSAK users. One 
OSAK user cannot interfere with the operation of 
another OSAK user by consuming all OSAK 
resources. 

4. Parsing only the upper layer headers. The pre­
sentation layer standards model the mapping 
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between concrete (internal) and transfer (exter­
nal) representation of data values. In particular, 
the presentation state tables contain predicates 
to verify that all user data is from a current pre­
sentation context. Since the best place for 
encoding and decoding is in the application 
itself, OSAK does not implement these predi­
cates. Rather, OSAK assumes that its users have 
correctly encoded their own protocol and will 
detect any problems when decoding. 

5. Trading memory for performance. All encoding 
and decoding of upper layer PCI is done with 
in-line code. More compact coding is possible 
using subroutines but at the cost of performance. 

6. Minimizing parameter checking. Most parame­
ters are pointers to user buffers. To check the 
validity of all pointers is time-consuming and, 
consequently, costly. Therefore, OSAK assumes 
that the pointers do indeed point to the user's 
memory. 

Maintainability The code for the new version of 
OSAK is easier to maintain than the previous code. 
As stated earlier in this section, a major step in 
improving the maintainability was the use of amal­
gamated state tables. A single state table eliminates 
links between tables, reduces the amount of main­
tenance required, and thus simplifies the code. In 
addition, using a single table makes it easier to seri­
alize events. With multiple state tables, an inbound 
transport event can trigger a conflicting state 
change in the session state table at the same time a 
user request is changing the presentation state 
table. Using a single state table for a particular con­
nection ensures that only one event (i.e., either a 
user or a transport event) is active in the state table 
at any given time. 

The state tables are written in M4 macroproces­
sor notation. Thus, the OSAK state table definition 
is similar to an OSI protocol specification; this 
improves readability. Macros are also used exten­
sively to handle common buffer manipulation and 
the encode and decode functions. Although macros 
are preferred over subroutines to improve perfor­
mance, macros can be converted, at the expense of 
slower performance, should a more compact ver­
sion of OSAK be required. 

Portability The new version of OSAK is designed 
to facilitate portability of applications using both 
the OSAK API and OSAK itself. The new OSAK API 
is designed to be common across all platforms 
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and thus assists porting applications between 
platforms. The only major difference between 
the versions for the ULTRIX and the OpenVMS 
operating systems is the way events are signaled. 
The ULTRIX implementation supports both a poll­
ing model and an event-driven or blocking model. 
With the polling model, the OSAK user repeatedly 
calls OSAK routines to test for completion of an 
event; the routines used are osak_collect_pb() 
or osak_get_event( ) . In the blocking model, the 
OSAK user blocks awaiting the event, with the 
osak_select() routine. 

These three routines are available to OpenVMS 
applications. In addition, the OpenVMS implemen­
tation supports event notification by asynchronous 
system traps (ASTs). 

Also, the OSAK API is similar to XAP, the X/Open 
API to the OSI upper layers. To support OSAK on 
multiple platforms, as far as possible, OSAK code 
is common to all platforms. The main differences 
are the interface to the transport layer and the 
Open VMS support for ASTs. Over 90 percent of the 
code is common to the ULTRIX and the OpenVMS 
versions. 

Performance Measurements 
Two performance metrics, throughput and connec­
tion establishment delay, were measured between 
two DECstation 3100 workstations connected by a 
lightly loaded Ethernet communications network. 
The DECstation machines were running ULTRIX 
V4.2 with DECnet-ULTRIX VS.I. OSAK accessed OSI 
transport through the X/Open transport interface 
(XTI) in nonblocking mode. 

For throughput measurements, two programs 
were used: an initiator and a responder. The initiator 

1. Establishes an association. 

2. Reads the system time. 

3. Transmits 2,000 buffers of data as quickly as pos­
sible. These user buffers contain sufficient space 
for the upper layer headers. When a send request 
fails due to flow control, the sender waits using 
the ULTRIX system call select(2) until the flow 
control is removed. The sender then collects the 
user buffers with the osak_collect_pb() routine 
before continuing with the send loop. 

4. Reads the system time and calculates the time 
required to transmit the 2,000 buffers. 

5. Releases the association. 
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The responder 

1. Accepts an association request 

2. Loops, waiting for a transport event using the 
ULTRIX system call select(2), and then collects 
the data using the osak_get_event() routine 
until all 2,000 buffers have been received 

3. Responds to the request to release the association 

Table 1 records the throughput measurements 
for various buffer sizes ranging from 10 to 16,000 
(16K) octets per buffer. 

The data presented in Table 1 indicates that for 
small buffers, the throughput is poor. This low per­
formance is due to the system overhead associated 
with processing a send request, independent of the 
amount of data to be transmitted. However, the 
throughput rapidly improves until the buffer size 
reaches 4K octets. From this size on, the through­
put measurement is almost flat at between 507K 
and 528K octets per second. The variation is due to 
fragmentation in the lower layers. The number of 
send requests flow controlled represents the num­
ber of times a send request was delayed because of 
flow control by the transport service in the course 
of transmitting the 2,000 buffers. 

We profiled the initiator and the responder. For 
buffers ranging in size from 10 to 16K octets, the ini­
tiator spent more than 90 percent of the time in 
transport. For the responder, the percent of time 
spent in transport varied between 60 percent for 
IO-octet buffers and 92 percent for SK-octet 
buffers. The remaining time was spent primarily in 
select(2), waiting for and processing the next 

Table 1 Throughput Measurements for 
Digital's OSI Upper Layer 
Implementation 

Number of 
Buffer Size Throughput Send Requests 
(Octets) (Kilooctets/s) Flow Controlled 

10 6.60 2 
100 56.80 4 
512 216.00 35 

1,024 266.60 794 
2,048 372.60 862 
4,096 453.70 1,151 
6,000 507.00 1,217 
8,124 528.80 596 
8,125 507.10 651 

10,000 527.20 751 
13,000 522.20 1,101 
16,000 505.27 1,279 
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inbound event. Also, for the small buffers, a signifi­
cant amount of time is consumed by initializing the 
user parameter block before returning it to the user. 

We also used the throughput program to mea­
sure the connection establishment time. The pro­
gram read the system time before and after the 
association establishment phase; the average con­
nection establishment time was 0.08 seconds. In 
addition, tests on the new OpenVMS implementa­
tion indicate that throughput improved two to 
three fold as compared to the OSAK code in the pre­
viously existing Open VMS implementations. 

Both the throughput and profile data indicate 
that the transport performance dominates the per­
formance of OSAK. Therefore, OSAK has met its 
design goal of reducing the overhead of the OSI 
upper layers to a very low level. Meeting this goal 
was necessary because poor OSAK performance 
would impact all OSI applications supported by 
OSAK. While further reductions in overhead are 
possible, such savings would be at the expense of 
OSI upper layer functionality. 

File Transfer, Access, and 
Management Implementation 
This section presents a summary of the ISO FTAM 
standard and details of Digital's implementation of 
this standard. 

Summary of the ISO FD1M Standard 
ISO 8571 File Transfer, Access, and Management 
(FfAM) is a five-part standard consisting of a general 
introduction, a definition of the virtual file store, 
the file service, the file protocol definitions, and 
the protocol implementation conformance state­
ment proforma. The FTAM standard defines an ASE 
for transferring files and defines a framework for 
file access and file management. 

Initiator and Responder FfAM service and proto­
col actions are based on a client-server model. In 
the FfAM standard, the client is referred to as the ini­
tiator, and the server is referred to as the responder. 

The initiator is responsible for starting file ser­
vice activity and controls the protocol actions that 
take place during the dialog (or FTAM association) 
between two FTAM applications. For example, the 
initiator has to request that an FfAM association be 
established, that a file be opened on a remote sys­
tem, and that a file be read from a remote system. 

The responder passively reacts to the requests of 
the peer initiator. The responder is responsible for 
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managing the virtual file store and mapping any vir­
tual file attributes into local file attributes. 

Virtual File Store Many architectures and imple­
mentations of file systems exist, and storing and 
accessing data can differ from one system to 
another. Therefore, a mechanism is needed to 
describe files and their attributes independent of 
any particular architecture or implementation. The 
mechanism used in the FTAM is called the virtual file 
store. The FTAM virtual file store model consists of 
file attributes, activity attributes, file access struc­
ture, and document types. 

File attributes describe the properties of the file, 
which include the size and the date of creation. 
FTAM file attributes also define the types of actions 
that can be performed on a file . Read access or 
create access are examples of file actions. 

Activity attributes are properties of the file, 
w hich are in effect for only the duration of the FTAM 
association. Examples of activity attributes are 
current access request, current initiator identity, 
and current concurrency control. Current access 
request conveys the access control applied to the 
file, e.g., read or write access. Current initiator iden­
tity conveys the name of the initiator accessing the 
virtual file store. Current concurrency control con­
veys the status of the locks applied by the initiator. 

The FTAM file access structure is hierarchical and 
produces an ordered tree that consists of one or 
more nodes. This file access structure is defined in 
ASN.l and can be used to convey the structure of 
a wide variety of files. 

In the FTAM virtual file store model, document 
types specify the semantics of a file's contents. The 
FTAM standard defines four document types. 

• FTAM-1, unstructured text files 

• FTAM-2, sequential text files 

• FTAM-3, unstructured binary files 

• FTAM-4, sequential binary files 

The virtual file store model provides a framework 
for defining many different file types, including 
those not supported by the standardized document 
types. The U.S. National Institute of Standards and 
Technologies (NIST) has used the virtual file store 
model to define document types to support various 
file types, such as indexed files. 

FTAM File Service The FTAM file service is a func­
tional base for remote file operations. Functionality 
defined by the FTAM file service is broken down 
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into subsets of related services. The subsets of func­
tionality are called functional units. Functional 
units are used by the FTAM protocol to convey a 
user's requirements. For example, the standard 
defines the read functional unit, which allows an 
implementation to read whole files, and the file 
access unit, which allows an implementation to 
access records in the file. 

In addition, the FTAM standard defines the follow­
ing classes of file service: transfer, management, 
transfer and management, access, and uncon­
strained. Each service class is composed of a set of 
functional units. For example, an FTAM implementa­
tion that supports the transfer service class will be 
able to either read or write files. 

New FTAM Standard Work Modifications to the 
FTAM standard are in progress in the ISO. The most 
important modification is the file store manage­
ment addendum, which specifies how wild cards, 
file directories, and references (links) to files are to 
be handled in an OSI environment. The addendum 
also specifies how to manipulate groups of files. In 
the current version of the standard, only one file 
can be selected at a time. 

Digital's FrAM Implementation 
Digital's FTAM products, available for the OpenVMS 
and ULTRIX operating systems, support FTAM appli­
cations in both the role of initiator and the role of 
responder. The initiator applications allow users to 
copy, delete, rename, list, and append files. In the 
OpenVMS version, the initiator applications are 
integrated into the Digital Command Language 
(DCL) so that the user can continue to use the 
COPY, DELETE, DIRECTORY, and RENAME com­
mands. Where the FTAM service and protocol is 
used to support these commands, the additional 
qualifier /APPLICATION=FTAM is required. In the 
ULTRIX version, the same functionality is provided 
using the set of commands ocp, orm, ols, ocat, 
and omv. These commands have the same seman­
tics as the corresponding ULTRIX commands cp, 
rm, ls, cat, and mv, respectively, and are similar 
to the set of DECnet file transfer utilities of dcp, 
drm, dls, and dcat. (Note that the set does not 
include dmv.) 

