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I Editor's Introduction 

Jane C. Blake 
Editor 

The NVAX microprocessor is a high-performance, 
single-chip implementation of the VAX architecture. 
It is today's fastest VAX microprocessor and the CPU 
at the heart of the mid-range, low-end, and work­
station systems described in this issue of the Digital 
Technical Journal. 

The NVAX chip is not only fast, with cycle times as 
low as 11 ns, but also holds a unique position in the 
Digital family of microprocessors: NVAX is both an 
upgrade path for existing VAX systems and a migra­
tion path to Alpha AXP systems. In their paper on 
the NVAX and NVAX+ chips, Mike Uhler, Debra 
Bernstein, Larry Biro, John Brown, John Edmond­
son, Jeff Pickholtz, and Rebecca Stamm present an 
overview of the complex microprocessor designs 
and relate how RISC techniques are used in this CISC 
machine to achieve dramatic increases in perfor­
mance over previous implementations. 

Increases in performance are also attributable to 
the CMOS-4 0.75-micrometer process technology in 
which the NVAX is implemented. In their paper 
about the verification of the physical design, Dale 
Donchin, Tim Fischer, Frank Fox, Victor Peng, Ron 
Preston, and Bill Wheeler describe the methods and 
the CAD tools created to manage the complexity of 
a chip with 1.3 million transistors. 

The rigorous use of the CAD tools and thorough 
simulation-based testing resulted in highly func­
tional first-pass chips. In his paper about the logical 
verification, Walker Anderson discusses the suc­
cessful strategies used to ensure no "show stopper" 
bugs existed in the design. Highlighting major 
strategies, he reviews the behavioral models and 
pseudorandom exercisers at the core of the verifi­
cation effort. 

Each system design team chose a different 
approach to take advantage of NVAX performance 
and to meet system-specific requirements. In a 
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paper on the new mid-range VAX 6000 multipro­
cessing system, Larry Chisvin, Gregg Bouchard, and 
Tom Wenners explain the module design decisions 
that supported the goals of 6000-series compatibil­
ity and time to market. Of particular interest are the 
schedule and performance benefits derived from 
developing a routing and control interface chip. 

The engineers for new low-end deskside systems 
also chose to develop custom chips-a memory 
controller chip, memory module, and an 1/0 con­
troller. Jon Crowell, Kwong Chui, Tom Kopec, Sam 
Nadkarni, and Dean Sovie discuss the chip func­
tions that were key to exceeding the performance 
goal of three times that of the previous VAX 4000. 

For the low-end VAX 4000 Model 100 system and 
the MicroVAX 3100 desktop servers, designers saved 
significant time by "borrowing" existing compo­
nents from proven systems. Jon Crowell and Dave 
Maruska relate decisions that allowed them to dou­
ble performance and complete the work within the 
extraordinarily short time of nine months. 

The newest VAXstation workstation, based on 
NVAX, is the Model 90. Mike Callander, Lauren 
Carlson, Andy Ladd, and Mitch Norcross present 
their design methodology. Most significant for 
development was the decision to implement new 
logic in programmable technology, which allowed 
bug fixes in minutes rather than weeks. 

Not about system design but rather error han­
dling in 6000 systems, Brian Porter's paper 
describes an approach that reduces the amount of 
unique coding traditionally required for error han­
dling. He details the development of sophisticated 
error handling routines that accommodate the 
complexity of the symmetric multiprocessing VAX 
6000 models. 

The editors thank Mike Uhler of the Semi­
conductor Engineering Group, who ensured that 
the standards of excellence applied to NVAX devel­
opment were applied to the development of this 
issue. Also, this issue is notable editorially because 
it is the first in which papers have been formally 
refereed. I thank Gene Hoffnagle, editor of the 
IBM Systems Journal, for encouraging the use of 
the referee process in any journal worthy of the 
name. DTJ issues will continue to be refereed so 
that we may offer engineering and academic read­
ers informative and relevant technical discussions. 
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I Foreword 

Robert M. Supnik 
Corporate Consultant, 
Vice President 
Technical Director, 
Al,pha AXP and VAX Systems 

If, as the popular saying goes, "Once is happen­
stance, twice is coincidence, three times is con­
certed action;' then four consecutive instances of 
outstanding engineering achievement must be even 
more significant. 

Since 1985, Digital has designed, developed, and 
shipped four generations of leadership VAX micro­
processors and CMOS-based systems: 

• In 1985, the MicroVAX chip and resulting systems 
(such as the MicroVAX II and the VAXstation 
2000) 

• In 1987, the CVAX chip and resulting systems 
(such as the MicroVAX 3800, the VAX 6000-200, 
and the VAXstation 3100) 

• In 1989, the Rigel chip and resulting systems 
(such as the VAX 4000-300, the VAX 6000-400, 
and the VAXstation 4000-60) 

• In 1991, the NVAX chip and resulting systems 
(such as the VAX 4000-500, the VAX 6000-600, 
and the VAXstation 4000-90) 

The first three were described in the Digital 
Technical Journal issues of March 1986, August 
1988, and Spring 1990, respectively; the last is the 
subject of this issue. 

NVAX and its systems are the culmination of 
everything Digital and its engineers have learned 
about chip and system design over the last decade. 
The teams involved drew on many disciplines of 
hardware engineering, from microarchitecture to 
whole-system verification, to produce products 

of unparalleled performance and quality. The 
results speak for themselves. 

• From its initial shipment in October 1991 
through today (a year later), NVAX was (and is) 
the fastest shipping CISC microprocessor in the 
world, whether measured by clock rate, 
SPECmarks, or transactions per second. 

• NVAX had fewer bugs after design completion, 
and went from tape-out to production more 
quickly than any microprocessor in Digital's 
history. 

• NVAX systems, spanning the range from work­
station through mainframe, all shipped on or 
ahead of schedule, meeting or exceeding pre­
dicted performance. 

An outstanding engineering achievement indeed! 
The roots of NVAX can be traced back a decade to 

two distinct engineering programs: the High-end 
Systems Group's studies and implementations of 
highly pipelined VAX systems; and the Semicon­
ductor Operations Group 's projects in process 
development and microprocessor design. 

The High-end Systems Group started work on 
highly parallel VAX systems in 1979, designing and 
building the VAX 8600-the first VAX to include 
overlapped operand decoding (see the Digital 
Technical journal, August 1985). At the same time, 
a research team described HyperVAX, a hypotheti­
cal fully pipelined design. Although HyperVAX was 
never built, its microarchitecture had a strong influ­
ence on the design of the VAX 9000, Digital's ECL 
mainframe (see the Digital Technical journal, Fall 
1990). And the microarchitecture of the VAX 9000, 
in turn, was the basis for NVAX. 

The Semiconductor Operations Group also 
started work in 1979, formulating a multiyear pro­
gram for the development of both semiconductor 
process technology and leading-edge microproces­
sors. This program spanned the years 1983 to 1987 
and encompassed the development of the V-11, 
MicroVAX II, and CVAX microprocessors. In 1986, 
the plan was extended through 1991, encompassing 
the development of Rigel, Mariah (a Rigel variant), 
and a fourth-generation VLSI VAX code-named NVAX. 

The goals for NVAX were ambitious. First, its 
targeted performance was more than 25 times 
faster than the VAX-11/780 (more than 10 times 
faster than the just-introduced CVAX chip), requir­
ing significant improvements in both microar­
chitectural efficiency and in cycle time. Second, 
the chip development schedule coincided with the 
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semiconductor process development schedule, 
requiring breakthroughs in concurrent develop­
ment of product and process. And third, the time 
allotted from chip design completion to system 
shipment was the shortest in Digital's history, 
requiring unprecedented accuracy in chip and 
system design and verification. 

As in past projects, work in various disciplines­
semiconductor process development, chip micro­
architecture and circuit design, microprocessor 
design tools, chip and system verification tools, 
and system design-cascaded from process 
through systems. First to start was a team from 
Advanced Semiconductor Development (ASD), 
which designed, simulated, and introduced into 
manufacturing CMOS-4, Digital's fourth generation 
of CMOS technology (see the Digital Technical 
Journal, Spring 1992). Building on prior technology 
generations, CMOS-4 contained many features­
three layers of metal interconnect, salicide, preci­
sion resistors, local interconnect, deep diffusion 
ring-which directly supported the performance 
requirements of NVAX. In addition, ASD and Semi­
conductor Manufacturing pioneered new tech­
niques for process transfer and qualification which 
dramatically shortened the time required to debug 
and qualify the CMOS-4 process. 

In parallel, a design team from the Semicon­
ductor Engineering Microprocessor Group initi­
ated microarchitectural and circuit studies. The 
team started with the VAX 9000, but they quickly 
discovered that the difference in implementation 
media (multichip ECL gate arrays for the VAX 9000, 

single-chip custom CMOS for NVAX) required sig­
nificant changes and new concepts. The micro­
architecture sub-team used abstract and detailed 
performance models, studies from existing VAX 
systems, and experience with past designs to drive 
quantitative decisions about features and functions 
in NVAX. At the same tin1e, the circuit sub-team for­
mulated the overall design, circuit, and clocking 
methodologies for the chip and established the 
feasibility of the target cycle time, chip size, and lay­
out floor plan. 

As the microarchitectural concepts solidified, 
the design team realized that NVAX would be the 
largest and most complex chip ever designed at 
Digital, and that it would place unprecedented 
stress on the capabilities of both designers and 
design tools. Accordingly, they initiated a partner­
ship with the Semiconductor Engineering CAD 
Group to improve current tools and to develop new 
tools. In addition to traditional areas like simula-
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tion, CAD development focused on improvements 
to productivity and accuracy through design syn­
thesis, electromigration analysis, and capacitance 
and resistance extraction. 

The size and complexity of the design, as well as 
the stringent schedule constraints, also dictated an 
early start on verification issues. The verification 
strategy formed an integral part of the design effort 
from the outset. The verification team developed 
tools and strategies for verifying the microarchitec­
ture, the microcode, the logic, the circuits, the chip 
as a component, and the chip in a system. 

Lastly, the various system groups-data center 
systems, office systems, workstations-began 
designing systems to utilize the NVAX chip's capabil­
ities. Each group was able to build on the work 
done in past VAX systems and designed an NVAX­
based system that functioned both as an upgrade of 
past systems and as a formidably competitive new 
system in its own right. 

The work of these project teams dovetailed per­
fectly. NVAX completed design and taped-out in late 
November 1990, just as the CMOS-4 process was 
ready for chip prototyping. Due to the outstanding 
work of the chip design, system design, CAD, and 
verification teams, first-pass parts booted the VMS 
operating system at speed in early March 1991. The 
process team qualified CMOS-4 in October 1991, and 
systems using second-pass parts shipped for rev­
enue that same month-three months ahead of 
schedule-with performance significantly greater 
than the original goal. 

Clearly, the outstanding results from all the NVAX 
engineering projects are neither happenstance 
nor coincidence; rather, they represent concerted 
action-team excellence and individual brilliance­
at its finest. Hundreds of people contributed to the 
outcome. This issue of the Digital Technical 
journal is their story. 
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The NVAX and NVAX + CPU chips are high-perfonnance VAX microprocessors that use 
techniques traditionally associated with RISC microprocessor designs to dramati­
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The design evolved throughout the project as time-to-market, perfonnance, and 
complexity trade-offs were made. Special design features address the issues of 
debug, maintenance, and analysis. 

The NVAX and NVAX+ CPUs are high-performance, 
single-chip microprocessors that implement 
Digital's VAX architecture. 1 The NVAX chip provides 
an upgrade path for existing systems that use the 
previous generation of VAX microprocessors. The 
NVAX+ chip is used in new systems that support 
Digital's DECchip 21064 microprocessor, which 
implements the Alpha AXP architecture.2,3 These 
two NVAX chips share a basic design. 

The high-performance, complementary metal­
oxide semiconductor (CMOS) process used to 
implement both chips allows the application of 
pipelining techniques traditionally associated with 
reduced instruction set computer (RISC) CPUs. 4 

Using these techniques dramatically improves the 
performance of the NVAX and NVAX+ chips as com­
pared to previous VAX microprocessors and results 
in performance that approaches and may even 
exceed the performance of popular industry RISC 
microprocessors. 

The chip design evolved throughout the project 
as the goals influenced the schedule, performance, 
and complexity trade-offs that were made. The two 
primary design goals were time-to-market, without 
sacrificing quality, and improved VAX CPU 
performance. Our internal goal was for the NVAX 
CPU performance to be more than 25 times the 
performance of a VAX-nnso system in a datacenter 
system. Achieving these goals required meeting 
aggressive schedules and thus concentrating 
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on the high-leverage design points and on an 
unprecedented verification effort.5 

Support for multiple system environments, 
compatibility with previous VAX products and 
systems, and a means to migrate from traditional 
VAX systems to the new Alpha AXP platforms were 
also important design goals. These goals had a pro­
found impact on the design of the cache protocols 
and the external bus interfaces. NVAX and NVAX+ 
engineers worked closely with engineers in 
Digital's systems groups during the definition of 
these operations. 

The paper begins by comparing the basic fea­
tures of the NVAX and NVAX+ chips and then 
describes in detail the chip interfaces and design 
elements. This description serves as the foundation 
for the ensuing discussion of design evolution and 
trade-offs. The paper concludes with information 
about the special design features that address the 
issues of debug, maintenance, and analysis. 

Comparison of the NVAX 
and NVAX+ Chips 
The NVAX and NVAX+ chips are identical in many 
respects, differing primarily in external cache and 
bus support. NVAX is intended for systems that use 
previously designed VAX microprocessors. The 
following systems currently use the NVAX chip: 
the VAXstation 4000 Model 90; the MicroVAX 
3100 Model 90; the VAX 4000 Models 100, 400, 
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500, and 600; and the VAX 6000 Model 600.6,,s.9 
NVAX supports an external write-back cache 
that implements a directory-based broadcast 
coherence protocol that is compatible with earlier 
VAX systems. 10 

NVAX+ is designed for systems that use the 
DECchip 21064 microprocessor implementation 
of the Alpha AXP architecture and is currently used 
in the VAX 7000 Model 600 and the VAX 10000 
Model 600 systems. NVAX+ supports an external 
cache and bus protocol that is compatible with that 
of the DECchip 21064 microprocessor. In existing 
systems, NVAX+ is configured to support an exter­
nal write-back cache that implements a conditional 
write-update snoopy coherence protocol. n 

The two CPU chips provide both the means to 
upgrade installed VAX systems, thus protecting pre­
vious investments, and a migration path from a VAX 
microprocessor to a DECchip 21064 microproces­
sor in the new Alpha AXP systems. 

Chip Interfaces 
The NVAX chip interfaces to an external write-back 
cache (B-cache) through a private port with tag 
and data static random-access memories (RAMs) 
on the module, as shown in Figure 1. The size and 
speed of the cache are programmable, allowing 
the chip to accommodate a range of possible sys­
tem configurations. 

The NVAX data and address lines (NDAL) con­
stitute a 64-bit bidirectional external bus with asso­
ciated control signals that operates at one-third the 
frequency of the CPU from clocks provided by the 
CPU. Addresses and data are time-multiplexed and, 

OSCILLATOR 

NVAX 

to provide h igh performance, are overlapped with 
arbitration for future transactions and acknowl­
edgment of previous transactions. The NDAL bus 
protocol allows up to two disconnected reads and 
multiple write-backs to be outstanding at the same 
time, using identifiers to distinguish the different 
transactions. External interrupt requests are 
received through dedicated lines and arbitrated by 
logic in the CPU. 

The NVAX+ chip interfaces to an external 
write-back B-cache implemented with tag and data 
static RAMs on the module through a port shared 
with system control logic, as shown in Figure 2. 
Responsibility for controlling the cache port is 
shared between NVAX+ and the system environ­
ment; the NVAX+ chip handles the common cases 
of read hit and exclusive write, and the system 
environment provides cache policy control for 
other events. The size and speed of the cache can 
be configured to allow a range of possible system 
configurations. 

The DECchip 21064 data and address lines (EDAL) 
constitute a demultiplexed, bidirectional bus with 
29 bits of address, 128 bits of data, and the associ­
ated control signals. This bus operates at one-half, 
one-third, or one-fourth the frequency of the CPU 
from clocks provided by the CPU. The speed of the 
system clocks can be programmed to accommo­
date various RAM and system speeds. At power-up 
time, initialization information, including RAM 
timing, and diagnostics are loaded from a serial 
read-only memory (ROM) into the on-chip cache. 
The external interrupt handling is similar to that of 
the NVAX chip. 

CACHE TAG -
ADDRESS B-CACHE 

DATA TAG AND 
DATA RAMS 

NDAL 

CONTROL SYSTEM 
LOGIC 

INTERRUPTS 

SYSTEM CLOCKS 

Figure 1 NVAX Chip Interface Block Diagram 
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OSCILLATOR CACHE TAG 

SERIAL ROM ADDRESS B-CACHE 

DATA TAG AND 
DATA RAMS 

NVAX+ 

EDAL 

CONTROL SYSTEM 
- LOGIC 

INTERRUPTS 

SYSTEM CLOCKS -

Figure 2 NVAX + Chip Interface Block Diagram 

Electrical and Physical Design Architectural Design 
Process technology, clocking scheme, clock fre­
quency, and die specifications are elements of 
the electrical and physical design of the NVAX 
and NVAX+ chips. Both chips are implemented in 
Digital's fourth-generation complementary metal­
oxide semiconductor (CMOS-4) technology. CMOS-4 
is a 0.75-micrometer, 3.3-volt process with support 
for 5-volt input signals at the pins. The CMOS-4 
process is optimized for high-performance micro­
processors and provides short (0.5-micrometer) 
channel lengths and three layers of metal inter­
connect. This robust and reliable process has 
been used to produce NVAX chips in volume for 
more than a year and is the same CMOS process used 
in the DECchip 21064 microprocessor. 

NVAX and NVAX+ use a four-phase clocking 
scheme, driven by an oscillator that operates 
at four times the internal clock frequency. The oscil­
lator frequency is divided by an on-chip, finite­
state-machine clock generator; a low-skew clock 
distribution network is used for both internal and 
external clocks. 

To meet the needs of the system designer, the 
two chips are designed for use at various frequen­
cies. At present, NVAX is used in systems at internal 
clock frequencies of 83.3 megahertz (MHz) 
(12-nanosecond [ns] clock cycles), 74.4 MHz (14-ns 
clock cycles), and 62.5 MHz (16-ns clock cycles). 
NVAX + is used in systems at a frequency of 90.9 MHz 
(11-ns clock cycles). 

Each chip contains 1.3 million transistors on a 
die that is 16.2-by-14.6 millimeters in size. NVAX is 
packaged in a 339-pin, through-hole pin grid array. 
NVAX+ is packaged in a 431-pin, through-hole pin 
grid array. 

Digital Technical Journal Vol. 4 No. 3 Summer 1992 

The NVAX/NVAX+ design is partitioned into five 
relatively autonomous functional units: the instruc­
tion fetch and decode unit (I-box), the integer and 
logical instruction execution unit (E-box), the float­
ing-point execution unit (F-box), the address trans­
lation and primary cache interface (M-box), and the 
external cache and system bus interface (C-box). 
Queues placed at critical interface boundaries nor­
malize the rate at which the units process instruc­
tions. A block diagram of the NVAX and NVAX+ core 
is shown in Figure 3. 

The I-box 
The I-box fetches and decodes VAX instructions, 
evaluates operand specifiers, and queues operands 
in canonical form for further processing. Included 
in the I-box is a 2-kilobyte (KB), direct-mapped vir­
tual instruction cache (VIC) with 32-byte cache 
blocks. For reliability, the VIC includes parity pro­
tection on both tags and data. 

During each cycle, the I-box attempts to fetch 
8 bytes of instruction data from the VIC and place 
this data in an empty slot in the prefetch queue 
(PFQ). A VIC miss incurs a three-cycle penalty if 
the requested data is found in the primary 
cache. PFQ data is then decoded into the next VAX 
instruction component, which may be one of 
the following: operation code (opcode) and first 
specifier or branch displacement, subsequent 
specifier, or implicit specifier (an imaginary speci­
fier included to improve the performance of 
some instructions). The I-box enters the opcode­
related information into the instruction queue, 
the pointers to source and destination operands 
into their respective source and destination 
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queues, and the branch-related information into 
the branch queue. 

For operand specifiers other than short literal or 
register mode, the I-box decode logic invokes the 
pipelined complex specifier unit (CSU) to compute 
the effective address and initiate the appropriate 
memory request to the M-box. The CSU is similar in 
function to the load/store unit on many traditional 
RISC machines. 

The I-box automatically redirects the program 
counter (PC) to the target address when it decodes 
one of the following instruction types: uncon­
ditional branch, jump, and subroutine call and 
return. The branch-taken penalty is two cycles for 
any conditional or unconditional branch. To keep 
the pipeline full across conditional branches, the 
I-box includes a 512-bit by 4-bit branch prediction 
array. The prediction is entered in the branch queue 
by the I-box and compared with the actual branch 
direction by the E-box. If the I-box predicts incor­
rectly, the E-box invokes a trap mechanism to drain 
the pipeline and restart the I-box at the alternate 
PC. A branch mispredict incurs a four-cycle penalty 
for a branch that is actually taken and a six-cycle 
penalty for a branch that is not taken. 

TheE-box 
The E-box is responsible for the execution of all 
non-floating-point instructions, for interrupt and 
exception handling, and for various overhead func­
tions. All functions are microcode-controlled, i.e., 
driven by a microsequencer with a 1,600-word con­
trol store and a 20-word patch capability. Since the 
control store does not limit the cycle time, we 
chose to implement a single microcode control 
scheme, rather than hardwire control for the simple 
instructions and provide microcode control for the 
remaining instructions. 

The E-box begins instruction execution based 
on information taken from the instruction queue. 
References to specifier operands and results are 
made indirectly through pointers in the source and 
destination queues. 1n this way, most E-box instruc­
tion flows do not need to know whether operands 
or results are in register, memory, or instruction 
stream. 

To improve the performance of certain critical 
instructions, the E-box contains special-purpose 
hardware. A mask processing unit finds the next 
bit set in a mask register and is used in the follow­
ing instructions: FFC, FFS, CALLS, CALLG, RET, PUSHR, 
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and POPR. A population counter provides the num­
ber of bits set in a mask and is used in the CALLS, 
CALLG, PUSHR, and POPR instructions. In addition, 
microcode can operate the arithmetic logic unit 
(ALU) and shifter independently to produce two 
computations per cycle, which can significantly 
improve the parallel operation of the complex 
instructions. 

In addition to normal instruction processing, the 
E-box performs all power-up functions and inter­
rupt and exception processing, directs operands to 
the F-box, and accepts results from the E-box. To 
guarantee that instructions complete in instruction 
stream order, the E-box orchestrates result stores 
and instruction completion between the E-box and 
E-box. 

TheF-box 
The F-box performs longword (32-bit) integer mul­
tiply and floating-point instruction execution. The 
E-box supplies operands, and the F-box transmits 
results and status back to the E-box. 

The F-box contains a four-stage, floating-point 
and integer-multiply pipeline, and a nonpipe­
lined, floating-point divider. Subject to operand 
availability, the F-box can start a single-precision, 
floating-point operation during every cycle, and a 
double-precision, floating-point or integer-multiply 
operation during every other cycle. 

Stage 1 of the pipeline calculates operand expo­
nent difference, adds the fraction fields, performs 
recoding of the multiplier, and computes three 
times the multiplicand. Stage 2 performs align­
ment, fraction multiplication, and zero and leading­
one detection of the intermediate results. Stage 3 
performs normalization, fraction addition, and a 
miniround operation for floating-point add, sub­
tract, and multiply instructions. Stage 4 performs 
rounding, exception detection, and condition code 
evaluation. 

Stage 3 performs a miniround operation on the 
result calculated to that point to determine if a full­
round operation is required in Stage 4. To do this, a 
round operation is performed on only the low­
order three (for single-precision) or six (for double­
precision) fraction bits of the result. If no carry-out 
occurs for this operation, the remaining fraction 
bits are not affected and the full stage 4 round oper­
ation is not required. If the full round is not 
required, stage 4 is dynamically bypassed, resulting 
in an effective three-stage pipeline. 
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TheM-box 
The M-box is responsible for address translation, 
access checking, and access to the primary instruc­
tion and data cache (P-cache). The M-box accepts 
requests from multiple sources and processes 
these requests in an order that reflects both the pri­
ority of the request and the need to maintain 
instruction stream ordering of memory reads and 
writes. Address translation and cache access are 
fully pipelined; the M-box can start a new request at 
the beginning of every cycle. 

The M-box performs address translation and 
access checking by means of a 96-entry, fully asso­
ciative translation buffer (TB) with parity protec­
tion. If a TB miss occurs, the M-box automatically 
invokes a hardware miss sequence that calculates 
the address of the page table entry (PTE) that maps 
the page, fetches the PTE from memory, refills the 
TB, and restarts the reference. TB allocation is per­
formed using a not-last-used scheme, which is 
similar to a round-robin but guarantees that the 
most recently referenced entry will not be over­
written. The M-box reports access violations and 
page faults to the E-box, and E-box microcode pro­
cesses these misses with hardware support from 
theM-box. 

The M-box also translates memory destination 
operand addresses provided by the I-box and saves 
the corresponding physical address in the physical 
address (PA) queue. When the E-box stores a result, 
the M-box matches the data with the next address 
in the PA queue and converts this data to a normal 
write request. The PA queue is also used to check 
for conflicts in read requests to a location in which 
nothing has been written. 

The P-cache is an 8KB, two-way set-associative 
cache with 32-byte blocks and parity protection 
on tags and data. The P-cache can be configured 
to cache instructions, data, or both, and usually 
has the latter configuration. For compatibility with 
the DECchip 21064 microprocessor, the NVAX+ 
P-cache can also be configured into a direct ­
mapped organization. 

The NVAX C-box 
The NVAX C-box maintains the interface to the 
external B-cache and to the NDAL bus. The C-box 
receives read and write requests from the M-box 
and monitors the NDAL for activity that would 
require an invalidate operation in either cache. 
Consecutive writes to the same quadword (64 
bits) are merged into a single quadword datum by 
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packing logic placed at the input of an eight-entry 
quadword write queue. 

The C-box can accept one instruction read 
request and one data read request from the M-box. 
Conflict logic in the write queue allows noncon­
flicting read requests to be processed before 
queued write requests are performed. Conflicts are 
resolved by processing write queue entries until 
the conflicting write is completed. 

The C-box supports four B-cache sizes: 128KB, 
256KB, 512KB, and 2 megabytes (MB). The system 
designer can independently select tag and data RAM 
speeds to meet system requirements, regardless of 
the frequency at which the CPU is running. The 
B-cache block size is 32 bytes, and both tag and data 
RAMs are protected with error correction code 
(ECC) that corrects single-bit errors and detects 
both double-bit errors and full 4-bit RAM failures. 
The B-cache implements a directory-based broad­
cast coherence protocol in conjunction with a 
memory directory containing one bit per 32-byte 
block. Each memory directory bit indicates if the 
associated block is valid in memory or has been 
written and exists in a cache. Unwritten blocks may 
exist in multiple caches in the system. Written 
blocks may exist in exactly one cache. 

An attempt to write to a block that is not both 
valid and already written in the B-cache causes the 
C-box to request write permission from memory by 
means of a special NDAL bus read command. The 
memory controller will not respond to any NDAL 
bus transactions to a block that is written in a 
cache. Instead, it waits for the CPU, which contains 
an updated copy of the block, to write the block 
back to memory and then completes the original 
transaction. All CPUs in the system monitor the 
NDAL bus for read and write transactions and com­
pare the address against their B-cache tags. If a 
match is found, the cache block is either written 
back to memory, invalidated, or both, depending 
on the transaction type and the state of the block in 
the cache. 

The NDAL protocol fully supports multipro­
cessing implementations and does not require any 
special chip variants to construct a multiprocessor 
system. The C-box invokes invalidate or write-back 
requests as required to keep the B-cache and 
P-cache coherent with NDAL activity. 

The NVAX + C-box 
The NVAX+ C-box provides the interface between 
the internal functional units and the EDAL pin bus 
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implemented by the DECchip 21064 micropro­
cessor. This C-box interface includes the basic 
interface control for the external B-cache and for 
the memory and 1/0 system. The NVAX+ C-box 
receives read and write requests from the M-box. 
These requests are queued and arbitrated within 
the C-box and result in cache or system access 
across the EDAL. The NVAX+ C-box also maintains 
cache coherency by sending invalidate requests to 
the M-box when requested by external logic. 

The NVAX+ C-box implementation provides many 
of the same features and performance enhancements 
available in the NVAX C-box. Included is support for 
software-programmable B-cache speeds (one-half, 
one-third, or one-fourth times the CPU frequency) 
and sizes (128KB to 8MB), write packing, write queu­
ing, and read-write reordering. In addition, the 
NVAX+ C-box supports the newer platforms and 
increases the degree to which NVAX+ is compatible 
with the DECchip 21064 microprocessor. NVAX+ 
C-box features include programmable system clock 
speeds, 1/0 space-mapping, and a direct-mapped 
option on the P-cache. 

A major difference between the NVAX and NVAX+ 
implementations is in the B-cache coherence proto­
col. Rather than mandate a fixed B-cache coher­
ence protocol, the NVAX+ implementation allows 
systems to tailor the protocol to their particular 
needs. NVAX+ cache coherency is implemented 
jointly by off-chip system support logic and by the 
CPU chip, with relevant information passed 
between the two over the EDAL bus. To allow dupli­
cate cache tag stores (if they exist) to be properly 
updated, the NVAX+ C-box provides information to 
off-chip logic, indicating when the internal caches 
are updated. External logic notifies the NVAX+ 
C-box when an internal cache entry needs to be 
invalidated because of external bus activity. 

Existing systems configure the B-cache to imple­
ment a conditional write-update snoopy protocol 
carried out using shared and written signals on the 
system bus. Writes to shared blocks are broadcast to 
other caches for conditional update in those 
caches. A CPU that receives a write update checks 
the NVAX+ P-cache to determine if the block is also 
present in that cache. If the block is present, the 
B-cache update is accepted and written into the 
B-cache, and the P-cache is invalidated. If the data is 
not present in the P-cache, the B-cache is invali­
dated. This results in a write-update protocol for 
data that was recently referenced by a CPU (and 
hence is valid in the P-cache) and reduces to a 
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write-invalidate protocol for data that was not 
recently referenced. 

To accommodate the programmable nature of 
both the system and cache clock frequencies, the 
NVAX+ C-box supports nine different combinations 
of cache and system clock frequencies. This sup­
port allows efficient use of the chip in a wide range 
of different performance class systems. 

Pipeline Operation 
The NVAX and NVAX + chips implement a macro­
pipeline. Multiple VAX macroinstructions are pro­
cessed in parallel by relatively autonomous 
functional units with queued interfaces at critical 
boundaries. Each functional unit also has an inter­
nal pipeline (micropipeline) to allow a new oper­
ation to start at the beginning of every cycle. The 
pipeline operation can be logically depicted, as 
shown in Figure 4. 

In pipeline segment SO, instruction stream data 
is read from the VIC. The next VAX instruction com­
ponent is parsed, and queue entries are made in 
segment S 1. For short literal and register specifiers, 
no other processing is required. Requests for fur­
ther processing for all other specifiers are queued 
to the CSU pipeline, which reads operand base 
addresses in segment S2, calculates an effective 
address, and makes any required M-box request 
contained in segment S3. If an M-box request is 
made, address translation and P-cache lookup 
occur in segments S4 and SS. 

Instruction execution starts with an E-box 
control store lookup in segment S2, followed by 
a register file read of any required operands in 
segment S3, an ALU and/or shifter operation in seg­
ment S4, and a potential result store or register file 
write in segment SS. If an M-box request is required, 
e.g., for a memory store, the request is made in seg­
ment S4; address translation or PA queue access 
occurs in segment SS; and a P-cache access occurs 
in segment S6. 

Floating-point and integer-multiply instruction 
execution starts in the E-box, which transfers oper­
ands to the F-box. The four-stage F-box pipeline is 
skewed by half a cycle with respect to the E-box 
pipeline, beginning halfway through segment S4. 
The fourth segment of the F-box pipeline is con­
ditionally bypassed if a full-round operation is 
not required. The result is transmitted back to the 
E-box, logically in segment SS of the pipeline. 

Pipeline bypasses exist for all important cases 
in the I-box and E-box pipelines, so that there are 
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Figure 4 Pipeline Organization 

no stalls for results feeding directly into subse­
quent operands. The M-box processing of memory 
references initiated as a result of operand speci­
fier processing by the I-box is usually overlapped 
with the execution of the previous instruction in 
the E-box, with few or no stalls occurring on 
P-cache hit. 

Design Evolution and Trade-offs 
The NVAX and NVAX+ chips are the latest in a line of 
CMOS VAX microprocessors designed by Digital's 
engineers and represent a continuing evolution of 
architectural concepts from one implementation 
to the next. The preceding chip design was the 
CPU for the VAX 6000 Model 400 system. 12 To meet 
the time-to-market and performance goals, we 
had to modify the NVAX/NVAX+ design throughout 
the project. 

One of the early vehicles for making design 
trade-offs was the NVAX performance model, 
which predicts CPU and system performance 
and aids in quantifying the performance impact 
of various design options. The performance 
model is a detailed, trace-driven model which can 
be easily configured by changing any of a variety 
of input parameters. The model stimuli used 
were 15 generic timesharing and 22 bench­
mark instruction trace files that were captured 
by running actual programs on existing VAX 
systems. 

The following sections describe the evolution 
of the chip design, including the number of chips, 
the pipelining technique used, and various cache 
issues. 
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Number of CPU Chips 
The VAX 6000 Model 400 core CPU implementation 
is a three-chip design: a processor chip, with a 
small on-chip primary cache; a floating-point chip; 
and a secondary cache controller, with internal 
cache tags. The initial attempt at NVAX CPU defini­
tion was a two-chip design. One chip contained 
the I-box (with a 4KB VIC), the E-box, the F-box, and 
the M-box (with a 16KB, direct-mapped P-cache). 
The second chip held the C-box and the B-cache tag 
array. The project design goals, especially time-to­
market, led to a single-chip solution, rather than 
a two-chip design. 

To condense the design from two chips to one, 
we halved the sizes of the VIC and the P-cache and 
moved the B-cache tags to external static RAMs, 
leaving the B-cache controller on-chip. Later, we 
were able to reduce the penalty of halving the size 
of the P-cache by making it two-way set associative 
rather than direct mapped. With these changes, the 
performance model showed a performance loss of 
less than 1.4 percent across all the traces, relative 
to the two-chip design, with a worst-case penalty 
of 3.9 percent. 

There are strong advantages to the single-chip 
solution. 

• Designing a single chip takes less time. 

• This design requires the production and main­
tenance of only one design database and one 
mask set. 

• Latency to the B-cache is shorter. 

• An off-chip tag store provides more flexibility in 
B-cache configurations. 
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Macropipelining 
Run-time performance is the product of the cycle 
time, the average time to execute an instruction 
(cycles per instruction [CPI]) and the number of 
instructions executed. CMOS process improve­
ments made it possible to decrease the NVAX/ 
NVAX+ cycle time with respect to the previous gen­
eration of VAX microprocessors, thus improving the 
first factor in run-time performance. 

The VAX 6000 Model 400 CPU design uses tra­
ditional microinstruction pipelining, i.e., micro­
pipelining, to achieve some amount of overlap and 
to decrease the CPI. However, using micropipe­
lining techniques would not reduce the NVAX/ 
NVAX+ CPI to the level required to meet the perfor­
mance goals of the NVAX/NVAX+ projects. We 
achieved this reduction by using RISC design and 
implementation techniques referred to as macro­
pipelining. In a macropipelined architecture, the 
I-box acts much like a load/store engine, dynam­
ically prefetching operands prior to instruction 
execution. Using the macropipeline technique in 
the NVAX and NVAX+ CPUs makes it possible to 
retire one basic complex instruction set computer 
(CISC) macroinstruction per cycle, as in a simple 
RISC design. Although macropipelining introduced 
considerable complexity into the NVAX/NVAX+ 
design, this complexity resulted in a significant 
performance improvement over a traditional 
micropipelined design. 

