
Image Processing, Video Terminals, and Printer Techuologies

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 4

Fall 1991

Cover Design
High-performance screen display of bitonal images is one

of the topics in this issue. The handwriting and manually

produced technical drawings on our cover are types of images

that can be scanned, st01·ed electronically, ana then displayed

on an X terminal screen; portions of an image can be enlarged

or rotated on screen.

The cover was designed try Sandra Calef of Calef Associates.

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor
Leon Descoteaux, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Robert M. Glorioso
Richard]. Hollingsworth
John W McCredie
Alan G. Nemeth
Mahendra R. Patel
F Grant Saviers
Victor A. Vyssotsky
Gayn B. Winters

The Digital Technical journal is pub I ished quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the journal are $40.00

for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical journal at the published-by address.
Inquiries can also be sent electronically to DTJ@CRLDECCOM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burlington
Woods Drive, Burlington, MA 01 803-4539.

Digital employees may send subscription orders on the ENET to
RDVAX::)OURNAL or by interoffice mail to mailstop MLOI-3/B68.

Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright© 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

T he information in the journal is subject to change without
notice and should nor be construed as a commitment by Digital
Equipment Corporation. Digital Equipmem Corporation assumes
no responsibility for any errors that may appear in the journal.

lSSN 0898-901X

Documentation Number EY-H889E-DP

The following are trademarks of Digital Equipment Corporation:
ALL-IN-1, DECimage, DECnet, DECprint, DECserver, DECstarion,
DECwindows, Digital, the Digital logo, LAT, LN03, MicroVAX,
PrintServer, Q-bus, ReGIS, rtVAX, ULTRIX, VA,'\, VAXELN,
VAXstation, VMS, VT1000, VTI200, VT1300, and VXT 2000.

Apple DeskTop Bus is a trademark and LocalTal k is a registered
trademark of Apple Com purer, Inc.

Motorola and 68000 are registered trademarks of Motorola, Inc.

Open Software Foundation is a trademark and OSF and OSF/1 are
registered trademarks of Open Software Foundation, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Texas Instruments is a trademark of Texas Instruments, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X W indow System is a trademar.k of the Massachusetts Institute
of Technology.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

I Contents

7 Foreword
Larry Cabrinety

Image Processing, Video Terminals, and Printer Technologies

9 Hardware Accelerators for Bitonal Image Processing
Christopher J. Payson, Christopher J. Cianciolo,
Robert N. Crouse, and Catherine E Winsor

26 X Window Terminals
Bjorn Engberg and Thomas Porcher

36 ACCESS.bus, an open Desktop Bus
Peter A. Sichel

43 Design of the DECprint Common Printer Supervisor
for VMS Systems
Richard Landau and Alan Guenther

55 The Common Printer Access Protocol
James D. Jones, Ajay P. Kachrani, and Thomas E. Powers

61 Design of the Turbo PrintServer 20 Controller
Guido Simone, Jeffrey A. Metzger, and Gary Vaillette

I Editor's Introduction

Jane C. Blake
Editor

Products designed for quality, high-performance
presentation of data in both video and hard-copy
form are the topics of papers in this issue of the
Digital Technical Journal. The design challenges
range from managing the huge storage require
ments of images for display on X terminals to ensur
ing high-performance in a feature-rich printer
environment.

Image processing is the subject of the opening
paper by Chris Payson, Chris Cianciolo, Bob Crouse,
and Cathy Winsor. The authors note that one advan
tage of scanning images for screen display is the
input time saved; however, the scanned images
and data can consume significant amounts of stor
age space. They then review the development of an
image accelerator board that not only helps solve
the problem of storage but also addresses the need
for high-performance display-view and manipula
tion-of bitonal images. In addition to specifics of
the board implementation, the authors offer an
overview of imaging concepts, terms, and future
directions for image accelerators.

The terminal on which the image accelerator
board resides is DECimage 1200, an x terminal.
X terminals development in general, including a
discussion of the VT1200, is the subject of a paper
by Bjorn Engberg and Tom Porcher. Bjorn and Tom
focus their discussion on a comparison of the
X terminal and X workstation environments, and
explain why x terminals are a low-cost alternative.
The authors present the design choices debated by
the engineers during the development of Digital's
X terminals, including the selection of a hardware
platform, terminal and window management,
x server, communications protocols, and font file
systems.

Video terminal and workstation users need the
assistance of a number of 1/0 devices, such as key-

2

boards, mice, and tablets, all of which may not be
made by the same company. A new open desktop
bus, described by Peter Sichel, is a simple means to
connect as many as 14 low-speed devices to a desk
top system. In his paper, Peter presents the project
background, reviews the PC technology on which
the bus is based, and describes the protocol and the
configuration process.

Hard-copy presentation of data and recent devel
opments in printer technologies are the topics of the
next three papers. Rick Landau and Alan Guenther
review the DECprint Printing Services, which is
software that controls numerous printer features
for a wide range of printers. Also called a common
print symbiont, this component of the VMS print
ing system supports several page description lan
guages, handles multiple media simultaneously,
and uses different 1/0 interconnections and com
munication protocols.

Both DECprint Printing Services and the subject
of the next paper, the common printer access pro
tocol, are part of the DECprint architecture. The
CPAP provides the fundamental services necessary
for the presentation of data at the printer. Jim
Jones, Ajay Kachrani, and Tom Powers describe the
challenges of developing a protocol that operates
in a heterogeneous, internetworking environment
and that also ensures backward compatibility with
older products. Their success in developing a high
performance protocol is evidenced by OSF accep
tance of CPAP for inclusion in a future release of
OSF/1.