The responder applications allow users to cre­
ate, read, write, delete, and rename files. File 
access, i.e., the location of specific records in a file, 
is also supported by the responder applications. 
The OpenVMS responder application supports file 
locking and recoverable file transfer. 
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Digital's initiator and responder applications sup­
port the following FTAM document types: 

• FTAM-1 

• FTAM-2 

• FTAM-3 

• NBS-9, FTAM file directory 

Programmatic Interface The FTAM API is com­
mon across all platforms and shares a "look and 
feel" with the OSAK APL The FTAM API allows access 
to all FTAM services and parameters through the 
use of a single parameter block and five library 
calls. 

• osif_assign_port() 

• osif_deassign_port() 

• osif_getevent() 

• osif_send() 

• osif_give_buffers() 

The FTAM API can be used to create either initiator 
or responder applications. 

Protocol Gateways Digital's FTAM products sup­
port two protocol gateways: an FTAM/file transfer 
protocol (FTAM/FTP) gateway is available on the 
ULTRIX version, and an FTAM/data access protocol 
(FTAM/DAP) gateway is available on the OpenVMS 
version. The FTAM/FTP gateway supports bidirec­
tional protocol translation. Files on internet hosts 
can be accessed through the gateway using FTAM; 
files on OSI hosts can be accessed through the gate­
way by using FTP. 

Implementation Features Portability, maintain­
ability, and performance were the major goals of the 
FTAM implementation. To achieve these goals we 

1. Created a common code base. The code is imple­
mented using the C programming language. The 
FTAM protocol machine and the initiator and 
responder application programs are imple­
mented such that a large amount of the code can 
be used across multiple platforms. These mod­
ules are referred to as common code modules. 
Any system-specific code, which represents 90 
percent of the code, is placed in system-specific 
modules. All other modules are common to both 
the ULTRIX and the Open VMS versions. 
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2. Hid interface dependencies from FTAM. To aid in 
the porting of code to different platforms, the 
FTAM implementation makes no direct calls to 
system-specific interfaces. 

3. Provided good buffer management. The FTAM 
implementation uses the same buffer manage­
ment model as OSAK, described earlier in the sec­
tion New OSI Upper Layer Implementation. 

Virtual Terminal Implementation 
Digital also implemented the OSI virtual terminal 
application standards. Details of the standards and 
features of the implementation follow. 

Summary of the VT Standards 
ISO 9040 and ISO 9041 are the two international 
standards that define the OSI virtual terminal. ISO 
9040 is concerned primarily with specifying a 
model for a virtual terminal basic class service; ISO 
9041 defines the protocol to be used. 

OSI virtual terminals are divided into five classes, 
based on functionality.3 

1. Basic-data consisting of rectangular arrays of 
characters 

2. Forms-data consisting of characters arranged 
in fields of variable size and shape, with the 
manipulation of content controllable for each 
field 

3. Text-data representing document structures as 
covered by the Office Document Architecture 
standards (ISO 8613 series) 

4. Image-data representing images composed of 
arrays of dots, i.e., pixels 

5. Graphics-data representing computer graphics 
elements, such as lines and circles 

To date, most of the work within the ISO has con­
centrated on the basic terminal class, i.e., basic 
class virtual terminal (BCVf). An OSI virtual termi­
nal implementation provides a mechanism that 
allows a user to interactively access another OSI 
system, when not directly connected to it. Since a 
variety of systems and terminals exist that are not 
necessarily compatible with each other, the ISO vr 
protocol provides a means by which dissimilar ter­
minals and systems may interact. 

An example of a dissimilar terminal and system 
interacting by means of a vr would be the action of 
deleting a typed character. Some systems expect 
the terminal user to enter the <delete> character 
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as an indication of the intent to delete, whereas 
other systems may expect the user to enter a 
<backspace> character. vr resolves these differ­
ences by translating the local action into a virtual 
action. The action in our example becomes the 
virtual actions of decrementing the current cursor 
position and erasing the character at the current 
location. A cooperating implementation would 
then translate these virtual actions into an appro­
priate local action. 

The vr protocol is very powerful in the respect 
that the protocol definition provides many options 
and features that allow the support of complex ter­
minal models. During association establishment, 
cooperating implementations agree on the subset 
of the protocol and the terminal model to be used. 
The protocol subset and terminal model are 
referred to as the profile. In addition, vr provides 
two modes of operation: asynchronous (A-mode), 
which may be thought of as full-duplex operation, 
and synchronous CS-mode), which may be thought 
of as half-duplex operation. 

The ISO base standards define two basic profiles, 
one for each mode. Additional profiles have also 
been defined ( or are being prepared) by the 
regional OSI workshops. Currently, the OpenVMS 
and ULTRIX implementations of the vr protocol 
both support the following profiles: 

1. TELNEf-1988, which mimics the basic functional­
ity found in the transmission control protocol/ 
internet protocol teletype network (TCP/IP 
TELNET) environment 

2. Transparent, which allows the sending and 
receiving of uninterpreted data 

3. A-mode- default, which provides basic A-mode 
functionality 

Digitals VT Implementation 
Digital's vr implementation provides both initiator 
and responder capabilities. In addition to describ­
ing the features of the implementation, this section 
compares the vr protocol with other network ter­
minal protocols. 

Initiator and Responder The vr implementation 
for both the ULTRIX and the Open VMS systems pro­
vides the capability to act as either an initiator (a 
terminal implementation) or a responder (a host 
implementation) . The initiator is responsible for 
establishing an association with the responder 
based on information provided by the user, such as 
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the desired profile. The responder is responsible for 
accepting the peer association request and for creat­
ing an interactive context for the remote peer user. 

On the Open VMS system, the vr protocol initia­
tor is invoked by the DCL command SET HOST/Vf P; 
on the ULTRIX system, the vr protocol initiator is 
invoked using the ologin command. 

Implementation Features The vr implementa­
tion uses the OSAK interface outlined earlier in the 
paper. The goals of the vr implementation were to 
provide a highly portable, very efficient, and easily 
extensible code. 

To achieve the goal of portability, the implemen­
tation was divided into two major components: 
interface to the OSI environment and the non-OSI 
interfaces (e.g. , to terminals). The OSI component 
is completely portable to multiple p latforms. The 
non-OSI component is platform specific and must 
be rewritten for each unique platform. The inter­
face between these components consists of six 
basic functions, which must be supported on all 
platforms. 

• Attach/detach-to attach and detach the non­
OSI environment 

• Open/close-to open or close a specific connec­
tion into the non-OSI environment 

• Read/write- to read or write data between the 
OSI and the non-OSI environments 

Because each function is simple and clearly 
defined, the amount of platform-specific code 
required for implementation is minimal. For exam­
ple, the read function on the ULTRIX implementa­
tion is only 10 lines of code. The implementation is 
therefore highly extensible to different platforms. 

Performance of the vr protocol implementation 
is enhanced by using preallocated buffer pools. 
This approach to buffer management eliminates the 
overhead of dynamically allocating buffers. 

Our vr protocol implementation not only 
implements the ISO vr protocol but also provides 
a gateway to and from other terminal protocol envi­
ronments. We provide gateways to TELNEf and to 
the Local Area Transport (LAT) on both the 
OpenVMS and the ULTRIX versions. In addition, we 
have a Vf/command terminal (Vf/CTERM) gateway 
on the ULTRIX version. 

Comparison of the VT Protocol with Other 
Network Terminal Protocols Most comparisons 
with network terminal protocols deal with echo 

Vol. 5 No. 1 Winter 1993 Digital Technical Journal 



An Implementation of the OSI Upper Layers and Applications 

response time, that is, how long it takes for a char­
acter to echo to a display after being typed at the 
keyboard. vr, like TELNET and CTERM, can operate 
in two different echo modes: remote, where the 
echo is achieved by means of the remote host; and 
local, where the echo is accomplished through the 
local host. A number of factors contribute to 
response time in a remote echo situation, including 
protocol overhead and line speed. TELNET has little 
protocol overhead; in fact, for most situations, 
transferring normal data requires no additional 
overhead. vr protocol overhead is approximately 
30 to 1 for a typical A-mode profile, that is, 30 octets 
are required to carry 1 octet of user data. vr over­
head may seem excessive when compared with 
TELNET. However, the vr protocol provides many 
additional capabilities that TELNET does not, such 
as the ability to accurately model different terminal 
environments. Additionally, the 30 octets of over­
head does not increase significantly when larger 
amounts of user data are transferred. 

The largest gains for the vr are in the area of 
S-mode profiles. S-mode profiles enable most char­
acter echoing to be done locally. By using an appro­
priate S-mode profile, the vr implementation can 
provide sophisticated local terminal operations. 
Thus, it is possible to edit an entire screen of text 
and then to transmit it all at once to the remote 
host. The ability to process large amounts of termi­
nal input as batch jobs has many advantages, includ­
ing reduced network bandwidth requirements, 
reduced CPU requirements of the remote host 
(since the remote host is no longer involved in char­
acter echo), and increased user satisfaction (since 
users experience no network delays for character 
echo). 

Summary 
Goals common to the OSAK, FTAM, and vr protocol 
projects included good performance and portabil­
ity of implementation. Performance is especially 
important for OSAK, because it supports all other 
OSI applications. Maximizing the use of common 
code and reducing system dependencies in the 
three projects significantly reduced the engineer­
ing effort to port an implementation from one plat­
form to another. This savings in human resources is 
necessary, given the growing set of hardware and 
operating platforms supported by Digital. Equally 
important is the integration of OSI applications with 
their non-OSI counterparts, for example, the ocp 
and ologin functions and the protocol gateways. 
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DECnet/OSI Phase V incorporates a new network management architecture based 
on Dtgital's Enterprise Management Architecture (EMA). The EMA entity model was 
developed to manage all entities in a consistent manner, structuring any manage­
able component regardless of its internal complexity. The DNA CMIP management 
protocol was developed in conjunction with the model to express the basic concepts 
in the entity model. Phase V network management is extensible; the Phase V 
management architecture transparently assimilates new devices and technolo­
gies. Phase V was designed to be an open architecture. Management of DECnet/OSI 
Phase V components is effective in a multivendor network. 

Network management has been an integral part of 
DECnet since 1976 when Phase II was developed.' 
Even at that early stage of the DECnet architecture, 
an effective management capability was recognized 
as an essential part of an organized approach to 
networking. Now in DECnet Phase V, the DECnet 
network management architecture has undergone 
a major revision based on Digital's Enterprise 
Management Architecture (EMA). This paper gives 
an overview of some of the key features and func­
tions of EMA and of DECnet Phase V network man­
agement. See the "Overview of Digital's Open 
Networking" paper in this issue for an overview of 
the guiding principles, background, and architec­
ture of DECnet Phase V.2 

Our initial work on Phase V indicated that 
changes were needed in the network management 
architecture to support the broad range of network­
ing functions planned for Phase V. First, network 
managers would have to be able to manage all the 
Phase V components in a consistent manner. A 
method was needed to build Phase V management 
components that would give the same general look 
and feel and the same modeling approach to all 
components. 

Second, Phase V network management would 
have to be extensible. The Phase V network archi­
tecture was being designed to allow the use of mul­
tiple modules that would provide the same or 
similar services at each layer and to simultaneously 
support multiple-layer protocols in a network. 
Therefore, we designed the Phase V manage­
ment architecture to transparently assimilate new 
devices and technologies. Our management archi-
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tecture had to become as extensible as the network 
architecture. 