Number of Specifiers per Cycle 
The NVAX/NVAX+ I-box can parse at most one 
opcode and one VAX specifier per cycle. The I-box 
design initially considered was capable of parsing 
two specifiers per cycle. Although this parsing 
scheme represented significant complexity and cir­
cuit risk, intuitively, it seemed important to quickly 
retire specifiers in the I-box in order to keep the 
macropipeline full. However, the performance 
model predicted a maximum performance improve­
ment of less than two percent on our traces, and we 
decided to limit complexity and schedule risk by 
parsing only one specifier per cycle. 

F-box Design 
The NVAX F-box design is highly leveraged from the 
VAX 6000 Model 400 F-chip design. Rather than 
start from scratch, we integrated the existing 
design onto the NVAX and NVAX+ CPU chips and 
added a final-stage bypass mechanism. In addition, 
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unlike the original F-chip implementation, the 
NVAX/NVAX+ control of the F-box allows a fully 
pipelined operation, which significantly improves 
floating-point performance over the F-chip design. 
Although a totally new design would have had 
shorter floating-point latencies, the combination of 
a fully pipelined operation and a final-stage bypass 
allowed us to achieve our performance goal, while 
meeting our time-to-market goal. 

Cache Coherence 
Performance studies with the previous generation 
of VAX microprocessors clearly indicate that system 
bus write bandwidth limits performance unless an 
external write-back cache is implemented. In addi­
tion, the VAX architecture required that we imple­
ment the cache coherence protocol in hardware. 

The NVAX implementation uses a directory-based 
coherence protocol for compatibility with existing 
and planned target system platforms. The NDAL bus 
supports multiple outstanding read and write 
requests, which allows the microprocessor to uti­
lize the capability of the system bus to process 
these operations in a pipelined fashion. We investi­
gated the possibility of implementing both direc­
tory-based and snoopy coherence protocols, but 
time-to-market considerations and the opportunity 
to optimize the design for performance in existing 
system platforms outweighed the desirability of 
supporting snoopy protocols. 

For the NVAX+ implementation, the coherence 
policy is determined by hardware external to the 
NVAX+ chip, in the given system. The NVAX+ cache 
and system interface allows the system environ­
ment to implement a variety of coherence pro­
tocols. Compatibility with the DECchip 21064 
interface definition required limiting NVAX+ to one 
outstanding external cache miss. However, this 
limitation is more than offset by the significantly 
better main memory access times achieved in target 
systems. 

One significant advantage of the NVAX+ scheme 
is that most policies associated with the external 
cache are determined by hardware outside the 
NVAX+ chip (such as the coherence policy), allow­
ing the chip to be used in a wide variety of systems. 
Implementing the DECchip 21064 interface on 
NVAX+ greatly reduces the hardware engineering 
investment required to deliver a VAX CPU and an 
Alpha AXP CPU in the same system environment. 

For both the NVAX and the NVAX+ chips, cache 
coherence is maintained for the P-cache by keeping 
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it a subset of the external cache. Externally orig­
inated invalidate requests are forwarded to the 
P-cache only when the block is in the external 
cache. This minimizes the number of P-cache cycles 
spent processing invalidate requests. The two-way 
set-associative P-cache might have been slightly 
more effective if it were not a subset of the larger 
direct-mapped external cache. However, this effect 
is far less significant than the effect of expending a 
P-cache cycle for every external invalidate event. 

Virtual caches almost always have lower latency 
than physical caches and usually do not require a 
dedicated translation buffer. The VAX architecture 
supports the use of a VIC by allowing the cache to 
be incoherent with respect to the data stream, i.e., 
not updated with recent writes by the CPU contain­
ing the VIC, or by any other CPU. However, some 
mechanism must be defined to make the VIC coher­
ent with the data stream. In the VAX architecture, 
the execution of the VAX return from interrupt or 
exception (REI) instruction performs this function. 

We chose to perform a complete flush of the VIC 

as part of the execution of every REI instruction. 
Because an REI always follows a process context 
switch, a flush during an REI removes the process­
specific virtual addresses of the previous process and 
prevents conflict with (potentially identical) virtual 
addresses for the new process. We could have also 
chosen to keep the VIC coherent with the data stream 
and implement per-process qualifiers that would 
have made per-process virtual addresses unique. 
However, coherence would have required both an 
invalidate address and a control path to the VIC, and 
some form of backmap to resolve virtual address 
aliases. Per-process qualifiers would have required 
a VAX architecture change and significant operating 
system software changes. To reduce project risk, 
we chose to flush the VIC on every REI instruction. 

Cache Hierarchy 
The NVAX and NVAX+ chips have three levels of 
cache hierarchy: the VIC, the P-cache, and the 
B-cache. The VIC and P-cache are fully pipelined 
and have minimum latency, which allows instruc­
tions to be fetched and processed in parallel at very 
high rates. 

The default P-cache configuration causes VIC 

misses to be looked up in the P-cache. This lookup 
process is advantageous since the VIC typically 
experiences a smaller miss penalty because latency 
for P-cache hits is roughly one-third that for exter­
nal cache hits. The disadvantage is that instruction 
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fills can result in a higher P-cache data stream miss 
rate, because they replace data that is likely to be 
referenced again. We used the performance model 
with available traces to determine that looking up 
VIC misses in the P-cache generally resulted 
in higher performance. In specific applications, 
higher performance can be achieved by not looking 
up instruction references in the P-cache. As a 
result, we implemented P-cache configuration bits 
that allow system designers to implement either 
scheme. By default, NVAX and NVAX+ systems are 
configured to enable both instruction and data 
caching in the P-cache, but this may be changed by 
the console software in certain systems to support 
prepackaged application systems. 

External Cache Size 
Both NVAX and NVAX+ support multiple external 
cache sizes to allow system designers full flexibility 
in selecting external cache configurations. With 
existing static RAM: technology, smaller external 
cache configurations are usually faster than larger 
configurations. Performance modeling indicated 
that many applications, especially some popular 
benchmarks, fit entirely in a cache whose size is 
512KB or less, resulting in slightly better perfor­
mance. However, many common applications 
utilize more memory than will fit in such caches 
and benefit more from an external cache whose 
size is lMB to 4MB, even with the additional latency 
involved. As a result, our system designs use larger 
but slightly slower external cache configurations. 

Block Size 
During the analysis of the previous generation 
of VAX microprocessors in existing systems, we 
observed that the 16-byte block size was too small 
to achieve optimal performance on many applica­
tions. As a result, we chose a 32-byte block size for 
the NVAX and NVAX+ internal caches. This size 
provides a good balance between fill size and the 
number of cycles required to do the fill, given 
8-byte fill data paths. 

For compatibility with installed systems, the size 
of the NVAX external cache block and the cache 
fill size is 32 bytes. On NVAX+, the external cache 
block size may be larger and is 64 bytes in the VAX 

7000 Model 600 and VAX 10000 Model 600 systems. 
Because both systems implement low-latency 
memory and high-bandwidth buses, the increase in 
external cache block size results in better 
performance. 
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Special Features 
The NVAX/NVAX+ design includes several features 
that supplement core chip functions by providing 
added value in areas of debug, system maintenance, 
and systems analysis. Among the features are the 
patchable control store (PCS) and the performance 
monitoring hardware. 

Patchable Control Store 
The base machine microcode is stored in a ROM 
control store in the E-box. The 1,600-microword 
capacity of the E-box controls macroinstruction 
execution and exception handling. The PCS con­
sists of 20 entries that can be configured to replace 
or supplement the microcode residing in ROM. Each 
PCS entry contains a content-addressable memory 
(CAM)/RAM pair that stores the patch microword 
address and patch microword, respectively. The 
ROM control store and the PCS are accessed in paral­
lel. Typically, words are fetched from the ROM 
control store, but if a microword address matches 
the CAM in one of the PCS entries, then the PCS RAM 
for that entry supplies the microword, and the ROM 
output is disabled. 

Privileged software controls the loading of the 
PCS by means of internal processor registers. In sys­
tem operation, a patch file is normally loaded into 
the PCS early in the boot procedure, so that any 
minimal system capable of starting system boot can 
install patches to the base microcode. This feature 
presents a way to modify the base NVAX/NVAX+ 
chip through software; the majority of engineering 
change orders (ECOs) can be accomplished by 
releasing new patch files, thus alleviating the need 
to change the hardware design and retool for the 
very large-scale integration (VLSI) fabrication. 

We booted the VMS operating system within 16 
days of receiving first-pass wafers from fabrication , 
a tribute to a very thorough design verification. 
However, the continuing rigorous testing on proto­
type systems revealed several problems with the 
base microcode and hardware. The PCS mechanism 
helped to identify, isolate, and work around many 
of the problems during system debug and thus 
allowed extensive system testing to continue on 
first-pass chips. 

For example, we used a sequence of PCS patches 
during system debug to isolate an obscure failure 
whose symptom was a transfer to virtual address 
0. By patching the main microcode exception hand­
ling routine to check for this event, we identified 
the instruction stream sequence that was causing 
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the failure. We refined the patch to place additional 
checking into various instructions in the sequence. 
This refinement allowed us to isolate the exact 
instruction that was causing the transfer to PC 0. 
With this information, we were then able to repro­
duce the problem in simulation and correct the sec­
ond-pass design. Without this diagnostic capability, 
we probably would have needed weeks or months 
of additional debug time to isolate the failure. 

In addition to using the powerful diagnostic 
capability of the PCS, we used patches to correct or 
work around the few functional bugs that remained 
in the first-pass design. For example, a microcode 
patch was used to correct a condition code prob­
lem caused by a microcode bug during the execu­
tion of an integer-multiply instruction. Because the 
E-box is central to the execution of all instructions, 
we were also able to use patches to correct hard­
ware problems in other boxes. In one instance, a 
patch was used to inject a synchronization primi­
tive into the M-box in order to correct an M-box 
design error. As a result of the simplicity and ele­
gance of this solution, the final second-pass cor­
rection was to move the patch into microcode ROM, 
rather than modify the M-box hardware design. 

Peiformance Monitoring Environment 
As computer designs increase in complexity, their 
dynamic behavior becomes less intuitive. Com­
puter designers rely more and more on empirical 
performance data to aid in the analysis of system 
behavior and to provide a basis for making hard­
ware and software design decisions. In addition, 
multiple levels of logic integration on VLSI chips 
restrict the collection of this performance data, 
because many of the interesting events are no longer 
visible to external instrumentation. The NVAX/ 
NVAX+ chip design includes hardware multiplexers 
and counters that can be configured to count any of 
a set of predetermined, internal state changes. 

Two 64-bit performance counters are main­
tained in memory for each CPU in an NVAX/NVAX+ 
system. The lower 16 bits of each counter are imple­
mented in hardware in the CPU, and at specified 
points, the quadword counters in memory are 
updated with the contents of the hardware coun­
ters. Privileged software can be used to configure 
the hardware counters to count any one of a basic 
set of internal events, such as cache access and hit, 
TB access and hit, cycle and instruction retire, and 
cycle and stall. When the 16-bit counters reach a 
half-full state, the performance monitor requests 
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an interrupt. The interrupt is serviced in a normal 
way, i.e ., between instructions (or in the middle of 
interruptible instructions) and at an architecturally 
specified interrupt priority level. Unlike other inter­
rupts, the performance monitor logic interrupt is 
serviced entirely in microcode and then dismissed; 
no software interrupt handler is required. 

The microcode component updates the counters 
in memory when it services the performance moni­
tor interrupt. During a counter update, the micro­
code temporarily disables the counters, reads and 
clears the hardware counters, updates the counters 
in memory, enables the counters, and resumes 
instruction execution. The base address of the 
counters in memory is taken from a system vector 
table and offset by the specific CPU number, creat­
ing a data structure in memory that contains 
a pair of 64-bit counters for each CPU. 

Combining the use of hardware, software, and 
the PCS created a versatile performance monitoring 
environment-one that goes beyond the scope of 
the basic hardware capabilities. In this environ­
ment, we can correlate the counts with higher-level 
system events and change the representation of the 
collected data. For example, microcode can enable 
the counters every time a process context is loaded 
and disable the counters when a process context is 
saved. This feature allows us to set up workloads 
and gather dynamic statistics on a per-process 
basis. We can also use PCS patches to modify the 
memory counter address in order to provide an 
additional offset based on one of the five VAX pro­
cessor operating modes: interrupt, kernel, execu­
tive, supervisor, or user. This technique provides 
a new performance counter data structure that col­
lects statistics on a per-mode, per-process, per-CPU 
basis. Also, microcode patches can be used to add 
context checks that filter and count various events. 
For example, we can patch the VAX context switch 
instruction to count context switches or patch the 
interlocked instructions to count the number and 
types of accesses to multiprocessor synchroniza­
tion locks. 

The performance monitoring environment is a 
powerful tool that we have used to collect the data 
required to analyze hardware and software behav­
ior and interactions, and to develop an understand­
ing of system performance. We have applied this 
knowledge to tune the performance of operating 
systems and application software, and continue to 
apply the knowledge to improve the design and per­
formance of future hardware and software. 
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Results and Conclusions 
With a focus on time-to-market, we shortened the 
originally projected NVAX design schedule, from 
the start of implementation to the completion of 
the chip design, by 27 percent. We booted the oper­
ating system just 16 days after prototype wafers 
became available. The use of the PCS allowed us to 
quickly debug and work around the few functional 
bugs that remained in the first-pass design. Because 
of the quality achieved in first-pass chips, we were 
able to shorten the schedule from chip design 
completion to system product delivery. As a result, 
systems were delivered to customers four months 
earlier than the originally projected date. 

At the same time, we were able to dramatically 
improve CPU performance relative to previous VAX 
microprocessors by implementing a macro­
pipelined design, in which multiple autonomous 
functional units cooperate to execute VAX instruc­
tions. Our internal goal was performance in excess 
of 25 times the performance of the VAX-11/780 sys­
tem. We significantly exceeded this goal as demon­
strated by the following Standard Performance 
Evaluation Cooperative (SPEC) Release 1.2 perfor­
mance ratings: 13 

SPECmark 40.5 

SPECfp 48.8 

SPEC int 30.4 

These ratings were measured on a VAX 6000 
Model 600 system at the initial announcement and 
are two to three times higher than those for the pre­
vious VAX microprocessor running in the same sys­
tem. Software and system tuning has subsequently 
improved the initial numbers on all systems. 

The NVAX/NVAX+ design provides an upgrade 
path and system investment protection to cus­
tomers with installed VAX systems, as well as a 
migration path from an NVAX+ microprocessor to a 
DECchip 21064 microprocessor in the new Alpha 
AXP systems. 
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Design Challenges, 
Methods, and CAD Tools 

The NVAX CPU chip is a 1.3 million transistor, VAX microprocessor designed 
in Digitals 0. 75-micrometer CMOS-4 technology. It has a typical cycle time of 
12 ns under worst-case operating conditions. The goal of the chip design team 
was to design a higlrperformance, robust, and reliable chip, within the con­
straints of a short schedule. Design strategies were developed to achieve this goal, 
including organization of a chip design flow and new implementation and veri­
fication methods. New proprietary CAD tools also played important roles in the 
chip development. 

The NVAX CPU chip is a 1.3 million transistor, VAX 
microprocessor designed in Digital's 0.75-micro­
meter fourth-generation complementary metal­
oxide semiconductor (CMOS-4) technology. The 
implementation of the NVAX CPU chip posed many 
design and complexity management challenges. 
The combination of the chip performance goal, the 
high level of integration, and the small feature sizes 
of the CMOS-4 technology increased the severity of 
on-chip electrical issues and the difficulty of verify­
ing the physical design. These challenges were 
intensified by a short design schedule. This paper 
describes some of the design strategies, methods, 
techniques, and proprietary computer-aided design 
(CAD) tools used by the chip design team, which 
were instrumental in meeting these challenges. 

Chip Overview 
In order to appreciate the design challenges that 
were faced, it is necessary to understand the size 
and complexity of the design. The NVAX CPU chip 
has a macropipelined microarchitecture and imple­
ments the VAX instruction set. 1 Because it is a com­
plex instruction set computer (CISC) architecture, 
the VAX architecture implements varable length 
instructions with complex addressing modes, and 
precise traps and exceptions. The chip is composed 
of five subchips, or functional boxes, called the 
I-box, E-box, F-box, M-box, and C-box. 
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The I-box fetches, parses, and decodes instruc­
tions, and predicts conditional branches. The E-box 
runs under microprogrammed control and executes 
all instructions, except floating-point and long­
word integer multiply instructions, which are exe­
cuted by the F-box. The M-box processes memory 
references, including virtual-to-physical address 
translation. The C-box controls the off-chip backup 
cache (the second-level cache for data and third­
level cache for instructions) and contains the bus 
interface unit. The chip also has a direct-mapped 
2 kilobyte (KB) virtual instruction cache (VIC), a 
two-way, set-associative 8KB data and instruction 
primary cache (P-cache), a 12KB control store read­
only memory (ROM), a 96-entry, fully associative 
translation buffer, and a 512-bit by 4-bit conditional 
branch history random-access memory (RAM) for 
branch prediction. The chip photomicrograph, 
with box and large array boundaries outlined, is 
shown in Figure I. 

The NVAX chip's layout database is composed of 
over 4,200 unique custom cells, and has a total tran­
sistor count of 1.3 million. It was the first product 
chip to be implemented in Digital's 0.75-microme­
ter, three metal layer, 3.3-volt (V) CMOS-4 technol­
ogy. 2 The chip's typical cycle time under worst-case 
operating conditions is 12 nanoseconds (ns) or 83.3 
megahertz (MHz), and it dissipates 14 watts (W). A 
summary of the chip features is given in Table 1. 

Vol. 4 No. 3 Summer 1992 Dtgttal TechntcalJournal 



The NVAX CPU Chip: Design Challenges, Methods. and CAD Tools 

Figure 1 NVAX Chip with Bo:,ces and Large Arrays Outlined 

Design Goals and Constraints 
Our design goal was to develop a high-performance 
chip that is electrically robust and reliable. We had 
to accomplish this within the CMOS-4 process 
constraints and the design time allotted by the 
development schedule. Our initial implementation 
schedule was based on scheduling metrics from 
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previous designs. Due to competitive marketing 
pressures, this schedule was substantially reduced, 
making it significantly more aggressive than for pre­
vious designs. Our cycle time was constrained to 
a maximum of 14 ns under worst-case conditions. 
Electrical reliability had to be guaranteed for cycle 
times down to 10 ns under worst-case conditions. 

25 



NVAX-microprocessor VAX systems 

Table 1 Summary of Chip Features 

Transistors 

Die size 

Cycle t ime 

Signal pads 

Supply pads 

Package 

Power dissipation 
at 12 ns 

Note: *Through-hole pin grid array 

1.3 million 

16.2 mm by 14.6 mm 

12 ns (typical) 

261 

121 

339 pin THPGA* 

14 W (average) 

Based on CMOS-4 process limits, the chip die size 
was constrained by a maximum diagonal length of 
21.8 millimeters (mm). 

The trade-offs between design time and chip cha­
racteristics, such as performance, area, and function, 
were the dominant issues throughout the project. 

Design Strategy and Challenges 
To achieve the goal of a 14-ns cycle time, we 
designed custom circuitry and layouts, including 
dynamic, asynchronous, and differential logic. To 
deal with the size and complexity of the chip, 
together with the schedule constraint, our strategy 
called for a large design team. Complex, custom 
very large-scale integration (VLSI) chip designs 
inherently have high levels of design schedule risk. 
To reduce our exposure to schedule slips, we made 
several high-level design decisions early in the proj­
ect. Wherever possible, we avoided using circuit 
structures that were time-consuming to analyze. 
We defined and followed detailed design guidelines 
to ensure design consistency, robustness, and re­
liability. We used a top-down design flow and 
made extensive use of proprietary CAD tools that 
were expressly developed for high-performance 
custom VLSI design. Lastly, we minimized chip area 
by handcrafting layout in sections of the chip 
where the leverage on reducing overall die size was 
significant; or when critical path node had to be 
minimized to satisfy the path timing constraints. 

The floor plan was accurately monitored 
throughout the project. This was essential because 
initial die estimates indicated that the chip size was 
close to the maximum size that the CMOS-4 tech­
nology could support. These strategic decisions 
reduced design time and allowed us to focus on 
achieving a fast CPU cycle time without compromis­
ing the quality of the design. 
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In addition to minimizing risks to the schedule, 
we had to solve several global design and veri­
fication problems to achieve the cycle time of 14 
ns. The design team assumed a 10-ns cycle time 
when it addressed problems that are exacerbated 
by a faster cycle time, such as interconnect reliabil­
ity and signal integrity. Some of the key concerns 
were on-chip power, ground, and low skew clock 
distribution, and the routing of long signal inter­
connects. Verification of the custom layout was 
another challenge, particularly given the schedule 
constraints. The use of CAD tools was a significant 
benefit in development of the chip. These issues are 
addressed in more detail in the remaining sections 
of this paper. 

Design Flow and Management 
The chip design team was organized into five semi­
autonomous groups, each of which focused on the 
design of a functional unit (C-box, E-box, F-box, 
I-box, M-box). To ensure design compatibility and 
consistency across the chip, each team adhered to 
the same design guidelines and methods. For exam­
ple, box-level interfaces were rigorously defined, a 
consistent register transfer level (RTL) modeling 
style was used, and circuit noise margins, transistor 
sizing, and other circuit and layout guidelines were 
observed. The design team followed the top-down, 
hierarchical design flow depicted in Figure 2, but 
there was much overlap between the activities. 
Complexity was managed by thoroughly reviewing 
and testing the design at each level of abstraction 
(microarchitecture performance model, RTL model, 
logic, circuit, and layout), and by using CAD tools 
to verify that all the design representations were 
consistent across the levels of abstraction. When 
making design decisions, we considered the im­
plications across the levels of abstraction. For 
example, when we made microarchitectural trade­
offs, we considered the implications for power 
consumption, logic complexity, circuit speed and 
cycle time, layout, die size and, of course, schedule. 

Peiformance Model and 
Microarchitecture Specification 
The NVAX performance model is a software pro­
gram that models the microarchitecture of the 
NVAX chip. The architecture team used the model 
to study the effect of various microarchitectural 
factors on overall CPU performance and to define 
the chip's microarchitecture. The performance 
model was updated as the microarchitecture 
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PERFORMANCE MODEL 
AND MICROARCHITECTURAL 
SPECIFICATION 

! 
RTL MODEL AND 
CHIP FLOOR PLAN 

i 
RTL MODEL VERIFICATION 
AND SCHEMATIC DESIGN 

i 
SCHEMATIC LOGIC AND 
CIRCUIT VERIFICATION AND 
PHYSICAL LAYOUT DESIGN 

i 
FULL-CHIP LAYOUT 
VERIFICATION 

Figure 2 NVAX Design Rmo 

evolved so that the team could assess the impact of 
design changes on performance. 

The chip microarchitects wrote a textual speci­
fication of the chip that documented its function 
and microarchitecture. As the details of the design 
were resolved, the specification was updated and 
expanded to reflect the actual implementation. The 
functional design verification team used the speci­
fication to develop implementation-specific tests. 

RIL Model and Floor Plans 
The design team developed a detailed RTL model 
of the chip once the chip specification was 
completed. This model was written in Digital's 
proprietary BDS hardware description language. As 
the BDS code was being written, many logic/circuit 
feasibility studies were spawned. The model was 
used to verify that the proposed microarchitecture 
executed VAX code correctly It also served to guide 
logic implementation and was used by system 
design teams to develop modules based on the 
NVAX microprocessor.:1.4 The RTL model was up­
dated as the project progressed. 

The chip floor plan was devised early in the 
design to estimate and track the die size and to 
provide area-impact data for microarchitectural 
trade-offs. Once the chip-level floor plan was 
stable, the box design teams developed more 
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detailed box-level floor plans. All floor plans were 
entered directly into the layout database and main­
tained throughout the project. Tracking the floor 
plan at several levels eased the difficulty of integrat­
ing the box layouts to form the full-chip composite 
late in the project. More details on floor plans and 
the use of CAD tools are described in the section 
Floor Plan Techniques. 

RIL Verification and Schematic Design 
We verified the RTL model by running a com­
bination of pseudorandom tests, standard VAX 
architecture tests, and handwritten implemen­
tation-specific tests. In order to identify flaws 
before time-consuming schematic and layout 
changes were implemented, we ran regression tests 
on the model whenever we made changes to the 
design. To track design changes and issues, design­
ers posted a description of the changes and issues 
along with the ramifications for other parts of the 
design in an electronic bulletin board. Each new 
entry to the bulletin board was mailed electroni­
cally to every member of the team. This tracking 
procedure helped reduce design iterations caused 
by stale information. 

We used the RTL model as a specification for logic/ 
circuit design. To synthesize logic directly from the 
RTL model for circuits with less critical area and 
speed constraints, we used a CAD tool, OCCAM. 
Because these constraints were stringent for a large 
portion of the chip, engineers designed most of the 
circuits. We developed a library of common circuit 
and layout structures to reduce the design and veri­
fication effort. We defined and followed detailed 
design guidelines to ensure design consistency 
More information on the types of circuits used on 
the NVAX chip is being published in "A 100 MHz 
Macropipelined VAX CMOS Microprocessor."s 

Schematic Verification and Layout Design 
We held design reviews and used CAD tools to 
check schematics for unintended deviations from 
the design guidelines. We performed extensive 
logic simulation on the schematics. We used SPICE 
for accurate critical path timing analyses, and a 
static circuit timing analyzer, NTV, to detect uniden­
tified slow paths.6 (NVAX timing verification is 
described in a later section.) Figure 3 is a histogram 
of slow paths as a function of cycle time that was 
generated by NTV about two months before we 
taped out the first pass of the chip. Because NTV 
does not predict circuit delays as accurately as 
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Figure 3 Early Full-chip NFV Histogram 

SPICE, all questionable paths flagged by NTV were 
simulated using SPICE. Those that were found to be 
slow were redesigned to meet the target cycle time. 

Logic and circuit changes resulting from these 
analyses and the impact of these changes on other 
design representations and verification tests were 
tracked on the electronic bulletin board. Since many 
people were working on the design simultaneously, 
detailed tracking of changes and open issues proved 
crucial to meeting our schedule. A single change 
often required modification and reverification of 
the RTL model, schematics, layout, verification tests, 
and in some cases the chip textual specification. 

Layout design proceeded on a subbox, or section, 
basis. A typical section consisted of approximately 
ten related schematics. Each section was checked 
for connectivity and correctness after its layout was 
completed. Sections within a box were then inte­
grated and verified (boxes contained from 5 to 15 
sections) before the complete chip composite was 
assembled. 

Schematic verification and layout design were 
performed concurrently during much of the proj­
ect . Although this overlap led to design changes 
that increased the amount of layout rework, the 
chip development schedule would have been signif­
icantly longer if schematic verification and layout 
design had been done serially. Layout design took 
about a year to complete. 

Layout Verification 
Section- and box-level layout verification was per­
formed in parallel with the layout design. Once 

28 

layout design was completed, the final stages of lay­
out verification ensured that the assembled chip 
layout met reliability and integrity guidelines for 
global nodes such as power, clocks, and signals. 
Most of the layout checks were performed by CAD 
tools that used the CMOS-4 layout design rules and 
NVAX-specific electrical rules. More details on lay­
out verification are given in the section Layout 
Verification Tools. 

Floor Plan Techniques 
With 1.3 million transistors, nearly half a million 
signal nodes, and over 16 million polygons on the 
NVAX die, precise monitoring of the floor plan was 
critical. From the earliest area estimates, it was 
clear that the chip size was close to the maximum 
that the CMOS-4 technology could support. We had 
to ensure that the die did not exceed the technol­
ogy limit. 

Area Estimation and Placement 
Preliminary estimates of the die area were made by 
extrapolations from previous CPU designs. ,s Better 
area estimates were developed for regular struc­
tures, such as the cache arrays and data paths, by 
creating test layout structures. More accurate floor 
plans of the control sections of the chip were devel­
oped after the RTL model was written. In most 
cases, the partitioning of the RTL model was a close 
approximation to the desired schematic and layout 
partitioning. To estimate the area of random con­
trol logic, we used the OCCAM logic synthesis tool, 
and in many cases Digital's proprietary layout syn­
thesis tool, CLEO. 

As seen in the chip photomicrograph in Figure 1, 
the clock generator and drivers (CLKGEN) were dis­
tributed in a narrow north-south channel near the 
center of the chip. That location was chosen to min­
imize clock skew. The I-box, E-box, M-box, and 
C-box subchips are located on the right side of the 
chip. Their relative positions were chosen to 

accommodate the flow of the pipelined data in the 
main data path, which runs north-south just to the 
right of CLKGEN. The VIC, F-box, and P-cache were 
placed on the left-hand side of the chip, adjacent to 
the boxes with which they communicate. 

Interconnect Planning and Routing 
After we determined the initial placements of all 
major control sections, we used a new two-level 
block router called GLOW to route the layout for the 
interbox and intrabox signals. Routing was per­
formed at the same time schematics for the control 
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areas were in design. Since layout did not exist 
for the control blocks, GLOW was allowed to route 
signals over the blocks with some restrictions, as 
well as route signals in channels. We influenced 
how GLOW routed signals by specifying some areas 
of blocks as opaque (no over-the-block routing per­
missible) and some as porous (over-the-block rout­
ing is permissible if channels are full). Typically, 
cell blocks that contained regular arrays (such as 
programmable logic arrays) or critical circuitry 
were identified as opaque, whereas most random 
control areas were identified as porous. 

The capacitance values of the interbox and intra­
box signal interconnects were extracted from the 
layout and used in circuit simulations of critical 
paths. In some cases, the placement of sections and 
the signal routing were altered to reduce intercon­
nect capacitance on critical signals. The use of syn­
thesis tools such as GLOW, OCCAM, and CLEO 

allowed a much more detailed floor plan to be 
developed than was typical for prior designs.7.8 The 
ability to feed capacitance information from 
floor plan routing back into SPICE simulations 
proved invaluable. 
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Third Metal Layer 
The top aluminum interconnect layer (M3) in the 
CMOS-4 process was specifically designed to meet 
the electrical requirements of the NVAX chip. The 
third metal layer was designed for a low sheet resis­
tivity and high current capacity in order to handle 
the electrical problems associated with the power 
grid, clock distribution, critical signal routing, and 
large array design. 

Power and Ground Distribution 
When the NVAX microprocessor is run at maximum 
speed, it draws a direct current of about 5 amperes. 
Due to CMOS switching transients, the alternating 
current peaks are considerably higher. Distributing 
power (~d) and ground (~

5
) across the chip while 

keeping power grid voltage drops (IR) under 300 
millivolts (10 percent of minimum Vdd) was a major 
challenge. To address this constraint and meet 
interconnect reliability goals, we used the low­
resistance M3 layer extensively to distribute ~d 

and ~s· As shown in Figure 4, we designed the 
right-hand side of the chip to be covered with 
an interdigitated array of alternating ~d and ~s 
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lines, each 17 micrometers wide. Vertical metal 
two (M2) lines are used to strap the power lines 
and form a ~d grid and a V.s grid. The ~d and V.s 
distribution of the left-hand side of the chip was 
different from that on the right because of the spe­
cial layout requirements of the cache arrays and the 
F-box. 

Individual cell layout did not contain M3. The 
power, ground, and clock connections for a cell 
were routed by short vertical M2 lines inside each 
cell. These M2 lines were connected to the M3 
grids automatically by a CAD tool. 
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On-chip Clock Distribution 
In order for us to meet the performance goals, it 
was critical to keep clock skews small and edge 
rates sharp across the chip. As shown in Figure 5, 
special attention was given to the clock distribu­
tion scheme. Differential outputs from an off-chip 
oscillator were supplied to a receiver located at the 
top of the chip. The output of the receiver was 
routed to the global clock generator (CLKGEN), 
which was placed at the center of the chip to 
reduce clock skew. The outputs of the global clock 
generator were buffered by four inverters to 

, - OSCILLATOR_HIGH 

~ UPPER PAD CLOCKS (M3) 
/ 

/ 
/ 

I-BOX v 
CLOCK I-BOX 

~ -
BUFFER x ,:-· 

I 
/""'.'. 

to.. 
.%)~/ 

v E-BOX 

:~ 
E-BOX DATA 
CLOCK PATH - r 01 

v I / 
,( v ~ 

M-BOX 

E-BOX 
CLOCKS 
M2 STRAPS 

E-BOX 
CLOCKS 
(M3) 

11+----1 ~ CLOCK M-BOX 
GLOBAL 
CLOCKS 
(M3) 

~ BUFFER 
~ 

. 
P-CACHE C-BOX C-BOX P-CACHE CLOCK CLOCK 
BUFFER BUFFER 

I, 

LOWER 
PAD 
CLOCK 

t 
.__~~~~~~~~~~~-·~~~~~~~~~~~~.....I 

\__ LOWER PAD CLOCKS (M3) 

Figure 5 Clock Generation and Distribution 

30 Vol. 4 No. 3 Summer 1992 Digital Technical Journal 



The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools 

increase their driving capability. The clocks were 
then distributed, using the low-resistance third 
metal layer (17 milliohms per square), from the top 
to the bottom of the central clock routing channel 
that spans the chip. 

Clocks were supplied to the different functional 
boxes by locally tapping off the central clock rout­
ing and buffering each signal with four inverters to 
further increase the signal's driving capability. This 
buffering helps to minimize the capacitive loads 
seen by the clock phases in the central routing 
channel in which the RC delays are held to 30 pico­
seconds (ps). To reduce distribution skew between 
the global clock lines, loading on each global line 
was balanced by adding dummy loads to the more 
lightly loaded lines. The buffered clock phases 
were distributed to the east and west of the central 
clock routing channel, again using M3 to reduce RC 
delay. The east-west clock routing was strapped 
with M2 as shown in Figure 5. These straps were 
not allowed to cross box boundaries. Box-level 
clock skew was reduced by using a common 
section buffer design and layout, and by carefully 
tuning the buffer drive capability to the clock load 
in each section. 

Finally, before the clocks were used by the logic, 
the clock signals were locally buffered. These final 
stages of local buffering served two purposes: they 
reduced the gate loading on the east-west clock 
routing, and they helped to sharpen the clock edges 
seen by the logic. 

The global clock routing network was spaced so 
that the RC delays of local clock branches would 
never exceed a negligible 125 ps. We calculated the 
RC delays of local clock branches using the WAWOTH 

layout interconnect analyzer (described in the 
section New Proprietary CAD Tools) and, where 
necessary, rerouted branches to meet the 125-ps 
design goal. A sample RC plot, generated by 
WAWOTII for a section of local clock routing, is 
given in Figure 6. The clock skews and edge rates 
across this 1.62-centimeter chip are less than 0.5 ns 
and 0.65 ns, respectively. 

Microcode Control Store 
The design of the 12KB ROM control store was sim­
plified by dividing it into four subarrays. Each subar­
ray has its own M 1 bit lines. The M 1 bit lines from 
the subarrays are cascaded onto low-capacitance 
M3 super bit lines that extend over all four subar­
rays. Since the capacitance of the M3 super bit lines 
is low, the access time is very fast, obviating the 
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need for sense amplifiers and voltage reference gen­
erators. This substantially reduced the time 
required to design and verify the control store ROM. 

Primary Cache 
A similar technique was used in the 8KB P-cache to 
ease the timing requirements. The three high-order 
P-cache address bits must be translated and conse­
quently become valid later than the untranslated 
lower-order bits. By dividing the P-cache into eight 
subarrays, each with its own sense amplifiers, the 
cache subarray access can be started before the 
three translated address bits are valid. When the 
last three address bits become valid, the outputs of 
the subarrays are multiplexed onto the M3 super bit 
lines, resulting in a faster cache access time. 

Layout Verification Tools 
Verifying the NVAX chip layout presented several 
CAD software challenges. Prior to the NVAX design, 
the existing layout verification tools were able to 
extract full-chip netlists from layout for all large 
designs in a single batch process. However, the 
existing layout netlist extractor could not handle 
designs such as NVAX with over one million transis­
tors. Also, a more accurate capacitance extraction 
algorithm was required to calculate side-to-side and 
fringing capacitance, which came to show signifi­
cant effects in the small physical dimensions in 
CMOS-4. Furthermore, accurate interconnect resis­
tance extraction was needed for NVAX. A combina­
tion of new CAD tools (see Figure 7) and design 
methods was employed to meet the NVAX layout 
verification requirements. 

