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I Editor's Introduction 

Jane C. Blake 
Editor 

Products designed for quality, high-performance 
presentation of data in both video and hard-copy 
form are the topics of papers in this issue of the 
Digital Technical Journal. The design challenges 
range from managing the huge storage require
ments of images for display on X terminals to ensur
ing high-performance in a feature-rich printer 
environment. 

Image processing is the subject of the opening 
paper by Chris Payson, Chris Cianciolo, Bob Crouse, 
and Cathy Winsor. The authors note that one advan
tage of scanning images for screen display is the 
input time saved; however, the scanned images 
and data can consume significant amounts of stor
age space. They then review the development of an 
image accelerator board that not only helps solve 
the problem of storage but also addresses the need 
for high-performance display-view and manipula
tion-of bitonal images. In addition to specifics of 
the board implementation, the authors offer an 
overview of imaging concepts, terms, and future 
directions for image accelerators. 

The terminal on which the image accelerator 
board resides is DECimage 1200, an x terminal. 
X terminals development in general, including a 
discussion of the VT1200, is the subject of a paper 
by Bjorn Engberg and Tom Porcher. Bjorn and Tom 
focus their discussion on a comparison of the 
X terminal and X workstation environments, and 
explain why x terminals are a low-cost alternative. 
The authors present the design choices debated by 
the engineers during the development of Digital's 
X terminals, including the selection of a hardware 
platform, terminal and window management, 
x server, communications protocols, and font file 
systems. 

Video terminal and workstation users need the 
assistance of a number of 1/0 devices, such as key-
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boards, mice, and tablets, all of which may not be 
made by the same company. A new open desktop 
bus, described by Peter Sichel, is a simple means to 
connect as many as 14 low-speed devices to a desk
top system. In his paper, Peter presents the project 
background, reviews the PC technology on which 
the bus is based, and describes the protocol and the 
configuration process. 

Hard-copy presentation of data and recent devel
opments in printer technologies are the topics of the 
next three papers. Rick Landau and Alan Guenther 
review the DECprint Printing Services, which is 
software that controls numerous printer features 
for a wide range of printers. Also called a common 
print symbiont, this component of the VMS print
ing system supports several page description lan
guages, handles multiple media simultaneously, 
and uses different 1/0 interconnections and com
munication protocols. 

Both DECprint Printing Services and the subject 
of the next paper, the common printer access pro
tocol, are part of the DECprint architecture. The 
CPAP provides the fundamental services necessary 
for the presentation of data at the printer. Jim 
Jones, Ajay Kachrani, and Tom Powers describe the 
challenges of developing a protocol that operates 
in a heterogeneous, internetworking environment 
and that also ensures backward compatibility with 
older products. Their success in developing a high
performance protocol is evidenced by OSF accep
tance of CPAP for inclusion in a future release of 
OSF/1. 

As was the case with the CPAP, performance 
was also key in the development of the turbo 
PrintServer 20 controller. Guido Simone,JeffMetzger, 
and Gary Vaillette explain that the requirements of 
complex documents demanded turbo controller 
performance that was five to eight times that of the 
current controller. To aid them in making design 
decisions, a performance analysis tool, RETrACE, 
was created and is described here. Authors also 
relate how they used existing chips in order to keep 
development costs low and still deliver a high
performance controller. 

The editors thank Liz Griego-Powell of the Video, 
Image and Print Systems Group for her help in 
preparing this issue. 
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I. Foreword 

Larry Cabrinety 
Vice President, 
Video, Image and Print 
Systems Group 

For the millions of people worldwide who use 
Digital's computer equipment, the computer is not 
the sophisticated system in the back room, or the 
complex network. It is the equipment they use 
each day-the terminal or monitor, keyboard and 
mouse, desktop printer or network printer system. 

Today's users demand products with high levels 
of usability and superior ergonomic features. 
Digital's products set worldwide standards for the 
user interface to computer systems. In the 90s our 
focus is to offer products that operate in multi
vendor environments with the goal of delivering a 
complete computing solution. In this issue you will 
read about some of the Video, Image and Print Sys
tems (VIPS) Group's products and technologies that 
support network computing and standards-based 
environments. 

Digital entered the video terminal market in 1975 
with the Vf52 for its time-sharing users. Its replace
ment, the VflOO, embodied two important princi
ples-the use of standards in data communications 
interchange and the protection of customer invest
ments through backward compatibility of new gen
erations of products. The Vf220, introduced in 
1983, and the cost-effective Vf320 terminals saw 
the addition of functionality and ergonomic fea
tures which established Digital as a leader in the 
commodities market. 

In March 1990, Digital entered the x terminal 
market with the introduction of the VflOOO, fol
lowed by the Vf1200 and Vf1300 terminals later 
that year. The emergence of MIT's X Window 
Systems as the accepted industry standard for 
windowing systems provided a standards-based 
environment for distributed applications display 

processing. The X terminal user can now benefit 
from the graphical user interface, sophisticated 
applications, and standards of performance previ
ously available only on workstations. x terminals 
run Xll server code which is operating system 
independent and ideally suited for heterogeneous, 
network-based computing environments. In this 
issue you will read about the engineering decisions 
made as the x terminals were developed. 

There is a growing need in the industry to have 
imaging applications run alongside conventional 
text and graphics applications. Technical docu
mentation is an example of this. Imaging applica
tions, however, have special requirements to achieve 
acceptable end-user performance. Although the Xll 
software can handle images as bit-map data, soft
ware and hardware assistance is required to achieve 
acceptable performance. Digital has designed 
DECimage hardware accelerators for rapid process
ing of image data. This technology is included in 
the DECimage 1200 and will be incorporated in 
following generations of X terminals. To make this 
possible, Digital developed extensions to the 
X server software that support the high-speed 
transport and display of image data. To assure open 
standards, the extensions have been proposed to 
MIT for incorporation into releases of the Xll 
server software. 

In November 1990, Digital announced its next 
generation of x terminals. The VXT2000 terminal 
provides virtual memory and supports both a tra
ditional host-based model with software down
loaded to the terminals as well as the server style of 
X terminal computing. 

The VXT2000 terminal was designed to support 
TCP/IP and LAT protocols, and further demonstrates 
our commitment to openness and support for cus
tomers' multivendor environments. This same phi
losophy is seen in our printer products and our open 
desktop bus. 

Digital pioneered the distributed printing busi
ness with networked laser printers. This prod
uct area began when we combined two concepts 
which had not been combined before-mid-range 
laser printers and networks. In the mid-1980s most 
large-scale computing was done on mainframe 
computers with large printers attached directly 
to these systems. Typically these dedicated print
ers were only accessible to users on that particular 
system. Digital's distributed computing provided 
an alternative to the mainframe. By combining the 
power of multiple systems in clusters or on net
works, a new distributed large system was created. 
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A printing solution was needed to effectively work 
in this new distributed computing environment. 
The PrintServer series addressed this need. 

PrintServer products enabled printing resources 
to be directly connected to networks for the first 
time, and since they were on the network and not 
tied to any one system, they were accessible by all 
systems on those networks. They enabled the com
plex printer functionality previously found only in 
dedicated mainframe printers to be distributed 
throughout end-user environments. 

As these mid-range printers migrated out of the 
computer room and into the office, new demands 
for functionality were created. Large groups of users 
brought many different requirements for printing, 
and our goal was to satisfy as many as possible in a 
single PrintServer. For example, some people need 
"A" size paper for office correspondence, while 
others may need "B" size paper for CAD/CAM or 
accounting work, and still others need transparen
cies for presentations. The PrintServer is flexible 
enough to have all of these different types of 
media available and offer both simplex and duplex 
printing. 

In 1985 when Digital was first developing the 
PrintServer, there was no industry standard way 
of describing the contents of a page to a printer. 
Each major vendor had its proprietary language, 
and none offered the compatibility necessary to 
achieve our print system vision. Our goal was to 
create a family of products, from large to small, 
that offered compatibility for all applications. To 
achieve this goal we had to select a protocol 
that would enable us to print any file on any 
printer. At that time Adobe Systems, the developer 
of Postscript, was a small start-up company in 
Silicon Valley. Postscript was not a standard, and in 
fact, only a single Postscript laser printer model 
had been shipped, the original Apple LaserWriter. 
Our technical community felt Postscript was the 
best solution to our needs, and at that point Digital 
committed to adopting Postscript as our strategic 
page description language. Postscript printers and 
Postscript application support are now pervasive 
throughout the industry and standard printing 
protocols enable interactive communication with 
hosts on the network. 

Significant advances have taken place in the 
PrintServer series over the past seven years. An 
entire MicroVAX II system was housed within the 
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original PrintServer 40, along with custom hard
ware acceleration boards developed by the Hard
copy Group to enable printing at 40 pages per 
minute. In this issue you will read about the single
board controller that replaces the MicroVAX II and 
offers far more processing power. Using the latest 
system-on-a-chip technology, our new turbo board 
provides leadership performance for our printers. 
The CCITI image decompression chip enables us to 
provide full-speed image printing to our customers 
as the image market develops. 

The first PrintServer systems supported printing 
from VMS hosts over DECnet networks. Since then 
the breadth of platform support has increased to 
include first ULTRIX systems and then UNIX operat
ing systems. A software kit for Sun systems will be 
available soon. In expanding PrintServer connectiv
ity to include UNIX systems and TCP/IP networks, 
we again faced the problem that no network print
ing protocol existed for TCP/IP. With the help of 
Digital's experts at the Western Research Labora
tory, we were able to develop a solution. In this 
issue, we discuss the creation of a network printer 
access protocol for TCP/IP. Today this network pro
tocol is a proposed standard at the Internet Engi
neering Task Force, the body controlling the TCP/IP 
protocol. 

The development of the ACCESS.bus product has 
brought an easy, standard way to link a desktop 
computer to many interactive user interfaces. This 
open desktop bus is currently implemented on the 
Personal DECstation 5000 workstation, and imple
mentations on future RISC workstations and video 
terminals is underway. Developers of Digital's prod
ucts will continue to place a high priority on open 
standards. The papers included in this issue of the 
Digital Technical Journal will provide insight into 
the key areas of technology used in the design and 
development of VIPS products. 



Christopher J Payson 
Christopher J Cianciolo 

Robert N. Crouse 
Catherine E Winsor 

Hardware Accelerators for 
Bitonal Image Processing 

Electronic imaging systems transfer views of real-world scenes or objects into 
digital bits for storage, manipulation, and viewing. In the area of bi tonal images, 
a large market exists in document management, which consists of scanning vol
umes of papers for storage and retrieval. However, high scan densities produce 
huge volumes of data, requiring compression and decompression techniques to pre
serve system memory and improve system throughput. These techniques, as well as 
general image processing algorithms, are compute-intensive and require high 
memory bandwidth. To address the memory issues, and to achieve interactive 
image display performance, Digital has designed a series of bitonal image hard
ware accelerators. The intent was to create interactive media view stations, with 
imaging applications alongside other applications. In addition to achieving mem
ory, performance, and versatility goals, the hardware accelerators have signifi
cantly improved final image legibility. 

Bitonal image technology, which can be viewed as 
the electronic version of today's microfilm method, 
is experiencing a high rate of growth. However, the 
electronic image data objects generated and manip
ulated in this technology are very large and require 
intensive processing. In a generic system, these 
requirements can result in poor image processing 
performance or reduced application performance. 
To address these needs, Digital has designed a series 
of imaging hardware accelerators for use in the doc
ument management market. 

This paper provides a brief tutorial on electronic 
imaging. It begins with a general description of the 
imaging data type and compares this type to the 
standard text and graphics data types. It continues 
with a discussion of specific issues in bi tonal imag
ing, such as image data size, network transport 
method, rendering speed, and end-user legibility. 
The paper then focuses on Digital's DECimage 1200 
hardware accelerator for the VT1200 X window 
terminal developed by the Video, Image and Print 
Systems Group. It concludes with future image 
accelerator demands for the processing of multi
media applications and continuous-tone images. 

Introduction to Imaging 
Just as graphics technology blossomed in the 1980s, 
electronic imaging and its associated technologies 
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should come of age in the 1990s. Digital imaging 
is already in use in many areas and new applica
tions are being created for both commercial and 
scientific markets. The emergence of digital images 
as standard data types supported by the majority 
of systems (like text and graphics of today) seems 
assured. For a greater understanding of specific 
imaging applications, this section presents general 
imaging concepts and terms used throughout the 
paper. 

Concepts and Terms 
In its simplest form, imaging is the digital repre
sentation of real-world scenes or objects. Just as a 
camera transfers a view of the real world onto a 
chemical film, an electronic imaging system trans
fers the same view into digital bits for storage, 
manipulation, and viewing. In this paper, the term 
image refers to the digital bits and bytes that repre
sent the real-world view. 

The process of digitizing the view may be done 
through various methods, e.g., an image scanner 
or image camera. A scanner is the conceptual 
inverse of a normal printer. A printer accepts an 
electronic stream of bits that describe how to 
place the ink on the paper to create the desired 
picture. Conversely, optical sensors in the scanner 
transform light intensity values reflected from a 
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sheet of paper and create a stream of electronic bits 
to describe the picture. Similar sensors in the focal 
plane of a camera produce the other common digi
tization method, the electronic image camera. 

The format of a digitized image has many param
eters. A pixel is the common name for a group of 
digitized image bits that all correspond to the same 
location in the image. This pixel contains informa
tion about the intensity and color of the image at 
one location, in a format that can be interpreted 
and transformed into a visible dot on a display 
device such as a printer or screen. The amount of 
information in the pixel classifies the image into 
one of three basic types. 

• A bitonal image has only one bit in each pixel; 
the bit is either a one or a zero, representing one 
of two possible colors (usually black and white). 

• A gray-scale image has multiple bits in each pixel, 
where each pixel represents an intensity value 
between one color (all zeros) and another color 
(all ones). Since the two colors are usually black 
and white, they produce a range of gray-scale 
values to represent the image. 

• A color image has multiple components per 
pixel, where each component is a group of 
bits representing a value within a given range. 
Each component of a color image corresponds 
to a part of the color space in which it is repre
sented. Color spaces may be thought of as dif
ferent ways of representing the analog, visible 
range of colors in a digitized, numeric form. The 
most popular color spaces are television's YlN 

format (one gray-scale and two color compo
nents) and the bit-mapped computer display's 
RGB format (red, green, and blue components). 

The resolution of an image is simply the density 
of pixels per unit distance; the most common den
sities are measured in dots per inch (dpi), where 
a pixel is called a dot. For example, a facsimile 
machine (which is nothing more than a scanner, 
printer, and phone modem in the same unit) typi
cally scans and prints at 100 dpi, although newer 
models are capable of up to 400 dpi. As another 
example, most workstation display monitors are 
capable of 75- to 100-dpi resolution, and some high
end monitors achieve up to 300-dpi resolution. 

To display an image at a density different from 
its scanned density, without altering the image's 
original size, requires the image to be scaled, so 
that the new image density matches the output 
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media density. Scaling an image may be as simple as 
replicating and dropping pixels, or it may involve 
interpolation and other algorithms that take neigh
boring pixels into account. Generally, the more 
complex scaling algorithms require more process
ing power but yield higher-quality images, where 
quality refers to how well the original scene is rep
resented in the resulting image. 

Before an image can be displayed, its pixel values 
often require conversion to account for the charac
teristics of the display device. As a simple example, 
a color image cannot retain its color when output 
to a black-and-white video monitor or printer. In 
general, when a device can display fewer colors 
than an image contains, the image pixel values must 
be quantized. Simple quantizing, or thresholding, 
can be used to reduce the number of image colors 
to the number of display colors, but can result in 
loss of image quality. Dithering is a more sophisti
cated method of quantizing, which produces the 
illusion of true gray scale or color. Although dither
ing need use no more colors than simple quantiz
ing, it results in displayed images of much higher 
quality. 

Image compression is a transformation process 
used to reduce the amount of memory required to 
store the information that represents the image. 
Different compression methods are used for bitonal 
images than those used for gray-scale and color 
images. These methods are standardized to specify 
exactly how to compress and decompress each 
type of image. For bitonal images, the most com
mon standards are the ones used in facsimile 
machines, i.e., Recommendations T.4 and T.6 of the 
Comite Consultatif Internationale de Telegraphique 
et Telephonique (CCITT). 1,2 Commonly known as 
the Group 3 and Group 4 standards, the desig
nations are often shortened to G3-1D, G3-2D, and 
G4-2D, referring to the particular standard group 
and to the coding method, which may be either 
one- or two-dimensional. For gray-scale and color 
images, the Joint Photographic Experts Group 
QPEG) standard is now emerging as a joint effort of 
the International Standards Organization (ISO) and 
CCITT.3 Whichever format or process is used, com
pression is a compute-intensive task that involves 
mathematically removing redundancy from the 
pixel data. 

A typical compression method creates an 
encoded bit stream which cannot be displayed 
directly; the compressed bits must be decom
pressed before anything recognizable may be 
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displayed. The term compression ratio represents 
the size of the original image divided by the size of 
the compressed form. For bitonal images using 
the CCITI standards, the ratio is commonly 20: 1 on 
normal paper documents, but can vary widely with 
the actual content of the image. The CCITI stan
dards are also "lossless" methods, which means that 
the decompressed image is guaranteed to be iden
tical to the original image (not one bit different). 
In contrast, many "lossy" compression methods 
allow the user to vary the compression ratio such 
that a low ratio yields a nearly perfect image repro
duction and a high ratio yields a visible degradation 
in image quality. This trade-off between compres
sion and image quality is very useful because of the 
wide range of applications in imaging. An applica
tion need pay no more in memory space and band
width than necessary to meet image quality 
requirements. 

A New Data Type and Its Features 
The image data type is fundamentally different 
from text and graphics. When a user views charac
ters or pictures on a display device, the source of 
that view is usually not important. A sheet of text 
from a printer may have come from either a text file 
where the printer's own fonts were used, a graph
ics file where the characters were drawn with line 
primitives, or an image file where the original text 
document was scanned into the system. In any 
case, the same letters and words present the user 
with approximately the same information; the dif
ferences are mostly in character quality and format. 

In spite of their large storage space require
ments, images have several advantages over graph
ics or text. First, consider the process of getting 
the information into the computer. With the imag
ing process, documents may be scanned automati
cally in a few seconds or less, compared to the time 
required for someone to type the information cor
rectly (absolutely no errors) into a text file. Also, 
even though the software exists to convert elec
tronic raster images into graphic primitive files, the 
process loses detail from the original image and is 
relatively slow. Next, consider the variety of infor
mation possible on a sheet of paper: a user can
not easily reproduce a diagram or a signature on a 
document. A scanned image preserves not only the 
characters, but their font, size, boldness, relative 
position, any pictures on the page, and even 
smudges or tears depending on the quality of the 
image scan. 
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The major drawback in the imaging process is 
increased data size, which results in storage mem
ory and network transport problems. High scan 
densities and color information components create 
large volumes of data for each image; a bitonal 
image scanned at 300 dpi from an 8.5-by-11-inch 
sheet of paper requires over 1 megabyte of mem
ory in its original pixel form. Therefore, compres
sion and decompression are integral parts of any 
imaging system. Even in compressed form, a bi tonal 
image of a text page requires about 50 kilobytes 
of storage, whereas its American standard code 
for information interchange (ASCII) text equivalent 
requires only 4 to 5 kilobytes. Similarly, a graphics 
file to describe a simple block diagram is much 
smaller than its scanned image equivalent. 

Based on these advantages and limitations, sev
eral applications have emerged as perfect matches 
for imaging technology. Bitonal images are used 
in the expanding market of document manage
ment, which consists of scanning volumes of 
papers into images. These images are stored and 
indexed for later searching and viewing. Basically 
an electronic file cabinet, this system results in 
large savings in physical cabinet space, extremely 
fast document access, and the ability for multiple 
users to access the same document simultaneously. 
Gray-scale imaging is often used in medical appli
cations. Electronic versions of x rays can be sent 
instantly to any specialist in the world for diagno
sis, and the ordering of sequential computer-aided 
testing (CAl)-scan images into a "volume" can pro
vide valuable three-dimensional views. The appli
cations for color imaging are relatively new and 
still emerging, but some are already in use commer
cially, e.g., license and conference registration pho
tographs. A further extension to still imaging is 
digital video, which can be considered as a stream 
of still images. In conjunction with audio, digital 
video is commonly known as multimedia, applica
tions for which range from promotional presenta
tions to a manufacturing assembly process tutorial. 

In this paper, we focus on the static bitonal imag
ing method of representing real-world data inside 
computers. Static imaging is a simpler method of 
representing a broader range of information than 
the text and graphics media types, but it carries 
a greater requirement for processing power and 
memory space. In addition, static imaging can be 
viewed as one part of true multimedia, as can text, 
graphics, audio, video, and any other media for
mats. Yet static imaging does not have the system 
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speed requirements of a motion video and audio 
system, which must present data at real-time rates. 
As long as the user can deal with static images at 
an interactive rate, i.e., being able to view the 
images in the format of choice as fast as the user 
can select them, then static imaging is a powerful 
media presentation tool. The next section presents 
the important issues concerning bitonal imaging in 
a document management environment. 

Bitonal Imaging Issues 
As previously mentioned, bitonal electronic imag
ing as an alternative to paper documents offers 
many benefits, such as reduced physical storage 
space, instant and simultaneous access of scanned 
images, and in general a more accessible media. 
Serious issues need to be resolved before a produc
tive imaging operation can be implemented. The 
chief issues are the image data size, transport 
method, perceived rendering speed, and final legi
bility. In the following sections, we examine each 
issue and present solutions. 

Digitized Image Data Size 
The most important issue concerns image data size. 
Images are typically documents, drawings, or pic
tures that have been digitized into a computer
readable form for storage and retrieval. Depending 
on the dot density of the scanner, a single image 
can be 1 to 30 megabytes or more in size. However, 
storing a single image in its scanned form is not the 
typical usage model. Instead, a company may have 
tens of thousands of scanned documents. Clearly, 
with today's storage technologies, a company can
not afford to store such a large volume of images 
in that format. 

A typical ASCII file representing the text on an 
8.5-by-11-inch sheet of paper requires approxi-

Table 1 Sample Bitonal Image Sizes 

Scan 
Document Type Density 
(Paper Size) (dpi) 

A size 100 
(8.5 x 11 inch) 200 

300 

Esize 100 
(44 x 34 inch) 200 

300 

mately 3 kilobytes of memory. lf the same sheet of 
paper is digitized by scanning at various dot den
sities, the resulting data files are huge, as shown 
by the decompressed bi tonal image sizes in Table 1. 
Note that Table 2 includes the size of the scanned 
image if scanned in gray-scale and color modes, 
although using these modes would not make sense 
on a black-and-white sheet of paper. The image 
sizes are included for comparison and are discussed 
in the section Future Image Accelerator Require
ments. The data presented in Tables 1 and 2 illus
trates that the size of the original ASCII file is much 
smaller than any of the scanned versions. The data 
also gives evidence that scanned images, in general, 
require considerable memory. 

Since the typical use for bitonal images is for 
volume document archival, an imaging application 
must include a compression process to reduce mem
ory usage. This process must transform the original 
scanned image file to a much smaller file without 
losing the content of the original scanned data. 

Compression algorithms may take different paths 
to achieve the same result, but they share one basic 
process, the removal of redundant information to 
reduce the object size. A common compression 
routine searches the pixel data for groupings, or 
"run lengths," of black or white pixels. Each run 
length is assigned a code significantly shorter than 
the run length itself. The codes are assigned by 
statistics, where the most frequent run lengths 
are assigned the shortest codes; statistics have been 
amassed on a variety of document types for differ
ent scan densities and document sizes. A compres
sion process parses through the original image 
file, generating another file that contains the codes 
representing the original image. Figure 1, a sample 
bitonal image compression, illustrates these com
pressed codes in a serial bit stream. 

Kilo~ytes of Data 
Pixel Form Typical 
(Decompressed) Compressed 

114 46 
457 47 

1027 50 

1826 106 
7305 114 

16436 127 
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Table 2 Sample Gray-scale and Color 
Image Sizes 

Document Type 
and Size 

128 x 128 pixel, 12 bits per pixel 
gray-scale image 
512 x 512 pixel, 8 bits per pixel 
color image 
512 x 512 pixel, 24 bits per pixel 
color image 

8.5 x 11 inch, 100 dpi, 24 bits 
per pixel, color image 

Kilobytes of Data 
in Pixel Form 
(Decompressed) 

24 

256 

768 

2740 

Several algorithms for bitonal compression are 
widely used today. As mentioned in the previous 
section, the most common for bitonal images are 
the CCITT standards G3-1D, G3-2D, and G4-2D, which 
all use the approach just described. For the one
dimensional method, the algorithm creates run 
lengths from all pixels on the same scan line. In the 
two-dimensional methods, the algorithm some
times creates run lengths the same way, but the 
previous scan line is also examined. Some codes 
represent run lengths and even whole scan lines 
as "the same as the one in the previous scan line, 
except offset by N pixels," where N is a small inte
ger. The two-dimensional method takes advan
tage of most of the redundancy in an image and 
returns the smallest compressed file. In addition to 
preserving system memory, these compression 
methods significantly improve network transport 
performance. 

IMAGE PIXELS 
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Network Transport Constraints 
The network transport performance for an image 
is important, because images are most often stored 
on a remote system and viewed on a widespread 
group of display stations. For example, one group in 
an insurance company receives and scans claim 
papers to create a centralized image database, 
while users in another group access the documents 
simultaneously to process claims. For the imaging 
system to be productive, this image data needs 
to be transported quickly from one group to the 
other: telephone attendants answering calls must 
have immediate access to the data. 

Scanned image documents take a long time to 
transport between systems, simply because they are 
so large. When compression techniques are used, a 
typical uncompressed image stored in 1 megabyte 
can be reduced to approximately 50 kilobytes. 
Since transport time is proportional to the number 
of packets that must be sent across the network, 
reducing the data size to 5 percent of its original 
size also reduces the transport time to 5 percent 
of the original time. Therefore, you can now send 
twenty compressed images in the same time previ
ously spent sending one uncompressed image. 

Even with compression techniques, the image 
files are still larger than their text file equivalents. 
Moreover, most network protocols limit their 
packet size to a maximum number of bytes, i.e., an 
image file larger than the maximum packet size 
gets divided over multiple packets. If the protocol 
requires an acknowledgment between packets, then 
the transport of a large file over a busy network 
becomes a lengthy operation. 

······~ ····· i .. I _____ O"""~•E-S-CA_N_ L_IN_ E_ O_ F___.P~"""X.i...EL-S-------1 

600 WHITE 250 WHITE 845 WHITE 

::?/ 7=K \ 
... 01 1010000101000 000001101000 0101 1101011011 000001101000 011010010000011 ... 

COMPRESSED CODES IN A CONTINUOUS BIT STREAM 

Figure 1 Bitonal Image Compression 
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The platform for our most recent accelerator is 
the Vfl200 X window terminal, which uses the 
local area transport (I.Al) network protocol. We 
soon realized that the X server packet size was 
limited to 16 kilobytes and the typical A-size 
compressed document was approximately 50 kilo
bytes. With this arrangement, each image transport 
would have required four large data packets and 
four acknowledgment packets. Working with the 
X Window Terminal Base System Software Group, 
we were able to raise the packet size limit to 
64 kilobytes. The base system group also imple
mented a delayed acknowledgment scheme, which 
eliminates the need for the client to wait for an 
acknowledgment packet before sending the next 
data packet. Table 3 shows compressed image data 
taken during the DECimage 1200 development 
cycle. Notice that the network transport times 
for Digital document interchange format (DDIF) 
decrease sharply after the packet changes. 

