
NV AX-microprocessor VAX Systems

Digital Technical Journal
Digital Equipment Corporation

Volume 4 Number 3
Summer 1992

Cover Design
The NVAX microprocessor is Digital's fastest VAX implementation

and the common theme of papers in this issue. Our cover graphic

joins the NVAX project code name with an image of speed - the

chip's most salient characteristic and the performance advantage

it brings to a range of new VAX systems.

The cover design is by Deb Anderson of Quantic Communications, inc.

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor
Helen L. Patterson, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Rid1ard W Beane
Richard./. Hollingsworth
Alan G. Nemeth
V ictor A . V yssotsky
Gayn B. W inters

The Digital Technical journal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO l-3/B68, Maynard,
Massachusetts 0 1754-2571. Subscriptions to the journal are $40.00
for four issues and must be prepaid i11 U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical}ournal at the published-by address.
Inquiries can also be sent electronically to 01]@CRL.DEC. COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burli11gton
Woods Drive, Burlington, MA 0183 0-4597.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNAL or by interoffice mail to mailstop ML01-3/B68.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright© 1992 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational illstitutions by faculty members and are not
distributed for commercial advantage. Abstracti11g with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

The information ill thejounwl is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the journal.
ISSN 0898-901X

Documentation Number EY-j884E-DP

The followillg are trademarks of Digital Equipment Corporation:
Alpha AXP, DEC, DECchip 21064, DECstation, DECwindows,
Digital, the Digital logo, KA50, KA52, KA675, KA680, KA690,
MicroVAX, MS44, MS670, MS690, Q-bus, Q22-bus, ThillWire,
TURBOchannel, ULTRIX, VAX, VAX-11/780, VAX 4000, VAX 6000, VAX
7000, VAX 10000, VAXcluster, VAX MACRO, VAXstation, VMS, and
V XT 2000.

MACH is a trademark and PAL is a registered trademark of
Advanced Mkro Devices, Inc.

SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of
the Standard Performance Evaluation Cooperative.

SPICE is a trademark of the University of California at Berkeley.

TPC Benchmark and tpsA-Iocal are trademarks of the Transaction
Processing Performance Council.

Book production was clone by Quantic Communications, Inc.

..

I Contents

9 Foreword
Robert M. Supnik

11 The NVAX and NVAX+ High-peiformance
VAX Microprocessors
G. Michael Uhler, Debra Bernstein, Larry L. Biro,

NVAX-microprocessor VAX Systems

John F. Brown III, John H. Edmondson, Jeffrey D. Pickholtz,
and Rebecca L. Stamm

24 The NVAX CPU Chip: Design Challenges,
Methods, and CAD Tools
Dale R. Donchin, Timothy C. Fischer, Thomas F. Fox,
Victor Peng, Ronald P. Preston, and William R. Wheeler

38 Logical Verification of the NVAX CPU Chip Design
Walker Anderson

47 The VAX 6000 Model 600 Processor
Lawrence Chisvin, Gregg A. Bouchard, and
Thomas M. Wenners

60 Design of the VAX 4000 Model 400,
500, and 600 Systems
Jonathan C. Crowell, Kwong-Tak A. Chui, Thomas E. Kopec,
Samyojita A. Nadkarni, and Dean A. Sovie

73 The Design of the VAX 4000 Model 100 and
MicroVAX 3100 Model 90 Desktop Systems
Jonathan C. Crowell and David W Maruska

82 The VAXstation 4000 Model 90
Michael A. Callander, Sr., Lauren M. Carlson,
Andrew R. Ladd, and Mitchell 0. Norcross

92 VAX 6000 Error Handling: A Pragmatic Approach
Brian Porter

1

I Editor's Introduction

Jane C. Blake
Editor

The NVAX microprocessor is a high-performance,
single-chip implementation of the VAX architecture.
It is today's fastest VAX microprocessor and the CPU
at the heart of the mid-range, low-end, and work­
station systems described in this issue of the Digital
Technical Journal.

The NVAX chip is not only fast, with cycle times as
low as 11 ns, but also holds a unique position in the
Digital family of microprocessors: NVAX is both an
upgrade path for existing VAX systems and a migra­
tion path to Alpha AXP systems. In their paper on
the NVAX and NVAX+ chips, Mike Uhler, Debra
Bernstein, Larry Biro, John Brown, John Edmond­
son, Jeff Pickholtz, and Rebecca Stamm present an
overview of the complex microprocessor designs
and relate how RISC techniques are used in this CISC
machine to achieve dramatic increases in perfor­
mance over previous implementations.

Increases in performance are also attributable to
the CMOS-4 0.75-micrometer process technology in
which the NVAX is implemented. In their paper
about the verification of the physical design, Dale
Donchin, Tim Fischer, Frank Fox, Victor Peng, Ron
Preston, and Bill Wheeler describe the methods and
the CAD tools created to manage the complexity of
a chip with 1.3 million transistors.

The rigorous use of the CAD tools and thorough
simulation-based testing resulted in highly func­
tional first-pass chips. In his paper about the logical
verification, Walker Anderson discusses the suc­
cessful strategies used to ensure no "show stopper"
bugs existed in the design. Highlighting major
strategies, he reviews the behavioral models and
pseudorandom exercisers at the core of the verifi­
cation effort.

Each system design team chose a different
approach to take advantage of NVAX performance
and to meet system-specific requirements. In a

2

paper on the new mid-range VAX 6000 multipro­
cessing system, Larry Chisvin, Gregg Bouchard, and
Tom Wenners explain the module design decisions
that supported the goals of 6000-series compatibil­
ity and time to market. Of particular interest are the
schedule and performance benefits derived from
developing a routing and control interface chip.

The engineers for new low-end deskside systems
also chose to develop custom chips-a memory
controller chip, memory module, and an 1/0 con­
troller. Jon Crowell, Kwong Chui, Tom Kopec, Sam
Nadkarni, and Dean Sovie discuss the chip func­
tions that were key to exceeding the performance
goal of three times that of the previous VAX 4000.

For the low-end VAX 4000 Model 100 system and
the MicroVAX 3100 desktop servers, designers saved
significant time by "borrowing" existing compo­
nents from proven systems. Jon Crowell and Dave
Maruska relate decisions that allowed them to dou­
ble performance and complete the work within the
extraordinarily short time of nine months.

The newest VAXstation workstation, based on
NVAX, is the Model 90. Mike Callander, Lauren
Carlson, Andy Ladd, and Mitch Norcross present
their design methodology. Most significant for
development was the decision to implement new
logic in programmable technology, which allowed
bug fixes in minutes rather than weeks.

Not about system design but rather error han­
dling in 6000 systems, Brian Porter's paper
describes an approach that reduces the amount of
unique coding traditionally required for error han­
dling. He details the development of sophisticated
error handling routines that accommodate the
complexity of the symmetric multiprocessing VAX
6000 models.

The editors thank Mike Uhler of the Semi­
conductor Engineering Group, who ensured that
the standards of excellence applied to NVAX devel­
opment were applied to the development of this
issue. Also, this issue is notable editorially because
it is the first in which papers have been formally
refereed. I thank Gene Hoffnagle, editor of the
IBM Systems Journal, for encouraging the use of
the referee process in any journal worthy of the
name. DTJ issues will continue to be refereed so
that we may offer engineering and academic read­
ers informative and relevant technical discussions.

Biographies

Walker Anderson Principal engineer Walker Anderson is a member of the
Models, Tools, and Verification Group in the Semiconductor Engineering Group.
Currently a co-leader of the logical verification team for a future chip design, he
led the NVAX logical verification effort. Before joining Digital in 1988, Walker was
a diagnostic and testability engineer in a CPU development group at Data
General Corporation for eight years. He holds a B.S.E.E. (1980) from Cornell
University and an M.B.A. (1985) from Boston University.

Debra Bernstein Debra Bernstein is a consultant engineer in the Semi­
conductor Engineering Group. She worked on the CPU design and architecture
for the NVAX microprocessor and the VAX 8700/8800 systems and is currently
co-architecture leader for a future Alpha AXP processor. Deb received a B.S. in
computer science (1982, cum laude) from the University of Massachusetts in
Amherst. She holds one patent, has two patent applications pending, and has
coauthored several technical papers.

Larry L. Biro Larry Biro joined the Electronic Storage Development (ESD)
Group in 1983, after receiving an M.S.E.E. from Rensselaer Polytechnic Institute.
While in ESD, he contributed to the advanced development of solid-state disk
products. Larry joined the Semiconductor Engineering Group as a custom cir­
cuit designer on the NVAX E-box. Later, as a member of the NVAX+ chip imple­
mentation team, Larry designed the clock and reset logic, coordinated back-end
verification efforts, and co-led the chip debugging. Currently, he is the project
leader for a future, single-chip VAX implementation.

Gregg A. Bouchard Gregg Bouchard is a senior hardware engineer with the
Semiconductor Engineering Group. His current responsibilities include the mod­
ule design of a DECchip 21064 daughter card that contains a CPU-to-bus interface.
Previously, Gregg worked on chip design of the NVAX-to-XMI bus interface for the
VAX 6000 Model 600, and field programmable gate array chips for the VAXstation
4000 Model 90. Gregg joined Digital in 1986 after receiving his B.S.E.E. from the
Rochester Institute of Technology. He also holds an M.S.E.E. from Northeastern
University and has a patent pending related to hardware queue structure.

I

3

Biographies

4

John F. Brown After receiving an M.S.E.E. from Cornell University in 1980,
John Brown joined the engineering staff at Digital. At present, he is a consultant
engineer working on Alpha AXP microprocessor advanced development. John's
previous responsibilities include managing the design of the instruction decode
section of the NVAX microprocessor. He also made technical contributions to
the VAX 6000 Model 200 and 400 chip sets, and was hardware engineer for the
extended floating-point enhancement to the VAX-11/780 system. John holds two
patents and has seven applications pending.

Michael A. Callander, Sr. Michael Callander is a principal engineer in
Digital's Semiconductor Engineering Group. Mike was the technical leader for
the VAXstation 4000 Model 90 system. His previous experience with Digital
includes design and architectural specification for various CPU modules and sys­
tems, including the VAX 8200 and the VAX 6000 Model 400 and Model 500. Mike
received his B.S.E.E. from the University of Massachusetts in 1982 and joined
Digital upon graduation. He has authored several technical papers and has a
number of patent applications pending.

Lauren M. Carlson A senior hardware engineer in the Semiconductor Engi­
neering Group, Lauren Carlson is currently working on the design of a periph­
eral chip set for a new microprocessor. Previously, she designed the VAXstation
4000 Model 90 CDAL-to-EDAL adapter chip (CEAC) gate array, which is part of the
1/0 subsystem. Lauren also contributed to the design of the VAXstation 4000
Model 90 system module and another VAX system CPU module. Prior to this,
Lauren worked in the Advanced VAX Development Group. She received her
B.S.E.E. from Worcester Polytechnic Institute in 1986 and joined Digital in 1987.

Lawrence Chisvin A principal hardware engineer in the Semiconductor
Engineering Group, Larry Chisvin is involved in the design of modules and
systems based on the DECchip 21064 microprocessor. Larry also provides tech­
nical support for customers, including Alpha AXP architecture presentations
and example designs and application notes. Previously, he worked on processor
and memory modules for the VAX 6000 Model 600. He holds a B.S.E.E. (summa
cum laude) from Northeastern University and an M.S.E.E. from Worcester
Polytechnic Institute. He is a member of the IEEE Computer Society and the ACM.

Kwong-Tak A. Chui Kwong-Tak Chui is a principal hardware engineer in the
Semiconductor Engineering Group. He is working on the design of the 1/0 con­
troller section of a new CPU. Kwong was the project leader for the 1/0 controller
chip of the NVAX chip set used in the VAX 4000 Model 400, 500, and 600 systems.
Since joining Digital in 1985, he has worked on four other VLSI chip design proj­
ects for the VAX 3000 and VAX 4000 series computers. Kwong holds a B.S. in com­
puter engineering (1985) from the University of Illinois at Urbana-Champaign
and an M.S.E.E. (1989) from Cornell University.

Jonathan C. Crowell An engineering manager in the Entry Systems Business
Group, Jon Crowell was the project leader and system engineer on the VAX 4000
Models 100, 400, 500, and 600 and the MicroVAX 3800, 3900, and 3100 Model 90
systems. He is now working on the design of the next generation of VAX 4000 sys­
tems. Previously, Jon worked in the Systems Integration Group qualifying Q-bus
devices and DSSI adapters and storage devices. He joined Digital in 1986. Jon
received a B.S.E.E. (1981) and an M.S.E.E. (1986) from Northeastern University. He
hold six patents and is an active member of IEEE.

Dale Donchin Dale Donchin manages schematic entry and layout verifica­
tion CAD tool development in the Semiconductor Engineering Group. He facili­
tated the use of CAD tools for NVAX design, primarily for layout and physical chip
verification. Dale is presently performing in a similar capacity for a new micro­
processor design based on the Alpha AXP architecture. He joined Digital in 1978,
and was previously a development manager in the RSX operating system group.
Dale holds a B.S.E.E. (1976, honors) and an M.S.E.E. (1978) from Rutgers University
College of Engineering and is a member of IEEE and ACM.

John H. Edmondson John Edmondson is a principal engineer in the Semi­
conductor Engineering Group. At present, he is co-architect of a future RISC
microprocessor. Previous to this, he was a member of the VAX 6000 Model 600
CPU chip design team. Before joining Digital in 1987, John designed mini­
computers for five years at Canaan Computer Corporation. He also worked at
Massachusetts General Hospital for two years, researching applications of tech­
nology to anesthesia and intensive care medicine. John received a B.S.E.E from
the Massachusetts Institute of Technology in 1979.

Timothy C. Fischer Tim Fischer is a senior hardware engineer with the Semi­
conductor Engineering Group. He is working on the design of a floating-point
unit for a future high-performance microprocessor based on the Alpha AXP
architecture. Prior to this work, Tim was a member of the E-box design team and
contributed to the design of global clock generation and distribution for the
NVAX microprocessor. He also worked on the design of the bus interface unit on
the NVAX+ chip. Tim joined Digital in 1989 after receiving his M.S. in computer
engineering from the University of Cincinnati.

Thomas F. Fox Frank Fox, a consulting engineer in the Semiconductor Engi­
neering Group, co-led the implementation of the NVAX microprocessor and con­
sulted with the Advanced Semiconductor Development Group on the design of
the CMOS-4 technology. He joined Digital in 1984 and worked on the implemen­
tation of the CVAX microprocessor. Frank received a B.E. degree from University
College Cork, National University of Ireland (1974) , and a Ph.D. degree from
Trinity College, Dublin University (1978), both in electrical engineering. He has
published papers on ultrasonic instrumentation, MRI scanners, and VLSI design.

I

5

Biographies

6

Thomas E. Kopec Principal engineer Tom Kopec was a member of the Entry
Systems Business Group that designed the VAX 4000 Models 200 through 600,
and the MicroVAX 3500 and 3800 systems. He also led an Alpha AXP development
project. Recently, Tom joined the Assistive Technologies Group to work on com­
pact speech-synthesis and text-to-voice systems. He received a B.S.E.C.E. (1980,
with honors), concentrating in microwave engineering and signal processing,
and an M.S.E.C.E. (1985), concentrating in image processing and computer graph­
ics, both from the University of Massachusetts at Amherst.

Andrew R. Ladd Andy Ladd is a principal engineer in the Semiconductor
Engineering Group and is the project leader for the VAXstation 4000 Model 90
CPU and low-cost graphics module designs. Previously, he provided timing verifi­
cation support for the DECchip 21064 and co-designed two bus interface chips for
the VAX 6000 Model 400 CPU module. Andy joined Digital in 1986. He received his
B.S. in computer engineering from the University of Illinois (1984) and his M.S. in
computer science and engineering from the University of Michigan (1991). Andy
is a member of the IEEE Computer Society, Tau Beta Pi, and Eta Kappa Nu.

David W. Maruska Principal engineer David Maruska is a member of the
Entry Systems Business Group and is presently involved in the design of the next
generation of VAX 4000 CPUs. He was the lead designer for the KA50 and KA52
CPUs and project leader for the VAX 4000 Model 200 system, the KZQSA Q-bus-to­
SCSI adapter, and the Futurebus+ exerciser. Dave joined Digital in 1982, after
receiving a B.S. in computer engineering from Boston University. He worked on
graphics workstations for Mosaic Technologies and Raster Technologies from
1983 to 1985 and then returned to Digital in 1986.

Samyojita A. Nadkarni Sam Nadkarni, a principal hardware engineer in the
Semiconductor Engineering Group, is currently the project leader for a set of
support chips for the DECchip 21064 processor. She was the project leader for
the NMC chip used in the VAX 4000 Model 400, 500, and 600 systems. She also
worked on memory controller/bus adapter chips for the VAX 4000 Model 300
and MicroVAX 3500 systems. Sam joined Digital in 1985 and holds a Bachelor of
Technology (1983) from the Indian Institute of Technology and an M.S. (1985)
from Rensselaer Polytechnic Institute.

Mitchell 0. Norcross Senior engineer Mitch Norcross has been designing
and analyzing digital subsystems since he joined Digital in 1986. As a member of
the Semiconductor Engineering Group, Mitch designed a gate array for the
VAXstation 4000 Model 90 and contributed to the design and analysis of several
system and CPU modules. Prior to joining SEG, Mitch designed a gate array for
Digital's first fault-tolerant VAX system, the VAXft 3000. He received a B.E. in elec­
trical engineering (1985) and an M.S. in computer engineering (1987), both from
Manhattan College. Mitch holds one patent on fault-tolerant system design.

Victor Peng Victor Peng is a consultant engineer in the Semiconductor
Engineering Group. He received his B.S. in electrical engineering from
Rensselaer Polytechnic Institute in 1981, and his M.S. in electrical engineering
from Cornell University in 1982. Victor joined Digital in 1982. He was a member
of the design team for the VAX 8200/8300 memory interface chip and patchable
control store chip. He led the implementation of the VAX 6000 Model 400 float­
ing-point chip and was co-manager of the NVAX chip design team.

Jeffrey D. Pickholtz Jeffrey Pickholtz received an A.S. (1977) in specialized
technology from Penn Technical Institute and a B.S.E.E.T. (1989) from Central
New England College. He joined Digital in 1977 as a technician and worked on
a variety of midrange computers. More recently, his responsibilities have
included technical contributions to the VAX 6000 Models 400 and 600, and VAX

7000 Model 600 chip sets. Currently, Jeff is a senior engineer in the
Semiconductor Engineering Group, leading the implementation of a future
CMOS microprocessor chip.

Brian Porter As a consulting software engineer in the Systems Group of VMS

Development, Brian Porter was responsible for CPU error handling in the VAX

6000 family. Prior to this work, he was responsible for support of VAX systems
and was an author and maintainer of the VMS error log utility SYE. Brian is the
author of the original VMS striping driver, which was later developed by others
into the VMS striping driver product. He currently works in the Executive Group
of VMS Development and is responsible for symmetric multiprocessing. He has
two patents pending on memory error handling. Brian joined Digital in 1973.

Ronald P. Preston Ronald Preston is a principal engineer in the Semi­
conductor Engineering Group. Since joining Digital in 1988, he has worked on
the design of several microprocessors. Ron was the circuit design and imple­
mentation leader for the E-box on the NVAX microprocessor. He is currently
designing the instruction issue logic for a superscalar RISC microprocessor. Prior
to joining Digital, he worked on the design of CMOS microcontrollers for
Signetics Corporation. Ron received his B.S.E.E. in 1984 and his M.S.E.E. in 1988
from Rensselaer Polytechnic Institute. He is a member of Eta Kappa Nu and IEEE.

Dean A. Sovie Design engineer Dean Sovie joined Digital in 1981 and is a
member of the Electronic Storage Development Group. He is currently involved
in the battery backup laser memory design. Prior to this work, he contributed to
the design of the high-performance memory module used in the VAX 4000 Model
400, 500, and 600 systems. Dean also helped design memories for the VAX 6000,
VAX 4000 Model 200, and PDP-11 systems. In addition to his present responsibili­
ties, he is pursuing a degree in electrical engineering at Northeastern University.

I

7

Biographies

8

Rebecca L. Stamm Rebecca Stamm is a principal hardware engineer in the
Semiconductor Engineering Group. She led the design of the backup cache, the
bus interface, and the pin bus for the NVAX CPU chip. Rebecca then led the chip
debug team from tapeout through final release of the design to manufacturing.
Since joining Digital in 1983, Rebecca has been engaged in microprocessor archi­
tecture and design. She holds two patents and has seven applications pending.
Rebecca received a B.A. in history from Swarthmore College and a B.S.E.E. from
the Massachusetts Institute of Technology.

G. Michael Uhler Michael Uhler is a senior consultant engineer in the Semi­
conductor Engineering Group, where he leads the advanced development effort
for a new high-performance microprocessor. As chief architect for the NVAX and
REX.520 microprocessors, Mike was responsible for the CPU architecture, perfor­
mance evaluation, behavioral modeling, CPU microcode, and CPU and system
debug. He received a B.S.E.E. (1975) and an M.S.C.S. (1977) from the University of
Arizona and joined Digital in 1978. Mike is a member of IEEE, ACM, Tau Beta Pi,
and Phi Kappa Phi and holds eight patents.

Thomas M. Wenners Thomas Wenners is a senior hardware engineer in the
Semiconductor Engineering Group. He is responsible for the design of a next­
generation VAX workstation CPU module and for CPU module designs of DECchip
21064 microprocessor-based products. Tom's previous work includes the mod­
ule design of the VAX 6000 Model 600, module design and signal integrity sup­
port on ESB products, and analysis and evaluation of advanced chip and module
packaging. Tom joined Digital in 1985. He received a B.S.E.E. (1985, cum laude)
and an M.S.E.E. (1990) from Northeastern University.

William R. Wheeler A principal engineer in the Semiconductor Engineering
Group, Bill Wheeler performed architectural definition work for the NVAX
microprocessor and was project leader of the NVAX M-box. Prior to this work, he
designed the I-box unit for the third-generation VLSI VAX implementation. He is
currently involved in advanced development work for improving custom design
tools and methods. Before joining Digital in 1983, Bill received both his B.S.E.E.
(1982) and his M.S.E.E. (1983) from Cornell University. He has coauthored three
papers on VLSI designs and holds three patents.

I Foreword

Robert M. Supnik
Corporate Consultant,
Vice President
Technical Director,
Al,pha AXP and VAX Systems

If, as the popular saying goes, "Once is happen­
stance, twice is coincidence, three times is con­
certed action;' then four consecutive instances of
outstanding engineering achievement must be even
more significant.

Since 1985, Digital has designed, developed, and
shipped four generations of leadership VAX micro­
processors and CMOS-based systems:

• In 1985, the MicroVAX chip and resulting systems
(such as the MicroVAX II and the VAXstation
2000)

• In 1987, the CVAX chip and resulting systems
(such as the MicroVAX 3800, the VAX 6000-200,
and the VAXstation 3100)

• In 1989, the Rigel chip and resulting systems
(such as the VAX 4000-300, the VAX 6000-400,
and the VAXstation 4000-60)

• In 1991, the NVAX chip and resulting systems
(such as the VAX 4000-500, the VAX 6000-600,
and the VAXstation 4000-90)

The first three were described in the Digital
Technical Journal issues of March 1986, August
1988, and Spring 1990, respectively; the last is the
subject of this issue.

NVAX and its systems are the culmination of
everything Digital and its engineers have learned
about chip and system design over the last decade.
The teams involved drew on many disciplines of
hardware engineering, from microarchitecture to
whole-system verification, to produce products

of unparalleled performance and quality. The
results speak for themselves.

• From its initial shipment in October 1991
through today (a year later), NVAX was (and is)
the fastest shipping CISC microprocessor in the
world, whether measured by clock rate,
SPECmarks, or transactions per second.

• NVAX had fewer bugs after design completion,
and went from tape-out to production more
quickly than any microprocessor in Digital's
history.

• NVAX systems, spanning the range from work­
station through mainframe, all shipped on or
ahead of schedule, meeting or exceeding pre­
dicted performance.

An outstanding engineering achievement indeed!
The roots of NVAX can be traced back a decade to

two distinct engineering programs: the High-end
Systems Group's studies and implementations of
highly pipelined VAX systems; and the Semicon­
ductor Operations Group 's projects in process
development and microprocessor design.

The High-end Systems Group started work on
highly parallel VAX systems in 1979, designing and
building the VAX 8600-the first VAX to include
overlapped operand decoding (see the Digital
Technical journal, August 1985). At the same time,
a research team described HyperVAX, a hypotheti­
cal fully pipelined design. Although HyperVAX was
never built, its microarchitecture had a strong influ­
ence on the design of the VAX 9000, Digital's ECL
mainframe (see the Digital Technical journal, Fall
1990). And the microarchitecture of the VAX 9000,
in turn, was the basis for NVAX.

The Semiconductor Operations Group also
started work in 1979, formulating a multiyear pro­
gram for the development of both semiconductor
process technology and leading-edge microproces­
sors. This program spanned the years 1983 to 1987
and encompassed the development of the V-11,
MicroVAX II, and CVAX microprocessors. In 1986,
the plan was extended through 1991, encompassing
the development of Rigel, Mariah (a Rigel variant),
and a fourth-generation VLSI VAX code-named NVAX.

The goals for NVAX were ambitious. First, its
targeted performance was more than 25 times
faster than the VAX-11/780 (more than 10 times
faster than the just-introduced CVAX chip), requir­
ing significant improvements in both microar­
chitectural efficiency and in cycle time. Second,
the chip development schedule coincided with the

9

Foreword

semiconductor process development schedule,
requiring breakthroughs in concurrent develop­
ment of product and process. And third, the time
allotted from chip design completion to system
shipment was the shortest in Digital's history,
requiring unprecedented accuracy in chip and
system design and verification.

As in past projects, work in various disciplines­
semiconductor process development, chip micro­
architecture and circuit design, microprocessor
design tools, chip and system verification tools,
and system design-cascaded from process
through systems. First to start was a team from
Advanced Semiconductor Development (ASD),
which designed, simulated, and introduced into
manufacturing CMOS-4, Digital's fourth generation
of CMOS technology (see the Digital Technical
Journal, Spring 1992). Building on prior technology
generations, CMOS-4 contained many features­
three layers of metal interconnect, salicide, preci­
sion resistors, local interconnect, deep diffusion
ring-which directly supported the performance
requirements of NVAX. In addition, ASD and Semi­
conductor Manufacturing pioneered new tech­
niques for process transfer and qualification which
dramatically shortened the time required to debug
and qualify the CMOS-4 process.

In parallel, a design team from the Semicon­
ductor Engineering Microprocessor Group initi­
ated microarchitectural and circuit studies. The
team started with the VAX 9000, but they quickly
discovered that the difference in implementation
media (multichip ECL gate arrays for the VAX 9000,

single-chip custom CMOS for NVAX) required sig­
nificant changes and new concepts. The micro­
architecture sub-team used abstract and detailed
performance models, studies from existing VAX
systems, and experience with past designs to drive
quantitative decisions about features and functions
in NVAX. At the same tin1e, the circuit sub-team for­
mulated the overall design, circuit, and clocking
methodologies for the chip and established the
feasibility of the target cycle time, chip size, and lay­
out floor plan.

As the microarchitectural concepts solidified,
the design team realized that NVAX would be the
largest and most complex chip ever designed at
Digital, and that it would place unprecedented
stress on the capabilities of both designers and
design tools. Accordingly, they initiated a partner­
ship with the Semiconductor Engineering CAD
Group to improve current tools and to develop new
tools. In addition to traditional areas like simula-

10

tion, CAD development focused on improvements
to productivity and accuracy through design syn­
thesis, electromigration analysis, and capacitance
and resistance extraction.

The size and complexity of the design, as well as
the stringent schedule constraints, also dictated an
early start on verification issues. The verification
strategy formed an integral part of the design effort
from the outset. The verification team developed
tools and strategies for verifying the microarchitec­
ture, the microcode, the logic, the circuits, the chip
as a component, and the chip in a system.

Lastly, the various system groups-data center
systems, office systems, workstations-began
designing systems to utilize the NVAX chip's capabil­
ities. Each group was able to build on the work
done in past VAX systems and designed an NVAX­
based system that functioned both as an upgrade of
past systems and as a formidably competitive new
system in its own right.

The work of these project teams dovetailed per­
fectly. NVAX completed design and taped-out in late
November 1990, just as the CMOS-4 process was
ready for chip prototyping. Due to the outstanding
work of the chip design, system design, CAD, and
verification teams, first-pass parts booted the VMS
operating system at speed in early March 1991. The
process team qualified CMOS-4 in October 1991, and
systems using second-pass parts shipped for rev­
enue that same month-three months ahead of
schedule-with performance significantly greater
than the original goal.

Clearly, the outstanding results from all the NVAX
engineering projects are neither happenstance
nor coincidence; rather, they represent concerted
action-team excellence and individual brilliance­
at its finest. Hundreds of people contributed to the
outcome. This issue of the Digital Technical
journal is their story.

The NVAX andNVAX+
High-performance
utX Microprocessors

G. Michael Uhler
Debra Bernstein

LarryL Biro
John E Brown Ill

John H Edmondson
Jeffrey D. Pickholtz

Rebecca L Stamm

The NVAX and NVAX + CPU chips are high-perfonnance VAX microprocessors that use
techniques traditionally associated with RISC microprocessor designs to dramati­
cally improve VAX perfonnance. The two chips provide an upgrade path for existing
VAX systems and a migration path from VAX systems to the new AI,pha AXP systems.
The design evolved throughout the project as time-to-market, perfonnance, and
complexity trade-offs were made. Special design features address the issues of
debug, maintenance, and analysis.

The NVAX and NVAX+ CPUs are high-performance,
single-chip microprocessors that implement
Digital's VAX architecture. 1 The NVAX chip provides
an upgrade path for existing systems that use the
previous generation of VAX microprocessors. The
NVAX+ chip is used in new systems that support
Digital's DECchip 21064 microprocessor, which
implements the Alpha AXP architecture.2,3 These
two NVAX chips share a basic design.

The high-performance, complementary metal­
oxide semiconductor (CMOS) process used to
implement both chips allows the application of
pipelining techniques traditionally associated with
reduced instruction set computer (RISC) CPUs. 4

Using these techniques dramatically improves the
performance of the NVAX and NVAX+ chips as com­
pared to previous VAX microprocessors and results
in performance that approaches and may even
exceed the performance of popular industry RISC
microprocessors.

The chip design evolved throughout the project
as the goals influenced the schedule, performance,
and complexity trade-offs that were made. The two
primary design goals were time-to-market, without
sacrificing quality, and improved VAX CPU
performance. Our internal goal was for the NVAX
CPU performance to be more than 25 times the
performance of a VAX-nnso system in a datacenter
system. Achieving these goals required meeting
aggressive schedules and thus concentrating

D igita l Tec/micalJour n al Vol. 4 No. 3 Summer 1992

on the high-leverage design points and on an
unprecedented verification effort.5

Support for multiple system environments,
compatibility with previous VAX products and
systems, and a means to migrate from traditional
VAX systems to the new Alpha AXP platforms were
also important design goals. These goals had a pro­
found impact on the design of the cache protocols
and the external bus interfaces. NVAX and NVAX+
engineers worked closely with engineers in
Digital's systems groups during the definition of
these operations.

The paper begins by comparing the basic fea­
tures of the NVAX and NVAX+ chips and then
describes in detail the chip interfaces and design
elements. This description serves as the foundation
for the ensuing discussion of design evolution and
trade-offs. The paper concludes with information
about the special design features that address the
issues of debug, maintenance, and analysis.

Comparison of the NVAX
and NVAX+ Chips
The NVAX and NVAX+ chips are identical in many
respects, differing primarily in external cache and
bus support. NVAX is intended for systems that use
previously designed VAX microprocessors. The
following systems currently use the NVAX chip:
the VAXstation 4000 Model 90; the MicroVAX
3100 Model 90; the VAX 4000 Models 100, 400,

11

NVAX-microprocessor VAX Systems

500, and 600; and the VAX 6000 Model 600.6,,s.9
NVAX supports an external write-back cache
that implements a directory-based broadcast
coherence protocol that is compatible with earlier
VAX systems. 10

NVAX+ is designed for systems that use the
DECchip 21064 microprocessor implementation
of the Alpha AXP architecture and is currently used
in the VAX 7000 Model 600 and the VAX 10000
Model 600 systems. NVAX+ supports an external
cache and bus protocol that is compatible with that
of the DECchip 21064 microprocessor. In existing
systems, NVAX+ is configured to support an exter­
nal write-back cache that implements a conditional
write-update snoopy coherence protocol. n

The two CPU chips provide both the means to
upgrade installed VAX systems, thus protecting pre­
vious investments, and a migration path from a VAX
microprocessor to a DECchip 21064 microproces­
sor in the new Alpha AXP systems.

Chip Interfaces
The NVAX chip interfaces to an external write-back
cache (B-cache) through a private port with tag
and data static random-access memories (RAMs)
on the module, as shown in Figure 1. The size and
speed of the cache are programmable, allowing
the chip to accommodate a range of possible sys­
tem configurations.

The NVAX data and address lines (NDAL) con­
stitute a 64-bit bidirectional external bus with asso­
ciated control signals that operates at one-third the
frequency of the CPU from clocks provided by the
CPU. Addresses and data are time-multiplexed and,

OSCILLATOR

NVAX

to provide h igh performance, are overlapped with
arbitration for future transactions and acknowl­
edgment of previous transactions. The NDAL bus
protocol allows up to two disconnected reads and
multiple write-backs to be outstanding at the same
time, using identifiers to distinguish the different
transactions. External interrupt requests are
received through dedicated lines and arbitrated by
logic in the CPU.

The NVAX+ chip interfaces to an external
write-back B-cache implemented with tag and data
static RAMs on the module through a port shared
with system control logic, as shown in Figure 2.
Responsibility for controlling the cache port is
shared between NVAX+ and the system environ­
ment; the NVAX+ chip handles the common cases
of read hit and exclusive write, and the system
environment provides cache policy control for
other events. The size and speed of the cache can
be configured to allow a range of possible system
configurations.

The DECchip 21064 data and address lines (EDAL)
constitute a demultiplexed, bidirectional bus with
29 bits of address, 128 bits of data, and the associ­
ated control signals. This bus operates at one-half,
one-third, or one-fourth the frequency of the CPU
from clocks provided by the CPU. The speed of the
system clocks can be programmed to accommo­
date various RAM and system speeds. At power-up
time, initialization information, including RAM
timing, and diagnostics are loaded from a serial
read-only memory (ROM) into the on-chip cache.
The external interrupt handling is similar to that of
the NVAX chip.

CACHE TAG -
ADDRESS B-CACHE

DATA TAG AND
DATA RAMS

NDAL

CONTROL SYSTEM
LOGIC

INTERRUPTS

SYSTEM CLOCKS

Figure 1 NVAX Chip Interface Block Diagram

12 Vol. 4 No. 3 Summer 1992 Digital Technical journal

The NVAX and NVAX + Highperformance VAX Microprocessors

OSCILLATOR CACHE TAG

SERIAL ROM ADDRESS B-CACHE

DATA TAG AND
DATA RAMS

NVAX+

EDAL

CONTROL SYSTEM
- LOGIC

INTERRUPTS

SYSTEM CLOCKS -

Figure 2 NVAX + Chip Interface Block Diagram

Electrical and Physical Design Architectural Design
Process technology, clocking scheme, clock fre­
quency, and die specifications are elements of
the electrical and physical design of the NVAX
and NVAX+ chips. Both chips are implemented in
Digital's fourth-generation complementary metal­
oxide semiconductor (CMOS-4) technology. CMOS-4
is a 0.75-micrometer, 3.3-volt process with support
for 5-volt input signals at the pins. The CMOS-4
process is optimized for high-performance micro­
processors and provides short (0.5-micrometer)
channel lengths and three layers of metal inter­
connect. This robust and reliable process has
been used to produce NVAX chips in volume for
more than a year and is the same CMOS process used
in the DECchip 21064 microprocessor.

NVAX and NVAX+ use a four-phase clocking
scheme, driven by an oscillator that operates
at four times the internal clock frequency. The oscil­
lator frequency is divided by an on-chip, finite­
state-machine clock generator; a low-skew clock
distribution network is used for both internal and
external clocks.

To meet the needs of the system designer, the
two chips are designed for use at various frequen­
cies. At present, NVAX is used in systems at internal
clock frequencies of 83.3 megahertz (MHz)
(12-nanosecond [ns] clock cycles), 74.4 MHz (14-ns
clock cycles), and 62.5 MHz (16-ns clock cycles).
NVAX + is used in systems at a frequency of 90.9 MHz
(11-ns clock cycles).

Each chip contains 1.3 million transistors on a
die that is 16.2-by-14.6 millimeters in size. NVAX is
packaged in a 339-pin, through-hole pin grid array.
NVAX+ is packaged in a 431-pin, through-hole pin
grid array.

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The NVAX/NVAX+ design is partitioned into five
relatively autonomous functional units: the instruc­
tion fetch and decode unit (I-box), the integer and
logical instruction execution unit (E-box), the float­
ing-point execution unit (F-box), the address trans­
lation and primary cache interface (M-box), and the
external cache and system bus interface (C-box).
Queues placed at critical interface boundaries nor­
malize the rate at which the units process instruc­
tions. A block diagram of the NVAX and NVAX+ core
is shown in Figure 3.

The I-box
The I-box fetches and decodes VAX instructions,
evaluates operand specifiers, and queues operands
in canonical form for further processing. Included
in the I-box is a 2-kilobyte (KB), direct-mapped vir­
tual instruction cache (VIC) with 32-byte cache
blocks. For reliability, the VIC includes parity pro­
tection on both tags and data.

During each cycle, the I-box attempts to fetch
8 bytes of instruction data from the VIC and place
this data in an empty slot in the prefetch queue
(PFQ). A VIC miss incurs a three-cycle penalty if
the requested data is found in the primary
cache. PFQ data is then decoded into the next VAX
instruction component, which may be one of
the following: operation code (opcode) and first
specifier or branch displacement, subsequent
specifier, or implicit specifier (an imaginary speci­
fier included to improve the performance of
some instructions). The I-box enters the opcode­
related information into the instruction queue,
the pointers to source and destination operands
into their respective source and destination

13

r
-

-

V
IR

TU
A

L
IN

S
T

R
U

C
T

IO
N

C

A
C

H
E

I-
B

O
X

I

P
A

E
FE

TC
H

Q

U
E

U
E

P

A
R

S
E

B
R

A
N

C
H

P

R
E

D
IC

T
IO

N

S
O

U
R

C
E

,
I

D
E

S
T

IN
A

T
IO

N

O
U

E
U

E

A
LL

O
C

A
T

IO
N

C
O

M
P

LE
X

S

P
E

C
IF

IE
R

 U
N

IT

C
O

N
T

R
O

l S
T

O
R

E

C
O

M
P

LE
X

S

P
E

C
IF

IE
R

 U
N

IT

O
P

E
R

A
N

D
 A

C
C

E
S

S

E
-B

O
X

. F
-B

O
X

S
O

U
R

C
E

Q

U
E

U
E

R
E

G
IS

T
E

R

F
IL

E

D
E

S
TI

N
A

TI
O

N

Q
U

E
U

E

A
R

IT
H

M
E

T
IC

L

O
G

IC
 U

N
IT

,
S

H
IF

T
E

R

F
-B

O
X

P

IP
E

L
IN

E

-
-
-
-
-
-
-
-
-
-
~

-
-
-
-
-
-
~

I I

.-
-
~

~
-
-
-
~

~
~

-
,

1
C

O
M

P
LE

X
 S

P
E

C
IF

IE
R

 U
N

IT

A
R

IT
H

M
E

Tt
C

 L
O

G
IC

 U
N

IT

M
E

M
O

R
Y

 R
E

O
U

E
S

T
S

S
P

E
C

IF
IE

R

R
E

F
E

R
E

N
C

E

Q
U

E
U

E

-
-

-
-

-
-

-
-

-
-

-
-

-
-

,
-

M
1c

R
o

sE
a

u
E

N
C

E
R

I

r
~

I
I

IN
S

TR
U

C
TI

O
N

R

E
F

E
R

E
N

C
E

LA

T
C

H

I
E

-B
O

X

I
I

IN
S

T
R

U
C

T
IO

N

C
O

N
T

R
O

l
M

IC
R

O
C

O
D

E

I
I

Q
U

E
U

E

S
T

O
R

E

C
O

N
T

R
O

L
I

I
I

I
I

I
I

I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-1

C
·B

O
X

r

L
A

T
C

H

..
..

_
_

_
_

_
.

F
ig

ur
e

3
B

lo
ck

 D
ia

g
ra

m
 o

f t
h

e
N

V
A

X
/N

V
A

X
+

 C
or

e

M
-B

O
X

,

C
-B

O
X

1

B
-C

A
C

H
E

A

N
D

S

Y
S

TE
M

IN

T
E

R
F

A
C

E

B
-C

A
C

H
E

J
S

Y
S

T
E

M
 P

IN
$

I I I I I I I I I I I I

The NVAX and NVAX + High-performance VAX Microprocessors

queues, and the branch-related information into
the branch queue.

For operand specifiers other than short literal or
register mode, the I-box decode logic invokes the
pipelined complex specifier unit (CSU) to compute
the effective address and initiate the appropriate
memory request to the M-box. The CSU is similar in
function to the load/store unit on many traditional
RISC machines.

The I-box automatically redirects the program
counter (PC) to the target address when it decodes
one of the following instruction types: uncon­
ditional branch, jump, and subroutine call and
return. The branch-taken penalty is two cycles for
any conditional or unconditional branch. To keep
the pipeline full across conditional branches, the
I-box includes a 512-bit by 4-bit branch prediction
array. The prediction is entered in the branch queue
by the I-box and compared with the actual branch
direction by the E-box. If the I-box predicts incor­
rectly, the E-box invokes a trap mechanism to drain
the pipeline and restart the I-box at the alternate
PC. A branch mispredict incurs a four-cycle penalty
for a branch that is actually taken and a six-cycle
penalty for a branch that is not taken.

TheE-box
The E-box is responsible for the execution of all
non-floating-point instructions, for interrupt and
exception handling, and for various overhead func­
tions. All functions are microcode-controlled, i.e.,
driven by a microsequencer with a 1,600-word con­
trol store and a 20-word patch capability. Since the
control store does not limit the cycle time, we
chose to implement a single microcode control
scheme, rather than hardwire control for the simple
instructions and provide microcode control for the
remaining instructions.