Finally, since Phase V was designed to be an open 
architecture, management of Phase V components 
would have to be effective in a multivendor net­
work. Our design had to ensure that the ability to 
provide effective management of network compo­
nents was independent of the vendors supplying 
them. 

The individual management mechanisms used in 
Phase IV could have been extended to accommo­
date all the changes planned for Phase V. However, 
we felt it was time to revisit the basic network man­
agement architecture to see if we could find a uni­
fied approach that would provide a superior 
solution. 

Enterprise Management 
Architecture 
We began our Phase V development project by 
examining in detail the requirements for a new 
network management architecture. Our goal was to 
design an open architecture that allowed for consis­
tent management of an extensible array of network 
components in a multivendor environment. As we 
identified the specific requirements that would 
have to be addressed to meet this goal, we realized 
that we had the opportunity to develop an architec­
ture that went beyond management of Phase V net­
works. We realized that we could provide an 
architecture for the management of both networks 
and systems. The architecture eventually became 
known as the Enterprise Management Architecture 
or EMA. 
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Early in the project, we recognized that the con­
ceptual separation of manageable components 
from the software that manages them was a funda­
mental design principle. EMA therefore distin­
guished entities, the basic components of the 
network that had to be managed, from directors, 
the software systems and accompanying applica­
tions used by managers to manage the components, 
as shown in Figure 1. 

Formally, an entity was further split into a ser­
vice element, a managed object, and an agent. The 
service element is the portion of the entity that per­
forms the primary function of the entity, e.g., a data 
link layer protocol module whose primary purpose 
is communication with a peer protocol module on 
another machine. The managed object encapsu­
lates the software that implements the functions 
supported by the entity for its own management. 
For example, it responds to management requests 
for the current values of state variables or to 
requests for the values of certain configuration vari­
ables to be set to new values. The agent is the soft­
ware that provides the interface between the 
director and the managed object. The agent encodes 
and decodes protocol messages it exchanges with 
the director and passes requests to and receives 
responses from the managed object. 

Informally, we generally equate the managed 
object and the entity because the managed object 
defines what the manager can monitor and control 
in the entity. 

A director was modeled as a layered software 
system that provides a management-specific envi­
ronment to management applications. A director 
was split into a framework, a management informa­
tion repository (MIR), and separate configurable 
software modules called management modules. 
The director kernel provides common routines 
useful for the layered software modules, including 
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Figure I The Basic Entity/Director Split 
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services such as dispatch (location-transparent 
exchange of management requests and responses 
with entities), encoding/decoding, data access, 
data dictionary access, and event management. 
Taken together, the director kernel and the agent 
provide a framework for managed objects and man­
agement applications to interact. The framework 
provides an application programming interface 
(API) to managed object and management module 
developers. The MIR contains data about particular 
entities as well as information about the structure 
and other properties of entity classes, which the 
director software also knows. 

Management modules were distinguished as 
presentation, function, or access modules. Presen­
tation modules implement user or software access 
to the director management modules that is device 
independent and style dependent. Function mod­
ules provide value-added management functions 
that are partially or completely entity independent, 
such as network fault diagnosis, event or alarm han­
dling, or historical data recording. Access modules 
provide a consistent interface to the basic manage­
ment functions performed by entities. In addition, 
they include one portion that maps operations on 
entities into the appropriate protocol primitives 
and another portion that implements the protocol 
engine for the relevant management protocol. 
Figure 2 shows the components of a director and 
an entity. 

Although users can conveniently interact with 
systems through graphical user interfaces (GUis), 
sophisticated users wished to preserve a command 
line interface (CU) they could use to specify com­
plex management requests quickly. Therefore, we 
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Figure 2 A Framework View of EMA 
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developed a single, extensible command language 
that would allow human operators or software pro­
grams to communicate requests to management 
modules and (ultimately) entities in a consistent 
fashion. This work developed into the network 
control language (NCL). An NCL command specifies 
an entity, an operation to be performed by the 
entity, a list of arguments (if any), and a list of quali­
fiers (for specifying users, passwords, paths, filter­
ing values, etc.). 

Digital's DECmcc Management Director is an 
implementation of an EMA director.3 The DECmcc 
product provides a platform for the development of 
new management capabilities and offers specific 
Phase V management capabilities as well as a num­
ber of generic network management tools. The 
DECmcc director supports both GUI and NCL cu 
user interfaces. 

Entity Model 
To manage all entities in a consistent manner, we 
required a single, consistent method for structuring 
any manageable component (regardless of its inter­
nal complexity) and for describing its management 
properties: the operations that it can perform, the 
variables it makes available for its management, the 
critical occurrences it can report to managers, etc. 
The EMA entity model was developed to answer 
these needs. The structure of a manageable compo­
nent in this model is shown in Figure 3. Essentially, 
the entity model defines techniques for specifying 
an object-oriented view of an entity. Each entity has 
the following properties: 

• A position within an entity hierarchy. To ease 
management of networks with large numbers 
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of complex components, entity classes are orga­
nized into logical structures that reflect the rela­
tionship of their corresponding components; 
individual entities are named in terms of that 
structure. The name of the top-level entity 
in each structure is globally unique, and it is 
referred to as a global entity. All its child entities, 
however, have names that are unique only within 
the context of their level in the structure. 
Therefore, they are referred to as local entities. 

• A hierarchically structured name. An individual 
entity's local name is constructed by concatenat­
ing its class name to its instance identifier. The 
class name is a keyword that uniquely identifies 
the class ( object type) of an entity. The instance 
identifier is the value of an identifying attribute 
used for naming instances of the entity's class, 
for which each instance of the class has a unique 
value. 

A target entity's globally unique name is con­
structed by concatenating its local name 
(a <class name, instance identifier> pair) to the 
local names of each of its ancestors in tum, 
beginning with the containing global entity and 
ending with the target entity's immediate 
parent. The construction of an entity's name 
and the containment hierarchy are shown in 
Figure 4. 

• A collection of internal state variables, called 
attributes, that can be read and/or modified as a 
result of management operations. Attributes 
have names unique within the context of the 
entity. Attributes have a type that defines the val­
ues the attribute can have. 

• A collection of operations that can be per­
formed by the entity. Operations allow man­
agers to read attributes, modify attributes, and 
perform actions supported by the entity. Actions 
are entity-specific operations that result in 
changes of state in the entity or cause the entity 
to perform an operation that has a defined 
effect. 

• A collection of events that can be reported asyn­
chronously by the entity. An event is some nor­
mal or abnormal condition within an entity, 
usually the result of a state transition observed 
by its service element or its agent. Event reports 
are sent asynchronously to the manager; they 
indicate the type of (entity-specific) event that 
occurred and may also contain arguments that 
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Figure 4 Managed Object Naming Hierarchy 

further describe or qualify the event. For exam­
ple, arguments could indicate the number of 
times the event occurred before a report was 
sent to announce that a threshold was reached, 
or give the old and new states in an event that 
reports a state transition. 

• A specification of the behavior of the entity in 
relationship to the functions that the entity's ser­
vice element provides. This is usually specified 
as some abstract state machine, through pseudo­
code, or as a set of preconditions, postcondi­
tions, and invariants. 

The entity model provides specific requirements 
and recommendations about the way entities can be 
modeled in terms of these properties. These restric­
tions, placed on entity class definitions for purposes 
of both internal and global consistency, take several 
forms: (1) restrictions on the types and ranges of 
attributes that can be used for various purposes 
(e.g., as identifying or counter attributes); (2) con­
straints on operations (e.g., examine operations 
can have no side effects on the value of attributes 
whose values they report); or (3) restrictions on 
events (e.g., all events and event reports must have 
an associated time stamp and unique identifier). 

Readers familiar with open systems interconnec­
tion (OSI) management will find the entity model 
very similar to OSI's structure of management infor­
mation (SMI) standard.4,5 This is no coincidence. 
During the early development of Phase V and the 
entity model, we recognized the need for an open 
management architecture. Portions of the technol-
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ogy were therefore contributed to ISO/IEC JTC 1 
SC21/WG4, a working group of the International 
Organization for Standardization (ISO) that is 
responsible for efforts to define standards for OSI 
management. Although some details of OSI SMI and 
the corresponding EMA features diverged slightly 
from each other during their evolution, the EMA 
entity model and OSI SMI are still compatible. At this 
writing, work is under way to align certain parts of 
the EMA entity model with the final international 
standard (IS) versions of OSI SMI. 

Entities 
The EMA entity model describes how to specify the 
management of an architected subsystem. How­
ever, for Phase V, we chose to make the manage­
ment sp ecification of a subsystem a part of the 
subsystem's specification. As described in the 
Modules section, that may have been the most 
important decision made in the network manage­
ment architecture. 

As the entities for DECnet/OSI Phase V were 
defined, a collection of folklore grew on how typi­
cal design issues could or should be solved. As with 
any folklore, these guidelines were passed from 
one architect to another, either verbally, or as 
selected portions of the management specifica­
tions were copied from one subsystem to another. 
This folklore is continually changing, as new and 
better solutions are found. Much of the folklore has 
already been described.6 Some other guidelines are 
described below. 
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The Network Management Specification 
describes the central structure of Phase V network 
management, and in particular defines the node 
entity class.7 In the following sections, we describe 
the properties of the node entity class and, as a 
representative example, the OSI transport module 
entity class. 

Node Entity Class 
A single computer system in the DECnet/OSI 
network is called a node. The bounds of that system 
depend on the system's architecture; a personal 
computer (PC), a single-processor workstation, a 
multiprocessor mainframe, a diskless system, even 
a VAXcluster system can be considered a single 
node. Nodes are modeled by the node entity class. 

A node entity has only a few functions in 
management. 

• A node is a global entity that is the parent for 
many subsystems and provides an agent for all of 
them. 

• A node has an identity, a name, and an address 
that allow it to be managed remotely. 

• A node plays a major role in system initialization 
and start-up. 

Identity 
The following attributes identify a node: 

• An address, the application layer address(es) of 
the node's agent 

• A name, a DECdns fullname as defined by the 
DECnet/OSI distributed name server8 

• A synonym, a Phase IV-style node name for back­
ward compatibility 

• A spatially unique identifier (ID), a 48-bit quan­
tity used as an Institute of Electrical and 
Electronics Engineers (IEEE) 802 local area 
network (LAN) or Ethernet address 

• A space- and time-unique value 

A node's address is the application layer 
address(es) of the node's agent. The DECnet/OSI 
network supports multiple protocols at any of the 
seven layers, and the agent can operate over multi­
ple protocol stacks. Each protocol has its own 
addressing conventions. Thus a node's address is 
actually a set of protocol towers. Each tower 
defines a sequence of protocols, each with its asso­
ciated addressing information. A protocol tower 
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provides all the information needed by a director to 
connect to the node's agent and to issue manage­
ment directives to the node or any of its children. 

Users and network managers rarely refer to 
nodes by their addresses. First, it is difficult to 
remember the addresses and second, moving the 
node from one place to another in the network gen­
erally changes its address. Thus each node has a 
name, a DECdns fullname. The node knows its name 
and address. Each node's name is stored as a DECdns 
entry, and one of the entry's DECdns attributes 
holds the node's address. Thus, any director can 
look up the node's name in the DECdns and the 
address associated with it, and then use any one of 
the towers to connect to the node's agent. 