Partitioning Using "Clean Belts" 
To address the problem of extracting parasitic 
capacitance data from such a large design, the NVAX 

chip layout was constructed so that each chip parti­
tion could be independently extracted without 
introducing inaccuracies in the results. The chip 
was partitioned into nonoverlapping regions, each 
of which had a rectilinear annulus or "clean belt" 
around its periphery. A clean belt is a rectangular 
region that contains only metal lines and satisfies a 
number of layout design rules beyond those set by 
the technology. The clean belt layout rules pre­
vented design rule violations within the clean belt 
and between adjacent clean belts. The rules also 
ensured that extracting parasitic capacitance from 
a region enclosed by a clean belt could be done 
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accurately regardless of the materials that border 
the region. Partitioning the chip in this manner 
made it easier to locate global wiring errors. 

Hierarchical Netlist Extraction 
A new netlist extractor, HILEX, was used to meet the 
high data capacity requirements of the NVAX micro­
processor. HILEX is more efficient than the previous 
in-house netlist extractor because it recognizes lay-
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out cell instances and in many cases needs to 
extract cell-only definitions. In contrast, the previ­
ous netlist extractor "flattened" the layout data into 
one nonhierarchical cell and, therefore, extracted 
all data without reusing previously extracted cell 
definitions. The actual performance improvement 
realized by HILEX depends on the hierarchy of the 
chip layout design. If very few cells are replicated, 
or cells are replicated in a way that requires the 

Vol. 4 No. 3 Summer 1992 Digital TechnicalJour11al 



The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools 

CUP 

CAPACITANCE 
NETLIST 

SCHEMATIC 
NETLIST 

WLC 

MATCH FILE 

HILEX 

MISMATCH 
FILE 

REX 

SUBNODE 
RESISTANCE 

RESULTS 
FILE 

WAWOTH 

RESULTS 
PLOT 

Figure 7 Simplified Layout Verification Tool Flow 

extractor to explode the cells (i.e., create more flat 
data) to extract them properly, then minimal per­
formance improvements are seen. An example of 
the latter situation is an array of a repeated pair of 
overlapping cells that forms one or more transis­
tors due to the overlap ( one cell contains diffusion 
areas that become source and drain regions when 
overlapped with the other cell, which contains 
polysilicon lines that become transistor gates). 

Several layout design guidelines were defined to 
ensure that performance improvements from using 
HILEX would be realized. Adherence to the guide­
lines minimized situations that require HILEX to 
explode cells and encouraged the use of hierarchy 
in the layout. However, since it was not always pos­
sible to adhere to these design recommendations, 
HILEX was designed to handle large amounts of flat 
data. 

The chip netlist was extracted from the complete 
chip layout prior to tape out. This presented quite a 
challenge since even with the use of HILEX, extract­
ing the chip netlist from the 225MB chip layout file 
in one pass required more than the maximum of 
two million virtual pages of memory allowed by the 
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VMS operating system architecture. To go beyond 
the VMS virtual memory limit, the internal memory 
management routines within HILEX were modified 
to allocate additional heap from the process stack 
(in Pl space) when the VMS memory allocation 
routines indicated that PO memory space was 
exhausted. This technique was used to allocate the 
2.5 million virtual pages required for full-chip con­
nectivity extraction. 

Netlist Comparison 
A utility called WLC was used to verify that netlists 
extracted from layout by HILEX matched netlists 
generated from the chip schematics. Since the 
NVAX schematic hierarchy rigorously matched the 
layout hierarchy only at certain levels, the con­
nectivity comparison was performed flat. WLC 
employed a graph-building and graph-traversing 
algorithm that worked well for comparing less than 
500,000 device connections. However, substantial 
paging occurred when comparing larger netlists. 
Since the NVAX chip contained 1.3 million devices, 
the performance of WLC was inadequate for full­
chip netlist verification. 
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To improve the elapsed time of netlist compari­
son batch jobs, multiprocessing was employed. 
HILEX was modified to write the extracted netlist of 
the clean belt partitions. Each partition was then 
compared by WLC, in parallel on multiple CPUs, to 
its equivalent schematic-generated netlist. This 
approach reduced the total elapsed time for the 
NVAX chip netlist comparison from more than three 
days to seven hours. Cross-reference files output by 
WLC and the schematic netlists were processed by a 
separate program, MATCH_CHECKER, to verify the 
connectivity of nodes that crossed partition bound­
aries. This additional step added only eight minutes 
to the total elapsed time for comparing chip 
netlists. 

Capacitance Extraction 
The small spacing dimensions of the submicron 
CMOS-4 process caused fringing and lateral capaci­
tances to contribute significantly to the total nodal 
capacitance. The existing layout extraction tool 
only extracted overlapping parallel plate capaci­
tance. Thus, a new layout capacitance extractor, 
CUP, was written to accurately extract fringing, lat­
eral, and area capacitances. 

CUP extracted interconnect capacitance from 
layout by decomposing interconnect layout into 
pieces of uniform layout cross sections. The geome­
try of each interconnect piece, and its distance 
from layers above, below, and adjacent to it, are 
used to calculate its area, fringing, and lateral com­
ponents of capacitance. The empirical formulae 
used to calculate the capacitive components were 
based on curves of two-dimensional electrostatic 
simulation data of various layout cross sections. 
This technique produced accurate internodal and 
total interconnect capacitance data. This accuracy 
resulted in CUP being very compute intensive. 

Multiprocessing was employed again to reduce 
the elapsed turnaround time for capacitance 

extraction batch jobs. CUP sectioned the layout 
database into fixed-size stripes, which were 
inserted into the batch queues of multiple CPUs. 
This method reduced the data complexity and 
allowed as many parallel computations as there 
were processors. During NVAX chip design, capaci­
tance extraction was partitioned across as many as 
20 CPUs. Multiprocessing reduced, for example, the 
NVAX I-box capacitance extraction from 26 hours to 
just 8 hours using 4 processors. Extraction of the 
E-box took 40 hours using one processor, but only 
12 hours with 4 CPUs. Table 2 shows the device and 
node counts of the NVAX boxes (excluding the 
caches), and the CUP extraction run times on a VAX 
6000 Model 500. Each box run resulted in approxi­
mately 500,000 extracted parasitic capacitors. 

Resistance Extraction 
Verifying the NVAX power, ground, and clock net­
works, and long signal lines required accurate 
extraction of interconnect resistance from layout. 
To meet this requirement, the REX resistance 
extractor was developed.9 REX processed the 
output of HILEX to produce a series and parallel 
combination of resistors that modeled a node's 
interconnect. The resistor network was generated 
by fracturing the node layout into polygons based 
on changes in the layout geometries (width, length, 
bends) of the node or the occurrence of contacts. 
The effective resistance of each polygon and con­
tact, or cluster of contacts, was then determined 
from technology parameters and the polygon 
geometries. 

The power and ground resistor networks were 
extracted for individual boxes rather than the entire 
chip. The resulting networks were still quite large 
due to the fine granularity of the REX extraction 
process. Table 3 shows the extraction times for a 
REX job running on a VAX 6000 Model 500 and the 
total number of resistors extracted from each box. 

Table 2 CUP Parasitic Capacitance Extraction Batch Run-time Data for NVAX Boxes 

Single CPU Four CPUs 
Box Device Count Node Count (Hours) (Hours) 

I-box 107,000 36,830 26 8 

M-box 102,000 38,770 29 8 

E-box 107,600 41,760 40 12 

C-box 92,400 45,050 42 12 

F-box 129,150 55,550 45 12.5 
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Table3 REX Extracted Parasitic Resistance 
Data and Batch Run-time Data for 
NVAX Boxes 

Extraction Time 
Box Resistor Count (Hours) 

M-box 602,000 5 
C-box 621,000 5 

I-box 522,000 10 
E-box 719,000 10 
F-box 1,200,000 36 

New Proprietary CAD Tools 
Several other novel CAD tools were specifically 
designed for the NVAX chip. These tools provided 
practical solutions to verification and analysis prob­
lems that were previously unmanageable or 
intractable. 

CHANGO Logic Simulator 
CHANGO was an important development for NVAX 
functional verification because it allowed sig­
nificantly more simulation cycles and functional 
verification tests to be performed from the NVAX 
transistor-level description than was previously 
possible. CHANGO is a two-state gate-level logic 
simulator designed to maximize performance 
through compiled, straight-line simulation. Elec­
trical issues such as gate delay and charge sharing 
were not modeled since CHANGO was used 
for functional, not timing, verification. CHANGO's 
parallel simulation capability allowed the simul­
taneous execution of 13 different NVAX model 
simulations on one CPU, which resulted in an eight­
fold increase in simulation performance. Overall, 
CHANGO has been shown to accelerate simulation 
one to two orders of magnitude over traditional 
event-driven gate-level simulators. Its high through­
put enabled us to boot the VMS operating system 
twice (75 million cycles) prior to tape out. 

To create a CHANGO model, a transistor-level 
netlist description of the design was input to a pre­
processor called GEN_MODEL. GEN_MODEL trans­
formed the netlist into a logical description of the 
design, consisting of simple Boolean elements, 
D-type latches, and SR flops. CHANGO transformed 
this logical description into a highly optimized sim­
ulation stream of VAX assembly code. 

CHANGO achieved its high simulation through­
put in many ways. Conditional branch latency 
penalties were largely avoided because CHANGO 
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simulation code is designed to execute in a straight­
line fashion. Due to the high switching event densi­
ties we observed on NVAX, 18 percent on average, 
this straight-line compiled approach to simulation 
was more efficient than event-driven simulators, 
which typically fail to compete when event densi­
ties increase beyond 3 to 5 percent. The CHANGO 
translation process further optimized the sim­
ulation by partitioning the simulation according 
to signals that should be evaluated during each par­
ticular clock phase. This avoided processing signals 
during clock phases when signal transitions could 
not occur. Further, evaluation of a switching event 
was only performed when the signal could affect 
the evaluation of some other signal. This prevented 
simulation of unimportant switching events that 
were ignored by the remaining design. Redundant 
signals (i.e., nodes with the same logical behavior) 
were grouped together as a list of synonym signals 
in order to model multiple nodes by only one simu­
lation event. 

NTV Timing Verifier 
NTV is a static timing verification tool developed for 
use on the NVAX microprocessor.10 NTV processed 
350,000 circuit paths and checked 42,000 timing 
constraints on the NVAX design. NTV eliminated the 
need for the pattern-dependent dynamic speed 
verification strategy used by other chip designs 
and significantly reduced the extensive speed ver­
ification work needed for SPICE simulations. It 
identified critical paths that would have otherwise 
remained undetected due to the complexity and 
size of the NVAX design. 

NTV read multiple flat transistor netlists with or 
without parasitics and automatically identified cir­
cuit structures such as complementary, dynamic, 
and cascade gates as well as several types of latches. 
Based on the classification of these structures, NTV 
identified timing constraints. For example, NTV 
checked that the latch storage nodes become valid 
before the latches closed. NTV also read user-speci­
fied timing for primary inputs and propagated node 
timing throughout the design based on when sig­
nals arrived at gate inputs, the drive capability of 
each gate, and its output loading. 

NTV has three delay models that were used for 
calculating gate delay: (1) unit delay was used for an 
initial rough timing estimate before real parasitics 
were known, (2) a SPICE-calibrated lumped RC 
model was used for delay calculation of comple­
mentary gates, and (3) an Elmore-distributed RC 
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model was used for other structures. n NTV flagged 
circuits that failed to meet the identified timing 
constraints within a user-specified time tolerance. 
Like other static timing verifiers, some paths identi­
fied by NTV were "don't cares" or were logically 
impossible. The user eliminated these false paths 
by deleting timing constraint checks or by specify­
ing mutual exclusivity between specified groups of 
nodes. 

WAWOTH Interconnect Analyzer 
Traditional manual techniques for checking RC 
delay, IR noise, and electromigration (EM) were 
impractical for NVAX due to the size and complexity 
of the design. A suite of CAD tools called WAWOTH 
was developed to perform these checks automati­
cally, more accurately, and in far less time than 
would otherwise have been possible. 

During EM and IR analysis, current sources rep­
resenting gate-switching events were added to a 
REX-generated resistor network. The magnitude of 
each current source was calculated based on the 
average switching frequency of the gate, the load it 
drove, and whether average or peak current was 
desired for the current analysis mode. The network 
node voltages were then solved through LU decom­
position. Peak voltages were flagged for IR analysis, 
and average and peak current densities were calcu­
lated for each resistor element and checked against 
EM limits. 

During RC analysis, node capacitance was 
proportionately distributed along the resistor net­
work. The resulting RC network was processed 
by Carnegie-Mellon's AWE algorithm to generate a 
close approximation of the transfer function for 
the network. 12 From this, the step response RC 
delay was calculated and the delay response to any 
specified edge was found through convolution of 
the transfer function. 

Since it was neither possible nor necessary to 
perform RC and EM analysis on all signal nodes, 
WAWOTH contained a number of tools that identi­
fied only those nodes that would have some chance 
of failing these checks. To decrease run time, we 
reduced the size of the files that were input to 
WAWOTH by eliminating any devices and parasitics 
that were not related to the node under examina­
tion. Noteworthy were the large data requirements 
met by WAWOTH. For example, WAWOTH calculated 
the current through the 719,000 resistive elements 
that compose the power and ground nodes of the 
E-box. Current stimulus of the network was 
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derived from average node-switching frequencies 
calculated from logic simulation data. Over 1,800 
signal nodes were also analyzed by WAWOTH. 

Conclusions 
Our design strategies, methods, and CAD tools 
allowed us to complete the NVAX CPU chip design in 
30 percent less time than our initial schedule had 
required. Typical parts operate at 83.3 MHz (a 12-ns 
cycle time) under worst-case conditions for tem­
perature and power supply. This is 2 ns better than 
our maximum cycle time design constraint. The 
chip booted the VMS operating system ten days 
after the first prototype wafers were available, and 
booted the ULTRIX system a few days later. Multi­
processing was running within weeks. Fifteen 
obscure logic bugs were found in the first-pass 
chips, but none of them impeded system debug or 
prototype development. No circuit design bugs 
were found. Only one design revision was needed 
prior to volume chip manufacturing. 

Careful design, complexity management, and 
proprietary CAD tools targeted to large custom 
CMOS integrated circuits played crucial roles in the 
successful design of the NVAX microprocessor. 
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Walker Anderson I 

Logical Verification of the 
NVAX CPU Chip Design 

Digital's NVAX high-performance microprocessor has a complex logical design. 
A rigorous simulation-based verification effort was undertaken to ensure that 
there were no logical errors. At the core of the effort were implementation-oriented, 
directed, pseudorandom exercisers. These exercisers were supplemented with imple­
mentation-specific focused tests and existing VAX architectural tests. Only 15 logical 
bugs, all unobtrusive, were detected in the first-pass design, and the operating 
system booted with first-pass chips in a prototype system. 

The NVAX CPU chip is a highly complex VAX micro­
processor whose design required a rigorous verifi­
cation effort to ensure that there were no logical 
errors. The complexity of the design is a result of 
the advanced microarchitectural features that make 
up the NVAX architecture, such as branch predic­
tion, micropipelining and macropipelining tech­
niques, a three-level hierarchy of instruction 
caching, and a two-level hierarchy of write-through 
and write-back data caching. 1 Also, the chip was ini­
tially intended for two different target system con­
figurations and had to be verified for operation in 
both. Product time-to-market goals mandated a 
short development schedule relative to previous 
projects, and there was a limited number of verifi­
cation engineers available to perform the tasks. 

The verification team set two key goals. The first 
was to have no "show stopper" logical bugs in the 
first-pass chips and, consequently, to be able to 
boot the operating system on prototype systems. 
Meeting this goal would enable the prototype 
system hardware and software development teams 
to meet their schedules and would allow more 
intensive logical verification of the chip design to 
continue in prototype systems. The second key 
team goal was to design second-pass chips with no 
logical bugs, so that these chips could then be 
shipped to customers in revenue-producing sys­
tems. Meeting this goal was critical to achieving the 
time-to-market goals for the two planned NVAX­
based systems. 

Team Organization and Approach 
Logical verification was performed by a team of engi­
neers from Digital's Semiconductor Engineering 
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Group (SEG) whose primary responsibility was to 
detect and eliminate the logical errors in the NVAX 
design. The detection and elimination of timing, 
electrical, and physical design errors were left to 
separate efforts. 2 

Given the design complexity, the critical need for 
highly functional first-pass chips, and the fact that 
the designers had other responsibilities related 
to the circuit and physical implementation of 
the full-custom chip, special attention to logical 
verification was considered a requirement. Every 
verification engineer approached the verification 
problem with a different focus. Each member of 
one group of engineers focused on the verification 
of a single box, while other engineers focused on 
functions that spanned several boxes. Certain veri­
fication engineers were available throughout the 
project to test the functions of the chip that 
required extra attention. This variety of perspec­
tives was an important aspect of the verification 
strategy. Most verification engineers followed the 
process described below. 

1. Plan tests for a function. 

2. Review those plans with the design and architec­
ture teams. 

3. Implement the tests. 

4. Review the actual testing with the design and 
architecture teams. 

5. Implement any additional testing that was 
deemed necessary. 
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Simulation and Modeling Methodology 
The verification effort employed several models of 
the full NVAX CPU chip and of the individual design 
elements. Each model had its strengths and weak­
nesses, but all models were necessary to ensure a 
thorough logical verification of the design. 

Behavioral Models 
The behavioral models of the chip were written by 
design team members using the DECSIM behavioral 
modeling language; to achieve optimal simulation 
performance, they were written in a procedural 
style. These models are two-state models that are 
logically accurate at the CPU phase clock bound­
aries. These fairly detailed behavioral models repre­
sent logic at the register transfer level (RU), with 
every latch in the design represented and the com­
binational logic described in a way similar to the 
ultimate logic design. 

Behavioral simulations were performed first on 
box-level models, where most of the straightfor­
ward design and modeling errors were eliminated. 
A box is a functional unit such as the instruction 
prefetch/decode and instruction cache control 
unit, the execution unit, the floating-point unit, 
the memory management and primary cache con­
trol unit, or the bus interface and backup cache 
control unit.I 

The box-level models were then integrated into 
a full-chip behavioral model, which also included a 
backup cache model, a main memory model, and 
models to emulate the effects of several system con­
figurations. The pseudosystem models did not 
model any one specific target system configuration 
but could be set up to operate effectively like any 
target system configuration or in a way that exer­
cised the chip more intensely than any target 
system would. Available early in the project, this 
model was the primary vehicle for logical verifica­
tion until the schematics-derived, full-chip, in­
house CHANGO model was created. The full-chip 
behavioral model could simulate approximately 13 
cycles per VAX VMS CPU second and was used to 
simulate about one billion CPU cycles. 

The procedural, full-chip behavioral model also 
ran on a hardware simulation accelerator where it 
achieved simulation performance of about twice 
that of the unaccelerated simulation. The simula­
tion accelerator was used primarily for simulating 
long, automated, noninteractive tests. 

In addition, the model was encapsulated in an 
event-driven shell and incorporated into module 
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(i.e., board) and then system models. The chip veri­
fication team performed only a limited amount of 
simulation using these module and system models. 
These simulations were used primarily to verify 
that the chip model functioned correctly in a more 
accurate model of a target system configuration 
and to better test the multiprocessor support func­
tions in the design. The system development 
groups performed more extensive simulations with 
such models. 

Schematics-derived Models 
Schematics-derived models were created and simu­
lated at both the box and full-chip level. The 
CHANGO simulator is a two-state, compilation­
driven simulator and, like the behavioral model, is 
accurate only at the CPU phase clock boundaries. 2 

The full-chip CHANGO model linked together the 
following: the code that was automatically gen­
erated from the schematics; C-code models for 
chip-internal features such as control store and 
random-access memories (RAMs); C-code models 
to perform simulation control functions; and the 
same DECSIM behavioral models for the backup 
cache, main memory, and system functions that 
were used in the full-chip behavioral model. The 
simulation performance of the full-chip CHANGO 
model was only about one-half that of the unaccel­
erated, full-chip behavioral model. Although these 
models were not useful for electrical or timing veri­
fication because they did not model timing or elec­
trical characteristics of the design, their simulation 
performance made them extremely useful for logi­
cal verification. 

Another full-chip model was created to run on 
an event-driven, multiple-state simulator. How­
ever, only a limited amount of simulation was per­
formed using this model, because its performance 
was very slow when compared to the CHANGO and 
behavioral models. Since it was the only model that 
could run on a multiple-state simulator, this third 
model was used primarily to verify chip power-up 
and initialization. 

Pseudorandom Ex ercisers 
Early in the project, it became apparent that, given 
the limited number of engineers, the short sched­
ule, and the complexity of the NVAX chip design, a 
strategy of developing and simulating all conceiv­
able implementation-specific test cases would be 
ineffective. This strategy would have required the 
engineers to implement tedious, handcrafted tests. 
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Instead, the verification team adopted a strategy 
that depended heavily on the use of directed, pseu­
dorandom tests referred to as exercisers. This strat­
egy generated and ran many more interesting test 
cases than would ever have been conceived by the 
verification and design engineers themselves. 

The basic structure of an exerciser consisted of 
the following five steps, which were repeated until 
a failure was encountered: 

I. Set up the test case. 

2. Simulate the test case on either the behavioral or 
the CHANGO model. 

3. Execute the test program on a VAX reference 
machine. 

4. Analyze the simulation and accumulate data. 

5. Check the results for failure. 

Figure I depicts the interoperation of the tools 
used to construct an exerciser and its basic flow. 

Setup 
Setting up the test case involved generating a 
short assembly language test program, activating 
some demons to emulate various system effects, 
and selecting a chip/system configuration for 
simulation. 

The assembly language test programs were gen­
erated using SEGUE, a text generation/expansion 
tool developed for this project. This tool processes 

SEGUE SCRIPT FILE 

$ 
ASSEMBLE/LINK 

script files that contain hierarchical text generation 
templates and implements the basic functions of 
a programming language. 

SEGUE provides a notation that allows the user to 
specify sets of possible text expansions. Elements 
of these sets can be selected either pseudoran­
domly or exhaustively, and the user can specify the 
weighting desired for the selection process. For 
example, a hierarchy of SEGUE templates typically 
comprised three levels. At the lowest level, a SEGUE 

template was created to select pseudorandomly a 
VAX opcode, and another template was created to 
select a specifier, i.e., operand. At an intermediate 
level, the verification engineers created templates 
that called the lowest-level templates to generate 
short sequences of instructions to cause various 
events to occur, e.g., a cache miss, an invalidate 
from the system model, or a copy of register file 
contents to memory. At the highest level, these 
intermediate-level templates were selected pseudo­
randomly with varied weighting to generate a com­
plete test program. 

Because the SEGUE tool was developed with 
verification test generation as its primary applica­
tion, the syntax allows for the easy description of 
test cases and the ability to combine them in inter­
esting fashions. Using SEGUE, the verification engi­
neers were able to create top-level scripts quickly 
and easily that could generate a diverse array of 
test cases. These engineers considered SEGUE to 
be a significant productivity-enhancing tool and 
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Figure 1 Verification Tool Flow for Exercisers 
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preferred using SEGUE to hand-coding many 
focused tests. 

Before simulations were performed, model 
demons were set up. Demons were enabled or dis­
abled, and their operating modes were selected 
pseudorandomly. Demons may be features of the 
model environment that cause some external 
events such as interrupts, single-bit errors, or cache 
invalidates to occur at pseudorandom, varying 
intervals. Demons may also be modes of operation 
for the system model that cause pseudorandom 
variation in operations such as the chip bus proto­
col, memory latency, or the order in which data is 
returned. Some demons were implemented to force 
chip-internal events, e.g., a primary cache parity 
error or a pipeline stall. These chip-internal 
demons had to be carefully implemented, because 
sometimes they forced an internal state from which 
the chip was not necessarily designed to operate. In 
a pseudorandomly generated test, it is frequently 
difficult or impossible to check for the correct han­
dling of an event caused by a demon, e.g., check 
that an interrupt is serviced by the proper handler 
with correct priority. However, simply triggering 
those events and ensuring that the design did not 
enter some catastrophic state proved to be a power­
ful verification technique. 

Chip/system configuration options such as cache 
enables, the floating-point unit enable, and the 
backup cache size and speed were also preselected 
pseudorandomly. Aside from testing the chip in all 
possible configurations, e.g., with a specific cache 
disabled, varying the configuration in a pseudo­
random manner caused instruction sequences to 
execute in very different ways and evoked many dif­
ferent types of bugs unrelated to the specific con­
figuration. Also, specific configurations and demon 
setups would significantly slow down the simu­
lated execution of the test program, sometimes to 
the point where intended testing was not being 
accomplished. To work around this problem, the 
verification engineer could force the configuration 
and demon selection to avoid problematic setups. 

Simulation and VAX Reference Execution 
After assembling and linking the test program, it 
was loaded into modeled memory, and its execu­
tion was simulated on either the behavioral or the 
CHANGO model. As the test program simulation 
took place, a simulation log file and a binary-format 
file, which contained a trace of the state of the pins 
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and various internal signals, were created. As the 
exerciser test programs executed, various VAX 
architectural state information was written period­
ically to a region of modeled memory referred to as 
the dump area. When the simulated execution of 
the test program completed, the contents of the 
dump area were stored in a file. Also, the test pro­
gram was executed under the VMS operating 
system running on a VAX computer used as a refer­
ence machine. At the end of execution, the con­
tents of the memory dump area were stored in 
another file. 

Analysis 
A tool called SAVES allows users to create C pro­
grams in order to analyze the contents of binary 
trace files. SAVES was used to provide coverage anal­
ysis of tests, and to check for correct behavior of 
chip-internal logic and give a pass/fail indication. 

For coverage analysis purposes, information 
such as the number of times that a certain event 
occurred during simulation or the interval 
between occurrences was accumulated across 
several simulations. This data gave the verification 
engineer a sense of the overall effectiveness of 
an exerciser. For example, a verification engineer 
who wanted to check an exerciser that was 
intended to test the branch prediction logic was 
able to use the SAVES tool to measure the number of 
branch mispredictions. 

Frequently, verification engineers used the SAVES 

tool to perform cross-product analysis and data 
accumulation. For cross-product analysis, the engi­
neer specified two sets of design events to be ana­
lyzed. The analysis determined the number of times 
that events from the first set occurred simultane­
ously with (or skewed by some number of cycles 
from) events in the second set. For example, one 
verification engineer analyzed the occurrence of 
different types of primary cache parity errors rela­
tive to different types of memory accesses. 
Analyzing the cross-product of state machine states 
against one another, skewed by one cycle, allowed 
state machine transition coverage to be quickly 
understood. 

The verification team used this SAVES information 
about the exerciser coverage in the following ways: 

• To enhance productivity by helping the engi­
neers identify planned tests that no longer 
needed to be developed and run because the 
exerciser already covered the test case 
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• To indicate significant areas of the design where 
coverage may have been deficient 

• To determine how the exercisers might be 
adjusted to become more effective or thorough, 
or to focus on a particular low-level function of 
the chip design 

Pass/Fail Checking 
Several checking mechanisms were employed to 
determine whether tests passed or failed. The SAVES 
tool was used to check for correct behavior of the 
design, especially where correct behavior was diffi­
cult to observe at a VAX architectural level. For 
example, the verification engineers used SAVES to 
check the proper functioning of performance­
enhancing features such as branch prediction logic, 
pipelines, and caches. 

A VMS command procedure automatically 
scanned simulation log files for error output from 
any of several design assertion checkers built into 
the model. These assertion checkers varied widely 
in complexity. For example, simple assertion check­
ers ensured that unused encodings of multiplexers' 
select lines never occurred. As another example, a 
more sophisticated and complex assertion checker 
verified that the CPU had maintained cache coher­
ence and proper subsets among the three caches 
and the main memory. 

The same VMS command procedure checked the 
simulation log file to verify that the simulation of 
the execution of the test program reached the 
proper completion program counter. Finally, a sim­
ple program compared the memory dump area files 
generated by the simulation and the reference 
machine execution to verify that the memory dump 
areas were identical. Although the simulated test 
program may have followed a different execution 
path from the VAX reference execution because it 
was simulated in the presence of demons, the com­
pletion points of both executions were the same, 
and the VAX architectural state information that was 
compared was identical. 

If these checks found no errors, the exerciser 
looped back to generate another test case. Because 

. this whole process was automated, the verification 
engineer could run this test continuously, on all 
available computing resources. 

Other Aspects of the Exercisers 
The exercisers were the core of the NVAX CPU chip 
verification effort. They were run nearly continu­
ously throughout the project on behavioral and/or 
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CHANGO models, and proved to be very effective at 
detecting subtle, complex bugs in the design. Each 
exerciser concentrated on testing a single box, a 
subsection of a box (e.g., branch prediction logic), 
or a particular global chip function. By adjusting 
the SEGUE template weightings, preventing or forc­
ing the use of a particular demon, or forcing a par­
ticular configuration parameter, the exercisers 
could be controlled at a high level to focus on low­
level functions. Verification engineers traded inter­
esting SEGUE templates among themselves to 
provide each exerciser with a rich and diverse set 
of possibilities for code generation, while still 
maintaining the intended focus of the exerciser. 

Focused Tests 
Several focused tests were generated to supple­
ment the exercisers. These were necessary to test 
implementation-specific aspects of the design that 
could not be checked by comparing results against 
a VAX reference machine. In some cases, an exer­
ciser could have been used to test a particular func­
tion, but the verification engineer judged it easier 
to hand-code a focused test program than to con­
trol an exerciser in order to accomplish the testing. 
Focused tests were necessary and particularly chal­
lenging to create and maintain when very precise 
timing of events was required to test a certain sce­
nario of chip operation. This timing could be 
achieved only by handcrafting an assembly lan­
guage test and running it under carefully controlled 
simulation conditions. 

Each of the focused tests was run at least once on 
the full-chip behavioral model and then again 
on the full-chip CHANGO model. 

Other Tests 
Several tests that had been used for the verification 
of previous VAX implementations were also used 
for verification of the NVAX CPU chip. The use of 
these tests allowed the NVAX logical verification 
team to focus on the implementation-specific com­
plexities of the NVAX design and not expend as 
much effort on implementation-independent, VAX 

architectural verification. 
The HCORE suite of tests can be used to verify 

several permutations of all VAX instructions, as well 
as some VAX architectural concepts, e.g., memory 
management.3 HCORE was valuable in that it was the 
first test used to debug both the full-chip behav­
ioral model and the CHANGO model. 

Small portions of the HCORE suite were used as a 
nightly model regression test. In general, very little 
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regression testing of the NVAX models took place; 
the team believed that using computing resources 
to run pseudorandom exercisers and other new 
tests was of more value to the verification effort 
than consuming resources with extensive, frequent 
regression testing. Consequently, the entire HCORE 
suite was run at only a few key checkpoints during 
the project. 

AXE is a VAX architectural exerciser that pseudo­
randomly generates single-instruction test cases.4 

MAX is an extension of AXE that generates multiple­
instruction test cases with complex data dependen­
cies between the instructions. Both tools set up 
enough VAX architectural state to prepare for a test 
case, simulate the test case on a model, execute the 
test case on a VAX reference machine, compare VAX 
architectural state information from the simu­
lation and VAX reference execution, and finally, 
report any discrepancies. Each test case may force 
some number of exceptions; the AXE and MAX tools 
ensure that all exceptions are detected and prop­
erly handled. 

The AXE and MAX tools generate tests with no 
knowledge of the particular VAX implementation 
being tested and thus differ from the implementa­
tion-specific exercisers. Consequently, AXE and 
MAX are less effective than the implementation­
specific exercisers for intensive exercising of per­
formance-enhancing features that are transparent 
from a VAX architectural perspective. However, 
MAX was an effective test for the micropipelin­
ing and macropipelining aspects of the NVAX 
design. Altogether, about 706,000 AXE test cases 
and 137,000 MAX test cases were run on the behav­
ioral model. 

Schematic Verification 
An initial goal of the NVAX CPU chip verification 
team was to perform a more extensive verifica­
tion of the schematic design than had been accom­
plished in the past. Because of the development of 
the CHANGO simulator, with its significant perfor­
mance advantage over previously used logic simu­
lators, the team met this goal. Approximately 75 
million NVAX CPU cycles were simulated on the 
schematics-derived, full-chip CHANGO model. 

Box-level CHANGO Simulation 
First, box-level CHANGO models were constructed 
and tested using a technique called patterns­
on-the-fly (POTF). This technique involved simul­
taneously starting a full-chip behavioral model 
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simulation process and a box-level CHANGO 
simulation process under the VMS operating system 
and then communicating between the processes. 
Stimulus and response data from the behavioral 
simulation is used to drive the inputs to and check 
the outputs from the box-level CHANGO model. In 
addition to comparing primary outputs from the 
box, this technique was used to compare many 
chip-internal points. The POTF technique elimi­
nated the need to extract and maintain large pat­
tern files from behavioral simulations and proved 
to be a straightforward way of comparing the two 
models. Exercisers and focused tests were run 
using the POTF method, and several bugs were 
quickly and easily isolated. Because a close correla­
tion between the behavioral models and the imple­
mentation as represented by the schematics had 
been maintained, few conceptual, logical design 
errors were found by the box-level, POTF simula­
tions. These simulations were, however, extremely 
useful for finding simple schematic entry errors. 

Full-chip CHANGO Simulation 
Next, the team constructed the full-chip CHANGO 
model. The simulation environment of this model 
included many features available in the behavioral 
model environment. After simulating the HCORE 
suite of tests, all the focused tests were run on 
the full-chip CHANGO model, and the exercisers 
were run on this model for several weeks. In addi­
tion, 44,000 AXE cases and 33,000 MAX cases were 
run on the full-chip CHANGO model. All these simu­
lations uncovered only one additional schematic 
entry error. 

Simulation of the VMS Boot Process 
To ensure the success of operating system booting, 
i.e. , initial processor loading, on first-pass chips and 
as a final functional test of the design, members of 
the architecture team simulated the VMS operating 
system boot process on the full-chip CHANGO 
model. The operating system source code was 
modified to add support for the NVAX-specific fea­
tures and for the modeled system environment. 
A VMS system disk that contained the changes was 
created on an existing VAX system. Each block of 
the disk was copied to a VMS file, which was then 
used as the system disk image during simulation. 

A disk model with a simple programming inter­
face and a direct memory access (DMA) capability 
was added to the simulation environment of the full­
chip CHANGO model. The disk model read blocks 
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from the system disk image file, and wrote data to a 
small cache of internally maintained disk blocks. To 
accelerate disk transfers, the disk model would 
examine cache state and use the system bus for the 
disk transfers only when the data was present in the 
cache and required a cache invalidate or write back. 
In other cases, the data was transferred directly into 
the memory subsystem in zero simulated time. 

While tracking the progress of the simulation, 
the team identified operating system code that 
executed a time-consuming search algorithm. To 
limit the amount of time spent in this loop, the 
code was rewritten to implement a much faster 
algorithm. However, because the booting simula­
tion effort could not be restarted from the begin­
ning, several utilities were developed that allowed 
the code to be replaced in the system disk image 
file and in simulated memory during a pause in the 
simulation. 

To provide the ability to restart the simulation 
effort and move it to any available computing 
resource, simulation state was saved after every 
50,000 to 100,000 cycles of simulation. In total, 
approximately 25 million cycles were simulated. 
The simulation was stopped at the point where mul­
tiple processes were created and the main start-up 
process began executing. Even though this effort 
identified no bugs in the design, it did provide a high 
degree of confidence that the design was ready to 
be released for fabrication of first-pass chips. 

Prototype Chip Verifica tion 
The prototype NVAX chips were verified in several 
VAX 6000 Model 600 multiprocessor systems. The 
CPU module was the only new hardware com­
ponent in the system; the backplane, memory, and 
1/0 subsystem were known to be robust, because 
they were used in the VAX 6000 Model 500 system. 
One logic analyzer was connected to the system 
bus, and another was connected to the pins of the 
NVAXchip. 

The strategy for the early prototype verification 
was to boot the low-level console user interface, 
run the HCORE suite of tests, boot the VMS operat­
ing system, and then run the User Environment Test 
Package (UETP) system exerciser. Within IO days of 
receiving the first prototype chips, all these tasks 
had been accomplished. Later, the AXE and MAX 
exercisers were nm on the prototype systems. 