Perceived Rendering Speed 
Because the image scanning and compression 
operations occur only once, they are not as 
performance-critical as the decompression and 
rendering for display operations, which are done 
many times. Decompression and rendering are part 
of the system's display response time, which is a 
critical factor in a system designed for high-volume 
applications that access thousands of images daily. 
This time is measured from the instant the user 
presses the key to select an image to view, to the 
moment the image is displayed completely on the 
screen. The display response time is a function of 
the disk read time, network transport time, and dis
play station render time. 

Although network transport time and disk file 
read time have a direct effect on the response time, 
accelerator developers rarely have any control over 

them. The disk access time data from the DECimage 
project analysis shown in Table 3 demonstrates that 
the disk file read time is a significant portion of the 
overall response time. Thus, the display station 
render time is the only area of the display response 
time which can be clearly influenced and is, there
fore, the main focus of our image accelerators. The 
local processing that must occur at the display sta
tion is not a trivial task; an image must be decom
pressed, scaled, and clipped to fit the user's current 
window size, and optionally rotated. 

The decompression procedure inverts the com
pression process; both are computationally com
plex. Input to the procedure is compressed data, 
and output is the original scan line pixel data, 
which can be written to a display device. Scaling 
the data to fit the current window or fill a region 
of interest is not trivial either: a huge input data 
stream must be processed (the decompressed, orig
inal file), and a moderate output data stream must 
be created (the viewable image to be displayed). 
While simple pixel replicate and drop algorithms 
may be used to scale the data, a more sophisticated 
scaling algorithm has been shown to greatly 
enhance the output image quality. 

In addition to scaling and clipping, the orthogo
nal rotation of images (in 90-degree increments) 
is a useful function on a display station. Some docu
ments may have words running in one direction 
while pictures are oriented another way, or the user 
may wish to view a portrait-mode image in land
scape mode. In either case, orthogonal rotation 
can help the user understand the information; i.e., 
the increased time to rotate the view is warranted. 

When an image is scanned, particularly with a 
hand-held scanner, the paper is never perfectly 
aligned. Thus, the image often requires a rotation of 
1 to 10 degrees to make the view appear straight 
in the image file. However, multiple users want the 

Table 3 DDIF Image File Read Time and File Transport Performance 

Network Transport Time 
(milliseconds) 

Disk Read Time After Before 
Image Size (milliseconds) Packet Packet 
(kilobytes) MicroVAX II VAX8800 VAX6440 Change Change 

19 1223 480 281 325 960 

41 1534 655 332 61 4 1792 

99 2351 1035 598 1351 3928 

157 3288 1380 716 2283 6430 
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information from the document as quickly as pos
sible, and should not have to rotate the image by 
a few degrees to make it perfectly straight on the 
screen. Therefore, this minimal rotation should 
be done after the initial scanning process; i.e., 
only once, prior to indexing the material into 
the database, and not by every user in a distributed 
environment. Because any form of rotation is 
compute-intensive, allowing the user to perform 
minimal rotations at a high-volume view station 
would reduce the application's perceived ren
dering speed and add little value to the station's 
function. 

Final Legibility 
While the primary issue facing imaging applica
tions is data size, image viewing issues must also be 
addressed. In short, an effective bitonal imaging 
display system must be responsive to overall image 
display performance and the resulting quality of 
the image displayed. To enhance our products, we 
optimized the display performance parameters as 
best we could, given that some parameters are not 
under our control. Improvements to monitor reso
lution and scanner densities continue to increase 
the legibility of images. An affordable image system 
should increase the image legibility by rendering 
a bitonal image into a gray-scale image using stan
dard image processing techniques. We discuss the 
method used in our accelerators, i.e., an intelligent 
scale operation in the hardware pipeline, in the 
next section. 

Hardware Accelerator Design 
As explained in the previous section, transforming 
documents into a stream of electronic bits is not 
the demanding part of a bitonal imaging process 
for document management. Also, scanners and 
dedicated image data-entry stations abound in the 
marketplace already. Instead, the challenge lies in: 
(1) managing the image data size to control 
memory costs and reduce network slowdown; 
(2) increasing the image rendering speed, i.e., 
decompress the image, scale it, and clip it to fit 
the window size with optional rotation; and 
(3) increasing the quality of the displayed images. 
This section describes the way our strategy 
influenced the design of DECimage products. We 
also discuss the chips used for decompression and 
scaling, and how Digital's existing client-server pro
tocols support these imaging hardware accelerators. 
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General Design Strategy 
The number of applications using bitonal image 
data continues to increase. In general, these appli
cations attempt to offer low cost while achieving 
an interactive level of performance, defined as 
no more than 1 second from point of request to 
complete image display. Ultimately, software may 
provide this functionality without hardware accel
eration, but today's software cannot. Moreover, the 
parameters of image systems are not static; scan 
densities, overall image size, and the number of 
images per database will all increase. These 
increases will provide the most incentive for hard
ware assist at the low end of the X window ter
minals market, because software alone cannot 
perform the amount of processing that users will 
expect for their investment. 

The User Model Although a single model cannot 
suit every application, imaging is centered on cer
tain functions. Therefore, a user model built on 
these functions would be very useful in mapping 
individual steps to the hardware: hardware versus 
software performance, the function's frequency of 
use, and the cost of implementation. 

The general user model for bitonal imaging sys
tems is relatively simple. A small market exists for 
image entry stations, in which documents are 
scanned, edited, and indexed into a database. While 
a high throughput rate is important at these sta
tions, a general-purpose image accelerator is not 
the solution-dedicated entry stations already 
exist in the market. Instead, we designed a general
purpose platform, or versatile media view station, 
to be used for imaging applications alongside other 
applications. The user model for this larger market 
is a set of operations for viewing and manipulating 
images already entered into a database. The most 
common operations in this model are decompres
sion, scaling, clipping, orthogonal rotation, and 
region-of-interest zooming. 

Display Performance and Quality Optimization 
The main thrust of the DECimage accelerator is to 
achieve interactive performance for the operations 
defined in the user model. A secondary goal is to 
bring added value to the system by increasing the 
quality of the displayed image compared to the 
quality of the scanned image. A side effect of maxi
mizing performance in hardware is that the main 
system processor has work off-loaded from it, free
ing it for other tasks. 
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The general design of the accelerator uses a 
pipelined approach. Since maximum performance 
is desired and a large amount of data must be pro
cessed by the accelerator board, multiple passes 
through the board are not feasible. Similarly, the tar
geted low cost does not allow a whole image buffer 
on the board. With one exception (rotation), all 
board processing should be done in one pipeline, 
with the system processor simply feeding the input 
end of the pipe and draining the output end. 
Because of the large amount of data to be read from 
the board and displayed on the screen, the proces
sor should only have to move that data, not do any 
further operations on it. To this end, any logic 
required to format the pixels for the display bitmap 
should be included in the pipeline. 

Cost Reduction through Less Expensive System 
Components The net cost of a bitonal imaging 
system is influenced by the capability of the assist 
hardware. The capability of the hardware implies 
flexibility in the choice of other system hardware. 
In this regard, the most significant impact on cost 
occurs in the memory and the display. A system that 
makes use of fast decompression and scaling hard
ware can quickly display compressed images from 
memory. This means either more images can be 
maintained in the same memory, or the system can 
operate with less memory than it would without 
the assist hardware; less memory means lower cost. 

A more dramatic effect on system cost is in the 
display. Imaging systems generally need higher
density displays than nonimaging systems, but the 
cost of a 150-dpi display is approximately twice the 
cost of a 100-dpi display of the same dimensions. 
However, we found that we could increase legibil
ity, i.e., expand a bitonal image to a gray-scale repre
sentation, by using an intelligent scale operation 
in the hardware pipeline. For example, a bitonal 
image rendered to a 100-dpi display using the intel
ligent scale process gives the perceived legibility 
of the same image rendered to a 150-dpi display 
with a simple scaling method. That is, by adding the 
intelligent scale, a 100-dpi display can be used 
where previously only a 150-dpi display would be 
adequate. 

Cost Reduction through Integration Presently, as 
in the DECimage 1200, hardware-assisted image 
manipulation exists as a board-level option. Higher 
levels of integration with the base platform will 
provide lower overal I cost for an imaging system. 
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The most straightforward method of integration is 
to relocate the hardware from the present option 
to the main system processor board; successive 
steps of integration would consolidate mapped 
hardware to fewer total devices. The most cost
effective integration will be the inclusion of the 
mapped hardware in the processor in a way similar 
to a floating-point unit (FPU). Just as graphics accel
eration is now being included in system processor 
design, images will eventually achieve the status of 
a required data type and thus be supported in the 
base system processor. 

Product Definition-What Does the User 
Want? 
The previously described strategy was used in the 
design of the image accelerator board for the 
DECimage 1200 system. The product requirements 
called for a low-cost, high-performance document 
image view station. These requirements evolved 
from the belief that most users currently investi
gating imaging systems are interested in applica
tions and hardware that will enable them to quickly 
and simultaneously view document images and run 
their existing nonimaging applications. These users 
are involved with commercial and business appli
cations, rather than scientific applications. The 
DECimage 1200 system was planned for the manage
ment of insurance claims processing, hospital 
patient medical records, bank records, and manu
facturing documents. As previously stated, the 
imaging functions required for these view-oriented 
applications are high-speed decompression, scal
ing, rotation, zooming, and clipping. 

General Product Design 
In defining the image capable system, the key 
points in the product requirements list were 

• High-performance image display 

• Lowcost 

• Bi tonal images only (not gray-scale or color) 

• View-only functions 

The need for high-performance display influ
enced the project team to design the hardware 
accelerator board to handle image decompression, 
scaling, and rotation. Previous performance test
ing on a 3-VUP (VAX-11/780 units of performance) 
CPU had yielded image software display times from 
5 to 19 seconds. These images were compressed 
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according to the CCITI Group 4 standard (300 dpi, 
8.5-by-11 inches), and ranged from 20 to 100 kilo
bytes in size. In addition, the software display times 
were highly dependent on the image data content. 
The more complex image files, which had lower 
compression ratios, took significantly longer to 
decompress, scale, and display than the simpler 
image files. For example, an A-size, 300-dpi, CCITI 
Group 4 compressed image with a compression 
ratio of 10: 1 took approximately 18 seconds to 
display, while another with a ratio of 33: 1 took 
approximately 7 seconds. 

The other three requirements led to decisions 
about the specific design of the image accelerator 
board. The need for low cost meant designing an 
option for an existing low-cost platform, which led 
us to Digital's VT1200 X window terminal. This 
requirement also led to our support of the pro
posed X Image Extension (XIE) protocol.4 The XIE 
protocol extends the Xll core protocol to enable 
the transfer of compressed images across the wire 
and to enable interactive image rendition and dis
play at the server. In the X windowing client-server 
environment, image applications and compressed 
image files exist on the client host machine, as 
depicted in Figure 2. In addition, the XIE protocol 
standardizes the interface-to-image functions in 
the X windowing environment and enables the 
development of a common application that can be 
used on any XIE-capable station. The client applica
tion issues commands to the X server display sub
system and the XIE specialized image subsystem. 
When a user selects an image to view, the com
pressed image file is transported from the client
side storage device to the X server memory. 

Because the proposed accelerator would han
dle only bitonal images, we could specialize our 
board to decompress only the standard CCITI 

X/XIE CLIENT X/XIE 
APPLICATION 

X11 AND XIE SERVER 

WIRE 
PROTOCOL 

' 

COMPRESSED 
IMAGE STORAGE DISPLAY IMAGE 
• DISK HARDWARE 
• CD ROM 

Figure 2 X Client-seroer Architecture 

Digital Technical Journal Vol. 3 No. 4 Fa/11991 

Hardware Accelerators for Bi tonal Image Processing 

Group 3 and Group 4 bitonal compression algo
rithms. This specialization allowed the use of a 
Digital application-specific integrated circuit (ASIC) 
decompression chip. Finally, the view-only require
ment limited the scope and complexity of the 
design by eliminating the need for extra hardware 
to handle the compression of images after they 
have been scanned and edited. 

Specific Product Design 
The decisions described in the previous section led 
to our design of an image accelerator board that 
supports: CCITI Group 3 and Group 4 image decom
pression using an ASIC decompression chip; integer 
scaling using an ASIC scaling chip; orthogonal rota
tion; and image display. Figure 3 shows a general 
block diagram of the board and how it fits into 
Digital's VT1200 system architecture. The accelera
tor board is attached to the system address/data 
bus, and its registers, data input port, and data 
output port are mapped into the CPU's VO space. 
The accelerator board is accessed by reading and 
writing specific addresses like any other system 
memory space. Note that the image accelerator 
logic is separate from the video terminal logic. 
Decompressed images are read from the image 
board and written to the base system video mem
ory for display. 

The main operation consists of the following 
steps: compressed image data is read from system 
memory and written to the ASIC decompression 
buffer by the processor; the data is then decom
pressed, scaled by the ASIC scaling chip, packed 
into words, and written to the output buffer. 
Figure 4 shows a detailed block diagram of the 
image accelerator board logic. The scaling chip out
puts pixels of data (1 bit per pixel in this case) 
which are packed into words using shift registers. 
As soon as a word of data is available, the scaling 
chip output halts. Control signals generated in pro
grammable array logic (PAL) write the packed word 
into the output buffer and tell the scaling chip to 
begin outputting pixels again. When the output 
buffer is full, the processor reads the rendered 
image data from the buffer. If rotation is required, 
the processor writes the data to the rotation 
matrix; otherwise, the data is clipped and written 
to the bit map. The image driver software, after set
ting up the board, alternates between checking 
whether the input buffer is empty and whether the 
output buffer is full. 
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Figure 3 VT1200 System Architecture 

The rotation circuit handles 90- and 270-degree 
rotation, whereas 180-degree rotation is handled 
in the data packing shift registers by changing the 
shift direction. The circuit rotates an 8-by-8-bit 
block of data at a time. The first byte of eight con
secutive scan lines is written into eight individual 
byte-wide registers. The most significant bit (MSB) 
of each of these registers is connected to the byte
wide rotation output port latch. A processor read 
of this port triggers a simultaneous shift in all of the 
rotation data registers so that the next bit of each 
register is now latched at the rotation output port 
for the next read. Figure 5 diagrams the rotation 
circuitry just described. 

To achieve the best performance, we pipelined 
the functional blocks in the hardware. The scaling 
engine does not need to wait for the entire image 

INPUT 
BUFFER 

DECOMPRESSOR 
CHIP 

SCAN LINE 
RAM BUFFER 

t 
SCALING 
CHIP 

to be decompressed before it can begin scaling; 
instead, scaling begins as soon as the first byte of 
data is output from the decompressor. Thus dif
ferent pieces of the image file are being decom
pressed, scaled, and rotated simultaneously. The 
hardware pipeline also eliminates the need to 
store the fully uncompressed image (approximately 
1 megabyte of data for A-size 300-dpi images) in 
memory. The compressed image is written from 
system memory to the accelerator board and a 
decompressed, scaled, and clipped image is read 
from the board. Because of the speed of the hard
ware, the software can redisplay an image with dif
ferent scaling, clipping, or rotation parameters; it 
merely changes the hardware setup for the differ
ent parameters and sends the compressed image 
file back through the accelerator board pipeline. 

DATA PACKING 
CIRCUIT 

FIFO OUTPUT 
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Figu1·e 4 Block Diagram of DECimage 1200 Accelerator Hardware 
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ASIC Design Description 
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I 

The ASIC design consists of a decompressor chip, 
which decodes the compressed image data to pixel 
image data, and a scaling chip, which converts the 
image from the input size to the desired display size. 

Decompressor Chip The decompressor chip acts 
as a CCITI binary image decoder. The chip contains 
three distinct stages, which are pipelined for the 
most efficient data processing. Double buffering 
of compressed input data is implemented to enable 
simultaneous input data loading and image decod
ing to occur. Compressed data is loaded into the 
input buffer by the processor through a 16- or 32-bit 
port. Handshaking controls the transfer of decom
pressed data from the decompressor's 8-bit-wide 
output bus to the scaling chip. 

The first stage of the decompressor chip con
verts CCITI-standard Huffman codes, which are of 
variable-length, to 8-bit, fixed-length codes (FLCs). 5 

A sequential tree follower circuit is implemented 
to handle this conversion. Every Huffman code cor
responds to a unique path through the tree, which 
ends at a leaf indicating the FLC. The 8-bit FLC is 
sent to a first-in, first-out (FIFO) buffer, which holds 
the data for the second stage. 

The second stage of the chip generates a 16-bit, 
run-length value from the FLC. The lower 15 bits of 
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the word contain the number of consecutive white 
or black pixels (called the run length). The upper 
bit of the word contains the run-length color code 
(0 for a white run and 1 for a black run). An FLC is 
read from the FIFO buffer and decoded into one of 
eight routine types. Each routine is made up of sev
eral states that control the color code toggling, run
length adder, and accumulator circuits. At the end 
of each routine, a new word containing the run
length and color information is written into a FIFO 
buffer for the final stage. 

The final stage of the decompressor chip con
verts the run-length and color information to black 
or white pixels. This stage outputs these pixels in 
16-bit chunks when the scaling chip sends a signal 
indicating a readiness to accept more data. 

Scaling Chip The primary pu~pose of the scaling 
chip is to input high-resolution document images 
(300 dpi) and scale them for display on a medium
density monitor (100 dpi). The chip offers inde
pendent scaling in the horizontal and vertical 
directions. The scaling design implemented in the 
chip is a patented algorithm that maps the input 
image space to the output image space. General 
M-to-N pixel scaling is provided where M and N are 
integers between 1 and 127, with the delta between 
them less than 65. M represents the number of pix
els in and N represents the number of pixels out (in 
the approximated scale factor). 

Given an image input size and a desired display 
size, we must find the M and N scale factors that 
best approximate the desired scale factor, within 
the range limits of Mand N as previously stated. 
Thus an input width of 3300 and a desired out
put width of 550 are represented by an M of 6 and 
an N of 1. The approximated M and N values are 
loaded into the chip scale registers for downscaling 
or upscaling. 

The chip scaling logic uses the scale register val
ues to increment the input pointer position and 
generate output pixels. A latched increment deci
sion term is updated every clock cycle, based on 
the previous term and the scale register values. 
When scaling down (where fewer pixels are output 
than are input), the logic increments the input 
pointer position every clock cycle, but only out
puts a pixel when the increment decision term is 
greater than or equal to zero. Figure 6a illustrates 
how this algorithm maps input pixels to output pix
els for a sample reduction. When scaling up (where 
every input pixel represents at least one output 
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(M = 2 AND N = 1) 

INIT = N = 1 
DELTA 1 = 2N = 2 
DEL T A2 = 2N - 2M = -2 

INPUT 

INCREMENT 
DECISION 
REGISTER 

OUTPUT 

• 
D = 1 

• 
1 

2 

• 
D=-1 

3 
0 

D = 1 

0 
2 

4 
0 

D =-1 

5 

• 
D = 1 

• 
3 

6 

• 
D = -1 

7 
0 

D = 1 

0 
4 

8 

• 
D =-1 

9 

• 
D= 1 

• 5 

10 

• 
D=-1 

(a) Downscaling 

SCALE UP FROM 3 INPUT PIXELS TO 9 OUTPUT PIXELS 
(M = 1 AND N = 3) 

INIT = 2M-N =-1 
DELTA1 = 2M = 2 
DEL TA2 m 2M - 2N = --4 

1 2 3 
INPUT • • • 
INCREMENT 
DECISION D =-1 D = 1 D =-3 D =-1 D=1 D=-3 D =-1 D=1 D =-3 
REGISTER 

OUTPUT • • • 0 • 0 0 0 • 
1 2 3 4 5 6 7 8 9 

(b) Upscaling 

Figure 6 Chip Scaling Examples 

pixel), the logic outputs a pixel every clock cycle, 
but only increments the input pointer position 
when the increment decision term is greater than 
or equal to zero. Figure 6b illustrates how this algo
rithm maps input pixels to output pixels for a sam
ple magnification. For both cases, the value of the 
pixel (black or white) being output is the value of 
the input pixel pointed at during that clock cycle. 
In this description, simply substitute rows for pix
els to represent the vertical scaling process. 

Software Support for the Hardware 
Software support is needed to enhance the func
tions of the hardware accelerator in our image view 
station. As mentioned in the section General 
Product Design, the XIE protocol extends the Xll 
core protocol to enable the transfer of compressed 
images across the wire and to enable image rendi-
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tion and display at the server using the hardware 
accelerator board. Like the Xll protocol, the XIE 
protocol consists of a client-side library called 
XIElib, which provides client applications access 
to image routines, and a server-side piece, which 
executes the client requests. The XIE server imple
ments support at two levels: device-independent 
and device-dependent. The device-dependent level 
supports the functions that benefit from optimi
zation for a particular platform, or functions that 
are implemented in hardware accelerators. The 
device-independent level enables quick porting of 
functionality from platform to platform. Figure 7 
illustrates the X/XIE client-server architecture. 

The client-side XIElib offers the minimum 
functions necessary for image rendition and dis
play. The toolkit level offers higher-level routines 
that assist with windows application development. 
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Figure 7 X/XIE Architecture 

An example of a routine at this level might be 
ImageDisplay, which displays an image in a previ
ously created window. ImageDisplay parameters 
might include x and y scaling values, the rotation 
angle, and region-of-interest coordinates. Whether 
programming with the XIE protocol at the library 
or toolkit level, applications developers benefit 
from the platform interoperability of the standard 
interface. Image accelerator hardware and opti
mized device-dependent XIE code changes the 
application's image display performance, but an 
application developed using the XIE protocol can 
run on any XIE-capable server. 

Accelerator Performance Results 
With the DECimage 1200 X terminal, we have 
achieved interactive performance rates, reduced 
memory usage, and increased final image legibility. 
We achieved these rates by transporting com
pressed files instead of huge pixel files and by imple
menting specialized image processing hardware. 
The DECimage 1200 can read, transport, decom
press, scale, and display an 8.5-by-11-inch bitonal 
document in 1 to 2 seconds. Successive displays, 
i.e. , rotating, region-of-interest zooming, panning 
around the image, all occur in less than 1 second, 
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which is essentially as fast as the user can ask for 
the displays. This speed is possible because the 
image already resides in compressed form in the 
server memory. Thus, the image does not have to 
be read from the disk or transported across the 
network. 

Future Image Accelerator 
Requirements 
Hardware accelerators will continue to be required 
for bitonal imaging until software can provide the 
same functionality at the same performance level. 
This section discusses the more complex image 
schemes that are used for gray-scale imaging and 
multimedia applications. In contrast to bitonal 
imaging, these applications will require the use of 
hardware accelerators well into the future. 

Other applications will require richer user inter
faces utilizing continuous-tone images, video, and 
audio. All of these new data types are generally 
data-intensive, and compression or decompression 
of any one of them is a significant processing bur
den. Handling them in combination indicates that 
the need for specialized hardware assistance will 
persist for the foreseeable future. 

Continuous-tone Images 
Bitonal images are either black or white at each 
point, but some applications require smoothly 
shaded or colored images. These images are typi
cally referred to as continuous-tone images, a term 
that denotes either color or gray-scale, e.g., photo
graphs, X rays, and still video. The representation 
and required processing of this image format is 
significantly different from that of bitonal images. 

Continuous-tone images are represented by mul
tiple bits per pixel. This format allows a greater 
range of values for each pixel, which yields greater 
accuracy in the representation of the original 
object. Additionally, each pixel can consist of mul
tiple components, as in the case of color. The num
ber of bits used to represent a continuous-tone 
image is chosen according to the nature of the 
image. 

For example, medical X rays require a high 
degree of accuracy. Consequently, 12 bits are gener
ally regarded as the minimum acceptable for the 
rendering of this class of image. Color images typi
cally require 8 bits per pixel for each component 
(YlTV or RGB format) for a total of 24 bits per pixel. 
Table 2 shows the relative size of samples of each 
image. The need to express these images in a 
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compressed format is obvious from the storage 
space requirements and the current storage media 
limits. 

The compression of continuous-tone images can 
be accomplished in several ways. However, most 
imaging applications are not closed systems; 
inevitably, each system needs to manipulate images 
that are not of its own making. For this reason we 
adopted the JPEG standard, which specifies an algo
rithm for the compression of gray-scale and color 
images. Specifically, the JPEG compression method 
is based on the two-dimensional (2D) discrete 
cosine transform (DCI). The DCT decomposes an 
8-by-8 rectangle of pixels into its 64 2D spatial
frequency components. The sum of these 64 2D 
sinusoids exactly reconstructs the 8-by-8 rectangle. 
However, the rectangle is approximated-and com
pression is achieved-by discarding most of the 
64 components. Typically adjacent pixel values 
vary slowly, thus there is little energy in most of the 
discarded high-frequency components. 

The edges of objects generally contribute to the 
high-frequency components of an image, whereas 
the low-frequency components are made up of 
intensities that vary more gradually. The more 
frequency components included in the approxi
mation, the more accurate the approximation 
becomes. Table 4 shows some sample JPEG image 
compression ratios.6 

The most popular part of the JPEG standard, 
the "baseline" method, was defined to be easily 
mapped into software, firmware , or hardware. 
Straightforward DCT algorithms can be efficiently 
implemented in firmware for programmable DSP 
chips, due to their pipelined architecture. The first 
systems to embody the standard did so using DSPs, 

Table 4 Typical Compression Parameters 
for JPEG 

Compression Compression Rendered Image 
Ratio Method Integrity 

2:1 Lossless Highest quality-
no data loss 

12:1 Lossy Excellent quality-
in distinguishable 
from the original 

32:1 Lossy Good quality-
satisfactory for 
most applications 

100:1 Lossy Low quality-
recognizable 
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because any change to either the evolving standard 
or a standard extension could be easily introduced 
to the firmware. The fastest implementations are 
achieved by special-purpose hardware accelerators. 

The JPEG implementation does not require hard
ware, i.e. , the algorithm can be performed com
pletely in software. The case for hardware assist 
is made in performance. Table 5 describes the 
reduced instruction set computer (RISC) processor 
performance, in millions of operations per second 
(mops), needed to provide the specified operation 
at a motion video rate of 30 frames per second.7 
However, generic RISC processors of those speeds 
are not available today. Therefore, dedicated, cus
tom very large-scale integration (VLSI) devices 
(such as the CLSS0-10 from C-Cube Microsystems) 
must be used to perform the operations.8 Even 
if the motion video rate is not required, the ASIC 
devices offer the simplest hardware solution. 

Live Video and Video Compression 
Video captures the natural progression of events in 
an environment, and is therefore a natural and 
efficient way to communicate. Consider, for exam
ple, the assembly of a set of components. One way 
to express the assembly process is to show a series 
of photographs of the assembly at successive steps 
of completion. As an alternative, video can show 
the actual assembly process from start to finish. 
Subtle details of the process such as part rotations 
and movements can be clearly conveyed, with the 
added dimension of time. 