The E-box begins instruction execution based
on information taken from the instruction queue.
References to specifier operands and results are
made indirectly through pointers in the source and
destination queues. 1n this way, most E-box instruc­
tion flows do not need to know whether operands
or results are in register, memory, or instruction
stream.

To improve the performance of certain critical
instructions, the E-box contains special-purpose
hardware. A mask processing unit finds the next
bit set in a mask register and is used in the follow­
ing instructions: FFC, FFS, CALLS, CALLG, RET, PUSHR,

Digita l Teclmical]our11al Vol. 4 No. 3 Summer 1992

and POPR. A population counter provides the num­
ber of bits set in a mask and is used in the CALLS,
CALLG, PUSHR, and POPR instructions. In addition,
microcode can operate the arithmetic logic unit
(ALU) and shifter independently to produce two
computations per cycle, which can significantly
improve the parallel operation of the complex
instructions.

In addition to normal instruction processing, the
E-box performs all power-up functions and inter­
rupt and exception processing, directs operands to
the F-box, and accepts results from the E-box. To
guarantee that instructions complete in instruction
stream order, the E-box orchestrates result stores
and instruction completion between the E-box and
E-box.

TheF-box
The F-box performs longword (32-bit) integer mul­
tiply and floating-point instruction execution. The
E-box supplies operands, and the F-box transmits
results and status back to the E-box.

The F-box contains a four-stage, floating-point
and integer-multiply pipeline, and a nonpipe­
lined, floating-point divider. Subject to operand
availability, the F-box can start a single-precision,
floating-point operation during every cycle, and a
double-precision, floating-point or integer-multiply
operation during every other cycle.

Stage 1 of the pipeline calculates operand expo­
nent difference, adds the fraction fields, performs
recoding of the multiplier, and computes three
times the multiplicand. Stage 2 performs align­
ment, fraction multiplication, and zero and leading­
one detection of the intermediate results. Stage 3
performs normalization, fraction addition, and a
miniround operation for floating-point add, sub­
tract, and multiply instructions. Stage 4 performs
rounding, exception detection, and condition code
evaluation.

Stage 3 performs a miniround operation on the
result calculated to that point to determine if a full­
round operation is required in Stage 4. To do this, a
round operation is performed on only the low­
order three (for single-precision) or six (for double­
precision) fraction bits of the result. If no carry-out
occurs for this operation, the remaining fraction
bits are not affected and the full stage 4 round oper­
ation is not required. If the full round is not
required, stage 4 is dynamically bypassed, resulting
in an effective three-stage pipeline.

15

NVAX-microprocessor VAX Systems

TheM-box
The M-box is responsible for address translation,
access checking, and access to the primary instruc­
tion and data cache (P-cache). The M-box accepts
requests from multiple sources and processes
these requests in an order that reflects both the pri­
ority of the request and the need to maintain
instruction stream ordering of memory reads and
writes. Address translation and cache access are
fully pipelined; the M-box can start a new request at
the beginning of every cycle.

The M-box performs address translation and
access checking by means of a 96-entry, fully asso­
ciative translation buffer (TB) with parity protec­
tion. If a TB miss occurs, the M-box automatically
invokes a hardware miss sequence that calculates
the address of the page table entry (PTE) that maps
the page, fetches the PTE from memory, refills the
TB, and restarts the reference. TB allocation is per­
formed using a not-last-used scheme, which is
similar to a round-robin but guarantees that the
most recently referenced entry will not be over­
written. The M-box reports access violations and
page faults to the E-box, and E-box microcode pro­
cesses these misses with hardware support from
theM-box.

The M-box also translates memory destination
operand addresses provided by the I-box and saves
the corresponding physical address in the physical
address (PA) queue. When the E-box stores a result,
the M-box matches the data with the next address
in the PA queue and converts this data to a normal
write request. The PA queue is also used to check
for conflicts in read requests to a location in which
nothing has been written.

The P-cache is an 8KB, two-way set-associative
cache with 32-byte blocks and parity protection
on tags and data. The P-cache can be configured
to cache instructions, data, or both, and usually
has the latter configuration. For compatibility with
the DECchip 21064 microprocessor, the NVAX+
P-cache can also be configured into a direct ­
mapped organization.

The NVAX C-box
The NVAX C-box maintains the interface to the
external B-cache and to the NDAL bus. The C-box
receives read and write requests from the M-box
and monitors the NDAL for activity that would
require an invalidate operation in either cache.
Consecutive writes to the same quadword (64
bits) are merged into a single quadword datum by

16

packing logic placed at the input of an eight-entry
quadword write queue.

The C-box can accept one instruction read
request and one data read request from the M-box.
Conflict logic in the write queue allows noncon­
flicting read requests to be processed before
queued write requests are performed. Conflicts are
resolved by processing write queue entries until
the conflicting write is completed.

The C-box supports four B-cache sizes: 128KB,
256KB, 512KB, and 2 megabytes (MB). The system
designer can independently select tag and data RAM
speeds to meet system requirements, regardless of
the frequency at which the CPU is running. The
B-cache block size is 32 bytes, and both tag and data
RAMs are protected with error correction code
(ECC) that corrects single-bit errors and detects
both double-bit errors and full 4-bit RAM failures.
The B-cache implements a directory-based broad­
cast coherence protocol in conjunction with a
memory directory containing one bit per 32-byte
block. Each memory directory bit indicates if the
associated block is valid in memory or has been
written and exists in a cache. Unwritten blocks may
exist in multiple caches in the system. Written
blocks may exist in exactly one cache.

An attempt to write to a block that is not both
valid and already written in the B-cache causes the
C-box to request write permission from memory by
means of a special NDAL bus read command. The
memory controller will not respond to any NDAL
bus transactions to a block that is written in a
cache. Instead, it waits for the CPU, which contains
an updated copy of the block, to write the block
back to memory and then completes the original
transaction. All CPUs in the system monitor the
NDAL bus for read and write transactions and com­
pare the address against their B-cache tags. If a
match is found, the cache block is either written
back to memory, invalidated, or both, depending
on the transaction type and the state of the block in
the cache.

The NDAL protocol fully supports multipro­
cessing implementations and does not require any
special chip variants to construct a multiprocessor
system. The C-box invokes invalidate or write-back
requests as required to keep the B-cache and
P-cache coherent with NDAL activity.

The NVAX + C-box
The NVAX+ C-box provides the interface between
the internal functional units and the EDAL pin bus

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The NVAX and NVAX + Highperformance VAX Microprocessors

implemented by the DECchip 21064 micropro­
cessor. This C-box interface includes the basic
interface control for the external B-cache and for
the memory and 1/0 system. The NVAX+ C-box
receives read and write requests from the M-box.
These requests are queued and arbitrated within
the C-box and result in cache or system access
across the EDAL. The NVAX+ C-box also maintains
cache coherency by sending invalidate requests to
the M-box when requested by external logic.

The NVAX+ C-box implementation provides many
of the same features and performance enhancements
available in the NVAX C-box. Included is support for
software-programmable B-cache speeds (one-half,
one-third, or one-fourth times the CPU frequency)
and sizes (128KB to 8MB), write packing, write queu­
ing, and read-write reordering. In addition, the
NVAX+ C-box supports the newer platforms and
increases the degree to which NVAX+ is compatible
with the DECchip 21064 microprocessor. NVAX+
C-box features include programmable system clock
speeds, 1/0 space-mapping, and a direct-mapped
option on the P-cache.

A major difference between the NVAX and NVAX+
implementations is in the B-cache coherence proto­
col. Rather than mandate a fixed B-cache coher­
ence protocol, the NVAX+ implementation allows
systems to tailor the protocol to their particular
needs. NVAX+ cache coherency is implemented
jointly by off-chip system support logic and by the
CPU chip, with relevant information passed
between the two over the EDAL bus. To allow dupli­
cate cache tag stores (if they exist) to be properly
updated, the NVAX+ C-box provides information to
off-chip logic, indicating when the internal caches
are updated. External logic notifies the NVAX+
C-box when an internal cache entry needs to be
invalidated because of external bus activity.

Existing systems configure the B-cache to imple­
ment a conditional write-update snoopy protocol
carried out using shared and written signals on the
system bus. Writes to shared blocks are broadcast to
other caches for conditional update in those
caches. A CPU that receives a write update checks
the NVAX+ P-cache to determine if the block is also
present in that cache. If the block is present, the
B-cache update is accepted and written into the
B-cache, and the P-cache is invalidated. If the data is
not present in the P-cache, the B-cache is invali­
dated. This results in a write-update protocol for
data that was recently referenced by a CPU (and
hence is valid in the P-cache) and reduces to a

Digital TecbntcalJournat Vol. 4 No. 3 Summer 1992

write-invalidate protocol for data that was not
recently referenced.

To accommodate the programmable nature of
both the system and cache clock frequencies, the
NVAX+ C-box supports nine different combinations
of cache and system clock frequencies. This sup­
port allows efficient use of the chip in a wide range
of different performance class systems.

Pipeline Operation
The NVAX and NVAX + chips implement a macro­
pipeline. Multiple VAX macroinstructions are pro­
cessed in parallel by relatively autonomous
functional units with queued interfaces at critical
boundaries. Each functional unit also has an inter­
nal pipeline (micropipeline) to allow a new oper­
ation to start at the beginning of every cycle. The
pipeline operation can be logically depicted, as
shown in Figure 4.

In pipeline segment SO, instruction stream data
is read from the VIC. The next VAX instruction com­
ponent is parsed, and queue entries are made in
segment S 1. For short literal and register specifiers,
no other processing is required. Requests for fur­
ther processing for all other specifiers are queued
to the CSU pipeline, which reads operand base
addresses in segment S2, calculates an effective
address, and makes any required M-box request
contained in segment S3. If an M-box request is
made, address translation and P-cache lookup
occur in segments S4 and SS.

Instruction execution starts with an E-box
control store lookup in segment S2, followed by
a register file read of any required operands in
segment S3, an ALU and/or shifter operation in seg­
ment S4, and a potential result store or register file
write in segment SS. If an M-box request is required,
e.g., for a memory store, the request is made in seg­
ment S4; address translation or PA queue access
occurs in segment SS; and a P-cache access occurs
in segment S6.

Floating-point and integer-multiply instruction
execution starts in the E-box, which transfers oper­
ands to the F-box. The four-stage F-box pipeline is
skewed by half a cycle with respect to the E-box
pipeline, beginning halfway through segment S4.
The fourth segment of the F-box pipeline is con­
ditionally bypassed if a full-round operation is
not required. The result is transmitted back to the
E-box, logically in segment SS of the pipeline.

Pipeline bypasses exist for all important cases
in the I-box and E-box pipelines, so that there are

17

NVAX-m.icroprocessor VAX Systems

so S1 S2 S3 S4 S5 S6 S7 SS
INSTRUCTION FETCH,
DECODE, SPECIFIER EVAL,
MEMORY REQUEST

VIC
READ

INSTN OPERND ADD
TB P-CACHE PARSE READ MEMREQ

INTEGER, LOGICAL
INSTRUCTION EXECUTION

FLOATING-POINT
INSTRUCTION EXECUTION

KEY:

s
SPECIFIER EVAL
INSTN
OPERND
MEMREQ
TB

SEGMENT
SPECIFIER EVALUATION
INSTRUCTION
OPERAND
MEMORY REQUEST
TRANSLATION BUFFER

cs
READ

OPE AND
READ

ALU,
SHIFT

WAITE
TB P-CACHE

ALU
cs
EXPON DIFF
ALIGN, FRMUL T
NOAM, FAADD
BYPASS ROUND

EXPON ALIGN, NORM, BYPASS I
DIFF FAMUL T FA ADD ROUND I

ARITHMETIC LOGIC UNIT
CONTROL STORE
EXPONENT DIFFERENCE
ALIGNMENT AND FRACTION MULTIPLY
NORMALIZATION AND FRACTION ADDITION
RESULT ROUNDING AND BYPASS

Figure 4 Pipeline Organization

no stalls for results feeding directly into subse­
quent operands. The M-box processing of memory
references initiated as a result of operand speci­
fier processing by the I-box is usually overlapped
with the execution of the previous instruction in
the E-box, with few or no stalls occurring on
P-cache hit.

Design Evolution and Trade-offs
The NVAX and NVAX+ chips are the latest in a line of
CMOS VAX microprocessors designed by Digital's
engineers and represent a continuing evolution of
architectural concepts from one implementation
to the next. The preceding chip design was the
CPU for the VAX 6000 Model 400 system. 12 To meet
the time-to-market and performance goals, we
had to modify the NVAX/NVAX+ design throughout
the project.

One of the early vehicles for making design
trade-offs was the NVAX performance model,
which predicts CPU and system performance
and aids in quantifying the performance impact
of various design options. The performance
model is a detailed, trace-driven model which can
be easily configured by changing any of a variety
of input parameters. The model stimuli used
were 15 generic timesharing and 22 bench­
mark instruction trace files that were captured
by running actual programs on existing VAX
systems.

The following sections describe the evolution
of the chip design, including the number of chips,
the pipelining technique used, and various cache
issues.

18

Number of CPU Chips
The VAX 6000 Model 400 core CPU implementation
is a three-chip design: a processor chip, with a
small on-chip primary cache; a floating-point chip;
and a secondary cache controller, with internal
cache tags. The initial attempt at NVAX CPU defini­
tion was a two-chip design. One chip contained
the I-box (with a 4KB VIC), the E-box, the F-box, and
the M-box (with a 16KB, direct-mapped P-cache).
The second chip held the C-box and the B-cache tag
array. The project design goals, especially time-to­
market, led to a single-chip solution, rather than
a two-chip design.

To condense the design from two chips to one,
we halved the sizes of the VIC and the P-cache and
moved the B-cache tags to external static RAMs,
leaving the B-cache controller on-chip. Later, we
were able to reduce the penalty of halving the size
of the P-cache by making it two-way set associative
rather than direct mapped. With these changes, the
performance model showed a performance loss of
less than 1.4 percent across all the traces, relative
to the two-chip design, with a worst-case penalty
of 3.9 percent.

There are strong advantages to the single-chip
solution.

• Designing a single chip takes less time.

• This design requires the production and main­
tenance of only one design database and one
mask set.

• Latency to the B-cache is shorter.

• An off-chip tag store provides more flexibility in
B-cache configurations.

Vol. 4 No. 3 Summer 1992 Dtgttal Tecbntcal joiu-nal

The NVAX and NVAX + High-peiformance VAX Microprocessors

Macropipelining
Run-time performance is the product of the cycle
time, the average time to execute an instruction
(cycles per instruction [CPI]) and the number of
instructions executed. CMOS process improve­
ments made it possible to decrease the NVAX/
NVAX+ cycle time with respect to the previous gen­
eration of VAX microprocessors, thus improving the
first factor in run-time performance.

The VAX 6000 Model 400 CPU design uses tra­
ditional microinstruction pipelining, i.e., micro­
pipelining, to achieve some amount of overlap and
to decrease the CPI. However, using micropipe­
lining techniques would not reduce the NVAX/
NVAX+ CPI to the level required to meet the perfor­
mance goals of the NVAX/NVAX+ projects. We
achieved this reduction by using RISC design and
implementation techniques referred to as macro­
pipelining. In a macropipelined architecture, the
I-box acts much like a load/store engine, dynam­
ically prefetching operands prior to instruction
execution. Using the macropipeline technique in
the NVAX and NVAX+ CPUs makes it possible to
retire one basic complex instruction set computer
(CISC) macroinstruction per cycle, as in a simple
RISC design. Although macropipelining introduced
considerable complexity into the NVAX/NVAX+
design, this complexity resulted in a significant
performance improvement over a traditional
micropipelined design.

Number of Specifiers per Cycle
The NVAX/NVAX+ I-box can parse at most one
opcode and one VAX specifier per cycle. The I-box
design initially considered was capable of parsing
two specifiers per cycle. Although this parsing
scheme represented significant complexity and cir­
cuit risk, intuitively, it seemed important to quickly
retire specifiers in the I-box in order to keep the
macropipeline full. However, the performance
model predicted a maximum performance improve­
ment of less than two percent on our traces, and we
decided to limit complexity and schedule risk by
parsing only one specifier per cycle.

F-box Design
The NVAX F-box design is highly leveraged from the
VAX 6000 Model 400 F-chip design. Rather than
start from scratch, we integrated the existing
design onto the NVAX and NVAX+ CPU chips and
added a final-stage bypass mechanism. In addition,

Digital Technical Journal Vol. 4 No. 3 Summer 1992

unlike the original F-chip implementation, the
NVAX/NVAX+ control of the F-box allows a fully
pipelined operation, which significantly improves
floating-point performance over the F-chip design.
Although a totally new design would have had
shorter floating-point latencies, the combination of
a fully pipelined operation and a final-stage bypass
allowed us to achieve our performance goal, while
meeting our time-to-market goal.

Cache Coherence
Performance studies with the previous generation
of VAX microprocessors clearly indicate that system
bus write bandwidth limits performance unless an
external write-back cache is implemented. In addi­
tion, the VAX architecture required that we imple­
ment the cache coherence protocol in hardware.

The NVAX implementation uses a directory-based
coherence protocol for compatibility with existing
and planned target system platforms. The NDAL bus
supports multiple outstanding read and write
requests, which allows the microprocessor to uti­
lize the capability of the system bus to process
these operations in a pipelined fashion. We investi­
gated the possibility of implementing both direc­
tory-based and snoopy coherence protocols, but
time-to-market considerations and the opportunity
to optimize the design for performance in existing
system platforms outweighed the desirability of
supporting snoopy protocols.

For the NVAX+ implementation, the coherence
policy is determined by hardware external to the
NVAX+ chip, in the given system. The NVAX+ cache
and system interface allows the system environ­
ment to implement a variety of coherence pro­
tocols. Compatibility with the DECchip 21064
interface definition required limiting NVAX+ to one
outstanding external cache miss. However, this
limitation is more than offset by the significantly
better main memory access times achieved in target
systems.

One significant advantage of the NVAX+ scheme
is that most policies associated with the external
cache are determined by hardware outside the
NVAX+ chip (such as the coherence policy), allow­
ing the chip to be used in a wide variety of systems.
Implementing the DECchip 21064 interface on
NVAX+ greatly reduces the hardware engineering
investment required to deliver a VAX CPU and an
Alpha AXP CPU in the same system environment.

For both the NVAX and the NVAX+ chips, cache
coherence is maintained for the P-cache by keeping

19

NVAX-microprocessor VAX Systems

it a subset of the external cache. Externally orig­
inated invalidate requests are forwarded to the
P-cache only when the block is in the external
cache. This minimizes the number of P-cache cycles
spent processing invalidate requests. The two-way
set-associative P-cache might have been slightly
more effective if it were not a subset of the larger
direct-mapped external cache. However, this effect
is far less significant than the effect of expending a
P-cache cycle for every external invalidate event.

Virtual caches almost always have lower latency
than physical caches and usually do not require a
dedicated translation buffer. The VAX architecture
supports the use of a VIC by allowing the cache to
be incoherent with respect to the data stream, i.e.,
not updated with recent writes by the CPU contain­
ing the VIC, or by any other CPU. However, some
mechanism must be defined to make the VIC coher­
ent with the data stream. In the VAX architecture,
the execution of the VAX return from interrupt or
exception (REI) instruction performs this function.

We chose to perform a complete flush of the VIC

as part of the execution of every REI instruction.
Because an REI always follows a process context
switch, a flush during an REI removes the process­
specific virtual addresses of the previous process and
prevents conflict with (potentially identical) virtual
addresses for the new process. We could have also
chosen to keep the VIC coherent with the data stream
and implement per-process qualifiers that would
have made per-process virtual addresses unique.
However, coherence would have required both an
invalidate address and a control path to the VIC, and
some form of backmap to resolve virtual address
aliases. Per-process qualifiers would have required
a VAX architecture change and significant operating
system software changes. To reduce project risk,
we chose to flush the VIC on every REI instruction.

Cache Hierarchy
The NVAX and NVAX+ chips have three levels of
cache hierarchy: the VIC, the P-cache, and the
B-cache. The VIC and P-cache are fully pipelined
and have minimum latency, which allows instruc­
tions to be fetched and processed in parallel at very
high rates.

The default P-cache configuration causes VIC

misses to be looked up in the P-cache. This lookup
process is advantageous since the VIC typically
experiences a smaller miss penalty because latency
for P-cache hits is roughly one-third that for exter­
nal cache hits. The disadvantage is that instruction

20

fills can result in a higher P-cache data stream miss
rate, because they replace data that is likely to be
referenced again. We used the performance model
with available traces to determine that looking up
VIC misses in the P-cache generally resulted
in higher performance. In specific applications,
higher performance can be achieved by not looking
up instruction references in the P-cache. As a
result, we implemented P-cache configuration bits
that allow system designers to implement either
scheme. By default, NVAX and NVAX+ systems are
configured to enable both instruction and data
caching in the P-cache, but this may be changed by
the console software in certain systems to support
prepackaged application systems.

External Cache Size
Both NVAX and NVAX+ support multiple external
cache sizes to allow system designers full flexibility
in selecting external cache configurations. With
existing static RAM: technology, smaller external
cache configurations are usually faster than larger
configurations. Performance modeling indicated
that many applications, especially some popular
benchmarks, fit entirely in a cache whose size is
512KB or less, resulting in slightly better perfor­
mance. However, many common applications
utilize more memory than will fit in such caches
and benefit more from an external cache whose
size is lMB to 4MB, even with the additional latency
involved. As a result, our system designs use larger
but slightly slower external cache configurations.

Block Size
During the analysis of the previous generation
of VAX microprocessors in existing systems, we
observed that the 16-byte block size was too small
to achieve optimal performance on many applica­
tions. As a result, we chose a 32-byte block size for
the NVAX and NVAX+ internal caches. This size
provides a good balance between fill size and the
number of cycles required to do the fill, given
8-byte fill data paths.

For compatibility with installed systems, the size
of the NVAX external cache block and the cache
fill size is 32 bytes. On NVAX+, the external cache
block size may be larger and is 64 bytes in the VAX

7000 Model 600 and VAX 10000 Model 600 systems.
Because both systems implement low-latency
memory and high-bandwidth buses, the increase in
external cache block size results in better
performance.

l-'r>I. 4 No. 3 S11111111er 1991 Digital Tecbu ica l Jo111·ual

The NVAX and NVAX + High-performance VAX Microprocessors

Special Features
The NVAX/NVAX+ design includes several features
that supplement core chip functions by providing
added value in areas of debug, system maintenance,
and systems analysis. Among the features are the
patchable control store (PCS) and the performance
monitoring hardware.

Patchable Control Store
The base machine microcode is stored in a ROM
control store in the E-box. The 1,600-microword
capacity of the E-box controls macroinstruction
execution and exception handling. The PCS con­
sists of 20 entries that can be configured to replace
or supplement the microcode residing in ROM. Each
PCS entry contains a content-addressable memory
(CAM)/RAM pair that stores the patch microword
address and patch microword, respectively. The
ROM control store and the PCS are accessed in paral­
lel. Typically, words are fetched from the ROM
control store, but if a microword address matches
the CAM in one of the PCS entries, then the PCS RAM
for that entry supplies the microword, and the ROM
output is disabled.

Privileged software controls the loading of the
PCS by means of internal processor registers. In sys­
tem operation, a patch file is normally loaded into
the PCS early in the boot procedure, so that any
minimal system capable of starting system boot can
install patches to the base microcode. This feature
presents a way to modify the base NVAX/NVAX+
chip through software; the majority of engineering
change orders (ECOs) can be accomplished by
releasing new patch files, thus alleviating the need
to change the hardware design and retool for the
very large-scale integration (VLSI) fabrication.

We booted the VMS operating system within 16
days of receiving first-pass wafers from fabrication ,
a tribute to a very thorough design verification.
However, the continuing rigorous testing on proto­
type systems revealed several problems with the
base microcode and hardware. The PCS mechanism
helped to identify, isolate, and work around many
of the problems during system debug and thus
allowed extensive system testing to continue on
first-pass chips.

For example, we used a sequence of PCS patches
during system debug to isolate an obscure failure
whose symptom was a transfer to virtual address
0. By patching the main microcode exception hand­
ling routine to check for this event, we identified
the instruction stream sequence that was causing

Digital Technical journal Vol. 4 No. 3 Summer 199.!

the failure. We refined the patch to place additional
checking into various instructions in the sequence.
This refinement allowed us to isolate the exact
instruction that was causing the transfer to PC 0.
With this information, we were then able to repro­
duce the problem in simulation and correct the sec­
ond-pass design. Without this diagnostic capability,
we probably would have needed weeks or months
of additional debug time to isolate the failure.

In addition to using the powerful diagnostic
capability of the PCS, we used patches to correct or
work around the few functional bugs that remained
in the first-pass design. For example, a microcode
patch was used to correct a condition code prob­
lem caused by a microcode bug during the execu­
tion of an integer-multiply instruction. Because the
E-box is central to the execution of all instructions,
we were also able to use patches to correct hard­
ware problems in other boxes. In one instance, a
patch was used to inject a synchronization primi­
tive into the M-box in order to correct an M-box
design error. As a result of the simplicity and ele­
gance of this solution, the final second-pass cor­
rection was to move the patch into microcode ROM,
rather than modify the M-box hardware design.

Peiformance Monitoring Environment
As computer designs increase in complexity, their
dynamic behavior becomes less intuitive. Com­
puter designers rely more and more on empirical
performance data to aid in the analysis of system
behavior and to provide a basis for making hard­
ware and software design decisions. In addition,
multiple levels of logic integration on VLSI chips
restrict the collection of this performance data,
because many of the interesting events are no longer
visible to external instrumentation. The NVAX/
NVAX+ chip design includes hardware multiplexers
and counters that can be configured to count any of
a set of predetermined, internal state changes.

Two 64-bit performance counters are main­
tained in memory for each CPU in an NVAX/NVAX+
system. The lower 16 bits of each counter are imple­
mented in hardware in the CPU, and at specified
points, the quadword counters in memory are
updated with the contents of the hardware coun­
ters. Privileged software can be used to configure
the hardware counters to count any one of a basic
set of internal events, such as cache access and hit,
TB access and hit, cycle and instruction retire, and
cycle and stall. When the 16-bit counters reach a
half-full state, the performance monitor requests

21

NVAX-microprocessor VAX Systems

an interrupt. The interrupt is serviced in a normal
way, i.e ., between instructions (or in the middle of
interruptible instructions) and at an architecturally
specified interrupt priority level. Unlike other inter­
rupts, the performance monitor logic interrupt is
serviced entirely in microcode and then dismissed;
no software interrupt handler is required.

The microcode component updates the counters
in memory when it services the performance moni­
tor interrupt. During a counter update, the micro­
code temporarily disables the counters, reads and
clears the hardware counters, updates the counters
in memory, enables the counters, and resumes
instruction execution. The base address of the
counters in memory is taken from a system vector
table and offset by the specific CPU number, creat­
ing a data structure in memory that contains
a pair of 64-bit counters for each CPU.

Combining the use of hardware, software, and
the PCS created a versatile performance monitoring
environment-one that goes beyond the scope of
the basic hardware capabilities. In this environ­
ment, we can correlate the counts with higher-level
system events and change the representation of the
collected data. For example, microcode can enable
the counters every time a process context is loaded
and disable the counters when a process context is
saved. This feature allows us to set up workloads
and gather dynamic statistics on a per-process
basis. We can also use PCS patches to modify the
memory counter address in order to provide an
additional offset based on one of the five VAX pro­
cessor operating modes: interrupt, kernel, execu­
tive, supervisor, or user. This technique provides
a new performance counter data structure that col­
lects statistics on a per-mode, per-process, per-CPU
basis. Also, microcode patches can be used to add
context checks that filter and count various events.
For example, we can patch the VAX context switch
instruction to count context switches or patch the
interlocked instructions to count the number and
types of accesses to multiprocessor synchroniza­
tion locks.

The performance monitoring environment is a
powerful tool that we have used to collect the data
required to analyze hardware and software behav­
ior and interactions, and to develop an understand­
ing of system performance. We have applied this
knowledge to tune the performance of operating
systems and application software, and continue to
apply the knowledge to improve the design and per­
formance of future hardware and software.

22

Results and Conclusions
With a focus on time-to-market, we shortened the
originally projected NVAX design schedule, from
the start of implementation to the completion of
the chip design, by 27 percent. We booted the oper­
ating system just 16 days after prototype wafers
became available. The use of the PCS allowed us to
quickly debug and work around the few functional
bugs that remained in the first-pass design. Because
of the quality achieved in first-pass chips, we were
able to shorten the schedule from chip design
completion to system product delivery. As a result,
systems were delivered to customers four months
earlier than the originally projected date.

At the same time, we were able to dramatically
improve CPU performance relative to previous VAX
microprocessors by implementing a macro­
pipelined design, in which multiple autonomous
functional units cooperate to execute VAX instruc­
tions. Our internal goal was performance in excess
of 25 times the performance of the VAX-11/780 sys­
tem. We significantly exceeded this goal as demon­
strated by the following Standard Performance
Evaluation Cooperative (SPEC) Release 1.2 perfor­
mance ratings: 13

SPECmark 40.5

SPECfp 48.8

SPEC int 30.4

These ratings were measured on a VAX 6000
Model 600 system at the initial announcement and
are two to three times higher than those for the pre­
vious VAX microprocessor running in the same sys­
tem. Software and system tuning has subsequently
improved the initial numbers on all systems.

The NVAX/NVAX+ design provides an upgrade
path and system investment protection to cus­
tomers with installed VAX systems, as well as a
migration path from an NVAX+ microprocessor to a
DECchip 21064 microprocessor in the new Alpha
AXP systems.

Acknowledgments
We would like to acknowledge the contributions of
the following people:

W Anderson, E. Arnold, D. Asher, R. Badeau,
I. Bahar, M. Benoit, B. Benschneider, D. Bhavsar,
M. Blaskovich, P. Boucher, W Bowhill, 1. Briggs,
S. Butler, R. Calcagni, S. Carroll, M. Case, R. Cas­
telino, A. Cave, S. Chopra, M. Coiley, E. Cooper,
R. Cvijetic, R. Davies, M. Delaney, D. Deverell,

Vol. 4 No. 3 Summer 1992 Digital Technical journal

The NVAX and NVAX + High-performance VAX Microprocessors

A. DiPace, C. Dobriansky, D. Donchin, R. Dutta,
D. DuVarney, J. J. Ellis, J. P. Ellis, H. Fair, B. Feaster,
T. Fischer, T. Fox, G. Franceschi, N. Geagan, S. Goel,
M. Gowan, J. Grodstein, P. Gronowski, W. Grund­
mann, H. Harkness, W. Herrick, R. Hicks, C. Holub,
J. Huber, A. Jain, K. Jennison, J. Jensen, M. Kantro­
witz, R. Khanna, R. Kiser, D. Koslow, D. Kravitz,
K. Ladd, S. Levitin, J. Licklider, J. Lundberg,
R. Marcello, S. Martin, T. McDermott, K. McFadden,
B. McGee, J. Meyer, M. Minardi, D. Miner, E. Nangia,
L. Noack, T. O'Brien, J. Pan, H. Partovi, N. Patwa,
V Peng, N. Phillips, R. Preston, R. Razdan, J. St.
Laurent, S. Samudrala, B. Shah, S. Sherman, W. Sher­
wood, J. Siegel, K. Siegel, C. Somanathan, C. Stolicny,
P. Stropparo, R. Supnik, M. Tareila, S. Thierauf, N.
Wade, S. Watkins, W. Wheeler, G. Wolrich, and Y Yen.

References

1. R. Brunner, ed., VAX Architecture Reference
Manual, Second Edition, (Bedford, MA: Digi­
tal Press, 1991).

2. D. Dobberpuhl et al. , "A 200MHz 64b
Dual-Issue CMOS Microprocessor," IEEE Inter­
national Solid-State Circuits Conference,
Digest of Technical Papers, vol. 35 (1992):
106-107.

3. R. Sites, ed., Alpha Architecture Reference
Manual, (Burlington, MA: Digital Press, 1992).

4. D. Fite, Jr. et al., "Design Strategy for the VAX
9000 System," Digital Technical Journal,
vol. 2, no. 4 (Fall 1990): 13-24.

5. W. Anderson, "Logical Verification of the
NVAX CPU Chip Design," Digital Technical
Journal, vol. 4, no. 3 (Summer 1992, this
issue): 38-46.

6. M. Callander et al., "The VAXstation 4000
Model 90;' Digital Technical Journal, vol. 4,
no. 3 (Summer 1992, this issue): 82-91.

7. J. Crowell and D. Maruska, "The Design of the
VAX 4000 Model 100 and MicroVAX 3100 Model
90 Desktop Systems," Digital Technical
Journal, vol. 4, no. 3 (Summer 1992, this
issue): 73-81.

8. J. Crowell et al., "Design of the VAX 4000
Model 400, 500, and 600 Systems," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 60-72.

D igital Technical journal Vol. 4 No. 3 Summer 1992

9. L. Chisvin, G. Bouchard, and T. Wenners, "The
VAX 6000 Model 600 Processor," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 47-59.

10. A. Agarwal et al., "An Evaluation of Directory
Schemes for Cache Coherence;' Proceedings
of the 15th Annual International Sympo­
sium on Computer Architecture (May 1988):
280-289.

11. P. Stenstrom, "A Survey of Cache Coherence
Schemes for Multiprocessors;' Computer
(June 1990): 12-24.

12. H. Durdan et al., "An Overview of the VAX
6000 Model 400 Chip Set," Digital Technical
Journal, vol. 2, no. 2 (Spring 1990): 36-51.

13. VAX 6000 Datacenter Systems Performance
Report (Maynard, MA: Digital Equipment
Corporation, 1991).

23

The NVAX CPU Chip:

Dak R. Donchin
Timothy C Fischer

ThomasEFox
Victor Peng

Ronald P. Preston
William R. Wheekr

Design Challenges,
Methods, and CAD Tools

The NVAX CPU chip is a 1.3 million transistor, VAX microprocessor designed
in Digitals 0. 75-micrometer CMOS-4 technology. It has a typical cycle time of
12 ns under worst-case operating conditions. The goal of the chip design team
was to design a higlrperformance, robust, and reliable chip, within the con­
straints of a short schedule. Design strategies were developed to achieve this goal,
including organization of a chip design flow and new implementation and veri­
fication methods. New proprietary CAD tools also played important roles in the
chip development.

The NVAX CPU chip is a 1.3 million transistor, VAX
microprocessor designed in Digital's 0.75-micro­
meter fourth-generation complementary metal­
oxide semiconductor (CMOS-4) technology. The
implementation of the NVAX CPU chip posed many
design and complexity management challenges.
The combination of the chip performance goal, the
high level of integration, and the small feature sizes
of the CMOS-4 technology increased the severity of
on-chip electrical issues and the difficulty of verify­
ing the physical design. These challenges were
intensified by a short design schedule. This paper
describes some of the design strategies, methods,
techniques, and proprietary computer-aided design
(CAD) tools used by the chip design team, which
were instrumental in meeting these challenges.

Chip Overview
In order to appreciate the design challenges that
were faced, it is necessary to understand the size
and complexity of the design. The NVAX CPU chip
has a macropipelined microarchitecture and imple­
ments the VAX instruction set. 1 Because it is a com­
plex instruction set computer (CISC) architecture,
the VAX architecture implements varable length
instructions with complex addressing modes, and
precise traps and exceptions. The chip is composed
of five subchips, or functional boxes, called the
I-box, E-box, F-box, M-box, and C-box.

24

The I-box fetches, parses, and decodes instruc­
tions, and predicts conditional branches. The E-box
runs under microprogrammed control and executes
all instructions, except floating-point and long­
word integer multiply instructions, which are exe­
cuted by the F-box. The M-box processes memory
references, including virtual-to-physical address
translation. The C-box controls the off-chip backup
cache (the second-level cache for data and third­
level cache for instructions) and contains the bus
interface unit. The chip also has a direct-mapped
2 kilobyte (KB) virtual instruction cache (VIC), a
two-way, set-associative 8KB data and instruction
primary cache (P-cache), a 12KB control store read­
only memory (ROM), a 96-entry, fully associative
translation buffer, and a 512-bit by 4-bit conditional
branch history random-access memory (RAM) for
branch prediction. The chip photomicrograph,
with box and large array boundaries outlined, is
shown in Figure I.

The NVAX chip's layout database is composed of
over 4,200 unique custom cells, and has a total tran­
sistor count of 1.3 million. It was the first product
chip to be implemented in Digital's 0.75-microme­
ter, three metal layer, 3.3-volt (V) CMOS-4 technol­
ogy. 2 The chip's typical cycle time under worst-case
operating conditions is 12 nanoseconds (ns) or 83.3
megahertz (MHz), and it dissipates 14 watts (W). A
summary of the chip features is given in Table 1.

Vol. 4 No. 3 Summer 1992 Dtgttal TechntcalJournal

The NVAX CPU Chip: Design Challenges, Methods. and CAD Tools

Figure 1 NVAX Chip with Bo:,ces and Large Arrays Outlined

Design Goals and Constraints
Our design goal was to develop a high-performance
chip that is electrically robust and reliable. We had
to accomplish this within the CMOS-4 process
constraints and the design time allotted by the
development schedule. Our initial implementation
schedule was based on scheduling metrics from

Digital Technical Journal Vol. 4 No. 3 Summer 1992

previous designs. Due to competitive marketing
pressures, this schedule was substantially reduced,
making it significantly more aggressive than for pre­
vious designs. Our cycle time was constrained to
a maximum of 14 ns under worst-case conditions.
Electrical reliability had to be guaranteed for cycle
times down to 10 ns under worst-case conditions.

25

NVAX-microprocessor VAX systems

Table 1 Summary of Chip Features

Transistors

Die size

Cycle t ime

Signal pads

Supply pads

Package

Power dissipation
at 12 ns

Note: *Through-hole pin grid array

1.3 million

16.2 mm by 14.6 mm

12 ns (typical)

261

121

339 pin THPGA*

14 W (average)

Based on CMOS-4 process limits, the chip die size
was constrained by a maximum diagonal length of
21.8 millimeters (mm).

The trade-offs between design time and chip cha­
racteristics, such as performance, area, and function,
were the dominant issues throughout the project.

Design Strategy and Challenges
To achieve the goal of a 14-ns cycle time, we
designed custom circuitry and layouts, including
dynamic, asynchronous, and differential logic. To
deal with the size and complexity of the chip,
together with the schedule constraint, our strategy
called for a large design team. Complex, custom
very large-scale integration (VLSI) chip designs
inherently have high levels of design schedule risk.
To reduce our exposure to schedule slips, we made
several high-level design decisions early in the proj­
ect. Wherever possible, we avoided using circuit
structures that were time-consuming to analyze.
We defined and followed detailed design guidelines
to ensure design consistency, robustness, and re­
liability. We used a top-down design flow and
made extensive use of proprietary CAD tools that
were expressly developed for high-performance
custom VLSI design. Lastly, we minimized chip area
by handcrafting layout in sections of the chip
where the leverage on reducing overall die size was
significant; or when critical path node had to be
minimized to satisfy the path timing constraints.

The floor plan was accurately monitored
throughout the project. This was essential because
initial die estimates indicated that the chip size was
close to the maximum size that the CMOS-4 tech­
nology could support. These strategic decisions
reduced design time and allowed us to focus on
achieving a fast CPU cycle time without compromis­
ing the quality of the design.

26

In addition to minimizing risks to the schedule,
we had to solve several global design and veri­
fication problems to achieve the cycle time of 14
ns. The design team assumed a 10-ns cycle time
when it addressed problems that are exacerbated
by a faster cycle time, such as interconnect reliabil­
ity and signal integrity. Some of the key concerns
were on-chip power, ground, and low skew clock
distribution, and the routing of long signal inter­
connects. Verification of the custom layout was
another challenge, particularly given the schedule
constraints. The use of CAD tools was a significant
benefit in development of the chip. These issues are
addressed in more detail in the remaining sections
of this paper.

Design Flow and Management
The chip design team was organized into five semi­
autonomous groups, each of which focused on the
design of a functional unit (C-box, E-box, F-box,
I-box, M-box). To ensure design compatibility and
consistency across the chip, each team adhered to
the same design guidelines and methods. For exam­
ple, box-level interfaces were rigorously defined, a
consistent register transfer level (RTL) modeling
style was used, and circuit noise margins, transistor
sizing, and other circuit and layout guidelines were
observed. The design team followed the top-down,
hierarchical design flow depicted in Figure 2, but
there was much overlap between the activities.
Complexity was managed by thoroughly reviewing
and testing the design at each level of abstraction
(microarchitecture performance model, RTL model,
logic, circuit, and layout), and by using CAD tools
to verify that all the design representations were
consistent across the levels of abstraction. When
making design decisions, we considered the im­
plications across the levels of abstraction. For
example, when we made microarchitectural trade­
offs, we considered the implications for power
consumption, logic complexity, circuit speed and
cycle time, layout, die size and, of course, schedule.

Peiformance Model and
Microarchitecture Specification
The NVAX performance model is a software pro­
gram that models the microarchitecture of the
NVAX chip. The architecture team used the model
to study the effect of various microarchitectural
factors on overall CPU performance and to define
the chip's microarchitecture. The performance
model was updated as the microarchitecture

Vol. 4 No. 3 Summer 1992 Digita l Techn ical]ounrnl

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

PERFORMANCE MODEL
AND MICROARCHITECTURAL
SPECIFICATION

!
RTL MODEL AND
CHIP FLOOR PLAN

i
RTL MODEL VERIFICATION
AND SCHEMATIC DESIGN

i
SCHEMATIC LOGIC AND
CIRCUIT VERIFICATION AND
PHYSICAL LAYOUT DESIGN

i
FULL-CHIP LAYOUT
VERIFICATION

Figure 2 NVAX Design Rmo

evolved so that the team could assess the impact of
design changes on performance.

The chip microarchitects wrote a textual speci­
fication of the chip that documented its function
and microarchitecture. As the details of the design
were resolved, the specification was updated and
expanded to reflect the actual implementation. The
functional design verification team used the speci­
fication to develop implementation-specific tests.

RIL Model and Floor Plans
The design team developed a detailed RTL model
of the chip once the chip specification was
completed. This model was written in Digital's
proprietary BDS hardware description language. As
the BDS code was being written, many logic/circuit
feasibility studies were spawned. The model was
used to verify that the proposed microarchitecture
executed VAX code correctly It also served to guide
logic implementation and was used by system
design teams to develop modules based on the
NVAX microprocessor.:1.4 The RTL model was up­
dated as the project progressed.

