
DECnet Open Networking

Digital Technical Journal
Digital Equipment Corporation

Volume 5 Number 1
Winrer 1993

Cover Design
Our cover illustrates an image of the

simplicity of data sharing as experienced

by system users interconnected through a

global network; papers in this issue describe

the depth and complexity of technologies

and products that make the simplicity of

data exchange possible.

The cover design is by Deb Anderson of

Quantic Communications, Inc.

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor

Circulation
Catherine M. Phillips, Administrator

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, U lustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
Richard]. Hollingsworth
Alan G. Nemeth
jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard, Massachusetts
01754-2571. Subscriptions to the journal are $40.00 for four issues and must be pre­
paid in U.S. funds. University and college professors and Ph.D. students in the electrical
engineering and computer science fields receive complimentary subscriptions upon
request. Orders, inquiries, and address changes should be sent to the Digital Technical
journal at the published-by address. Inquiries can also be sent electronically to
DTJ@CRL.DEC.COM. Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 129 Parker Street, Maynard, MA 01754.

Digital employees may send subscription orders on the ENET to RDVAX::JOURNAL
or by interoffice mail to mails top ML01-3/B68. Orders should include badge number,
site location code, and address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright© 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted . All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.
ISSN 0898 -901X

Documentation Number EY-M7 70E-DP

The following are trademarks of Digital Equipment Corporation: ADVANTAGE­
NETWORKS, Alpha AXP, the Alpha AXP logo, AXP, Bookreader, DEC, DEC 3000 AXP,
DEC FDD!controller, DEC OSF/1 AXP, DEC LANcon troller, DEC WANcontroller,
DECbridge, DECchip 21064, DECconcentrator, DEChub, DECmcc, DECnet, DECnet/SNA,
DECnet-VAX, DECnet/OSI for Open VMS, DECnet/OSI for ULTRIX, DECNlS 500/600,
DECstation, DECthreads, DECUS, Digital, the Digital logo, DNA, LANbridge, L AT,
Open VMS, Open VMS on Alpha AXP, POLYCENTER, POLYCENTER Network Manager 200,
POLYCENTER Network Manager 400, POLYCENTER SNA Manager, RS232, ThinWire,
TURBOchannel, ULTRIX, VAX, VMS, and VMSciuster.

Advanced System Management and SOLVE: Connect for EM A are trademarks of System
Center, Inc.

AppleTalk is a registered trademark of Apple Computer, Inc.

BSD is a trademark of the University of California at Berkeley.

FastPacket, Strata Com, and IPX are registered trademarks of Strata Com, Inc.

IBM and NetView are registered trademarks oflnternational Business Machines
Corporation.

Motif, OSF, and OSF/1 are registered trademarks of Open Software Foundation, Inc.

NetWare and Novell are registered trademarks of Novell, lnc.

NFS is a registered trademark of Sun Microsystems, Inc.

Presto serve is a trademark of Legato Systems, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark ofx;Open Company Limited.

Book production was done by Quantic Communications, Inc.

I Contents
10 Foreword

Anthony G. Lauck

12 Overview of Digital's Open Networking
John Harper

DECnet Open Networking

21 The DECnet/OSI for OpenVMS Version 5.5 Implementation
Lawrence Yetto, Dorothy Noren Millbrandt, Yanick Pouffary,
Daniel]. Ryan,Jr., and David]. Sullivan

34 The ULTRIX Implementation of DECnet/OSI
Kim A. Buxton, Edward]. Ferris, and Andrew K. Nash

44 High-performance TCP/IP and UDP/IP Networking
in DEC OSF/lfor Al,phaAXP
Chran-Ham Chang, Richard Flower,John Forecast, Heather Gray,
William R. Hawe, K. K. Ramakrishnan, Ashok P. Nadkarni,
Uttam N. Shikarpur, and Kathleen M. Wilde

62 Routing Architecture
Radia]. Perlman, Ross W Callon, and I. Michael C. Shand

70 Digital's Multiprotocol Routing Software Design
Graham R. Cobb and Elliot C. Gerberg

84 The DECNIS 500/600 Multiprotocol Bridge/Router
and Gateway
Stewart E Bryant and David L.A. Brash

99 Frame Relay Networks
Robert]. Roden and Deborah Tayler

107 An Implementation of the OSI Upper Layers
and Applications
David C. Robinson, Lawrence N. Friedman,
and Scott A. Wattum

117 Network Management
Mark W Sylor, Francis Dolan, and David G. Shurtleff

130 Design of the DECmcc Management Director
Colin Strutt and James A. Swist

1

I Editor's Introduction

Jane C. Blake
Editor

Ten years ago, a network of 200 nodes was con­
sidered very large with uncertain manageability.
Today, Digital's networks accommodate 100,000
nodes in open, distributed system environments
and resolve the complexities of incompatibility
among multivendor systems. Ten years from today,
network systems comprising a million-plus nodes
will be built based upon the Digital architectures
and technologies described in this issue.

John Harper provides an informative overview of
advances made with each phase of the Digital Net­
work Architecture, now in Phase V. He describes
the architectural layers and distinguishes Digital's
approach to network services and management
from that of others in the industry. His paper offers
context for those that follow.

The Phase V architecture provides the migration
to open systems from previous phases of DECnet. In
implementing Phase V, designers of two DECnet
products for the OpenVMS and ULTRIX operating
systems shared several goals: extend network access
in a multivendor environment, use standard proto­
cols, and protect customers' software investments.
Larry Yetto, Dotsie Millbrandt, Yanick Pouffary, Dan
Ryan, and David Sullivan describe the DECnet/OSI
for OpenVMS implementation and give details of
the significantly different design of Phase V net­
work management. In their paper on DECnet/OSI
for ULTRIX, Kim Buxton, Ed Ferris, and Andrew
Nash stress the importance of the protocol switch
tables in a multiprotocol environment. DECnet/OSI
for ULTRIX incorporates OSI, TCP/IP, and X.25.

In the broadly accepted TCP/IP protocol area,
Digital has developed a high-performance TCP/IP
implementation that takes advantage of the full FDDI
bandwidth. K.K. Ramakrishnan and members of the
development team review the characteristics of the
Alpha AXP workstation, OSF/1 op erating system, the

2

protocols, and the network interface. They then
detail the optimizations made for high performance.

Routing data through networks with thousands
of nodes is a very difficult task. Radia Perlman, Ross
Callon, and Mike Shand describe how the Phase V
routing architecture addresses routing complexity.
Focusing on the IS-IS protocol, they pose problems
a routing protocol could experience, present alter­
native solutions, and explain the IS-IS approach.

The challenges in developing multiprotocol rout­
ing software for intemetworking across I.ANS, WANS,
and dial-up networks are presented in the paper by
Graham Cobb and Elliot Gerberg. They highlight
the importance of the stability of the routing algo­
rithms, using the DEC WANrouter and DECNIS prod­
ucts as a basis for discussing alternative designs.
Stewart Bryant and David Brash then focus on
details of the high-performance DECNIS 500/600
bridge/router and gateway. They discuss the archi­
tecture and the algorithm for distributed forward­
ing that increases scalable performance. Both the
hardware and the software are described.

In addition to routing, the subject of data transfer
of high-speed, bursty traffic using a simplified form
of packet switching is described. Robert Roden and
Deborah Tayler discuss frame relay networks, their
unique characteristics, and the care needed in pro­
tocol selection and congestion handling.

The above discussions of data transfer and rout­
ing occur at the lower layers of the network archi­
tecture. Dave Robinson, Larry Friedman, and Scott
Wattum present an overview of the upper layers
and describe implementations that maximize
throughput and minimize connection delays.

Network management is critical to the reliable
function of the network. As Mark Sylor, Frank
Dolan, and Dave Shurtleff tell us in their paper,
Phase V management is based on a new architec­
ture that encompasses management of the network
and systems. They explain the decision to move
management responsibility to the subsystem archi­
tecture, and also describe the entity model. The
next paper elaborates on the director portion of the
management architecture, called the DECmcc
Management Director. Colin Strutt and Jim Swist
review the design of this platform for developing
management capabilities, the modularity of which
allows future modules to be added dynamically.

The editors thank John Harper for his help in
selecting the content of this issue.

Biographies

David L.A. Brash David Brash, a consultant engineer, joined Digital's
Networks Engineering Group in 1985 to lead the hardware development of the
MicroServer communications server (DEMSA). As the technical leader for the
DECNIS 500/600 hardware platforms, David contributed to the architecture,
backplane specification, module and ASIC designs and monitored correctness.
He was an active member of the IEEE Futurebus+ working group. He is currently
leading a group supporting Alpha design wins in Europe. David holds a B.Sc. in
electrical and electronic engineering from the University of Strathclyde.

Stewart F. Bryant A consulting engineer with Networks and Commu­
nications in Reading, England, Stewart Bryant worked on the advanced develop­
ment program that developed the DECNIS 600 architecture. During the last six
months of the program, he was its technical leader, focusing on implementation
issues. Prior to this work, Stewart was the hardware and firmware architect for
the MicroServer hardware platform. He earned a Ph.D. in physics from Imperial
College in 1978. He is a member of the Institute of Electrical Engineers and has
been a Chartered Engineer since 1985.

Kim A. Buxton Kim Buxton is a principal software engineer in the Networks
and Communications Group. During the past seven years, Kim has been work­
ing on DECnet and OSI for UNIX operating systems. She is currently the project
leader of the DECnet/OSI for DEC OSF/1 AXP release. Prior to assuming the role of
project leader, Kim worked on network management, session control, and trans­
port protocols for DECnet-ULTRIX products. She has worked in the area of net­
works and communications since joining Digital in 1980. She earned her B.S.
degree in mathematics and secondary education from the University of Lowell.

Ross W. Callon As a member of Digital's Network Architecture Group from
1988 to 1993, Ross Callon worked on routing algorithm and addressing issues.
He was a primary author of the Integrated IS-IS protocol and of the guidelines for
using NSAP addresses in the Internet. Previously, he was employed by Bolt
Beranek and Newman as a senior scientist and helped develop the ISO CLNP pro­
tocol. Ross received a B.Sc. (1969) in mathematics from MIT and an M.Sc. (1977) in
operations research from Stanford University. He is currently employed as a con­
sulting engineer at Wellfleet Communications.

Chran-Ham Chang Chran-Ham Chang is a principal software engineer in the
UNIX System Engineering Group and a member of the FAST TCP/IP project team.
Since joining Digital in 1987, Chran has contributed to the development of vari­
ous Ethernet and FDDI device drivers on both the ULTRIX and DEC OSF/1 AXP
systems. He was also involved in the ULTRIX network performance analysis and
tools design. Prior to this, Chran worked as a software specialist in Taiwan for a
distributor of Digital's products. He received an M.S. in computer science from
the New Jersey Institute of Technology.

I

3

,------ --

Biographies

4

Graham R. Cobb Graham Cobb is a consulting engineer in the Internet
Products Engineering Group and was software project leader for the DECNIS
500/600 router development. Graham holds an M.A. in mathematics from the
University of Cambridge and joined Digital as a communications software engi­
neer in 1982. He has worked on many Digital communications products, includ­
ing X.25 products and routers, and was a major contributor to the DEC WAN router
100/500 software immediately prior to leading the DECNIS development. Most
recently, Graham has been working on new-generation routing software.

Francis Dolan Frank Dolan is a consultant engineer with Digital's Telecommu­
nication Business Group Engineering in Valbonne, France. He is currently the
project manager and technical leader of the GDMO translator, a tool being devel­
oped to support the DECmcc/TeMIP OSI access module and OSI agent presenta­
tion module. Prior to this work, Frank was the architect of several Phase V DNA
specifications, including DDCMP network management, OSI transport, and
network routing accounting. He was also an active member of OSI management
standards committees. Frank has filed one European patent application.

Edward J. Ferris Ed Ferris is a principal engineer in the Networks and
Communications Group. During the past seven years, Ed has been working on
DECnet-ULTRIX. He is currently one of the technical leaders of the DECnet/OSI
for DEC OSF/1 AXP release. Ed has primarily worked at the data link and network
protocol layers. He has worked on networks and communication products since
joining Digital in 1982. Ed earned a B.A. in English from the University
of Massachusetts and a B.S. in computer engineering from Boston University.

Richard Flower Richard Flower works on system performance issues in
multiprocessors, networking, distributed systems, workstations, and memory
hierarchies. The need for accurate time-stamping events across multiple systems
led him to develop the QUIPU performance monitor. The use of this monitor led
to performance improvements in networking, drivers, and RPC. Richard earned
a B.S.E.E. from Stanford University (with great distinction) and a Ph.D. in com­
puter science from MIT. Prior to joining Digital, he was a professor at the
University of Illinois. Richard is a member of Phi Beta Kappa and Tau Beta Pi.

John Forecast A software consultant engineer with the Networks
Engineering Advanced Development Group, John Forecast addresses network
performance issues associated with the transmission of audio and video data
through existing networks. John joined Digital in the United Kingdom in 1974
and moved to the United States to help design DECnet-RSX Phase 2 products,
DECnet Phase IV, and DECnet implementations on ULTRIX and System V UNIX.
John also worked on file servers for VMS and a prototype public key authentica­
tion system. He holds a Ph.D. from the University of Essex.

Lawrence N. Friedman Principal engineer Lawrence Friedman is a technical
leader in the OSI Applications Group. He joined Digital in 1989 and is the project
leader for ULTRIX FTAM Vl.O and Vl.1. In addition to his project responsibilities,
Larry is Digital's representative to the National Institute of Standards and
Technologies (NIST) FTAM SIG and was the editor of the NIST FTAM SIG Phase 2
and Phase 3 documents from 1990 to 1992. He is currently the editor for the
FTAM File Store Management International Standard Profile. Larry holds a B.A.
(1978) in music from Boston University.

Elliot C. Gerberg Elliot Gerberg is a senior engineering manager in Digital's
Networks Engineering Division, managing the Routing Engineering Group
(USA). Since joining Digital in 1977, he has worked on numerous projects includ­
ing the DEUNA, Digital's first LAN adapter; the DECserver 100, Digital's first low­
cost terminal server; the SGEC, a high-performance Ethernet semiconductor
interface; and various multiprotocol routers. Elliot has a B.S. in physics from
SUNY and an M.S. in computer science from Boston University. He holds profes­
sional memberships with the IEEE, the ACM, and the Internet Society.

Heather Gray A principal engineer in the UNIX Software Group (USG),
Heather Gray is the technical leader for networking performance on the DEC
OSF/1 AXP product family Heather's current focus is the development of IP multi­
cast on DEC OSF/1 AXP. She has been involved with the development of Digital
networking software (fCP/IP, DECnet, and OSI) since 1986. Prior to joining USG,
Heather was project leader for the Internet Portal Vl.2 product. She came to
Digital in 1984, after working on communication and process control systems at
Broken Hill Proprietary Co., Ltd. (BHP) in Australia.

John Harper As technical director of the Corporate Backbone Networks
Group in NAC, John Harper directed the development of the DECnet Phase V
architecture. Until last year John also chaired the ISO Committee JTC1/SC6/WG2,
which deals with standards for the OSI network layer. He joined Digital in 1974
after receiving a degree in computer studies (1st class honors) from the
University of Lancaster. John has ten patents (filed or issued) on computer net­
works and has published several conference papers on that subject. He has made
numerous contributions to standards for computer networks.

William R. Hawe A senior consulting engineer, Bill Hawe manages the LAN
Architecture Group. He is involved in designing architectures for new net­
working technologies. Bill helped design the FDDI and extended LAN architec­
tures. While in the Corporate Research Group, he worked on the Ethernet
design with Xerox and Intel and analyzed the performance of new communica­
tions technologies. Before joining Digital in 1980, Bill taught electrical engineer­
ing and networking at the University of Massachusetts, where he earned a B.S.E.E.
and an M.S.E.E. He has published numerous papers and holds several patents.

I

5

Biographies

6

Dorothy Noren Millbrandt Dotsie Millbrandt is a principal software engi­
neer and a co-project leader for Common Network Management. Currently she
is developing management components that will work across all the DECnet/OSI
platforms: OpenVMS, OSF/1 , and ULTRIX. Dotsie was the project leader for the
MOP component and the trace facility and has worked on OSI transport and con­
figuration software. Prior to this work, she was a project leader and microcode
developer for DSB32 and KMVll synchronous communications controllers in the
css Network Systems Group.

Ashok P. Nadkarni A principal software engineer in the Windows NT
Systems Group, Ashok Nadkarni is working on a port of native Novell NetWare to
Alpha AXP systems. Prior to this, he was a member of the NaC Advanced
Development Group. He has contributed to projects dealing with IP and OSI pro­
tocol implementations, network performance improvement, a prototype of the
Digital distributed time service, and mobile networking. He holds a B. Tech. in
computer engineering from the Indian Institute of Technology, Bombay, and an
M.S. from Rensselaer Polytechnic Institute. Ashok joined Digital in 1985.

Andrew K. Nash Andrew Nash is a principal software engineer with NaC
Australia and was the project leader for the ULTRIX Phase V X.25 products. He is
currently technical leader for NaC Australia and has been with the group since
1988. Since joining Digital in 1980, he has worked for Educational Services and
the Customer Support Centre and has been a consultant for Software Services.
Andrew received a B.Sc. (M.Sc.) from the University of Adelaide and a graduate
diploma in software engineering from the University of Technology, Sydney.

Radia J. Perhnan As a member of the Network Architecture Group, Radia
Perlman has been designing protocols for bridges and routers since joining
Digital 13 years ago. She designed the spanning tree algorithm used by all stan­
dardized forms of bridges, as well as many of the protocols in IS-IS. Radia
authored the book Interconnections: Bridges and Routers and has more than 20
patents filed or pending in the areas of bridging, routing, and network security.
She holds S.B. and S.M. degrees in mathematics and a Ph.D. in computer science,
all from the Massachusetts Institute of Technology.

Yanick Pouffary A principal software engineer, Yanick Pouffary is currently
the transport technical leader in the DECnet/OSI for OpenVMS Group. She was
the principal designer and developer of OSI transport and NSP transport protocol
engines. Prior to this work, she developed the presentation layer for the VfX20,
a videotext terminal. Before joining Digital in 1985, Yanick worked for the
CODEX Corporation on a statistical multiplexer. Yanick earned a B.S. in computer
science from the University of Nice, France, and an M.S. in computer science
from the State University of New York at Stony Brook.

K. K. Ramakrishnan A consulting engineer in the Distributed Systems
Architecture and Performance Group, K. K. Ramakrishnan joined Digital in 1983
after completing his Ph.D. in computer science from the University of Maryland.
K. K.'s research interests include performance analysis and design of algorithms
for computer networks and distributed systems using queuing network models.
He has published more than 30 papers on load balancing, congestion control
and avoidance, algorithms for FDDI, distributed systems performance, and issues
relating to network 1/0. K. K. is a member of the IEEE and the ACM.

David C. Robinson David Robinson is a principal software engineer in
Network Engineering Europe. He was the architect for the OSI upper layers and
designed and prototyped Digital's improved upper layer implementation. He
came to Digital in 1988 from the General Electric Co. (GEC) in Chelmsford,
Essex, U.K., where he developed a remote procedure call and a distributed com­
puting environment. Dave holds a B.Sc. (Eng) in computing science (1982) and
a Ph.D. in management of very large distributed computing systems (1988), both
from the Imperial College in London.

Robert J. Roden Robert Roden is a consulting engineer in Networks
Engineering. Recently, he has been working on new transmission technologies
such as frame relay and switched multimegabit data service. He has also worked
on computer integrated telephony and chaired a group developing related stan­
dards. Robert joined Digital in 1986 from Racal Milgo, where he was responsible
for local area networks and network management platforms. He received a B.Sc.
(1971) in physics and a Ph.D. (1974) in materials science from the Imperial
College in London.

Daniel J. Ryan , J r. A principal software engineer in the DECnet/OSI for
OpenVMS Group, Dan Ryan was responsible for the configuration and installa­
tion portion of the DECnet/OSI for OpenVMS product. Recently he was the team
leader for the transport development effort. Currently he is investigating
DECnet/OSI and TCP/IP integration as well as DECnet/OSI critical problems. Dan
has 14 years of experience in data communications and has been with Digital
since 1983. He was previously employed as a systems programmer and was a
free-lance consultant on computer communication solutions.

I. Mich ael C. Shand Consulting engineer Michael Shand of Networks
Engineering is responsible for the DNA Phase V network routing layer architec­
ture. Prior to this, he worked on the Phase V X.25 access and HDLC architectures.
He represents Digital on the ISO network layer committee and was a major con­
tributor to the standardization of the IS-IS routing protocol (ISO/IEC 10589). Mike
came to Digital in 1985 from Kingston Polytechnic (U.K.). He has an M.A. (1971) in
natural sciences from the University of Cambridge and a Ph.D. (1975) in surface
chemistry from Kingston Polytechnic.

I

7

Biographies

8

Uttam N. Shikarpur Uttam Shikarpur joined Digital in 1988 after receiving
an M.S. in computer and systems engineering from Rensselaer Polytechnic
Institute. Uttam is a senior engineer and a member of the UNIX Systems Group
working on network drivers and data link issues. His current project involves
writing a token ring driver for the DEC OSF/1 AXP operating system. Prior to this
work, he contributed to the common agent project.

David G. Shurtleff A member of Digital's Corporate Systems Engineering
Group, David Shurtleff consults in support of major systems integration projects
and participates in CSE initiatives to improve engineering processes. Previously,
he was a member of the EMA Architecture Group, where he worked on the spec­
ification of EMA director architectures and the development of systems manage­
ment standards. David has also worked in the DECmcc strategic vendor program
as a senior technical resource. Before joining Digital in 1988, David was on the
packet switch development staff at BBN Communications Corporation.

Colin Strutt Colin Strutt is the DECmcc technical director in Enterprise
Management Frameworks, part of the NAS Systems Management. Prior to that
position, Colin was the project leader for the terminal server manager, various
terminal server products, Ethernet communications server, and DECnet-IAS. He
joined Digital in 1980 and is now a consulting engineer. Colin received a B.A.
(honors) and a Ph.D. both in computer science from the University of Essex, U.K.
He is a member of BCS and ACM. Colin has several patents pending on DECmcc
technology and has published papers on integrated network management.

DavidJ. Sullivan David Sullivan is a senior software engineer and was the
technical leader of the node agent and event dispatcher components for the
DECnet/OSI for OpenVMS product. David also worked as an individual contribu­
tor on the design and implementation of the session control layer. He is cur­
rently working on a development effort to allow the DECnet/OSI product to run
on Digital's AXP platforms. After joining Digital in 1987, he worked in the
VAX/RPC Group where he was responsible for writing tests for the pidgin com­
piler. David holds a B.S.C.S. (1988) from Merrimack College.

James A. Swist Jim Swist joined Digital in 1975. He is a consulting software
engineer and the technical leader for open systems in the Enterprise
Management Frameworks Group. Prior to this position, he was a system man­
agement architect for VMS development, technical leader and development man­
ager for TDMS/ACMS/CDD database systems, and a consultant in software services
for several large commercial TP projects. Jim earned a B.S. in electrical engineer­
ing from the Massachusetts Institute of Technology in 1970. He has one patent
pending on MCC distributed dispatch.

Mark W. Sylor Mark Sylor is the manager of Digital's Enterprise Management
Architecture Group. He is the author of the EMA Entity Model and the Phase V
DECnet Network Management Specification. Mark was a member of the ISO and
ANSI committees working on OSI system management and was the ANSI T5.4 ad
hoc group leader on the structure of management information. Prior to this
work, Mark was the principal designer and development supervisor for the
NMCC/DECnet monitor. Mark joined Digital in 1979. He holds an M.S. in mathe­
matics from the University of Notre Dame.

Deborah Tayler Deborah Tayler, a principal software engineer in Networks
Engineering Europe, is currently responsible for the design and implementation
of frame relay and point-to-point protocol functionality on multiprotocol
routers. She joined Digital in 1982 and has worked on DECtalk, All-IN-1, and com­
puter integrated telephony projects. Deborah received a B.Sc. (1981) in eco­
nomics from University College in London and an M.Sc. (1982) in the theory and
applications of computation from Loughborough University of Technology in
Loughborough, Leicestershire.

Scott A. Wattum Senior software engineer Scott Wattum is a member of the
OSI Applications Engineering Group. He is responsible for the design and devel­
opment of OpenVMS Virtual Terminal Vl.O and is involved in the ULTRIX and
OSF/1 porting efforts. Previously, Scott worked at the Colorado Springs
Customer Support Center and provided network support, specializing in OSI
protocols and applications. Prior to joining Digital in 1987, he was employed by
the University of Alaska Computer Network in various software positions. He
received a B.A. (1985) in theatre from the University of Alaska, Fairbanks.

Kathleen M. Wilde As a member of the Networks Engineering Architecture
Group, Kathleen Wilde focuses on integration of new TCP/IP networking tech­
nologies into Digital 's products. For the past two years, she has been prototyping
high-performance network features on the OSF/1 operating system and coordi­
nating the standards strategy for Digital's IETF participation. Previously, she was
the development manager of the ULTRIX Network Group. Her responsibilities
included product development of TCP/IP enhancements, FDDI, and SNMP. She
has a B.S. in computer science and mathematics from Union College.

Lawrence Yetto Larry Yetto is currently a project and technical leader for the
DECnet/OSI for OpenVMS Group. He joined Digital in 1981 and has held various
positions in software engineering on development projects for VMS journaling,
VMS utilities, and DECnet-VAX Phase IV. He also worked in the Project Services
Center, Munich, and was the project leader for the OpenVMS version 5.0 field
test. Prior to joining Digital, Larry worked as a systems programmer at
Burroughs Corporation. He earned a B.A. in both math and computer science
from the State University of New York at Potsdam.

I

9

I Foreword

Anthony G. Lauck
Corporate Consultant
Engineer and
Technical Director,
Networks Engineering

Digital's fifth generation of computer networking
products enters the market as computer net­
working technology enters its third decade as a
practical technology. Digital's first four generations
of DECnet products entered a marketplace that was
oriented toward proprietary computer solutions
and where networking grew slowly from a depart­
mental function to include a functional unit of an
enterprise and, eventually, an entire enterprise.
With networks confined to a department or func­
tion, there. was little need for heterogeneity.
Engineering departments used Digital's mini­
computers linked by DECnet, while corporate busi­
ness applications ran on IBM mainframes accessed
by SNA networks. Eventually these heterogeneous
networks were linked by gateways which provided
the necessary protocol conversions; but inte­
gration was never transparent-especially to the
system and network managers. The number of
computers in a network was limited by the scope
of the department, function, or organization and
by the cost of individual computers. Timesharing
remained the dominant mode of computer use in
these networks; there were significantly fewer
computers in a network than users of the network.

When Digital began its initial architectural work
on DECnet Phase V, we realized that technological
and economic limitations on network size were
going away. Microprocessors were making it pos­
sible for each person to have a computer. Local
area networks were making it possible for each
computer to be conveniently and inexpensively
connected. Early experience with embedded

10

computers in manufacturing applications at Digital
and with some of our customers convinced us that
the number of computers in a network could easily
exceed the number of people using the network. A
few communities, such as the worldwide high­
energy physics community, had built networks that
extended beyond the bounds of a single enterprise.
We saw that networks would need to have great
scope and would need to support a great diversity
of management. An architecture such as our DECnet
Phase IV, which limited a single network to tens of
thousands of nodes, would become too confining.

Early computer networks were homogeneous in
architecture and implementation, reflecting the
proprietary nature of the computer industry at the
time and also the difficulty of getting heteroge­
neous networks to work. Digital learned the diffi­
culties of heterogeneous networking back in the
1970s when it developed DECnet Phase II and made
a network work across a range of computer systems
from a single vendor. By the early 1980s there were
already multiple competing network architectures,
some proprietary to organizations, some viewed as
proprietary to a single nation. Different enterprises
and different departments of a given enterprise had
chosen different computer vendors, operating sys­
tems, and network architectures. Linking these
together by gateways would be too cumbersome.
These factors prompted for us the vision of a com­
mon network architecture, standardized on an inter­
national scope and appropriate to Digital's role as
an international corporation. Many of the papers in
this issue describe our realization of this vision.

Our vision of a common networking architec­
ture gave us the basic requirements for DECnet
Phase V -a scalable network architecture that is
open and standardized internationally. Like earlier
generations of DECnet, this architecture would be
backward compatible with its predecessor, preserv­
ing our customers' investments in applications and
network infrastructure. Implementing this vision
of a homogeneous network architecture based on
internationally standardized protocols and back­
ward compatibility with DECnet Phase IV proved to
be a daunting task. It involved developing new net­
working technology, in particular new routing and
addressing technology, standardizing this technol­
ogy in the international community, and imple­
menting it across a full range of products.

While Digital continued to work on its vision,
networking expanded vigorously across the entire
computer industry. Protocols appeared in niches:
vendor based, operating system based, industry

based. Users needed connectivity between these
niches, providing market pull for expansion from
initial niches. The result is today's world of multi­
protocol computer networks. Digital's next genera­
tion of networking products also reflects this
multiprotocol reality. Host networking products
support several protocol families and are con­
structed to isolate many of the differences between
network protocols from users. Network infrastruc­
ture products such as routers and network manage­
ment software support this diversity more fully,
reflecting the need for the infrastructure to support
all the types of network traffic. Many papers in this
issue relate to our participation in this complex
reality.

Computer networks have become an essential
part of many organizations. These networks must
be dependable and must not be bottlenecks. In its
fifth generation of networking products, Digital has
stressed robustness and performance. In designing
Digital's router products, we placed great emphasis
on robustness and network stability, particularly
under conditions of traffic overload. These are not
qualities that our customers will necessarily appre­
ciate unless they have experienced their absence
in an overloaded network. New applications and
larger data storage mandate higher host networking

I
throughput. High-speed local area networks, such
as FDDI, together with high-speed RISC processors,
such as Alpha AXP, create the expectation of high­
performance host networking. Achieving this level
of performance takes more than fast hardware,
however. It requires careful attention to details
of protocol implementation and interaction with
network interface hardware, the processor and
memory system, and the operating system. Sev­
eral papers in this issue describe how Digital
has achieved leadership in network robustness and
performance.

Networking depends on a variety of underlying
communications technologies and services. This
issue of the Digital Technical Journal concentrates
on how these underlying technologies can be used
to build large-scale computer networks; earlier
issues described such underlying communications
technologies as Ethernet and FDDI. This issue does,
however, include one paper on a new wide area
technology and service, Frame Relay, and how it
can be used by computer networks. Many other
new communications technologies and common
carrier services are in the process of being inte­
grated into Digital's family of networking products.
These will be described in future issues of the
journal.

11

Overview of Digital's
Open Networking

John Harper I

The principal element of Digitals open networking family of products is the DECnet
computer network. In its latest form, DECnet supports very large networks of more
than 100,000 nodes and incorporates industry standards such as OSI and TCP/IP. To
meet the design goals of the Digital Network Architecture, the structure of DECnet is
divided into layers with defined relationships between layers. Since its introduction
in 1974, DECnet has evolved in parallel with the standards for open networking.
Digital has contributed to the formation of networking standards, and the stan­
dards have, in turn, influenced the design of DECnet.

In 1974, Digital shipped the industry's first general­
purpose networking product for distributed com­
puting. The DECnet computer network was the
embodiment of the vision that small systems work­
ing together could become an alternative to main­
frame computing. Prior to that time, networking
products had been aimed at solving some specific
problem and had often been closely integrated
with a particular application. In contrast, DECnet
allowed any application to share data with all oth­
ers. Whereas previous networking products in the
industry had concentrated on connecting terminals
to hosts, DECnet provided peer-to-peer networking
for the first time. By doing this, it anticipated the
client-server computing style that is now common­
place and established client-server computing as a
viable approach.

DECnet built on work that had been done in the
research community. The internet protocol, funded
by the Advanced Research Projects Agency (ARPA),
was of particular relevance.• This too was aimed at
providing general-purpose distributed computing
and later evolved into the well-known TCP/IP (trans­
mission control protocol/internet protocol) proto­
col suite. In 1974, however, it was still a research
topic.

In the same year, International Business Machines
Corporation announced its Systems Network
Architecture (SNA).2 The comparison between SNA
and DECnet is interesting because SNA was designed,
not surprisingly, to support mainframe computing.
It focused principally on connecting many rela­
tively unintelligent devices, such as terminals and

12

remote job entry stations, into a single computer.
Only after several years did SNA allow more than
one mainframe to exist in the same network. Its
original goal was to address the proliferation of
application-specific protocols that allowed a termi­
nal connected to the network to use one applica­
tion only.

This paper presents a short history of the DECnet
networking product, defining each phase of its evo­
lution in terms of its contribution to distributed
computing. It explores the development of DECnet
Phase V, the current implementation, and discusses
the principles of Digital's layered architecture. The
paper then describes the layers of DECnet, the
importance of naming services, and the role of
network management.

A Short History of DECnet
The development of DECnet has proceeded by
phases. Each phase has represented a major step in
the evolution of the product family. The initial
products, later referred to as Phase I, revealed some
unexpected problems in building a range of prod­
ucts across different systems that would all work
together. One of the consequences was the creation
of a distinct Network Architecture Group. Their job
was to produce detailed specifications of the proto­
cols and interfaces to be used without constraining
the implementers to build products in some particu­
lar way. At that time, software portability was practi­
cally unheard of, and each different hardware or
software environment had its own completely sepa­
rate implementation. Phase II of DECnet, introduced

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

in 1978, provided full interoperability between the
different implementations, thanks to adherence to
a rigorously specified architecture.

At this stage, systems still had to be directly con­
nected to each other if they were to communicate.
Phase III, which appeared in 1981, introduced the
ability to route messages through any number
of links and intermediate systems to reach a desti­
nation. DECnet again used a technique from the
research networks, a dynamic adaptive routing
algorithm, which computed the best route to a des­
tination automatically as the physical connectivity
of the network changed. Competing products at
the time (such as SNA) required routes to be com­
puted and entered manually, including backup
routes for use in the event of failure of a link or
a system in the network.

Phase III also included full remote management
and reflected the gradual emergence of standards
for computer networking by supporting X.25
packet switching networks as one means for con­
necting systems.3 A Phase III network could contain
up to 255 nodes.

The invention oflocal area networks (LANs), and
in particular the Ethernet, was to have a huge
impact on the use of networking. 4 For the first time
it was cheap and simple to connect a system to the
network. Prior to LANs, only wide area network
technology was used, even when the systems were
physically next to each other. DECnet Phase IV,
which appeared in 1984, added support for the
Ethernet and allowed networks to contain up to
64,000 nodes.

The Evolution of open Networking
When DECnet appeared in 1974, all its networking
protocols were "proprietary; that is, they had been
developed by Digital and remained under Digital's
control. At that time there were no standards or
publicly defined network protocols. Work on stan­
dards for this purpose began during the 1970s, and
in 1978 the Comite Consultatif Internationale de
Telegraphique et Telephonique (CCITI) published
its Recommendation X25.3 This document defined
a standard way of connecting a computer to a
network that would permit free communication
between all attached computers. X.25 networks
were typically expected to be provided by a public
carrier such as a telephone company.

The appearance of this standard prompted the
question, "Now that our computers can talk to each
other, what are they going to say?" Simply permit-

D igital Technical Journal Vol. 5 No. 1 Winter 1993

Overview of Digital's Open Networking

ting them to send data to each other was of no use
unless they could also understand it and make some
use of it. DECnet, for example, included protocols
for transferring files and for remote terminal access
as well as the base protocols for transferring data.

Thus the idea of open systems interconnection
(OSI) was born. OSI was the most ambitious effort
in the history of standards. Its goal was to develop a
complete set of standard protocols that would
allow computers not only to exchange data but also
to make meaningful use of it in their applications.
The work was undertaken by the International
Organization for Standardization (ISO). This organi­
zation has representatives from all major countries
and is thus able to draw upon their extensive expe­
rience in research and commercial networking.

By 1984, when DECnet Phase IV became available,
the work on OSI had made substantial progress. The
architectural model had been published as an inter­
national standard, and standardization of many of
the protocols was at an advanced stage.5 It was also
becoming clear that the future of computer net­
works depended on the ability to communicate
without regard to who was the supplier of a system.
Ad hoc solutions, such as the DECnet/SNA gateway,
existed for communication between different net­
work architectures.6 OSI, however, held the prom­
ise of being a general solution. It was feared that the
alternative to OSI would be the adoption of a ven­
dor-specific architecture as a de facto solution, and
that that architecture would inevitably be SNA. The
internet family of protocols, colloquially known as
TCP/IP, had not yet become the force it is today.7

Detailed examination of the OSI protocols
showed that they formed a suitable basis for the
evolution of DECnet. This was not surprising, since
the ISO had incorporated Digital's basic concepts
into OSI, rather than the different ideas put forth by
the public network operators. A number of defi­
ciencies were identified, but these could be reme­
died by contributing more of Digital's technology
to the standards process. For example, all the
network-layer routing protocols used in OSI were
contributed by Digital. Thus the decision was made
that the next phase of DECnet, Phase V, would use
the OSI standards as much as possible. The existing
proprietary protocols would be retained only for
the purpose of backward compatibility.

During the development of the architecture and
products for Phase V, another event of great signifi­
cance took place. During the 1980s, TCP/IP emerged
as an alternative solution for open networking. This

13

DECnet Open Networking

development was prompted by the explosion in the
use of workstations based on the UNIX system style
of computing. The architectural model of Phase V

allowed a relatively straightforward integration of
these protocols into the products, although a great
deal of necessary software was written. Since OSI
and TCP/IP were never designed to work together,
allowing them to coexist in the same network
demanded considerable creativity.8

Goals of DECnet Phase V
The design of DECnet Phase V had three principal
goals:

• To allow networks to grow to be very large, with
one million systems as a practical target

• To use standard protocols to the maximum
extent possible

• To support a distributed-system mode of opera­
tion in which the systems cooperate more
closely than in traditional networking

The 64,000-node size limit of Phase IV was far
from posing a practical problem in 1984, but it was
then foreseen that computer networks in large
enterprises would approach this limit by the end of
the decade. Indeed, this happened with Digital's
internal network, which grew to over 100,000
nodes on Phase IV with the use of innovative man­
agement techniques. The node size limitation was
imposed primarily by the size of the addresses
used, which was 16 bits. Addresses in OSI networks
can be as long as 20 bytes, which removes the
immediate limitation. Very large networks, how­
ever, need more than large addresses to support
100,000 nodes or more. For example, the Phase IV

routing algorithm has certain inherent weaknesses
that start to appear for networks at the Phase IV size
limit. For this reason, Phase V employs a different
routing algorithm, which readily supports net­
works of millions of nodes.9 This algorithm has
subsequently been adopted as the international
standard for routing in OSI networks and, with mod­
ifications, for TCP/IP networks.10,11

Management of very large networks also requires
special attention. DECnet has always provided a
high degree of automated management compared
to other network architectures, but as a network
increases in size, the burden of tracking the config­
uration increases disproportionately. Assigning
addresses to nodes was a manual procedure in
Phase IV, and maintaining the correspondence
between node names and their addresses was

14

performed separately in each system. A goal for
Phase v was to provide a robust, distributed naming
service throughout the network. Furthermore,
nodes would be allowed to genernte their own
addresses in a reliable and unambiguous way and to
register themselves in this naming service. Thus a
new system can be connected to the network with­
out any administrative procedure, if network secu­
rity policies permit.

At a more detailed level, the architecture has a set
of goals that have evolved over time to include the
following.

• Conceal network operation from the user. The
internal operation of a large network is inevitably
complex, but to the user it should appear simple.

• Support a wide range of applications.

• Support a wide range of communications facili­
ties: LANs, wide area leased lines, X.25 networks,
etc.

• Support a wide range of network topologies.

• Use standards wherever feasible rather than pro­
prietary protocols. For cases in which standards
are evolving but are not yet finished, ensure that
future migration is as smooth as possible.

• Require minimum management intervention.

• Be manageable. Not all functions can be auto­
mated; for example, some depend on the organi­
zational policy of the user. In such cases
management should be as simple as possible
and should not impose any particular style of
management.

• Permit growth without disruption.

• Permit migration between versions. Each phase
of DECnet is guaranteed to work with the next
and previous phases, so that the systems in the
network can be upgraded over a long period. It
would be inconceivable to upgrade thousands of
systems overnight.

• Be extensible to new developments in technology.

• Be highly available in the face of line or system
failure or even, to the extent possible, operator
error.

• Be highly distributed. The major functions of the
Digital Network Architecture (DNA), such as
routing and network management, are not cen­
tralized in a single system in the network. This in
turn increases availability.

Vol. 5 No. 1 Winter 1993 Digital TecbntcalJournal

• Allow for security functions, such as authentica­
tion of remote users and access control.

Architectural Principles
DNA is a layered architecture. The necessary func­
tions are divided into related and logically coherent
groups called layers. The layers are built on top of
one another, so that each layer makes use of services
provided by the one below it. To meet the goals of
DNA, particularly those relating to flexibility, the
structure of a layered architecture is essential.

Figure I illustrates the principles of a layer in the
terminology of the OSI reference model.5 These
principles apply to any layer; in Figure I they are
shown applied to the transport layer. Each commu­
nicating system contains its own element of the
layer, called the transport entity. These entities
communicate with each other through the trans­
port protocol. This protocol is conveyed using the
services of the next lower layer, in this case, the
network layer. For this purpose the most important
service is the one that conveys data without regard
to its contents. Other services are also provided, for
example, connection management services. The
transport layer also provides a well-defined trans­
port service to its user, in this case, the session layer.
The detailed mechanisms and protocols of the layer
are hidden from the layers above and below, so that
the layer above sees only a well-defined service.

This independence of the mechanisms used per­
mits substantial changes to be made to the mecha­
nisms and protocols of a layer without affecting the
adjacent layers. This very important property is
called layer independence. It has been extensively
exploited in the development of DECnet to allow

TRANSPORT I
SERVICE I

I

Overview of Digital's Open Networking

protocols to be enhanced or even completely
replaced.

The principles of layered architecture were
defined in a rigorous way by the OSI reference
model, building on previous work such as DECnet
and the TCP/IP protocol family. The original layer
structure of DNA was defined in Phase I and has
changed only a little since then. It corresponds to
the lower layers of OSI as well as the layers of TCP/IP.

The Layers of DECnet
Figure 2 shows the layers of DECnet Phase V The
lower layers are the physical, data link, network,
and transport layers. They provide a universal, reli­
able service for moving data from one system to
another. Many different underlying means of physi­
cal communication can be used, with their associ­
ated protocols, including:

• Ethernet LANs and the equivalent standard (IEEE
802.3, ISO 8802-3)

• Token ring I.ANS (IEEE 802.5)

• Wide area links running over leased links at any
appropriate speed

• X.25 wide area networks

The network and transport layers unify the ser­
vice provided by these disparate physical networks
and allow communication across any mixture of
different facilities.

Protocols from different protocol suites may be
used, including OSI, TCP/IP, and DECnet Phase IV,
but the structure of the layers is the same in
each case. This facilitates interworking in mixed­
protocol networks.

------- - ------+-----------
SYSTEM 1 I SYSTEM 2

I

TRANSPORT ,--~TR_A_N_S_P_O_R~T~P_R_O_T_O_C_O_L __ , TRANSPORT
ENTITY ENTITY

I
I

--------------+--- - ----- - -
NETWORK I
SERVICE

• • I I

I - - - - -- -- -- - - - - - - - - - - - - - -- - - - - - - - _I

PHYSICAL COMMUNICATION PROVIDED
BY UNDERLYING LAYERS

Figure 1 Elements of a Layer of DECnet Architecture

D igita l Tecb11icalJour n al Vol. 5 No. 1 Win ter 1993

TRANSPORT
LAYER

15

DECnet Open Networking

The upper layers of DECnet, the session, pre­
sentation, and application layers, make use of the
reliable transport service to provide application­
oriented functions, such as file transfer or elec­
tronic mail. Again, different protocol suites are
supported, although in this case there are historical
reasons for the different layer structures that exist.

The Physical Layer
The physical layer is concerned essentially with the
electrical or other physical aspects of communica­
tion. It converts electrical or other signaling into
binary data (i.e., bits) and vice versa.

In DECnet, this layer has always been viewed
as the province of standards for devices such as
modems and LANs. These standards may have an
extremely complicated internal structure, as is the
case for some of the emerging high-speed, wide
area network standards, but this complexity is not
visible to the layers above.

The Data Link Layer
The data link layer provides a reliable communi­
cation path between directly connected systems
in the network. Its protocols can detect errors
introduced by the physical layer (for example, from
electrical disturbance). For media known to exhibit
a high error rate, such as analog links, the data link
layer also provides error-correcting mechanisms.

DECnet supports a variety of protocols in the
data link layer, depending on the nature of the phys­
ical link and the need to accommodate existing
technologies.

The Network Layer
The network layer provides the means to move data
from one system to another, without regard to the
nature of the connections between them. It finds a
route through multiple systems and physical paths

APPLICATION LAYER

PRESENTATION LAYER

SESSION LA YER

TRANSPORT LAYER

NETWORK LAYER

DATA LINK LAYER

PHYSICAL LA YER

Figure 2 The Layers of DECnet

16

as necessary for any particular pair of communicat­
ing systems. In DECnet, systems that move data
through the network without being involved in the
details of the communication are called routers.

A key element in this layer is the network
address. Every system in the network has a unique
address. Every system can communicate with every
other system in the network, whether it is adjacent
or located on the other side of the world. OSI pro­
vides an addressing scheme that allows every
system in the world to have a unique address.12 It
may also give some hints to find a route to the
system. Previous versions of DECnet (Phase IV and
before) used a different addressing scheme. Phase v
includes a way to map these addresses into the OSI
scheme.

In addition to protocols for carrying user data
between communicating systems, the network
layer also contains protocols for finding routes
between systems. The routing protocols used in
DECnet Phase V are international standards, but the
technology was developed by Digital and sub­
sequently submitted to the relevant standards
organizations. 10,11,13

The network layer has a complex internal struc­
ture that allows one network to use the connec­
tions provided by another. For example, some of
the links in a DECnet network may be provided by a
public X.25 network, which is also providing links
in other private networks.

The Transport Layer
The transport layer provides a reliable end-to-end
service between two communicating systems, con­
cealing from its users the detailed way in which this
is achieved. Unlike the layers below it, the transport
layer is present only in the end systems communi­
cating with each other. Thus it allows the end sys­
tems to take full responsibility for the quality of the
communications. The functions of the transport
layer include

• Recovery from data loss, for example, when
the network layer fails to deliver a packet due to
congestion

• Flow control, so that the transmitter does not
send data into the network faster than the
receiver can accept it

• Segmentation and reassembly of user messages,
so that the necessary division of data into dis­
tinct messages sent through the network does
not limit the size of messages as seen by the user

Vol . 5 No. I Winter 1993 Digital Tecfmica/ Jom·11al

• Congestion avoidance, so that data transmitters
can adjust their rate of transmission into the
network in reaction to congestion indications
from the network layer

DECnet supports three protocols in the transport
layer: the network services protocol (NSP), defined
for previous phases of DECnet; the OSI transport
protocol; and TCP from the internet protocol
suite.7,14

Upper Layer Protocols
The OSI model defines three distinct layers above
the transport layer: the session, presentation, and
application layers.

• The session layer organizes the structure of mes­
sage exchanges. For example, it provides half­
duplex semantics and allows checkpoints to be
established for recovery from system failure.

• The presentation layer deals with the existence
of different data representations in different sys­
tems. It allows a mutually acceptable transfer
syntax to be established which each communi­
cating system will be able to convert to and from
its internal representation.

• The application layer contains protocol elements
specific to a particular application, such as file
transfer. It also provides a structure that allows
applications to be built that use multiple proto­
cols in a coordinated fashion.

The DECnet Phase IV and TCP/IP protocol stacks,
which are also supported by DECnet Phase V, do not
have this structure. Rather, the functions of theses­
sion and presentation layers are built into the appli­
cation protocols as needed.

All three protocol suites support a wide variety
of applications, in addition to allowing a user the
flexibility to develop custom applications. Typical
applications include

• File transfer and access

• Virtual terminal

• Electronic mail

• Remote procedure calls

Naming Services
The protocols in the lower layers operate in terms
of addresses which are, for practical purposes, sim­
ply bit strings. Their format is heavily constrained
by the protocols, and their value is constrained by

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Overview of Digital's Open etworking

the network topology or hardware. These addresses
are not at all user friendly, nor are they intended to
be. The human users of a network need access in
terms of something which they can remember and
which makes sense to them, which is to say a name.
Computers in the network therefore need to be
able to take a name and change it to an address, and
vice versa for incoming traffic.

DECnet Phase IV had a very simple approach to
this problem. Since it was aimed at small- to
medium-sized networks, it was practical for each
system to store the complete set of names and
addresses. Administrative procedures, such as regu­
lar file transfers, could be used to ensure that all
systems were kept up-to-date.

DECnet Phase V was designed to allow much
larger networks to be built, while both OSI and
TCP/IP are designed to support networks on a
global scale. The administrative problems and stor­
age requirements of the Phase IV approach make it
unusable for very large networks. A further compli­
cation arises as networks span multiple organiza­
tions, since no single central site can have
management responsibility for the complete set of
names. Therefore, a different approach is needed.

The limitations of the Phase IV approach were
recognized when this version of DECnet was in the
design phase, and work was started on the Digital
Distributed Name Service (DECdns). DECdns has
been available as an optional component of DECnet
Phase IV for some time. It provides

• Distribution: All naming information does not
have to be stored at a single point in the
network.

• Replication: Information can be held in more
than one place, giving resilience in the face of
system or network failures.

• Dynamic updating: Information can be changed
at anytime.

• Automatic updating: Changed or new informa­
tion is automatically propagated throughout the
network.

• Hierarchical naming: A name can have multiple
components to reflect an administrative or other
organizational structure.

The development of the DECnet and DECdns
products has been closely linked, and each is
designed to make maximum use of the other. When
they are used together, DECnet can provide com­
plete autoconfiguration of a new node in the

17

DECnet Open Networking

network, such that no manager or user needs
explicit knowledge of the address of a node. Once
a name is assigned, the node can keep the naming
service up-to-date both with the initial assignment
of an address and any subsequent changes. It is also
possible for a DECnet system to operate without
DECdns.

The TCP/IP protocol suite also includes a naming
service, with similar properties to DECdns. It is
called the domain name system, or DNS. At the
highest level, names are assigned by a global author­
ity to countries and to other large groupings of
organizations. Within countries, they are assigned
to particular organizations such as companies.
These organizations can then assign names that may
have further components reflecting their internal
structure.

Work on a naming service for OSI has lagged
behind the other protocol suites, but the most
important elements have been available since 1988
in a standard generally called X.500 (after the first
of a series of CCITT recommendations that define
the OSI directory). The X.500 standard defines the
structure of names and the protocols to be used to
access the naming service, but it does not include
the mechanisms required for automatic updating
and maintenance of the service itself.15 Work on
standards for these functions is currently at an
advanced stage. Like the DNS system for TCP/IP, the
X.500 standard allocates the highest level of the
structure to countries and then to organizations
within countries. Its design pays particular atten­
tion to the needs of electronic mail (the X.400 pro­
tocol family). In contrast to DECdns and DNS, which
assign names to computer systems, the structure of
X.500 names extends to the level of naming individ­
uals within a coherent naming framework.

DECnet supports all these naming services, in
conjunction with their respective protocol stacks.

Distributed Network Management
In early computer networks, management was per­
formed "out of band." This meant that if any com­
munication between sites was needed to keep the
network running, some means other than the
network (for example, the telephone) was used. It
was soon realized that much of the time, the
network itself provided the most effective way to
communicate management information, either to
investigate a problem or to modify the configura­
tion. DECnet has included the ability to manage
itself in this way since Phase ill.

18

The most obvious requirement for such a scheme
is a protocol that can carry management informa­
tion through the network. Such a protocol fits natu­
rally into the application layer, where it can make
use of the services provided by the other layers.

A further requirement is a well-defined structure
for the information that is to be conveyed. A net­
work architecture is constantly evolving, and it
must be possible to add new information (for exam­
ple, for a new kind of data link) into the protocol.

Finally, the specific information elements, such
as the fault counters to use in conjunction with a
particular protocol, must be defined.

The management model and protocol used in
earlier versions of DECnet were unsuitable for the
needs of Phase V due to the many different protocol
combinations that were to be supported. Hence, a
new management model was defined. For a long
time, this was called the Entity Model and was
subsequently published as Digital's Enterprise
Management Architecture (EMA).16 This model takes
an object-oriented approach to modeling the infor­
mation needed for management. It is completely
flexible and is not restricted to the management of
the network itself; it has since been applied to man­
agement of the computer systems themselves.

At the same time, Digital adopted an early draft of
the protocol under development for OSI manage­
ment, the common management information pro­
tocol (CMIP). The structure of the CMIP protocol
accommodates the flexibility allowed in EMA.

The management information needed for each
protocol is defined in the same architecture docu­
ment as the protocol itself. The modular structure
of EMA allows this to be accomplished without con­
flict between management information defined for
different protocols. In addition to the information
specific to particular protocols (such as parameters
of the protocol operation or counters), there are
also representations of the relationship between
protocol elements, such as user to provider.

EMA provides a clear distinction between two
roles in the management of a network: the agent
and the manager. The agent corresponds to the
thing being managed and is part of the same system.
The manager is typically elsewhere and communi­
cates with the agent using the network and the
management protocols. The manager role is taken
by user interface programs. These may be simple,
like the network control language (NCL), a basic
command line utility appropriate for simple
networks, or they may be extremely powerful.

Vol. 5 No. I Winter 1993 Dtgttal Technical Journal

DECmcc, for example, is a Digital product that pro­
vides the facilities appropriate to the management
of networks throughout an enterprise.

If the network is being used to manage itself, the
possibility exists for a kind of "deadly embrace," in
which the communication path needed to fix a
problem is itself unavailable due to that same prol>­
lem. DECnet has been designed to minimize the like­
lihood and practical impact of this risk. The
operation of the network layer is of vital impor­
tance in this regard. As long as a physical communi­
cation path is working, it will virtually always be
able to correct a fault, even if the fault is due to a
previous incorrect management operation.

The TCP/IP protocol suite also provides a manage­
ment capability through the simple network man­
agement protocol (SNMP).7 Although both the
protocol and the information model underlying it
are considerably simpler than EMA, comparable
facilities exist for many purposes. To the extent
possible, DECnet implementations are designed to
be managed through SNMP as well as through using
the DECnet management protocol.

The standards for management associated with
OSI protocols are still under development. Digital
has made extensive contributions based on its own
architecture, and the resulting standards bear a
strong resemblance to EMA. Standards exist for the
CMIP protocol and for the management model, but
specification of the specific elements of manage­
ment information needed for particular protocols
have yet to be completed.

Conclusions and Future Capability
In 1974, DECnet was the first networking product to
provide general-purpose , peer-to-peer communi­
cations. With the availability of Phase V, DECnet has
become the first fully standards-based family of
network products. It incorporates all available stan­
dards from the OSI and TCP/IP protocol suites in a
way that provides the system integration and the
performance traditionally associated only with pro­
prietary network products. Achieving this migra­
tion to standards has involved a phenomenal effort,
but this price has now been paid. Technology and
the standards that reflect it are in a constant state of
development. The future of DECnet will consist of
relatively frequent and modest incremental
changes that incorporate these new developments.
Already major developments in areas such as nam­
ing (X.500), transaction processing, and manage­
ment are finding their way into the products.

Digital Technical Journal Vol. 5 No. I Winter]!}93

Overview of Digital's Open Networking

At the same time, there is an increasing need
for Digital networking products to incorporate
widely used, nonstandard protocols, especially
for interconnection with personal computers and
other desktop devices. Fortunately, the modular
architecture developed for Phase V makes it
relatively easy to do this in the same incremental
fashion.

DECnet has changed out of all recognition from
its early versions, yet it can still support the same
application programs that were built in the 1970s,
as well as client/server applications that are still
emerging. The basic physical technology that sup­
ports networking has also undergone enormous
changes, from 2,400-bit-per-second modems to
Ethernet and fiber distributed data interface (FDDI),
yet DECnet makes this all transparent to the user. In
another 20 years we can expect these technologies
to have developed as much again, or more, and we
can expect too that DECnet will continue to adapt
to match them.

Ref erences

1. V. Cerf and R. Kahn, "A Protocol for Packet
Network Interconnection," IEEE Transactions
on Communications, vol. COM-22 (May 1974).

2. R. Cypser, Communications Architecture for
Distributed Systems (Reading, MA: Addison­
Wesley Publishing Co., 1978).

3. CCJIT Recommendation X.25, CC/IT Yellow
Book, vol. VIII.2 (Geneva: International
Telecommunications Union, 1981).

4. The Ethernet: A Local Area Network, Data
Link Layer and Physical Layer Specification,
Version 2.0 (Digital Equipment Corporation,
Intel Corporation, and Xerox Corporation,
Order No. AA-K759B-TK, November 1982).

5. Basic Reference Model for Open Systems
Interconnection, ISO 7498:1983 (Geneva:
International Organization for Standardiza­
tion, 1983).

6.]. Morency, R. Pitkin, R.Jesuraj, and A. Kwong,
"Modeling and Analysis of the DECnet/SNA
Gateway," Digital Technical Journal, vol. 1,
no. 9 aune 1989).

7. D. Comer, Internetworking with TCP/JP: Prin­
ciples, Protocols and Architecture (Engle­
wood Cliffs, NJ: Prentice-Hall, 1988).

19

DECnet Open Networking

8. G. Cobb and E. Gerberg, "Digital's Multiproto­
col Routing Software Design," Digital Techni­
cal Journal, vol. 5, no. 1 (Winter 1993, this
issue): 70-83.

9. R. Perlman, R. Callon, and M. Shand, "Routing
Architecture," Digital Technical Journal,
vol. 5, no. 1 (Winter 1993, this issue): 62-69.

10. Information Technology: Intermediate
System to Intermediate System Intra-domain
Routeing Information Exchange Protocol
for Use in Conjunction with the Protocol
for Providing the Connectionless-Mode
Network Service, ISO 10589 (Geneva: Inter­
national Organization for Standardization,
1992).