Obviously, information expressed in video form 
can be valuable; however, significant problems arise 
in adapting video for use in computer systems. 
First, the huge data size of video applications can 
strain the system's storage capability. Video can 
be characterized as a stream of continuous-tone 
images. Each of these images consists of pixel val
ues with individual components making up each 
pixel. For video to have full effectiveness, the still 
images must be presented at video rates. In many 
cases the rate to faithfully reproduce motion is 
30 frames per second, which means that one 
minute of uncompressed video (512-by-480 pixels 
at 24 bits per pixel) would consume over 1 gigabyte 
of storage. In addition to storage demands, large 
volumes of data cause bandwidth problems. 
Presenting 30 frames per second to the video out
put with the above parameters would require a 
transfer rate of more than 22 megabytes per sec
ond from the storage device to the video output. 
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Table 5 Processing Requirements for Imaging Functions 

Processor 
Imaging Processor Operations per Pixel* Operations 
Functions Read Write ALUt 

Pixel move .25 .25 0 

Point operation 2 1 1 

3 x 3 convolve 9 1 8 
8 X 80CT 24 14 

8 x 8 block 128 1 191 
matching 

•RISC processor, 1 M pixels, 30 frames per second (fps), 8 bits. 
tALU = arithmetic logic unit 

Thus, reducing the amount of data used to repre
sent the video stream would alleviate both storage 
and bandwidth concerns. 

The starting point for the compression of video 
is with still images and, as previously mentioned, 
the JPEG algorithm can be used to compress still 
continuous-tone images. Because video can be rep
resented as a sequence of still images, the algorithm 
could be applied to each still. This procedure 
would produce a sequence of compressed video 
frames, each frame independent of the other 
frames in the sequence. 

The evolving Motion Picture Experts Group 
(MPEG) standard takes advantage of frame-to-frame 
similarities in a video sequence, thereby enabling 
more efficient compression than the application 
of the JPEG algorithm alone.9 In most situations, 
video sequences contain high degrees of similar
ity between adjacent frames. The compression of 
video can be increased by encoding a frame using 
only the differences from the previous frame. The 
majority of scenes can be greatly compressed; how
ever, scene transitions, ligh ting changes, or condi
tions of extreme motion need to be compressed as 
independent frames. 

The need for hardware assist in this area is com
pelling. Table 5 shows that to sustain a JPEG decom
pression at 30 frames per second would require a 
1950-mops p rocessor. The same result can be 
obtained using the CL550-10 JPEG Image Compres
sion Processor.9 Although this device does not 
make use of interframe similarities to increase com
pression efficiency, a device implementing the 
MPEG standard would exploit these similarities. 
Table 5 shows that motion compensation, to be 
supported at 30 frames per second, requires a 
9600-mops processor. 
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Multiply Total at 30 fps (mops) 

0 .5 15 

0 4 120 

9 27 810 

16 65 1950 

0 320 9600 

Audio and Audio Compression 
Video is usually accompanied by audio. The audio 
can be reproduced as it was recorded (with the 
video), or it can be mixed with the video from 
a separate source (such as a compact disc (CD) 
player). The audio data is defined by application 
requirements. If the application allows lower 
quality, the audio can be sampled at lower rates 
with fewer bits per sample, such as telephony rates, 
which are sampled at 8 kilohertz and 8 bits per 
sample. For applications requiring high-quality 
(CD) audio, samples are usually taken at 44 kilo
hertz and 16 bits per sample. 

Integrating audio data into an application creates 
special problems. The major characteristic that 
differentiates audio from the other data formats 
presented here is its continuous nature. Audio 
must flow uninterrupted for it to convey any mean
ing. In video systems, the flow of frames may slow 
down under heavy system loading. The user may 
never notice it, or may not be annoyed by it. Audio, 
however, cannot slow or stop. For this reason, large 
buffers are used to allow for load variations that 
may affect audio reproduction. 

A more subtle p roblem in creating applications 
using audio is in synchronization. Audio data is 
usually included to add another dimension of infor
mation to the application (such as speech). 
Without a method of synchronizing the video and 
audio, one data stream will dr ift out of phase with 
the other. One way to include synchronization is to 
use time stamps on the audio and video. This is par
ticularly useful because standard time codes are 
used in most production machines. 

The compression of audio data is not as efficient 
as that of the other data formats. Since a statistical 
approach to coding audio is highly dependent on 
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the type of input (i.e., voice, musical instrument), 
another method is required for generalized inputs. 
Differential pulse code modulation (DPCM) is often 
used to encode audio data. DPCM codes only the dif
ference between adjacent sample values. Since the 
difference in value between samples is usually less 
than the magnitude of the sample, modest compres
sion can be achieved (4: 1). The limitation using this 
technique is in the coding of high-frequency data. 

Hardware assist for the audio data format will 
probably come in the form of hardware to perform 
functions other than compression. For instance, 
DSP algorithms can perform equalization, noise 
reduction, and special effects. 

Multimedia 
As the term implies, multimedia may integrate all 
of the previously mentioned image formats. The 
word "may" is important in this context. This area 
has been mainly technology-driven, due to such 
factors as lack of standards, developing 1/0 devices, 
insufficient system bandwidth, differing data for
mats, and a vast amount of software integration. 

It is currently a topic of debate whether typical 
users will require the ability to create, as opposed 
to only access, multimedia source material. How
ever, for discussion purposes, multimedia plat
forms can be classified into two categories: 
authoring and user. Authoring refers to creation 
of multimedia source material and requires differ
ent capabilities than user platforms. In the creation 
of a multimedia application, data from many differ
ent devices may need to be digitized and cross-

AUTHORING 

VIDEOCASSETIE 
RECORDER 

VIDEODISK 

1/0 AND DEVICE 
CONTROL 
COMPRESSION/ 
DECOMPRESSION 

NETWORK 

LIVE 
VIDEO/AUDIO 

COMPACT 
DISK 

referenced. As the data is incorporated, it is com
pressed and stored. Authors require the capability 
to edit and mix video and audio passages to get the 
desired result. Moreover, the video and audio may 
originate from different devices and may even be in 
different formats. 

As defined above, "user systems" do not require 
all of the functions that authoring systems need: 
only decompression is required in a typical user 
system. Most existing user systems require an ana
log video source (videodisk), which is purchased 
as part of the application. The device control is per
formed by the application, i.e., when a user selects 
a passage to be replayed, the application sends 
commands to the videodisk. Figure 8 depicts an 
authoring system and a user system, along with 
suggested VO capability. 

Next-generation multimedia platforms will make 
full use of digital video and audio. This implies that 
systems will be able to receive and transmit multi
media applications and data over networks. This 
interactive capability will improve the efficiency of 
many mundane applications and devices. For exam
ple, electronic mail can be extended with video and 
audio annotations, or meetings can be transformed 
into video teleconferencing. The adoption of com
pletely digital data for multimedia also implies that 
the platform 1/0 will change. Some user systems 
will not require analog device interfaces or control: 
the user will load the application over the network 
or from an optical disk. 

Each of the image formats described in this 
section has different characteristics, and each will 
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Figure 8 Sample Multimedia Platforms 
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be presented in the embodiment of multimedia. 
Given the size, processing requirements (compres
sion and decompression), and real-time demands of 
applications, hardware assist will be a necessity 

Summary 
Imaging is a unique data type with special sys
tem requirements. To achieve interactive rates of 
bitonal image display performance today, hardware 
accelerators are needed; that has been the primary 
focus of this paper. In the future, a general-purpose 
processor should be able to handle the imaging pro
cess at the necessary speed, and beyond that, the 
processor should be affordable in a low-cost bitonal 
imaging system. However, the bitonal document 
processing market will not wait; it is in a high state 
of growth and requires that products like accelera
tors be developed for at least a few years. 

Continuous-tone documents and multimedia 
applications will place an even heavier processing 
load on an imaging system. These areas will require 
accelerators for several years. As imaging applica
tions, including bitonal, expand to cover more mar
kets, the quality enhancements and performance 
benchmarks met by accelerators today will set 
customer expectations. Consequently, our future 
imaging products must be designed to meet these 
expectations. 
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X Window Terminals 

Bjorn Engberg 
Thomas Porcher 

X window terminals occupy a niche between X window workstations and graphics 
terminals. The purpose of terminals in general is to provide low-cost user access to 
host computers or smaller dedicated systems. X window terminals further the 
advance in graphics terminals and provide new and interesting ways to utilize host 
systems. Ethernet cable provides for graphics performance previously not seen in 
terminals. The X Window System developed try MIT allows multiple applications 
to be displayed and controlled from the user's workstation. Now, with X window 
terminals, the same powerful user interface is available on host and other non
workstation computers. 

In mid 1987, the Video, Image and Print Systems 
(VIPS) Group began the design of Digital's first 
x window terminal, the VTIOOO terminal and its 
code upgrade, the VT1200 terminal. Our goal was to 
design and implement an x window terminal that 
would allow the use of windowing capabilities on 
large computer systems. In 1989, Digital developed 
the VT1300 X terminal and in 1991 the VXT 2000 
x terminal. The designs of these X window termi
nals are all quite different. Our design approach 
changed as the underlying technology changed. 

This paper first compares host-system comput
ing with applications that run on workstations. 
It summarizes the significance of the x Window 
System developed by MIT and discusses the client
server model. The paper then presents the need for 
x window terminals and follows their development 
stages. It compares and contrasts Digital's differ
ent design strategies for the VTIOOO, VT1200, and 
VT1300 X terminals. The paper concludes with a 
summary of the recently announced VXT 2000 
X terminal. 

&u:kground 
Before the development of the X Window Sys
tem, there was very little overlap in functionality 
between workstations and other kinds of comput
ers. Workstations had stunning and fast graphics, 
and many powerful applications were available on 
them. Those applications were not available to users 
of basic 80-by-24 character-cell text display termi
nals connected to a host system located in a clean 
room. Graphics terminals, of course, allowed the use 
of ReGIS or another protocol for math and business 
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graphics, but their performance was far below the 
expectations of a workstation user. Few people 
have the patience to run, for example, a computer
aided design application on a VT240 terminal, assum
ing such a version of the application is available. 

Although a workstation offers fast graphics capa
bilities, its applications sometimes need more CPU 
power or more disk space to do calculations in a 
timely fashion. Graphics applications written for 
workstations could not run on faster host comput
ers, which did not provide a display. Nor was there 
a standard way to get data from the host to display 
on a workstation. Each application required a 
unique solution to this problem. 

Since the introduction of the new client-server 
model of computing and modem networks, many 
tasks can be divided into subtasks that can run 
on the most suitable processor. The X Window Sys
tem uses the client-server approach, as shown in 
Figure 1. The application is viewed as an X client, 
and a workstation or a terminal can run an X server 
that controls the display. The x server also controls 
input from the keyboard and mouse or other point
ing devices. 

CLIENT X CLIENT 

XWIRE 

SERVER X SERVER 

Figure 1 Client-server Model 
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An X client and an X server use an X wire to 
communicate, as shown in Figure 2. The X wire 
is simply a two-way error-free byte stream, which 
can be implemented in many different ways. The 
X Window System architecture does not stipu
late how the X wire should be implemented, but 
several de facto standards have emerged. Manu
facturers have designed X wires usually based on 
the data transport mechanisms that were available 
and convenient when the X Window System was 
implemented. The X wires use transmission control 
protocol/internet protocol (TCP/IP), DECnet, Local 
Area Transport (LAT), and other protocols, and even 
shared memory buffers as a transport to avoid 
protocol overhead. A single implementation often 
supports several transport mechanisms. 

The X server typically executes on a processor 
with display hardware. The x client can execute on 
almost any processor. It may execute on the same 

XCLIENT XCLIENT XCUENT 

XWIRES 

X CLIENT X CLIENT 

XSERVER 

Figure 2 X Wires 
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CPU as the X server, or it may execute on a host, 
another workstation, or a compute server. The 
X server can be connected to several X clients 
simultaneously, with any combination of local 
(running on the same CPU) or remote (running on 
another CPU) X clients. The X server treats local and 
remote clients equally. 

Workstation Environment 
Figure 3 compares a traditional non-X windowing 
workstation with an X windowing workstation. In 
both workstations the application must use a 
graphics library to communicate with the display 
hardware and software. 

In an X windowing client environment, the 
library of routines is called Xlib. An application 
designer can choose from a wide variety of toolkits, 
which are essentially a level of additional library 
routines between the application and Xlib. The use 
of a toolkit can significantly reduce the amount 
of work an application programmer has to do. The 
application software, Xlib, optional toolkit, and 
other libraries compose the X client, as shown in 
Figure 4. 

With few exceptions, the X server comes with 
the display hardware and input devices (keyboard 
and pointer) indicated in Figure 5. 

The X Window System with its flexibility neatly 
solves the problems of CPU power and disk space 
versus display availability. Applications written for 
x can execute on a wide variety of computers, and 
the results can be displayed on any of a multitude 
of devices, even on a workstation that would not 

XWINDOWING 
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Figure 3 Inside the Workstation 
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Figure 5 The X Server 
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have the capacity to run the application locally. 
Figure 6 shows how the X Window System fits into 
a network environment. 

The X Window System has already generated 
many useful applications, and its widespread popu
larity ensures that many more applications will be 
made available in the future. 

Need for X Terminals 
In a study to determine how workstations are used, 
the VIPS Group found that many users did not take 
advantage of the full potential of their work-

HOST CPU 1 HOSTCPU2 

stations. In a software development or document 
editing environment, the users often set up their 
workstations as terminals. They usually created a 
few terminal emulation windows and used SET 

HOST or RLOGIN commands to connect to a host 
system on which they stored their working envi
ronment and files. Only two features of a work
station were frequently used. Users kept several 
terminal emulators on their screens at the same 
time, and set the terminal emulator windows to be 
larger than 80 by 24 characters. Only rarely did the 
average workstation user take advantage of the full 
power of graphics applications. 

The results of our study indicated a need for 
a cost-effective alternative to a workstation that 
would provide the features desired by a large num
ber of users. We envisioned a new kind of termi
nal, one that would allow people to have multiple 
windows of arbitrary size, to connect with mul
tiple hosts, and, since the X architecture allowed it, 
to be able to use the same kind of graphics as a 
workstation. 

From an X architecture standpoint, x terminals 
and X workstations are quite similar. They can in 
fact use the same hardware. For example, Digital 's 
VT1300 terminal runs on the same hardware as the 
VAXstation 3100 workstation. x terminal software 
can also be made to run well on hardware plat
forms that are not suitable for workstations. 

X CLIENT X CLIENT X CLIENT X CLIENT 
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Figure 6 X Window Network Environment 
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The main architectural difference between 
the X terminal and X workstation software is that 
X terminals are closed systems that do not sup
port local user applications. Although this may 
seem to be an unnecessary restriction, it does allow 
X terminals to be made for less money. An open sys
tem that allows any user application to run locally 
must have an established CPU architecture, a sup
ported operating system, such as the VMS, UNIX, 
or ULTRIX system, and, subsequently, sufficient 
memory and/or disk space to support such an envi
ronment. A closed system, on the other hand, can 
be designed with simpler hardware, a smaller oper
ating system, less memory, and thus lower cost. 
The absence of the ability to run user applications 
locally does not impact usability significantly since 
the user can run any desired application on another 
CPU. Digital's VTlOOO and VT1200 X terminals were 
designed based on this approach. 

X Tenninal Environment 
X terminals often have local applications, but they 
must be built into the terminal by the designers. 
The VT1200 terminal has a video terminal emulator 
(VTE), a window manager, and a terminal manager 
as the local applications. The VTE allows the VT1200 
terminal to make American National Standards 
Institute (ANSI) character-cell connections to a 

HOST CPU 1 HOST CPU 2 

X Window Terminals 

host, via the Ethernet or the serial lines as shown 
in Figure 7. This capability makes the VT1200 ter
minal useful in an environment that does not have 
X window support. 

Although any X server can run windows soft
ware, it does not provide a user interface. To manip
ulate the windows, the user needs a window 
manager. The window manager creates window 
frames that allow the user to invoke functions to 
move windows, resize windows, change stacking 
order, and use icons. This capability also makes the 
VT1200 terminal useful when no host is available to 
run a remote window manager. A terminal with a 
local window manager generates less network 
traffic, and window management is not slowed 
by host congestion or network round-trip delays. 
The VT1200 X terminal allows use of a remote win
dow manager, if the user prefers a different style of 
window management. 

The local terminal manager provides the user 
interface to initiate connections to host systems. 
It is also responsible for the terminal customization 
interface. 

All clients communicate with the X server using 
standard X wire commands only. Any window man
ager, remote or local, can manage all the windows 
on the screen, regardless of whether the clients are 
remote or local. 

X CLIENT TEXT TEXT 

NETWORK 
INTERFACE 

SERIAL 
LINES 

APPLICATION APPLICATION X CLIENT 

NETWORK INTERFACE 

VT1200 X TERMINAL 

NETWORK 
INTERFACE 

TERMINAL 
EMULATOR 

KEYBOARD 

WINDOW 
MANAGER 

X SERVER 

MOUSE 

TERMINAL 
MANAGER 

SCREEN 

ETHERNET 

Figure 7 The X Terminal Environment 
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Development of X Window Terminals 
The development process of the VTlOOO and 
VT1200 x terminals has important lessons to teach 
us. The knowledge we gained in 1987 has helped us 
develop future generations ofx terminals. 

When we designed the VTlOOO x terminal and 
its code upgrade, the VT1200, we held many discus
sions within the group and with people from other 
groups. We planned many iterations before we 
arrived at the final architecture. It was by no means 
the only way to design an x terminal, and in 1989 

we tried a different approach with the design of the 
VT1300 terminal. We knew that the best decision at 
a particular time might be very different from the 
best decision one year later, since the technical and 
marketing environment is constantly changing. 
New tools, standards, and practices enter the field 
while others become obsolete. Newer products 
must always have new features to meet changing 
technology requirements. 

Hardware Platform 
Our first step was to discuss the hardware plat
form and select the kind of CPU to use, memory 
size, 1/0 considerations, type of display, etc. We 
studied many different CPUs to determine which 
one would provide the most capabilities for the 
lowest cost. A VAX chip was rejected because, at the 
time, it was far too expensive for the required price 
range of the VTlOOO terminal. The Motorola 68000 

series CPUs are quite powerful, but we had to con
sider other factors such as availability of software 
and hardware tools, cross compilers and linkers 
that could run on the VMS system, and hardware 
debugging facilities of sufficient power. We finally 
selected Texas Instruments' TMS34010 micro
processor with video support and several built-in 
graphics instructions that made it a cost-effective 
solution. It also came with VMS development tools, 
a c compiler, an assembler and linker, a single-step, 
hardware trace buffer with disassembler, and a 
powerful in-circuit emulator that made it possible 
to control execution in detail, inspect registers and 
memory, and set break points and hardware watch 
points (for example, break when writing value x 
into locationy). 

We further discussed the kind of 1/0 to use. A 
sample implementation of the MIT X server on a 
VAXstation 2000 workstation and a primitive serial 
line protocol showed, as expected, that serial lines 
were clearly insufficient to carry the X wire proto-
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col without some compression of the wire protocol 
itself. We had to build Digital's first x terminal with 
an Ethernet interface. 

We needed to determine if this hardware platform 
could give us sufficient performance. We made sev
eral performance estimates, based on what we 
knew then about the X server and other software 
components. We went through each step in as much 
detail as we could (before anything was built). We 
calculated how many instructions were necessary 
to perform each task in the chain of receiving a 
command and displaying it on the screen. By know
ing the speed of the CPU, we could estimate per
formance in characters or vectors per second. 
Our estimates showed that the VTlOOO x terminal 
would not be exceedingly fast, but the perfor
mance would most probably be sufficient, defi
nitely faster than a VAXstation 2000 in most cases. 

In retrospect, actual performance of the VTlOOO 
terminal and the later software upgrade, the 
VT1200, was close to our estimates, but it took sev
eral passes of code optimization to achieve such 
performance. 

We also discussed alternate hardware designs 
for performance improvements. One solution pro
posed two CPUs, the TMS34010 microprocessor to 
handle the display and a 68000 microprocessor to 
handle 1/0 and other tasks. Unfortunately, we found 
no easy way to balance the workload between the 
two CPUs. We estimated that the different software 
components would have the following relative CPU 
demands: 

• Interrupts, 5 percent 

• Communications, 10 percent 

• Operating system, 5 percent 

• X server (minus display routines), 60 percent 

• Display routines, 20 percent 

To equalize the load between the CPUs, we would 
have had to split the x server in two, a solution that 
was not feasible. Any other split of tasks would 
cause one CPU to spend most of its time waiting 
for the other, and the overall performance gain 
would be minimal. Communication between mul
tiple CPUs is complex and is very difficult to debug. 
Therefore, we decided that two CPUs were not 
worth the trouble or the cost. The best way to 
double performance is to install a single CPU that 
is twice as fast. At that time, the TMS34020 was 
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already being mentioned as a follow-up micro
processor. Since its software would be compatible 
with the TMS34010, we decided to keep it in mind 
for possible use in a future terminal. 

Code Selection 
The use of read-only memory (ROM}based code 
versus downloaded code has been debated for 
some time. ROM-based code starts up faster and 
incurs less network traffic at startup time (espe
cially on a site with many X terminals), but is not 
flexible when software is upgraded. On the other 
hand, downloaded code can be easily distributed. 
An entire site can be upgraded with one or a few 
installations by a system manager as opposed to 
changing ROMs in a large number of terminals. 
(With the Vfl200 X terminal, customers can change 
ROM boards.) From the point of view of terminal 
business, it made sense to use ROM-based code in 
1987. We reasoned that not all sites would have 
Ethernet, but with ROMs the x terminal would 
still be useful as a multiwindow terminal emula
tor. We realized that such concerns would change 
with time, and on the whole, downloaded code 
would become the better approach. The only 
exceptions would be in the home or small office 
markets where a boot host or an Ethernet might not 
be available. Subsequent X terminals are being 
made in both downloaded (for example, in the 
Vfl300 terminal) and ROM versions. 

Operating System Selection 
Next we considered which operating system to 
use. We looked at other vendors' operating sys
tems, but found they were either too complex and 
big or inadequate. One of our coworkers had writ
ten a very compact operating system for a VAX 
system used on another project. We used it in our 
prototype and then adapted it for the TMS34010 
processor. We implemented additional functions 
to run the rest of the software with minimum 
changes. 

There are many advantages to working with 
"your own" operating system. It is easy to make 
changes, to work around tricky problems, and to 
make special enhancements. But operating system 
code is difficult to debug. Timing is very critical, 
and throughout the project, we found strange bugs 
in code that had initially appeared to be all right 
to everyone involved. We found bugs under heavy 
load conditions after a rare sequence of events 
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uncovered little timing windows and race condi
tions that had not been handled properly. Even 
with in-circuit emulators, such bugs could take 
weeks to track down. 

In the Vfl300 we decided to use the VAXELN 
operating system. We wanted to avoid the possibil
ity of time wasted on finding and patching holes in 
the design of a new operating system. 

LocalTerrninalManager 
The VflOOO X terminal is self-starting at power-up, 
but without a host system, it needs a local user 
interface. We decided that this interface should 
resemble a workstation session manager and thus 
called it the local terminal manager. Although it 
covers a different set of functions, we wanted the 
local terminal manager to implement a similar set of 
objects and operations (the "look and feel" or style) 
of a workstation session manager. The style of the 
DECWindows session manager was chosen to make 
it easier for a user to switch between an X terminal 
and a DECWindows workstation. We wrote a subset 
toolkit for all the "customize" screens and ensured 
that the VfE could use the same subset toolkit for 
its "customize" screens. As DECWindows has pro
gressed, subsequent X terminals have adapted the 
new user interface preferences, in this case Motif. 

Local Terminal Emulator 
We considered a local terminal emulator to be an 
important component. We knew that X-based ter
minal emulators could run on the host, but in 1987 
hosts with X windowing support were rare. Since 
we were in the terminal group, a terminal that 
could not manipulate ordinary text by itself was 
considered unsellable. We wanted the ability to 
access both X and non-X hosts and we wanted 
to support multiple text windows. Therefore we 
defined the terminal emulator as an X client so that 
text windows could coexist with X client windows. 
This feature has proved to be exceptionally popu
lar. A large number of users use nothing but video 
terminal emulator windows. They are not inter
ested in X windowing graphics, but do want mul
tiple and/or larger text windows on a large screen. 

Local Window Manager 
We debated whether or not to implement a local 
window manager. The DECwindows window man
ager was under development and was constantly 
changing. The DECwindows window manager 
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contained far too many VMS dependencies to be 
ported easily. Also the x terminal did not have 
enough memory to run the DECwindows toolkit 
locally. We could have ported other window man
agers, but they lacked the essential characteristics 
of the DECWindows window manager. For a while 
we considered letting the local clients have a primi
tive way to manage their own windows, until a full
featured window manager could be started on a 
host. Again, this alternative lacked the DECWindows 
system's qualities. We eventually decided to write 
a window manager based only on Xlib and our 
subset toolkit calls. It has the essential characteris
tics of the DECwindows product. Also, since the 
DECWindows window manager of necessity would 
keep changing, we wrote the local window man
ager in such a way that it could relinquish control 
to a remote window manager. This solution gave us 
the most flexibility for this hardware platform. The 
recently announced VXT 2000 x terminal has been 
designed with virtual memory to accommodate a 
well-established unmodified window manager, the 
Motif Window Manager. 

XSeroer 
We also needed to choose an X server. We could 
have based our code on the distribution tape from 
MIT, but at the time the x Window System was not 
yet a mature product. Every implementor had to 

spend considerable time stabilizing the implemen
tation enough to yield a product and improve per
formance. Since the VMS DECWindows Group had 
been writing code for the server, we decided to use 
DECWindows code. Once the porting effort started, 
we found that most of the performance had been 
improved by VAX MACRO code. Consequently, we 
had to re-engineer all the modules or adapt new 
ones from the MIT tape. As we kept porting and 
enhancing performance, our code changed more 
and more until it became extremely difficult to 
track bug fixes made by the DECWindows Group. 
The MIT patches were also nearly impossible to use 
because of code changes and because our starting 
code was one step removed from the tape. 

Today the MIT x server is a mature product; 
patches and bug fixes are readily available from 
MIT and from the X community. In our current 
X terminals, the high degree of portability of the 
MIT X server allows us to keep most of the MIT 
x server source code almost unchanged so patches 
are easily applied. 
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Communications Protocol 
Many communications protocols were available, 
but our choice was dictated by market pressures 
rather than technical reasons. The market demanded 
TCP/IP. DECnet would have been acceptable, but 
it was running out of available addresses, at least 
within Digital. DECnet address space supports 
only 64,000 nodes and requires manual address 
and name assignments. After waiting weeks to get 
addresses for a few workstations, we realized that 
adding thousands of X terminals into Digital's inter
nal network would not be possible. DECnet Phase v 
software has solved this problem. 