To ensure backward compatibility with DECnet 
Phase IV, a node also has an attribute called its syn­
onym, which is a six-character, Phase IV-style node 
name. If a node has a synonym name, that name is 
entered in a special directory in the DECdns name 
space as a soft link to the node's Phase V name. A 
soft link is a form of alias or indirect pointer, from 
one name to another, that allows an entry to be 
reached by more than one name. 

Each network layer address of the node (a node 
can have more than one) is encoded in a standard 
way as a soft link to the node's name. This allows a 
manager ( or director) to translate a node address 
into the equivalent node name, making many diag­
nostic problems much simpler. 

DECnet/OSI includes many features that allow 
most nodes to autoconfigure their addresses. 
Network layer addresses consist of an area address 
and a 48-bit ID. This ID can be obtained from an ID 
read-only memory (ROM) chip on many devices (for 
example, each Digital 802.3 LAN device has one). 
End nodes detect area addresses from messages 
sent by the routers adjacent to the end node. 
Higher-level addresses used by management are 
architecturally defined constants. 

Managers and users choose the name and syn­
onym of a node. The manager uses the rename 
action to tell the node its name. Rename is an exam­
ple of a situation in which an action is more appro­
priate than a set operation. Renaming a node is a 
fairly complicated operation. Not only is the name 
attribute changed, but also the information is stored 
in the DECdns name space. Although the operation 
can fail in many ways, actions allow errors to be 
reported to the manager with enough detail on 
what went wrong to allow corrective action to be 
taken. This is not easily done with a set operation. 
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One of the more difficult configuration prob­
lems to track down occurs when two nodes in a 
network have either the same name or the same 
address. DECnet/OSI has several management fea­
tures to prevent this from occurring or to detect the 
situation when it does occur. 

First, each node has a spatially unique 48-bit ID, 
i.e., no two nodes in the enterprise have the same 
ID at the same time. The ID is usually derived from 
an ID ROM chip in a LAN adapter. Special manufactur­
ing procedures ensure that no two ID RO Ms hold the 
same ID. Nodes with multiple ID ROMs, for example 
a router with two Ethernet interfaces, choose one 
with a simple algorithm. Nodes without an ID ROM 
must be assigned an ID when the system is first 
booted, and that ID must come from the locally 
administered IDs. However, an ID is not always tied 
tO the same node. Hardware devices can be 
removed from one machine and inserted in another. 
Indeed, this is a common diagnostic procedure. 

Second, each node has a space- and time-unique 
value provided by the unique identifier (UID) ser­
vice. UIDs combine a spatially unique ID with a time 
stamp in such a way that no two generated UIDs 
will ever have the same value.9 The UID is stored in 
nonvolatile storage (if the node has some), so the 
UID remains constant across system reboots. Nodes 
without nonvolatile storage will generate a new 
UID on every reboot. 

Third, a change in the name, address, ID, or UID 
attributes is reported by the node as an event, 
which aids in detecting duplicate node names and 
addresses. Two nodes can end up with the same 
name when the disk where a node stores its system 
image, name, address, and UID is copied, and then 
the copy is booted on another machine. When the 
disk is booted on the second machine, that 
machine would have a different ID ROM. The node 
would detect that its ID is different, and thus an 
event would be generated. The event would not 
prevent the duplicate node from booting, but it 
would allow the manager to detect that a duplicate 
node may be on the network. 

Start-up 
A node is responsible for system start-up. We model 
start-up through four states. 

• Dead, when the node is down and requires man­
ual intervention to start. 

• Booting, when the node is in the initial stages of 
software start -up. The booting process is highly 
system specific and may be initiated by hard-
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ware, by software, by a power fai lure, or by 
a manager's console request. Booting loads a 
system image, starts it running, and brings it to 
a known state. The system image can be loaded 
from a disk or equivalent storage, or it can be 
loaded over the network using the maintenance 
operations protocol (MOP) down-line load pro­
tocol. lO MOP is layered directly over the data link 
protocols. In Digital's communications devices, 
MOP is generally implemented in the hardware 
or firmware and does not require a working 
operating system. 

• Off, when the node is initializing itself and its 
internal configuration. When booting completes, 
the node changes to the off state. This transition 
is called the "big bang." In the first instant after 
the big bang, the node has at least the following 
things available , as shown in Figure 5: 

- A working clock and time service used to 
time stamp events. 

A UID generator used to give entities and 
events a unique identifier. 

- The node entity (and possibly some of the 
node's child entities) together with its agent 
(which includes both the directive dispatcher 
and event logging). 

- An initialization script, a series of manage­
ment commands to configure the system. 
This can be in the form of a text NCL com­
mand file (described later in the section on 
NCL), or it can be a compiled script, one that 
has been encoded as a series of common 
management information protocol (CMIP) 
requests. MOP can be used to down-line load 
an initialization script. 

- An initialization director, which reads the 
script and invokes the directives in the order 
given. Errors and other output may be dis­
played on a console (if the system has one) 
and/or reported as events. 

• On, when the node has "completed" initializa­
tion to the extent that it can be managed 
remotely. Somewhere in the initialization script 
(probably near the end), the node is enabled, 
which changes its state to on, i.e., it can be man­
aged remotely. 

Modules 
A node has many subsystems, called modules in 
DECnet/OSI. Each module may or may not be 
configured within any particular node. Within the 

Vol. 5 No. 1 Winter 1993 Digital Technical journal 



Network Management 

I ENTITY 

INITIALIZATION I ENTITY 
SCRIPT 

DIRECTIVE 

~ INITIALIZATION DIRECTIVES DISPATCHER 
.... 

ENTITY 
DIRECTOR (PART OF ... 

THE AGENT) 

I I 
EVENT SYSTEM OUTPUT TO CONSOLE LOGGING CONSOLE OR EVENT LOGGING (PART OF (OPTIONAL) 
THE AGENT) 

t I 
EVENT REPORTS TO CONSOLE I UID SERVICE I OR OTHER EVENT SINKS 

OTHER EVENT 

I I SINKS TIME SERVICE 
(OPTIONAL) 

Figure 5 The Node at the "Big Bang" 

modules are the various subsystems that make up 
DECnet/OSI. A node never has more than one 
instance of a module contained within it. A general­
purpose node allows the manager to flexibly con­
figure a node to serve a particular purpose by 
creating and deleting the appropriate modules. 

In the DECnet/OSI Phase V network, the specifi­
cation of the management of each module is an 
integral part of the architecture of the subsystem. 
Moving responsibility for the management of a sub­
system from a central network management archi­
tecture to the subsystem architecture has made the 
specifications clearer and more complete. In Phase 
N , a great deal of effort was spent coordinating the 
subsystem specifications and the network manage­
ment specification. Placing responsibility in one 
person's hands made writing an internally consis­
tent subsystem much easier. Besides, the sheer size 
of DECnet/OSI Phase V management would have 
made it impossible for a single person to design the 
management of the whole system. 

The development of the OSI management 
standards in ISO/CCITI (Comite Consultatif Inter­
nationale de Telegraphique et Telephonique) has 
been done in a similar way and for the same rea­
sons. ISO/IEC JTCl SC21/WG4 is the group that has 
developed the OSI management information model, 
management specification language, and guide­
lines for module developers. While SC21/\VG4 has 
itself also developed the management of specific 
subsystems (e.g., for event forwarding and logging), 
typically, the job of doing this has been left to other 
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groups more expert in particular areas. For exam­
ple, Working Groups 1, 2, and 4 ofISO/IECJTCl sc6 
have developed management standards for the ISO 
data link, network, and transport layers, based on 
Digital's contributions derived from the DECnet/OSI 
Phase V work in these areas. 

In DECnet/OSI, the transport, network, and data 
link subsystems were among the first to have the 
EMA concepts applied to their management. Others 
quickly followed and, presently, more than SO mod­
ules have been specified, with others being added 
as new subsystems are designed. Not surprisingly, 
during the early days considerable interaction took 
place between the architects responsible for the 
central network management architecture and 
those responsible for developing the management 
of specific subsystems. The EMA evolved and was 
refined based on the experiences of the many sub­
system architects using it. 

In almost all cases, modules contain one or more 
entities, each representing some management 
aspect of the subsystem. These entities in turn may 
contain other entities (subentities). This nesting 
can occur to an arbitrary depth, reflecting the man­
agement complexity of the subsystem. Note that 
modules themselves are entities, albeit with the 
restriction that a node never has more than one 
instance of a module contained within it. An entity 
is formally described using Digital's Management 
Specification Language (MSL).11 

We next consider in more detail the structure 
and contents of the DECnet/OSI Phase V OSI 
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transport module . Complete descriptions of this 
and other Phase V subsystems can be found in 
the Digital Network Architecture (Phase V) 
Documentation Kits. 12,13,14,1s 

OSI Transport Module 
In DECnet/OSI Phase V, the OSI transport module 
contains port, template, local network service 
access point (NSAP) address, and manufacturing 
automation protocol (MAP) entities. A local NSAP 
entity contains remote NSAP entities. The contain­
ment hierarchy is shown in Figure 6. 

The OSI transport module has characteristic 
attributes. A manager can change the configura­
tion of the module by modifying its characteris­
tic attributes. This is done for several reasons, 
including 

• To limit the maximum permissible number of 
active transport connections at any one time 

• To control the maximum credit window that 
may be granted on an individual transport 
connection 

• To control the maximum number of transport 
connections that can be multiplexed on any sin­
gle network connection, when the OSI transport 
protocol is operating over the connection-mode 
network service 

Modification of these attributes is needed only if 
the manager requires anything other than a stan­
dard configuration; working default values are 
defined for all characteristic attributes. 

Status attributes show the current operating 
state of the module, e.g., the number of transport 
connections currently active. Status attributes can­
not be modified directly by a manager. To start the 

operation of the OSI transport module, the manager 
uses the enable action. If successful, the state 
attribute changes from off to on. 

In the DECnet/OSI Phase V architecture, a port 
entity represents the interface between layers, mak­
ing visible to a manager how one layer (a client) is 
using the services of a lower layer. Ports are not cre­
ated by a manager; they are created when a client of 
the service requests use of the service (by "opening 
a port") . The exact information held in a port entity 
varies for each subsystem. In general, a port entity 
contains attributes that identify the client and the 
service being used, and how that service is being 
used (e.g., as usage counters). The port entity is an 
example of how the EMA evolved through feedback 
from the subsystem architects. Before being 
adopted as a general mechanism in the overall man­
agement architecture, the concept was first devel­
oped and used in subsystem architectures. 

In the case of the OSI transport module, the port 
entity also corresponds to the local end of a trans­
port connection (TC), and it provides a window to 
the status information associated with the TC. For 
example, the OSI transport port status attributes 
give 

• The name of the user of the OSI transport service 

• Local and remote NSAP addresses and transport 
selectors 

• The protocol class being operated on the TC 

In addition, a port entity has counter attributes that 
record the total number of times something of 
interest occurred on the TC. For example , there are 
counters recording the number of octets and proto­
col data units (PDUs) sent and received. A manage­
ment station can poll these and determine usage 
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Figure 6 Containment Hierarchy for OSI Transport Module 
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over time. A port entity also maintains counters for 
both duplicated transport PDUs (TPDUs) detected 
and retransmitted TPDUs. Taken with the usage 
counters, these can be used to calculate error ratios 
and rates on the TC. 

When a client opens a port onto a service, the 
client can then use the service interface to select 
options such as which features to use or which pro­
files. Maximum flexibility, however, also poses a 
problem. In many cases, a client has little or no 
knowledge or understanding of the service options 
available in an underlying layer. Further, it would 
be unrealistic to expect all clients of a service (or, 
ultimately, an end user) to acquire this in-depth 
knowledge. 