The chip floor plan was devised early in the
design to estimate and track the die size and to
provide area-impact data for microarchitectural
trade-offs. Once the chip-level floor plan was
stable, the box design teams developed more

Digital Technical Journal Vol. 4 No. 3 Summer 1992

detailed box-level floor plans. All floor plans were
entered directly into the layout database and main­
tained throughout the project. Tracking the floor
plan at several levels eased the difficulty of integrat­
ing the box layouts to form the full-chip composite
late in the project. More details on floor plans and
the use of CAD tools are described in the section
Floor Plan Techniques.

RIL Verification and Schematic Design
We verified the RTL model by running a com­
bination of pseudorandom tests, standard VAX
architecture tests, and handwritten implemen­
tation-specific tests. In order to identify flaws
before time-consuming schematic and layout
changes were implemented, we ran regression tests
on the model whenever we made changes to the
design. To track design changes and issues, design­
ers posted a description of the changes and issues
along with the ramifications for other parts of the
design in an electronic bulletin board. Each new
entry to the bulletin board was mailed electroni­
cally to every member of the team. This tracking
procedure helped reduce design iterations caused
by stale information.

We used the RTL model as a specification for logic/
circuit design. To synthesize logic directly from the
RTL model for circuits with less critical area and
speed constraints, we used a CAD tool, OCCAM.
Because these constraints were stringent for a large
portion of the chip, engineers designed most of the
circuits. We developed a library of common circuit
and layout structures to reduce the design and veri­
fication effort. We defined and followed detailed
design guidelines to ensure design consistency
More information on the types of circuits used on
the NVAX chip is being published in "A 100 MHz
Macropipelined VAX CMOS Microprocessor."s

Schematic Verification and Layout Design
We held design reviews and used CAD tools to
check schematics for unintended deviations from
the design guidelines. We performed extensive
logic simulation on the schematics. We used SPICE
for accurate critical path timing analyses, and a
static circuit timing analyzer, NTV, to detect uniden­
tified slow paths.6 (NVAX timing verification is
described in a later section.) Figure 3 is a histogram
of slow paths as a function of cycle time that was
generated by NTV about two months before we
taped out the first pass of the chip. Because NTV
does not predict circuit delays as accurately as

27

NVAX-microprocessor VAX systems

Cl)
I
I-
< a.
~
0
....J
Cl)

LL
0
cc
w
[Il

~
::J
z

100

90

80

70

60

50

40

30

20

10

oL-~L---.J'-''----'--'-~~~~ --'--'-~-'-~-'-
o.9o o.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

CYCLE TIME (RELATIVE TO DESIGN TARGET)

Note: Data is normalized based on 14-ns design target.
The cycle time of 1.0 equals 14 ns.

Figure 3 Early Full-chip NFV Histogram

SPICE, all questionable paths flagged by NTV were
simulated using SPICE. Those that were found to be
slow were redesigned to meet the target cycle time.

Logic and circuit changes resulting from these
analyses and the impact of these changes on other
design representations and verification tests were
tracked on the electronic bulletin board. Since many
people were working on the design simultaneously,
detailed tracking of changes and open issues proved
crucial to meeting our schedule. A single change
often required modification and reverification of
the RTL model, schematics, layout, verification tests,
and in some cases the chip textual specification.

Layout design proceeded on a subbox, or section,
basis. A typical section consisted of approximately
ten related schematics. Each section was checked
for connectivity and correctness after its layout was
completed. Sections within a box were then inte­
grated and verified (boxes contained from 5 to 15
sections) before the complete chip composite was
assembled.

Schematic verification and layout design were
performed concurrently during much of the proj­
ect . Although this overlap led to design changes
that increased the amount of layout rework, the
chip development schedule would have been signif­
icantly longer if schematic verification and layout
design had been done serially. Layout design took
about a year to complete.

Layout Verification
Section- and box-level layout verification was per­
formed in parallel with the layout design. Once

28

layout design was completed, the final stages of lay­
out verification ensured that the assembled chip
layout met reliability and integrity guidelines for
global nodes such as power, clocks, and signals.
Most of the layout checks were performed by CAD
tools that used the CMOS-4 layout design rules and
NVAX-specific electrical rules. More details on lay­
out verification are given in the section Layout
Verification Tools.

Floor Plan Techniques
With 1.3 million transistors, nearly half a million
signal nodes, and over 16 million polygons on the
NVAX die, precise monitoring of the floor plan was
critical. From the earliest area estimates, it was
clear that the chip size was close to the maximum
that the CMOS-4 technology could support. We had
to ensure that the die did not exceed the technol­
ogy limit.

Area Estimation and Placement
Preliminary estimates of the die area were made by
extrapolations from previous CPU designs. ,s Better
area estimates were developed for regular struc­
tures, such as the cache arrays and data paths, by
creating test layout structures. More accurate floor
plans of the control sections of the chip were devel­
oped after the RTL model was written. In most
cases, the partitioning of the RTL model was a close
approximation to the desired schematic and layout
partitioning. To estimate the area of random con­
trol logic, we used the OCCAM logic synthesis tool,
and in many cases Digital's proprietary layout syn­
thesis tool, CLEO.

As seen in the chip photomicrograph in Figure 1,
the clock generator and drivers (CLKGEN) were dis­
tributed in a narrow north-south channel near the
center of the chip. That location was chosen to min­
imize clock skew. The I-box, E-box, M-box, and
C-box subchips are located on the right side of the
chip. Their relative positions were chosen to

accommodate the flow of the pipelined data in the
main data path, which runs north-south just to the
right of CLKGEN. The VIC, F-box, and P-cache were
placed on the left-hand side of the chip, adjacent to
the boxes with which they communicate.

Interconnect Planning and Routing
After we determined the initial placements of all
major control sections, we used a new two-level
block router called GLOW to route the layout for the
interbox and intrabox signals. Routing was per­
formed at the same time schematics for the control

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

areas were in design. Since layout did not exist
for the control blocks, GLOW was allowed to route
signals over the blocks with some restrictions, as
well as route signals in channels. We influenced
how GLOW routed signals by specifying some areas
of blocks as opaque (no over-the-block routing per­
missible) and some as porous (over-the-block rout­
ing is permissible if channels are full). Typically,
cell blocks that contained regular arrays (such as
programmable logic arrays) or critical circuitry
were identified as opaque, whereas most random
control areas were identified as porous.

The capacitance values of the interbox and intra­
box signal interconnects were extracted from the
layout and used in circuit simulations of critical
paths. In some cases, the placement of sections and
the signal routing were altered to reduce intercon­
nect capacitance on critical signals. The use of syn­
thesis tools such as GLOW, OCCAM, and CLEO

allowed a much more detailed floor plan to be
developed than was typical for prior designs.7.8 The
ability to feed capacitance information from
floor plan routing back into SPICE simulations
proved invaluable.

I
VIC ~II

:I·

SUPER BIT
LINES(M3) ~

-
f-

·I· ..

-
F-BOX
M3POWER~
STRAPS

-
-
t-

-

I I I

VIC

Ill
11 ~ I 1=11111

z
UJ
CJ
~
...J
()

. ..

F-BOX

'l~ACI P-CACHE
SUPER BIT
LINES(M3) ~

-
-
-

I I I I
i

M3 POWER RING
_/

f
I

Third Metal Layer
The top aluminum interconnect layer (M3) in the
CMOS-4 process was specifically designed to meet
the electrical requirements of the NVAX chip. The
third metal layer was designed for a low sheet resis­
tivity and high current capacity in order to handle
the electrical problems associated with the power
grid, clock distribution, critical signal routing, and
large array design.

Power and Ground Distribution
When the NVAX microprocessor is run at maximum
speed, it draws a direct current of about 5 amperes.
Due to CMOS switching transients, the alternating
current peaks are considerably higher. Distributing
power (~d) and ground (~

5
) across the chip while

keeping power grid voltage drops (IR) under 300
millivolts (10 percent of minimum Vdd) was a major
challenge. To address this constraint and meet
interconnect reliability goals, we used the low­
resistance M3 layer extensively to distribute ~d

and ~s· As shown in Figure 4, we designed the
right-hand side of the chip to be covered with
an interdigitated array of alternating ~d and ~s

, MAIN CLOCK ROUTING (M3)
I

-"\

I \

I I I

=I-BOX ::

I

1J I :Y

r POWER
OR CLOCK
LINES (M3)

I I ff'~ POWER OR
~LJ CLOCKM2

STRAPS I 11
I

~CONTROL
I __ J__ I'

E-Box 1=11 IV.
I=~,~

/ STORE ROM
SUPER BIT
LINES (M3)

1=JI

M-BOX

C-BOX

I I I

~POWER
OR CLOCK
LINES (M3) ~ ~POWER
OR CLOCK
LINES (M3)

,--

,--

,--

,--

_
M3 POWER SPINE

Figure4 Metal 3 Routing

Digi tal TechnicalJour11al Vol. 4 No. 3 S 11111111 e r 1992 29

NVAX-microp rocessor VAX systems

lines, each 17 micrometers wide. Vertical metal
two (M2) lines are used to strap the power lines
and form a ~d grid and a V.s grid. The ~d and V.s
distribution of the left-hand side of the chip was
different from that on the right because of the spe­
cial layout requirements of the cache arrays and the
F-box.

Individual cell layout did not contain M3. The
power, ground, and clock connections for a cell
were routed by short vertical M2 lines inside each
cell. These M2 lines were connected to the M3
grids automatically by a CAD tool.

OSCILLATOR_LOW - .,
',

DIFFERENTIAL AMPLIFIER - '·, ,
', -·,

'v
/

t
UPPER

OSCILLATOR
(M3)

VIC
PAD

CLOCK
CLOCK

VIC
BUFFER ' .

_j_jJ_----t:
I GLOBAL I

CLKGEN

F-BOX F-BOX
CLOCK
BUFFER

On-chip Clock Distribution
In order for us to meet the performance goals, it
was critical to keep clock skews small and edge
rates sharp across the chip. As shown in Figure 5,
special attention was given to the clock distribu­
tion scheme. Differential outputs from an off-chip
oscillator were supplied to a receiver located at the
top of the chip. The output of the receiver was
routed to the global clock generator (CLKGEN),
which was placed at the center of the chip to
reduce clock skew. The outputs of the global clock
generator were buffered by four inverters to

, - OSCILLATOR_HIGH

~ UPPER PAD CLOCKS (M3)
/

/
/

I-BOX v
CLOCK I-BOX

~ -
BUFFER x ,:-·

I
/""'.'.

to..
.%)~/

v E-BOX

:~
E-BOX DATA
CLOCK PATH - r 01

v I /
,(v ~

M-BOX

E-BOX
CLOCKS
M2 STRAPS

E-BOX
CLOCKS
(M3)

11+----1 ~ CLOCK M-BOX
GLOBAL
CLOCKS
(M3)

~ BUFFER
~

.
P-CACHE C-BOX C-BOX P-CACHE CLOCK CLOCK
BUFFER BUFFER

I,

LOWER
PAD
CLOCK

t
.__~~~~~~~~~~~-·~~~~~~~~~~~~.....I

__ LOWER PAD CLOCKS (M3)

Figure 5 Clock Generation and Distribution

30 Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

increase their driving capability. The clocks were
then distributed, using the low-resistance third
metal layer (17 milliohms per square), from the top
to the bottom of the central clock routing channel
that spans the chip.

Clocks were supplied to the different functional
boxes by locally tapping off the central clock rout­
ing and buffering each signal with four inverters to
further increase the signal's driving capability. This
buffering helps to minimize the capacitive loads
seen by the clock phases in the central routing
channel in which the RC delays are held to 30 pico­
seconds (ps). To reduce distribution skew between
the global clock lines, loading on each global line
was balanced by adding dummy loads to the more
lightly loaded lines. The buffered clock phases
were distributed to the east and west of the central
clock routing channel, again using M3 to reduce RC
delay. The east-west clock routing was strapped
with M2 as shown in Figure 5. These straps were
not allowed to cross box boundaries. Box-level
clock skew was reduced by using a common
section buffer design and layout, and by carefully
tuning the buffer drive capability to the clock load
in each section.

Finally, before the clocks were used by the logic,
the clock signals were locally buffered. These final
stages of local buffering served two purposes: they
reduced the gate loading on the east-west clock
routing, and they helped to sharpen the clock edges
seen by the logic.

The global clock routing network was spaced so
that the RC delays of local clock branches would
never exceed a negligible 125 ps. We calculated the
RC delays of local clock branches using the WAWOTH

layout interconnect analyzer (described in the
section New Proprietary CAD Tools) and, where
necessary, rerouted branches to meet the 125-ps
design goal. A sample RC plot, generated by
WAWOTII for a section of local clock routing, is
given in Figure 6. The clock skews and edge rates
across this 1.62-centimeter chip are less than 0.5 ns
and 0.65 ns, respectively.

Microcode Control Store
The design of the 12KB ROM control store was sim­
plified by dividing it into four subarrays. Each subar­
ray has its own M 1 bit lines. The M 1 bit lines from
the subarrays are cascaded onto low-capacitance
M3 super bit lines that extend over all four subar­
rays. Since the capacitance of the M3 super bit lines
is low, the access time is very fast, obviating the

Digital Tecbntcal]ournal Vol. 4 No. 3 Summer 1992

need for sense amplifiers and voltage reference gen­
erators. This substantially reduced the time
required to design and verify the control store ROM.

Primary Cache
A similar technique was used in the 8KB P-cache to
ease the timing requirements. The three high-order
P-cache address bits must be translated and conse­
quently become valid later than the untranslated
lower-order bits. By dividing the P-cache into eight
subarrays, each with its own sense amplifiers, the
cache subarray access can be started before the
three translated address bits are valid. When the
last three address bits become valid, the outputs of
the subarrays are multiplexed onto the M3 super bit
lines, resulting in a faster cache access time.

Layout Verification Tools
Verifying the NVAX chip layout presented several
CAD software challenges. Prior to the NVAX design,
the existing layout verification tools were able to
extract full-chip netlists from layout for all large
designs in a single batch process. However, the
existing layout netlist extractor could not handle
designs such as NVAX with over one million transis­
tors. Also, a more accurate capacitance extraction
algorithm was required to calculate side-to-side and
fringing capacitance, which came to show signifi­
cant effects in the small physical dimensions in
CMOS-4. Furthermore, accurate interconnect resis­
tance extraction was needed for NVAX. A combina­
tion of new CAD tools (see Figure 7) and design
methods was employed to meet the NVAX layout
verification requirements.

Partitioning Using "Clean Belts"
To address the problem of extracting parasitic
capacitance data from such a large design, the NVAX

chip layout was constructed so that each chip parti­
tion could be independently extracted without
introducing inaccuracies in the results. The chip
was partitioned into nonoverlapping regions, each
of which had a rectilinear annulus or "clean belt"
around its periphery. A clean belt is a rectangular
region that contains only metal lines and satisfies a
number of layout design rules beyond those set by
the technology. The clean belt layout rules pre­
vented design rule violations within the clean belt
and between adjacent clean belts. The rules also
ensured that extracting parasitic capacitance from
a region enclosed by a clean belt could be done

31

NVAX-microprocessor VAX systems

101.6
102.0

103.2
105.8

104.0
103.2

101.9
101.6

104.0
101.8

101.5
101 .1

100.7

100.7
100.6

100.9
101.0

102.2

105.7

104.7

Note: Times are given in picoseconds.

107.0
107.0

106.2
106.2

-- " ·,. · · · .. ·.... ····rt ... · ·, · · -

L i··~··· ·-r:J···············;

-················ . i\:········ f.:. _

Figure 6 . WAWOTH RC Delay Analysis Results for a Clock Node

accurately regardless of the materials that border
the region. Partitioning the chip in this manner
made it easier to locate global wiring errors.

Hierarchical Netlist Extraction
A new netlist extractor, HILEX, was used to meet the
high data capacity requirements of the NVAX micro­
processor. HILEX is more efficient than the previous
in-house netlist extractor because it recognizes lay-

32

out cell instances and in many cases needs to
extract cell-only definitions. In contrast, the previ­
ous netlist extractor "flattened" the layout data into
one nonhierarchical cell and, therefore, extracted
all data without reusing previously extracted cell
definitions. The actual performance improvement
realized by HILEX depends on the hierarchy of the
chip layout design. If very few cells are replicated,
or cells are replicated in a way that requires the

Vol. 4 No. 3 Summer 1992 Digital TechnicalJour11al

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

CUP

CAPACITANCE
NETLIST

SCHEMATIC
NETLIST

WLC

MATCH FILE

HILEX

MISMATCH
FILE

REX

SUBNODE
RESISTANCE

RESULTS
FILE

WAWOTH

RESULTS
PLOT

Figure 7 Simplified Layout Verification Tool Flow

extractor to explode the cells (i.e., create more flat
data) to extract them properly, then minimal per­
formance improvements are seen. An example of
the latter situation is an array of a repeated pair of
overlapping cells that forms one or more transis­
tors due to the overlap (one cell contains diffusion
areas that become source and drain regions when
overlapped with the other cell, which contains
polysilicon lines that become transistor gates).

Several layout design guidelines were defined to
ensure that performance improvements from using
HILEX would be realized. Adherence to the guide­
lines minimized situations that require HILEX to
explode cells and encouraged the use of hierarchy
in the layout. However, since it was not always pos­
sible to adhere to these design recommendations,
HILEX was designed to handle large amounts of flat
data.

The chip netlist was extracted from the complete
chip layout prior to tape out. This presented quite a
challenge since even with the use of HILEX, extract­
ing the chip netlist from the 225MB chip layout file
in one pass required more than the maximum of
two million virtual pages of memory allowed by the

Digital Tech11ical Joun,al Vol. 4 No. 3 Summer 1992

VMS operating system architecture. To go beyond
the VMS virtual memory limit, the internal memory
management routines within HILEX were modified
to allocate additional heap from the process stack
(in Pl space) when the VMS memory allocation
routines indicated that PO memory space was
exhausted. This technique was used to allocate the
2.5 million virtual pages required for full-chip con­
nectivity extraction.

Netlist Comparison
A utility called WLC was used to verify that netlists
extracted from layout by HILEX matched netlists
generated from the chip schematics. Since the
NVAX schematic hierarchy rigorously matched the
layout hierarchy only at certain levels, the con­
nectivity comparison was performed flat. WLC
employed a graph-building and graph-traversing
algorithm that worked well for comparing less than
500,000 device connections. However, substantial
paging occurred when comparing larger netlists.
Since the NVAX chip contained 1.3 million devices,
the performance of WLC was inadequate for full­
chip netlist verification.

33

NVAX-microprocessor VAX systems

To improve the elapsed time of netlist compari­
son batch jobs, multiprocessing was employed.
HILEX was modified to write the extracted netlist of
the clean belt partitions. Each partition was then
compared by WLC, in parallel on multiple CPUs, to
its equivalent schematic-generated netlist. This
approach reduced the total elapsed time for the
NVAX chip netlist comparison from more than three
days to seven hours. Cross-reference files output by
WLC and the schematic netlists were processed by a
separate program, MATCH_CHECKER, to verify the
connectivity of nodes that crossed partition bound­
aries. This additional step added only eight minutes
to the total elapsed time for comparing chip
netlists.

Capacitance Extraction
The small spacing dimensions of the submicron
CMOS-4 process caused fringing and lateral capaci­
tances to contribute significantly to the total nodal
capacitance. The existing layout extraction tool
only extracted overlapping parallel plate capaci­
tance. Thus, a new layout capacitance extractor,
CUP, was written to accurately extract fringing, lat­
eral, and area capacitances.

CUP extracted interconnect capacitance from
layout by decomposing interconnect layout into
pieces of uniform layout cross sections. The geome­
try of each interconnect piece, and its distance
from layers above, below, and adjacent to it, are
used to calculate its area, fringing, and lateral com­
ponents of capacitance. The empirical formulae
used to calculate the capacitive components were
based on curves of two-dimensional electrostatic
simulation data of various layout cross sections.
This technique produced accurate internodal and
total interconnect capacitance data. This accuracy
resulted in CUP being very compute intensive.

Multiprocessing was employed again to reduce
the elapsed turnaround time for capacitance

extraction batch jobs. CUP sectioned the layout
database into fixed-size stripes, which were
inserted into the batch queues of multiple CPUs.
This method reduced the data complexity and
allowed as many parallel computations as there
were processors. During NVAX chip design, capaci­
tance extraction was partitioned across as many as
20 CPUs. Multiprocessing reduced, for example, the
NVAX I-box capacitance extraction from 26 hours to
just 8 hours using 4 processors. Extraction of the
E-box took 40 hours using one processor, but only
12 hours with 4 CPUs. Table 2 shows the device and
node counts of the NVAX boxes (excluding the
caches), and the CUP extraction run times on a VAX
6000 Model 500. Each box run resulted in approxi­
mately 500,000 extracted parasitic capacitors.

Resistance Extraction
Verifying the NVAX power, ground, and clock net­
works, and long signal lines required accurate
extraction of interconnect resistance from layout.
To meet this requirement, the REX resistance
extractor was developed.9 REX processed the
output of HILEX to produce a series and parallel
combination of resistors that modeled a node's
interconnect. The resistor network was generated
by fracturing the node layout into polygons based
on changes in the layout geometries (width, length,
bends) of the node or the occurrence of contacts.
The effective resistance of each polygon and con­
tact, or cluster of contacts, was then determined
from technology parameters and the polygon
geometries.

The power and ground resistor networks were
extracted for individual boxes rather than the entire
chip. The resulting networks were still quite large
due to the fine granularity of the REX extraction
process. Table 3 shows the extraction times for a
REX job running on a VAX 6000 Model 500 and the
total number of resistors extracted from each box.

Table 2 CUP Parasitic Capacitance Extraction Batch Run-time Data for NVAX Boxes

Single CPU Four CPUs
Box Device Count Node Count (Hours) (Hours)

I-box 107,000 36,830 26 8

M-box 102,000 38,770 29 8

E-box 107,600 41,760 40 12

C-box 92,400 45,050 42 12

F-box 129,150 55,550 45 12.5

34 Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

Table3 REX Extracted Parasitic Resistance
Data and Batch Run-time Data for
NVAX Boxes

Extraction Time
Box Resistor Count (Hours)

M-box 602,000 5
C-box 621,000 5

I-box 522,000 10
E-box 719,000 10
F-box 1,200,000 36

New Proprietary CAD Tools
Several other novel CAD tools were specifically
designed for the NVAX chip. These tools provided
practical solutions to verification and analysis prob­
lems that were previously unmanageable or
intractable.

CHANGO Logic Simulator
CHANGO was an important development for NVAX
functional verification because it allowed sig­
nificantly more simulation cycles and functional
verification tests to be performed from the NVAX
transistor-level description than was previously
possible. CHANGO is a two-state gate-level logic
simulator designed to maximize performance
through compiled, straight-line simulation. Elec­
trical issues such as gate delay and charge sharing
were not modeled since CHANGO was used
for functional, not timing, verification. CHANGO's
parallel simulation capability allowed the simul­
taneous execution of 13 different NVAX model
simulations on one CPU, which resulted in an eight­
fold increase in simulation performance. Overall,
CHANGO has been shown to accelerate simulation
one to two orders of magnitude over traditional
event-driven gate-level simulators. Its high through­
put enabled us to boot the VMS operating system
twice (75 million cycles) prior to tape out.

To create a CHANGO model, a transistor-level
netlist description of the design was input to a pre­
processor called GEN_MODEL. GEN_MODEL trans­
formed the netlist into a logical description of the
design, consisting of simple Boolean elements,
D-type latches, and SR flops. CHANGO transformed
this logical description into a highly optimized sim­
ulation stream of VAX assembly code.

CHANGO achieved its high simulation through­
put in many ways. Conditional branch latency
penalties were largely avoided because CHANGO

Digital Tee/mica/ J ou rnal Vol. 4 No. 3 Summer 1992

simulation code is designed to execute in a straight­
line fashion. Due to the high switching event densi­
ties we observed on NVAX, 18 percent on average,
this straight-line compiled approach to simulation
was more efficient than event-driven simulators,
which typically fail to compete when event densi­
ties increase beyond 3 to 5 percent. The CHANGO
translation process further optimized the sim­
ulation by partitioning the simulation according
to signals that should be evaluated during each par­
ticular clock phase. This avoided processing signals
during clock phases when signal transitions could
not occur. Further, evaluation of a switching event
was only performed when the signal could affect
the evaluation of some other signal. This prevented
simulation of unimportant switching events that
were ignored by the remaining design. Redundant
signals (i.e., nodes with the same logical behavior)
were grouped together as a list of synonym signals
in order to model multiple nodes by only one simu­
lation event.

NTV Timing Verifier
NTV is a static timing verification tool developed for
use on the NVAX microprocessor.10 NTV processed
350,000 circuit paths and checked 42,000 timing
constraints on the NVAX design. NTV eliminated the
need for the pattern-dependent dynamic speed
verification strategy used by other chip designs
and significantly reduced the extensive speed ver­
ification work needed for SPICE simulations. It
identified critical paths that would have otherwise
remained undetected due to the complexity and
size of the NVAX design.

NTV read multiple flat transistor netlists with or
without parasitics and automatically identified cir­
cuit structures such as complementary, dynamic,
and cascade gates as well as several types of latches.
Based on the classification of these structures, NTV
identified timing constraints. For example, NTV
checked that the latch storage nodes become valid
before the latches closed. NTV also read user-speci­
fied timing for primary inputs and propagated node
timing throughout the design based on when sig­
nals arrived at gate inputs, the drive capability of
each gate, and its output loading.

NTV has three delay models that were used for
calculating gate delay: (1) unit delay was used for an
initial rough timing estimate before real parasitics
were known, (2) a SPICE-calibrated lumped RC
model was used for delay calculation of comple­
mentary gates, and (3) an Elmore-distributed RC

35

NVAX-microprocessor VAX systems

model was used for other structures. n NTV flagged
circuits that failed to meet the identified timing
constraints within a user-specified time tolerance.
Like other static timing verifiers, some paths identi­
fied by NTV were "don't cares" or were logically
impossible. The user eliminated these false paths
by deleting timing constraint checks or by specify­
ing mutual exclusivity between specified groups of
nodes.

WAWOTH Interconnect Analyzer
Traditional manual techniques for checking RC
delay, IR noise, and electromigration (EM) were
impractical for NVAX due to the size and complexity
of the design. A suite of CAD tools called WAWOTH
was developed to perform these checks automati­
cally, more accurately, and in far less time than
would otherwise have been possible.

During EM and IR analysis, current sources rep­
resenting gate-switching events were added to a
REX-generated resistor network. The magnitude of
each current source was calculated based on the
average switching frequency of the gate, the load it
drove, and whether average or peak current was
desired for the current analysis mode. The network
node voltages were then solved through LU decom­
position. Peak voltages were flagged for IR analysis,
and average and peak current densities were calcu­
lated for each resistor element and checked against
EM limits.

During RC analysis, node capacitance was
proportionately distributed along the resistor net­
work. The resulting RC network was processed
by Carnegie-Mellon's AWE algorithm to generate a
close approximation of the transfer function for
the network. 12 From this, the step response RC
delay was calculated and the delay response to any
specified edge was found through convolution of
the transfer function.

Since it was neither possible nor necessary to
perform RC and EM analysis on all signal nodes,
WAWOTH contained a number of tools that identi­
fied only those nodes that would have some chance
of failing these checks. To decrease run time, we
reduced the size of the files that were input to
WAWOTH by eliminating any devices and parasitics
that were not related to the node under examina­
tion. Noteworthy were the large data requirements
met by WAWOTH. For example, WAWOTH calculated
the current through the 719,000 resistive elements
that compose the power and ground nodes of the
E-box. Current stimulus of the network was

36

derived from average node-switching frequencies
calculated from logic simulation data. Over 1,800
signal nodes were also analyzed by WAWOTH.

Conclusions
Our design strategies, methods, and CAD tools
allowed us to complete the NVAX CPU chip design in
30 percent less time than our initial schedule had
required. Typical parts operate at 83.3 MHz (a 12-ns
cycle time) under worst-case conditions for tem­
perature and power supply. This is 2 ns better than
our maximum cycle time design constraint. The
chip booted the VMS operating system ten days
after the first prototype wafers were available, and
booted the ULTRIX system a few days later. Multi­
processing was running within weeks. Fifteen
obscure logic bugs were found in the first-pass
chips, but none of them impeded system debug or
prototype development. No circuit design bugs
were found. Only one design revision was needed
prior to volume chip manufacturing.

Careful design, complexity management, and
proprietary CAD tools targeted to large custom
CMOS integrated circuits played crucial roles in the
successful design of the NVAX microprocessor.

Acknowledgments
We would like to acknowledge the contributions of
the following people: W: Anderson, E. Arnold,
R. Badeau, I. Bahar. M. Benoit, B. Benschneider,
D. Bernstein, D. Bhavsar, 1. Biro, M. Blaskovich,
P. Boucher, W: Bowhill, 1. Briggs, J. Brown, S. Butler,
R. Calcagni, S. Carroll, M. Case, R. Castelino,
A. Cave, S. Chopra, M. Coiley, E. Cooper, R. Cvijetic,
M. Delaney, D. Deverell, A. DiPace, D. DuVarney,
R. Dutta, J. Edmondson, J. Ellis, H. Fair, G. Frances­
chi, N. Geagan, S. Goel, M. Gowan, J. Grodstein,
P. Gronowski, W: Grundmann, H. Harkness, W:
Herrick, R. Hicks, C. Holub, A. Jain, R. Khanna,
R. Kiser, D. Koslow, K. Ladd, S. Levitin, S. Martin,
T. McDermott, K. McFadden, B. McGee, J. Meyer,
M. Minardi, D. Miner, T. O'Brien,]. Pan, H. Partovi,
N. Phillips,]. Pickholtz, R. Razdan, S. Samudrala,
]. Siegel, K. Siegel, C. Somanathan,]. St. Laurent,
R. Stamm, R. Supnik, M. Tareila, S. Thierauf, M.
Uhler, N. Wade, S. Watkins, and Y Yen.

References and Note

1. G. Uhler et al., "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, th is issue): 11-23.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools

2. B. Zetterlund,J. Farrell, and T. Fox, "Micropro­
cessor Performance and Process Complexity
in CMOS Technologies," Digital Technical
Journal, vol. 4, no. 2 (Spring 1992): 12-24.

3. J. Crowell, K. Chui, T. Kopec, S. Nadkarni, and
D. Sovie, "Design of the VAX 4000 Model 400,
500, and 600 Systems," Digital Technical
Journal, vol. 4, no. 3 (Summer 1992, this
issue): 60-72.

4. L. Chisvin, G. Bouchard, and T. Wenners, "The
VAX 6000 Model 600 Processort Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 47-59.

5. R. Badeau et al., "A 100 MHz Macropipelined
VAX CMOS Microprocessor," Accepted for
publication in IEEE journal of Solid State
Circuits, vol. 27, no. 11 (November 1992).

6. SPICE is a general-purpose circuit simulator
program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical
Engineering and Computer Sciences, Univer­
sity of California, Berkeley.

7. T. Fox, P. Gronowski, A. Jain, B. Leary, and
D. Miner, "The CVAX 78034 Chip, a 32-bit Sec­
ond-generation VAX Microprocessor," Digital

D igita l Tee/mica / Journal Vol. 4 No. 3 S111n111er 1992

Technical journal, vol. 1, no. 7 (August 1988):
95-108.

8. W Durdan, W Bowhill, J. Brown, W Herrick,
R. Marcello, S. Samudrala, G. Uhler, and
N. Wade, "An Overview of the VAX 6000
Model 400 Chip Set," Digital Technical
Journal, vol. 2, no. 2 (Spring 1990): 36-51.

9. J. Hwang, "REX-A VLSI Parasitic Extraction
Tool for Electromigration and Signal Analysis,"
28th Design Automation Conference (1991):
717-722.

10. J. Pan, L. Biro, J. Grodstein, B. Grundmann,
and Y. Yen, "Timing Verification on a l.2M­
Device Full-Custom CMOS Design," 28th
Design Automation Conference (1991):
551-554.

11. W Elmer, "The Transient Response of
Damped Linear Networks with Particular
Regard to Wide-band Amplifiers," Journal of
Applied Physics, vol. 19 (1948): 55-63.

12. V. Raghavan and R. Rohrer, "A New Nonlinear
Driver Model for Interconnect Analysis," 28th
Design Automation Conference (1991):
561-566.

37

Walker Anderson I

Logical Verification of the
NVAX CPU Chip Design

Digital's NVAX high-performance microprocessor has a complex logical design.
A rigorous simulation-based verification effort was undertaken to ensure that
there were no logical errors. At the core of the effort were implementation-oriented,
directed, pseudorandom exercisers. These exercisers were supplemented with imple­
mentation-specific focused tests and existing VAX architectural tests. Only 15 logical
bugs, all unobtrusive, were detected in the first-pass design, and the operating
system booted with first-pass chips in a prototype system.

The NVAX CPU chip is a highly complex VAX micro­
processor whose design required a rigorous verifi­
cation effort to ensure that there were no logical
errors. The complexity of the design is a result of
the advanced microarchitectural features that make
up the NVAX architecture, such as branch predic­
tion, micropipelining and macropipelining tech­
niques, a three-level hierarchy of instruction
caching, and a two-level hierarchy of write-through
and write-back data caching. 1 Also, the chip was ini­
tially intended for two different target system con­
figurations and had to be verified for operation in
both. Product time-to-market goals mandated a
short development schedule relative to previous
projects, and there was a limited number of verifi­
cation engineers available to perform the tasks.

The verification team set two key goals. The first
was to have no "show stopper" logical bugs in the
first-pass chips and, consequently, to be able to
boot the operating system on prototype systems.
Meeting this goal would enable the prototype
system hardware and software development teams
to meet their schedules and would allow more
intensive logical verification of the chip design to
continue in prototype systems. The second key
team goal was to design second-pass chips with no
logical bugs, so that these chips could then be
shipped to customers in revenue-producing sys­
tems. Meeting this goal was critical to achieving the
time-to-market goals for the two planned NVAX­
based systems.

Team Organization and Approach
Logical verification was performed by a team of engi­
neers from Digital's Semiconductor Engineering

38

Group (SEG) whose primary responsibility was to
detect and eliminate the logical errors in the NVAX
design. The detection and elimination of timing,
electrical, and physical design errors were left to
separate efforts. 2

Given the design complexity, the critical need for
highly functional first-pass chips, and the fact that
the designers had other responsibilities related
to the circuit and physical implementation of
the full-custom chip, special attention to logical
verification was considered a requirement. Every
verification engineer approached the verification
problem with a different focus. Each member of
one group of engineers focused on the verification
of a single box, while other engineers focused on
functions that spanned several boxes. Certain veri­
fication engineers were available throughout the
project to test the functions of the chip that
required extra attention. This variety of perspec­
tives was an important aspect of the verification
strategy. Most verification engineers followed the
process described below.

1. Plan tests for a function.

2. Review those plans with the design and architec­
ture teams.

3. Implement the tests.

4. Review the actual testing with the design and
architecture teams.

5. Implement any additional testing that was
deemed necessary.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Simulation and Modeling Methodology
The verification effort employed several models of
the full NVAX CPU chip and of the individual design
elements. Each model had its strengths and weak­
nesses, but all models were necessary to ensure a
thorough logical verification of the design.

Behavioral Models
The behavioral models of the chip were written by
design team members using the DECSIM behavioral
modeling language; to achieve optimal simulation
performance, they were written in a procedural
style. These models are two-state models that are
logically accurate at the CPU phase clock bound­
aries. These fairly detailed behavioral models repre­
sent logic at the register transfer level (RU), with
every latch in the design represented and the com­
binational logic described in a way similar to the
ultimate logic design.

Behavioral simulations were performed first on
box-level models, where most of the straightfor­
ward design and modeling errors were eliminated.
A box is a functional unit such as the instruction
prefetch/decode and instruction cache control
unit, the execution unit, the floating-point unit,
the memory management and primary cache con­
trol unit, or the bus interface and backup cache
control unit.I

The box-level models were then integrated into
a full-chip behavioral model, which also included a
backup cache model, a main memory model, and
models to emulate the effects of several system con­
figurations. The pseudosystem models did not
model any one specific target system configuration
but could be set up to operate effectively like any
target system configuration or in a way that exer­
cised the chip more intensely than any target
system would. Available early in the project, this
model was the primary vehicle for logical verifica­
tion until the schematics-derived, full-chip, in­
house CHANGO model was created. The full-chip
behavioral model could simulate approximately 13
cycles per VAX VMS CPU second and was used to
simulate about one billion CPU cycles.

The procedural, full-chip behavioral model also
ran on a hardware simulation accelerator where it
achieved simulation performance of about twice
that of the unaccelerated simulation. The simula­
tion accelerator was used primarily for simulating
long, automated, noninteractive tests.

In addition, the model was encapsulated in an
event-driven shell and incorporated into module

Digital Technical Journal Vol. 4 No. 3 Summer 1992

Logical Verification of the NVAX CPU Chip Design

(i.e., board) and then system models. The chip veri­
fication team performed only a limited amount of
simulation using these module and system models.
These simulations were used primarily to verify
that the chip model functioned correctly in a more
accurate model of a target system configuration
and to better test the multiprocessor support func­
tions in the design. The system development
groups performed more extensive simulations with
such models.

Schematics-derived Models
Schematics-derived models were created and simu­
lated at both the box and full-chip level. The
CHANGO simulator is a two-state, compilation­
driven simulator and, like the behavioral model, is
accurate only at the CPU phase clock boundaries. 2

The full-chip CHANGO model linked together the
following: the code that was automatically gen­
erated from the schematics; C-code models for
chip-internal features such as control store and
random-access memories (RAMs); C-code models
to perform simulation control functions; and the
same DECSIM behavioral models for the backup
cache, main memory, and system functions that
were used in the full-chip behavioral model. The
simulation performance of the full-chip CHANGO
model was only about one-half that of the unaccel­
erated, full-chip behavioral model. Although these
models were not useful for electrical or timing veri­
fication because they did not model timing or elec­
trical characteristics of the design, their simulation
performance made them extremely useful for logi­
cal verification.

Another full-chip model was created to run on
an event-driven, multiple-state simulator. How­
ever, only a limited amount of simulation was per­
formed using this model, because its performance
was very slow when compared to the CHANGO and
behavioral models. Since it was the only model that
could run on a multiple-state simulator, this third
model was used primarily to verify chip power-up
and initialization.

Pseudorandom Ex ercisers
Early in the project, it became apparent that, given
the limited number of engineers, the short sched­
ule, and the complexity of the NVAX chip design, a
strategy of developing and simulating all conceiv­
able implementation-specific test cases would be
ineffective. This strategy would have required the
engineers to implement tedious, handcrafted tests.

39

NVAX-microprocessor VAX Systems

Instead, the verification team adopted a strategy
that depended heavily on the use of directed, pseu­
dorandom tests referred to as exercisers. This strat­
egy generated and ran many more interesting test
cases than would ever have been conceived by the
verification and design engineers themselves.

The basic structure of an exerciser consisted of
the following five steps, which were repeated until
a failure was encountered:

I. Set up the test case.

2. Simulate the test case on either the behavioral or
the CHANGO model.

3. Execute the test program on a VAX reference
machine.

4. Analyze the simulation and accumulate data.

5. Check the results for failure.

Figure I depicts the interoperation of the tools
used to construct an exerciser and its basic flow.

Setup
Setting up the test case involved generating a
short assembly language test program, activating
some demons to emulate various system effects,
and selecting a chip/system configuration for
simulation.

The assembly language test programs were gen­
erated using SEGUE, a text generation/expansion
tool developed for this project. This tool processes

SEGUE SCRIPT FILE

$
ASSEMBLE/LINK

script files that contain hierarchical text generation
templates and implements the basic functions of
a programming language.

SEGUE provides a notation that allows the user to
specify sets of possible text expansions. Elements
of these sets can be selected either pseudoran­
domly or exhaustively, and the user can specify the
weighting desired for the selection process. For
example, a hierarchy of SEGUE templates typically
comprised three levels. At the lowest level, a SEGUE

template was created to select pseudorandomly a
VAX opcode, and another template was created to
select a specifier, i.e., operand. At an intermediate
level, the verification engineers created templates
that called the lowest-level templates to generate
short sequences of instructions to cause various
events to occur, e.g., a cache miss, an invalidate
from the system model, or a copy of register file
contents to memory. At the highest level, these
intermediate-level templates were selected pseudo­
randomly with varied weighting to generate a com­
plete test program.

Because the SEGUE tool was developed with
verification test generation as its primary applica­
tion, the syntax allows for the easy description of
test cases and the ability to combine them in inter­
esting fashions. Using SEGUE, the verification engi­
neers were able to create top-level scripts quickly
and easily that could generate a diverse array of
test cases. These engineers considered SEGUE to
be a significant productivity-enhancing tool and

DEMON AND CONFIGURATION
SETUP AND SIMULATION CONTROL

l
REFERENCE VAX
EXECUTION

BEHAVIORAL OR CHANGO SIMULATION

MEMORY DUMP
AREA FILES

COMPARE

LOG
FILE

EXAMINE

PASS/FAIL
INDICATION

BINARY
TRACE FILE

SAVES ANALYSIS

CUMULATIVE
COVERAGE DATA

Figure 1 Verification Tool Flow for Exercisers

40 Vol. 4 No. 3 Summer 1992 Digital Technical Journal

preferred using SEGUE to hand-coding many
focused tests.

Before simulations were performed, model
demons were set up. Demons were enabled or dis­
abled, and their operating modes were selected
pseudorandomly. Demons may be features of the
model environment that cause some external
events such as interrupts, single-bit errors, or cache
invalidates to occur at pseudorandom, varying
intervals. Demons may also be modes of operation
for the system model that cause pseudorandom
variation in operations such as the chip bus proto­
col, memory latency, or the order in which data is
returned. Some demons were implemented to force
chip-internal events, e.g., a primary cache parity
error or a pipeline stall. These chip-internal
demons had to be carefully implemented, because
sometimes they forced an internal state from which
the chip was not necessarily designed to operate. In
a pseudorandomly generated test, it is frequently
difficult or impossible to check for the correct han­
dling of an event caused by a demon, e.g., check
that an interrupt is serviced by the proper handler
with correct priority. However, simply triggering
those events and ensuring that the design did not
enter some catastrophic state proved to be a power­
ful verification technique.