11. R. Callon, Use of OSI IS-IS for Routing in
TCP/IP and Multi-Protocol Environments,
Internet Activities Board, RFC 1195 (1991).

12. Information Processing Systems: Network
Service Definition, Addendum 2: Network
Layer Addressing, ISO 8348 (Geneva: Interna­
tional Organization for Standardization, 1988).

20

13. Information Processing Systems: End system
to Intermediate System Routeing Informa­
tion Exchange Protocol for Use in Conjunc­
tion with the Protocol for Providing the
Connectionless-Mode Network Service, ISO
9542 (Geneva: International Organization for
Standardization, 1988).

14. Information Processing Systems: Data
Communications Protocol for Providing the
Connectionless-Mode Network Service, ISO
8473 (Geneva: International Organization for
Standardization, 1984).

15. CCITI IXth Plenary Assembly, "The Directory
-Overview of Concepts, Models and Ser­
vices," Recommendation X.500 and ISO 9594-1,
Data Communication Networks Directory:
Recommendations X.500 to X.521, CCITT
Blue Book, vol. VIII.8 (Geneva: International
Telecommunications Union, 1989).

16. Enterprise Management Architecture
General Description (Maynard, MA: Digital
Equipment Corporation, Order No. EK­
DEMAR-GD-001, 1989).

Vol. 5 No. 1 Winter 1993 Dig ital Tech11ica lJounial

Lawrence Yetto
Dorothy Noren Millbrandt

Yanick Pouffary
DanielJ Ryan,Jr.
DavidJ Sullivan

The DECnet/OS/for OpenVMS
Version 5.5 Implementation

The DECnet/OS/for OpenVilfS version 5.5 product implements a functional Digital
Network Architecture Phase V networking product on the OpenVilfS system. This
new software product ensures that all existing OpenVilfS application programs uti­
lizing published interfaces to DECnet-VAX Phase IV operate without modification
over the new DECnet product. The components of DECnet/OS/for OpenVilfS version
5.5 include the new interprocess communication interface. The design goals and
implementation strategy were redefined for network management, the session con­
trol layer, and the transport layer. The configuration utility was structured into
several files that are easy to read.

The DECnet Phase V networking software presented
the DECnet-VAX development team with a major chal­
lenge. Although the Digital Network Architecture
(DNA) has always corresponded to the lower layers
of open systems interconnection (OSI), the Phase V
architecture has substantial differences from Phase
IV in many layers. For example, the session control
layer now contains a global name service.1

DECnet Phase V also added new network man­
agement requirements for all layers. In most cases,
the existing Phase IV code could not be adapted to
the new architecture; it had to be redesigned and
rewritten. This presented the engineers with the
opportunity to restructure and improve the older
pieces of code that have been continually modified
and enhanced since the first release of DECnet-VAX.
Due to the large installed customer base, however,
it also presented a huge compatibility problem. We
could not simply drop the old in favor of the new;
we needed to ensure that the customers' DECnet­
VAX applications would continue to be supported.

This paper gives an overview of the design of
the base components in the new DECnet/OSI for
OpenVMS version 5.5 product. It then presents
details about the internals of the network manage­
ment, session control, and transport layers. Finally,
the new configuration tool designed for DECnet/
OSI for OpenVMS version 5.5 is discussed. Unless
otherwise noted in this paper, the term DECnet/OSI
for OpenVMS refers to version 5.5 of the product.

D igital Technical Journal Vol. 5 No. 1 Winter 1993

High-level Design
Numerous goals were identified during the design
phase of the base components for the DECnet/OSI
for OpenVMS software. Foremost among these
goals was to conform to the DNA Phase V architec­
ture and to support image-level compatibility for
existing Phase IV applications. Care was also taken
in the design to allow the product to be extensible
to accommodate the ongoing work with industry
standards.

Design Overview
The queue 1/0 request ($QIO) application program­
ming interfaces (APis) for the VAX OSI transport ser­
vice and DECnet-VAX are already defined and widely
used by network applications. To ensure that exist­
ing applications would continue to work, these
interfaces were modified in a compatible fashion.
As a result, not all of the capabilities of Phase V
could be added to the existing APis. A new API, the
interprocess communication interface ($IPC), was
developed to support all the functions defined in
the Phase V session control layer. In addition, the
$IPC interface was designed to allow for future
capabilities.

The $QIO and $IPC interfaces interpret the appli­
cation's requests and communicate them to the
DNA session control layer through a kernel mode
system interface called session services. In the ini­

tial release of DECnet/OSI for OpenVMS, the VAX OSI

21

DECnet Open Networking

transport service joined its $QIO interface to the
stack at the network layer_ The first follow-on
release will fully support this APL It will be rewrit­
ten to interface directly to the common OSI trans­
port module.

DECnet/OSI for OpenVMS implements each layer
of the Phase V architecture in separate modules.
These modules require a well-defined interface to
communicate. This is supplied by the new inter­
rupt-driven VAX communication interface. This
interface defines the rules used by cooperating VAX
communication modules to exchange information.
The upper VAX communication modules consume
a set of services, and the lower modules provide
services. The lower VAX communication modules
define the explicit messages and commands that
are passed between the modules. This definition is
then referred to as the lower layer's VAX communi­
cation interface. For example, the transport layer
provides a service to the session control layer.
Transport is the lower module, and session is the
upper. The rules for how the interface works are
defined by the VAX communication interface itself,
but the commands and services supplied by the
transport layer are defined by that layer. As a result,
the interface between the session and transport

OSI
TRANSPORT
APPLICATION

VAX OSI
TRANSPORT
SERVICE $010

I
NElWORK OSI
MANAGEMENT TRANSPORT

(TPO, TP2, TP4)

I
I

X.25 NETWORK

I
EMAA I
ENTITY
INTERFACE WIDE AREA

NETWORK ~

DEVICE DRIVER

layers is referred to as the transport VAX communi­
cation interface_

To comply with the new Enterprise Management
Architecture (EMA), each of the modules supplies
one or more manageable entities to network man­
agement. This is accomplished by the EMA agent
(EMAA) management facility. EMAA supplies both an
entity interface to the individual modules and an
EMAA interface to the network. This interface is dis­
cussed further in the Network Management section.

Figure 1 shows the components of the DECnet/
OSI for OpenVMS product and their logical relation­
ship to each other.

Implementation of the Modules
Each DECnet/OSI for OpenVMS base component is
implemented in one of three ways. The most promi­
nent method is through OpenVMS executive load­
able images. These loadable images are all placed in
the SYS$LOADABLE_IMAGES system directory during
installation and loaded as part of the NET$STARTUP
procedure, which the Open VMS system runs during
a system boot.

The two $QIO interfaces must operate within the
OpenVMS 1/0 subsystem. As a result, they are both
coded as device drivers and loaded during

DNA APPLICATION

I I
$1PC

11
$010

I I
DNA SESSION
CONTROL

I
I

NSP TRANSPORT

I
I

OSI NETWORK

I
I I

FIBER
CS MA-CD ,- DISTRIBUTED

DATA INTERFACE

USERAPI

SESSION SERVICES
INTERFACE

SESSION MODULE

TRANSPORT
INTERFACE

TRANSPORT
MODULES

ROUTING INTERFACE

ROUTING MODULES

DATA LINK
INTERFACE

DATA LINK
MODULES

Figure 1 DECnet/OSI for OpenVMS Base Components

22 Vol. 5 No. J Winter 1993 Digital Technical Journal

The DECnet/OSI for Open VMS Version 5.5 Implementation

NET$STARTUP by the SYSGEN utility. Once started,
they can create a VAX communication interface
port to the appropriate modules to process their
network requests.

The third way a component can be implemented
is as a standard Open VMS image or shareable image.
These images include NET$ACP.EXE, which is
started as a system process by NET$STARTUP, and
NCL.EXE, which is the utility that supplies the
network control language (NCL) interface to
users. Other images, such as NET$MIRROR.EXE, are
started by the network software in a separate pro­
cess when a network request is received for the
application.

Implementation of the Base Image
The base image, SYS$NE1WORK_SERVICES.EXE, has
been present on all Open VMS systems since version
5.4. The OpenVMS system loads this executive
image early in the boot cycle. The default file
shipped with OpenVMS is a stub that simply sets a
system cell during initialization to indicate that the
older Phase IV code is loaded. This system cell can
then be interrogated through an OpenVMS system
service or from a Digital Command Language (DCL)
command line to determine which version of the
DECnet software is loaded.

When the DECnet/OSI for OpenVMS product is
installed, the base image is replaced with the Phase
V version. The new image sets the system cell to
indicate that Phase V is loaded. It provides a host of
common services, including EMAA, to the remain­
ing system components. It also contains the code
used to implement the Phase V node agent required
by EMA on each node. Each of the remaining
DECnet/OSI for Open VMS components makes use of
the base image by vectoring through a system cell
to the desired function.

Network Item Lists
The DECnet/OSI for OpenVMS modules pass large
amounts of data between themselves. This
exchange requires an efficient means to encode and
move the data. Conversions are expensive opera­
tions; therefore a decision was made to use the
same structure for all the interfaces within the base
components. The structure chosen, a network item
list, is a simple length/tag/value arrangement in
which the tags are defined in a common area
between sharing modules. Network item lists are
very easily extended as new functions are added to
the software. Since they contain no absolute

Digital Technical Journal Vol. 5 No. 1 Winter 1993

addresses, they are also position independent. This
has the advantage of making it easy to copy or move
them when necessary.

Network item lists are used between all VAX com­
munication modules, by EMAA, and by the session
services interface. They are also presented to user­
written applications through the $IPC interface,
thus allowing the interface to be expanded as more
protocols and standards are implemented in the
DECnet network.

Network Management
This section discusses the DECnet/OSI for OpenVMS
network management design and network manage­
ment functions implemented in Phase V.

Network Management Design
The key to Phase V network management design is
the EMA Entity Model, which defines the standard
management structure, syntax, and interface to be
used by each manageable object. The DECnet/OSI
for Open VMS EMA framework is built on this model
and defines the components required for a system
manager to perform actions on managed objects,
both locally and across a network. The EMA frame­
work consists of the following components.

• A director interface, through which user com­
mands called directives are issued

• A management protocol module that carries
directives to the node where the object to be
managed resides

• An agent that decodes the directive into specific
actions and passes that information to the man­
aged object

• An entity, the object to be managed

For a full understanding of the DECnet/OSI for
OpenVMS network management implementation,
the reader should first understand the EMA model.
Details on the EMA model can be found in the paper
on management architecture in this issue.2

In the DECnet/OSI for Open VMS network manage­
ment design, the components and their division of
function generally follow the EMA framework.
There are, however, a few exceptions. Figure 2
shows the DECnet/OSI for OpenVMS components
that implement the EMA model and other Phase V
management functions.

The NCL utility provides the EMA director func­
tion. The NCL image processes user commands into
management directives. It also displays the
responses that are returned.

23

DECnet Open Networking

COMMAND

DIRECTOR i EVENT
(NCL) RESPONSE EVENT SINK

CMIP CMIP CMIP
REQUESTER PROTOCOLS LISTENER

EVENT -------- DIRECTIVE
AGENT AGENT

I I t DIRECTIVE
EVENT I I RESPONSE DISPATCHER
DISPATCHER I I (EMAA)

I I

i EVENT
I I

DIRECTIVE! i RE I I
I I

SPONSE

DNA SESSION CONTROL DNA SESSION CONTROL

TRANSPORT TRANSPORT

ENTITIES NETWORK NETWORK ENTITIES

DATA LINK DATA LINK

PHYSICAL PHYSICAL

NODE A I TRANSMISSION MEDIUM I NODES

Figure 2 Network Management Components

The common management information protocol
(CMIP) requester library routines provide part of
the management protocol module functions. These
include encoding a management directive into
CMIP, transmitting it to the designated node, and
receiving the response. The CMIP requester rou­
tines are implemented as part of NCL, not as a sepa­
rate management protocol module.

A CMIP listener server process, CML.EXE, pro­
vides the remainder of the management protocol
module function. It receives a management direc­
tive and passes it to the agent. When the agent
returns a response, CML transmits the response to
the originating node.

The DECnet/OSI for OpenVMS EMA agent, EMAA,
accepts management directives from CML, dis­
patches them to the requested entity, and returns
responses to CML. EMAA also extends this concept
by actually performing the management directives
in some cases.

Entities are not strictly a part of network manage­
ment. They do, however, receive management
directives from EMAA in DECnet/OSI for OpenVMS.
They must be able to carry out the directives and
return the results of the operation to EMAA.

In DECnet Phase V, an event is the occurrence of
an architecturally defined normal or abnormal con­
dition. Events detected by entities are posted to an
event dispatcher, which passes them to a local or
remote event sink. If remote, a CMIP event protocol
is used. In DECnet/OSI for OpenVMS, the event
dispatcher image, NET$EVENT_DISPATCHER.EXE,

24

implements the event dispatching and event sink
functions.

The data dictionary is a binary compilation
of architecturally defined codes for all known
Phase V management entities, the manageable
attributes of each entity, and the actions that can be
performed. It also contains information necessary
to encode this information into Abstract Syntax
Notation Number I (ASN.l), required for the CMIP
protocol.

Finally, there is the maintenance operations
protocol (MOP). Although MOP is not an EMA com­
ponent, it is a component of DNA. It performs
low-level network operations such as down-line
loading and up-line dumping.

Network Management Implementation
The most visible differences between DECnet Phase
IV and DECnet Phase V arise from adherence to
the EMA architecture. This section discusses the
replacement functions implemented in Phase V.

The NCL Utility The network control program
has been replaced in Phase V with the NCL utility.
NCL provides a highly structured management syn­
tax that maps directly to the EMA specifications for
each compliant entity. In an NCL command, the
hierarchy of entities from the node entity to the
subentity being managed must be specified. For
example, the following command shows the local
area network (LAN) address attribute of a routing
circuit adjacency entity.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

The DECnet/OSI for Open VMS Version 5.5 Implementation

NCL> Show Node DEC:.zko.Ilium -
Routing Circuit Lan-0 Adjacency -
rtg$0002 LAN Address

The command contains the node entity name,
DEC:.zko.llium; the module entity within the node,
routing; the name of the circuit subentity of rout­
ing, lan-0; the name of the adjacency subentity of
circuit, rtg$0002; and finally the attribute name.

To issue management commands from a DECnet/
OSI for OpenVMS system, a user invokes the NCL
utility. NCL parses commands into fragments called
tokens, containing ASCII strings. It uses the data dic­
tionary to translate these into management codes
for directives, entities, and attributes. NCL then con­
structs a network item list from this information
and invokes the CMIP requester send function.

CMIP requester functions are implemented as a
set of library routines that are linked with the NCL
utility. Underneath this caller interface, the CMIP
routines establish a connection over DNA session
control to the destination node's CMIP listener. The
directive is then encoded into a CMIP message and
passed to the destination.

NCL now posts the first CMIP requester receive
call. More than one receive call may be needed to
obtain all the response data. As soon as a partial
response is available, the receive function decodes
the CMIP messages into network item lists and
passes them back to NCL. NCL translates these into
displayable text and values and directs the output
to the user's terminal or a log file. If the partial
response is not complete, NCL then loops and
issues another call to the CMIP requester receive
function.

The CMIP requester functions are optimized for
the local node case. If the destination node is speci­
fied as "O" (the local node), the CMIP requester func­
tions interface directly to the EMAA interface,
skipping the CMIP encoding, decoding, and the
round trip across the network.

The CMIP Listener The CMIP listener is imple­
mented as a server process, similar to the Phase IV
network management listener. When an incoming
connection request for CML is received, a process is
created to run the CML image. The CML image uti­
lizes the DNA session control interface to accept
the connection and receive the CMIP encoded
directive. It then uses the data dic tionary to decode
the message into a network item list. EMAA is then
invoked to process the directive and return any
required response from the entity. Once CML

Digital Technical Journal Vol. 5 No. I Winter 1993

has received all portions of the response from
EMAA, encoded them into CMIP, and transmitted
them back to the requesting node, the CML image
terminates.

EMAA, the EMA Agent The management struc­
ture imposed by EMA contains common directives
that must be supported by all entities. A design goal
for EMAA was to provide a common management
facility with support for common operations such
as show or set. EMAA can perform these functions
against an entity's management data structures,
thereby freeing each entity from separately imple­
menting them and simplifying the entity's code
requirements. This approach was successfully
implemented, though at the cost of a more complex
agent implementation and a set of registration
macro instructions colloquially known as the
"macros from hell."

The above interface between EMAA and the enti­
ties is known as the full interface. Not all develop­
ment groups' coding entities were interested in this
approach; thus, EMAA also provides a basic inter­
face. An entity specifies which interface to use dur­
ing its initialization when it registers with EMAA.
For an entity that uses the basic interface, EMAA
simply passes the directive information to the des­
ignated entity and expects response data returned.

The choice of interface must be made by the
module-level entity. If the entity uses the full inter­
face, it must register its management structure,
including all subentities and attributes, with EMAA.
For these entities, EMAA processes the network
item list passed by CML. It creates a data structure
for each subentity instance, specifying the
attributes, any values supplied, and the actions to
be performed. EMAA p asses this to the designated
entity, which uses tables set up during initialization
to call the appropriate action routine for the direc­
tive. By default, these action routines are set up as
callbacks into EMAA itself, thereby allowing EMAA
to perform the task. With either the basic or the full
interface , a separate response is required for each
subentity instance specified by a directive. EMAA
calls CML iteratively through a coroutine call to
pass response data back to CML.

The Event Dispatcher Phase IV event logging
allowed events to be sent to a sink on one node. In
Phase V, the event dispatcher supports multiple
sinks that can be local or on any number of remote
nodes. Event filtering can be applied on the out­
bound streams of events, filtering events before

25

DECnet Open Networking

they are transmitted to a sink. This provides a mech­
anism to direct different types of events to different
sinks.

An event sink is the destination for an event mes­
sage. A node can have multiple sinks, each accept­
ing events from any number of remote nodes. Event
filtering can be applied to the inbound streams of
events at the event sink. An event message that
passes is sent to the sink, which uses the data dic­
tionary to format it into ASCII character strings. It is
then output to the sink client, which may be a con­
sole, printer, or file.

An optimization is used when an event is gener­
ated on a node and the destination sink is on the
same node. In this case, the event bypasses the out­
bound stream and is queued directly to the event
sink. The DECnet/OSI for OpenVMS product, in the
default configuration for a local node, defines one
outbound stream directed to a sink on the local
node and defines the console as the sink client.

An event relay provides compatibility with Phase
IV nodes. This important function permits a Phase V
event sink to log messages from Phase IV or Phase V
DECnet systems. Event relay is a session control
application that listens for DECnet Phase IV event
messages. It encapsulates each Phase IV event mes­
sage in a Phase V event message and posts it to the
event dispatcher, using the same service that other
DECnet/OSI for Open VMS entities use to post events.

Maintenance Operations Protocol The NET$MOP
process is the DECnet/OSI for OpenVMS implemen­
tation of the DNA maintenance operations proto­
col. MOP uses the services of the local and wide
area data link device drivers to perform low-level
network operations. MOP can down-line load an
operating system image to a VMScluster satellite
node and respond to remote requests from a
network device to down-line load or up-line dump
an image. MOP also supports management direc­
tives that allow a system manager to load or boot a
remote device, monitor system identification mes­
sages, perform data link loopback tests, or open a
terminal 1/0 communications channel to a device's
console program.

The primary design goal of the MOP implementa­
tion was to respond quickly and with low system
overhead to remote requests from devices to down­
line load an image. In some network configura­
tions, a power failure and restoration can cause
hundreds of devices to request a down-line load at
the same time. The Phase IV implementation was
known to have difficulty handling this, so the new

26

implementation of MOP was designed for multi­
threaded operation. This means there is only one
MOP process per node, and it processes multiple
concurrent operations by creating a separate
thread for each management directive, program
request, or dump request received. Moreover, all
management data required to service MOP requests
is contained in MOP-specific management data
structures, designed to be searched quickly. When a
request is received, MOP can promptly ascertain
whether the required information to service the
request is available and make a response.

Session Control Implementation
The design of the DECnet/OSI for Open VMS session
control layer is based on goals defined by both the
session control architecture and the DECnet user
community. These goals include

• Compatibility. The DECnet-VAX product has a
large customer base with major investments in
DNA applications. The session control layer sup­
ports these applications without requiring a
relink of the object code.

• Performance. Transmit and receive operations
across the network must be as efficient as possi­
ble. Minimal overhead is introduced by the ses­
sion control layer in making each transport
protocol available to applications.

• Extensible. The session control layer design
allows for future additions to the architecture.

• New features. The session control layer takes full
advantage of the new naming and addressing
capabilities of Phase V DNA.

• Improved management. The session control
layer complies with EMA, allowing it to be man­
aged from anywhere throughout the network.

Session Control Design
The session control layer is divided into several log­
ical components, $QIO, IPC, NETACP, common
services, and network management. $QIO and $IPC
provide the APis required to communicate across
the network. $QIO is fully compatible with all
Phase IV DECnet-VAX applications; however, it does
not allow access to the full set of features available
in DECnet/OSI for OpenVMS. These new features,
and any future additions, are available only through
the new $IPC interface.

The two APis are consumers of session con­
trol services provided by the common services

Vol. 5 No. I Winter 1993 Digital Technical Journal

The DECnet/OSI for Open VMS Version 5.5 Implementation

component. This component provides all the
network functions defined in Phase V to the APis
above it. In order to do this, the common services
component makes use of both the NET$ACP and
network management portions of the session con­
trol layer.

Figure 3 shows the session layer components and
their relationships to each other.

Session Control AP Is
DECnet Phase IV restricted node names to six char­
acters in length. In DECnet-VAX the $QIO interface
was the only means by which an application could
make calls to the session control layer. This inter­
face also enforced the six-character name limit.
With the advent of Phase V, this restriction no
longer applies. It is possible for a node running
Phase V to be unreachable by a Phase IV-style six­
character node name. As a consequence, the $QIO
interface was extended to allow full name repre­
sentations of a node.

The $IPC interface is a new interface that incor­
porates all the functions of the $QIO interface,
along with extensions made to the session control
architecture. This item-list-driven interface pro­
vides a cleaner, more extensible interface and
allows for easy conversion of $QIO applications.
The $QIO interface uses a network control block
(NCB) and a network function block (NFB) to hold
data. This data is easily mapped to items in a
network item list. Also, the function codes used
by $QIO can be easily mapped to $IPC function
codes. As new requirements arise, supported items
can be added to the list without impacting the exist­
ing values.

The $IPC interface also supplies some new fea­
tures not available in $QIO. Phase V DNA uses the
Digital Distributed Name Service (DECdns) to store
information about nodes and applications in a
global namespace. Once an application declares

NETWORK
MANAGEMENT SERVICES

NET$ACP COMMON ~ _ ____.___

TRANSPORT
LAYER

Figure 3 Session Design

D igital Technical Journ a l Vol. 5 No. 1 Winter 1993

itself in the global namespace, $IPC enables session
control to maintain its address attribute. This
address attribute contains all the information nec­
essary to define where the application resides on
the network. $IPC can then be used by the client
side of an application to connect to a server
through a single global name, instead of using a
node name and application name pair. This enables
the client side of an application to communicate
with its server without knowing where the server
currently resides.

$IPC supports a new means of accessing a node
by its address. In Phase IV, addresses were limited
to 63 areas with 1,023 nodes in each area. The
address of each node could be represented with
a 16-bit integer. The $QIO interface supports a form
of node name in which the 16-bit address is con­
verted into the ASCII representation of the decimal
equivalent. This is not sufficient to address all Phase
V nodes, so a new function called "connect-by­
address tower" is available through $IPC. The
address tower is discussed further in the Common
Services Component section.

Yet another feature of $IPC is the ability to trans­
late a node's address into the name of the node as
registered in the global namespace. In Phase IV the
address-to-name translation was a management
function. Furthermore, the translation was local to
the node on which it was performed.

Session Control Network Management
The session control layer makes use of the full
EMAA entity interface to support all entities defined
by the session control architecture. These include
the session control entity itself, as well as the appli­
cation, transport service, port, and tower mainte­
nance subentities. Each of these entities contains
timers, flags, and other control information used by
the session control layer during its operation. They
also contain counters for the events generated by
the session control layer.

The application subentity is of special interest.
This entity is the equivalent of the Phase IV object
database. It allows the system manager to register
an application with session control to make it avail­
able for incoming connections. This entity is also
used to control the operation of the application
and select the types of connections that can be sent
or received by it.

Common Services Component
The common services component is the hub for
session control. It is responsible for performing

27

DECnet Open Networking

tasks that are not specific to the $IPC or $QIO
interfaces. These tasks include managing transport
connections on behalf of session control users,
mapping from a DECdns object name to addresses,
selecting communication protocols supported by
both the local and remote end systems, maintaining
the protocol and address information correspond­
ing to local objects in the namespace, and activating
(or creating) processes to service incoming con­
nect requests.

The NET$ACP process is used to provide the com­
mon services component with process context.
The NET$ACP image itself is nothing more than a set
of queues and an idle loop. When the session con­
trol layer is loaded, it creates user-mode and kernel­
mode tasks. A queue is assigned for each task, and
the NET$ACP process attaches to the task when it is
started. When the session component needs to exe­
cute in the context of a process and not on the
interrupt stack, it builds a work queue entry,
queues it to the appropriate task queue, and wakes
up the NET$ACP. The NET$ACP finds the address of
the desired routine in the work queue entry and
executes it. This routine can be located anywhere
that is addressable by the process, but it is usually
contained within the session control loadable
image. The common services component makes
use of the NET$ACP for reading files, creating
network processes, and making calls to the DECdns
clerk. It also makes use of the process for functions
that require large amounts of memory. By perform­
ing these tasks in the NET$ACP process, session con­
trol is able to use process virtual memory even
though it is implemented as an executive loadable
image.

The tower set data structure plays a key role
in session control. A tower set consists of one or
more towers. Each tower represents a protocol
stack and is composed of three or more floors, as
shown in Figure 4. The lowest floors in the tower
correspond to the DNA routing, transport, and ses­
sion control layers; they are used to identify proto­
col and associated address information to be used

at that layer. When viewed as a whole, the tower set
describes a combination of protocols supported
on a node. The session control layer on every
DECnet/OSI for OpenVMS system not only uses this
information to communicate with remote nodes,
but is also responsible for building a tower set to
represent that local system. Once built, this tower
set is placed in the namespace as the attribute for
the node.

The session control interfaces allow the user to
specify a node in many ways. A node can be speci­
fied as a Phase IV-style node name, a Phase IV-style
address, a DECdns full name, or a tower set. The
three forms of name representations are mapped to
the corresponding tower set by making calls to the
DECdns clerk to obtain the node's tower set
attribute. Once the tower set is in hand, it can be
used to communicate with the session control layer
on the remote node.

The tower set for a remote node and the tower
set for the local node are used in conjunction
to determine if both nodes support a common
tower. If a common tower is found, session control
attempts to establish a connection to the remote
node using that tower. If the connection fails, the
comparison continues. If another matching tower
is found, the connection attempt is repeated. This
continues until the connection is established or the
tower sets are exhausted.

Use of DECdns
The session control layer uses DECdns objects for
all global naming. These objects are used in two dif­
ferent ways: they can represent a node or a global
application. A node object is a global representa·
tion of a node in a DECdns namespace. Each node
object contains attributes that identify the location
of a node. Foremost in this list of attributes is the
DNA$Towers attribute. The DNA$Towers attribute
contains the tower set for the node and is written
automatically by the session control layer when
DECnet/OSI for OpenVMS is configured and started.
Once created, this attribute is updated by session

FLOOR N

FLOOR 3

FLOOR 2

FLOOR 1

APPLICATION-DEFINED FLOORS

SESSION PROTOCOL SESSION ADDRESS INFORMATION

TRANSPORT PROTOCOL TRANSPORT ADDRESS INFORMATION

ROUTING PROTOCOL ROUTING ADDRESS INFORMATION

Figure 4 Tower Design

28 Vol. 5 No. 1 Winter 1993 Digita l Tech11icalJournal

The DECnet/OSI for Open VMS Version 5.5 Implementation

control to reflect the current supported towers for
the node.

When the session control layer builds the tower
set for the DECdns node object, it creates a tower
for each combination of supported protocols and
network addresses on the node. If the node sup­
ports two transports and three network addresses,
the tower set is generated with six towers. It always
places the CML application protocol floor on top of
the session control floor. The address information
for the session control floor is then set to address
the CML application. The transport address infor­
mation is set to address DNA session control, and
the routing information of each tower in the set is
set to one of the supported network addresses for
the node.

The node object DNA$Towers attribute contains
data that completely describes the node. Since ses­
sion control supports node addresses and Phase
IV-style node names, soft links are created in the
namespace to map from a Phase V network service
access point (NSAP) or a Phase IV-style node name
(node synonym) to the node object. These links can
then be used by the session control layer as alter­
nate paths to the node object.

An application object is a global representation
of an application. The DNA$Towers attribute of this
object contains a set of address towers used to
address the application. The routing and transport
floors for each tower in this set are used in the same
manner as for the node object. The address informa­
tion in the session floor, however, addresses the
application, not CML. Once set, the information in
this tower set is not maintained unless the applica­
tion issues a register object call through the $IPC
interface. If this is done, session control maintains
the tower in the same manner as it does for the
node object.

Transport Implementation
The DECnet/OSI for OpenVMS product supports
two transport protocols: the open systems inter­
connection transport protocol (OSI TP) and the
network service protocol (NSP). Each transport
protocol, or group of logically associated protocols,
is bundled as a separate but equivalent VAX commu­
nication module. This approach accomplishes
many goals. The more notable ones include

• Isolating each module as a pure transport engine

• Defining and enforcing a common transport
user interface to all transports

Dig ital Technical Jou mat Vol. 5 No. I Win ter 1993

• Providing extensible constructs for future trans­
port protocols, i.e ., providing a set of transport
service libraries

• Eliminating previous duplication in adjacent
layers (session and network routing layers)

• Providing backward compatibility with exist­
ing Phase IV transport protocol engines
(NETDRIVER/NSP and VAX OSI transport service)

Transport Layer Design
A transport VAX communication module has two
components, a protocol engine and the transport
service libraries. The service libraries are common
code between modules and are linked together
with each engine to form an executive loadable
image. The three elements of DECnet/OSI for
OpenVMS transport, the NSP protocol engine, the
OSI protocol engine, and the transport service
libraries, are linked into two images. Figure 5
shows the relationship of these elements.

The specific functions provided by a transport
engine depend on the protocol. The generic role of
NSP and the OSI transport layer is to provide a reli­
able, sequential, connection-oriented service for
use by a session control layer. The design provides a
common transport interface to both NSP and the
OSI transport layer. This enables NSP and OSI trans­
port (class 4) to be used interchangeably as a DNA
transport. As future transport protocols are devel­
oped, they can be easily added into this design.

The DECnet/OSI for OpenVMS transport design
places common functions in the service libraries
for use by any protocol engine that needs them.
Any functions that are not specific to a protocol are
performed in these libraries. Separating these func­
tions enables new protocols to be implemented
more quickly and allows operating-system-specific
details to be hidden from the engines.

r------------
os1 vAx I

I COMMUNICATION I
l ~OO~ ------+------
I I I
I OSI I TRANSPORT I NSP I

PROTOCOL SERVICE I PROTOCOL I
I ENGINE I LIBRARIES I ENGINE I
1
------~-----_J NSPVAX I

I COMMUNICATION I
L _ _ _ _ _ _ MODULE __ J

Figure 5 Logical Transport Components

29

DECnet Open Networking

The NSP transport VAX communication module
operates only in the DNA stack and supports
only DNA session control. Due to an essentially
unchanged wire protocol, NSP is completely com­
patible with Phase IV implementations.

The OSI transport VAX communication module
implements the International Organization for
Standardization (ISO) 8073 classes 0, 2, and 4 proto­
cols. It can operate on a pure OSI stack in a multi­
vendor environment. The OSI transport is also
completely compatible with the Phase IV VAX OSI
transport service implementation and operates on
the DNA stack supporting DNA session control.

Transport Engines The transport VAX communi­
cation modules provide a transport connection
(logical link) service to the session layer. The con­
nection management is designed to ensure that
data on each logical link is handled independently
from data on other logical links. Data belonging to
different transport connections is never mixed, nor
does a blockage of data flow on one connection
prevent data from being handled on another.

The transport VAX communication modules are
state table driven. Each transport engine uses a
state/event matrix to determine the address of an
appropriate action routine to execute for any
state/event combination. As a transport connection
changes state, it keeps a histogram of state transi­
tions and events processed.

Service Libraries The following functions are
common to many protocols and are implemented
in the service libraries.

• Transfer of normal data and expedited data from
transmit buffers to receive buffers

• Fragmentation of large messages into smaller
messages for transmission and the reconstruc­
tion of the complete message from the received
fragments

• Detection and recovery from loss, duplication,
corruption, and misordering introduced by
lower layers

The key transport service library is the data
transfer library. This library gives a transport engine
the capability to perform data segmentation and
reassembly. Segmentation is the process of breaking
a large user data message into multiple, smaller
messages (segments) for transmission. Reassembly
is the process of reconstructing a complete user
data message from the received segments. To use
the data transfer library, a protocol engine must

30

provide a set of action routines. These action rou­
tines hold the protocol-specific logic to be applied
to the data handling process.

Network Services Phase V provides two types of
network services: connectionless (CLNS) and con­
nection-oriented (CONS). CLNS offers a datagram
facility, in which each message is routed to its desti­
nation independently of any other. CONS estab­
lishes logical connections in the network layer over
which transport messages are then transmitted.

Transport running over CLNS has a flexible inter­
face. It opens an association with the CLNS layer and
is then able to solicit the CLNS layer to enter a trans­
port protocol data unit (TPDU) into the network.
When admission is granted, transport sends as
many TPDUs as possible at that time. Incoming
TPDUs are posted to transport as they are received
by the CLNS layer. Both NSP and OSI transports run
over the CLNS layer.

Transport running over CONS has a more rigid
interface. Once a network connection is estab­
lished with the CONS layer, each transport request
has to be completed by the CONS layer. Thus trans­
port, when running over CONS, is not able to trans­
mit all its TPDUs at once. Each transmit must be
completed back to transport before the next can
commence. Also, if transport is to receive incoming
TPDUs, a read must be posted to the CONS layer. The
OSI transport runs over the CONS layer, but the NSP
protocol was designed specifically for CLNS and
does not operate over CONS.

Differences between Phase JV and Phase V
Transport Protocol Engines
Flow control policy is an important difference
between the VAX OSI transport service and the
DECnet/OSI for OpenVMS implementation. The VAX
OSI transport service implements a pessimistic
policy that never allocates credit representing
resources it does not have. The OSI transport proto­
col, on the other hand, implements a more opti­
mistic policy that takes advantage of buffering
available in the pipeline and the variance in data
flow on different transport connections. It makes
the assumption that transport connections do not
consume all allocated credit at the same time.
Other enhancements to the OSI transport protocol
include conformance to EMA network manage­
ment, compliance with the most recent ISO specifi­
cations, and participation in DECnet/OSI for
OpenVMS VMScluster Alias.

Vol. 5 No. I Winter 1993 Digital Technical Journal

The DECnet/OS/ for Open VMS Version 5.5 Implementation

The two main differences between the Phase IV
and Phase V NSP implementations are conformance
to the EMA management model, and, once again,
flow control. In Phase IV, NSP does not request flow
control and uses an XON/XOFF mechanism. This
results in large fluctuations in throughput. Phase V
NSP has been enhanced to request segment flow
control. This mechanism enables each side of a
transport to determine when it can send data seg­
ments. Due to this difference in flow control policy,
Phase V NSP throughput converges to a maximum
value.

Future Direction of Transports
The DECnet/OSI for Open VMS transport design pro­
vides a common transport user interface to all
transports and places common functions in the
transport service libraries. This approach provides
extensibility; it allows future transports to be easily
incorporated as they emerge in the industry. This
common interface can also be used to provide an
API that interfaces directly to a transport. DECnet/
OSI for Open VMS engineering is currently looking at
providing such an APL

Configuration
Design on the new configuration tools was started
by collecting user comments about the Phase IV
tools and desirable features for the new tool. This
data was collected from customer communication
at DECUS, through internal notes files, and through
internet news groups.

The first goal agreed upon was to create configu­
ration files that are easy to read; inexperienced
Phase V network managers may be required to read
and understand these files. Next, the tool must be
structured. The configuration is divided into sev­
eral files with recognizable file names rather than
one potentially unmanageable one. Each file con­
tains the initialization commands needed to initial­
ize one network entity. Finally, the configuration
tool should be extensible. New commands, enti­
ties, or other information can easily be added to the
configuration.

Configuration Design
The main configuration tool is a DCL command pro­
cedure (NET$CONFIGURE.COM). This procedure
generates NCL script files, which are executed dur­
ing network start-up, to initialize the network. In
general, each script file initializes one entity within
DECnet/OSI for OpenVMS. It is possible, however,

Digital Technical Journal Vol. 5 No. 1 Winter 1993

for scripts to contain information for numerous
entities. For example, the NSP transport initializa­
tion script contains commands to create an
instance of the session control transport service
provider entity, which enables the session layer to
use the protocol. The procedure can extract infor­
mation about the configuration by using the
NET$CONVERT_DATABASE utility to translate an
existing Phase IV configuration contained in the
Phase IV permanent databases. Alternatively, it can
prompt the user for the information needed to
allow basic operation of the node.

The first time NET$CONFIGURE is executed, all
the questions, except for the node's full name and
its Phase IV address, have default choices. If the
defaults are chosen, the node operates properly
once the network has started. When appropriate,
NET$CONFIGURE also calls other configuration
tools to configure the DECdns client and the Digital
Distributed Time Service (DECdts), and to perform
various network transition functions.

Once the initial configuration has been per­
formed, customization of components is available.
Subsequent execution of the NET$CONFIGURE pro­
cedure will present the user with a menu that
allows specific subsections of the configuration to
be done, for example, adding or deleting MOP
clients or session control applications, changing
the name of the node, or controlling the use of
communications devices.

General help is available while running
NET$CONFIGURE. If the user does not understand
any individual query, responding with a "?" (ques­
tion mark) provides a brief explanation.

The scripts created by NET$CONFIGURE
are computed. A checksum is computed by
NET$CONFIGURE for each script file, and it is stored
in a database along with the answers entered for all
other configuration questions. This allows the
NET$CONFIGURE procedure to detect whether a
script has been modified by an outside source. If
this condition is detected, NET$CONFIGURE warns
the user that user-specific changes made to the par­
ticular script may be lost.

If a user has modified the NCL scripts,
NET$CONFIGURE cannot guarantee that the infor­
mation will be retained after future executions of
the procedure. An attempt is made to maintain the
changes across new versions. In all cases, previous
scripts are renamed before the new scripts are gen­
erated. This allows the user to verify that cus­
tomized change was transferred to the new script.

31

DECnet Open Networking

If not, the saved version can be used to manually
replace the change.

Node Configuration NET$CONFIGURE asks only
one question that is directly related to the node
entity. It asks for the node's DECdns full name and
sets the node's name. Since the namespace nick­
name is a required component of the full name
answer, it also allows the procedure to determine
the namespace in which to configure DECdns.

The node synonym default is generated by using
the first six characters of the last simple name of the
node's full name. If the user entered the full name,
USN:.Norfolk.Destroyer.Spruance.DD125, the syn­
onym default would be DD 125. The user is free to
change this information as long as the response is a
legal Phase IV-style name. If present, the transition
tools make use of this synonym when the node is
registered in the DECdns namespace.

Data Link/Routing The NET$CONFIGURE proce­
dure contains a table of all valid data link devices
supported by DECnet/OSI for OpenVMS. When the
data link/routing configuration module is called,
the system configuration is scanned. Any valid
devices found on the system are presented to the
user for addition to the configuration. The only
exceptions are asynchronous data link devices. The
user must specifically request asynchronous sup­
port for these devices to be configured.

Configuration is mandatory for broadcast data
link media since these devices are shareable and
users other than DECnet/OSI for OpenVMS may
request the device. For synchronous devices, the
user has the choice to configure the device for use
by DECnet/OSI for OpenVMS. If a device is config­
ured, a choice between the Digital data communi­
cations message protocol (DDCMP) or high-level
data link control (HDLC) as data link protocol must
also be made.

Each data link device configured requires a name
for the device and a name for the corresponding
routing circuit. The defaults for these names
are generated by using the protocol name, e.g., car­
rier sense multiple access-collision detection
(CSMA-CD), HDLC, or DDCMP, along with a unit num­
ber. The user may override the default with any
valid simple name. This allows the user to set the
data link and routing circuit names to be more
descriptive in their environment; for example,
HDLC_SYNC_TO_BOSTON for a data link and
CONNECTION_TO_BOSTON_DR500 for a routing
circuit.

32

Transport/Session Control NET$CONFIGURE sup­
ports the NSP and OSI transports. The procedure
configures both transports by default, but allows
the user to select only one. Commands are gener­
ated in the start-up scripts to initialize both the
transports and the session control transport ser­
vice provider entity instances, which allow the ses­
sion control layer to use them.

If OSI transport is configured, default templates
are created to allow the installation verification
procedures for the OSI applications to operate suc­
cessfully. The user also has the option of creating
specific connection option templates for use with
OSI applications.

All default session control applications, e.g.,
file access listener (FAL), mail, or phone, are config­
ured in the same way as they are with the DECnet­
VAX Phase IV configuration tool. The user has the
option to allow access to each application through
a default account or not. The only queries made by
the configuration tool are about the creation of the
user account for the application.

DECdts Configuration The DECdts configuration
is performed by a call to the DTSS$CONFIGURE
procedure. DTSS$CONFIGURE prompts the user
to choose between universal coordinated time
(UTC) or local time, which is UTC plus or minus
the time-zone differential factor (TDF). If local time
is chosen, then the procedure prompts for the
continent and time zone on that continent to use.
This information is needed to compute the TDF.
The DTSS$CONFIGURE tool creates its own NCL
scripts. These scripts are not maintained by
NET$CONFIGURE, and no checksums are computed
or stored for them.

Configuration To configure DECdns, the network
software must be in operation so that the DECdns
software may use it. The NET$CONFIGURE proce­
dure attempts to start the network once it has cre­
ated the necessary scripts. Once the network has
been started, the NET$CONFIGURE procedure calls
DNS$CONFIGURE, passing it the node full name that
was entered by the user. The full name contains the
namespace nickname that the user wishes to use.
DNS$CONFIGURE then uses the DECdns advertiser to
listen on the broadcast media for a name server that
is advertising the same namespace nickname. If a
match is made, DECdns creates an initialization NCL
script with the needed instructions to configure
the DECdns clerk at the next system boot. It then

Vol. 5 No. I Winter 1993 Digital Tecbnicaljoun,al

The DECnet/OS/for OpenVMS Version 5.5 Implem entation

tells the advertiser to configure against the same
namespace.

If the namespace nickname cannot be matched,
the user is given alternatives. First, a list of the
current namespaces advertised on the broadcast
media, along with the LOCAL: namespace is offered.
LOCAL: is a special case used in lieu of the standard
client-server configuration. The LOCAL namespace
makes use of the client cache to store a small num­
ber of nodes locally

If a choice is not made from the list, the user is
queried to see if an attempt should be made to con­
figure to a name server that may be located on a
data link other than the broadcast media. If yes,
then a valid address must be provided to the
DNS$CONFIGURE tool so that it may connect to the
name server on the remote node.

If no options are chosen at this point, a final
choice of creating a name server on the local node
is presented. Since DECnet/OSI for OpenVMS must
configure the DECdns clerk, if the answer is still no,
the procedure returns to the original list of known
namespaces and starts again.

Transition Tools Once DECdns is configured, the
transition tools are used to create the correct
namespace directory configuration. If a new
namespace has been created and selected for use,
the tools populate the directories with the node
information from the Phase IV DECnet database
found on the system. Most often, the tools simply
register the node with the DECdns name server
along with the node synonym that was provided by
the user during the node configuration portion of
NET$CONFIGURE.

The transition tools also assist the user when
renaming the node or changing from one name­
space to another. They copy subdirectory informa­
tion from the node's old DECdns directory to the
new directory structure on the new namespace or
within the same namespace, if the user only
changed the node's name.

Summary
The DECnet/OSI for OpenVMS version 5.5 product
implements all layers of the DNA Phase V architec­
ture. This extends the OpenVMS system to a new
degree of network access by supplying standard OSI
protocols. The product also protects the large
investment in network software that OpenVMS
users currently hold. This is done by fully support­
ing the extensive selection of applications available

D igital Technical Journal Vol. 5 No. I Winter 1993

for Phase IV DECnet-VAX. In addition, the design of
DECnet/OSI for OpenVMS is structured in a way that
will ease the introduction of new standards as they
come available.

Acknowledgments
Throughout the course of this project, many peo­
ple have helped in the design, implementation, and
documentation of the product. We would like to
thank all those people for all their help. We would
also like to extend a special thanks to all members
of the bobsled team. Without them, this product
would never have come to be.

References

1.]. Harper, "Overview of Digital's Open Net­
working," Digital Technical journal, vol. 5, no. 1
(Winter 1993, this issue): 12-21.

2. M. Sylor, E Dolan, and D. Shurtleff, "Network
Management," Digital Technical Journal, vol. 5,
no. 1 (Winter 1993, this issue): 117-129.

33

Kim A. Buxton
EdwardJ. Ferris
Andrew K. Nash

The ULTRIX Implementation
of DECnet/OSI

The DECnet/OSI for ULTRIX software was developed to allow the ULTRIX operating
system and ULTRIX workstation software systems to operate in a multivendor, multi­
protocol network based on open standards. It operates in a complex networking
environment that includes OSI, DECnet Phase Iv, X.25, and TCP/IP protocols. BSD
sockets and protocol switch tables provide the entry points that define interfaces for
protocol modules. The DECnet/OSI for ULTRIX software incorporates Digital's
Enterprise Management Architecture, which provides a framework on which to
consistently manage the various components of a distributed system. The DECnet/
OSI for ULTRIX software provides a set of powerful tools and a system that can be
extended to include new functions as they are incorporated in the OSI standard.

DECnet/OSI for ULTRIX is an end system imple­
mentation that supports the open systems inter­
connection (OSI) protocol through the Digital
Networking Architecture (DNA) Phase V software.
This implementation provides several features
and programming environments that are consistent
with the UNIX system philosophy of networking.
Ease of use, extensibility, and portability were key
design goals during product development. Opera­
tion of DECnet/OSI for ULTRIX software in a complex
networking environment provides coexistence and
interaction with the transmission control proto­
col/internet protocol (TCP/IP), DECnet Phase IV,
X.25, and multivendor OSI networks.

The paper "Overview of Digital 's Open
Networking" (in this issue) provides a suitable
introduction to DECnet/OSI concepts. 1 For more
details concerning standard Berkeley Software
Distribution (BSD) networking concepts, the
reader is referred to the general references listed at
the end of this paper.

This paper provides an overview of DECnet/OSI
for ULTRIX software. It discusses some of the design
decisions made during product development,
including the use of protocol switch tables. It
describes the system's five communication
domains, emphasizing the X.25, data link, and OSI
domains. The paper continues with a discussion of
application programming interfaces, interfaces
into kernel modules, and a network management
interface established for extensibility. It concludes

34

with a description of network management and
network configuration.

System Overview
DECnet/OSI for ULTRIX is an end system implemen­
tation of the OSI network architecture and Digital's
DNA Phase V. The DNA Phase V architecture pro­
vides a framework for incorporating OSI protocols
as defined by the International Organization for
Standardization (ISO) into DECnet/OSI products.
DECnet/OSI for ULTRIX software is integrated into
the ULTRIX kernel and layered on existing ULTRIX
interfaces. This software allows the ULTRIX operat­
ing system and ULTRIX workstation software (UWS)
systems to operate in a multivendor, multiprotocol
network based on open standards.

The DECnet/OSI for ULTRIX software p rovides the
following network services:

• Base networking software, which includes trans­
port services, network layer services, X.25, and
local area and wide area device driver support as
described in the ISO Reference Model and DNA. 2

• Network management software, incorporating
the Digital Enterprise Management Architecture.

• Application programming interfaces to support
user development of distributed applications.

• DECnet application software. DNA session con­
trol bridges DECnet applications such as file
transfer (dcp,dls,drm), remote login (dlogin),
and mail to transport layer services.

Vol. 5 No. 1 Wtnter 1993 Digital Technical Journal

• DECdns, Digital's distributed name service,
which provides a location-independent naming
facility. This service is used by DNA session
control to provide node name-to-address
translations.3

• Digital's distributed time service, DECdts. This
time synchronization service is required by many
distributed applications such as DECdns to main­
tain a consistent time base for their operations.

• OSI applications software, including file transfer,
access, and management (FTAM) and virtual
terminal protocol (Vf P) support.

System Goals and Devewpment
A major goal of DECnet/OSI for ULTRIX was to sup­
port large multivendor, multiprotocol networks,
including coexistence of OSI and TCP/IP on an
ULTRIX uws system. Coexistence includes the abil­
ity to share system resources and to provide a con­
sistent set of services to users of both the OSI and
internet protocols. Another goal was to provide
connectivity between OSI and TCP/IP networks
through the implementations of gateways and
hybrid stacks.

Interoperability between DECnet/OSI and DECnet
Phase IV products was required to maintain con­
nectivity during network transition to OSI. A frame­
work for the development of new OSI applications
such as FTAM was another requirement. As in the
DECnet-ULTRIX Phase IV implementation, program­
ming and user interfaces needed to be consistent
with the ULTRIX and UNIX systems environment.

Wherever possible, code was to be shared with
other development projects. For this reason, soft­
ware development engineers used the C program­
ming language and aimed to produce a portable
implementation. This was particularly important
for the X.25 implementation, which would be used
in other products. The code was structured to mini­
mize system-specific references and dependencies.
Code that interfaced directly to the BSD system was
isolated in separate modules, and use of system­
specific devices such as timers and buffers was hid­
den behind generic macros or subroutines.

In addition, the software was designed to be
extensible so that future OSI protocols could be
added. To achieve extensibility, interfaces were
established between the various components.
These include application programming interfaces,
interfaces into each kernel module, and a network
management interface. New protocols could be
more easily added by supporting these interfaces.

Digital Technical Journal Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/OSI

DECnet/OSI for ULTRIX development began with a
collection of eight distinct projects, each with its
own goals, schedules, and priorities. These projects
were developed across engineering organizations,
and spanned three continents. They consisted of
X.25, wide area device drivers, FTAM, VTP, DECdts,
DECdns, OSI applications kernel (OSAK), and the
DECnet/OSI base components.

Early in development, it was realized that no indi­
vidual project could be successful without achiev­
ing success at a systems level for the DECnet/OSI for
ULTRIX product. This realization caused a change in
the way the DECnet/OSI for ULTRIX projects
approached engineering development. Our focus
switched to providing a common set of goals and
one integrated schedule. Priorities for individual
projects were reevaluated in the context of the
system goals and schedule. It was critical to have a
set of well-defined interfaces; any change to these
interfaces could have a major system impact.
Communication between all projects was essential.
A significant amount of time was built into the
schedule for system integration, as well as compo­
nent integration.

Kernel Networking Environment
The DECnet/OSI for ULTRIX kernel implementation
was designed to be consistent with other ULTRIX
networking implementations such as the TCP/IP and
Local Area Transport (LAT). The networking struc­
ture is based on the BSD networking subsystem. 4

The ULTRIX networking environment allows pro­
tocol components to be insulated from each other.
One important aspect of this networking system is
the use of protocol switch tables. These tables con­
tain the entry points for various protocol modules
in the system, as shown in Figure 1. DECnet/OSI for
ULTRIX uses these entry points to define interfaces
for each protocol module. This means that there are
no direct calls from one protocol component into
another, an important consideration when new
layers must be integrated. Moreover, one protocol
module does not access another's databases. Infor­
mation is accessed from a module only through the
defined interface.

Insulating protocol modules from each other is
advantageous for various reasons. As long as a pro­
tocol module supports a generic interface, it can
act as a service provider for multiple users, which
allows a system to support multiple configurations.
For example, X.25 or high-level data link control
(HDLC) may be configured into the kernel only

35

DECnet Open Networking

PROTOCOL SWITCH TABLE
ELEMENT 0: ,.......~~~~~~~~---.

SOCKET TYPE

PROTOCOL FAMILY

PROTOCOL NUMBER
DOMAIN LIST ...

! FUNCTION ENTRY
POINTS:
pr_input()

DOMAIN FAMILY
pr_output()
pr_ctlinput()

DOMAIN NAME
pr_ctloutput()
pr_usrreq()

POINTER TO
BEGINNING OF
DOMAIN PROTOCOL
SWITCH TABLE

pr_init()
pr_fastimo()
pr_slowtimo()
pr_drain()

POINTER TO [... l
END OF
DOMAIN PROTOCOL
SWITCH TABLE

SOCKET TYPE

PROTOCOL FAMILY
POINTER TO NEXT
DOMAIN ENTRY PROTOCOL NUMBER

I
...

FUNCTION ENTRY

t POINTS:
pr_input()
pr_output()
pr_ctlinput()
pr_ctloutput()
pr_usrreq()
pr_init()
pr_fastimo()
pr_slowtimo()
pr_drain()

Figure I Domains and Protocol Switch Tables

when those services are needed. New protocol
modules can be easily added. If token ring support
is added as one of the broadcast devices, using the
same interface as the carrier sense multiple access
with collision detection (CSMA/CD) and fiber dis­
tributed data interface (FDDI) modules, little or no
change will be required to the network layer.

Modularity is another advantage. Complexity can
be reduced and problems can be isolated more eas­
ily when interfaces between each protocol module
are carefully defined. For example, defining a
network management interface for each protocol
removes the requirement for network management
to access protocol module databases directly.
Network management code does not need to
understand the internal organization of a module or
the locking strategies that may be required to
access the data.

36

To make use of the protocol switch table entry
points, some minor enhancements were required.
An extension was made to the control output inter­
face to allow requests from kernel-level protocol
modules and network management. The interface
was further extended to allow protocol modules to
use a port option to identify themselves as clients
of the service provider, to acquire information
from the service provider, or to modify the service
provider's behavior. Network management uses a
different option passed through the control output
interface to manage kernel entities.

The control input interface was also enhanced.
This interface provides two arguments: a request
and a pointer to one or more arguments to be inter­
preted as a function of the request. Originally, this
routine was used to notify IP of events, where each
event had its own unique request value. To allow

Vol. 5 No. 1 Winter 1993 Digital Technical Joun,al

DECnet/OSI protocols to use this interface without
adding several new request values, a general­
purpose request was introduced. This request is
used by a service provider to interrupt one or more
of its clients to inform them of a change in service.
As part of the argument list, the service provider
passes a value indicating the exact nature of the
event being communicated. As an example, the
network layer uses this mechanism to inform the
transport layer modules of a change to the set
of network addresses. Similarly, X.25 uses this
interface to provide status about specific network
connections.

The ULTRIX/BSD networking system organizes
protocols into communication domains. The pur­
pose of a communication domain is to group
together common properties necessary for process­
to-process communication. As an example, the
X.25 domain was designed to provide a full set of
X.25 services that can be selected by client proto­
cols. It includes the socket and protocol switch
table interfaces necessary for user-level and kernel­
level clients, X.25 accounting, profile loading, and
trace utilities.

The components of DECnet/OSI for ULTRIX may
be combined in different ways depending on the
configuration requirements of individual cus­
tomers. A multiple domain approach was chosen to
allow the various products and their development
to be separated from one another. For example,
network management software was placed in a sep­
arate domain to allow the X.25 and wide area
network device driver (WANDD) products to be
managed without installing DECnet/OSI for ULTRIX.
Similarly, the OSI domain protocols may operate
without the X.25 or WANDD products configured
into the system.

Five domains were established:

1. The DECnet domain (AF _DECnet) is retained to
provide backward compatibility to existing
DECnet-ULTRIX Phase IV applications.

2. The data link domain (AF _DIJ) contains all the
data link protocols, including Logical Link
Control (ISO 8802-2), CSMA/CD, FDDI, and HDLC.
For DECnet/OSI for ULTRIX, the AF _DIJ domain
provides access to the drivers for kernel modules
as well as user applications.

3. The X.25 domain (AF_X25) contains the proto­
cols necessary to access X.25 networks.

4. The OSI domain (AF_OSI) contains the higher­
level DECnet/OSI protocols, i.e., DNA session

Digita l Teclmicaljo u r 11a / Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/OSI

control, network services protocol (NSP), OSI
transport, DNA Phase V routing.

5. The network management domain (AF _NETMAN)
contains all the network management functions.
These functions can be used to manage any DNA
networking product.

Data Link Domain
Under DECnet-ULTRIX Phase IV, the routing proto­
col module accessed the drivers directly. In the OSI
implementation, data link interface (DU) modules
interface to the device drivers and act as service
providers to network layer clients such as routing.
This decision was made to minimize specific
DECnet/OSI support needed in the ULTRIX operat­
ing system device drivers. This allows changes to be
made more easily, and it provides a central location
for common data link protocol code as well as
network management code.

The AF _DIJ domain provides a common interface
to broadcast data links such as CSMA/CD and FDDI.
Modules implementing new broadcast data link
technologies can be added at any time by conform­
ing to the DU interface. DU provides support for ISO
802.2 class I, type 1 functions; these may be used by
any broadcast module. Other 802.2 classes are han­
dled by passing frames directly to the client module.

The point-to-point protocols consist of HDLC
and the Digital data communications message pro­
tocol (DDCMP). ULTRIX relies on the DDCMP sup­
port provided by hardware devices. However, a
DDCMP software module exists to interface these
devices to network management. HDLC, on the
other hand, is entirely implemented as a software
module operating over a device driver. Similar
interfaces are provided by each protocol.