One alternative was to provide default values for 
all the service options. However, a single set of 
default values satisfies only a single subset of uses. 
Instead we adopted the template, which is an entity 
that represents a set of related option values. A 
manager can create as many templates as required 
for different sets of related option values. A client 
needs to be configured only with the single name of 
the template to use, not the details of every service 
option. The OSI management standards groups have 
adopted the template concept in the form of their 
initial value managed object (IVMO). 

A template in the OSI transport module is a col­
lection of characteristic attributes used to supply 
default values for certain parameters that influence 
the operation of a TC. When a port is opened to the 
OSI transport service, a template name may be 
specified by the client. The characteristic attributes 
in the template are then used as default values for 
TC parameters not supplied by the user, including, 
for example, 

• The value of the window timer 

• The set of classes of protocol that may be negoti­
ated for use on a TC 

• The use of checksums that might be negotiated 
for a TC that operates the class 4 protocol, a 
variant of the OSI transport protocol defined in 
ISO 8073 

A default template is automatically created and 
used if no template is specified when a port is 
opened. 

There is one local NSAP entity for each NSAP 
address used by the OSI transport. A local NSAP entity 
is automatically created when an NSAP address used 
by the OSI transport is added to the network rout­
ing subsystem (the adjacent lower layer). 
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The remote NSAP entity is a subentity of a local 
NSAP entity. Each remote NSAP entity maintains 
counter attributes resulting from interactions 
between the superior local NSAP and a remote 
transport service provider. Events are defined for 
the remote NSAP entity, to provide immediate noti­
fication to the manager of error conditions. For 
example, 

• A checksum failure event occurs whenever 
checksum validation fails when performed on 
a received TPDU 

• An invalid TPDU received event occurs when­
ever a TPDU received from the remote NSAP is 
in violation of the transport protocol 

Consider this second example. Whenever an 
invalid TPDU received event is generated, a counter 
is incremented. Thus, even if the manager has con­
figured event logging to filter out these events, an 
indication that they are happening remains, 
prompting the manager to change the filtering cri­
teria. The event contains a number of arguments as 
well. All events identify the generating entity and 
the time the event occurred. The invalid TPDU 
received event also has arguments that give 

• A reason code, indicating in what way the 
TPDU was invalid, as specified in the ISO 8073 
standard16 

• The part of the TPDU header that was invalid 

• A specific Digital Network Architecture (DNA) 
error code, which was added to qualify the ISO 
8073 reason code and to help customers diag­
nose problems 

The MAP places a number of requirements upon 
implementations of the OSI transport protocol 
beyond simple conformance to ISO 8073. The MAP 
entity contains the additional management needed 
to meet these extra requirements. The MAP entity 
is optional; implementations with no business 
requirement to support MAP would not provide the 
MAP entity. 

Supporting Mechanisms 
Network management in DECnet/OSI is built on a 
number of supporting services. Wherever possible, 
management uses the services of the network to 
manage the network. This approach minimizes the 
number of special mechanisms we had to define 
specifically for network management. Some key 
services used by network management include 
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• Session control 

• DECdns name service 

• Digital's distributed time service (DECdts) 

• A unique identifier service (UID) 

A few services were developed specifically to 
support network management. Most had existed in 
earlier phases of DNA. 

• DNACMIP 

• Event logging 

• MOP down-line load protocol 

• Application loopback 

In the following sections, we describe DNA CMIP 
and event logging. 

Digital Network Architecture Common 
Management Information Protocol 
The entity model describes what an entity can do. 
Those concepts must be expressed in the manage­
ment protocol. DNA CMIP, the management proto­
col for DECnet/OSI Phase V, is an evolution of the 
Phase IV management protocol (called NICE). The 
two protocols are remarkably similar. Both include 
the set, show (also called get), and event report 
operations. The main differences between the two 
protocols are in the following areas. 

• Treatment of other operations. In NICE, each 
operation required a new kind of message; in 
CMIP, a general extension mechanism, the 
action, is provided. 

• Naming. NICE supported a limited number of 
entity classes (eight) and provided a rudimen­
tary naming hierarchy based on the notion of 
"qualifying attributes." CMIP supports hierarchi­
cal entity names and is essentially unlimited in 
the number of entities with which it can deal. 
Similarly, CMIP is much more extensible in 
naming attributes, attribute groups, and event 
reports. 

• Encoding. CMIP uses ISO Abstract Syntax 
Notation I (ASN.l), a standard tag, length, value 
(TIV) encoding of attributes and arguments, and 
NICE used a private TIV encoding. 

DNA CMIP is not quite the same as the IS version 
of OSI CMIP, although it was based on the second 
draft proposal of the CMIP standard. There are two 
reasons for this. 
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• First and foremost was timing. DNA CMIP was 
developed before the OSI CMIP was standardized. 
The inevitable changes to the standard led to 
many minor differences in the protocols. Still, 
because the concepts in the EMA entity model 
and OSI's SMI are aligned, the DNA and OSI CMIP 
protocols are fundamentally the same. The 
authors are currently migrating DNA CMIP to OSI 
IS CMIP. The change will be transparent to any 
user. 

• Second, DNA CMIP operates over a DNA protocol 
stack, not a pure ISO stack. This allows directors 
on Phase IV systems to manage Phase V systems. 

DNA CMIP can be viewed as two separate proto-
cols. One protocol, management information con­
trol exchange (MICE), is used by a director to invoke 
a directive (get, set, action, etc.) on an entity (or 
entities). The other protocol, management event 
notification (MEN), is used by an entity ( or entities) 
to report events to a director. The two protocols 
operate over separate connections for important 
reasons. 

• The times at which the associations are con­
nected differ. A MEN association is brought up 
when an entity wishes to report an event, and is 
thus controlled by the agent. A MICE association, 
however, is brought up when a director (or 
manager) wishes to invoke an operation on an 
entity, and is thus controlled by the director. 
Attempting to share control of association estab­
lishment w as not worth the complexity. 

• Whenever an association is shared by two differ­
ent users, the problem of allocating resources 
fairly to the two users must be addressed. Since 
transport connections deal with this issue 
between connections, the addition of a multi­
plexing protocol at the application level (with an 
attendant flow control mechanism) was again 
considered to be too complex. Transport con­
nections are not (or should not be) expensive. 

Event Logging 
The entity emits an event report to the manager 
when an event occurs in an entity. The event logging 
module provides a service that transmits event 
reports from the reporting entities to one or more 
sink applications, which are considered to be a cer­
tain kind of director in EMA. Event logging in Phase 
Vis based on concepts similar to those provided by 
Phase IV. Because the principal use of event logging 
is for reporting faults, event Jogging does not 
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guarantee delivery of event reports to the sink 
application. Figure 7 shows the event logging 
architecture.17 

When an event occurs within an entity (E) in a 
source node, the entity invokes the PostEvent ser­
vice provided by the event dispatcher (a part of the 
node's agent). When posting an event, the entity 
supplies its name, the type of the event, all the argu­
ments related to the event, a time stamp of when 
the event occurred, and a UID assigned to the event. 
UIDs ensure that each event can be uniquely identi­
fied, so that if a sink application receives more than 
one copy of an event report, it can detect the dupli­
cation. Time stamps allow the event reports to be 
ordered in time (an important step in determining 
causality). A time service (DECdts) is used to syn­
chronize clocks across the network. It provides a 
consistent view of time for correlating observations. 
An important feature for management is the inclu­
sion of an inaccuracy bound on the time stamp. 

The PostEvent service formats an event report 
and places it in an event queue (Q). Event queues 
are limited in the amount of memory they use; thus 
they limit the number of events that can be held in 
the queue. Because events can be placed in the 
queue at a rate faster than the queue server (S) can 
process them, the queue can fill, and any new 
events placed in the queue will be Jost. The events 
lost event is recorded as a pseudo-event in the 
queue (it appears as an event report from the entity 
holding the queue). The events Jost event carries an 
argument that records the number of events that 
were Jost in a row. 

The queue server for the event dispatcher 
compares each event report against a filter (F) 
associated with an outbound stream. The filter lists 

SINK DIRECTOR 

SINK APPLICATION INBOUND STREAM 

Network Management 

a collection of entities and events that are either 
passed through the filter or blocked by the filter. 
Event reports passing through the filter are placed 
in an event queue within the outbound stream. 
Each outbound stream's queue server sends events 
to a corresponding inbound stream in the sink 
application. Multiple outbound streams can be set 
up by the manager, allowing events to be sent to 
many sink applications. Outbound streams are 
modeled as entities in their own right, and standard 
management operations (create, get, set) are used 
to configure them. 

Each inbound stream in a sink application has an 
event receiver (R). Inbound streams are generally 
created when a connection request is received 
from an outbound stream. Events received by the 
receiver are compared against a sink filter and 
queued to the sink application. Thus the events 
from multiple inboun..i streams are merged. 

The protocol used between the outbound stream 
and the inbound stream is the CMIP MEN protocol, 
which operates over a connection (using either the 
DECnet transport layer protocol or OSI transport). 
The use of a connection lowers the probability that 
an event report will be lost, since the connection 
handles acknowledgments and retransmissions. It 
does not guarantee delivery, however, and events 
may still be lost due to failures of the sink applica­
tion or the source node. 

Conclusions 
Our approach to Phase V management worked 
well. Defining the EMA entity model first provided a 
framework of consistency among all the architec­
tures. Developing a management protocol (CMIP) 
expressing the basic concepts in the entity model 
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Figure 7 Event Logging 
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in conjunction with the model placed the protocol 
in a position to meet the needs of the model. Giving 
responsibility for defining the management of a 
subsystem to the architects of that subsystem made 
each subsystem more complete and coherent. As 
problems were found in the model based on lessons 
learned during the specification of entities, any 
needed changes to the entity model were applied to 
correct those problems. 

However, some things did not go as well. The 
number of entities, attributes, and operations in 
Phase V was beyond anyone's expectations. This 
reflects the overall complexity and feature-richness 
of Phase V over Phase IV as well as the increased 
control that the manager is given. This burden is 
eased somewhat by the use of intelligent defaults, 
autoconfiguration, and self-management. Still, sim­
plifying the management of a Phase V network is an 
important area for continual improvement. 

The biggest success of EMA/Phase V management 
is its general applicability. EMA is being applied to 
more than the traditional network management 
areas. Systems, networks, and applications are all 
managed by EMA. 
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Design of the DECrncc 
Management Director 

Colin Strutt 
James A. Swist 

The DECmcc product family represents a significant achievement in the develofr 
ment of enterprise management capabilities. DECmcc embodies the director por­
tion of Digitals Enterprise Management Architecture (EMA) and is both a platform 
for the development of new management capabilities and a vehicle for aiding cus­
tomers to manage their computing and communications environments. Initially, 
the DECmcc director was intended to facilitate sophisticated management of evolv­
ing networks. In addition to network management, DECmcc bas been adapted to 
the needs of system, applications, data, environment, and telecommunications 
management. The first implementations contained the DECmcc kernel, a devel­
oper's toolkit, and various management modules. 

Development of the DECmcc director has been a 
multiyear effort involving many groups within 
Digital. When the DECmcc design was initiated in 
1987, there was no equivalent management soft­
ware in the industry. Most companies, Digital 
included, provided one or more independent, 
focused products. Each of these dealt with manag­
ing a specific set of components such as a single 
vendor's local area network (LAN) bridges or pro­
viding a specific management application such as 
equipment inventory. 