Chip/system configuration options such as cache
enables, the floating-point unit enable, and the
backup cache size and speed were also preselected
pseudorandomly. Aside from testing the chip in all
possible configurations, e.g., with a specific cache
disabled, varying the configuration in a pseudo­
random manner caused instruction sequences to
execute in very different ways and evoked many dif­
ferent types of bugs unrelated to the specific con­
figuration. Also, specific configurations and demon
setups would significantly slow down the simu­
lated execution of the test program, sometimes to
the point where intended testing was not being
accomplished. To work around this problem, the
verification engineer could force the configuration
and demon selection to avoid problematic setups.

Simulation and VAX Reference Execution
After assembling and linking the test program, it
was loaded into modeled memory, and its execu­
tion was simulated on either the behavioral or the
CHANGO model. As the test program simulation
took place, a simulation log file and a binary-format
file, which contained a trace of the state of the pins

D igital Technical J ou rn a l Vol. 4 No. 3 Summer 1992

Logical Verification of the NVAX CPU Chip Design

and various internal signals, were created. As the
exerciser test programs executed, various VAX
architectural state information was written period­
ically to a region of modeled memory referred to as
the dump area. When the simulated execution of
the test program completed, the contents of the
dump area were stored in a file. Also, the test pro­
gram was executed under the VMS operating
system running on a VAX computer used as a refer­
ence machine. At the end of execution, the con­
tents of the memory dump area were stored in
another file.

Analysis
A tool called SAVES allows users to create C pro­
grams in order to analyze the contents of binary
trace files. SAVES was used to provide coverage anal­
ysis of tests, and to check for correct behavior of
chip-internal logic and give a pass/fail indication.

For coverage analysis purposes, information
such as the number of times that a certain event
occurred during simulation or the interval
between occurrences was accumulated across
several simulations. This data gave the verification
engineer a sense of the overall effectiveness of
an exerciser. For example, a verification engineer
who wanted to check an exerciser that was
intended to test the branch prediction logic was
able to use the SAVES tool to measure the number of
branch mispredictions.

Frequently, verification engineers used the SAVES

tool to perform cross-product analysis and data
accumulation. For cross-product analysis, the engi­
neer specified two sets of design events to be ana­
lyzed. The analysis determined the number of times
that events from the first set occurred simultane­
ously with (or skewed by some number of cycles
from) events in the second set. For example, one
verification engineer analyzed the occurrence of
different types of primary cache parity errors rela­
tive to different types of memory accesses.
Analyzing the cross-product of state machine states
against one another, skewed by one cycle, allowed
state machine transition coverage to be quickly
understood.

The verification team used this SAVES information
about the exerciser coverage in the following ways:

• To enhance productivity by helping the engi­
neers identify planned tests that no longer
needed to be developed and run because the
exerciser already covered the test case

41

NVAX-rnicroprocessor VAX Systems

• To indicate significant areas of the design where
coverage may have been deficient

• To determine how the exercisers might be
adjusted to become more effective or thorough,
or to focus on a particular low-level function of
the chip design

Pass/Fail Checking
Several checking mechanisms were employed to
determine whether tests passed or failed. The SAVES
tool was used to check for correct behavior of the
design, especially where correct behavior was diffi­
cult to observe at a VAX architectural level. For
example, the verification engineers used SAVES to
check the proper functioning of performance­
enhancing features such as branch prediction logic,
pipelines, and caches.

A VMS command procedure automatically
scanned simulation log files for error output from
any of several design assertion checkers built into
the model. These assertion checkers varied widely
in complexity. For example, simple assertion check­
ers ensured that unused encodings of multiplexers'
select lines never occurred. As another example, a
more sophisticated and complex assertion checker
verified that the CPU had maintained cache coher­
ence and proper subsets among the three caches
and the main memory.

The same VMS command procedure checked the
simulation log file to verify that the simulation of
the execution of the test program reached the
proper completion program counter. Finally, a sim­
ple program compared the memory dump area files
generated by the simulation and the reference
machine execution to verify that the memory dump
areas were identical. Although the simulated test
program may have followed a different execution
path from the VAX reference execution because it
was simulated in the presence of demons, the com­
pletion points of both executions were the same,
and the VAX architectural state information that was
compared was identical.

If these checks found no errors, the exerciser
looped back to generate another test case. Because

. this whole process was automated, the verification
engineer could run this test continuously, on all
available computing resources.

Other Aspects of the Exercisers
The exercisers were the core of the NVAX CPU chip
verification effort. They were run nearly continu­
ously throughout the project on behavioral and/or

42

CHANGO models, and proved to be very effective at
detecting subtle, complex bugs in the design. Each
exerciser concentrated on testing a single box, a
subsection of a box (e.g., branch prediction logic),
or a particular global chip function. By adjusting
the SEGUE template weightings, preventing or forc­
ing the use of a particular demon, or forcing a par­
ticular configuration parameter, the exercisers
could be controlled at a high level to focus on low­
level functions. Verification engineers traded inter­
esting SEGUE templates among themselves to
provide each exerciser with a rich and diverse set
of possibilities for code generation, while still
maintaining the intended focus of the exerciser.

Focused Tests
Several focused tests were generated to supple­
ment the exercisers. These were necessary to test
implementation-specific aspects of the design that
could not be checked by comparing results against
a VAX reference machine. In some cases, an exer­
ciser could have been used to test a particular func­
tion, but the verification engineer judged it easier
to hand-code a focused test program than to con­
trol an exerciser in order to accomplish the testing.
Focused tests were necessary and particularly chal­
lenging to create and maintain when very precise
timing of events was required to test a certain sce­
nario of chip operation. This timing could be
achieved only by handcrafting an assembly lan­
guage test and running it under carefully controlled
simulation conditions.

Each of the focused tests was run at least once on
the full-chip behavioral model and then again
on the full-chip CHANGO model.

Other Tests
Several tests that had been used for the verification
of previous VAX implementations were also used
for verification of the NVAX CPU chip. The use of
these tests allowed the NVAX logical verification
team to focus on the implementation-specific com­
plexities of the NVAX design and not expend as
much effort on implementation-independent, VAX

architectural verification.
The HCORE suite of tests can be used to verify

several permutations of all VAX instructions, as well
as some VAX architectural concepts, e.g., memory
management.3 HCORE was valuable in that it was the
first test used to debug both the full-chip behav­
ioral model and the CHANGO model.

Small portions of the HCORE suite were used as a
nightly model regression test. In general, very little

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

regression testing of the NVAX models took place;
the team believed that using computing resources
to run pseudorandom exercisers and other new
tests was of more value to the verification effort
than consuming resources with extensive, frequent
regression testing. Consequently, the entire HCORE
suite was run at only a few key checkpoints during
the project.

AXE is a VAX architectural exerciser that pseudo­
randomly generates single-instruction test cases.4

MAX is an extension of AXE that generates multiple­
instruction test cases with complex data dependen­
cies between the instructions. Both tools set up
enough VAX architectural state to prepare for a test
case, simulate the test case on a model, execute the
test case on a VAX reference machine, compare VAX
architectural state information from the simu­
lation and VAX reference execution, and finally,
report any discrepancies. Each test case may force
some number of exceptions; the AXE and MAX tools
ensure that all exceptions are detected and prop­
erly handled.

The AXE and MAX tools generate tests with no
knowledge of the particular VAX implementation
being tested and thus differ from the implementa­
tion-specific exercisers. Consequently, AXE and
MAX are less effective than the implementation­
specific exercisers for intensive exercising of per­
formance-enhancing features that are transparent
from a VAX architectural perspective. However,
MAX was an effective test for the micropipelin­
ing and macropipelining aspects of the NVAX
design. Altogether, about 706,000 AXE test cases
and 137,000 MAX test cases were run on the behav­
ioral model.

Schematic Verification
An initial goal of the NVAX CPU chip verification
team was to perform a more extensive verifica­
tion of the schematic design than had been accom­
plished in the past. Because of the development of
the CHANGO simulator, with its significant perfor­
mance advantage over previously used logic simu­
lators, the team met this goal. Approximately 75
million NVAX CPU cycles were simulated on the
schematics-derived, full-chip CHANGO model.

Box-level CHANGO Simulation
First, box-level CHANGO models were constructed
and tested using a technique called patterns­
on-the-fly (POTF). This technique involved simul­
taneously starting a full-chip behavioral model

Dig ital Tecbnical]ournal Vol. 4 No. 3 Summer 1992

Logical Verification of the NVAX CPU Chip Design

simulation process and a box-level CHANGO
simulation process under the VMS operating system
and then communicating between the processes.
Stimulus and response data from the behavioral
simulation is used to drive the inputs to and check
the outputs from the box-level CHANGO model. In
addition to comparing primary outputs from the
box, this technique was used to compare many
chip-internal points. The POTF technique elimi­
nated the need to extract and maintain large pat­
tern files from behavioral simulations and proved
to be a straightforward way of comparing the two
models. Exercisers and focused tests were run
using the POTF method, and several bugs were
quickly and easily isolated. Because a close correla­
tion between the behavioral models and the imple­
mentation as represented by the schematics had
been maintained, few conceptual, logical design
errors were found by the box-level, POTF simula­
tions. These simulations were, however, extremely
useful for finding simple schematic entry errors.

Full-chip CHANGO Simulation
Next, the team constructed the full-chip CHANGO
model. The simulation environment of this model
included many features available in the behavioral
model environment. After simulating the HCORE
suite of tests, all the focused tests were run on
the full-chip CHANGO model, and the exercisers
were run on this model for several weeks. In addi­
tion, 44,000 AXE cases and 33,000 MAX cases were
run on the full-chip CHANGO model. All these simu­
lations uncovered only one additional schematic
entry error.

Simulation of the VMS Boot Process
To ensure the success of operating system booting,
i.e. , initial processor loading, on first-pass chips and
as a final functional test of the design, members of
the architecture team simulated the VMS operating
system boot process on the full-chip CHANGO
model. The operating system source code was
modified to add support for the NVAX-specific fea­
tures and for the modeled system environment.
A VMS system disk that contained the changes was
created on an existing VAX system. Each block of
the disk was copied to a VMS file, which was then
used as the system disk image during simulation.

A disk model with a simple programming inter­
face and a direct memory access (DMA) capability
was added to the simulation environment of the full­
chip CHANGO model. The disk model read blocks

43

NVAX-microprocessor VAX Systems

from the system disk image file, and wrote data to a
small cache of internally maintained disk blocks. To
accelerate disk transfers, the disk model would
examine cache state and use the system bus for the
disk transfers only when the data was present in the
cache and required a cache invalidate or write back.
In other cases, the data was transferred directly into
the memory subsystem in zero simulated time.

While tracking the progress of the simulation,
the team identified operating system code that
executed a time-consuming search algorithm. To
limit the amount of time spent in this loop, the
code was rewritten to implement a much faster
algorithm. However, because the booting simula­
tion effort could not be restarted from the begin­
ning, several utilities were developed that allowed
the code to be replaced in the system disk image
file and in simulated memory during a pause in the
simulation.

To provide the ability to restart the simulation
effort and move it to any available computing
resource, simulation state was saved after every
50,000 to 100,000 cycles of simulation. In total,
approximately 25 million cycles were simulated.
The simulation was stopped at the point where mul­
tiple processes were created and the main start-up
process began executing. Even though this effort
identified no bugs in the design, it did provide a high
degree of confidence that the design was ready to
be released for fabrication of first-pass chips.

Prototype Chip Verifica tion
The prototype NVAX chips were verified in several
VAX 6000 Model 600 multiprocessor systems. The
CPU module was the only new hardware com­
ponent in the system; the backplane, memory, and
1/0 subsystem were known to be robust, because
they were used in the VAX 6000 Model 500 system.
One logic analyzer was connected to the system
bus, and another was connected to the pins of the
NVAXchip.

The strategy for the early prototype verification
was to boot the low-level console user interface,
run the HCORE suite of tests, boot the VMS operat­
ing system, and then run the User Environment Test
Package (UETP) system exerciser. Within IO days of
receiving the first prototype chips, all these tasks
had been accomplished. Later, the AXE and MAX
exercisers were nm on the prototype systems.

The rigorous testing that continued on prototype
systems revealed a few logical bugs which had gone
undetected during simulated verification. Typically,

44

information about a bug was collected on the proto­
type system, and then the failing scenario was
reproduced on the behavioral model, where the
scenario could be analyzed and better understood.
The chip-internal signals were extremely difficult
to observe, but a 12-bit, parallel port allowed access
to one of eight sets of signals from various sections
of the chip. The ability to monitor the control store
address bus by means of this parallel port proved to
be an essential debugging feature .

The control store patching mechanism that was
part of the chip design helped identify some bugs
in prototype chips. The debugging engineers suc­
cessfully used microcode patches to work around
several of the hardware and microcode bugs. In
cases where a microcode bug was patched, exten­
sive system testing verified that the planned change
was correct.

Bug Tracking and Design Release
Bug detection was a key status indicator through­
out the NVAX logical verification effort and thus
helped to steer the team's work. Bugs were tracked
carefully with an on-line system and analyzed each
week to consider trends, successful and unsuccess­
ful bug-finding techniques, and bug hot spots,
which required additional attention. The bug detec­
tion rate was fairly constant throughout the project
at about 22 per month, with the exception of the
last month in which the rate dropped to nearly
zero. An analysis of the bug-detecting effectiveness
of each testing technique shows that all test tech­
niques were effective and seemed to complement
each other. Table 1 shows the percentage of bugs
detected by each technique. This table includes
data on the ever-valuable, nonsimulation verifica­
tion technique of simply reviewing, inspecting, and
discussing the design and its many representations.

The decision to release the design for fabrication
of first-pass chips was a consensus decision made
by the verification, architecture, and design teams.
From a verification perspective, the design was
ready for release when the bug detection rate
remained at zero for several weeks and the majority
of the planned tests had been implemented. The
verification of some areas of the design was
deferred until after the release of the first-pass
design. The development team decided that any
bugs that might be found in these areas would not
have a significant negative impact on the system
development schedule, whereas additional delay in
releasing the design would.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Table 1 Bug Detection Using
Various Techniques

Percent of
Technique Total Bugs Found

Focused tests

Directed, pseudorandom
exercisers

Review, inspection,
observation, thought

Detection technique unknown

AXE
MAX
HCORE

Other

Results and Com:lusions

28

23

20
12

8
6

2

1

Only 15 logical bugs were found in the first-pass
NVAX CPU chip design, all of which were either eas­
ily worked around or did not impact normal system
operation. The nature of the bugs found in the first­
pass design ranged from straightforward bugs that
escaped detection for clear-cut reasons to extremely
complex bugs that required hours or weeks of rig­
orous prototype system testing to uncover. Some of
the bugs escaped detection during simulated verifi­
cation for classic reasons such as:

• Testing of the function was performed just
before release, in a hurried manner.

• Simulation performance prohibited running a
certain type oftest case.

• A test was not run in a certain mode due to the
difficulty of running it in all possible modes.

• It took an exerciser running on a simulator a
long time to encounter the conditions that
would evoke the bug.

• A test was inadvertently dropped from the set of
exercisers that were run continuously.

Details about five of the more interesting bugs
found in the first-pass design follow. Included
is information about how the bug was detected,
a hypothesis on why the bug eluded detection
before first-pass chips were fabricated, and les­
sons learned from the detection and elimination
of the bug.

Dig ital Tecbuica/ Journal Vol. 4 No. 3 Su 111111er 1992

Logical Verification of the NVAX CPU Chip Design

1. One simple bug was detected by running the
HCORE test suite on the prototype system with
the floating-point unit (F-box) disabled. This bug
could have been found in the same way through
simulation, but the test suite was not run as a
final regression test with the F-box disabled. In
general, focused tests like HCORE were not run
with varied chip/system configurations. The ver­
ification team concluded that all focused tests
should be run with different chip/system config­
urations. At the minimum, a configuration that
disables all possible functions should be tested.

2. Another bug was discovered because the CPU
chip generated spurious writes to memory in the
prototype system. The exercisers probably did
generate the conditions necessary to evoke this
bug; however, the spurious writes went unno­
ticed. It is extremely difficult to verify that a
machine does everything it is supposed to do
and nothing more. Additional assertion checkers
or monitors in the models might detect such
bugs in the future .

3. A third bug was evoked when a prototype
system exerciser executed a translation buffer
invalidate all (TBIA) instruction under certain
conditions. On a real system, the TBIA instruc­
tion is used only by the operating system. In our
verification effort, the TBIA instruction was little
used by the exercisers that were simulated.
Operations that are performed only by the oper­
ating system should not be underemphasized
in exercisers.

4. One first-pass bug was related to the halt inter­
rupt, which is used only during debugging oper­
ations. The halt interrupt received minimal
testing and was not tested at all in any type of
exerciser. Discovering this bug was especially
annoying because a similar bug had escaped
detection by the initial logical verification effort
for a previous VAX implementation. This turn of
events reinforces the belief that there is value in
reviewing the escaped bug lists from other proj­
ects. Also, during the verification effort, there
seemed to be a natural, but erroneous, tendency
to undertest functions used infrequently or not
at all during normal system operation. Such
functions sometimes require extra attention,
because they may be quite complex and may
have been given less careful thought during the
design process.

45

NVAX-microprocessor VAX Systems

5. A state bit that needed to be initialized on power­
up was not. This problem was noticed during
initialization simulation but erroneously ratio­
nalized as being acceptable. Design assumptions
and assertions about initialization should be ver­
ified through simulation or other means.

Overall, the NVAX CPU chip logical verification
effort was a success. The pseudorandom testing
strategy detected several complex and subtle logi­
cal bugs that otherwise probably would not have
been detected by simulation. The extensive simula­
tion performed on the schematics-derived model
of the chip provided a high degree of confidence in
the design.

The goals of producing highly functional first­
pass chips and bug-free, second-pass chips were
both met. Neither the bugs in first-pass chips nor
their work-arounds impeded prototype system
debugging in any significant way, and first-pass
chips with work-arounds were used in prepro­
duction, field-test systems. The verification team
corrected the 15 first-pass design bugs for second­
pass chips, which were shipped to customers in
revenue-producing systems.

Acknowledgments
The NVAX logical verification effort was performed
by a team of engineers from the SEG microproces­
sor verification group. Members of this team
included Walker Anderson, Rick Calcagni, Sanjay
Chopra, and John St. Laurent. NVAX architects Mike
Uhler and Debra Bernstein provided extensive tech­
nical direction and assistance to the verification
team. The SEG CAD group helped by its continual

46

development and support of tools. The CHANGO

simulator would not have been possible without
the significant contributions of Kevin Ladd. Will
Sherwood provided high-quality, top-level guid­
ance through all phases of the project. The system
development groups performed system-level simu­
lations and rigorous prototype testing. The VAX
Architecture Group AXE/MAX team, once again,
provided and supported an effective verification
tool. Lastly, the success of the project and the final
quality of the NVAX chip logical design are as much
a tribute to the work of the NVAX architecture and
design teams as they are to the work of the verifica­
tion team.

References

1. G. Uhler et al., "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

2. D. Donchin et al. , "The NVAX CPU Chip:
Design Challenges, Methods, and CAD Tools,"
Digital Technical Journal, vol. 4, no. 3
(Summer 1992, this issue): 24-37.

3. R. Calcagni and W Sherwood, "VAX 6000
Model 400 CPU Chip Set Functional Design
Verification," Digital Technical Journal,
vol. 2, no. 2 (Spring 1990): 64-72.

4. D. Bhandarkar, "Architecture Management for
Ensuring Software Compatibility in the VAX
Family of Computers;• IEEE Computer
(February 1982): 87-93.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Lawrence Chisvin
Gregg A. Bouchard

Thomas M. Wenners

The utX 6000 Model 600 Processor

The Model 600 is the newest member of the VAX 6000 series of XM/2-based, multi­
processing computers. The Model 600 processor integrates easily into existing plat­
forms. Each processor module provides 40.5 SPECmarks of performance made
possible by the NVAX CPU chip. The major VIS/ interface chip, called NEXMI, was
created using Digital's internal CMOS-3 design and layout process. The ability to
design and fabricate the interface chip internally was critical to delivering a work­
ing CPU prototype module on schedule. The aggressive module timing goals u•ere
met by employing previous module experience in combination with extensive
SPICE simulation.

The Model 600 system is the latest addition to
Digital's VAX 6000 family of midrange symmetric
multiprocessing computers.• The Model 600 was
designed to be integrated cost-effectively into an
existing VAX 6000 platform, and to provide a signifi­
cant performance improvement over the previous
generation of systems. Table I compares the perfor­
mance of the Model 600 with the previous genera­
tion Model 500 on several important benchmarks.
The powerful NVAX single-chip microprocessor
enables this level of performance. 2

Design Goals
The primary goal of the project was to deliver a
module that included the appropriate support
functions, performance, and VAX 6000 system com­
patibility. Equally important, the module had to be
delivered on schedule to prevent an adverse time­
to-market impact on the program. This included
the delivery of a working prototype module before
the first NVAX microprocessor chips were available,
since a VAX 6000-based platform would be used to
debug the initial NVAX CPU chips. Furthermore, the
prototype module had to allow the VMS operating
system to be booted and tested.

Our goals were achieved. When the NVAX CPU
chip, the prototype module, and the NEXMI sup­
port applications specific integrated circuit (ASIC)
were integrated for the first time, the hardware
worked almost immediately. The software team
was well prepared, and the full VMS system boot
took place 11 days after the hardware was put
together. Moreover, the first-pass modules were
used for all the system debugging, and were of suffi­
cient quality to be used for system field test.

Digitt1/ Tecbnica/ Jo11r11al Vol . 4 No. 3 S11111111er 1992

Table 1 Comparison of CPU Performance

VAX6000 VAX6000
Benchmark Model600 Model 500

SPECmark3 40.5 15.3
SPEC int 30.9 14.2
SPECfp 48.6 16.1
VUPs 30.2 12.4

Notes: SPECmark is a quantitative measure of performance,
determined by running a suite of 10 benchmark programs.
SPECint defines the performance on the subset of the tests
that are integer intensive, and SPECfp defines the floating-point
intensive tests. A VAX-11nao system has a performance of 1.0
SPECmark by definition. The SPEC tests used for the table
values are from the System Performance Evaluation Cooperative,
Release 1 . VUP is a VAX unit of performance. One VUP equals the
performance of a VAX-11nao.

This paper relates the background and design
process for the VAX 6000 Model 600 processor
module. The module and its system context are
described, as well as many of the design decisions
that were made during the project. The first section
describes the module in general terms, along with
some of the trade-offs and choices associated with
its development. The second section focuses on the
NEXMI support chip, which is the primary interface
device positioned between the NVAX CPU data and
address lines (NDAL), the XMI2 system bus, and the
support peripheral ROMBUS. It discusses the very
large-scale integration (VLSI) design process used to
create and verify the functions of this interface. The
final section details some of the physical aspects of
the module design, including the important work
performed to ensure good module signal integrity
and thermal management.

47

NVAX-microprocessor VAX Systems

Description of the Processor Module
Figure 1 shows the VAX 6000 Model 600 CPU mod­
ule. Figure 2 is a block diagram of the module,
showing the major subsections. The CPU module
contains two VLSI components: the NVAX micro­
processor and the NEXMI ASIC interface chip. The
module also holds the backup cache static random­
access memory (SRAM) devices, the XMI2 corner
bus interface, and the supporting logic necessary to
implement a VAX 6ooo processor node.

The NVAX CPU directly controls its external
backup cache SRAMs. When the data is resident in
the cache, the NVAX CPU modifies it there, and
implements a write-back scheme. 2 When the data
misses in the backup cache, or when an 1/0 access
is necessary, the NVAX CPU places the command on
the NDAL, along with any associated control and
data information. The NEXMI accepts and processes
the command.

The NEXMI VLSI chip provides an interface to the
functions necessary to integrate a VAX 6000 proces­
sor module into an XMI2-based system. In particu­
lar, the NEXMI chip:

• Translates the NDAL bus commands to XMI2 bus
commands

• Returns read data from the XMI2 bus to the NVAX
CPU (via the NDAL)

I OSCILLATOR ~ ~
NDAL BUS

NVAXCPU >
" "

DATA CACHE

HEAT SINK

Figure 1 VAX 6000 Model 600
Processor Module

• Forwards invalidate traffic to the NVAX CPU for
lookup and potential write back

• Controls NDAL bus arbitration

The NEXMI contains a programmable interval
timer, reset logic, halt arbitration logic, and secure

EE PROM

ROM

t
NEXMI ASIC
INTERFACE
CHIP

RAM

INPUT OR
OUTPUT
PORT

XMI CHIP
INTERCONNECT

~
~

XM12
CORNER BUS
INTERFACE

XMl2
BUS

-

Figure 2 Block Diagram of the Model 600 Module

48 Vol. 4 No. 3 Summer 1992 Digital Tecb11icalJournal

console logic on chip. It accommodates the rest of
the support functions through the ROMBUS.

The ROMBUS is controlled by and interfaces to the
NEXMI; it supplies a path for the low-speed devices
that are necessary to create a working computer.
The devices on the ROMBUS are off-the-shelf parts
that contribute specific functions, including ROM
for the boot diagnostic and console program, a
stack RAM for storage of diagnostic/console
dynamic information, an electrically erasable pro­
grammable read-only memory (EEPROM) for saved
state, a universal asynchronous receiver/transmit­
ter (UART) for console communication, an input
and output port, and a time-of-year (TOY) clock.

The bare module itself is a sophisticated
printed wiring board (PWB) with the following
characteristics:

• 11.024-inch by 9.18-inch module size

• 10-layer module with 0.093-inch thickness

• 4 signal layers, 4 power/ground layers and
2 component/dispersion layers

• 0.010-inch vias

• 5-mil etch/7.5 mil space minimum for signals

• 10-mil etch/40 mil space minimum for clocks

NEXMI Support Chip
The NEXMI chip is the routing and control interface
between the three major buses that reside on the
VAX 6000 Model 600 processor module. A func­
tional diagram of the NEXMI is provided in Figure
3. The three major buses are the NDAL, XMI2, and
ROMBUS. The NEXMI chip contains the following
functions, each function is associated with one or
more of the three major buses:

• NDAL bus arbitration

• NDAL receive and transmit logic

• NDAl/XMI2 queues

• XMI2 data/invalidate responder queue

• XMI2 bus control logic

• System support control (SSC) logic

The NDAL receive logic latches and decodes com­
mands and data from the NVAX CPU, and routes
them to one of two queues. If the command is
a write back, consisting of an address and 32 bytes
of write data, it is placed in the XMI2 write-back
queue. All other commands (reads and 8-byte
writes) are placed in the non-write-back queue. The

Dtgttal Tecbntcal Journal Vol. 4 No. 3 Summer 1992

The VAX 6000 Model 600 Processor

non-write-back queue services both the XMI2 logic
and the SSC logic. Depending on the function , the
SSC logic might then send the command on to the
ROMBUS. Each queue is loaded in the NDAL time
domain, and a request signal is sent to the appropri­
ate XMI2 or SSC logic for processing.

On read commands, data is returned from the
XMI2 responder queue or ssc control section, and
forwarded to the NDAL through the NDAL transmit
section. The NDAL is then requested, and when bus
access is granted the data is driven onto the NDAL to
be accepted by the NVAX CPU.

The XMI2 logic also sends potential invalidate
addresses to the NVAX, where the information is
compared with the existing tag address in the
indexed backup cache block. An invalidate address
is nothing more than the address associated with
a command initiated on the XMI2 by another pro­
cessor. If the cache block matches, and if the NVAX
must relinquish control of the data, the block is
either invalidated or written back. The choice
depends upon the type of transaction and the state
of the cache block.

In the Model 600, the NDAL arbitration is handled
by the NEXMI chip. The NVAX CPU does not imple­
ment the NDAL arbitration on chip because the
microprocessor must accommodate many differ­
ent types of system platforms. A method of arbi­
tration that is fair and efficient on one type of
system (e.g., a single processor workstation with
several potential NDAL master nodes implemented
in off-the-shelf programmable devices) might be less
than satisfactory for another type of system (such
as the NEXMI).

The NEXMI and the NVAX CPU are the only two
nodes on the NDAL in this implementation, so a sim­
ple priority scheme is used. The NEXMI always has
highest priority, since it is either returning data or
forwarding XMI2 bus transactions for potential
invalidation and write back. In both cases, some
other entity on the bus is actively waiting for the
information to be returned.

Choice of NEXMI Technology
The NDAL is the NVAX CPU external interface bus. It
is a 64-bit, bidirectional, multiplexed address and
data bus that runs synchronously with the CPU.
Although it is significantly slower than the internal
CPU speed (an NVAX with a 12-nanosecond [ns]
clock cycle has an NDAL with a 36-ns cycle), it is still
aggressive in many respects, and presented a chal­
lenge to design using standard parts. The NDAL

49

V
t

0

N

B

~

1L

~

k=
-

v D
A

L
us

K
E

Y
:

~

rJ
£

LA
T

C
H

~

K

~

c
N

D
A

L

~

R
E

C
E

IV
E

LO

G
IC

p

-

O
T

H
E

R

A

G
R

A
N

T
S

(

N
D

A
L

~

.
A

R
B

O
T

H
E

R

y

R
E

Q
U

E
S

T
S

<

LA
T

C
H

A
D

R
 C

M
P

A

D
D

R
E

S
S

 C
O

M
P

A
R

E

C
M

D
 D

E
C

C

O
M

M
A

N
D

 D
E

C
O

D
E

R

N
D

A
L

A
R

B

N
D

A
L

B
U

S
 A

R
B

IT
R

A
T

IO
N

P

A
R

 C
H

K

P
A

R
IT

Y
 C

H
E

C
K

R
E

C
E

IV
E

W

R
IT

E
-B

A
C

K
 Q

U
E

U
E

D

A
T

A
 ~

C
M

D
/A

D
D

R

~
~
 n

i
~

)
 ,___

__
....

,,.

D
A

T
A

~
L

J
 ,
';

~

)
 >-

--
--

--
-,

r
Y

C
O

M
M

A
N

D
/

.
A

D
D

R
E

S
S

y

A
N

D

N
O

N
-W

R
IT

E
-B

A
C

K

::_
_

el
)

D
A

T
A

-
N

O
N

-W
R

IT
E

-B
A

C
K

==
-I

D
C

O
M

M
A

N
D

/A
D

D
R

E
S

S

-
N

D
A

L

N
O

N
-W

R
IT

E
-B

A
C

K

-
T

R
A

N
S

M
IT

Q

U
E

U
E

LO

G
IC

R
E

Q

C
T

L

C
M

D

D
E

C

,

~

~
R

E
S

P
O

N
D

E
R

.

Q
U

E
U

E

D
A

T
A

/T
Y

P
E

R

E
S

P
O

N
D

E
R

Q

U
E

U
E

A
 "S

S
C

 R
E

T
U

R
N

 D
A

T
A

/T
Y

P
E

P
A

R
 G

E
N

R

E
Q

C
T

L

X
C

I

P
A

R
IT

Y
 G

E
N

E
R

A
T

O
R

R

E
Q

U
E

S
T

 C
O

N
T

R
O

L

X
M

I
C

H
IP

 I
N

T
E

R
C

O
N

N
E

C
T

~

"
x

M
IB

U
S

D

A
T

A
/T

Y
P

E

- ~

F
ig

ur
e

3
B

lo
ck

 D
ia

g
ra

m
 o

f t
h

e
N

E
X

M
I C

hi
p

W
R

IT
E

-B
A

C
K

C

O
M

M
A

N
D

/
A

D
D

R
E

S
S

;>

X
M

I
W

R
IT

E
-B

A
C

K

C
O

N
T

R
O

L

D
A

T
A

.

LO
G

IC

X
C

I

¢=
=

=
:>

)

y

)
y .)
y

X
M

I
C

O
M

M
A

N
D

/
A

D
D

R
E

S
S

S
S

C

C
O

M
M

A
N

D
/

A
D

D
R

E
S

S

. ;>)
S

S
C

y

W
R

IT
E

C

O
N

T
R

O
L

D

A
T

A

LO
G

IC

arbitration for the next cycle happens in parallel
with the data transfer for the current cycle, and the
full request and grant loop must be performed in
one NDAL cycle. In addition, the NDAL data path is
bidirectional. An NDAL master must be able to trans­
mit its data to the receiver within a single cycle,
then allow time for the bus to become tristate
before the next master can drive the bus.

The original product plan was to use several gate
arrays to implement the module control logic. One
gate array would have contained the XMI2 interface
logic, and the other would have controlled the
system support functions and interface. It became
clear early in the project that the external 1/0 cells
of the gate array could not meet the timing man­
dated by the NDAL specification. Furthermore, we
were unable to obtain timely and accurate SPICE
models of the gate array output stage, which com­
pounded our general difficulty in determining the
design trade-offs for the module.4

The use of an external commodity gate array
implied another design-related drawback. The nor­
mal gate array design process included the submis­
sion of our design for chip layout after we had
completely verified it for both logical correctness
and estimated timing constraints. The timing was
estimated since the actual timing could not be
known until the ASIC was routed. The gate array
routing would be performed by the vendor, and
actual delay numbers would be used to verify the
design again. This sometimes meant changing logic
interconnections to fix timing-related violations,
especially if the design team had been aggressive in
either the chip cycle time or gate usage. The design
would then have to be verified again, and sent back
to the vendor where the process was repeated until
everything worked at speed.

Consequently, we decided to design the NEXMI
ASIC chip using Digital's CMOS-3 standard cell pro­
cess at the Hudson, MA site. Once the decision had
been made to use the internal process, we realized
other significant benefits. We believed that we
could collapse the design into one package, since
we could make use of Digital's chip expertise to
create full-custom sections where necessary. We
would know early in the design cycle if our assump­
tions were wrong, since the design flow uses a sub­
chip approach. The approximate size of each
subchip is known as soon as the first pass of the
structural design is finished.

Another major advantage of using Digital's inter­
nal CMOS design process was that it afforded us

Digi tal Tech11icaljour11al Vol. 4 No. 3 Summer 1992

The VAX 6000 Model 600 Processor

direct contact with the VLSI design, process, and
manufacturing groups. As our design progressed,
we had constant communication with the people
who wrote and supported the computer-aided
design (CAD) tools, the people who had designed
the circuits and standard cell library elements, and
the people who would eventually fabricate the
chips. At any stage of the project, we could deter­
mine how to obtain a performance advantage with­
out risk to either chip yield or product reliability.
When a tool problem surfaced, or when a tool did
not do exactly what we needed, the issue would be
immediately addressed and resolved.

By having easy access to the individuals who had
detailed knowledge of the circuits, we could attain
the maximum possible speed and density from
the design. We benefited from the experience of
the internal full-custom design community, and
profited from access to its complete and accurate
SPICE libraries. Consequently, we were certain of
how we could obtain a design advantage, yet still
allow the chip to perform reliably under worst-case
conditions.

The Digital semicustom design process
(described in more detail in the section NEXMI
Design Process) provides constant feedback on cir­
cuit layout. Therefore, our functional and logical
timing simulations were always up-to-date with
accurate gate and wire delays. By the time we were
ready to freeze the design (after we had verified
it for logic and timing correctness), only one
regression run was needed on a minor change from
the last iteration. This approach prevented last­
minute surprises, and resulted in a smooth transi­
tion from design description, through layout, and
into fabrication.

NEXMI Design Issues
During the design of the NEXMI chip, several inter­
esting problems were addressed.

Interblock Control Signal Synchronization The
clock that drives the NVAX and NEXMI chips runs at
36 ns, and is not synchronized to the 64-ns clock
that drives the XMI2 bus interface. Without any spe­
cial care, the data that is generated in one clock
domain can cause the target latching device out­
puts to enter a state called "metastable." This state
is characterized by oscillations, or an output volt­
age level that is neither high nor low for an
extended period of time. This can cause unreliable
system operation.

51

NVAX-microprocessor VAX Systems

Traditionally, a synchronizer is provided for the
control signals between two different clock
domains to allow communication without causing
metastability. A synchronizer is a cascaded set of
latches, allowing the first latch to go metastable,
but characterized so that it settles down before the
second latching device is sampled. The drawback
to a synchronizer is that it increases the latency of
communication due to the cascaded latching
devices.

There are no inexpensive and easy remedies for
latency of communication when the system goes
from idle to active. However, we decided to reduce
the synchronizer latency on a busy system. Our
method optimizes the case where information is
in either the NDAL queue or the XMI2 responder
queue, waiting for transmission when the current
command has been successfully transmitted. For
these situations, we created a set of round-robin
synchronizers, with a ring of request and done sig­
nals in each direction. While one request/done pair
is being serviced, the pipeline overhead for the next
pair is hidden by the overlapping synchronizers.

NEXMI Queues For the three major queues in the
NEXMI chip, we determined reasonable queue sizes
based on our chip space constraints and perfor­
mance simulations. System testing on the real hard­
ware during our debugging and system integration
phase confirmed that our decisions were correct.
None of the queues cause performance degrada­
tion on an actual running system.

We decided to make the non-write-back and the
XMI responder queues into integrated queues
rather than have separate queues for each function.
Queuing theory shows that a shared resource is bet­
ter utilized when only one queue is served by the
next available resource, rather than having a sepa­
rate queue for each resource.~

Visibility Port A problem that always exists with
dense, complex integrated circuits is how to diag­
nose problems that happen in an actual running
system that do not show up during simulation.
Although no such problems appeared in the NEXMI
chip, the designers wanted to provide visibility to
as many internal states as possible. To this end, we
created a parallel port to provide visibility to some
important internal signals.

Given the size of the design, we could provide
only the minimum number of signals for visibility.
We tried to predict the internal signals that might
help diagnosis and adjustment, such as the internal

52

state machines, interblock control signals, and
queue head and tail pointers. We then grouped
them into similar units so that related signals were
visible within one control group. Internally, the sig­
nals were segregated within their boxes, and routed
so that they did not adversely affect the top-level
chip routing.

NEXMI Design Process
The NEXMI chip contains 250,000 transistors in a
die that measures 0.595 inches by 0.586 inches. It is
housed in a custom-designed, 339-pin, ceramic pin
grid array (PGA). This section describes the NEXMI
chip design methodology and the unique CAD tools
that were used to design Digital's largest CMOS-3
semicustom chip. (The chip is physically larger and
has more transistors than any previous standard
cell produced using the Digital semicustom pro­
cess.) This section also covers many of the trade­
offs made during the chip design, and explains the
reasoning behind our decisions.

The design of the NEXMI chip can be character­
ized by three major phases:

• Behavioral modeling

• Structural design

• Physical chip implementation

The three design phases of Digital's internal
CMOS design process significantly overlap each
other. Each design stage is explained and analyzed
in this section.

Behavioral Modeling Phase
The first major design effort focused on describing
the chip functions at a high level of abstrac­
tion. This is normally referred to as behavioral or
functional modeling, and the design team used
Digital's internal hardware description language,
DECSIM-BDS, for this task.6 Functional design sec­
tions were allocated to different design engineers,
and interfunctional block boundary descriptions
were specified.

A behavioral modeling strategy was attractive for
many reasons. A well-defined hierarchical partition
of the design was quickly realized, and smaller sub­
sections (or subchips) within the chip were identi­
fied. Behavioral models of each subchip were
initially developed to prove functional correctness.
As the design progressed, these subchips were
replaced by functionally equivalent gate-level struc­
tural models. Using this mixed-mode functional
simulation strategy, each designer could progress

Vol. 4 No. 3 Summer 1992 Dtgttal Technical Journal

at his/her own pace, from behavioral definition
to structural implementation, independent of the
status of other subchips.

The behavioral modeling effort identified many
architectural problems early in the design cycle.
Details such as queue sizes and structure, flow con­
trol mechanisms, and interblock communication
protocols were all emphasized, and each decision
yielded valuable information about the feasibility of
a single-chip implementation.

Behavioral modeling allowed a functional
description of the NEXMI chip to be integrated into
a system-level model quickly. This enabled the veri­
fication team to write and debug tests early in the
design cycle. As each structural subchip was fin­
ished, it replaced its previous behavioral counter­
part in the verification model, and was tested for
functional correctness. This step-wise, integrated
approach permitted the tests, models, and logic to
be verified incrementally.

One major advantage of our behavioral modeling
strategy was that it let the design progress without
targeting a specific technology. The designers
focused their attention on logical implementation
rather than on the technology-specific details, such
as the timing and loading constraints imposed by
a choice of technology. The Choice of NEXMI

Technology section described the process of select­
ing the CMOS-3 implementation path. The initial
behavioral phase of the project allowed some of the
design to be finished before the final choice of
CMOS technology was made.

Structural Design and Chip
Implementation Phases
The next major project design phase involved map­
ping the behavioral subchip models into their
equivalent gate-level structural representations.
The design methodology chosen followed directly
from the decision to implement NEXMI using
Digital's CMOS-3, I-micrometer, semicustom pro­
cess. The semicustom process includes a fully spec­
ified library of primitive elements, called standard
cells, similar to the cells included in a gate array
library.

The advantage of the semicustom approach is
that it gives the designer full control over the place­
ment and routing of the individual primitives
or groups of primitives (subchips) within the chip.
This allows the engineer to easily take advantage of
special placement for speed-critical paths. Because
we were using the internal tool suite and fabrica-

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The VAX 6000 Model 600 Processor

tion process, we were also able to take advantage of
a wealth of full-custom knowledge provided by our
support groups. One of the original reasons for
using the internal VLSI process was the tight timing
on the NDAL. Therefore, the NEXMI pad ring was
custom designed for speed, control, and lTL-level
compatibility. Other major handcrafted sections
were the dense, multiported queue structures.

To coordinate our large, multiple-person chip
design, we used the organized chip design (ORCHID)

file management system. The ORCHID system man­
ages the files created by each design tool for every
hierarchical subchip. It contains translation tools
that convert the schematic data into file formats
accepced by the simulation, layout, and verification
tools. The system allowed individual designers to
work independently on subchips at various stages
of development (schematic entry, simulation, floor
plans, layout, verification) yet still maintained a
coherent hierarchical design database that could be
shared by all members of the design team. The idea
of a shared database facilitated the reuse of com­
mon logic (e.g., counters, parity trees, testability
devices), and designers often borrowed from each
other to avoid primitive design duplication.

Semicustom Design Flow
Figure 4 shows the semicustom design process and
the individual tools that were used during the struc­
tural and physical implementation phases of the
NEXMI chip design.