X25Domain
To ensure consistency with the goals and require­
ments of DECnet/OSI for ULTRIX, several design
alternatives were considered for integrating X.25
into ULTRIX, including porting a previous Digital
implementation of X.25, the VAX Packet Switch
Interconnect. These alternatives were rejected
because they were not consistent with the DECnet/
OSI for ULTRIX implementation and BSD networking
in general. A new version ofX.25 was implemented
in the C language using the protocol switch table
infrastructure. This approach provided enough
flexibility to allow the ULTRIX X.25 code to be easily
ported to other product environments such as the
WANrouter 250.

37

DECnet Open Networking

The X.25 components of DECnet/OSI for ULTRIX
are provided as part of a wider X.25 strategy that
can support multiple protocol suites, such as
DECnet/OSI, TCP/IP, and International Business
Machine Corporation's Systems Network Archi­
tecture (SNA). Under DECnet/OSI for ULTRIX, X.25 is
used in two configurations. It provides the connec­
tion oriented network services (CONS) support to
the OSI transport layer (ISO 8208, ISO 8878), and it
can be used as a subnetwork for the connectionless
network service (CLNS) layer. When used with
TCP/IP networks, X.25 can be used as a subnetwork
for the IP (Request for Comment [RFC] 877).

The interface to X.25 services was designed to be
accessed by other kernel components. The proto­
col switch table was used to implement this inter­
face. Components such as OSI connectionless
network protocol and OSI transport make direct
use of the kernel protocol switch interface with no
intervening software layer.

Access by user-level applications to X.25 occurs
through the BSD socket interface. The processing
requirements of the socket layer and the kernel
layer provided by the protocol switch are consider­
ably different. To reduce the complexity of the ker­
nel interface, an X.25 socket converter module was
provided. The socket converter module manages
issues such as queuing data at the socket interface
and converting between protocol switch table rou­
tines and socket-layer calls. The converter module
is treated as a client of the kernel interface.

Direct access to the X.25 kernel interface from
IP was not possible due to TCP/IP development
constraints. Instead, an IP device converter was
supplied with ULTRIX X.25. This X.25-IP interface
module appears as a device driver to IP. Further­
more, IP can be configured to use X.25 without
requiring changes to the TCP/IP software. The
pseudo-driver establishes an X.25 call when data is
sent to the X.25 device. After the IP data has been
transmitted, the X.25 connection is maintained to
reduce the overhead and cost of X.25 call setup
when the next IP data packet is sent. Configuration
of the X.25 IP device is performed using standard
ifconfig management commands.

OS/Domain
The AF_OSI domain contains the routing module,
the transport modules, and DNA session control.
The routing module is an end system implementa­
tion that adheres to the Digital Network
Architecture (Phase VJ Network Routing Layer

38

Functional Specification, version 3.0.0 . It provides
support for the ISO Connectionless Network
Service (ISO 8473), End System to Intermediate
System Routing Exchange Protocol (ISO 9542), and
Phase IV routing. "Ping," a network loopback func­
tion specified in Amendment X: Addition of an
Echo Function to ISO 8473 and in RFC 1139, is pro­
vided as a diagnostic tool to test network access to
anode.

Routing can be configured to operate over
the data link entities previously mentioned as well
as X.25. As an end system, DECnet/OSI for ULTRIX
does not route protocol data units (PDUs). It can,
however, operate over multiple circuits simultane­
ously, which allows load balancing across circuits
and network redundancy. Phase V routing is capa­
ble of autoconfiguring to one or more network
addresses. 5

OSI transport (ISO 8072, ISO 8073) and NSP are
the two transport modules supported. Both can
be configured to operate over CLNS. However, only
OSI transport can be configured to operate over
CONS/X.25. OSI transport class 4 is supported
over CLNS, and classes 0, 2, and 4 are supported
over CONS/X.25. OSI transport also provides a con­
nectionless transport service (CLTS) to its users.
CLTS is a datagram service that operates over CLNS.

OSI transport supports two client interfaces and
NSP supports one. Both support an interface to DNA
session control supplied by the protocol switch
table entry points. OSI user applications directly
access OSI transport through X/Open transport
interface (XTI).6 XTI specifies a transport service
interface that is independent of the transport
provider. On the ULTRIX implementation, XTI is a
library interface implemented using the socket
layer. It is discussed in more detail later in the sec­
tion Application Programming Interfaces.

OSI transport can have multiple clients, and it
identifies each client by an address called the trans­
port selector. When OSI transport processes an
incoming connect request, it uses the selector to
determine which client should receive notification
of the request.

The DNA session control protocol engine was
implemented as part of NSP for the DECnet-ULTRIX
Phase IV release. It is now implemented as a sepa­
rate entity to allow operation over multiple trans­
ports (NSP and OSI transport). This modification
created a subtle problem. DNA session control
resides between the transport layers and the socket
layer. However, both transport modules and DNA

Vol. 5 No. 1 Winter 1993 Digital TechntcalJournal

session control need access to the socket. DNA ses­
sion control needs access when performing con­
nection control, and the transport modules need
access when appending transmit or receive buffers
to the socket queues. Since the socket is actually
open to DNA session control, a mechanism was cre­
ated to relay the socket pointer to the transport
modules. This information is passed through the
control output interface as part of the port option.

Application Programming Interfaces
To ease the transition of applications from Phase IV
to DECnet/OSI, the Phase IV socket interface and
programming library were retained. Applications
using these interfaces will continue to work. This
allows programmers time to modify their applica­
tions to use the new interfaces and the capabilities
provided with DECnet/OSI for ULTRIX.

New application programming interfaces (APis)
were developed. These APis include a DNA Phase V
session control programming library, an X.25 pro­
gramming library, an X.25 socket interface, and
an XTI interface. They allow programmers to
write network applications that use DECnet/OSI
capabilities.

DNA Session Control Library
Through the use of the DNA Phase V session control
library and DECdns, applications can provide loca­
tion-independent services to the network. DNA
session control stores information about an appli­
cation and its services in an object in the DECdns
namespace. Client applications can access these
services by referencing the object name without
knowing the current location of the service.

DNA Phase V session control applications also
have the option of operating over various transport
services and network services. The library gives
the application programmer the flexibility of speci­
fying the particular combination of services to be
used. As an alternative, the library can determine
the possible combinations of protocols that are sup­
ported on both the local and remote systems. This
is done by accessing the addressing information
stored in DECdns for each of these systems. If any
combinations of protocols exist, DNA session con­
trol tries each of them in succession until a connec­
tion is established.

The DNA Phase V session control programming
library is designed to be extensible. Instead of using
a calling sequence with numerous parameters, one
parameter is passed on all calls. This parameter is

D igital Technical Journ a l Vol. 5 No. I Winter 1993

The ULTRIX Implementation of DECnet/OS/

an extensible data structure that consists of both
input and output arguments. It allows new argu­
ments to be added by appending fields to the end of
the data structure.

The library is designed to support multithreaded
application development. If a threads programming
interface is supported on the ULTRIX operating
system, programmers are able to write applications
that have multiple control paths executing in paral­
lel. This is useful in writing a network server appli­
cation that frequently needs to handle requests
from multiple clients. A single server application
can process requests in parallel instead of creating
additional processes to service each request.
Multithreaded support in the library was accom­
plished by removing the use of static and global
data by the library. Information is returned in
dynamically allocated memory, which the applica­
tions are responsible for freeing.

X.25 Interfaces
Two programming interfaces are provided for the
X.25 component. A socket interface is provided for
fu ll access to X.25 features in a manner compatible
with BSD UNIX. This allows applications to make use
of a direct socket interface to both TCP/IP and X.25.

An X.25 programming library was created to pro­
vide a portable programming interface that could
be used for access to X.25 across current and future
Digital implementations. The format of calls to the
X.25 library was constructed on lines more compat­
ible with the interface defined in the DNA X.25
access architecture than that available through the
socket interface.

XTI Library
The XTI library has been extended to provide a
framework for developing OSI applications. XTI
provides a transport-independent programming
interface that is standard across UNIX operating sys­
tems. On ULTRIX, XTI was implemented to provide a
portable interface for writing TCP/IP applications.
In DECnet/OSI for ULTRIX, the implementation was
extended to provide support for OSI transport,
including both connection oriented transport ser­
vice (COTS) and CLTS. In addition to supporting the
standard XTI calls, service routines were imple­
mented. These routines provide a mechanism to
build and access addressing information needed
within XTI. The addressing information consists of
transport selectors, network addresses, and inter­
net ports.

39

DECnet Open Networking

Support for the Internet RFC 1006 specification
was also added to the XTI library.7 This specification
allows OSI applications to run over the TCP/IP pro­
tocol suite. RFC 1006 defines a mechanism for OSI
transport class O (TPO) messages to be mapped
across a TCP connection. OSI applications can be
written to communicate over either TCP/IP net­
works or OSI networks, using the same APL

An RFC 1006 daemon was implemented to work
in conjunction with the XTI library to handle
incoming connection establishment. To allow mul­
tiple OSI applications to bind to the same RFC 1006
TCP port, a simple protocol exchanges file descrip­
tors and a few basic messages between the XTI
library and the daemon, using UNIX domain sock­
ets. RFC 1006 specifies that a TCP connection be
completed and a TPO connect request be received
before an OSI application server can be selected to
process the incoming connect. The daemon hides
the TCP connection and effectively blocks the OSI
application server until the TPO connect request
occurs.

Network Management
DECnet/OSI network management is completely dif­
ferent from the management provided for DECnet
Phase IV. It is based on the Enterprise Management
Architecture (EMA), which provides a framework to
consistently manage the various components mak­
ing up a distributed system.8 DECnet/OSI for ULTRIX
network management consists of a director, an
event logger, an agent access module, and an agent
for each manageable protocol entity. Figure 2
shows the network management environment.

The director, network control language (NCL),
provides the user interface that allows network
management commands to be entered. NCL

USER-LEVEL ENTITY

encodes the network management commands
using the common management information proto­
col (CMIP). The encoded directives are passed to
the common management listener (CML). CML, in
turn, passes the directives to the appropriate agent
in a form the agent can understand. On the ULTRIX
implementation, when the connection between
NCL and CML is local, a pipe is used. When NCL
needs to connect to a remote CML, an OSI network
connection is established.

The event logger (EVL) takes event messages
generated by agents and sends them to either a local
sink or a remote event sink. A local sink is a process
that is executing locally, but a remote event sink is
executing on a system elsewhere in the network. In
the latter case, the CMIP protocol is used to convey
the event message. Events are typically displayed
on the console or in a file.

The DECnet/OSI for ULTRIX network management
implementation is designed to be modular and
extensible. The data dictionary, a key component,
describes all the management attributes of each
entity. The data dictionary is a dynamically extensi­
ble database and is used by all network manage­
ment applications. NCL uses the data dictionary to
parse command lines and display output. CML uses
the data dictionary to decode/encode CMIP proto­
col messages from/to NCL, and EVL uses it to display
an event locally. Information about new attributes
or entire entities can be added to the data dictio­
nary without modifying the network management
applications. Thus layered products can easily add
support for new manageable objects.

The network management environment in
DECnet/OSI for ULTRIX is essentially a message pass­
ing scheme, as shown in Figure 2. Like the data dic­
tionary, it was designed to be extensible and

SERVICE
PROVIDER AGENT 0 --..., USER CML USER EVL

SOCKET LAYER

Figure 2 Network Management

AF_NETMAN

KERNELCML

KERNEL EVL

40 Vol. 5 No. 1 Winter 1993 Digital Technical Journal

generic. All manageable, DNA-architected entities
use this environment. At the core is a switch, kernel
CML. Kernel CML passes messages between user
CML and any DNA entity. User CML and kernel CML
communicate through the socket layer. User-level
agents, in turn, communicate with CML using the
socket-layer interface, and kernel-level agents com­
municate with CML through the control output
routine for the entity

User-level agents can send multiple responses to
a single request, but kernel-level agents can send
only one response per request. Because user-level
agents reside in process space and are separated
by the socket layer, their transactions can be asyn­
chronous. Transactions of kernel-level agents, on
the other hand, must be synchronous. When called,
they must process the request and return a single
response. Whenever multiple responses are to be
returned, as in a wild-card operation, the agent
relies on being invoked again by kernel CML for
each of the response messages. This programming
precludes the possibility of exhausting system
buffers while conveying information about a large
number of subentities. Kernel CML stops requesting
additional responses from a kernel entity when it
detects that the socket receive queue is full. Once
there is more room on the queue, it resumes the
wild-card operation.

The network management environment pro­
vides a core set of routines as an aid to processing
and building the syntax for each message. It also
provides routines that assist in wild-card process­
ing. Agents that make use of these routines need
not be aware of the physical structure of each mes­
sage. This has several benefits. It provides a com­
mon set of code that is not duplicated from entity
to entity If there is a problem, it is corrected in one
location instead of several. Also, it makes the imple­
mentation more portable. The message passing
scheme uses the local operating system's network
buffers. When changing from one operating system
to another, the buffering needs to change only in
the common code and not in each of the agents.

Entities may need to originate event messages
bound for the EVL. The mechanism providing this
support is basically the same as the message passing
scheme previously described. A kernel EVL switch
receives event messages from either a user-level or
kernel-level agent and passes the event up to its
counterpart through the socket layer. With this
mechanism, however, messages flow in only one
direction, from the entity to the event logger.

D igital Technical Journal Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/OSI

In DECnet/OSI, some significant architectural
changes were made to the maintenance operations
protocol (MOP). As in Phase IV, the current imple­
mentation supports down-line loading and up-line
dumping over FDDI and CSMA/CD devices. These
functions are now performed by using the MOP ver­
sion 4.0 protocol over ISO 8802-2 or MOP version 3.0
over Ethernet. As part of implementing the new
protocol, support for down-line loading CMIP
scripts was added. These are used by remote sys­
tems such as DECnet/OSI routers to perform
network management initialization. Client informa­
tion is kept in a MOP-specific database. By keeping
entity-specific information modular and distinct,
the DECnet/OSI for ULTRIX MOP implementation is
consistent with EMA. This contrasts with the
DECnet-ULTRIX Phase IV implementation, which
stores MOP client information in the DECnet nodes
database.

Applications Supported
The DECnet Phase IV applications continue to be
provided with the DECnet/OSI for ULTRIX product.
These include the file transfer utility, dcp, the
remote terminal utility, dlogin, and the mail utility
These DECnet applications have been modified to
use the DECnet/OSI for ULTRIX programming inter­
face and to take advantage of the new DNA Phase V
capabilities. They can accept DECdns full names for
node names and run over both the NSP and OSI
transport. The DECnet-internet gateway is also pro­
vided as part of the product. The gateway provides
bidirectional network access between DECnet and
internet systems. It allows DECnet and TCP/IP users
to communicate through their respective file trans­
fer, remote login, and mail facilities.

New OSI applications were written to provide
similar capabilities to the DECnet applications.
They allow users to access files and terminal emula­
tion in a multivendor environment. These OSI appli­
cations include FTAM, VTP, and X.29 terminal
support. Just as the DECnet-internet gateway is pro­
vided, OSI applications provide their own gateways
to link OSI and internet.9

ULTRIX X.25 includes X.29 terminal support. A
packet assembler/disassembler (PAD) provides out­
going access. Thus PAD allows terminal emulation
for X.25 connections to remote hosts in much the
same way that the VTP does in a full OSI stack. For
incoming X.29 calls, a UNIX daemon creates an X.29
login process or activates an application based on
X.29.

41

DECnet Open Networking

Installation and Configuration
DECnet/OSI for ULTRIX networking software allows
the use of OSI addressing and access to global
naming services. It provides new network man­
agement utilities and the ability to configure a
network stack in many different ways. For example,
in configuring X.25, many attributes can be set to
allow conformance to many public and private
packet-switched data networks. The new capabili­
ties add a degree of complexity to the process of
configuring the networking software. To simplify
this process, configuration was separated from
installation. Installation occurs when files are
moved from the distribution media to the target
system. Configuration is the process of providing
information to make the networking subsystem
operational.

The ULTRIX DECnet/OSI and X.25 setup utilities
provide two modes of configuration, basic and
advanced. The DECnet/OSI for ULTRIX setup basic
configuration process asks a limited number of
questions and is designed for the user who will be
installing DECnet/OSI for ULTRIX on a workstation
connected to a local area network. The advanced
configuration process and X.25 setup utility pro­
vide more configuration choices for the network
manager who will be installing DECnet/OSI for
ULTRIX in a server configuration, or who will
require more detailed network configurations.

X.25 and wide area network device driver setup
utilities supply a mechanism for configuring TCP/IP
or DECnet/OSI for ULTRIX to run over X.25 or syn­
chronous data links. For a more unified approach to
configuring an OSI stack, these setup utilities are
integrated with the DECnet/OSI for ULTRIX setup
advanced process. These setup utilities add a logi­
cal abstraction above the EMA, which helps to
reduce complexity. For each manageable entity on
the system, NCL scripts are generated through
default assumptions and responses to configura­
tion questions.

Network configuration is accomplished with
shell scripts and network management scripts.
These mechanisms initialize manageable entities.
At system start-up, the decnetstartup script is exe­
cuted from within re.local. This invokes the various
NCL scripts to configure the networking software.
One or more NCL scripts can be modified indepen­
dently of the configuration utilities to change
attributes of the manageable entities. As an alterna­
tive, the setup utilities can be rerun to modify the
scripts. In addition, responses to configuration

42

questions are stored in a file to provide default
answers to simplify subsequent reconfiguration.

Summary
The design of DECnet/OSI for ULTRIX was a challeng­
ing endeavor that resulted in a rich set of capabili­
ties and a system on which to build new functions.
It operates in a complex networking environment
that includes OSI, DECnet Phase IV, X.25, and TCP/IP
protocols. DECnet/OSI for ULTRIX software allows
OSI applications to function in TCP/IP networks.
RFC 1006 supports the operation of OSI applica­
tions using TCP/IP connections, and RFC 877 allows
TCP/IP to be configured over X.25. In addition, a set
of gateways allows intercommunication between
DECnet/OSI and TCP/IP networks.

The DECnet/OSI for ULTRIX system was also
designed to be extended to include new functions
as they are incorporated into the OSI standards.
New protocol components can be added and used
without changing existing components or net­
work management. In addition, the software was
designed to be portable. The DECnet/OSI for ULTRIX
software has been ported to the DEC OSF/1 AXP
operating system, and DECnet/OSI version 1.0 for
DEC OSF/1 AXP was released in March 1993.

DECnet/OSI for ULTRIX demonstrates Digital's
continuing commitment to provide the OSI proto­
col on platforms based on open systems. The
ULTRIX system was the first end system to include
products that followed the DNA OSI strategy. These
systems can interoperate with either DECnet Phase
IV systems or other OSI systems. As with DECnet
Phase IV, DECnet/OSI for ULTRIX continues to pro­
vide a set of components consistent with the UNIX
philosophy of networking.

Acknowledgments
The authors would like to thank the people, past
and present, who contributed to the design and
development of the DECnet/OSI for ULTRIX product.
Special thanks go to members of the following
teams for their dedication and hard work: DECnet­
ULTRIX, ULTRIX FTAM, ULTRIX VT, OSAK, DECdns,
DECdts, ULTRIX X.25, and ULTRIX Wide Area Device
Drivers.

References

I. J. Harper, "Overview of Digital's Open Net­
working," Digital Technical journal, vol. 5, no. 1
(Winter 1993, this issue): 12-20.

Vol. 5 No. I Winter 1993 Digital Tec/111icalJournal

2. Information Processing Systems-Open Sys­
tems Interconnection-Basic Reference Model,
ISO 7498 (New York: American National Stan­
dards Institute, 1984).

3. S. Martin,]. Mccann, and D. Oran, "Development
of the VAX Distributed Name Service," Digital
TechnicalJournal, vol. 1, no. 9 Oune 1989): 9-15.

4. S. Leffler, W. Joy, and R. Fabry, "4.2BSD Net­
working Implementation Notes," (Berkeley, CA:
University of California Technical Report, 1983).

5. R. Perlman, R. Callon, and M. Shand, "Routing
Architecture," Digital TechnicalJournal, vol. 5,
no. 1 (Winter 1993, this issue): 62-69.

6. X/Open Company, Ltd., X/Open Portability
Guide, Networking Services (Englewood Cliffs,
NJ: Prentice-Hall, 1988).

7. M. Rose and D. Cass, "Request for Comments:
RFC 1006, ISO Transport Services on Top of the
TCP, Version 3," May 1987.

Digital Technical Journal Vol. 5 No. 1 Winter 1993

The ULTRIX Implementation of DECnet/OSI

8. M. Sylor, F. Dolan, and D. Shurtleff, "Network
Management," Digital Technical Journal, vol. 5,
no. 1 (Winter 1993, this issue): 117-129.

9. D. Robinson, L. Friedman, and S. Wattum, "An
Implementation of the OSI Upper Layers and
Applications," Digital Technical Journal, vol. 5,
no. 1 (Winter 1993, this issue): 107-116.

General References

D. Comer, Internetworking with TCP/IP: Principles,
Protocols and Architecture (Englewood Cliffs, NJ:
Prentice-Hall, 1988).

S. Leffler, M. McKusick, M. Karels, and]. Quarter­
man, The Design and Implementation of the 4.3
BSD UNIX Operating System (Reading, MA: Addi­
son-Wesley Publishing Company, May 1989).

S. Leffler, W. Joy, and R. Fabry, "A 4.2BSD Interpro­
cess Communication Primer," (Berkeley, CA: Univer­
sity of California Technical Report, 1983).

43

High-performance TCP/IP
and UDP/IP Networking in
DEC OSF/lfor ~phaAXP

Chran-Ham Chang
Richard Flower

John Forecast
Heather Gray

William R . Hawe
K. K. Ramakrishnan

Ashok P. Nadkarni
Uttam N. Shikarpur

Kathleen M . Wilde

The combination of the Alpha AXP workstations, the DEC FDD/controller/
TURBOchannel network interface, the DEC OSF/ I operating system, and a stream­
lined implementation of the TCP/IP and UDP/IP delivers to user applications almost
the full FDDI bandwidth of 100 Mb/s. This combination eliminates the network I/0
bottleneck for distributed systems. The TCP/IP implementation includes extensions
to TCP such as support for large transport windows for higher performance. This is
particularly desirable for higher-speed networks and/or large delay networks. The
DEC FDDicontroller/TURBOchannel network interface delivers full bandwidth to the
system using DMA, and it supports the patented point-to-point, full-dupl.ex FDDI
mode. Measurement results show UDP performance is comparable to TCP. Unlike
typical BSD-derived systems, the UDP receive throughput to user applications is also
maintained at high load.

We have seen significant increases in the band­
width available for computer communication net­
works in the recent past. Commercially available
local area networks (LANs) operate at 100 megabits
per second (Mb/s), and research networks are run­
ning at greater than 1 gigabit per second (Gb/s).
Processor speeds have also seen dramatic increases
at the same time. The ultimate throughput deliv­
ered to the user application, however, has not
increased as rapidly. This has led researchers to
say that network I/0 at the end system is the next
bottleneck. 1

One reason that network I/0 to the application
has not scaled up as rapidly as communication link
bandwidth or CPU processing speeds is that mem­
ory bandwidth has not scaled up as rapidly even
though memory costs have fallen dramatically.
Network I/0 involves operations that are memory
intensive due to data movement and error check­
ing. Scaling up memory bandwidth, by making
memory either wider or faster, is exp ensive.
The result has been an increased focus on the
design and implementation of higher-performance
network interfaces, the re-examination of the
implementation of network 1/0, and the considera-

44

tion of alternative network protocols to achieve
higher performance.2,3,4

This paper describes the work we did to remove
the end system network 1/0 bottleneck for current
commercially available high-speed data links, such
as the fiber distributed data interface (FDDI).5,6 We
used the conventional internet protocol suite of
transmission control protocol/internet protocol
(TCP/IP) and the user datagram protocol/internet
protocol (UDP/IP) on Alpha AXP hardware and soft­
ware platforms.7.8,9 The specific hardware platform
was the DEC 3000 AXP Model 500 workstation with
the DEC FDDicontroller/TIJRBOchannel adapter
(DEFTA). The software platform was the DEC OSF/1
operating system version 1.2 using the TCP and UDP
transport protocols. The combination of the Alpha
AXP workstations, the DEFTA adapter, the DEC OSF/1
operating system, and a streamlined implementa­
tion of the TCP/IP and UDP/IP delivers to user appli­
cations essentially the full FDDI bandwidth of 100
Mb/s.

While the DEC FDDicontroller/TIJRBOchannel
network interface is lower cost than previous FDDI
controllers, it also delivers full bandwidth to the
system using direct memory access (DMA). In

Vol. 5 No. I Winter 1993 Digital Technical Journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ I for Alpha AXP

addition, it supports the patented point-to-point,
full-duplex FDDI mode. This allows a link to be used
with 100 Mb/s in each direction simultaneously,
which increases throughput in some cases and
reduces latency compared to the standard FDDI ring
mode.

Incremental work for data movement and check­
sums has been optimized to take advantage of the
Alpha AXP workstation architecture, including
64-bit support, wider cache lines, and the coher­
ence of cache blocks with DMA. Included in the
TCP/IP implementation are extensions to TCP
recently recommended by the Internet Engineering
Task Force (IETF), such as support for large trans­
port windows for higher performance. 10 This is
particularly desirable for high-speed networks
and/or large delay networks.

We feel that good overload behavior is also
important. Workstations as well as hosts acting as
servers see substantial load due to network I/0.
Typical implementations of UDP/IP in systems based
on the UNIX operating system are prone to degrada­
tion in throughput delivered to the application as
the received load of traffic to the system increases
beyond its capacity. Even when transmitting UDP/IP
packets from a peer transmitter with similar capa­
bilities, the receiver experiences considerable
packet loss. In some cases, systems reach receive
"livelock," a situation in which a station is only
involved in processing interrupts for received pack­
ets or only partially processing received packets
without making forward progress in delivering
packets to the user application. 11 Changes to the
implementation of UDP/IP and algorithms incorpo­
rated in the DEFTA device driver remove this type of
congestion loss at the end system under heavy
receive load. These changes also eliminate unfair­
ness in allocation of processing resources, which
results in starvation (e.g., starving the transmit
path of resources).

The next section of this paper discusses the char­
acteristics of the Alpha AXP workstations, the DEC
OSF/1 operating system, and the two primary trans­
port protocols in the internet protocol suite, TCP
and UDP. We provide an overview of the implemen­
tation of network VO in a typical UNIX system using
the Berkeley Software Distribution (BSD) to moti­
vate several of the implementation enhancements
described in the paper. 12

The section on Performance Enhancements and
Measurements Results then describes the specific
implementation enhancements incorporated in

Digital Technical Journal Vol. 5 No. I Winter 1993

the DEC OSF/1 operating system version 1.2 to
improve the performance of TCP and UDP. This
section also provides measurement results for TCP
and UDP with DEC 3000 AXP workstations running
DEC OSF/1 version 1.2 in a few different configura­
tions. Also included are measurements with TCP
and UDP with Digital's patented full-duplex mode
for FDDI, which can potentially increase through­
put and reduce latency in FDDI LANs with point-to­
point links (which can also be used in switched
FDDI LANs). A few implementation ideas currently
under study are also presented in the section on
Experimental Work.

System Characteristics
The project to improve the implementation of
Digital's TCP/IP and UDP/IP (the internet protocol
suite) networking was targeted on the DEC 3000
AXP Model 500 workstation, running the DEC OSF/1
operating system version 1.2. Since we were inter­
ested in achieving the highest performance pos­
sible on a commercially available data link, we
chose FDDI, and used the DEC FDDicontroller/
TURBOchannel adapter (DEFTA) to communicate
between the Alpha AXP workstations. In this sec­
tion, we describe the features of the workstations,
relevant characteristics of FDDI, the internet pro­
tocol suite, and the DEC OSF/1 operating system
itself, relative to the networking implementa­
tion. The architectural features of the Alpha AXP

workstations as well as the DEC FDDicontroller/
TURBOchannel adapter are shown in Figure 1.

The Alpha AXP System
The Alpha AXP workstation, DEC 3000 AXP Model
500 was chosen for our research. The system is
built around Digital's 21064 64-bit, reduced instruc­
tion set computer (RISC) microprocessor.

Digital's 21064 Microprocessor The DECchip
21064 CPU chip is a RISC microprocessor that is fully
pipelined and capable of issuing two instructions
per clock cycle. 13.•4 The DECchip 21064 micropro­
cessor can execute up to 400 million operations
per second. The chip includes

• An 8-kb direct-mapped instruction cache with
a 32-byte line size

• An 8-kb direct-mapped data cache with a
32-byte line size

• Two associated translation buffers

• A four-entry (32-byte-per-entry) write buffer

45

DECnet Open Networking

CPU ADDRESS
MEMORY
ADDRESS

DECCHIP
21064
CPU

SECONDARY
CACHE

SYSTEM
CROSSBAR

MAIN
MEMORY

512 KB

MEMORY DATA

CPU DATA

SYSTEM 1/0 BUS (TURBOCHANNEL)

TURBOCHANNELBUSINTERFACE

DMA ENGINE FDDI

ADAPTER PACKET MEMORY

Figure 1 The Al,pha AXP Workstation-CPU, Memory Subsystem, and the
FDD/controller/TURBOchannelAdapter

• A pipelined 64-bit integer execution unit with a
32-entry register file

• A pipelined floating-point unit with an addi-
tional 32 registers

The DEC 3000 AXP Model 500 Workstation The
DEC 3000 AXP Model 500 workstation is built
around the DECchip 21064 microprocessor running
at 150 megahertz (MHz).15 In addition to the on-chip
caches, there is an on-board second-level cache of
512 kilobytes (kB). Main memory can be from 32 MB
to 256 MB (1 GB with 16 MB dynamic random-access
memories [DRAMs]). The memory bus is 256 bits
plus error-correcting code (ECC) wide and has a
bandwidth of 114 MB/s. Standard on the system is
also a 10-Mb/s Ethernet interface (LANCE). For con­
nection to external peripherals there is an on-board
small computer systems interface (SCSI)-2 interface
and six TIJRBOchannel slots with a maximum 1/0
throughput of 100 MB/s. One of the TIJRBOchannel
slots is occupied by the graphics adapter.

The system uses the second-level cache to help
minimize the performance penalty of misses and
write throughs in the two relatively smaller pri­
mary caches in the DECchip 21064 processor. The
second-level cache is a direct-mapped, write-back
cache with a block size of 32 bytes, chosen to match
the block size of the primary caches. The cache

46

block allocation policy allocates on both read
misses and write misses. Hardware keeps the cache
coherent on DMAs; DMA reads probe the second­
level cache, and DMA writes update the second­
level cache, while invalidating the primary data
cache. More details of the DEC 3000 AXP Model 500
AXP workstation may be obtained from "The
Design of the DEC 3000 AXP Systems, Two High­
performance Workstations." 15

DEC OSF/1 Operating System
DEC OSF/1 operating system version 1.2 for Alpha
AXP systems is an implementation of the Open
Software Foundation (OSF) OSF/1 version 1.0 and
version 1.1 technology The operating system is a
64-bit kernel architecture based on Carnegie­
Mellon University's Mach version 2.5 kernel.
Components from 4.3 BSD are included, in addition
to UNIX System Laboratories System V interface
compatibility.

Digital's version of OSF/1 offers both reliability
and high performance. The standard TCP/IP and
UDP/IP networking software, interfaces, and proto­
cols remain the same to ensure full multivendor
interoperability. The software has been tuned and
new enhancements have been added that improve
performance. The interfaces between the user
application and the internet protocols include both

Vol. 5 No. 1 Winter 1993 Digital Tecbntcal]ournal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ I for Alpha AXP

the BSD socket interface and the X/Open Transport
Interface. 12 The internet implementation condi­
tionally conforms to RFC 1122 and RFC 1123.16, 17

Some of the networking utilities included are
Telnet; file transfer protocol (FTP); the Berkeley "r"
utilities (rlogin, rep, etc.); serial line internet proto­
col (SUP) with optional compression; Local Area
Transport (LAT); screend, which is a filter for con­
trolling network access to systems when DEC OSF/1
is used as a gateway; and prestoserve, a file system
accelerator that uses nonvolatile RAM to improve
Network File System (NFS) server response time.
The implementation also provides a STREAMS inter­
face, the transport layer interface, and allows for
STREAMS (SVID2) and sockets to coexist at the data
link layer. There is support for STREAMS drivers to
socket protocol stacks and support for BSD drivers
to STREAMS protocol stacks via the data link
provider interface.

The OSF/ 1 Network Protocol
Implementation
The overall performance of network 1/0 of a work­
station depends on a variety of components: the
processor speed, the memory subsystem, the host
bus characteristics, the network interface and
finally, and probably the most important, software
structuring of the network 1/0 functions. To under­
stand the ways in which each of these aspects influ­
ences performance, it is helpful to understand the
structuring of the software for network 1/0 and the
characteristics of the computer system (processor,
memory, system bus). We focus here on the struc­
turing of the end system networking code related
to the internet protocol suite in the DEC OSF/1 oper­
ating system, following the design of the net­
working code (4.3 BSD-Reno) in the Berkeley UNIX
distribution. S.9,12

A user process typically interfaces to the net­
work through the socket layer. The protocol mod­
ules for UDP, TCP (transport layers) and IP (network
layer) are below the socket layer in the kernel of the
operating system. Data is passed between user pro­
cesses and the protocol modules through socket
buffers. On message transmission, the data is typi­
cally moved by the host processor from user space
to kernel memory for the protocol layers to packet­
ize and deliver to the data link device driver for
transmission. The boundary crossing from user to
kernel memory space is usually needed in a general­
purpose operating system for protection purposes.
Figure 2 shows where the incremental overhead for

Digital Technical Journal Vol. 5 No. I Winter 1993

packet processing, based on packet size, occurs in a
typical BSD 4.3 distribution.

The kernel memory is organized as buffers of var­
ious types. These are called mbufs. They are the pri­
mary means for carrying data (and protocol
headers) through the protocol layers. The protocol
modules organize the data into a packet, compute
its checksum, and pass the packet (which is a set of
mbufs chained together by pointers) to the data
link driver for transmission. From these kernel
mbufs, the data has to be moved to the buffers on
the adapter across the system bus. Once the adapter
has a copy of the header and data, it may return an
indication of transmit completion to the host. This
allows the device driver to release the kernel mbufs
to be reused by the higher layers for transmitting or
for receiving packets (if buffers are shared between
transmit and receive).

While receiving packets, the adapter moves the
received data into the host's kernel mbufs using
DMA. The adapter then interrupts the host proces­
sor, indicating the reception of the packet. The data
link driver then executes a filter function to enable
posting the packet to the appropriate protocol pro­
cessing queue. The data remains in the same kernel
mbufs during protocol processing. Buffer pointers
are manipulated to pass references to the data
between the elements processing each of the proto­
col layers. Finally, on identifying the user process of
the received message, the data is moved from the
kernel mbufs to the user's address space.

Another important incremental operation per­
formed in the host is that of computing the check­
sum of the data on receive or transmit. Every byte
of the packet data has to be examined by the pro­
cessor for errors, adding overhead in both CPU pro­
cessing and memory bandwidth. One desirable
characteristic of doing the checksum after the data
is in memory is that it provides end-to-end protec­
tion for the data between the two communicating
end systems. Because data movement and check­
sum operations are frequently performed and exer­
cise components of the system architecture
(memory) that are difficult to speed up signifi­
cantly, we looked at these in detail as candidates for
optimization.

The Internet Protocol Suite:
TCP/IP and UDP/IP
The protocols targeted for our efforts were TCP/IP
and UDP/IP, part of what is conventionally known as
the internet protocol suite.7.9

47

DECnet Open Networking

TRANSMIT USER RECEIVE USER

- - -~DATA - - - - SOCKET - - - - -ffDATA - - -
LAYER

(3) COPY COPY (3)

~ ~
(
2

) I CHECKSUM I I CHECKSUM I (2)
__________ TRANSPORT _________ _

LAYER I IP I TCP I DATA I
NETWORK

- - - - - - - - - - LAYER

I IP I TCP I DATA I
FDDI IP TCP DATA FDDI IP

__________ DATA LINK
LAYER

(1)~

~
ADAPTER
MEMORY

FDDI

DMA

ADAPTER
MEMORY

(1)

Figure 2 The incremental data operations occur in three places: (1) when the data is moved
using DMA between the kernel and the network adapter memory, (2) when a checksum is computed

for the data, and (3) when the data is copied between the user process and the kernel.

TCP is a reliable, connection-oriented, end­
to-end transport protocol that provides flow­
controlled data transfer. A TCP connection contains
a sequenced stream of data octets exchanged
between two peers. TCP achieves reliability
through positive acknowledgment and retransmis­
sion. It achieves flow control and promotes effi­
cient movement of data through a sliding window
scheme. The sliding window scheme allows the
transmission of multiple packets while awaiting the
receipt of an acknowledgment. The number of
bytes that can be transmitted prior to receiving an
acknowledgment is constrained by the offered win­
dow on the TCP connection . The window indicates
how much buffering the receiver has available for
the TCP connection (the receiver exercises the flow
control). This window size also reflects how much
data a sender should be prepared to buffer if
retransmission of data is required. The size of the
offered window can vary over the life of a connec­
tion. As with BSD systems, DEC OSF/1 currently
maintains a one-to-one correspondence between
window size and buffer size allocated at the socket
layer in the end systems for the TCP connection. An
erroneous choice of window size, such as one too

48

small, or one leading to nonbalanced sender and
receiver buffer sizes, can result in unnecessary
blocking and subsequent inefficient use of available
bandwidth.

TCP divides a stream of data into segments for
transmission. The maximum segment size (MSS) is
negotiated at the time of connection establishment.
In the case of connections within the local net­
work, TCP negotiates an MSS based on the maximum
transmission unit (MTV) size of the underlying
media. (For IP over FDDI the MTU is constrained to
4,352 octets based on the recommendation in RFC
1390.18) TCP calculates the MSS to offer, by subtract­
ing from this MTV, the number of octets required
for the most common IP and TCP header sizes.

The implementation of TCP/IP in DEC OSF/1
follows the 4.3 BSD-Reno implementation of TCP.
Included is the use of dynamic round-trip time
measurements by TCP, which maintains a timer
per connection and uses adaptive time-outs for set­
ting retransmission timers. The implementation
includes slow start for reacting to congestive loss
and optimizations such as header prediction and
delayed acknowledgments important for network
performance.19 DEC OSF/1 version 1.2 also includes

Vol. 5 No. 1 Winter 1993 Digital Technical journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ I for Alpha AXP

recent extensions to TCP for accommodating
higher-speed networks. 10 TCP's performance may
depend upon the window size used by the two
peer entities of the TCP connection. The product of
the transfer rate (bandwidth) and the round-trip
delay measures the window size that is needed to
maximize throughput on a connection.

In the TCP specification RFC 793, the TCP header
contains a 16-bit window size field which is the
receive window size reported to the sender. 9 Since
the field is only 16 bits, the largest window size that
is supported is 64K bytes. Enhancing the original
specification, RFC 1323 defines a new TCP option,
window scale, to allow for larger windows. 10 This
option contains a scale value that is used to increase
the window size value found in the TCP header.

The window scale option is often recommended
to improve throughput for networks with high
bandwidth and/or large delays (networks with large
bandwidth-delay products). However, it also can
lead to higher throughput on LANs such as an FDDI
token ring. Increased throughput was observed
with window sizes larger than 64K bytes on an FDDI
network.

The TCP window scale extension maps the 16-bit
window size field to a 32-bit value. It then uses the
TCP window scale option value to bit-shift this
value, resulting in a new maximum receive window
size value. The extension allows for windows of up
to 1 gigabyte (GB). To facilitate backward compati­
bility with existing implementations, both peers
must offer the window scale option to enable win­
dow scaling in either direction. Window scale is
automatically turned on if the receive socket buffer
size is greater than 64K bytes. A user program can
set a larger socket buffer size via the setsockopt()
system call. Based on the socket buffer size, the ker­
nel implementation can determine the appropriate
window scale factor.

Similar to the choice of large window sizes, the
use of large TCP segments, i.e., those approaching
the size of the negotiated MSS, could give better
performance than smaller segments. For a given
amount of data, fewer segments are needed (and
therefore fewer packets). Hence the total cost of
protocol processing overhead at the end system is
less than with smaller segments.

The internet protocol suite also supports the
user datagram protocol or UDP. UDP performance
is important because it is the underlying protocol
for network services such as the NFS. UDP is a
connection-less, message-oriented transport layer

Digital Technical journal Vol. 5 No. 1 Winter 1993

protocol that does not provide reliable delivery or
flow control. The receive socket buffer size for UDP
limits the amount of data that may be received and
buffered before it is copied to the user's address
space. Since there is no flow control, the UDP
receiver may have to discard the packet if it receives
a large burst of messages and there is no socket
buffer space.

If the receiver is fast enough to allow the user
application to consume the data, the loss rate is
very low. However, most BSD-derived systems today
experience heavy packet loss for UDP even when
the receiving processor is the same speed as the
transmitter. Furthermore, since UDP has no flow
control, there is no mechanism to assure that all
transmitted data will be received when the trans­
mitter is faster than the receiver. We describe our
implementation of UDP to avoid this behavior, so
that packet loss is minimized.

Data Link Characteristics: FDDI
FDDI is a 100 Mb/s LAN standard that is being
deployed commercially. It uses a timed-token
access method and allows up to 500 stations to be
connected with a total fiber length of 200 kilo­
meters. It allows for both synchronous and asyn­
chronous traffic simultaneously and provides a
bound for the access time to the channel for both
these classes of traffic.

The timed-token access method ensures that all
stations on the ring agree to a target token rotation
time (TTRT) and limit their transmissions to this tar­
get. 20 With asynchronous mode (the most widely
used mode in the industry at present), a node can
transmit only if the actual token rotation time (TRT)
is less than the target.

The basic algorithm is that each station on the
ring measures the time since it last received the
token. The time interval between two successive
receptions of the token is called the TRT. On a
token arrival, if a station wants to transmit, it com­
putes a token holding time (THT) as: THT = TTRT -
TRT. The TTRT is agreed to by all the stations on the
ring at the last time that the ring was initialized (typ­
ically happens when stations enter or leave the
ring) and is the minimum of the requested values by
the stations on the ring. If THT is positive, the sta­
tion can transmit for this interval. At the end of
transmission, the station releases the token. If a sta­
tion does not use the entire THT allowed, other sta­
tions on the ring can use the remaining time by
using the same algorithm.

49

DECnet Open Networking

A number of papers relating to FDDI have
appeared in the literature, and the reader is encour­
aged to refer to "Performance Analysis of FDDI
Token Ring Networks: Effect of Parameters and
Guidelines for Setting ITRT ;' for more details. 21

Network Adapter Characteristics
The DEC FDDicontroller/TURBOchannel adapter,
DEFTA, is designed to be a high-performance adap­
ter capable of meeting the full FDDI bandwidth. It
provides OMA capability both in the receive and
transmit directions. It performs scatter-gather on
transmit. The adapter has 1 MB of packet buffering.
By default, half the memory is used for receive
buffering; one-fourth of the memory is allocated for
transmit buffering; and the remaining memory is
allocated for miscellaneous functions, including
buffering for FD DJ's station management (SMT). The
memory itself is not partitioned, and the adapter
uses only as much memory as necessary for the
packets. It avoids internal fragmentation and does
not waste any memory.

The receive and transmit OMA operations are
handled by state machines, and no processor is
involved in data movement. The OMA engine is
based on the model reported by Wenzel. 22 The main
concept of this model is that of circular queues
addressed by producer and consumer indices.
These indices are used by the driver and the adapter
for synchronization between themselves; they indi­
cate to each other the availability of buffers. For
example, for receiving packets into the kernel
memory, the device driver produces empty buffers.
By writing the producer index, it indicates to the
adapter the address of the last buffer produced and
placed in the circular queue for receiving. The
adapter consumes the empty buffer for receiving an
incoming packet and updates the consumer index
to indicate to the driver the last buffer that it has
consumed in the circular queue. The adapter is
capable of full-duplex FDDI operation. Finally,
FDDI's SMT processing is performed by a processor
on board the adapter, with the adapter's receive and
transmit state machines maintaining separate
queues for SMT requests and responses.

To obtain high performance, communication
adapters also try to minimize the amount of over­
head involved in transferring the data. To improve
performance, the DEFTA FDDI port interface (inter­
face between the hardware and the operating
system's device driver) makes efficient use of host

so

memory data structures, minimizes overhead 1/0
related to the port interface, and minimizes inter­
rupts to the host system.

The Port Architecture contains several unique
features that optimize adapter/host system perfor­
mance. These features include the elimination of
much of the control and status information trans­
ferred between the host and adapter; the organiza­
tion of data in host memory in such a way as to
provide efficient access by the adapter and the host;
and the use of an interrupt mechanism, which elim­
inates unnecessary interrupts to the host.

The design also optimizes performance through
careful organization of data in host memory. Other
than the data buffers, the only areas of host memory
that are shared by the host and the adapter are the
queues of buffer descriptors and the area in which
the adapter writes the consumer indices. The
adapter only reads the buffer descriptors; it never
writes to this area of host memory. Thus the impact
on host performance of the adapter writing to an
area in memory, which may be in cache memory, is
eliminated. On the other hand, the area in host
memory where the adapter writes its consumer
indices is only written by the adapter and only read
by the host. Both the receive data consumer index
and transmit data consumer index are written to
the same longword in host memory, thus possibly
eliminating an extra read by the host of information
that is not in cache memory. Furthermore, the pro­
ducer and consumer indices are maintained in dif­
ferent sections of memory (different cache lines) to
avoid thrashing in the cache when the host and the
adapter access these indices.

The device driver is also designed to achieve high
performance. It avoids several of the problems asso­
ciated with overload behavior observed in the
past. 23 We describe some of these enhancements in
the next section.

Performance Enhancements atul
Measurements Results
We describe in this section the various perfor­
mance enhancements included in the DEC OSF/1
operating system version 1.2 for Alpha AXP systems.
In particular, we describe the optimizations for
data movement and checksum validation, the
implementation details to provide good overload
behavior within the device driver, the TCP enhance­
ments for high bandwidth-delay product networks,
and the UDP implementation enhancements.

Vol. 5 No. 1 Winter 1993 Dtgttal Tecbntcal Journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

We also present measurement results showing
the effectiveness of the enhancements. In most
cases the measurement environment consisted of
two Alpha AXP workstations (DEC 3000 AXP Model
500) on a private FDDI token ring, with a DEC FDDI
concentrator. The tests run were similar to the
well-known ttcp test suite, with the primary
change being the use of the slightly more efficient
send and receive system calls instead of read and
write system calls. We call this tool inett within
Digital. The throughputs obtained were at the user
application level, measured by sending at least
10,000 user messages of different sizes. With UDP,
these are sent as distinct messages. With TCP, algo­
rithms used by TCP may concatenate multiple mes­
sages into a single packet. Time was measured using
the system clock with system calls for resource
usage. We also monitored CPU utilization with
these system calls, and made approximate (often
only for relative comparison) conclusions on the
usage of resources with a particular implementa­
tion alternative.

Optimizations for bcopy() and
in_checksum() Routines
In TCP/UDP/IP protocol implementations, every
byte of data generally must pass through the
bcopy() and in_checksum() routines, when there
is no assistance provided in the network interfaces.
There are some exceptions: the NFS implementa­
tions on DEC OSF/1 avoid the bcopy() on transmit
by passing a pointer to the buffer cache entry
directly to the network device driver, and UDP
may be configured not to compute a checksum
on the data. Digital's implementations turn on the
UDP checksum by default. Even with the above
exceptions, it is important that the bcopy() and
in_checksum() routines operate as efficiently as
possible.

To write efficient Alpha AXP code for these rou­
tines, we used the following guidelines:

• Operate on data in the largest units possible

• Try to maintain concurrent operation of as many
independent processor units (CPU, memory
reads, write buffers) as possible

• Keep to a minimum the number of scoreboard­
ing delays that arise because the data is not yet
available from the memory subsystem

• Wherever possible, try to make use of the Alpha
AXP chip's capability for dual issue of instructions

Digital TecbntcalJour11al Vol. 5 No. 1 Winter 1993

For network 1/0, the bcopy() routine is called to
transfer data between kernel mbuf data structures
and user-supplied buffers to read()/write()/
send()/recv() calls.

The bcopy() routine was written in assembler.
This routine always attempts to transfer data in the
largest units possible consistent with the alignment
of the supplied buffers. For the optimal case, this
would be one quadword (64 bits) at a time. The rou­
tine uses a simple load/store/decrement count loop
that iterates across the data buffer as

ldq t 1 , OCaO) ;get next quadword
;(64 bits)

addq aO, 8 ;move on source pointer
stq t1, O Ca 1) ;store quadword
addq a1, 8 ;move on pointer
subq t2, 8 ;reduce byte count
bne t2, 1 b ;loop ti l l done

Several attempts were made to improve the per­
formance of this simple loop. One design involved
unrolling the loop further to perform 64 bytes of
copying at a time, while reading ahead on the sec­
ond cache line. Another involved operating on four
cache lines at once, based on concerns that a sec­
ond quadword read of a cache line may incur the
same number of clock delays as the first cache miss,
if the second read is performed too soon after the
first read. However, neither of these approaches
produced a copy routine that was faster than the
simple loop described above.

The TCP/UDP/IP suite defines a 16-bit one's com­
plement checksum (in_checksum()), which can be
performed by adding up each 16-bit element and
adding in any carries. Messages must (optional for
UDP) have the checksum validated on transmission
and reception.

As with bcopy(), performance can be improved
by operating on the largest units possible (i.e.,
quadwords). The Alpha AXP architecture does
not include a carry bit, so we have to check if
a carry has occurred. Because of the nature of
the one's complement addition algorithm, it is not
necessary to add the carry in at each stage; we just
accumulate the carries and add them all in at the
end. By operating on two cache lines at a time, we
may start the next computation while the carry
computation is under way, accumulate all the
carries together, then add them all into the result
(with another check for carry) at the end of pro­
cessing the two cache lines. This results in four
cycles per quadword with the addition of some end­
of-loop computation to process the accumulated

51

DECnet Open Networking

carries. Interleaving the checksum computation
across two cache lines also allows for some dual­
issue effects that allow us to absorb the extra end­
of-loop computation.

DEFTA Device Driver Enhancements
Preliminary measurements performed with the DEC
FDDicontroller/TURBOchannel adapter (DEFTA) and
the OSF/1 device driver combination on DEC 3000
AXP Model 500 workstations indicated that we
were able to receive the full FDDI bandwidth and
deliver these packets in memory to the data link
user. Although we show in this paper that the DEC
OSF/1 for Alpha AXP system is able to also deliver the
data to the user application, we ensure that the
solutions provided by the driver are general enough
to perform well even on a significantly slower
machine. When executing on such a slow system,
resources at the higher protocol layers (buffering,
processing) may be inadequate to receive packets
arriving at the maximum FDDI bandwidth, and the
device driver has to deal with the overload. One of
the primary contributions of the DEFTA device
driver is that it avoids receive livelocks under very
heavy receive load.

First, the queues associated with the different
protocols are increased to a much larger value (512)
instead of the typical size of 50 entries. This allows
us to ride out transient overloads. Second, to man­
age extended overload periods, the driver uses the
capabilities in the adapter to efficiently manage
receive interrupts. The driver ensures that packets
are dropped in the adapter when the host is starved
of resources to receive subsequent packets. This
minimizes wasted work by the host processor. The
device driver also tends to trade off memory for
computing resources. The driver allocates page­
size mbufs (SK bytes) so that we minimize the over­
head of memory allocation, particularly for large
messages.

For transmitting packets, the driver takes advan­
tage of the DEFTA's ability to gather data from differ­
ent pieces of memory to be transmitted as a single
packet. Up to 255 mbufs in a chain (although typi­
cally the chain is small, less than 5) may be trans­
mitted as a packet. In the unusual case that a chain
of mbufs is even longer than 255, we copy the last
set of mbufs into a single large page-size mbuf, and
then hand the packet to the device for transmis­
sion. This enables applications to have considerable
flexibility, without resulting in extraneous data

52

movement operations to place data in contiguous
memory locations.

In addition, the driver implements a policy to
achieve transmit fairness. Although the operating
system's scheduling provides fairness at a higher
level, the policies within the driver allow for prog­
ress on transmits even under very heavy receive
overload. Although the Alpha AXP systems are capa­
ble of receiving the full FDDI bandwidth, the
enhanced transmit fairness may still be a benefit
under bursty receive loads during which timely
transmission is still desirable. In addition, as trans­
mission links become faster, this feature will be
valuable.

Wherever possible, all secondary activities­
excluding the transmit and receive paths-have
been implemented using threads. Scheduling sec­
ondary activity at a lower priority does not impact
the latency of transmit and receive paths.

Improvements to the TCP/IP
Protocol and Implementation
The initial TCP window size is set to a default or to
the modified value set by the application through
socket options. TCP in BSD 4.3 performed a round­
ing of the socket buffer, and hence the offered
window size, to some multiple of the maximum
segment size (MSS). The implementation in BSD 4.3
performed a rounding down to the nearest multiple
of the MSS. The MSS value is adjusted, when it is
greater than the page size, to a factor of the page
size.

When using a socket buffer size of 16K bytes,
the rounding down to a multiple of the MSS on
FDDI results in the number of TCP segments out­
standing never exceeding three. Depending on
the application message size and influenced by
one or more of both the silly window syndrome
avoidance algorithms and the delayed acknowl­
edgment mechanism, throughput penalties can be
incurred.16•24

Our choice in this area was to perform a round­
ing up of the socket buffer, and hence window size.
This enabled existing applications to maintain per­
formance regardless of changes to the buffering
performed by the underlying protocol. For exam­
ple, applications coded before the rounding of the
buffer was implemented may have specified a
buffer size at some power of 2. We believe it also
allows better performance when interoperating
with other vendors' systems and provides behavior

Vol. 5 No. 1 Winter 1993 Digital TecbnicalJourtial

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

that is more consistent to the user (they get at least
as much buffering as they request).

A buffer size of 4K bytes has long been obsolete
for TCP connections over FDDI. Digital chose to
increase this buffer to 16K bytes for ULTRIX support
of FDDI. With a socket buffer of 16K bytes, even
when rounding up is applied, the amount of data is
limited to 17,248 octets per round-trip time. We
found that the throughput over FDDI is limited by
the window size. This is due to the effects of
scheduling data packet processing and acknowl­
edgments (ACKs), the interactions with window
flow control, and FDDI's token access protocol
(described below).23,25

With memory costs decreasing considerably,
we no longer consider the 16K byte default to
be an appropriate trade-off between memory
and throughput. Based on measurements for dif­
ferent values of the window size, we feel that the
default window size of 32K bytes is reasonable.
Increasing the window size from 16K bytes to
32K bytes results in an increase of the peak
throughput over FDDI from approximately 40 Mb/s
to approximately 75 Mb/s. However, increasing the
window size beyond 32K bytes allowed us to
increase the throughput even further, which led us
to the incorporation of the TCP window scale
extension.

Window Scale Extensions f or TCP The imple­
mentation of TCP in DEC OSF/1 version 1.2 is based
on the BSD 4.3 Reno distribution. In addition, we
incorporated the TCP window scale extensions
based on the model proposed in RFC 1323.10 Our
work followed the implementation placed in the
public domain by Thomas Skibo of the University of
Illinois.

The TCP window scale extension maps the 16-bit
window size to a 32-bit value. The TCP window
scale option occupies 3 bytes and contains the type
of option (window scale), the length of the option
(3 bytes), and the "shift-count." The window scale
value is a power of 2 encoded logarithmically. The
shift-count is the number of bits that the receive
window value is right-shifted before transmission.
For example, a window shift-count of 3 and a win­
dow size of 16K would inform the sender that
the receive window size was 128K bytes. The
shift-count value for window scale is limited to 14.
This allows for windows of (216+ 214) = 230 = 1 GB.

To facilitate backward compatibility with existing
implementations, both peers must offer the win-

Digital Technical Journal Vol. 5 No. I Winter 1993

dow scale option to enable window scaling in
either direction.

The window scale option is sent only at con­
nection initialization time in an <SYN> segment.
Therefore the window scale value is fixed when the
connection is opened. Since the window scale
option is negotiated at initialization time, only a bit­
shift to the window is added to the established path
processing and has little effect on the overall cost
of processing a segment.

Changes made to the OSF/1 TCP implementation
for using the window scale option include the addi­
tion of the send window shift-count field and
receive window shift-count field to the TCP control
block. TCP processing was modified: the receive
window shift-count value was computed based on
the receive socket buffer size, and the window
scale option is sent with the receive window shift­
count. A modification at connection initialization
time allows the received shift-count value to be
stored in the send window shift-count, if TCP
receives an <SYN> segment containing a window
scale option. The receive window shift-count field
is assigned to the window scale option that is sent
on the <SYN, ACK> segment. When the TCP enters
established state for the connection, window
scale is turned on if both sides have sent <SYN> seg­
ments with window scale. For every incoming seg­
ment, the window field in the TCP header is
left-shifted by the send window shift-count. For
every outgoing segment, the window field in the
TCP header is right-shifted by the receive window
shift-count.

Measurement Results with TCP with Alpha AXP
Workstations We used the inett tool to measure
the throughput with TCP on the DEC OSF/1 operat­
ing system between two DEC 3000 AXP Model 500
workstations on a private FDDI ring. We observed
that as the window size increased from 32K bytes to
150K bytes, the throughput generally increased for
message sizes greater than 3,072 bytes. For example,
for a user message size of 8, 192 bytes, the through­
put with a window size of 32K bytes was 72.6 Mb/s
and increased to 78.3 Mb/s for a window size of 64K
bytes. The TCP throughput rose to 94.5 Mb/s for a
window size of 150K bytes. For window sizes
beyond 150K bytes, we did not see a substantial,
consistent improvement in throughput between
the two user applications in this environment.