Next we looked at the LAT protocol used by 
Digital terminal servers and found that it had sev
eral advantages. First, the VMS operating system 
supports the LAT protocol. LAT uses unique 48-bit 
Ethernet addresses to identify each node, which 
allows a large node address space. LAT also does not 
require any system management to add another ter
minal. A user can connect a terminal to a power 
source, and the terminal automatically becomes 
part of the network. Our performance evaluations 
found that the LAT interface on the host could be 
written to incur less host overhead than DECnet, 
which is important when many x terminals are con
nected to hosts. 

Changes were needed in the VMS LAT driver to 
accommodate X wire and font service connections. 
The VMS Software Engineering Group worked with 
us to ensure that we would have those changes 
on schedule and in the appropriate VMS releases. 
As a result, we chose the LAT protocol for the VMS 
community and TCP/IP for users of ULTRIX and UNIX 
systems. 

Font File System 
Storing fonts and changing font file formats were 
major problems. Since the VTlOOO X terminal did 
not have a local file system, some fonts had to be 
stored in ROM to allow the VTlOOO terminal to func
tion in standalone mode. A quick review of the 
available DECWindows fonts showed that not all of 
them fit in the ROM space allowed for the terminal. 
Furthermore, customer-designed fonts or new font 
releases could not be accommodated. The solution 
was to be able to read fonts from a host system. 
This approach provided a font service on the VMS 
system, and enabled font files to be read over the 
Internet. We designed a process called the font dae
mon to run on the VMS operating system. This pro-
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cess could deliver font data on request to one or 
several vnooo terminals. The VMS system's font 
daemon uses the LAT protocol to deliver the fonts 
and protects somewhat against font file format 
changes. In many ways, the design of the font 
daemon makes it a precursor to a general font 
server, and it is very similar to the X Font Server 
being delivered by MIT in the latest release of the 
x Window System. 

To use the font service, the terminal user must 
specify a font path in the VT1200 local terminal 
manager. Specifying a host name is sufficient to 
access the default font path, although users with 
their own font files can optionally search other 
directories. At startup, the VT1200 terminal makes a 
font connection to the host's font service and deliv
ers the font path specification to the font service. 
The font service sends font names and other basic 
font information about all the fonts in the selected 
path. When the VT1200 X server needs a font, the 
VT1200 first searches the ROM-based fonts; if it is 
not there, a request to read the font is sent to the 
font daemon. The daemon sends the required infor
mation to the VT1200, and the X server can display 
characters from that font. Since memory is limited, 
the VT1200 has font caching, a mechanism to dis
card fonts no longer used or to discard the least 
used fonts. Our current X terminals increase the 
robustness of the font mechanism; for example, 
they provide recovery should the font service or its 
host become unavailable. 

The special LAT code that we used on VMS sys
tems for the font service was not available on 
UNIX and ULTRIX operating systems. Since inter
net protocol (IP) was available, we could use the 
trivial file transfer protocol (TFTP) to read a file 
from a host system, if the system manager set the 
proper protections. We chose TFTP for its ease 
of implementation and its wide availability on 
UNIX and ULTRIX systems. The TFTP font path in a 
VT1200 terminal specifies a host IP address and a 
complete path to a file (usually named font.paths) 
that contains the complete path to all the font 
files that the VT1200 can use. The terminal can 
then access all those font files, again through TFTP, 
to obtain font names and other basic information 
about each font. When a client wishes to use a font, 
the proper font file can be read again, this time to 
load the complete font. Since this process is time
consuming, the font path pointing to the file has 
an alternate format in which the font name fol
lows the complete path to each file. Using this alter-
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nate format, the VT1200 terminal does not have to 
open and read the font file until a client actually 
intends to use it. 

Comparison of X Terminals 
The VT1200 and VT1300 X window terminals 
were built using different approaches to solve 
the problems encountered during development. 
The x terminal is a new and flexible concept; there 
is no single "best" design. Table 1 compares the 
most important differences between the two termi
nals. We also include the specifics for the VXT 2000 
Xterminal. 

The VT1200 is ROM-based; all its software is per
manently resident in the terminal. The VT1300 soft
ware is downloaded, so a host or bootserver on the 
same network must supply the terminal with a load 
image at power-up. 

Since downloaded terminals are dependent on 
the existence of at least one working host system, 
the user interface can be designed differently. 
While the VT1200 x terminal has a built-in user 
interface, the VT1300 does not need it. The VT1300 
terminal automatically makes an x connection to a 
host at power-up, and the user is presented with 
the same DECwindows login box as on a work
station. The VT1300 has no local clients; all clients 
run on the host system. 

The VT1200 terminal uses the LAT protocol for 
its ease of use and minimal network management 
demands. The VT1300 terminal uses the DECnet 
software already implemented in the VAXELN oper
ating system used internally. Both terminals sup
port TCP/IP. 

VXT 2000 X Terminal 
One problem that has plagued all X terminals is 
limited memory space. Workstations usually have a 
virtual memory system, which provides large pag
ing and swap areas on a disk, and applications 
and X servers can use more memory space than 
the hardware has. Until now X terminals have not 
had virtual memory systems. 1f too many applica
tions made excessive demands, or if a client created 
large off-screen images (called "pixmaps" in the 
X Window System) the terminals quickly used all 
memory space. 1f the X server implementation 
was correct, an error was reported and a client 
might try a less demanding approach. In other 
cases, the terminal or client might simply crash. 
One alternative was to install more memory in the 
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Table 1 Comparison of X Window Terminals 

VT1200 Terminal 

Monochrome only 

1 bit plane 
Code in ROM 

No virtual memory 

2-4MB RAM 

TMS34010 CPU 

VT1300 Terminal 

Color only 

4 or 8 bit planes 

Code downloaded 
No virtual memory 

8-32MB RAM 
VAX CPU 

VXT 2000 Terminal 

Monochrome and color 

1 or 8 bit planes 
Code downloaded 

Virtual memory 
4-16MB RAM 

VAX CPU 
Special operating system 

Local clients: 

VAXELN operating system 

No local clients 
Special operating system 

Local clients: 
Terminal manager 
Window manager 
Video terminal emulator 

Terminal manager 
Motif window manager 
DECterm terminal emulator 

Local customization Customized on host 
just as a workstation 

Local customization 
Centralized customization 

Choice of host (LAT only) Automatic X window 
login to boot host 

Choice of host 
(LAT and TCP/IP using XDMCP) 

LAT protocol 
TCP/IP protocol 

Special hardware 

DECnet protocol 

TCP/IP protocol 
Available on several 
workstation platforms 

LAT protocol 

TCP/IP protocol 
Uses standard hardware 

X terminal, although this can be costly and offers no 
guarantees. 

In the next generation of Digital's X terminals, 
the VXT 2000, this problem has found a cost
effective solution. Based on the VAX architecture, 
the VXT 2000 terminal uses virtual memory and 
downloaded code. The Digital InfoServer, an 
Ethernet storage server, provides the load image, 
virtual memory paging space, fonts, and customiza
tion storage. The same InfoServer also solves 
another problem: now the X terminal has access to 
a file system. This allows more extensive customi
zation, as well as centralized management of the 

HOST 

VXT 2000 
XTERMINAL 

HOST 

customization of all X terminals on the network. 
Figure 8 shows the con.figuration for the VXT 2000 
Xterminal. 

Conclusion 
X terminals are not intended to replace work
stations. Nor will workstations replace host sys
tems or completely displace X terminals in the 
foreseeable future. It is likely that host computers 
will always be faster and have more memory and 
disk space than reasonably priced workstations 
of the same era. It is also likely that terminals can 
be built cheaper than workstations of reasonable 

VXT 2000 
XTERMINAL 

ETHERNET 

VXT 2000 
X TERMINAL 

Figure 8 The VXT 2000 Network Environment 
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performance for some time to come. As long as that 
is the case, there will be a market for X terminals 
and host systems. Future x terminals will be faster, 
and have more built-in functionality, more local 
applications, X extensions, and most likely, addi
tional hardware features. x terminals will be the 
networked terminals of the 1990s. 
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ACCESS.bus, an Open Desktop Bus 

With the_ recent introduction of the ACCESS.bus product, Digital bas affirmed its 
commitment to open systems and thus to facilitating better solutions for inter
active computing. This open desktop bus provides a simple, uniform way to link 
a desktop computer to as many as 14 low-speed I/0 devices such as a keyboard, 
mouse, tablet, or three-dimensional tracker. ACCESS.bus features a 100-kilobit-per
second maximum data rate, hardware arbitration, dynamic reconfiguration, a 
mature capabilities grammar to support generic device drivers, and off-the-shelf, 
low-cost J2C microcontroller technology. 

As the cost of personal interactive computing 
decreases, the range of applications and the need 
for specialized 1/0 devices is growing dramatically. 
Traditional personal computers were designed to 
accept only a small number of standard devices; 
adding devices beyond those originally envisioned 
usually requires specialized hardware or software. 
Custom interfacing is expensive for vendors and 
users and thus limits the availability of new devices. 

ACCESS.bus provides a simple, uniform way to 
link a desktop computer to a number of low-speed 
1/0 devices such as a keyboard, a mouse, a tablet, or 
a three-dimensional (3-D) tracker. Designed from 
the beginning as an open desktop bus, ACCESS.bus 
facilitates cooperative solutions using equipment 
from different vendors. This paper describes the 
ACCESS.bus design and gives some insight into how 
the idea was adopted at Digital. 

Design Goal, Process, and Advantages 
The design goal for the desktop bus follows from 
our experience within the Video, Image and Print 
Systems (VIPS) Input Device Group with trying to 
support new devices on Digital terminals and 
workstations. While various new devices have been 
successfully prototyped over the years, the need 
for nonstandard hardware and custom software 
drivers was always an expensive, time-consuming 
obstacle. Even after successful prototyping, these 
devices could not be readily adapted to our stan
dard systems, limiting their use to custom applica
tions. In designing the desktop bus, our goal was to 
make it as easy as possible to interface previously 
unavailable 1/0 devices to our systems in a way 
that was both practical and marketable. This sec
tion explains the benefits of using a desktop bus, 

36 

describes the process we went through to convert 
to a new bus architecture, and summarizes the key 
advantages of the chosen design. 

The basic desktop bus concept is illustrated in 
Figure I. The bus allows multiple, low-speed 1/0 
devices to be interconnected and thus interfaced 
through a single host port. Desktop bus devices 
such as a keyboard or a tablet, which are not hand
held, provide two connectors and allow another 
device to be daisychained. A hand-held device 
such as a mouse can be placed at the end of the 
daisychain, or a connector expansion box can be 
attached to accommodate additional devices that 
do not provide two connectors. 

HOST 
PRINTER 

KEYBOARD TABLET 

CONNECTOR 
EXPANSION 
BOX 

0----1 TRACKBALL 

MOUSE JOYSTICK BAR CODE 
READER 
WAND 

JOYSTICK 

Figure I Basic Desktop Bus 
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The desktop bus has the following benefits: 

• Enables greater flexibility and variety of use 

• Reduces the cost of connecting multiple devices 

• Expedites bringing new technology to market 

• Helps leverage third-party devices 

The first benefit, greater flexibility, can be simply 
achieved by allowing additional devices and more 
modular solutions. We further extended this bene
fit by designing a way for devices to be added at run 
time without disrupting system operation. Con
figuration should be automatic; connecting stan
dard devices should not require powering down or 
rebooting the system before a new device can be 
used. The desktop bus supports multiple like 
devices without switches or jumpers. 

The second benefit, reduced cost, was crucial to 
having the bus accepted as a solution across a wide 
range of products from low-end video terminals 
to high-end workstations. We recognized that con
temporary electrical techniques could eliminate 
the need for level translation circuits, -12 volt (V) 
power supplies, and perhaps some of the protec
tive components used with RS-232 interfacing. 
Although many devices would now require two 
connectors, system cost would decrease because 
we would need to supply only as many connectors 
as the number of devices to be attached, or possibly 
one more. 

The third benefit, expediting the time to market 
for new technology, allows us to better satisfy 
changing requirements. Key to this benefit is hav
ing the means to connect new devices without 
changing the system hardware or software. Based 
on our experience with input devices, we devel
oped the concept of device capability reporting 
and generic device protocols. Standard devices 
like keyboards and locators, e .g., mice, tablets, and 
trackballs, all work in similar ways. For this class 
of device, we define a simple device protocol and 
a way to parameterize and report device unique 
characteristics. A single generic driver can adapt 
itself to work with a class of similar devices so 
that no custom software is required for basic opera
tion of standard devices. 

Leveraging third-party devices, the fourth 
benefit, is aimed at satisfying diverse customer 
requirements. Because the use of computers con
tinues to proliferate, the range of applications far 
exceeds that which any one vendor can master. 
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By making the bus truly open, we encourage third 
parties to add value to our systems. 

The benefits of a desktop bus are significant. But 
converting to a new architecture, especially one 
that is not backward compatible, is expensive in 
terms of the time and effort required. How does a 
large corporation build agreement to make such 
an investment decision? The desktop bus project 
started as a grass roots engineering effort and grad
ually built momentum. The process was one of 
dialogue to attract partners. Initially, three groups 
with slightly different objectives worked together 
to develop the bus. The visibility of separate groups 
jointly supporting the bus concept was essential to 
transform the idea into action. People are more 
willing to accept an idea that others around them 
have already adopted. 

The three groups that initiated the desktop 
bus project were our VIPS Input Device Group in 
Westford, MA, mentioned previously; the Work
station Systems Engineering (WSE) Group, located 
in Palo Alto, CA; and the Video Advanced Develop
ment (AID) Group in Albuquerque, NM. Our Input 
Device Group was looking for ways to simplify the 
process of prototyping specialized input devices 
and of getting related software support for our 
video terminals and workstations. WSE was devel
oping a low-cost, personal workstation and needed 
a flexible way to support multiple input devices 
without greatly increasing the cost of the base 
workstation. The Albuquerque AID Group had been 
experimenting with next generation 1/0 devices, 
i.e., force-feedback joystick, 3-D tracker, and real
time audio and video, and was interested in having 
these technologies adopted by other Digital groups. 
This AID Group had used PC technology success
fully in one of its previous video projects. 

In January of 1990, engineers from each group 
realized they were working on similar problems 
and began to collaborate. The WSE Group was to 
build the desktop bus host interface and software 
drivers into their workstation; the VIPS Group was 
to help define the device protocols and supply 
desktop bus keyboards and mice; and the Albu
querque AID Group was to support bus devel
opment and prototype additional devices. Within 
four months, VIPS had defined the basic protocols 
and could demonstrate a working PC keyboard 
and mouse. These early prototypes helped per
suade WSE to support the project and, in tum, 
helped reinforce the importance of the project to 
the VIPS Group. 
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We began presenting the desktop bus idea to 
interested groups within Digital and received many 
useful suggestions including 

• Use the same keycodes as on the LK201 keyboard 
to eliminate the need to rewrite keyboard 
lookup tables. 

• Store the country keyboard variation inside 
the keyboard so users will not need to enter it 
manually. 

• Keep the devices simple, without modes. 

In addition, third-party input device vendors 
made the following suggestions. 

• Use a modular connector that is easy to plug and 
unplug correctly. 

• Provide enough power for several additional 
devices. 

• Allow vendors to supply their own device 
drivers; tuning their own device drivers is part 
of the value added by the vendor. 

The bus idea was elegant and generally well 
received. Most of the reservations centered around 
the likely impact on existing system components, 
the current problems, and whether conversion to 
the bus was feasible. Because we recognized that 
other groups were facing tight development sched
ules, we did not pressure these groups to support 
our desktop bus work. We presented the desktop 
bus as a possible solution to interface problems, 
made our design information available, and worked 
to incorporate suggestions. But as the development 
work progressed, more partners supported our 
effort. 

Once we decided to use a desktop bus, we 
looked at available designs, including the Apple 
DeskTop Bus, the Musical Instrument Digital 
Interface (MIDI), and serial buses offered by other 
semiconductor vendors, and evaluated these alter
natives with respect to our design goal. Key advan
tages of the design chosen, i.e., the ACCESS.bus, are 

• Off-the-shelf interintegrated circuit ( PC) micro
controller technology with maximum data rate 
of 100 kilobits per second (kb/s). This technol
ogy is low-cost, yet fast enough for sophisticated 
input devices like a 3-D tracker. 

• Built-in hardware arbitration, which simplifies 
the software and allows reliable communication 
without inventing a new protocol. 
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• Dynamic reconfiguration. The hardware and 
software allow bus devices to be "hot-plugged" 
and used immediately, without restarting the 
system. The devices are recognized automati
cally and assigned unique addresses. This advan
tage results in a plug-and-play user interface. 

• A mature capabilities grammar to support generic 
device drivers. An extensible free-form grammar 
allows devices to describe their characteristics 
to a generic driver. Most common devices can 
work with standard drivers. 

Bus or network interconnection has become 
widely accepted as a means of providing flexible 
open solutions. To appreciate ACCESS.bus, it is help
ful to position its performance capabilities with 
respect to those of other network interconnect 
technologies, as shown in Table 1. 

Table 1 Network Interconnects 

Order of Magnitude 
Performance 

Bus Type (kilobits per second) 

Apple DeskTop Bus, 
ACCESS.bus 

LocalTalk 

Ethernet 

FDDI 

10-100 

100-1,000 
1,000-10,000 
10,000-100,000 

At first glance, the 100-kb/s speed of the 
ACCESS.bus may seem adequate for large desktop 
devices like printers and modems. But these 
devices can transmit long data streams indepen
dent of any user activity and, if not restricted, could 
compromise the interactive performance of the 
bus. Thus, ACCESS.bus is intended for low-speed 
activities that people perform with their hands 
and is fast enough to handle multiple interactive 
devices like a keyboard, mouse, or 3-D tracker. 

Hardware Description 
Before discussing the ACCESS.bus design, we pre
sent a description of the Philips PC technology 
upon which the design is based. Details of the 
specific ACCESS.bus implementation follow. 

Interintegrated Circuit Fundamentals 
ACCESS.bus extends the Philips PC bus to operate 
off-board and, thus, connect desktop devices. The 
PC is a two-wire serial clock and serial data 
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open-collector bus. An open-collector design means 
that the clock and data lines are normally in a high
impedance floating state and are pulled up to a log
ical high state. 

A device that wants to send a message waits for 
any message frame in progress to complete, then 
asserts a START signal to become bus master and 
begins to generate data and clock signals. The bus 
clock is synchronized among all devices by its 
wired AND connection. Each device, whether 
transmitting or receiving, stretches the low period 
of the clock until ready for the next bit to be trans
ferred. When the last device is ready, the bus clock 
is allowed to go high, generating a rising edge on 
the serial clock. At this time, all active devices 
sense the state of the bus data line. For a receiving 
device, the state represents the received data bit. 
For a transmitting device, the state determines 
whether the device has successfully asserted its 
data on the bus. A transmitter that is sending a logi
cal high state and detects that the data line is being 
held low by another sender, recognizes that it has 
lost arbitration and must try again later. When a 
"collision" or arbitration occurs, no data is lost, one 
message is transmitted and received, and the 
remaining messages must be sent again. 

12c data messages are transmitted as 8-bit bytes, 
with each byte being acknowledged by a ninth 
ACKNOWLEDGE bit from the receiver. PC technol
ogy also defines unique START and STOP signals to 
delimit message frames. The first byte of any mes
sage frame is always the destination address. 

ACCESS.bus Pbysical Implementation 
Details of the physical implementation of ACCESS.bus 
are as follows: 

• Basic electrical configuration. ACCESS.bus uses 
four-pin, shielded, modular-type connectors that 
feature positive orientation and locking tabs. 
Data and power for the bus are transmitted over 
low-capacitance, four-wire, shielded cable. The 
four conductors are used for ground, serial data, 
serial clock, and + 12 V. 

• Available power. The maximum available power 
for all devices is 12 Vat 500 milliamperes (mA). 
ACCESS.bus devices may supply their own power 
from a separate source, if needed. A power-up 
reset circuit must still be provided to reset the 
device when bus power is applied. 

• Cable length. The maximum cable length for 
the entire bus is 8 meters. The limiting factor is a 
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maximum capacitance not to exceed 700 pico
farads (pF). 

• Number of devices. The maximum number of 
ACCESS.bus devices allowed on the bus is 14. 
Limiting factors are the device addressing range 
and the power distribution (a total of 500 mA for 
all devices). 

• Hardware interfaces. ACCESS.bus hardware inter
faces are implemented using standard FC micro
controllers developed by the Signetics Company 
or under license from Philips Corporation. (Sig
netics Company is a division of North American 
Philips Corporation.) 

ACCESS.bus Protocol 
Every device on the bus is a microcontroller with 
an FC interface and behaves as either a master 
transmitter or a slave receiver, exclusively, as 
defined by the PC Bus Specification. 

Message Format 
A message transmits information between a device 
and the computer or between the computer and one 
or more devices. There is one exception: a device 
may attempt to reset other devices assigned to the 
same address by sending a Reset message to itself. 

ACCESS.bus messages have the following format: 

Byte 
Number 

1 

2 

3 

4 through 
(length+ 3) 

length + 4 

Bit Number 
[123 4 5678] 

destaddr I O ] Destination 
address 

srcaddr 10 l Source 
address 

[P I length Protocol 
flag, length 
(the number 
of data bytes 
from O to 127) 

body Consists 
of Oto 127 
data bytes 

checksum 

Initially, devices respond to a default power-up 
address. During the configuration process, the com
puter assigns a unique address to every device on 
the bus. Messages are either device data stream 
(P=O) or control/status (P=l), as indicated by the 

39 



Image Processing, Video Terminals, and Printer Technologies 

protocol flag . The minimum length of a message is 
4 bytes; the maximum length is 131 bytes (127 data 
bytes and 4 bytes for overhead). The message 
checksum is computed as the logical XOR of all pre
vious bytes, including the message address. 

Standard Messages 
The ACCESS.bus protocol defines the seven stan
dard interface messages summarized in Table 2. 
Parameters defined within the body of the message 
are listed in parentheses. 

Identification 
Since the ACCESS.bus is a bus-topology network, 
unique identification strings are used to distinguish 
devices. These strings are structured as follows: 

protocol revision: 
module revision: 
vendor name: 
module name: 
device number: 

1 byte (e.g., "A") 
7 bytes (e.g., "Xl.3 ") 
8 bytes (e.g., "DEC ") 
8 bytes (e.g., "LK501 ") 
32-bit signed integer 

The module revision, vendor name, and module 
name strings are left-justified ASCII character 
strings padded with spaces. The device number 
string is a 32-bit two's complement signed integer 
and may be either a random number (if negative) or 
a unique serial number (if positive). 

Configuration Process 
The configuration process is used to detect what 
devices are present on the bus, assign each device a 

unique address, and connect devices to the appropri
ate software driver. Configuration normally occurs 
at system start-up, or at any time when the com
puter detects the addition or removal of a device. 

Power-up/Reset Phase 
When reset or powered up, a device always reverts 
to the default address and sends an Attention 
message to alert the computer to its presence. At 
system start-up or reinitialization, the computer 
sends a Reset message to all FC addresses in the 
ACCESS.bus device address range (14 messages) to 
ensure that all devices on the bus respond at the 
power-up default address. 

Identification Phase 
To begin address assignment, the computer sends 
an Identification message at the device default 
address. Every device at this address must then 
respond with an Identification Reply message. As 
each device sends its message, the FC arbitration 
mechanism automatically separates the messages 
based on the identification strings. The computer 
can then assign an address to each device by includ
ing the matching identification string in the Assign 
Address message. When a device receives this mes
sage and finds a complete match with the identifi
cation string, it moves its device address to the new 
assigned value. As soon as a device has a unique 
address, it is allowed to send data to the computer. 

The FC physical bus protocol allows multiple 
devices on the bus at the same time if those devices 

Table 2 Standard ACCESS.bus Protocol Messages 

Computer-to-device Messages 

Reset() 

Identification Request () 

Assign Address (identification string, 
new address) 

Capabilities Request (offset) 

Device-to-computer Messages 

Attention (status) 

Identification Reply (identification string) 

Capabilities Reply (offset, data fragment) 
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Purpose 

Force device to power-up state and default 12C address. 

Ask device for its "identification string." 

Tell device with matching "identification string" to change its 
address to "new address." 

Ask device to send the fragment of its capabilities information 
that starts at "offset." 

Inform computer that a device has finished its power-up/reset 
test and needs to be configured; "status" is the test result. 

Reply to Identification Request with device's unique 
"identification string." 

Reply to Capabilities Request with "data fragment," a fragment 
of the device's capabilities string; the computer uses "offset" 
to reassemble fragments. 
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are transmitting exactly the same message. In the 
rare event that two like devices report the same 
random number or are mistakenly assigned to the 
same address, each interactive device transmits a 
Reset message to its assigned address prior to send
ing its first data message after being assigned a new 
address. The self-addressed Reset message forces 
other devices at the same address back to the 
power-up default address, as if they had just been 
hot-plugged. The message guarantees that each 
device has a unique address, but not until the 
device is actually used. The pseudo-random number 
(or serial number, if available) distinguishes devices 
at identification time before they are used, allowing 
the host to inventory which devices are present. 

Capabilities Phase 
Device capabilities is the set of information that 
describes the functional characteristics of an 
ACCESS.bus peripheral. The purpose of capabilities 
information is to allow software to recognize and 
use the features of bus devices without prior 
knowledge of their particular implementation. By 
having locator devices report their resolution, for 
example, generic software can be written to sup
port a range of device resolutions. Capabilities 
information provides a level of device indepen
dence and modularity. 

The structure of capabilities information is 
designed to be simple and compact for efficiency, 
but also extensible to support new devices without 
requiring changes to existing software or periph
erals. These objectives are supported by making 
the structure hierarchical and representing capabil
ities information in a form that applications (and 
humans) can use directly. The capabilities informa
tion is an ASCII string constructed from a simple, 
readable grammar. The grammar allows text strings 
to be formed into lists, nested lists, and lists with 
tagged elements. The capabilities string for a loca
tor might read as follows: 

Cprot<locator> 
type(mouse) 

) 

buttons< 1CL> 2CR> 3CM) > 
dim(2) rel res(200 inch) range(-127 127) 
dO(dname(X)) 
d1Cdname(Y)) 

After assigning a unique address to a device, the 
computer retrieves the device's capabilities string 
as a series of fragments using the Capabilities 
Request and Capabilities Reply messages. The com-
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puter then parses the capabilities string to choose 
the appropriate application driver for the device. 
The parsed string is also made available to applica
tion programs using the device. 

Normal Operation 
During normal operation, the computer periodi
cally requests inactive devices to identify them
selves. If a device is found to be missing, or a new 
device appears by sending an Attention message at 
the default address, the computer sends an Identi
fication Request message to each device address 
previously recorded as in use (up to 14 messages) to 
confirm which devices are still present. The com
puter also sends a Reset message to each device 
address previously recorded as not in use. The com
puter then begins the address assignment process 
by sending an Identification message to the default 
address and assigning each device that responds to 
an unused device address. 

Generic Device Concepts 
ACCESS.bus uses the concept of generic device 
drivers to support familiar 1/0 devices using only a 
few drivers. Generic specifications for keyboards, 
locators, and text devices have been developed. 