ALOE, Digital's in-house graphical editor, was our
schematic entry vehicle, and was used in conjunc­
tion with the primitive symbols and models from
the CMOS-3 standard cell library (SCL3). The tools
within the ORCHID system were used to translate
schematics into generic wirelists with estimated
delays. The schematics were then input to other
tools for logic and timing verification. Specific
design tools included the internal logic simulator,
DECSIM, a timing analysis tool, AUTODLY, and the
SPICE circuit simulator.

Automated logic synthesis was used to convert
some behavioral models into structural entities.
OCCAM, an internal CAD tool, was used to synthe­
size a gate-level representation of the scattered
address decode, and was able to minimize the logic
to meet the aggressive bus timing . ., Controllers
embedded within the XMI and SSC subchips were
synthesized using SMD2SIM, a tool developed at
Digital's Boxboro, MA site for another project. This
synthesizer allows large programmed logic array

53

NVAX-microprocessor VAX Systems

------------------------------,
I DESIGN ENTRY I

OCCAM ALOE
I

SMD2SIM
I LOGIC SCHEMATIC STATE MACHINE

SYNTHESIZER EDITOR SYNTHESIZER I
I

I
I
I
I
I

r
---===========t==============J _________

GENIE ORCHID TRANSLATION TOOL SUITE
GENERIC
WI REUST
GENERATOR

-

FLT
HIERARCHICAL
FLATIENER

,---------
--=---=---=---=- 1 1 0TLAS - - - - - I I DLYEST

WLU/CHAS I TOOL I I
DELAY

SPICE WIRELIST I I SUITE TWEDT ESTIMATOR
EXTRACTOR I TWOLF EDITOR I I

I ~
DLYDIST I

----1 DELAY I ---
I --- I I DISTRIBUTOR

TWOLF
TIMBERWOLF I I DLYCALC SPICECNV

I PLACE/GLOBAL I I
DELAY WI REUST

I ROUTER CALCULATOR TRANSLATOR

I I I

I SCASM I I
IDECSIM STANDARD CELL I I I ASSEMBLER NETLIST

I DETAILED ROUTER I I TRANSLATOR

I FAME
11 __________ ------ ---

I FLOOR PLANNER I ---------- ------ ---
I SIMULATION

I AND TOP-LEVEL I I

ROUTER I I
I ----------- ---- I AUTODLY DECSIM SPICE

--- ----------- --- --, I TIMING LOGIC ANALOG

I I
ANALYSIS TOOL SIMULATOR SIMULATOR

MEGAN

r

,

VLSI LAYOUT I

1
I
I
I
I
I [____________________

EDITOR
[_______

I
I I I

DRC
I

HILEX HI LEX/CUP I HIERARCHICAL DESIGN RULE CAPACITANCE
EXTRACTOR CHECKER EXTRACTOR I

i
I
I

IVCMP I
WI REUST I
COMPARISON I PROGRAM

PHYSICAL CHECKS I L _________________________ _

Figure 4 Semicustom Design Row

(PLA) structures to be realized from a simple LISP·
like behavioral description. During the course of
the design, controller funct ion changes became
easier to maintain using a textual description.

54

After each gate-level subchip was created, the
ATLAS tool suite was used to place and route the
standard cells within the subchip. The lWOLF edi­
tor (TWEDT) was used to place special cells, such as

Vol. 4 No. 3 Summer 1992 Dtgttal Tecbntcal]ournal

clock buffers and timing-critical gates, within the
subchips. The rest of the subchip was then placed
automatically and globally routed using the TWOLF
program, which relies on a simulated annealing
placement algorithm. 8 Lastly, the standard cell
assembler known as SCASM was used to assign stan­
dard cell rows and to complete the detailed rout­
ing.9 SCASM uses both channel routing and
"over-the-cell" routing, which reduced the overall
size of the subchip by permitting metal routes over
the underlying cells. Subchip post-layout timing
information was then fed back into the logic and
timing verification tools for a more detailed analy­
sis. The ability to analyze post-layout delay informa­
tion and to iterate through the layout process early
in the design phase was crucial to meeting our
schedule.

The top-level floor plan was progressing in paral­
lel with the process of subchip placement and rout­
ing. FAME, another tool from the ATLAS tool suite,
was used for the chip floor plan and top-level rout­
ing.10·11 Information about top-level routing was fed
back to the subchip place and route tools to change
the basic shapes and subchip boundary pin place­
ment information. This was used to keep inter­
subchip routing to a minimum, which in turn
reduced overall loading and timing delays. Many
successive iterations were necessary to achieve an
optimal top-level floor plan that would meet our
timing goals and fit onto a single die. Fortunately,
much of this work could be done by the designers
themselves.

After the final place and route iteration had been
done on the the entire chip, an exhaustive set of
checks was performed to ensure design integrity
and circuit reliability for first-pass silicon. A VLSI
design rule checker was run on the individual sub­
chips, then on the entire chip, to verify the layout
against the CMOS-3 process design rules. As a pre­
cautionary measure, the original chip schematics
were extracted to SPICE wirelists using an internal
wirelist tool, and another program, called
HILEX/CUP, did the same thing using the geometric
information in the final layout database. A wirelist
comparison program, called IVCMP, compared the
two wirelists to ensure that the design we had sim­
ulated was the same one we would build.

Finally, a program called XREF used the capaci­
tance from each internal chip node and the topol­
ogy of the routed interconnection database to
predict the cross talk each signal could expect.
Changes were made to the signal routing and the

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The VAX 6000 Model 600 Processor

sizes of some of the driving transistors, based upon
potential problems identified by the XREF program.

Figure S is a representation of Digital's CMOS-3
design process. It shows the chip floor plan, along
with an example of the schematics used to drive the
layout process, and a timing diagram created by the
simulation program.

Verification of the VAX 6000 Model 600
Early in the design cycle, our verification team was
able to integrate a behavioral chip-level model into
a CPU module model and perform system-level test­
ing of the VAX 6000 Model 600. These tests gave the
designers timely feedback on the effects of their
design decisions on the system as a whole.

An NDAL/XMI2 bus monitor, called the BEMAR,
was written to verify the bus activity between the
NDAL and XMI2 ports of the chip, and to log valuable
cycle information. The NEAT, an NDAL cycle emula­
tor, was also used to create NVAX transactions on
the NDAL. It was written to reduce simulation test
run times and to ease the test verification process.

Most of the tests written were focused tests, tar­
geting a specific function within the NEXMI chip.
However, a random bus exerciser was also written
to test unexpected combinations, and was instru­
mental in catching two design flaws that the
focused test cases had missed. In all, over 100
focused tests were written and verified against the
simulation model, giving us a high degree of confi­
dence that first-pass silicon would be functional.
The quality of the prototype systems is due in large
part to this complete verification.

A subset of the functional tests was also used
by manufacturing to generate chip test vectors.
Test vectors were automatically converted from
DECSIM-formatted trace files to Takeda pattern sets
through a special program called TEMPEST. Prior to
the return of first-pass silicon, the generated pat­
tern sets were converted back into DECSIM format,
to verify that the pattern sets would run success­
fully on the Takeda chip tester. This test pattern
generation and simulation process reduced the
time needed to debug the test patterns when the
NEXMI chips became available.

Module Design Issues
During the design of the VAX 6000 Model 600
processor, many module-related issues were
considered. The next section describes some of the
more interesting issues that we encountered during
the physical module design process. In many cases,

SS

NVAX-microprocessor VAX Systems

Figure 5 Representation of the CMOS-3 Design Flow

we describe the method that was adopted by the
design team to prevent problems through careful
planning and analysis.

Backup Cache Size and Speed
We chose to defer the selection of the backup cache
size and speed until late in the design cycle. This
allowed us to make the decision based upon the
pricing and availability of the SRAM devices, and the
performance to be gained from combinations of
these devices. We also wanted to wait until we
knew the final speed of the NVAX CPU. The two
most likely cache sizes were 512 kilobytes (KB) and
2 megabytes (MB). We felt that simulation could
provide insight into the performance trade-offs,
and simulation studies were performed with both
sizes to establish approximate performance num­
bers. We knew, however, that running real modules
on a variety of benchmarks under actual workloads
was the most accurate way to determine the perfor­
mance side of the price/performance trade-off.

56

The footprints for the two SRAM cache chips that
represented the cache size trade-offs were differ­
ent, which made it difficult to create one prototype
module to accommodate both sizes. Creating two
separate modules to test the different combinations
of cache sizes would have burdened the rest of
the project, so special surface-mount pads were
designed to handle the different SRAM geometries
on the same module. Once the cycle time of the
NVAX CPU was determined to be 12 ns, we were able
to make the final choice on the cache size and SRAM
speeds. The final decision was to provide a 2MB
cache with 20-ns 256KB by 4 SRAMs for the data and
15-ns 64KB by 4 SRAMs for the tag. This provided the
best balance between cost and performance in the
Model 600 system.

ROMBUS Decisions
General-purpose computing systems need a core of
system functions to supplement the computing

Vol. 4 No. 3 Summer 1992 Digital Tech11ical Jour11al

power of the processor. On the VAX 6000 series of
computers, this includes:

• ROM to hold the boot, diagnostic, and console
code

• EEPROM to hold items such as boot paths and
error information

• Console terminal UART

• Time-of-year (TOY) clock

• Battery backed up RAM

• Programmable interval timer

• Time-of-day register

• Input ports to sense external switches and other
state

• Output ports to drive module light-emitting
diodes (LEDs)

• Reset logic for the module

• Halt detection and arbitration

• Secure console logic

I
ROM2

f---1 ROM 1 EE PROM

..
'----+ ROMO

~ I +

The VAX 6000 Model 600 Processor

Previous VAX 6000 systems used a system sup­
port chip for most of these functions. Mter we
decided to combine as much support logic as possi­
ble into the single ASIC device (NEXMI), we had to
determine what functions to include inside the
chip, and what functions to locate external to the
chip. We saw a potential schedule risk if some func­
tions, such as the UART and TOY clock, were placed
inside the NEXMI. These functions were relegated
to outside the chip since industry-standard, off-the­
shelf components were available to perform
exactly the functions we needed.

Once we decided to implement the UART and TOY
clock outside the NEXMI, and added the normally
external ROM, EEPROM, and input/output ports, we
found that the NEXMI pin count was higher than we
could afford. Since all the support devices were
slow, and each one was byte-wide by its nature,
we solved the pin problem by creating a single,
slow-speed, bidirectional bus, which we called the
ROMBUS. Figure 6 is a block diagram of the ROMBUS
and its components. The ROMBUS reduced the
NEXMI pin count by 40 pins for the same functions.

I
UART I TOY CLOCK I
I I ROM

1,:;/6 1
ADDRESS

ADDRESS
GENERATION
LOGIC

- OUTPUT
PORTO

ROM BUS OUTPUT - CONTROL DEVICE SELECTION PORT1
LOGIC -

.. I INPUT PORT I
I RAM I ROMBUS

DATA<7:0>

ROMBUS COMMAND<3:0>
NEXMI CHIP

Figure 6 Block Diagram of the ROMBUS

Digital Technical Joun,al Vol. 4 No. 3 Summer 1992 57

NVAX-microprocessor VAX Systems

Using the ROMBUS for the UART and TOY clock
reduced the risk entailed in designing them inside
the semicustom NEXMI ASIC, but the ROMBUS itself
was eventually burdened with 12 separate devices.
This presented a large capacitive and direct current
load to all the components on the bus. The UART
and TOY chip in particular were not well suited to
this large load. We attempted to find CMOS-equiva­
lent devices for all the TTL components to eliminate
the direct current problem, but were unsuccessful.
We finally decided to split the bus into two sec­
tions, and place all the CMOS low-drive-capability
devices on a separate segment. A transceiver con­
nected the two segments.

Given that most of the devices on the ROMBUS
were non-Digital components, we had the normal
problem of obtaining accurate SPICE models to
determine the ROMBUS timing. Extensive lab testing
was performed on the devices to characterize their
output delays under different capacitive loading
conditions. These loading tests helped generate
SPICE models for the ROMBUS simulations.

Signal Integrity Considerations
Module signal integrity analysis was one of the most
important aspects of the project. A system that
includes components running as fast as the NVAX
and NEXMI can easily see performance degradation
or unreliability if the module signals are not care­
fully placed, routed, and terminated where neces­
sary. The past experience of the signal integrity
team played a major role in the eventual success of
the process. Several approaches were taken for this
aspect of the design.

Package Selection SPICE simulations were per­
formed on each level of the design. This included
the chip, package, module, and backplane. Even
though each particular simulation analysis was
focused on one aspect of the design, we under­
stood that each individual area affected the entire
system. For example, the selection of a package
spanned several important levels of design hierar­
chy. The connections between the die pads and the
module signal pins, as well as the connection of the
package to the board, needed to be considered; as
did the module layout that accompanied each pack­
age size and type. One aspect of the signal integrity
might show that a particular package type was
superior to another, while another aspect might
favor a different approach to module component
interconnection. Electrical SPICE simulation deter­
mined that the performance and reliability of a

58

ceramic through-hole PGA on a 100-mil grid was the
best trade-off.

NDAL and Backup Cache Simulation The most
important module-level signal integrity analysis
was the extensive characterization of the NDAL and
backup cache. As the interconnection bus between
the NVAX and the NEXMI, the NDAL controls not
only the transmission speed between the compo­
nents, but also the speed at which the NVAX can run
(since the NDAL is synchronous to and scales with
the NVAX speed). The speed of the backup cache
was a performance concern for obvious reasons.

We determined that estimates of the intercon­
nect and routing would be insufficient for our
aggressive timing goals. Several trial layouts were
performed to provide accurate input for the SPICE
simulations. The 1/0 drivers for both the NVAX and
the NEXMI chips were known to be complete and
accurate, since they were both designed internally.
The timing requirements for reliable operation
were also well understood for the same reason. The
module-level SPICE simulations provided guidelines
about the length and routing rules associated with
each high-speed signal trace, such as:

• Daisy-chain routing of all signals

• Clock routing scheme (e.g., matched length and
termination)

• Maximum length requirements for each type of
network

• Treeing, or ordering, requirements for networks

• Impedance of different networks

These requirements were used as design guide­
lines. A cross-talk prediction program within the
layout tool verified that the coupling between sig­
nals was within an acceptable range. After the proto­
type modules were delivered, measurements were
taken of all the critical signals on the module, show­
ing excellent correlation with the SPICE results.

Thermal Management
During the early phases of the module design pro­
cess, the power dissipation of the NVAX chip was
estimated to be as high as 20 watts, though the final
figure for the 12-ns component that we shipped
with the product was 14 watts. Cooling such a part
presented a challenge to the module designers.
Since the Model 600 was an upgrade option in the
VAX 6000 family, there was no possibility of system
modifications to improve the thermal design.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Figure 1, which is a picture of the Model 600
module, shows that the heat sink for the NVAX is
larger than the package. The final dimensions of the
heat sink are 3.285 inches by 3.285 inches by 0.325
inch, while the PGA package is only 2.2 inches by 2.2
inches. One of our limitations was the maximum
component height of 0.420 inch on side 1 for any
module in a VAX 6000 backplane. This restriction
forced the heat sink to grow wider rather than
higher. The NVAX chip was also placed closer to the
edge of the board, where the airflow provides max­
imum cooling. The final size of the NVAX heat sink
was a compromise between system requirements,
board area, and thermal performance.

Summary
The decision to use Digital's proprietary tool suite
and fabrication process was proved correct by the
quality of the VAX 6000 Model 600 and its delivery,
on schedule, for NVAX CPU debugging and product
shipment. Access to accurate information about the
components allowed decisions to be made early,
and entailed less risk. This advantage, coupled with
a seasoned module development team and exten­
sive functional, timing, and circuit simulation
resulted in a successful project.

Acknowledgments
The authors would like to acknowledge the follow­
ing people for their contributions to the VAX 6000
Model 600 Processor: Chuck Benz, Mike Gowan,
Chris Houghton, Dave Ives, Keith Johnston, Mike
Kagen, Diane Kirkman, Doug Koslow, Bill LaPrade,
Don MacKinnon, Lisa Noack, Del Ramey, Sharad
Shah, Steve Thierauf, Mike Warren, and Beth
Zeranski.

References and Note

1. B. Allison, "An Overview of the VAX 6200
Family of Systems," Digital Technical journal,
vol. 1, no. 7 (August 1988): 10-18.

2. G. Uhler et al., "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

3. SPEC Newsletter, vol. 3, no. 4 (December
1991).

4. SPICE is a general-purpose circuit simulator
program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical

Digital Tecbntcal Journal Vol. 4 No. 3 Summer 1992

The VAX 6000 Model 600 Processor

Engineering and Computer Sciences, Univer­
sity of California, Berkeley

5. S. Ross, Introduction to Probability Models
(Orlando, Florida: Academic Press, Inc.,
1985).

6. M. Kearney, "DECSIM: A Multi-Level Simula­
tion System for Digital Design," Proceedings
of IEEE International Conference on Com­
puter Design: VLSI in Computers (1984):
206-209.

7. R. Brayton, ASV, and A. Wang, "MIS: A Multi­
ple-Level Logic Optimization System," IEEE
Transactions on Computer-Aided Design,
vol. CAD-6, no. 6 (November 1987).

8. C. Sechen and A. Sangiovanni-Vincentelli,
"Timberwolf 3.2: A New Standard Cell Place­
ment and Global Routing Package," Proceed­
ings of the 23rd Design Automation
Conference (1986): 432.

9. J. Reed, A. Sangiovanni-Vincentelli, and M.
Santamauro, "A New Symbolic Channel
Router: YACR2," IEEE Transactions on Com­
puter-Aided Design, vol. 4 (July 1985): 208.

10. N. Chen, C. Hsu, and E. Kuh, "The Berkeley
Building-Block (BBL) Layout System for VLSI
Design," Digest of Technical Papers, IEEE
International Conference on Computer­
Aided Design (1983): 40.

11. M. Marek-Sadowska, "Two-Dimensional
Router for Double Layer Layout," Proceedings
of the 22nd Design Automation Conference
(1985): 117.

59

Jonathan C Crowell
Kwong-TakA Chui

Thomas E. Kopec
Samyojita A Nadkarni

DeanASovie

Design of the rnx 4000
Model 400, 500,
and 600 Systems

The design of Digitals NVAX CPU chip provided the opportunity to bring RISC-class
performance to deskside CISC VAX computer systems. The new VAX 4000 Model 400,
500, and 600 low-end systems take full advantage of the performance capabilities
of the NVAX microprocessor. The three systems offer from two to four times the per­
formance of the previous top-of the-line VAX 4000 Model 300 system in the same
deskside enclosure. To achieve this increased performance, Digitals systems engi­
neers designed a new high-performance memory controller chip as part of the CPU
module, whose basic design is shared by the three systems. In addition, a high-per­
formance memory module and a VLSI bus adapter chip were designed

The design of Digital's NVAX high-performance
microprocessor offered systems engineers the
opportunity to design computer systems with sig­
nificantly improved performance. 1 The project
structured to use the NVAX CPU chip to upgrade the
VAX 4000 line of low-end deskside computers
resulted in a family of three new systems and the
associated CPU modules. These systems share a
basic CPU module design but offer a range of per­
formance capabilities. This paper first presents
the goals of the development project and then
describes the architecture, design, and implementa­
tion of the resulting new VAX 4000 Model 400, 500,
and 600 systems.

Goals of the VAX 4000 Project
Schedule and performance goals were of prime
concern to the engineers committed to upgrading
the VAX 4000 family of computers. Time-to-market
was a key goal of the development project.
Consequently, fully qualified systems were ready to
be shipped to customers when the NVAX CPU chip
was released and available in volume. The initial
goals for performance specified that the new sys­
tems provide three times the performance of the
VAX 4000 Model 300 system. Ultimately, the perfor­
mance of the NVAX CPU chip exceeded its design

60

goals. As a result, the new top-of-the-line VAX 4000
Model 600 system performance is four times that
of the Model 300.

Achieving the performance goals required
designing a new, high-performance memory con­
troller chip called the NVAX data and address lines
(NDAL) pin bus memory controller (NMC). The
objectives were to double the memory bandwidth
of the VAX 4000 Model 300 system and to provide
a total system memory capacity of 512 megabytes
(MB). To support the NMC specifications, a high­
performance memory module called the MS690
was designed. 2

To reduce hardware and software development
cost and the risk of failing to meet project sched­
ules, the system design incorporated all existing
high-performance 1/0 adapter chips. These devices
include the second-generation Ethernet controller
chip (SGEC), the Digital Storage Systems Inter­
connect (DSSI) shared-host adapter chip (SHAC),
the CVAX Q22-bus interface chip (CQBIC), and the
system support chip (SSC).2,3.4 A very large-scale
integration (VLSI) bus adapter chip was required to
provide CVAX pin (CP) buses to connect these 1/0
devices.~ The NDAL-to-CP bus adapter chip (NCA)
was designed to meet this need.

The three CPU modules designed to upgrade
existing VAX 4000 Model 300 systems retain the

Vol. 4 No. 3 Summer 1992 Digital Tecb11ical Jou1·11al

Design of the VAX 4000 Model 400, 500, and 600 Systems

same BA440 system enclosure used for these sys­
tems. The upgrade requires that the older MS670
memory module used in the Model 300 be replaced
with the new, higher-performance MS690 memory
module. The new systems had to support all of the
Q-bus option modules that were supported on the
VAX 4000 Model 300.

System Overview of the VAX 4000
Models 400, 500, and 600
The BA440 system enclosure shown in Figure 1 sup­
ports the VAX 4000 Models 300, 400, 500, and 600.
This pedestal enclosure was designed to operate in
an open office environment. To allow the systems
to operate quietly, the cooling fans are speed con­
trolled, based on the ambient temperature. The
enclosure power supply provides 644 watts of
direct current from a standard 15-ampere wall cir­
cuit. The system was designed and qualified to
operate in an environment with a temperature
range of from 10 to 40 degrees Celsius.

KEY:

D CARDCAGE

FIVE DEDICATED
SLOTS BEHIND
CONSOLE MODULE
(CPU PLUS FOUR
MEMORY)

Figure I BA440 System Enclosure

The new CPU modules, differentiated only by the
part numbers KA675, KA680 and KA690, are utilized
as the engines for the VAX 4000 Models 400, 500,
and 600, respectively. All three CPU modules,
henceforth referred to as the CPU module, provide
the same 1/0 functionality, including two DSSI

Dig ital Tecbu ical]011 r11a/ Vol. 4 No. 3 S11111111er ! ')').!

buses, a thick-wire and ThinWire Ethernet adapter,
a Q-bus adapter, and the console serial line. The
CPU module performance is 16, 24, and 32 times the
performance of the well-known VAX-11/780 system,
for the three new VAX 4000 systems, respectively.
The CPU cycle clock speed and cache sizes deter­
mine the product performance, as discussed in the
section CPU-cache Subsystem.

The backplane in the system enclosure provides
the signal interconnection and power distribution
between system components. There are connec­
tors and slots for the CPU module, four slots for
MS690 memory modules, and seven Q-bus slots.
The CPU module has a 270-pin connector that
receives the module power and connects the CPU
to the NVAX memory interconnect (NMI) bus, the
system DSSI bus, and the Q-bus. The backplane was
modified to support the wider 72-bit data path of
the new MS690 memory modules. This new back­
plane was phased into the BA440, enabling most
VAX 4000 Model 300 systems to be upgraded with­
out requiring a backplane change.

The system enclosure supports up to four DSSI or
small computer system interface (SCSI) tape inte­
grated storage elements (ISEs). These cableless
bricks support either one 5.25-inch, full-height
drive or two 3.5-inch drives. The ISEs are available in
variants that support the 2-gigabyte (GB), RF73 DSSI
disk drive and dual 85MB, RF35 DSSI disk drives. The
single-system pedestal can support six RF35 devices
and a tape drive, providing 4.8GB of storage for
applications that require high 1/0 rates. This RF35
configuration can provide over 360 queued I/Os
per second for random I/Os. If RF73 drives are used,
the single-system box can provide 8GB of storage.

There are several ways to expand the base VAX
4000 system; the most common way is to expand to
another DSSI-based system and create a two- or
three-node DSSI VAXcluster. The Q-bus in the VAX
4000 system can be expanded to provide IO addi­
tional Q-bus slots to each system using the B213A
Q-bus expansion enclosure. The DSSI expansion
enclosures together with the Q-bus DSSI adapter
(KFQSA) can expand the total available disk storage
to 28 DSSI disks. Using the RF73 disk allows up to
56GB of disk storage.

CPU Module
The CPU module common to the three new VAX
4000 systems is based on a highly integrated CPU
and 1/0 system built on the single 21.6-by-26.7-
centimeter (8.5-by-10.5-inch) module shown in

61

NVAX-microprocessor VAX Systems

Figures 2 and 3. The CPU module printed wiring
board (PWB) consists of the following subsystems: a
central processor and its associated three-level
cache; a pin bus, bus adapter, and memory control­
ler; and an 1/0 system with integrated controllers for
DSSI and Ethernet buses. The CPU module also con­
tains a CQBIC and 512KB of field erasable program­
mable read-only memory (FEPROM) for console code.

CPU-cache Subsystem
The CPU-cache subsystem is built around the single­
chip NVAX CPU, which provides a three-level cache
architecture. The first two levels of cache, which
are contained on the chip, include a 2KB virtually
addressed instruction cache and an 8KB physically
addressed instruction and data cache. The third
level of cache, the backup cache, is constructed
using static random-access memories (SRAMs) on
the module and is completely controlled by the
NVAX CPU chip. The backup cache was designed to
support a CPU cycle time as low as 10 nanoseconds

NDAL-TO-CP BUS
ADAPTER CHIP (NGA)

(ns) with a slip cycle, i.e., a two-cycle read (20 ns)
using 8-ns SRAMs. This write-back caching architec­
ture significantly reduces the demands on main
memory by caching both reads and writes without
the need for a memory access. On all previous VAX
4000 systems, the caches required that all write
operations continue through to main memory, i.e.,
write through.

The NVAX CPU is clocked by a differential emitter­
coupled logic (ECL) surface acoustic wave oscilla­
tor. This oscillator runs at 250 megahertz (MHz)
(16-ns cycle time), 286 MHz (14-ns cycle time), or
333 MHz (12-ns cycle time) on the KA675, KA680,
and KA690 CPU modules, respectively. The NVAX
chip produces a four-phase internal clock directly
from this input and generates system clocks at one­
third the internal clock rate .

The new CPU module design supports either a
128-kilobyte (KB) or a 512KB backup cache. (512KB
for the KA690 module and 128KB for the KA680 and
KA675.) The tag store for the two cache sizes can be

SGEC ETHERNET
ADAPTER CHIP

SHAG DSSI
ADAPTER CHIP

NVAX MEMORY
CONTROLLER (NMC)

CVAX Q-BUS
INTERFACE
CHIP (CQBIC)

SHAG DSSI
ADAPTER CHIP

Figure 2 CPU Module

62 Vol . 4 No. 3 Summer 1992 Digital Tee/mica/ Journal

Design of the VAX 4000 Model 400, 500, and 600 Systems

SGEC
SHAC DSSI ETHERNET
ADAPTER ADAPTER

CHIP CHIP
128KB OR 512KB
8-CACHE SRAMS

NDAL-TO-CP CP BUS 1

NVAX BUS ADAPTER
(J) CHIP (NCA) ::::)

CPU CD SYSTEM FPUI
SUPPORT <I'.

P-CACHE 0 "' CHIP (SSC) 8-CACHE z NVAX (J)
::::)

CONTROL MEMORY CD
CONTROLLER a..
(NMC) u

CVAXQ-BUS SHAC DSSI

OSCILLATOR INTERFACE ADAPTER
CHIP (CQBIC) CHIP

BA440 CONNECTOR

NVAX
MEMORY
INTERCONNECT
(NMI)

Figure 3 Block Diagram of the CPU Module

constructed from SRAMs that have the same 24-pin
package with compatible pinouts. This packaging
makes it easy to design the PWB to support either
cache. However, the data store, which is construc­
ted from parts whose packages have incompatible
pinouts, required a special dual footprint design
to accommodate either 16K-by-4K or 64K-by-4K
SRAMs. This footprint is designed with the decou­
pling capacitors and series edge-limiting resistors
carefully placed in the outline of the footprint to
allow a dense, geometric packing of the 18 RAMs
necessary for the data store.

The backup cache is a write-back cache with
memory coherence maintained through a direc­
tory-based broadcast coherence protocol. 1 When
the NVAX CPU needs to write data to memory, the
data is first transferred into the backup cache with a
request for write privilege command. Once a cache
row is stored in the cache as "written," any direct
memory access (DMA) read to that memory address
of displacement of that cache row will result in a
release write privilege transaction, even if the data
was never actually written. The cache controller
inside the NVAX CPU is responsible for all activities
related to cache maintenance.

Digital Technical journal Vol. 4 No. 3 Summer 1992

NDAL Interconnect, Memory
Controller, and Adapter
The NDAL bus is a synchronous, multiplexed
address and data, pended interconnect. Each
device on the NDAL bus may be a commander
(request data transfer), a responder (respond to
commander requests), or both. In the new VAX
4000 systems, the NVAX CPU chip is only a comman­
der, the NMC is only a responder, and the NCA 1/0

adapter is both a commander and a responder.
Arbitration of the NDAL interconnect is per­

formed by the NMC, which is also the default master
responsible for driving valid no-operation bus
cycles when there is no master activity. The NVAX
CPU is responsible for watching all NDAL traffic and
performing any invalidates or write backs of pri­
mary and backup cache data required to maintain
cache coherence with memory.

l/O Buses
The CPU module uses a custom third-genera­
tion complementary metal-oxide semiconductor
(CMOS-3) process 1/0 adapter (the NCA chip) to
interface between the NDAL bus and a pair of 32-bit

63

NVAX-microprocessor VAX Systems

CP buses. Two CP buses are used to prevent long
response latencies on the Q-bus from interfering
with buffer management on the Ethernet interface.
One CP bus, CPI , operates under the synchronous
CP bus protocol, and the other, CP2, uses the asyn­
chronous protocol. The faster peripherals, the
Ethernet and the two DSSI adapter chips, reside on
CPI and can take advantage of optimizations in the
NCA to reach a peak bus bandwidth of 33MB per
second (MB/s). CP2 has only one peripheral DMA
master, i.e., the CQBIC, which also connects the SSC
and the console FEPROM to the system. The NCA
acts as a master on both CPI and CP2. Since only
one of the buses is asynchronous, the system uses
only one CP bus clock (CCLK) chip for signal syn­
chronization and CP clock distribution.

The two CP buses share the same clocks. Con­
sequently, arbitration is performed by a single pro­
grammable sequencer, which serves both buses.
The sequencer is clocked at 35 ns (KA680 and
KA690) or 40 ns (KA675); this is one-half the CP
cycle time. The arbitration for CP2 is a simple two­
priority scheme with the CQBIC at the higher prior­
ity When more than one master is requesting the
bus, the minimum DMA request deassertion times
on both the CQBIC and the NCA effectively make
this scheme behave like a round-robin arbiter. The
internal state does not have to keep track of the pre­
vious master. No special treatment is required for
lock cycles because the CQBIC will never perform a
lock on behalf of the Q-bus.

Signal Integrity
Signal integrity work began very early in the project,
and the effort was a close collaboration between
the CPU module design team, the design teams for
the three VLSI devices, and the VAX 6000 Model 600
CPU module design team. Because some CPU mod­
ule team members had experience with designing
CP bus modules, the signal integrity issues on the
CP buses were generally well understood. The CP
bus data lines were routed with only a length con­
straint. The control signals on CPI required signifi­
cant analysis and SPICE modeling to meet both
settling time and waveform requirements.

The most critical signals in the backup cache
are the output enable and write enable signals. The
output enable deasserting edge must be transi­
tioned quickly to avoid tri-state contention on the
cache data lines. The write enable signal must be
perfectly monotonic through the threshold region,
because it is an edge-sensitive signal. Both of these

64

requirements were met by using a strong driver in
the NVAX chip and a parallel R-C termination at the
far end of two of the three stubs. The R-C termina­
tions absorb some of the incident energy, reducing
the reflections to an acceptable amount and allow­
ing incident-wave switching without the reflected
wave reentering the threshold region.

The backup cache data store was designed with
strong drivers and incident-wave switching on the
address lines. The routing of a representative cache
address signal is shown in Figure 4. The stubs were
arranged in such a way that the unavoidable reflec­
tion from the far end of the lines was reduced by
a partial reflection from the center junction. Thus,
signals traverse the threshold region fairly cleanly
and settle rapidly outside the threshold region, i.e.,
approximately 3 ns elapse from the beginning of
the transition at the driver until the time when
a valid signal arrives at the receiver.

Printed Wiring &Jard Physical Design
The NVAX CPU chip draws several amperes of cur­
rent from the 3.3-volt power supply. This current
draw has significant high-frequency components.
The integrated decoupling capacitor on the NVAX
die helps eliminate some of the high-frequency cur­
rent pulses, but much of this current must be sup­
plied by the module-level decoupling capacitors.•

Charge stored on the module in these decou­
pling capacitors supplies this current. Any induc­
tance in the path of the current reduces the
effectiveness of the capacitors by limiting the rate­
of-change of the current. In addition, the larger the
physical area enclosed by the current path, the
more radio frequency (RF) energy will be radiated
into space that must be contained by the enclosure
in order to meet regulatory radiation requirements.
These two issues led to the exploration of how to
minimize both the inductance of the decoupling
path and the physical area of the RF current spread.

The internal PWB standard, as it existed when the
new CPU module was being designed, required a
minimum of 25 mils (0.025 inch) of surface etch on
any device before a via could be dropped into an
inner layer. Traditionally, the inductance of this
connection was reduced by using a wide (i.e., 25-
mil) etch for this connection. The inductance of
surface etch on the module lay-up used on the new
CPU module (calculated with two-dimensional
transmission line [IDTL]) is shown in Table I.

Table I provides the data to calculate the total
inductance of a pair of 25-by-25-mil etch segments,

Vol. 4 No. 3 Summer 1992 Digita l Tee/mica.I Jour11al

Design of the VAX 4000 Model 400, 500, and 600 Systems

000 0 NVAX 00000
OFA OOOOK) 00000 EXAMPLE

SINGLE AD
LINE ETCH

DRESS ~ 0000

~
Pooooooooooooooooo
K)OOOOOOOOOOOOOOOOO

000(
000(
000(
000(
000(

[]
[]
[]

0
00
on
oO
00
00
00

0
00
00
00
00
00
00

0

g~
00
00
00
00

0
00
00
00
00
00
00

0
00
on
•v
00
00
00

0
00
00
00
00
00
00

-
--

-
--

- --

0 K)OOOOOOOOOOOOOOOOO
0000 K)ooooooooooooooooo
0000 000000000000000000

- - - -
0 -~ 0 -- 0 r-- 0 -~ 00 00 00 00

on on on on
oO oO oO I oO
00 00 00 DUAL 00
00 00 00 00
00 00 00 SAAM 00

0 0 0 0
00 00 00 FOOTPRINT(00 00 00
00 00 00 I I I gg 00 00 00
00 00 00
00 00 00 00

0--=,)f

- --- 0 -- 0 -~
00 0 00 00
00 on on
0 0 0 • 0 0 0
00 00 00 00
00 00 00 00
00 00 00 00

0 0 0 0
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

--=~~

- -
0 -- 0 -- 0 -~

00 00 00 00
00 00 00 00
• v ov ;o • v
00 00 00
00 00 00 00
00 00 00 00

0 0 0 0
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Figure 4 Backup Cache Treeing

0
u
0
0
0

0
0
0
0
0
0

0
u
0
0
0

0
0
0
0
0
0

0
0
u
0
0
0

0
0
0
0
0
0

CNCAC
c '-" '-' (
000 (
0 0 0 C

0 0 C

C'N"Mc C c ~ ~ c
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(
000(

i.e. , approximately 0.4 nanohenrys (nH). (This mea­
surement is approximate, due to the short dimen­
sions of the segments.) The effective series

inductance of the high-quality, 1,000-picofarad
(pF) RF capacitor used on the CPU module is
approximately 1 nH, including the inductance of
the vias connecting the capacitors to the power
planes. The reactance as a function of frequency for
the inductive component of this decoupling system
is shown in Table 2.

Table 1 Inductance of a Surface Etch

Etch Width

10 mils

25mils

Inductance

12.2 nH/in

8.1 nH/in

Note: This table represents the results of the inductance of a 0.5-
ounce copper strip on a 14-mil FR4 epoxy glass laminate
dielectric over a ground plane.

Because the resulting impedance is still quite
high at upper frequencies, multiple capacitors are
used in parallel. The 1,000-pF capacitors are cho­
sen from two different case styles to ensure that
the parasitic inductance of the capacitors is not
identical for all the high-frequency decoupling

Table 2 Reactance as a Function of Frequency for Decoupling with
and without Dispersion Etch

Reactance
Frequency With Dispersion Without Dispersion

(MHz) (Ohms) (Ohms)

100 0.89 0.63

200 1.76 1.26
400 3.52 2.51
600 5.28 3.77

Digital TecbntcalJ011n1al Vol. 4 No. 3 Summer 1992 65

NVAX-microprocessor VAX Systems

capacitors. This method of selection staggers the
frequency of the parasitic resonances.

Cycle Design Goal and Testing
Although the original design goal for the CPU mod­
ule was a 12-ns CPU cycle time, as knowledge about
Digital's fourth-generation complementary metal­
oxide semiconductor (CMOS-4) process increased,
the design teams investigated the critical paths for a
10-ns operation. At this time, the CPU module had
not been routed, so a 10-ns cycle time was set as the
layout goal. The cache loop layout resulted in a mea­
sured requirement that RAMs have an access time of
approximately 8.5 ns to meet worst-case timing
with no added slip cycles.

RAMs meeting this specification were not readily
available when the CPU module was designed.
However, several vendors are beginning to ship
devices at this speed today The NDAL data lines
were capable of running at the 30-ns NDAL cycle
that is generated with a 10-ns CPU clock. The point­
to-point NDAL arbitration signals are the tightest
timing path on the NDAL. The combination of analy­
sis by the NMC team and a careful hand-routing of
these signals by the module team allowed appropri­
ate NMC speed binning (i.e., sorting the chips based
on correct operation at the fastest possible speed)
to meet the timing requirements for a 30-ns NDAL
cycle goal.

Very few NVAX CPU chips were available that
would function at 10 ns over the full range of volt­
age and temperature. However, empirical signal­
delay measurements and limited-range module
testing have proven that the NMC and the NCA are
ready to operate on the CPU module at this speed.
An NVAX CPU that functions at this 10-ns speed can
operate the cache with no slip cycles using the
faster SRAMs. Future products may be based on an
NVAX running at a 10-ns cycle, as sufficient yields at
this speed bin are reached.

Module Testing
The module and chip teams considered more than
one approach when determining what module­
level testability features to implement in the VLSI
devices Digital was building for VAX 4000 Model
500 computers. The scan-based Test Access and
Boundary Scan Architecture (JTAG) proposal was
coming into its own, and the teams desired to fol­
low that specification, if scan-based test features
were to be used.6 However, no other devices on the

66

module would have scan capabilities. Thus, the
overall module test strategy could not be based
entirely on the JTAG specification.

As the teams reviewed the overall module
design, certain issues appeared to show promise for
the application of a scan-based test:

1. The automatic test equipment (ATE) pin density
was likely to be very high in the areas of the
three 339-pin pin grid arrays (PGAs). Reducing
this high density would improve the reliability of
the test fixturing.

2. Previous experience with module manufacture
in Digital's plants showed that the risk for solder
defects would be high in the cache area, because
of the]-lead SRAMs. A fast way to isolate these
problems would help reduce debug time.

3. Providing at least a driver or a receiver for use by
the JTAG scan ring would eliminate the need to
use continuity structures to verify bonding and
solder integrity on the VLSI parts.

Eventually, the module and chip teams settled on
a subset implementation of the JTAG scan-based
test. The NVAX CPU chip implements scan latches
on all data and control pads (input and output, in
the case of bidirectional pads). Thus, the cache
SRAMs can be tested using only the JTAG port, and
the NVAX CPU can act as the driver for scan testing
of the NDAL interface. The NMC and the NCA imple­
ment receive-only scan, so that the NDAL interface
could be tested with no ATE pins required. The
external tester was able to test the remaining pins
solely by driving signals that could be scanned out
of the pad latches. This subset implementation pro­
vided the same module-level coverage as would
have been possible using a full JTAG implementa­
tion. In addition, the implementation removed
some design obstacles that were causing implemen­
tation problems in the chips.

The ability to use scan-based testing is advanta­
geous to the manufacturing process in the follow­
ing two areas:

1. The scan tester can find open circuit defects in
the cache area where the bed-of-nails tester
could not resolve whether the problem was a fix­
ture contact problem or an actual open circuit.

2. The ability to create "virtual test points" on
scanned nets has allowed the test coverage of
the bed-of-nails tester to be expanded without
having to purchase an expensive tester upgrade.

Vol. 4 No. 3 Summer 1992 Digital Tee/m ica/ Journal

Design of the VAX 4000 Model 400, 500, and 600 Systems

Unfortunately, the module and chip teams' previ­
ous experience with scan-based testing at the mod­
ule level had been spotty at best. The ability of this
test to reduce the pin density, therefore, was not
used to full advantage in the problem areas under
the large PGA devices. Based on the experience test­
ing the CPU module for the three new VAX 4000 sys­
tems, follow-on products have been able to use this
testing feature to good advantage. The teams now
have a firm base of experience on which to base
future test strategies.

The NVAX Memory Controller
The NMC is a 520-by-500-mil custom chip fabricated
using Digital's I-micrometer CMOS-3 process and
contains 148,000 transistors packaged in a 339-pin
PGA. The NMC provides the interface between the
NDAL bus and up to 512MB of main memory by
means of the NMI. The NDAL bus supports three
other nodes on the NDAL-the NVAX CPU and up to
two 1/0 adapters (101 and 102). In the new VAX
4000 systems, the NCA serves as both 1/0 nodes on
the bus. The NMC contains the arbiter for the NDAL
and also helps the NVAX CPU maintain cache-mem­
ory coherency in the system by interfacing with a
separate 0-bit memory.

The NMI can operate with either a 32- or 64-bit­
wide data path and supports single error correc­
tion, double error detection, and nibble error
detection, and runs synchronous with the NDAL

clock. The NMI timing scales with the NDAL clock
cycle time.

In this section, we describe the architecture of
the NMC, the objectives of the NMC project, and the
results of the effort.