Digital's network management capabilities 
within DECnet Phase IV were reaching their limit, 
and the incorporation of newer communications 
technologies in a seamless way was becoming 
increasingly difficult. As part of the DECnet Phase V 
development, work was started to rationalize man­
agement of distributed systems. This effort led 
to the formal definition of such concepts as the 
director/entity relationship, the entity model, and 
the common management information protocol 
(CMIP).1,2,3,4 These ideas formed the basis for man­
agement in Phase V and were Digital's contribu­
tions to the open systems interconnection (OSI) 
management model from the International 
Organization for Standardization (ISO). 

The original vision of network management in 
Phase V included the concept of two management 
directors. The first, a sophisticated director referred 
to as the management control center (MCC), would 
handle the more complex, yet user-oriented, man-
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agement tasks. The second, a simple command line 
director referred to as network control language, 
would address the needs of more experienced man­
agers who prefer a command line environment.s 

Conceived primarily as a DECnet management 
director, the DECmcc product evolved to address 
the broader problems associated with managing a 
complete computing and communications environ­
ment. This evolution is not yet finished and 
arguably will never finish as network environments 
continue to change. 

Since the development of DECmcc in 1987, the 
simple network management protocol (SNMP) has 
become widely implemented. DECmcc has adapted 
to handle SNMP as well. In addition, the DECmcc 
product, once a tool for the VAX VMS architecture, is 
now implemented on multiple platforms, such as 
the ULTRIX and UNIX System V Release 4 operating 
systems. 

In this paper, we look at the development of the 
DECmcc director. We start by discussing our initial 
design ideas taken in the perspective of the indus­
try at the time. We then describe the initial imple­
mentation of DECmcc. We also present the effects 
of the changing industry and how DECmcc has 
adapted over time. We conclude with some of the 
opportunities for future work. 

Historical Perspective 
Digital's first network management capability was 
delivered in 1978 as part of the release of DECnet 
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Phase II software. Much of the DECnet product was 
then manageable, both configuring the software for 
installation as well as the operational aspects. The 
main program used to perform management was 
the network control program (NCP). At that time 
management mostly consisted of looking at infor­
mation and then changing it as needed. DECnet 
Phase II, however, could perform sophisticated 
diagnostic loopback tests, both nonintrusive as 
well as intrusive, to diagnose connectivity prob­
lems at various layers of the protocol stack. 

Management formed a significant part of the 
DECnet Phase III and DECnet Phase IV networking 
products. Each major release contained many 
changes to manage the new functionality. However, 
the DECnet management structure in place in the 
1970s was becoming more difficult to adapt to the 
requirements of the mid-1980s. For example, sup­
port was added for X.25 during Phase III and for 
Ethernet during Phase IV. These releases required 
quite different management approaches than the 
one used for Phase II. With the advent of the signifi­
cant changes to DECnet Phase V to include support 
for the OSI protocol stack, another management 
approach was needed. 

Thus in conjunction with Phase V network devel­
opment, an effort was started to provide a new 
architectural approach to management of Phase V. 
One of the key requirements was to provide the 
Phase V management needs in a way that would 
extend their adaptability to the future. This work 
was referred to as distributed systems management 
because it addresses management of the computing 
environment as well as management of the commu­
nications that DECnet comprises. Most of the initial 
work in distributed systems management con­
cerned itself with the aspects that applied to 
DECnet and the changes needed to provide manage­
ability of DECnet in Phase V. The primary under­
lying concepts were articulated. 

• Directors are management programs used by 
human managers to effect management. Entities 
represent managed components to directors 
through software referred to as agents.6 

• The entity model is the underlying model for 
managed entities defined in terms of an object­
based approach.1,3.1 

• The formal specification for the classes of enti­
ties is defined in terms of Module-2+ like specifi­
cations and is called management definition 
language (MD).3 
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• A command language, network control language 
(NCL), was formally defined to be unambiguous 
even with new entities and their definitions; an 
associated primitive director of the same name, 
part of every Phase V package, replaces the NCP 
of previous phases. s 

• A management protocol called the common 
management information protocol (CMIP) was 
used to communicate between directors and 
entities. 4.B,9 

CMIP was named common and presumed to han­
dle the common aspects of management across a 
wide variety of management applications. Some 
developers suggested the possible need for a 
small number of specialized management infor­
mation protocols (SMIPs)- perhaps one for each 
of the management functional areas (configura­
tion, performance, fault, security, and account­
ing). However, CMIP proved to be sufficiently 
expressive and powerful to support manage­
ment applications covering the management 
functional areas. 

At the time the distributed systems management 
work was initiated, Digital's networking and com­
munications product line was expanding to encom­
pass more than the DECnet networking hardware 
and software. Along with each product came its 
own management software, some of which was 
tailored along the lines of the DECnet standard NCP. 
In addition, the Network Management Devel­
opment Group was building some fairly sophisti­
cated management applications that went far 
beyond the capabilities of NCP in DECnet. The 
developers necessarily took a different approach to 
management. 

Thus, by the late 1980s Digital had developed a 
number of distinct management products. Many of 
these employed private protocols, for example 

• NCP for managing DECnet, based on a command 
line user interface 

• NMCC/DECnet monitor, a wide-area DECnet mon­
itoring tool, based on a graphical user interface 

• NMCC/ETHERnim, an Ethernet monitoring/ 
inventory test program, based on a graphical 
user interface 

• RBMS, Remote Bridge Monitoring Software for 
managing Digital's bridge family, based on a com­
mand line user interface similar to NCP 
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• TSM, Terminal Server Manager for managing 
Digital's terminal server family, based on a 
command line user interface similar to that used 
in the terminal servers 

• LTM, LAN traffic monitor for understanding the 
traffic usage and patterns of Ethernet segments, 
based on a graphical user interface 

Other manufacturers also provided management 
software capable of managing their devices. Some 
vendors provided particular management applica­
tions that were not tied to any specific network 
device. These applications performed a single func­
tion, such as maintaining an inventory of equip­
ment on behalf of a manager. 

The plethora of management capabilities from 
many vendors created many choices for end users. 
At the same time, the diverse applications were per­
ceived as carrying significant drawbacks. Each appli­
cation provided its own user interface. Each had its 
own database for storing management information. 
Each dealt with different management information. 
In addition, each tool provided its own, often rudi­
mentary, independent management application. 

End users viewed these many products as creat­
ing a series of problems: (1) A manager needed mul­
tiple management terminals, one per product. 
(2) Separate training was required to use each 
product. (3) Confusion occurred when the user 
switched between multiple products. (4) Different 
information was available from each product, or 
worse, the same information was available in a dif­
ferent form. (5) There was no ability to share infor­
mation between products. (6) It became difficult to 
diagnose problems that spanned multiple technolo­
gies. Other aspects of the system management per­
spective in 1986 have been described. 10 

At that time, standards for network management 
had not progressed very far; SNMP did not yet exist. 
In fact, agreement on the overall concepts had only 
begun within the OSI management committees. 

It is with this background, then, that the design of 
DECmcc as a management director was undertaken. 

opportunities 
Of all the situations that existed in customer net­
works in the mid-1980s, probably the most impor­
tant was the realization that networks no longer 
consisted of equipment from a single vendor. In 
addition, different technologies were commonly 
used to improve a given customer's network. With 
each technology came its own management proto-
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col, along with its own management structure. As 
networks became larger, more than one network 
manager was typically needed. 

The opportunity existed to provide complete, 
integrated network management that could be 
adapted to the changing needs of management. Our 
product goals were 

• To provide a consistent, integrated user inter­
face, permitting management of any component 
in the enterprise to be performed in a style that 
does not depend on the specific component 

• To provide integration of the management data 
(contained in the components as seen by the 
director) and management information (as con­
structed by the director using the management 
data) 

• To provide a consistent, extensible means of 
storing management information and of allow­
ing it to be accessed conveniently by multiple 
independent management applications 

• To provide an application programming inter­
face (API) to support management applications 

Obviously, an approach necessary to solve these 
nontrivial problems was not to be a small under­
taking; an architected approach was appropriate.6 

Design Approach 
The solution to the problems outlined was seen to 
be a distributed applications environment, tailored 
to the specific needs of management. Quite quickly, 
the idea of defining a modular and extensible envi­
ronment was selected. 

Management capabilities could be added in a 
straightforward fashion based on an applications 
kernel, which could either be replicated as needed 
around a network, or considered as multiple, coop­
erating kernels supporting a distributed manage­
ment environment. Hence a kernel with modules 
that can be added dynamically, much as applica­
tions are added to an operating system, is funda­
mental to the design of DECmcc. 

The next consideration concerned the composi­
tion of the modules themselves. One approach to 
the support of multiple technologies had one mod­
ule access each different sort of component to be 
managed. Since a number of management applica­
tion functions were desirable, one might have a 
module for each such function. Also one might 
have a module for each form of user interface to 
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accommodate the different user interface styles, 
such as command line or windowing. 

Thus, we arrived at the concept of distinguishing 
form, function, and access. Furthermore, we 
defined management modules based on presenta­
tion modules (PMs) for user interface, function 
modules (FMs) for management functions, and 
access modules (AMs) for accessing each distinct 
technology. The DECmcc director structure is 
shown in Figure 1. 

We observed that the EMA entity model, defined 
initially to meet the needs of management of 
entities, provided generalized structuring con­
cepts that would be appropriate for the direc­
tor environment as well. Indeed, choosing the 
same model to handle the needs of the director 
removed the need for a translation between the 
entity environment and the director environment 
for EMA entities, which has proved to be advanta­
geous for the implementations. Hence the follow­
ing entity model concepts were also used in the 
director. 

• An object-oriented approach-encapsulating 
objects (entities) and their operations 

• A class structure-defining attributes, opera­
tions, and events for each class and specifying 
management information using a management 
specification language 

As we studied the needs for stored management 
information in the director, we identified four dif­
ferent sorts of information, distinguished by the 
storage needs, nature of the contents, and the 
access patterns. 

FUNCTION 
MODULES 

PRESENTATION MODULES 

INTERFACE 

MANAGEMENT 
KERNEL 

MANAGEMENT 
INFORMATION 
REPOSITORY 

ACCESS 
MODULES 

Figure 1 DECmcc Director Structure 
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1. Class data-the dictionary of all management 
operations, attributes, notifications, and their 
related definitions categorized by class, updated 
infrequently, but read often 

2. Instance data-the configuration information, 
stored in a global naming service, changing 
often, but read from many places simultaneously 

3. Historical data-information about specific 
entity instances stored over time, written incre­
mentally and read sporadically according to the 
needs of applications using such data 

4. Miscellaneous data-other data needed for 
specific modules, such as tariff information 
or the definition of rules specifying alarm 
conditions 

The complete logical information store was termed 
the management information repository (MIR). 

The kernel defines an execution environment 
that is suitable for management modules and sup­
ports the MIR. This was initially implemented in 
terms of technology provided completely within 
the director kernel. Many of the kernel services, 
however, were subsequently replaced with dis­
tributed systems services, including multithread 
support, naming/directory service, time service, 
and remote procedure call (RPC). 

It is, perhaps, interesting to note that the deci­
sion to use a multithreaded approach in DECmcc 
was not unanimous. The alternate approach pro­
posed an asynchronous message-passing scheme. 
Although the decision to use a multithreaded envi­
ronment has proved to be implementable, we did 
not appreciate how the performance of the multi­
threading implementations would affect the ability 
to support the needs of application environments 
such as DECmcc. 