The rigorous testing that continued on prototype 
systems revealed a few logical bugs which had gone 
undetected during simulated verification. Typically, 
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information about a bug was collected on the proto­
type system, and then the failing scenario was 
reproduced on the behavioral model, where the 
scenario could be analyzed and better understood. 
The chip-internal signals were extremely difficult 
to observe, but a 12-bit, parallel port allowed access 
to one of eight sets of signals from various sections 
of the chip. The ability to monitor the control store 
address bus by means of this parallel port proved to 
be an essential debugging feature . 

The control store patching mechanism that was 
part of the chip design helped identify some bugs 
in prototype chips. The debugging engineers suc­
cessfully used microcode patches to work around 
several of the hardware and microcode bugs. In 
cases where a microcode bug was patched, exten­
sive system testing verified that the planned change 
was correct. 

Bug Tracking and Design Release 
Bug detection was a key status indicator through­
out the NVAX logical verification effort and thus 
helped to steer the team's work. Bugs were tracked 
carefully with an on-line system and analyzed each 
week to consider trends, successful and unsuccess­
ful bug-finding techniques, and bug hot spots, 
which required additional attention. The bug detec­
tion rate was fairly constant throughout the project 
at about 22 per month, with the exception of the 
last month in which the rate dropped to nearly 
zero. An analysis of the bug-detecting effectiveness 
of each testing technique shows that all test tech­
niques were effective and seemed to complement 
each other. Table 1 shows the percentage of bugs 
detected by each technique. This table includes 
data on the ever-valuable, nonsimulation verifica­
tion technique of simply reviewing, inspecting, and 
discussing the design and its many representations. 

The decision to release the design for fabrication 
of first-pass chips was a consensus decision made 
by the verification, architecture, and design teams. 
From a verification perspective, the design was 
ready for release when the bug detection rate 
remained at zero for several weeks and the majority 
of the planned tests had been implemented. The 
verification of some areas of the design was 
deferred until after the release of the first-pass 
design. The development team decided that any 
bugs that might be found in these areas would not 
have a significant negative impact on the system 
development schedule, whereas additional delay in 
releasing the design would. 
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Table 1 Bug Detection Using 
Various Techniques 

Percent of 
Technique Total Bugs Found 

Focused tests 

Directed, pseudorandom 
exercisers 

Review, inspection, 
observation, thought 

Detection technique unknown 

AXE 
MAX 
HCORE 

Other 

Results and Com:lusions 

28 

23 

20 
12 

8 
6 

2 

1 

Only 15 logical bugs were found in the first-pass 
NVAX CPU chip design, all of which were either eas­
ily worked around or did not impact normal system 
operation. The nature of the bugs found in the first­
pass design ranged from straightforward bugs that 
escaped detection for clear-cut reasons to extremely 
complex bugs that required hours or weeks of rig­
orous prototype system testing to uncover. Some of 
the bugs escaped detection during simulated verifi­
cation for classic reasons such as: 

• Testing of the function was performed just 
before release, in a hurried manner. 

• Simulation performance prohibited running a 
certain type oftest case. 

• A test was not run in a certain mode due to the 
difficulty of running it in all possible modes. 

• It took an exerciser running on a simulator a 
long time to encounter the conditions that 
would evoke the bug. 

• A test was inadvertently dropped from the set of 
exercisers that were run continuously. 

Details about five of the more interesting bugs 
found in the first-pass design follow. Included 
is information about how the bug was detected, 
a hypothesis on why the bug eluded detection 
before first-pass chips were fabricated, and les­
sons learned from the detection and elimination 
of the bug. 
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1. One simple bug was detected by running the 
HCORE test suite on the prototype system with 
the floating-point unit (F-box) disabled. This bug 
could have been found in the same way through 
simulation, but the test suite was not run as a 
final regression test with the F-box disabled. In 
general, focused tests like HCORE were not run 
with varied chip/system configurations. The ver­
ification team concluded that all focused tests 
should be run with different chip/system config­
urations. At the minimum, a configuration that 
disables all possible functions should be tested. 

2. Another bug was discovered because the CPU 
chip generated spurious writes to memory in the 
prototype system. The exercisers probably did 
generate the conditions necessary to evoke this 
bug; however, the spurious writes went unno­
ticed. It is extremely difficult to verify that a 
machine does everything it is supposed to do 
and nothing more. Additional assertion checkers 
or monitors in the models might detect such 
bugs in the future . 

3. A third bug was evoked when a prototype 
system exerciser executed a translation buffer 
invalidate all (TBIA) instruction under certain 
conditions. On a real system, the TBIA instruc­
tion is used only by the operating system. In our 
verification effort, the TBIA instruction was little 
used by the exercisers that were simulated. 
Operations that are performed only by the oper­
ating system should not be underemphasized 
in exercisers. 

4. One first-pass bug was related to the halt inter­
rupt, which is used only during debugging oper­
ations. The halt interrupt received minimal 
testing and was not tested at all in any type of 
exerciser. Discovering this bug was especially 
annoying because a similar bug had escaped 
detection by the initial logical verification effort 
for a previous VAX implementation. This turn of 
events reinforces the belief that there is value in 
reviewing the escaped bug lists from other proj­
ects. Also, during the verification effort, there 
seemed to be a natural, but erroneous, tendency 
to undertest functions used infrequently or not 
at all during normal system operation. Such 
functions sometimes require extra attention, 
because they may be quite complex and may 
have been given less careful thought during the 
design process. 
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5. A state bit that needed to be initialized on power­
up was not. This problem was noticed during 
initialization simulation but erroneously ratio­
nalized as being acceptable. Design assumptions 
and assertions about initialization should be ver­
ified through simulation or other means. 

Overall, the NVAX CPU chip logical verification 
effort was a success. The pseudorandom testing 
strategy detected several complex and subtle logi­
cal bugs that otherwise probably would not have 
been detected by simulation. The extensive simula­
tion performed on the schematics-derived model 
of the chip provided a high degree of confidence in 
the design. 

The goals of producing highly functional first­
pass chips and bug-free, second-pass chips were 
both met. Neither the bugs in first-pass chips nor 
their work-arounds impeded prototype system 
debugging in any significant way, and first-pass 
chips with work-arounds were used in prepro­
duction, field-test systems. The verification team 
corrected the 15 first-pass design bugs for second­
pass chips, which were shipped to customers in 
revenue-producing systems. 
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The utX 6000 Model 600 Processor 

The Model 600 is the newest member of the VAX 6000 series of XM/2-based, multi­
processing computers. The Model 600 processor integrates easily into existing plat­
forms. Each processor module provides 40.5 SPECmarks of performance made 
possible by the NVAX CPU chip. The major VIS/ interface chip, called NEXMI, was 
created using Digital's internal CMOS-3 design and layout process. The ability to 
design and fabricate the interface chip internally was critical to delivering a work­
ing CPU prototype module on schedule. The aggressive module timing goals u•ere 
met by employing previous module experience in combination with extensive 
SPICE simulation. 

The Model 600 system is the latest addition to 
Digital's VAX 6000 family of midrange symmetric 
multiprocessing computers.• The Model 600 was 
designed to be integrated cost-effectively into an 
existing VAX 6000 platform, and to provide a signifi­
cant performance improvement over the previous 
generation of systems. Table I compares the perfor­
mance of the Model 600 with the previous genera­
tion Model 500 on several important benchmarks. 
The powerful NVAX single-chip microprocessor 
enables this level of performance. 2 

Design Goals 
The primary goal of the project was to deliver a 
module that included the appropriate support 
functions, performance, and VAX 6000 system com­
patibility. Equally important, the module had to be 
delivered on schedule to prevent an adverse time­
to-market impact on the program. This included 
the delivery of a working prototype module before 
the first NVAX microprocessor chips were available, 
since a VAX 6000-based platform would be used to 
debug the initial NVAX CPU chips. Furthermore, the 
prototype module had to allow the VMS operating 
system to be booted and tested. 

Our goals were achieved. When the NVAX CPU 
chip, the prototype module, and the NEXMI sup­
port applications specific integrated circuit (ASIC) 
were integrated for the first time, the hardware 
worked almost immediately. The software team 
was well prepared, and the full VMS system boot 
took place 11 days after the hardware was put 
together. Moreover, the first-pass modules were 
used for all the system debugging, and were of suffi­
cient quality to be used for system field test. 
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Table 1 Comparison of CPU Performance 

VAX6000 VAX6000 
Benchmark Model600 Model 500 

SPECmark3 40.5 15.3 
SPEC int 30.9 14.2 
SPECfp 48.6 16.1 
VUPs 30.2 12.4 

Notes: SPECmark is a quantitative measure of performance, 
determined by running a suite of 10 benchmark programs. 
SPECint defines the performance on the subset of the tests 
that are integer intensive, and SPECfp defines the floating-point 
intensive tests. A VAX-11nao system has a performance of 1.0 
SPECmark by definition. The SPEC tests used for the table 
values are from the System Performance Evaluation Cooperative, 
Release 1 . VUP is a VAX unit of performance. One VUP equals the 
performance of a VAX-11nao. 

This paper relates the background and design 
process for the VAX 6000 Model 600 processor 
module. The module and its system context are 
described, as well as many of the design decisions 
that were made during the project. The first section 
describes the module in general terms, along with 
some of the trade-offs and choices associated with 
its development. The second section focuses on the 
NEXMI support chip, which is the primary interface 
device positioned between the NVAX CPU data and 
address lines (NDAL), the XMI2 system bus, and the 
support peripheral ROMBUS. It discusses the very 
large-scale integration (VLSI) design process used to 
create and verify the functions of this interface. The 
final section details some of the physical aspects of 
the module design, including the important work 
performed to ensure good module signal integrity 
and thermal management. 
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Description of the Processor Module 
Figure 1 shows the VAX 6000 Model 600 CPU mod­
ule. Figure 2 is a block diagram of the module, 
showing the major subsections. The CPU module 
contains two VLSI components: the NVAX micro­
processor and the NEXMI ASIC interface chip. The 
module also holds the backup cache static random­
access memory (SRAM) devices, the XMI2 corner 
bus interface, and the supporting logic necessary to 
implement a VAX 6ooo processor node. 

The NVAX CPU directly controls its external 
backup cache SRAMs. When the data is resident in 
the cache, the NVAX CPU modifies it there, and 
implements a write-back scheme. 2 When the data 
misses in the backup cache, or when an 1/0 access 
is necessary, the NVAX CPU places the command on 
the NDAL, along with any associated control and 
data information. The NEXMI accepts and processes 
the command. 

The NEXMI VLSI chip provides an interface to the 
functions necessary to integrate a VAX 6000 proces­
sor module into an XMI2-based system. In particu­
lar, the NEXMI chip: 

• Translates the NDAL bus commands to XMI2 bus 
commands 

• Returns read data from the XMI2 bus to the NVAX 
CPU (via the NDAL) 

I OSCILLATOR ~ ~ 
NDAL BUS 

NVAXCPU > 
" " 

DATA CACHE 

HEAT SINK 

Figure 1 VAX 6000 Model 600 
Processor Module 

• Forwards invalidate traffic to the NVAX CPU for 
lookup and potential write back 

• Controls NDAL bus arbitration 

The NEXMI contains a programmable interval 
timer, reset logic, halt arbitration logic, and secure 
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INTERFACE 
CHIP 

RAM 
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OUTPUT 
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XMI CHIP 
INTERCONNECT 

~ 
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-

Figure 2 Block Diagram of the Model 600 Module 
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console logic on chip. It accommodates the rest of 
the support functions through the ROMBUS. 

The ROMBUS is controlled by and interfaces to the 
NEXMI; it supplies a path for the low-speed devices 
that are necessary to create a working computer. 
The devices on the ROMBUS are off-the-shelf parts 
that contribute specific functions, including ROM 
for the boot diagnostic and console program, a 
stack RAM for storage of diagnostic/console 
dynamic information, an electrically erasable pro­
grammable read-only memory (EEPROM) for saved 
state, a universal asynchronous receiver/transmit­
ter (UART) for console communication, an input 
and output port, and a time-of-year (TOY) clock. 

The bare module itself is a sophisticated 
printed wiring board (PWB) with the following 
characteristics: 

• 11.024-inch by 9.18-inch module size 

• 10-layer module with 0.093-inch thickness 

• 4 signal layers, 4 power/ground layers and 
2 component/dispersion layers 

• 0.010-inch vias 

• 5-mil etch/7.5 mil space minimum for signals 

• 10-mil etch/40 mil space minimum for clocks 

NEXMI Support Chip 
The NEXMI chip is the routing and control interface 
between the three major buses that reside on the 
VAX 6000 Model 600 processor module. A func­
tional diagram of the NEXMI is provided in Figure 
3. The three major buses are the NDAL, XMI2, and 
ROMBUS. The NEXMI chip contains the following 
functions, each function is associated with one or 
more of the three major buses: 

• NDAL bus arbitration 

• NDAL receive and transmit logic 

• NDAl/XMI2 queues 

• XMI2 data/invalidate responder queue 

• XMI2 bus control logic 

• System support control (SSC) logic 

The NDAL receive logic latches and decodes com­
mands and data from the NVAX CPU, and routes 
them to one of two queues. If the command is 
a write back, consisting of an address and 32 bytes 
of write data, it is placed in the XMI2 write-back 
queue. All other commands (reads and 8-byte 
writes) are placed in the non-write-back queue. The 

Dtgttal Tecbntcal Journal Vol. 4 No. 3 Summer 1992 

The VAX 6000 Model 600 Processor 

non-write-back queue services both the XMI2 logic 
and the SSC logic. Depending on the function , the 
SSC logic might then send the command on to the 
ROMBUS. Each queue is loaded in the NDAL time 
domain, and a request signal is sent to the appropri­
ate XMI2 or SSC logic for processing. 

On read commands, data is returned from the 
XMI2 responder queue or ssc control section, and 
forwarded to the NDAL through the NDAL transmit 
section. The NDAL is then requested, and when bus 
access is granted the data is driven onto the NDAL to 
be accepted by the NVAX CPU. 

The XMI2 logic also sends potential invalidate 
addresses to the NVAX, where the information is 
compared with the existing tag address in the 
indexed backup cache block. An invalidate address 
is nothing more than the address associated with 
a command initiated on the XMI2 by another pro­
cessor. If the cache block matches, and if the NVAX 
must relinquish control of the data, the block is 
either invalidated or written back. The choice 
depends upon the type of transaction and the state 
of the cache block. 

In the Model 600, the NDAL arbitration is handled 
by the NEXMI chip. The NVAX CPU does not imple­
ment the NDAL arbitration on chip because the 
microprocessor must accommodate many differ­
ent types of system platforms. A method of arbi­
tration that is fair and efficient on one type of 
system (e.g., a single processor workstation with 
several potential NDAL master nodes implemented 
in off-the-shelf programmable devices) might be less 
than satisfactory for another type of system (such 
as the NEXMI). 

The NEXMI and the NVAX CPU are the only two 
nodes on the NDAL in this implementation, so a sim­
ple priority scheme is used. The NEXMI always has 
highest priority, since it is either returning data or 
forwarding XMI2 bus transactions for potential 
invalidation and write back. In both cases, some 
other entity on the bus is actively waiting for the 
information to be returned. 

Choice of NEXMI Technology 
The NDAL is the NVAX CPU external interface bus. It 
is a 64-bit, bidirectional, multiplexed address and 
data bus that runs synchronously with the CPU. 
Although it is significantly slower than the internal 
CPU speed (an NVAX with a 12-nanosecond [ns] 
clock cycle has an NDAL with a 36-ns cycle), it is still 
aggressive in many respects, and presented a chal­
lenge to design using standard parts. The NDAL 
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arbitration for the next cycle happens in parallel 
with the data transfer for the current cycle, and the 
full request and grant loop must be performed in 
one NDAL cycle. In addition, the NDAL data path is 
bidirectional. An NDAL master must be able to trans­
mit its data to the receiver within a single cycle, 
then allow time for the bus to become tristate 
before the next master can drive the bus. 

The original product plan was to use several gate 
arrays to implement the module control logic. One 
gate array would have contained the XMI2 interface 
logic, and the other would have controlled the 
system support functions and interface. It became 
clear early in the project that the external 1/0 cells 
of the gate array could not meet the timing man­
dated by the NDAL specification. Furthermore, we 
were unable to obtain timely and accurate SPICE 
models of the gate array output stage, which com­
pounded our general difficulty in determining the 
design trade-offs for the module.4 

The use of an external commodity gate array 
implied another design-related drawback. The nor­
mal gate array design process included the submis­
sion of our design for chip layout after we had 
completely verified it for both logical correctness 
and estimated timing constraints. The timing was 
estimated since the actual timing could not be 
known until the ASIC was routed. The gate array 
routing would be performed by the vendor, and 
actual delay numbers would be used to verify the 
design again. This sometimes meant changing logic 
interconnections to fix timing-related violations, 
especially if the design team had been aggressive in 
either the chip cycle time or gate usage. The design 
would then have to be verified again, and sent back 
to the vendor where the process was repeated until 
everything worked at speed. 

Consequently, we decided to design the NEXMI 
ASIC chip using Digital's CMOS-3 standard cell pro­
cess at the Hudson, MA site. Once the decision had 
been made to use the internal process, we realized 
other significant benefits. We believed that we 
could collapse the design into one package, since 
we could make use of Digital's chip expertise to 
create full-custom sections where necessary. We 
would know early in the design cycle if our assump­
tions were wrong, since the design flow uses a sub­
chip approach. The approximate size of each 
subchip is known as soon as the first pass of the 
structural design is finished. 

Another major advantage of using Digital's inter­
nal CMOS design process was that it afforded us 
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direct contact with the VLSI design, process, and 
manufacturing groups. As our design progressed, 
we had constant communication with the people 
who wrote and supported the computer-aided 
design (CAD) tools, the people who had designed 
the circuits and standard cell library elements, and 
the people who would eventually fabricate the 
chips. At any stage of the project, we could deter­
mine how to obtain a performance advantage with­
out risk to either chip yield or product reliability. 
When a tool problem surfaced, or when a tool did 
not do exactly what we needed, the issue would be 
immediately addressed and resolved. 

By having easy access to the individuals who had 
detailed knowledge of the circuits, we could attain 
the maximum possible speed and density from 
the design. We benefited from the experience of 
the internal full-custom design community, and 
profited from access to its complete and accurate 
SPICE libraries. Consequently, we were certain of 
how we could obtain a design advantage, yet still 
allow the chip to perform reliably under worst-case 
conditions. 

The Digital semicustom design process 
(described in more detail in the section NEXMI 
Design Process) provides constant feedback on cir­
cuit layout. Therefore, our functional and logical 
timing simulations were always up-to-date with 
accurate gate and wire delays. By the time we were 
ready to freeze the design (after we had verified 
it for logic and timing correctness), only one 
regression run was needed on a minor change from 
the last iteration. This approach prevented last­
minute surprises, and resulted in a smooth transi­
tion from design description, through layout, and 
into fabrication. 

NEXMI Design Issues 
During the design of the NEXMI chip, several inter­
esting problems were addressed. 

Interblock Control Signal Synchronization The 
clock that drives the NVAX and NEXMI chips runs at 
36 ns, and is not synchronized to the 64-ns clock 
that drives the XMI2 bus interface. Without any spe­
cial care, the data that is generated in one clock 
domain can cause the target latching device out­
puts to enter a state called "metastable." This state 
is characterized by oscillations, or an output volt­
age level that is neither high nor low for an 
extended period of time. This can cause unreliable 
system operation. 
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Traditionally, a synchronizer is provided for the 
control signals between two different clock 
domains to allow communication without causing 
metastability. A synchronizer is a cascaded set of 
latches, allowing the first latch to go metastable, 
but characterized so that it settles down before the 
second latching device is sampled. The drawback 
to a synchronizer is that it increases the latency of 
communication due to the cascaded latching 
devices. 

There are no inexpensive and easy remedies for 
latency of communication when the system goes 
from idle to active. However, we decided to reduce 
the synchronizer latency on a busy system. Our 
method optimizes the case where information is 
in either the NDAL queue or the XMI2 responder 
queue, waiting for transmission when the current 
command has been successfully transmitted. For 
these situations, we created a set of round-robin 
synchronizers, with a ring of request and done sig­
nals in each direction. While one request/done pair 
is being serviced, the pipeline overhead for the next 
pair is hidden by the overlapping synchronizers. 

NEXMI Queues For the three major queues in the 
NEXMI chip, we determined reasonable queue sizes 
based on our chip space constraints and perfor­
mance simulations. System testing on the real hard­
ware during our debugging and system integration 
phase confirmed that our decisions were correct. 
None of the queues cause performance degrada­
tion on an actual running system. 

We decided to make the non-write-back and the 
XMI responder queues into integrated queues 
rather than have separate queues for each function. 
Queuing theory shows that a shared resource is bet­
ter utilized when only one queue is served by the 
next available resource, rather than having a sepa­
rate queue for each resource.~ 

Visibility Port A problem that always exists with 
dense, complex integrated circuits is how to diag­
nose problems that happen in an actual running 
system that do not show up during simulation. 
Although no such problems appeared in the NEXMI 
chip, the designers wanted to provide visibility to 
as many internal states as possible. To this end, we 
created a parallel port to provide visibility to some 
important internal signals. 

Given the size of the design, we could provide 
only the minimum number of signals for visibility. 
We tried to predict the internal signals that might 
help diagnosis and adjustment, such as the internal 
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state machines, interblock control signals, and 
queue head and tail pointers. We then grouped 
them into similar units so that related signals were 
visible within one control group. Internally, the sig­
nals were segregated within their boxes, and routed 
so that they did not adversely affect the top-level 
chip routing. 

NEXMI Design Process 
The NEXMI chip contains 250,000 transistors in a 
die that measures 0.595 inches by 0.586 inches. It is 
housed in a custom-designed, 339-pin, ceramic pin 
grid array (PGA). This section describes the NEXMI 
chip design methodology and the unique CAD tools 
that were used to design Digital's largest CMOS-3 
semicustom chip. (The chip is physically larger and 
has more transistors than any previous standard 
cell produced using the Digital semicustom pro­
cess.) This section also covers many of the trade­
offs made during the chip design, and explains the 
reasoning behind our decisions. 

The design of the NEXMI chip can be character­
ized by three major phases: 

• Behavioral modeling 

• Structural design 

• Physical chip implementation 

The three design phases of Digital's internal 
CMOS design process significantly overlap each 
other. Each design stage is explained and analyzed 
in this section. 

Behavioral Modeling Phase 
The first major design effort focused on describing 
the chip functions at a high level of abstrac­
tion. This is normally referred to as behavioral or 
functional modeling, and the design team used 
Digital's internal hardware description language, 
DECSIM-BDS, for this task.6 Functional design sec­
tions were allocated to different design engineers, 
and interfunctional block boundary descriptions 
were specified. 

A behavioral modeling strategy was attractive for 
many reasons. A well-defined hierarchical partition 
of the design was quickly realized, and smaller sub­
sections (or subchips) within the chip were identi­
fied. Behavioral models of each subchip were 
initially developed to prove functional correctness. 
As the design progressed, these subchips were 
replaced by functionally equivalent gate-level struc­
tural models. Using this mixed-mode functional 
simulation strategy, each designer could progress 
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at his/her own pace, from behavioral definition 
to structural implementation, independent of the 
status of other subchips. 

The behavioral modeling effort identified many 
architectural problems early in the design cycle. 
Details such as queue sizes and structure, flow con­
trol mechanisms, and interblock communication 
protocols were all emphasized, and each decision 
yielded valuable information about the feasibility of 
a single-chip implementation. 

Behavioral modeling allowed a functional 
description of the NEXMI chip to be integrated into 
a system-level model quickly. This enabled the veri­
fication team to write and debug tests early in the 
design cycle. As each structural subchip was fin­
ished, it replaced its previous behavioral counter­
part in the verification model, and was tested for 
functional correctness. This step-wise, integrated 
approach permitted the tests, models, and logic to 
be verified incrementally. 

One major advantage of our behavioral modeling 
strategy was that it let the design progress without 
targeting a specific technology. The designers 
focused their attention on logical implementation 
rather than on the technology-specific details, such 
as the timing and loading constraints imposed by 
a choice of technology. The Choice of NEXMI 

Technology section described the process of select­
ing the CMOS-3 implementation path. The initial 
behavioral phase of the project allowed some of the 
design to be finished before the final choice of 
CMOS technology was made. 

Structural Design and Chip 
Implementation Phases 
The next major project design phase involved map­
ping the behavioral subchip models into their 
equivalent gate-level structural representations. 
The design methodology chosen followed directly 
from the decision to implement NEXMI using 
Digital's CMOS-3, I-micrometer, semicustom pro­
cess. The semicustom process includes a fully spec­
ified library of primitive elements, called standard 
cells, similar to the cells included in a gate array 
library. 

The advantage of the semicustom approach is 
that it gives the designer full control over the place­
ment and routing of the individual primitives 
or groups of primitives (subchips) within the chip. 
This allows the engineer to easily take advantage of 
special placement for speed-critical paths. Because 
we were using the internal tool suite and fabrica-
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tion process, we were also able to take advantage of 
a wealth of full-custom knowledge provided by our 
support groups. One of the original reasons for 
using the internal VLSI process was the tight timing 
on the NDAL. Therefore, the NEXMI pad ring was 
custom designed for speed, control, and lTL-level 
compatibility. Other major handcrafted sections 
were the dense, multiported queue structures. 

To coordinate our large, multiple-person chip 
design, we used the organized chip design (ORCHID) 

file management system. The ORCHID system man­
ages the files created by each design tool for every 
hierarchical subchip. It contains translation tools 
that convert the schematic data into file formats 
accepced by the simulation, layout, and verification 
tools. The system allowed individual designers to 
work independently on subchips at various stages 
of development (schematic entry, simulation, floor 
plans, layout, verification) yet still maintained a 
coherent hierarchical design database that could be 
shared by all members of the design team. The idea 
of a shared database facilitated the reuse of com­
mon logic (e.g., counters, parity trees, testability 
devices), and designers often borrowed from each 
other to avoid primitive design duplication. 

Semicustom Design Flow 
Figure 4 shows the semicustom design process and 
the individual tools that were used during the struc­
tural and physical implementation phases of the 
NEXMI chip design. 

ALOE, Digital's in-house graphical editor, was our 
schematic entry vehicle, and was used in conjunc­
tion with the primitive symbols and models from 
the CMOS-3 standard cell library (SCL3). The tools 
within the ORCHID system were used to translate 
schematics into generic wirelists with estimated 
delays. The schematics were then input to other 
tools for logic and timing verification. Specific 
design tools included the internal logic simulator, 
DECSIM, a timing analysis tool, AUTODLY, and the 
SPICE circuit simulator. 

Automated logic synthesis was used to convert 
some behavioral models into structural entities. 
OCCAM, an internal CAD tool, was used to synthe­
size a gate-level representation of the scattered 
address decode, and was able to minimize the logic 
to meet the aggressive bus timing . ., Controllers 
embedded within the XMI and SSC subchips were 
synthesized using SMD2SIM, a tool developed at 
Digital's Boxboro, MA site for another project. This 
synthesizer allows large programmed logic array 
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Figure 4 Semicustom Design Row 

(PLA) structures to be realized from a simple LISP· 
like behavioral description. During the course of 
the design, controller funct ion changes became 
easier to maintain using a textual description. 
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After each gate-level subchip was created, the 
ATLAS tool suite was used to place and route the 
standard cells within the subchip. The lWOLF edi­
tor (TWEDT) was used to place special cells, such as 
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clock buffers and timing-critical gates, within the 
subchips. The rest of the subchip was then placed 
automatically and globally routed using the TWOLF 
program, which relies on a simulated annealing 
placement algorithm. 8 Lastly, the standard cell 
assembler known as SCASM was used to assign stan­
dard cell rows and to complete the detailed rout­
ing.9 SCASM uses both channel routing and 
"over-the-cell" routing, which reduced the overall 
size of the subchip by permitting metal routes over 
the underlying cells. Subchip post-layout timing 
information was then fed back into the logic and 
timing verification tools for a more detailed analy­
sis. The ability to analyze post-layout delay informa­
tion and to iterate through the layout process early 
in the design phase was crucial to meeting our 
schedule. 

The top-level floor plan was progressing in paral­
lel with the process of subchip placement and rout­
ing. FAME, another tool from the ATLAS tool suite, 
was used for the chip floor plan and top-level rout­
ing.10·11 Information about top-level routing was fed 
back to the subchip place and route tools to change 
the basic shapes and subchip boundary pin place­
ment information. This was used to keep inter­
subchip routing to a minimum, which in turn 
reduced overall loading and timing delays. Many 
successive iterations were necessary to achieve an 
optimal top-level floor plan that would meet our 
timing goals and fit onto a single die. Fortunately, 
much of this work could be done by the designers 
themselves. 

After the final place and route iteration had been 
done on the the entire chip, an exhaustive set of 
checks was performed to ensure design integrity 
and circuit reliability for first-pass silicon. A VLSI 
design rule checker was run on the individual sub­
chips, then on the entire chip, to verify the layout 
against the CMOS-3 process design rules. As a pre­
cautionary measure, the original chip schematics 
were extracted to SPICE wirelists using an internal 
wirelist tool, and another program, called 
HILEX/CUP, did the same thing using the geometric 
information in the final layout database. A wirelist 
comparison program, called IVCMP, compared the 
two wirelists to ensure that the design we had sim­
ulated was the same one we would build. 

Finally, a program called XREF used the capaci­
tance from each internal chip node and the topol­
ogy of the routed interconnection database to 
predict the cross talk each signal could expect. 
Changes were made to the signal routing and the 
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sizes of some of the driving transistors, based upon 
potential problems identified by the XREF program. 

Figure S is a representation of Digital's CMOS-3 
design process. It shows the chip floor plan, along 
with an example of the schematics used to drive the 
layout process, and a timing diagram created by the 
simulation program. 

Verification of the VAX 6000 Model 600 
Early in the design cycle, our verification team was 
able to integrate a behavioral chip-level model into 
a CPU module model and perform system-level test­
ing of the VAX 6000 Model 600. These tests gave the 
designers timely feedback on the effects of their 
design decisions on the system as a whole. 

An NDAL/XMI2 bus monitor, called the BEMAR, 
was written to verify the bus activity between the 
NDAL and XMI2 ports of the chip, and to log valuable 
cycle information. The NEAT, an NDAL cycle emula­
tor, was also used to create NVAX transactions on 
the NDAL. It was written to reduce simulation test 
run times and to ease the test verification process. 

Most of the tests written were focused tests, tar­
geting a specific function within the NEXMI chip. 
However, a random bus exerciser was also written 
to test unexpected combinations, and was instru­
mental in catching two design flaws that the 
focused test cases had missed. In all, over 100 
focused tests were written and verified against the 
simulation model, giving us a high degree of confi­
dence that first-pass silicon would be functional. 
The quality of the prototype systems is due in large 
part to this complete verification. 

A subset of the functional tests was also used 
by manufacturing to generate chip test vectors. 
Test vectors were automatically converted from 
DECSIM-formatted trace files to Takeda pattern sets 
through a special program called TEMPEST. Prior to 
the return of first-pass silicon, the generated pat­
tern sets were converted back into DECSIM format, 
to verify that the pattern sets would run success­
fully on the Takeda chip tester. This test pattern 
generation and simulation process reduced the 
time needed to debug the test patterns when the 
NEXMI chips became available. 

Module Design Issues 
During the design of the VAX 6000 Model 600 
processor, many module-related issues were 
considered. The next section describes some of the 
more interesting issues that we encountered during 
the physical module design process. In many cases, 
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Figure 5 Representation of the CMOS-3 Design Flow 

we describe the method that was adopted by the 
design team to prevent problems through careful 
planning and analysis. 

Backup Cache Size and Speed 
We chose to defer the selection of the backup cache 
size and speed until late in the design cycle. This 
allowed us to make the decision based upon the 
pricing and availability of the SRAM devices, and the 
performance to be gained from combinations of 
these devices. We also wanted to wait until we 
knew the final speed of the NVAX CPU. The two 
most likely cache sizes were 512 kilobytes (KB) and 
2 megabytes (MB). We felt that simulation could 
provide insight into the performance trade-offs, 
and simulation studies were performed with both 
sizes to establish approximate performance num­
bers. We knew, however, that running real modules 
on a variety of benchmarks under actual workloads 
was the most accurate way to determine the perfor­
mance side of the price/performance trade-off. 
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The footprints for the two SRAM cache chips that 
represented the cache size trade-offs were differ­
ent, which made it difficult to create one prototype 
module to accommodate both sizes. Creating two 
separate modules to test the different combinations 
of cache sizes would have burdened the rest of 
the project, so special surface-mount pads were 
designed to handle the different SRAM geometries 
on the same module. Once the cycle time of the 
NVAX CPU was determined to be 12 ns, we were able 
to make the final choice on the cache size and SRAM 
speeds. The final decision was to provide a 2MB 
cache with 20-ns 256KB by 4 SRAMs for the data and 
15-ns 64KB by 4 SRAMs for the tag. This provided the 
best balance between cost and performance in the 
Model 600 system. 

ROMBUS Decisions 
General-purpose computing systems need a core of 
system functions to supplement the computing 

Vol. 4 No. 3 Summer 1992 Digital Tech11ical Jour11al 



power of the processor. On the VAX 6000 series of 
computers, this includes: 

• ROM to hold the boot, diagnostic, and console 
code 

• EEPROM to hold items such as boot paths and 
error information 

• Console terminal UART 

• Time-of-year (TOY) clock 

• Battery backed up RAM 

• Programmable interval timer 

• Time-of-day register 

• Input ports to sense external switches and other 
state 

• Output ports to drive module light-emitting 
diodes (LEDs) 

• Reset logic for the module 

• Halt detection and arbitration 

• Secure console logic 

I 
ROM2 

f---1 ROM 1 EE PROM 

.. 
'----+ ROMO 

~ I + 

The VAX 6000 Model 600 Processor 

Previous VAX 6000 systems used a system sup­
port chip for most of these functions. Mter we 
decided to combine as much support logic as possi­
ble into the single ASIC device (NEXMI), we had to 
determine what functions to include inside the 
chip, and what functions to locate external to the 
chip. We saw a potential schedule risk if some func­
tions, such as the UART and TOY clock, were placed 
inside the NEXMI. These functions were relegated 
to outside the chip since industry-standard, off-the­
shelf components were available to perform 
exactly the functions we needed. 

Once we decided to implement the UART and TOY 
clock outside the NEXMI, and added the normally 
external ROM, EEPROM, and input/output ports, we 
found that the NEXMI pin count was higher than we 
could afford. Since all the support devices were 
slow, and each one was byte-wide by its nature, 
we solved the pin problem by creating a single, 
slow-speed, bidirectional bus, which we called the 
ROMBUS. Figure 6 is a block diagram of the ROMBUS 
and its components. The ROMBUS reduced the 
NEXMI pin count by 40 pins for the same functions. 

I 
UART I TOY CLOCK I 
I I ROM 

1,:;/6 1 
ADDRESS 

ADDRESS 
GENERATION 
LOGIC 

- OUTPUT 
PORTO 

ROM BUS OUTPUT - CONTROL DEVICE SELECTION PORT1 
LOGIC -

.. I INPUT PORT I 
I RAM I ROMBUS 

DATA<7:0> 

ROMBUS COMMAND<3:0> 
NEXMI CHIP 

Figure 6 Block Diagram of the ROMBUS 
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Using the ROMBUS for the UART and TOY clock 
reduced the risk entailed in designing them inside 
the semicustom NEXMI ASIC, but the ROMBUS itself 
was eventually burdened with 12 separate devices. 
This presented a large capacitive and direct current 
load to all the components on the bus. The UART 
and TOY chip in particular were not well suited to 
this large load. We attempted to find CMOS-equiva­
lent devices for all the TTL components to eliminate 
the direct current problem, but were unsuccessful. 
We finally decided to split the bus into two sec­
tions, and place all the CMOS low-drive-capability 
devices on a separate segment. A transceiver con­
nected the two segments. 

Given that most of the devices on the ROMBUS 
were non-Digital components, we had the normal 
problem of obtaining accurate SPICE models to 
determine the ROMBUS timing. Extensive lab testing 
was performed on the devices to characterize their 
output delays under different capacitive loading 
conditions. These loading tests helped generate 
SPICE models for the ROMBUS simulations. 