Keyboards 
The keyboard device protocol attempts to define 
the simplest set of functions from which a Digital 
LK201 or a common personal computer keyboard 
user interface can be built. A generic keyboard con
sists of an array of key stations assigned numbers 
between 8 and 255. When any key station transi
tions between open and closed, the entire list of 
key stations currently closed or depressed is trans
mitted to the host. This reporting scheme is func
tionally complete; the host can detect every key 
transition, and the scheme provides information 
about the full state of the keyboard on each report. 
No special resynchronization reports are required. 

In addition to reporting key stations, the generic 
keyboard device can support simple feedback 
mechanisms such as keyclicks, bells, and light
emitting diodes. These mechanisms are controlled 
explicitly from the host so that minimal keyboard 
state modeling is required. The capabilities infor
mation is used to identify the keyboard mapping 
table and the feedback mechanisms available. The 
keyboard mapping table can also be stored in the 
keyboard itself as part of the capabilities string. 

41 



Image Processing, Video Terminals, and Printer Technologies 

Locators 
The locator device protocol is designed to accom
modate a range of basic locator devices such as 
a mouse or tablet. More complex devices can be 
modeled as a combination of basic devices or can 
provide their own device driver, thus minimizing 
the burden on the protocol. 

A generic locator consists of one or more dimen
sions described by numeric values and, optionally, 
a small number of key switches. The standard driver 
requires the locator device to identify the type of 
data it will report from a small list of options and 
adjusts to handle this data type. These options are 

• Number of dimensions, e.g., two, for a mouse or 
a tablet 

• Dimension type: absolute, i.e., referenced to 
some fixed origin, like a tablet; or relative, i.e., 
changed since last report, like a mouse 

• Resolution in divisions per unit, e.g., counts per 
inch or counts per revolution 

• Dynamic range of values that can be reported, 
i.e., the minimum and maximum values 

• Number of key switches, from Oto 15 

The assignment of scalar-value dimensions 
returned from one or more devices to the user 
interface functions is left to the application. How
ever, to accommodate most conventions, the scalar 
dimensions and the key switches can be labeled in 
the capabilities string. 

Text Devices 
The text device protocol is intended to provide a 
simple way to transmit character data to and from 
character devices such as a bar code reader or a 
small character display. A generic text device trans
mi ts a stream of 8-bit bytes from a character set. 
Simple control messages are defined to support 
flow control and to select communication parame
ters that might be used to interface with a modem. 
The capabilities string contains information that 
identifies the specific character set and communi
cation parameters used. 

Summary 
The ACCESS.bus network interconnect offers the 
possibility of a standardized, low-speed, plug-and
play serial communications channel that can untan
gle peripheral interfacing and open the way to new 
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applications. As the advantages of this open desk
top bus design become well known, we expect 
wider adoption of this product. The ACCESS.bus 
is currently implemented on Digital's Personal 
DECstation 5000 workstation, with implementa
tions underway for the next generation of RISC 
workstations and video terminals. 
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Design of the DECprint 
Common Printer Supervisor 
for VMS Systems 

DECprint Printing Seroices software controls a variety of printer features for a wide 
range of printers. It supports several different page description languages, handles 
multiple media simultaneously, and uses different I/0 interconnections and commu
nication protocols. Operating within the VMS printing environment, it imple
ments a large number of user-specified options to the PRINT command. DECprint 
Printing Services functions as the superoisor in the VMS printing system for all 
Postscript printers supplied by Digital. The common printer supervisor has an espe
cially flexible internal structure and processing method to seroe complex printing 
environments. 

The increasing variety and complexity of printing 
devices in the last decade have strained the abili
ties of operating systems to support them. Users 
demand access to, and control over, the increas
ingly sophisticated features of their printers. At the 
same time, application programming resources are 
stretched by the requirement to support various 
devices and features. Modern operating systems 
include printing systems that support printers and 
insulate applications from many details of printing. 

DECprint Printing Services software was designed 
to handle a wide variety of printers, with a range 
of 1/0 connections, media handling capabilities, 
finishing equipment, data syntaxes, and so forth. 
It provides the controlling software that supports 
the full range of Digital printers capable of printing 
Postscript documents. 

DECprint Printing Services functions as a compo
nent of the VMS printing system at the level of 
printer supervisor, called symbiont in VMS termi
nology. The supervisor is known within Digital as 
the _DECprint common printer supervisor or com
mon print symbiont (CPS). It is called common 
because it replaces a number of different symbionts 
and is common to a range of printers. CPS is a com
pletely new program developed by the Video, 
Image and Print Systems Group. 

This paper explores the environment in which 
printing systems now reside. It describes the struc
ture and functions of DECprint Printing Services and 
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the design of CPS, focusing on its capabilities within 
the VMS system. The paper then discusses the oper
ation of the VMS printing system and the enhanced 
printing environment made possible by CPS. 

Printing System mmensions 
A printing system is the set of software and hard
ware components through which print requests 
pass from the time the user decides to print a docu
ment until the appropriate hard copy arrives. 

The variety of printing devices in use is a chal
lenge for the printing system and for applica
tion programmers. We use the word "printer" in 
this article to imply the full range of output devices 
that are attached to systems and networks. A sys
tem today must support a wide number of dimen
sions: marking technologies, media, medium sizes, 
speeds, transmission rates, and interconnects. 

The DECprint Model of Printing 
The DECprint model of printing is composed of sev
eral layers. Each layer has defined functions and 1/0 
interfaces. The layers of the DECprint model and their 
relationships to VMS and CPS are shown in Figure 1. 
This model of printing describes a useful structure 
with consistent functions and responsibilities. 

• Application. An application program creates 
information that the user may want to print. All 
types of applications fit into the model at this 
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Figure I Relationships of the VMS Printing System Components to the DECprint Model 

level, from data processing programs and simple 
text editors to high-quality document formatting 
and publishing applications. The application may 
present a printing interface directly to the user, 
or may create a final form document from which 
the user can access other printing interfaces. 

• User printing interface. A user expresses the 
desire to print through a user interface to the 
printing system. The interface may be oriented 
to written commands, to user selection of 
menu choices, or to a point-and-select graphical 
interface. 

• Job submission interface. User interface pro
grams communicate with the lower levels of the 
printing system through an application program
ming interface (API) to the print client. The API 

contains full capabilities for creating, destroying, 
and managing print jobs of all types. The job sub
mission interface may be operating system
specific or may be based on emerging standards 
for network printing. 
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• Print client. The client accepts requests through 
its API, performs defaulting for the user, assists in 
selecting the correct print service, gathers the 
print instructions and document files, and sub
mits the job to the print service. The protocol 
used to submit the job may be operating system
specific or may be based on emerging standards 
for network printing. The print service may be 
local to the print client (and the user), or it may 
be located elsewhere in the network. 

• Print service. The print service is a convenient 
abstraction that includes the print spooler and all 
subsequent layers in the execution of the print 
job, for some set of physical printers. Printers 
are often grouped together based on their static 
characteristics, such as type of printer, printer 
data syntax, and default media. 

• Print spooler. The print spooler accepts the print 
job from the client, spools the files and queues 
the job for later execution if necessary, and 
then schedules the job for execution. If the job 
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requires resources that are not immediately avail
able, human intervention may be necessary. For 
example, if a job requires a special print medium, 
then an operator or other printer attendant must 
provide the medium for the printer. If the job 
requires a special font, the spooler may be able to 
obtain the font from a library without human 
intervention. 

• Printer supervisor. The supervisor directly con
trols the printer. It interprets the print instruc
tions for the job, manages the printer and its fin
ishing equipment, and writes the document data 
to the page description language (PDL) inter
preter. It also monitors the status of the printer, 
supplies some resources on demand, and responds 
to error conditions. On the VMS operating sys
tem, the printer supervisor is called a symbiont; 
on ULTRIX and UNIX systems, a daemon. 

• PDL interpreter. Generally, final form document 
data is written in a data syntax intended for print
ing, but it is not in the native form required 
by the marking engine. A PDL interpreter trans
forms the printer language into the lower-level 
form for the marking engine. For example, in a typ
ical laser printer, a Postscript interpreter trans
forms the Postscript language into a device-level 
bit map and media control instructions for 
the print engine. In a simpler impact printer, 
the controller turns characters and control 
sequences into pin timing and paper movement 
instructions. 

• Marking engine. The marking engine consists of 
the media transport and printing mechanisms, 
generally controlled at a low level. Marking may 
be done by a wide spectrum of technologies, and 
the media used may also vary widely. For the 
most part, descriptions in this paper use raster 
devices such as laser printers as examples. 

• Finishing equipment. The overall printing sys
tem includes finishing options that are not often 
considered part of the (largely electronic) print
ing system. Currently affordable components of 
the printing system are typically automated. For 
example, several years ago duplex (two-sided) 
printing was not economical for most office 
applications; today it is, and many office printers 
include this finishing feature. Stapling, on the 
other hand, is still not economical for most office 
applications, though it is implemented in many 
high-end production printers. 
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Implementations of the model in various operat
ing systems and printers may express the layers 
differently, sometimes skipping certain layers. The 
VMS printing system contains components at most 
levels of the DECprint model. The DECprint com
mon printer supervisor (CPS) operates within the 
VMS system, as indicated in Figure 1. We designed 
CPS to satisfy the requirements and projected needs 
of users, system managers, and programmers. In the 
next section we discuss the design of CPS. 

Sharing Devices 
Printers are often shared, especially high-end or 
specialized, expensive devices. Since shared print
ers are not always immediately available to the 
user or application program, the printing system 
is required to hold jobs for printing later. The sys
tem must be able to store the user's instructions for 
printing, along with the contents of the document, 
until they are needed. 

Insulating the Application from Details 
A printing system insulates applications from the 
details of printing devices. For example, DECprint 
Printing Services provides communications mecha
nisms and protocols, determines whether a shared 
device is currently busy, and sometimes translates 
printer data syntax. 

Application programmers generally prefer to 
deal with as few external interfaces as needed to 
perform the task. Thus it is desirable to minimize 
the number of different classes of printing devices 
while maximizing the variety and flexibility of 
printing devices. The DECprint architecture speci
fies that the printing system take responsibility for 
matching the needs of the application to the capa
bilities of the output device, whenever possible. 
For example, a printing system might need the abil
ity to transform the printer data stream from a 
data syntax used by the application to a data syntax 
used by the printer. Hidden transformation makes 
the system easier for applications to use. DECprint 
Printing Services provides a certain number of 
printer data syntax transformations of this type, 
from languages such as DEC PPL3 (which is com
monly referred to as "ANSI" within Digital) and 
ReGIS to Postscript, and from Postscript to printer 
bitmaps. 

Internal Structure of CPS 
In designing CPS, our primary goal was to create a 
flexible system that would handle all the printer 

45 



Image Pr o cessing, Video Terminals, and Printer Technologies 

features we could foresee and many that we could 
not foresee, a system that could be modified as 
needed to handle not just new printers but new 
classes of printers. CPS is capable of managing a 
wide variety of character, line, page, and document 
printers. 

To create a flexible printing system, we needed to 
design a highly modular internal structure. This inter
nal structure combines modules into sequences at 
several levels to provide a general framework for 
controlling and manipulating 1/0 devices. 

At the bottom level of the structure are filter 
modules, which are lightweight, independently 
schedulable subprocesses within a VMS process. 
Filter modules communicate with each other by 
means of 1/0 routines and a shared data structure 
containing job information. Pointers to the 1/0 rou
tines and shared data are supplied in the invoca
tion of the filter module. The effect of the stream 
1/0 routines is much like that of pipes in the UNIX 

operating systems. 
At the next higher level is a set of communicating 

filter modules; each stream of filter modules is 
called a job step. Finally, a module called the print 
job analyzer combines a sequence of job steps to 
handle a complete print job. 

Filter Modules and job Steps 
Filter modules can read input from a preceding filter 
module and write data to a succeeding filter mod
ule. Filter modules may perform functions such as 
reading a file, converting carriage control, translat
ing data syntax, or writing data to the printer. A 
filter module receives as arguments an input stream 
and an output stream, like a UNIX process, and a 
shared data structure, unlike a UNIX process. A sim
ple filter module reads data from the input stream, 
processes data, and writes data to the output stream. 

A filter module may condition its operation based 
on information from the shared data structure or 
the contents of the data stream. For example, a 
translator filter module might format data based on 
the page size, margins, and aspect ratio specified 
in the shared data structure, or based on control 
sequences in the data stream, or both. 

Not all filter modules use the input or output 
streams. The file reader filter module reads from the 
file instead of the input stream. Similarly, the device 
output module writes to the printer instead of the 
output stream. 

A job step is a set of filter modules piped together 
to perform one complete subtask. A subtask may be 
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as simple as "create a separator page" or as complex 
as the sequence "read a file, perform carriage con
trol conversion, add /HEADER, translate from ANSI 

data syntax to Postscript, and write the result to 
the printer." A print job is a set of job steps that per
forms all functions the user requests explicitly or 
implicitly. The CPS facility that translates selected 
printer data syntaxes into the PostScript language is 
discussed in the section Data Syntax Translation. 

Print Job Analyzers 
To simplify the addition of new printers and new 
classes of printers, CPS contains a software struc
ture that corresponds to the hardware mechanisms 
of a printer. 

A print job analyzer (PJA) determines which 
job steps are required to process a job. CPS includes 
a separate print job analyzer for each major class 
of printer that it supports: serial Postscript, 
PrintServer, and LN03 Image printer devices. When 
the symbiont begins execution, a PJA is chosen based 
on the type of device associated with the queue. 
This PJA is used until the symbiont is stopped. If a 
terminal device, such as a TT or TX or LT device, is 
associated with the queue, then the PJA for a serial 
device is invoked. If an LD device is used, then the 
PJA for an LN03Q printer is chosen. Otherwise, the 
PJA associated with PrintServer devices is used. 

Each PJA contains a list of all job steps required to 
execute a job on the class of printers it supports. 
The PJA selects the job steps it needs from this list, 
depending upon the instructions received from the 
queue manager. 

Job steps are linked together. The first job step 
chosen by the PJA is linked to the termination of the 
PJA itself; when the PJA finishes compiling the job, 
it terminates, thus starting the execution of the job. 
At the beginning of each job step, each filter mod
ule is assigned stack space and a stack frame. Its ini
tial program counter address and arguments are 
stored in its saved registers for process activation. 

CPS uses a piped stream 1/0 mechanism similar in 
function to a UNIX stream; a filter module's input 
comes from the output of the previous module, and 
its output becomes input to the following module. 
By convention, the first filter module of the job step 
is activated first in the job step; when a filter blocks 
for output, the next filter module is activated. That 
filter module then runs until it blocks for input or 
output, at which point the previous or following 
filter module is activated. 
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Table 1 Simplified Job-step Sequence 

Job Step Function 

init_ps_device 

check_prologues 

sheet_count 
job_burst 

sheet_size 

wait_sheet_size 

file_setup 

get_ vmbytes 

wait_vmbytes 

file_out 

sync 

init_ps_device 

sheet_count 
wait_sheet_count 

job_trailer 

sync 

disconnect 

Ensure the device is "fixed up." 
Ensure that persistent 
prologues are loaded. 

Get the beginning page count. 

Print job burst page. 

Get the current sheet_size. 
Wait for the sheet_size before 
continuing. 

Send any file /SETUP modules. 
Get the amount of local printer 
memory available on the 
printer. 

Wait for the local printer 
memory message from the 
printer. 

Read the file to print and send 
it to the DECansi translator. 
Wait for the printer to finish all 
pages. 
Ensure the device is "fixed up." 

Get the ending page count. 

Wait for the page count to 
come back. 

Print the job trailer page. 

Wait for the printer to finish 
the job-trailer page. 

Release the printer. 

JOB STEPS 

FILTER 
MODULES 

J 
READ FILE 
SETUP 

DEVICE 
OUTPUT 

READ GET 
VMBYTES 
MODULE 

DEVICE 
OUTPUT 

Table 1 shows a simplified listing of the job steps 
compiled by the serial PJA to process a simple job: 
one file to be printed in ANSI mode. Each of the job 
steps shown contains one or more filter modules 
piped together. For example the job-burst job step 
has two modules piped together: the job-burst mod
ule and the write-to-printer module. Figure 2 shows 
several job steps with several filter modules each. 

If an error occurs at any point in the processing 
of a job, CPS skips job steps until it reaches the 
identified error job step set by the PJA. In Table 1, 
the error job step points to the sync job step that 
precedes the job-trailer job step. In this case, CPS 
resynchronizes with the printer and prints the job-
trailer page, including the error message. 

Event Handling 
In addition to the output side of processing a job, 
there is a corresponding input side. The input side 
reads messages from the printer, parses them, and 
notifies the appropriate handler of the event. The 
handler is chosen based on the type of message sent. 

• CPS internal messages are dispatched to the 
appropriate symbiont routines. For instance, 
printer resource messages contain information 
that affect CPS internal operations: paper size is 
stored for later use by layup (the general map
ping of page images to sheets) and translators; 
virtual memory size is stored for translators; and 
page count is stored for later use in accounting. 

WAIT 
FOR 
VMBYTES 

READ 
FILE 

CARRIAGE 
CONTROL 
CONVERTER 

ANSI 
TRANSLATOR 

DEVICE 
OUTPUT 

Note that data flows from top to bottom and job steps progress from left to right. 

Figure 2 Job Steps and Filter Modules 
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• Printer status messages are dispatched to the 
operator and, in some cases, to the current user. 
CPS uses the normal VMS OPCOM notification 
mechanism to send messages to the system oper
ator. If the user specified /NOTIFY in the print 
instructions, then CPS uses the VMS $BRKTHRU 

system service to send the message to the user 
also. 

In some cases, printer status messages require 
additional processing. For example, paper jams 
require special handling on some printers: since 
CPS cannot determine how many pages were lost 
in the jam, it invokes human intervention by plac
ing the job on hold. The operator or user can 
determine what parts of the job, if any, to reprint. 

• Program status messages and user data messages 
are dispatched to the job log. If the user specified 
/NOTIFY, then they are also displayed with the 
$BRKTHRU system service. These messages may 
be printed or logged. 

The input and output sides of the symbiont run 
asynchronously most of the time, but occasionally it 
is necessary for the output side to wait for a mes
sage from the printer. This synchronization between 
the input side and output side of the symbiont is 
accomplished by an internal event-signaling facil
ity. When synchronization is required, the output 
side waits for a specific named event and the input 
side signals that event when it is detected. For 
example, at the end of a job, CPS needs the final 
printer sheet_count in order to calculate the 
sheet_count for the job; this count is printed on the 
trailer page and stored in the VMS accounting 
records. When CPS needs the sheet_count, the out
put side waits for an event named sheet_count. The 
input side parses the incoming sheet_count mes
sage, stores the returned value in the shared data 
structure, and signals the sheet_count event. The 
processing of this event is asynchronous: at the 
time the message comes in, the output side may or 
may not have stalled while waiting for the 
sheet_count event. If the output side was waiting 
for that event, it is scheduled for further process
ing; if the output side was not waiting, the event is 
remembered, in case the output side attempts to 
wait for this condition in the near future. 

In the next section we describe the ways CPS is 
controlled and managed in the VMS printing system 
and how it expands printing capabilities in the VMS 
environment. 
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The VMS Printing System Environment 
CPS functions as a component of the VMS printing 
system at the level of printer supervisor. As such, it 
interacts with, and is shaped by, the other compo
nents of the VMS system. The term printer super
visor is used in this paper to be consistent with the 
terminology of the emerging International Stan
dards Organization (ISO) Document Printing Appli
cation draft standard, ISO/IEC DIS 10175. 

Components 
The VMS Batch/Print system is a general queue man
agement service, capable of queuing, scheduling, 
and executing jobs in response to a variety of user
specified instructions.1 On the VMS system, the 
printing instructions are stored in a print job 
object, which is placed in a queue of jobs for a 
printer. Modern print jobs often resemble batch 
jobs, due to complex stored processing instruc
tions and the heavy computing load placed on 
graphics printer controllers. 

The VMS printing system contains components at 
most levels of the DECprint architectural model. 

• User printing interface. The VMS system includes 
interactive Digital Command Language (DCL) 
interfaces for printing and managing print jobs, 
printers, and the printing system itself.2 For 
DECWindows applications, the DECWindows Print 
Widget provides a graphical interface that per
mits users to specify all the options for printing, 
and the Ail-IN-1 application provides character
cell menus for choosing print options, including 
the enhanced options offered by CPS. 

• Job submission interface. The VMS system 
includes program call interfaces that give the 
program all the capabilities of the DCL user 
interface.3 

• Print client and service for remote printing. The 
distributed queuing services product currently 
provides transparent remote printing in net
works using a proprietary network protocol. 

• Print spooler. The VMS Job Controller, recently 
replaced by the VMS Queue Manager, functions as 
queue manager and scheduler. (The function of 
spooling printer data to temporary files is per
formed by the VMS file system and is transparent 
to most components of the printing system.) 

• Printer supervisors. The VMS system provides 
two standard symbionts to support most line 
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printers and serial printers. PRTSMB supports 
printers attached directly to communication 
ports on the CPU, e.g., the printer port on a VAX 
workstation. LATSYM provides support for print
ers attached to the serial or parallel ports of 
DECserver network communications servers. For 
Postscript printers, CPS is used instead of these 
standard symbionts. 

The VMS printing system also contains compo
nents that affect CPS processing. 

• Device control libraries are collections of small 
text sequences that can be inserted into the data 
stream from the symbiont to the printer. The 
sequences are ideally organized into text libraries 
containing named modules, with a separate 
library for each type of output device. Device 
control modules can be associated with a printer 
queue by the system manager as part of a FORM 
definition or a job reset function, or accessed 
directly by the user with the /SETUP qualifier. 

Device control libraries frequently contain 
device-specific control sequences that alter the 
format of the text and pages, for example, setting 
printer paper margins, setting character pitch, or 
enabling landscape printing. They may also con
tain downloadable font data or preprinted data 
for each page. 

• VMS form definitions contain page size and mar
gin specifications that guide the print formatting 
process for a print job. The user can also specify 
page setup strings and can prohibit the symbiont 
from wrapping lines during processing. 

VilfS Print Queues 
VMS has several distinctly different types of queues. 
Execution queues process jobs through a symbiont, 
and generic queues transfer jobs to other queues. 
Often generic queues are used for load balancing: 
one generic queue may feed several printers of sim
ilar capability and location. 

CPS also uses generic queues in an unusual way. 
Default attributes can be specified for generic 
queues that cause all jobs submitted through the 
queues to inherit certain default print instructions. 
For example, a queue can be established that, by 
default, assumes that jobs are Postscript docu
ments, or assumes that jobs should be printed in 
landscape orientation. This ability to set default 
queue attributes is essential for supporting applica
tions that can specify the queue name for a print 
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job, but cannot specify certain other qualifiers such 
as DATA_TYPE. It can also permit users of old appli
cations to access new features of the printing 
system. 

VilfS Print Commands and Inteifaces 
The VMS printing system is manipulated through 
DCL commands and qualifiers. Many of the 
qualifiers are handled by the queue manager and 
have no impact on the operation of print sym
bionts; others directly affect the operation of CPS. 2 

The VMS system also supplies a call interface to 
these functions. 3 

VilfS Inteifaces to Symbionts 
The VMS Job Controller/Queue Manager provides 
two interfaces for customizing print symbionts: the 
PSM module-replacement interface, and the SMB 
server symbiont interface. CPS is currently imple
mented as a single-stream symbiont through the 
SMB interface. 

The SMB interface permits a user to replace the 
flow of control of the symbiont with a separate pro
cess. The process may be written in any style and 
structure suitable to the task at hand, and need fol
low only certain minor guidelines with respect to 
the operating system environment. To use the SMB 
interface, we replaced the entire symbiont process. 
The result was much greater flexibility, but we 
were required to write more program code. 

The SMB interface provides services to the sym
biont process through subroutine entry points and 
callbacks that pass messages between the symbiont 
and the VMS queue manager. Messages from the 
system to the symbiont specify functions such as 
start up, shut down, begin job, pause, resume, and 
interrupt. Messages from the symbiont to the 
system return information such as job status, job 
completed, device status and error information, 
and checkpoint and accounting data. 

Range of Printers Supported 
CPS currently supports the full range of Postscript 
printers supplied by Digital, from a low-speed 
color printer up to a 40-page-per-minute laser 
printer that can handle 11 different paper sizes. 

Spedal l/0 Processing 
CPS supports several different means of communi
cation with the printer: serial, Ethernet, and a spe
cial high-speed video connection. 
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The serial connection may be either a direct con
nection between the computer and the printer or 
a local area transport (LAl) connection by which 
printer is attached to a serial port of a DECserver 
terminal server. The two methods differ only in 
the way jobs are started and terminated. For 
LAT-connected printers, CPS must establish and dis
miss the LAT connection at the start and end of 
each job. 

Once the connection is established with the 
serial printer (via LAT or direct connect), CPS begins 
a dialogue with the printer using an asynchronous 
serial line protocol and Postscript programs. The 
asynchronous serial line protocol, defined by 
Adobe Systems Inc., consists of five control charac
ters that alter or query the state of the printer. 

The symbiont forces the printer into an idle state 
by a series of control/T, control/C, and control/D 
characters. When a control/T results in an IDLE 
message from the printer, the symbiont and printer 
are ready to process a job. 

PrintServer printers on Ethernet networks are 
DECnet nodes. To write to a PrintServer printer, CPS 
establishes a DECnet task-to-task session at the 
beginning of the job. The dialogue required for syn
chronizing serial printers is not necessary for the 
Ethernet printers; the PrintServer protocols pro
vide synchronization and device control opera
tions through separate control channels. 

Printers connected through Ethernet use several 
protocols, which are layered on DECnet task-to-task 
communications. The protocol used depends upon 
the version of the PrintServer code. 

The local area print service (LAPS) protocol was 
developed for the PrintServer family and is still in 
use. The Common Printer Access Protocol (CPAP) 
will replace LAPS in all PrintServer printers.4 PAP is 
based on the earlier Reid-Kent protocol, Internet 
Socket 170, and is being discussed as a possible new 
Internet standard.5 

Spedal Processing/or "Dumb" Printers 
In some printer configurations, it is economical to 
use the workstation or CPU as the printer con
troller. In this case, the printer includes only the 
print engine and media handling and finishing 
equipment, and none of the electronics, comput
ers, and interpreter programs that render the 
graphics language into the elements required by the 
print engine (usually an array of pixels). Such a 
"dumb" printer is physically connected to the com
puter by a very high-speed link such as a direct 
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video connection or data bus. For such a controller
less printer to be generally useful, the printing 
system must emulate an existing class of printer. 

The LN03 Image printer (LN03Q) is a bit-map 
printer of this type. It uses a special high-speed 
OMA bit-map interface that plugs into a Q-bus and 
provides the speed required for printing scanned 
images. The protocol between this interface and 
the printer consists of bit maps and a small amount 
of status and synchronization information. 

The engine itself includes only the laser imaging 
and paper handling equipment. CPS handles the 
rest of the controller functions in the host com
puter. Because of the level of support and emula
tion provided, the LN03Q printer appears to be an 
ordinary Postscript job printer with some special 
image capabilities. 