NMC Architecture
As shown in Figure 5, the NMC is partitioned into
six major sections: the NDAL arbiter, the NDAL inter­
face, the transaction handler, control and status reg­
isters (CSRs), the memory interface, and the 0-bit
interface. The NMC responds to all memory space
addresses when NDAL address bit 29 is equal to O
and responds to 1/0 space addresses in its allocated
range, i.e., 2101 0000 .. 2101 FFFF (hexadecimal).

The NDAL arbiter gives highest priority to the
NMC for returning read data. The two 1/0 nodes
have second priority; their requests are handled in
a round-robin fashion. The CPU has lowest priority.

The NDAL interface consists of an input section
and an output section. The input section moni­
tors the NDAL for a new transaction every cycle. A
valid transaction that has been decoded by the NMC
is put into one of four transaction queues
(INQUEUEs). There is one queue for each of the
NDAL nodes: CPU, 101, 102, and the fourth , which
stores release write privilege transactions.
Commander nodes on the NDAL initiate release
write privilege transactions to release the write
privilege of blocks in memory. The NMC must

r-~~~~~ CONTROL
ADDRESS CURRENT

DATA
ADDRESS

TRANSACTION O·BIT
INTERFACE

ADDRESS

NDAL
INTERFACE

NDAL
ARBITER

READ DATA

HANDLER WRITE DATA

MEMORY READ DATA

Figure 5 NVAX Memory Controller Block Diagram

Digital Technical Journal Vol. 4 No. 3 Summer 1992

MEMORY
INTERFACE

DATA

CONTROL

ADDRESS

DATA

67

NVAX-microprocessor VAX Systems

accept a release transaction from a node, irrespec­
tive of the state of its INQUEUE; otherwise, there is a
potential for deadlock. Consequently, the NMC has
a separate queue for release write privilege trans­
actions. The output section of the NDAL interface
buffers up to six quadwords (i.e., six groups of four
contiguous 16-bit words for a total of 384 bits) of
read data that must be returned to the NDAL. In a
normal functioning system, a buffer depth of six
quadwords together with an arbitration scheme
that gives the NMC the highest priority wiJI never
result in a full output queue. Therefore, there was
no need to check for a full queue and to stall while
loading the queue.

The transaction handler arbitrates between the
four INQUEUEs and stores selected transactions in a
current transaction buffer. The current transaction
buffer serves as a pipeline stage; this buffer allows
the corresponding INQUEUE to be loaded with the
next transaction while the current transaction is
being serviced. The NMC can service back-to-back
transactions with no stall cycles on the NMI.

The CSR section of the NMC contains memory
configuration registers, error status registers, and
mode and diagnostic registers.

The memory interface contains the data path,
address path, and control for up to four memory
modules on the NMI. The data path contains all the
error correction and detection logic. The address
path contains the row and column address multi­
plexers and a refresh address counter. The control
is provided by a state machine that can perform
multitransfer read operations, multitransfer write
operations, and read-modify-write operations.

The 0-bit interface directly controls the 0-bit
dynamic random-access memories (DRAMs), which
are housed on the CPU module. For every memory
transaction, the NMC reads the corresponding 0-bit
in parallel with the memory access. If the block of
memory is written, the memory transaction is
aborted until the corresponding release transaction
is received by the NMC. If the block is unwritten,
the memory transaction is allowed to complete.
Initiating the memory transaction in parallel with
the 0-bit access reduces the transaction latency on
transactions that are not written. Since most mem­
ory accesses are to unwritten locations, using this
scheme improves memory performance consider­
ably. In addition, the system design engineers were
able to use inexpensive DRAMS to implement the
0-bit memory instead of faster, more expensive
SRAMs.

68

NMC Project Objective and Results
The NMC project objective was to create a high-per­
formance memory design that would be com­
patible with the VAX 4000 Model 300 memory
subsystem and could provide two to three times
the performance of that subsystem. (The VAX 4000
Model 300 has a bandwidth of 47.4MB/s, at a cycle
time of 28 ns, using 100-ns DRAMs with a 32-bit
memory data bus.) This goal was achieved by using
a 64-bit memory data bus and an interconnect that
operates at a cycle time as low as 36 ns, using 100-ns
DRAMS, and at an NDAL cycle as low as 30 ns, using
80-ns DRAMs. The asymptotic bandwidth on the
NMI using the 100-ns DRAM technology and a 64-bit
data path is 111.llMB/s, i.e., 2.3 times the bandwidth
of the VAX 4000 Model 300. Using faster 80-ns
DRAMS, the bandwidth is 133.33MB/s, i.e., 2.8 times
the bandwidth of the VAX 4000 Model 300.

The NMC interface is efficient from the moment it
receives a transaction on the NDAL until it starts a
transaction on the NMI. This timing path was
extremely tight and results in real memory read
bandwidth of 63.6MB/s and 76.32MB/s at 36-ns and
30-ns cycle times, respectively.

The NMC chip was designed to meet an NDAL
cycle time of 36 ns, which made the timing very
critical. Most of the NMC chips produced can
exceed this goal and will run at an NDAL cycle
time of 30 ns. Future designs based on the 10-ns
NVAX chips will require this cycle time.

To meet the performance goal, we chose to use
a 64-bit memory interface. However, achieving
compatibility with the Model 300 memory modules
presented a challenge with respect to the ECC
generation and checking mechanism. A simple
approach would have been to include two separate
ECC trees, one for 64-bit operation and the other
for 32-bit operation. This design would have been
very area-intensive, so we chose 64-bit ECC code
such that 32-bit ECC was a subset. 64-bit ECC
requires eight check bits, and 32-bit ECC requires
seven check bits. In our 64-bit code, the eighth
check bit depends solely on the upper 32 bits. In 32-
bit mode, we force the upper 32-bits to a known
value; therefore, that check bit is always a fixed
value in 32-bit mode.

The VAX 4000 systems do not allow the use of 32-
bit memory modules, because it is difficult to meet
Q-bus latency requirements with the slower mem­
ory. This system constraint indirectly affected the
NMC. The CQBIC and SGEC devices, for example, had
stringent low latency requirements. The Q-bus

Vol. 4 No. 3 Summer 1992 Digital Tecb uical]011r11al

Design of the VAX 4000 Model 400, 500, and 600 Systems

latency problem had to be solved without causing
SGEC latency problems. Thus, the latency issue was
addressed in the following way:

• The NMC has a mode that indicates whether or
not the Q-bus is present in the system. During
this mode, the transaction handler gives the
Q-bus node (102) the highest priority. However,
to keep the SGEC latency within required limits,
the transaction handler must service trans­
actions from the IO 1 node at strategic times.

• To minimize the latency seen by any one node,
the three NDAL nodes require separate queues.
The simplest implementation of the NDAL input
interface would have been to have two queues,
one for release write privilege transactions and
one for all other transactions. Thus, preserving
the order of NDAL transactions would have been
very easy. With three queues, it is necessary to
compare queue addresses to preserve trans­
action ordering.

• The NMC combines the CPU request for write
privilege, the DMA read, and the DMA write into a
single transaction before retiring the data to
memory. This optimization reduces the latency
of written transactions.

Although the features that were added to the
NMC chip to reduce Q-bus and SGEC latency
increased the complexity of the chip, these features
successfully keep the Q-bus latency below 8
microseconds.

NDAL-to-CP Bus Adapter Chip
NCA is a full-custom, high-performance 1/0 con­
troller chip that provides the electrical and func­
tional interface between the 64-bit NDAL bus and
the 32-bit CP bus. In the new VAX 4000 systems, the
NDAL supports three chips: the NVAX CPU, the NCA,
and the NMC. On the CP bus, the NCA supports the
SHAC, SGEC, CQBIC, and SSC chips. The NCA is fabri­
cated in Digital's CMOS-3 process, contains 155,000
transistors, and is packaged in a 339-pin PGA. The
design goals for the NCA project were high quality,
improved performance, optimized time-to-market,
and leveraged use of existing CP bus chips. The NCA
team achieved all design goals and completed the
project by the scheduled manufacture release date.

NCA Architecture Overview
and Partitioning
Although the original concept of the NCA was moti­
vated by a memory and 1/0 controller chip called

Digital Technical Journal Vol. 4 No. 3 Summer 1992

the G chip (used in the VAX 4000 Model 300 sys­
tems), the NCA chip was a new design. To optimize
the DMA to memory bandwidth and the bus access
latency, the NCA provides the two CP bus interface
ports (CPI and CP2, mentioned previously), which
operate independently. This strategy has three
advantages. First, the Q-bus adapter and the system
read-only memory (ROM)/console are connected to
the CP bus separately from the Ethernet and the
mass storage devices. This arrangement allows the
system to tune and optimize throughput on the
Ethernet and mass storage devices without degrad­
ing the bus access latency seen on the Q-bus.
Second, the loading on the two CP buses is reduced.
Therefore, each bus can operate at a higher fre­
quency and without external buffers; this also saves
module area. Third, the dual-bus structure allows
the use of a simpler bus arbitration scheme.

In addition to using the dual-bus strategy, the NCA
uses write buffer and read prefetch transactions to
allow DMA devices, particularly the SHAC and SGEC
chips, to operate efficiently in double octaword
mode, where a two-octaword (32-byte) burst of data
is transferred within a single bus grant. For write
transactions, the NCA buffers up to two octawords
of data. Thus, the bus can operate without stalling,
while the NCA arbitrates for the NDAL bus for the
buffered write transactions. For read transactions,
the NCA contains a hexword-size (32-byte) prefetch
buffer. Whereas the maximum burst length is only
an octaword on the CP bus, the NCA requests up to
a hexword of data during DMA memory read opera­
tions. The extra data is stored in the prefetch buffer
and is immediately available if the subsequent CP
bus read transaction targets the same address as the
prefetched data. For NVAX initiated 1/0, up to four
operations can be buffered simultaneously.

The NCA is partitioned into four major sections:
the NDAL, CPI, CP2, and registers. The NDAL inter­
face and each CP bus interface contain the master
and slave sequencer and controls for the corre­
sponding bus. The NCA chip also has 1/0 queues and
an internal arbiter to select operations from CPI,
CP2, and NCA register read transactions to the NDAL
bus, based on a predetermined priority.

The register section contains the control and sta­
tus registers and the interval clock timer registers.
The interval clock is a software-programmable
timer used by the operating system to account for
time-dependent events.

The NCA supports parity check and detection
on both the NDAL and the CP buses. The NCA also

69

NVAX-microprocessor VAX Systems

supports all interrupts defined by the NDAL and CP
bus protocols for other types of error conditions.
When an error occurs, an error status bit is set in
the NCA error status register. Depending on the
type of error, an address may be available for diag­
nostics. The NCA also provides a mechanism to
force a parity error condition on any of the buses to
help debug the interrupt routines of the operating
system software.

Q-bus Latency Support
To reduce latency seen by the Q-bus devices,
the NCA provides special logic to gain priority
from the NDAL arbiter. The NCA informs the arbi­
ter of the imminent Q-bus operation, for which
latency is a concern. When a Q-bus is present in
the systems, the NCA is programmed to use the two
IDs mode on the NDAL and to enable the Q-bus
present bit of the control register. Upon detection
of the Q-bus "map" read transaction on the CP
bus, the NCA immediately asserts a signal to the
NDAL arbiter. The arbiter will not grant the bus
to other devices until after the Q-bus read trans­
action is accepted by the NMC or until the signal
is deasserted. Requests from the buffered write at
the same interface are masked off until the signal
is deasserted. Using this scheme, the Q-bus latency
in the new VAX 4000 systems was never more than
8 microseconds.

Enhanced CJ.'ltX Pin Bus
The NCA supports the standard bus protocol in
both synchronous and asynchronous modes. The
existing CP bus protocol does not utilize the maxi­
mum bus bandwidth possible with the standard CP
bus protocol. The fastest data transfer rate is two
cycles per four-byte (i.e., 32-bit) longword, because
the two primary signals for the handshake use the
same clock phase for the assertion. When the sent
signal is detected, it is already too late to generate
the received signal within the same cycle. To
achieve the one-cycle transfer rate, a modified pro­
tocol is used. The received signal is changed to rep­
resent a ready-to-receive signal. The received signal
is asserted regardless of whether or not the sent sig­
nal is asserted. When the sent and received signals
are asserted at the same time, both the master and
slave devices know that the data was successfully
transferred.

This protocol works with the existing CP bus
chips and has increased the theoretical bandwidth

70

by up to 66 percent. For an 80-ns CP bus cycle time,
the maximum bandwidth is 33.33MB/s.

Testability
To assist module testing, the NCA contains features
that comply with the IEEE Standard P1149.l JTAG
testability.6 At the pin level, five special pins are
provided and work in combination with the inter­
nal test access port controller inside the NCA and
a bed-of-nails tester to perform short- and open­
circuit interconnection tests.

MS690 Memory Module
The MS690 family of CMOS memory modules was
designed to support the memory requirements set
forth by the NVAX memory controller. 2 The NMC
requires the MS690 memory module to provide a
two-way, bank-interleaved, 72-bit data path. In addi­
tion, a self-test feature is provided that was used on
the VAX 4000 Model 300 memory subsystem. The
MS690 module returns a unique board identifica­
tion signature when polled by the NMC. The mod­
ule used existing qualified parts and fits on a
quad-sized PWB.

A common goal of Digital's Electronic Storage
Development (ESD) teams is to utilize a single PWB
design to accommodate as many memory sizes
as possible. The ESD teams routinely stretch the
boundaries ofDigital's manufacturing processes to
provide world-class memory subsystems. Because
memory subsystems form the core of the ESD char­
ter, the ESD teams are uniquely tuned into, and
actively shaping, present and future device specifi­
cations for all types of random-access devices. This
advance and intimate knowledge allows us to build
current technology products with the hooks neces­
sary to capitalize on the next generation of storage
devices.

The MS690 options are available in 32MB, 64MB,
and 128MB sizes and are self-configuring. The
MS690 memories communicate with the NMC by
way of the private NMI. All control and clocks sig­
nals originate off-board via the NMI from the NMC.
Up to four memory modules of any density mix may
coexist on the NMI with a maximum memory size
of512MB.

The MS690 is an extension of the existing 39-bit
Ms670 memory product designed for the VAX 4000
Model 300 product line. The DC562 GMX was
designed and produced in Digital's Hudson, Mass­
achusetts, plant for the MS670 32MB memory. This

Vol. 4 No. 3 Summer 1992 Digital Tecbntcaljournal

Design of the VAX 4000 Model 400, 500, and 600 Systems

GMX is a semi-intelligent, 20-bit-wide, 4-to-1 and
l-to-4 transceiver, with internal test/compare/error
logging capabilities for its five 1/0 ports. The MS670
required eight banks of 39 bits of data, hence the
requirement of two GMX chips per module.

The KA670 CPU module used in the VAX 4000
Model 300 transfers 32-bit longwords of data. For
every longword, 7 bits of ECC must be allocated,
i.e., 8 x (32 + 7) = 312 DRAMS. The CPU module used
in the VAX 4000 Model 500 transfers 64-bit quad­
words of data. For every quadword, 8 bits of ECC
must be allocated, i.e., 4 x (64 + 8) = 288 DRAMs.
The MS690 memory is configured as two inter­
leaved bank pairs, each 72 bits wide (64 bits of data
plus 8 bits of ECC); all transactions are 72 bits. The
memory module supports quadword, octaword,
and hexword read/write/read-modify-write trans­
actions. Transactions less than 72 bits, i.e., bytes,
words, and longwords, are not supported.

Doubling the data word length is advantageous in
two ways: the 1/0 bandwidth effectively doubles,
and 24 fewer DRAMs are required. This last benefit
results from the fact that only one additional bit is
required to protect 64 bits of data as compared to
protecting 32-bit data. The available PWB space
allowed room for two additional GMXs to handle
the 33 additional data bits. The ability to use the
existing GMX integrated circuit eliminated the need
for a new, 40-bit-wide, GMX-type VLSI development.

Because DRAMs are edge-sensitive devices, mod­
ule layout, balanced etch transmission lines, and
signal conditioning are extremely important to a
quality product. The MS690 design team used
a combined total of 18 years of memory design
experience along with extensive use of SPICE
modeling to determine the optimal PWB layout. The
result was a double-sided, surface-mount PWB
panel that can accommodate all density variations

of the MS690 memory option and thus help control
costs by reducing product-unique inventory. All
parts, except the bare PCB, are used on products
already produced in volume at Digital's Singapore
and Galway, Ireland, manufacturing plants.

The MS690-BA memory module, which uses 100-
ns IM-by-IM DRAMS, can support NMC cycle times
of 36 ns and 42 ns, respectively, for the VAX 4000
Model 400 and 500 systems. The MS690-CA/DA mod­
ules use 80-ns 4M-by-1M DRAMs and can accom­
modate 30-ns, 36-ns, and 42-ns NMC cycle times.

Performance
The CPU 1/0 subsystems on all three products pro­
vide exceptional performance, as shown in Table 3.
The pair of DSSI buses on the CPU modules for the
VAX 4000 Models 500 and 6oo were tested under
the VMS operating system performing single-block
(512-byte) reads from RF73 disk drives. The read
rate was measured at over 2,600 I/Os per second
with both buses running. The Ethernet subsystem,
based on the SGEC adapter chip, is also very effi­
cient. It has been measured transmitting and receiv­
ing 192-byte-long packets at a rate of 5,882 packets
per second. Packets 1,581 bytes long can be trans­
mitted at a rate of 9.9 megabits per second.

The performance of the CPU subsystem has tradi­
tionally been measured using a suite of 99 bench­
marks.7 Scaling the results against the performance
of the VAX-11/780 processor and taking the geo­
metric mean yields the VAX unit of performance
(VUP) rating. The processor VUP rating for the new
VAX 4000 system with the lowest performance,
the Model 400, is twice the VUP rating of the sys­
tem it is replacing, the Model 300. The two new
high-end systems provide three and four times the
performance of the Model 300-an impressive per­
formance increase.

Table 3 Summary of Performance Results for the VAX 4000 Models 400, 500, and 6007

Metric Unit Model400 Model 500 Model600

SPEC Release 1.0 SPECmark 22.3 30.7 41 .1
SPECint 17.1 24.9 31.8
SPECfp 26.6 35.4 48.7

Single User 99 VUPs 16.9 23.8 31.4
TPC-A tpsA-local 51.0 62.4 103.0
Dhrystone Integer MIPS 34.2 43.4 64.4
Whetstone Single MIPS 47.6 71.4 83.3
Whetstone Double MIPS 32.3 45.5 52.6

LINPACKD (1 00 by 100) MFLOPS 4.8 6.9 9.5
UNPACKS MFLOPS 7.5 10.5 14.7

Digital TecbntcalJournal Vol. 4 No. 3 Summer 1992 71

NVAX-microprocessor VAX Systems

The system performance in multistream and
transaction-oriented environments was measured
with TPC Benchmark A.8 This benchmark, which
simulates a banking system, generally indicates per­
formance in environments that are characterized by
concurrent CPU and 1/0 activity and that have more
than one program active at any given time. The per­
formance metric is transactions per second (TPS).
The measured performance of the VAX 4000 Model
600 system was more than 100 TPS, tpsA-local. As
shown in Table 3, the performance of the new VAX
4000 Model 400, 500, and 600 systems is impres­
sive, even compared to RISC-based systems.

Acknowledgments
The authors would like to acknowledge the contri­
butions of the following members of the design
teams: Matt Baddeley, Roy Batchelder, Abed
Chebbani, Harold Cullison, Todd Davis, Joe Ervin,
Nannette Fitzgerald, Avanindra Godbole, Judy
Gold, Bryce Griswold, Thomas Harvey, Jim Kearns,
John Kumpf, Steve Lang, Dave Lauerhass, Bill
Munroe, Chun Ning, Jim Pazik, Cheryl Preston,
Matt Rearwin, Dave Rouille, Prasad Sabada, Stephen
Shirron, Adam Siegel, Jaidev Singh, Emily Slaughter,
Michael Smith, Steve Thierauf, Bob Weisenbach,
and Pei Wong.

References

1. G. Uhler et al. , "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

2. KA680 CPU Module Technical Manual (May­
nard, MA: Digital Equipment Corporation,
Order No. EK-KA680-TM-001, 1992).

3. B. Maskas, "Development of the CVAX Q22-
bus Interface Chip," Digital Technical
Journal, vol. 1, no. 7 (August 1988): 129-138.

4.]. Winston, "The System Support Chip, a
Multifunction Chip for CVAX Systems;· Digital
Technical Journal, vol. 1, no. 7 (August 1988):
121-128.

5. P. Rubinfeld et al., "The CVAX CPU, a CMOS VAX
Microprocessor Chip," ICCD Proceedings,
(October 1987): 148-152.

6. IEEE Standard Test Access Port and Bound­
ary Scan Architecture, IEEE Standard 1149.1-
1990 (New York, NY: The Institute of

Electrical and Electronics Engineers, Inc.,
1990).

7. VAX Systems Performance Summary (May­
nard, MA: Digital Equipment Corporation,
Order No. EE-C0376-46, 1991).

8. Transaction Processing Performance Coun­
cil, TPC Benchmark A Standard Specification
(Menlo Park, CA: Waterside Associates,
November, 1989).

General Reference

DEC STD 032-0 VAX Architecture Standard
(Maynard, MA: Digital Equipment Corporation,
Order No. EL-00032-00, 1989).

72 Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Jonathan C Crowell
David W. Maruska

The Design of the w.tX 4000
Model 100 and Microw.t.X 31.00
Model 90 Desktop Systems

The MicroVAX 3100 Model 90 and VAX 4000 Model 100 systems were designed to
meet the growing demand for low-cost, high-performance desktop servers and time­
sharing systems. Both systems are based on the NVAX CPU chip and a set of VLSI sufr
port chips, which provide outstanding CPU and I/0 performance. Housed in like
desktop enclosures, the two systems provide 24 times the CPU performance of the
original VAX-11/780 computer. With over 2.5 gigabytes of disk storage and 128
megabytes of main memory, the complete base system fits in less than one cubic foot
of space. The system design was highly leveraged from existing designs to help meet
an aggressive schedule.

The demand for low-cost, high-performance desk­
top servers and timesharing systems is increasing
rapidly. The MicroVAX 3100 Model 90 and VAX 4000
Model 100 systems were designed to meet this
demand. Both systems are based on the NVAX CPU
chip and a set of very large-scale integration (VLSI)
support chips, which provide outstanding CPU and
1/0 performance.1

Each member of the MicroVAX 3100 family of
systems constitutes a low-cost, general-purpose,
multiuser VAX system in an enclosure that fits
on the desktop. This enclosure supports all the
required components of a typical system, including
the main memory, synchronous and asynchronous
communication lines, thick-wire and ThinWire
Ethernet, and up to five small computer system
interface (SCSl)-based storage devices.

The MicroVAX 3100 Model 90 system replaces the
Model 80 as the top performer in the line; the new
model has considerably more than twice the CPU
power of the previous model. 2 The Model 90
system also includes performance enhancements
to the Ethernet and SCSI adapters, as well as an
increased maximum system memory of 128 mega­
bytes (MB). The CPU mother board for the MicroVAX
3100 Model 90 system is called the KA50.

The VAX 4000 Model 100 system is housed in the
same desktop packaging as the MicroVAX 3100
Model 90 and provides the same base functionality.
The VAX 4000 Model 100 adds two key features

Digita l TeclmicalJournal Vol. 4 No. 3 Summer 1992

found in all previous VAX 4000 systems, i.e., Digital
Storage Systems Interconnect (DSSI) storage and
Q-bus expansion. The CPU mother board for the
VAX 4000 Model 100 system is called the KA52.

The KA50 and KA52 CPUs are built from a com­
mon CPU mother board design; the base CPU
mother board is configured to create either the
KA50 or the KA52 product module. The DSSI and
Q-bus optional hardware is added to the CPU
mother board to convert a KA50 to a KA52. Also, to
provide the additional superset functionality found
on the KA52 CPU, the different system read-only
memories (ROMs) are added during the manufactur­
ing process. In this paper, the KA50 and KA52 CPUs
are referred to as the CPU mother board or module,
except where differences exist.

The system design was highly leveraged from
existing designs to help meet an aggressive sched­
ule. This paper describes the design and implemen­
tation of these systems.

Design Goals
The design team's primary goal was to develop a
CPU mother board that would provide at least twice
the CPU performance of the MicroVAX 3100 Model
80, while supporting all of the same 1/0 functional­
ity of the previous systems. This new system would
leverage the core CPU design from the VAX 4000
Model 500 system, thus delivering the high perfor­
mance of the NVAX CPU chip to the desktop.3

73

NVAX-microprocessor VAX Systems

The team set additional goals to increase system
capability and performance. These goals were to

1. Increase the maximum system memory from
72MB to 128MB

2. Provide error correction code (ECC) protection
to memory using memory arrays that previously
supported only parity

3. Increase the performance of the Ethernet adapter

4. Increase the performance of the SCSI adapter

Early in the project, the team proposed creating a
second CPU design that would have the features of
the larger VAX 4000 systems. This proposal resulted
in the design of a DSSI adapter option for the CPU
mother board, as well as a Q-bus adapter to provide
a means to upgrade the CPU power of older
Q-bus-based MicroVAX systems.

The project to design, implement, and field-test
these systems was accomplished under an aggres­
sive schedule. Both designs were ready to ship to
customers in just over nine months from the official
start of the project.

System Overview
The MicroVAX 3100 Model 90 system supports
the same 1/0 functionality as the previous genera­
tion of systems, the MicroVAX 3100 Models
40 and 80. The features include a SCSI storage adap­
ter, 20 asynchronous communication ports, two
synchronous communication ports, and an
Ethernet adapter.

The VAX 4000 Model 100 includes the same 1/0
functionality as the MicroVAX 3100 Model 90. In
addition, the system provides the 1/0 functionality
of the larger VAX 4000 systems, that is, a high-perfor­
mance DSSI storage adapter and a Q-bus adapter
port that connects to an external Q-bus enclosure.

Both systems provide 24 times the CPU perfor­
mance of a VAX-11/780 system. The memory subsys­
tem uses Digital's MS44 single in-line memory
modules (SIMMs) and thus provides 16MB, 32MB,
64MB, 80MB, or 128MB of main memory.

As shown in Figure 1, the system enclosure used
to house both systems, namely the BA42B, provides
mounting for the CPU mother board, up to five loca­
tions for disk and tape devices, a 166-watt power
supply, and fans for cooling the system elements. In
addition, the enclosure shields the system from
radiated emissions. All 1/0 connections are filtered
and exit the enclosure through cutouts in the
rear panel. The system enclosure is compact and

74

measures 14.99 centimeters (5.9 inches) high by
46.38 centimeters (18.26 inches) wide by 40.00 cen­
timeters (15.75 inches) deep.

The system enclosure contains two shelves that
support the mass storage devices. In the MicroVAX
3100 Model 90, these storage locations are cabled to
support SCSI disks and tapes. The upper shelf sup­
ports three SCSI disks, whereas the lower shelf
supports two SCSI devices (any combination of
removable or 3 1/2-inch disks) with access through
a door in the front of the enclosure. In the VAX 4000
Model 100, the top shelf is configured to support
three 3 1/2-inch DSSI disks; the bottom shelf sup­
ports two SCSI devices, as in the MicroVAX 3100
Model 90.

The VAX 4000 Model 100 DSSI support is provided
by a high-performance DSSI adapter card based on
the shared-host adapter chip (SHAC), i.e., a custom
VLSI design with an integrated reduced instruction
set computer (RISC) processor.3 The system is con­
figured with DSSI as the primary disk storage. The
DSSI bus exits the enclosure by means of a connec­
tor on the back panel. This expansion port can be
used to connect the system to additional DSSI
devices, or to form a DSSI-based VAXcluster with a
second VAX 4000 Model 100 or any other DSSI-based
system.

The Q-bus support on the VAX 4000 Model 100 is
provided by the VLSI adapter chip, i.e., the CVAX
Q22-bus interface chip (CQBIC).4 There are no
Q-bus option slots in the system enclosure. The
Q-bus connects to an expansion enclosure through
a pair of connectors at the rear of the system enclo­
sure. Two shielded cables and the H9405 expansion
module are used to connect the Q-bus to the expan­
sion enclosure. The near end of the Q-bus is termi­
nated in the system enclosure.

CPU Mother Board Design
The design goals presented engineering with con­
straints that forced design trade-offs. Some key
constraints were (1) fitting the required functional­
ity on a single 10-by-14-inch module; (2) designing
the system to adhere to the system power and cool­
ing budget; and (3) minimizing changes to the func­
tional view of the module over previous designs, to
decrease the number of software modifications
required for operating system support.

The primary way the design team minimized
system development was to leverage as much as
practical from existing designs. The CPU mother
board design used components from the VAX 4000

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

The Design of the VAX 4000 Model 100 and MicroVAX 3100 Model 90 Desktop Systems

----'-'-'-'.!.----;r- OPTIONAL DHW42 1/0
MODULE AND LOGIC
BOARD

Q-BUS EXPANSION PORTS

DSSI PORT --------~~---~

I ~-=. ~'=1==~c====~
111~:~J\·~b
111'~/~l\~

SCSI PORT

OPTIONAL DHW42 PORTS

lli
,., ~
t:J[H;j '"' o I

-_1_1-017~ ~~ ... ·~'"
OPTIONAL DSW42 PORTS

,_
0

MMJ SERIAL-LINE PORTS --~-~-~ --~"C¥]

ASYNCHRONOUS MODEM
CONTROL PORT

THICK-WIRE ETHERNET CONNECTOR

THINWIRE ETHERNET CONNECTOR - -----~

SYSTEM AC POWER CONNECTOR --------~

ON/OFF SWITCH

Figure 1 VAX 4000 Model 100 System Enclosure Showing the CPU and Connectors

Model 500, MicroVAX 3100 Model 80, and VAXstation
4000 Model 90 systems. Using proven design
components allowed for a shorter development
cycle, smaller design teams, and consequently, a
higher-quality design, while meeting an aggressive
schedule.

The design is structured so that both CPU mother
boards can be built using the same printed wiring
board (PWB). The added functionality for the KA52
is provided by a daughter card, additional hardware
and cabling, and different system ROMs. The shared
design helped reduce the complexity in testing and
qualifying the system design.

The CPU module contains three major sections:
the CPU core, the memory subsystem, and the 1/0
subsystem. Figure 2 is a block diagram of the basic
CPU module for the VAX 4000 Model 100 and
MicroVAX 3100 Model 90 systems. Figure 3 is a pho­
tograph of the module, including the DSSI daughter
card option.

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The CPU mother board includes a linear regulator
that generates local 3.3-volt (V) current for the
CPU core chip set. The voltage is stepped down
from the 5-V supply. The regulator is necessary
because the 3.3-V direct current (DC) of the system
is not sufficient to meet the ± 3 percent tolerance
regulation or to supply the required maximum
current.

CPU Core
The CPU core consists of three chips: the NVAX CPU
chip, the NVAX data and address lines (NDAL)
memory controller (NMC) chip, and the NDAL­
to-CVAX pin (CP) bus adapter (NCA) chip. The
NVAX chip directly controls the 128-kilobyte
(KB) backup cache. The core chip set is inter­
connected by means of the NDAL pin bus, as shown
in Figure 2. The NDAL bus is 64 bits wide, has a
42-nanosecond (ns) cycle time, and supports
pended transactions. 1 The peak bandwidth of the

75

NVAX-microprocessor VAX Systems

,--- -- --- -- ---------------- -- ---- --- ----~
CPU CORE

B·CACHE
128KB OR
512KB

NDAL-TO-CP
BUS ADAPTER
CHIP (NCA)

NVAXCPU
CHIP

NDAL BUS

NVAX MEMORY
CONTROLLER
(NMC)

--- - - - - - -_ __ ___,,...__. - - -- - - -- - - -T,- -

1/0 SUBSYSTEM

CP BUS 2 CP BUS 1

I
I
I
I
I

I ------------. I
I
I
I

I I

FLASH ROM
I SHAC DSSI I _.

I
ADAPTER CHIP f

I I

·------------1 I MEMORY SIMMS
16, 32. 64, 80. 128MB

SYSTEM
SUPPORT CHIP
(SSC)

CEAC/SQWF
CHIP

EDAL I MEMORY SUBSYSTEM
BUS .__ - - - - - - - - - - -

_--: ..:-: _--: _--: ..:-: _--: ~ - I
I I
I DSW42 1 I

CVAX Q-BUS
.._ INTERFACE CHIP

(CQBIC)

SGEC ETHERNET
ADAPTER CHIP

I SYNCHRONOUS 1 _.

: COMMUNICATIONS f I
I OPTION I I
•------------1 I

I ------------. + I I DHW42 1
.._ _1 ASYNCHRONOUS • • I SCSI ADAPTER ETHERNET

: COMMUNICATIONS : ,~-~
,OPTION I

·------------J
QUART
(FOUR SERIAL
LINES)

I
I
I
I
I _ ___ __ _____________________________ J

Note that - • indicates a connection to an external bus.

Figure 2 CPU Module Block Diagram

NDAL bus performing 32-byte operations is 152
megabytes per second (MB/s).

N~ CPU Chip The NVAX CPU chip is an advanced
implementation of the VAX architecture in Digital's
fo urth-generation complementary metal-oxide
semiconductor (CMOS-4) technology. The NVAX
device consists of 1.3 million transistors on a die
approximately 0.6 inch on a side.

The NVAX CPU chip contains the VAX CPU, a float­
ing-point unit, and backup cache controller logic.
Some NVAX features that enable it to increase per­
formance are the use of a pipelined architecture, a
2KB virtual instruction cache (VIC), a 96-entry
translation buffer, an o n-chip 8KB primary cache,
and an on-chip backup cache controller. The CPU

76

cycle clock and NDAL bus clocks are generated with
an on-chip clock generator supplied by a 286-mega­
hertz (MHz) oscillator.

The NVAX CPU is based on a high-performance
macropipelined architecture similar to that of the
VAX 9000 CPU.1·5 The VIC allows the caching of
instructions that have already been translated to
virtual addresses. Having the backup cache con­
troller on the chip decreases backup cache access
time because no external logic, with the resulting
delays, is required.

NVAX Memory Controller Chip The NMC is the
NVAX memory controller implemented in Digital's
third-generation complementary metal-oxide semi­
conductor (CMOS-3) technology.6 The NMC consists

Vol. 4 No. 3 Summer 1992 Digital Tecb,iical]ournal

The Design of the VAX 4000 Model JOO and MicroVAX 3100 Model 90 Desktop Systems

Figure 3 CPU Mother Board

of 148,000 transistors and is the high-speed inter­
face to the system main memory. The NMC is the
arbiter for the three chips on the NDAL bus, namely,
the NVAX, the NCA, and the NMC. The NMC chip
manages the array of ownership bits that corre­
spond to each 32-byte segment of memory. Each of
these segments corresponds to a cache line. The
ownership bit indicates whether the valid copy of
the data is in memory, in the CPU write-back cache,
or in an 1/0 devices buffer.

The NMC has four command queues that accept
read, write, and remove write privilege trans­
actions from the NDAL bus. Buffers hold the read
data to be returned to the node that requested the
data. The NMC and the memory subsystem provide
the 95MB/s of bandwidth shared by the NVAX and
the 1/0 devices.

NDAL-to-CP Bus Adapter Chip The NCA chip, also
implemented in Digital's CMOS-3 technology, is the

D igital Tee/mica/ Jo111·11 a l Vol. 4 No. 3 Summer 1992

interface from the NDAL to the CP bus.6 The NCA
consists of 155,000 transistors and supports two CP
buses. The CP bus used on the CVAX microproces­
sor family is also used on many of Digital's custom
1/0 adapter chips, such as the CQBIC, the SHAC, the
second-generation Ethernet controller (SGEC), and
the system support chip (SSC).3,4.'48 Thus, the hard­
ware and software designs for these 1/0 functions
could be leveraged from previous efforts. The NCA
performs direct memory access (DMA) from the 1/0
devices and supports the cache consistency proto­
col required for the NDAL bus.

The NCA was designed to optimize DMA traffic
from CP bus devices. In the KA50 CPU, the CP bus
devices include the SGEC Ethernet adapter, the SSC,
the field erasable programmable read-only memory
(FEPROM) subsystem, the CP-to-EDAL adapter chip
(CEAC), and the SCSI quadword first in, first out
(SQWF) chip. In addition, the asynchronous com­
munication option is attached to the CP bus. The

77

NVAX-microprocessor VAX Syste m s

KA52 CPU also attaches the CQBIC Q-bus adapter
chip and the SHAC DSSI host adapter chip.

Memory Subsystem
The memory subsystem is controlled by the NMC
chip. The main memory is implemented using MS44
SIMMs and low-cost gate array (LCGA) chips to pro­
vide an interface between the NMC and the SIMMs.9
The SIMMs are used in groups of four to provide
two interleaved banks, each with a 64-bit data path
and eight bits of ECC. This interleaving scheme
increases the bandwidth of main memory by alter­
nating data between both banks of memory.
The ECC provides single-bit error correction and
double-bit error detection.

The individual SIMMs are available in either 4MB
or 16MB variants. Since four SIMMs form a complete
functional set, sets can be 16MB or 64MB in size.
Therefore, because the system supports up to two
sets of SIMMs, the total system memory size can be
either 16MB, 32MB, 64MB, 80MB, or 128MB, depend­
ing on the combination of SIMM size and the num­
ber of sets.

To coincide with the cache coherency scheme
used in the NVAX CPU chip, the NMC keeps track of
the cache lines that have write privilege reserved
by the CPU or 1/0 devices. This state is stored in sep­
arate dynamic random-access memories (DRAMs).
These DRAMs interface directly to the NMC by
means of a private bus. The ownership bits are pro­
tected by ECC.

l/0 Subsystem
Because the MicroVAX 3100 Model 90 was intended
as an upgrade for the Model 40 and 80 systems, the
1/0 subsystem of the earlier systems dictated the
design of the new Model 90. In addition, the 1/0
subsystem of the KA52 CPU module for the VAX
4000 Model 100 supports two functions found in
the other VAX 4000 systems, the DSSI adapter and
the Q-bus adapter.9 The 1/0 subsystem includes
a ThinWire and thick-wire Ethernet adapter, four
built-in asynchronous terminal lines, a connector
for the asynchronous option, and the CEAC and
SQWFchips.

A bus interface was incorporated in the 1/0 sub­
system to support the DSW42 synchronous commu­
nication option, the SCSI adapter chip, and the
QUART four-port asynchronous controller chip. The
CEAC and SQWF chips, which are gate arrays
designed for the VAXstation 4000 Model 90, are
used to create the EDAL bus.

78

Support for the SCSI bus is provided by the 53C94
SCSI adapter chip. 10 The 53C94 chip is interfaced to
the system on the EDAL bus and uses the SQWF chip
to increase its OMA performance. The SQWF
chip makes it possible to buffer data moving to the
CP bus. The SCSI bus operates in synchronous mode
for high-performance storage access of 5MB/s.

The QUART gate array supplies the logic for four
built-in serial ports. The QUART, originally used
on the DZQll Q-bus device, provides the same
software interface as that device. The third port
provides modem control functions by means of
additional logic; the first, second, and fourth ports
are data leads only.

The SGEC Ethernet adapter chip was chosen
because it provides higher performance than the
Ethernet adapter used on the MicroVAX 3100 Model
80. The SGEC is the adapter chip used on all VAX
4000 systems. In addition, this chip directly inter­
faces with the CP bus.

The limited size of the CPU mother board
required the DSSI adapter to be added by means of
a daughter card. The Q-bus adapter chip and bus
termination are provided directly on the mother
board.

Console and Diagnostics
The MicroVAX 3100 Models 80 and 90 differ in their
console designs and diagnostics. Because the basic
CPU core of the MicroVAX 3100 Model 90 and the
VAX 4000 Model 100 systems is very similar to that
of the VAX 4000 Model 500 system, the design team
decided to adopt the console of the Model 500 and
add the required commands and functionality.
Borrowing proven designs, such as the console of
another NVAX-based system, significantly shortened
the product development schedule.

One enhancement to the CPU mother board was
the addition of a FEPROM subsystem. If an update is
required, the console and diagnostic code on the
CPU can be reprogrammed in the field. In contrast,
previous systems required the memories to be in
sockets and the parts to be replaced in the field.
With FEPROMs, a program is loaded from any
bootable device. This program erases the FEPROMs
and reprograms them with the new ROM image.
This enhancement serves as an easy mechanism for
updating the ROMs in the field to provide new fea­
tures or to fix bugs that may be discovered.

On power-up, the CPU starts executing from the
FEPROM memory and runs the power-up self-test to
help verify that the system is fully operational.

Vol. 4 No. 3 Summer 1992 Digital Technical journal

The Design of the VAX 4000 Model 100 and MicroVAX 3100 Model 90 Desktop Systems

Upon completion of the execution of this test, the
system transfers control to the console program.
Depending on the values configured in nonvolatile
memory, the console program either boots the
system with the correct parameters or stops for
console input.

In earlier systems, the speed of executing from
ROM could be more than an order of magnitude
slower than running from cached main memory.
The NVAX CPU chip added the virtual instruction
cache, which allows the caching of instruction
stream references from 1/0 space. This feature
greatly increases the performance of the ROM code.

Console
The console program gains control of the CPU
whenever the processor halts or performs a restart
operation such as power-up. The console provides
the following services:

1. Interface to the diagnostics that test compo­
nents of the CPU and system

2. Automatic/manual bootstrap of an operating
system following processor halts

3. An interactive command language that allows
the user to examine and alter the state of the
processor

There are minor differences between the KA50
and KA52 consoles. Largely, these differences relate
to the KA52 CPU mother board support for the DSSI
bus and the Q-bus. Although the console is similar
to that found on the VAX 4000 Model 500, some new
commands were implemented to provide function­
ality that exists on previous MicroVAX 3100 systems.
These commands include LOGIN and SET PSWD (set
password), which give support for a secure con­
sole; SET/SHOW SCSI_ID; SHOW CONFIGURATION;
SHOW ERROR; and various commands to support a
system exerciser.

On the KA52 CPU, the console supports the DSSI
bus and the Q-bus with a set of commands. These
commands allow polling of the DSSI bus to deter­
mine what devices are present and to configure the
internal parameters of each device. The system can
be booted from devices on the SCSI, DSSI, or Q-bus
chips, as well as over the Ethernet port.

Diagnostics
Diagnostics help isolate faults in the system down
to the level of the field-replaceable units. Significant
effort was expended on the development of

Digital Teclmical]ournal Vol. 4 No. 3 Summer 1992

onboard diagnostics. However, as for the console,
the philosophy used in developing these diagnos­
tics was to leverage as much of the software design
as possible from existing designs.