Signal Integrity Considerations 
Module signal integrity analysis was one of the most 
important aspects of the project. A system that 
includes components running as fast as the NVAX 
and NEXMI can easily see performance degradation 
or unreliability if the module signals are not care­
fully placed, routed, and terminated where neces­
sary. The past experience of the signal integrity 
team played a major role in the eventual success of 
the process. Several approaches were taken for this 
aspect of the design. 

Package Selection SPICE simulations were per­
formed on each level of the design. This included 
the chip, package, module, and backplane. Even 
though each particular simulation analysis was 
focused on one aspect of the design, we under­
stood that each individual area affected the entire 
system. For example, the selection of a package 
spanned several important levels of design hierar­
chy. The connections between the die pads and the 
module signal pins, as well as the connection of the 
package to the board, needed to be considered; as 
did the module layout that accompanied each pack­
age size and type. One aspect of the signal integrity 
might show that a particular package type was 
superior to another, while another aspect might 
favor a different approach to module component 
interconnection. Electrical SPICE simulation deter­
mined that the performance and reliability of a 
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ceramic through-hole PGA on a 100-mil grid was the 
best trade-off. 

NDAL and Backup Cache Simulation The most 
important module-level signal integrity analysis 
was the extensive characterization of the NDAL and 
backup cache. As the interconnection bus between 
the NVAX and the NEXMI, the NDAL controls not 
only the transmission speed between the compo­
nents, but also the speed at which the NVAX can run 
(since the NDAL is synchronous to and scales with 
the NVAX speed). The speed of the backup cache 
was a performance concern for obvious reasons. 

We determined that estimates of the intercon­
nect and routing would be insufficient for our 
aggressive timing goals. Several trial layouts were 
performed to provide accurate input for the SPICE 
simulations. The 1/0 drivers for both the NVAX and 
the NEXMI chips were known to be complete and 
accurate, since they were both designed internally. 
The timing requirements for reliable operation 
were also well understood for the same reason. The 
module-level SPICE simulations provided guidelines 
about the length and routing rules associated with 
each high-speed signal trace, such as: 

• Daisy-chain routing of all signals 

• Clock routing scheme (e.g., matched length and 
termination) 

• Maximum length requirements for each type of 
network 

• Treeing, or ordering, requirements for networks 

• Impedance of different networks 

These requirements were used as design guide­
lines. A cross-talk prediction program within the 
layout tool verified that the coupling between sig­
nals was within an acceptable range. After the proto­
type modules were delivered, measurements were 
taken of all the critical signals on the module, show­
ing excellent correlation with the SPICE results. 

Thermal Management 
During the early phases of the module design pro­
cess, the power dissipation of the NVAX chip was 
estimated to be as high as 20 watts, though the final 
figure for the 12-ns component that we shipped 
with the product was 14 watts. Cooling such a part 
presented a challenge to the module designers. 
Since the Model 600 was an upgrade option in the 
VAX 6000 family, there was no possibility of system 
modifications to improve the thermal design. 
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Figure 1, which is a picture of the Model 600 
module, shows that the heat sink for the NVAX is 
larger than the package. The final dimensions of the 
heat sink are 3.285 inches by 3.285 inches by 0.325 
inch, while the PGA package is only 2.2 inches by 2.2 
inches. One of our limitations was the maximum 
component height of 0.420 inch on side 1 for any 
module in a VAX 6000 backplane. This restriction 
forced the heat sink to grow wider rather than 
higher. The NVAX chip was also placed closer to the 
edge of the board, where the airflow provides max­
imum cooling. The final size of the NVAX heat sink 
was a compromise between system requirements, 
board area, and thermal performance. 

Summary 
The decision to use Digital's proprietary tool suite 
and fabrication process was proved correct by the 
quality of the VAX 6000 Model 600 and its delivery, 
on schedule, for NVAX CPU debugging and product 
shipment. Access to accurate information about the 
components allowed decisions to be made early, 
and entailed less risk. This advantage, coupled with 
a seasoned module development team and exten­
sive functional, timing, and circuit simulation 
resulted in a successful project. 
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Design of the rnx 4000 
Model 400, 500, 
and 600 Systems 

The design of Digitals NVAX CPU chip provided the opportunity to bring RISC-class 
performance to deskside CISC VAX computer systems. The new VAX 4000 Model 400, 
500, and 600 low-end systems take full advantage of the performance capabilities 
of the NVAX microprocessor. The three systems offer from two to four times the per­
formance of the previous top-of the-line VAX 4000 Model 300 system in the same 
deskside enclosure. To achieve this increased performance, Digitals systems engi­
neers designed a new high-performance memory controller chip as part of the CPU 
module, whose basic design is shared by the three systems. In addition, a high-per­
formance memory module and a VLSI bus adapter chip were designed 

The design of Digital's NVAX high-performance 
microprocessor offered systems engineers the 
opportunity to design computer systems with sig­
nificantly improved performance. 1 The project 
structured to use the NVAX CPU chip to upgrade the 
VAX 4000 line of low-end deskside computers 
resulted in a family of three new systems and the 
associated CPU modules. These systems share a 
basic CPU module design but offer a range of per­
formance capabilities. This paper first presents 
the goals of the development project and then 
describes the architecture, design, and implementa­
tion of the resulting new VAX 4000 Model 400, 500, 
and 600 systems. 

Goals of the VAX 4000 Project 
Schedule and performance goals were of prime 
concern to the engineers committed to upgrading 
the VAX 4000 family of computers. Time-to-market 
was a key goal of the development project. 
Consequently, fully qualified systems were ready to 
be shipped to customers when the NVAX CPU chip 
was released and available in volume. The initial 
goals for performance specified that the new sys­
tems provide three times the performance of the 
VAX 4000 Model 300 system. Ultimately, the perfor­
mance of the NVAX CPU chip exceeded its design 
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goals. As a result, the new top-of-the-line VAX 4000 
Model 600 system performance is four times that 
of the Model 300. 

Achieving the performance goals required 
designing a new, high-performance memory con­
troller chip called the NVAX data and address lines 
(NDAL) pin bus memory controller (NMC). The 
objectives were to double the memory bandwidth 
of the VAX 4000 Model 300 system and to provide 
a total system memory capacity of 512 megabytes 
(MB). To support the NMC specifications, a high­
performance memory module called the MS690 
was designed. 2 

To reduce hardware and software development 
cost and the risk of failing to meet project sched­
ules, the system design incorporated all existing 
high-performance 1/0 adapter chips. These devices 
include the second-generation Ethernet controller 
chip (SGEC), the Digital Storage Systems Inter­
connect (DSSI) shared-host adapter chip (SHAC), 
the CVAX Q22-bus interface chip (CQBIC), and the 
system support chip (SSC).2,3.4 A very large-scale 
integration (VLSI) bus adapter chip was required to 
provide CVAX pin (CP) buses to connect these 1/0 
devices.~ The NDAL-to-CP bus adapter chip (NCA) 
was designed to meet this need. 

The three CPU modules designed to upgrade 
existing VAX 4000 Model 300 systems retain the 
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same BA440 system enclosure used for these sys­
tems. The upgrade requires that the older MS670 
memory module used in the Model 300 be replaced 
with the new, higher-performance MS690 memory 
module. The new systems had to support all of the 
Q-bus option modules that were supported on the 
VAX 4000 Model 300. 

System Overview of the VAX 4000 
Models 400, 500, and 600 
The BA440 system enclosure shown in Figure 1 sup­
ports the VAX 4000 Models 300, 400, 500, and 600. 
This pedestal enclosure was designed to operate in 
an open office environment. To allow the systems 
to operate quietly, the cooling fans are speed con­
trolled, based on the ambient temperature. The 
enclosure power supply provides 644 watts of 
direct current from a standard 15-ampere wall cir­
cuit. The system was designed and qualified to 
operate in an environment with a temperature 
range of from 10 to 40 degrees Celsius. 

KEY: 

D CARDCAGE 

FIVE DEDICATED 
SLOTS BEHIND 
CONSOLE MODULE 
(CPU PLUS FOUR 
MEMORY) 

Figure I BA440 System Enclosure 

The new CPU modules, differentiated only by the 
part numbers KA675, KA680 and KA690, are utilized 
as the engines for the VAX 4000 Models 400, 500, 
and 600, respectively. All three CPU modules, 
henceforth referred to as the CPU module, provide 
the same 1/0 functionality, including two DSSI 
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buses, a thick-wire and ThinWire Ethernet adapter, 
a Q-bus adapter, and the console serial line. The 
CPU module performance is 16, 24, and 32 times the 
performance of the well-known VAX-11/780 system, 
for the three new VAX 4000 systems, respectively. 
The CPU cycle clock speed and cache sizes deter­
mine the product performance, as discussed in the 
section CPU-cache Subsystem. 

The backplane in the system enclosure provides 
the signal interconnection and power distribution 
between system components. There are connec­
tors and slots for the CPU module, four slots for 
MS690 memory modules, and seven Q-bus slots. 
The CPU module has a 270-pin connector that 
receives the module power and connects the CPU 
to the NVAX memory interconnect (NMI) bus, the 
system DSSI bus, and the Q-bus. The backplane was 
modified to support the wider 72-bit data path of 
the new MS690 memory modules. This new back­
plane was phased into the BA440, enabling most 
VAX 4000 Model 300 systems to be upgraded with­
out requiring a backplane change. 

The system enclosure supports up to four DSSI or 
small computer system interface (SCSI) tape inte­
grated storage elements (ISEs). These cableless 
bricks support either one 5.25-inch, full-height 
drive or two 3.5-inch drives. The ISEs are available in 
variants that support the 2-gigabyte (GB), RF73 DSSI 
disk drive and dual 85MB, RF35 DSSI disk drives. The 
single-system pedestal can support six RF35 devices 
and a tape drive, providing 4.8GB of storage for 
applications that require high 1/0 rates. This RF35 
configuration can provide over 360 queued I/Os 
per second for random I/Os. If RF73 drives are used, 
the single-system box can provide 8GB of storage. 

There are several ways to expand the base VAX 
4000 system; the most common way is to expand to 
another DSSI-based system and create a two- or 
three-node DSSI VAXcluster. The Q-bus in the VAX 
4000 system can be expanded to provide IO addi­
tional Q-bus slots to each system using the B213A 
Q-bus expansion enclosure. The DSSI expansion 
enclosures together with the Q-bus DSSI adapter 
(KFQSA) can expand the total available disk storage 
to 28 DSSI disks. Using the RF73 disk allows up to 
56GB of disk storage. 

CPU Module 
The CPU module common to the three new VAX 
4000 systems is based on a highly integrated CPU 
and 1/0 system built on the single 21.6-by-26.7-
centimeter (8.5-by-10.5-inch) module shown in 
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Figures 2 and 3. The CPU module printed wiring 
board (PWB) consists of the following subsystems: a 
central processor and its associated three-level 
cache; a pin bus, bus adapter, and memory control­
ler; and an 1/0 system with integrated controllers for 
DSSI and Ethernet buses. The CPU module also con­
tains a CQBIC and 512KB of field erasable program­
mable read-only memory (FEPROM) for console code. 

CPU-cache Subsystem 
The CPU-cache subsystem is built around the single­
chip NVAX CPU, which provides a three-level cache 
architecture. The first two levels of cache, which 
are contained on the chip, include a 2KB virtually 
addressed instruction cache and an 8KB physically 
addressed instruction and data cache. The third 
level of cache, the backup cache, is constructed 
using static random-access memories (SRAMs) on 
the module and is completely controlled by the 
NVAX CPU chip. The backup cache was designed to 
support a CPU cycle time as low as 10 nanoseconds 

NDAL-TO-CP BUS 
ADAPTER CHIP (NGA) 

(ns) with a slip cycle, i.e., a two-cycle read (20 ns) 
using 8-ns SRAMs. This write-back caching architec­
ture significantly reduces the demands on main 
memory by caching both reads and writes without 
the need for a memory access. On all previous VAX 
4000 systems, the caches required that all write 
operations continue through to main memory, i.e., 
write through. 

The NVAX CPU is clocked by a differential emitter­
coupled logic (ECL) surface acoustic wave oscilla­
tor. This oscillator runs at 250 megahertz (MHz) 
(16-ns cycle time), 286 MHz (14-ns cycle time), or 
333 MHz (12-ns cycle time) on the KA675, KA680, 
and KA690 CPU modules, respectively. The NVAX 
chip produces a four-phase internal clock directly 
from this input and generates system clocks at one­
third the internal clock rate . 

The new CPU module design supports either a 
128-kilobyte (KB) or a 512KB backup cache. (512KB 
for the KA690 module and 128KB for the KA680 and 
KA675.) The tag store for the two cache sizes can be 

SGEC ETHERNET 
ADAPTER CHIP 

SHAG DSSI 
ADAPTER CHIP 

NVAX MEMORY 
CONTROLLER (NMC) 

CVAX Q-BUS 
INTERFACE 
CHIP (CQBIC) 

SHAG DSSI 
ADAPTER CHIP 

Figure 2 CPU Module 
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Figure 3 Block Diagram of the CPU Module 

constructed from SRAMs that have the same 24-pin 
package with compatible pinouts. This packaging 
makes it easy to design the PWB to support either 
cache. However, the data store, which is construc­
ted from parts whose packages have incompatible 
pinouts, required a special dual footprint design 
to accommodate either 16K-by-4K or 64K-by-4K 
SRAMs. This footprint is designed with the decou­
pling capacitors and series edge-limiting resistors 
carefully placed in the outline of the footprint to 
allow a dense, geometric packing of the 18 RAMs 
necessary for the data store. 

The backup cache is a write-back cache with 
memory coherence maintained through a direc­
tory-based broadcast coherence protocol. 1 When 
the NVAX CPU needs to write data to memory, the 
data is first transferred into the backup cache with a 
request for write privilege command. Once a cache 
row is stored in the cache as "written," any direct 
memory access (DMA) read to that memory address 
of displacement of that cache row will result in a 
release write privilege transaction, even if the data 
was never actually written. The cache controller 
inside the NVAX CPU is responsible for all activities 
related to cache maintenance. 
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NDAL Interconnect, Memory 
Controller, and Adapter 
The NDAL bus is a synchronous, multiplexed 
address and data, pended interconnect. Each 
device on the NDAL bus may be a commander 
(request data transfer), a responder (respond to 
commander requests), or both. In the new VAX 
4000 systems, the NVAX CPU chip is only a comman­
der, the NMC is only a responder, and the NCA 1/0 

adapter is both a commander and a responder. 
Arbitration of the NDAL interconnect is per­

formed by the NMC, which is also the default master 
responsible for driving valid no-operation bus 
cycles when there is no master activity. The NVAX 
CPU is responsible for watching all NDAL traffic and 
performing any invalidates or write backs of pri­
mary and backup cache data required to maintain 
cache coherence with memory. 

l/O Buses 
The CPU module uses a custom third-genera­
tion complementary metal-oxide semiconductor 
(CMOS-3) process 1/0 adapter (the NCA chip) to 
interface between the NDAL bus and a pair of 32-bit 
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CP buses. Two CP buses are used to prevent long 
response latencies on the Q-bus from interfering 
with buffer management on the Ethernet interface. 
One CP bus, CPI , operates under the synchronous 
CP bus protocol, and the other, CP2, uses the asyn­
chronous protocol. The faster peripherals, the 
Ethernet and the two DSSI adapter chips, reside on 
CPI and can take advantage of optimizations in the 
NCA to reach a peak bus bandwidth of 33MB per 
second (MB/s). CP2 has only one peripheral DMA 
master, i.e., the CQBIC, which also connects the SSC 
and the console FEPROM to the system. The NCA 
acts as a master on both CPI and CP2. Since only 
one of the buses is asynchronous, the system uses 
only one CP bus clock (CCLK) chip for signal syn­
chronization and CP clock distribution. 

The two CP buses share the same clocks. Con­
sequently, arbitration is performed by a single pro­
grammable sequencer, which serves both buses. 
The sequencer is clocked at 35 ns (KA680 and 
KA690) or 40 ns (KA675); this is one-half the CP 
cycle time. The arbitration for CP2 is a simple two­
priority scheme with the CQBIC at the higher prior­
ity When more than one master is requesting the 
bus, the minimum DMA request deassertion times 
on both the CQBIC and the NCA effectively make 
this scheme behave like a round-robin arbiter. The 
internal state does not have to keep track of the pre­
vious master. No special treatment is required for 
lock cycles because the CQBIC will never perform a 
lock on behalf of the Q-bus. 

Signal Integrity 
Signal integrity work began very early in the project, 
and the effort was a close collaboration between 
the CPU module design team, the design teams for 
the three VLSI devices, and the VAX 6000 Model 600 
CPU module design team. Because some CPU mod­
ule team members had experience with designing 
CP bus modules, the signal integrity issues on the 
CP buses were generally well understood. The CP 
bus data lines were routed with only a length con­
straint. The control signals on CPI required signifi­
cant analysis and SPICE modeling to meet both 
settling time and waveform requirements. 

The most critical signals in the backup cache 
are the output enable and write enable signals. The 
output enable deasserting edge must be transi­
tioned quickly to avoid tri-state contention on the 
cache data lines. The write enable signal must be 
perfectly monotonic through the threshold region, 
because it is an edge-sensitive signal. Both of these 
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requirements were met by using a strong driver in 
the NVAX chip and a parallel R-C termination at the 
far end of two of the three stubs. The R-C termina­
tions absorb some of the incident energy, reducing 
the reflections to an acceptable amount and allow­
ing incident-wave switching without the reflected 
wave reentering the threshold region. 

The backup cache data store was designed with 
strong drivers and incident-wave switching on the 
address lines. The routing of a representative cache 
address signal is shown in Figure 4. The stubs were 
arranged in such a way that the unavoidable reflec­
tion from the far end of the lines was reduced by 
a partial reflection from the center junction. Thus, 
signals traverse the threshold region fairly cleanly 
and settle rapidly outside the threshold region, i.e., 
approximately 3 ns elapse from the beginning of 
the transition at the driver until the time when 
a valid signal arrives at the receiver. 

Printed Wiring &Jard Physical Design 
The NVAX CPU chip draws several amperes of cur­
rent from the 3.3-volt power supply. This current 
draw has significant high-frequency components. 
The integrated decoupling capacitor on the NVAX 
die helps eliminate some of the high-frequency cur­
rent pulses, but much of this current must be sup­
plied by the module-level decoupling capacitors.• 

Charge stored on the module in these decou­
pling capacitors supplies this current. Any induc­
tance in the path of the current reduces the 
effectiveness of the capacitors by limiting the rate­
of-change of the current. In addition, the larger the 
physical area enclosed by the current path, the 
more radio frequency (RF) energy will be radiated 
into space that must be contained by the enclosure 
in order to meet regulatory radiation requirements. 
These two issues led to the exploration of how to 
minimize both the inductance of the decoupling 
path and the physical area of the RF current spread. 

The internal PWB standard, as it existed when the 
new CPU module was being designed, required a 
minimum of 25 mils (0.025 inch) of surface etch on 
any device before a via could be dropped into an 
inner layer. Traditionally, the inductance of this 
connection was reduced by using a wide (i.e., 25-
mil) etch for this connection. The inductance of 
surface etch on the module lay-up used on the new 
CPU module (calculated with two-dimensional 
transmission line [IDTL]) is shown in Table I. 

Table I provides the data to calculate the total 
inductance of a pair of 25-by-25-mil etch segments, 
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i.e. , approximately 0.4 nanohenrys (nH). (This mea­
surement is approximate, due to the short dimen­
sions of the segments.) The effective series 

inductance of the high-quality, 1,000-picofarad 
(pF) RF capacitor used on the CPU module is 
approximately 1 nH, including the inductance of 
the vias connecting the capacitors to the power 
planes. The reactance as a function of frequency for 
the inductive component of this decoupling system 
is shown in Table 2. 

Table 1 Inductance of a Surface Etch 

Etch Width 

10 mils 

25mils 

Inductance 

12.2 nH/in 

8.1 nH/in 

Note: This table represents the results of the inductance of a 0.5-
ounce copper strip on a 14-mil FR4 epoxy glass laminate 
dielectric over a ground plane. 

Because the resulting impedance is still quite 
high at upper frequencies, multiple capacitors are 
used in parallel. The 1,000-pF capacitors are cho­
sen from two different case styles to ensure that 
the parasitic inductance of the capacitors is not 
identical for all the high-frequency decoupling 

Table 2 Reactance as a Function of Frequency for Decoupling with 
and without Dispersion Etch 

Reactance 
Frequency With Dispersion Without Dispersion 

(MHz) (Ohms) (Ohms) 

100 0.89 0.63 

200 1.76 1.26 
400 3.52 2.51 
600 5.28 3.77 
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capacitors. This method of selection staggers the 
frequency of the parasitic resonances. 

Cycle Design Goal and Testing 
Although the original design goal for the CPU mod­
ule was a 12-ns CPU cycle time, as knowledge about 
Digital's fourth-generation complementary metal­
oxide semiconductor (CMOS-4) process increased, 
the design teams investigated the critical paths for a 
10-ns operation. At this time, the CPU module had 
not been routed, so a 10-ns cycle time was set as the 
layout goal. The cache loop layout resulted in a mea­
sured requirement that RAMs have an access time of 
approximately 8.5 ns to meet worst-case timing 
with no added slip cycles. 

RAMs meeting this specification were not readily 
available when the CPU module was designed. 
However, several vendors are beginning to ship 
devices at this speed today The NDAL data lines 
were capable of running at the 30-ns NDAL cycle 
that is generated with a 10-ns CPU clock. The point­
to-point NDAL arbitration signals are the tightest 
timing path on the NDAL. The combination of analy­
sis by the NMC team and a careful hand-routing of 
these signals by the module team allowed appropri­
ate NMC speed binning (i.e., sorting the chips based 
on correct operation at the fastest possible speed) 
to meet the timing requirements for a 30-ns NDAL 
cycle goal. 

Very few NVAX CPU chips were available that 
would function at 10 ns over the full range of volt­
age and temperature. However, empirical signal­
delay measurements and limited-range module 
testing have proven that the NMC and the NCA are 
ready to operate on the CPU module at this speed. 
An NVAX CPU that functions at this 10-ns speed can 
operate the cache with no slip cycles using the 
faster SRAMs. Future products may be based on an 
NVAX running at a 10-ns cycle, as sufficient yields at 
this speed bin are reached. 

Module Testing 
The module and chip teams considered more than 
one approach when determining what module­
level testability features to implement in the VLSI 
devices Digital was building for VAX 4000 Model 
500 computers. The scan-based Test Access and 
Boundary Scan Architecture (JTAG) proposal was 
coming into its own, and the teams desired to fol­
low that specification, if scan-based test features 
were to be used.6 However, no other devices on the 
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module would have scan capabilities. Thus, the 
overall module test strategy could not be based 
entirely on the JTAG specification. 

As the teams reviewed the overall module 
design, certain issues appeared to show promise for 
the application of a scan-based test: 

1. The automatic test equipment (ATE) pin density 
was likely to be very high in the areas of the 
three 339-pin pin grid arrays (PGAs). Reducing 
this high density would improve the reliability of 
the test fixturing. 

2. Previous experience with module manufacture 
in Digital's plants showed that the risk for solder 
defects would be high in the cache area, because 
of the ]-lead SRAMs. A fast way to isolate these 
problems would help reduce debug time. 

3. Providing at least a driver or a receiver for use by 
the JTAG scan ring would eliminate the need to 
use continuity structures to verify bonding and 
solder integrity on the VLSI parts. 

Eventually, the module and chip teams settled on 
a subset implementation of the JTAG scan-based 
test. The NVAX CPU chip implements scan latches 
on all data and control pads (input and output, in 
the case of bidirectional pads). Thus, the cache 
SRAMs can be tested using only the JTAG port, and 
the NVAX CPU can act as the driver for scan testing 
of the NDAL interface. The NMC and the NCA imple­
ment receive-only scan, so that the NDAL interface 
could be tested with no ATE pins required. The 
external tester was able to test the remaining pins 
solely by driving signals that could be scanned out 
of the pad latches. This subset implementation pro­
vided the same module-level coverage as would 
have been possible using a full JTAG implementa­
tion. In addition, the implementation removed 
some design obstacles that were causing implemen­
tation problems in the chips. 

The ability to use scan-based testing is advanta­
geous to the manufacturing process in the follow­
ing two areas: 

1. The scan tester can find open circuit defects in 
the cache area where the bed-of-nails tester 
could not resolve whether the problem was a fix­
ture contact problem or an actual open circuit. 

2. The ability to create "virtual test points" on 
scanned nets has allowed the test coverage of 
the bed-of-nails tester to be expanded without 
having to purchase an expensive tester upgrade. 
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Unfortunately, the module and chip teams' previ­
ous experience with scan-based testing at the mod­
ule level had been spotty at best. The ability of this 
test to reduce the pin density, therefore, was not 
used to full advantage in the problem areas under 
the large PGA devices. Based on the experience test­
ing the CPU module for the three new VAX 4000 sys­
tems, follow-on products have been able to use this 
testing feature to good advantage. The teams now 
have a firm base of experience on which to base 
future test strategies. 

The NVAX Memory Controller 
The NMC is a 520-by-500-mil custom chip fabricated 
using Digital's I-micrometer CMOS-3 process and 
contains 148,000 transistors packaged in a 339-pin 
PGA. The NMC provides the interface between the 
NDAL bus and up to 512MB of main memory by 
means of the NMI. The NDAL bus supports three 
other nodes on the NDAL-the NVAX CPU and up to 
two 1/0 adapters (101 and 102). In the new VAX 
4000 systems, the NCA serves as both 1/0 nodes on 
the bus. The NMC contains the arbiter for the NDAL 
and also helps the NVAX CPU maintain cache-mem­
ory coherency in the system by interfacing with a 
separate 0-bit memory. 

The NMI can operate with either a 32- or 64-bit­
wide data path and supports single error correc­
tion, double error detection, and nibble error 
detection, and runs synchronous with the NDAL 

clock. The NMI timing scales with the NDAL clock 
cycle time. 

In this section, we describe the architecture of 
the NMC, the objectives of the NMC project, and the 
results of the effort. 

NMC Architecture 
As shown in Figure 5, the NMC is partitioned into 
six major sections: the NDAL arbiter, the NDAL inter­
face, the transaction handler, control and status reg­
isters (CSRs), the memory interface, and the 0-bit 
interface. The NMC responds to all memory space 
addresses when NDAL address bit 29 is equal to O 
and responds to 1/0 space addresses in its allocated 
range, i.e., 2101 0000 .. 2101 FFFF (hexadecimal). 

The NDAL arbiter gives highest priority to the 
NMC for returning read data. The two 1/0 nodes 
have second priority; their requests are handled in 
a round-robin fashion. The CPU has lowest priority. 

The NDAL interface consists of an input section 
and an output section. The input section moni­
tors the NDAL for a new transaction every cycle. A 
valid transaction that has been decoded by the NMC 
is put into one of four transaction queues 
(INQUEUEs). There is one queue for each of the 
NDAL nodes: CPU, 101, 102, and the fourth , which 
stores release write privilege transactions. 
Commander nodes on the NDAL initiate release 
write privilege transactions to release the write 
privilege of blocks in memory. The NMC must 
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accept a release transaction from a node, irrespec­
tive of the state of its INQUEUE; otherwise, there is a 
potential for deadlock. Consequently, the NMC has 
a separate queue for release write privilege trans­
actions. The output section of the NDAL interface 
buffers up to six quadwords (i.e., six groups of four 
contiguous 16-bit words for a total of 384 bits) of 
read data that must be returned to the NDAL. In a 
normal functioning system, a buffer depth of six 
quadwords together with an arbitration scheme 
that gives the NMC the highest priority wiJI never 
result in a full output queue. Therefore, there was 
no need to check for a full queue and to stall while 
loading the queue. 

The transaction handler arbitrates between the 
four INQUEUEs and stores selected transactions in a 
current transaction buffer. The current transaction 
buffer serves as a pipeline stage; this buffer allows 
the corresponding INQUEUE to be loaded with the 
next transaction while the current transaction is 
being serviced. The NMC can service back-to-back 
transactions with no stall cycles on the NMI. 

The CSR section of the NMC contains memory 
configuration registers, error status registers, and 
mode and diagnostic registers. 

The memory interface contains the data path, 
address path, and control for up to four memory 
modules on the NMI. The data path contains all the 
error correction and detection logic. The address 
path contains the row and column address multi­
plexers and a refresh address counter. The control 
is provided by a state machine that can perform 
multitransfer read operations, multitransfer write 
operations, and read-modify-write operations. 

The 0-bit interface directly controls the 0-bit 
dynamic random-access memories (DRAMs), which 
are housed on the CPU module. For every memory 
transaction, the NMC reads the corresponding 0-bit 
in parallel with the memory access. If the block of 
memory is written, the memory transaction is 
aborted until the corresponding release transaction 
is received by the NMC. If the block is unwritten, 
the memory transaction is allowed to complete. 
Initiating the memory transaction in parallel with 
the 0-bit access reduces the transaction latency on 
transactions that are not written. Since most mem­
ory accesses are to unwritten locations, using this 
scheme improves memory performance consider­
ably. In addition, the system design engineers were 
able to use inexpensive DRAMS to implement the 
0-bit memory instead of faster, more expensive 
SRAMs. 
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NMC Project Objective and Results 
The NMC project objective was to create a high-per­
formance memory design that would be com­
patible with the VAX 4000 Model 300 memory 
subsystem and could provide two to three times 
the performance of that subsystem. (The VAX 4000 
Model 300 has a bandwidth of 47.4MB/s, at a cycle 
time of 28 ns, using 100-ns DRAMs with a 32-bit 
memory data bus.) This goal was achieved by using 
a 64-bit memory data bus and an interconnect that 
operates at a cycle time as low as 36 ns, using 100-ns 
DRAMS, and at an NDAL cycle as low as 30 ns, using 
80-ns DRAMs. The asymptotic bandwidth on the 
NMI using the 100-ns DRAM technology and a 64-bit 
data path is 111.llMB/s, i.e., 2.3 times the bandwidth 
of the VAX 4000 Model 300. Using faster 80-ns 
DRAMS, the bandwidth is 133.33MB/s, i.e., 2.8 times 
the bandwidth of the VAX 4000 Model 300. 

The NMC interface is efficient from the moment it 
receives a transaction on the NDAL until it starts a 
transaction on the NMI. This timing path was 
extremely tight and results in real memory read 
bandwidth of 63.6MB/s and 76.32MB/s at 36-ns and 
30-ns cycle times, respectively. 

The NMC chip was designed to meet an NDAL 
cycle time of 36 ns, which made the timing very 
critical. Most of the NMC chips produced can 
exceed this goal and will run at an NDAL cycle 
time of 30 ns. Future designs based on the 10-ns 
NVAX chips will require this cycle time. 

To meet the performance goal, we chose to use 
a 64-bit memory interface. However, achieving 
compatibility with the Model 300 memory modules 
presented a challenge with respect to the ECC 
generation and checking mechanism. A simple 
approach would have been to include two separate 
ECC trees, one for 64-bit operation and the other 
for 32-bit operation. This design would have been 
very area-intensive, so we chose 64-bit ECC code 
such that 32-bit ECC was a subset. 64-bit ECC 
requires eight check bits, and 32-bit ECC requires 
seven check bits. In our 64-bit code, the eighth 
check bit depends solely on the upper 32 bits. In 32-
bit mode, we force the upper 32-bits to a known 
value; therefore, that check bit is always a fixed 
value in 32-bit mode. 

The VAX 4000 systems do not allow the use of 32-
bit memory modules, because it is difficult to meet 
Q-bus latency requirements with the slower mem­
ory. This system constraint indirectly affected the 
NMC. The CQBIC and SGEC devices, for example, had 
stringent low latency requirements. The Q-bus 
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latency problem had to be solved without causing 
SGEC latency problems. Thus, the latency issue was 
addressed in the following way: 

• The NMC has a mode that indicates whether or 
not the Q-bus is present in the system. During 
this mode, the transaction handler gives the 
Q-bus node (102) the highest priority. However, 
to keep the SGEC latency within required limits, 
the transaction handler must service trans­
actions from the IO 1 node at strategic times. 

• To minimize the latency seen by any one node, 
the three NDAL nodes require separate queues. 
The simplest implementation of the NDAL input 
interface would have been to have two queues, 
one for release write privilege transactions and 
one for all other transactions. Thus, preserving 
the order of NDAL transactions would have been 
very easy. With three queues, it is necessary to 
compare queue addresses to preserve trans­
action ordering. 

• The NMC combines the CPU request for write 
privilege, the DMA read, and the DMA write into a 
single transaction before retiring the data to 
memory. This optimization reduces the latency 
of written transactions. 

Although the features that were added to the 
NMC chip to reduce Q-bus and SGEC latency 
increased the complexity of the chip, these features 
successfully keep the Q-bus latency below 8 
microseconds. 

NDAL-to-CP Bus Adapter Chip 
NCA is a full-custom, high-performance 1/0 con­
troller chip that provides the electrical and func­
tional interface between the 64-bit NDAL bus and 
the 32-bit CP bus. In the new VAX 4000 systems, the 
NDAL supports three chips: the NVAX CPU, the NCA, 
and the NMC. On the CP bus, the NCA supports the 
SHAC, SGEC, CQBIC, and SSC chips. The NCA is fabri­
cated in Digital's CMOS-3 process, contains 155,000 
transistors, and is packaged in a 339-pin PGA. The 
design goals for the NCA project were high quality, 
improved performance, optimized time-to-market, 
and leveraged use of existing CP bus chips. The NCA 
team achieved all design goals and completed the 
project by the scheduled manufacture release date. 

NCA Architecture Overview 
and Partitioning 
Although the original concept of the NCA was moti­
vated by a memory and 1/0 controller chip called 
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the G chip (used in the VAX 4000 Model 300 sys­
tems), the NCA chip was a new design. To optimize 
the DMA to memory bandwidth and the bus access 
latency, the NCA provides the two CP bus interface 
ports (CPI and CP2, mentioned previously), which 
operate independently. This strategy has three 
advantages. First, the Q-bus adapter and the system 
read-only memory (ROM)/console are connected to 
the CP bus separately from the Ethernet and the 
mass storage devices. This arrangement allows the 
system to tune and optimize throughput on the 
Ethernet and mass storage devices without degrad­
ing the bus access latency seen on the Q-bus. 
Second, the loading on the two CP buses is reduced. 
Therefore, each bus can operate at a higher fre­
quency and without external buffers; this also saves 
module area. Third, the dual-bus structure allows 
the use of a simpler bus arbitration scheme. 

In addition to using the dual-bus strategy, the NCA 
uses write buffer and read prefetch transactions to 
allow DMA devices, particularly the SHAC and SGEC 
chips, to operate efficiently in double octaword 
mode, where a two-octaword (32-byte) burst of data 
is transferred within a single bus grant. For write 
transactions, the NCA buffers up to two octawords 
of data. Thus, the bus can operate without stalling, 
while the NCA arbitrates for the NDAL bus for the 
buffered write transactions. For read transactions, 
the NCA contains a hexword-size (32-byte) prefetch 
buffer. Whereas the maximum burst length is only 
an octaword on the CP bus, the NCA requests up to 
a hexword of data during DMA memory read opera­
tions. The extra data is stored in the prefetch buffer 
and is immediately available if the subsequent CP 
bus read transaction targets the same address as the 
prefetched data. For NVAX initiated 1/0, up to four 
operations can be buffered simultaneously. 

The NCA is partitioned into four major sections: 
the NDAL, CPI, CP2, and registers. The NDAL inter­
face and each CP bus interface contain the master 
and slave sequencer and controls for the corre­
sponding bus. The NCA chip also has 1/0 queues and 
an internal arbiter to select operations from CPI, 
CP2, and NCA register read transactions to the NDAL 
bus, based on a predetermined priority. 

The register section contains the control and sta­
tus registers and the interval clock timer registers. 
The interval clock is a software-programmable 
timer used by the operating system to account for 
time-dependent events. 

The NCA supports parity check and detection 
on both the NDAL and the CP buses. The NCA also 
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supports all interrupts defined by the NDAL and CP 
bus protocols for other types of error conditions. 
When an error occurs, an error status bit is set in 
the NCA error status register. Depending on the 
type of error, an address may be available for diag­
nostics. The NCA also provides a mechanism to 
force a parity error condition on any of the buses to 
help debug the interrupt routines of the operating 
system software. 