For a given print job, CPS performs the normal 
processing up to the point at which the PostScript 
language data stream would normally be sent to the 
printer. At this point, CPS directs the data stream to 
a special Postscript interpreter subroutine that pro
duces a bit-map image of the printed page in mem
ory. The bit-map image is then sent to the printer 
through a special LNV21 direct memory access 1/0 

interface on the Q-bus. 
The software for the LN03Q printer also has one 

special processing path. The LN03Q printer is 
intended as an image printer for bit-map images. 
CPS supports image files containing page images 
that are scanned or precomputed at device resolu
tion (300 dots per inch) and optionally compressed 
with Comite Consultatif Internationale de Tele
graphique et Telephonique (CCITl) Group 3 (ID) or 
Group 4 (2D) compression methods. Image files can 
be transmitted directly to the printer without con
verting to Postscript. Image files can only be sent 
directly to the printer if they are printed one page 
per sheet; if the user requests printing multiple pages 
per sheet, or other layup functions, then the image 
is processed through the Postscript interpreter. 

Image files are structured in Digital document 
interchange format (DDIF), which expresses text, 
graphics, and images together. Files intended for the 
LN03Q printer must contain only image bit maps. 

If the print job specifies DATA_ TYPE= DDIF or the 
file is a DDIF file, then CPS examines the file in a spe
cial mode. If the file correctly contains only image 
bit maps, CPS decompresses the images in memory 
if necessary, using the DECimage Image Support 
Library routines, and then sends the uncompressed 
bit map directly to the LN03Q print engine. Thus 
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the image goes directly to the printer without pass
ing through the Postscript interpreter. 

Special Processing in CPS 
CPS includes a number of special features and func
tions to satisfy the requirements of the DECprint 
architecture and the VMS printing system. In this 
section, we discuss the features that extend the 
process of standard print symbionts or are com
pletely new. 

Reading Print Instructions 
CPS reads the print instructions for a job from the 
VMS queue manager through the SMB$READ_ 
MESSAGE and SMB$READ_MESSAGE_ITEM functions 
of the SMB interface. Print instructions are 
expressed as attributes with values. Each attribute 
has an associated numeric code and symbol, called 
an item code, and a value of a specific data type. 
The symbiont reads each item code and value, and 
stores the information in a static data structure. 
The information is used later to determine the pro
cessing sequence for the job, special information to 
be displayed on separator pages, and so forth. 

Bidirectional Communication with 
Postscript Printers 
CPS requires a full duplex communications path to 
PostScript printers since they report many condi
tions by sending messages to the host computer. 
These messages include device status messages, 
program status and error messages, user data mes
sages, and replies to CPS inquiries. 

CPS also requests information from the printer 
for synchronization, formatting, and accounting 
purposes. For instance, to determine how to for
mat ANSI text, the symbiont needs to know what 
paper is loaded in the printer. 

CPS receives the messages from the printer and 
parses them to determine what it should do with 
the message. If the message is device status, then 
CPS routes the message to the operator and/or the 
user whose job is being printed. If the message is an 
internal CPS communication, then CPS processes it. 
Otherwise, the message is either a program status 
message or a user data message. In either case it is 
logged for the user. 

All messages are parsed except user data mes
sages. Messages from the printer's interpreter are 
converted to a standard format that would, if 
desired, permit the message to be translated into 
the user's native language. 
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Data Syntax Translation 
CPS provides a facility that translates selected 
printer data syntaxes into the Postscript language. 
The translating programs are subroutines, some 
quite large and complex, that accept a data stream 
in one format and produce a data stream in another 
format. The translators are responsible for all for
matting, including sheet size, page orientation, 
aspect ratio, and type sizes; CPS is responsible for 
all 1/0 and coordination with the printer. The trans
lation facility currently supports the following 
printer data syntaxes: DEC PPL3, ReGIS, Tektronix 
4010/4014, and PCL Level 4. 

The translation facility has several restrictions. A 
file may consist of only one data syntax, and all files 
in a job must be of the same data syntax. 

In general, CPS performs the translation from 
one data syntax to another on the host computer. 
In this way, simple printers that support only the 
Postscript language internally can be extended 
to support a number of printer languages. This 
reduces the requirement for a complex printer con
troller that supports multiple data syntaxes inter
nally. Host translation can guarantee consistent use 
across jobs of the printer's internal fonts, page ori
entation, finishing equipment, and page layup The 
general mapping of page images to sheets supplied 
as part of CPS requires that the printer operate in 
Postscript mode. To ensure consistent use of fonts 
and consistent positioning of pages with respect to 
finishing such as duplexing and stapling, all lan
guage translation must be done by the symbiont. 

Page Layup Multiple Pages per Sheet 
Page layup is the process of printing more than one 
page image on a sheet of paper. When more than 
one page image is placed on a sheet of paper, the 
images are rotated and scaled to fit on the page, but 
are altered in no other way. The layup facility works 
with all data types, including Postscript and PCL 
data syntaxes. Layup also permits formatting for 
larger paper sizes and then printing on smaller 
sheets. 

Layup is invoked explicitly with one or both 
of the extended qualifiers NUMBER_UP and LAYlW _ 
DEFINITION. NUMBER_UP specifies the maximum 
number of page images that will be printed on a 
single side of a sheet; for example, two-up printing 
is specified by the "NUMBER_UP=2" option. Two or 
four page images per side may save significant quan
tities of paper for draft printing, handouts, and the 
like. Up to 100 page images may be placed on a 
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single sheet of paper for thumbnail draft printing to 
review the overall layout of a document. 

Layup may also be invoked through a combina
tion of PAGE_SIZE and SHEET_SIZE with NUMBER_UP. 
For example, the combination of PAGE_SIZE=E, 
SHEET_SIZE=A,NUMBER_UP=l permits printing 
draft copies of large-format documents on small 
paper. Conversely, the combination of PAGE_ 
SIZE=A,SHEET_SIZE=B,NUMBER_UP= 1 magnifies the 
smaller page to fit the larger sheet. 

Du,plex Printing 
Printing on both sides of the paper introduces a 
number of new options and interactions that 
require special processing in CPS. CPS begins each 
document on the first side of a new sheet, so that 
recto and verso (right-hand and left-hand) pages 
and alternating margins are aligned with the cor
rect sides of sheets as they are stacked by the 
printer. This function also interacts with the direc
tion in which the medium is physically loaded into 
the printer if the medium is not symmetric left-to
right, top-to-bottom, or front-to-back, such as pre
drilled paper. 

The interactions of PDL coordinate systems, page 
layup, media selection, asymmetric media, duplex 
printing, and binding are the most elusive engineer
ing problems in the printing application space. No 
general model of these interactions has been devel
oped, despite considerable effort in standards com
mittees. It appears that it is necessary to implement 
every possible option. 

Separator Pages 
CPS prints all the separator pages defined by the 
VMS queuing system as well as some generated by 
CPS. Flag, burst, and trailer pages for job and file lev
els are available as defined by VMS, and contain 
the same information presented in a highly legible 
format. In addition to the standard VMS infor
mation, the job trailer page also contains the first 
two PostScript language errors returned from the 
printer. This often makes it unnecessary to use 
MESSAGES=PRINT to see simple errors. 

To ensure that the job separator pages can always 
be printed correctly, CPS resets the PDL interpreter 
in the printer before printing these pages. The CPS
generated separator pages do not alter the coordi
nate system of the interpreter; the user's document 
starts printing with the default Postscript state. File 
separator pages, in contrast, print in the current 
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Postscript environment, including the altered page 
geometry, e.g. , layup established by the print job. 

CPS defines two new separator pages. The file 
error page is printed when a file cannot be opened 
or an error occurs while reading the file. The file 
error page informs the user of the error condition 
which caused it to be printed. The job log page con
tains up to 40 lines of the job log file. The job log file 
contains job events such as job start and job com
pletion as well as program status messages and user 
data returned from the printer. 

Managing Printer Resources 
Once communication is established with the 
serial printer, the symbiont must establish what 
resources are available on the printer. These 
resources include prologues, which are commonly 
used Postscript routines, the amount of available 
virtual memory, and the medium in the default 
paper tray. For example, CPS persistently loads the 
Postscript prologue for the output of the ANSI text 
translator into the Postscript interpreter. This 
resource might be lost to the printer because of a 
power failure or might become obsolete due to a 
software upgrade. CPS interrogates the printer at 
the beginning of any job requiring the translator 
prologue and loads a new prologue, if necessary. 
CPS also performs similar processing for the 
Postscript prologue that is used to generate the 
separator pages. 

For traditional resources such as paper, CPS relies 
on status messages from the printer to indicate that 
the printer is stopped because paper supply is 
empty or jammed. These conditions are relayed to 
the operator and to the current user by standard 
VMS mechanisms. 

Library Search Lists 
In the standard VMS print symbiont, only one 
device control library may be associated with a 
queue. This is not a problem since the standard VMS 
print symbiont deals with only one data syntax. 
(Recall that device control libraries are often writ
ten in device-dependent data syntax.) CPS, on the 
other hand, uses more than one data syntax when 
printing a non-Postscript job: the data stream to the 
printer is Postscript, but the data stream to the 
translator is in another data syntax. 

Early versions of symbionts that supported 
Postscript suffered from the same restriction: only 
one device control library was available, and its 
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modules were expressed in Postscript. This made it 
impossible for users to share device control 
libraries with their standard VMS print symbiont 
and their non-PostScript printers. 

To solve the problem of multiple data syntaxes 
in a job, CPS introduced device control library 
search lists. The system manager, rather than speci
fying a single file specification in the INITIALIZE/ 
QUEUE/LlBRARY command, creates a logical name 
instead. CPS translates that specific logical name 
and uses each element of the result as a device con
trol library. Each library in the search list can have a 
data syntax associated with it by adding the 
qualifier, /DATA_TYPE=. 

CPS supplies a device control library, 
CPS$DEVCU, which must be included in the search 
list, usually as the first, or only, element in the 
search list. 

Summary 
The DECprint model of printing describes a useful 
structure with consistent functions and responsi
bilities. CPS is an advanced print symbiont that runs 
in the VMS printing system. It includes many spe
cialized functions to support the features of a wide 
range of modern printing devices. It provides, we 
feel, an extraordinary level of support. It was 
designed with a highly modular and flexible inter
nal structure to permit enhancements to be engi
neered with minimal interactions with current 
operations. 

CPS is currently shipping its fourth version. This 
version fully supports the ten different Postscript 
printers supplied by Digital, which range from a 
low-speed color printer to a high-speed laser 
printer. It also supports five different data syntaxes 
in which applications can write documents. We 
expect that more printers and more capabilities 
will be added in future versions, and that CPS will 
require a minimum of additional engineering effort 
due to its very general internal structure. 
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The Common Printer Access Protocol 

The DEC PrintServer Supporting Host Software version 4.0 incorporates Digital's 
first implementation of the new common printer access protocol (CPAP). This pr<r 
tocol is compatible with the local area print server (LAPS) protocol, which was 
optimized for VilfS access and DECnet transport, and with the Reid-Kent proto
col, a PostScript-based, TCP/IP-connected print server for a dient-server environ
ment. The CPAP protocol supports a van'ety of data presentation protocols 
and allows printers to be connected to driving applications by various communica
tions and process-to-process interfaces. The protocol also couples entities running 
different operating systems across disparate networks. Because of its superior 
performance, the new CPAP protocol has been accepted by the Open Software 
Foundation for inclusion in a future release of OSF/ 1. 

The presentation of computerized data has become 
a remarkably sophisticated and subtle operation. 
Video displays now support windows with com
plex allocations of display space, variable fonts, and 
real-time user input operations. Printing devices 
now offer support for publication-quality fonts, 
line art, and images. These devices can present 
visual objects on a variety of media, from many 
sources, and in variable orientations and presenta
tion modes. In addition, both video and printing 
devices are now decoupled from dedicated com
puting environments, and are shareable from many 
hosts and by many users or programs. 

Now, only the simplest printing devices are lim
ited to presenting just characters, and many users 
are finding such restricted capabilities inadequate. 
Also, most printing devices still require dedicated 
connections to single computers. However, more 
printers now offer full network accessibility; i.e., 
network printers are capable of offering sophisti
cated services to a wide variety of users and their 
applications. 

The paper entitled "Design of the DECprint 
Common Printer Supervisor for VMS Systems" 
in this issue of the Digital Technical Journal 
describes access methods and interrelations 
among services that provide for these increasingly 
sophisticated data presentation capabilities. 1 The 
printer access protocol (PAP), a service interface in 
the DECprint architecture, couples the printer 
supervisor component to the logical printer for 
presenting data and otherwise controlling a physi-
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cal printing device. The common printer access 
protocol (CPAP) described in this paper provides 
the fundamental services required by a printer 
supervisor for the presentation of data and collec
tion of accounting information. In addition, the 
CPAP supplies easier network access between 
printer supervisors and printers, as well as ancil
lary control of printers for network management 
and device configuration. The CPAP also provides 
services to distribute the processing requirements 
of the printer itself, most notably a mechanism for 
delivery of network font services. This last capabil
ity allows a printer to offer what amounts to vir
tual services, i.e., the ability to configure itself 
dynamically to the demands of a print job without 
the involvement of the printer supervisor. 

This paper begins with a discussion of the 
influence of existing protocols and the DECprint 
architecture on our CPAP design goals. The sections 
that follow present the printer session concepts 
and the functional interface between the protocol 
and applications. We then describe the implemen
tation of the new protocol in a server environment, 
including interoperability, compatibility, and the 
translation of the older PrintServer protocol. At the 
close of the paper, we discuss ongoing standard
ization issues. 

History 
The PrintServer 40, Digital's first fully networked 
printer, was first shipped in 1986. Its local area print 
server (LAPS) protocol was analogous to later 
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printer access protocols. The PrintServer 40 was a 
ground-breaking product for Digital, and the LAPS 
protocol was a major aspect of the PrintServer 
development effort, portions of which date back to 
1983. The LAPS protocol was designed and devel
oped with particular product-oriented deliverables 
in mind, and was optimized for VMS access and 
DECnet transport. While this protocol predates 
much of the architectural work now being imple
mented in Digital's printing products, it was (and 
still is) a significant element of PrintServer archi
tecture and implementation. 

Work began on more general PAPs in 1987 as 
part of the early work on the DECprint architec
ture (known at the time as the Printing Systems 
Model). The specifics of what would become the 
CPAP emerged in late 1988 in two internal papers 
by Brian Reid and Chris Kent of Digital's Western 
Research Laboratory. These papers presented the 
initial design concepts for a Postscript-based, 
TCP/IP-connected (transmission control protocol/ 
internet protocol) print server in a clearly defined 
client-server environment. This print server proto
col came to be known as the Reid-Kent protocol. 

Design Rationale and Goals 
By early 1988, design goals for (and constraints on) a 
PAP were well understood, and had been collected 
and published as part of Digital's Printing Systems 
Model. Chief among these goals and constraints was 
the need to support a variety of data presentation 
protocols, and to allow printers to be connected to 
driving applications by a variety of communica
tions and process-to-process interfaces. 

The increasing corporate commitment to open 
systems made it clear that a PAP would also have to 
couple entities running various operating systems 
across different networks. Thus, the DECprint PAP 
architecture team decided early in the design pro
cess that a PAP should be designed for public 
access; that is, the specification for the protocol 
should be put into the public domain and submit
ted for industry standardization. 

Interoperability is a most serious constraint. 
Digital has a strong tradition of maintaining back
ward compatibility within and among its product 
families. In a distributed processing environment, 
however, backward compatibility takes on the 
added burden of interoperability. Multiple clients 
must communicate with multiple servers, any of 
which can be upgraded to new versions of sup
ported protocols asynchronously. Addressing this 

56 

problem was a major conceptual test in the first 
implementation of a CPAP server. This is discussed 
in more detail in the section The CPAP Server 
Implementation. 

The Reid-Kent protocol met many of the techni
cal design requirements for a new PAP. It was built 
on industry-standard components, and contained 
no proprietary technology that would prevent its 
publication. 

However, certain PAP design goals were not cov
ered by the Reid-Kent protocol in its 1988 version. 

• There was no facility to select a specific page 
description language (POL) for printers support
ing multiple interpreters. 

• There was no method for soliciting the capabili
ties and media available on the printer. 

• The only language supported was English 
( contrary to the corporate guidelines for 
internationalization). 

• Data sent from the printer was not categorized; 
user-specific information was mixed with opera
tor and service data. 

• No means was provided to solicit the status of 
the printer. 

• There was no encoding to discriminate between 
binary and text files. 

However, these flaws were largely omissions 
from the design goals, not fundamental conflicts 
with them. The architecture team decided that the 
Reid-Kent protocol could be extended to address 
these omissions without serious conflict. In fact, 
the necessary extensions were designed to allow 
clients and servers conforming to the original Reid
Kent protocol to remain in conformity with the full 
CPAP specification. 

Architecture 
The CPAP is primarily a communication-oriented 
protocol, i.e., the presentation of its function is 
closely coupled with its encoding. The major syn
tactic features of the CPAP derived from the Reid
Kent protocol are the following. 

• All encodings are ASCII strings. This eases the 
generation of protocol streams and ensures inde
pendence from the underlying communications 
channels. 

• No data fields are fixed length. This provides for 
extensibility of the protocol and eases the gener
ation of a protocol stream. 
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• Multiple channels of communication use the 
same basic format . Common parsing of separate 
channels simplifies implementations. 

• Simple numeric tokens define the operators. 

Session Concepts 
The CPAP architecture defines separate contexts for 
each type of work the CPAP can perform. Each con
text requires that a separate session be established 
for its own tasks, and each session involves the cre
ation and use of a separate network connection 
between the controlling client and the server. Each 
connection identifies the type of session the initia
tor requires. The CPAP defines three different ses
sion types: print, management, and console. 

The set of CPAP operators allowed for a session is 
restricted to those needed to support that type of 
session. All session types have access to printer 
status and configuration information. In addition, 
multiple concurrent sessions are permitted. Print 
sessions and management sessions may have one or 
more virtual circuits active to a printer at a time. 
The use of multiple circuits permits the streaming 
of data to the printer over logically separate chan
nels, thereby eliminating application protocol over
head for the most frequent operations. In contrast, 
console sessions use a single virtual circuit for 
exchange of data with remote terminals. 

Print Sessions Print sessions usually consist of a 
series of documents printed for a user on a given 
host by a printing service (a "printer supervisor" 
as defined by the DECprint architecture). With the 
operators provided by the CPAP, the printing ser
vice can determine the language interpreters, 
printer options, fonts, prologues, and media that 
are currently installed at the server. These opera
tors also provide the current operational state, 
number of jobs queued to the printer, and the cur
rent job status. These features permit the printing 
service to select the printer (server) that can satisfy 
the user's request and to determine a method for 
submitting the job to the printer. 

Once the printing service has begun a session 
and identified itself, it identifies the user and the 
user's job code to the printer. This information may 
be used by the printer to provide usage information 
to a centralized accounting service. The printing 
service can then present documents to the printer. 
A transaction between the printing service and the 
printer establishes which interpreter the printer 
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will use for each document and which virtual cir
cuit will be used for its transmission. 

Selection of the proper virtual circuit for trans
mission of documents to the printer is performed 
by passing tokens from the printer to the printing 
service. The tokens are then mapped to whichever 
virtual-circuit service is being used by both the 
printing service and the print server. This map
ping approach avoids passing network-specific 
information within the protocol. Not only does the 
approach make the CPAP independent of the net
works on which it might run, it ensures that the 
network services need no knowledge of CPAP 
encodings. Such virtual-circuit mapping is criti
cal to allow CPAP client-server processing to be 
implemented in a heterogeneous, internetworking 
environment. 

During the printing of the document, some data 
presentation interpreters (Postscript, for example) 
send data back to the user or print service. In addi
tion, the printer may run out of paper or toner, 
may have a full output tray, or may encounter other 
exception conditions not directly related to the 
interpretation of page description data. The CPAP 
categorizes such conditions and delivers relevant 
messages to the user, the operator, or the event logs. 

Upon completion of the job, the printing service 
is notified of the media used, the number of pages 
printed, and the printer processing time required 
to complete the job. The protocol also includes a 
provision to abort jobs, e.g., an improperly formed 
document that might otherwise hang the printer. 

Management Sessions The CPAP supports certain 
printer services through management hosts. A man
agement host is a network entity (not necessarily 
the same entity as the printing service) with which 
the printer can exchange information or request 
services. Such services include 

• Time service 

• Centralized event logging 

• Centralized accounting 

• Program loading and configuration 

• Font services 

An important aspect of the CPAP is that the 
printer is always passive with regard to initiating 
management services. A candidate management 
host advertises that it has services to offer, and a 
print server accepts or rejects the offer. Once a 
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connection with one or more management hosts 
is established, the printer may use such hosts as 
servers for time synchronization, configuration file 
access, and font lookup. Additional functions for 
these hosts may be loading program images, event 
logging, accounting, and general file access. 

File naming to access general file services is a 
problem that needs special attention if the server 
and the protocol are to maintain independence 
from the host operating systems. Commonly used 
files are identified in the CPAP by reserved tokens, 
such as $CONFIG, $DEFAULTS, $RESOURCES, and 
$SETUP. Arbitrary path names are allowed, but can 
access only a limited domain (from a known root 
directory) to preserve file system independence 
and to maintain security. 

Translation to the host's services is provided 
by the host itself. This permits the printer to be 
served by different hosts using a wide variety of 
operating systems (and their implicitly different 
file-naming conventions and syntaxes) without any 
awareness of a management host's implementation 
by the server. 

Console Sessions A console session is a form of 
printer management. The content of the data 
exchanged during a console session is specific to 
the printer, and is not specified by the CPAP. 
Services performed within a console session might 
include 

• Operator services, such as telling a printer what 
media have been loaded (e.g., by color, weight, 
or transparency), or setting physical printer 
defaults (e.g., duplex versus simplex, or default 
medium selection) 

• Network management configuration services, 
such as controlling domain access to or from 
the printer 

• Troubleshooting or debugging services 

Digital's implementation of console services on 
current PrintServer products conforms to the 
Enterprise Management Architecture. 

Application Program Inteiface 
The functional interface to any protocol provides 
an additional abstraction between an application 
and a protocol. This abstraction answers many of 
today's software application needs, including inter
operability, portability, modularity, and reusabil
ity across multiple architectures. An application 
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programming interface (API) that allows access to 
all CPAP facilities is included in the protocol's 
specification. 

A connection block, which is passed as a parame
ter to all functions, provides support for vari
ous printer types, their device identifications, and 
descriptors for command and data channels. This 
support includes separate command and data 
channels for printers supporting multiple virtual 
circuits or channels. Just as in the case of the data
stream form of the protocol, the API form allows 
separate channels for data and commands. 

A separate command channel allows ease of con
trol flow between client and server. This may 
include the client receiving the server's status or 
events, or the client sending aborts to the server. 
For devices that support only a single channel, the 
generic printer driver can set both command and 
data channels to the same value. For supporting 
multiple jobs active at the same time (job overlap), 
a job identification (ID) parameter is passed with 
all functions. 

To support various message types, the address 
of a read-callback routine is passed to the open 
printer function along with a pointer to read-call
back arguments. These arguments may signal vari
ous events, or may consist of messages for the user, 
operator, accounting, or resources available in the 
printer. 

An early version of the generic functional inter
face was part of MIT Project Athena's Palladium 
Print System. The printer supervisor in Digital's 
LN03R ScriptPrinter product was modified to cre
ate a generic printer interface for both the 
ScriptPrinter device and the PrintServer family. 
This conversion from an API-accessible base took 
one week to execute, whereas it typically takes 
six months of effort to develop a new printer 
supervisor for a device as complex as the 
PrintServer product. 

The CPAP Server Implementation 
The implementation of a protocol gives rise to 
problems different from those related to its design. 
When defining the architecture, one strives to pro
vide an ideal that includes all of the desired features 
in an elegant manner. When performing an imple
mentation, one finds that elegance often has to take 
a back seat to pragmatics. This is especially true 
when the new protocol is intended to replace two 
different protocols in a new version of an existing 
product. Merely implementing the new protocol 
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is not enough-the implementation must some
how coexist with the protocols being replaced. 

Digital's first production implementation of the 
CPAP was targeted for the DEC PrintServer Sup
porting Host software version 4.0, which loads and 
drives the PrintServer family of printers. For the 
rest of this paper, we refer to this software by the 
PrintServer product designation of LPS version 4.0. 

We started the implementation by modifying 
Digital's ULTRIX PrintServer client, which already 
used the Reid-Kent subset of the CPAP, to use 
DECnet network transport and run on the VMS oper
ating system. We then updated the LPS server 
code to permit either DECnet or TCP/IP transport. 
This was accomplished by using the direct-to-port 
communication features of the VAXELN operating 
system. The server establishes a circuit using the 
appropriate transport and then spawns a process 
for dealing with each incoming connection. Thus, 
the same code can service print sessions, manage
ment sessions, and console sessions without con
cern for the type of network transport. 

The CPAP was, by design, directly upward
compatible with the Reid-Kent protocol subset. 
However, Digital's PrintServer offerings prior to 
LPS version 4.0 were LAPS-based, and LAPS was not 
CPAP-compatible. To permit users of existing 
PrintServer printers to continue to use these 
products, we had to find a way for the new CPAP 
implementation to coexist with the older LAPS 
application protocol. We achieved this coexistence 
by having the server perform translations from the 
older protocol to the new one in the server itself. 
When the client establishes the initial connection, 
the server senses which protocol is being used by 
the client system. If the initial message indicates 
the use of LAPS, the server spawns incoming and 
outgoing filters to deal with the incoming connec
tion, and a new internal circuit replaces the 
network connection to handle the interpretation 
oftheCPAP. 

The coding of the LAPS filters was the last step 
in implementation before testing began. The 
PrintServer 20, PrintServer 40, PrintServer 40 plus, 
and the new turbo PrintServer 20 all had to be 
tested using both LAPS and the Reid-Kent subset of 
the CPAP. In addition, the new implementations of 
the management client and the console client on 
the VMS system required verification. This verifi
cation entailed a multitude of tests using the LPS 
symbiont running on older versions of the VMS 
operating system, the newer common print sym-
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biont (CPS), several versions of the ULTRIX oper
ating system, and a source kit version running on 
a Sun Microsystems workstation. 

Unfortunately, this testing uncovered latent 
defects in the implementation of the existing prod
ucts. We had to analyze each of these defects and 
plan corrective action. Since updating the existing 
products in the field is a difficult process (both 
technically and procedurally), we corrected most 
of the defects by altering the server to deal with the 
problems. Retesting was performed over several 
baselevels to ensure that our changes caused no 
regression. 

At one of the early baselevels, the interface 
between the network distribution software and the 
server's Postscript interpreter was updated to use a 
stream-based connection in place of the previous 
packet protocol. This update permitted the new 
CPAP data channel to be mapped by reference to 
the input of the Postscript PDL or any other PDL 
supported by the printer. This change alone per
mitted the performance of the server to be main
tained even when the server was translating from 
the old LAPS protocol to the CPAP. 

In general, development proceeded incremen
tally, i.e., key features were identified and added 
with each baselevel. While this technique limits the 
complexity of producing the product, it raises an 
important business issue. Specifically, the provi
sion of enhanced services in a client-server envi
ronment often exposes aspects of the proverbial 
"chicken-and-egg" situation. There is little call to 
offer enhanced features in a server if clients have 
not been programmed to solicit the features. How
ever, clients are not readily upgraded to solicit 
features that might not be widely available. 