We believe that window scale is required to
achieve higher throughputs-even in a limited

53

DECnet Open Networking

FDDI token ring of two stations-based on the inter­
actions that occur between the token holding time,
the scheduling of activities in the operating system,
and the behavior of TCP. The default value for TfRT
is set to 8 milliseconds. 21 The end system is able to
transmit packets at essentially the full FDDI band­
width of 100 Mb/s, thus potentially consuming
about 350 microseconds (including CPU and
network interface times) to transmit a maximum­
sized FDDI TCP segment of 4,312 bytes. During the
8 milliseconds, the source is able to complete the
entire protocol processing of about 23 to 24 seg­
ments (approximately lOOK bytes).

Further overlap of user data and protocol pro­
cessing of packets can occur while the data link is
transmitting and the sink is generating acknowledg­
ments, if there is adequate socket buffer space in
the source system. Thus, with the additional win­
dow of approximately 20K bytes to 30K bytes, the
source system is able to pre-process enough seg­
ments and provide them to the adapter. The adapter
may begin transmitting when the token is returned
to the sender (after it receives a set of acknowledg­
ments), while the source CPU is processing the
acknowledgments and packetizing additional user
data. With up to 150K bytes of socket buffer (and
hence window), there is maximal overlap in pro­
cessing between the CPU, the adapter, and the FDDI
token ring, which results in higher throughput.
This also explains why no further increases in the
window size resulted in any significant increase in
throughput.

Figure 3 shows the throughput with TCP between
two DEC 3000 AXP Model 500 workstations on an
isolated FDDI token ring for different message sizes
for socket buffer sizes of 32K, 64K, and 150K bytes.
For 150K bytes of socket buffer, the peak through­
put achieved was 94.5 Mb/s. For all message sizes,
we believe that the CPU was not fully utilized.
Application message sizes that are slightly larger
than the maximum transmission unit size tradition­
ally display some small throughput degradation
due to additional overhead incurred for segmenta­
tion and the subsequent extra packet processing.
We do not see this in Figure 3 because the CPU is
not saturated (e.g., approximately 60 percent uti­
lized at message sizes of BK bytes), and therefore
the overhead for segmentation does not result in
lower throughput.

So too, application message sizes that are larger
than the discrete memory buffer sizes provided by
the memory allocator should incur small amounts

54

100

0 so z
0

I-(.)
::::, UJ

~~ 60
(!) UJ
::::, a.
Oen
~!::: 40
I-~

(!)
UJ
~20

0 20000 40000 60000

KEY:
USER MESSAGE SIZE (BYTES)

WINDOW SIZE = 32K BYTES
WINDOW SIZE = 64K BYTES
WINDOW SIZE= 150K BYTES

Figure 3 TCP Throughput as a Function
of Window Size: Two DEC 3000
AXP Model 500 Workstations
on an Isolated FDDI Ring

80000

of extra overhead due to the necessity of chaining
such buffers. Figure 3 also shows that the through­
put degradation in this case is small.

Improvements to the UDP/IP
Protocol Implementation and
AfeasurementResults
UDP is a connection-less, message-oriented trans­
port, with no assurances of reliable delivery. It also
does not provide flow control. Unlike TCP, the UDP
transmitter does not buffer user data. Therefore
user messages are transmitted directly as packets
on the FDDI. When user messages are larger than
the MTU size of the data link (4,352 bytes), IP frag­
ments the data into multiple packets. To provide
data integrity, UDP uses the one's complement
checksum for both data as well as the UDP header.

In our experience, the receive throughput to
applications using UDP/IP with BSD-derived systems
is quite poor due to many reasons, including the
lack of flow control. Looking at the receive path of
incoming data for UDP, we see that packets (poten­
tially fragments) of a UDP message generate a high­
priority interrupt on the receiver, and the packet is
placed on the network layer (IP) queue by the
device driver. The priority is reduced, and a new
thread is executed that processes the packet at the
IP layer. Subsequently, fragments are reassembled
and placed in the receiver's socket buffer. There is a

Vol . 5 No. 1 Winter 1993 D igital Technical Journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/1 for Alpha AXP

finite IP queue and also a finite amount of socket
buffer space. If space does not exist in either of
these queues, packets are dropped. Provided space
exists, the user process is then woken up to copy
the data from the kernel to the user's space. If
the receiver is fast enough to allow the user applica­
tion to consume the data, the loss rate is low.
However, as a result of the way processing is sched­
uled in UNIX-like systems, receivers experience
substantial loss. CPU and memory cycles are con­
sumed by UDP checksums, which we enable by
default for OSF/1. This overhead in addition to the
overhead for data movement contributes to the
receiver's loss rate.

Table 1 shows the receive throughput and mes­
sage loss rate with the original UDP implementation
of OSF/1 for different message sizes. We modified the
way in which processing is performed for UDP in the
receiver in DEC OSF/1 version 1.2. We reorder the
processing steps for UDP to avoid the detrimental
effects of priority-driven scheduling, wasted work,
and the resulting excessive packet loss. Not only do
we save CPU cycles in processing, we also speed up
the user application's ability to consume data, par­
ticularly as we go to larger message sizes. Table 1
gives the receive throughput and message loss rate
with DEC OSF/1 version 1.2 incorporating the
changes in UDP processing we have implemented.

UDP throughput was measured between user
applications transmitting and receiving different
size messages. Figure 4 shows the throughput at the
transmitter, which is over 96 Mb/s for all message
sizes over 6,200 bytes and achieves 97.56 Mb/s for
the message size of SK bytes used by NFS. During
these measurements, the transmitting CPU was still
not saturated and the FDDI link was perceived to be
the bottleneck. Therefore, to stress the source
system further, we used two FDDI adapters in the

system to transmit to two different receivers on
different rings. Figure 4 also shows the aggregate
transmit throughput of a single DEC 3000 AXP
Model 500 workstation transmitting over two FDDI
rings simultaneously to two different sinks. The
source system is capable of transmitting signifi­
cantly over the FDDI bandwidth of 100 Mb/s. For the
typical NFS message size of 8, 192 bytes, the aggre­
gate transmit throughput was over 149 Mb/s. The
throughput of the two streams for the different
message sizes, indicates that, for the most part,
their individual throughputs were similar. This
showed that the resources in the transmitter were
being divided fairly between the two applications.

200

0
~ 150

t- (.)
::::> UJ
0.. Ul
Ia:
§5 ~ 100
Oui a: t-
~ ~

ffl 50
~

0

KEY:

/
I

I
I

I
I
I

I

/,,.. - ---

10000 20000

USER MESSAGE SIZE (BYTES)

TRANSMISSION ON A SINGLE RING TO 1 RECEIVER
TRANSMISSION ON TWO RINGS TO 2 RECEIVERS

30000

Figure 4 UDP Transmit Throughput: Single DEC
3000 AXP Model 500 Workstation
Transmitting as Fast as Possible to
Single Ring and Receiver and Two
Receivers on Different Rings

Table 1 UDP Receive Characteristics with Peer Transmitter Transmitting at Maximum Rate

UDP Receive Before
Message
Size
(bytes)

128

51 2

1024

4096

81 92

Changes
Throughput
(Mb/s)

0.086
0.354

0.394

9.5
NA*

Message
Loss Rate

98.8%

98.5%

99.16%

90.26%
NA*

* NA: Benchmark did not finish because of significant packet loss in that experiment.

Digital Technical Journal Vol. 5 No. 1 Winter 1993

UDP Receive After
Changes

Throughput Message
(Mb/s) Loss Rate

0.64 83.1 %

15.14 35.1 5%
23.77 46.86%

96.91 1.08%

97.01 0.56%

55

DECnet Open Networking

Measurements of TCP/IP and UDP/IP with
FDDI Full-duplex Mode
Earlier we observed that the behavior of TCP in par­
ticular depended on the characteristics of the
timed-token nature of FDDI. One of the modes
of operation of FDDI that we believe will become
popular with the deployment of switches and the
use of point-to-point FDDI is that of full-duplex
FDDI. Digital's full-duplex FDDI technology, which
is being licensed to other vendors, provides the
ability to send and receive simultaneously, resulting
in significantly higher aggregate bandwidth to the
station (200 Mb/s). More important, we see this
technology reducing latency for point-to-point
connections. There is no token rotating on the ring,
and the station does not await receipt of the token
to begin transmission. A station has no restrictions
based on the token-holding time, and therefore it is
not constrained as to when it can transmit on the
data link. The DEC FDDicontrollerfruRBOchannel
adapter (DEFTA) provides the capability of full­
duplex operation. We interconnected two DEC
3000 AXP Model 500 workstations on a point-to­
point link using the DEFTAs and repeated several of
the measurements reported above.

One of the characteristics observed was that the
maximum throughput with TCP/IP between the
two Alpha AXP workstations, even when using the
default 32K bytes window size, reached 94.47 Mb/s.
Figure 5 shows the behavior of TCP throughput

100

~ 80
0

I- (.)
:J W

i~ 60
C!)W
::) a..
Ou,
i!:: 40
I-~

(!)
w
~ 20

0

KEY:

---=------------····------------------

20000 40000 60000

USER MESSAGE SIZE (BYTES)

WINDOW SIZE = 32K BYTES
WINDOW SIZE = 64K BYTES
WINDOW SIZE= 150K BYTES

80000

WINDOW SIZE = 32K BYTES; MAXIMUM SOCKET = 64K BYTES

56

Figure 5 TCP Throughput as a Function
of Window Size: Two DEC 3000
AXP Model 500 Workstations
with Full-duplex FDDI

with full-duplex FDDI operation for different win­
dow sizes of 32K, 64K, and 150K bytes (when win­
dow scale is used). The throughput is relatively
insensitive to the variation in the window size. For
all these measurements, however, we maintained
the value of the maximum socket buffer size to be
150K bytes. When using a smaller value of the maxi­
mum socket buffer size (64K bytes), the through­
put drops to 76 Mb/s (for a window size of 32K
bytes) as shown in Figure 5.

Although we removed one of the causes of limit­
ing the throughput (token-holding times), full­
duplex operation still exhibits limitations due to
scheduling the ACK and data packet processing and
the resulting lack of parallelism in the different
components in the overall pipe (the two CPUs of
the stations, the adapters, and the data link) with
small socket buffers. Increasing the maximum
socket buffer allows for the parallelism of the work
involved to provide data to the protocol modules
on the transmitter.

Observing the UDP/IP throughput between the
DEC 3000 AXP Model 500 workstations, we found a
slight increase in the transmit throughput over the
normal FDDI mode. For example, the UDP transmit
throughput for BK messages was 97.93 Mb/s as com­
pared to 97.56 Mb/s using a single ring in normal
FDDI mode. This improvement is due to the absence
of small delays for token rotation through the sta­
tions as a result of using the full-duplex FDDI mode.

Experimental Work
We have continued to work on further enhancing
the implementation of TCP and UDP for DEC OSF/1
for Alpha AXP. We describe some of the experimen­
tal work in this section.

Experiments to Enhance the Transmit and
Receive Paths for TCP/IP
The bcopy() and in_checksum() routine optimiza­
tions minimize the incremental overhead for packet
processing based on packet sizes. The protocol pro­
cessing routines (e.g., TCP and IP) also minimize the
fixed per-packet processing costs.

All TCP output goes through a single routine,
tcp_output() , which often follows the TCP pseu­
docode in RFC 793 very closely.9 A significant por­
tion of its implementation is weighed down by
code that is useful only during connection start-up
and shutdown, flow control, congestion, retrans­
missions and persistence, processing out-of­
band data, and so on. Although the actual code

Vol. 5 No. I Winter 1993 Digital Technical Journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

that handles these cases is not executed every time,
the checks for these special cases are made on
every pass through the routine and can be a non­
trivial overhead.

Rather than check each case separately, the
TCP/IP code was modified to maintain a bit mask.
Each bit in the mask is associated with a special con­
dition (e.g., retransmit, congestion, connection
shutdown, etc.). The bit is set whenever the cor­
responding condition occurs (e.g., retransmit
time-out) and reset when the condition goes away.
If the bit mask is 0, the TCP/IP code executes
straightline code with minimal tests or branches,
thus optimizing the common case. Otherwise, it
simply calls the original routine, tcp_output, to
handle the special conditions. Since the conditions
occur rarely, setting and resetting the bits incurs
less overhead than performing the tests explicitly
every time a packet is transmitted. Similar ideas
have been suggested byVanJacobson.26

Additional efficiency is achieved by precomput­
ing packet fields that are common across all packets
transmitted on a single connection. For example,
instead of computing the header checksum every
time, it is partially precomputed and incrementally
updated with only the fields that differ on a packet­
by-packet basis.

Another example is the data link header compu­
tation. The original path involved a common rou­
tine for all devices, which queues the packet to the
appropriate driver, incurs the overhead of multi­
plexing multiple protocols, looking up address res­
olution protocol (ARP) tables, determining the data
link formats, and then building the header. For TCP,
once the connection is established, the data link
header rarely changes for the duration of the con­
nection. Hence at connection setup time, the data
link header is prebuilt and remembered in the TCP
protocol control block. When a packet is transmit­
ted, the data link header is prefixed to the IP header,
and the packet is directly queued to the appropriate
interface driver. This avoids the overhead associ­
ated with the common routine. Network topology
changes (e.g., link failures) may require the data
link header to be changed. This is handled through
retransmission time-outs. Whenever a retransmit
time-out occurs, the prebuilt header is discarded
and rebuilt the next time a packet has to be sent.

Some parameters are passed from TCP to IP
through fields in the mbufs. Combining the layers
eliminates the overhead of passing parameters and
validating them. Passing parameters is a nontrivial

Digital Technical Journal Vol. 5 No. 1 Winter 1993

cost, since in the original implementation, some
data was passed as fields in the mbuf structure.
Because these were formatted in network byte
order, building and extracting them incurred over­
head. Moreover, the IP layer does not have to per­
form checks for special cases that are not applicable
to the TCP connection. For example, no fragmenta­
tion check is needed since the code for TCP has
already taken care to build a packet within the
allowed size limits.

In a similar fashion to the transmit path, a
common-case fast path code was implemented for
the receive side. This mimics the most frequently
executed portions of the TCP/IP input routines, and
relegates special cases and errors to the original
code. Special cases include fragmented packets,
presence of IP options, and noncontiguous packet
headers. Combining error checking across TCP and
IP also eliminates additional overhead. For exam­
ple, length checks can be used to detect the pres­
ence of options that can be passed to the original
general case path.

These fast path optimizations were implemented
in an experimental version of the OSF/1 operating
system. TCP measurements on the experimental
version of OSF/1 running on two systems commu­
nicating over a private FDDI ring indicate that,
when both the input and output fast path segments
are enabled on the two systems, throughput is
improved for almost all message sizes.

Experiments to Enhance UDP/IP
Processing
An enhancement for UDP/IP processing with which
we experimented was to combine the data copying
and checksum operations. This has been attempted
in the past. 27 The primary motivation is to reduce
memory bandwidth utilization and perform the
checksums while the data is in the processor during
the data movement. To allow us to do this, we intro­
duce a new UDP protocol-specific socket option
that allows users to take advantage of this optimiza­
tion. When a user application posts a receive buffer
after enabling this socket option, we invoke a com­
bined copy and checksum routine on receiving a
packet for that user. In the infrequent case when
the checksum fails, we restore the user 1/0 struc­
ture and zero the user buffer so that inappropriate
data is not left in a user's buffer. Preliminary perfor­
mance measurements indicate significant reduc­
tion in CPU utilization for UDP receives when using
this socket option.

57

DECnet Open Networking

Experiments to Eliminate the Data Copy
from User to Kernel Space
As observed earlier, data movement operations add
significant overhead on the end system. One
method to reduce the cost of data movement for
a send operation, prototyped on an experimen­
tal version of the OSF/1 operating system, is to
replace the data copy from user space to the kernel
socket buffer by a new virtual memory page remap
function. Instead of copying the data from physical
pages in the user map to physical pages in the kernel
map, the physical pages associated with the user
virtual address range in the user map are remapped
to kernel virtual addresses. The pages associated
with the new kernel virtual addresses are then
masqueraded through the network as mbufs.
Preliminary results indicate that a virtual memory
mapping technique can be used on the OSF/1 oper­
ating system to significantly reduce the overhead
associated with the transmission of messages.

The underlying design of the remap operation
affects application semantics and performance.
The semantics of the application are affected by
which underlying page remap operation is
selected. Performance may also be affected by the
implementation of the page map operation and
how well certain TCP/IP configuration variables are
tuned to match the processor architecture and the
network adapter capabilities.

Two types of remap operations were proto­
typed: page steal and page borrow. The page steal
operation, as the name implies, steals the pages
from the user virtual address space and gives the
pages to the kernel. The user virtual addresses are
then mapped to demand-zero pages on the next
page reference. In the page steal operation, the
user ends up with demand zero pages. On the other
hand, in the borrow page operation, the same phys­
ical pages are given back to the user. If the user
accesses a page that the kernel was still using, the
user process either "sleeps," waiting for that page to
become available or (depending upon the imple­
mentation) receives a copy of the page. For the
page borrow operation, the user buffer size must
be greater than the socket buffer size, and the user
buffer must be referenced in a round-robin fashion
to ensure that the application does not sleep or
receive copies of the page.

Both the page steal and the page borrow opera­
tions change the semantics of the send() system
calls, and some knowledge of these new semantics
of the send system calls needs to be reflected in the

58

application. The application's buffer allocation and
usage is dependent upon how the underlying
remap operation is implemented. An important
consideration is the impact on the application pro­
gramming interface. In particular, the extent to
which the semantics of the send system calls (e.g.,
alignment requirements for the user message
buffer) need to change to support the remap opera­
tions is an area that is currently under study.

The page remap feature has not yet been incorpo­
rated in the DEC OSF/1 version 1.2 product. Inclusion
of this feature in the product is expected to reduce
CPU utilization. While page remapping does reduce
the cost of processing a packet, the design issues
outlined above impact applications. To achieve
performance benefits and application portabil­
ity across multiple heterogeneous open systems,
future work continues in this area. In addition, inte­
grated hardware solutions to reduce the cost of the
copy operation are also under investigation.

The performance numbers presented in this
paper did not include the improvements described
in this section on experimental work. We anticipate
that the overall performance would see substantial
improvement with the inclusion of these changes.

Conclusions
Increases in communication link speeds and
the dramatic increases in processor speeds have
increased the potential for widespread use of dis­
tributed computing. The typical throughput deliv­
ered to applications, however, has not increased as
dramatically. One of the primary causes has been
that network 1/0 is intensive on memory band­
width, and the increases in memory bandwidths
have only been modest. We described in this paper
an effort using the new Alpha AXP workstations and
the DEC OSF/1 operating system for communication
over FDDI to remove this 1/0 bottleneck from the
end system.

We described the characteristics of the DEC 3000
AXP Model 500 workstation which uses Digital's
Alpha AXP 64-bit RISC microprocessor. With the use
of wider access to memory and the use of multilevel
caches, which are coherent with DMA, the memory
subsystem provides the needed bandwidth for
applications to achieve substantial throughput
while performing network 1/ 0 .

We described the implementation of the internet
protocol suite , TCP/IP and UDP/IP, on the DEC OSF/1
operating system. One of the primary characteris­
tics of the design is the need for data movement

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

High-perfonnance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

across the kernel-user address space boundary. In
addition, both TCP and UDP use checksums for the
data. Both these operations introduce increasing
overhead with the user message size and comprise
a significant part of the total processing cost. We
described the optimizations performed to make
these operations efficient by taking advantage of
the wider cache lines for the systems and the use of
64-bit operations.

We incorporated several optimizations to the
implementation of TCP in the DEC OSF/1 operating
system. One of the first was to increase the default
socket buffer size (and hence the window size)
used by TCP from the earlier, more conservative
4K bytes to 32K bytes. With this, the throughput of
a TCP connection over FDDI between two Alpha
AXP workstations reached 76.6 Mb/s. By increasing
the window size even further, we found that the
throughput increases essentially to the full FDDI
bandwidth. To increase the window size beyond
64K bytes requires the use of recent extensions to
TCP using the window scale option. The window
scale option, which is set up at the connection ini­
tialization time, allows the two end systems to use
much larger windows. We showed that, when using
a window size of 150K bytes, the peak throughput
of the TCP connection increases to 94.5 Mb/s.

We also improved the performance of UDP
through implementation optimizations. Typical
BSD-derived systems experience substantial loss at
the receiver when two peer systems communicate
using UDP. Through simple modifications in the
processing for UDP and reordering the processing
steps, we improved the delivered throughput to the
receiving application substantially. The UDP receive
throughput at the application achieved was 97.56
Mb/s for the typical NFS message size of SK bytes.
Even at this throughput, we found that the CPU of
the transmitter was not saturated. When a transmit­
ter was allowed to transmit over two different rings
(thus removing the communication link as the bot­
tleneck) to two receivers, a single Alpha AXP work­
station (DEC 3000 AXP Model 500) is able to
transmit an aggregate throughput of more than 149
Mb/s for a message size of SK bytes.

We also described throughput measurements
with the FDDI full-duplex mode between two Alpha
AXP workstations. With full-duplex mode there are
no latencies which are associated with token rota­
tion, lost token recovery, or limitations on the
amount of data transmitted at a time as imposed by
the FDDI timed-token protocol. As a result, with

Digital Technical Journal Vol. 5 No. 1 Winter 1993

full-duplex mode there are performance improve­
ments. With TCP, we achieve a throughput of 94.5
Mb/s even with the default socket buffer of 32K
bytes. This is smaller than the buffer size needed in
token passing mode to achieve the same level of
throughput. Since the link becomes the bottleneck
at this point, there is no substantial increase in
throughput achieved with the use of window scal­
ing when FDDI is being used in full-duplex mode.
An increase in peak transmit throughput with UDP
is also seen when using FDDI in full-duplex mode.

Finally, a few implementation ideas currently
under study were presented.

Acknowkdgments
This project could not have been successful with­
out the help and support of a number of other indi­
viduals. Craig Smelser, Steve Jenkins, and Kent
Ferson were extremely supportive of this project
and ensured that the important ideas were incor­
porated into the OSF Vl.2 product. Tim Hoskins
helped tremendously by providing many hours of
assistance in reviewing ideas and the code before it
went into the product. In addition, we thank the
engineers who ported DEC OSF/1 to Alpha AXP in
order to provide a stable base for our work. The
DEFTA product development group led by Bruce
Thompson and Tom Cassa not only provided us
with a nice adapter, but also helped by giving us as
many prototype adapters as we needed on very
short notice. We would like to thank Gary Lorenz in
particular for his help with the DEFTA adapters.

References
1. D. Clark and D. Tennenhouse, "Architectural

Considerations for a New Generation of
Protocols," Proceedings of the Symposium
on Communications Architectures and
Protocols, ACM S/GCOMM 1990, ACM Com­
puter Communications Review, vol. 20, no. 4
(September 1990).

2.]. Lumley, "A High-Throughput Network Inter­
face to a RISC Workstation;' Proceedings of
the IEEE Workshop on the Architecture and
Implementation of High Perfonnance Com­
munication Subsystems, Tucson, AZ (Febru­
ary 17-19, 1992).

3. P Druschel and L. Peterson, "High-perfor­
mance Cross-domain Data Transfer," Techni­
cal Report 1R93-5, Department of Computer

59

DECnet Open Networking

Science (Tucson, AZ: University of Arizona,
March 1993).

4. G. Chesson, "XTP/PE Overview; Proceeaings
of the 13th Conference on Local Computer
Networks, Minneapolis, MN (October 1988).

5. FDDI Meaia Access Control, American
National Standard, ANSI X3.139-1987.

6. FDDI Physical Layer Protocol, American
National Standard, ANSI X3.148-1988.

7.]. Postel, "User Datagram Protocol; RFC 768,
SRI Network Information Center, Menlo Park,
CA (August 1980).

8.]. Postel, "Internet Protocol," RFC 791, SRI
Network Information Center, Menlo Park, CA
(September 1981).

9.]. Postel, "Transmission Control Protocol,"
RFC 793, SRI Network Information Center,
Menlo Park, CA (September 1981).

10. V Jacobson, R. Braden, and D. Borman, "TCP
Extensions for High Performance; RFC 1323,
Internet Engineering Task Force (February
1991).

11. K. Ramakrishnan, "Performance Considera­
tions in Designing Network Interfaces," IEEE
Journal on Selectea Areas in Communica­
tions, Special Issue on High Speea Computer/
Network Interfaces, vol. 11, no. 2 (February
1993).

12. S. Leffler, M. McKusick, M. Karels, and]. Quar­
terman, The Design ana Implementation of
the 4.3 BSD UNIX Operating System (Reading,
MA: Addison-Wesley Publishing Company,
May 1989).

13. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

14. D. Dobberpuhl et al., "A 200-MHZ 64-bit Dual­
issue CMOS Microprocessor," Digital Techni­
cal Journal, vol. 4, no. 4 (Special Issue 1992):
35-50.

15. T. Dutton, D. Eiref, H. Kurth, J. Reisert, and
R. Stewart, "The Design of the DEC 3000 AXP
Systems, Two High-performance Work­
stations," Digital Technical Journal, vol. 4,
no. 4 (Special Issue 1992): 66-81.

60

16. R. Braden, "Requirements For Internet
Hosts-Communication Layers," RFC 1122,
Internet Engineering Task Force (October
1989).

17. R. Braden, "Requirements For Internet
Hosts-Application and Support; RFC 1123,
Internet Engineering Task Force (October
1989).

18. D. Katz, "Transmission ofIP and ARP over FDDI
Networks," RFC 1390, Internet Engineering
Task Force (January 1993).

19. V Jacobson, "Congestion Avoidance and
Control," Proceeaings of the Symposium on
Communications Architectures ana Proto­
cols, ACM SIGCOMM 1988, ACM Computer
Communications Review, vol. 18, no. 4
(August 1988).

20. R. Grow, "A Timed Token Protocol for Local
Area Networks," Presented at Electro/82,
Token Access Protocols, Paper 17/3, May 1982.

21. R. Jain, "Performance Analysis of FDDI Token
Ring Networks: Effect of Parameters and
Guidelines for Setting TI'RT," Proceeaings of
the Symposium on Communications Archi­
tectures and Protocols, ACM SIGCOMM 1990,
ACM Computer Communications Review,
vol. 20, no. 4 (September 1990).

22. M. Wenzel, "CSR Architecture (DMA Architec­
ture)," IEEE P1212 Working Group Part III-A,
Draft 1.3, May 15, 1990.

23. K. Ramakrishnan, "Scheduling Issues for
Interfacing to High Speed Networks," Pro­
ceedings of Globecom '92 IEEE Global
Telecommunications Conference, Session
18.04, Orlando, FL (December 6- 9, 1992).

24. D. Clark, "Window and Acknowledgment
Strategy in TCP," RFC 813, SRI Network Infor­
mation Center, Menlo Park, CA (July 1982).

25. L. Zhang, S. Shenker, and D. D. Clark, "Obser­
vations on the Dynamics of a Congestion Con­
trol Algorithm: The Effects of Two-Way
Traffic," Proceedings of the Symposium on
Communications Architectures and Proto­
cols, ACM SIGCOMM 1991, ACM Computer
Communication Review, vol. 21, no. 4
(September 1991).

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

High-performance TCP/IP and UDP/IP Networking in DEC OSF/ 1 for Alpha AXP

26. V. Jacobson, "Efficient Protocol Implementa­
tion," ACM SIGCOMM 1990 Tutorial on Pro­
tocols for High-Speed Networks, Part B
(September 1990).

27. C. Partridge and S. Pink, "A Faster UDP,"
Swedish Institute of Computer Science Tech­
nical Report (August 1991).

General References

E. Cooper, 0. Menzilcioglu, R. Sansom, and F. Bitz,
"Host Interface Design for ATM LANs," Proceedings
of the 16th Conference on Local Computer Net­
works, Minneapolis, MN (October 1991).

B. Davie, "A Host-Network Interface Architecture
for ATM," Proceedings of the Symposium on Com­
munications Architectures and Protocols, ACM
SIGCOMM 1991, ACM Computer Communication
Review, vol. 21, no. 4 (September 1991).

H. Kanakia and D. Cheriton, "The VMP Network
Adapter Board (NAB): High Performance Network
Communication for Multiprocessors," Proceedings

Digital TecbntcalJournal Vol. 5 No. 1 Wimer 1993

of the Symposium on Communications Architec­
tures and Protocols, ACM SIGCOMM 1988, ACM
Computer Communication Review, vol. 18, no. 4
(August 1988).

M. Nielsen, "TURBOchannel;' Proceedings of 36th
IEEE Computer Society International Conference,
COMPCON 1991, February 1991.

P. Steenkiste, "Analysis of the Nectar Communica­
tion Processor," Proceedings of the IEEE Workshop
on the Architecture and Implementation of
High Performance Communication Subsystems,
Tucson, AZ (February 17-19, 1992).

C. Traw, S. Brendan, and]. M. Smith, "A High-Perfor­
mance Host Interface for ATM Networks," Proceed­
ings of the Symposium on Communications
Architectures and Protocols, ACM SIGCOMM 1991,
ACM Computer Communication Review, vol. 21,
no. 4 (September 1991).

TURBOchannel Developer's Kit, Version 2 (May­
nard, MA: Digital Equipment Corporation, Septem­
ber 1990).

61

Routing Architecture

Radia]. Perlman
Ross W. Callon

I. Michael C. Shand

Digital developed the intennediate system-to-intennediate system (IS-IS) intra­
domain routing infonnation exchange protocol for the DECnet Phase V network
layer architecture. This protocol, which has been adopted vy the International
Organization for Standardization, is based on a link state routing algorithm. The
benefits derived from the Is-IS protocol include a self stabilizing method for reliable
link state packet distribution, a hierarchical network structure to support larger
networks, protocols for efficiently utilizing local area networks, and simultaneous
support for multiple network layer protocols.

The network layer architecture has three basic com­
ponents. The first concerns the transmission of
data packets from one end system (a host) to a
remote end system, regardless of whether or not
these packets are sent by way of routers. The main
features of this component are packet formats and
addressing. Standards for these features are defined
in the connectionless network layer protocol
(CLNP), adopted by the International Organization
for Standardization (ISO), and in the internet proto­
col (IP), the equivalent standard in the transmission
control protocol/internet protocol (TCP/IP) suite.1•2

The second component relates to handshaking
between neighbors (i.e., directly connected sys­
tems) and mapping network layer addresses to data
link layer addresses. The ISO protocol that performs
this function is the end system-to-intermediate
system (ES-IS) protocol.3 The address resolution and
internet control message protocols provide most of
the same functionality in the TCP/IP protocol
suite.4,5

The third component of the network layer archi­
tecture pertains to routing. The routing protocol
developed for Digital's DECnet Phase V network
architecture and adopted by the ISO is the interme­
diate system-to-intermediate system (IS-IS) intra­
domain routing information exchange protocol.6

The architecture for DECnet Phase V allows sup­
port of many network layer protocols, i.e., CINP, IP,
Novell Net Ware, and AppleTalk. 7 Each network
layer suite has its own protocols for the first two
components of the network layer architecture.
DECnet Phase V support for a particular network
layer suite implies support for such protocols.
Consequently, end systems that implement an exist­
ing network layer protocol need not be modified to

62

operate with DECnet Phase V routers (i.e., interme­
diate systems). This paper briefly discusses data
packet formats, types of routing control packets,
and neighbor handshaking protocols and then
focuses on the third component of the network
layer architecture, concentrating on the IS-IS rout­
ing protocol.

Support for any network protocol suite can be
added easily to the IS-IS routing protocol. DECnet
Phase V routing products currently support the
DECnet Phase IV, CLNP/DECnet Phase V, and the IP
protocols. Support for the Novell NetWare, XNS,
and AppleTalk protocols is under investigation.

Data Packet Formats
A network layer data packet carries data, usually
generated by higher-layer protocols, between host
systems. The purpose of the network routing layer
is to correctly deliver data packets to their destina­
tions. To accomplish this task, additional pieces of
information are required; these are carried in the
header of the data packet. The most important
function of the header is addressing. Each data
packet must uniquely identify the source and desti­
nation addresses for the packet. Other important
functions include: checksumming, to ensure that
transmission errors are detected; fragmentation
and reassembly, to allow the transmission of large
packets over links that can support only smaller
packets; error reporting, to notify someone should
an error occur; security, to identify special security
requirements of packets; quality of service mainte­
nance, to ensure that the correct level of service is
provided; and congestion notification, to notify the
source and destination should congestion occur
along the path of a data packet .

Vol. 5 No. I Winter 1993 Digital Technical Journal

The DECnet Phase IV architecture uses a propri­
etary packet format for data exchange. The DECnet
Phase V architecture continues to support this for­
mat to allow compatibility with existing Phase IV
systems. However, DECnet Phase V uses the ISO
CLNP standard for communication between DECnet
and open systems interconnection (OSI) systems.
Use of this standard protocol also permits DECnet
Phase V systems to communicate with other ven­
dors' end systems that implement the ISO standard.
In addition, communication using IP is possible
with systems that implement the TCP/IP suite.

DECnet Phase IV employs a 16-bit network layer
addressing scheme. When using the CLNP, the
addresses, known as network service access point
(NSAP) addresses, vary in length up to 20 octets.
Defining a common mapping procedure allows a
DECnet Phase IV address to be expressed as an
equivalent ISO NSAP address. Similarly, an ISO NSAP
address thus derived, and therefore Phase IV com­
patible, may be converted back to the original
Phase IV address. Converting the source and desti­
nation addresses and the packet formats enables
any DECnet Phase IV packet to be translated into a
CLNP packet and back again. Therefore, two DECnet
Phase IV systems can communicate over a portion
of a network that supports only the CLNP. Similarly,
two DECnet/OSI (or even pure OSI) systems can
communicate over a portion of the network that
supports DECnet Phase IV, provided that the
addresses chosen are Phase IV compatible.

Overview of Routing Control Packets
The IS-IS protocol uses three basic types of packets:

1. Hello Packet. The protocol uses Hello packets to
keep track of neighbors. Routers determine the
identity of neighbors and periodically check the
status of the link to that neighbor by exchanging
Hello packets.

2. Link State Packet. Link State Packets (LSPs) list,
for each neighbor of the node issuing the LSP, the
ID of that neighbor and the cost of the link to it.
This list includes both router neighbors and end­
system neighbors. The cost of the link is assigned
by the network manager to reflect the desirabil­
ity of using that link. A number of factors deter­
mine the cost, including throughput capacity
and the monetary cost associated with using the
link.

3. Sequence Number Packet. Sequence Number
Packets (SNPs) are used to ensure that neighbor-

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Routing Architecture

ing routers have the same notion of what is the
most recent LSP from every other router. There
are two types of SNPs: the Complete Sequence
Number Packet (CSNP) and the Partial Sequence
Number Packet (PSNP).

The CSNP lists all LSPs present in the issuing
router's LSP database, together with their
sequence numbers, and is used to synchronize
LSP databases. The CSNP is transmitted upon link
start-up on point-to-point links and periodically
on a local area network (LAN). This use of the
CSNP to ensure LSP database consistency of all
routers on the LAN is described in more detail in
the section Efficient Use of LANs.

The PSNP lists only a few LSPs and is used to
explicitly acknowledge or request one or more
LSPs.

Neighbor Handshaking Protocols
The architecture for DECnet Phase V uses the ES-IS
protocol to enable routers and end systems on a
LAN to learn about each other's presence. Every end
system periodically multicasts an End System Hello
protocol data unit (PDU) to the multicast address
"All Intermediate Systems." This POU contains the
end system's NSAP address and permits the receiv­
ing routers to create an entry that maps the NSAP
address to the corresponding data link address
from which the POU was received. The routers use
this information to deliver data PDUs to the end sys­
tems and also to communicate the existence of the
end systems to other routers by means of the rout­
ing protocols.

In a similar manner, all routers periodically
multicast an Intermediate System Hello to the multi­
cast address "All End Systems." This data permits the
end systems to determine the data link addresses
of all routers on the LAN. In the absence of other
information, an end system will transmit any data
PDUs destined for another system to one of the
routers it has discovered. However, the router to
which the data PDU is sent may not be the best path.
Indeed, direct transmission of the data POU to the
destination system may be possible, if the source
and destination systems are on the same LAN. In
such cases, the router concerned sends a Redirect
PDU back to the source end system. The Redirect
contains the data link address to use for this NSAP
address, which the end system can then use for sub­
sequent transmissions.

The ES-IS protocol replaces the proprietary
DEcnet Phase IV initialization protocol for use

63

DECnet Open Networking

between the DECnet and OSI systems. However,
operation of the DECnet Phase IV protocol is still
necessary to enable handshaking between DECnet
Phase IV and DECnet Phase V systems. To avoid con­
fusion, the Phase IV initialization messages trans­
mitted by Phase V systems have a version number
that is acceptable to only Phase IV systems. Such
messages are ignored by other Phase V systems.

Routing Protocols, with Emphasis on
the IS-IS Protocol
Routing protocols are used to calculate the path,
i.e ., the route, that a data packet will take through a
network. Typically, a routing protocol dynamically
adjusts to network problems, such as failed links or
routers, to ensure that the network continues to
operate in a robust manner. Use of dynamic routing
protocols also eases installation and configuration,
because routes are calculated by means of the algo­
rithm, not the user.

The two main types of dynamic routing proto­
cols are distance vector and link state. Many rout­
ing protocols are based on distance vector routing,
for example, DECnet Phase III, DECnet Phase IV, and
the routing information protocol (RIP).8 In a dis­
tance vector protocol, each router is responsible
for keeping track of and informing its neighbors
about its distance (i.e ., total cost) to each destina­
tion. The router computes its distance to each des­
tination based on its neighbors' distances to each
destination. The only information a router has to
know a priori is its own ID and the cost of its links
to each neighbor.

Consider the distance vector routing example
shown in Figure 1. Suppose a router R with five
ports is configured with costs c1, c2 , c3 , c4 , and c5 for
each of the ports, respectively. Further suppose
that the neighbor on port 1 informs R that it is d 1

from some destination D, the neighbor on port 2
informs R that it is d2 from D, and so forth. R can
then figure out its own distance to destination D.
If the destination is R itself, then R's distance to Dis
0. Otherwise, R's distance to D is the minimum
value of c, + d,, for i = 1 through 5. If R receives a
packet addressed to destination D, R should for­
ward the packet through the port with minimum
total cost to D.

Because of their slower convergence rate, dis­
tance vector protocols generally provide lower per­
formance than link state protocols. Distance vector
protocols adapt to changes in topology less quickly
than link state protocols, and until the protocol

64

TO
DESTINATION D

TO
DESTINATION D

TO
DESTINATION D

Figure 1 Distance Vector Routing

adapts to such a change, routing can be disrupted.
The main reason for this convergence problem
stems from incorrect information. When changes
such as link failures occur in the network, the infor­
mation that each node transmits to its neighbors is
only that node's current impression of the distance
to each destination, which may be incorrect infor­
mation. Consequently, the distance vector algo­
rithm may take several iterations to converge to the
correct routes.

The first deployed link state routing protocol
was developed by Bolt Beranek and Newman (BBN)
for the Advanced Research Projects Agency
Network (ARPANFI).9,10 In link state routing, each
router determines its local status and then con­
structs an LSP, defined earlier in the section
Overview of Routing Control Packets. This LSP is
transmitted (or "flooded") to all the other routers,
which are responsible for storing the most recently
generated LSP from each router. 11 (If the large size of
the network makes it impractical for the LSP
database to contain information for every other
router, the network can be made hierarchical, as
described in the Hierarchy section.) All routers (or
all routers in an area, when hierarchical routing is
used) then compute routes based on a complete
topology. Figure 2 illustrates an example of link
state routing, with a router R determining the state
of its neighbors and then broadcasting this informa­
tion by means of Hello Neighbor messages.

Link state algorithms respond rapidly and consis­
tently to changes in networks, as compared with
distance vector algorithms. Once the LSPs have
been distributed, each router can calculate routes

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

LSP FROM ROUTER R

NEIGHBOR DISTANCE

PORT1
PORT2
PORT3
PORT4
PORTS

Figure 2 Link State Routing

without further reference to the other routers. The
results are more stable routing and lower consump­
tion of link bandwidth and router CPU. Therefore,
the design of the IS-IS routing algorithm was based
on the original BBN link state routing algorithm,
which used an algorithm known as the shortest
path first (SPF) to calculate the routes. 12

The IS-IS protocol corrected many deficiencies
and added extra functionality.

1. The IS-IS protocol provides a more stable method
for reliably distributing LSPs. The ARPANET
method was an early algorithm that used exces­
sive overhead and was unstable in rare cir­
cumstances. The IS-IS protocol design uses a
self-stabilizing protocol for I.SP distribution that
requires much less bandwidth.

2. The IS-IS protocol can be used in a hierarchical
manner to support larger networks.

3. The ARPANET method assumed all connections
were point-to-point links. Many nodes can be
connected with a LAN. Modeling a LAN as a fully
connected set of nodes attached with point-to­
point links would be extremely inefficient. The
IS-IS routing protocol incorporates protocols for
efficiently utilizing LANs.

4. Given that a router has limited memory, the
network can grow beyond a size that the router
can support. If the router failed simply because
its I.SP database overflowed the available space,
network management could not be used to

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Routing Architecture

reconfigure the router. If the router continued
to operate and based the routing on an incom­
plete database, loops might form and adversely
affect routes that traverse that router. The IS-IS
protocol has mechanisms that enable overloaded
routers to remain reachable for network man­
agement.

5. Certain control packets can get very large. The
IS-IS protocol has mechanisms for ensuring that
fragments of a control packet can be dealt with
independently rather than required to be fully
reassembled first.

6. The IS-IS routing protocol can support many
network layer protocols simultaneously. This
support is known as Integrated IS-IS.13

Hierarchy
As a network grows, several factors may overload
the routing protocol: the I.SP database may become
too large to fit into memory; computing routes may
require too much CPU; the task of keeping the I.SP
databases up-to-date may consume too much band­
width; or the network may be unstable because link
changes are frequent. To deal with these factors,
the IS-IS protocol allows the network to be parti­
tioned into areas. Within an area, the level 1 routers
keep track of all the nodes and links. Level 2 routers
keep track of the location of the areas but are not
concerned with the detail inside the areas. A level 2
router can also act as a level l router in one area.

To use the IS-IS protocol in a hierarchical way, it is
convenient for the network layer addresses to be
topologically hierarchical. Figure 3 illustrates the
structure of an IS-IS address. All nodes in a particu­
lar area have the same value for the area address
field of their address. A level l router looks at the
area address portion of the destination address in a
packet. If this field matches the router's area, the
router assigns the packet a path based on the ID
portion of the address. Otherwise, the router
routes the packet toward a level 2 router, which
directs the packet to the correct area.

The IS-IS protocol treats the last octet of the
address as a selector, which is used only for
demultiplexing multiple network users within the

AREA ADDRESS ID SEL

Figure 3 IS-IS Address Structure

65

DECnet Open Networking

destination system. The selector field can therefore
be ignored with respect to IS-IS routing.

In general, the area address itself is hierarchically
subdivided. This structure is useful for address
administration and for routing between routing
domains, for example, different corporations,
which may be interconnected by means of a public
network. However, from the point of view of IS-IS
operation, the entire area address is a single identi­
fier for the area.

In a network of global dimensions, possibly com­
prising millions of addresses, the ability to use hier­
archical addressing is essential to help provide
some of the topological information. This address­
ing scheme is analogous to the use of country codes
in international telephone numbers, which allows
calls to be routed to other countries without com­
plete knowledge of the internal structure of all the
telephone systems in the world.

Efficient Use of LANs
All routers connected to a LAN are neighbors. If the
routing protocol was simply to consider all pairs of
nodes on the LAN as neighbors, then each router on
the LAN would issue an I.SP listing every node on
the LAN. In addition, the I.SP distribution would be
inefficient if each router had to transmit every I.SP
to all other routers on the LAN and then receive
acknowledgments from all these same routers.

The IS-IS protocol dramatically reduces the
required size of the I.SP database by considering the
LAN as a pseudonode. Each router then claims to
have one link to the pseudonode, rather than a link
to every other router on the LAN. Only the pseudo­
node claims to have links to all the end systems on
the LAN.

This approach requires that an I.SP be transmitted
for the pseudonode itself, and thus some router
on the LAN has to take on the responsibility for
transmitting the packet for the pseudonode. The
router with the numerically highest priority (or,
in the event of a tie, the highest data link address)
is elected the designated router (DR). The DR gives
a name to the LAN by appending an octet to its
own ID.

For example, assume a LAN has 5 routers and 100
end systems, as shown in Figure 4. Let R5 be the
elected DR. R5 might name the LAN R5.17. In that
case, Rl, R2, R3, R4, and R5 each issue an I.SP listing
the neighbor R5.17. R5 will issue a second I.SP, from
source R5.17, listing Rl, R2, R3, R4, R5, and all the
end systems (El through ElOO) as neighbors.

66

Figure 4 Local Area Network

The IS-IS protocol also contains special features
to allow efficient distribution of LSPs on the LAN.
IS-IS does not require explicit acknowledgments to
LSPs on the LAN. Instead, a router that has an I.SP to
forward to the LAN simply multicasts the I.SP to the
other routers. A router that receives an I.SP on the
LAN will not multicast the same I.SP on the LAN.
Theoretically, if no packets get lost, only a single
router would issue an I.SP on the LAN.

However, packets do get lost, so the detection of
lost LSPs is important. IS-IS detects lost LSPs by hav­
ing the DR periodically broadcast a summary of the
I.SP database in a CSNP. Based on the CSNP, a receiv­
ing router can determine whether it has missed an
I.SP (in which case it will explicitly request the I.SP
from the DR), or it has a more recent I.SP than the DR
has (in which case the receiving router will multi­
cast the I.SP on the LAN to the other routers).

Da,tabase Overload
An implementation of a router typically has a finite
amount of storage for the I.SP database. Therefore,
the router could receive an I.SP and not be able to
store it. The space may be inadequate for two rea­
sons. First, the network may experience a static
overload, i.e., the network may have become so
large that the router cannot store the I.SP database.
Second, an ordering of events can temporarily
make the I.SP database larger than necessary, caus­
ing a temporary overload. For example, the DR on a
large LAN may fail. The DR's previous pseudonode
I.SP is still in the other routers' databases. The new
DR on the LAN will give the LAN a new ID and
attempt to purge the previous pseudonode I.SP.
However, until the purge is complete, other routers
will have to temporarily store twice as much infor­
mation about that LAN.

Without considering this storage problem, a
router implementation might employ any of the fol­
lowing strategies: the router might fail and recover
only with operator intervention; the router might
fail and reboot; or the router might ignore the

Vol. 5 No. 1 Winter 1993 Digital Technical Jo"r,1al

temporary overload and perform routing in the
best way possible.

Each of these possible strategies is undesirable. If
a router fails and needs human intervention to
recover, routing will be disrupted longer than neces­
sary if the problem is only temporary. Crashing and
automatically rebooting is desirable if the overload
is very short-lived (so the overload condition is cor­
rected before the router has rebooted). Otherwise,
this strategy can cause long-term instability, since
after rebooting, the router starts to exchange rout­
ing information with neighbors, only to eventually
overload and fail again. Routing based on an incom­
plete LSP database can be dangerous and can cause
widespread misrouting and/or routing loops.

IS-IS solves the storage problem by requiring a
router that cannot store its LSP database to set an
overload flag in its own LSP. Other routers then
treat that router as an end system and route to that
router but not through that router. Thus, the over­
loaded router is available through network manage­
ment. If the router has not needed to refuse an LSP
from a neighbor for a period of a minute (or as con­
figured by network management), the router will
clear the flag in its LSP. Thus, if the problem is tem­
porary, the network will recover without human
intervention. An important feature of this solution
is that changing the flag does not change the size of
the LSP database and hence does not lead to oscilla­
tion of the overloaded condition.

Limiting the Size of
Routing Control Packets
Some IS-IS packets (specifically, LSPs and CSNPs)
may become too large to be transmitted as single
packets. Consequently, the packets may split into
several packets for transmission.

An LSP can become very large if a router has many
neighbors. However, this situation is rarely an issue,
except for the pseudonode LSP for a LAN. The IS-IS
protocol avoids such large LSPs, which would need
to be fragmented for transmission across each link
and then reassembled at each router. The protocol
has the LSP source break the LSP into individual frag­
ments, each with its own unique ID and sequence
number. The ID of the LSP is no longer simply the ID
of the router issuing the LSP but has an additional
octet appended to the router's (or pseudonode's) ID
indicating the fragment number. Each fragment is
independently flooded to the other routers. Only in
the route computation is any connection made
between the fragments of a router's LSP.

Digital Technical Jour11al Vol. 5 No. I Winter 1993

Routing Architecture

A CSNP can become large as well, since it
includes the range of source addresses of LSPs to
which it refers. If the range indicates x through y,
then all LSPs with source IDs between x and y will
be included and only those LSPs. Absence of an LSP
that lies within the range implies that the issuing
router has no knowledge of that LSP. Therefore, the
IS-IS protocol can take action based on a CSNP frag­
ment without waiting for all fragments. If a CSNP
fragment is lost, then a lost LSP in that fragment's
source address range might not be detected until
the next time a CSNP fragment listing the ID of the
lost LSP is transmitted.

Support of Multiple Protocols
with IS-IS
Extending the IS-IS protocol to support multiple
protocol suites is relatively straightforward. The
OSI version of the IS-IS protocol supports routing
for OSI CLNP, which also implies support for DECnet
Phase V (since Phase V user data packets are identi­
cal to CLNP packets at the network layer). DECnet
Phase V routing extends IS-IS to allow support for
DECnet Phase V and for Phase IV-Phase V inter­
operability. Also, Digital worked on the Internet
Engineering Task Force (IETF) to define the exten­
sion to IS-IS for support of IP .13

To understand how the OSI IS-IS protocol can be
extended to support multiple protocol suites, con­
sider what the IS-IS protocol provides. For example,
consider a level 1 router within an area. The IS-IS
routing protocol allows this router to know the
identity and up/down status of the other routers
and links in the area and which routers in the area
are level 2 routers. IS-IS calculates routes to all other
routers in the area. IS-IS also provides a number of
important background functions, such as allowing
information to be reliably broadcast between the
routers in the area and allowing up/down status to
be periodically checked. In addition, IS-IS allows
each router to know which OSI addresses are reach­
able by means of each other router. (At level 1, the
router would list the NSAPs of all its end-system
neighbors; at level 2, the router would list all the
areas and address prefixes it can reach.) IS-IS there­
fore already has most of the information needed to
calculate routes for additional routing protocols.

To add routing support for another protocol
suite such as IP, the IS-IS protocol is updated to
announce the addresses that are reachable by
means of that protocol suite. For example, to add IP
support to IS-IS, a new field is defined in the LSPs to

67

DECnet Open Networking

announce IP addresses, expressed in ordered pairs
of the form (IP address, subnet mask). This allows
IP addresses and OSI (i.e., DECnet Phase V)
addresses to be assigned independently, while
still allowing most of the overhead functions
required by a routing protocol, such as checking
link status and propagating the information, to be
performed only once for all supported protocol
suites.

If all routers support a particular protocol, the
data packets for that protocol can be transmitted in
native mode, i.e., no additional header is required.
If some routers do not support a particular proto­
col, then the packet must be encapsulated in a net­
work layer header for a network layer protocol that
all the IS-IS routers do support. In DECnet Phase V,
all the routers support both IP and CLNP, so these
two protocols are transmitted in native mode.
However, if support for another protocol is added,
for instance AppleTalk support, then the routers
that have AppleTalk neighbors need to be able to
parse AppleTalk packets. However, other routers
will not need to be modified. To facilitate knowing
when to encapsulate, IS-IS routers announce which
protocols they support in their IS-IS packets. Also,
routers that support the AppleTalk protocol and
have AppleTalk neighbors list in their LSPs that they
can reach certain AppleTalk destinations.

The IS-IS packets are encoded such that a router
can ignore information pertaining to protocol
suites that the router does not support but can cor­
rectly interpret the rest of the IS-IS packet. Assume
that RI and R2 are the only two routers in an area
that support the AppleTalk protocol. RI and R2
therefore announce in their LSPs which AppleTalk
destinations they can reach. RI and R2 use a format
for including AppleTalk information in IS-IS LSPs
that other routers in the same area can forward but
will otherwise ignore. Assume R2 receives an
AppleTalk packet for forwarding with destination
D3, reachable through RI. Then R2 encapsulates
the packet as data inside a CLNP (or IP) packet with
destination RI. When RI receives the packet, it
removes the CLNP header and forwards the packet
to D3. If RI and R2 are adjacent, or if all the routers
along the path from R2 to RI support the AppleTalk
protocol, then encapsulation of AppleTalk packets
inside CLNP packets would not be necessary. Thus,
encapsulation occurs automatically only when
needed for transmission through routers that do
not support the protocol of the data packet to be
forwarded.

68

Using one integrated routing protocol to route
packets from multiple protocol suites has signifi­
cant advantages over using a separate routing pro­
tocol for each suite. Probably the most important
advantage is that only one routing protocol needs
to be managed and configured. A single coordi­
nated routing protocol can respond to network
problems, such as link failures, in an efficient man­
ner, improves bandwidth utilization, and minimizes
the CPU and memory requirements in routers. Also,
integrated routing allows automatic encapsulation
and eliminates the need for manual configuration
of where and when to encapsulate.

Summary
IS-IS is a powerful and robust routing protocol.
Many aspects are innovative and have been copied
by other routing protocols. When looked at as a
whole, the algorithms may appear complex, but
when examined individually, the designated router
election, the LSP propagation, and the LSP database
overload procedure, for example, are all quite sim­
ple. IS-IS provides efficient routing for a variety of
protocol suites, currently including DECnet Phase
IV, CLNP/DECnet Phase v, and IP.

References

1. Information Processing Systems, Data Com­
munications: Protocol for Providing the
Connectionless-Mode Network Service, ISO
8473 (Geneva: International Organization for
Standardization, 1988).

2. J. Postel, "Internet Protocol," Internet Engi­
neering Task Force RFC 791 (September 1981).

3. Information Processing Systems, Telecom­
munications and Information Exchange
between Systems: End System to Intermedi­
ate System Routeing Exchange Protocol for
Use in Conjunction with the Protocol for
Providing the Connectionless-Mode Network
Service (ISO 8473), ISO 9542 (Geneva: Inter­
national Organization for Standardization,
1988).

4. D. Plummer, "Ethernet Address Resolution
Protocol;' Internet Engineering Task Force
RFC 826 (November 1982).

5. J. Postel, "Internet Control Message Protocol,"
Internet Engineering Task Force RFC 792
(September 1981).

Vol. 5 No. I Winter 1993 D ig ita l Technical Jo u.r nal

6. Information Technology, Telecommunica­
tions and Information Exchange between
Systems: Intermediate System to Intermedi­
ate System Intra-Domain Routeing Exchange
Protocol for Use in Conjunction with the
Protocol for Providing the Connectionless­
Mode Network Service (ISO 8473), ISO/IEC

10589 (Geneva: International Organization
for Standardization/International Electrotech­
nical Commission, 1992).

7. G. Sidhu, R. Andrews, and A. Oppenheimer,
Inside AppleTalk, Second Edition (Reading,
MA: Addison-Wesley, 1990).

8. C. Hedrick, "Routing Information Protocol,"
Internet Engineering Task Force RFC 1058
Oune 1988).

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Routing Architecture

9.]. McQuillan, I. Richer, and E. Rosen,
"ARPANET Routing Algorithm Improvements,
First Semiannual Technical Report," BBN

Report 3803 (April 1978).

10. E. Rosen et al., "ARPANET Routing Algorithm
Improvements, Volume l," BBN Report 4473
(August 1980).

11. R. Perlman, Interconnections: Bridges and
Routers (Reading, MA: Addison-Wesley, 1992).

12. E. Dijkstra, "A Note on Two Problems in Con­
nection with Graphs," Numerical Mathemat­
ics, vol. 1 (1959): 269-271.

13. R. Callon, "Use of OSI IS-IS for Routing in TCP/IP

and Dual Environments," Internet Engineer­
ing Task Force RFC 1195 (December 1990).

69

Graham R. Cobb
Elliot C. Gerberg

Digital's Multiprotocol
Routing Software Design

The implementation of Digital's multiprotocol routing strategy required address­
ing various technical design issues, principally the stability of the distributed rout­
ing algorithms, network management, performance, and interactions between
routing and bridging. Developers of Digital's DEC WANrouter and DECNIS products
enhanced real-time kernel software, implemented performance-centered protocol
software, and used high-coverage, high-quality testing and simulation methods to
solve problems related to these issues. In particular, a packet management strategy
ensured that queuing requirements were met to guarantee the stability of the rout­
ing algorithms. Also, network management costs were minimized lJy down-line
loading software, using a menu-driven configuration program, and careful moni­
toring. Router performance was optimized lJy maximizing the packet forwarding
rate while minimizing the transit delay.

Digital's implementation of multiprotocol routing
software enables internetworking across complex
topologies including local and wide area networks
(LANs and WANs) and dial-up networks. Evolving
from Digital's successful tradition in DECnet Phase
IV networks, the implementation of multiprotocol
routing currently supports numerous protocol and
packet types including

• DECnet Phase IV

• Transmission control protocol/internet proto­
col (TCP/IP)

• Novell NetWare internetwork packet exchange
(IPX) protocol

• AppleTalk protocol suite

• OSI CLNS, the open systems interconnection
protocol for providing the connectionless-mode
network service

• X.25, the packet switching standard specified
by the Comite Consultatif Internationale de
Telegraphique et Telephonique (CCITT)

Additional extensions for Digital's DECnet Phase V
and ADVANTAGE-NE1WORKS architecture require­
ments are also supported by Digital's multiprotocol
routers. 1,2 Many of these routers incorporate bridg­
ing technology, thus providing integrated bridging

70

routers. This paper describes the most significant
technical problems encountered and the solutions
implemented when many internetworking opera­
tions are integrated into Digital's multiprotocol
router system designs.