Q-bus Latency Support 
To reduce latency seen by the Q-bus devices, 
the NCA provides special logic to gain priority 
from the NDAL arbiter. The NCA informs the arbi­
ter of the imminent Q-bus operation, for which 
latency is a concern. When a Q-bus is present in 
the systems, the NCA is programmed to use the two 
IDs mode on the NDAL and to enable the Q-bus 
present bit of the control register. Upon detection 
of the Q-bus "map" read transaction on the CP 
bus, the NCA immediately asserts a signal to the 
NDAL arbiter. The arbiter will not grant the bus 
to other devices until after the Q-bus read trans­
action is accepted by the NMC or until the signal 
is deasserted. Requests from the buffered write at 
the same interface are masked off until the signal 
is deasserted. Using this scheme, the Q-bus latency 
in the new VAX 4000 systems was never more than 
8 microseconds. 

Enhanced CJ.'ltX Pin Bus 
The NCA supports the standard bus protocol in 
both synchronous and asynchronous modes. The 
existing CP bus protocol does not utilize the maxi­
mum bus bandwidth possible with the standard CP 
bus protocol. The fastest data transfer rate is two 
cycles per four-byte (i.e., 32-bit) longword, because 
the two primary signals for the handshake use the 
same clock phase for the assertion. When the sent 
signal is detected, it is already too late to generate 
the received signal within the same cycle. To 
achieve the one-cycle transfer rate, a modified pro­
tocol is used. The received signal is changed to rep­
resent a ready-to-receive signal. The received signal 
is asserted regardless of whether or not the sent sig­
nal is asserted. When the sent and received signals 
are asserted at the same time, both the master and 
slave devices know that the data was successfully 
transferred. 

This protocol works with the existing CP bus 
chips and has increased the theoretical bandwidth 
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by up to 66 percent. For an 80-ns CP bus cycle time, 
the maximum bandwidth is 33.33MB/s. 

Testability 
To assist module testing, the NCA contains features 
that comply with the IEEE Standard P1149.l JTAG 
testability.6 At the pin level, five special pins are 
provided and work in combination with the inter­
nal test access port controller inside the NCA and 
a bed-of-nails tester to perform short- and open­
circuit interconnection tests. 

MS690 Memory Module 
The MS690 family of CMOS memory modules was 
designed to support the memory requirements set 
forth by the NVAX memory controller. 2 The NMC 
requires the MS690 memory module to provide a 
two-way, bank-interleaved, 72-bit data path. In addi­
tion, a self-test feature is provided that was used on 
the VAX 4000 Model 300 memory subsystem. The 
MS690 module returns a unique board identifica­
tion signature when polled by the NMC. The mod­
ule used existing qualified parts and fits on a 
quad-sized PWB. 

A common goal of Digital's Electronic Storage 
Development (ESD) teams is to utilize a single PWB 
design to accommodate as many memory sizes 
as possible. The ESD teams routinely stretch the 
boundaries ofDigital's manufacturing processes to 
provide world-class memory subsystems. Because 
memory subsystems form the core of the ESD char­
ter, the ESD teams are uniquely tuned into, and 
actively shaping, present and future device specifi­
cations for all types of random-access devices. This 
advance and intimate knowledge allows us to build 
current technology products with the hooks neces­
sary to capitalize on the next generation of storage 
devices. 

The MS690 options are available in 32MB, 64MB, 
and 128MB sizes and are self-configuring. The 
MS690 memories communicate with the NMC by 
way of the private NMI. All control and clocks sig­
nals originate off-board via the NMI from the NMC. 
Up to four memory modules of any density mix may 
coexist on the NMI with a maximum memory size 
of512MB. 

The MS690 is an extension of the existing 39-bit 
Ms670 memory product designed for the VAX 4000 
Model 300 product line. The DC562 GMX was 
designed and produced in Digital's Hudson, Mass­
achusetts, plant for the MS670 32MB memory. This 
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GMX is a semi-intelligent, 20-bit-wide, 4-to-1 and 
l-to-4 transceiver, with internal test/compare/error 
logging capabilities for its five 1/0 ports. The MS670 
required eight banks of 39 bits of data, hence the 
requirement of two GMX chips per module. 

The KA670 CPU module used in the VAX 4000 
Model 300 transfers 32-bit longwords of data. For 
every longword, 7 bits of ECC must be allocated, 
i.e., 8 x (32 + 7) = 312 DRAMS. The CPU module used 
in the VAX 4000 Model 500 transfers 64-bit quad­
words of data. For every quadword, 8 bits of ECC 
must be allocated, i.e., 4 x (64 + 8) = 288 DRAMs. 
The MS690 memory is configured as two inter­
leaved bank pairs, each 72 bits wide (64 bits of data 
plus 8 bits of ECC); all transactions are 72 bits. The 
memory module supports quadword, octaword, 
and hexword read/write/read-modify-write trans­
actions. Transactions less than 72 bits, i.e., bytes, 
words, and longwords, are not supported. 

Doubling the data word length is advantageous in 
two ways: the 1/0 bandwidth effectively doubles, 
and 24 fewer DRAMs are required. This last benefit 
results from the fact that only one additional bit is 
required to protect 64 bits of data as compared to 
protecting 32-bit data. The available PWB space 
allowed room for two additional GMXs to handle 
the 33 additional data bits. The ability to use the 
existing GMX integrated circuit eliminated the need 
for a new, 40-bit-wide, GMX-type VLSI development. 

Because DRAMs are edge-sensitive devices, mod­
ule layout, balanced etch transmission lines, and 
signal conditioning are extremely important to a 
quality product. The MS690 design team used 
a combined total of 18 years of memory design 
experience along with extensive use of SPICE 
modeling to determine the optimal PWB layout. The 
result was a double-sided, surface-mount PWB 
panel that can accommodate all density variations 

of the MS690 memory option and thus help control 
costs by reducing product-unique inventory. All 
parts, except the bare PCB, are used on products 
already produced in volume at Digital's Singapore 
and Galway, Ireland, manufacturing plants. 

The MS690-BA memory module, which uses 100-
ns IM-by-IM DRAMS, can support NMC cycle times 
of 36 ns and 42 ns, respectively, for the VAX 4000 
Model 400 and 500 systems. The MS690-CA/DA mod­
ules use 80-ns 4M-by-1M DRAMs and can accom­
modate 30-ns, 36-ns, and 42-ns NMC cycle times. 

Performance 
The CPU 1/0 subsystems on all three products pro­
vide exceptional performance, as shown in Table 3. 
The pair of DSSI buses on the CPU modules for the 
VAX 4000 Models 500 and 6oo were tested under 
the VMS operating system performing single-block 
(512-byte) reads from RF73 disk drives. The read 
rate was measured at over 2,600 I/Os per second 
with both buses running. The Ethernet subsystem, 
based on the SGEC adapter chip, is also very effi­
cient. It has been measured transmitting and receiv­
ing 192-byte-long packets at a rate of 5,882 packets 
per second. Packets 1,581 bytes long can be trans­
mitted at a rate of 9.9 megabits per second. 

The performance of the CPU subsystem has tradi­
tionally been measured using a suite of 99 bench­
marks.7 Scaling the results against the performance 
of the VAX-11/780 processor and taking the geo­
metric mean yields the VAX unit of performance 
(VUP) rating. The processor VUP rating for the new 
VAX 4000 system with the lowest performance, 
the Model 400, is twice the VUP rating of the sys­
tem it is replacing, the Model 300. The two new 
high-end systems provide three and four times the 
performance of the Model 300-an impressive per­
formance increase. 

Table 3 Summary of Performance Results for the VAX 4000 Models 400, 500, and 6007 

Metric Unit Model400 Model 500 Model600 

SPEC Release 1.0 SPECmark 22.3 30.7 41 .1 
SPECint 17.1 24.9 31.8 
SPECfp 26.6 35.4 48.7 

Single User 99 VUPs 16.9 23.8 31.4 
TPC-A tpsA-local 51.0 62.4 103.0 
Dhrystone Integer MIPS 34.2 43.4 64.4 
Whetstone Single MIPS 47.6 71.4 83.3 
Whetstone Double MIPS 32.3 45.5 52.6 

LINPACKD (1 00 by 100) MFLOPS 4.8 6.9 9.5 
UNPACKS MFLOPS 7.5 10.5 14.7 
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The system performance in multistream and 
transaction-oriented environments was measured 
with TPC Benchmark A.8 This benchmark, which 
simulates a banking system, generally indicates per­
formance in environments that are characterized by 
concurrent CPU and 1/0 activity and that have more 
than one program active at any given time. The per­
formance metric is transactions per second (TPS). 
The measured performance of the VAX 4000 Model 
600 system was more than 100 TPS, tpsA-local. As 
shown in Table 3, the performance of the new VAX 
4000 Model 400, 500, and 600 systems is impres­
sive, even compared to RISC-based systems. 
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The Design of the w.tX 4000 
Model 100 and Microw.t.X 31.00 
Model 90 Desktop Systems 

The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to 
meet the growing demand for low-cost, high-performance desktop servers and time­
sharing systems. Both systems are based on the NVAX CPU chip and a set of VLSI sufr 
port chips, which provide outstanding CPU and I/0 performance. Housed in like 
desktop enclosures, the two systems provide 24 times the CPU performance of the 
original VAX-11/780 computer. With over 2.5 gigabytes of disk storage and 128 
megabytes of main memory, the complete base system fits in less than one cubic foot 
of space. The system design was highly leveraged from existing designs to help meet 
an aggressive schedule. 

The demand for low-cost, high-performance desk­
top servers and timesharing systems is increasing 
rapidly. The MicroVAX 3100 Model 90 and VAX 4000 
Model 100 systems were designed to meet this 
demand. Both systems are based on the NVAX CPU 
chip and a set of very large-scale integration (VLSI) 
support chips, which provide outstanding CPU and 
1/0 performance.1 

Each member of the MicroVAX 3100 family of 
systems constitutes a low-cost, general-purpose, 
multiuser VAX system in an enclosure that fits 
on the desktop. This enclosure supports all the 
required components of a typical system, including 
the main memory, synchronous and asynchronous 
communication lines, thick-wire and ThinWire 
Ethernet, and up to five small computer system 
interface (SCSl)-based storage devices. 

The MicroVAX 3100 Model 90 system replaces the 
Model 80 as the top performer in the line; the new 
model has considerably more than twice the CPU 
power of the previous model. 2 The Model 90 
system also includes performance enhancements 
to the Ethernet and SCSI adapters, as well as an 
increased maximum system memory of 128 mega­
bytes (MB). The CPU mother board for the MicroVAX 
3100 Model 90 system is called the KA50. 

The VAX 4000 Model 100 system is housed in the 
same desktop packaging as the MicroVAX 3100 
Model 90 and provides the same base functionality. 
The VAX 4000 Model 100 adds two key features 
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found in all previous VAX 4000 systems, i.e., Digital 
Storage Systems Interconnect (DSSI) storage and 
Q-bus expansion. The CPU mother board for the 
VAX 4000 Model 100 system is called the KA52. 

The KA50 and KA52 CPUs are built from a com­
mon CPU mother board design; the base CPU 
mother board is configured to create either the 
KA50 or the KA52 product module. The DSSI and 
Q-bus optional hardware is added to the CPU 
mother board to convert a KA50 to a KA52. Also, to 
provide the additional superset functionality found 
on the KA52 CPU, the different system read-only 
memories (ROMs) are added during the manufactur­
ing process. In this paper, the KA50 and KA52 CPUs 
are referred to as the CPU mother board or module, 
except where differences exist. 

The system design was highly leveraged from 
existing designs to help meet an aggressive sched­
ule. This paper describes the design and implemen­
tation of these systems. 

Design Goals 
The design team's primary goal was to develop a 
CPU mother board that would provide at least twice 
the CPU performance of the MicroVAX 3100 Model 
80, while supporting all of the same 1/0 functional­
ity of the previous systems. This new system would 
leverage the core CPU design from the VAX 4000 
Model 500 system, thus delivering the high perfor­
mance of the NVAX CPU chip to the desktop.3 
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The team set additional goals to increase system 
capability and performance. These goals were to 

1. Increase the maximum system memory from 
72MB to 128MB 

2. Provide error correction code (ECC) protection 
to memory using memory arrays that previously 
supported only parity 

3. Increase the performance of the Ethernet adapter 

4. Increase the performance of the SCSI adapter 

Early in the project, the team proposed creating a 
second CPU design that would have the features of 
the larger VAX 4000 systems. This proposal resulted 
in the design of a DSSI adapter option for the CPU 
mother board, as well as a Q-bus adapter to provide 
a means to upgrade the CPU power of older 
Q-bus-based MicroVAX systems. 

The project to design, implement, and field-test 
these systems was accomplished under an aggres­
sive schedule. Both designs were ready to ship to 
customers in just over nine months from the official 
start of the project. 

System Overview 
The MicroVAX 3100 Model 90 system supports 
the same 1/0 functionality as the previous genera­
tion of systems, the MicroVAX 3100 Models 
40 and 80. The features include a SCSI storage adap­
ter, 20 asynchronous communication ports, two 
synchronous communication ports, and an 
Ethernet adapter. 

The VAX 4000 Model 100 includes the same 1/0 
functionality as the MicroVAX 3100 Model 90. In 
addition, the system provides the 1/0 functionality 
of the larger VAX 4000 systems, that is, a high-perfor­
mance DSSI storage adapter and a Q-bus adapter 
port that connects to an external Q-bus enclosure. 

Both systems provide 24 times the CPU perfor­
mance of a VAX-11/780 system. The memory subsys­
tem uses Digital's MS44 single in-line memory 
modules (SIMMs) and thus provides 16MB, 32MB, 
64MB, 80MB, or 128MB of main memory. 

As shown in Figure 1, the system enclosure used 
to house both systems, namely the BA42B, provides 
mounting for the CPU mother board, up to five loca­
tions for disk and tape devices, a 166-watt power 
supply, and fans for cooling the system elements. In 
addition, the enclosure shields the system from 
radiated emissions. All 1/0 connections are filtered 
and exit the enclosure through cutouts in the 
rear panel. The system enclosure is compact and 
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measures 14.99 centimeters (5.9 inches) high by 
46.38 centimeters (18.26 inches) wide by 40.00 cen­
timeters (15.75 inches) deep. 

The system enclosure contains two shelves that 
support the mass storage devices. In the MicroVAX 
3100 Model 90, these storage locations are cabled to 
support SCSI disks and tapes. The upper shelf sup­
ports three SCSI disks, whereas the lower shelf 
supports two SCSI devices (any combination of 
removable or 3 1/2-inch disks) with access through 
a door in the front of the enclosure. In the VAX 4000 
Model 100, the top shelf is configured to support 
three 3 1/2-inch DSSI disks; the bottom shelf sup­
ports two SCSI devices, as in the MicroVAX 3100 
Model 90. 

The VAX 4000 Model 100 DSSI support is provided 
by a high-performance DSSI adapter card based on 
the shared-host adapter chip (SHAC), i.e., a custom 
VLSI design with an integrated reduced instruction 
set computer (RISC) processor.3 The system is con­
figured with DSSI as the primary disk storage. The 
DSSI bus exits the enclosure by means of a connec­
tor on the back panel. This expansion port can be 
used to connect the system to additional DSSI 
devices, or to form a DSSI-based VAXcluster with a 
second VAX 4000 Model 100 or any other DSSI-based 
system. 

The Q-bus support on the VAX 4000 Model 100 is 
provided by the VLSI adapter chip, i.e., the CVAX 
Q22-bus interface chip (CQBIC).4 There are no 
Q-bus option slots in the system enclosure. The 
Q-bus connects to an expansion enclosure through 
a pair of connectors at the rear of the system enclo­
sure. Two shielded cables and the H9405 expansion 
module are used to connect the Q-bus to the expan­
sion enclosure. The near end of the Q-bus is termi­
nated in the system enclosure. 

CPU Mother Board Design 
The design goals presented engineering with con­
straints that forced design trade-offs. Some key 
constraints were (1) fitting the required functional­
ity on a single 10-by-14-inch module; (2) designing 
the system to adhere to the system power and cool­
ing budget; and (3) minimizing changes to the func­
tional view of the module over previous designs, to 
decrease the number of software modifications 
required for operating system support. 

The primary way the design team minimized 
system development was to leverage as much as 
practical from existing designs. The CPU mother 
board design used components from the VAX 4000 
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Figure 1 VAX 4000 Model 100 System Enclosure Showing the CPU and Connectors 

Model 500, MicroVAX 3100 Model 80, and VAXstation 
4000 Model 90 systems. Using proven design 
components allowed for a shorter development 
cycle, smaller design teams, and consequently, a 
higher-quality design, while meeting an aggressive 
schedule. 

The design is structured so that both CPU mother 
boards can be built using the same printed wiring 
board (PWB). The added functionality for the KA52 
is provided by a daughter card, additional hardware 
and cabling, and different system ROMs. The shared 
design helped reduce the complexity in testing and 
qualifying the system design. 

The CPU module contains three major sections: 
the CPU core, the memory subsystem, and the 1/0 
subsystem. Figure 2 is a block diagram of the basic 
CPU module for the VAX 4000 Model 100 and 
MicroVAX 3100 Model 90 systems. Figure 3 is a pho­
tograph of the module, including the DSSI daughter 
card option. 
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The CPU mother board includes a linear regulator 
that generates local 3.3-volt (V) current for the 
CPU core chip set. The voltage is stepped down 
from the 5-V supply. The regulator is necessary 
because the 3.3-V direct current (DC) of the system 
is not sufficient to meet the ± 3 percent tolerance 
regulation or to supply the required maximum 
current. 

CPU Core 
The CPU core consists of three chips: the NVAX CPU 
chip, the NVAX data and address lines (NDAL) 
memory controller (NMC) chip, and the NDAL­
to-CVAX pin (CP) bus adapter (NCA) chip. The 
NVAX chip directly controls the 128-kilobyte 
(KB) backup cache. The core chip set is inter­
connected by means of the NDAL pin bus, as shown 
in Figure 2. The NDAL bus is 64 bits wide, has a 
42-nanosecond (ns) cycle time, and supports 
pended transactions. 1 The peak bandwidth of the 
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NDAL bus performing 32-byte operations is 152 
megabytes per second (MB/s). 

N~ CPU Chip The NVAX CPU chip is an advanced 
implementation of the VAX architecture in Digital's 
fo urth-generation complementary metal-oxide 
semiconductor (CMOS-4) technology. The NVAX 
device consists of 1.3 million transistors on a die 
approximately 0.6 inch on a side. 

The NVAX CPU chip contains the VAX CPU, a float­
ing-point unit, and backup cache controller logic. 
Some NVAX features that enable it to increase per­
formance are the use of a pipelined architecture, a 
2KB virtual instruction cache (VIC), a 96-entry 
translation buffer, an o n-chip 8KB primary cache, 
and an on-chip backup cache controller. The CPU 
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cycle clock and NDAL bus clocks are generated with 
an on-chip clock generator supplied by a 286-mega­
hertz (MHz) oscillator. 

The NVAX CPU is based on a high-performance 
macropipelined architecture similar to that of the 
VAX 9000 CPU.1·5 The VIC allows the caching of 
instructions that have already been translated to 
virtual addresses. Having the backup cache con­
troller on the chip decreases backup cache access 
time because no external logic, with the resulting 
delays, is required. 

NVAX Memory Controller Chip The NMC is the 
NVAX memory controller implemented in Digital's 
third-generation complementary metal-oxide semi­
conductor (CMOS-3) technology.6 The NMC consists 
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Figure 3 CPU Mother Board 

of 148,000 transistors and is the high-speed inter­
face to the system main memory. The NMC is the 
arbiter for the three chips on the NDAL bus, namely, 
the NVAX, the NCA, and the NMC. The NMC chip 
manages the array of ownership bits that corre­
spond to each 32-byte segment of memory. Each of 
these segments corresponds to a cache line. The 
ownership bit indicates whether the valid copy of 
the data is in memory, in the CPU write-back cache, 
or in an 1/0 devices buffer. 

The NMC has four command queues that accept 
read, write, and remove write privilege trans­
actions from the NDAL bus. Buffers hold the read 
data to be returned to the node that requested the 
data. The NMC and the memory subsystem provide 
the 95MB/s of bandwidth shared by the NVAX and 
the 1/0 devices. 

NDAL-to-CP Bus Adapter Chip The NCA chip, also 
implemented in Digital's CMOS-3 technology, is the 
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interface from the NDAL to the CP bus.6 The NCA 
consists of 155,000 transistors and supports two CP 
buses. The CP bus used on the CVAX microproces­
sor family is also used on many of Digital's custom 
1/0 adapter chips, such as the CQBIC, the SHAC, the 
second-generation Ethernet controller (SGEC), and 
the system support chip (SSC).3,4.'48 Thus, the hard­
ware and software designs for these 1/0 functions 
could be leveraged from previous efforts. The NCA 
performs direct memory access (DMA) from the 1/0 
devices and supports the cache consistency proto­
col required for the NDAL bus. 

The NCA was designed to optimize DMA traffic 
from CP bus devices. In the KA50 CPU, the CP bus 
devices include the SGEC Ethernet adapter, the SSC, 
the field erasable programmable read-only memory 
(FEPROM) subsystem, the CP-to-EDAL adapter chip 
(CEAC), and the SCSI quadword first in, first out 
(SQWF) chip. In addition, the asynchronous com­
munication option is attached to the CP bus. The 
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KA52 CPU also attaches the CQBIC Q-bus adapter 
chip and the SHAC DSSI host adapter chip. 

Memory Subsystem 
The memory subsystem is controlled by the NMC 
chip. The main memory is implemented using MS44 
SIMMs and low-cost gate array (LCGA) chips to pro­
vide an interface between the NMC and the SIMMs.9 
The SIMMs are used in groups of four to provide 
two interleaved banks, each with a 64-bit data path 
and eight bits of ECC. This interleaving scheme 
increases the bandwidth of main memory by alter­
nating data between both banks of memory. 
The ECC provides single-bit error correction and 
double-bit error detection. 

The individual SIMMs are available in either 4MB 
or 16MB variants. Since four SIMMs form a complete 
functional set, sets can be 16MB or 64MB in size. 
Therefore, because the system supports up to two 
sets of SIMMs, the total system memory size can be 
either 16MB, 32MB, 64MB, 80MB, or 128MB, depend­
ing on the combination of SIMM size and the num­
ber of sets. 

To coincide with the cache coherency scheme 
used in the NVAX CPU chip, the NMC keeps track of 
the cache lines that have write privilege reserved 
by the CPU or 1/0 devices. This state is stored in sep­
arate dynamic random-access memories (DRAMs). 
These DRAMs interface directly to the NMC by 
means of a private bus. The ownership bits are pro­
tected by ECC. 

l/0 Subsystem 
Because the MicroVAX 3100 Model 90 was intended 
as an upgrade for the Model 40 and 80 systems, the 
1/0 subsystem of the earlier systems dictated the 
design of the new Model 90. In addition, the 1/0 
subsystem of the KA52 CPU module for the VAX 
4000 Model 100 supports two functions found in 
the other VAX 4000 systems, the DSSI adapter and 
the Q-bus adapter.9 The 1/0 subsystem includes 
a ThinWire and thick-wire Ethernet adapter, four 
built-in asynchronous terminal lines, a connector 
for the asynchronous option, and the CEAC and 
SQWFchips. 

A bus interface was incorporated in the 1/0 sub­
system to support the DSW42 synchronous commu­
nication option, the SCSI adapter chip, and the 
QUART four-port asynchronous controller chip. The 
CEAC and SQWF chips, which are gate arrays 
designed for the VAXstation 4000 Model 90, are 
used to create the EDAL bus. 
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Support for the SCSI bus is provided by the 53C94 
SCSI adapter chip. 10 The 53C94 chip is interfaced to 
the system on the EDAL bus and uses the SQWF chip 
to increase its OMA performance. The SQWF 
chip makes it possible to buffer data moving to the 
CP bus. The SCSI bus operates in synchronous mode 
for high-performance storage access of 5MB/s. 

The QUART gate array supplies the logic for four 
built-in serial ports. The QUART, originally used 
on the DZQll Q-bus device, provides the same 
software interface as that device. The third port 
provides modem control functions by means of 
additional logic; the first, second, and fourth ports 
are data leads only. 

The SGEC Ethernet adapter chip was chosen 
because it provides higher performance than the 
Ethernet adapter used on the MicroVAX 3100 Model 
80. The SGEC is the adapter chip used on all VAX 
4000 systems. In addition, this chip directly inter­
faces with the CP bus. 

The limited size of the CPU mother board 
required the DSSI adapter to be added by means of 
a daughter card. The Q-bus adapter chip and bus 
termination are provided directly on the mother 
board. 

Console and Diagnostics 
The MicroVAX 3100 Models 80 and 90 differ in their 
console designs and diagnostics. Because the basic 
CPU core of the MicroVAX 3100 Model 90 and the 
VAX 4000 Model 100 systems is very similar to that 
of the VAX 4000 Model 500 system, the design team 
decided to adopt the console of the Model 500 and 
add the required commands and functionality. 
Borrowing proven designs, such as the console of 
another NVAX-based system, significantly shortened 
the product development schedule. 

One enhancement to the CPU mother board was 
the addition of a FEPROM subsystem. If an update is 
required, the console and diagnostic code on the 
CPU can be reprogrammed in the field. In contrast, 
previous systems required the memories to be in 
sockets and the parts to be replaced in the field. 
With FEPROMs, a program is loaded from any 
bootable device. This program erases the FEPROMs 
and reprograms them with the new ROM image. 
This enhancement serves as an easy mechanism for 
updating the ROMs in the field to provide new fea­
tures or to fix bugs that may be discovered. 

On power-up, the CPU starts executing from the 
FEPROM memory and runs the power-up self-test to 
help verify that the system is fully operational. 
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Upon completion of the execution of this test, the 
system transfers control to the console program. 
Depending on the values configured in nonvolatile 
memory, the console program either boots the 
system with the correct parameters or stops for 
console input. 

In earlier systems, the speed of executing from 
ROM could be more than an order of magnitude 
slower than running from cached main memory. 
The NVAX CPU chip added the virtual instruction 
cache, which allows the caching of instruction 
stream references from 1/0 space. This feature 
greatly increases the performance of the ROM code. 

Console 
The console program gains control of the CPU 
whenever the processor halts or performs a restart 
operation such as power-up. The console provides 
the following services: 

1. Interface to the diagnostics that test compo­
nents of the CPU and system 

2. Automatic/manual bootstrap of an operating 
system following processor halts 

3. An interactive command language that allows 
the user to examine and alter the state of the 
processor 

There are minor differences between the KA50 
and KA52 consoles. Largely, these differences relate 
to the KA52 CPU mother board support for the DSSI 
bus and the Q-bus. Although the console is similar 
to that found on the VAX 4000 Model 500, some new 
commands were implemented to provide function­
ality that exists on previous MicroVAX 3100 systems. 
These commands include LOGIN and SET PSWD (set 
password), which give support for a secure con­
sole; SET/SHOW SCSI_ID; SHOW CONFIGURATION; 
SHOW ERROR; and various commands to support a 
system exerciser. 

On the KA52 CPU, the console supports the DSSI 
bus and the Q-bus with a set of commands. These 
commands allow polling of the DSSI bus to deter­
mine what devices are present and to configure the 
internal parameters of each device. The system can 
be booted from devices on the SCSI, DSSI, or Q-bus 
chips, as well as over the Ethernet port. 

Diagnostics 
Diagnostics help isolate faults in the system down 
to the level of the field-replaceable units. Significant 
effort was expended on the development of 
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onboard diagnostics. However, as for the console, 
the philosophy used in developing these diagnos­
tics was to leverage as much of the software design 
as possible from existing designs. 

With the advent of larger boot and diagnostic 
ROMs, the diagnostic coverage of the power-up self­
tests greatly increased, including extensive testing 
of the cache, the memory, and the CPU core. These 
tests help assure the customer that a failed compo­
nent will be detected and reported upon power-up. 
In many cases, the new tests can help isolate fail­
ures in the individual SIMM or cache chip. This fea­
ture is used extensively in manufacturing, as well as 
by field service. 

During the power-up sequence, an instruction 
exerciser (HCORE) is run to test the floating-point 
hardware. This test provides very good coverage 
of the floating-point unit. In the past, HCORE 
has been run as a standalone diagnostic in manu­
facturing before a system is shipped. The design 
team for the two new desktop systems believed 
that this test should run on every system power-up 
self-test. 

The CPU core is designed to function over a wide 
range of environmental conditions. Some variables 
of the environment are temperature, voltage, and 
minimum/maximum component parameters at a 
given clock frequency. Exceeding the worst-case 
design envelope can cause unpredictable results. 
For example, to avoid problems caused by a defec­
tive main clock oscillator that may be running too 
fast, the diagnostics measure the speed of the CPU 
cycle clock to determine if it is within the accepted 
tolerance. If the cycle is faster than the design mar­
gin dictates, an error is reported. 

Design Tools 
The design of the CPU mother board uniquely 
merged components from several designs. The 
success of this approach relied on the use of design 
tools to perform the merge and to verify the cor­
rectness of the merge. 

The normal design process is to create a set 
of design schematics and to verify these through 
simulation. Once the design is logically verified, 
the layout process begins. The layout process 
includes the use of the SPICE simulator to give direc­
tion to the physical layout structure and to check 
the integrity of the layout. 11 After the layout is com­
plete, the database is fed back into logic simula­
tion, which again verifies the correctness of the 
design database. 
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The CPU mother board designers took a different 
approach. Since the physical placement of the con­
nector portion of the module was the same as for 
the MicroVAX 3100 Model 80 module, this design 
element was used as the starting point for the over­
all design. The database was edited using the VAX 
layout system (VLS), and the only components 
saved were those that were to be used in the new 
CPU module. This procedure provided the correct 
placement for all 1/0 connectors that exited the 
system enclosure. 

In addition, the VAX 4000 Model 500 CPU core 
was used as the basis for the CPU mother board etch 
layout. The Model 500 design has proven to have 
very good signal integrity due to its well-thought­
out circuit board layout. To leverage Model 500 
work in the layout of the CPU mother board, the 
designers extracted the printed circuit board signal 
routing from the Model 500. This signal routing 
included the CPU core and cache treeing, the most 
critical areas. This approach eliminated the need to 
model critical signal interconnect in the design and 
guaranteed that the signal integrity and connector 
layout would be identical to that of the proven 
Model 500. 

Database comparison tools were used to guaran­
tee that the schematics matched the physical layout 
database. As a final step, the physical layout data­
base netlist was used to create a simulation model. 
DECSIM, Digital's simulation tool, was used to verify 
the final correctness of the design database. 

Performance 
The CPU 1/0 subsystems on both the MicroVAX 
3100 Model 90 and the VAX 4000 Model 100 pro­
vide exceptional performance. The DSSI bus on 
the KA52 CPU was tested under the VMS operat­
ing system performing single-block (512-byte) 

read operations from RF35 disk drives. The read 
rate was measured at more than 1,200 I/Os per sec­
ond. The SCSI adapter on both CPUs was measured 
at more than 500 I/Os per second for single-block 
reads. 

The Ethernet subsystem used on both the KA50 
and KA52 modules is very efficient and has been 
measured transmitting 64-byte packets at a rate 
of 14, 789 packets per second. The measured receive 
rate for 64-byte packets was 14,785 packets per 
second. 

The performance of the CPU subsystem has 
traditionally been measured using a suite of 99 
benchmarks. 12 The results are scaled against the 
performance of the VAX-11/780 processor, and 
the geometric mean is taken. This calculation yields 
the VAX unit of performance (YUP) rating. The pro­
cessor YUP rating for both the KA50 and KA52 CPUs 
is 24 VUPs-more than twice the performance 
of the MicroVAX 3100 Model 80. Table 1 presents 
a summary of the performance results for the VAX 
4000 Model 100 and the MicroVAX 3100 Model 90 
systems. 

The performance of the system in multistream 
and transaction-oriented environments was mea­
sured with TPC Benchmark A. 14 This benchmark, 
which simulates a banking system, generally indi­
cates performance in environments characterized 
by concurrent CPU and 1/0 activity and in which 
more than one program is active at any given time. 
The performance metric is transactions per second 
(TPS). The measured performance of the VAX 4000 
Model 100 is 50 TPS tpsA-local; that of the MicroVAX 
3100 Model 90 is 34 TPS tpsA-local. The difference 
in performance between the VAX 4000 Model 100 
and the MicroVAX 3100 Model 90 is a result of their 
different disk subsystems, i.e., the DSSI and SCSI 
adapter support. 

Table 1 Summary of Performance Results for the VAX 4000 Model 100 and the MicroVAX 3100 
Model 90 Systems13 

VAX4000 MicroVAX 3100 
Metric Unit Model 100 Model 90 

SPEC Release 1.0 SPECmark 30.5 30.5 
SPECint 24.3 24.3 
SPECfp 35.5 35.5 

Single User 99 VUPs 23.8 23.8 
Integer VUPs 19.6 19.6 
Single VUPs 26.0 26.0 
Double VUPs 31.3 31.3 

TPC-A tpsA-local 51 34 
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The VAXstation 4000 Model 90 

The VAXstation 4000 Model 90 is the latest member of the VAXstation product line. 
Based on the NVAX CPU, the Model 90 was designed as a module upgrade to the 
VAXstation 4000 Model 60 system. The Model 90 has 2. 7 times the CPU performance 
of the Model 60 and provides base-level, two-dimensional graphics performance of 
266,000 vectors per second. It supports up to 128MB of memory, an SCSI-1 bus inter­
face, a TURBOchannel option, a synchronous communication option, and several 
graphics options. The design team used only programmable devices to implement 
the new logic designed into the system. In addition, a breadboard provided the 
basis for logic and software verification. 

During the summer of 1991, Digital's Semicon­
ductor Engineering Group began planning a new 
VAX workstation based on the NVAX CPU chip. 1 The 
development process had three main goals: 
to increase CPU performance, to maintain an 
aggressive time-to-market schedule, and to pro­
vide upgrade compatibility with the VAXstation 
Model 60. 

The primary goal of the VAXstation 4000 Model 
90 design was to implement a workstation with 
well over twice the CPU performance of its prede­
cessor, the Model 60. The advent of high-perfor­
mance workstations based on reduced instruction 
set computers (RISC) required any new VAX work­
station to provide a significant performance 
increase over previous VAX workstations to be com­
petitive in the marketplace. The Model 90 met this 
goal by achieving 2.7 times the performance of the 
VAXstation Model 60. 

The second major goal of the project was to 
develop and ship the system as quickly as possible. 
This was mandated by competitive pressures in the 
workstation market. We proposed an aggressive 
best-case schedule which forecast a breadboard 
running within three months of the project pro­
posal, prototypes running the VMS system within 
five months, and a customer ship date within 
eleven months. The development teams achieved 
almost every project milestone within a few weeks 
of the proposed schedule. 

The final major goal of the project was to design 
the system such that it could be offered as a simple 
module upgrade to the VAXstation Model 60. There 
were two main reasons for designing the system as 
an upgrade. First, it protected the customer's invest-
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ment in the Model 60 components. Second, by 
using as many components as possible from the 
Model 60 design, we could reduce the hardware 
and software engineering effort required to pro­
duce the new system. The Model 90 system module 
provides a direct upgrade from the Model 60. The 
only system component or option on the Model 60 
that is not supported by the Model 90 is the entry­
level graphics option. 

This paper presents the design methodology we 
followed to meet our project goals. It discusses the 
four major components in the Model 90 system. It 
describes the physical design of the system board 
and the breadboard system we used for logic verifi­
cation and debugging of software. The paper ends 
with a comparison of performance data for Digital's 
workstations. 

Design Methodology 
The design methodology used during the Model 90 
project consisted of the following approaches: 

• Complex logic, software, and firmware from 
existing designs would be used whenever 
possible. 

• All new logic would be implemented using pro­
grammable technology 

• A breadboard would be built as early as possible. 

• Logic would be simulated only if it could not be 
verified with the breadboard. 