The LPS version 4.0 project team met its backward 
compatibility design goals by including the LAPS-to
CPAP filters. In doing so, they undercut the need 
to provide the enhanced feature support that the 
CPAP was designed to deliver, since existing clients 
(earlier versions) could not avail themselves of 
the added features. In addition, the risks of includ
ing full CPAP support in LPS version 4.0 (possible 
increase in time to market, and the creation or expo
sure of more latent defects in all supported environ
ments) seemed to outweigh the benefits. However, 
a last-minute change to use the new protocol's data 
channel for loading fonts yielded such a large per
formance advantage that resistance to using the 
new features crumbled, and the project team was 
allowed to submit the full protocol to field test. 
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Standardizat'ion 
Network printing became widely available in the 
mid-1980s, but products from different vendors 
were not compatible. Network printing protocols 
were largely proprietary efforts by vendors who 
had developed them for their own printer prod
ucts. Digital 's PrintServer 40 and its LAPS protocol 
were typical in this regard. By the late 1980s, 
network printing was an established and competi
tive technology, but there was still little inter
operability among the various vendors ' products. 

In the absence of printing protocol standards, the 
Internet Engineering Task Force (IETF) formed a 
Network Printing Protocol working group in 
early 1990. This group's charter was to examine 
printing protocols then in existence or under devel
opment, assess their applicability to Internet-wide 
use, and suggest changes. Digital's representatives 
to the IETF working group on the Palladium 
Printing Systems standardization reported the inter
est shown in Digital's Reid-Kent protocol. Thus, in 
July of 1990, Digital submitted a version of the PAP 
that was under consideration by the DECprint PAP 
architecture team. 

Early consideration of this PAP by IETF and the 
LPS version 4.0 implementation effort ran concur
rently. This provided a unique opportunity for 
Digital's implementers to obtain feedback from a 
very knowledgeable architectural community. In 
turn, they could report implementation experi
ences that affected the review and progress of the 
specification towards standardization. Implemen
tations of CPAP clients and servers by companies 
other than Digital are in progress. 

As part of Project Athena's Palladium Printing 
System, the CPAP has been accepted by the Open 
Software Foundation for inclusion in a future 
release of OSF/1. 

A draft of the CPAP is being circulated among 
Internet members for comment. Meanwhile, work 
on future enhancements continues. Work is now in 
progress to specify a superset of the existing pro
tocol that deals with authentication and encryp
tion to strengthen security. This work is being 
done in the spirit of the original migration from the 
Reid-Kent protocol to the CPAP; i.e., the security 
features being added will not adversely impact 
users who do not need the new features. 
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Design of the Turbo 
PrintServer 20 Controller 

The turbo PrintServer 20 controller is a performance enhancement of the original 
PrintServer 20 system controller. The turbo controller was developed to enable 
Postscript code to execute faster and thus improve page throughput for complex 
documents. The RETrACE analysis system was designed to analyze the performance 
of the original PrintServer 20 system and estimate expected performance future 
systems. The turbo controller's processor and its three subsystems for memory, 
write buffer, and bit-map data transfer were selected based on the analysis results. 
Performance tests conducted on both the original and the turbo PrintServer 20 
indicate the enhanced processing performance of the turbo controller. 

In 1988 the turbo controller project was conceived 
as a means of extending the life of the PrintServer 20 
platform by introducing a performance-enhanced 
system controller. The system controller in the 
PrintServer 20 is housed within and powered by 
the printer or "print engine"; it is a concise imple
mentation of a single-board computer containing a 
CPU, a memory subsystem, an Ethernet interface, 
and a printer interface. It supplies an environment 
in which a multitasking software system manages 
communications with remote clients and with the 
print engine, performs data conversion from the 
page description language (Postscript) to bit-map 
images, and provides management of physical print 
engine resources. 

The original controller provided a maximum 
print speed of 20 pages per minute, but this perfor
mance could not be maintained when the docu
ment included complex text, graphics, or images. To 
improve page throughput for complex documents, 
a controller was needed on which Postscript code 
could execute faster. To enhance performance, the 
competition was moving toward controllers based 
on new industry-standard reduced instruction set 
computer (RISC) processors. Therefore, to be com
petitive, Digital's new controller was required to 
improve performance by five to eight times that of 
the original controller, which had been based on 
the rtVAX microprocessor. 

As challenging as the performance improve
ment would be to achieve, budgetary pressures 
forced restrictions on the implementation strategy. 

Digital Tecbriical Jourrzal Vol. 3 No. 4 Fall 1991 

We were to use existing, qualified chips wherever 
possible in order to avoid new part qualification 
costs and application-specific integrated circuit 
(ASIC) development costs. 

Early investigations indicated that the perfor
mance target was indeed achievable with existing 
inexpensive RISC processors, as well as a high
speed Digital proprietary VAX processor. A RISC 
processor would require porting a 2.5-megabyte 
(MB) software system, which was far beyond the 
scope of the project. The highest performance 
VAX processor and the associated support chips, 
which would not cause a problem with the soft
ware system, were far too expensive to be consid
ered. Alternatives were therefore limited to less 
expensive, lower speed VAX processors: the low
risk, 60-nanosecond (ns) CMOS VAX or CVAX pro
cessor was proven, and the higher speed and more 
cost-effective "system on a chip" or soc processor 
was under development. Either choice would have 
a minimal impact on the software system and 
would provide a cost-effective solution. 

The original performance estimates for the CVAX 
and the SOC processors in general-purpose process
ing environments were below the lower bound of 
the performance target. The design team was also 
uncertain of the actual execution characteristics of 
the PrintServer software. For these reasons, it was 
decided to begin the project with a performance 
analysis of the original controller to determine the 
expected performance of a design based on either 
processor. 
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This paper discusses the problems encountered 
during our analysis and the solutions devised by the 
Hardcopy Systems Engineering Group to overcome 
them. The RETrACE tool suite, a performance analy
sis system, is described and the analysis results are 
provided. The paper then discusses the hardware 
architecture of the turbo controller and ends with a 
presentation of the performance results obtained 
for standard Postscript benchmarks. 

Peifornunzce Analysis of the Original 
Controller 
The PrintServer 20 software system consists of a 
VAXELN operating system, an Adobe Systems, Inc. 
Postscript interpreter, and a substantial amount of 
software to manage communications and resources. 
The task of analyzing its performance was compli
cated by two additional factors . First, the software 
system's behavior depended on the characteristics 
of the user's Postscript document. Postscript is 
an interpreted programming language. Thus, like 
any computer program, low-level machine perfor
mance can be dramatically affected by the program 
being executed. Second, and more painful, the 
proprietary nature of the Postscript interpreter 
prohibited us from obtaining code sources, and dis
cussing its internal architecture with engineers 
from Adobe Systems. 

While the characterization of a complex, par
tially proprietary, real-time software system is 
difficult, it is not impossible. Programmer counter 
address (PC) traces have offered many systems 
designers very detailed insight into the execution 
performance and characteristics of systems. PC 
traces provide a means to observe a system at a 
macroscopic level, allowing a view of the complex 
interactions between the hardware and software 
systems. System designers can use captured address 
traces from current machine performance to extra
polate expected performance of future systems and 
help them make architectural trade-offs. 

The RETrACE Analysis System 
The RETrACE tool suite was created to provide 
a nonintrusive means of capturing real-time PC 
traces and analyzing the captured addresses. The 
tool suite consists of both hardware and software 
components. 

In order to keep expenses at a minimum, existing 
hardware was used wherever possible. Only one 
small module had to be developed to complete the 
RETrACE hardware platform. 
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The RETrACE hardware consists of the following: 

• Two interconnect boards boot and operate a 
system controller on a table top. Developed as 
part of the original PrintServer 20, the boards 
connect the controller to a print engine and an 
Ethernet. 

• The PrintServer 20 server controller was modi
fied for use as an intelligent trace buffer system. 

• The PrintServer 20 server controller's memory 
capacity (12MB) was extended using the standard 
4MB memory module used on the Kanji version 
of the PrintServer 20. 

• The RETrACE mother board was developed specif
ically for this tool suite. It contains a 32-bit wide, 
first-in, first-out (FIFO) buffer and two loosely 
coupled state machines. 

• A standard PrintServer 20 system controller and 
print engine were used as the "system under 
observation.» 

• The console terminal was selected from the stan
dard VT series of terminals. 

A diagram of the RETrACE hardware system is 
shown in Figure 1. 

The RETrACE mother board performed the data 
capture, using the modified controller's memory as 
a large buffer. The board monitored the processor 
bus of the system under observation by copying 
all addresses and communications between the 
rtVAX processor and its external floating-point 
unit. This copied data was placed into a FIFO buffer 
that in tum was written into the memory of the 
modified controller using a direct memory access 
(DMA) device. Since a standard PrintServer 20 con
troller and its optional memory expansion provide 
16MB of storage, approximately 3 seconds of real
time execution address traces could be captured. 
The data capture continued until the trace buffer 
memory was exhausted, at which point the data 
was uploaded over a network connection to a VAX 
VMS computer for analysis. 

Due to the design of the original PrintServer 20 
system, many large data areas and code sections 
were mapped into different explicit memory spaces. 
This subdivision provided a means of determining 
which code function was executing in any given 
segment of the address trace. With a simple statisti
cal study it was possible to generate software exe
cution histograms and to determine many of the 
characteristics of the system, including translation 
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buffer, floating point, instruction stream (I-stream) 
versus data stream (D-stream), read versus write, 
and interrupt performance. Hit rates for fully asso
ciative caches of separate I-stream and D-stream, 
as well as a combined I- and D-stream cache, were 
also provided. These hit rates were determined for 
first-level write-through caches from 128 bytes up 
to 256 kilobytes (KB). Thus an upper bound for an 
optimum-performance cached memory system 
was determined. 

Both processors under consideration possessed 
the ability to access a memory subsystem at speeds 
greater than that achievable with existing low-cost 
dynamic random-access memory (DRAM) technol
ogy. The performance numbers predicted by the 
processor groups indicated that cached memory 
subsystems were required. Because these sub
systems can be expensive and their performance is 
subject to the peculiarities of the software that 
executes on them, a multilevel memory simulator 
was developed to allow accurate studies to be per
formed on proposed cache architectures. 

The simulator was configured at run-time to sim
ulate an arbitrary hierarchical memory system that 
was N levels deep, with an arbitrary size, associa
tivity, performance, and behavior at each level. 
The memory level nearest the processor was 
defined as the first level, and the last as main mem
ory. The simulator processed a trace file by walk
ing each address in the file through the memory 
hierarchy starting nearest the processor at the first 
level. If a copy of the address was found at a given 
memory level, then a hit was signaled and the next 
address was processed. If that address was not 

Digital Tecb11icalJournal Vol. 3 No. 4 Fall 1991 

found, then a miss was signaled and the simulator 
would proceed to the next level of memory in the 
hierarchy. 

Whenever a hit occurred at a given level, it 
was logged and all levels of memory in the hier
archy above it would allocate entries based on 
their defined allocation rules. While this procedure 
indicated the memory system performance for 
a proposed architecture, the overall system per
formance was still unknown. Using a simple rule 
based on the average execution time per address 
for the existing controller, and scaling that time 
based on the clock speed increase of proposed pro
cessors, an overall performance number was esti
mated for a system based on either processor with 
any arbitrary memory architecture. 

Benchmark Selection 
The RETrACE tools suite provided the components 
required to study the execution characteristics of 
the PrintServer system without changing the char
acteristics of its normal operation. The only diffi
culty was to narrow the focus of the benchmark list 
to provide a representative sample of Postscript 
documents to print. Due to time constraints, the 
list was limited to five benchmarks. 

BM 1 The BM 1 benchmark stresses those aspects of 
the system that convert the mathematical represen
tations of characters to bit-map representations, 
which comprise the form that is printed. This 
benchmark uses several fonts in standard character 
orientations, stressing both very large and small 
character sizes. 
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BM2 Of the same type as BMl, this benchmark 
stresses the transforms from mathematical to bit
mapped character representations; however, the 
characters printed are at arbitrary orientations 
with sizes ranging from typical to very small. 

BM3 The BM3 benchmark is one of the standard 
benchmarks for Postscript performance qualifica
tion. It is a simple 41-page document that contains 
several different fonts. The benchmark is designed 
to characterize the standard text-handling per
formance of a printer. This benchmark is printed 
twice to ensure that all characters to be printed 
have been converted from mathematical outlines 
to bit-map representations of the characters. Thus 
the focus of the benchmark is to move the text 
data through the system, to copy the character bit 
maps to the lMB region in memory that contains 
the image to be printed, and to print the image. It 
should be noted that this is the only benchmark 
that printed at engine speed on the PrintServer 20 
system controller powered by the rtVAX system. 

HOUSE A binary image file, the HOUSE benchmark 
was used to stress the communications aspects of 
the PrintServer system. 

SCHEM The SCHEM benchmark was a vector repre
sentation of a logic schematic. This benchmark was 
used to stress the Postscript interpreter's ability to 
interpret nonnative Postscript code and to exhibit 
the characteristics of drawing vectors. 

Analysis Results 
The thrust of the analysis was to provide credible 
evidence to support architectural and implemen
tation trade-offs. The major areas of focus were 

• Memory system organization 

• Printer interface performance 

• Main memory bandwidth 

• Overall system performance 

Memory System Organization The statistical anal
ysis of the trace information provided many clues 
to direct our investigation toward the optimum 
memory system architecture. The overall read-to
write ratio for the observed benchmarks ranged 
from as low as 4.3:1 up to 5.5:1, which means for 
a write-through cache system with a theoretical 
100 percent read hit rate, the writes would degrade 
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the overall hit rate to approximately 81 to 84 per
cent. As the analysis of the data progressed, it was 
understood that the write data must be studied 
very closely since it could have a dramatic impact 
on the overall cache miss rate. During the cache 
model simulations, the hit rates of the I-stream 
were between 85 to 90 percent. However, the 
D-stream hit rates were between 35 to 45 percent, 
with writes accounting for 60 to 90 percent of the 
total D-stream misses. To achieve the greatest posi
tive effect on the hit rate of the system, enhance
ment of write-miss performance was the most 
advantageous. The two options to improve this per
formance were either to implement a write-back 
cache or to add a write buffer to the system. Further 
cache simulations showed that a write buffer would 
provide an 8 to 16 percent overall system perfor
mance improvement, which was equal to that of a 
write-back cache. The write buffer, however, was 
the more straightforward solution to implement. 

Cache analysis revealed that the processors 
required different memory architectures. The CVAX 
had an internal IKB, two-way set associative cache. 
This was to be configured as a mixed I- and D-stream 
cache. An additional 32KB to 64KB, two-cycle write
through cache was to be added externally. This 
would also be configured as a mixed I- and D-stream 
cache. A single-longword, two-cycle write buffer 
would provide enough buffering to reduce the 
dramatic impact of write misses. The soc was 
proposed to have an internal write-back cache 
between 5KB and 8KB, with each IKB region mak
ing up a single set. Cache simulations indicated 
that with a minimum internal mixed I- and D-stream 
cache of 5KB, five-way set associative, an external 
data cache would have to be over 64KB to have even 
a negligible effect on overall system performance. 
Therefore no external cache was recommended. To 
mitigate the write-miss penalty, a two-cycle write 
buffer of 4 to 6 longwords was recommended. 

As an acceleration technique, the original 
PrintServer 20 controller contained a memory 
access capability that allowed data written to mem
ory to be logically ORed with data that was already 
stored. This technique was particularly useful when 
the software system was writing the image that was 
ultimately printed. As part of the process of gener
ating an image to print, the individual characters 
appearing on a page must be copied from a region 
of memory called the font cache to another region 
called the frame buffer. The frame buffer contains 
the actual data that is sent to the print engine. 
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To complicate things, the data written to the frame 
buffer must be able to overlay data that may already 
be there, thus requiring a logical OR function. 

When a document was printing at or near the 
maximum engine speed of 20 pages per minute, 
analysis showed this low-level copying function 
consumed approximately 20 percent of the total 
system time allotted to generate and print one page. 
Thus a logical OR function in the memory system 
would reduce the number of memory data cycles 
from "2 reads 1 write" to "1 read 1 write," and 
reduce the impact from a second read occupying a 
useful cache location. Without this capability, the 
degradation would be between 5 and 10 percent of 
overall system performance when printing at or 
near 20 pages per minute. Therefore memory capa
bility with a logical OR function was recommended. 

Printer Interface Performance When a PrintServer 
20 is printing, every page that exits the printer 
requires the lMB frame buffer to be copied from 
memory to the print engine interface. Changing a 
program-controlled printer interface to one driven 
by a DMA device provided two significant advan
tages. The first was to reduce the real-time require
ments on the PrintServer software system, and the 
second was to allow for a limited degree of paral
lelism on the controller. The parallelism was due to 
the ability of the processor to continue to execute 
from its cache memory system while the DMA 

device accessed memory. The processor only stops 
executing when a cache miss occurs. 

Main Memory Bandwidth With a CVAX processor 
configured as recommended in the section Memory 
System Organization, the main memory system 
bandwidth requirement of the processor was 
60 percent. For the soc, it was 70 percent when 
an existing DRAM controller was used. A DMA

driven printer interface required 15 percent, and 
an Ethernet interface required nominally 4 percent 
with bursts up to 20 percent. Each subsystem was 
scrutinized to reduce its required memory band
width. The resulting recommendation was to add a 
32-bit bus to the memory subsystem to provide a 
dedicated channel for all data being sent to the 
printer interface. This provision would reduce 
required memory bandwidth for the printer inter
face from 15 percent to about 7 percent. The sys
tem would then have a nominal memory bandwidth 
requirement of 71 percent for a CVAX system and 
81 percent for an SOC. 
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Design of the Turbo PrintServer 20 Controller 

Overall System Performance The execution char
acteristics of the original PrintServer 20 provided 
some interesting surprises. Most floating-point 
calculations were performed in double precision; 
and even more interesting, for each floating-point 
operation, there was a floating-point conversion 
from single to double precision, and then back 
again. Since the precise operations were not 
required, a simple compiler switch removed the 
conversions and provided a 3 percent overall sys
tem performance improvement for floating-point
intensive Postscript documents. A second surprise 
came from the results of the BM3 benchmark, 
which indicated a translation buffer hit rate of 
85 percent. At the time of the discovery, the 
PrintServer 20 was configured with a standard 
MicroVAX processor; however, by substituting an 
rtVAX, which uses one less memory access to refer
ence its page tables, an 11 percent system per
formance improvement was achieved. With this 
improvement, the rtVAX processor provided 
enough power to allow the original PrintServer 20 
to ship with its 20-page-per-minute designation. 
This information led the turbo controller designers 
to determine that the translation buffer of the soc 
would be large enough for all the entries required. 

Results 
The final analysis revealed that the expected perfor
mance of a CVAX or soc processor would place 
either design on the low side of the performance 
requirement. Therefore close attention to detail 
would be required during the implementation 
phase of the project as every ounce of performance 
mattered. The expectation was to have a choice 
between an soc processor with a 40-ns cycle time 
and a CVAX processor with a 60-ns cycle time. The 
performance improvements of the two processors 
are compared in Table 1. 

Table 1 Performance Improvement Relative 
to Original PrintServer 20 Controller 

soc CVAX 
Benchmark Processor Processor 

BM1 4.7 3.7 
BM2 4.9 4.0 
BM3 4.3 3.3 
HOUSE 4.9 4.2 
SCH EM 4.7 3.7 
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As the project schedule progressed, the risk asso
ciated with the new SOC processor decreased. As 

this risk window collapsed, it was understood that 
a turbo controller based on the soc processor 
would not only perform better, but would also cost 
less as it would not require an external cache. 

Turbo Controller Hardware Design 
The turbo controller was destined for a relatively 
high-end printer. Therefore the hardware architec
ture had to provide maximum performance, even 
though this implementation would increase costs. 
Based on the results obtained during RETrACE analy
sis, the hardware design had the following imple
mentation goals: 

• The soc would provide the CPU, the floating
point accelerator (FPA), and the cache subsystem. 
No second-level cache would be implemented. 

• A four- to six-entry write buffer would be 
implemented. 

• The transfer of bit-map data to the print engine 
would require a 32-bit OMA subsystem with scan
erase capability. 

• The memory subsystem would support OR-mode 
memory access by the CPU and scan-erase access 
by the OMA controller. 

Although both the SOC and rtVAX chips comply 
with the VAX architecture standard and both are 
conceptually very similar, they have significant dif
ferences in the bus interface. For example, the 
soc uses a quadword cycle (one 32-bit address fol
lowed by two 32-bit data reads) to fill one internal 
cache block, while the rtVAX processor, which does 
not support caching, does not use this type of 
cycle. Also, the clocking system on the soc was 
enhanced, and the timing relationships between 
signals were modified to improve performance. 

The changes to the SOC bus interface, plus the 
required functional changes revealed by RETrACE 
analysis, meant that very little of the original 
PrintServer 20 controller design could be applied 
to the new controller. One of the first questions to 
be answered before the design of the turbo con
troller could begin, was whether or not one or 
more ASICs would be required for the design. This 
question had to be answered for three subsystems: 

• Main memory 

• Write buffer 

• Bit-map data transfer subsystem 
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In each case existing chips satisfied some of the 
requirements for the subsystem. In the end these 
chips met all our requirements, but only because 
they were used in ways not originally intended by 
the chip designers. 

Main Memory 
Since the soc has a bus interface that is compati
ble with the CVAX chip, the most obvious chip to 
use as a main memory controller was the CVAX 
memory controller (CMCTL) chip.1 It responds to all 
bus cycles generated by the soc, and since it was 
already used on a number of platforms supported 
by the VAXELN operating system, its use greatly 
simplified porting VAXELN to the turbo controller. 
However, the turbo controller requires two special 
memory modes that are not provided directly by 
the CMCTL, namely OR mode and scan-erase mode. 
It was essential to devise a way to include these 
two modes if the CMCTL were to be used. 

OR-mode memory is a technique used to improve 
performance during the writing of the page bit 
map into memory (scan conversion). During nor
mal memory operation (called replace mode), the 
destination operand in memory is replaced by the 
source operand. During an OR-mode write cycle, 
the destination operand is modified as follows: 

• For each logical zero in the source data being 
written, the corresponding destination bit in 
memory remains unchanged. 

• For each logical one in the source data being 
written, the corresponding destination bit in 
memory is written with the corresponding bit in 
the pattern register. 

• The pattern register is a 32-bit register which 
determines the "color" pattern of the "ink" being 
written on the page. 

Figure 2 shows a portion of the logic between 
the CMCTL and the memory array that implements 
the OR-mode function in hardware. The OR-mode 
operation is accomplished by inverting the source 
data and connecting it to 32 independent write 
enables of the memory array. When a zero is writ
ten, it is inverted and the write cycle for that bit 
becomes a read cycle, thus preventing any change 
to the memory contents. When a one is written, it 
is inverted and the write is allowed to occur, but 
the data actually written depends on the value pre
viously written into the pattern register. 
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Two features of the CMCTL chip make it possible 
to implement OR-mode memory. First, its 64MB 
address space is divided into 4 arrays of 4 banks 
(16 banks total). Second, the CMCTL chip can selec
tively disable parity checking on an array. 

The large address space of the CMCTL allows the 
use of 2 arrays for replace mode and 2 arrays for 
OR mode, since the turbo controller supports up to 
32MB of memory. The control signals of the two 
sets of arrays are combined such that OR mode and 
replace mode access the same physical memory, 
though in different ways. Parity error detection 
is disabled on the OR-mode arrays; thus a read
through OR-mode address space cannot cause a par
ity error. This is necessary because OR-mode write 
cycles may corrupt parity. Normally any bit map 
created using OR-mode write cycles is read using 
OR-mode read cycles. 

The other special mode required for the main 
memory system is called scan-erase mode. It is an 
operating mode designed to improve bus utiliza
tion during the transfer of the bit map from main 
memory to a FIFO buffer connected to the printer 
data lines. This mode is made possible by a side 
effect of the error-correcting code (ECC)/parity 
generation logic in the CMCTL. Any time a masked 
write occurs (any write other than an aligned long
word, such as a byte write), the destination long
word must first be read by the CMCTL, then 
combined with the bytes to be written in order 
to generate the parity or ECC check bits for that 
longword. 
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Three operations occur during a single scan
erase cycle. Refer to the circuit drawing in Figure 3. 

1. The bus master asserts the signal's "bit-map 
load" and "bit-map erase" and requests a masked 
write. The CMCTL performs a read, and the bit 
map is read onto the memory data bus_ 

2. Bit-map data is automatically transferred from 
the memory data bus into the FIFO buffer. 

3. The CMCTL performs a write. However, since 
the bit-map erase signal has disabled the data 
path and the pull-down resistors have set the 
data-in lines to all zeros, the write cycle, which 
was intended by the designers of the chip as a 
masked write, has in fact become a memory 
clear operation. 

Write Buffer 
The LR3220 chip was chosen as the base for the 
write buffer subsystem. It provides a six-entry FIFO 
buffer for address, data, and byte mask and detects 
whether the processor has requested a read at a 
memory location for which a write is still pending. 
It also supports two operating modes: LR3000 
mode and Harvard mode. 

If it were not for the Harvard-mode feature, it 
would have been more difficult to include the 
LR3220 chip into the turbo controller. The LR3000 
processor, for which this chip was designed, has 
staggered address timing. Some of the address and 
byte-mask bits are asserted on the falling edge of 
the clock, and the remaining bits are asserted on 
the rising edge of the clock. When the LR3220 chip 
is configured in LR3000 mode, the processor sub
system must meet these timing requirements. 
However, when the LR3220 chip is configured in 
Harvard mode, all address, data, and byte-mask 
information is read at the same rising clock edge. 

The basic strategy for including the write buffer 
into the turbo controller was to insert the write buf
fer between the SOC and the rest of the system as 
shown in Figure 4. The SOC would issue read and 
write requests to the write buffer, and the write 
buffer would issue read and write requests to the 
rest of the system. During CPU cycles the soc and 
the write buffer have a master-slave relationship 
in which the soc is the master. The relationship 
between the write buffer and the rest of the system 
is also a master-slave relationship; however, the 
write buffer is the master. In fact, the write-buffer 
output interface must look almost identical to the 
soc. 
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Figure 3 Scan-erase Circuit 

The structure of the write-buffer subsystem is 
shown in Figure 5. The bus interface unit responds 
to read or write requests from the soc. During 
write cycles, the bus interface writes the data into 
the LR3220 chip and immediately alerts the soc to 
terminate the cycle quickly Whenever one or more 

entries in the LR3220 chip have data, the bus cycle 
generator (BCG) removes the next entry and issues 
a write request to the appropriate subsystem. 

The write-buffer subsystem allows the soc to 
"read around" the write buffer, provided the address 
being read does not have a pending write in the 
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Figure 4 Interconnection of Turbo Controller Subsystems 
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LR3220. To handle this, the BCG includes an arbitra
tion circuit. When the soc requests a read cycle, 
the bus interface unit of the write buffer passes 
the request to the BCG. The BCG responds once 
it has completed any write cycle currently in 
progress, provided that the address to be read does 
not have a pending write in the write buffer. When 
the slave device being read acknowledges the BCG, 
the acknowledgment is passed back to the bus 
interface and finally to the soc to terminate the 
cycle. The BCG then resumes its task of removing 
entries from the LR3220 chip and issuing writes to 
the rest of the system. 