With the advent of larger boot and diagnostic
ROMs, the diagnostic coverage of the power-up self­
tests greatly increased, including extensive testing
of the cache, the memory, and the CPU core. These
tests help assure the customer that a failed compo­
nent will be detected and reported upon power-up.
In many cases, the new tests can help isolate fail­
ures in the individual SIMM or cache chip. This fea­
ture is used extensively in manufacturing, as well as
by field service.

During the power-up sequence, an instruction
exerciser (HCORE) is run to test the floating-point
hardware. This test provides very good coverage
of the floating-point unit. In the past, HCORE
has been run as a standalone diagnostic in manu­
facturing before a system is shipped. The design
team for the two new desktop systems believed
that this test should run on every system power-up
self-test.

The CPU core is designed to function over a wide
range of environmental conditions. Some variables
of the environment are temperature, voltage, and
minimum/maximum component parameters at a
given clock frequency. Exceeding the worst-case
design envelope can cause unpredictable results.
For example, to avoid problems caused by a defec­
tive main clock oscillator that may be running too
fast, the diagnostics measure the speed of the CPU
cycle clock to determine if it is within the accepted
tolerance. If the cycle is faster than the design mar­
gin dictates, an error is reported.

Design Tools
The design of the CPU mother board uniquely
merged components from several designs. The
success of this approach relied on the use of design
tools to perform the merge and to verify the cor­
rectness of the merge.

The normal design process is to create a set
of design schematics and to verify these through
simulation. Once the design is logically verified,
the layout process begins. The layout process
includes the use of the SPICE simulator to give direc­
tion to the physical layout structure and to check
the integrity of the layout. 11 After the layout is com­
plete, the database is fed back into logic simula­
tion, which again verifies the correctness of the
design database.

79

NVAX-microprocessor VAX Systems

The CPU mother board designers took a different
approach. Since the physical placement of the con­
nector portion of the module was the same as for
the MicroVAX 3100 Model 80 module, this design
element was used as the starting point for the over­
all design. The database was edited using the VAX
layout system (VLS), and the only components
saved were those that were to be used in the new
CPU module. This procedure provided the correct
placement for all 1/0 connectors that exited the
system enclosure.

In addition, the VAX 4000 Model 500 CPU core
was used as the basis for the CPU mother board etch
layout. The Model 500 design has proven to have
very good signal integrity due to its well-thought­
out circuit board layout. To leverage Model 500
work in the layout of the CPU mother board, the
designers extracted the printed circuit board signal
routing from the Model 500. This signal routing
included the CPU core and cache treeing, the most
critical areas. This approach eliminated the need to
model critical signal interconnect in the design and
guaranteed that the signal integrity and connector
layout would be identical to that of the proven
Model 500.

Database comparison tools were used to guaran­
tee that the schematics matched the physical layout
database. As a final step, the physical layout data­
base netlist was used to create a simulation model.
DECSIM, Digital's simulation tool, was used to verify
the final correctness of the design database.

Performance
The CPU 1/0 subsystems on both the MicroVAX
3100 Model 90 and the VAX 4000 Model 100 pro­
vide exceptional performance. The DSSI bus on
the KA52 CPU was tested under the VMS operat­
ing system performing single-block (512-byte)

read operations from RF35 disk drives. The read
rate was measured at more than 1,200 I/Os per sec­
ond. The SCSI adapter on both CPUs was measured
at more than 500 I/Os per second for single-block
reads.

The Ethernet subsystem used on both the KA50
and KA52 modules is very efficient and has been
measured transmitting 64-byte packets at a rate
of 14, 789 packets per second. The measured receive
rate for 64-byte packets was 14,785 packets per
second.

The performance of the CPU subsystem has
traditionally been measured using a suite of 99
benchmarks. 12 The results are scaled against the
performance of the VAX-11/780 processor, and
the geometric mean is taken. This calculation yields
the VAX unit of performance (YUP) rating. The pro­
cessor YUP rating for both the KA50 and KA52 CPUs
is 24 VUPs-more than twice the performance
of the MicroVAX 3100 Model 80. Table 1 presents
a summary of the performance results for the VAX
4000 Model 100 and the MicroVAX 3100 Model 90
systems.

The performance of the system in multistream
and transaction-oriented environments was mea­
sured with TPC Benchmark A. 14 This benchmark,
which simulates a banking system, generally indi­
cates performance in environments characterized
by concurrent CPU and 1/0 activity and in which
more than one program is active at any given time.
The performance metric is transactions per second
(TPS). The measured performance of the VAX 4000
Model 100 is 50 TPS tpsA-local; that of the MicroVAX
3100 Model 90 is 34 TPS tpsA-local. The difference
in performance between the VAX 4000 Model 100
and the MicroVAX 3100 Model 90 is a result of their
different disk subsystems, i.e., the DSSI and SCSI
adapter support.

Table 1 Summary of Performance Results for the VAX 4000 Model 100 and the MicroVAX 3100
Model 90 Systems13

VAX4000 MicroVAX 3100
Metric Unit Model 100 Model 90

SPEC Release 1.0 SPECmark 30.5 30.5
SPECint 24.3 24.3
SPECfp 35.5 35.5

Single User 99 VUPs 23.8 23.8
Integer VUPs 19.6 19.6
Single VUPs 26.0 26.0
Double VUPs 31.3 31.3

TPC-A tpsA-local 51 34

80 Vol. 4 No. 3 Summer 1992 Digital Technical journal

The Design of the VAX 4000 Model JOO and MicroVAX 3100 Model 90 Desktop Systems

Acknowledgments
The authors would like to thank all the designers of
other products whose logic components were used
in the VAX 4000 Model 100 and MicroVAX 3100
Model 90 designs, namely, the VAXstation 4000
Model 90, VAX 4000 Model 500, and MicroVAX
3100 Model 80 teams. The authors would also like
to acknowledge the many engineers who helped
design and qualify the VAX 4000 Model 100 and
MicroVAX 3100 Model 90 systems on a very aggres­
sive schedule. Special thanks to Harold Cullison
and Judy Gold (diagnostics and console), Matt
Benson and Joe Ervin (module design and debug),
Cheryl Preston (signal integrity), Dave Rouille
(design verification), Colin Brench (EMC consul­
tant), Larry Mazzone (mechanical design), Billy
Cassidy and Walt Supinski (PWB layout), and Rita
Bureau (schematics).

References and Note

1. G. Uhler et al., "The NVAX and NVAX + High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

2. Micro VAX 3100 Models 40 and 80 Technical
Information Manual, rev. 1 (Maynard, MA:
Digital Equipment Corporation, Order No.
EK-A0525-ID, 1991).

3. KA680 CPU Module Technical Manual
(Maynard, MA: Digital Equipment Corpora­
tion, Order No. EK-KA680-TM-001, 1992).

4. B. Maskas, "Development of the CVAX Q22-
bus Interface Chip," Digital Technical
Journal, vol. 1, no. 7 (August 1988): 129-138.

5.]. Murray, R. Hetherington, and R. Salett, "VAX
Instructions That Illustrate the Architectural
Features of the VAX 9000 CPU," Digital
Technical Journal, vol. 2, no. 4 (Fall 1990):
25-42.

6.]. Crowell et al., "Design of the VAX 4000
Model 400, 500, and 600 Systems," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 60-72.

7. P. Rubinfeld et al., "The CVAX CPU, a CMOS VAX
Microprocessor Chip," ICCD Proceedings
(October 1987): 148-152.

8. G. Lidington, "Overview of the MicroVAX
3500/3600 Processor Module," Digital

D igital Technical journal Vol. 4 No. 3 Summer 1992

Technical Journal, vol. 1, no. 7 (August 1988):
79-86.

9. M. Callander, Sr., L. Carlson, A. Ladd, and M.
Norcross, "The VAXstation 4000 Model 90;'
Digital Technical Journal, vol. 4, no. 3
(Summer 1992, this issue): 82-91.

10. NCR Microelectronics Products Division, NCR

53C94, 53C95, 53C96 Advanced Controller
Data Sheet (Santa Clara, CA: NCR Corpora­
tion, 1990).

11. SPICE is a general-purpose circuit simulator
program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical
Engineering and Computer Sciences, Univer­
sity of California at Berkeley.

12. VAX Systems Performance Summary
(Maynard, MA: Digital Equipment Corpora­
tion, Order No. EE-C0376-46, 1991).

13. SPEC: A New Perspective on Comparing
System Performance, rev. 10 (Maynard, MA:
Digital Equipment Corporation, Order No.
EE-EA379-46, 1990).

14. Transaction Processing Performance Coun­
cil, TPC Benchmark A Standard Specification
(Menlo Park, CA: Waterside Associates,
November 1989).

81

Michael A. Callander, Sr.
Lauren M. Carlson

Andrew R. Ladd
Mitchell O Norcross

The VAXstation 4000 Model 90

The VAXstation 4000 Model 90 is the latest member of the VAXstation product line.
Based on the NVAX CPU, the Model 90 was designed as a module upgrade to the
VAXstation 4000 Model 60 system. The Model 90 has 2. 7 times the CPU performance
of the Model 60 and provides base-level, two-dimensional graphics performance of
266,000 vectors per second. It supports up to 128MB of memory, an SCSI-1 bus inter­
face, a TURBOchannel option, a synchronous communication option, and several
graphics options. The design team used only programmable devices to implement
the new logic designed into the system. In addition, a breadboard provided the
basis for logic and software verification.

During the summer of 1991, Digital's Semicon­
ductor Engineering Group began planning a new
VAX workstation based on the NVAX CPU chip. 1 The
development process had three main goals:
to increase CPU performance, to maintain an
aggressive time-to-market schedule, and to pro­
vide upgrade compatibility with the VAXstation
Model 60.

The primary goal of the VAXstation 4000 Model
90 design was to implement a workstation with
well over twice the CPU performance of its prede­
cessor, the Model 60. The advent of high-perfor­
mance workstations based on reduced instruction
set computers (RISC) required any new VAX work­
station to provide a significant performance
increase over previous VAX workstations to be com­
petitive in the marketplace. The Model 90 met this
goal by achieving 2.7 times the performance of the
VAXstation Model 60.

The second major goal of the project was to
develop and ship the system as quickly as possible.
This was mandated by competitive pressures in the
workstation market. We proposed an aggressive
best-case schedule which forecast a breadboard
running within three months of the project pro­
posal, prototypes running the VMS system within
five months, and a customer ship date within
eleven months. The development teams achieved
almost every project milestone within a few weeks
of the proposed schedule.

The final major goal of the project was to design
the system such that it could be offered as a simple
module upgrade to the VAXstation Model 60. There
were two main reasons for designing the system as
an upgrade. First, it protected the customer's invest-

82

ment in the Model 60 components. Second, by
using as many components as possible from the
Model 60 design, we could reduce the hardware
and software engineering effort required to pro­
duce the new system. The Model 90 system module
provides a direct upgrade from the Model 60. The
only system component or option on the Model 60
that is not supported by the Model 90 is the entry­
level graphics option.

This paper presents the design methodology we
followed to meet our project goals. It discusses the
four major components in the Model 90 system. It
describes the physical design of the system board
and the breadboard system we used for logic verifi­
cation and debugging of software. The paper ends
with a comparison of performance data for Digital's
workstations.

Design Methodology
The design methodology used during the Model 90
project consisted of the following approaches:

• Complex logic, software, and firmware from
existing designs would be used whenever
possible.

• All new logic would be implemented using pro­
grammable technology

• A breadboard would be built as early as possible.

• Logic would be simulated only if it could not be
verified with the breadboard.

These approaches were influenced and shaped
by our aggressive schedule, by the emergence
of new programmable technologies, and by the

Vol. 4 No. 3 Summer 1992 Digital TecbntcalJournal

availability of certain VAX system designs that
included some of the subsystems that we planned to
use. These influences are discussed in this section.

The strategy of using existing hardware and soft­
ware components stemmed from our goal to
deliver the Model 90 as quickly as possible. The
project schedule did not allow time for the develop­
ment of any major new pieces of hardware or soft­
ware. Consequently, we used as much hardware
and software from other VAX products as possible.

Our aggressive schedule also prompted us to
explore different technologies and verification
methods. On our previous projects, we used con­
ventional gate array or standard cell technology,
and typically we strove for exhaustive logic simula­
tion and timing verification prior to releasing chip
designs. Our goal was to have fully functional first­
pass silicon. Unfortunately, the first pass of a gate
array was rarely fully functional. This approach had
two consequences on the project schedule: (1)

First-pass hardware was usually delayed as much as
possible to allow for more thorough logic simula­
tion and timing verification, and (2) a second pass
was needed if first-pass silicon was not fully func­
tional, adding several months to the overall project
schedule.

At the time of our design, several new pro­
grammable silicon technologies were emerging
that promised performance, densities, and package
sizes comparable to gate array technology. As the
logical design of the system progressed through its
early stages, we evaluated these new technologies
and found that they had matured enough to be used
in the design of the Model 90. We chose Xilinx field
programmable gate arrays (FPGAs) and AMD MACH
PALs to implement large-scale integration, and stan­
dard PALs to implement smaller logic functions.
These programmable technologies allowed us to
build first-pass hardware with the full expectation
that we would need to make inevitable changes in
response to logic bugs and timing problems.
Fortunately, with the new technologies, bug fixes
were made in a matter of minutes or days, instead of
the weeks or months it would have taken using con­
ventional gate arrays.

During the Model 90 project, we examined our
previous notions about the roles of prototyping
and simulation in product development. Because
the core of the Model 90 was borrowed from the
VAX 4000 Model 500, an opportunity arose for us to
build a breadboard system consisting of the pro­
grammable 1/0 and graphics interface designs

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The VAXstation 4000 Model 90

attached to a VAX 4000 Model 500. 2 Unlike a con­
ventional prototype, the breadboard logic was
expected to change; therefore we included recon­
figurable connections to the FPGAs. Also, the bread­
board system did not need to meet any of the
physical constraints, such as size and layout, that
are normally required of a conventional prototype.
An early breadboard system provided the clear ben­
efits of rapid testing and change of hardware and
software.

Because we could change logic quickly and easily
on the breadboard, the role of simulation on this
project focused on verifying module interconnect,
and not on exhaustive logic verification. We main­
tained a working system-simulation model, with a
basic set of regression tests, as a reference for logic
changes and as a tool for debugging. Logic verifica­
tion was performed on the breadboard to an extent
not possible using simulation.

Major System Components
Figure 1 is a block diagram showing the primary
components in the Model 90. In this paper we focus
on four distinct components in the system: the
core, the memory subsystem, the 1/0 subsystem,
and the graphics subsystem.

The core chip set is composed of a 74.4-mega­
hertz (MHz) NVAX CPU, the NVAX memory con­
troller (NMC), and the NVAX 1/0 adapter (NCA). The
NVAX CPU also controls a 256-kilobyte (KB) write­
back secondary cache that reduces memory read
latency and decreases memory write traffic.

The memory subsystem supports a 64-bit data
path to main memo'ry that is composed totally of
single in-line memory modules (SIMMs). Main mem­
ory sizes of up to 128 megabytes (MB) are supported
by the Model 90.

The 1/0 subsystem comprises two independent
32-bit buses that communicate with the various 1/0

and graphics options of the Model 90. One bus
interfaces to the optional TURBOchannel adapter,
the firmware read-only memory (ROM) chips used
for console and diagnostics, and the various graph­
ics options available with the Model 90.3 The other
bus interfaces to the Ethernet and EDAL controllers.
The EDAL is a general-purpose 16-bit 1/0 bus. The
EDAL controller consists of a CDAL-to-EDAL chip
(CEAC) and a small computer system interface
(SCSI) quadword first-in first-out (FIFO) chip,
known as SQWF. These two chips communicate
over the EDAL bus with the system's remaining VO
devices.

83

NVAX-microprocessor VAX Systems

256KB
BACKUP
CACHE

NVAXCPU

NDAL BUS

NVAX
MEMORY
CONTROLLER

CONSOLE
ROMS

TURBO­
CHANNEL
ADAPTER

GRAPHICS
ADAPTER

SPXGOR
SPX GT
MODULE

LCSPX
MODULE

ETHERNET
CONTROLLER

EDAL
CONTROLLER

SCSI

DMARAMS

SYNCHRONOUS
COMMUNICATIONS

QUAD UART

SOUND CHIP

TOY CLOCK

LED REGISTERS

CONFIGURATION
REGISTER

ETHERNET ID
ROM

NMI BUS

TRANSCEIVER TRANSCEIVER

MEMORY SIMMS
16 - 128MB

Figure 1 Block Diagram of the VAXstation 4000 Model 90

Finally, the graphics subsystem provides support
for three different graphics options. These options
include one low-cost graphics option and two high­
performance three-dimensional accelerators.

The majority of the components used in the
Model 90 had been used in previous VAX systems.
Table 1 lists the major Model 90 components and
indicates the source of these components.

mxstation 4000 Model 90 Core
The NVAX CPU, the NMC, the NCA, and the backup
cache compose the core of the system module. This
core architecture was taken directly from the VAX
4000 Model 500 system. This architecture was cho­
sen because it would meet our performance goals;
it provided simple interfaces to our memory, 1/0,
and graphics subsystems; and because the design

84

was completed and stable. The NVAX CPU is a fully
custom complementary metal-oxide semiconduc­
tor (CMOS) CPU fabricated in Digital 's 0.75-micro­
meter CMOS-4 process. The NCA and NMC are also
fully custom CMOS chips, but are fabricated using
Digital's LO-micrometer CMOS-3 process. The three
custom chips communicate with each other over a
64-bit bidirectional bus named the NDAL.

The NVAX CPU contains a 2KB virtual instruction
cache, an 8KB write-through instruction/data pri­
mary cache, and, on the Model 90, interfaces to
a 256KB write-back instruction/data secondary
cache. It contains an on-chip floating-point
unit and branch prediction logic. The NVAX CPU
pipelines instruction execution at the macroin­
struction level as well as the traditional micro­
instruction level.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Table 1 Model 90 Component Source

Component Source

Core chip set VAX 4000 Model 500

Ethernet controller VAX 4000 Model 500

Memory SIMMs VAXstation 4000 Model 60

SPXg and SPXgt VAXstation 4000 Model 60
graphics options

TURBOchannel option VAXstation 4000 Model 60

Synchronous VAXstation 4000 Model 60
communications option

SCSI controller VAXstation 4000 Model 60

Enclosure, power VAXstation 4000 Model 60
supply, cables, brackets

Memory transceivers VAXstation 4000 VLC

LCSPX graphics option Modified VXT 2000

EDAL controller

SPXg and SPXgt
interface

module

New design

New design

The NCA provides direct memory access (DMA)
and programmed 1/0 (PIO) support between the
64-bit NDAL bus and two 32-bit bidirectional CDAL
buses named CPI and CP2. In the Model 90 system,
these buses run at an 80-ns cycle time and interface
to all the graphics and 1/0 devices in the system.
The NCA also contains the VAX standard interval
timer register as well as many of the 1/0 control and
status registers.

The NMC services NDAL memory requests using
a 64-bit dynamic random-access memory (DRAM)
bus called the NMI, which is protected with an error
correction code. The NMC, as configured in the
Model 90, supports up to I28MB of main memory.
It also supports a directory-based broadcast coher­
ence protocol to maintain coherency between the
write-back cache of the NVAX CPU and the system's
DMA devices.

Memory Subsystem
The memory subsystem of the Model 90 is based on
the design of the VAX 4000 Model 500 system. In the
memory subsystem, the NMC handles all NDAL
memory references by transferring them over the
64-bit NMI. The NMC supports data transfer rates up
to 58.SMB per second over the NMI when used with
a 74.4-MHz NVAX CPU. Memory is configured in sets;
each set contains two banks of interleaved 64-bit
wide memory. External multiplexers and trans­
ceivers are required to perform interleaving. The

Digital Technical Journal Vol. 4 No. 3 Summer 1992

The VAXstation 4000 Model 90

NMC provides most of the memory control signals,
and only simple bank selection logic is required
externally.

The Model 90 memory subsystem implements
two sets of memory using the same 36-bit wide
SIMMS that are used in the Model 60 system. Four
SIMMs are required for each set. By using either the
4MB or I6MB SIMMs, the Model 90 allows memory
configuration sizes of I6MB, 32MB, 64MB, 80MB, or
I28MB.

Due to module space constraints and cost
concerns, we investigated alternatives to the four
GMX memory data path chips used on the VAX
4000 Model 500 memory modules. We determined
that two low-cost gate arrays designed for the
VAXstation VLC could be used instead. These
gate arrays provided the same multiplexer and
transceiver functions found in the GMX chips.
Because the NMI on the Model 90 consists of only
two loads, the high-drive capability of the GMX
chips was not required. We used a simple PAL to
decode the bank selection signals from the NMC
and to generate the control signals required for the
gate arrays.

Because the Model 90 design uses the NMC, we
received an additional benefit of having error cor­
rection code protection at no additional cost to the
system. The NMC implements a single-bit error cor­
rect, double-bit error detect code (SEC/DED) across
every 64-bit word of memory data. The eight bits of
error correction code replaced the eight bits of par­
ity used on the Model 60.

1/ 0 Subsystem
Given that the Model 90 system was an upgrade to
the Model 60, a requirement of the 1/0 subsystem
design was to provide support for all I/0
devices/options found on the Model 60. The Model
60 1/0 design consisted of an interface to a I6-bit
bus known as the EDAL where most of the system
I/0 devices resided. The Model 60 also supported a
TURBOchannel adapter that connected to a 32-bit
CDALbus.

The main task of the Model 90 I/0 subsys­
tem design was to provide an interface between
the two 32-bit CP buses provided by the NCA and
the 16-bit EDAL bus and the 32-bit TURBOchannel
adapter option offered on the Model 60. The design
work necessary included a small PAL design for the
TURBOchannel interface on the CP2 bus and the
design of two programmable gate arrays for the
interface between the 32-bit CPI bus and the 16-bit

85

NVAX-microprocessor VAX Systems

EOAL. The following list describes the Model 90
1/0 devices and options and explains why each
was chosen.

• Ethernet-The Model 90 Ethernet interface is
implemented with the second-generation
Ethernet controller (SGEC), which provides an
Ethernet connection through a ThinWire or
thick-wire cable, selectable by a switch on the
rear of the system box. The SGEC, which con­
nects to the CPI bus and was used on the VAX
4000 Model 500 system, facilitates scatter/gather
mapping and dual internal FIFO buffering. We
chose the VAX 4000 Model 500 design to imple­
ment an Ethernet controller because it required
no new logic design.

• Small Computer System Interface-The SCSI bus
interface is implemented using the NCR 53C94
SCSI controller chip that was used on the Model
60. 4 The NCR 53C94 device connects to the EOAL
bus and performs OMA operations to and from
main memory in concert with the two pro­
grammable gate arrays known as the CEAC and
SQWF. OMA virtual-to-physical address transla­
tion is performed by the SQWF chip based on
8, 192 mapping registers implemented in exter­
nal static RAMs.

• Serial Lines-The OC7085 quad universal asyn­
chronous receiver/transmitter (UART) chip was
chosen to provide the Model 90 with four serial
lines for the keyboard, mouse, modem, and
printer/console ports. The OC7085 provides a
64-entry FIFO queue that is shared by all four
receive lines and is implemented in a small exter­
nal SRAM.

• Sound-The Model 90 sound functionality is
implemented using the AMO 79C30 sound chip
just as it was in the Model 60. The programmed
1/0 interface to this device allows both record
and playback functions through a jack on the
front panel, and provides voice-quality sound.

• TIJRBOchannel-The Model 90 provides a single
slot into which any TIJRBOchannel option that is
supported by the VMS operating system may be
installed. On the Model 60, the TIJRBOchannel
adapter was designed to interface to a COAL that
was not a complete implementation of the gen­
eral-purpose COAL bus. For the new design, a
small amount of interface logic was necessary to
adapt the TIJRBOchannel option to the CP2 bus.

86

• Synchronous Communications Option - The
Model 90 supports the same multiple protocol­
communications option that is offered by the
Model 60. This interface was implemented on
the EOAL bus and allows use of synchronous
wide-area network communication through pro­
tocols such as high-level data link control (HOLC)
and synchronous data link control (SOLC).

• Miscellaneous EOAL Devices-The other devices
and registers on the Model 90 16-bit EOAL are a
16-bit system configuration register, an 8-bit
light-emitting diode register, an Ethernet identi­
fication ROM, and a watch chip. All of these
devices also existed on the Model 60 EOAL bus
and were accessed in a similar manner.

CEAC and SQWF Chip Designs
One of the major pieces of design work required for
the Model 90 1/0 subsystem was to interface the
32-bit CPI bus to all the 1/0 devices that reside on
the 16-bit EOAL bus. This interface was partitioned
into two tightly coupled designs called the CEAC
and SQWF. The CEAC chip is primarily responsible
for handling control of 1/0 register read and write
requests from the NCA to the various devices on the
EOAL. The SQWF chip handles OMA transfers and
buffering of data between the SCSI controller chip
and the NCA.

The CEAC chip, which was first implemented in a
Xilinx 3090 FPGA and later converted to a conven­
tional gate array, is a 3,400-gate design and uses 119
1/0 pins of a 160-pin plastic quad flat package
(PQFP). It performs the CPI bus arbitration
between the SQWF for SCSI OMA, the SGEC for
Ethernet OMA traffic, and the NCA for 1/0 register
access. The CEAC responds to NCA 1/0 accesses that
are directed at internal CEAC/SQWF registers and
EOAL device registers. Its slave sequencer controls
read, write, and chip-select signals that control
EOAL devices. The CEAC has CPI and EOAL multi­
plexing logic which selects between addresses and
data and is controlled by the slave sequencer. The
CEAC chip contains an interrupt controller which
consists of interrupt request and mask registers,
priority decoding logic, and interrupt vector gener­
ation logic. The CEAC also has a master sequencer
that supports the SQWF during transfers of OMA
data on the CPI bus.

The SQWF chip, which was first implemented in
a Xilinx 4005 FPGA and later converted to a con­
ventional gate array, is a 3,900-gate design and uses

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

110 1/0 pins of a 160-pin PQFP. The SQWF responds
to requests from the NCR 53C94 SCSI controller
chip to do OMA transfers. During SCSI OMA,
the SQWF chip helps to optimize utilization of the
CPl/NOAUNMI buses by buffering up to eight bytes
of data in either direction. The SQWF performs byte
swapping to map the NCR 53C94's 16-bit transfers
to arbitrary main memory byte boundaries. The
SQWF contains a 22-bit main memory address byte
counter and a direction bit which are accessible as
registers in 1/0 space. The SQWF chip also performs
OMA virtual-to-physical address translation by refer­
encing an 8, 192-page address map store based in
external SRAM.

Graphics Subsystem
One of the keys to producing a workstation around
the VAX 4000 Model 500 core was the ability to inte­
grate graphics support into the system successfully.
In addition, maintaining the high level of graphics
performance found in the Model 60 was viewed
as an important goal. The Model 60 offered three
very good graphics options. The Model 60 low-cost
graphics (LCG) option features an inexpensive
frame buffer module and two-dimensional graphics
acceleration logic contained within a large gate
array on the system module. The other Model 60
graphics options, SPXg and SPXgt, are three-dimen­
sional graphics accelerators. The SPXg is an 8-plane
option, and the SPXgt is a 24-plane option. The
three-dimensional graphics options simply replace
the LCG frame buffer in the Model 60. We realized
that the Model 90 system had to support a high-per­
formance, entry-level, two-dimensional graphics
option and the three-dimensional SPXg and SPXgt
options. The first major task in the design of the
Model 90 was defining the entry-level graphics
option.

LCSPX Graphics Option
From the start of the Model 90 project, we knew
we could not support LCG. The LCG control logic
on the Model 60 was embedded within a very large
gate array that also served as a memory and 1/0
controller. This part was not compatible with our
core architecture. Redesigning the Model 60 LCG
logic to fit our system would have been a major
design task requiring a midsize gate array. This
was well beyond our engineering schedule and
resources.

To find a graphics option that would provide
the desired performance and have a low hardware

Digita l Tecb 11 ical Journal Vol. 4 No. 3 Summer 1992

The VAXstation 4000 Model 90

and software development cost, we met with a
number of graphics hardware and software engi­
neers. We found that a new X terminal, the VXT
2000, was being developed with graphics based on
a cost-reduced version of the SPX graphics module
originally used in the VAXstation 3100 system. This
module was close to the Model 60 LCG in both cost
and performance. In addition, it was designed to
interface directly to a COAL bus and was software
compatible with the VAXstation 3100 SPX. As a
result, the module could interface directly to our
CP2 bus with a minimal number of changes to its
supporting software.

To use the VXT 2000 SPX module in the Model 90,
we needed to lay out the module again to fit the
physical constraints of our system. This new mod­
ule was named LCSPX (low-cost SPX). No logic
design work was required on the LCSPX or on the
system module to support it . A connector on the
CP2 bus provides the interface to the LCSPX module.

Although the performance of the VXT 2000 SPX
module was close to that of the LCG on the Model
60, we wanted to extract as much performance out
of the LCSPX module as possible. To improve the
performance of the LCSPX, we increased the clock
speed of the module. A speed analysis of the mod­
ule was performed to determine how much margin
existed in the design. The original VXT 2000 SPX
module ran at 20 MHz, and we determined that by
upgrading a number of components, the LCSPX
could run at 25 MHz. As a result of this 25 percent
increase in speed, the performance of the LCSPX
module exceeds the performance of the Model 60
LCG for almost all operations.

SPXg and SPXgt Graphics Options
On the Model 60, the SPXg and SPXgt graphics
options plug into the LCG frame buffer port, and a
subset of the LCG control logic provides access to
these options. To support SPXg and SPXgt on the
Model 90, a port that emulated the LCG frame buffer
port was required. The Model 60 supports both a
PIO and a OMA interface to the SPXg and SPXgt, but
the Model 90 supports only a PIO interface.

We considered a OMA interface for the Model 90,
but discarded the idea for several reasons. A OMA
interface similar to the Model 60, which supports
virtual OMA, requires more logic than would fit in
the programmable technologies we were consider­
ing for the Model 90. A simpler OMA interface
would not have been compatible with VMS graphics
system software and would have required a large

87

NVAX-microprocessor VAX Systems

number of changes to the software. Finally, it
appeared that processing on the SPXg and SPXgt
modules, and not data bandwidth, was the limiting
factor in performance in the Model 60 system.
Based on this analysis, a high-speed PIO interface
was built.

The SPXg/SPXgt interface on the Model 90 simply
translates CP2 bus read and write commands into
frame buffer port transactions. The interface is
pipelined such that it can keep up with the peak
transfer rate of the CP2 bus. We implemented the
majority of SPXg/SPXgt interface logic using two
AMO MACH PALs. One of these large PALs contains
the control sequencer and generates all CP2, frame
buffer port, and data path control signals. The other
MACH PAL contains an address decoder and address
data path. A few miscellaneous medium-scale inte­
gration components make up the remainder of the
interface. Performance analysis of the SPXg and
SPXgt modules shows that performance on the
Model 90 is virtually the same as on the Model 60.

Physical Design
The physical design of the Model 90 system board
presented many challenges. Being a module
upgrade from the Model 60, the Model 90 used a
system board that had many fixed-position obsta­
cles for placement and routing, such as connectors
and stand-off post holes. In addition to the seven
connectors and the single switch along the back of
the unit, seven more connectors scattered about
the module had to retain their positions. Also, the
Model 90 had to fit eight SIMMS in the same area that
the Model 60 had six SIMMS. Furthermore, pro­
grammable technologies generally provide logic
of less density than conventional gate arrays, and
therefore require more module space. To meet
these challenges, we eliminated on-board main
memory (8MB were present on the Model 60) and
reduced the size of the secondary cache from the
originally planned 512KB to 256KB.

The Model 90 system board measures 16 inches
by 10.5 inches, and has 8 layers of etch, approxi­
mately 100 surface-mount and through-hole com­
ponents, 23 connectors, 5 oscillators, and over 300
discrete resistors and capacitors. All components
are mounted on a single side. Figure 2 shows the
Model 90 system module.

Model 90 Breadboard System
Our logic verification strategy depended on build­
ing a breadboard early in the design cycle. This

88

breadboard allowed quicker and more accurate
hardware verification than logic simulation. In
addition, the breadboard allowed debugging of
console and VMS software earlier than a conven­
tional prototype.

The breadboard system was based on a VAX 4000
Model 500. Logically, the breadboard simply
extended the CPI and CP2 buses of a VAX 4000
Model 500 system to include the complete I/0 and
graphics subsystems of the Model 90. The Model 90
breadboard was an eight-layer etch module and
included all the devices on the Model 90 CPI, CP2,
and EDAL buses. The breadboard system used a VAX
4000 Model 500 test backplane that allowed com­
plete physical access to both sides of the VAX 4000
Model 500 CPU module. A socket with pins that
extended 1 inch through the back of the module
was used on the NCA chip of the VAX 4000 Model
500 CPU module. The breadboard, which contained
the holes for the NCA, was then attached to the VAX
4000 Model 500 CPU module by soldering it to the
extended socket pins. CP bus clocks were not
directly routed to the breadboard logic. To control
clock skew, a phase lock loop (PLL) was used on the
breadboard to regenerate the CP bus clocks. With
this configuration, the breadboard system was able
to run at full speed.

Once the breadboard system was assembled,
we were able to execute console commands after
a quick debugging of the system. At this time, very
little of the breadboard logic was being used
because the console program was using the VAX
4000 Model 500 I/0 devices and not the Model
90 devices. The hardware team began debug­
ging the breadboard logic piece by piece.
Debugging was quick because a completely func­
tional console and I/0 system already existed.
Simple functions, such as register reads and writes,
were debugged using the console examine and
deposit commands. More complex functions, such
as reading and writing to an SCSI disk, were tested
by writing test programs in VAX MACRO, download­
ing them into memory, and executing them using
the console.

After some of the major pieces of functionality
were verified by the hardware group, members
of the VMS group began to use the breadboard.
A modified version of the VMS operating system
was used to debug VMS device drivers. Drivers
for the serial lines, LCSPX, SPXg, SPXgt, and the SCSI
port were debugged. In addition to software debug­
ging, this effort provided the software to perform

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

ROMS
CEAC
CHIP

MEMORY SIMM
CONNECTORS

SQWF
CHIP

LCSl>X
CONNECTOR

SPXG/SPXGT
CONNECTOR

The VAXstation 4000 Model 90

NVAX 1/0
ADAPTER (NCA)

NVAX MEMORY
CONTROLLER

NVAX

Figure 2 VAXstation 4000 Model 90 System Module

extended verification. The hardware group was
able to use graphics test packages running under
DECwindows software, disk exercisers, system
exercisers, and other tools supported by the VMS
operating system. This provided a verification envi­
ronment we could never achieve with traditional
simulation methods.

At this point, we were still using the VAX 4000
Model 500 console. The breadboard was then used
to debug the Model 90 console code. We disabled
the system support chip, which controls much of
the console support hardware in the VAX 4000
Model 500, and began using the Model 90 console
support hardware. A base console that included
minimal power-up self-test, basic command sup­
port, and SCSI boot support was debugged by the
Model 90 console team. Once the console was func­
tional, the VMS group returned and debugged boot
support for the Model 90 using the breadboard.
When this was finished, the software was com­
pletely debugged and ready to be loaded onto the
first Model 90 prototype.

Digital Techntcal]ournal Vol. 4 No. 3 Summer 1992

As soon as we assembled the first Model 90 pro­
totype system, we realized the benefits of all
the work performed using the breadboard system.
During the first day of debugging, we ran the
console program and booted the VMS system
with minimal effort. We also ran DECwindows
software using the LCSPX and the SPXg and
SPXgt graphics options. This quick debugging
allowed additional prototype systems to be built
immediately and shipped to various develop­
ment and verification groups throughout the
company.

Performance
The VAXstation 4000 Model 90 represents the
fastest VAX workstation ever produced. Its CPU per­
formance surpasses previous VAX workstations and
is comparable to Digital's RISC-based workstations.
By utilizing the NVAX CPU chip, the Model 90
achieves 2.7 times the performance of the Model 60
when measured against the SPECmark bench­
marks. 5 Table 2 gives the CPU performance of the

89

NVAX-microprocessor VAX Systems

Table 2 CPU Performance Comparison

Workstat ion

VAXstation 4000 Model 90

VAXstation 4000 Model 60

VAXstation 3100 Model 76

DECstation 5000 Model 240

Note:

SPECmark* Rating

32.7

12.0

6.8

32.4

'SPECmark is a quantitative measurement of performance,
determined by running a suite of ten benchmark programs.

VAXstation Model 90 compared to other Digital
workstations.

LCSPX is the entry-level, two-dimensional graph­
ics option offered on the Model 90. The perfor­
mance of this option is better than the LCG option
offered on the Model 60 for most graphics opera­
tions. Table 3 compares the LCSPX graphics perfor­
mance to Digital workstations using standard
two-dimensional metrics.

SPXg and SPXgt are high-performance, three­
dimensional graphics accelerators offered on both

the Model 60 and the Model 90. Table 4 compares
the three-dimensional graphics performance of sev­
eral of Digital's workstations using standard three­
dimensional metrics. In addition, Table 5 gives
three-dimensional performance using the picture­
level benchmark (PLB) suite.

Summary
The NVAX CPU chip provides the high performance
that makes the VAXstation 4000 Model 90 competi­
tive in today's market. The design methodology
used during the project allowed us to develop and
ship the Model 90 quickly and to provide a simple
upgrade path for existing VAXstation customers.

Acknowledgments
The authors would like to acknowledge the follow­
ing people for their contributions to the VAXstation
Model 90 development: Gregg Bouchard, Paul
Campos, Jon Crowell, Terry Furman, Dave Ives, Bill
Laprade, Jim Lundberg, Curt Miller, Jan Nordh, Jim
Reilley, Brian Rost, Mike Sullivan, Pat Sullivan, Mike
Warren, and Tom Wenners.

Table 3 Two-dimensional Graphics Performance Comparison

Two-dimensional Two-dimensional
Area Fill Vectors

Workstat ion (Mpixels per second) {Kvectors per second)

VAXstation 4000 Model 90 LCSPX 18.2 266.0

VAXstation 4000 Model 60 LCG 14.6 216.0

VAXstation 3100 Model 76 SPX 14.2 183.0

DECstation 5000 Model 240 PXG 13.9 263.0

Table 4 Three-dimensional Graphics Performance Comparison

Three-dimensional Three-dimensional
Polygons Vectors

Workstat ion (Kpolygons per second) {Kvectors per second)

VAXstation 4000 Model 90 SPXgt 33 295

VAXstation 4000 Model 60 SPXgt 33 300

VAXstation 4000 Model 90 SPXg 30 295

VAXstation 4000 Model 60 SPXg 30 295

VAXstation 3100 Model 76 SPX 6 57

DECstation 5000 Model 240 PXG 52 302

90 Vol. 4 No. 3 Summer 1992 Digital Technical Jour11al

Table 5 PLB Graphics Performance Comparison

Workstation

VAXstation 4000 Model 90 SPXgt

VAXstation 4000 Model 60 SPXgt

DECstation 5000 Model 240 PXG

Note:

Printed
Circuit
Board

13.2

12.3

10.0

The VAXstation 4000 Model 90

GPCmark PLBlit Results*

System Cylinder
Chassis Head Head Shuttle

11.8 8.5 8.3 13.5

11 .1 8.4 8.5 12.5

11 .7 14.9 19.2 18.3

*GPCmark is a quantitative measurement of performance, determined by dividing a normalizing constant by the elapsed time, in seconds,
required to perform the test.

References

1. G. Uhler et al., "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

2.]. Crowell et al., "Design of the VAX 4000
Model 400, 500, and 600 Systems," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 60-72.

Dig ital Tecbnica/ Jo11r11a l Vol . 4 No. 3 Summer 1992

3. TURBOchannel Hardware Specification (Palo
Alto, CA: Digital Equipment Corporation,
TR.I/ADD Program, 1990).

4. Small Computer System Interface (SCSI)
(New York: American National Standards
Institute, ANSI X3.131-1986, 1986).

S. Digital's VAXstation 4000 Family Perfor­
mance Summary, Version 3.0 (Maynard:
Digital Equipment Corporation, 1992).

91

Brian Porter I

VAX 6000 Error Handling:
A Pragmatic Approach

The VMS opera ting system's CPU-dependent support of the VAX 6000 family of com­
puters implements a complex and sophisticated set of errm~handling routines. At
the start of a VMS session, these routines help construct the necessary framework to
support the 1/0 subsystem as the system begins to emerge. For much of a VMS ses­
sion, these routines then lay dormant within the SYSLOA image. Periodically, when
aroused, they peer into hardware registers looking for signs of trouble. Often, all is
well, and the routines return to hibernation. On those occasions when the hard­
ware requires assistance, error handling takes complete control of the system. It
has but one mission: identify the error, recover if possible, but at all costs ensure
that the integrity of the system remains intact and that data is preserved.

Error handling is the set of routines that resides
in the CPU-dependent loadable image known as
SYSLOA. Each processor model that supports the
VAX system architecture and VMS operating system
has its own SYSLOA image. Error hand ling is imple­
mented with other common routines like console
support and secondary p rocessor start-up. Error
handling is unique for each processor model.
Individual processor models bring with them a
wealth of error detectors and consistency checkers.
Each device has to be independently interrogated
and reset once triggered.

Error handling of one form or another resides
throughout the VMS operating system. In some con­
texts, trying to edit a file in a directory structure
that does not exist can be considered an error. This
paper discusses only errors that deal with the
underlying CPU and memory hardware on which
the VMS system is running. It describes the develop-

ment of error handling to support the CPU modules
and memory controllers that make up the system
kernel in the VAX 6000 series. This paper explains
our error-handling strategy to not only reduce the
amount of unique coding, but also provide an
opportunity to enhance, mature, and imp rove exist­
ing VAX 6000 products.

Development of Error-handling
Routines for the VAX 6000 Platform
The VAX 6000 platform provided a unique o pportu­
nity to develop error-handling rou tines. As shown
in Figure 1, the XMI backbone of the system allows
the creation of increasingly powerful systems that
retain much of their operating characteristics.
Increases in processor capability are gained by
merely exchanging processor modules for more
powerful models. We decided that error handling
should not be any different. On prior systems,

XMI BUS

:---1~;;--: I :---,~0-~--:
I I I I ·--------J , ________ J

CPU 1 CPU 3 MEMORY 1 MEMORY N

I - - - - ·- - - - •
I I

CPU 2 CPU N MEMORY 2 I 1/02 I
I I ·---- ----J

Figure 1 System Block Diagram

92 Vol. 4 No. 3 Summer 1992 Digital Teclm l ca /Jounial

a complete set of error-handling routines for each
CPU model had to be implemented. We adopted an
approach to error handling that could be carried
forward from one processor to the next with little
or no change to the initial error-handling model.
This approach handles identical errors in the same
way with the same code base.