These approaches were influenced and shaped 
by our aggressive schedule, by the emergence 
of new programmable technologies, and by the 
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availability of certain VAX system designs that 
included some of the subsystems that we planned to 
use. These influences are discussed in this section. 

The strategy of using existing hardware and soft­
ware components stemmed from our goal to 
deliver the Model 90 as quickly as possible. The 
project schedule did not allow time for the develop­
ment of any major new pieces of hardware or soft­
ware. Consequently, we used as much hardware 
and software from other VAX products as possible. 

Our aggressive schedule also prompted us to 
explore different technologies and verification 
methods. On our previous projects, we used con­
ventional gate array or standard cell technology, 
and typically we strove for exhaustive logic simula­
tion and timing verification prior to releasing chip 
designs. Our goal was to have fully functional first­
pass silicon. Unfortunately, the first pass of a gate 
array was rarely fully functional. This approach had 
two consequences on the project schedule: (1) 

First-pass hardware was usually delayed as much as 
possible to allow for more thorough logic simula­
tion and timing verification, and (2) a second pass 
was needed if first-pass silicon was not fully func­
tional, adding several months to the overall project 
schedule. 

At the time of our design, several new pro­
grammable silicon technologies were emerging 
that promised performance, densities, and package 
sizes comparable to gate array technology. As the 
logical design of the system progressed through its 
early stages, we evaluated these new technologies 
and found that they had matured enough to be used 
in the design of the Model 90. We chose Xilinx field 
programmable gate arrays (FPGAs) and AMD MACH 
PALs to implement large-scale integration, and stan­
dard PALs to implement smaller logic functions. 
These programmable technologies allowed us to 
build first-pass hardware with the full expectation 
that we would need to make inevitable changes in 
response to logic bugs and timing problems. 
Fortunately, with the new technologies, bug fixes 
were made in a matter of minutes or days, instead of 
the weeks or months it would have taken using con­
ventional gate arrays. 

During the Model 90 project, we examined our 
previous notions about the roles of prototyping 
and simulation in product development. Because 
the core of the Model 90 was borrowed from the 
VAX 4000 Model 500, an opportunity arose for us to 
build a breadboard system consisting of the pro­
grammable 1/0 and graphics interface designs 
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attached to a VAX 4000 Model 500. 2 Unlike a con­
ventional prototype, the breadboard logic was 
expected to change; therefore we included recon­
figurable connections to the FPGAs. Also, the bread­
board system did not need to meet any of the 
physical constraints, such as size and layout, that 
are normally required of a conventional prototype. 
An early breadboard system provided the clear ben­
efits of rapid testing and change of hardware and 
software. 

Because we could change logic quickly and easily 
on the breadboard, the role of simulation on this 
project focused on verifying module interconnect, 
and not on exhaustive logic verification. We main­
tained a working system-simulation model, with a 
basic set of regression tests, as a reference for logic 
changes and as a tool for debugging. Logic verifica­
tion was performed on the breadboard to an extent 
not possible using simulation. 

Major System Components 
Figure 1 is a block diagram showing the primary 
components in the Model 90. In this paper we focus 
on four distinct components in the system: the 
core, the memory subsystem, the 1/0 subsystem, 
and the graphics subsystem. 

The core chip set is composed of a 74.4-mega­
hertz (MHz) NVAX CPU, the NVAX memory con­
troller (NMC), and the NVAX 1/0 adapter (NCA). The 
NVAX CPU also controls a 256-kilobyte (KB) write­
back secondary cache that reduces memory read 
latency and decreases memory write traffic. 

The memory subsystem supports a 64-bit data 
path to main memo'ry that is composed totally of 
single in-line memory modules (SIMMs). Main mem­
ory sizes of up to 128 megabytes (MB) are supported 
by the Model 90. 

The 1/0 subsystem comprises two independent 
32-bit buses that communicate with the various 1/0 

and graphics options of the Model 90. One bus 
interfaces to the optional TURBOchannel adapter, 
the firmware read-only memory (ROM) chips used 
for console and diagnostics, and the various graph­
ics options available with the Model 90.3 The other 
bus interfaces to the Ethernet and EDAL controllers. 
The EDAL is a general-purpose 16-bit 1/0 bus. The 
EDAL controller consists of a CDAL-to-EDAL chip 
(CEAC) and a small computer system interface 
(SCSI) quadword first-in first-out (FIFO) chip, 
known as SQWF. These two chips communicate 
over the EDAL bus with the system's remaining VO 
devices. 
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Figure 1 Block Diagram of the VAXstation 4000 Model 90 

Finally, the graphics subsystem provides support 
for three different graphics options. These options 
include one low-cost graphics option and two high­
performance three-dimensional accelerators. 

The majority of the components used in the 
Model 90 had been used in previous VAX systems. 
Table 1 lists the major Model 90 components and 
indicates the source of these components. 

mxstation 4000 Model 90 Core 
The NVAX CPU, the NMC, the NCA, and the backup 
cache compose the core of the system module. This 
core architecture was taken directly from the VAX 
4000 Model 500 system. This architecture was cho­
sen because it would meet our performance goals; 
it provided simple interfaces to our memory, 1/0, 
and graphics subsystems; and because the design 
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was completed and stable. The NVAX CPU is a fully 
custom complementary metal-oxide semiconduc­
tor (CMOS) CPU fabricated in Digital 's 0.75-micro­
meter CMOS-4 process. The NCA and NMC are also 
fully custom CMOS chips, but are fabricated using 
Digital's LO-micrometer CMOS-3 process. The three 
custom chips communicate with each other over a 
64-bit bidirectional bus named the NDAL. 

The NVAX CPU contains a 2KB virtual instruction 
cache, an 8KB write-through instruction/data pri­
mary cache, and, on the Model 90, interfaces to 
a 256KB write-back instruction/data secondary 
cache. It contains an on-chip floating-point 
unit and branch prediction logic. The NVAX CPU 
pipelines instruction execution at the macroin­
struction level as well as the traditional micro­
instruction level. 
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Table 1 Model 90 Component Source 

Component Source 

Core chip set VAX 4000 Model 500 

Ethernet controller VAX 4000 Model 500 

Memory SIMMs VAXstation 4000 Model 60 

SPXg and SPXgt VAXstation 4000 Model 60 
graphics options 

TURBOchannel option VAXstation 4000 Model 60 

Synchronous VAXstation 4000 Model 60 
communications option 

SCSI controller VAXstation 4000 Model 60 

Enclosure, power VAXstation 4000 Model 60 
supply, cables, brackets 

Memory transceivers VAXstation 4000 VLC 

LCSPX graphics option Modified VXT 2000 

EDAL controller 

SPXg and SPXgt 
interface 

module 

New design 

New design 

The NCA provides direct memory access (DMA) 
and programmed 1/0 (PIO) support between the 
64-bit NDAL bus and two 32-bit bidirectional CDAL 
buses named CPI and CP2. In the Model 90 system, 
these buses run at an 80-ns cycle time and interface 
to all the graphics and 1/0 devices in the system. 
The NCA also contains the VAX standard interval 
timer register as well as many of the 1/0 control and 
status registers. 

The NMC services NDAL memory requests using 
a 64-bit dynamic random-access memory (DRAM) 
bus called the NMI, which is protected with an error 
correction code. The NMC, as configured in the 
Model 90, supports up to I28MB of main memory. 
It also supports a directory-based broadcast coher­
ence protocol to maintain coherency between the 
write-back cache of the NVAX CPU and the system's 
DMA devices. 

Memory Subsystem 
The memory subsystem of the Model 90 is based on 
the design of the VAX 4000 Model 500 system. In the 
memory subsystem, the NMC handles all NDAL 
memory references by transferring them over the 
64-bit NMI. The NMC supports data transfer rates up 
to 58.SMB per second over the NMI when used with 
a 74.4-MHz NVAX CPU. Memory is configured in sets; 
each set contains two banks of interleaved 64-bit 
wide memory. External multiplexers and trans­
ceivers are required to perform interleaving. The 
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NMC provides most of the memory control signals, 
and only simple bank selection logic is required 
externally. 

The Model 90 memory subsystem implements 
two sets of memory using the same 36-bit wide 
SIMMS that are used in the Model 60 system. Four 
SIMMs are required for each set. By using either the 
4MB or I6MB SIMMs, the Model 90 allows memory 
configuration sizes of I6MB, 32MB, 64MB, 80MB, or 
I28MB. 

Due to module space constraints and cost 
concerns, we investigated alternatives to the four 
GMX memory data path chips used on the VAX 
4000 Model 500 memory modules. We determined 
that two low-cost gate arrays designed for the 
VAXstation VLC could be used instead. These 
gate arrays provided the same multiplexer and 
transceiver functions found in the GMX chips. 
Because the NMI on the Model 90 consists of only 
two loads, the high-drive capability of the GMX 
chips was not required. We used a simple PAL to 
decode the bank selection signals from the NMC 
and to generate the control signals required for the 
gate arrays. 

Because the Model 90 design uses the NMC, we 
received an additional benefit of having error cor­
rection code protection at no additional cost to the 
system. The NMC implements a single-bit error cor­
rect, double-bit error detect code (SEC/DED) across 
every 64-bit word of memory data. The eight bits of 
error correction code replaced the eight bits of par­
ity used on the Model 60. 

1/ 0 Subsystem 
Given that the Model 90 system was an upgrade to 
the Model 60, a requirement of the 1/0 subsystem 
design was to provide support for all I/0 
devices/options found on the Model 60. The Model 
60 1/0 design consisted of an interface to a I6-bit 
bus known as the EDAL where most of the system 
I/0 devices resided. The Model 60 also supported a 
TURBOchannel adapter that connected to a 32-bit 
CDALbus. 

The main task of the Model 90 I/0 subsys­
tem design was to provide an interface between 
the two 32-bit CP buses provided by the NCA and 
the 16-bit EDAL bus and the 32-bit TURBOchannel 
adapter option offered on the Model 60. The design 
work necessary included a small PAL design for the 
TURBOchannel interface on the CP2 bus and the 
design of two programmable gate arrays for the 
interface between the 32-bit CPI bus and the 16-bit 
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EOAL. The following list describes the Model 90 
1/0 devices and options and explains why each 
was chosen. 

• Ethernet-The Model 90 Ethernet interface is 
implemented with the second-generation 
Ethernet controller (SGEC), which provides an 
Ethernet connection through a ThinWire or 
thick-wire cable, selectable by a switch on the 
rear of the system box. The SGEC, which con­
nects to the CPI bus and was used on the VAX 
4000 Model 500 system, facilitates scatter/gather 
mapping and dual internal FIFO buffering. We 
chose the VAX 4000 Model 500 design to imple­
ment an Ethernet controller because it required 
no new logic design. 

• Small Computer System Interface-The SCSI bus 
interface is implemented using the NCR 53C94 
SCSI controller chip that was used on the Model 
60. 4 The NCR 53C94 device connects to the EOAL 
bus and performs OMA operations to and from 
main memory in concert with the two pro­
grammable gate arrays known as the CEAC and 
SQWF. OMA virtual-to-physical address transla­
tion is performed by the SQWF chip based on 
8, 192 mapping registers implemented in exter­
nal static RAMs. 

• Serial Lines-The OC7085 quad universal asyn­
chronous receiver/transmitter (UART) chip was 
chosen to provide the Model 90 with four serial 
lines for the keyboard, mouse, modem, and 
printer/console ports. The OC7085 provides a 
64-entry FIFO queue that is shared by all four 
receive lines and is implemented in a small exter­
nal SRAM. 

• Sound-The Model 90 sound functionality is 
implemented using the AMO 79C30 sound chip 
just as it was in the Model 60. The programmed 
1/0 interface to this device allows both record 
and playback functions through a jack on the 
front panel, and provides voice-quality sound. 

• TIJRBOchannel-The Model 90 provides a single 
slot into which any TIJRBOchannel option that is 
supported by the VMS operating system may be 
installed. On the Model 60, the TIJRBOchannel 
adapter was designed to interface to a COAL that 
was not a complete implementation of the gen­
eral-purpose COAL bus. For the new design, a 
small amount of interface logic was necessary to 
adapt the TIJRBOchannel option to the CP2 bus. 

86 

• Synchronous Communications Option - The 
Model 90 supports the same multiple protocol­
communications option that is offered by the 
Model 60. This interface was implemented on 
the EOAL bus and allows use of synchronous 
wide-area network communication through pro­
tocols such as high-level data link control (HOLC) 
and synchronous data link control (SOLC). 

• Miscellaneous EOAL Devices-The other devices 
and registers on the Model 90 16-bit EOAL are a 
16-bit system configuration register, an 8-bit 
light-emitting diode register, an Ethernet identi­
fication ROM, and a watch chip. All of these 
devices also existed on the Model 60 EOAL bus 
and were accessed in a similar manner. 

CEAC and SQWF Chip Designs 
One of the major pieces of design work required for 
the Model 90 1/0 subsystem was to interface the 
32-bit CPI bus to all the 1/0 devices that reside on 
the 16-bit EOAL bus. This interface was partitioned 
into two tightly coupled designs called the CEAC 
and SQWF. The CEAC chip is primarily responsible 
for handling control of 1/0 register read and write 
requests from the NCA to the various devices on the 
EOAL. The SQWF chip handles OMA transfers and 
buffering of data between the SCSI controller chip 
and the NCA. 

The CEAC chip, which was first implemented in a 
Xilinx 3090 FPGA and later converted to a conven­
tional gate array, is a 3,400-gate design and uses 119 
1/0 pins of a 160-pin plastic quad flat package 
(PQFP). It performs the CPI bus arbitration 
between the SQWF for SCSI OMA, the SGEC for 
Ethernet OMA traffic, and the NCA for 1/0 register 
access. The CEAC responds to NCA 1/0 accesses that 
are directed at internal CEAC/SQWF registers and 
EOAL device registers. Its slave sequencer controls 
read, write, and chip-select signals that control 
EOAL devices. The CEAC has CPI and EOAL multi­
plexing logic which selects between addresses and 
data and is controlled by the slave sequencer. The 
CEAC chip contains an interrupt controller which 
consists of interrupt request and mask registers, 
priority decoding logic, and interrupt vector gener­
ation logic. The CEAC also has a master sequencer 
that supports the SQWF during transfers of OMA 
data on the CPI bus. 

The SQWF chip, which was first implemented in 
a Xilinx 4005 FPGA and later converted to a con­
ventional gate array, is a 3,900-gate design and uses 
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110 1/0 pins of a 160-pin PQFP. The SQWF responds 
to requests from the NCR 53C94 SCSI controller 
chip to do OMA transfers. During SCSI OMA, 
the SQWF chip helps to optimize utilization of the 
CPl/NOAUNMI buses by buffering up to eight bytes 
of data in either direction. The SQWF performs byte 
swapping to map the NCR 53C94's 16-bit transfers 
to arbitrary main memory byte boundaries. The 
SQWF contains a 22-bit main memory address byte 
counter and a direction bit which are accessible as 
registers in 1/0 space. The SQWF chip also performs 
OMA virtual-to-physical address translation by refer­
encing an 8, 192-page address map store based in 
external SRAM. 

Graphics Subsystem 
One of the keys to producing a workstation around 
the VAX 4000 Model 500 core was the ability to inte­
grate graphics support into the system successfully. 
In addition, maintaining the high level of graphics 
performance found in the Model 60 was viewed 
as an important goal. The Model 60 offered three 
very good graphics options. The Model 60 low-cost 
graphics (LCG) option features an inexpensive 
frame buffer module and two-dimensional graphics 
acceleration logic contained within a large gate 
array on the system module. The other Model 60 
graphics options, SPXg and SPXgt, are three-dimen­
sional graphics accelerators. The SPXg is an 8-plane 
option, and the SPXgt is a 24-plane option. The 
three-dimensional graphics options simply replace 
the LCG frame buffer in the Model 60. We realized 
that the Model 90 system had to support a high-per­
formance, entry-level, two-dimensional graphics 
option and the three-dimensional SPXg and SPXgt 
options. The first major task in the design of the 
Model 90 was defining the entry-level graphics 
option. 

LCSPX Graphics Option 
From the start of the Model 90 project, we knew 
we could not support LCG. The LCG control logic 
on the Model 60 was embedded within a very large 
gate array that also served as a memory and 1/0 
controller. This part was not compatible with our 
core architecture. Redesigning the Model 60 LCG 
logic to fit our system would have been a major 
design task requiring a midsize gate array. This 
was well beyond our engineering schedule and 
resources. 

To find a graphics option that would provide 
the desired performance and have a low hardware 
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and software development cost, we met with a 
number of graphics hardware and software engi­
neers. We found that a new X terminal, the VXT 
2000, was being developed with graphics based on 
a cost-reduced version of the SPX graphics module 
originally used in the VAXstation 3100 system. This 
module was close to the Model 60 LCG in both cost 
and performance. In addition, it was designed to 
interface directly to a COAL bus and was software 
compatible with the VAXstation 3100 SPX. As a 
result, the module could interface directly to our 
CP2 bus with a minimal number of changes to its 
supporting software. 

To use the VXT 2000 SPX module in the Model 90, 
we needed to lay out the module again to fit the 
physical constraints of our system. This new mod­
ule was named LCSPX (low-cost SPX). No logic 
design work was required on the LCSPX or on the 
system module to support it . A connector on the 
CP2 bus provides the interface to the LCSPX module. 

Although the performance of the VXT 2000 SPX 
module was close to that of the LCG on the Model 
60, we wanted to extract as much performance out 
of the LCSPX module as possible. To improve the 
performance of the LCSPX, we increased the clock 
speed of the module. A speed analysis of the mod­
ule was performed to determine how much margin 
existed in the design. The original VXT 2000 SPX 
module ran at 20 MHz, and we determined that by 
upgrading a number of components, the LCSPX 
could run at 25 MHz. As a result of this 25 percent 
increase in speed, the performance of the LCSPX 
module exceeds the performance of the Model 60 
LCG for almost all operations. 

SPXg and SPXgt Graphics Options 
On the Model 60, the SPXg and SPXgt graphics 
options plug into the LCG frame buffer port, and a 
subset of the LCG control logic provides access to 
these options. To support SPXg and SPXgt on the 
Model 90, a port that emulated the LCG frame buffer 
port was required. The Model 60 supports both a 
PIO and a OMA interface to the SPXg and SPXgt, but 
the Model 90 supports only a PIO interface. 

We considered a OMA interface for the Model 90, 
but discarded the idea for several reasons. A OMA 
interface similar to the Model 60, which supports 
virtual OMA, requires more logic than would fit in 
the programmable technologies we were consider­
ing for the Model 90. A simpler OMA interface 
would not have been compatible with VMS graphics 
system software and would have required a large 
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number of changes to the software. Finally, it 
appeared that processing on the SPXg and SPXgt 
modules, and not data bandwidth, was the limiting 
factor in performance in the Model 60 system. 
Based on this analysis, a high-speed PIO interface 
was built. 

The SPXg/SPXgt interface on the Model 90 simply 
translates CP2 bus read and write commands into 
frame buffer port transactions. The interface is 
pipelined such that it can keep up with the peak 
transfer rate of the CP2 bus. We implemented the 
majority of SPXg/SPXgt interface logic using two 
AMO MACH PALs. One of these large PALs contains 
the control sequencer and generates all CP2, frame 
buffer port, and data path control signals. The other 
MACH PAL contains an address decoder and address 
data path. A few miscellaneous medium-scale inte­
gration components make up the remainder of the 
interface. Performance analysis of the SPXg and 
SPXgt modules shows that performance on the 
Model 90 is virtually the same as on the Model 60. 

Physical Design 
The physical design of the Model 90 system board 
presented many challenges. Being a module 
upgrade from the Model 60, the Model 90 used a 
system board that had many fixed-position obsta­
cles for placement and routing, such as connectors 
and stand-off post holes. In addition to the seven 
connectors and the single switch along the back of 
the unit, seven more connectors scattered about 
the module had to retain their positions. Also, the 
Model 90 had to fit eight SIMMS in the same area that 
the Model 60 had six SIMMS. Furthermore, pro­
grammable technologies generally provide logic 
of less density than conventional gate arrays, and 
therefore require more module space. To meet 
these challenges, we eliminated on-board main 
memory (8MB were present on the Model 60) and 
reduced the size of the secondary cache from the 
originally planned 512KB to 256KB. 

The Model 90 system board measures 16 inches 
by 10.5 inches, and has 8 layers of etch, approxi­
mately 100 surface-mount and through-hole com­
ponents, 23 connectors, 5 oscillators, and over 300 
discrete resistors and capacitors. All components 
are mounted on a single side. Figure 2 shows the 
Model 90 system module. 

Model 90 Breadboard System 
Our logic verification strategy depended on build­
ing a breadboard early in the design cycle. This 
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breadboard allowed quicker and more accurate 
hardware verification than logic simulation. In 
addition, the breadboard allowed debugging of 
console and VMS software earlier than a conven­
tional prototype. 

The breadboard system was based on a VAX 4000 
Model 500. Logically, the breadboard simply 
extended the CPI and CP2 buses of a VAX 4000 
Model 500 system to include the complete I/0 and 
graphics subsystems of the Model 90. The Model 90 
breadboard was an eight-layer etch module and 
included all the devices on the Model 90 CPI, CP2, 
and EDAL buses. The breadboard system used a VAX 
4000 Model 500 test backplane that allowed com­
plete physical access to both sides of the VAX 4000 
Model 500 CPU module. A socket with pins that 
extended 1 inch through the back of the module 
was used on the NCA chip of the VAX 4000 Model 
500 CPU module. The breadboard, which contained 
the holes for the NCA, was then attached to the VAX 
4000 Model 500 CPU module by soldering it to the 
extended socket pins. CP bus clocks were not 
directly routed to the breadboard logic. To control 
clock skew, a phase lock loop (PLL) was used on the 
breadboard to regenerate the CP bus clocks. With 
this configuration, the breadboard system was able 
to run at full speed. 

Once the breadboard system was assembled, 
we were able to execute console commands after 
a quick debugging of the system. At this time, very 
little of the breadboard logic was being used 
because the console program was using the VAX 
4000 Model 500 I/0 devices and not the Model 
90 devices. The hardware team began debug­
ging the breadboard logic piece by piece. 
Debugging was quick because a completely func­
tional console and I/0 system already existed. 
Simple functions, such as register reads and writes, 
were debugged using the console examine and 
deposit commands. More complex functions, such 
as reading and writing to an SCSI disk, were tested 
by writing test programs in VAX MACRO, download­
ing them into memory, and executing them using 
the console. 

After some of the major pieces of functionality 
were verified by the hardware group, members 
of the VMS group began to use the breadboard. 
A modified version of the VMS operating system 
was used to debug VMS device drivers. Drivers 
for the serial lines, LCSPX, SPXg, SPXgt, and the SCSI 
port were debugged. In addition to software debug­
ging, this effort provided the software to perform 
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Figure 2 VAXstation 4000 Model 90 System Module 

extended verification. The hardware group was 
able to use graphics test packages running under 
DECwindows software, disk exercisers, system 
exercisers, and other tools supported by the VMS 
operating system. This provided a verification envi­
ronment we could never achieve with traditional 
simulation methods. 

At this point, we were still using the VAX 4000 
Model 500 console. The breadboard was then used 
to debug the Model 90 console code. We disabled 
the system support chip, which controls much of 
the console support hardware in the VAX 4000 
Model 500, and began using the Model 90 console 
support hardware. A base console that included 
minimal power-up self-test, basic command sup­
port, and SCSI boot support was debugged by the 
Model 90 console team. Once the console was func­
tional, the VMS group returned and debugged boot 
support for the Model 90 using the breadboard. 
When this was finished, the software was com­
pletely debugged and ready to be loaded onto the 
first Model 90 prototype. 
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As soon as we assembled the first Model 90 pro­
totype system, we realized the benefits of all 
the work performed using the breadboard system. 
During the first day of debugging, we ran the 
console program and booted the VMS system 
with minimal effort. We also ran DECwindows 
software using the LCSPX and the SPXg and 
SPXgt graphics options. This quick debugging 
allowed additional prototype systems to be built 
immediately and shipped to various develop­
ment and verification groups throughout the 
company. 

Performance 
The VAXstation 4000 Model 90 represents the 
fastest VAX workstation ever produced. Its CPU per­
formance surpasses previous VAX workstations and 
is comparable to Digital's RISC-based workstations. 
By utilizing the NVAX CPU chip, the Model 90 
achieves 2.7 times the performance of the Model 60 
when measured against the SPECmark bench­
marks. 5 Table 2 gives the CPU performance of the 
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Table 2 CPU Performance Comparison 

Workstat ion 

VAXstation 4000 Model 90 

VAXstation 4000 Model 60 

VAXstation 3100 Model 76 

DECstation 5000 Model 240 

Note: 

SPECmark* Rating 

32.7 

12.0 

6.8 

32.4 

'SPECmark is a quantitative measurement of performance, 
determined by running a suite of ten benchmark programs. 

VAXstation Model 90 compared to other Digital 
workstations. 

LCSPX is the entry-level, two-dimensional graph­
ics option offered on the Model 90. The perfor­
mance of this option is better than the LCG option 
offered on the Model 60 for most graphics opera­
tions. Table 3 compares the LCSPX graphics perfor­
mance to Digital workstations using standard 
two-dimensional metrics. 

SPXg and SPXgt are high-performance, three­
dimensional graphics accelerators offered on both 

the Model 60 and the Model 90. Table 4 compares 
the three-dimensional graphics performance of sev­
eral of Digital's workstations using standard three­
dimensional metrics. In addition, Table 5 gives 
three-dimensional performance using the picture­
level benchmark (PLB) suite. 

Summary 
The NVAX CPU chip provides the high performance 
that makes the VAXstation 4000 Model 90 competi­
tive in today's market. The design methodology 
used during the project allowed us to develop and 
ship the Model 90 quickly and to provide a simple 
upgrade path for existing VAXstation customers. 
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Table 3 Two-dimensional Graphics Performance Comparison 

Two-dimensional Two-dimensional 
Area Fill Vectors 

Workstat ion (Mpixels per second) {Kvectors per second) 

VAXstation 4000 Model 90 LCSPX 18.2 266.0 

VAXstation 4000 Model 60 LCG 14.6 216.0 

VAXstation 3100 Model 76 SPX 14.2 183.0 

DECstation 5000 Model 240 PXG 13.9 263.0 

Table 4 Three-dimensional Graphics Performance Comparison 

Three-dimensional Three-dimensional 
Polygons Vectors 

Workstat ion (Kpolygons per second) {Kvectors per second) 

VAXstation 4000 Model 90 SPXgt 33 295 

VAXstation 4000 Model 60 SPXgt 33 300 

VAXstation 4000 Model 90 SPXg 30 295 

VAXstation 4000 Model 60 SPXg 30 295 

VAXstation 3100 Model 76 SPX 6 57 

DECstation 5000 Model 240 PXG 52 302 
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Table 5 PLB Graphics Performance Comparison 

Workstation 

VAXstation 4000 Model 90 SPXgt 

VAXstation 4000 Model 60 SPXgt 

DECstation 5000 Model 240 PXG 

Note: 

Printed 
Circuit 
Board 

13.2 

12.3 

10.0 

The VAXstation 4000 Model 90 

GPCmark PLBlit Results* 

System Cylinder 
Chassis Head Head Shuttle 

11.8 8.5 8.3 13.5 

11 .1 8.4 8.5 12.5 

11 .7 14.9 19.2 18.3 

*GPCmark is a quantitative measurement of performance, determined by dividing a normalizing constant by the elapsed time, in seconds, 
required to perform the test. 
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Brian Porter I 

VAX 6000 Error Handling: 
A Pragmatic Approach 

The VMS opera ting system's CPU-dependent support of the VAX 6000 family of com­
puters implements a complex and sophisticated set of errm~handling routines. At 
the start of a VMS session, these routines help construct the necessary framework to 
support the 1/0 subsystem as the system begins to emerge. For much of a VMS ses­
sion, these routines then lay dormant within the SYSLOA image. Periodically, when 
aroused, they peer into hardware registers looking for signs of trouble. Often, all is 
well, and the routines return to hibernation. On those occasions when the hard­
ware requires assistance, error handling takes complete control of the system. It 
has but one mission: identify the error, recover if possible, but at all costs ensure 
that the integrity of the system remains intact and that data is preserved. 

Error handling is the set of routines that resides 
in the CPU-dependent loadable image known as 
SYSLOA. Each processor model that supports the 
VAX system architecture and VMS operating system 
has its own SYSLOA image. Error hand ling is imple­
mented with other common routines like console 
support and secondary p rocessor start-up. Error 
handling is unique for each processor model. 
Individual processor models bring with them a 
wealth of error detectors and consistency checkers. 
Each device has to be independently interrogated 
and reset once triggered. 

Error handling of one form or another resides 
throughout the VMS operating system. In some con­
texts, trying to edit a file in a directory structure 
that does not exist can be considered an error. This 
paper discusses only errors that deal with the 
underlying CPU and memory hardware on which 
the VMS system is running. It describes the develop-

ment of error handling to support the CPU modules 
and memory controllers that make up the system 
kernel in the VAX 6000 series. This paper explains 
our error-handling strategy to not only reduce the 
amount of unique coding, but also provide an 
opportunity to enhance, mature, and imp rove exist­
ing VAX 6000 products. 

Development of Error-handling 
Routines for the VAX 6000 Platform 
The VAX 6000 platform provided a unique o pportu­
nity to develop error-handling rou tines. As shown 
in Figure 1, the XMI backbone of the system allows 
the creation of increasingly powerful systems that 
retain much of their operating characteristics. 
Increases in processor capability are gained by 
merely exchanging processor modules for more 
powerful models. We decided that error handling 
should not be any different. On prior systems, 

XMI BUS 

:---1~;;--: I :---,~0-~--: 
I I I I ·--------J , ________ J 

CPU 1 CPU 3 MEMORY 1 MEMORY N 

I - - - - ·- - - - • 
I I 

CPU 2 CPU N MEMORY 2 I 1/02 I 
I I ·---- ----J 

Figure 1 System Block Diagram 
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a complete set of error-handling routines for each 
CPU model had to be implemented. We adopted an 
approach to error handling that could be carried 
forward from one processor to the next with little 
or no change to the initial error-handling model. 
This approach handles identical errors in the same 
way with the same code base. 

The protocol of the XMI bus was modified to 
allow support of write-back caching schemes of the 
VAX 6000 Model 500 and VAX 6000 Model 600. 
However, this had no ill effect on the overall error­
handling model we decided to use in the support of 
the VAX 6000 family of processors. 

VAX 6000 Family Error Delivery 
Identical mechanisms were used to structure error 
delivery on each processor in the VAX 6000 family. 
Each processor has two system control block (SCB) 
interrupt vectors and a single SCB exception vector. 
The interrupt vectors deliver hard and soft errors. 
The exception vector delivers machine check 
exceptions. 

Hard Error Interrupts Hard errors can be catego­
rized in the following way. Hard errors occur as 
conditions that are not synchronous to the program 
counter (PC). In almost all instances, systems can­
not recover from hard errors. They indicate that 
data or machine state has been lost. Hard errors are 
normally fatal. Hard errors are delivered through 
SCB vector 60 (hexadecimal); interrupt priority 
level (IPL) is raised to 29 decimal. 

Soft Error Interrupts Soft errors, on the other 
hand, generally signal an asynchronous condition, 
with respect to the PC, that has been corrected by 
hardware, or that can be overcome with some soft­
ware intervention. Soft errors are normally always 
benign to system operation. Soft errors are deliv­
ered through SCB vector 54 (hexadecimal); IPL is 
raised to 26 decimal. 

Machine Check Exceptions Machine check excep­
tions are internal processor conditions that are syn­
chronous to the PC. If the condition can be 
corrected when the instruction that caused the 
exception is reexecuted, the result is the same as if 
the condition had not occurred. Many of the 
machine check exceptions that are reported by the 
VAX 6000 family of processors allow recovery so 
that normal operation can continue. Machine 
check exceptions are delivered through SCB vector 
4; IPL is raised to 31 decimal. 
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Objectives 
Error handling must identify the error and recover 
if possible. Above all, it must guarantee the 
integrity of the system and the preservation of data. 

An important project goal was to produce a 
robust and quality product that would have pre­
dictable performance. We chose to have a single 
error-handling model that could be implemented 
for all VAX 6000 CPU models. We also adopted an 
implementation methodology that included the 
capability to allow rigorous testing of the many 
code paths contained in the various configurations. 
To accomplish this goal, we designed the test and 
verification strategy in conjunction with the over­
all system design of the kernel error-handling sub­
system. In addition, we designed and implemented 
an object-oriented code base for errors that are 
common across the platform. Errors are handled in 
this way when they are associated with main mem­
ory, with XMI bus protocols, or with the support of 
vector processors. 

Most frequently occurring errors are associated 
with main memory. The error handling for main 
memory is composed of three major functions. The 
first handles the complexity of support for two dif­
ferent memory controller types and their internal 
error conditions. The other two functions are logi­
cally split between single-bit error correction code 
(ECC) failures and double-bit ECC failures. 

Common error-handling interfaces and routines 
were established for the VAX 6000 family of proces­
sors. The use of common files and interfaces 
ensures that errors are handled in exactly the same 
way for each CPU model. 

Full Support of the Symmetric 
Multiprocessing Paradigm 
The VAX 6000 family of CPUs are symmetric multi­
processing (SMP) systems. The error-handling 
model assumes that more than one CPU is always 
active. The synchronization of error handling 
throughout the system has numerous benefits. If an 
error condition were detected throughout the 
system, it would be a very complicated procedure 
to ensure that all CPUs reacted consistently. Such 
errors would clutter the error log with reports 
from every CPU and XMI device. 

Error Logging Synchronization 
In the VAX 6000 scheme, error logging is syn­
chronized across the system. If an error affects 
all nodes, this information is included with the 
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first CPU to respond to the error. Machine state 
is created that informs other CPU nodes that the 
event has been logged on their behalf. As each CPU 
node responds to the error condition, it can inter­
rogate this state. In the event that all error con­
ditions have been logged on behalf of a CPU, the 
error condition is cleared and the interrupt or 
exception is dismissed. The one entry in the error 
log for these types of errors clearly indicates that 
other nodes were active. Information about the 
nodes affected and state indicating how the node 
was affected is recorded in the single error log 
entry. 

CPU Configuration Data in the Error Log 
A CPU running with some of its hardware disabled 
may have operating characteristics that cause other 
CPUs to incur error conditions of some type. An 
error log entry from a VAX 6000 CPU always 
includes the configuration of other active CPUs 
on the system. For example, if the CPU at node 6 
is running with its backup cache disabled, other 
CPUs include this information with their error log 
data. Thus, potential error conditions can be easily 
identified. 

Error Log Filtering 
Some errors that occur at too high a rate are filtered 
from the error log. Errors that are delivered by the 
soft error vector are invariably benign to system 
operation. It is important that they be reported 
because they can indicate an impending fatal error 
in some subsystem. However, if these errors are 
occurring too often, only a subset is sent to the 
error log. The algorithm is based on an error count 
over time. If an error is occurring too rapidly, 
logging of the errors is inhibited. At a later time, log­
ging is reenabled. Errors that do not appear in the 
error log are still counted, and the accumulated 
totals are displayed by other error conditions that 
are sent to the error log. 

Message Facility 
Error handling on the VAX 6000 has the unique abil­
ity to output formatted messages. Integral to the 
error-handling subsystem is a message processing 
facility that is composed of specialized routines 
and modified versions of several VMS system ser­
vices. The modified system services include SYSFAO 
and SYSCVRTIM. The message facility provides the 
error-handling subsystem with the capability to 
output formatted messages that contain both text 
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and data. These messages are time-stamped and 
sent to the system console device OPAO:. 

Messages can be output in two different modes. 
Interrupt driven mode is the most common and 
uses the standard terminal driver functions of the 
running VMS session. Messages that use this mode 
describe the disabling of some part of the CPU ker­
nel at system start-up or during the current session. 
The other mode of output is synchronous and is in 
line with error processing. This mode is reserved 
for hardware errors that are nonrecoverable and 
result in a system crash. The message is output just 
prior to calling the BUGCHECK mechanism that 
would terminate the current VMS session abnor­
mally. Messages are always descriptive of the error 
or exception condition and contain all the machine 
state available at the time of the error. 