Digital's Router Product Overview
Digital's multiprotocol router products comprise
two types: (1) access routers, which allow access to
WAN services from branch offices for large LAN and
WAN integration networks, and (2) backbone
routers, which provide high-speed packet switch­
ing services for the network backbone of multiple
types of high-speed media. Backbone sites offer a
backbone network that often consolidates high­
speed WAN lines, e.g., Tl, T3, and SMDS. For high­
speed local sites, backbone routers provide
high-speed switching for many LAN ports and
types, i.e., Ethernet, fiber distributed data interface
(FDDI), and token ring. This section briefly dis­
cusses some of Digital's access routers-the DEC
WANrouter 500, DEC WANrouter 250, and DEC
WANrouter 90 products-and backbone routers­
the DECNIS 500 and DECNIS 600 products.

The DEC WAN router 500 is one of Digital 's access
routers and has been available in the marketplace
since 1986. Originally a DECnet Phase IV-only
router, this router has been upgraded and now

Vol. 5 No. I Winter 1993 Digital Technical journal

offers multiprotocol routing that includes DECnet
Phase IV, TCP/IP, and OSI. Additional support exists
in this access router for common WAN services such
as X.25 and frame relay. The DEC WANrouter 500 is a
fixed-port configuration router offering one Tl
WAN port and one Ethernet LAN port. This configu­
ration permits branch office LANs to interconnect
to backbone routers over relatively high-speed Tl
lines. The DEC WANrouter 500 has an important
place in router industry history as it was the first
router ever to support the integrated intermediate
system-to-intermediate system (Integrated IS-IS)
routing algorithm.3

The DEC WANrouter 250, another of Digital's
access routers, is significant due to its high density
of WAN ports and its support for asynchronous WAN
data link protocols. These two major features com­
bine with the multiprotocol routing software to
provide a router for the newly emerging computer
networking needs of mobile computers. The increas­
ing use of personal computers, including mobile
laptop computers, has led to the development of
new techniques for networking such remote com­
puters. The DEC WANrouter 250 provides eight WAN
ports with dial-in access for the internetworking of
such remote and mobile computers.

The introduction of LAN hub technology has pro­
duced a need for new small router products for
these platforms. Digital's DEChub 90 Ethernet back­
plane product set includes the DEC WANrouter 90
access router shown in Figure 1. One feature of
the DEChub 90 technology is that this router can
be configured to reside within the hub itself or
as a standalone module. In addition, this router
is completely self-contained and extremely small
(i.e., similar in size to a VHS videocassette). Many
WAN access services, such as X.25 network access,

Figure 1 DEC WANrouter 90 Access Router

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

are provided for the DEChub 90 with the DEC
WANrouter 90 router.

The DECNIS 500 and DECNIS 600 (see Figure 2)
bridging and routing products are Digital's highest
performing and most flexible platforms. These
backbone routing systems offer the power and
interfaces necessary to meet the bridging and rout­
ing requirements of complex, high-speed net­
works, e.g., Ethernet, FDDI, Tl/El, and T3/SMDS.4

Router Software Development Methods
Software development for routing systems requires
real-time kernel software, performance-centered
protocol software development implementation,
and high-coverage, high-quality testing and simula­
tion methods. This section briefly describes some
key techniques used in these development areas
for the DEC WANrouter and DECNIS engineering
programs.

Kernel Software
Digital has developed and refined different kernels
with common interfaces to address the real-time
software design environments required for their
routers. A common router interface model has

Figure 2 DECNIS 600 Backbone Router

71

DECnet Open Networking

permitted different kernels to be turned to specific
platforms as required. In some cases, a common
portable kernel was developed that permitted quick
retargeting of the total router software in support
of short time-to-market development needs.

Software Implementation
The following techniques were used in the devel­
opment of the DEC WANrouter and DECNIS router
software:

1. Implementing software directly from proprietary
or standards-based architecture specifications

2. Licensing software from suppliers, e.g., external
corporate software providers and government­
funded university software projects

3. Importation of software from other implementa­
tions, i.e., host sources such as the ULTRIX, Open
Software Foundation (OSF), and OpenVMS systems

Digital has developed special-purpose, high-
performance implementations of the Integrated
IS-IS routing protocol. In addition, specific software
kernels provide control and extensions for the spe­
cial features required. Engineers enhanced the real­
time software kernels with software interfaces
commonly found in public domain software (e.g.,
the Berkeley Software Development [BSD] UNIX
socket model and system services). The inclusion
of such interfaces has accelerated the addition of
new software from external sources.

Common router software has been developed for
use across Digital's many internetworking plat­
forms. The majority of this routing software, which
is independent of the underlying hardware, has
been developed to support the evolving standards
of portability. For each platform, the performance­
intensive and hardware-specific code have been
customized to maximize the design center for each
instance of a router product architecture.

Router Software Design Issues
Many technical problems had to be resolved when
building Digital's multiprotocol routers. The fol­
lowing sections describe the most significant issues
and how they were addressed in the DECNIS 600
backbone router, as an example of router software
design. These issues were

1. Stability of the distributed routing algorithms

2. Network management

72

3. Performance

4. Interactions between routing and bridging

Memory size and usage and congestion control
are also key issues. However, this paper does does
not describe them in depth. Briefly, the amount of
memory available is a major constraint on any router
implementer. Usually, memory is largely consumed
by code and by the databases the router must main­
tain to calculate the best route. In the case of routers
that also perform connection-oriented functions
(e.g., X.25 gateways and terminal servers), signifi­
cant amounts of memory may be taken up by the
per-connection state and counter information.

Since it is essential for routers in the network to
agree on the best route to a destination, all such
routers must be able to handle the route database
for that network. Digital's router designs have an
automatic shutdown mechanism that takes effect
should a router run out of memory in which to
store routing information. This mechanism pre­
vents routing loops.

To control OSI congestion, the router must deter­
mine whether or not a packet experienced conges­
tion by calculating the average transmission queue
length over time. This calculation must be per­
formed in an efficient real-time manner. Thus, for
the DEC WANrouter and DECNIS products, Digital
designed and implemented algorithms specific to
the particular queue structures and hardware
design.

Stability of the Distributed
Routing AJ,gorithms
Distributed routing algorithm stability was the
most important issue considered in the design of
Digital's router systems. A system design must guar­
antee successful results in support of routing con­
trol protocols even when the router is operating
under a high load:

Whatever protocol is used, dynamic routing
requires that all nodes that make decisions on how
to forward data should agree on the correct path.
Otherwise, data packets will be discarded (e.g., if
sent to a node that does not know how to reach the
destination) or may loop (e.g., if two routers each
believe the other is the correct next node on the
path to the ultimate destination, then the packet
will loop between the two routers).

If network configurations never changed, and
lines and routers never got overloaded, then
guaranteeing successful results would be easy.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

Unfortunately, actual networks are complex. In
practice, for each protocol, the correct path agree­
ment is reached using an algorithm distributed
between multiple independent routers and operat­
ing on ever-changing data.

The distributed algorithm must converge rapidly
so that when network conditions change, the new
route is agreed upon quickly. However, the algo­
rithm must also be stable. When changes occur at
a fast rate or when the algorithm is trying to com­
plete or has just completed, the algorithm must still
converge to a consistent state between all the
routers involved. In this way, the network remains
useful. In addition, while the network is changing,
a router or a line may suddenly be presented with
an excessive load of packets to forward (e.g.,
because a routing loop occurred transiently). This
situation must not be allowed to disturb the stabil­
ity of the routing algorithm.

The stability of a well-designed routing algo­
rithm is directly related to how well the algorithm
meets the following main requirements:

• Line speed. The effective speed of lines between
routers (allowing for error correction by the
data link protocol or the modem) must be high
enough to allow the routers to rapidly exchange
routing control information. The maximum
bandwidth required for routing control traffic
can be calculated from the size of the network.5
In a network of 4,000 end nodes, 100 level 1
routers, and 400 level 2 routers, approximately
one Link State Packet (LSP) will be received
every second. This LSP may contain 1,500 bytes,
which would use a line bandwidth of 12,000 bits
per second. This aspect of stability is under the
control of the network designer; line speeds and
network size must be continuously monitored
and related.

• Processing power. The router CPU must be fast
enough to forward routing updates to neighbor­
ing routers with minimum delay and must be
able to recalculate the forwarding database
quickly. Of course, this requirement relates only
to that portion of the CPU time available for rout­
ing functions. A router that is also doing another
job (e.g., acting as a file server) will have less CPU
power available, unless routing is given priority
over the other functions. Consequently, most
networks now use dedicated routers instead of
attempting to have routing tasks share the CPU
with other functions.

Digital TecbntcalJournal Vol. 5 No. I Winter 1993

Digital's Multiprotocol Routing Software Design

• Queuing. The most important stability factor is
to make sure that the systems are self-stabilizing.
As the problem gets worse, progress to the solu­
tion should not become slower. For example, as
the network configuration changes more
rapidly, the calculation of the best route must
not get slower. To meet this requirement, the
routers must be careful about queuing data and
routing control messages internally so that
excessive or unusual data forwarding loads do
not affect the processing of routing control mes­
sages. Otherwise, when a network problem
overloads a router, the routing algorithm may
never converge to fix the problem.

Figure 3 illustrates a case where an incorrectly
designed router (one that gives priority to data
forwarding over routing control message recep­
tion and processing) could cause a permanent
routing loop and thus isolate a portion of
the network. In this example, node A is send­
ing a large amount of data to node F over
the high-speed Tl line. The lower-speed
(64 kilobit-per-second [kb/s]) line is available
as a backup line. Because the backup line runs
at only 64 kb/s, node C need only be a low­
power router. For example, a router rated at
128 packets per second would be sufficient
because a fully saturated full-duplex 64-kb/s
line with 128-byte packets handles 128 packets
per second.

NODE F

LAN

FAST SLOW
ROUTER NODED NODE E ROUTER

Tl LINE 64-kb/s LINE

FAST
NODES NODEC

SLOW
ROUTER ROUTER

LAN

NODE A

Figure 3 Network Instability

73

DECnet Open Networking

Consider what happens if the Tl line fails.
Router B notices immediately and begins to for­
ward data to router C. Initially, however, router
C still believes the best route to node F is over
the Tl line and so forwards the data back to
router B. B resends the data to C and so on; a
routing loop has been created. This problem is
common during routing transitions. The loop
will be broken as soon as router C runs the deci­
sion process and updates its routing tables.
However, if router C is incorrectly designed and
gives priority to forwarding data, then the unex­
pectedly large amount of data will "swamp" the
router and prevent it from running the decision
process.

In addition, since router C is only a low-speed
router, it will be forced to discard many data
packets. Eventually, the transport connections
between node A and node F will fail, because
packets are not being delivered (presumably
causing the applications to fail). This situation
will reduce the number of packets being intro­
duced into the loop. However, each packet can
go around the loop many times, thus generating
a high load. In this example, if nodes are set up
such that a packet can travel the loop 64 times (a
common value), then introducing only two
packets into the loop per second will continue
to swamp router C. Any node on the LAN might
be sending those packets to discover when
access to the remote LAN is restored. The effect
is a long-lived routing loop that isolates the
whole LAN, even though there was supposed to
be a backup link available.

• Memory usage. Activities less important than
routing should not consume the memory neces­
sary for routing control processes to carry out
their function. Even in a dedicated router, some
lesser activities will be in progress. For example,
network management and accounting are
important activities, but they are not as critical
as maintaining network stability- without a sta­
ble network, network management and account­
ing will fail. Therefore, other activities should
not starve the routing control processes of mem­
ory. Consequently, traditional memory pools are
not an appropriate way to allocate critical mem­
ory within the router; routing memory usage
must be preallocated.

74

The remainder of this section describes the
impact of the requirements on processing power,
queuing, and memory allocation on the design of
the DEC WANrouter and DECNIS products.

Requirements on Processing Power
The Digital Network Architecture (DNA) routing
architecture requires that routing updates be prop­
agated within 1 second of arriving and that the for­
warding database calculation take no more than
5 seconds.5 The forwarding database calculation is
CPU-intensive, but the time is proportional to the
number of links reported in LSPs. To meet the DNA
requirement, various measurements were made for
each product to determine the number of links the
decision process could handle per second. This
information indicates, for each product, the maxi­
mum number of links allowed in the network. Note
that this number does not directly limit the number
of nodes permitted in the network; a large network
with an efficient connection strategy may have
fewer links than a small network in which every
node is connected directly to every other.

The update process latency requirement means
that the CPU time must be fairly allocated between
the decision process and the update process. If the
update process was required to wait until the deci­
sion process had completed, then the delays on for­
warding LSPs would be too large (i.e., 6 seconds).

We considered three possible solutions.

1. Process priorities. Give the update process a
strictly higher priority than the decision process
so that the database can be updated as required.
The main issues to resolve are synchronizing
access to the shared LSP database and allowing
the decision process to complete, if a faulty
router generates LSPs at an excessive rate.

2. Timeslicing. As in a traditional timesharing
system, allow both processes to run simulta­
neously, thus sharing the CPU. This solution
also requires synchronizing access to the LSP
database.

3. Voluntary preemption. The decision process
periodically checks to see if the update process
is required and, if so, dispatches to it. This check
can occur at time intervals frequent enough to
meet the latency requirements and at times con­
venient to the decision process so that no syn­
chronization problems occur.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

To avoid the synchronization problems, Digital's
DECNIS 600 software developers chose the third
solution for two reasons.

1. Synchronization issues often cause problems
that are serious and difficult to debug in com­
plex systems. By avoiding these issues entirely,
we simplified the software and increased its
reliability.

2. The addition of synchronization mechanisms
for parallel tasks can decrease the performance
of the total system (for example by causing
excessive rescheduling operations). Using vol­
untary preemption allowed a very efficient solu­
tion that still met the architectural requirements.

Requirements on Queuing
Queuing constraints ensure that high loads do not
cause routing control information to be discarded.
Initially, separating the data for forwarding from
routing control messages might appear to be the
logical solution to preserving routing control infor­
mation. However, this solution works only if the
router can process all the routing control messages
without getting behind.

Many practical routers, including the DEC
WANrouter products, do not have a CPU that is
fast enough to guarantee such processing perfor­
mance. Digital's routers can guarantee to meet
the timing requirements on the decision and
update processes (even under worst-case loads),
but if that load is combined with a flood of End­
node Hello messages, Router Hello messages, and
other control traffic, then some of those messages
have to be discarded or queued for later processing.
Since there might be 1,000 or more nodes on the
LAN, the worst situation would be if all these nodes
were to decide to send Hello messages at the same
time.

Careful software design means that the routers
can meet the network stability requirements and
still not lose connectivity to end nodes on the LAN.
For the DEC WANrouter software, Digital designed
and implemented a packet management policy that
differentiates between routing packet types to
meet their respective processing requirements for
network stability. The following list summarizes
the classes of packet types:

• Data

• End-node Hello messages

• Router Hello messages

D igital Technical Journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

• Link State Packets and their acknowledgments,
Sequence Number Packets (SNPs) and Complete
Sequence Number Packets (CSNPs)

The parameters controlling the minimum and
maximum numbers of packets to be used for each
differentiated type are carefully calculated based
on their architected behavior and the network ·
configurations supported by each product. For
example, a router's architected design center for
supporting a given maximum number of adjacent
routers on an attached LAN will affect the policy
selected for managing the Router Hello message
queues and packet buffers. Such mechanisms are
implemented to guarantee that, for network stabil­
ity, forwarding performance, and network conver­
gence, the minimum levels of forward progress per
packet type are met.

This packet management policy uses both buffer
pools and queuing to implement the required poli­
cies. Inbound traffic is placed on queues that are
serviced using variants of round-robin algorithms.
These algorithms give different weightings to each
queue to ensure that progress is made for every
packet type, although at different rates.6 For exam­
ple, for every data packet processed, the router may
process 5 LSPs, 5 End-node Hellos, and 10 Router
Hellos. The actual weightings used are selected
when the software is designed and depend on the
performance characteristics and expected network
configuration of each product.

Some alternatives that were considered are

• Alternative buffer pools. A completely separate
pool can be used for each of the different types
of packets. The disadvantage is that in small con­
figurations or ones that are not _under heavy
stress, the pool of buffers available for forward­
ing is limited unnecessarily.

• Strict priorities. Setting strict priorities for
processing different types of routing control
messages is undesirable, because a flood of one
type of routing control message could cause
another type to be ignored for a long time. In
such a case, it is better to process some of each
type of message than to give one type absolute
priority.

In the DECNIS routers, several queues exist at the
boundaries between the different DECNIS proces­
sors. 4 Digital designed a mechanism for these
queues similar to that described for the DEC
WANrouter products. When the network interface

75

DECnet Open Networking

cards, i.e., linecards, receive a packet destined to be
passed to the management processor card (MPC),

they analyze the packet and tell the MPC whether it
is data, routing control , bridging control, or system
control (which includes linecard responses to com­
mands from the MPC). Thus, queues analogous to
those described for the DEC WANrouters are used at
all the interfaces within the system. For example,
the assistance processor on the MPC recognizes the
different types of messages and queues them on
separate internal queues.

Requirements on Memory Allocation
Routers must have sufficient buffer space to handle
the routing control messages. Consequently, all of
Digital's router products guarantee this memory
allocation. To preserve these buffers, the DECNIS

MPC implements buffer swapping between layers,
as illustrated in Figure 4. The data link layer must
never be starved of buffers; otherwise, packets
regarded as important by routing may be discarded
without ever being received. To ensure that an ade­
quate number of buffers is available to the data link
layer, the MPC gives the data link a certain number
of buffers and maintains that number. Every time a
buffer is passed from the data link layer to the rout­
ing layer, another buffer is swapped back in return.
If routing currently has no free buffers, it selects a
less in1portant packet to discard (freeing up the
buffer containing the packet). In this way, the data
link layer always has buffers available.

In the DECNIS linecard buffers, the arrangements
are similar to those just described, but the details
differ. The linecards and the MPC perform buffer
swapping among themselves. 4

76

ROUTING
MODULE

FULL DATA
BUFFER

ROUTING
BUFFERS

EMPTY
REPLACEMENT
BUFFER

DATA LINK 1._ _ _i DATA LINK
MODULE BUFFERS

DATA i
Figure 4 Buffer Swapping between Routing

Module and Data Link Module

Network Management
Some of the highest costs involved in running a
network are those related to obtaining and main­
taining trained and experienced network managers
and operators. Minimizing these costs requires
routers that can be easily and efficiently managed.
The major network management issues are

• Installation/loading. How are software updates
distributed and installed? How long does the
router take to load after a power failure?

• Configuration. How is the software told about
changes to the lines or the network parameters?
Does the network require a reboot to change
information?

• Monitoring. How does the manager get immedi­
ate reports of problems and unexpected changes,
and long-term reports of traffic patterns and
usage for network planning?

• Control. How can the manager shut down a line
or even a whole router?

• Problem solving. What tools are available to
detect the problem and then to investigate and
correct the problem?

In all networks, though, a remote management
capability is essential. Skilled network manage­
ment staff may not be available at all sites (e.g., a
small branch office). In fact, some sites may have
no staff at all (e.g., a lights-out computing center).

Installation and Loading
All DEC WANrouter and DECNIS products update
their software by down-line loading new software
over the network. In the case of the DECNIS, the
software is stored in nonvolatile memory and so
does not need to be reloaded on each boot.
However, the DEC WANrouter products down-line
load the software each time they are booted.

Digital considered two other alternatives.

• Read-only memory (ROM). This means of distri­
bution has the disadvantage of being expensive
to modify and difficult to replace remotely.

• Floppy disk or other interface on the router. This
mechanism increases cost and reduces reliability.
Loading from a floppy disk may also be slower
than loading over a network. Again, remote
updating may not be p ossible, and physical

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

security issues (e.g., preventing unauthorized
users from supplying uncontrolled router soft­
ware) may be introduced.

For the DECNIS product, Digital chose to use
nonvolatile memory, e .g., flash random-access
memory (RAM), for fast and reliable loading com­
bined with backup down-line load operation when
software updates are required. The down-line load
can be from a DECnet system using the mainte­
nance operations protocol (MOP) or from a TCP/IP
host using the boot protocol (BOOTP) and the triv­
ial file transfer protocol (TFTP).1 The down-line
load provides an easy way to update software when
required; the software can be installed on a load
host using any of the standard software distribution
mechanisms (e.g., CD-ROM, magnetic tape, or the
network).

Configuration
Configuring a router is notoriously difficult.
Therefore, Digital developed a tool to assist the
network manager with configuration. Each of
the DEC WANrouter and DECNIS products comes
with a configuration program. This menu-driven
program leads the network manager through a
series of forms to define the information needed to
configure the router or to modify an existing
configuration. On-line help is available, and steps
may be retraced. Consequently, the network man­
ager has no need to learn the network control
language (NCL).

Digital used formal human factors testing during
the design and development of the configurators to
ensure that these tools were of high quality. Human
interface testing continued through the router's
customer field trials and provided additional feed­
back on our configurators' ease of use.

One thing that Digital did not originally antici­
pate is that users now tend to see the configurators
as the user interface for the product. The configura­
tor is often a customer's main means of interacting
with the router and thus is an essential part of the
product. Once people have used the configurator,
they no longer regard it as an optional feature.

Monitoring
Digital's routers are fully manageable using Phase V
network management. They all respond to
NCL commands and can be managed using the
DECmcc program, Digital's Enterprise Management
Architecture (EMA)-compliant director. Therefore,

Digital Teclmical Journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

DECmcc added-value functional modules are
available for performance analysis and historical
data recording. The DECmcc design enables these
functions to work without changing the router
design.

Many users, however, are now investing in man­
agement stations that use the simple network
management protocol (SNMP). Thus, for monitor­
ing purposes, Digital already implements basic
read-only SNMP management, which is being
enhanced over time to add more information.

Control
Whether managed by the NCL or the DECmcc
director, access is controlled using passwords.
In addition, Digital is focused on offering full
SNMP management for the router products. As well
as providing the standard public management
information, Digital is defining private man­
agement information to allow unique features of
the routers to be controlled. We designed the
internal management interfaces of the routers to
allow us to write modules that are manageable from
both the SNMP and the common management infor­
mation protocol (CMIP), with minimal effort and
duplication.

Problem Solving
One of the most time-consuming, and hence expen­
sive, parts of a network manager's job is problem
solving. Fortunately, many of the tools and tech­
niques used for this task were required for debug­
ging and testing router implementations and thus
already exist.

Building initially on debugging and testing expe­
rience, and later on discussions with users, Digital
has produced problem-solving guides for each DEC
WANrouter and DECNIS product. These guides take
the user through a step-by-step description of how
to isolate and fix a problem. We have conducted
human factors testing on these guides and have
investigated different modes of making this infor­
mation available. The DECNIS guide is currently
available in hard copy and also in an on-line
Bookreader form that allows moving through the
flow to be automated using hot spots. Digital is cur­
rently evaluating Hypertext technology to further
improve the usability. One main tool for problem
solving is the common trace facility (CTF), a soft­
ware tool that causes the router to record and dis­
play packets that are sent and received. Analysis
routines automatically format the packets. Having

77

DECnet Open Networking

the CTF is comparable to having a built-in line or
LAN analyzer. The CTF is the main diagnostic tool
used by Digital's service engineers when investigat­
ing a problem and also by the development engi­
neers when debugging software.

Digital's routers also include diagnostic and
maintenance facilities, which include loopback
testing over all interfaces and low-level, limited,
remote management directly at the data link
layer. The remote management capabilities allow
monitoring of counters from an adjacent node and
also allow an adjacent node to force a reboot if a
suitable password is supplied. This latter operation
is referred to as a MOP boot (previously known as a
MOP trigger in DECnet Phase IV). 1

A MOP boot command may be the final attempt
by a network manager to fix a problem with a
router without having to go physically on site. For
that reason, the command must be recognized and
acted upon regardless of what else may be happen­
ing in the router. In the DECNIS routers, the MOP
boot command is recognized by the linecards. In
the DEC WANrouter, the MOP boot command is spe­
cially actioned by the lower layers of the software
to make sure it is honored even if the higher layers
have failed in some way or if the system is under an
enormous load.

We also support the "TCP/IP ping" utility (more
formally, ICMP Echo) and the similar "OSI ping" util­
ity. These tools are commonly used for diagnosing
reachability problems.

Router Performance
Today's large-scale computer data networks rely on
bridge router components for the networks' total
level of performance and quality of service. As
such, data network designers and network man­
agers must be knowledgeable about their chosen
router platform's performance characteristics. This
section of the paper discusses the performance
aspects of Digital's routers.

Performance Metrics
In support of developing common metrics across
the internetworking router industry, the Internet
Engineering Task Force (IETF) has set up a
Benchmarking Methodology Working Group,
which has dev~loped definitions for router perfor­
mance.7 Three key metrics defined by this group
provide the background for our discussion of
Digital's router software design.

78

• Throughput-the maximum (forwarding) rate
at which none of the offered frames (packets)
are dropped by the device (i.e., packets per
second)

• Frame loss rate-the percent of frames (packets)
that should have been forwarded by the network
device (router) while under a constant load but
which were not forwarded due to lack of
resources (i.e., percent packets lost)

• Latency-for store-and-forward devices (i.e.,
routers), the time interval beginning when the
last bit of the input frame reaches the input port
and ending when the first bit of the output frame
is seen on the output port (i.e., units of time)

In the design of Digital's router software and sys­
tems, a balance has been targeted with maximizing
the packet throughput forwarding rates while
minimizing the packet latency. Some vendors mis­
takenly compare loss-free throughput rates with
forwarding rates that have high loss rates. Such
comparisons must be studied carefully, because
they do not compare route performance measures
of equal impact to the total network. To reiterate,
the throughput forwarding rate occurs only at the
point when the frame loss rate is zero percent.
Digital's routers target throughput designs which,
as much as possible, run at "wire speed" with zero
frame loss rates. Regardless of the throughput value
quoted, router comparison should reference com­
mon packet loss rates because network applica­
tions need to retransmit any packets that are lost by
the routers.

In general, the throughput, loss-free forwarding
rate is the optimum value for discussions of router
forwarding performance. The other critical value is
the stability of the router under heavy overload.
A "receive livelock" condition occurs when the
offered load, i.e., input packets received for subse­
quent forwarding by a given router, reaches the
point where the delivered throughput, i.e., packets
actually forwarded, decreases to zero.8,9 Real-time
systems, such as routers, have the potential to live­
lock under traffic loads above their throughput
peaks. However, it is extremely important that
routing implementations avoid such responses
to post-throughput saturation. In the case of
Digital's routers, in all architectures and products,
the routers do not livelock but remain stable even
when the applied input load to a router exceeds the
peak throughput forwarding packet rate. This key

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

performance measure of router devices remains
an underlying design characteristic of all Digital
DECNIS and DEC WANrouter network devices.

Packet Throughput/Forwarding Rate
Digital's routing platforms offer a range of through­
put measures. For each platform, the throughput is
the most often quoted value used to characterize
the router's aggregate capabilities. In the case of the
DECNIS 600, an aggregate throughput of 80,000
packets per second is offered.10 In smaller routers,
the WAN line interface rates (i.e., 64 kb/s and Tl)
are often the limiting factor for the aggregate
throughput. The software in all cases is optimized
for the given router platforms mix of WAN and LAN
interfaces.

Since the forwarding rate is the most important
performance metric for a router, Digital carefully
optimized the designs of its multiprotocol routers
to allow data forwarding to occur as fast as possible.
On the DEC WANrouter products, we handle all the
forwarding on a central CPU with little hardware
assistance. In the DECNIS products, forwarding and
filtering operations are handled by linecards. A
hardware assist for the performance-critical
forwarding function's address lookup is used on
DECNIS routers in support of requirements for very
high-speed packet switching.4 On each linecard, a
streamlined software kernel has been developed
along with all the required software. The linecard
software kernel and modules were carefully con­
structed to have the minimum number of instruc­
tions and the lowest number of execution cycles
necessary to perform the high-speed forwarding
and filtering operations. On the DECNIS MPC, the
software kernel is also fully capable of the routing
forwarding operations. However, this kernel is
mainly required to provide the software processing
for the remaining non-performance-intensive oper­
ations of the router's software (i.e., the processing
of updates to the router topology database and the
network management commands/received pack­
ets). This partitioning of processing of received
packets in the DECNIS router system permits such
routers, and the networks that they comprise, to
remain highly stable when traffic overloads occur.

For the DEC WANrouter software, the forwarding
operation has no hardware assist. Software lookup
assist algorithms have been researched and imple­
mented to help meet the performance-intensive
requirement. As in the microcoded DECNIS linecard

Digital Technical journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

adapter software, the software is highly tuned for
performance. To minimize the additional mainte­
nance overhead associated with highly tuned soft­
ware, the amount of such code is kept to a
minimum. The DEC WANrouter software design is
an example of how Digital carefully balanced prod­
uct performance requirements and product devel­
opment and maintenance costs to meet the
required price/performance goals for its router
product family.

Packet Latency (Transit Delay)
The next most frequently specified performance
requirement is packet latency or packet transit
delay. For bridge/router devices, this measurement
clearly depends on software and hardware timings.
However, the definition of latency utilized corre­
sponds directly to the• 'losen system's design.

The previously quoted IETF definition for store­
and-forward devices can be further refined to
accommodate differing device designs. The IETF
working group clarifies the difference between a
"store-and-forward device" and a "bit-forwarding
device" internal design model for a router. The
latter design model is often referred to as a "cut­
through" design and requires a different definition
than previously listed for store-and-forward
devices. The definition of latency used for this
cut-through model is the time interval starting
when the end of the first bit of the input frame
reaches the input port and ending when the start
of the first bit of the output frame is seen on the
output port.7

The issue that distinguishes the two models is
whether or not processing starts prior to the packet
being completely received. However, another key
point is whether or not the packet received can be
sent out for transmission prior to complete recep­
tion. When reception, forwarding, and transmis­
sion can occur in parallel, the design is referred to
as cut-through . For Digital's router designs, the
DECNIS does process reception and forwarding
in parallel prior to a packet being completely
received. However, the DECNIS does not start trans­
mission until a packet is completely received. Thus,
the DECNIS latency model uses the original store­
and-forward definition of the IETF.

In the case of the DEC WANrouter software, the
model and definition used is again store-and-for­
ward. The factors that control the packet latency in
the DEC WANrouter design are as follows:

79

DECnet Open Networking

1. Receiving the packet. The packet must be com­
pletely received.

2. Performing the forwarding operation. This fac­
tor includes packet verification, analyzing the
packet, performing any required address
lookup, performing any required packet modifi­
cations, and queuing the packet for transmission
on the destination interface.

3. Congestion queuing. If the destination interface
is not idle, the packet will have to be queued
before transmission. Some transit delay measure­
ments use only uncongested media interfaces
connected to the router. However, latency mea­
surements must be made to measure the poten­
tial latency delays due to congestion at the router
output interface. The packet latency due to
queue occupation delays is also included here.
Congestion avoidance algorithms have been
implemented to minimize this congestion delay.

4. Transmitting the packet. This factor is usually
dominated by the time taken to clock the bits of
the packet out of the interface but also includes
media access times, i.e., delays due to another
node already using a common connection.

We now examine how the DEC WANrouter and
DECNlS routers separately minimize the transit delay.

The DEC WANrouters minimize the packet recep­
tion and transmission portions by allowing hard­
ware to perform these functions using direct
memory access (DMA). Because these systems have
only a single processor, the forwarding delay is min­
imized by the same fast-path optimizations used to
improve the forwarding rate.

On the other hand, the optimizations for the
DECNlS routers are slightly different for the various
linecards. The DEC WANcontroller 622 card has no
DMA, and the linecard on-board processor is
involved in receiving each byte of the packet. We
parse the header as soon as there is enough infor­
mation to do so. For example, the data link packet
type field is decoded before the network address
bytes have been received, and the network address
lookup is initiated as soon as the address has been
received (i.e., before the data has been received).
The address lookup is then performed by the
address recognition engine hardware without fur­
ther involvement from the software.

The DEC WANcontroller 618 card and the DEC
LANcontroller 601 and 602 cards all receive packets

80

one segment at a time. Internally, these cards use
small fixed-size buffers that are linked together as
necessary to store a whole packet. Again, they per­
form the analysis and forwarding lookup as soon as
the data is available (i.e., when the first segment is
received).

Thus, for a large packet, the entire forwarding
decision will have been made before the last byte
has been received. However, note that until the last
byte has been received, it is not known whether the
cyclic redundancy check (CRC) is correct or the
packet has been corrupted. So the packet is not
actually passed to the destination linecard until that
check has been completed. As discussed before,
this design is still store-and-forward, rather than
cut-through. The DECNlS design goals were easily
met without using cut -through; however, Digital
has used the cut-through design on a number of
LAN host-based adapters.

When a packet is to be transmitted, certain
changes must be made in the data. For example, the
IP and OSI protocols require that tin1e-to-live fields
and, in some cases, other options be modified.
Bridged packets may need address bits modified or
conversion between Ethernet and IEEE 802 forms.
As with reception, all DEC WANcontrollers perform
these operations as the data is transmitted. All cards
have hardware assistance for recalculating header
checksums and CRCs.

These features are designed to reduce the for­
warding delay as much as possible, so that the tran­
sit delay is mainly controlled by the time it takes to
receive and send the packet. The type of architec­
ture that best describes the DECNIS design is a data­
flow, which blends traditional store-and-forward
designs with newer cut-through designs. This data­
flow architecture processes packets in a distrib­
uted manner (i.e., linecards process packets)
without transmitting packets prior to complete
reception validation of these packets. This design
limits the forwarding of packets that are found to
be in error, whereas the similar full cut-through
design would propagate invalid packets.

Interaction between Routing
and Bridging
Designing a combined router and bridge product is
complicated by the relationship between the rout­
ing and bridging functions. 11 A received packet
must be subjected to either the bridge forwarding
or the routing forwarding process (or maybe both).

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

Several designs are possible and are illustrated in
Figure 5.

(a) Protocol split. In this design, some protocols
are bridged, e.g., Local Area Transport (LAD,
and others are routed, e.g., TCP/IP. The bridging
and routing functions are completely separate;
they merely share line interfaces. Every packet
received is passed to either routing (if intended
for a protocol that is being routed) or bridging.

(b) Integrated with one interface. In this design,
the routing function is modeled as being
layered on top of the bridging function.
Theoretically, packets are subjected to the
bridging process and then, if they are
addressed to the router, subjected to the rout­
ing process. In this form of the model, the
router uses a single logical interface seemingly
connected to a private LAN contained within
the bridge/router.

(c) Integrated with multiple interfaces. This
design is similar to the integrated design with
one interface, but the router uses all the avail­
able interfaces and logically connects to the
same extended LAN multiple times.

Each design model has advantages and disadvan­
tages, and we considered all three models for
the design of the DECNIS routers. The protocol­
splitting model has the advantage of simplicity. The
major disadvantage is that any particular protocol
must be either bridged or routed. The integrated
models have the disadvantage ofrequiring specific
management to prevent a routed protocol from
also being bridged. In most cases, a protocol is
being routed specifically to avoid the problems
associated with bridging. The model with one inter­
face also has the disadvantage that the network
manager may get confused attempting to work out
which interface is being used for routing. We chose
the protocol-splitting model because of its effec­
tiveness and ease of use.

Special Considerations of the
DECNIS Architecture
We have discussed special features of the DECNIS

system architecture. Now we present some addi­
tional DECNIS software design issues.

Control and Management of Linecards
Each linecard is a separate software environment
and must be managed and controlled by the man­
agement processor. The main tasks required are

Digital Technical Journal Vol. 5 No. I Wtnter 1993

Digital's Multiprotocol Routing Software Design

,-----------,
I ROUTER I
I I
I I

PROTOCOL
SPLIT I

BRIDGE

L---------
LAN---'---

PROTOCOL
SPLIT

(a) Protocol split. Some protocols are passed
to the bridging functions, others to the
routing functions.

ROUTER

VIRTUAL _..,.. ___ LAN

(b) Integrated with one interj ace. Tbe routing
function uses a single IAN address and a
single logical interj ace to the extended IAN.

r- - -- - --,

I ROUTER I
I I
I I
I I
I BRIDGE I
, ______ _ J

LAN----- ------ LAN

(c) Integrated with multiple interfaces. Tbe
routing function uses all intetf aces to
attach to the extended IAN multiple times.

Figure 5 Bridge/Routing Design

• "Watchdog" polling. In a standalone network
server product, it is necessary to guard against
the software getting caught in an infinite loop
and hence not responding to management and
control messages. The management processor is
protected by a hardware watchdog timer, but
the linecards do not have a timer. To protect the
linecard software, we designed the management
processor software to poll each linecard every

81

DECnet Open Networking

400 milliseconds (ms). If there is no response,
we reset the card.

• Counters. The network interface cards handle
data forwarding and therefore must maintain the
required counters (e.g., the number of data bytes
received). However, to avoid requiring the
linecard to maintain 64-bit counters (which
costs memory and requires 64-bit arithmetic),
the management processor maintains the full
counters and polls the linecards frequently
enough to guarantee that the on-card counters
do not wrap. Each counter is sized to support
the design of the management processor polling
every 400 ms.

• Control. When a data link protocol or a routing
protocol is started or stopped on an interface,
the management processor receives the
network management command and issues
appropriate control messages to the network
interface card.

Distributed Forwarding
Each linecard normally handles the forwarding of
bridged and routed data without involving the man­
agement processor. This design requires a different
approach to meeting the stability requirements
from that described for the DEC WANrouter devices.

For example, the DEC WANrouter products dis­
card data packets to meet the routing stability
requirements. This discard is limited by the packet
management mechanisms to guarantee a minimum
level of forwarding performance for the other rout­
ing packets, even under worst-case conditions such
as those caused by network topology changes. The
DECNIS routers do not normally have to discard
packets, because the network interface cards can
continue to forward data while the management
processor handles the routing protocol operations.
In addition, correctly designed linecard software
guarantees that control traffic is passed to the MPC,
even in cases where the software is also passing
large amounts of data traffic to the MPC.

Conclusion
This paper describes the complex nature of the
design decisions required in the development of
Digital's multiprotocol router systems and soft­
ware. The issues and solutions discussed show how
many conflicting technical requirements can be
addressed. One example of such a conflict is related
to the designs goals for the performance of Digital's

82

multiprotocol routers. While on one hand achiev­
ing extremely high system throughput (i.e., the
DECNIS 600 router supports a forwarding through­
put rate of over 80,000 packets per second), the
DECNIS 600 design also addresses the equally criti­
cal metric of router stability (i.e., the DECNIS 600
product remains stable under extreme network
loads). io This balancing of requirements is key to
justifying Digital's approach toward router product
engineering. As summarized in his recent book on
computer systems performance analysis, Raj Jain
states that

The performance of a network ... is measured by
the speed (throughput and delay), accuracy (error
rate) and availability of the packets sent.12

Routers that can forward packets but cannot
remain stable under heavy loads, or meet the
requirements for bursty packet rates as required by
many of the newer network applications (e.g.,
packet-based videoconferencing systems such as
Digital's DECspin product), will fail to satisfy cus­
tomers.13 As such, Digital provides a well-tuned,
optimized total network solution with DECNIS 600
routers and DECspin products. This synergy of
Digital's network applications and network infra­
structure components is the ultimate justification
for the multiprotocol router design decisions out­
lined in this paper.

Acknowledgments
Many engineers in Australia, England, Ireland, and
the United States participated in the design and
implementation of the Digital's multiprotocol
routers. We wish to thank all of them.

References

1. DECnet Digital Network Architecture (Phase
V) General Description (Maynard, MA: Digital
Equipment Corporation, Order No. EK­
DNAPV-G0-001, 1987).

2.]. Martin and]. Leben, DECnet Phase V (Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1992).

3. R. Perlman, R. Callon, and M. Shand, "Routing
Architecture," Digital Technical journal, vol.
5, no. 1 (Winter 1993, this issue): 62-69.

4. S. Bryant and D. Brash, "The DECNIS 500/600
Multiprotocol Bridge Router and Gateway,"
Digital Technical Journal, vol. 5, no. 1
(Winter 1993, this issue): 84-98.

Vol. 5 No. 1 W{nter 1993 Digital Technical Journal

5. DECnet Digital Network Architecture (Phase
VJ Network Routing Layer Functional Speci­
fication (Maynard, MA: Digital Equipment
Corporation, Order No. EK-DNA03-FS001,
1991).

6. E. Coffman,Jr., and P. Denning, Operating Sys­
tems Theory (Englewood Cliffs, NJ: Prentice­
Hall, Inc., 1973): 169.

7. S. Bradner, "Benchmarking Terminology
for Network Interconnection Devices," Inter­
net Engineering Task Force RFC 1242 (July
1991).

8. K. Ramakrishnan and W Hawe, "The Work­
station on the Network: Performance Consid­
erations for the Communications Interface;'
IEEE Computer Society Technical Committee
on Operating Systems, vol. 3, no. 3 (Fall
1989): 29-32.

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Digital's Multiprotocol Routing Software Design

9. K. Ramakrishnan, "Scheduling Issues for
Interfacing for High Speed Networks,"
Proceedings of Globecom '92, IEEE Global
Telecommunications Conference, Session
18.04, Orlando, FL (December 1992): 622-626.

10. S. Bradner, "Interop Fall 1992 Router Perfor­
mance Study," technical presentation, Har­
vard University, 1992.

11. W Hawe, M. Kempf, and A. Kirby, "The
Extended Local Area Network Architecture
and LANBridge 100;' Digital Technical Jour­
nal, vol. 1, no. 3 (September 1986): 54-72.

12. R. Jain, The Art of Computer Systems Perfor­
mance Analysis, ISBN 0-471-50336-3 (New
York: John Wiley & Sons, 1991): 23.

13. R. Palmer and L. Palmer, "DECspin: Net­
worked Multimedia Conferencing for the
Desktop," Digital Technical Journal, vol. 5,
no. 2 (Spring 1993, forthcoming).

83

Stewart E Bryant
David L.A. Brash

The DECNIS 500/600 Multiprotocol
Bridge/Router and Gateway

The DECNIS 500/600 high-performance multiprotocol bridge/router and gateway
are described. The issues affecting the design of routers with this class of perfor­
mance are outlined, along with a description of the architecture and implementa­
tion. The system described uses a distributed forwarding algorithm and a
distributed buffer management algorithm executed on plug-in linecards to achieve
scalable performance. An overoiew of the currently available linecards is provided,
along with performance results achieved during system test.

The DEC Network Integration Server 500 and 600
(DECNIS 500/600) products are general-purpose
communications servers integrating multiprotocol
routing, bridging, and gateway functions over an
evolving set of local and wide area interfaces. The
product family is designed to be flexible, offering a
wide range of performance and functionality.

The basic system consists of a Futurebus+ based
backplane, a management processor card (MPC),
and a packet random-access memory (PRAM) card
with a centralized address recognition engine (ARE)
for forwarding routed and bridged traffic. Network
interface cards or linecards are added to provide
network attachment. The DECNIS 500 provides two
linecard slots, and the DECNIS 600 provides seven
linecard slots. The applications run from local
memory on the MPC and linecards. PRAM is used to
buffer packets in transit or destined to the system,
itself.

The system was developed around distributed
forwarding on the linecards to maximize perfor­
mance. Software provides forwarding on the
linecard for internet protocol (IP), DECnet, and
open systems interconnection (OSI) traffic using
integrated IS-IS (intermediate system to intermedi­
ate system) routing, along with bridging functional­
ity for other traffic. The management processor
controls the system, including loading and dump­
ing of the linecards, administering the routing and
bridging databases, generating routing and bridging
control traffic, and network management. X.25
functionality, both for routing data and as an
X.25 gateway, and routing for AppleTalk and IPX
are supported on the management processor.
Performance measurements on a system config-

84

ured with 14 Ethernets have demonstrated a for­
warding performance of 80,000 packets per second
as a router or a bridge.

This paper discusses the issues involved in the
design of a fast bridge/router. It presents the pro­
cessing considerations that led us to design the dis­
tributed forwarding system used in the DECNIS
500/600 products. The paper then details the hard­
ware and software design and concludes with a per­
formance summary.

Fast Bridge/ Router Design Issues
There are a number of conflicting constraints on
the design of a bridge/router. It must simultane­
ously forward packets, participate in the process of
maintaining a global view of the network topology,
and at all times be responsive to network manage­
ment. This requires a sophisticated hardware
and/or software design capable of striking the cor­
rect balance between the demands imposed by
these constraints.

The need to make optimum use of the transmis­
sion technology is emphasized by the high link tar­
iffs in Europe and the throughput demands of
modern high-performance computing equipment.
Therefore, the router designer must find methods
of forwarding packets in the minimum number of
CPU instructions in order to use modern transmis­
sion technology to best advantage. In addition to
high performance, low system latency is required.
The applications that run across networks are often
held up pending the transfer of data. As CPU perfor­
mance increases, the effects of network delay play
an increasingly significant role in determining the
overall application performance.

Vol. 5 No. I Winter 1993 Digital Technical Jounial

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

Another aspect of forwarding that requires atten­
tion is data integrity. Many protocols used in the
local area network (LAN) have no data protection
other than that provided by the data link checksum.
Thus careful attention must be paid to the design
of the data paths to minimize the periods when the
data is unprotected. The normal technique in bridg­
ing is to leave the checksum intact from input to
output. However, more advanced techniques are
needed, as this simple approach is not possible
when translating between dissimilar LAN types.

Two particular operations that constrain the per­
formance of the forwarding process are packet
parsing and address lookup. In a multiprotocol
router, a variety of address formats need to be vali­
dated and looked up in the forwarding table. The
most powerful address format in popular use is the
OSI NSAP (network service access point), but this is
the most complex to parse, with up to 20 octets to
be analyzed as a longest-match sequence extracted
from padding fields. In a bridge, supporting the
rapid learning of media access control (MAC)
addresses is another requirement. To provide con­
sistently high performance, these processes bene­
fit from hardware assistance.

Although the purpose of the network is the trans­
mission of data packets, the most critical packets
are the network control packets. These packets are
used to determine topological information and to
communicate it to the other network components.
If a data packet is lost, the transport service retrans­
mits the packet at a small inconvenience to the
application. However, if an excessive number of
network control packets are lost, the apparent
topology, and hence the apparent optimum paths,
frequently change, leading to the formation of rout­
ing loops and the generation of further control
packets describing the new paths. This increased
traffic exacerbates the network congestion. Taken
to the extreme, a positive feedback loop occurs, in
which the only traffic flowing is messages trying to
bring the network back to stability.

As a result, two requirements are placed on the
router. First, the router must be able to identify and
process the network control packets under all over­
load conditions, even at the expense of data traffic.
Second, the router must be able to process these
packets quickly enough to enable the network to
converge on a consistent view of the network
topology.

As networks grow to global scale, the possibility
emerges that an underperforming router in one

Digital Technical journal Vol. 5 No. 1 Winter 1993

part of the world could cause incorrect network
operation in a different geographical region. A
bridge/router must therefore be designed to pro­
cess all network control traffic, and not export its
local congestion problems to other parts of the
network: a "good citizenship" constraint. To
achieve this, the router needs to provide processing
and filtering of the received traffic at line rates, in
order to extract the network control traffic from
the data traffic under worst-case conditions. In
some cases, careful software design can accom­
plish this; however, as line speeds increase, hard­
ware support may be required. Once the control
traffic has been extracted, adequate processing
power must be provided to ensure that the
network converges quickly. This requires a suitable
task scheduling scheme.

Another requirement of a bridge/router is that it
remain manageable under all circumstances. If the
router is being overloaded by a malfunctioning
node in the network, the only way to relieve the sit­
uation is to shut down the circuit causing the over­
load. To do this, it must be able to extract and
process the network management packets despite
the overload situation. Cobb and Gerberg give more
information on routing issues. 1

Architecture
To address the requirements of a high-performance
multiprotocol bridge/router with the technology
currently available, we split the functional require­
ments into two sets: those best handled in a dis­
tributed fashion and those best handled centrally.

The data link and forwarding functions represent
the highest processing load and operate in suffi­
ciently local context that they can be distributed to
a processor associated with a line or a group of
lines. The processing requirements associated with
these functions scale linearly with both line speed
and number of lines attached to the system. Some
aspects of these per-line functions, such as link ini­
tialization and processing of exception packets,
require information that is available only centrally
or need a sophisticated processing environment.
However, these may be decoupled from the critical
processing path and moved to the central process­
ing function.

In contrast to the lower-level functions, the man­
agement of the system and the calculation of the
forwarding database are best handled as a central­
ized function, since these processes operate in
the context of the bridge/router as a whole. The

85

DECnet Open Networking

processor workload is proportional to the size of
the network and not the speed of the links.
Network protocols are designed to reduce the
amount of this type of processing, both to minimize
control traffic bandwidth and to permit the con­
struction of relatively simple low-performance
routers in some parts of the network.

These processing considerations led us to design
the DECNIS 500/600 as a set of per-line forwarding
processors, communicating on a peer-to-peer basis
to forward the normal packets that comprise the
majority of the network traffic, plus a central
management processor. Although this processor
behaves, in essence, like a normal monoprocessing
bridge/router, its involvement in forwarding is lim­
ited to unusual types of packet.

Having split the functionality between the
peer-to-peer forwarding processors and the man­
agement processor, we designed a buffer and
control system to efficiently couple these pro­
cessors together. The DECNIS 500/600 products
use a central PRAM of 256-byte buffers, shared
among the linecards. Ownership of buffers is
passed from one linecard to another by a swap,
which exchanges a full buffer for an empty
one. This algorithm improved both the fairness
of buffer allocation and the performance of the
buffer ownership transfer mechanism. Fractional
buffers much smaller than the maximum packet
sizes were used, even though this makes the sys­
tem more complicated. The consequential econ­
omy of memory, however, made this an attractive
proposition.

Analysis of the forwarding function indicated
that to achieve the levels of performance we

DESTINATION
NETWORK ADDRESS

FORWARDING
PARAMETERS

PACKET PACKET
(DATA LINK HEADER, (DESCRIPTOR,
ROUTING HEADER,,. __ ._. ROUTING HEADER,

ARE

PACKET BODY) PACKET BODY)
RXP PRAM

required, we would need hardware assistance in
parsing and looking up network addresses.
Considerations of economy of hardware cost,
board area, and bus bandwidth led us to a single ARE
shared among all linecards. This address parser has
sufficient performance to support a DECNIS 600
server fully populated with linecards that support
each link with a bandwidth of up to 2 x 10 megabits
per second. Above this speed, local address caches
are required.

Distributed Forwarding
In understanding the distributed forwarding pro­
cess used on the DECNIS 500/600, it is convenient to
first consider the forwarding of routing packets,
and then to extend this description to the process­
ing of other packet types. In the routing forwarding
process, as shown in Figure 1, the incoming packets
are made up of three components: the data link
header, the routing header, and the packet body.

The receive process (RXP) terminates the data
link layer, stripping the data link header from the
packet. The routing header is parsed and copied
into PRAM unmodified. Any required changes are
made when the packet is subsequently transmitted.
The information needed for this is placed in a data
structure called a packet descriptor, which is writ­
ten into space left at the front of the first packet
buffer. The packet body is copied into the packet
buffer, continuing in other packet buffers if
required.

The destination network address is copied to the
ARE, which is also given instructions on which
address type needs to be parsed. The RXP is now
free to start processing another incoming packet.

PACKET
(DESCRIPTOR,
ROUTING HEADER,
PACKET BODY)

PACKET
(DATA LINK HEADER,

....----. ROUTING HEADER,

TXP
PACKET BODY)

RING VECTOR (BUFFER POINTER, QUEUING INFORMATION)

Figure 1 Distributed Forwarding

86 Vol. 5 No. I Winter 1993 Digital Technical Journal

The DECN/S 500/600 Multiprotocol Bridge/Router and Gateway

When the address lookup process has completed,
the RXP is able to read from the ARE the forwarding
parameters needed to complete the processing of
the packet. These parameters contain information
about the output port and channel to use, the desti­
nation data link address for the next hop, and any
translation information. The RXP combines this
information with some information saved from pars­
ing the packet to build the packet descriptor in PRAM.

The RXP builds a set of ring vectors for the
packet, one for each buffer used. Each ring vector
contains a pointer to the PRAM buffer used, plus
some additional information used to decide on
which queue the buffer should be stored and to
determine its relative importance to the system.
During congestion, this information is used by the
linecards to discard the least important packets
first. These ring vectors are then exchanged with
the transmit process (TXP) on the output linecard,
which queues them ready for transmission. Before
the TXP starts to process a packet for transmission,
it reads the descriptor from the first PRAM buffer.
From the information in the descriptor, the TXP is
able to build the data link header, determine the
routing header translation requirements, and locate
a number of fields in the header (such as the OSI seg­
mentation and quality of service fields) without
having to reparse the header. The TXP builds the
data link header, reads the routing header from
PRAM, makes the appropriate modifications, and
then completes the packet by reading the packet
body from PRAM.

Since the transmit packet construction follows
the packet transmission order byte for byte, imple­
mentations can be built without further intermedi­
ate transmission buffering. Linecards need only
provide sufficient transmit buffering to cover the
local latency requirements. In one instance, a
linecard has significantly less than a full packet
buffer. This small buffering requirement implies
reduced system latency and makes available a num­
ber of different implementation styles.

If the RXP discovers a faulty packet, a packet with
an option that requires system context to process,
or a packet that is addressed to this system (includ­
ing certain multicast packets), it queues that packet
to the management processor in exactly the same
way that it would have queued a packet for trans­
mission by a TXP. The MPC contains a full-function
monoprocessor router that is able to handle these
exception cases. Similarly, the MPC sends packets
by presenting them to the appropriate TXP in
exactly the same format as a receiver.

Digital Technical Journal Vol. 5 No. 1 Winter 1993

The bridge forwarding process operates in a fash­
ion similar to the routing forwarding process,
except that the data link header is preserved from
input port to output port, and only the data link
header is parsed.

Buffer System
A schematic description of the DECNIS 500/600
buffer system is shown in Figure 2. The RXPs have
only sufficient buffering to cope with the latencies
that must be sustained in their various stages of
packet processing. All long-term storage of packets
takes place while the packet is owned by the TXP.
When an RXP has finished processing a packet, it
swaps the PRAM buffers containing the packet for
the same number of empty buffers owned by the
TXP that transmits the packet. Only if the TXP is able
to replace these buffers with empty buffers does
the transfer of ownership take place. If the swap
cannot complete due to lack of free buffers, the RXP
reuses these buffers for another packet. In this way,
no transmitter is able to accumulate buffers and
thereby prevent a receiver from receiving packets
intended for other output ports.

The design of an efficient buffer transfer scheme
is an important aspect of a high-performance multi­
processor router. We solved this problem by using a
set of single writer/single reader rings, with one
ring associated with each pair-wise exchange of
buffers that can take place in the system. Thus each
TXP has associated with it one ring for each of the
RXPs in the system (including its own), plus one for
the management processor. When an RXP has a
buffer to swap, it reads the next transfer location in
its ring corresponding to the destination TXP. If it
finds a free buffer, it exchanges that buffer with the
one to be sent, keeping the free buffer as a replace­
ment. The transferred information consists of a
pointer to the buffer, its ownership status, and
some information to indicate the type of informa­
tion in the buffer. This structure is known as a ring
vector. A single-bit semaphore is used to indicate
transfer of ownership of a ring vector.

The buffer transfer scheme schematic shown in
Figure 2 illustrates how this works. Each transmit
port (TXa or TXb) has a ring dedicated to each of the
receivers in the system (RXa and RXb). RXa swaps
ring vectors to the "a" rings on TXa and TXb, and
RXb swaps ring vectors to the "b" rings on TXa and
TXb.

During buffer transfer, the TXP runs a scavenge
process, scanning all its rings for new buffers, queu­
ing these buffers in the transmit queues (TXQs)

87

DECnet Open Networking

,------------------------------------,
IRXa : TXal

i i F=~ ~T~ i I H f- 1
I RXP I I

I I I
I
I I b
--------- -------r------------------
I RXb I TXb

i : ~
I

i RXP • .C)
I I b
- - - - - - - - - - - - - - - - - _ I_ - - - - - - - - - - - - - - - - - -

Figure 2 Movement of Buffer Ownership

specified by the ring vector, and replacing the
entries in the ring from the local free list. The buffer
type information enables the transmit linecard to
quickly determine the importance of the buffer.
Thus if the linecard runs short of buffers due to
congestion, it is able to discard less important pack­
ets in preference to those packets required to pre­
serve the stability of the network.

Through judicious optimization of the ring vector
encodings, we were able to condense this ring swap
transaction into a single longword read followed by
a single longword write for each buffer swap, for all
unicast traffic. For multicast traffic , a second long­
word was required. To reduce the amount of bus
traffic and the processor time associated with the
scavenge process, the random-access memory
(RAM) that holds the rings is physically located on
the transmit linecard. Hardware is used to watch
the rings for activity and report this to the TXP.

Analysis of the traffic patterns indicated that con­
siderable economies in PRAM could be made if we
fragmented long packets over a number of buffers.
We achieved a satisfactory compromise between
the processing overhead associated with buffer
management and memory efficiency through the
use of 256-byte buffers. With this buffer size, a large
fraction of the packets are contained within a single
buffer. When a linecard is driven into output con­
gestion, it is no longer certain that a complete set of

88

packet buffers will be swapped. We therefore had
to introduce a simple protocol to ensure that a
packet was queued for transmission only if it had
been fully transferred to the transmitting linecard.
To cope with dissimilar swap and scavenge process
speeds, we had to stage the transfer of buffers.
Thus, the TXPs collect a complete set of buffers
from an RXP before queuing the packet for trans­
mission; this process is called binning. In this way, a
partial transfer due to congestion or a slow receiver
does not block the progress of other ports in the
system.

Bridging needs a mechanism to support the
distribution of flooded and multicast packets to
multiple output ports. In some distributed systems,
this function is handled by replicating the packet
via a copy process. In other systems, the packet
is handled by a central multicast service. The
use of a central multicaster gives rise to synchro­
nization issues when a destination address moves
from the unknown to the learned state. Replica­
tion by the linecards is not practical in this architec­
ture since the linecards do not hold a local copy
of the buffer after it has been copied to PRAM.
We therefore use a system in which multicast
buffers are loaned to all the transmit linecards.
A "scoreboard" of outstanding loans is used to
record the state of each multicast buffer. When
a buffer is returned from all its borrowers, it is

Vol. 5 No. 1 Winter 1993 Dtgttal Tech11ical]ourrral

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

added to the multicast free queue and made
available for reuse. The loan process and the return
process are similar to the normal swap and scav­
enge process, but the ring vector is extended
slightly to include the information needed for rapid
dereferencing.