Invoking Module Services 
As we looked at how management modules would 
call each other, we chose a fairly straightforward 
approach. User interactions with a PM would cause 
the PM to invoke an FM, the FM to then invoke the 
appropriate AM, and the AM to communicate with 
the desired entity. The response would then be 
transmitted through the AM, FM, and PM, with the 
result presented to the user. Thus the simple proce­
dure call paradigm between modules, as shown 
in Figure 2, supported the needs of applications 
geared toward monitoring and control operations. 

However, one must consider the increase in the 
total number of management modules over time, 
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and the even greater increase in the total number of 
available management services (defined by specific 
operations on classes of entities). Thus, it became 
clear that the intermodule procedure calls could 
not use named procedures, as administering the 
names of ever-increasing numbers of procedures 
would be a burden. Instead we chose an approach 
whereby modules invoked each other's services by 
referring to the operations and the objects, using a 
service invocation procedure known as "mcc_call." 
We defined the interfaces provided by the manage­
ment modules entirely in terms of operations on 
objects-an object-oriented approach-but this 
approach did not require the use of object-oriented 
languages or databases. 

We further observed that one could decompose a 
management application into a number of smaller, 
potentially reusable services. Hence FMs could 
invoke other FMs in performing their services much 
in the same way that applications on UNIX systems 
pipe results from one component to another. Given 
the generally extensible nature of DECmcc and the 
supporting mcc_call structure, this led to the con­
cept of generic applications. Being run-time driven 
from the class dictionary, these applications could 
work over a wide range of managed objects and 
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perform the same service for each of them without 
a priori knowledge of the objects. For example, one 
might have an FM that provides performance­
related services, turning error counters ( obtained 
directly from the managed objects) into error rates 
(by simply polling for two counter values, subtract­
ing one from the other, and dividing by the time 
interval between polls). A different FM might pro­
vide alarm services by notifying users of particular 
(user-specifiable) conditions, such as when a par­
ticular counter exceeds a defined threshold. 

Of course, managers are often more interested in 
error rates exceeding a given threshold. The same 
alarms FM could be primed to look for an error rate; 
the request would be passed on to the performance 
FM, which in tum would calculate the rate by look­
ing at successive polls of the error counter. The 
alarms FM does not need to be aware whether 
the data it needs comes from the performance 
FM or directly from the managed object via the 
appropriate AM. The disposition of the methods 
among modules is hidden by the service invocation 
mechanism. 

Furthermore, the alarms FM tracks the number of 
times a user is notified of a problem, and this 
counter is available as management data. One might 
then want to determine the rate of user notifica­
tions (using exactly the same generic performance 
FM as before), and use the same alarms FM to notify 
a different user when the rate of notifications 
exceeds a defined threshold. This threshold might 
indicate that one manager is being overloaded. 
Thus, in this scenario we have a number of modules 
involved in a calling hierarchy, with the same mod­
ules appearing more than once. Figure 3 shows the 
reuse of software using generic function modules 
inDECmcc. 

Management Specification Language 
The entity model's management definition lan­
guage, originally intended for the specification of 
management agents, was modified and applied 
to the director environment. Director-oriented 
information was added to the management specifi­
cation, such as user interface tags for automatically 
generated forms and menus. This information 
was named the management specification lan­
guage (MSL). An MSL compiler was defined to con­
vert MSL to an on-line form, available as metadata 
through an on-line dictionary, the MIR class data. 
With the management specification information 
available to management modules, modules could 
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Test (firing rate) value against threshold; 
if exceeded, emit notification and increment 
alarm firing counter. 

Get alarm firing rate. 

PERFORMANCE 
FUNCTION MODULE 

Calculate (firing) rate from two successive 
(firing) counter values. 

NOTIFICATION 
Get alarm firing counter. 

ALARMS 
FUNCTION MODULE 

Test (error rate) value against threshold; 
if exceeded, emit notification and increment 
alarm firing counter. 

Get error rate. 

PERFORMANCE 
FUNCTION MODULE 

Calculate (error) rate from two successive 
(error) counter values. 

Get error counter. 

ACCESS MODULE Return error counter from entity. 

Figure 3 Data/Control Flow for Multiple FMs 

adapt their behavior as new modules were added; 
this is especially important for generic modules. 
Thus the same MSL that was used to help the entity 
agent developers was also useful for the manage­
ment director to drive the extensible management 
modules. 11 

This dictionary information spurred the defini­
tion and development of the generic management 
modules. The generic PMs provide an extensible 
user interface that is capable of adapting as new 
managed objects or applications are added. The 
generic FMs provide consistent functions over a 
broad set of managed objects. Finally, the generic 
AMS support extensible management protocols, 
allowing the dynamic addition of new sorts of man­
aged objects. 

The design of the DECmcc director led to a num­
ber of possibilities in the type and application of 
the different sorts of modules. Initially AMS were 
conceived as being one per management protocol, 
which usually translated to one AM per type of 
device (such as bridge, terminal server, DECnet 
node). Since the advent of standard protocols, such 
as SNMP from the Internet community and CMJP for 
OSI management, AMs are now more typically 
generic and extensible.s,9,12 A single AM covers many 
different types of device with one protocol. 13 

Digital Technical Journal Vol. 5 No. 1 Winter 1993 

For FMs, we originally envisioned two sorts of 
modules: the generic FM providing the same func­
tion over a wide variety of managed objects, and a 
specific FM providing a set of functions for a single 
class of managed object. Today, we believe one may 
have two different sorts of generic FM: one that is 
specific to a technology (such as network manage­
ment related), and another, truly generic, which is 
completely independent of the technology being 
managed (such as an alarms FM). 

For PMs, we recognized the need to handle 
device-specific aspects as well as user interface 
style-specific aspects. Normally one would have 
generic PMs provide user interface capabilities over 
a broad variety of managed objects and applica­
tions. However, to support the specific needs of 
generic FMs, specific PMs might be used to provide 
the appropriate user interface. PMS that are specific 
to an FM are less useful since they do not provide a 
consistent user interface "look and feel." 

During the design of the DECmcc director, a num­
ber of smaller, but nonetheless important, design 
decisions were made. The concept of management 
domains was defined as a general container mecha­
nism for entities, which could include domains 
themselves. Domains therefore provide a flexible, 
user-specifiable organizational structure for both 
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visual representation at the user interface, as well 
as a means to organize the stored management infor­
mation and associated background processing.14 
The need to provide a consistent approach to the 
naming of objects within the director was estab­
lished. This was initially based on Digital's dis­
tributed name service, DECdns, providing globally 
unique names and network-wide access to those 
names.15 Finally, the concept of time, including the 
scheduling of operations as well as scope of inter­
est for information retrieval, was included in the 
mcc_call APL The time concept allows manage­
ment applications to be developed that can operate 
on historically stored information as easily as they 
can on data retrieved directly from the network.16 

A more detailed report on the design of DECmcc 
has been published.17 

Some other aspects of the DECmcc program, 
while not part of the technical design, had a major 
part to play in its evolution. First was the need to 
provide published, open definitions of the DECmcc 
API, based on existing standards. This allows other 
vendors and end users to develop their own man­
agement capabilities to add to DECmcc. Second was 
the establishment of a strategic vendor program 
within Digital to work with other vendors, particu­
larly those that provided network technologies that 
complemented Digital's own offerings, to help 
them develop to the DECmcc platform. Finally a 
design center program was instituted whereby the 
design of DECmcc would be validated, as it evolved, 
against the needs of some major customers to 
ensure that it continued to address the manage­
ment problems of those customers. 

Broadening the Scope 
Since DECmcc was designed to be able to manage 
anything that could be described by the entity 
model, and since the entity model is a general 
object-oriented framework, it follows that it is feasi­
ble to extend DECmcc to classes of managed object 
and applications beyond the traditional network­
oriented view of nodes, hosts, bridges, routers, etc. 
Some of the new classes of managed objects and 
new applications that we have seen developed 
using DECmcc include 

1. Management of applications such as transaction 
processors and databases 

2. Applications in traditional system management, 
such as user management, disk backup, software 
installation, configuration maintenance, and 
performance monitoring 
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3. Management of objects in the telecommunica­
tions field, such as PBX machines, multiplexers, 
and switchesis 

4. Management of noncomputer hardware, such 
as air conditioners and building-environment 
controls 

Note that the implementation of these exten­
sions generally involves a relatively small invest­
ment, at which point the power of existing generic 
applications is automatically provided. For exam­
ple, in the easiest case, a new object that is manage­
able through SNMP need only have its management 
information base (MIB) translated to MSL and loaded 
into the DECmcc dictionary, at which point it is 
accessible by the existing SNMP AM as well as the 
standard generic applications. 

In other cases, such as the air conditioning exam­
ple, it is only necessary to code an AM that 
communicates to the air conditioning controller 
through its private protocol. Functions such as 
alarms, notifications, historical data recording, and 
graphing are automatically provided by existing FMs 
and PMs upon recognition of the new object class. 

In complex cases, object-specific FMs are written 
to perform such tasks as software installation and 
disk backup control. Yet even in these cases, all 
these functions are automatically accessible 
through the generic PMs. 

The potential for interdisciplinary applications 
is now becoming possible by the normalization of 
the interfaces to objects traditionally handled by 
totally separate applications. For example, given 
the extensions described above, it is possible to 
write an application that activates an emergency 
disk backup and switches telephone trunk traffic to 
another building if an air conditioning failure 
occurs. In fact, depending on how the various 
objects are defined, it may even be possible to cre­
ate such an application simply by writing a single 
alarm rule. 

Evolution to Open Systems 
With recent industry trends toward open systems 
environments, as well as the realization that almost 
any enterprise now comprises multiple hardware 
and software platforms from multiple vendors, it 
was clear that DECmcc had to evolve to this new 
world. Among the requirements to be met were not 
only the management of objects existing on various 
platforms, but also the execution of the director 
itself on different hardware and operating system 
platforms. 
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These requirements dictated two basic design 
goals: 

1. Portability of the director kernel itself to envi­
ronments other than VAX VMS 

2. Portability of plug-in management modules to a 
DECmcc director running on any supported plat­
form, and in particular, source compatibility to 
the greatest extent possible with the consider­
able suite of management modules that existed 
when the porting effort started 

Many of the fundamental requirements for porta­
bility had already been met. All existing manage­
ment modules were coded to the API defined in the 
DECmcc System Reference Manual (SRM), and the 
SRM had little code that was inherently specific to 
VAX or VMS.19 In fact, only the documented SRM rou­
tines were used to access DECmcc services, as well 
as many other common operating system services 
such as data storage and thread control. Conse­
quently, the kernel implementation team had the 
flexibility to implement these services differently 
on various platforms without impacting manage­
ment module source code. This was particularly 
true with the all-important mcc_call service, 
which provided the API for intermodule communi­
cation in a platform-independent context such that 
a wide variety of interprocess or intraprocess com­
munications mechanisms could be chosen for the 
underlying implementation. 

In the initial porting effort, which was from VAX 

VMS to RISC (reduced instruction set computer) and 
VAX ULTRIX, some of the more important changes in 
underlying implementations were 

1. The MIR was implemented over the ndbm hash 
database manager. An earlier version of the MIR 
was also implemented over ULTRIX SQL, which 
provided some large-capacity database features 
at the expense of significant performance. 

2. The operating system time interfaces were 
migrated to the distributed time service of the 
Open Software Foundation distributed comput­
ing environment (OSF DCE). 