Formatted messages allow for errors that occur 
as the system is being initialized to be reported and 
described should the system fail to boot. The out­
put of messages is fully synchronized between the 
primary and secondary CPUs of SMP systems. The 
primary CPU outputs messages about errors occur­
ring on secondary processors. 

Error Rate Checking and Loop 
Detection 
The VAX 6000 family of CPUs provides a great deal of 
error detection. The error conditions signaled in 
many cases are benign to the system if the appropri­
ate action is taken. However, blind recovery from 
errors can be a downfall in itself. It is not uncom­
mon for so many benign failures to occur that error 
handling is the only task being performed by the 
system. Error handling on the VAX 6000 family 
implements a system of rate checking and loop 
detection to combat this problem. 

Rate and Loop Detection Time Base 
The timing standard used by the rate checking and 
loop detection subsystems is the CPlJ TODR register. 
The TODR hardware register is independent of soft­
ware and increments every 10 milliseconds. 

Rate Checking of Errors 
Each error condition has an associated rate check 
database. The database tracks TODR values for the 
three most recent errors. If these errors occur too 
fast, special action is taken in addition to that 
required to service the error. This may involve dis­
abling the signaling of the error condition itself. For 
example, some errors that are reported outside the 
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CPU can be turned off. When sufficient data about 
an error has been collected, the error may be dis­
abled for a period of time. Hardware features such 
as internal cache errors can also be disabled. If 
cache errors occur that are recoverable, but are 
occurring too fast, the cache is disabled. The occur­
rence of multiple errors can indicate a broken 
structure, whereas a single error can indicate a sin­
gle transient event. 

Loop Detection 
Multiple errors of different types can also occur fre­
quently. In this situation, the system is operational, 
but it is continuously at high IPL, servicing error 
interrupts or exceptions. This operating scenario is 
detected by the frequency of transitions in and out 
of error handling. When error-handling code 
threads are entered and exited, the TOOR value is 
saved. During execution of error handling, the 
enter TOOR value is compared to the last exit TOOR 
value. If the result is too close, a count is incre­
mented. If the close relationship of exit to entry 
continues to occur, a loop condition is declared and 
appropriate action is taken. Most often this means 
the system is shut down. 

Error-handling Model 
The traditional approach to error handling in the 
VMS operating system has been to interrogate regis­
ters and act on the data directly in real time. 
Another approach has been to save only a subset of 
processor state that has a linkage to the error deliv­
ery vector and then act on this data during a later 
parse operation. 

When designing the error-handling model for the 
VAX 6000 series, we decided to save all CPU state 
that is visible to macro programmers in buffers spe­
cific to each CPU. All interrogations are then made 
on the data in this buffer. Information on the hard­
ware state is saved as well as the current system 
time. Any action taken by error handling is also 
recorded in the buffer. This approach has several 
advantages. First, a distinct footprint of the last 
error is contained in the system image in memory. 
Should the system fail, the data is saved when a 
crash dump is taken. Second, the many execution 
thread possibilities are made easier to test and ver­
ify. Finally, conditions are easier to diagnose if the 
original data that error handling processed and the 
actions that were taken are recorded in an error log. 

The error-handling process for the VAX 6000 
series consists of six distinct steps: 
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• Setup and synchronization 

• Saving of state 

• Parsing of data 

• Processing and accounting of state 

• Error logging 

• Error reset and dismissal 

This logical organization provides flexibility 
to the implementation being addressed at the time. 
The parsing of data step was added at the same 
time that support of the VAX 6000 Model 400 was 
implemented. 

Setup and Synchronization 
Synchronization is accomplished by acquiring the 
MCHECK spinlock. The use of spinlocks is a VMS 
technique that provides atomic access to code 
threads and data structures and ensures that only 
one CPU at a time is in error handling. Thus it is pos­
sible to compress an error condition occurring 
throughout the system into a single error log entry 
by the first CPU to service the error. 

Following synchronization, the SMP sanity and 
spinlock acquisition timers are disabled. If an error 
occurs at the boundary of one of these timers, a 
false termination of the session can occur due to 
the time consumed by the execution of error han­
dling. The SMP sanity and spinwait timers are mech­
anisms used in VMS to ensure that CPUs active in a 
multiprocessor system are interactive with each 
other and the synchronization primitives that con­
trol access to various resources. The sanity timer is 
used as a watchdog timer to ensure that CPUs 
respond to hardware clock interrupts on a regular 
basis. Each CPU active on the system monitors 
another CPU for its response to hardware clock 
interrupts. The spinwait timer guarantees that one 
CPU does not retain ownership of a spinlock 
resource for more than an allotted time period. 
Error handling is always executed at an IPL above 
which hardware clock interrupts can be serviced. 
As a result, it defeats the sanity timer mechanism. 
Some of the actions taken by error handling can 
cause a spinwait timer to expire if the error being 
serviced occurs too close to the timer boundary. By 
disabling these SMP timers, a time period is started 
over when the error being serviced is dismissed 
and timers are reenabled. 

The buffer associated with the CPU experiencing 
the error is initialized to zero and is ready to receive 
the latest error state. If the error is a machine check, 
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stack space is allocated and initialized to allow for 
error dismissal and error-handling exit. 

When machine checks or soft error interrupts 
are serviced, the cache subsystem is uncondition­
ally disabled. Error handling does this to preserve 
any error state that may be in the cache. If the error 
happens to be cache-related, the state can be 
extracted at the appropriate time. Cache-related 
errors are not reported by hard error interrupts on 
some VAX 6000 models. When hard error interrupts 
are serviced on these processor models, the cache 
is not disabled by software. 

The machine check flow has an additional check 
to determine if the error is associated with a recov­
ery block. Recovery blocks on the VMS system 
provide kernel-mode macro programmers with 
the ability to protect an execution thread from 
the effects of fatal machine check exceptions. 
Normally when a machine check occurs in kernel 
mode, the code thread being executed loses con­
trol. Unless the instruction can be restarted, the 
VMS session is terminated. The placement of kernel­
mode execution threads within the context of 
a recovery block ensures that a machine check 
will cause control to be passed to the end of the 
recovery block, along with status to indicate that 
the machine check has happened. The macro pro­
grammer can select what type of machine check 
to be protected from. In general, this is limited to 
those machine checks caused by references to the 
physical address space that do not respond or 
return data. 

If it is determined that the current delivered 
machine check is protected by a recovery block 
and that error handling established this condition, 
the error is dismissed immediately without further 
action. More details are given in the following 
section. 

Saving of State 
All available CPU error state is saved regardless of 
error type or delivery mechanism. Machine checks 
also save the internal state passed by microcode on 
the stack. Each register is read into its local storage 
buffer within the context of a recovery block. A 
valid bit is associated with each local copy register 
cell according to its status as it exits the recovery 
block context. This is important because each cell 
has been initialized before use. A register value of 
zero may be significant, and a failed register read 
would allow the initialized value to be interpreted 
as not having any error or state bits set. Failed 

96 

register read indications can help in the diagnosis of 
the original error condition. 

The recovery blocks used when error state is col­
lected have special flags to indicate that they were 
established by error handling. If an error does 
occur, control is returned to the appropriate point 
in the error-handling execution thread. The origi­
nal saved state of the first error is not overwritten. 

Parsing of Data 
The parsing of data step was added to support the 
VAX 6000 Model 400 and later models. The data col­
lected in the saving of state routines is parsed as 
a separate step. When error data is parsed and pro­
cessed in a single step, as in the VAX 6000 Model 200 
and VAX 6000 Model 300, it is difficult to make the 
necessary errors invisible to the error log. When 
the error data is parsed and an error mask is pro­
duced that represents the error conditions present, 
it is much easier to detect if all current conditions 
have been serviced. Since it is also easier to detect 
conditions with only one error present, expected 
error conditions can be processed. The VAX 6000 
Model 400 and later models have many benign error 
syndromes that have their logging filtered. 

Processing and Accounting 
During the processing and accounting step of error 
handling, the data in the CPU private local buffer is 
parsed and acted upon. These routines detect if a 
specific error condition is global and sensed 
throughout the system or local to the particular 
CPU. Global errors include the state from other 
CPUs and devices in the error log if required. If 
the global error is the only one present and it is 
expected, machine state is set to indicate that error 
logging should not occur. Should this CPU be the 
first to process the global error, it samples data in 
registers of the other CPUs and devices and leaves 
state to indicate the error condition has been ser­
viced and is expected. Consequently, the context of 
global errors is included into a single entry in the 
error log. XMI parity errors are serviced in this way. 
Local errors record only the state from the CPU 
experiencing the error in the error log. 

Error handling supports the notion of expected 
errors, or errors that sometimes occur as a result of 
operations performed by error handling. These 
errors are not reported to the error log. For exam­
ple, duplicate tag parity errors can sometimes 
occur when the backup cache on the VAX 6000 
Model 200 and VAX 6000 Model 300 is invalidated . 
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To cause these errors to be invisible to the error log, 
a mask of error bits to ignore is set up when backup 
cache invalidate operations are executed. At the 
same time, a fork process thread that ultimately 
clears the appropriate mask bit is queued. If an 
error that would be invisible to the error log 
occurs, the "ignore-this-error" bit is sampled in the 
recovery thread for the error condition. If the bit is 
set, the error is ignored. If the error does not occur, 
eventually IPL is lowered until the queued fork pro­
cess runs and clears the bit in the mask. This guar­
antees that later real errors that have previously 
been expected and have not occurred are not 
excluded from the error log. 

Error Logging 
The data collected by the error-handling routines is 
sent to the VMS system's error log after it is tallied 
for size. The amount of record space is allocated by 
internal VMS routines. The raw data that describes 
the context of the current error is copied to the VMS 
error log buffer along with the current values of 
accounting data for the CPU. The accounting data is 
a count of the individual error conditions that have 
occurred on this CPU for the current session. Any 
CPU that has some part of its functionality disabled 
includes that data in the error log as well. For exam­
ple, a CPU that is executing with a disabled cache 
may cause errors to occur on other CPUs. It is useful 
to know that a CPU is running in a degraded mode 
when investigating problems that are occurring on 
a system. The error log records of all CPUs clearly 
indicate any CPUs operating at reduced capacity. If 
all CPUs are running unimpeded, the error log con­
tains a flag to indicate this status. 

The amount of data included in the error log for 
any given error can be different. The data describ­
ing the CPU context is the same except in the case 
of machine checks. These errors also include inter­
nal state passed by the microcode through the 
stack. Depending on the error condition, context 
from the XMI bus, the memory subsystem, or an 
external XMI adapter can be included. The error 
data is organized into various subpackets that are 
signaled to be present by a flags field contained 
in a header section of the CPU context packet. 
For example, an error can occur that describes a 
failure of a transaction between the CPU and mem­
ory. If the data collected from the memory subsys­
tem during the processing and accounting step 
indicates an error is present, this is included in 
the error log record. If there is no indication of a 

Digital Technical Journal Vol. 4 No. 3 Summer 1992 

VAX 6000 Error Handling: A Pragmatic Approach 

memory subsystem error, a flag to indicate that 
no memory errors are present is set. This reduces 
the burden on the error log buffers of the VMS 
system and reduces the clutter and confusion of 
error registers from a device that does not have an 
error condition present. 

Any error that ultimately causes the system to 
crash is also logged to the system console terminal 
through the SYSLOA message facility. Errors can 
occur during start-up before VMS error logging is 
available. Errors can also occur and terminate the 
session before the system completes initialization. 
For these reasons, fatal errors are always output to 
the console terminal before the session is termi­
nated. Errors that occur at start-up of secondary 
processors are monitored by the primary proces­
sor. Any output required is done by the primary 
processor. 

Error Reset and Dismissal 
The last step of error handling resets error condi­
tions that have been serviced and dismisses the 
interrupt or exception. The image of the data saved 
is used as a mask to reset error conditions. This 
technique guarantees that double error conditions 
are not lost. 

Registers that require initialization are reset 
using the contents that were read when the error 
was first serviced. Most error conditions are write­
one-clear. That is, to reset the error condition, a 
mask of the error conditions set has to be written to 
the appropriate register to clear the error. The use 
of the original contents of the register as a mask 
guarantees that an error condition occurring dur­
ing the processing of an error cannot be lost. Reset 
of the VAX 6000 Model 200 and VAX 6000 Model 300 
error registers includes a later probe of the register 
for the absence of error indications. Should an error 
still be present, the error-handling process is 
restarted and it treats the condition as a new error. 
After errors are reset, the cache subsystem is invali­
dated and a check is made to determine if it should 
be reenabled. Processing of the error could deter­
mine that the cache or indeed the CPU should be 
taken off-line because of an error rate or finite 
count that is too high. If all is well, the cache sub­
system is reenabled. The MCHECK spinlock is now 
released and the interrupt or exception is dismissed 
by executing a return from exception or interrupt 
(REI) instruction. 

If the error being dismissed is a machine check, 
the additional storage allocated by error handling 
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and error state left by the microcode has to be 
removed. As shown in Figure 2, the additional stor­
age is an array of quadwords. These quadwords rep­
resent program counter/processor status longword 
(PC/PSL) pairs that direct control to routines that 
must be executed prior to control being returned 
to the exception PC. The additional postprocessing 
that takes place for noncorrectable memory errors 
and errors that cause a process to be aborted are 
dispatched using this mechanism. 

Machine check processing takes place at IPL 31. 
Fatal memory error recovery uses the VMS system's 
page fault code threads. These threads use spin­
locks that cannot be acquired from IPL 31. When dis­
missing machine checks, the PC/PSL pairs are 
interrogated to determine if they are nonzero. If the 
probed quadword is zero, the stack pointer is 
updated to unwind by the quadword allocated. This 
continues until all three array elements have been 
probed. If the array element is nonzero, the REI 
passes control to the PC and PSL described by that 
array element. Synchronization is thus preserved, 
and spinlock acquisition rules are obeyed. Even­
tually the array is traversed, and each element is 
removed. State left by the microcode is removed, 
control is passed back to the original exception PC, 
and instruction retry is attempted. If error handling 
determines that the execution thread should be 
aborted, the original exception PC is replaced by 
a PC/PSL pair that returns control to VMS exception 
routines. From these routines, control is normally 
passed to an appropriate mode condition handler. 

STACK GROWTH l 
FROM HIGHER TO 31 
LOWER ADDRESSES 

If a condition handler has not been established, the 
VMS process is aborted. Kernel-mode threads that 
experience fatal machine checks always result in 
the termination of the VMS session. 

Support of the VAX 6000 Model 200 and 
VAX 6000 Model 300 
The error-handling support for the VAX 6000 Model 
200 and VAX 6000 Model 300 is identical. These two 
processor models are the same logical CPU. The VAX 
6000 Model 300 is a selected faster component set 
of the VAX 6000 Model 200. 

The VAX 6000 Model 200 system presented a 
unique problem for error handling because the pri­
mary cache is internal to the CPU chip. Errors from 
the primary cache do not cause an interrupt or 
exception. These errors can never cause a failure or 
wrong result should they occur. Because all cache 
structures on the VAX 6000 Model 200 are write­
through, data can be both in cache and in memory, 
and it is always consistent. If a parity error occurs 
on either the data or tag section of the primary 
cache, microcode can always fetch another copy of 
the data from memory. If a primary cache tag or 
data error occurs, microcode sets a status bit to 
indicate the error in an internal processor register. 
The internal processor register is private to the 
local CPU. Previous CPUs with this type of error sig­
naling used a polling technique to detect these fail­
ures. On SMP systems, only the primary CPU is 
interrupted on a regular basis to allow polling rou­
tines to run. 

0 

QUADWORD3 UNCORRECTABLE MEMORY 

VMS ALLOCATES THREE 
ADDITIONAL QUADWORDS. 
EACH QUADWORD IS USED 
AS A PC/PSL PAIR FOR .EXIT 
PROCESSING ROUTINES. 

QUADWORD2 

QUADWORD 1 

THE STATE IS PASSED 
BY MICROCODE ON THE 
STACK AT MACHINE 
CHECK EXCEPTION. 

-

-

-

-

ERROR EXIT PROCESSING 

ABORT EXIT PROCESSING 

NORMAL EXIT PROCESSING 

MICROCODE STATE 1 

MICROCODE STATE 2 

MICROCODE STATEN 

EXCEPTION PC 

EXCEPTION PSL 

-

-

-

-

- THE STACK IS HERE WHEN 
VMS GAINS CONTROL 
AFTER MACHINE CHECK 
EXCEPTION. 

Figure 2 Machine Check Exception Exit Processing Stack Format 

98 Vol. 4 No. 3 Summer 1992 Digital Technical Journal 



Since we had no precedent for reference, we 
designed a system whereby the primary CPU uses 
the interprocessor interrupt mechanism to inter­
rupt secondary processors. When the secondary 
CPU receives the CPU-specific interprocessor inter­
rupt, it reads the appropriate internal processor 
register, places the data in a known location, and 
sets an indicator flag. On later poll cycles, the 
primary CPU sees the indication from the sec­
ondary CPU and interrogates the known location 
for any error bits. If no errors are detected, each 
secondary CPU is polled once every ten seconds. 
Should an error be found, the secondary CPU with 
the error has its polling frequency increased to 
once every second. If ten successive polls indicate 
error conditions, the secondary CPU is signaled to 
disable its primary cache. If this occurs, entries are 
made in the error log and to the system console by 
the primary CPU on behalf of the secondary CPU. 

During systems integration of the VAX 6000 
Model 200, certain random-access memory (RAM) 
devices used for the backup cache exhibited exces­
sive parity error failures. The problem was so 
severe that special error-handling software and 
additional CPU hardware functionality were devel­
oped to isolate and diagnose the failures. This work 
was so successful that the hardware functionality 
was made a permanent feature of the processor, 
and the error-handling routines were made a per­
manent part of the SYSLOA image. The hardware 
functionality and software routines allowed for the 
failing data bit in the backup cache to be identified 
at the time of the failure. The VAX 6000 Model 200 
experience had a lasting effect on error handling 
across the VAX 6000 family. The ability to diagnose 
cache parity errors to the bit level in the operating 
system remains a characteristic of error handling 
on all VAX 6000 systems. 

Support of the VAX 6000 Model 400 and 
VAX 6000 Model 500 
Although the CPU chips on the VAX 6000 Model 400 
and VAX 6000 Model 500 are the same, the SYSLOA 
images are not. The major difference between the 
two systems is the write-back cache subsystem 
implemented by the VAX 6000 Model 500. To facili­
tate write-back cache strategies, the XMI bus was 
enhanced to support a directory-based broadcast 
coherence protocol. 1 

The VAX 6000 Model 400 and VAX 6000 Model 500 
systems represented a dramatic increase in system 
complexity for error handling. The amount of error 
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detection incorporated within each increased and 
became more complex. The overall model imple­
mented on the VAX 6000 Model 200 was main­
tained, but a step was added between the steps of 
saving of state and processing and accounting. The 
new step, parsing of data, was previously a part of 
processing and accounting. Error handling support 
of the on-board CPU electrically erasable pro­
grammable read-only memory (EEPROM) was also 
added. The EEPROM was until now used only by CPU 
console support. 

The overall model now became 

• Setup and synchronization 

• Saving of state 

• Parsing of data 

• Processing and accounting 

• Error logging 

• Error reset and dismissal 

Storage space for machine check and hard error 
is shared in the VAX 6000 Model 200 system. 
However, this support became too complicated to 
manage. In the VAX 6000 Model 400 and later mod­
els, both sets of error state are available in crash 
dumps. 

EEPROM Support 
The experience gained from systems integration of 
the VAX 6000 Model 200 showed that real-time diag­
nosis by the operating system has many benefits. 
However, the scheme used by the VAX 6000 Model 
200 was cumbersome and recorded only the result­
ing diagnostic data to the error log. The challenge 
was twofold: to make the mechanics of cache parity 
error diagnosis easier, and to make the data more 
widely available. We achieved both goals by using 
the EEPROM on the CPU module. The VAX 6000 
Model 500 made additional improvements by using 
both on-board and high-speed RAM and EEPROM. 

EEPROM and RAM structures exist within the 
physical address space of the VAX 6000 family. 
These structures are primarily used by the console 
for cross-session storage of data. High-speed RAM is 
used for general heap storage by the console. RAM 
and EEPROM structures have physical addresses that 
are in the 1/0 region of the address space. Address 
references to 1/0 address space do not cause cache 
lookups. The code threads that perform data 
extraction were placed in the EEPROM and RAM 
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structures to avoid special hardware operating 
modes. A few simple routines enabled easier diag­
nosis of cache parity error failures and a method of 
disabling the cache that does not disrupt error 
state. The error-handling SCB vectors were pointed 
to the EEPROM so the routines that disable the cache 
could do so without making cache references. (On 
the VAX 6000 Model 500, the cache disabling rou­
tines are placed in the high-speed RAM.) 

When an error occurs, control is first passed 
to individual routines that reside in 1/0 space. These 
routines disable the cache subsystem and then 
return control to the SYSLOA image in main memory. 

The VAX 6000 Model 500 has an error transition 
mode (ETM), which allows the backup cache to be 
partially disabled. New blocks are not allocated 
when in ETM mode. Data requests are filled from 
the cache. Error interrupts or exceptions on the 
VAX 6000 Model 500 dispatch to routines that exe­
cute from 1/0 space and place the write-back 
backup cache into ETM and disable the write­
through primary cache. 

The EEPROM on both the VAX 6000 Model 400 and 
VAX 6000 Model 500 is also used to store failure 
information. When errors occur, a counter that is 
associated with the specific error condition is 
incremented. The number of error conditions is 
finite and fully described by the error mask pro­
duced by the parsing of data routines. Writing to 
the CPU EEPROM is time-consuming compared to 
writing to main memory. A byte write to EEPROM 
takes on the order of 15 milliseconds. To avoid this 
overhead, the EEPROM VMS data actually resides in 
main memory during a VMS session. As each CPU is 
initialized by the VMS system, the contents of the 
VMS area are read into individual CPU memory 
regions. Updates that are required are made to 
these regions. When CPUs are stopped or when the 
system is shut down or has crashed, the region of 
memory associated with a particular CPU is written 
back to that CPU's EEPROM. In addition to error 
information, a count of seconds run in a VMS envi­
ronment is tallied. 

Vector Processor Support 
One set of routines supports the VAX 6000 Model 
400 and VAX 6000 Model 500 vector processors. 
These routines are organized in an identical manner 
to the CPU routines and follow the same steps 
related to CPU error conditions. During the process­
ing and accounting of CPU error conditions, a check 
determines if any vector processor errors are 
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present. If vector errors are detected, the appropri­
ate support routines-soft error, hard error, or 
machine check-are invoked. 

Error handling supports a maximum of four 
vector processors. If the number of errors or the 
rate of errors becomes too great, vector processors 
are removed from use. Error handling never 
removes the only or last remaining vector proces­
sor. Support of vector processor errors has the 
same characteristics as support for CPU-related 
error conditions. Portions of the vector processor 
are disabled if the associated error rate becomes too 
great. If other errors continue, the unit is removed 
from use. The notions of expected errors and 
errors that are invisible to the error log also exist. 

Support of the VAX 6000 Model 600 
Error checking and detection on the VAX 6000 
Model 600 are very complex processes. There are 
well over 160 unique soft and hard error conditions 
as categorized by the software. The actual count 
declared by the hardware is much greater. The dis­
parity results from the way software groups error 
conditions. The VAX 6000 Model 600 error handling 
followed the enhanced model implemented on the 
VAX 6000 Model 400. The state saved for interroga­
tion by VAX 6000 Model 600 error handling consists 
of 40 internal and XMI-addressable registers. 
Support of the VAX 6000 Model 600 also included 
support of the on-board CPU EEPROM for the long­
term storage of failure information. The support 
of the EEPROM was extended to include the history 
of the cache subsystem performance in previous 
sessions. 

Like the VAX 6000 Model 500 system, the VAX 
6000 Model 600 implements a write-back backup 
cache strategy. The VAX 6000 Model 600 backup 
cache operates using a directory-based broadcast 
coherence protocol. 1 Each 32-byte cache block is in 
one of three states: invalid, valid/read-only, or 
valid/written. Multiple caches may hold read-only 
data simultaneously; written data may be held by 
only one cache in the system at a time. Write privi­
lege for a block must be obtained before modifying 
the data in that block. 

Certain backup cache error conditions are severe 
enough to disable the cache. The backup cache may 
contain written data that is unavailable elsewhere 
in the system. To access that data, the backup cache 
is put into ETM, a state which allows written data to 
be accessed by the cache controller, but disallows 
the use of read-only data. 
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A cache enters ETM as a function of either soft­
ware or hardware. The cache is put into ETM by 
hardware only when cache data may have been cor­
rupted, or when cache data may be inconsistent 
with data in memory. Thus, correctable backup 
cache errors do not cause a transition into ETM, 

but uncorrectable errors do. A parity error on the 
NVAX data and address lines (NDAL) interface causes 
the cache to enter ETM because an invalidate or 
write-back request may have been missed. A cache 
transition into ETM occurs when a request for write 
privilege or a write back does not complete suc­
cessfully on the VAX 6000 Model 600. The state 
of the cache is likely to be inconsistent with that of 
memory. 

Three requirements govern cache operation dur­
ing ETM: (1) The state of the cache is preserved as 
much as possible to allow software to diagnose the 
problem. (2) Memory references that hit written 
blocks in the cache are processed, since this is the 
only source of data in the system. (3) Cache 
coherency requests from the NDAL are processed 
normally so that cache state remains consistent 
with memory. 

Although complex, ETM allows the software to 
choose when and how to disable the cache. To 
make the process of error handling less cumber­
some, the backup cache is unconditionally put into 
ETM by the software when any error condition is 
being serviced. 

ECC protects both tag and data stores on the 
backup cache on the VAX 6000 Model 600. Correct­
able ECC errors in the backup cache have a record 
of failed syndromes kept by error-handling rou­
tines. Should the same syndrome fail on more than 
one occasion in a single VMS session, the backup 
cache is disabled. 

If uncorrectable backup cache errors occur, 
the error-handling routines determine if the block 
is owned by the CPU and attempt to flush the 
block back to memory. If successful or if the block 
is not owned, the backup cache is disabled before 
returning the system to normal operation. If 
the data cannot be recovered, the VMS session is 
terminated. 

If the backup cache is disabled by error handling 
for any reason, that fact is recorded in the CPU 

EEPROM. Records on disabled status are also kept for 
the primary cache and virtual instruction cache 
(VIC). Subsequent sessions of VMS interrogate the 
EEPROM and cause these structures to remain dis­
abled if they were disabled in a previous session. 
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When this occurs, an appropriate message is sent to 
the console terminal during system start-up. 

Tag parity errors that occur in the VIC are diag­
nosed in an unusual manner. Unlike other caches 
on the VAX 6000 Model 600, the tag store of the VIC 

contains a virtual address. To determine which bit 
has failed when a parity error occurs, the tag store 
is probed to retrieve the contents of the failing 
tag location. The associated data store location is 
probed to retrieve its contents; each bit in the bad 
tag address is then flipped in turn. As each bit is 
flipped, the range of the resultant virtual address is 
compared to page tables to determine its validity 
within current context. The virtual address is trans­
lated, and the resulting physical address is mapped 
to allow error handling to read the contents of the 
page. The appropriate contents of the newly 
mapped page are compared to the contents read 
from the VIC data store. If one and only one match 
is found, the failing tag bit is identified. Masks of 
failing bits from all VAX 6000 Model 600 cache 
structures are stored in the CPU EEPROM along with 
other failure information. 

The instruction pipeline complicates VAX 6000 
Model 600 error handling. In many instances, 
errors experienced are in no way related to the cur­
rent instruction being executed or interrupted. 
When an error does occur, care must be taken to 
fully understand in what context the error has an 
effect. 

Correctable Memory Errors 
Correctable memory errors are data errors that are 
corrected by the memory controller before data is 
returned to the requester. They occur primarily 
because of alpha particle radiation, affect only a sin­
gle cell, and are transient in nature. Correctable 
memory errors are completely benign. To deter­
mine if a memory controller reporting correctable 
errors has real defects, multiple errors must be 
viewed. 

VAX 6000 error handling implements a scheme 
whereby error data reported by memory con­
trollers for correctable errors is compressed into a 
structure called a footprint. The footprint reduces 
the data reported into a form that uniquely 
describes the error that just occurred. The intent 
of the footprint is to uniquely index the source 
component of memory, the dynamic RAM 

(DRAM). Hence, for a given memory subsystem, 
the number of valid footprints would equal the 
number of DRAMs. Furthermore, the footprint 
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block maintained per footprint is used to track the 
context (repeat errors, scrubbing, etc.) of this error 
as well as other errors that match this footprint ID. 

The assumption here is that most correctable 
memory errors are a result of DRAM component 
faults, hence the granularity of the unique DRAM. 
As shown in Figure 3, the footprint forms a 32-bit 
integer from the XMI node ID, the ECC syndrome of 
the error, and the memory controller bank in error. 
The integer is used to locate other correctable 
errors that have occurred in an internal database. 
Along with the footprint, the address of the cor­
rectable error is passed to a set of routines that per­
forms all processing of correctable memory errors. 
The database tracks the range of addresses that have 
experienced correctable errors for the same foot­
print. This aids in the diagnosis of row and column 
failures with the DRAMS that make up memory con­
troller storage. On the VAX 6000 Model 500 and VAX 
6000 Model 600 systems, memory scrubbing status 
is also tracked. 

Memory scrubbing is a technique for reducing 
the number of error interrupts from locations that 
are reporting errors caused by alpha particle distur­
bance. Scrubbing removes transient faults from 
the system, which in turn reduces the number of 
interrupts that result from such errors. In addition, 
it helps to differentiate transient errors from per­
manent DRAM component faults, as captured in 
the error log. This information was previously 
unavailable. 

When the VAX 6000 memory controller detects 
a correctable memory error, circuitry in the con­
troller corrects the data returned for the request. 

31 23 15 

XMI NODE ID I FAILING BANK I ECC SYNDROME 

LOWEST ADDRESS 

HIGHEST ADDRESS 

COUNT 

FLAGS 

KEY: 

O BUSY 
1 SCRUBBED 
2 INHIBIT THE REPORTING OF CORRECTABLE 

MEMORY ERRORS 

I I I 
2 1 0 

Figure 3 Memory Correctable Error 
Footprint Structure 
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The data is not corrected in the storage DRAMs on 
the controller. If the location is read over and over 
again, the same error and correction cycle occurs 
each time. This continues until the location is 
updated with write data. An interrupt can be gener­
ated for each error correction cycle. Care must be 
taken when scrubbing memory locations. The data 
in any given memory address can be shared by any 
number of CPUs or 1/0 devices. When this is the 
case, a higher-level software protocol is normally 
used to synchronize access. Error handling would 
not be privy to these protocols. VAX 6000 Model 
500 and VAX 6000 Model 600 memory scrubbing is 
possible because of the XMI2 bus protocol. Before a 
CPU can modify any location in memory, it must be 
the exclusive owner of the 32-byte block in which 
the address resides. Ownership is effected at the 
primitive hardware level and so exclusive access is 
guaranteed. 

When a correctable error interrupt occurs on a 
VAX 6000 Model 500 or VAX 6000 Model 600 system, 
error handling rewrites the failing location with its 
contents. The ability to cause an interrupt is dis­
abled in memory controllers that continue to 
report errors with the same footprint or that have 
not responded to scrubbing. This action occurs 
after sufficient data has indicated that something 
other than alpha particle disturbance has occurred 
and the memory controller may require service. 

The rate of correctable memory error interrupts 
is checked to reduce the burden on the system. If 
the rate of errors occurring becomes too high, the 
ability to interrupt is disabled at the problem con­
troller for a period of time. Correctable memory 
error data collected during a VMS session is sent to 
the error log at the end of the VMS session. 

Uncorrectable Memory Errors 
Uncorrectable memory errors experienced by 
the CPU are reported as machine checks. These 
machine checks are synchronous with the PC mak­
ing the reference. Uncorrectable memory errors 
occur when data is lost by the memory controller 
and cannot be re-created by its ECC circuitry; fortu­
nately, these errors seldom occur. Uncorrectable 
memory errors represent a serious problem to the 
execution thread that experiences them. The hard­
ware cannot assist in the recovery of this type of 
error; recovery is totally a software function. 

If the page that experiences an uncorrectable 
error is a process private page that has not been 
modified, and the code thread currently executing 
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is at pageable priority, the error is not considered 
fatal. The error-handling routines arrange for the 
page to be re-created in a different physical page in 
memory by invalidating the necessary memory 
management structures. As a result, a translation­
not-valid exception occurs when the instruction 
that experienced the exception is retried. The page 
fault mechanisms of the VMS system do the actual 
re-creation. The original page with the error is put 
on a list of bad pages internal to the VMS system. If 
the page does not meet the criteria for replace­
ment, either the process is deleted or the VMS ses­
sion is terminated. If the process is deleted, the 
page is marked "bad" by error handling, and the 
process run-down routines in VMS retire the page 
to the bad page list. 

Testing 
Early in the project, we decided the ability to test 
and verify had to be built into error handling to pro­
duce a predictable, robust, and quality product. 
Although the VAX 6000 family and CPUs in general 
have a number of features that allow errors to be 
generated, they tend not to be general-purpose. In 
most cases, they are designed for use by special 
diagnostic software that does not operate in the 
context of an operating system, e.g., the VMS oper­
ating system. We chose to implement a scheme 
whereby errors would be simulated in software on 
the target hardware. This approach gave us several 
clear advantages. The most important was that the 
approach could be extended as the power and com­
plexity of CPU models increased and that complete 
control was with the designers. No special hard­
ware equipment or CPU feature would be required. 
The only precondition was that certain software 
implementation guidelines had to be followed to 
make use of the simulator. 

Machine check test (MTEST) consists of two 
parts, a utility and an error-handling implementa­
tion methodology. The methodology consists of 
using main memory storage as the primary agent 
that is acted upon by error handling. This method 
also fit into our model of retaining data in memory. 
The other requirement was the strategic placement 
of the DEBUG_TRANSFER macro. DEBUG_TRANSFER 
expands to produce a code segment that deter­
mines if the current error being serviced is an error 
simulation or not. If it is, data that resides in mem­
ory that is being interrogated is modified, in con­
cert with MTEST, to reflect the error condition 
being simulated. DEBUG_TRANSFER code segments 
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represent synchronization points between an 
error-handling execution thread and the MTEST 
simulator. 

The MTEST simulator is a privileged image and 
consists of a user interface, a number of nonpage­
able internal buffers, and simulator routines. The 
user interface allows the internal buffers to be 
selected and loaded with data patterns of the user's 
choice. The user interface also allows the user to 
pass control to the SCB vectors of the VMS system. 
In our case we used the vectors that are the linkage 
to error-handling routines. Once in control, error 
handling would execute its model until it reached a 
DEBUG_TRANSFER code segment. The segment 
would determine that this was an error being simu­
lated and return control to MTEST. MTEST would 
then decide if the synchronization point was one 
for which the user has data. The data would be 
transferred from the buffer named in the 
DEBUG_TRANSFER code segment to the address also 
declared in the segment. By judiciously placing the 
DEBUG_TRANSFER synchronization points and care­
fully selecting an appropriate data pattern, we 
were able to simulate any and all error conditions 
for the appropriate CPU. 

In this way, we were able to verify many complex 
algorithms and code paths that would have been 
difficult to exercise. We were also able to verify 
error handling and error logging from the point of 
error to the error log file . MTEST can be either inter­
active or procedure-driven. This aspect allowed us 
to maintain a library of procedures that could be 
used at any time to verify that operational charac­
teristics for individual errors had not changed when 
code paths that affected many error types were 
modified. 

MTEST was the primary tool we used for testing. 
During the test and verification phase, prototype 
hardware that had real error conditions became 
available, and we used these prototypes. 

Conclusions 
The VAX 6000 family now has a robust and complete 
set of error-handling routines that accomplished 
our project goals. In fact, many routines were never 
before part of the VMS system. These routines 
include the ability to report complete error context 
to the system console and the ability to group fail­
ures occurring across the system to a single error 
log entry. An important SMP feature is the ability to 
recognize and retire failing processors from the 
active set of a VMS session and allow the session to 
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continue. These routines and others support the 
entire range of VAX 6000 CPU models. The object­
oriented approach to error conditions not on the 
CPU module has made support and introduction of 
newer routines easier. The ability to test at will any 
or all error-handling routines has been a tremen­
dous advantage. 
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