Centralized Resources
Three central resources are used in the DECNIS
500/600 products: MPC, PRAM, and ARE. Central­
izing these resources reduced both the cost and the
complexity of the system. There are two ways of
building a distributed processing router. In one
method, the router consists of a federation of full­
function routers, each a separate network node. An
alternative method is to employ a partially central­
ized design in which only one processor is the
router in the traditional sense. The central proces­
sor is the focus for network management, calcu­
lating the forwarding table and being a central
repository for the context of the router, and the
peripheral processors undertake the majority of
the forwarding work. An analysis of the cost and
complexity both from a system and a network per­
spective led us to choose the latter approach. Thus
the MPC provides all the software functionality
necessary to bind the collection of forwarding
agents located on the linecards together to form a
router. To the rest of the network, the system
appears indistinguishable from a traditionally
designed router. The processing capability and
memory requirements of the MPC are those associ­
ated with a typical medium-performance multi­
protocol bridge/router.

We had a choice of three locations for the PRAM:
distributed among the receiving linecards, dis­
tributed among the transmitting linecards, or
located centrally. Locating the buffering at the
receiver would have meant providing the maxi­
mum required transmitter buffering for each trans­
mitter at every receiver. Locating the long-term
packet buffering at the transmitters would have
meant staging the processing of the packets by stor­
ing them at the receiver until the transmit port was
determined and then transferring them to the
appropriate transmitting linecard. This would have
increased the system latency, the receiver complex­
ity, and its workload. An analysis of the bus traffic
indicated that for a router of this class, there would
be adequate bus bandwidth to support the use of a
centrally located, single shared packet buffer mem­
ory. With this approach, however, every packet

Digital Technical Journal Vol. 5 No. 1 Winter 1993

crosses the bus twice, rather than once as in the
other approaches. Nevertheless, we chose to base
the system around a single packet memory, and win
the consequential economies in both linecard cost
and board area.

An analysis of the processing power needed to
parse and look up a network address led us to con­
clude that the linecards would need some form of
assistance if the processing power associated with
each line was to be constrained to a reasonably
cost-effective level. This assistance is provided by
the ARE. Some advanced development work on the
design of hardware search engines showed that it
was possible to design a single address parser pow­
erful enough to be shared among all the linecards.
This search engine was adaptable enough to parse
the complex structure of an OSI NSAP, with its two
right-justified padded fields and its longest-match
semantics. In addition, the engine was able to cope
with the other routing protocol address formats
and the learning requirements of bridging. By cen­
tralizing the forwarding database, we also avoided
the processing and bus overhead associated with
maintaining several distributed forwarding data­
bases and reduced the cost and board area require­
ments of the linecards.

The bus bandwidth and lookup rate needed to
support multiple fiber distributed data interface
(FDDI) linecards would place an excessive burden
on the system. For FDDI, therefore, we equip the
central lookup engine with a linecard-resident
address cache.

DECNIS 500/600 Hardware Design
There are three primary systems in the DECNIS
500/600: the backplane, together with its interface
circuitry, the system core functions contained in
the MPC and the PRAM, and the various linecards. In
this section, we describe the hardware design of
each of these.

Backplane and Interface Logic
The DECNIS 500/600 backplanes are based on the
Futurebus+ standard using 2.1-volt (V) terminated
backplane transceiver logic (BTI). 2,3 Although
all current cards use 32-bit data and address paths,
the DECNIS 600 backplane has been designed to
support 64-bit operation as well.

Common to all current modules except the PRAM
card, the basic backplane interface consists of two
applications specific integrated circuits (ASICs),
BTI transceivers, and a selection of local memory

89

DECnet Open Networking

and registers, as shown in Figure 3. The two ASICs
are a controller and a data-path device. The con­
troller requests the bus via central arbitration,
controls the transceivers, and runs the parallel
protocol state machines for backplane access. The
data-path device provides two 16-bit processor
interfaces (ports T and R), multiple direct memory
access (DMA) channels for each processor port with
byte packing, unpacking, frame check sequence
(FCS) and checksum support, and backplane
address decode logic.

On the backplane, four OMA channels are pro­
vided per processor port. Two channels offer full­
duplex data paths, and the other two are double
buffered, configurable to operate in either direc­
tion, and optimized for bulk data transfer. OMA
write transfers occur automatically when a block
fills. Similarly, DMA prefetch reads occur automati­
cally on suitably configured empty blocks. The
double-buffered channels allow bus transactions to
happen in parallel with processor access to the
other block. All data transfers between the proces-

DATA-PATH
ASIC

I BTL
TRANSCEIVERS

BUS
CONTROL
ASIC

t
DATA-PATH
ASIC

KEY:

sor and the OMA channel are done under direct
control of the processors, with the processors read­
ing or writing every byte of data to or from the OMA
streams. This direct control arrangement makes the
design of the hardware simpler, avoiding the need
for ASIC OMA support on the processor buses. More
important, the use of processor read and write
cycles makes the behavior of the system determinis­
tic and ensures that the processor has the correct
context at the completion of all operations, regard­
less of the outcome.

The data-path ASIC also provides command/
status registers (CSRs) and a local bus containing the
control interface for the second ASIC, ring vector
memory (RVMEM), the geographical address, boot
read-only memory (ROM), and nonvolatile battery­
backed RAM (BBRAM) for error reporting. The
RVMEM and some of the registers are accessible
from the backplane. All resources can be accessed
from either processor port. The device arbitrates
internally for shared resources and has several
other features designed to assist with efficient data

MEMORY

PROCESSOR

PORTT

PORTA

BB RAM CS Rs

MEMORY

PROCESSOR

PORT T

PORTA

MEMORY

PROCESSOR

BB RAM ROM RVMEM CS Rs

CJ DEVICES ASSOCIATED WITH A SINGLE (PRIMARY) NODE

CJ DEVICES ASSOCIATED WITH A SECONDARY NODE

NOT PRESENT IN SINGLE PROCESSOR BUS INTERFACE DESIGNS

Figure 3 DECNIS Bus Intetface

90 Vol. 5 No. 1 Winter 1993 Digital TechnicalJourn,d

The DECNIS 500/600 MultijJrotocol Bridge/Router and Gateway

transfers, e.g., a summary register of write activity
to the RVMEM.

The data-path device can be driven from a single
processor port (port T) for use in simpler, low­
speed linecards. In addition, the architecture
supports two data-path devices (primary and sec­
ondary) served by a common controller connected
to the local bus of the primary device. Each data­
path device adopts a different node identifier in the
backplane address space.

Dedicated lines on the backplane are provided
for power status, temperature sensing, and other
system requirements.

Processor and Memory Modules
The MPC has two processors, a main processor and
a uniprocessor version of the common backplane
interface. The main processor, a VAX device, is in
overall command of the system and provides all the
management and forwarding services found in a
monoprocessor router. The 16-bit, processor-based
backplane interface frees the main processor from
time-critical backplane-associated tasks.

A block diagram of the memory module is shown
in Figure 4. Separate dynamic RAM (DRAM) arrays
are used for data buffering and the forwarding
database associated with the ARE. Ring structures in
static memory are used to allow the linecards to
post requests and read responses from the ARE,
which is based on the TRIE system originally devel­
oped for text retrieval.4,5

An ASIC was developed for the ARE; it was
extended to include some of the other module con­
trol logic, e.g., PRAM refresh control and the syn­
chronous portion of the Futurebus+ backplane
interface.

Network Interface Cards-Linecards
The DECNIS 500/600 products currently offer syn­
chronous communications, Ethernet, and FDDI
adapters, all using variants of the standard back­
plane interface.

Two synchronous communication adapters are
available: a two-line device operating at up to 2.048
megabits per second, and a higher fan-out device
supporting up to eight lines at a reduced line rate of
128 kilobits per second. All lines are full duplex
with modem control. The lower-speed adapter uses
a uniprocessor architecture to drive three industry­
standard serial communications controllers (secs).
The data and clocks for the channels, along with an
extra channel for multiplexed modem control, are

Digital Technical Journal Vol. 5 No. l Winter 1993

AR DING FORW
DA TAB ASE

i
SS ADD RE

RECOG
ENGIN

NITION
E (ARE)

i
EST/
ONSE

REQU
RESP
MEM ORY

<

-

PACKET
MEMORY
(PRAM)
2 OR 8 MB

FUTUREBUS+ BATTERY·

INTERFACE - BACKED RAM
(BB RAM)

~
>

BACKPLANE

Figure 4 PRAM and ARE Module Block Diagram

connected to a remote distribution panel using a
2-meter umbilical cord. Panels are available to sup­
port eight lines using the RS232, EIA422, or V.35 elec­
trical interface. A four-line multistandard variant
allows mixed electrical interfaces from a single
adapter at a reduced fan-out. The multistandard
panel uses a 50-pin cable common to other commu­
nication products from Digital.

The two-line device uses a four-processor inter­
face as shown in Figures 3 and 5. The sec is an ASIC
device designed specifically for the data-flow style
of processing adopted in the system architecture. It
is closely coupled to the data-path ASIC and proces­
sors for optimal throughput. The hardware design
has minimal dependency between the transmit and
receive tasks, recognizing the limited coupling
required by acknowledged data link protocols such
as high-level data link control (HDLC). State infor­
mation is exchanged between processors using a
small dual-ported RAM in the sec. In addition, each
sec and associated processors operate as a separate
entity, resulting in consistent performance when
forwarding both on and off the module. Two 50-pin
multistandard interfaces (EIA422 and V.35 only) are
provided on the module handle.

Several Ethernet adapters are available. A single­
port thick-wire adapter uses a dual-processor archi­
tecture (primary R and T ports in Figure 3), along
with a discrete implementation, to interface the
Ethernet and its associated buffer (tank) memory.
This design was reengineered to put the tank mem­
ory interface (TMI) into an ASIC, resulting in a dual­
port (full implementation of the interface shown
in Figure 3 plus two Ethernet interfaces) adapter

91

DECnet Open Networking

SERIAL
PORTT COMMUNICATIONS

PORTA CONTROLLER
(SCC)

STANDARD
BUS
INTERFACE

SERIAL
PORTT COMMUNICATIONS

PORTA CONTROLLER
(SCC)

Figure 5 DEC WANcontroller 622
Block Diagram

0-TYPE
(50-WAY)

0-TYPE
(50-WAY)

D

derivative. This adapter is available in two variants
supporting thick-wire, and ThinWire wiring
schemes.

As shown in Figure 6, the FDDI adapter (DEC
FDDicontroller 621) is a two-card option designed
to cope with the high filtering and forwarding rates
associated with FDDI. The hardware includes a fil­
tering engine closely coupled to the FDDI chip set,
a synchronous interconnect between the two
cards, and a multichannel DMA engine for data
transfer through the device. The DMA engine main­
tains tank memory under reduced instruction set
computing (RISC) processor control, and can be set

up and monitored with minimal processor over­
head. Data is transferred to or from buffers in PRAM
to the tank memory, where complete packets are
kept in contiguous address space. A second DMA
channel transfers complete packets in a single burst
to or from the buffer memory on the line interface
card.

Traffic processing between buffer memory
and the ring is done in hardware. A third DMA
path is used to prefetch and then burst transfer
packet header information from tank memory
into the RISC processor subsystem for packet pro­
cessing. The DMA engine, which includes tank
memory arbitration, can queue multiple com­
mands and operate all DMA channels in parallel.
The 32-bit RISC subsystem provides the linecard
processing, communicating with the bus interface
processor using dual-ported RAM. Modular connec­
tivity is offered for different physical media. The
module also supports dual-attach and optical­
bypass options.

DECNIS 500/600 Software Design
This section describes the software design of the
DECNIS 500/600. The structure of the management
processor software is first described. The structure
of the linecard receiver and transmitter is then
discussed, followed by details on how we
expanded the design to forward multicast packets .

. -----------------,----------------
SYSTEM INTERFACE CARD LINE INTERFACE CARD

I
RISC I
PROCESSOR ...

I SUBSYSTEM
I STATION + I MANAGEMENT

• I
PROCESSOR

t PORTT - DUAL-PORTED
RAM I + + STANDARD i- I

BUS ~
FILTERING FOOi

INTERFACE • BUFFER -i--
ENGINE INTERFACE

I
PORT R* - OMA ENGINE I l I

t I BUFFER
I MEMORY

TANK MEMORY I
I I

_ __ _ _ _ _ __ __ _ _ __ _ _ I _ __ __ __ __ _ _ ___ __ I

*OMA intertace replaces second processor.

Figure 6 DEC FDD!controller 621 Block Diagram

92 Vol. 5 No. I Winter 1993 Digital Technical Joun,al

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

Management Processor Software
The DECNIS 500/600 MPC software structure, as
shown in Figure 7, consists of a full-function
bridge/router and X.25 gateway, together with the
software necessary to adapt it to the DECNIS

500/600 environment. The control code module,
which includes the routing, bridging, network
management, and X.25 modules, is an extended ver­
sion of Digital's WANrouter 500 software. These
extensions were necessary to provide configura­
tion information and forwarding table updates to
the DECNIS 500/600 environment module. This
module hides the distributed forwarding function­
ality from the control module. Thus the control
module is provided with an identical environment
on both the MicroServer and DECNIS 500/600
platforms.

The major component of the DECNIS 500/600
environment module contains the data link initial­
ization code, the code to control the linecards, and
the code to transform the forwarding table updates
into the data structures used by the ARE. A second
component of the environment module contains
the swap and scavenge functions necessary to
communicate with the linecards. Because of the
real-time constraints associated with swap and scav­
enge, this function is split between the manage­
ment processor on the MPC and an assist processor.

ROUTING
BRIDGING

The control code module was designed as a
full-function router; thus we are able to introduce
new functionality to the platform in stages. If a
new protocol type is to be included, it can be
initially executed in the management processor
with the linecards providing a framing or data link
service. At a later point, the forwarding compo­
nents can be moved to the linecards to provide
enhanced performance. The management proces­
sor software is described in more detail elsewhere
in this issue.1

Linecard Reception
The linecard receiving processes are shown in
Figure 8. The receiver runs four processes: the main
receive process (RXP), the receive buffer system
ARE process (RXBA), the receive buffer system
descriptor process (RXBD), and the swap process.

The main receive process, RXP, polls the line
communications controller until a packet starts to
become available. The RXP then takes a pointer to a
free PRAM buffer from the free queue and parses
the data link header and the routing header, copy­
ing the packet into the buffer byte-by-byte as it does
the parse. From the data link header, the RXP is able
to determine whether the packet should be routed
or bridged. Once this distinction has been made,
the routing destination address or the destination

PORT OF DEC
WANROUTER 500
CODE
I

I

NTROLCODE co
M ODULE . NETWORK MANAGEMENT

NVIRONMENT E
M ODULE .

X.25

I ARE UPDATES

+ /
DECNIS ENVIRONMENT ADAPTATION

v HIDES CONTRO
CODE FROM
LINECARD
ENVIRONMENT

ASSIST
SWAP AND SCAVENGE MODULE

v PROVIDED BY

,, PROCESSOR

H
< .u. .u. FUTUREBUS+

LINECARDS

Figure 7 MPC Software Structure

Digital Technical Journal Vol. 5 No. 1 Winter 1993

L

93

DECnet Open Networking

COMMUNICATIONS
CONTROLLER

ACKNOWLEDGE
TO TRANSMITIER

RXP

MUL Tl CAST FREE

UNICAST FREE

ARE RESULT

SOURCE

SOURCE
BRIDGE

REMOTE
DESTINATION
RINGS

SWAP

MULTICAST
HEAP

DESCRIPTOR

ARE REQUEST

@
@
@

HEADER AND BODY

Figure 8 Linecard Receive Processing

MAC address is also copied to the ARE, together with
some information to tell the ARE which database to
search. The ARE provides hardware assistance to
the bridge learning process. To prevent this hard­
ware from inadvertently learning an incorrect
address, the ARE is not allowed to start a MAC
address lookup until the RXP has completely
received the packet and has ensured that the check­
sum was correct. This restriction does not apply to
routing addresses, which may be looked up before
the packet has been completely received, thus
reducing latency.

In the case of a routing packet, the data link
header is discarded; only the routing header and
the packet body are written to the buffer in PRAM.
The source MAC address or, in the case of a multi­
channel card, the channel on which the packet
was received is stored for later use. A number of
other protocol-specific items are stored as well.
All this information is used later to build the
descriptor. The buffer pointer is stored on the pre­
address queue until it can be reconciled with the
result of the address lookup. In the case of an
acknowledged data link such as HDLC, the receiver
exports the latest acknowledgment status to the
transmit process.

94

The receive buffer system ARE process, RXBA,
polls the ARE for the result of the address lookup
and stores the result in an internal data structure
associated with its corresponding p acket. The
buffer pointer and the buffer pointers for any other
buffers used to store the remainder of a long packet
are then moved onto the RX-bin queue. Since the
RXP and RXBA processes, the ARE search engine, and
the link transmission process are asynchronous, the
system is designed to have a number of pending ARE
results, which are completed at an indeterminate
time. This means that the reconciliation of lookup
results and buffers may happen before or after the
whole packet has been received. Because of the
possibility of an error in the packet, no further
action can be taken until the whole packet has actu­
ally been received and all its buffers have been
moved to the the queue labeled RX-bin.

If this staging process were not used, we would
need to provide a complex abort mechanism to
purge erroneous packets from the swap, scavenge,
and transmit processes. Under load, the rate at
which we poll the ARE has been engineered to be
exactly once per lookup request. A poll failure will
increase the backlog in the pre-address queue,
which should not grow above two packets. This

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

algorithm mmmuzes the Futurebus+ bandwidth
expended in unsuccessful ARE poll operations.
When the receiver is idle, the poll rate increases
and the outstanding packets are quickly processed
to dear the backlog.

The receive buffer system descriptor process,
RXBD, writes the packet descriptor onto the front of
the first PRAM buffer of the packet. The descriptors
are protocol specific, requiring a callback into the
protocol code to construct them. After the descrip­
tor has been written, the buffer pointers are passed
to the source queue, ready for transfer to the desti·
nation linecard by the swap process. The buffer is
then swapped with the destination linecard as
described in the section Buffer System, and the
resultant free buffer is added to the free queue.

As an example of the information contained in a
descriptor, Figure 9 shows an OSI packet buffer
together with its descriptor as it is written into
PRAM. The descriptor starts with a type identifier
to indicate that it is an OSI packet. This is followed
by a flags field and then a packet length indicator.
The ARE flags indicate whether packet translation
to DECnet Phase IV is required. The destination port
is the linecard to which the buffer must be passed
for transmission . The next hop physical address
is the MAC address of the next destination (end
system or router) to which the packet must be
sent if the output circuit is a LAN; otherwise, it is
the physical or virtual channel on a multiplexed
output circuit. The segmentation offset informa­
tion is used to locate the segmentation information
in the packet in case the output circuit is required
to segment the packet when the circuit comes to
transmit the packet. This is followed by the byte
value and position of the quality of service (QOS)

option, the field used to carry the DECbit conges·
tion state indicator.

The transmitter requires easy access to these
fields since their modified state has to be reflected
in the checksum field, near the front of the routing
header. The source linecard number, reason, and
last hop fields are needed by the management pro­
cessor in the event that the receiving linecard is
unable to complete the parsing operation for any
reason. This information is also necessary in the
generation of redirect packets (which are gener­
ated by the management processor after normal
transmission by the destination linecard).

Linecard Transmission
The linecard transmitter function consists of five pro­
cesses: the scavenge rings process, the scavenge bins

Digital Technical Joun,al Vol. 5 No. I Winter 1993

DESCRIPTOR TYPE

FLAGS

PACKET LENGTH ,....._ -

ARE RESULT FLAGS
DESTINATION PORT AND FLAGS

NEXT HOP ,....._ -
PHYSICAL ADDRESS -

- -
,....._ -- -

LEVEL 3 DATA OFFSET
SEGMENTATION OFFSET - -
SEGMENTATION OFFSET BYTE POSITION

aos BYTE VALUE

aos OPTION POSITION

SOURCE LINECARD NUMBER

REASON
LAST HOP TRANSMITIED

PHYSICAL ADDRESS ,-..--

,-..--

-
,-..--

-
-
-
-
-

,
'

DESCRIPTOR

' I , '-----
NLPID

LENGTH OSI PACKET

VERSION

LIFETIME

FLAGS AND TYPE

,_J,EGMENTATION LENGTH -
CHECKSUM - -

DESTINATION ADDRESS LENGTH

i--
: DESTINATION ADDRESS : l 20 OCTETS

~~-S-O_U_R_C_E_ A_D_D_R_E_S~S- L_E_N_G_T_H~~~~--11

: SOURCE ADDRESS : l 20 OCTETS -
DATA UNIT IDENTIFIER - -
SEGMENTATION OFFSET ,-..-- -
TOTAL LENGTH

aos OPTION IDENTIFIER

aos OPTION LENGTH

aos OPTION VALUE

- -
: DATA

r ::i

Figure 9 OSI Packet Buffer and Descriptor

95

DECnet Open Networking

process, the transmit buffers system select process
(TXBS), the main transmit process (TXP), and the
TXB release process. These are shown in Figure 10.

The scavenge rings process scans the swap rings
for new buffers to be queued for transmission,
replacing them with free buffers. Buffers are queued
in reassembly bins (one per destination ring) so
that only complete packets are queued in the hold­
ing queues. The process tries to replenish the desti­
nation rings from the port-specific return queues,
but failing this it uses the free list. The primary use
of the port-specific return queues is in multicasting
(see the section Linecard Multicasting).

The scavenge bins process scans the reassembly
bins for complete packets and transfers them to the
holding queues. Since different protocols have dif­
ferent traffic characteristics, the packets are queued
by protocol type.

The TXBS process dequeues the packets from
these holding queues round-robin by protocol
type. This prevents protocols with an effective
congestion control algorithm from being pushed
into congestion backoff by protocol types with no
effective congestion control. It also allows both
bridged and routed protocols to make progress
despite overload. The scavenge bins and TXBS

PENDING PACKET RELEASE
ACKNOWLEDGMENT QUEUE

:IlIJ---:

COMMUNICATIONS
CONTROLLER-----'---,

TRANSMIT
PACKET

-llE TXP -llE
ACKNOWLEDGE
FROM RECEIVER

TXBS

processes between them execute the DECbit con­
gestion control and packet aging functions. By
assuming that queuing time in the receiver is mini­
mal, we are able to simplify the algorithms by exe­
cuting them in the transmit path. New algorithms
had to be designed to execute these functions in
this architecture.

The TXP process transmits the packet selected by
TXBS. TXP reads in the descriptor, prepending the
data link header and transmitting the modified
routing header. When transmitting a protocol that
uses explicit acknowledgments, like HDLC, the
transmitted packet is transferred to the pending
acknowledgment queue to wait for acknowl­
edgment from the remote end. Before transmit­
ting each packet, the transmitter checks the cur­
rent acknowledgment state indicated by the
receiver. If necessary, the transmitter either moves
acknowledged packets from the pending acknowl­
edged queue to the packet release queue, or, if
it receives an indication that retransmission is
required, moves them back to the transmit packet
queue.

The TXB release process takes packets from
the prerelease queue and separates them into a
series of queues used by the swap process. Simple

TXB
RELEASE

FREE LIST

:III}-
-- --- .,

:III}- I PORT-SPECIFIC
I RETURN QUEUES

I
MPC UNICAST I

:,"~11 --------

I HOLDING
I QUEUES
I DESTINATION BINS

I
I
1..-------.
I SCAVENGE

BINS
PROCESS

:--{Il]:- - - - - -:
I I
I I

I
I
I -llE

DESTINATION
RINGS-0

SCAVENGE ~-0___/?,. RINGS ~
PROCESS

l ______ _J

DESCRIPTOR

PACKET HEADER AND BODY

Figure 10 Linecard Transmit Processes

Vol. 5 No. 1 Winter 1993 Digital TechriicalJournal

The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway

unicast packets have their buffers returned to
the transmitter free pool. The multicast packets
have their buffers placed on the port-specific
queue for the source linecard, ready for return to
their originating receiver. Packets intended for
return to the management processor are also
queued separately

Linecard Multicasting
A bridge multicast or flooded buffer must be trans­
mitted by a number of linecards. This is achieved by
swapping a special type of ring vector, indicating
that the buffer is only on loan to the transmitting
linecard and must be returned to its owner upon
completion. In addition to the normal packet type,
fragmentation, and buffer identification informa­
tion, the ring vector contains local referencing
information indicating where it is stored on the
multicast heap. The receiver keeps a record of
which multicast buffers are on loan to which trans­
mitters. The scavenge process notes in which ring
it found the ring vector. After transmission, the TXB
release process places the ring vector on the corre­
sponding port-specific return queue. These ring
vectors are then preferentially returned to their
owner via the swap process. As the receiver gets
these buffers back, it checks them off against a
scoreboard of issued buffers. When a buffer is
received from all destination linecards to which it
was loaned, the buffer is moved back on the free
list. For this to work successfully, some buffers
must be set aside specifically for use by the multi­
cast process.

Debugging the System
Extensive simulation was performed during system
development. A model based on VHDL (a hardware
description language used for simulation and logic
synthesis) was built to simulate the queues, pro­
cesses, bus accesses, and bus latency for the fast for­
warding paths. Models were developed for the
different styles of linecards, and many different
traffic scenarios (packet size, packet type, packet
rates) were simulated to verify the original thinking
and architectural assumptions. In addition, simula­
tion was performed on the software to measure
code correctness and execution times. Gate arrays
and modules were both functionally simulated and
timing verified; analog modeling techniques were
used to verify signal integrity of the backplane and
selected etches.

Digita(Tecbntcal Journal Vol. 5 No. 1 Winter 1993

The linecard processors used have a serial port
and masked ROM embedded in the device. The
internal ROM was programmed with a simple boot
and console procedure. Provisions for a debug con­
sole via a ribbon cable to the module were devel­
oped, allowing a terminal connection to be made
from the management processor to any linecard
processor. Each processor on a module is software
selectable from the console, which allows limited
access functions to peek and poke memory maps,
set break points, and step through the code. The
system was enhanced by developing a breakout box
and workstation environment that could connect
to multiple linecards, offering multiple windows to
different modules in parallel. The code executed
under this regime ran at full speed. The environ­
ment allowed remote access, which proved useful
between the two main module development sites
in England and Ireland when problems required
close cooperation between the two groups.

Perfonnance
Performance measurements have been made on the
DECNIS 500/600 products for DECnet Phase IV,

DECnet Phase V (OSI), IP, and bridged traffic. For a
detailed description of the measurement methodol­
ogy and a comparison between the performance of
the DECNIS 500/600 and competing bridge/routers,
the reader is referred to independent test results
compiled by Bradner.6

A summary of the LAN performance measured by
Bradner and the WAN performance measured by
ourselves is shown in Tables l, 2, and 3. Table 1
shows the Ethernet-to-Ethernet forwarding
throughput for minimum-sized packets. These
measurements show the maximum forwarding per­
formance with no packet loss. The use of a no-loss
figure for comparison between different designs is
important because this represents the maximum
throughput usable by a network application. If the
applications attempt to run at more than the loss­
free rate, the packet loss causes the transport proto­
cols to back off to the loss-free operating point. The
Ethernet-to-Ethernet figures indicate the near lin­
ear scalability of performance with number of
lines. Ethernet forwarding performances of this
magnitude are well in excess of those required to
operate on any practical LAN. The correctness soft­
ware ensures the reception of any routing packets
for a significant period after these rates are
exceeded.

97

DECnet Open Networking

Table 1 64-byte Ethernet-to-Ethernet
Packet Throughput

Protocol Number of Ports
1 4 6

Bridge 13,950 48,211 80,045

IP 13,362 51,960 79,452

DECnet 9,330 34,164 53,746

OSI 6,652 25,891 38,837

Table 2 FDDl-to-FDDI Throughput

,--- Packet Size ---,
64 Byte 2048 Byte

Throughput

Maximum pps*

Bandwidth

16%

56,869

Note: pps = packets per second

76%

4,352

85.5 Mb/s

Table 3 WAN-to-WAN Performance for
Routed Traffic

....---- Measured Percentage ---,
Line Util ization

DECnet DECnet
NPDU Size Phase IV Phase V (OSI) IP

46 96% 95% 93%
128 99% 99% 98%

512 100% 100% 100%
1450 100% 100% 100%
Note: NPDU = network packet data unit

Measurements also indicated that the unidirec­
tional and bidirectfonal forwarding performances
are substantially the same, which is not the case for
all router designs. This is of more than academic sig­
nificance. Poorly designed Ethernet subsystems do
not provide adeq4ate transmit processing power
under conditions 9f receive overload. Such subsys­
tems suffer from a condition known as "live-lock."
In this condition, the receiver uses up all the pro­
cessing cycles, thus preventing the transmitter
from attempting the transmission that would force
a collision on the Ethernet and thereby restore fair
operation.

The FDDI forwarding performance is shown in
Table 2. These measurements were also taken at the
zero-loss operating point and indicate industry­
leading performance results.

98

The performance of the WANcontroller 622 run­
ning at 2 megabits per second is shown in Table 3.
These measurements were taken using HDLC (with
acknowledgments) as the data link, with a packet
overhead of+ 19 octets for Phase IV and +6 octets
for OSI and IP. These results indicate that the lines
were running close to saturation.

Acknowledgments
The DECNIS 500/600 project has involved a great
number of people located around the world. The
authors wish to recognize everyone's contribution
to the largest project undertaken by the Reading
and Galway network engineering groups. Special
thanks are extended to Mick Seaman for his leader­
ship and guidance throughout the advanced devel­
opment and early implementation phases of this
project.

References

I. G. Cobb and E. Gerberg, "Digital's Multiprotocol
Routing Software Design," Digital Technical
Journal, vol. 5, no. 1 (Winter 1993, this issue):
70-83.

2. Futurebus+ Logical Layer Specification, IEEE
Standard 896.1-1991 (New York: The Institute of
Electrical and Electronics Engineers, 1992).

3. Futurebus+ Physical Layer and Profile Specifi·
cations, IEEE Standard 896.2-1991 (New York:
The Institute of Electrical and Electronics
Engineers, 1992).

4. E. Fredkin, "TRIE Memory;' Communications of
the ACM, vol. 3 (1960): 490-499.

5. D. Knuth, The Art of Computer Programming,
Sorting and Searching, vol. 3 (Reading, MA:
Addison-Wesley Publishing Co., Inc., 1973):
481-490.

6. S. Bradner, "Testing the Devices," Proceedings of
Fall Interop 1992. Available on the Internet by
anonymous FTP from hsdndev.harvard.edu in
/pub/ndtl.

Vol. 5 No. 1 Winter 1993 Dtgttal TecbntcalJournal

Frame Relay Networks

RobertJ. Roden
Deborah Tayler

Frame relay networks reduce the cost of transmission lines and equipment and
improve network petformance and response time. Designed for transmission lines
with a low error rate, frame relay networks provide minimal internal checking,
and consequently, error detection and recovery is implemented in the attached user
systems. The Frame Relay Bearer Service was developed specifically as a data ser­
vice to handle high-volume, bursty traffic by means of high-speed packet transmis­
sion, minimal network delay, and efficient use of network bandwidth. The frame
protocol supports the data transfer phase of the Service; the frame relay header and
the local management interface are sources of congestion avoidance mechanisms.
Current implementations include the StrataCom /PX FastPacket digital networking
system, which provides the frame relay network, and Digital's DECNIS 500/600 and
DEC WANrouter 100/500 software for attaching user equipment.

Today's communications networks are built using
high-speed digital trunks that inherently provide
high throughput, minimal delay, and a very low
error rate. Such transmission networks supply
highly reliable service without the overhead of
error control functions. Frame relay is a packet­
mode transmission network service that exploits
these network characteristics by minimizing the
amount of error detection and recovery performed
inside the network.

This paper explains the nature of the Frame Relay
Bearer Service (FRBS) and provides details of the
interface defined for attaching user equipment.
The implications for higher-layer protocols in the
user equipment are also considered.

Following this tutorial, the paper introduces
some current implementations. As an example
of equipment used to construct a frame relay
network, the technology deployed by the
StrataCom integrated packet exchange (IPX)

FastPacket range of equipment is described. Access
to a frame relay network is typically via a router,
as is illustrated in the discussion of two Digital
products:

• The DECNIS V2.l software, i.e., network integra­
tion server, for either the DECNIS 500 or the DEC­

NIS 600 hardware units (abbreviated as DECNIS

500/600)

Dig ital Technical Journal Vol. 5 No. 1 Winter 1993

• The DEC WANrouter Vl.O software for either the
DEMSB or the DEMSA hardware units (subse­
quently referred to as the WANrouter 100/500)

The paper concludes with a brief discussion of
activities related to the further development of
frame relay technology.

The Frame Relay Bearer Service
The FRBS was developed specifically as a data ser­
vice to handle high-volume, bursty traffic. The ser­
vice was designed to provide high-speed packet
transmission, minimal network delay, and efficient
use of network bandwidth. 1 Local area network
(LAN)-to-LAN wide area intemetworking is a typical
application.

The packet-based frame relay technology uses a
combination of features from existing standards for
X.25 packet switching and time division multi­
plexed (TDM) circuit switching.2 Frame relay pro­
vides an X.25-like statistical interface but with
lower functionality (in terms of error correction
and flow control) and hence higher throughput,
because most processing requirements have been
removed. At the same time, frame relay has the
higher speed and lower delay qualities of TDM cir­
cuit switching without the need for dedicated full­
time devices and circuits and wasted time slots

99

DECnet Open Networ k ing

when no data is being transmitted. The fact that the
FRBS need not provide error detection/correction
and flow control relies on the existence of intelli­
gent end-user devices, the use of controlling proto­
col layers (CP~), and high-speed and reliable
communication systems. Access to the FRBS is via a
frame relay interface defined between data circuit­
terminating equipment (DCE) on the network side
and data terminal equipment (DTE) on the user
side. A typical frame relay configuration is shown
in Figure 1.

In 1990, four vendors-StrataCom, Digital
Equipment Corporation, Cisco Systems, and
Northern Telecom-collaborated on developing a
specification called the Frame Relay Specification
with Extensions.3 This document, edited by
StrataCom, introduced a local management inter­
face (LMI) to provide control procedures for perma­
nent virtual circuits (PVCs). The LMI was structured
into a basic, mandatory part and a number of
optional extensions. It focused on PVCs for frame
relay point-to-point connections rather than on
switched virtual connections (SVCs), because SVCs
are not well suited for LAN interconnection.

Subsequently, standards have emerged in this
area that adopt the basic form of the LMI, without
the optional extensions, as an annex for PVC control
procedures. These standards do differ, however,
in some respects. First, the recent standards have
specified primary rate access (PRA) for the physi­
cal interface rather than Comite Consultatif

International de Telegraphique et Telephonique
(CCrIT) Recommendation V.35 for wideband electri­
cal signaling, which was adopted in the or iginal
joint document.4 Second, the standards include sig­
naling support for SVCs. The frame relay service is
being standardized by both the American National
Standards Institute (ANSI) committee , ANSI TISI,
and the CCITI.

Frame Protocol
ANSI used the earlier work as a basis for developing
the frame protocol to support the data transfer
phase of the FRBS.5 This protocol op erates at the
lowest sublayer of the data link layer of the
International Organization for Standardization/
Open Systems Interconnection (ISO/OSI) seven­
layer reference model. The protocol is based on a
core subset of link access protocol D (LAP-D),
which is used in the Integrated Services Digital
Network (ISDN). The frame protocol specifies the
following characteristics of the frame relay proto­
col data unit (PDU) or frame:

• Frame delimiting, alignment, and transparency,
provided by h igh-level data link control (HDLC)
flags and zero-bit insertion/extraction.

• Framed integrity verification , provided by a
frame check sequence (FCS). The FCS is gener­
ated using the standard 16-bit CCITI cyclic
redundancy check (CRC) polynomial.

LAN SEGMENTi.--..... ---
ROUTER

FRAME RELAY
INTERFACE

FRAME RELAY FRAME RELAY at
INTERFACE FRAME RELAY INTERFACE

ROUTER lv-~~ ~~-v1 ~ s- E_R_v_1c_E~~~:'--~~~~~ ROUTER

LAN SEGMENT LAN SEGMENT
FRAME RELAY
INTERFACE

ROUTER

LAN SEGMENT ____ __ _

Figure 1 Typical Frame Relay Configuration

IOO Vol. 5 No. 1 Winter 1993 Digital Technical Journal

• Frame relay addressing, using headers of 2, 3, or
4 octets in length. Figure 2 shows the frame relay
header formats. An extended address (E/A) bit is
reserved in each octet to indicate whether or not
the octet is the last one in the header.

Most of the header represents the data link con­
nection identifier (DLCI), which identifies the
frame's virtual circuit. The header may also con­
tain a DLCI or control indicator (D/C) to indicate
whether the remaining six bits are to be inter­
preted as lower DLCI bits or as control bits. For
alignment with LAP-D, the header also contains a
bit to discriminate between commands and
responses (C/R). This bit is not used for support­
ing frame relay access.

The DLCI influences the routing of the frame to
the desired destination. The DLCI is also used to
multiplex PVCs onto the physical link and
enables each endpoint to communicate with
multiple destinations by means of a single
network access. DLCis may have either global or
local significance in the network. In the global
case, the scope of the DLCI extends throughout
the network such that a particular DLCI always
identifies the same destination, thus making the
frame relay network look more like a LAN. In the
local case, the scope of the DLCI is limited to the
particular interface. When local DLCis are used,
the same DLCI can be reused at another interface
to represent a different connection.

• Congestion control and avoidance information.
The frame relay header also contains the forward
explicit congestion notification (FECN) bit, the

DLCI (6 HIGH-ORDER BITS)

Frame Relay Networks

backward explicit congestion notification
(BECN) bit, and the discard eligibility (DE) indica­
tor, which are discussed in the Congestion
Avoidance section.

Permanent Virtual Circuit
Control Procedures
Frame relay PVCs provide point-to-point connec­
tions between users. Although the PVCs are set up
for long periods of time, they can still be con­
sidered virtual connections because network
resources (i.e., buffers and bandwidth) are not con­
sumed unless data is being transferred.

For interface management purposes, the frame
relay interface includes control procedures based
on the LMI definition contained in the original
multivendor specification. These procedures use
messages carried over a separate PVC identified by
an in-channel signaling DLCI. The management mes­
sages are transferred across the interface using data
link unnumbered information frames, as defined
in CCITI Recommendation Q.922.6 The messages
use a format similar to that defined in CCITI
Recommendation Q.931 for ISDN signaling in sup­
port of call control and feature invocation. 1 Each
message is formed from a set of standardized infor­
mation elements defining the message type and
associated parameters. The control procedures per­
form three main functions:

• Link integrity verification initiated by the user
device and maintained on a continuous basis.
This function allows each entity to be confident
that the other is operational and that the physical
link is intact.

CIR E/A = 0

DLCI (4 LOW-ORDER BITS) I FECN I BECN DE EIA = 1

DLCI (6 HIGH-ORDER BITS) CIR E/A = 0

DLCI (4 BITS) I FECN I BECN DE EIA=O

DLCI (6 LOW-ORDER BITS) DIC E/A = 1

DLCI (6 HIGH-ORDER BITS) CIR EIA=O

DLCI (4 BITS) I FECN I BECN DE EIA=O

DLCI (7 BITS) EIA =0

DLCI OR CONTROL (6 LOW-ORDER BITS) DIC EIA= 1

Figure 2 Frame Relay Header Formats

Digital Tecbnical]our11 a l Vol. 5 No. 1 Winter 1993 101

l_

DECnet Open Networking

• When requested by the user, full status network
report providing details of all PVCs. The user
would normally request such a report at start-up
and then periodically.

• Notification by the network of changes in indi­
vidual PVC status, including the addition of a PVC
and a change in PVC state (active/inactive).

The management protocol is defined in Annex
D of ANSI Tl.617, with equivalent functionality
also defined in CCITT Recommendation Q.933,
AnnexA.8,9

E:ffect on Higher-level Protocols
Frame relay provides a multiplexed PVC interface
and, with regard to routing software, can be mod­
eled as a set of point-to-point links. However, the
characteristics of the frame relay service differ from
normal point-to-point links. The major differences
are as follows:

• Round-trip delay across a frame relay network is
normally longer than the delay across a dedi­
cated point-to-point link.

• PVC throughput can be as high as 2 megabits per
second (Mb/s), whereas many existing leased
lines operate at lower rates.

• A single frame relay interface can have multiple
virtual connections (each one going to a dif­
ferent destination) as compared to the tradi­
tional point-to-point link, which supports a
single connection.

Given the specific characteristics just described,
a frame relay interface may have many more pack­
ets in transit than a conventional point-to-point
link. Consequently, an acknowledged data link pro­
tocol whose procedures include retransmission of
data frames is of limited use in this environment.
For a large number of virtual connections, the mem­
ory required to store the data frames pending
acknowledgment would be prohibitive. In addition,
if frames are being discarded due to congestion in
the frame relay subnetwork, the retransmission
policy would increase, rather than recover from,
this congestion. Instead, an unacknowledged data
link layer should be used.

Using an unacknowledged data link protocol has
implications for the routing layer operating over
frame relay. In particular, the data link can no
longer be considered reliable, and the routing pro­
tocol must accommodate this characteristic.

102

Congestion Avoidance
When a frame relay network becomes congested,
network devices have no option but to drop frames
once their buffers become full. With an unacknowl­
edged data link layer, the user device will not be
informed if a data frame is lost. This lack of explicit
signaling when operating over frame relay net­
works places a requirement on the higher protocol
layers in the end-system equipment. The OSI trans­
port layer protocol demonstrates how to deal with
this type of characteristic. The destination end
system's transport implementation detects data loss
and requests the source to retransmit the frame.
The implementation reduces the source's credit to
one, thus closing the source's transmit window
and, in effect, reducing traffic through the con­
gested path.

Frame relay networks are prone to congestion.
Consider the scenario shown in Figure 3. Note that
the committed information rate (CIR) represents
minimum guaranteed throughput. In the configura­
tion shown, the network device can support two
PVCs: one running at 64 kilobits per second (kb/s)
and the other at 128 kb/s. With no back pressure
applied across the frame relay interface, in the
worse case, the network device will become con­
gested. The router can send frames into the
network or a particular PVC at 1 Mb/s that will then
be forwarded at a much slower rate. Once the
network device's buffers are full, it will discard
frames. As a result, routing and bridging control
messages may be lost, thus causing the routing
topology to become unstable. Since this, in tum,
will likely lead to looping packets, a network melt­
down could result.

In addition, if data frames are lost, the higher­
layer protocols in the end system (e.g., the OSI

transport layer) discover this situation and retrans­
mit the lost frames. Repeated transmission of the

ROUTER
(USER
DEVICE)

LAN SEGMENT

FRAME RELAY
INTERFACE

1 MB/S LINE

FRAME
RELAY NODE
(NETWORK
DEVICE)

64 KB/S 128 KB/S
CIR LINE CIR LINE

Figure 3 Example Configuration of Frame Relay
Interface Rate and Permanent Virtual
Circuit Throughput

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

same data causes the effective end-to-end through­
put to drop well below the minimum guaranteed
throughput.

The frame relay header has several mechanisms
that can be used to apply the appropriate back pres­
sure to prevent congestion.

• The FECN bit is set by the network when a frame
experiences congestion as it traverses the
network. In OSI and DECnet Phase V environ­
ments, this bit can be mapped onto the conges­
tion-experienced bit in the header of the
network layer POU. This POU, when subse­
quently delivered to the destination, allows the
destination to discover that the path is con­
gested and to notify the source transport to
decrease its window and thus place less demand
on the network. Standardization work is cur­
rently under way to add similar support to the
transmission control protocol/internet protocol
(TCP/IP).

• The BECN bit is set by the network when a frame
traverses a congested virtual circuit in the oppo­
site direction. This indicator is not perfect,
because there is no guarantee that traffic will be
generated in this direction on the virtual circuit.
A source that detects it is transmitting on a con­
gested path is expected to reduce its offered
load.

• The DE bit, if set, indicates that during conges­
tion the frame should be the first discarded. The
procedures for deciding to set this bit are
not clearly defined. This bit could be set by
(1) the entry node of the network, e.g., when
the input offered load is too high, or (2) the
source user equipment, e .g., to discriminate data
frames from the more important routing control
messages.

Other methods can be used to avoid the conse­
quences of congestion and hence frame loss. The
LMI defined in the multivendor frame relay specifi­
cation contained an optional extension that
included a threshold notification bit in the PVC sta­
tus information element of one of the messages.
The threshold notification bit provided a means of
allowing a network device to asynchronously
inform a user device that a particular PVC connec­
tion was congested. The user device could then
stop transmitting data on the connection until the
network device informed it that the congestion was
alleviated.

D igital Technical J ou rnal Vol. 5 No. I Winter 1993

Frame Relay Networks

Since the loss of routing control messages can
cause network instability, an alternative approach
is to adopt manual configuration. Static network
configurations use reachable addresses to provide
routing information such that the transmission
of routing control traffic is not required. Conse­
quently, the routing behavior is independent of the
performance of the network.

In addition, the user device could implement
rate-based transmission to ensure that virtual cir­
cuits are not congested. However, a means of notify­
ing the user device of the CIR of a virtual circuit was
included only as an optional extension in the LMI
specification, and use of such a method would
destroy one of the major benefits of frame relay, i.e.,
the capability to allocate bandwidth on demand.

In practice, network devices have limited inter­
nal buffering to store frames; this is reflected in the
CIR assigned to PVCs. Consequently, data loss occurs
if user devices consistently transmit data on a PVC
faster than its associated CIR. Adequate procedures
and CPLs that cope with congested situations have
yet to be developed and standardized. As a result,
such situations may lead to unfairness in a multi­
vendor environment where those users who sup­
port congestion avoidance will lose bandwidth to
those who do not.

Products
Below we describe examples of frame relay prod­
ucts: the StrataCom IPX FastPacket equipment,
which provides the frame relay network; and
Digital's DECNIS 500/600 and WANrouter 100/500,
which support the frame relay service by accessing
the interface as user equipment.

The StrataCom !PX FastPacket
Product Family
The StrataCom IPX FastPacket product family can
be used to build networks that support both cir­
cuit-mode voice and data as well as frame relay.
Within the network, the StrataCom IPX FastPacket
nodes communicate using a technique based on
cell switching, which involves the transmission of
small, fixed-length cells. Additional, high-level
functions provide services on top of the basic trans­
mission network. StrataCom uses a hardware-based
switching technique resulting in very high-speed
switching (100,000 to 1,000,000 cells per second).
With such high throughputs and low delays, these
networks have been used for carrying voice, video,
and data traffic.

103

DECnet Open Networking

The StrataCom IPX FastPacket network is config­
ured by network management to provide the
required virtual circuits between users. The
StrataCom cell switching mechanism adopts a sin­
gle-cell format for the transmission of all types of
information, with each cell containing addressing
information. Routing tables within the network
nodes use this addressing information to forward
the traffic along the desired virtual circuit. Since in
any particular connection the path used for the
sequence of cells is always the same, cell ordering is
maintained. Intelligent interfaces at the edge of the
network provide the functions required for spe­
cific services such as voice and data.

Figure 4 illustrates the concept employed by
StrataCom of building service-specific functions on
top of a common cell switching technology. The fig­
ure shows examples of various types of external
interfaces.

For the frame relay interface, StrataCom sup­
ports the optional features defined to address con­
gestion. The IPX FastPacket node provides the
optional explicit congestion indicators defined in
the frame header, which are set based on averaging
queues that build up in the IPX FastPacket nodes in
the network. Support is also provided for the
optional threshold notification feature defined as

ROUTER

FRAME RELAY
INTERFACE

part of the IMI; the actual threshold values, together
with buffer configuration, can be configured by the
network manager.

Frame Relay Support in Digital's Family of
Multiprotocol Routers
Digital has provided frame relay support in its fam­
ily of multiprotocol routers that employ the OSI
intermediate system-to-intermediate system (IS-IS)
routing protocol. Frame relay user device func­
tionality is implemented in the DECNIS V2.1 soft­
ware for either the DECNIS 500 or the DECNIS 600
hardware units, and in the DEC WANrouter Vl.0
software for either the DEMSB or the DEMSA hard­
ware units.

Part of the development of the frame relay sup­
port involved cooperating with StrataCom to pro­
duce a working frame relay specification. In
particular, extensions were added to the LMI to pro­
vide appropriate congestion control procedures.
Digital's software supports the Frame Relay
Specification with Extensions, Revision 1.0, written
by StrataCom and the relevant ANSI TISI
standards. 3, t,s,s The software has been tested and is
known to be compatible with the StrataCom IPX
FastPacket 16/32 equipment with Frame Relay
Interface Card Software.

COMPUTER

~

DATA CIRCUIT
MODE INTERFACE

SERVICE-SPECIFIC FUNCTIONS

COMMON CELL SWITCHING
VOICE CIRCUIT VOICE CIRCUIT

PRIVATE MODE INTERFACE I DIGITAL
MODE INTERFACE PRIVATE

BRANCH " BRANCH
EXCHANGE

TRANSMISSION
EXCHANGE

.
DATA CIRCUIT FRAME RELAY
MODE INTERFACE INTERFACE

ROUTER ROUTER

Figure 4 Sample StrataCom Network Configuration

104 Vol. 5 No. 1 Winter 1993 Digital Technical Journal

The DECNIS and WANrouter implementations use
the point-to-point protocol (PPP) for the transmis­
sion of multiprotocol datagrams over point-to­
point links. PPP is defined in Requests for Comment
(RFCs) 1331 and 1332, with bridging extensions
specified in RFC 1220; support for DECnet Phase IV
is defined in RFC 1376 and for OSI in RFC 1377. 10 -14

Congestion avoidance procedures include support
for both the threshold notification signal in the LMI
(when available) and the FECN. The threshold notifi­
cation signal causes the end system to modify its
rate of data transmission. Receipt of a frame with
the FECN bit set causes the equivalent bit in the
network layer POU header to be set, which in turn
causes the end systems to reduce their offered traf­
fic. The BECN and DE bits are never set or examined.

Related Activities
Various committees are involved in activities related
to the frame relay technology. These activities
include standards work, specifications, and efforts
to address technical issues such as interoperability.

Standards
The overall frame relay network architecture is
defined in ANSI Tl.606, Frame Relay Bearer
Service-Architectural Framework and Service
Description. 1 Access is provided by the frame relay
interface, which is defined in various ANSI stan­
dards for both permanent and switched virtual cir­
cuits. ANSI Tl.618, DSSI-Core Aspects of Frame
Protocol for Use with Frame Relay Bearer Service
contains a definition of the protocol for exchanging

Frame Relay Networks

frames across the interface, as well as annexes
concerned with local management (e.g., notifica­
tion of PVC status).5 Although all implementations
to date have focused on a PVC-based interface, SVC
access is defined in ANSI Tl.617, DSSI-Signaling
Specification for Frame Relay Bearer Service. 8

Each of these TISI standards has an equivalent
CCITI recommendation, as shown in Table l.

Other Current Activities
The Internet Engineering Task Force (IETF) is
developing specifications for RFCs related to
the frame relay technology. A specification called
Multiprotocol Interconnect over Frame Relay
defines an encapsulation mechanism for support­
ing multiple protocols over frame relay networks.
To allow use of the simple network management
protocol (SNMP), an experimental management
information base (MIB) for frame relay DTEs is also
under development.

To promote the frame relay technology, a Frame
Relay Forum has been set up in both North America
and Europe. A technical committee has been estab­
lished to address issues related to the technology in
terms of its interoperability and evolution in multi­
vendor environments. This committee actively par­
ticipates with the standards bodies and develops
implementation agreements and interoperability
test procedures. Work continues to define a
network-to-network control interface, multicast­
ing capabilities, multiple protocol encapsulation,
and interworking with other technologies, such as

Table 1 Current Status of Frame Relay Standardization

Standard ANSI Status CCITT Status Remarks

Architecture T1.606 Standard 1.233 Standard Replaces 1.222
and SVC
Description

Congestion Addendum Standard 1.370 Standard
Management to T1.606
Principles

Data T1.618 Standard Q.922 Standard Most important
Transfer- (Annex A f rame relay
Core Aspects corresponds standard

to T1 .61 8)

Access T1.617 Standard Q.933 Standard
Signaling
forSVCs

Management Included Standard Included Standard Concepts
Procedures in T1 .61 7 in Q.933 accepted
for PVCs Annex D Annex A in CCITI

Digital Teclmical Jou r n a l Vol. 5 No. 1 Winter 1993 105

DECnet Open Networking

the switched multimegabit data service (SMDS)

defined by Bell Communications Research, Inc. 15

The cell switching adopted by StrataCom within
their network is expected to change over time to
conform with emerging CCITI recommendations
for broadband ISDN. 16 These recommendations
cover asynchronous transfer mode (ATM), which
defines a standard cell structure and ATM adaptation
layers (AALs) for particular higher-level functions.

Summary
Frame relay is a simplified form of packet-mode
switching that, at least in theory, provides access
to high bandwidth on demand, direct connectivity
to all other points in the network, and consump­
tion of only the bandwidth actually used. Thus,
to the customer, the frame relay technology offers
a reduction in the cost of transmission lines
and equipment and improved performance and
response time.

Routers connected to a frame relay network can
consider the multiplexed, PVC interface as a set of
point-to-point links. The special characteristics of a
frame relay network require that special care be
taken in selecting the data link protocols and in
handling congestion.

Acknowledgments
The authors thank StrataCom, Inc. for providing
significant input on cell switching technology and
its use in their IPX FastPacket equipment. The
authors would also like to acknowledge Cliff
Didcock of the Computer Integrated Telephony
Development Group who consulted in Digital's ini­
tial frame relay implementation.

References

I. ANSI Tl.606: Frame Relay Bearer Service­
Architectural Framework and Service
Description (New York: American National
Standards Institute, Inc., 1990).

2. CC/IT Recommendation X.25: Interface
between Data Terminal Equipment (DTE)
and Data Circuit-terminating Equipment
(DCB) for Terminals Operating in the Packet
Mode and Connected to Public Data Net­
works lry Dedicated Circuit (Geneva: Interna­
tional Telecommunications Union, 1988).

3. Frame Relay Specification with Extensions,
Revision 1.0, Cisco Systems, Digital Equip­
ment Corporation, Northern Telecom, Inc. ,
and StrataCom, Inc. (September 1990).

I06

4. CC/IT Recommendation V.35: Data Trans­
mission at 48 Kilobits per Second Using
60-108 kHz Group Band Circuits (Geneva:
International Telecommunications Union,
1976).

5. ANSI Tl.618: DSSl-Core Aspects of Frame
Protocol for Use with Frame Relay Bearer
Service (New York: American National Stan­
dards Institute, Inc., 1990).

6. CC/IT Recommendation Q.922: ISDN User­
Network Interface Layer 3 Specification for
Basic Call Control (Geneva: International
Telecommunications Union, 1991).

7. CC/IT Recommendation Q.931: ISDN Data
Link Layer Specification for Frame Mode
Bearer Services (Geneva: International
Telecommunications Union, 1991).

8. ANSI Tl.617: DSSl-Signaling Specification
for Frame Relay Bearer Service (New York:
American National Standards Institute, Inc.,
1990).

9. CC/IT Draft Recommendation Q.933: ISDN
Signalling Specification for Frame Mode
Bearer Services (Geneva: International
Telecommunications Union, 1991).

10. Point-to-Point Protocol/or the Transmission
of Multi-protocol Datagrams over Point-to­
Point Links, Internet Engineering Task Force
RFC 1331 (May 1992).

11. The PPP Internet Protocol Control Protocol
(!PCP), Internet Engineering Task Force RFC

1332 (May 1992).

12. Point-to-Point Protocol Extensions for Bridg­
ing, Internet Engineering Task Force RFC 1220
(April 1991).

13. PPP DECnet Phase IV Control Protocol
(DNCP), Internet Engineering Task Force RFC

1376 (November 1992).

14. PPP OSI Network Layer Control Protocol (OSI
NLCP), Internet Engineering Task Force RFC

1377 (November 1992).

15. Bellcore TR-TSV-000772, Generic System
Requirements in Support of Switched Multi­
Megabit Data Service, Bell Communications
Research, Inc. (May 1991).

16. CC/IT Draft Recommendation 1121: Broad­
band Aspects of ISDN (Geneva: International
Telecommunications Union, 1991).

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

David C. Robinson
Lawrence N. Friedman

Scott A. Wattum

An Implementation of the OSI
Upper Layers andApplications

Above the transport layer, the open systems interconnection (OSI) basic reference
model describes several application standards supported by a common upper layer
protocol stack. Digital's higJ:rpeifonnance implementation of the upper layers of the
protocol stack concentrates on maximizing data throughput while minimizing con­
nection establishment delay. An additional benefit derived from the implementa­
tion is that, for nonnal data exchanges, the delivery delay is also minimized. The
implementation features of Digital's two OSI applications-file transfer, access, and
management (FE4M) and virtual tenninal (VT)-include the use of common code
to facilitate portability and efficient buffer management to improve perjonnance.

The open systems interconnection (OSI) basic
reference model defined in the International
Organization for Standardization standard ISO 7498-1
specifies a layered protocol model consisting of
seven layers. 1 By convention, the first four layers­
physical, data link, network, and transport-are
referred to as the lower layers. 2 These layers pro­
vide a basic communication service by reliably
transferring unstructured user data through one or
more networks. The remaining layers-session,
presentation, and application-build on the lower
layers to provide services that structure data
exchanges and maintain information in data
exchanges to support distributed applications.
These three layers are known collectively as the
upper layers.

This paper first gives an overview of the OSI
upper layers and of two application standards-file
transfer, access, and management (FTAM) and virtual
terminal (VT). The discussion that follows concen­
trates on the features of Digital's implementation of
the upper layers and the two applications, with
emphasis on novel implementation approaches.