3. The multithreading services were migrated to 
the DECthreads component of the DCE. 

4. The intermodule communication mechanisms 
(mcc_call) were implemented using RPC tech­
nology, with management modules running 
as independent RPC server processes. This 
allowed run-time extensibility without requir-
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ing the operating system to support a merged 
image activation function, a feature of the VMS 
implementation. 

5. Through the use of various wrapper routines in 
the DECmcc development toolkit, we were able 
to allow the management module developer to 
code entry points to the management modules 
without distinction to whether they were being 
run in an image merge or an independent pro­
cess context. 

Despite these major changes, 85 percent of the ker­
nel code is in fact platform independent, and we are 
maintaining a single source pool for DECmcc 
regardless of the number of platforms. To minimize 
the operating-system-dependent code we must 
maintain and to provide backward compatibility, 
we are also porting to VMS a number of the above 
technologies such as those built on DCE. 

At the present time we continue to broaden our 
open systems focus by additional ports to UNIX 
System V, OpenVMS on Alpha AXP, OSF/1 on Alpha 
AXP, as well as other operating systems. 

Implementation 
In late 1990 and early 1991, Digital delivered the 
first two versions ofDECmcc. Version 1.0 was writ­
ten to allow other vendors to start building their 
management modules; version 1.1 added some 
components for network managers. Both releases 
ran on VAX VMS systems, either workstations or 
hosts. 

In the middle of 1992, Digital released version 1.2 
of DECmcc, which added significant capabilities 
and runs on RISC ULTRIX. Later in 1992, Digital deliv­
ered POLYCENTER SNA Manager. In conjunction 
with DECmcc and the SOLVE:Connect for EMA, a 
product from System Center, Inc., it allows bidirec­
tional management between IBM SNA hosts and 
DECmcc systems. 20 

In early 1993, Digital released version 1.3 of 
DECmcc under the new product family name of 
POLYCENTER, with the POLYCENTER Framework, 
which is the basis for POLYCENTER Network 
Manager 200 and POLYCENTER Network Manager 
400. This new version adds ways to provide simpler, 
yet powerful, integration of management capabili­
ties; uses an OSF/Motif graphical user interface; a, 1d 
provides additional development tools. These v, r­
sions contain the DECmcc kernel, a corresponding 
developer's toolkit, and a series of management 
modules, which are outlined in Table I. The SRM 
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Table 1 DECmcc Director Management Modules 

Presentation Modules 

Forms and Command Line PM 

Iconic Map PM 

Notification PM 

Function Modules 

Registration FM 

Domain FM 

Historian FM 

Exporter FM 

Alarms FM 

Performance Analyzer FM 

Diagnostic Assistant FM 

Autoconfiguration FMs 

Access Modules 

SNMPAM 

DECnet Phase IV AM 

DECnet/OSI Phase V AM 

138 

Definitions 

Provides a command line user interface based on the NCL definition, 
together with a full-screen mode for video terminal devices. This PM also 
executes DECmcc command scripts. 

Provides an iconographic display based on OSF/Motif. It supports all the 
capabilities of the command line, but with a more usable graphical 
representation of the network and pull-down menu support. This PM also 
provides on-line graphing of management information. In addition, this PM 
can launch management applications that are not strictly part of the 
DECmcc environment, to provide a visual integration for the manager. 

Provides an interactive management display of event or alarm firing 
conditions based on OSF/Motif. Flexible filtering of information is used to 
minimize the information displayed to the manager, but the manager can 
search for and display information using various criteria such as severity 
level, managed object, and data and time. 

Definitions 

Provides a means for registering entities with the director and for 
maintaining reference information on behalf of the entities. 

Maintains the definitions of the various management domains, their 
membership, and their relationships. 

Enables the capture and storage of user-specified management attributes 
from any entity in the network. Retrieval of the stored information by 
management modules is provided directly by the mcc_call API. 

Allows extraction of user-specified on-line or stored management 
information into a relational database for processing by SOL-based 
information management tools, such as reports. 

Permits managers to specify, through rules, the set of conditions about the 
network in which they are interested. When the alarms FM detects a 
condition (the rule fires), various notification techniques may be employed. 
These include invoking a command script, sending mail, calling a manager 
using an electronic beeper, or modifying an icon on the iconic map display. 
Calculates statistics for DECnet, transmission control protocol/internet 
protocol (TCP/IP), and LAN bridges, based on error and traffic utilization or 
other information. 
Helps the manager diagnose faults in a TCP/IP network, based on some of 
the more frequently occurring TCP/IP network problems. 

Determine automatically the configuration and topology of specific 
portions of the network. Included are FMs to determine the configuration 
and topology of DECnet Phase IV networks, IP subnetworks, fiber 
distributed data interface (FDDI) ring maps, and LAN bridge spanning trees. 

Definitions 

Provides access to objects that implement the SNMP protocol. It is a 
generic AM in the sense that it can adapt to new object definitions using 
information in the DECmcc dictionary. New MIB definitions are provided in 
a standard form and translated by a MIB translation utility into the DECmcc 
dictionary. 
Provides access to the DECnet Phase IV implementations, be they hosts or 
servers such as routers. This AM implements the network information and 
control exchange (NICE) protocol. 

Provides access to the DECnet/OSI Phase V implementat ions, hosts, and 
servers. It implements the CMIP protocol used in Phase V. 
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Table 1 DECmcc Director Management Modules (continued) 

Access Modules Definitions 

Bridge AM Supports Digital's family of LAN bridges, including the LANbridge 100, 
LANbridge 150 and LANbridge 200, and the DECbridge family. It 
implements the ABMS protocol, which is used by the original manage­
ment product of the same name. 

FDDIAM Supports Digital's FDDI DECconcentrator products and other devices that 
support the standard station management protocol (SMT). 

Terminal Server AM Supports Digital's family of terminal servers, implementing management 
through the maintenance operations protocol (MOP). 

Ethernet Station AM Supports all Ethernet and IEEE 802.3 stations that implement either, or 
both, the Digital MOP protocol or the IEEE 802.2 XID and TEST messages. 

Circuit AM Uses the services of other AMs to provide management of the network 
circuits that connect systems together, based on DECnet nodes, TCP/IP 
hosts, or network management forum definitions. Such circuits might be 
simple point-to-point or could represent complex multichannel circuits. 

SNA AM and Agent PM Permit bidirectional management of the SNA environment and the DECmcc 
management environment through a component that resides on an SNA 
host (either IBM's NetView or System Center's Advanced System 
Management). 

Data Collector AM Provides a means to allow other software, such as applications, to send 
events into DECmcc so they may be processed and analyzed along with 
events from devices or applications that have access modules. 

Script AM Allows invocation of existing or custom shell scripts or command 
procedures from DECmcc, and information to be returned from the scripts 
into DECmcc for processing and analysis by other modules. 

provided the API definitions for management mod­
ules, as provided by the kernel. Figure 4 shows a 
sample screen from DECmcc being used to manage 
a portion of a network. 

Since the DECmcc kernel is indifferent to the spe­
cific type of any management module, it is quite 
convenient to package different modules together, 
providing for a flexible packaging scheme. Each 
DECmcc can therefore be tailored to include the set 
of modules appropriate for managing the environ­
ment in which it is situated. In addition, modules 
from other vendors can be integrated by the cus­
tomer w ithout involvement from Digital. 

As new management modules are added, 
the powerful generic capabilities of DECmcc 
allow many existing functions to be used without 
change. When an AM is added for a new class of 
resource, or when an existing generic AM is 
enhanced by adding new supporting definitions in 
the dictionary, one can immediately perform the 
following functions. 

• Identify specific resource instances uniquely 

• Make the resources known to all DECmcc direc­
tors in the network 
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• Represent the resources on an iconic display in 
one or more management domains 

• Examine management attributes from these 
resources 

• Modify management attributes in these 
resources 

• Apply management actions to these resources 

• Display event information from these resources 

• Create alarm rules that can be triggered on par­
ticular conditions (polled or unsolicited) about 
these resources 

• Have the relevant icons change color when the 
alarms fire 

• Store, periodically, management data or infor­
mation about these resources in the DECmcc 
historical data store, or export the information 
to a relational database 

• View the stored historical data 

• Process the relational data using standard infor­
mation management tools, for example, to pro­
vide management reports 
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Figure 4 Screen Display of DECmcc Version 1.3 

Future Work 
Of course, work on a major software system such as 
the DECmcc director is never complete. There are 
many areas of opportunity for additional develop­
ment. For example, DECmcc can be ported to other 
industry platforms (both hardware and software). 
New objects can be managed, not only in network 
management but also in system management, 
application management, data management, envi-
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ronment management, telecommunications man­
agement, and so on. Commensurate with each of 
these general areas are technology-specific applica­
tions. In addition, further technology-independent 
generic applications can be developed. A recent 
paper describes how DECmcc can be considered 
as a distributed application and some additional 
work to make use of the DECmcc concepts in a 
distributed environment. 21 
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DECmcc is not the only management director 
in the industry. Thus interoperability between 
DECmcc and other management systems is another 
area of opportunity. DECmcc already has links to 
other management systems, not the least being to 
manage IBM SNA systems. 

Recent advances in object-oriented technology 
can be incorporated to enhance the object orienta­
tion of DECmcc. 

Finally, new standard industry management pro­
tocols, new managed objects, and management 
framework innovations are always becoming avail­
able. DECmcc will be taking all of these evolutions 
in its stride. The distributed management environ­
ment (DME), still under development by OSF, 
promises to bring yet more technology to which 
DECmcc will adapt readily. 

Summary 
This paper has explained aspects of the design of 
DECmcc in the context of the state of the industry at 
the time. DECmcc has been a large undertaking, but 
we have been able to build and ship significant, con­
sistent, integrated, and yet extensible, management 
capabilities covering a broad range of managed 
objects. The ability for DECmcc to adapt to the 
changing management environments underscores 
the benefit of adopting an architected approach to 
implementation. 
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I Recent Digital U.S. Patents 

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied 
to us vy the US. Patent and Trademark Office are reproduced exactly as they appear on the original 
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Selections between Alternate Control Word and Current 
Instruction Generated Control Word for ALU in Respond to 
ALU Output and Current Instruction 
Magneto-Optic Recording Medium with Oriented Langmuir­
Blodgett Protective Layer 

Dual-Charge-Pump Bandwidth-Switched Phase-Locked-Loop 

Read Channel Optimization System 

Station-to-Station Full Duplex Communication in 
a Communications Network 

Data Processing System and Method for Packetizing Data 
from Peripherals. 

Pin Pulling Tool 

Method and Apparatus for Resolving a Variable Number 
of Potential Memory Access Conflicts in a Pipelined 
Computer System 
Virtual Memory Paging Apparatus with Variable Size 
In-Page Clusters 

High Performance Bit-Sliced Multiplier Circuit 

Fault Diagnostic System 

Apparatus and Method for Reducing Interference in Two-Level 
Cache Memories 

Die Attach Structure and Method 

Utilization of Redundant Lin.ks in Bridges Networks 

Pipelined Cryptography Processor and Method for its Use in 
Communication Networks 

Dynamic Threshold Data Receiver for Local Area Networks 
Gate Efficient Digital Glitch Filter for Multiple 
Input Applications 
Delay-Based Congestion Avoidance in Computer Networks 

Message Processing System Having Separate Message 
Receiving and Transmitting Processors with Message P,·ocess­
ing Being Distributed Between the Separate Processors 
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