In order to maintain data coherency, the write
buffer subsystem enforces some additional 
protocols. 

• All writes to any location other than main 
memory require a write-flush cycle; that is, the 
bus interface must wait until the LR3220 chip 
is empty before writing the data to it. Further
more, the bus interface must wait until the BCG 
has finished the cycle before it acknowledges the 
soc and allows it to perform the next cycle. 

• All reads to any location other than main mem
ory require a read flush, which has the same 
restrictions as a write flush. These restrictions 
are required to avoid the possibility of reading 
around a pending 1/0 space write, which often 
has side effects to other addresses. 

• The write-buffer subsystem must pass all DMA 
bus transactions to the soc to ensure that all 
cached memory locations that are modified by 
DMA cycles have their corresponding cache 
entry invalidated. 
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Bit-map Transfer Subsystem 
The bit-map transfer subsystem transfers bit-map 
data, created by the Postscript interpreter, to the 
print engine. It is composed of the 32-bit DMA con
troller, a FIFO subsystem, and scan-erase logic in 
main memory as described in the section Main 
Memory. 

The main requirements for the 32-bit DMA con
troller were 

• 32MB address range 

• Ability to transfer 32 bits at a time 

• Ability to transfer the frame buffer forward 
(incrementing the source address) or backward 
(decrementing the source address) 

None of the available DMA controller chips met 
all our requirements, but the AMD 9516 universal 
DMA controller (UDC) met some of them. The UDC 
is a 16-bit DMA controller with a 16MB address 
range and the ability to increment or decrement the 
source address. There were two drawbacks to the 
use of this chip. The software would have to ensure 
that the frame buffer was always within the lower 
16MB of memory, and the UDC would use twice as 
much bus bandwidth since it could transfer only 
16 bits at a time. 

It was proposed that the UDC could be used as a 
full 32-bit DMA controller if it was connected to the 
bus "incorrectly" by shifting the data/address lines 
to the left by one bit. That is, data/address line O on 
the UDC would be connected to data/address line 1 
on the bus; data/address line 1 of the UDC would be 
connected to data/address line 2 on the bus; etc. 
This type of connection doubles the address range 
of the chip and causes the source address on the 
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bus to increment by 4 bytes (32 bits) instead of 
2 bytes (16 bits). 

This decision had a few implementation impacts. 
For example, the register definitions were now 
incorrect, since all the bits in all the registers were 
shifted one bit to the left. However, once the soft
ware was modified to compensate for this, the UDC 
functioned properly as a 32-bit OMA controller. 
When combined with the scan-erase feature of 
main memory, it allowed us to achieve our bit-map 
transfer goal of reading 32 bits from memory, load
ing it into the FIFO subsystem, and clearing the 
memory location, all in a single OMA cycle. 

Performance 
In this section, the performance of the original 
PrintServer 20 is compared to the enhanced perfor
mance of the turbo PrintServer 20. 

Except for performance, the original PrintServer 
20 and the turbo PrintServer 20 have identical func
tional capabilities. Table 2 lists the five functional 
subsets that were characterized for performance 
on both printers. The first four functional subsets 
were rated using the Postscript real-time operator; 
they measure the elapsed CPU time needed to 
complete a test. The last functional subset was 
rated according to the rate of pages exiting 
the printer. The term "DECnet/DPS" refers to the 
DECnet job (a job is one of several multiprocessing 
tasks running on the controller) and the "dis
tributed PrintServer software" job. The term 
"printer system" refers to the complete printer 
system, including the Postscript job and the print
ing overhead jobs. The printer system was rated 
according to the rate of pages exiting the printer. 

Table 3 reports the general attributes of the five 
files that were run with the RETrACE system and 
characterized for performance. 

Table 3 Benchmark File Attributes 

File Name General Attributes of File 

BM1.PS Contains 39 pages of text with 
13 fonts of various sizes. Some 
text st rings are at varying angles. 

BM2.PS Contains 1 page of spiral text 
of various point sizes. 

BM3.PS Contains 41 pages of text with 
5 fonts. 

HOUSE.PS Contains a 1-page bitonal image 
of 3000 blocks (DECnet limited). 

SCH EM.PS Contains a 65-page schematic 
of graphics (vectors) and text. 

Math Operators Peiformance of the 
Postscript Job 
Figure 6 illustrates the controllers' performance 
results in math operations per second. The test 
determines the time needed to perform 50,000 
primitive math operators (e.g., adding two num
bers 50,000 times) during a Postscript test docu
ment. The real-time operator reads the current 
time, and the repeat construct repeats the math 
operator. This test measures the performance of 
the CPU only. 
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Table 2 Functional Subsets of the Printers KEY: 

Functional Subsets Characterization 

Postscript job Math operations per second 

Postscript job 

Postscript job 

DECnet/DPS jobs 

Printer system 
excluding 
DECnet/DPS 

70 

Text: characters per second 

Graphics: vector inches per 
second 

DECnet/DPS: kilobytes per 
second 

Image printing: square 
inches per second 

D ORIGINAL CONTROLLER 
• TURBO CONTROLLER 
TURBO~ 6.7 x ORIGINAL CONTROLLER 

Figure 6 PostScriptjob Performance with Math 

Text Peiformance of the Postscript Job 
Figure 7 compares the text performance of the 
Postscript job on the original controller and the 
turbo controller. The test determines how long it 
takes the Postscript job to compose 250,000 equally 
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Figure 7 Postscript Job Performance with Text 

sized characters to the page buffer in memory, 
which eventually is sent to the print engine to be 
printed. 

Graphics Peiformance of Postscript Job 
An important means of characterizing graphics per
formance is in vector inches per second. Figure 8 
shows the results obtained by running a Postscript 
vector program in which all vectors are at 
45 degrees and vector lengths are from 0.1 inch to 
3 inches. 
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Figure 8 Postscript Job Performance 
with Graphics 
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Image Performance 
The image test characterized the complete printer 
system, including the Postscript job and the print
ing overhead jobs, but excluding the DECnet/DPS 
time required to transfer an image file to a printer. 
Three one-square-inch bitonal images at device 
resolution were placed into the user dictionary 
and were used repeatedly during the performance 
measurement. The result of using these precached 
images was to eliminate the DECnet and DPS soft
ware time that would be required to transfer a full
page image from a host to the printer. Performance 
was measured by printing 10 pages of 80 square 
inches of image per page. 

The pages were printed landscape and portrait 
to measure the image performance both on axis and 
off axis. (On axis means that the printer sequen
tially prints all bits of a word from the image on a 
single scan line. Off axis by 90 degrees means that 
the printer prints one bit from each word and does 
not print the next bit in the word until it is at 
the same position on the next scan line.) Figure 9 
shows the results of the image performance test in 
square inches per second. 
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Figure 9 Image Performance Measurement 
of the Printing System 

DECnet/DPS Jobs Peiformance 
DECnet/DPS transfer rates can be ignored for text 
and graphics files, but these rates can consume 
most of the time needed to print large image files. 
For example, a single, letter-size page of image 
contains more than lMB of image data, but the 
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corresponding Postscript file contains more than 
2MB. Because the image data is represented in Amer
ican standard code for information interchange 
(ASCII) hexadecimal characters in Postscript, 8 bits 
of the Postscript file are needed to represent 4 bits 
of image data. 

To measure DECnet/DPS, a PostScript file of IMB 
of comments was sent to the printer. The clock was 
started when the beginning of the file was received 
by the Postscript interpreter and stopped when the 
end of the file was received. The assumption of this 
test method was that the Postscript interpreter can 
parse comment lines much faster than DECnet/DPS 
can transfer them. 

The DECnet/DPS transfer rate is basically propor
tional to the slower of the host and printer proces
sors. Figure 10 shows the DECnet/DPS results. 

RETrACE Benchmark Files 
The benchmark files listed in Table 4 are charac
terized both by the elapsed time from file arrival 
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Figure JO DECnet/DPS Jobs Performance 

to file printed and by the amount of CPU time used 
to print the job. For example, in the BM3 bench
mark, the speed is limited by the 20-page
per-minute print engine, but the CPU time needed 
to print the file can be used as a performance 
measurement. 

Summary 
The turbo controller enhanced the performance of 
the PrintServer 20 printer system. Its design was 
prompted by the need to maintain print speed 
performance for complex documents containing 
text, graphics, and images. The RETrACE system was 
designed to analyze the PrintServer 20 system to 
determine which architectural changes would pro
vide the greatest improvement in Postscript perfor
mance. By optimizing hardware only in areas where 
it was truly worthwhile, we were able to use exist
ing chips and reduce development costs. The sub
systems of the turbo controller hardware that 
were optimized as a result of this analysis were 
the processor (SOC which provided CPU, floating
point accelerator, and cache subsystem), a memory 
subsystem with OR-mode and scan-erase access, 
a write-buffer subsystem, and a 32-bit DMA sub
system. Results of the performance tests for five 
benchmarks, including Postscript jobs, indicate the 
levels of enhanced performance. 
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Table 4 Benchmark Files Characterized by Elapsed Time and CPU Time (Seconds) 

Benchmark Original Turbo Original Turbo delta delta 
File CPU CPU Elapsed Elapsed CPU Elapsed 

BM1 7585 1707 7735 2050 4.4 3.8 
BM2 238 51 241 51 4.7 4.7 
BM3 56 15 128 120 3.7 1.1* 
HOUSE 67 15 106 31 4.5 3.4 
SC HEM 2802 625 3073 675 4.5 4.6 
•umited by engine. 
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make effective use of the VMS operating system. 

X WINDOW SYSTEM TOOLKIT: 
1he Complete Programmer's Guide 
and Specification 
Paul]. Asente and Ralph R. Swick, 1990, softbound, 
1000 pages, Order No. EY-E757E-DP-EEB ($44.95) 

This book consists of two parts, "Programmer's 
Guide" and "Specification." "Programmer's Guide" 
describes how to use the X Toolkit to write 
applications and widgets, and includes many 
examples. Each chapter in this part contains an 
application writer's section and a widget writer's 
section. Application programmers need to read the 
widget writer's sections only if they are curious 
about what is going on behind the scenes; 
widget programmers should read both sections. 
"Specification" provides a complete and concise 
description of every component of the x Toolkit 
Intrinsics, as standardized by the MIT X Consor
tium. The level of detail in this part is sufficient 
to enable a programmer to create a new imple
mentation of the x Toolkit. 

PRODUCTION SOFIWARE TIIAT WORKS: 
A Guide to the Concurrent Development 
of Realtime Manufacturing Systems 
John A. Behuniak, Iftikhar Ahmad, and 
Ann M. Courtright, 1992, softbound, 204 pages, 
Order No. EY-H895E-DP-EEB ($24.95) 

This is a practical guidebook for manufacturing 
managers and process engineers who must develop 
better process methodologies to stay competitive 
and for developers of real time manufacturing 
software who need to cut time and costs from their 
work. The presentation, which provides useful 
advice and easy-to-follow procedures, addresses 
three basic tasks of real time software development 
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in a manufacturing plant: (1) managing the design 
of the system; (2) setting up and managing a 
development organization; and (3) implementing 
tools for successful completion and management. 

UNIX FOR VMS USERS 
Philip E. Bourne, 1990, softbound, 368 pages, 
Order No. EY-C177E-DP-EEB ($28.95) 

This book emphasizes the practical aspects of 
making the transition from the VMS to the UNIX 

operating system. Every concept presented is 
illustrated with one or more examples, comparing 
how to perform a particular task in each of the 
two operating systems. The book is organized in a 
logical order and covers the following topics: fun
damental concepts to be grasped before touching 
the keyboard, the first terminal sessions, the first 
commands, editing, communicating with users, 
resource utilization, using devices, more advanced 
commands, using high-level languages, program
ming the operating system, text processing, and 
networking. Appendixes provide extensive cross
reference tables to make this a valuable reference 
tool for even the experienced UNIX user. 

LOGISTICAL EXCELLENCE: 
It's Not Business as Usual 
Donald]. Bowersox, Patricia]. Daugherty, 
Cornelia L. Drogue, Richard N. Germain, and 
Dale S. Rodgers, 1992, 300 pages, 
Order No. EY-H953E-DP-EEB 

This book focuses on the interpretation of research 
findings that have been compiled to help managers 
who seek to improve logistical competency within 
their organization. It provides a sequential model, 
the best practices of "excellent" logistics managers 
with supportive statistical evidence, and extensive 
coverage of Electronic Data Interchange in the 
logistics process. It also includes a brief overview 
of the expanding role that logistics has recently 
played in the overall corporate strategy of increas
ing speed and quality. To facilitate interest and ease 
of reading, an action-oriented case dialogue runs 
throughout the eight chapters. 

WRITING VAX/VMS APPLICATIONS USING 
PASCAL 
Theo de Klerk, 1991, hardbound, 748 pages, 
Order No. EY-F592E-DP-EEB ($39.95) 

Written for the professional application program
mer on the VAX/VMS operating system using the 
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VAX Pascal programming language, this is the first 
book to actually discuss the construction of real 
VMS applications. It sets forth a methodology for 
producing high-quality, professional VMS appli
cations by focusing on the aspects of the VMS 

operating system crucial to every well-written 
application. 

TIIE DIGITAL GUIDE TO SOFIWARE 
DEVELOPMENT 
The staff of the Corporate User Information 
Products (CUIP/ASG), Digital Equipment 
Corporation, 1989, softbound, 239 pages, 
Order No. EY-C178E-DP-EEB ($27.95) 

THE DIGITAL GUIDE TO SOFIWARE DEVELOPMENT 

is the first published description of the method
ology that Digital uses to design and develop its 
software. For the engineer and other professionals 
associated with the creation and marketing of 
software applications, this book gives a rare look at 
the practices of an industry leader and provides a 
model for others who wish to introduce software 
engineering methods and tools into their own 
companies. Also discussed are the use of selected 
VMS case tools to expedite the process; the roles of 
teams and team leaders; the use of review meetings 
and documents; and formal procedures for testing 
and maintenance. The guide includes numerous 
diagrams and tables, clear guidelines for the coding 
and documentation of software modules, a listing 
of related VMS documentation, and coding guide
lines for VAX c. 

DIGITAL GUIDE TO DEVELOPING 
INTERNATIONAL SOFIWARE 
The staff of the Corporate User Information 
Products (CUIP/ASG), Digital Equipment 
Corporation, 1991, softbound, 381 pages, 
Order No. EY-F577E-DP-EEB ($28.95) 

This book introduces the ground-breaking pack
aging and design guidelines recommended by 
Digital for products destined for overseas markets. 
Already used by more than 400 independent soft
ware vendors and development groups, as well as 
by Digital engineers, this book offers an approach 
that greatly simplifies the steps required to adapt 
software to local markets once the parent product 
has been released. The book features a description 
of Digital's international product model, a scheme 
for separating the core functions of a product from 
those that require translation or modification for 
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specific markets. Also included are guidelines for 
developers working in DECWindows, VMS, and 
ULTRIX environments; special considerations 
involved in preparing a product for multibyte Asian 
languages or for multilanguage environments; and 
appendixes with information on the systems issues 
in computer architecture. 

USING MS-DOS KERMIT: Connecting your 
PC to the Electronic World, Second Edition 
Christine M. Gianone, 1991, softbound, 
344 pages with software disk included, 
Order No. EY-H893E-DP-EEB ($34.95) 

As in the first edition, this software package leads 
the novice step by step through installation, com
munication setup, terminal emulation, file transfer, 
and script programming, and also serves as a com
plete reference work for the experienced user. 
Complete with 5M-inch diskette containing the 
official MS-DOS KERMIT Version 3.11 program from 
Columbia University, this revision includes a new 
section on local area networks, additional material 
on running Kermit in windowed environments 
such as Microsoft Windows and Quarterdeck 
DesqView, a new appendix containing tables of 
the escape sequences used by Kermit's text and 
graphics terminal emulators, and expanded 
descriptions of many of Kermit's features. 

ENTERPRISE NETWORKING: 
Working Together Apart 
Raymond H. Grenier and George S. Metes, 1991, 
hardbound, 260 pages, Order No. EY-H878E-DP-EEB 
($29.95) 

To successfully compete in the next century, com
panies must recognize and adapt to exponential 
changes, including the dispersion of markets and 
resources and acceleration in market demands. 
ENTERPRISE NETWORKING: Working Together 
Apart, describes how management can support 
this distributed electronic information environ
ment and move through planned transitions to 
a new organization, confident they will prosper. 
Intended for individuals in charge of directing 
transition of information-focused groups that 
extend across geographies, this book is segmented 
into four parts. The Introduction, Part I, defines 
the assumptions and realities. Part II focuses on 
Capability Based Environments. Part III discusses 
Simultaneous Distributed Work, both Goals and 
Processes, and Continuous Design and Quest for 
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Quality. The Epilogue, Part IV, concludes with 
three appendices detailing Benchmarking, Build
ing Networks, and Networking Capabilities. 

THE ART OF TECHNICAL DOCUMENTATION 
Katherine Haramundanis, 1992, softbound, 
267 pages, Order No. EY-H892E-DP-EEB ($28.95) 

Written primarily for novice and aspiring technical 
writers within the computer industry, The Art 
of Technical Documentation has unique features, 
including its advice on planning and process, 
research techniques, use of graphics, audience 
analysis, definition of quality, standards, and 
careers that are valuable to experienced technical 
writers as well. Haramundanis views the practice 
of technical writing as being different from that 
of scientific writing, and closer to investigative 
reporting. In keeping with this premise, this book 
is not a style guide that deals with all aspects of 
typography and copy editing, but instead presents 
the distilled knowledge of the author's many years 
experience. 

A COMPREHENSIVE GUIDE TO Rdb/VMS 
Lilian Hobbs and Kenneth England, 1991, 
softbound, 352 pages, Order No. EY-H873E-DP-EEB 
($34.95) 

The Rdb/VMS relational database system was 
developed by Digital Equipment Corporation for 
VAX computers using the VMS operating system. 
This system is one of a number of information 
management products that work together to 
facilitate the sharing of information. The Rdb/VMS 
system is used, for example, in high-performance 
transaction processing systems. This book is based 
on Rdb/VMS Version 4.0, which Digital made avail
able to customers at the end of 1990, and thus 
includes the latest functionality. 

DIGITAL GUIDE TO DEVELOPING 
INTERNATIONAL USER INFORMATION 

I 

Scott Jones, Cynthia Kennelly, Claudia Mueller, 
Marcia Sweezey, Bill Thomas, and Lydia Velez, 1992, 
softbound, 214 pages, Order No. EY-H894E-DP-EEB 
($24.95) 

Designed for the busy professional, this book 
presents models that extend beyond Digital and 
English speaking countries in a quick read/ 
reference format. Nine chapters and four appen
dices outline methods for creating written, visual, 
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and verbal information for cost-effective trans
lation. Primarily for information specialists, 
including writers, editors, illustrators, course 
developers, and their managers, this book will also 
help software developers and students enhance 
their background in technical communication. 

PRACTICAL KNOWLEDGE ENGINEERING: 
Creat ing Successful Commercial Expert 
Systems 
Richard V. Kelly,Jr., softbound, 212 pages, 
Order No. EY·F591E-DP·EEB ($28.95) 

This book is a concise guide to practical methods 
for initiating, designing, building, managing, 
and demonstrating commercial expert systems. 
It is a front-line report of what works (and what 
does not) in the construction of expert systems, 
drawn from the author's decade of experience 
gained working on such projects in all major 
areas of application for American, European, and 
Japanese organizations. It also briefly reviews 
the knowledge representation, programming, 
and management techniques commonly used to 
implement expert systems today, and describes the 
intellectual, organizational, financial, and manage
rial issues that knowledge engineers face daily in 
performing their jobs. Among the topics covered 
are: prospecting for "legitimate" problems; fore
casting costs, establishing project metrics and 
writing specifications; preparing for system 
"demos"; interviewing and selecting engineering 
team members; and solving common difficulties 
in design and implementation. 

COMPUTER PROGRAMMING AND 
ARCHITECTURE: The VAX, Second Edition 
Henry M. Levy and Richard H. Eckhouse, Jr., 1989, 
hardbound, 444 pages, Order No. EY-6740E-DP-EEB 
($38.00) 

This book is both a reference for computer profes
sionals and a text for students. A systems approach 
helps the reader understand the issues crucial to 
the comprehension, design, and use of modem 
computer systems. Using the VAX computer as an 
example, the first half of the book is a text suitable 
for a complete course in assembly language pro
gramming. The second half of the book describes 
higher-level systems issues in computer architec
ture, namely, support for operating systems and 
operating systems structures, virtual memory, 
parallel processing, microprogramming, caches, 
and translation buffers. 
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VMS FILE SYSTEM INTERNALS 
Kirby McCoy, 1990, softbound, 460 pages, 
Order No. EY-F575E-DP·EEB ($49.95) 

VMS FILE SYSTEM INTERNALS, based on VMS Version 
5.2, is a book for system programmers, software 
specialists, system managers, applications design
ers, and other VAX/VMS users who need to under
stand the interfaces to and the data structures, 
algorithms, and basic synchronization mechanisms 
of the VMS file system. This system is the part of 
the VAX/VMS operating system responsible for 
storing and managing files and information in 
memory and on secondary storage. The book is 
also intended as a case study of the VMS implemen
tation of a file system for graduate and advanced 
undergraduate courses in operating systems. 

DECNET PHASE V: An OSI Implementation 
James Martin and Joe Leben, 1992, hardbound, 
572 pages, Order No. EY-H882E-DP-EEB ($49.95) 

This book provides a first in-depth look at DECnet 
Phase v and the important issues that must be 
resolved in the design and implementation of very 
large networks. It presents key Open Systems Inter
connection (OSI) concepts and shows how DECnet 
Phase v hardware and software products imple
ment international standards associated with the 
OSI model. 

VAX/VMS OPERATING SYSTEM CONCEPTS 
David Miller, 1991, hardbound, 512 pages, 
Order No. EY-F590E-DP-EEB ($44.95) 

This book begins with an overview that centers 
on one visible aspect of an operating system, 
terminal input and output; it proceeds into well
organized chapters on process definition, paging 
and memory management, security, protection 
and privacy; and it concludes with a chapter 
on operating systems at Digital Equipment 
Corporation. Each chapter provides an intro
duction, theoretical discussion, generally recog
nized solutions, algorithms and data structures, 
and questions to encourage review of the central 
concept presented. 

THE VMS USER'S GUIDE 
James E Peters, III and Patrick). Holmay, 1990, 
softbound, 304 pages, Order No. EY-6739E-DP·EEB 
($28.95) 

This up-to-date guide fo r new VMS users p rovides 
a sequence of steps for learning the VMS operating 
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system and includes hands-on experiments with 
step-by-step instructions. The book also can be 
used as a reference for commands and utilities. 
THE i-MS USER'S GUIDE, reflecting VMS Version 5, 
provides complete VMS coverage-from logging 
in to creating command procedures; contains 
a thorough discussion of files and directories; 
covers both the EDT and the EVE editors in detail; 
and introduces programming with VAXTPU. 
The guide includes learning aids in each chapter, 
such as summaries that contain tables of the 
commands introduced in the chapter, exercises 
to reinforce and extend the skills learned, and 
review quizzes. 

THE MATRIX: Com p u ter Networks and 
Co nferencing Systems Worldwide 
John S. Quarterman, 1990, softbound, 719 pages, 
Order No. EY-C176E-DP-EEB ($49.95) 

This is the first reference book to describe in detail 
the extensive yet largely unpublicized web of 
public and private networks and conferencing 
systems that has spread to virtually every corner 
of the world. The first half provides extensive 
background information on the history, terminol
ogy, standards, protocols, technologies, worldwide 
networked communities, and probable future 
course of networking systems throughout the 
world. The second half describes specific confer
encing systems and the interconnections between 
them-according to geographic region worldwide. 
Maps are included when available. Syntaxes and 
gateways are provided for sending mail from one 
system to another. Additional chapters discuss a 
number of well-known worldwide networks, 
including the Internet and selected commercial 
systems. Two appendices provide essential infor
mation on public data networks worldwide and 
on selected legal issues. 

X AND MOTIF QUICK REFERENCE GUIDE 
Randi]. Rost, 1990, softbound, 369 pages, 
Order No. EY-E758E-DP-EEB ($24.95) 

Based on the newly released X Window System 
Version 11, Release 4 and Motif Version 1.0, this 
one-volume guide combines three major reference 
works on XLlb, x Toolkit Intrinsics, and Motif 
programming libraries in a compact, easy-to-access 
format. Features include complete descriptions 
of approximately 400 Xlib routines, 200 x Toolkit 
Intrinsics, and 200 Motif routines. The guide is 
organized into five major reference sections-
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"X Protocol," " XLlb;' "X Toolkit Intrinsics;' "Motif;' 
and "General X"; all routines and data structures 
are organized alphabetically within each of these 
sections. 

FIFTH GENERATION MANAGEMENT: 
Integrating Enterprises through Human 
Networking 
Charles M. Savage, 1990, hardbound, 267 pages, 
Order No. EY-C186E-DP-EEB ($28.95) 

This book explores the challenges managers face 
as their organizations transition from the indus
trial era to the new era of knowledge networking. 
The author contends that new technologies like 
computer integrated manufacturing (CIM) will 
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not be successful until organizations transform 
their structures from the steep hierarchies of 
second generation management to the flattened 
networks of the fifth generation. The book 
contains two parts. In Book 1, "Five Days that 
Changed the Enterprise," Savage narrates a case 
study of senior executives confronting the prob
lems of a traditional organization as they work to 
transform their company into a networked 
organization. In Book 2, "Integrating Enterprises 
through Human Networking," Savage draws on 
contemporary management literature and his own 
consulting experiences to present a logical case for 
his recommendations. A concluding chapter offers 
ten practical considerations that organizations 
must address to prepare for change. 

X WINDOW SYSTEM: The Complete Guide 
to Xlib , PROTOCOL, XLFD, and ICCCM, 
X Version 11, Release 4, Second Edition 
Robert W Scheifler and James Gettys, 
withJim Flowers, Ron Newman, and 
David Rosenthal, 1990, softbound, 851 pages, 
Order No. EY-E755E-DP-EEB ($49.95) 

By combining four MIT x Consortium standards 
into one volume, this book is the most complete 
and up-to-date X Window System reference 
available. In addition to the four standards, also 
included are instructive diagrams, a detailed 
glossary, and a comprehensive subject-oriented 
index. The book consists of four main parts, each 
with a standard specification produced by the 
MIT x Consortium for X Version 11, Release 4: 
Part I, "Xlib-c Language x Interface"; Part II, 
"X Window System Protocol"; Part III, "Inter
Client Communications Conventions Manual"; 
and Part IV, "X Logical Font Description." 
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To receive a copy of our latest catalog or further 
information on these or other publications from 
Digital Press, please write: 

Digital Press 
Department EEB 
1 Burlington Woods Drive 
Burlington, MA 01803-4539 

Or, you can order by calling DECdirect at 
BOO-DIGITAL (800-344-4825). 

When ordering be sure to refer to Catalog 
CodeEEB. 
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