The protocol of the XMI bus was modified to
allow support of write-back caching schemes of the
VAX 6000 Model 500 and VAX 6000 Model 600.
However, this had no ill effect on the overall error­
handling model we decided to use in the support of
the VAX 6000 family of processors.

VAX 6000 Family Error Delivery
Identical mechanisms were used to structure error
delivery on each processor in the VAX 6000 family.
Each processor has two system control block (SCB)
interrupt vectors and a single SCB exception vector.
The interrupt vectors deliver hard and soft errors.
The exception vector delivers machine check
exceptions.

Hard Error Interrupts Hard errors can be catego­
rized in the following way. Hard errors occur as
conditions that are not synchronous to the program
counter (PC). In almost all instances, systems can­
not recover from hard errors. They indicate that
data or machine state has been lost. Hard errors are
normally fatal. Hard errors are delivered through
SCB vector 60 (hexadecimal); interrupt priority
level (IPL) is raised to 29 decimal.

Soft Error Interrupts Soft errors, on the other
hand, generally signal an asynchronous condition,
with respect to the PC, that has been corrected by
hardware, or that can be overcome with some soft­
ware intervention. Soft errors are normally always
benign to system operation. Soft errors are deliv­
ered through SCB vector 54 (hexadecimal); IPL is
raised to 26 decimal.

Machine Check Exceptions Machine check excep­
tions are internal processor conditions that are syn­
chronous to the PC. If the condition can be
corrected when the instruction that caused the
exception is reexecuted, the result is the same as if
the condition had not occurred. Many of the
machine check exceptions that are reported by the
VAX 6000 family of processors allow recovery so
that normal operation can continue. Machine
check exceptions are delivered through SCB vector
4; IPL is raised to 31 decimal.

D igital TechntcalJournal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

Objectives
Error handling must identify the error and recover
if possible. Above all, it must guarantee the
integrity of the system and the preservation of data.

An important project goal was to produce a
robust and quality product that would have pre­
dictable performance. We chose to have a single
error-handling model that could be implemented
for all VAX 6000 CPU models. We also adopted an
implementation methodology that included the
capability to allow rigorous testing of the many
code paths contained in the various configurations.
To accomplish this goal, we designed the test and
verification strategy in conjunction with the over­
all system design of the kernel error-handling sub­
system. In addition, we designed and implemented
an object-oriented code base for errors that are
common across the platform. Errors are handled in
this way when they are associated with main mem­
ory, with XMI bus protocols, or with the support of
vector processors.

Most frequently occurring errors are associated
with main memory. The error handling for main
memory is composed of three major functions. The
first handles the complexity of support for two dif­
ferent memory controller types and their internal
error conditions. The other two functions are logi­
cally split between single-bit error correction code
(ECC) failures and double-bit ECC failures.

Common error-handling interfaces and routines
were established for the VAX 6000 family of proces­
sors. The use of common files and interfaces
ensures that errors are handled in exactly the same
way for each CPU model.

Full Support of the Symmetric
Multiprocessing Paradigm
The VAX 6000 family of CPUs are symmetric multi­
processing (SMP) systems. The error-handling
model assumes that more than one CPU is always
active. The synchronization of error handling
throughout the system has numerous benefits. If an
error condition were detected throughout the
system, it would be a very complicated procedure
to ensure that all CPUs reacted consistently. Such
errors would clutter the error log with reports
from every CPU and XMI device.

Error Logging Synchronization
In the VAX 6000 scheme, error logging is syn­
chronized across the system. If an error affects
all nodes, this information is included with the

9:,

NVAX-microprocessor VAX Systems

first CPU to respond to the error. Machine state
is created that informs other CPU nodes that the
event has been logged on their behalf. As each CPU
node responds to the error condition, it can inter­
rogate this state. In the event that all error con­
ditions have been logged on behalf of a CPU, the
error condition is cleared and the interrupt or
exception is dismissed. The one entry in the error
log for these types of errors clearly indicates that
other nodes were active. Information about the
nodes affected and state indicating how the node
was affected is recorded in the single error log
entry.

CPU Configuration Data in the Error Log
A CPU running with some of its hardware disabled
may have operating characteristics that cause other
CPUs to incur error conditions of some type. An
error log entry from a VAX 6000 CPU always
includes the configuration of other active CPUs
on the system. For example, if the CPU at node 6
is running with its backup cache disabled, other
CPUs include this information with their error log
data. Thus, potential error conditions can be easily
identified.

Error Log Filtering
Some errors that occur at too high a rate are filtered
from the error log. Errors that are delivered by the
soft error vector are invariably benign to system
operation. It is important that they be reported
because they can indicate an impending fatal error
in some subsystem. However, if these errors are
occurring too often, only a subset is sent to the
error log. The algorithm is based on an error count
over time. If an error is occurring too rapidly,
logging of the errors is inhibited. At a later time, log­
ging is reenabled. Errors that do not appear in the
error log are still counted, and the accumulated
totals are displayed by other error conditions that
are sent to the error log.

Message Facility
Error handling on the VAX 6000 has the unique abil­
ity to output formatted messages. Integral to the
error-handling subsystem is a message processing
facility that is composed of specialized routines
and modified versions of several VMS system ser­
vices. The modified system services include SYSFAO
and SYSCVRTIM. The message facility provides the
error-handling subsystem with the capability to
output formatted messages that contain both text

94

and data. These messages are time-stamped and
sent to the system console device OPAO:.

Messages can be output in two different modes.
Interrupt driven mode is the most common and
uses the standard terminal driver functions of the
running VMS session. Messages that use this mode
describe the disabling of some part of the CPU ker­
nel at system start-up or during the current session.
The other mode of output is synchronous and is in
line with error processing. This mode is reserved
for hardware errors that are nonrecoverable and
result in a system crash. The message is output just
prior to calling the BUGCHECK mechanism that
would terminate the current VMS session abnor­
mally. Messages are always descriptive of the error
or exception condition and contain all the machine
state available at the time of the error.

Formatted messages allow for errors that occur
as the system is being initialized to be reported and
described should the system fail to boot. The out­
put of messages is fully synchronized between the
primary and secondary CPUs of SMP systems. The
primary CPU outputs messages about errors occur­
ring on secondary processors.

Error Rate Checking and Loop
Detection
The VAX 6000 family of CPUs provides a great deal of
error detection. The error conditions signaled in
many cases are benign to the system if the appropri­
ate action is taken. However, blind recovery from
errors can be a downfall in itself. It is not uncom­
mon for so many benign failures to occur that error
handling is the only task being performed by the
system. Error handling on the VAX 6000 family
implements a system of rate checking and loop
detection to combat this problem.

Rate and Loop Detection Time Base
The timing standard used by the rate checking and
loop detection subsystems is the CPlJ TODR register.
The TODR hardware register is independent of soft­
ware and increments every 10 milliseconds.

Rate Checking of Errors
Each error condition has an associated rate check
database. The database tracks TODR values for the
three most recent errors. If these errors occur too
fast, special action is taken in addition to that
required to service the error. This may involve dis­
abling the signaling of the error condition itself. For
example, some errors that are reported outside the

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

CPU can be turned off. When sufficient data about
an error has been collected, the error may be dis­
abled for a period of time. Hardware features such
as internal cache errors can also be disabled. If
cache errors occur that are recoverable, but are
occurring too fast, the cache is disabled. The occur­
rence of multiple errors can indicate a broken
structure, whereas a single error can indicate a sin­
gle transient event.

Loop Detection
Multiple errors of different types can also occur fre­
quently. In this situation, the system is operational,
but it is continuously at high IPL, servicing error
interrupts or exceptions. This operating scenario is
detected by the frequency of transitions in and out
of error handling. When error-handling code
threads are entered and exited, the TOOR value is
saved. During execution of error handling, the
enter TOOR value is compared to the last exit TOOR
value. If the result is too close, a count is incre­
mented. If the close relationship of exit to entry
continues to occur, a loop condition is declared and
appropriate action is taken. Most often this means
the system is shut down.

Error-handling Model
The traditional approach to error handling in the
VMS operating system has been to interrogate regis­
ters and act on the data directly in real time.
Another approach has been to save only a subset of
processor state that has a linkage to the error deliv­
ery vector and then act on this data during a later
parse operation.

When designing the error-handling model for the
VAX 6000 series, we decided to save all CPU state
that is visible to macro programmers in buffers spe­
cific to each CPU. All interrogations are then made
on the data in this buffer. Information on the hard­
ware state is saved as well as the current system
time. Any action taken by error handling is also
recorded in the buffer. This approach has several
advantages. First, a distinct footprint of the last
error is contained in the system image in memory.
Should the system fail, the data is saved when a
crash dump is taken. Second, the many execution
thread possibilities are made easier to test and ver­
ify. Finally, conditions are easier to diagnose if the
original data that error handling processed and the
actions that were taken are recorded in an error log.

The error-handling process for the VAX 6000
series consists of six distinct steps:

Digital Technical journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

• Setup and synchronization

• Saving of state

• Parsing of data

• Processing and accounting of state

• Error logging

• Error reset and dismissal

This logical organization provides flexibility
to the implementation being addressed at the time.
The parsing of data step was added at the same
time that support of the VAX 6000 Model 400 was
implemented.

Setup and Synchronization
Synchronization is accomplished by acquiring the
MCHECK spinlock. The use of spinlocks is a VMS
technique that provides atomic access to code
threads and data structures and ensures that only
one CPU at a time is in error handling. Thus it is pos­
sible to compress an error condition occurring
throughout the system into a single error log entry
by the first CPU to service the error.

Following synchronization, the SMP sanity and
spinlock acquisition timers are disabled. If an error
occurs at the boundary of one of these timers, a
false termination of the session can occur due to
the time consumed by the execution of error han­
dling. The SMP sanity and spinwait timers are mech­
anisms used in VMS to ensure that CPUs active in a
multiprocessor system are interactive with each
other and the synchronization primitives that con­
trol access to various resources. The sanity timer is
used as a watchdog timer to ensure that CPUs
respond to hardware clock interrupts on a regular
basis. Each CPU active on the system monitors
another CPU for its response to hardware clock
interrupts. The spinwait timer guarantees that one
CPU does not retain ownership of a spinlock
resource for more than an allotted time period.
Error handling is always executed at an IPL above
which hardware clock interrupts can be serviced.
As a result, it defeats the sanity timer mechanism.
Some of the actions taken by error handling can
cause a spinwait timer to expire if the error being
serviced occurs too close to the timer boundary. By
disabling these SMP timers, a time period is started
over when the error being serviced is dismissed
and timers are reenabled.

The buffer associated with the CPU experiencing
the error is initialized to zero and is ready to receive
the latest error state. If the error is a machine check,

95

NVAX-microprocessor VAX Systems

stack space is allocated and initialized to allow for
error dismissal and error-handling exit.

When machine checks or soft error interrupts
are serviced, the cache subsystem is uncondition­
ally disabled. Error handling does this to preserve
any error state that may be in the cache. If the error
happens to be cache-related, the state can be
extracted at the appropriate time. Cache-related
errors are not reported by hard error interrupts on
some VAX 6000 models. When hard error interrupts
are serviced on these processor models, the cache
is not disabled by software.

The machine check flow has an additional check
to determine if the error is associated with a recov­
ery block. Recovery blocks on the VMS system
provide kernel-mode macro programmers with
the ability to protect an execution thread from
the effects of fatal machine check exceptions.
Normally when a machine check occurs in kernel
mode, the code thread being executed loses con­
trol. Unless the instruction can be restarted, the
VMS session is terminated. The placement of kernel­
mode execution threads within the context of
a recovery block ensures that a machine check
will cause control to be passed to the end of the
recovery block, along with status to indicate that
the machine check has happened. The macro pro­
grammer can select what type of machine check
to be protected from. In general, this is limited to
those machine checks caused by references to the
physical address space that do not respond or
return data.

If it is determined that the current delivered
machine check is protected by a recovery block
and that error handling established this condition,
the error is dismissed immediately without further
action. More details are given in the following
section.

Saving of State
All available CPU error state is saved regardless of
error type or delivery mechanism. Machine checks
also save the internal state passed by microcode on
the stack. Each register is read into its local storage
buffer within the context of a recovery block. A
valid bit is associated with each local copy register
cell according to its status as it exits the recovery
block context. This is important because each cell
has been initialized before use. A register value of
zero may be significant, and a failed register read
would allow the initialized value to be interpreted
as not having any error or state bits set. Failed

96

register read indications can help in the diagnosis of
the original error condition.

The recovery blocks used when error state is col­
lected have special flags to indicate that they were
established by error handling. If an error does
occur, control is returned to the appropriate point
in the error-handling execution thread. The origi­
nal saved state of the first error is not overwritten.

Parsing of Data
The parsing of data step was added to support the
VAX 6000 Model 400 and later models. The data col­
lected in the saving of state routines is parsed as
a separate step. When error data is parsed and pro­
cessed in a single step, as in the VAX 6000 Model 200
and VAX 6000 Model 300, it is difficult to make the
necessary errors invisible to the error log. When
the error data is parsed and an error mask is pro­
duced that represents the error conditions present,
it is much easier to detect if all current conditions
have been serviced. Since it is also easier to detect
conditions with only one error present, expected
error conditions can be processed. The VAX 6000
Model 400 and later models have many benign error
syndromes that have their logging filtered.

Processing and Accounting
During the processing and accounting step of error
handling, the data in the CPU private local buffer is
parsed and acted upon. These routines detect if a
specific error condition is global and sensed
throughout the system or local to the particular
CPU. Global errors include the state from other
CPUs and devices in the error log if required. If
the global error is the only one present and it is
expected, machine state is set to indicate that error
logging should not occur. Should this CPU be the
first to process the global error, it samples data in
registers of the other CPUs and devices and leaves
state to indicate the error condition has been ser­
viced and is expected. Consequently, the context of
global errors is included into a single entry in the
error log. XMI parity errors are serviced in this way.
Local errors record only the state from the CPU
experiencing the error in the error log.

Error handling supports the notion of expected
errors, or errors that sometimes occur as a result of
operations performed by error handling. These
errors are not reported to the error log. For exam­
ple, duplicate tag parity errors can sometimes
occur when the backup cache on the VAX 6000
Model 200 and VAX 6000 Model 300 is invalidated .

Vol. 4 No. 3 Summer 1992 Digital Technical journal

To cause these errors to be invisible to the error log,
a mask of error bits to ignore is set up when backup
cache invalidate operations are executed. At the
same time, a fork process thread that ultimately
clears the appropriate mask bit is queued. If an
error that would be invisible to the error log
occurs, the "ignore-this-error" bit is sampled in the
recovery thread for the error condition. If the bit is
set, the error is ignored. If the error does not occur,
eventually IPL is lowered until the queued fork pro­
cess runs and clears the bit in the mask. This guar­
antees that later real errors that have previously
been expected and have not occurred are not
excluded from the error log.

Error Logging
The data collected by the error-handling routines is
sent to the VMS system's error log after it is tallied
for size. The amount of record space is allocated by
internal VMS routines. The raw data that describes
the context of the current error is copied to the VMS
error log buffer along with the current values of
accounting data for the CPU. The accounting data is
a count of the individual error conditions that have
occurred on this CPU for the current session. Any
CPU that has some part of its functionality disabled
includes that data in the error log as well. For exam­
ple, a CPU that is executing with a disabled cache
may cause errors to occur on other CPUs. It is useful
to know that a CPU is running in a degraded mode
when investigating problems that are occurring on
a system. The error log records of all CPUs clearly
indicate any CPUs operating at reduced capacity. If
all CPUs are running unimpeded, the error log con­
tains a flag to indicate this status.

The amount of data included in the error log for
any given error can be different. The data describ­
ing the CPU context is the same except in the case
of machine checks. These errors also include inter­
nal state passed by the microcode through the
stack. Depending on the error condition, context
from the XMI bus, the memory subsystem, or an
external XMI adapter can be included. The error
data is organized into various subpackets that are
signaled to be present by a flags field contained
in a header section of the CPU context packet.
For example, an error can occur that describes a
failure of a transaction between the CPU and mem­
ory. If the data collected from the memory subsys­
tem during the processing and accounting step
indicates an error is present, this is included in
the error log record. If there is no indication of a

Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

memory subsystem error, a flag to indicate that
no memory errors are present is set. This reduces
the burden on the error log buffers of the VMS
system and reduces the clutter and confusion of
error registers from a device that does not have an
error condition present.

Any error that ultimately causes the system to
crash is also logged to the system console terminal
through the SYSLOA message facility. Errors can
occur during start-up before VMS error logging is
available. Errors can also occur and terminate the
session before the system completes initialization.
For these reasons, fatal errors are always output to
the console terminal before the session is termi­
nated. Errors that occur at start-up of secondary
processors are monitored by the primary proces­
sor. Any output required is done by the primary
processor.

Error Reset and Dismissal
The last step of error handling resets error condi­
tions that have been serviced and dismisses the
interrupt or exception. The image of the data saved
is used as a mask to reset error conditions. This
technique guarantees that double error conditions
are not lost.

Registers that require initialization are reset
using the contents that were read when the error
was first serviced. Most error conditions are write­
one-clear. That is, to reset the error condition, a
mask of the error conditions set has to be written to
the appropriate register to clear the error. The use
of the original contents of the register as a mask
guarantees that an error condition occurring dur­
ing the processing of an error cannot be lost. Reset
of the VAX 6000 Model 200 and VAX 6000 Model 300
error registers includes a later probe of the register
for the absence of error indications. Should an error
still be present, the error-handling process is
restarted and it treats the condition as a new error.
After errors are reset, the cache subsystem is invali­
dated and a check is made to determine if it should
be reenabled. Processing of the error could deter­
mine that the cache or indeed the CPU should be
taken off-line because of an error rate or finite
count that is too high. If all is well, the cache sub­
system is reenabled. The MCHECK spinlock is now
released and the interrupt or exception is dismissed
by executing a return from exception or interrupt
(REI) instruction.

If the error being dismissed is a machine check,
the additional storage allocated by error handling

97

NVAX-microprocessor VAX System$

and error state left by the microcode has to be
removed. As shown in Figure 2, the additional stor­
age is an array of quadwords. These quadwords rep­
resent program counter/processor status longword
(PC/PSL) pairs that direct control to routines that
must be executed prior to control being returned
to the exception PC. The additional postprocessing
that takes place for noncorrectable memory errors
and errors that cause a process to be aborted are
dispatched using this mechanism.

Machine check processing takes place at IPL 31.
Fatal memory error recovery uses the VMS system's
page fault code threads. These threads use spin­
locks that cannot be acquired from IPL 31. When dis­
missing machine checks, the PC/PSL pairs are
interrogated to determine if they are nonzero. If the
probed quadword is zero, the stack pointer is
updated to unwind by the quadword allocated. This
continues until all three array elements have been
probed. If the array element is nonzero, the REI
passes control to the PC and PSL described by that
array element. Synchronization is thus preserved,
and spinlock acquisition rules are obeyed. Even­
tually the array is traversed, and each element is
removed. State left by the microcode is removed,
control is passed back to the original exception PC,
and instruction retry is attempted. If error handling
determines that the execution thread should be
aborted, the original exception PC is replaced by
a PC/PSL pair that returns control to VMS exception
routines. From these routines, control is normally
passed to an appropriate mode condition handler.

STACK GROWTH l
FROM HIGHER TO 31
LOWER ADDRESSES

If a condition handler has not been established, the
VMS process is aborted. Kernel-mode threads that
experience fatal machine checks always result in
the termination of the VMS session.

Support of the VAX 6000 Model 200 and
VAX 6000 Model 300
The error-handling support for the VAX 6000 Model
200 and VAX 6000 Model 300 is identical. These two
processor models are the same logical CPU. The VAX
6000 Model 300 is a selected faster component set
of the VAX 6000 Model 200.

The VAX 6000 Model 200 system presented a
unique problem for error handling because the pri­
mary cache is internal to the CPU chip. Errors from
the primary cache do not cause an interrupt or
exception. These errors can never cause a failure or
wrong result should they occur. Because all cache
structures on the VAX 6000 Model 200 are write­
through, data can be both in cache and in memory,
and it is always consistent. If a parity error occurs
on either the data or tag section of the primary
cache, microcode can always fetch another copy of
the data from memory. If a primary cache tag or
data error occurs, microcode sets a status bit to
indicate the error in an internal processor register.
The internal processor register is private to the
local CPU. Previous CPUs with this type of error sig­
naling used a polling technique to detect these fail­
ures. On SMP systems, only the primary CPU is
interrupted on a regular basis to allow polling rou­
tines to run.

0

QUADWORD3 UNCORRECTABLE MEMORY

VMS ALLOCATES THREE
ADDITIONAL QUADWORDS.
EACH QUADWORD IS USED
AS A PC/PSL PAIR FOR .EXIT
PROCESSING ROUTINES.

QUADWORD2

QUADWORD 1

THE STATE IS PASSED
BY MICROCODE ON THE
STACK AT MACHINE
CHECK EXCEPTION.

-

-

-

-

ERROR EXIT PROCESSING

ABORT EXIT PROCESSING

NORMAL EXIT PROCESSING

MICROCODE STATE 1

MICROCODE STATE 2

MICROCODE STATEN

EXCEPTION PC

EXCEPTION PSL

-

-

-

-

- THE STACK IS HERE WHEN
VMS GAINS CONTROL
AFTER MACHINE CHECK
EXCEPTION.

Figure 2 Machine Check Exception Exit Processing Stack Format

98 Vol. 4 No. 3 Summer 1992 Digital Technical Journal

Since we had no precedent for reference, we
designed a system whereby the primary CPU uses
the interprocessor interrupt mechanism to inter­
rupt secondary processors. When the secondary
CPU receives the CPU-specific interprocessor inter­
rupt, it reads the appropriate internal processor
register, places the data in a known location, and
sets an indicator flag. On later poll cycles, the
primary CPU sees the indication from the sec­
ondary CPU and interrogates the known location
for any error bits. If no errors are detected, each
secondary CPU is polled once every ten seconds.
Should an error be found, the secondary CPU with
the error has its polling frequency increased to
once every second. If ten successive polls indicate
error conditions, the secondary CPU is signaled to
disable its primary cache. If this occurs, entries are
made in the error log and to the system console by
the primary CPU on behalf of the secondary CPU.

During systems integration of the VAX 6000
Model 200, certain random-access memory (RAM)
devices used for the backup cache exhibited exces­
sive parity error failures. The problem was so
severe that special error-handling software and
additional CPU hardware functionality were devel­
oped to isolate and diagnose the failures. This work
was so successful that the hardware functionality
was made a permanent feature of the processor,
and the error-handling routines were made a per­
manent part of the SYSLOA image. The hardware
functionality and software routines allowed for the
failing data bit in the backup cache to be identified
at the time of the failure. The VAX 6000 Model 200
experience had a lasting effect on error handling
across the VAX 6000 family. The ability to diagnose
cache parity errors to the bit level in the operating
system remains a characteristic of error handling
on all VAX 6000 systems.

Support of the VAX 6000 Model 400 and
VAX 6000 Model 500
Although the CPU chips on the VAX 6000 Model 400
and VAX 6000 Model 500 are the same, the SYSLOA
images are not. The major difference between the
two systems is the write-back cache subsystem
implemented by the VAX 6000 Model 500. To facili­
tate write-back cache strategies, the XMI bus was
enhanced to support a directory-based broadcast
coherence protocol. 1

The VAX 6000 Model 400 and VAX 6000 Model 500
systems represented a dramatic increase in system
complexity for error handling. The amount of error

D igital Tee/mica / Joun,a/ \lo!. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

detection incorporated within each increased and
became more complex. The overall model imple­
mented on the VAX 6000 Model 200 was main­
tained, but a step was added between the steps of
saving of state and processing and accounting. The
new step, parsing of data, was previously a part of
processing and accounting. Error handling support
of the on-board CPU electrically erasable pro­
grammable read-only memory (EEPROM) was also
added. The EEPROM was until now used only by CPU
console support.

The overall model now became

• Setup and synchronization

• Saving of state

• Parsing of data

• Processing and accounting

• Error logging

• Error reset and dismissal

Storage space for machine check and hard error
is shared in the VAX 6000 Model 200 system.
However, this support became too complicated to
manage. In the VAX 6000 Model 400 and later mod­
els, both sets of error state are available in crash
dumps.

EEPROM Support
The experience gained from systems integration of
the VAX 6000 Model 200 showed that real-time diag­
nosis by the operating system has many benefits.
However, the scheme used by the VAX 6000 Model
200 was cumbersome and recorded only the result­
ing diagnostic data to the error log. The challenge
was twofold: to make the mechanics of cache parity
error diagnosis easier, and to make the data more
widely available. We achieved both goals by using
the EEPROM on the CPU module. The VAX 6000
Model 500 made additional improvements by using
both on-board and high-speed RAM and EEPROM.

EEPROM and RAM structures exist within the
physical address space of the VAX 6000 family.
These structures are primarily used by the console
for cross-session storage of data. High-speed RAM is
used for general heap storage by the console. RAM
and EEPROM structures have physical addresses that
are in the 1/0 region of the address space. Address
references to 1/0 address space do not cause cache
lookups. The code threads that perform data
extraction were placed in the EEPROM and RAM

99

NVAX-microprocessor VAX Systems

structures to avoid special hardware operating
modes. A few simple routines enabled easier diag­
nosis of cache parity error failures and a method of
disabling the cache that does not disrupt error
state. The error-handling SCB vectors were pointed
to the EEPROM so the routines that disable the cache
could do so without making cache references. (On
the VAX 6000 Model 500, the cache disabling rou­
tines are placed in the high-speed RAM.)

When an error occurs, control is first passed
to individual routines that reside in 1/0 space. These
routines disable the cache subsystem and then
return control to the SYSLOA image in main memory.

The VAX 6000 Model 500 has an error transition
mode (ETM), which allows the backup cache to be
partially disabled. New blocks are not allocated
when in ETM mode. Data requests are filled from
the cache. Error interrupts or exceptions on the
VAX 6000 Model 500 dispatch to routines that exe­
cute from 1/0 space and place the write-back
backup cache into ETM and disable the write­
through primary cache.

The EEPROM on both the VAX 6000 Model 400 and
VAX 6000 Model 500 is also used to store failure
information. When errors occur, a counter that is
associated with the specific error condition is
incremented. The number of error conditions is
finite and fully described by the error mask pro­
duced by the parsing of data routines. Writing to
the CPU EEPROM is time-consuming compared to
writing to main memory. A byte write to EEPROM
takes on the order of 15 milliseconds. To avoid this
overhead, the EEPROM VMS data actually resides in
main memory during a VMS session. As each CPU is
initialized by the VMS system, the contents of the
VMS area are read into individual CPU memory
regions. Updates that are required are made to
these regions. When CPUs are stopped or when the
system is shut down or has crashed, the region of
memory associated with a particular CPU is written
back to that CPU's EEPROM. In addition to error
information, a count of seconds run in a VMS envi­
ronment is tallied.

Vector Processor Support
One set of routines supports the VAX 6000 Model
400 and VAX 6000 Model 500 vector processors.
These routines are organized in an identical manner
to the CPU routines and follow the same steps
related to CPU error conditions. During the process­
ing and accounting of CPU error conditions, a check
determines if any vector processor errors are

100

present. If vector errors are detected, the appropri­
ate support routines-soft error, hard error, or
machine check-are invoked.

Error handling supports a maximum of four
vector processors. If the number of errors or the
rate of errors becomes too great, vector processors
are removed from use. Error handling never
removes the only or last remaining vector proces­
sor. Support of vector processor errors has the
same characteristics as support for CPU-related
error conditions. Portions of the vector processor
are disabled if the associated error rate becomes too
great. If other errors continue, the unit is removed
from use. The notions of expected errors and
errors that are invisible to the error log also exist.

Support of the VAX 6000 Model 600
Error checking and detection on the VAX 6000
Model 600 are very complex processes. There are
well over 160 unique soft and hard error conditions
as categorized by the software. The actual count
declared by the hardware is much greater. The dis­
parity results from the way software groups error
conditions. The VAX 6000 Model 600 error handling
followed the enhanced model implemented on the
VAX 6000 Model 400. The state saved for interroga­
tion by VAX 6000 Model 600 error handling consists
of 40 internal and XMI-addressable registers.
Support of the VAX 6000 Model 600 also included
support of the on-board CPU EEPROM for the long­
term storage of failure information. The support
of the EEPROM was extended to include the history
of the cache subsystem performance in previous
sessions.

Like the VAX 6000 Model 500 system, the VAX
6000 Model 600 implements a write-back backup
cache strategy. The VAX 6000 Model 600 backup
cache operates using a directory-based broadcast
coherence protocol. 1 Each 32-byte cache block is in
one of three states: invalid, valid/read-only, or
valid/written. Multiple caches may hold read-only
data simultaneously; written data may be held by
only one cache in the system at a time. Write privi­
lege for a block must be obtained before modifying
the data in that block.

Certain backup cache error conditions are severe
enough to disable the cache. The backup cache may
contain written data that is unavailable elsewhere
in the system. To access that data, the backup cache
is put into ETM, a state which allows written data to
be accessed by the cache controller, but disallows
the use of read-only data.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

A cache enters ETM as a function of either soft­
ware or hardware. The cache is put into ETM by
hardware only when cache data may have been cor­
rupted, or when cache data may be inconsistent
with data in memory. Thus, correctable backup
cache errors do not cause a transition into ETM,

but uncorrectable errors do. A parity error on the
NVAX data and address lines (NDAL) interface causes
the cache to enter ETM because an invalidate or
write-back request may have been missed. A cache
transition into ETM occurs when a request for write
privilege or a write back does not complete suc­
cessfully on the VAX 6000 Model 600. The state
of the cache is likely to be inconsistent with that of
memory.

Three requirements govern cache operation dur­
ing ETM: (1) The state of the cache is preserved as
much as possible to allow software to diagnose the
problem. (2) Memory references that hit written
blocks in the cache are processed, since this is the
only source of data in the system. (3) Cache
coherency requests from the NDAL are processed
normally so that cache state remains consistent
with memory.

Although complex, ETM allows the software to
choose when and how to disable the cache. To
make the process of error handling less cumber­
some, the backup cache is unconditionally put into
ETM by the software when any error condition is
being serviced.

ECC protects both tag and data stores on the
backup cache on the VAX 6000 Model 600. Correct­
able ECC errors in the backup cache have a record
of failed syndromes kept by error-handling rou­
tines. Should the same syndrome fail on more than
one occasion in a single VMS session, the backup
cache is disabled.

If uncorrectable backup cache errors occur,
the error-handling routines determine if the block
is owned by the CPU and attempt to flush the
block back to memory. If successful or if the block
is not owned, the backup cache is disabled before
returning the system to normal operation. If
the data cannot be recovered, the VMS session is
terminated.

If the backup cache is disabled by error handling
for any reason, that fact is recorded in the CPU

EEPROM. Records on disabled status are also kept for
the primary cache and virtual instruction cache
(VIC). Subsequent sessions of VMS interrogate the
EEPROM and cause these structures to remain dis­
abled if they were disabled in a previous session.

Dig ital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

When this occurs, an appropriate message is sent to
the console terminal during system start-up.

Tag parity errors that occur in the VIC are diag­
nosed in an unusual manner. Unlike other caches
on the VAX 6000 Model 600, the tag store of the VIC

contains a virtual address. To determine which bit
has failed when a parity error occurs, the tag store
is probed to retrieve the contents of the failing
tag location. The associated data store location is
probed to retrieve its contents; each bit in the bad
tag address is then flipped in turn. As each bit is
flipped, the range of the resultant virtual address is
compared to page tables to determine its validity
within current context. The virtual address is trans­
lated, and the resulting physical address is mapped
to allow error handling to read the contents of the
page. The appropriate contents of the newly
mapped page are compared to the contents read
from the VIC data store. If one and only one match
is found, the failing tag bit is identified. Masks of
failing bits from all VAX 6000 Model 600 cache
structures are stored in the CPU EEPROM along with
other failure information.

The instruction pipeline complicates VAX 6000
Model 600 error handling. In many instances,
errors experienced are in no way related to the cur­
rent instruction being executed or interrupted.
When an error does occur, care must be taken to
fully understand in what context the error has an
effect.

Correctable Memory Errors
Correctable memory errors are data errors that are
corrected by the memory controller before data is
returned to the requester. They occur primarily
because of alpha particle radiation, affect only a sin­
gle cell, and are transient in nature. Correctable
memory errors are completely benign. To deter­
mine if a memory controller reporting correctable
errors has real defects, multiple errors must be
viewed.

VAX 6000 error handling implements a scheme
whereby error data reported by memory con­
trollers for correctable errors is compressed into a
structure called a footprint. The footprint reduces
the data reported into a form that uniquely
describes the error that just occurred. The intent
of the footprint is to uniquely index the source
component of memory, the dynamic RAM

(DRAM). Hence, for a given memory subsystem,
the number of valid footprints would equal the
number of DRAMs. Furthermore, the footprint

101

NVAX-microprocessor VAX Systems

block maintained per footprint is used to track the
context (repeat errors, scrubbing, etc.) of this error
as well as other errors that match this footprint ID.

The assumption here is that most correctable
memory errors are a result of DRAM component
faults, hence the granularity of the unique DRAM.
As shown in Figure 3, the footprint forms a 32-bit
integer from the XMI node ID, the ECC syndrome of
the error, and the memory controller bank in error.
The integer is used to locate other correctable
errors that have occurred in an internal database.
Along with the footprint, the address of the cor­
rectable error is passed to a set of routines that per­
forms all processing of correctable memory errors.
The database tracks the range of addresses that have
experienced correctable errors for the same foot­
print. This aids in the diagnosis of row and column
failures with the DRAMS that make up memory con­
troller storage. On the VAX 6000 Model 500 and VAX
6000 Model 600 systems, memory scrubbing status
is also tracked.

Memory scrubbing is a technique for reducing
the number of error interrupts from locations that
are reporting errors caused by alpha particle distur­
bance. Scrubbing removes transient faults from
the system, which in turn reduces the number of
interrupts that result from such errors. In addition,
it helps to differentiate transient errors from per­
manent DRAM component faults, as captured in
the error log. This information was previously
unavailable.

When the VAX 6000 memory controller detects
a correctable memory error, circuitry in the con­
troller corrects the data returned for the request.

31 23 15

XMI NODE ID I FAILING BANK I ECC SYNDROME

LOWEST ADDRESS

HIGHEST ADDRESS

COUNT

FLAGS

KEY:

O BUSY
1 SCRUBBED
2 INHIBIT THE REPORTING OF CORRECTABLE

MEMORY ERRORS

I I I
2 1 0

Figure 3 Memory Correctable Error
Footprint Structure

102

0

The data is not corrected in the storage DRAMs on
the controller. If the location is read over and over
again, the same error and correction cycle occurs
each time. This continues until the location is
updated with write data. An interrupt can be gener­
ated for each error correction cycle. Care must be
taken when scrubbing memory locations. The data
in any given memory address can be shared by any
number of CPUs or 1/0 devices. When this is the
case, a higher-level software protocol is normally
used to synchronize access. Error handling would
not be privy to these protocols. VAX 6000 Model
500 and VAX 6000 Model 600 memory scrubbing is
possible because of the XMI2 bus protocol. Before a
CPU can modify any location in memory, it must be
the exclusive owner of the 32-byte block in which
the address resides. Ownership is effected at the
primitive hardware level and so exclusive access is
guaranteed.

When a correctable error interrupt occurs on a
VAX 6000 Model 500 or VAX 6000 Model 600 system,
error handling rewrites the failing location with its
contents. The ability to cause an interrupt is dis­
abled in memory controllers that continue to
report errors with the same footprint or that have
not responded to scrubbing. This action occurs
after sufficient data has indicated that something
other than alpha particle disturbance has occurred
and the memory controller may require service.

The rate of correctable memory error interrupts
is checked to reduce the burden on the system. If
the rate of errors occurring becomes too high, the
ability to interrupt is disabled at the problem con­
troller for a period of time. Correctable memory
error data collected during a VMS session is sent to
the error log at the end of the VMS session.

Uncorrectable Memory Errors
Uncorrectable memory errors experienced by
the CPU are reported as machine checks. These
machine checks are synchronous with the PC mak­
ing the reference. Uncorrectable memory errors
occur when data is lost by the memory controller
and cannot be re-created by its ECC circuitry; fortu­
nately, these errors seldom occur. Uncorrectable
memory errors represent a serious problem to the
execution thread that experiences them. The hard­
ware cannot assist in the recovery of this type of
error; recovery is totally a software function.

If the page that experiences an uncorrectable
error is a process private page that has not been
modified, and the code thread currently executing

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

is at pageable priority, the error is not considered
fatal. The error-handling routines arrange for the
page to be re-created in a different physical page in
memory by invalidating the necessary memory
management structures. As a result, a translation­
not-valid exception occurs when the instruction
that experienced the exception is retried. The page
fault mechanisms of the VMS system do the actual
re-creation. The original page with the error is put
on a list of bad pages internal to the VMS system. If
the page does not meet the criteria for replace­
ment, either the process is deleted or the VMS ses­
sion is terminated. If the process is deleted, the
page is marked "bad" by error handling, and the
process run-down routines in VMS retire the page
to the bad page list.

Testing
Early in the project, we decided the ability to test
and verify had to be built into error handling to pro­
duce a predictable, robust, and quality product.
Although the VAX 6000 family and CPUs in general
have a number of features that allow errors to be
generated, they tend not to be general-purpose. In
most cases, they are designed for use by special
diagnostic software that does not operate in the
context of an operating system, e.g., the VMS oper­
ating system. We chose to implement a scheme
whereby errors would be simulated in software on
the target hardware. This approach gave us several
clear advantages. The most important was that the
approach could be extended as the power and com­
plexity of CPU models increased and that complete
control was with the designers. No special hard­
ware equipment or CPU feature would be required.
The only precondition was that certain software
implementation guidelines had to be followed to
make use of the simulator.

Machine check test (MTEST) consists of two
parts, a utility and an error-handling implementa­
tion methodology. The methodology consists of
using main memory storage as the primary agent
that is acted upon by error handling. This method
also fit into our model of retaining data in memory.
The other requirement was the strategic placement
of the DEBUG_TRANSFER macro. DEBUG_TRANSFER
expands to produce a code segment that deter­
mines if the current error being serviced is an error
simulation or not. If it is, data that resides in mem­
ory that is being interrogated is modified, in con­
cert with MTEST, to reflect the error condition
being simulated. DEBUG_TRANSFER code segments

Digital Technical Journal Vol. 4 No. 3 Summer 1992

VAX 6000 Error Handling: A Pragmatic Approach

represent synchronization points between an
error-handling execution thread and the MTEST
simulator.

The MTEST simulator is a privileged image and
consists of a user interface, a number of nonpage­
able internal buffers, and simulator routines. The
user interface allows the internal buffers to be
selected and loaded with data patterns of the user's
choice. The user interface also allows the user to
pass control to the SCB vectors of the VMS system.
In our case we used the vectors that are the linkage
to error-handling routines. Once in control, error
handling would execute its model until it reached a
DEBUG_TRANSFER code segment. The segment
would determine that this was an error being simu­
lated and return control to MTEST. MTEST would
then decide if the synchronization point was one
for which the user has data. The data would be
transferred from the buffer named in the
DEBUG_TRANSFER code segment to the address also
declared in the segment. By judiciously placing the
DEBUG_TRANSFER synchronization points and care­
fully selecting an appropriate data pattern, we
were able to simulate any and all error conditions
for the appropriate CPU.

In this way, we were able to verify many complex
algorithms and code paths that would have been
difficult to exercise. We were also able to verify
error handling and error logging from the point of
error to the error log file . MTEST can be either inter­
active or procedure-driven. This aspect allowed us
to maintain a library of procedures that could be
used at any time to verify that operational charac­
teristics for individual errors had not changed when
code paths that affected many error types were
modified.

MTEST was the primary tool we used for testing.
During the test and verification phase, prototype
hardware that had real error conditions became
available, and we used these prototypes.

Conclusions
The VAX 6000 family now has a robust and complete
set of error-handling routines that accomplished
our project goals. In fact, many routines were never
before part of the VMS system. These routines
include the ability to report complete error context
to the system console and the ability to group fail­
ures occurring across the system to a single error
log entry. An important SMP feature is the ability to
recognize and retire failing processors from the
active set of a VMS session and allow the session to

103

NVAX-microprocessor VAX Systems

continue. These routines and others support the
entire range of VAX 6000 CPU models. The object­
oriented approach to error conditions not on the
CPU module has made support and introduction of
newer routines easier. The ability to test at will any
or all error-handling routines has been a tremen­
dous advantage.

Acknowledgments
Our success resulted from a number of factors,
including the advantages of designing the ability to
test into the product. There is no substitution for
actually executing a code thread to determine the
effectiveness of its design goal. The various engi­
neering groups involved in designing the many

104

6000 CPUs showed great discipline in producing
engineering specifications that met the needs of
both hardware and software engineering groups.
The many hours spent painstakingly describing
intricate details of error conditions and the produc­
tion of parse trees allowed the structured approach
we set out to achieve. Special thanks to Mike Uhler
for his parse trees and to Nick Carr, who suggested
this paper be written.

Reference

1. G. Uhler et al., "The NVAX and NVAX+ High­
performance VAX Microprocessors," Digital
Technical Journal, vol. 4, no. 3 (Summer
1992, this issue): 11-23.

Vol. 4 No. 3 Summer 1992 Digital Technical Journal

ISSN 0898-901 X

Printed i n U.S.A. EY-J884E-DP/92 l l 02 19.0 Copyright © Digital Equipment Corporation. All Rights Reserved .

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	The NVAX and NVAX+ High-performance VAX Microprocessors
	The NVAX CPU Chip: Design Challenges, Methods, and CAD Tools
	Logical Verification of the NVAX CPU Chip Design
	The VAX 6000 Model 600 Processor
	Design of the VAX 4000 Model 400, 500, and 600 Systems
	The Design of the VAX 4000 Model 100 and MicroVAX 3100 Model 90 Desktop Systems
	The VAXstation 4000 Model 90
	VAX 6000 Error Handling: A Pragmtic Approach
	Back cover