Summary of OSI Upper
Layer Standards
The application-independent parts of the OSI upper
layers are defined in the following standards:

• ISO 8326 and ISO 8327 -Session Connection
Oriented Service and Protocol

• ISO 8822 and ISO 8823-Presentation Connec­
tion Oriented Service and Protocol

Digital Technical Journal Vol. 5 No. I Winter 1993

• ISO 8824-Abstract Syntax Notation One (ASN.l)

• ISO 8825-Basic Encoding Rules (BER)

• ISO 8649 and ISO 8650-Association Control
Service Element (ACSE)

This section gives an overview of the services
defined in these standards. The later sections File
Transfer, Access, and Management Implementation
and Virtual Terminal Implementation discuss two
application-specific standards.

Session Layer
The transport layer service facilitates the exchange
of unstructured bytes (i.e., octets) of data. How­
ever, exchanges between components of a distrib­
uted application are often structured. The function
of the session layer is to standardize some of the
common exchanges by supplying services that add
structure to the transport layer exchanges.

The session-connection-oriented service has the
three phases typical of all connection-oriented ser­
vices: connection establishment, data transfer, and
connection release. All structuring of the data
exchanges occurs in the data transfer phase and is
accomplished by using either tokens or synchro­
nization. Hence, the connection establishment and
release phases are not discussed further in this
paper.

Tokens are used to control which peer session
user of a session connection is permitted to invoke
a particular service or group of services. The
session layer also provides services to exchange

107

DECnet Open Networking

tokens between peer session users. There are four
types of tokens.

1. Data, for controlling half-duplex data exchanges

2. Release, for controlling which session user can
initiate the release of a session connection

3. Synchronize-minor, for controlling the issuing
of the minor synchronization service

4. Major/Activity, for controlling the issuing of
major synchronization and activity services

For example, when the data token has been nego­
tiated on a session connection, session data can be
sent only by the end that currently has the token.
Exchanging the data token between the session
users provides a half-duplex data service.

The data transfer phase provides synchroniza­
tion by allowing session users to insert major and
minor synchronization points into the data being
transmitted. Optionally, each direction of flow can
have its own set of synchronization points.

Figure 1 illustrates a data exchange structured as
a single dialog unit. A dialog unit begins at a major
synchronization point and terminates either at a
new major synchronization point or by the release
of the session connection. Further structure is pos­
sible within the dialog unit by inserting minor syn­
chronization points.

The session synchronization services allow
applications to insert synchronization points into
their data exchanges. These points are application
specific. The session service also provides a resyn­
chronization service to allow a session user to
request its peer to resynchronize to an earlier
synchronization point, for example, to a previous
point in a file transfer.

Activities provide an additional structuring ser­
vice. An activity represents a logical piece of work.
At any moment in time, there is at most one activity
per session connection. However, several activities
can exist during the lifetime of a session connec­
tion, and an activity can span session connections.
The synchronization services can be used with
activities services.

------- DIALOG UNIT ------+-

MAJOR

108

MINOR MINOR MINOR MAJOR

Figure 1 Data F.xchange Structured
as a Dialog Unit

Presentation Layer
Different computer architectures and compilers
use different internal representations (i.e., con­
crete syntax) for data values. Therefore, conversion
between representations is necessary when com­
municating between dissimilar architectures. The
intent of the presentation layer is to allow commu­
nicating peers to negotiate the data representation
to be used on a presentation connection.

The presentation standards, ISO 8822 and ISO

8823, distinguish between abstract syntax and
transfer syntax. Abstract syntax is the definition of
a data type independent of its representation.
Typically, data types are defined using the ASN.l

standard, ISO 8824, which was developed for this
purpose. ASN.l has a number of primitive data
types, including INfEGER, REAL, and BOOLEAN, as well as
a collection of constructed data types, including SET

and SEQUENCE OF. These primitive and constructed
data types can be used to define the abstract syntax
of complex data types such as application protocol
data units.

A transfer syntax is the external communication
representation of an abstract syntax. Values from
the abstract syntax are encoded according to the
rules defined in the transfer syntax. A common way
to define a transfer syntax is in terms of encoding
rules. For example, these rules may indicate how an
INTEGER value is represented or how to encode a
SEQUENCE OF data type. A widely used transfer syntax
is the basic encoding rules specification, ISO 8825.

An abstract syntax can be encoded using differ­
ent transfer syntaxes, of which there are many The
role of the presentation layer is to negotiate the set
of abstract syntaxes to be used on a particular pre­
sentation connection and to select a compatible
transfer syntax for each of these abstract syntaxes.
This process ensures that both peers agree on the
data representation to be used in data exchanges.

Application Layer
The application layer supports distributed interac­
tive processing, that is, the communication aspects
of distributed applications such as FTAM (defined
by ISO 8571), directory service (defined by ISO

9594), and VT (defined by ISO 9040 and ISO 9041).
Unlike for the session and presentation layers,
numerous application layer protocols and services
exist-at least as many as there are distributed
applications.

The application layer structure specified in
ISO 9545 defines a model for combining these

Vol. 5 No. 1 Winter 1993 Digital Technical]oun,al

An Implementation of the OSI Upper Layers and Applications

protocols in the same system. The functions for a
particular application are grouped together to form
an application service element (ASE). FfAM, vr, and
directory service are examples of ASEs and are the
basic building blocks of the application layer. One
or more ASEs are combined to form an application
entity (AE). An AE represents a set of communica­
tion resources and can be thought of as a program
on a disk. An invocation of an AE (i.e., execution of
the program) can contain one or more instances of
an ASE with one or more application associations,
i.e., application layer connections. The AE specifica­
tion also defines the rules for interaction between
ASEs operating over the same association as well as
interactions between associations.

An ASE required by all applications is called the
association control service element (ACSE). The
ACSE, defined by ISO 8649 and ISO 8650, is the ser­
vice and protocol required to establish an applica­
tion association. Therefore, an AE always contains
at least the ACSE.

An application association is mapped onto a pre­
sentation connection; no other application associa­
tion can share this presentation connection. In this
way, applications gain access to the presentation
and session data phase services.

New OSI Upper Layer Implementation
Digital's implementation of the OSI upper layers,
namely OSAK, includes session, presentation, and
ACSE services. Users of OSAK can thus establish
application associations and use session and pre­
sentation services during the data transfer phase.

Aims
In 1988, when Digital decided to produce a new
version of OSAK, three aims were considered
paramount: high performance, maintainability, and
portability

Performance High performance of the OSI upper
layers is essential to producing competitive OSI
products. Because all OSI applications use these
upper layers, the performance of OSAK affects these
applications. Therefore, OSAK aims to maximize
data throughput and to minimize connection estab­
lishment delays. This improved performance is
achieved by maximizing the use of the communica­
tion pipe and minimizing the local processing
requirements. The process involves

Digital Tecbntcal]ournal Vol. 5 No. 1 Winter 1993

1. Amalgamating upper layer state tables. The ser­
vices provided by the presentation and session
layers are similar. Also, connection establish­
ment and release in the ACSE is basically the same
as in the other two upper layers. Therefore, the
three state tables can be combined into a single
state table, thus improving performance by
reducing the overhead. This amalgamation elim­
inates the need to manage links between state
tables, requires all predicates to be tested in only
one place, and generates only one state transi­
tion or action per inbound event.

2. Treating the presentation service P-DATA as a
special case. The presentation service P-DATA
is the most frequently used service, and hence,
its performance has the greatest impact on data
throughput. By fast-laning the processing of the
P-DATA service, the normal overheads associated
with the combined state table processing are
avoided.

3. Good buffer management. The new application
programming interface (API) to OSAK enables
efficient use of buffers. We eliminated all copy­
ing of user data within OSAK by taking advantage
of user buffers. On an outbound service, an
OSAK user is requested to leave space at the start
of the user data. If there is sufficient space, we
add the OSI upper layer protocol control infor­
mation (PCI) to the user buffer. This buffer is
then sent to the transport provider. Otherwise,
we allocate an OSAK-specific buffer using a user­
supplied memory allocation routine.

Before receiving an inbound service, the user
must pass at least one user buffer to OSAK. This
buffer is used to receive the inbound transport
event (both user data and upper layer PCI). The
upper layer PCI is decoded before the user
buffers are returned. In addition to being
extremely efficient, this approach has the advan­
tage of allowing OSAK users to exert inbound
flow control; if OSAK is not given any buffers, no
transport events will be received. Also, this buf­
fering scheme simplifies resource management
in OSAK. As OSAK does not have any of its own
resources, they all come from OSAK users. One
OSAK user cannot interfere with the operation of
another OSAK user by consuming all OSAK
resources.

4. Parsing only the upper layer headers. The pre­
sentation layer standards model the mapping

109

DECnet Op en Networking

between concrete (internal) and transfer (exter­
nal) representation of data values. In particular,
the presentation state tables contain predicates
to verify that all user data is from a current pre­
sentation context. Since the best place for
encoding and decoding is in the application
itself, OSAK does not implement these predi­
cates. Rather, OSAK assumes that its users have
correctly encoded their own protocol and will
detect any problems when decoding.

5. Trading memory for performance. All encoding
and decoding of upper layer PCI is done with
in-line code. More compact coding is possible
using subroutines but at the cost of performance.

6. Minimizing parameter checking. Most parame­
ters are pointers to user buffers. To check the
validity of all pointers is time-consuming and,
consequently, costly. Therefore, OSAK assumes
that the pointers do indeed point to the user's
memory.

Maintainability The code for the new version of
OSAK is easier to maintain than the previous code.
As stated earlier in this section, a major step in
improving the maintainability was the use of amal­
gamated state tables. A single state table eliminates
links between tables, reduces the amount of main­
tenance required, and thus simplifies the code. In
addition, using a single table makes it easier to seri­
alize events. With multiple state tables, an inbound
transport event can trigger a conflicting state
change in the session state table at the same time a
user request is changing the presentation state
table. Using a single state table for a particular con­
nection ensures that only one event (i.e., either a
user or a transport event) is active in the state table
at any given time.

The state tables are written in M4 macroproces­
sor notation. Thus, the OSAK state table definition
is similar to an OSI protocol specification; this
improves readability. Macros are also used exten­
sively to handle common buffer manipulation and
the encode and decode functions. Although macros
are preferred over subroutines to improve perfor­
mance, macros can be converted, at the expense of
slower performance, should a more compact ver­
sion of OSAK be required.

Portability The new version of OSAK is designed
to facilitate portability of applications using both
the OSAK API and OSAK itself. The new OSAK API
is designed to be common across all platforms

110

and thus assists porting applications between
platforms. The only major difference between
the versions for the ULTRIX and the OpenVMS
operating systems is the way events are signaled.
The ULTRIX implementation supports both a poll­
ing model and an event-driven or blocking model.
With the polling model, the OSAK user repeatedly
calls OSAK routines to test for completion of an
event; the routines used are osak_collect_pb()
or osak_get_event() . In the blocking model, the
OSAK user blocks awaiting the event, with the
osak_select() routine.

These three routines are available to OpenVMS
applications. In addition, the OpenVMS implemen­
tation supports event notification by asynchronous
system traps (ASTs).

Also, the OSAK API is similar to XAP, the X/Open
API to the OSI upper layers. To support OSAK on
multiple platforms, as far as possible, OSAK code
is common to all platforms. The main differences
are the interface to the transport layer and the
Open VMS support for ASTs. Over 90 percent of the
code is common to the ULTRIX and the OpenVMS
versions.

Performance Measurements
Two performance metrics, throughput and connec­
tion establishment delay, were measured between
two DECstation 3100 workstations connected by a
lightly loaded Ethernet communications network.
The DECstation machines were running ULTRIX
V4.2 with DECnet-ULTRIX VS.I. OSAK accessed OSI
transport through the X/Open transport interface
(XTI) in nonblocking mode.

For throughput measurements, two programs
were used: an initiator and a responder. The initiator

1. Establishes an association.

2. Reads the system time.

3. Transmits 2,000 buffers of data as quickly as pos­
sible. These user buffers contain sufficient space
for the upper layer headers. When a send request
fails due to flow control, the sender waits using
the ULTRIX system call select(2) until the flow
control is removed. The sender then collects the
user buffers with the osak_collect_pb() routine
before continuing with the send loop.

4. Reads the system time and calculates the time
required to transmit the 2,000 buffers.

5. Releases the association.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

An Implementation of the OSI Upper Layers and Applications

The responder

1. Accepts an association request

2. Loops, waiting for a transport event using the
ULTRIX system call select(2), and then collects
the data using the osak_get_event() routine
until all 2,000 buffers have been received

3. Responds to the request to release the association

Table 1 records the throughput measurements
for various buffer sizes ranging from 10 to 16,000
(16K) octets per buffer.

The data presented in Table 1 indicates that for
small buffers, the throughput is poor. This low per­
formance is due to the system overhead associated
with processing a send request, independent of the
amount of data to be transmitted. However, the
throughput rapidly improves until the buffer size
reaches 4K octets. From this size on, the through­
put measurement is almost flat at between 507K
and 528K octets per second. The variation is due to
fragmentation in the lower layers. The number of
send requests flow controlled represents the num­
ber of times a send request was delayed because of
flow control by the transport service in the course
of transmitting the 2,000 buffers.

We profiled the initiator and the responder. For
buffers ranging in size from 10 to 16K octets, the ini­
tiator spent more than 90 percent of the time in
transport. For the responder, the percent of time
spent in transport varied between 60 percent for
IO-octet buffers and 92 percent for SK-octet
buffers. The remaining time was spent primarily in
select(2), waiting for and processing the next

Table 1 Throughput Measurements for
Digital's OSI Upper Layer
Implementation

Number of
Buffer Size Throughput Send Requests
(Octets) (Kilooctets/s) Flow Controlled

10 6.60 2
100 56.80 4
512 216.00 35

1,024 266.60 794
2,048 372.60 862
4,096 453.70 1,151
6,000 507.00 1,217
8,124 528.80 596
8,125 507.10 651

10,000 527.20 751
13,000 522.20 1,101
16,000 505.27 1,279

Digital Technical Journal Vol. 5 No. I Winter 1993

inbound event. Also, for the small buffers, a signifi­
cant amount of time is consumed by initializing the
user parameter block before returning it to the user.

We also used the throughput program to mea­
sure the connection establishment time. The pro­
gram read the system time before and after the
association establishment phase; the average con­
nection establishment time was 0.08 seconds. In
addition, tests on the new OpenVMS implementa­
tion indicate that throughput improved two to
three fold as compared to the OSAK code in the pre­
viously existing Open VMS implementations.

Both the throughput and profile data indicate
that the transport performance dominates the per­
formance of OSAK. Therefore, OSAK has met its
design goal of reducing the overhead of the OSI
upper layers to a very low level. Meeting this goal
was necessary because poor OSAK performance
would impact all OSI applications supported by
OSAK. While further reductions in overhead are
possible, such savings would be at the expense of
OSI upper layer functionality.

File Transfer, Access, and
Management Implementation
This section presents a summary of the ISO FTAM
standard and details of Digital's implementation of
this standard.

Summary of the ISO FD1M Standard
ISO 8571 File Transfer, Access, and Management
(FfAM) is a five-part standard consisting of a general
introduction, a definition of the virtual file store,
the file service, the file protocol definitions, and
the protocol implementation conformance state­
ment proforma. The FTAM standard defines an ASE
for transferring files and defines a framework for
file access and file management.

Initiator and Responder FfAM service and proto­
col actions are based on a client-server model. In
the FfAM standard, the client is referred to as the ini­
tiator, and the server is referred to as the responder.

The initiator is responsible for starting file ser­
vice activity and controls the protocol actions that
take place during the dialog (or FTAM association)
between two FTAM applications. For example, the
initiator has to request that an FfAM association be
established, that a file be opened on a remote sys­
tem, and that a file be read from a remote system.

The responder passively reacts to the requests of
the peer initiator. The responder is responsible for

111

DECnet Open Networking

managing the virtual file store and mapping any vir­
tual file attributes into local file attributes.

Virtual File Store Many architectures and imple­
mentations of file systems exist, and storing and
accessing data can differ from one system to
another. Therefore, a mechanism is needed to
describe files and their attributes independent of
any particular architecture or implementation. The
mechanism used in the FTAM is called the virtual file
store. The FTAM virtual file store model consists of
file attributes, activity attributes, file access struc­
ture, and document types.

File attributes describe the properties of the file,
which include the size and the date of creation.
FTAM file attributes also define the types of actions
that can be performed on a file . Read access or
create access are examples of file actions.

Activity attributes are properties of the file,
w hich are in effect for only the duration of the FTAM
association. Examples of activity attributes are
current access request, current initiator identity,
and current concurrency control. Current access
request conveys the access control applied to the
file, e.g., read or write access. Current initiator iden­
tity conveys the name of the initiator accessing the
virtual file store. Current concurrency control con­
veys the status of the locks applied by the initiator.

The FTAM file access structure is hierarchical and
produces an ordered tree that consists of one or
more nodes. This file access structure is defined in
ASN.l and can be used to convey the structure of
a wide variety of files.

In the FTAM virtual file store model, document
types specify the semantics of a file's contents. The
FTAM standard defines four document types.

• FTAM-1, unstructured text files

• FTAM-2, sequential text files

• FTAM-3, unstructured binary files

• FTAM-4, sequential binary files

The virtual file store model provides a framework
for defining many different file types, including
those not supported by the standardized document
types. The U.S. National Institute of Standards and
Technologies (NIST) has used the virtual file store
model to define document types to support various
file types, such as indexed files.

FTAM File Service The FTAM file service is a func­
tional base for remote file operations. Functionality
defined by the FTAM file service is broken down

112

into subsets of related services. The subsets of func­
tionality are called functional units. Functional
units are used by the FTAM protocol to convey a
user's requirements. For example, the standard
defines the read functional unit, which allows an
implementation to read whole files, and the file
access unit, which allows an implementation to
access records in the file.

In addition, the FTAM standard defines the follow­
ing classes of file service: transfer, management,
transfer and management, access, and uncon­
strained. Each service class is composed of a set of
functional units. For example, an FTAM implementa­
tion that supports the transfer service class will be
able to either read or write files.

New FTAM Standard Work Modifications to the
FTAM standard are in progress in the ISO. The most
important modification is the file store manage­
ment addendum, which specifies how wild cards,
file directories, and references (links) to files are to
be handled in an OSI environment. The addendum
also specifies how to manipulate groups of files. In
the current version of the standard, only one file
can be selected at a time.

Digital's FrAM Implementation
Digital's FTAM products, available for the OpenVMS
and ULTRIX operating systems, support FTAM appli­
cations in both the role of initiator and the role of
responder. The initiator applications allow users to
copy, delete, rename, list, and append files. In the
OpenVMS version, the initiator applications are
integrated into the Digital Command Language
(DCL) so that the user can continue to use the
COPY, DELETE, DIRECTORY, and RENAME com­
mands. Where the FTAM service and protocol is
used to support these commands, the additional
qualifier /APPLICATION=FTAM is required. In the
ULTRIX version, the same functionality is provided
using the set of commands ocp, orm, ols, ocat,
and omv. These commands have the same seman­
tics as the corresponding ULTRIX commands cp,
rm, ls, cat, and mv, respectively, and are similar
to the set of DECnet file transfer utilities of dcp,
drm, dls, and dcat. (Note that the set does not
include dmv.)

The responder applications allow users to cre­
ate, read, write, delete, and rename files. File
access, i.e., the location of specific records in a file,
is also supported by the responder applications.
The OpenVMS responder application supports file
locking and recoverable file transfer.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

An Implementation of the OSI Upper Layers and Applications

Digital's initiator and responder applications sup­
port the following FTAM document types:

• FTAM-1

• FTAM-2

• FTAM-3

• NBS-9, FTAM file directory

Programmatic Interface The FTAM API is com­
mon across all platforms and shares a "look and
feel" with the OSAK APL The FTAM API allows access
to all FTAM services and parameters through the
use of a single parameter block and five library
calls.

• osif_assign_port()

• osif_deassign_port()

• osif_getevent()

• osif_send()

• osif_give_buffers()

The FTAM API can be used to create either initiator
or responder applications.

Protocol Gateways Digital's FTAM products sup­
port two protocol gateways: an FTAM/file transfer
protocol (FTAM/FTP) gateway is available on the
ULTRIX version, and an FTAM/data access protocol
(FTAM/DAP) gateway is available on the OpenVMS
version. The FTAM/FTP gateway supports bidirec­
tional protocol translation. Files on internet hosts
can be accessed through the gateway using FTAM;
files on OSI hosts can be accessed through the gate­
way by using FTP.

Implementation Features Portability, maintain­
ability, and performance were the major goals of the
FTAM implementation. To achieve these goals we

1. Created a common code base. The code is imple­
mented using the C programming language. The
FTAM protocol machine and the initiator and
responder application programs are imple­
mented such that a large amount of the code can
be used across multiple platforms. These mod­
ules are referred to as common code modules.
Any system-specific code, which represents 90
percent of the code, is placed in system-specific
modules. All other modules are common to both
the ULTRIX and the Open VMS versions.

D igital TecbntcalJournal Vol. 5 No. 1 Winter 1993

2. Hid interface dependencies from FTAM. To aid in
the porting of code to different platforms, the
FTAM implementation makes no direct calls to
system-specific interfaces.

3. Provided good buffer management. The FTAM
implementation uses the same buffer manage­
ment model as OSAK, described earlier in the sec­
tion New OSI Upper Layer Implementation.

Virtual Terminal Implementation
Digital also implemented the OSI virtual terminal
application standards. Details of the standards and
features of the implementation follow.

Summary of the VT Standards
ISO 9040 and ISO 9041 are the two international
standards that define the OSI virtual terminal. ISO
9040 is concerned primarily with specifying a
model for a virtual terminal basic class service; ISO
9041 defines the protocol to be used.

OSI virtual terminals are divided into five classes,
based on functionality.3

1. Basic-data consisting of rectangular arrays of
characters

2. Forms-data consisting of characters arranged
in fields of variable size and shape, with the
manipulation of content controllable for each
field

3. Text-data representing document structures as
covered by the Office Document Architecture
standards (ISO 8613 series)

4. Image-data representing images composed of
arrays of dots, i.e., pixels

5. Graphics-data representing computer graphics
elements, such as lines and circles

To date, most of the work within the ISO has con­
centrated on the basic terminal class, i.e., basic
class virtual terminal (BCVf). An OSI virtual termi­
nal implementation provides a mechanism that
allows a user to interactively access another OSI
system, when not directly connected to it. Since a
variety of systems and terminals exist that are not
necessarily compatible with each other, the ISO vr
protocol provides a means by which dissimilar ter­
minals and systems may interact.

An example of a dissimilar terminal and system
interacting by means of a vr would be the action of
deleting a typed character. Some systems expect
the terminal user to enter the <delete> character

113

DECnet Open Networking

as an indication of the intent to delete, whereas
other systems may expect the user to enter a
<backspace> character. vr resolves these differ­
ences by translating the local action into a virtual
action. The action in our example becomes the
virtual actions of decrementing the current cursor
position and erasing the character at the current
location. A cooperating implementation would
then translate these virtual actions into an appro­
priate local action.

The vr protocol is very powerful in the respect
that the protocol definition provides many options
and features that allow the support of complex ter­
minal models. During association establishment,
cooperating implementations agree on the subset
of the protocol and the terminal model to be used.
The protocol subset and terminal model are
referred to as the profile. In addition, vr provides
two modes of operation: asynchronous (A-mode),
which may be thought of as full-duplex operation,
and synchronous CS-mode), which may be thought
of as half-duplex operation.

The ISO base standards define two basic profiles,
one for each mode. Additional profiles have also
been defined (or are being prepared) by the
regional OSI workshops. Currently, the OpenVMS
and ULTRIX implementations of the vr protocol
both support the following profiles:

1. TELNEf-1988, which mimics the basic functional­
ity found in the transmission control protocol/
internet protocol teletype network (TCP/IP
TELNET) environment

2. Transparent, which allows the sending and
receiving of uninterpreted data

3. A-mode- default, which provides basic A-mode
functionality

Digitals VT Implementation
Digital's vr implementation provides both initiator
and responder capabilities. In addition to describ­
ing the features of the implementation, this section
compares the vr protocol with other network ter­
minal protocols.

Initiator and Responder The vr implementation
for both the ULTRIX and the Open VMS systems pro­
vides the capability to act as either an initiator (a
terminal implementation) or a responder (a host
implementation) . The initiator is responsible for
establishing an association with the responder
based on information provided by the user, such as

114

the desired profile. The responder is responsible for
accepting the peer association request and for creat­
ing an interactive context for the remote peer user.

On the Open VMS system, the vr protocol initia­
tor is invoked by the DCL command SET HOST/Vf P;
on the ULTRIX system, the vr protocol initiator is
invoked using the ologin command.

Implementation Features The vr implementa­
tion uses the OSAK interface outlined earlier in the
paper. The goals of the vr implementation were to
provide a highly portable, very efficient, and easily
extensible code.

To achieve the goal of portability, the implemen­
tation was divided into two major components:
interface to the OSI environment and the non-OSI
interfaces (e.g. , to terminals). The OSI component
is completely portable to multiple p latforms. The
non-OSI component is platform specific and must
be rewritten for each unique platform. The inter­
face between these components consists of six
basic functions, which must be supported on all
platforms.

• Attach/detach-to attach and detach the non­
OSI environment

• Open/close-to open or close a specific connec­
tion into the non-OSI environment

• Read/write- to read or write data between the
OSI and the non-OSI environments

Because each function is simple and clearly
defined, the amount of platform-specific code
required for implementation is minimal. For exam­
ple, the read function on the ULTRIX implementa­
tion is only 10 lines of code. The implementation is
therefore highly extensible to different platforms.

Performance of the vr protocol implementation
is enhanced by using preallocated buffer pools.
This approach to buffer management eliminates the
overhead of dynamically allocating buffers.

Our vr protocol implementation not only
implements the ISO vr protocol but also provides
a gateway to and from other terminal protocol envi­
ronments. We provide gateways to TELNEf and to
the Local Area Transport (LAT) on both the
OpenVMS and the ULTRIX versions. In addition, we
have a Vf/command terminal (Vf/CTERM) gateway
on the ULTRIX version.

Comparison of the VT Protocol with Other
Network Terminal Protocols Most comparisons
with network terminal protocols deal with echo

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

An Implementation of the OSI Upper Layers and Applications

response time, that is, how long it takes for a char­
acter to echo to a display after being typed at the
keyboard. vr, like TELNET and CTERM, can operate
in two different echo modes: remote, where the
echo is achieved by means of the remote host; and
local, where the echo is accomplished through the
local host. A number of factors contribute to
response time in a remote echo situation, including
protocol overhead and line speed. TELNET has little
protocol overhead; in fact, for most situations,
transferring normal data requires no additional
overhead. vr protocol overhead is approximately
30 to 1 for a typical A-mode profile, that is, 30 octets
are required to carry 1 octet of user data. vr over­
head may seem excessive when compared with
TELNET. However, the vr protocol provides many
additional capabilities that TELNET does not, such
as the ability to accurately model different terminal
environments. Additionally, the 30 octets of over­
head does not increase significantly when larger
amounts of user data are transferred.

The largest gains for the vr are in the area of
S-mode profiles. S-mode profiles enable most char­
acter echoing to be done locally. By using an appro­
priate S-mode profile, the vr implementation can
provide sophisticated local terminal operations.
Thus, it is possible to edit an entire screen of text
and then to transmit it all at once to the remote
host. The ability to process large amounts of termi­
nal input as batch jobs has many advantages, includ­
ing reduced network bandwidth requirements,
reduced CPU requirements of the remote host
(since the remote host is no longer involved in char­
acter echo), and increased user satisfaction (since
users experience no network delays for character
echo).

Summary
Goals common to the OSAK, FTAM, and vr protocol
projects included good performance and portabil­
ity of implementation. Performance is especially
important for OSAK, because it supports all other
OSI applications. Maximizing the use of common
code and reducing system dependencies in the
three projects significantly reduced the engineer­
ing effort to port an implementation from one plat­
form to another. This savings in human resources is
necessary, given the growing set of hardware and
operating platforms supported by Digital. Equally
important is the integration of OSI applications with
their non-OSI counterparts, for example, the ocp
and ologin functions and the protocol gateways.

Digital Techntcaljournal Vol. 5 No. 1 Winter 1993

Acknowledgments
The authors would like to thank their colleagues for
reviewing previous drafts of this paper. In particu­
lar, we would like to thank Chris Gunner and Nick
Emery, who were instrumental in revising the OSAK
API, and the OSAK team, who converted the
advanced development code into the product.

References

1.]. Harper, "Overview of Digital's Open Net­
working;' Digital Technicaljournal, vol. 5, no. 1
(Winter 1993, this issue): 12-20.

2. L. Yetto et al., "The DECnet/OSI for OpenVMS
Version 5.5 Implementation," Digital Technical
Journal, vol. 5, no. 1 (Winter 1993, this issue):
21-33.

3. P. Lawrence and C. Makemson, "Guide to ISO
Virtual Terminal Standards," Information Tech­
nology Standards Unit (UK), Department of
Trade and Industry (March 1988).

General References

Information Processing Systems, Open Systems
Interconnection, Part 1: Basic Reference Model
(International Organization for Standardization,
reference no. ISO 7498-1, 1984).

Information Technology, Open Systems Intercon­
nection: Connection Oriented Session Service
Definition (International Organization for Stan­
dardization, reference no. ISO 8326, 1987).

Information Technology, Open Systems Intercon­
nection: Connection Oriented Session Protocol
Deji·nition (International Organization for Stan­
dardization, reference no. ISO 8327, 1987).

Information Processing Systems, Open Systems
Interconnection, File Transfer, Access, and Man­
agement: Part 1, General Introduction; Part 2,
Virtual File Store; Part 3, File Service Definition;
Part 4, File Protocol Specification; and Part 5,
Protocol Implementation Conformance State­
ment Proforma (International Organization for
Standardization, reference no. ISO 8571, 1988).

Information Processing Systems, Open Systems
Interconnection: Service Definition for the Associ­
ation Control Service Element (International
Organization for Standardization, reference no. ISO
8649, 1988).

115

DECnet Open Networking

Information Processing Systems, Open Systems
Interconnection: Protocol Specification for the
Association Control Service Element (Interna­
tional Organization for Standardization, reference
no. ISO 8650, 1988).

Information Processing Systems, Open Systems
Interconnection: Connection Oriented Presenta­
tion Service Definition (International Organization
for Standardization, reference no. ISO 8822, 1988).

Information Processing Systems, Open Systems
Interconnection: Connection Oriented Presenta­
tion Protocol Specification (International Organi­
zation for Standardization, reference no. ISO 8823,
1988).

Information Processing Systems, Open Systems
Interconnection: Specification of Abstract Syntax
Notation One (ASN.1) (International Organization
for Standardization, reference no. ISO 8824, 1987).

116

Information Processing Systems, Open Systems
Interconnection: Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1)

(International Organization for Standardization,
reference no. ISO 8825, 1987).

Information Technology, Open Systems Intercon­
nection: Virtual Terminal Basic Class Service
(International Organization for Standardization,
reference no. ISO 9040, 1990).

Information Technology, Open Systems Intercon­
nection: Virtual Terminal Basic Class Protocol
(International Organization for Standardization,
reference no. ISO 9041, 1990).

Information Processing Systems, Open Systems
Interconnection: Application Layer Structure
(International Organization for Standardization,
reference no. ISO 9545, 1989).

Vol. 5 No. 1 Winter 1993 Dtgttal Technical Journal

Network Mariagement

Mark W. Sy/or
Francis Dolan

David G. Shurtleff

DECnet/OSI Phase V incorporates a new network management architecture based
on Dtgital's Enterprise Management Architecture (EMA). The EMA entity model was
developed to manage all entities in a consistent manner, structuring any manage­
able component regardless of its internal complexity. The DNA CMIP management
protocol was developed in conjunction with the model to express the basic concepts
in the entity model. Phase V network management is extensible; the Phase V
management architecture transparently assimilates new devices and technolo­
gies. Phase V was designed to be an open architecture. Management of DECnet/OSI
Phase V components is effective in a multivendor network.

Network management has been an integral part of
DECnet since 1976 when Phase II was developed.'
Even at that early stage of the DECnet architecture,
an effective management capability was recognized
as an essential part of an organized approach to
networking. Now in DECnet Phase V, the DECnet
network management architecture has undergone
a major revision based on Digital's Enterprise
Management Architecture (EMA). This paper gives
an overview of some of the key features and func­
tions of EMA and of DECnet Phase V network man­
agement. See the "Overview of Digital's Open
Networking" paper in this issue for an overview of
the guiding principles, background, and architec­
ture of DECnet Phase V.2

Our initial work on Phase V indicated that
changes were needed in the network management
architecture to support the broad range of network­
ing functions planned for Phase V. First, network
managers would have to be able to manage all the
Phase V components in a consistent manner. A
method was needed to build Phase V management
components that would give the same general look
and feel and the same modeling approach to all
components.

Second, Phase V network management would
have to be extensible. The Phase V network archi­
tecture was being designed to allow the use of mul­
tiple modules that would provide the same or
similar services at each layer and to simultaneously
support multiple-layer protocols in a network.
Therefore, we designed the Phase V manage­
ment architecture to transparently assimilate new
devices and technologies. Our management archi-

D igita l Technical journal Vol. 5 No. 1 Winter 1993

tecture had to become as extensible as the network
architecture.

Finally, since Phase V was designed to be an open
architecture, management of Phase V components
would have to be effective in a multivendor net­
work. Our design had to ensure that the ability to
provide effective management of network compo­
nents was independent of the vendors supplying
them.

The individual management mechanisms used in
Phase IV could have been extended to accommo­
date all the changes planned for Phase V. However,
we felt it was time to revisit the basic network man­
agement architecture to see if we could find a uni­
fied approach that would provide a superior
solution.

Enterprise Management
Architecture
We began our Phase V development project by
examining in detail the requirements for a new
network management architecture. Our goal was to
design an open architecture that allowed for consis­
tent management of an extensible array of network
components in a multivendor environment. As we
identified the specific requirements that would
have to be addressed to meet this goal, we realized
that we had the opportunity to develop an architec­
ture that went beyond management of Phase V net­
works. We realized that we could provide an
architecture for the management of both networks
and systems. The architecture eventually became
known as the Enterprise Management Architecture
or EMA.

117

DECnet Open Networking

Early in the project, we recognized that the con­
ceptual separation of manageable components
from the software that manages them was a funda­
mental design principle. EMA therefore distin­
guished entities, the basic components of the
network that had to be managed, from directors,
the software systems and accompanying applica­
tions used by managers to manage the components,
as shown in Figure 1.

Formally, an entity was further split into a ser­
vice element, a managed object, and an agent. The
service element is the portion of the entity that per­
forms the primary function of the entity, e.g., a data
link layer protocol module whose primary purpose
is communication with a peer protocol module on
another machine. The managed object encapsu­
lates the software that implements the functions
supported by the entity for its own management.
For example, it responds to management requests
for the current values of state variables or to
requests for the values of certain configuration vari­
ables to be set to new values. The agent is the soft­
ware that provides the interface between the
director and the managed object. The agent encodes
and decodes protocol messages it exchanges with
the director and passes requests to and receives
responses from the managed object.

Informally, we generally equate the managed
object and the entity because the managed object
defines what the manager can monitor and control
in the entity.

A director was modeled as a layered software
system that provides a management-specific envi­
ronment to management applications. A director
was split into a framework, a management informa­
tion repository (MIR), and separate configurable
software modules called management modules.
The director kernel provides common routines
useful for the layered software modules, including

/
/

/

·--------,
I KNOWLEDGE, I
I POLICIES, AND
I PROCEDURES I

•---- ---• /

() DIRECTORS ENTITIES
CONTROL

MANAGEMENT
MANAGER PROTOCOL

Figure I The Basic Entity/Director Split

118

services such as dispatch (location-transparent
exchange of management requests and responses
with entities), encoding/decoding, data access,
data dictionary access, and event management.
Taken together, the director kernel and the agent
provide a framework for managed objects and man­
agement applications to interact. The framework
provides an application programming interface
(API) to managed object and management module
developers. The MIR contains data about particular
entities as well as information about the structure
and other properties of entity classes, which the
director software also knows.

Management modules were distinguished as
presentation, function, or access modules. Presen­
tation modules implement user or software access
to the director management modules that is device
independent and style dependent. Function mod­
ules provide value-added management functions
that are partially or completely entity independent,
such as network fault diagnosis, event or alarm han­
dling, or historical data recording. Access modules
provide a consistent interface to the basic manage­
ment functions performed by entities. In addition,
they include one portion that maps operations on
entities into the appropriate protocol primitives
and another portion that implements the protocol
engine for the relevant management protocol.
Figure 2 shows the components of a director and
an entity.

Although users can conveniently interact with
systems through graphical user interfaces (GUis),
sophisticated users wished to preserve a command
line interface (CU) they could use to specify com­
plex management requests quickly. Therefore, we

-------- 1--------
MANAGING SYSTEM : I MANAGED SYSTEM

MANAGEMENT
MODULES
(APPLICATIONS)

I I
I I
I I
I I

I API I I API

MANAGED
OBJECT

I r - - - - - - _I_ - _s-_ - - - - - - 1
I I FRAMEWORK I

I I DIRECTOR ~ GENT I
I I KERNEL MANAGEMENT I
I I I PROTOCOL

I MIR MIR I
11 __ _ _______ , ______ _f
l ________ I ____ _ __ _

Figure 2 A Framework View of EMA

Vol. 5 No. I Winter 1993 Digital Technical Journal

developed a single, extensible command language
that would allow human operators or software pro­
grams to communicate requests to management
modules and (ultimately) entities in a consistent
fashion. This work developed into the network
control language (NCL). An NCL command specifies
an entity, an operation to be performed by the
entity, a list of arguments (if any), and a list of quali­
fiers (for specifying users, passwords, paths, filter­
ing values, etc.).

Digital's DECmcc Management Director is an
implementation of an EMA director.3 The DECmcc
product provides a platform for the development of
new management capabilities and offers specific
Phase V management capabilities as well as a num­
ber of generic network management tools. The
DECmcc director supports both GUI and NCL cu
user interfaces.

Entity Model
To manage all entities in a consistent manner, we
required a single, consistent method for structuring
any manageable component (regardless of its inter­
nal complexity) and for describing its management
properties: the operations that it can perform, the
variables it makes available for its management, the
critical occurrences it can report to managers, etc.
The EMA entity model was developed to answer
these needs. The structure of a manageable compo­
nent in this model is shown in Figure 3. Essentially,
the entity model defines techniques for specifying
an object-oriented view of an entity. Each entity has
the following properties:

• A position within an entity hierarchy. To ease
management of networks with large numbers

OPERATIONS

CREATE
AND DELETE

I GET
AND SET

ACTIONS

{

EVENT
NOTIFICATIONS REPORT

J
SERVICE
THE ENTITY
PROVIDES

A MANAGED OBJECT
(ENTITY)

ATIRIBUTE

BEHAVIOR

Figure 3 Structure of a Managed Object

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Network Management

of complex components, entity classes are orga­
nized into logical structures that reflect the rela­
tionship of their corresponding components;
individual entities are named in terms of that
structure. The name of the top-level entity
in each structure is globally unique, and it is
referred to as a global entity. All its child entities,
however, have names that are unique only within
the context of their level in the structure.
Therefore, they are referred to as local entities.

• A hierarchically structured name. An individual
entity's local name is constructed by concatenat­
ing its class name to its instance identifier. The
class name is a keyword that uniquely identifies
the class (object type) of an entity. The instance
identifier is the value of an identifying attribute
used for naming instances of the entity's class,
for which each instance of the class has a unique
value.

A target entity's globally unique name is con­
structed by concatenating its local name
(a <class name, instance identifier> pair) to the
local names of each of its ancestors in tum,
beginning with the containing global entity and
ending with the target entity's immediate
parent. The construction of an entity's name
and the containment hierarchy are shown in
Figure 4.

• A collection of internal state variables, called
attributes, that can be read and/or modified as a
result of management operations. Attributes
have names unique within the context of the
entity. Attributes have a type that defines the val­
ues the attribute can have.

• A collection of operations that can be per­
formed by the entity. Operations allow man­
agers to read attributes, modify attributes, and
perform actions supported by the entity. Actions
are entity-specific operations that result in
changes of state in the entity or cause the entity
to perform an operation that has a defined
effect.

• A collection of events that can be reported asyn­
chronously by the entity. An event is some nor­
mal or abnormal condition within an entity,
usually the result of a state transition observed
by its service element or its agent. Event reports
are sent asynchronously to the manager; they
indicate the type of (entity-specific) event that
occurred and may also contain arguments that

119

DECnet Open Networking

NODE DEC:.UK.REO.MARVIN

CLASS NODE
NAME = DEC:.UK.REO.MARVIN
STATE = ON ...

I

• •
NODE DEC:.UK .REO.MARVIN

RT OSI TRANSPO

CLASS OSI TRANSPORT
CLASS ROUTING MAXIMUM WINDOW = 32

...
1 NODE DEC:.UK

OSI TRANSPO
.REO.MARVIN

RT PORT %X0175A8D9

CLASS PORT
NAME = %X0175A8D9
PROTOCOL CLASS = 4

Figure 4 Managed Object Naming Hierarchy

further describe or qualify the event. For exam­
ple, arguments could indicate the number of
times the event occurred before a report was
sent to announce that a threshold was reached,
or give the old and new states in an event that
reports a state transition.

• A specification of the behavior of the entity in
relationship to the functions that the entity's ser­
vice element provides. This is usually specified
as some abstract state machine, through pseudo­
code, or as a set of preconditions, postcondi­
tions, and invariants.

The entity model provides specific requirements
and recommendations about the way entities can be
modeled in terms of these properties. These restric­
tions, placed on entity class definitions for purposes
of both internal and global consistency, take several
forms: (1) restrictions on the types and ranges of
attributes that can be used for various purposes
(e.g., as identifying or counter attributes); (2) con­
straints on operations (e.g., examine operations
can have no side effects on the value of attributes
whose values they report); or (3) restrictions on
events (e.g., all events and event reports must have
an associated time stamp and unique identifier).

Readers familiar with open systems interconnec­
tion (OSI) management will find the entity model
very similar to OSI's structure of management infor­
mation (SMI) standard.4,5 This is no coincidence.
During the early development of Phase V and the
entity model, we recognized the need for an open
management architecture. Portions of the technol-

120

ogy were therefore contributed to ISO/IEC JTC 1
SC21/WG4, a working group of the International
Organization for Standardization (ISO) that is
responsible for efforts to define standards for OSI
management. Although some details of OSI SMI and
the corresponding EMA features diverged slightly
from each other during their evolution, the EMA
entity model and OSI SMI are still compatible. At this
writing, work is under way to align certain parts of
the EMA entity model with the final international
standard (IS) versions of OSI SMI.

Entities
The EMA entity model describes how to specify the
management of an architected subsystem. How­
ever, for Phase V, we chose to make the manage­
ment sp ecification of a subsystem a part of the
subsystem's specification. As described in the
Modules section, that may have been the most
important decision made in the network manage­
ment architecture.

As the entities for DECnet/OSI Phase V were
defined, a collection of folklore grew on how typi­
cal design issues could or should be solved. As with
any folklore, these guidelines were passed from
one architect to another, either verbally, or as
selected portions of the management specifica­
tions were copied from one subsystem to another.
This folklore is continually changing, as new and
better solutions are found. Much of the folklore has
already been described.6 Some other guidelines are
described below.

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

I

The Network Management Specification
describes the central structure of Phase V network
management, and in particular defines the node
entity class.7 In the following sections, we describe
the properties of the node entity class and, as a
representative example, the OSI transport module
entity class.

Node Entity Class
A single computer system in the DECnet/OSI
network is called a node. The bounds of that system
depend on the system's architecture; a personal
computer (PC), a single-processor workstation, a
multiprocessor mainframe, a diskless system, even
a VAXcluster system can be considered a single
node. Nodes are modeled by the node entity class.

A node entity has only a few functions in
management.

• A node is a global entity that is the parent for
many subsystems and provides an agent for all of
them.

• A node has an identity, a name, and an address
that allow it to be managed remotely.

• A node plays a major role in system initialization
and start-up.

Identity
The following attributes identify a node:

• An address, the application layer address(es) of
the node's agent

• A name, a DECdns fullname as defined by the
DECnet/OSI distributed name server8

• A synonym, a Phase IV-style node name for back­
ward compatibility

• A spatially unique identifier (ID), a 48-bit quan­
tity used as an Institute of Electrical and
Electronics Engineers (IEEE) 802 local area
network (LAN) or Ethernet address

• A space- and time-unique value

A node's address is the application layer
address(es) of the node's agent. The DECnet/OSI
network supports multiple protocols at any of the
seven layers, and the agent can operate over multi­
ple protocol stacks. Each protocol has its own
addressing conventions. Thus a node's address is
actually a set of protocol towers. Each tower
defines a sequence of protocols, each with its asso­
ciated addressing information. A protocol tower

Digital Technica./Journal Vol. 5 No. 1 Win ter 1993

Network Management

provides all the information needed by a director to
connect to the node's agent and to issue manage­
ment directives to the node or any of its children.

Users and network managers rarely refer to
nodes by their addresses. First, it is difficult to
remember the addresses and second, moving the
node from one place to another in the network gen­
erally changes its address. Thus each node has a
name, a DECdns fullname. The node knows its name
and address. Each node's name is stored as a DECdns
entry, and one of the entry's DECdns attributes
holds the node's address. Thus, any director can
look up the node's name in the DECdns and the
address associated with it, and then use any one of
the towers to connect to the node's agent.

To ensure backward compatibility with DECnet
Phase IV, a node also has an attribute called its syn­
onym, which is a six-character, Phase IV-style node
name. If a node has a synonym name, that name is
entered in a special directory in the DECdns name
space as a soft link to the node's Phase V name. A
soft link is a form of alias or indirect pointer, from
one name to another, that allows an entry to be
reached by more than one name.

Each network layer address of the node (a node
can have more than one) is encoded in a standard
way as a soft link to the node's name. This allows a
manager (or director) to translate a node address
into the equivalent node name, making many diag­
nostic problems much simpler.

DECnet/OSI includes many features that allow
most nodes to autoconfigure their addresses.
Network layer addresses consist of an area address
and a 48-bit ID. This ID can be obtained from an ID
read-only memory (ROM) chip on many devices (for
example, each Digital 802.3 LAN device has one).
End nodes detect area addresses from messages
sent by the routers adjacent to the end node.
Higher-level addresses used by management are
architecturally defined constants.

Managers and users choose the name and syn­
onym of a node. The manager uses the rename
action to tell the node its name. Rename is an exam­
ple of a situation in which an action is more appro­
priate than a set operation. Renaming a node is a
fairly complicated operation. Not only is the name
attribute changed, but also the information is stored
in the DECdns name space. Although the operation
can fail in many ways, actions allow errors to be
reported to the manager with enough detail on
what went wrong to allow corrective action to be
taken. This is not easily done with a set operation.

121

DECnet Open Networking

One of the more difficult configuration prob­
lems to track down occurs when two nodes in a
network have either the same name or the same
address. DECnet/OSI has several management fea­
tures to prevent this from occurring or to detect the
situation when it does occur.

First, each node has a spatially unique 48-bit ID,
i.e., no two nodes in the enterprise have the same
ID at the same time. The ID is usually derived from
an ID ROM chip in a LAN adapter. Special manufactur­
ing procedures ensure that no two ID RO Ms hold the
same ID. Nodes with multiple ID ROMs, for example
a router with two Ethernet interfaces, choose one
with a simple algorithm. Nodes without an ID ROM
must be assigned an ID when the system is first
booted, and that ID must come from the locally
administered IDs. However, an ID is not always tied
tO the same node. Hardware devices can be
removed from one machine and inserted in another.
Indeed, this is a common diagnostic procedure.

Second, each node has a space- and time-unique
value provided by the unique identifier (UID) ser­
vice. UIDs combine a spatially unique ID with a time
stamp in such a way that no two generated UIDs
will ever have the same value.9 The UID is stored in
nonvolatile storage (if the node has some), so the
UID remains constant across system reboots. Nodes
without nonvolatile storage will generate a new
UID on every reboot.

Third, a change in the name, address, ID, or UID
attributes is reported by the node as an event,
which aids in detecting duplicate node names and
addresses. Two nodes can end up with the same
name when the disk where a node stores its system
image, name, address, and UID is copied, and then
the copy is booted on another machine. When the
disk is booted on the second machine, that
machine would have a different ID ROM. The node
would detect that its ID is different, and thus an
event would be generated. The event would not
prevent the duplicate node from booting, but it
would allow the manager to detect that a duplicate
node may be on the network.

Start-up
A node is responsible for system start-up. We model
start-up through four states.

• Dead, when the node is down and requires man­
ual intervention to start.

• Booting, when the node is in the initial stages of
software start -up. The booting process is highly
system specific and may be initiated by hard-

122

ware, by software, by a power fai lure, or by
a manager's console request. Booting loads a
system image, starts it running, and brings it to
a known state. The system image can be loaded
from a disk or equivalent storage, or it can be
loaded over the network using the maintenance
operations protocol (MOP) down-line load pro­
tocol. lO MOP is layered directly over the data link
protocols. In Digital's communications devices,
MOP is generally implemented in the hardware
or firmware and does not require a working
operating system.

• Off, when the node is initializing itself and its
internal configuration. When booting completes,
the node changes to the off state. This transition
is called the "big bang." In the first instant after
the big bang, the node has at least the following
things available , as shown in Figure 5:

- A working clock and time service used to
time stamp events.

A UID generator used to give entities and
events a unique identifier.

- The node entity (and possibly some of the
node's child entities) together with its agent
(which includes both the directive dispatcher
and event logging).

- An initialization script, a series of manage­
ment commands to configure the system.
This can be in the form of a text NCL com­
mand file (described later in the section on
NCL), or it can be a compiled script, one that
has been encoded as a series of common
management information protocol (CMIP)
requests. MOP can be used to down-line load
an initialization script.

- An initialization director, which reads the
script and invokes the directives in the order
given. Errors and other output may be dis­
played on a console (if the system has one)
and/or reported as events.

• On, when the node has "completed" initializa­
tion to the extent that it can be managed
remotely. Somewhere in the initialization script
(probably near the end), the node is enabled,
which changes its state to on, i.e., it can be man­
aged remotely.

Modules
A node has many subsystems, called modules in
DECnet/OSI. Each module may or may not be
configured within any particular node. Within the

Vol. 5 No. 1 Winter 1993 Digital Technical journal

Network Management

I ENTITY

INITIALIZATION I ENTITY
SCRIPT

DIRECTIVE

~ INITIALIZATION DIRECTIVES DISPATCHER
....

ENTITY
DIRECTOR (PART OF ...

THE AGENT)

I I
EVENT SYSTEM OUTPUT TO CONSOLE LOGGING CONSOLE OR EVENT LOGGING (PART OF (OPTIONAL)
THE AGENT)

t I
EVENT REPORTS TO CONSOLE I UID SERVICE I OR OTHER EVENT SINKS

OTHER EVENT

I I SINKS TIME SERVICE
(OPTIONAL)

Figure 5 The Node at the "Big Bang"

modules are the various subsystems that make up
DECnet/OSI. A node never has more than one
instance of a module contained within it. A general­
purpose node allows the manager to flexibly con­
figure a node to serve a particular purpose by
creating and deleting the appropriate modules.

In the DECnet/OSI Phase V network, the specifi­
cation of the management of each module is an
integral part of the architecture of the subsystem.
Moving responsibility for the management of a sub­
system from a central network management archi­
tecture to the subsystem architecture has made the
specifications clearer and more complete. In Phase
N , a great deal of effort was spent coordinating the
subsystem specifications and the network manage­
ment specification. Placing responsibility in one
person's hands made writing an internally consis­
tent subsystem much easier. Besides, the sheer size
of DECnet/OSI Phase V management would have
made it impossible for a single person to design the
management of the whole system.

The development of the OSI management
standards in ISO/CCITI (Comite Consultatif Inter­
nationale de Telegraphique et Telephonique) has
been done in a similar way and for the same rea­
sons. ISO/IEC JTCl SC21/WG4 is the group that has
developed the OSI management information model,
management specification language, and guide­
lines for module developers. While SC21/\VG4 has
itself also developed the management of specific
subsystems (e.g., for event forwarding and logging),
typically, the job of doing this has been left to other

Digital Technical Journal Vol. 5 No. 1 Winter 1993

groups more expert in particular areas. For exam­
ple, Working Groups 1, 2, and 4 ofISO/IECJTCl sc6
have developed management standards for the ISO
data link, network, and transport layers, based on
Digital's contributions derived from the DECnet/OSI
Phase V work in these areas.

In DECnet/OSI, the transport, network, and data
link subsystems were among the first to have the
EMA concepts applied to their management. Others
quickly followed and, presently, more than SO mod­
ules have been specified, with others being added
as new subsystems are designed. Not surprisingly,
during the early days considerable interaction took
place between the architects responsible for the
central network management architecture and
those responsible for developing the management
of specific subsystems. The EMA evolved and was
refined based on the experiences of the many sub­
system architects using it.

In almost all cases, modules contain one or more
entities, each representing some management
aspect of the subsystem. These entities in turn may
contain other entities (subentities). This nesting
can occur to an arbitrary depth, reflecting the man­
agement complexity of the subsystem. Note that
modules themselves are entities, albeit with the
restriction that a node never has more than one
instance of a module contained within it. An entity
is formally described using Digital's Management
Specification Language (MSL).11

We next consider in more detail the structure
and contents of the DECnet/OSI Phase V OSI

123

DECnet Open Networking

transport module . Complete descriptions of this
and other Phase V subsystems can be found in
the Digital Network Architecture (Phase V)
Documentation Kits. 12,13,14,1s

OSI Transport Module
In DECnet/OSI Phase V, the OSI transport module
contains port, template, local network service
access point (NSAP) address, and manufacturing
automation protocol (MAP) entities. A local NSAP
entity contains remote NSAP entities. The contain­
ment hierarchy is shown in Figure 6.

The OSI transport module has characteristic
attributes. A manager can change the configura­
tion of the module by modifying its characteris­
tic attributes. This is done for several reasons,
including

• To limit the maximum permissible number of
active transport connections at any one time

• To control the maximum credit window that
may be granted on an individual transport
connection

• To control the maximum number of transport
connections that can be multiplexed on any sin­
gle network connection, when the OSI transport
protocol is operating over the connection-mode
network service

Modification of these attributes is needed only if
the manager requires anything other than a stan­
dard configuration; working default values are
defined for all characteristic attributes.

Status attributes show the current operating
state of the module, e.g., the number of transport
connections currently active. Status attributes can­
not be modified directly by a manager. To start the

operation of the OSI transport module, the manager
uses the enable action. If successful, the state
attribute changes from off to on.

In the DECnet/OSI Phase V architecture, a port
entity represents the interface between layers, mak­
ing visible to a manager how one layer (a client) is
using the services of a lower layer. Ports are not cre­
ated by a manager; they are created when a client of
the service requests use of the service (by "opening
a port") . The exact information held in a port entity
varies for each subsystem. In general, a port entity
contains attributes that identify the client and the
service being used, and how that service is being
used (e.g., as usage counters). The port entity is an
example of how the EMA evolved through feedback
from the subsystem architects. Before being
adopted as a general mechanism in the overall man­
agement architecture, the concept was first devel­
oped and used in subsystem architectures.

In the case of the OSI transport module, the port
entity also corresponds to the local end of a trans­
port connection (TC), and it provides a window to
the status information associated with the TC. For
example, the OSI transport port status attributes
give

• The name of the user of the OSI transport service

• Local and remote NSAP addresses and transport
selectors

• The protocol class being operated on the TC

In addition, a port entity has counter attributes that
record the total number of times something of
interest occurred on the TC. For example , there are
counters recording the number of octets and proto­
col data units (PDUs) sent and received. A manage­
ment station can poll these and determine usage

OSI TRANSPORT

I
I I I

I

PORT TEMPLATE LOCALNSAP
....

I

MAP REMOTE NSAP -

Figure 6 Containment Hierarchy for OSI Transport Module

124 Vol. 5 No. 1 Winter 1993 Digital Technical Journal

over time. A port entity also maintains counters for
both duplicated transport PDUs (TPDUs) detected
and retransmitted TPDUs. Taken with the usage
counters, these can be used to calculate error ratios
and rates on the TC.

When a client opens a port onto a service, the
client can then use the service interface to select
options such as which features to use or which pro­
files. Maximum flexibility, however, also poses a
problem. In many cases, a client has little or no
knowledge or understanding of the service options
available in an underlying layer. Further, it would
be unrealistic to expect all clients of a service (or,
ultimately, an end user) to acquire this in-depth
knowledge.

One alternative was to provide default values for
all the service options. However, a single set of
default values satisfies only a single subset of uses.
Instead we adopted the template, which is an entity
that represents a set of related option values. A
manager can create as many templates as required
for different sets of related option values. A client
needs to be configured only with the single name of
the template to use, not the details of every service
option. The OSI management standards groups have
adopted the template concept in the form of their
initial value managed object (IVMO).

A template in the OSI transport module is a col­
lection of characteristic attributes used to supply
default values for certain parameters that influence
the operation of a TC. When a port is opened to the
OSI transport service, a template name may be
specified by the client. The characteristic attributes
in the template are then used as default values for
TC parameters not supplied by the user, including,
for example,

• The value of the window timer

• The set of classes of protocol that may be negoti­
ated for use on a TC

• The use of checksums that might be negotiated
for a TC that operates the class 4 protocol, a
variant of the OSI transport protocol defined in
ISO 8073

A default template is automatically created and
used if no template is specified when a port is
opened.

There is one local NSAP entity for each NSAP
address used by the OSI transport. A local NSAP entity
is automatically created when an NSAP address used
by the OSI transport is added to the network rout­
ing subsystem (the adjacent lower layer).

Digital Technical Journal Vol. 5 No. 1 Winter 1993

Network Management

The remote NSAP entity is a subentity of a local
NSAP entity. Each remote NSAP entity maintains
counter attributes resulting from interactions
between the superior local NSAP and a remote
transport service provider. Events are defined for
the remote NSAP entity, to provide immediate noti­
fication to the manager of error conditions. For
example,

• A checksum failure event occurs whenever
checksum validation fails when performed on
a received TPDU

• An invalid TPDU received event occurs when­
ever a TPDU received from the remote NSAP is
in violation of the transport protocol

Consider this second example. Whenever an
invalid TPDU received event is generated, a counter
is incremented. Thus, even if the manager has con­
figured event logging to filter out these events, an
indication that they are happening remains,
prompting the manager to change the filtering cri­
teria. The event contains a number of arguments as
well. All events identify the generating entity and
the time the event occurred. The invalid TPDU
received event also has arguments that give

• A reason code, indicating in what way the
TPDU was invalid, as specified in the ISO 8073
standard16

• The part of the TPDU header that was invalid

• A specific Digital Network Architecture (DNA)
error code, which was added to qualify the ISO
8073 reason code and to help customers diag­
nose problems

The MAP places a number of requirements upon
implementations of the OSI transport protocol
beyond simple conformance to ISO 8073. The MAP
entity contains the additional management needed
to meet these extra requirements. The MAP entity
is optional; implementations with no business
requirement to support MAP would not provide the
MAP entity.

Supporting Mechanisms
Network management in DECnet/OSI is built on a
number of supporting services. Wherever possible,
management uses the services of the network to
manage the network. This approach minimizes the
number of special mechanisms we had to define
specifically for network management. Some key
services used by network management include

125

DECnet Open Networking

• Session control

• DECdns name service

• Digital's distributed time service (DECdts)

• A unique identifier service (UID)

A few services were developed specifically to
support network management. Most had existed in
earlier phases of DNA.

• DNACMIP

• Event logging

• MOP down-line load protocol

• Application loopback

In the following sections, we describe DNA CMIP
and event logging.

Digital Network Architecture Common
Management Information Protocol
The entity model describes what an entity can do.
Those concepts must be expressed in the manage­
ment protocol. DNA CMIP, the management proto­
col for DECnet/OSI Phase V, is an evolution of the
Phase IV management protocol (called NICE). The
two protocols are remarkably similar. Both include
the set, show (also called get), and event report
operations. The main differences between the two
protocols are in the following areas.

• Treatment of other operations. In NICE, each
operation required a new kind of message; in
CMIP, a general extension mechanism, the
action, is provided.

• Naming. NICE supported a limited number of
entity classes (eight) and provided a rudimen­
tary naming hierarchy based on the notion of
"qualifying attributes." CMIP supports hierarchi­
cal entity names and is essentially unlimited in
the number of entities with which it can deal.
Similarly, CMIP is much more extensible in
naming attributes, attribute groups, and event
reports.

• Encoding. CMIP uses ISO Abstract Syntax
Notation I (ASN.l), a standard tag, length, value
(TIV) encoding of attributes and arguments, and
NICE used a private TIV encoding.

DNA CMIP is not quite the same as the IS version
of OSI CMIP, although it was based on the second
draft proposal of the CMIP standard. There are two
reasons for this.

126

• First and foremost was timing. DNA CMIP was
developed before the OSI CMIP was standardized.
The inevitable changes to the standard led to
many minor differences in the protocols. Still,
because the concepts in the EMA entity model
and OSI's SMI are aligned, the DNA and OSI CMIP
protocols are fundamentally the same. The
authors are currently migrating DNA CMIP to OSI
IS CMIP. The change will be transparent to any
user.

• Second, DNA CMIP operates over a DNA protocol
stack, not a pure ISO stack. This allows directors
on Phase IV systems to manage Phase V systems.

DNA CMIP can be viewed as two separate proto-
cols. One protocol, management information con­
trol exchange (MICE), is used by a director to invoke
a directive (get, set, action, etc.) on an entity (or
entities). The other protocol, management event
notification (MEN), is used by an entity (or entities)
to report events to a director. The two protocols
operate over separate connections for important
reasons.

• The times at which the associations are con­
nected differ. A MEN association is brought up
when an entity wishes to report an event, and is
thus controlled by the agent. A MICE association,
however, is brought up when a director (or
manager) wishes to invoke an operation on an
entity, and is thus controlled by the director.
Attempting to share control of association estab­
lishment w as not worth the complexity.

• Whenever an association is shared by two differ­
ent users, the problem of allocating resources
fairly to the two users must be addressed. Since
transport connections deal with this issue
between connections, the addition of a multi­
plexing protocol at the application level (with an
attendant flow control mechanism) was again
considered to be too complex. Transport con­
nections are not (or should not be) expensive.

Event Logging
The entity emits an event report to the manager
when an event occurs in an entity. The event logging
module provides a service that transmits event
reports from the reporting entities to one or more
sink applications, which are considered to be a cer­
tain kind of director in EMA. Event logging in Phase
Vis based on concepts similar to those provided by
Phase IV. Because the principal use of event logging
is for reporting faults, event Jogging does not

Vol. 5 No. 1 Winter 1993 Digital Tech11ical]ournal

guarantee delivery of event reports to the sink
application. Figure 7 shows the event logging
architecture.17

When an event occurs within an entity (E) in a
source node, the entity invokes the PostEvent ser­
vice provided by the event dispatcher (a part of the
node's agent). When posting an event, the entity
supplies its name, the type of the event, all the argu­
ments related to the event, a time stamp of when
the event occurred, and a UID assigned to the event.
UIDs ensure that each event can be uniquely identi­
fied, so that if a sink application receives more than
one copy of an event report, it can detect the dupli­
cation. Time stamps allow the event reports to be
ordered in time (an important step in determining
causality). A time service (DECdts) is used to syn­
chronize clocks across the network. It provides a
consistent view of time for correlating observations.
An important feature for management is the inclu­
sion of an inaccuracy bound on the time stamp.

The PostEvent service formats an event report
and places it in an event queue (Q). Event queues
are limited in the amount of memory they use; thus
they limit the number of events that can be held in
the queue. Because events can be placed in the
queue at a rate faster than the queue server (S) can
process them, the queue can fill, and any new
events placed in the queue will be Jost. The events
lost event is recorded as a pseudo-event in the
queue (it appears as an event report from the entity
holding the queue). The events Jost event carries an
argument that records the number of events that
were Jost in a row.

The queue server for the event dispatcher
compares each event report against a filter (F)
associated with an outbound stream. The filter lists

SINK DIRECTOR

SINK APPLICATION INBOUND STREAM

Network Management

a collection of entities and events that are either
passed through the filter or blocked by the filter.
Event reports passing through the filter are placed
in an event queue within the outbound stream.
Each outbound stream's queue server sends events
to a corresponding inbound stream in the sink
application. Multiple outbound streams can be set
up by the manager, allowing events to be sent to
many sink applications. Outbound streams are
modeled as entities in their own right, and standard
management operations (create, get, set) are used
to configure them.

Each inbound stream in a sink application has an
event receiver (R). Inbound streams are generally
created when a connection request is received
from an outbound stream. Events received by the
receiver are compared against a sink filter and
queued to the sink application. Thus the events
from multiple inboun..i streams are merged.

The protocol used between the outbound stream
and the inbound stream is the CMIP MEN protocol,
which operates over a connection (using either the
DECnet transport layer protocol or OSI transport).
The use of a connection lowers the probability that
an event report will be lost, since the connection
handles acknowledgments and retransmissions. It
does not guarantee delivery, however, and events
may still be lost due to failures of the sink applica­
tion or the source node.

Conclusions
Our approach to Phase V management worked
well. Defining the EMA entity model first provided a
framework of consistency among all the architec­
tures. Developing a management protocol (CMIP)
expressing the basic concepts in the entity model

SOURCE NODE

EVENT DISPATCHER

......++-----(R 1.----t-t-----..+t----l

DNA
CMIP

INBOUND STREAM MEN
PROTOCOL

'-++-----(R 1.---++--~

ANOTHER SINK DIRECTOR ANOTHER SOURCE NODE

Figure 7 Event Logging

Digital Technical Journal Vol. 5 No. 1 Winter 1993 127

DECnet Open Networking

in conjunction with the model placed the protocol
in a position to meet the needs of the model. Giving
responsibility for defining the management of a
subsystem to the architects of that subsystem made
each subsystem more complete and coherent. As
problems were found in the model based on lessons
learned during the specification of entities, any
needed changes to the entity model were applied to
correct those problems.

However, some things did not go as well. The
number of entities, attributes, and operations in
Phase V was beyond anyone's expectations. This
reflects the overall complexity and feature-richness
of Phase V over Phase IV as well as the increased
control that the manager is given. This burden is
eased somewhat by the use of intelligent defaults,
autoconfiguration, and self-management. Still, sim­
plifying the management of a Phase V network is an
important area for continual improvement.

The biggest success of EMA/Phase V management
is its general applicability. EMA is being applied to
more than the traditional network management
areas. Systems, networks, and applications are all
managed by EMA.

References

1. N. LaPelle, M. Seger, and M. Sylor, "The Evolu­
tion of Network Management Products,"
Digital Technical Journal, vol. 1, no. 3
(September 1986): 117-128.

2.]. Harper, "Overview of Digital's Open Net­
working;• Digital Technical Journal, vol. 5,
no. 1 (Winter 1993, this issue): 12-20.

3. C. Strutt and]. Swist, "Design of the DECmcc
Management Director," Digital Technical
Journal, vol. 5, no. 1 (Winter 1993, this issue):
130-142.

4. OSI Management Information Services­
Structure of Management Information­
Part 1: Management Information Model,
ISO/IEC DIS 10165-1 (Geneva: International
Organization for Standardization/Interna­
tional Electrotechnical Commission, 1990).

5. OSI Management Information Services­
Structure of Management 'nformation­
Part 4: Guidelines for the Definition of
Managed Objects, ISO/IEC DIS 10165-4
(Geneva: International Orgam.lation for Stan­
dardization/International Electrotechnical
Commission, 1992).

128

6. M. Sylor, "Guidelines for Structuring Manage­
able Entities," Integrated Network Manage­
ment I, B. Meandzija and]. Westcott (eds.),
(Amsterdam: Elsevier Science Publishers,
1989): 169-183.

7. DNA Network Management Functional
Specification, V5.0.0 (Maynard, MA: Digital
Equipment Corporation, Order No. EK­
DNA02-FS-001, 1991).

8. DNA Naming Service Functional Specifica­
tion, V2.0.0 (Maynard, MA: Digital Equipment
Corporation, Order No. EK-DNANS-FS-002,
1991).

9. DNA Unique Identifier Functional Specifica­
tion, Vl.0.0(Maynard, MA: Digital Equipment
Corporation, Order No. EK-DNAl-FS-001, 1992).

10. DNA Maintenance Operations Protocol Func­
tional Specification, V4.0.0 (Maynard, MA:
Digital Equipment Corporation, Order No.
EK-DNAll-FS-001, 1992).

11. DECmcc System Reference Manual, 2

volumes (Maynard, MA: Digital Equipment
Corporation, Order Nos. AA-PD5LC-TE, AA­
PE55C-TE, 1992).

12. Digital Network Architecture (Phase VJ
Documentation Kit No. 1 (Maynard, MA:
Digital Equipment Corporation , Order No.
EK-DNAPl-DK-001, forthcoming 1993).

13. Digital Network Architecture (Phase VJ
Documentation Kit No. 2 (Maynard, MA:
Digital Equipment Corporation, Order No.
EK-DNAP2-DK-001, 1993).

14. Digital Network Architecture (Phase VJ
Documentation Kit No. 3 (Maynard, MA:
Digital Equipment Corporation , Order No.
EK-DNAP3-DK-001, forthcoming 1993).

15. Digital Network Architecture (Phase VJ
Documentation Kit No. 4 (Maynard, MA:
Digital Equipment Corporation, Order No.
EK-DNAP4-DK-001, 1993).

16. Information Technology-Telecommunica­
tions and Information Exchange Between
Systems-Connection Oriented Transport
Protocol Specification, ISO/IEC 8073 (Geneva:
International Organization for Standardiza­
tion/International Electrotechnical Commis­
sion, 1989).

Vol. 5 No. 1 Winter 1993 Digital Technical Joun,al

17. DNA Event Logging Functional Specification,
Vl.0.0 (Maynard, MA: Digital Equipment Cor­
poration, Order No. EK-DNA09-FS-001, 1992).

General References

EMA Entity Model (Maynard, MA: Digital Equipment
Corporation, Order No. AA·PV7KA-TE, 1991).

M. Sylor, "Managing DECnet Phase V: The Entity
Model," IEEE Networks (March 1988): 30-36.

S. Martin,]. Mccann, and D. Oran, "Development of
the VAX Distributed Name Service," Digital Techni­
cal journal, vol. 1, no. 9 Qune 1989): 9-15.

Dtgttal Tecbntcal]ournal Vol. 5 No. 1 Winter 1993

Network Management

C. Strutt and D. Shurtleff, "Architecture for an Inte­
grated, Extensible Enterprise Management System,"
Integrated Network Management I, B. Meandzija
and]. Westcott (eds.), (Amsterdam: Elsevier Sci­
ence Publishers, 1989): 61-72.

DNA Network Command Language Functional
Specification, Vl.0.0 (Maynard, MA: Digital Equip­
ment Corporation, Order No. EK-DNA05-FS-001,
1991).

L. Fehskens, "An Architectural Strategy for Enter­
prise Network Management," Integrated Network
Management I, B. Meandzija and]. Westcott (eds.),
(Amsterdam: Elsevier Science Publishers, 1989):
41-60.

129

Design of the DECrncc
Management Director

Colin Strutt
James A. Swist

The DECmcc product family represents a significant achievement in the develofr
ment of enterprise management capabilities. DECmcc embodies the director por­
tion of Digitals Enterprise Management Architecture (EMA) and is both a platform
for the development of new management capabilities and a vehicle for aiding cus­
tomers to manage their computing and communications environments. Initially,
the DECmcc director was intended to facilitate sophisticated management of evolv­
ing networks. In addition to network management, DECmcc bas been adapted to
the needs of system, applications, data, environment, and telecommunications
management. The first implementations contained the DECmcc kernel, a devel­
oper's toolkit, and various management modules.

Development of the DECmcc director has been a
multiyear effort involving many groups within
Digital. When the DECmcc design was initiated in
1987, there was no equivalent management soft­
ware in the industry. Most companies, Digital
included, provided one or more independent,
focused products. Each of these dealt with manag­
ing a specific set of components such as a single
vendor's local area network (LAN) bridges or pro­
viding a specific management application such as
equipment inventory.

Digital's network management capabilities
within DECnet Phase IV were reaching their limit,
and the incorporation of newer communications
technologies in a seamless way was becoming
increasingly difficult. As part of the DECnet Phase V
development, work was started to rationalize man­
agement of distributed systems. This effort led
to the formal definition of such concepts as the
director/entity relationship, the entity model, and
the common management information protocol
(CMIP).1,2,3,4 These ideas formed the basis for man­
agement in Phase V and were Digital's contribu­
tions to the open systems interconnection (OSI)
management model from the International
Organization for Standardization (ISO).

The original vision of network management in
Phase V included the concept of two management
directors. The first, a sophisticated director referred
to as the management control center (MCC), would
handle the more complex, yet user-oriented, man-

130

agement tasks. The second, a simple command line
director referred to as network control language,
would address the needs of more experienced man­
agers who prefer a command line environment.s

Conceived primarily as a DECnet management
director, the DECmcc product evolved to address
the broader problems associated with managing a
complete computing and communications environ­
ment. This evolution is not yet finished and
arguably will never finish as network environments
continue to change.

Since the development of DECmcc in 1987, the
simple network management protocol (SNMP) has
become widely implemented. DECmcc has adapted
to handle SNMP as well. In addition, the DECmcc
product, once a tool for the VAX VMS architecture, is
now implemented on multiple platforms, such as
the ULTRIX and UNIX System V Release 4 operating
systems.

In this paper, we look at the development of the
DECmcc director. We start by discussing our initial
design ideas taken in the perspective of the indus­
try at the time. We then describe the initial imple­
mentation of DECmcc. We also present the effects
of the changing industry and how DECmcc has
adapted over time. We conclude with some of the
opportunities for future work.

Historical Perspective
Digital's first network management capability was
delivered in 1978 as part of the release of DECnet

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

I

Phase II software. Much of the DECnet product was
then manageable, both configuring the software for
installation as well as the operational aspects. The
main program used to perform management was
the network control program (NCP). At that time
management mostly consisted of looking at infor­
mation and then changing it as needed. DECnet
Phase II, however, could perform sophisticated
diagnostic loopback tests, both nonintrusive as
well as intrusive, to diagnose connectivity prob­
lems at various layers of the protocol stack.

Management formed a significant part of the
DECnet Phase III and DECnet Phase IV networking
products. Each major release contained many
changes to manage the new functionality. However,
the DECnet management structure in place in the
1970s was becoming more difficult to adapt to the
requirements of the mid-1980s. For example, sup­
port was added for X.25 during Phase III and for
Ethernet during Phase IV. These releases required
quite different management approaches than the
one used for Phase II. With the advent of the signifi­
cant changes to DECnet Phase V to include support
for the OSI protocol stack, another management
approach was needed.

Thus in conjunction with Phase V network devel­
opment, an effort was started to provide a new
architectural approach to management of Phase V.
One of the key requirements was to provide the
Phase V management needs in a way that would
extend their adaptability to the future. This work
was referred to as distributed systems management
because it addresses management of the computing
environment as well as management of the commu­
nications that DECnet comprises. Most of the initial
work in distributed systems management con­
cerned itself with the aspects that applied to
DECnet and the changes needed to provide manage­
ability of DECnet in Phase V. The primary under­
lying concepts were articulated.

• Directors are management programs used by
human managers to effect management. Entities
represent managed components to directors
through software referred to as agents.6

• The entity model is the underlying model for
managed entities defined in terms of an object­
based approach.1,3.1

• The formal specification for the classes of enti­
ties is defined in terms of Module-2+ like specifi­
cations and is called management definition
language (MD).3

Digital TechntcalJournal Vol. 5 No. I Winter 1993

Design of the DECmcc Management Director

• A command language, network control language
(NCL), was formally defined to be unambiguous
even with new entities and their definitions; an
associated primitive director of the same name,
part of every Phase V package, replaces the NCP
of previous phases. s

• A management protocol called the common
management information protocol (CMIP) was
used to communicate between directors and
entities. 4.B,9

CMIP was named common and presumed to han­
dle the common aspects of management across a
wide variety of management applications. Some
developers suggested the possible need for a
small number of specialized management infor­
mation protocols (SMIPs)- perhaps one for each
of the management functional areas (configura­
tion, performance, fault, security, and account­
ing). However, CMIP proved to be sufficiently
expressive and powerful to support manage­
ment applications covering the management
functional areas.

At the time the distributed systems management
work was initiated, Digital's networking and com­
munications product line was expanding to encom­
pass more than the DECnet networking hardware
and software. Along with each product came its
own management software, some of which was
tailored along the lines of the DECnet standard NCP.
In addition, the Network Management Devel­
opment Group was building some fairly sophisti­
cated management applications that went far
beyond the capabilities of NCP in DECnet. The
developers necessarily took a different approach to
management.

Thus, by the late 1980s Digital had developed a
number of distinct management products. Many of
these employed private protocols, for example

• NCP for managing DECnet, based on a command
line user interface

• NMCC/DECnet monitor, a wide-area DECnet mon­
itoring tool, based on a graphical user interface

• NMCC/ETHERnim, an Ethernet monitoring/
inventory test program, based on a graphical
user interface

• RBMS, Remote Bridge Monitoring Software for
managing Digital's bridge family, based on a com­
mand line user interface similar to NCP

131

DECnet Open Networking

• TSM, Terminal Server Manager for managing
Digital's terminal server family, based on a
command line user interface similar to that used
in the terminal servers

• LTM, LAN traffic monitor for understanding the
traffic usage and patterns of Ethernet segments,
based on a graphical user interface

Other manufacturers also provided management
software capable of managing their devices. Some
vendors provided particular management applica­
tions that were not tied to any specific network
device. These applications performed a single func­
tion, such as maintaining an inventory of equip­
ment on behalf of a manager.

The plethora of management capabilities from
many vendors created many choices for end users.
At the same time, the diverse applications were per­
ceived as carrying significant drawbacks. Each appli­
cation provided its own user interface. Each had its
own database for storing management information.
Each dealt with different management information.
In addition, each tool provided its own, often rudi­
mentary, independent management application.

End users viewed these many products as creat­
ing a series of problems: (1) A manager needed mul­
tiple management terminals, one per product.
(2) Separate training was required to use each
product. (3) Confusion occurred when the user
switched between multiple products. (4) Different
information was available from each product, or
worse, the same information was available in a dif­
ferent form. (5) There was no ability to share infor­
mation between products. (6) It became difficult to
diagnose problems that spanned multiple technolo­
gies. Other aspects of the system management per­
spective in 1986 have been described. 10

At that time, standards for network management
had not progressed very far; SNMP did not yet exist.
In fact, agreement on the overall concepts had only
begun within the OSI management committees.

It is with this background, then, that the design of
DECmcc as a management director was undertaken.

opportunities
Of all the situations that existed in customer net­
works in the mid-1980s, probably the most impor­
tant was the realization that networks no longer
consisted of equipment from a single vendor. In
addition, different technologies were commonly
used to improve a given customer's network. With
each technology came its own management proto-

132

col, along with its own management structure. As
networks became larger, more than one network
manager was typically needed.

The opportunity existed to provide complete,
integrated network management that could be
adapted to the changing needs of management. Our
product goals were

• To provide a consistent, integrated user inter­
face, permitting management of any component
in the enterprise to be performed in a style that
does not depend on the specific component

• To provide integration of the management data
(contained in the components as seen by the
director) and management information (as con­
structed by the director using the management
data)

• To provide a consistent, extensible means of
storing management information and of allow­
ing it to be accessed conveniently by multiple
independent management applications

• To provide an application programming inter­
face (API) to support management applications

Obviously, an approach necessary to solve these
nontrivial problems was not to be a small under­
taking; an architected approach was appropriate.6

Design Approach
The solution to the problems outlined was seen to
be a distributed applications environment, tailored
to the specific needs of management. Quite quickly,
the idea of defining a modular and extensible envi­
ronment was selected.

Management capabilities could be added in a
straightforward fashion based on an applications
kernel, which could either be replicated as needed
around a network, or considered as multiple, coop­
erating kernels supporting a distributed manage­
ment environment. Hence a kernel with modules
that can be added dynamically, much as applica­
tions are added to an operating system, is funda­
mental to the design of DECmcc.

The next consideration concerned the composi­
tion of the modules themselves. One approach to
the support of multiple technologies had one mod­
ule access each different sort of component to be
managed. Since a number of management applica­
tion functions were desirable, one might have a
module for each such function. Also one might
have a module for each form of user interface to

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

accommodate the different user interface styles,
such as command line or windowing.

Thus, we arrived at the concept of distinguishing
form, function, and access. Furthermore, we
defined management modules based on presenta­
tion modules (PMs) for user interface, function
modules (FMs) for management functions, and
access modules (AMs) for accessing each distinct
technology. The DECmcc director structure is
shown in Figure 1.

We observed that the EMA entity model, defined
initially to meet the needs of management of
entities, provided generalized structuring con­
cepts that would be appropriate for the direc­
tor environment as well. Indeed, choosing the
same model to handle the needs of the director
removed the need for a translation between the
entity environment and the director environment
for EMA entities, which has proved to be advanta­
geous for the implementations. Hence the follow­
ing entity model concepts were also used in the
director.

• An object-oriented approach-encapsulating
objects (entities) and their operations

• A class structure-defining attributes, opera­
tions, and events for each class and specifying
management information using a management
specification language

As we studied the needs for stored management
information in the director, we identified four dif­
ferent sorts of information, distinguished by the
storage needs, nature of the contents, and the
access patterns.

FUNCTION
MODULES

PRESENTATION MODULES

INTERFACE

MANAGEMENT
KERNEL

MANAGEMENT
INFORMATION
REPOSITORY

ACCESS
MODULES

Figure 1 DECmcc Director Structure

Dtgttal TecbntcalJournal Vol. 5 No. I Winter 1993

Design of the DECmcc Management Director

1. Class data-the dictionary of all management
operations, attributes, notifications, and their
related definitions categorized by class, updated
infrequently, but read often

2. Instance data-the configuration information,
stored in a global naming service, changing
often, but read from many places simultaneously

3. Historical data-information about specific
entity instances stored over time, written incre­
mentally and read sporadically according to the
needs of applications using such data

4. Miscellaneous data-other data needed for
specific modules, such as tariff information
or the definition of rules specifying alarm
conditions

The complete logical information store was termed
the management information repository (MIR).

The kernel defines an execution environment
that is suitable for management modules and sup­
ports the MIR. This was initially implemented in
terms of technology provided completely within
the director kernel. Many of the kernel services,
however, were subsequently replaced with dis­
tributed systems services, including multithread
support, naming/directory service, time service,
and remote procedure call (RPC).

It is, perhaps, interesting to note that the deci­
sion to use a multithreaded approach in DECmcc
was not unanimous. The alternate approach pro­
posed an asynchronous message-passing scheme.
Although the decision to use a multithreaded envi­
ronment has proved to be implementable, we did
not appreciate how the performance of the multi­
threading implementations would affect the ability
to support the needs of application environments
such as DECmcc.

Invoking Module Services
As we looked at how management modules would
call each other, we chose a fairly straightforward
approach. User interactions with a PM would cause
the PM to invoke an FM, the FM to then invoke the
appropriate AM, and the AM to communicate with
the desired entity. The response would then be
transmitted through the AM, FM, and PM, with the
result presented to the user. Thus the simple proce­
dure call paradigm between modules, as shown
in Figure 2, supported the needs of applications
geared toward monitoring and control operations.

However, one must consider the increase in the
total number of management modules over time,

133

DECnet Open Networking

MANAGEMENT

MANAGEMENT
USERS

I DIR ECTOR

I
I

PRESENTATION
MODULES

I
I

FUNCTION
MODULES

I
I

ACCESS
MODULES

I

I
I

MANAGED ENTITIES

Figure 2 Management Module
Calling Hierarchy

and the even greater increase in the total number of
available management services (defined by specific
operations on classes of entities). Thus, it became
clear that the intermodule procedure calls could
not use named procedures, as administering the
names of ever-increasing numbers of procedures
would be a burden. Instead we chose an approach
whereby modules invoked each other's services by
referring to the operations and the objects, using a
service invocation procedure known as "mcc_call."
We defined the interfaces provided by the manage­
ment modules entirely in terms of operations on
objects-an object-oriented approach-but this
approach did not require the use of object-oriented
languages or databases.

We further observed that one could decompose a
management application into a number of smaller,
potentially reusable services. Hence FMs could
invoke other FMs in performing their services much
in the same way that applications on UNIX systems
pipe results from one component to another. Given
the generally extensible nature of DECmcc and the
supporting mcc_call structure, this led to the con­
cept of generic applications. Being run-time driven
from the class dictionary, these applications could
work over a wide range of managed objects and

134

perform the same service for each of them without
a priori knowledge of the objects. For example, one
might have an FM that provides performance­
related services, turning error counters (obtained
directly from the managed objects) into error rates
(by simply polling for two counter values, subtract­
ing one from the other, and dividing by the time
interval between polls). A different FM might pro­
vide alarm services by notifying users of particular
(user-specifiable) conditions, such as when a par­
ticular counter exceeds a defined threshold.

Of course, managers are often more interested in
error rates exceeding a given threshold. The same
alarms FM could be primed to look for an error rate;
the request would be passed on to the performance
FM, which in tum would calculate the rate by look­
ing at successive polls of the error counter. The
alarms FM does not need to be aware whether
the data it needs comes from the performance
FM or directly from the managed object via the
appropriate AM. The disposition of the methods
among modules is hidden by the service invocation
mechanism.

Furthermore, the alarms FM tracks the number of
times a user is notified of a problem, and this
counter is available as management data. One might
then want to determine the rate of user notifica­
tions (using exactly the same generic performance
FM as before), and use the same alarms FM to notify
a different user when the rate of notifications
exceeds a defined threshold. This threshold might
indicate that one manager is being overloaded.
Thus, in this scenario we have a number of modules
involved in a calling hierarchy, with the same mod­
ules appearing more than once. Figure 3 shows the
reuse of software using generic function modules
inDECmcc.

Management Specification Language
The entity model's management definition lan­
guage, originally intended for the specification of
management agents, was modified and applied
to the director environment. Director-oriented
information was added to the management specifi­
cation, such as user interface tags for automatically
generated forms and menus. This information
was named the management specification lan­
guage (MSL). An MSL compiler was defined to con­
vert MSL to an on-line form, available as metadata
through an on-line dictionary, the MIR class data.
With the management specification information
available to management modules, modules could

Vol. 5 No. I Winter 1993 Digital Technical Journal

NOTIFICATION

ALARMS
FUNCTION MODULE

Design of the DECmcc Management Director

Test (firing rate) value against threshold;
if exceeded, emit notification and increment
alarm firing counter.

Get alarm firing rate.

PERFORMANCE
FUNCTION MODULE

Calculate (firing) rate from two successive
(firing) counter values.

NOTIFICATION
Get alarm firing counter.

ALARMS
FUNCTION MODULE

Test (error rate) value against threshold;
if exceeded, emit notification and increment
alarm firing counter.

Get error rate.

PERFORMANCE
FUNCTION MODULE

Calculate (error) rate from two successive
(error) counter values.

Get error counter.

ACCESS MODULE Return error counter from entity.

Figure 3 Data/Control Flow for Multiple FMs

adapt their behavior as new modules were added;
this is especially important for generic modules.
Thus the same MSL that was used to help the entity
agent developers was also useful for the manage­
ment director to drive the extensible management
modules. 11

This dictionary information spurred the defini­
tion and development of the generic management
modules. The generic PMs provide an extensible
user interface that is capable of adapting as new
managed objects or applications are added. The
generic FMs provide consistent functions over a
broad set of managed objects. Finally, the generic
AMS support extensible management protocols,
allowing the dynamic addition of new sorts of man­
aged objects.

The design of the DECmcc director led to a num­
ber of possibilities in the type and application of
the different sorts of modules. Initially AMS were
conceived as being one per management protocol,
which usually translated to one AM per type of
device (such as bridge, terminal server, DECnet
node). Since the advent of standard protocols, such
as SNMP from the Internet community and CMJP for
OSI management, AMs are now more typically
generic and extensible.s,9,12 A single AM covers many
different types of device with one protocol. 13

Digital Technical Journal Vol. 5 No. 1 Winter 1993

For FMs, we originally envisioned two sorts of
modules: the generic FM providing the same func­
tion over a wide variety of managed objects, and a
specific FM providing a set of functions for a single
class of managed object. Today, we believe one may
have two different sorts of generic FM: one that is
specific to a technology (such as network manage­
ment related), and another, truly generic, which is
completely independent of the technology being
managed (such as an alarms FM).

For PMs, we recognized the need to handle
device-specific aspects as well as user interface
style-specific aspects. Normally one would have
generic PMs provide user interface capabilities over
a broad variety of managed objects and applica­
tions. However, to support the specific needs of
generic FMs, specific PMs might be used to provide
the appropriate user interface. PMS that are specific
to an FM are less useful since they do not provide a
consistent user interface "look and feel."

During the design of the DECmcc director, a num­
ber of smaller, but nonetheless important, design
decisions were made. The concept of management
domains was defined as a general container mecha­
nism for entities, which could include domains
themselves. Domains therefore provide a flexible,
user-specifiable organizational structure for both

135

DECnet Open Networking

visual representation at the user interface, as well
as a means to organize the stored management infor­
mation and associated background processing.14
The need to provide a consistent approach to the
naming of objects within the director was estab­
lished. This was initially based on Digital's dis­
tributed name service, DECdns, providing globally
unique names and network-wide access to those
names.15 Finally, the concept of time, including the
scheduling of operations as well as scope of inter­
est for information retrieval, was included in the
mcc_call APL The time concept allows manage­
ment applications to be developed that can operate
on historically stored information as easily as they
can on data retrieved directly from the network.16

A more detailed report on the design of DECmcc
has been published.17

Some other aspects of the DECmcc program,
while not part of the technical design, had a major
part to play in its evolution. First was the need to
provide published, open definitions of the DECmcc
API, based on existing standards. This allows other
vendors and end users to develop their own man­
agement capabilities to add to DECmcc. Second was
the establishment of a strategic vendor program
within Digital to work with other vendors, particu­
larly those that provided network technologies that
complemented Digital's own offerings, to help
them develop to the DECmcc platform. Finally a
design center program was instituted whereby the
design of DECmcc would be validated, as it evolved,
against the needs of some major customers to
ensure that it continued to address the manage­
ment problems of those customers.

Broadening the Scope
Since DECmcc was designed to be able to manage
anything that could be described by the entity
model, and since the entity model is a general
object-oriented framework, it follows that it is feasi­
ble to extend DECmcc to classes of managed object
and applications beyond the traditional network­
oriented view of nodes, hosts, bridges, routers, etc.
Some of the new classes of managed objects and
new applications that we have seen developed
using DECmcc include

1. Management of applications such as transaction
processors and databases

2. Applications in traditional system management,
such as user management, disk backup, software
installation, configuration maintenance, and
performance monitoring

136

3. Management of objects in the telecommunica­
tions field, such as PBX machines, multiplexers,
and switchesis

4. Management of noncomputer hardware, such
as air conditioners and building-environment
controls

Note that the implementation of these exten­
sions generally involves a relatively small invest­
ment, at which point the power of existing generic
applications is automatically provided. For exam­
ple, in the easiest case, a new object that is manage­
able through SNMP need only have its management
information base (MIB) translated to MSL and loaded
into the DECmcc dictionary, at which point it is
accessible by the existing SNMP AM as well as the
standard generic applications.

In other cases, such as the air conditioning exam­
ple, it is only necessary to code an AM that
communicates to the air conditioning controller
through its private protocol. Functions such as
alarms, notifications, historical data recording, and
graphing are automatically provided by existing FMs
and PMs upon recognition of the new object class.

In complex cases, object-specific FMs are written
to perform such tasks as software installation and
disk backup control. Yet even in these cases, all
these functions are automatically accessible
through the generic PMs.

The potential for interdisciplinary applications
is now becoming possible by the normalization of
the interfaces to objects traditionally handled by
totally separate applications. For example, given
the extensions described above, it is possible to
write an application that activates an emergency
disk backup and switches telephone trunk traffic to
another building if an air conditioning failure
occurs. In fact, depending on how the various
objects are defined, it may even be possible to cre­
ate such an application simply by writing a single
alarm rule.

Evolution to Open Systems
With recent industry trends toward open systems
environments, as well as the realization that almost
any enterprise now comprises multiple hardware
and software platforms from multiple vendors, it
was clear that DECmcc had to evolve to this new
world. Among the requirements to be met were not
only the management of objects existing on various
platforms, but also the execution of the director
itself on different hardware and operating system
platforms.

Vol. 5 No. 1 Winter 1993 Dtgttal Technical Journal

These requirements dictated two basic design
goals:

1. Portability of the director kernel itself to envi­
ronments other than VAX VMS

2. Portability of plug-in management modules to a
DECmcc director running on any supported plat­
form, and in particular, source compatibility to
the greatest extent possible with the consider­
able suite of management modules that existed
when the porting effort started

Many of the fundamental requirements for porta­
bility had already been met. All existing manage­
ment modules were coded to the API defined in the
DECmcc System Reference Manual (SRM), and the
SRM had little code that was inherently specific to
VAX or VMS.19 In fact, only the documented SRM rou­
tines were used to access DECmcc services, as well
as many other common operating system services
such as data storage and thread control. Conse­
quently, the kernel implementation team had the
flexibility to implement these services differently
on various platforms without impacting manage­
ment module source code. This was particularly
true with the all-important mcc_call service,
which provided the API for intermodule communi­
cation in a platform-independent context such that
a wide variety of interprocess or intraprocess com­
munications mechanisms could be chosen for the
underlying implementation.

In the initial porting effort, which was from VAX

VMS to RISC (reduced instruction set computer) and
VAX ULTRIX, some of the more important changes in
underlying implementations were

1. The MIR was implemented over the ndbm hash
database manager. An earlier version of the MIR
was also implemented over ULTRIX SQL, which
provided some large-capacity database features
at the expense of significant performance.

2. The operating system time interfaces were
migrated to the distributed time service of the
Open Software Foundation distributed comput­
ing environment (OSF DCE).

3. The multithreading services were migrated to
the DECthreads component of the DCE.

4. The intermodule communication mechanisms
(mcc_call) were implemented using RPC tech­
nology, with management modules running
as independent RPC server processes. This
allowed run-time extensibility without requir-

Digital TechnicalJour11a l Vol. 5 No. I Winter 1993

Design of the DECmcc Management Director

ing the operating system to support a merged
image activation function, a feature of the VMS
implementation.

5. Through the use of various wrapper routines in
the DECmcc development toolkit, we were able
to allow the management module developer to
code entry points to the management modules
without distinction to whether they were being
run in an image merge or an independent pro­
cess context.

Despite these major changes, 85 percent of the ker­
nel code is in fact platform independent, and we are
maintaining a single source pool for DECmcc
regardless of the number of platforms. To minimize
the operating-system-dependent code we must
maintain and to provide backward compatibility,
we are also porting to VMS a number of the above
technologies such as those built on DCE.

At the present time we continue to broaden our
open systems focus by additional ports to UNIX
System V, OpenVMS on Alpha AXP, OSF/1 on Alpha
AXP, as well as other operating systems.

Implementation
In late 1990 and early 1991, Digital delivered the
first two versions ofDECmcc. Version 1.0 was writ­
ten to allow other vendors to start building their
management modules; version 1.1 added some
components for network managers. Both releases
ran on VAX VMS systems, either workstations or
hosts.

In the middle of 1992, Digital released version 1.2
of DECmcc, which added significant capabilities
and runs on RISC ULTRIX. Later in 1992, Digital deliv­
ered POLYCENTER SNA Manager. In conjunction
with DECmcc and the SOLVE:Connect for EMA, a
product from System Center, Inc., it allows bidirec­
tional management between IBM SNA hosts and
DECmcc systems. 20

In early 1993, Digital released version 1.3 of
DECmcc under the new product family name of
POLYCENTER, with the POLYCENTER Framework,
which is the basis for POLYCENTER Network
Manager 200 and POLYCENTER Network Manager
400. This new version adds ways to provide simpler,
yet powerful, integration of management capabili­
ties; uses an OSF/Motif graphical user interface; a, 1d
provides additional development tools. These v, r­
sions contain the DECmcc kernel, a corresponding
developer's toolkit, and a series of management
modules, which are outlined in Table I. The SRM

137

DECnet Open Networking

Table 1 DECmcc Director Management Modules

Presentation Modules

Forms and Command Line PM

Iconic Map PM

Notification PM

Function Modules

Registration FM

Domain FM

Historian FM

Exporter FM

Alarms FM

Performance Analyzer FM

Diagnostic Assistant FM

Autoconfiguration FMs

Access Modules

SNMPAM

DECnet Phase IV AM

DECnet/OSI Phase V AM

138

Definitions

Provides a command line user interface based on the NCL definition,
together with a full-screen mode for video terminal devices. This PM also
executes DECmcc command scripts.

Provides an iconographic display based on OSF/Motif. It supports all the
capabilities of the command line, but with a more usable graphical
representation of the network and pull-down menu support. This PM also
provides on-line graphing of management information. In addition, this PM
can launch management applications that are not strictly part of the
DECmcc environment, to provide a visual integration for the manager.

Provides an interactive management display of event or alarm firing
conditions based on OSF/Motif. Flexible filtering of information is used to
minimize the information displayed to the manager, but the manager can
search for and display information using various criteria such as severity
level, managed object, and data and time.

Definitions

Provides a means for registering entities with the director and for
maintaining reference information on behalf of the entities.

Maintains the definitions of the various management domains, their
membership, and their relationships.

Enables the capture and storage of user-specified management attributes
from any entity in the network. Retrieval of the stored information by
management modules is provided directly by the mcc_call API.

Allows extraction of user-specified on-line or stored management
information into a relational database for processing by SOL-based
information management tools, such as reports.

Permits managers to specify, through rules, the set of conditions about the
network in which they are interested. When the alarms FM detects a
condition (the rule fires), various notification techniques may be employed.
These include invoking a command script, sending mail, calling a manager
using an electronic beeper, or modifying an icon on the iconic map display.
Calculates statistics for DECnet, transmission control protocol/internet
protocol (TCP/IP), and LAN bridges, based on error and traffic utilization or
other information.
Helps the manager diagnose faults in a TCP/IP network, based on some of
the more frequently occurring TCP/IP network problems.

Determine automatically the configuration and topology of specific
portions of the network. Included are FMs to determine the configuration
and topology of DECnet Phase IV networks, IP subnetworks, fiber
distributed data interface (FDDI) ring maps, and LAN bridge spanning trees.

Definitions

Provides access to objects that implement the SNMP protocol. It is a
generic AM in the sense that it can adapt to new object definitions using
information in the DECmcc dictionary. New MIB definitions are provided in
a standard form and translated by a MIB translation utility into the DECmcc
dictionary.
Provides access to the DECnet Phase IV implementations, be they hosts or
servers such as routers. This AM implements the network information and
control exchange (NICE) protocol.

Provides access to the DECnet/OSI Phase V implementat ions, hosts, and
servers. It implements the CMIP protocol used in Phase V.

Vol. 5 No. 1 Winter 1993 Digital TecbntcalJournal

Design of the DECmcc Management Director

Table 1 DECmcc Director Management Modules (continued)

Access Modules Definitions

Bridge AM Supports Digital's family of LAN bridges, including the LANbridge 100,
LANbridge 150 and LANbridge 200, and the DECbridge family. It
implements the ABMS protocol, which is used by the original manage­
ment product of the same name.

FDDIAM Supports Digital's FDDI DECconcentrator products and other devices that
support the standard station management protocol (SMT).

Terminal Server AM Supports Digital's family of terminal servers, implementing management
through the maintenance operations protocol (MOP).

Ethernet Station AM Supports all Ethernet and IEEE 802.3 stations that implement either, or
both, the Digital MOP protocol or the IEEE 802.2 XID and TEST messages.

Circuit AM Uses the services of other AMs to provide management of the network
circuits that connect systems together, based on DECnet nodes, TCP/IP
hosts, or network management forum definitions. Such circuits might be
simple point-to-point or could represent complex multichannel circuits.

SNA AM and Agent PM Permit bidirectional management of the SNA environment and the DECmcc
management environment through a component that resides on an SNA
host (either IBM's NetView or System Center's Advanced System
Management).

Data Collector AM Provides a means to allow other software, such as applications, to send
events into DECmcc so they may be processed and analyzed along with
events from devices or applications that have access modules.

Script AM Allows invocation of existing or custom shell scripts or command
procedures from DECmcc, and information to be returned from the scripts
into DECmcc for processing and analysis by other modules.

provided the API definitions for management mod­
ules, as provided by the kernel. Figure 4 shows a
sample screen from DECmcc being used to manage
a portion of a network.

Since the DECmcc kernel is indifferent to the spe­
cific type of any management module, it is quite
convenient to package different modules together,
providing for a flexible packaging scheme. Each
DECmcc can therefore be tailored to include the set
of modules appropriate for managing the environ­
ment in which it is situated. In addition, modules
from other vendors can be integrated by the cus­
tomer w ithout involvement from Digital.

As new management modules are added,
the powerful generic capabilities of DECmcc
allow many existing functions to be used without
change. When an AM is added for a new class of
resource, or when an existing generic AM is
enhanced by adding new supporting definitions in
the dictionary, one can immediately perform the
following functions.

• Identify specific resource instances uniquely

• Make the resources known to all DECmcc direc­
tors in the network

Digital TecbnicalJourr,al Vol. 5 No. 1 Winter 1993

• Represent the resources on an iconic display in
one or more management domains

• Examine management attributes from these
resources

• Modify management attributes in these
resources

• Apply management actions to these resources

• Display event information from these resources

• Create alarm rules that can be triggered on par­
ticular conditions (polled or unsolicited) about
these resources

• Have the relevant icons change color when the
alarms fire

• Store, periodically, management data or infor­
mation about these resources in the DECmcc
historical data store, or export the information
to a relational database

• View the stored historical data

• Process the relational data using standard infor­
mation management tools, for example, to pro­
vide management reports

139

DECnet Open Networking

B
y
t
e
s

POL VCENTER Graph Node4 BILFSH

User bytes received

t i=~ t=+:=t==l=:t=+:=~4==~
~ ~, ~-1-~+-~1---1-~--+t-~+---if---i''---+-~+­

~ ~l --lf--~---+~+---.1--~-1---t----i~+---t-

~~! ii~~~~~~~~~
.)g:H :161S9 36,SS 37,59 36:59 39:~ 40159 • t ,59 42:~ g4100 4t,~

Time Minutes : econds 14 ;44 ;59

User bytes sent

r Characteristics r Statistics

r Initial attributes

Figure 4 Screen Display of DECmcc Version 1.3

Future Work
Of course, work on a major software system such as
the DECmcc director is never complete. There are
many areas of opportunity for additional develop­
ment. For example, DECmcc can be ported to other
industry platforms (both hardware and software).
New objects can be managed, not only in network
management but also in system management,
application management, data management, envi-

140

ronment management, telecommunications man­
agement, and so on. Commensurate with each of
these general areas are technology-specific applica­
tions. In addition, further technology-independent
generic applications can be developed. A recent
paper describes how DECmcc can be considered
as a distributed application and some additional
work to make use of the DECmcc concepts in a
distributed environment. 21

Vol. 5 No. 1 Winter 1993 Digital Techriical Jourrial

DECmcc is not the only management director
in the industry. Thus interoperability between
DECmcc and other management systems is another
area of opportunity. DECmcc already has links to
other management systems, not the least being to
manage IBM SNA systems.

Recent advances in object-oriented technology
can be incorporated to enhance the object orienta­
tion of DECmcc.

Finally, new standard industry management pro­
tocols, new managed objects, and management
framework innovations are always becoming avail­
able. DECmcc will be taking all of these evolutions
in its stride. The distributed management environ­
ment (DME), still under development by OSF,
promises to bring yet more technology to which
DECmcc will adapt readily.

Summary
This paper has explained aspects of the design of
DECmcc in the context of the state of the industry at
the time. DECmcc has been a large undertaking, but
we have been able to build and ship significant, con­
sistent, integrated, and yet extensible, management
capabilities covering a broad range of managed
objects. The ability for DECmcc to adapt to the
changing management environments underscores
the benefit of adopting an architected approach to
implementation.

Acknowledgments
The authors would like to acknowledge the work of
the many people in the groups, past and present,
responsible for bringing the ideas presented in this
paper into practical reality in the DECmcc product
set. Also, the detailed comments of two anonymous
reviewers were very helpful.

Refere11Ces

1. M. Sylor, "Managing DECnet Phase V: The
Entity Model," IEEE Networks (March 1988):
30-36.

2. M. Sylor, E Dolan, and D. Shurtleff, "Network
Management," Digital Technical Journal,
vol. 5, no. 1 (Winter 1993, this issue): 117-129.

3. EMA Entity Model (Maynard, MA: Digital
Equipment Corporation, Order No. AA­
PV7KA-TE, January 1993).

Digital Technical Journal Vol. 5 No. I Winter 1993

Design of the DECmcc Management Director

4. DNA (Phase V) Common Management Infor­
mation Protocol Functional Specification
(Maynard, MA: Digital Equipment Corpora­
tion, Order No. EK-DNAOl-FS-001, July 1991).

5. DNA (Phase V) Network Control Language
Functional Specification (Maynard, MA:

Digital Equipment Corporation, Order No.
EK-DNA05-FS-001, July 1991).

6. L. Fehskens, "An Architectural Strategy for
Enterprise Management; IFIP Proceedings of
the First Symposium on Integrated Network
Management (May 1989): 41-60.

7. M. Sylor, "Guidelines for Structuring Manage­
able Entities," IFIP Proceedings of the First
Symposium on Integrated Network Manage­
ment (May 1989): 169-183.

8. Information Technology: Open Systems
Interconnection: Common Management
Information Service Definition, ISO/IEC 9595
(Geneva: International Organization for
Standardization/International Electrotechni­
cal Commission, 1990).

9. Information Technology: Open Systems
Interconnection: Common Management
Information Protocol Specification, Part l,
ISO/IEC 9596-1 (Geneva: International Organi­
zation for Standardization/International Elec­
trotechnical Commission, 1990).

10. N. La Pelle, M. Seger, and M. Sylor, "The Evolu­
tion of Network Management Products,"
Digital Technical Journal, vol. 1, no. 3
(September 1986): 117-128.

11. D. Shurtleff and C. Strutt, "Extensibility of an
Enterprise Management Director," Network
Management and Control, A. Kershenbaum,
M. Malek, and M. Wall (eds.) (New York:
Plenum Press, 1990): 129-141.

12.]. Case, M. Fedor, M. Schoffstall, and]. Davin,
"A Simple Network Management Protocol
(SNMP)," RFC 1157 (May 1990).

13. G. Stone, "Integrated Management Technolo­
gies," AT&T UNIX Sy stems Management
Symposium, Spring 1991.

14 1

DECnet Open Networking

14. C. Strutt, "Dealing with Scale in an Enterprise
Management Director," IFIP Proceedings of
the Second Symposium on Integrated
Network Management (April 1991): 577-593.

15. S. Martin, J. Mccann, and D. Oran, "Develop­
ment of the VAX Distributed Name Service,"
Digital Technical journal, vol. 1, no. 9 (June
1989): 9-15.

16. A. Shvartsman, "An Historical Object Base
in an Enterprise Management Director;' IFIP
Proceedings of the Third Symposium on
Integrated Network Management (April
1993): 123-134.

17. C. Strutt and D. Shurtleff, "Architecture for an
Integrated, Extensible Enterprise Manage­
ment Director," IFIP Proceedings of the First
Symposium on Integrated Network Manage­
ment (May 1989): 61-72.

142

18. J. Borden, "Digital's Telecommunications
Network Management Program," Network
Operations and Management (New York:
The Institute of Electrical and Electronics
Engineers, 1992): 102-111.

19. DECmcc System Reference Manual, 2 vol­
umes (Maynard, MA: Digital Equipment
Corporation, Order No. AA-PD5LC-TE, AA­
PE55C-TE, April 1992).

20. J. Fernandez and K. Winkler, "Modeling SNA
Networks using the Structure of Management
Information," IEEE Communications (May
1993).

21. C. Strutt, "Distribution in an Enterprise Man­
agement Director," IFIP Proceedings of the
Third Symposium on Integrated Network
Management (April 1993): 223-234.

Vol. 5 No. I Wtnter 1993 Digital Technical Journal

I Recent Digital U.S. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied
to us vy the US. Patent and Trademark Office are reproduced exactly as they appear on the original
published patent.

5,117,352
5,119,043

5,119,402

5,119,465

5,119,483

5,119,484

5,120,603

5,121,085
5,121,260

5,121,382

5,123,091

5,123,3o6
5,125,083

5,125,086

5,126,964
5,127,0o6

5,136,700

5,150,197
5,150,360

5,161,193

5,179,577
5,185,537

5,193,151
5,195,181

L. H. Falek
R. W Brown, M. D. Leis,
and E. C. Simmons
S. A. Ginzburg and}. M. Rieger

M. L. Jack and R. T. Gumbel

W C. Madden, D. E. Sanders,
G. M. Uhler, and W R. Wheeler

T.E Fox

P.H. Schmidt

R. WBrown

G.]. Asakawa, R. Y. Noguchi,
and]. Rinaldis

H. S. Yang, M. W Carrafiello,
W Hawe, and R. W Graham

B.E.Newman

N. S. Saunders and D.J. Moretti

D. B. Fite, T. Fossum,
R. C. Hetherington,
]. E. Murray, Jr., and D. A. Webb

E L. Perazzoli, Jr.

]. H. Zurawski

K. Subramanian and
M. A. Billmers

C. P. Thacker

W R. Hamburgen

R.]. Perlman, W R. Hawe, and
A.G. Lauck

B. T. Lampson, W R. Hawe,
A. Gupta, and B. A. Spinney

N. llyadis
T. Creedon,]. Nolan,
and E. O'Neill

R.Jain
S. Bryant and M. Seaman

Mechanism for Fail-Over Notification

Auto-Centered Phase-Locked Loop

Method and Apparatus for Transmission of Local Area
Network Signals over Unshielded Twisted Pairs

System for Selectively Converting Plurality of Source Data
Structures through Corresponding Source Intermediate
Structures, and Target Intermediate Structures into Selected
Target Structure

Application of State Silos for Recovery from Memory
Management Exceptions

Selections between Alternate Control Word and Current
Instruction Generated Control Word for ALU in Respond to
ALU Output and Current Instruction
Magneto-Optic Recording Medium with Oriented Langmuir­
Blodgett Protective Layer

Dual-Charge-Pump Bandwidth-Switched Phase-Locked-Loop

Read Channel Optimization System

Station-to-Station Full Duplex Communication in
a Communications Network

Data Processing System and Method for Packetizing Data
from Peripherals.

Pin Pulling Tool

Method and Apparatus for Resolving a Variable Number
of Potential Memory Access Conflicts in a Pipelined
Computer System
Virtual Memory Paging Apparatus with Variable Size
In-Page Clusters

High Performance Bit-Sliced Multiplier Circuit

Fault Diagnostic System

Apparatus and Method for Reducing Interference in Two-Level
Cache Memories

Die Attach Structure and Method

Utilization of Redundant Lin.ks in Bridges Networks

Pipelined Cryptography Processor and Method for its Use in
Communication Networks

Dynamic Threshold Data Receiver for Local Area Networks
Gate Efficient Digital Glitch Filter for Multiple
Input Applications
Delay-Based Congestion Avoidance in Computer Networks

Message Processing System Having Separate Message
Receiving and Transmitting Processors with Message P,·ocess­
ing Being Distributed Between the Separate Processors

Digital Technical Journal Vol. 5 No. 1 Winter 1993 143

I Referees, April 1992 to December 1992

The editors acknowledge and
thank the referees who have par­
ticipated in a peer review of the
papers submitted for publication
in the Digital Technical Journal.
The referees' detailed reports
have helped ensure that papers
published in the Journal offer
relevant and informative discus­
sions of computer technologies
and products. The referees are
computer science and engineer­
ing professionals from academia
and industry, including Digital's
consulting engineers.

Anant Agarwal, Massachusetts
Institute of Technology

Brian Allison, Digital
Paul Beck, Digital
Lisa Bender, Digital
Brian Bershad, Carnegie-Mellon University
Dileep Bhandarkar, Digital
Meyer Billmers, Digital
Verell Boaen, Digital
Scott Bradner, Harvard University
Bevin Brett, Digital
Preston Briggs, Rice University
Dean Brock, University of North Carolina
Mark R. Brown, Digital
Randal E. Bryant, Carnegie-Mellon University
Lyman Chapin, Bolt, Beranek and Newman
John DiMarco, University of Toronto
James Duckworth, Worcester Polytechnic Institute
Hugh Durdan, Digital
Philip Enslow, Georgia Institute of Technology
Deborah Estrin, University of Southern California
Len Fehskens, Digital
David Fenwick, Digital
David Fite, Digital
John Forecast, Digital
Tryggve Fossum, Digital
Mark S. Fox, University of Toronto
Rodney Gamache, Digital
Rick Gillett, Digital
Michael Greenwald, Stanford University
Stephen Greenwood, Digital
James Grochmal, Digital
Robert Hagens, University of Wisconsin
Alf Hansen, Sintef
Steve Hardcastle-Kille, Isode

144

John Hauser, University of California
Bill Herrick, Digital
Hai Huang, Digital
Raj Jain, Digital
AshokJoshi, Digital
Alberto Leon-Garcia, University of Toronto
Jeff Kalb, Maspar Computer Corporation
Kim Kappel, Georgia Institute of Technology
Paul Kinzelman, Digital
James Kirkley, Digital
Jeffery Kuskin, Stanford University
Paul Kyzivat, Digital
Mike Leary, Digital
Ian Leslie, University of Cambridge
Tom Levergood, Digital
David Lomet, Digital
Frank McCabe, Digital
John McDermott, Digital
Paul McJones, Digital
William Michalson, Worcester Polytechnic

Institute
Peter Mierswa, Digital
Charles Mitchell, Digital
David Mitton, Digital
Fanya Montalvo, Digital
]. Eliot Moss, University of Massachusetts
Trevor Mudge, University of Michigan
Bill Noyce, Digital
Dave Patterson, University of California
Larry Peterson, University of Arizona
David Piscitello, Bellcore
George Polyzos, University of Calfornia
Brian Porter, Digital
James]. Quinn, Digital
Farshad Rafii, Babson College
Hemant Rotithor, Worcester Polytechnic Institute
Paul Rubinfeld, Digital
Peter Savage, Digital
Michael Schroeder, Digital
Will Sherwood, Digital
Robert Simcoe, Digital
Richard Sites, Digital
Richard Stockdale, Digital
David Stone, Digital
Joseph Tardo, Digital
Bob Taylor, Digital
Mike Uhler, Digital
Jake VanNoy, Digital
Wolf-Dietrich Weber, Stanford University
Kathrin Winkler, Digital

Vol. 5 No. 1 Winter 1993 Digital Technical Journal

�amaomaTM

ISSN 0898-901X

Printed in U.S.A. EY-M770E-DP/93 05 02 18.0 Copyright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Overview of Digital's Open Networking
	The DECnet/OSI for OpenVMS Version 5.5 Implementation
	The ULTRIX Implementation of DECnet/OSI
	High-performance TCP/IP and UDP/IP Networking in DEC OSF/l for Alpha AXP
	Routing Architecture
	Digital's Multiprotocol Routing Software Design
	The DECNIS 500/600 Multiprotocol Bridge/Router and Gateway
	Frame Relay Networks
	An Implementation of the OSI Upper Layers and Applications
	Network Management
	Design of the DECmcc Management Director
	Recent Digital U.S. Patents
	Referees, April 1992 to December 1992
	Back cover