As was the case with the CPAP, performance
was also key in the development of the turbo
PrintServer 20 controller. Guido Simone,JeffMetzger,
and Gary Vaillette explain that the requirements of
complex documents demanded turbo controller
performance that was five to eight times that of the
current controller. To aid them in making design
decisions, a performance analysis tool, RETrACE,
was created and is described here. Authors also
relate how they used existing chips in order to keep
development costs low and still deliver a high
performance controller.

The editors thank Liz Griego-Powell of the Video,
Image and Print Systems Group for her help in
preparing this issue.

Biographies

Christopher J. Cianciolo As a hardware design engineer in the Video, Image
and Print Systems Group, Chris Cianciolo is currently working on the design
for the group's latest imaging product. Chris joined Digital in 1985 after par
ticipating in a co-op session in the Power Supply Engineering Group. He also
participated in co-op sessions for Charles Stark Draper Laboratory, Inc. on a
fiber-optic missile guidance system project. He received his B.S.E.E. from
Northeastern University in 1988 and is currently pursuing an M.S.E.E., also from
Northeastern.

Robert N. Crouse Senior engineer Bob Crouse is a member of the Video,
Image and Print Systems Group. He is currently working on the advanced devel
opment of new imaging technology for x window terminals. Bob was project
engineer for the development of a bitonal imaging accelerator for a low-end
VAXstation workstation. As a member of the Electronic Storage Development
Group, he designed a double-bit error detection and correction circuit for a VAX
mainframe. Bob received his B.S.E.E. from Northeastern University and holds one
patent.

Bjorn Engberg As a principal software engineer in the Video, Image and Print
Systems Group, Bjorn Engberg was the main architect and software project
leader for the VTIOOO and VT1200 x window terminals. He joined Digital in 1978
and worked as a development engineer at css in Sweden, where he modified
Digital's terminals for the European market. He relocated to the United States
in 1982 to work on the VT240, the VT320, the LJ250, and several advanced devel
opment projects. Bjorn received an M.S.E.E. (honors) from the Royal Institute of
Technology in Stockholm.

I

3

Biographies

4

A. Alan Guenther As a member of the technical staff in the DECprint System
Software Group, Alan Guenther is involved in the ongoing design and implemen
tation of the DECprint common print symbiont. Prior to this, he was the primary
designer and implementor of the distributed queuing services. Alan has worked
at Digital since 1973, both as a full-time employee and as an independent consul
tant (from 1982 to 1990). After receiving a B.S. (honors, 1970) from the University
of Montana, he worked at the university until he joined Digital.

James D. Jones Jim Jones is a principal engineer in the Hardcopy Systems
Engineering Group. He joined Digital in 1974 and was part of a team developing
diagnostic programs for the DECsystem-IO and DECSYSTEM-20 systems. After run
ning his own software business for five years, Jim rejoined Digital to design
printer controllers and software. Most recently, he provided software for the
PrintServer products, authored the Common Printer Access Protocol specifica
tion, and is helping to define the next generation of network printers. Jim is a
member of IEEE and ACM and participates in the IETF.

Ajay P. Kachrani Principal software engineer Ajay Kachrani currently works
on the OSF/1 socket and XTI kernel interfaces and security project. Previously,
he led the development of the overall PrintServer software version 4.0 with
dual network protocol support (DECnet and TCP/IP), from inception through
field test. Ajay presented the CPAP protocol as an Internet standard to the IETF
and added PrintServer support in version 1.0 of the Palladium Print System at
MIT/Project Athena. Ajay holds a B.S.E.E. (honors) from the University of Mysore,
India, and an M.S.C.S. from the University of Lowell.

Richard B. Landau Richard Landau is the DECprint program manager for the
Video, Image and Print Systems Group. Working to improve the interaction of
printing software and hardware, he initiated the DECprint, Font, and Postscript
programs. Prior to this, Rick was the program and development manager for the
VAX DBMS, DATATRIEVE, COD, and Rdb/VMS products and for the relational
database architecture. Before joining Digital in 1974, Rick was an independent
consultant and was also employed by Applied Data Research, Inc. He holds A.B.
(cum laude, 1969) and M.A. (1973) degrees in statistics from Princeton University.

J effrey A. Metzger Presently a senior engineer, Jeff came to Digital as a co-op
student in 1983, working first in the Semiconductor Engineering Group and then
in Hardcopy Engineering. He became a full-time employee after graduating from
Cornell University in 1985. He introduced Hardcopy to system-level logic simu
lation, contributed to the hardware, software, and firmware development of the
PrintServer 20, and developed RETrACE, which is used to characterize the exe
cution behavior of PrintServer systems. Jeff is currently working in the Entry
Systems Business Group on a next-generation processor product.

Christopher J. Payson Chris Payson joined Digital as a hardware design
engineer in 1989 after five co-op terms. He is currently working on XIE software
and image hardware accelerators. Chris previously worked on performance
testing, diagnostics, logic design, and demonstration software, all associated
with imaging. He is coapplicant for a patent related to an image clipping algo
rithm and hardware logic. Chris received a B.S.C.E. from Rochester Institute of
Technology with highest honors and is currently pursuing an M.S.C.E. from
Northeastern University.

Thomas C. Porcher Principal engineer Tom Porcher is a member of the
Video, Image and Print Systems Group. He provided technical leadership in the
development of the VXT 2000 X terminal. Previously he was a technical leader
for the VT240 terminal, VAX Session Support Utility, and the DECterm terminal
emulator. Tom holds five patents for work on the VT240 terminal and on the multi
session protocol used in the VT340 and VT400 series terminals. Tom received his
B.S. in mathematics from Stevens Institute of Technology (1975). He is a member
of the ACM.

Thomas E. Powers As a consultant engineer in the Hardcopy Engineering
Firmware/Software Group, Tom Powers is a vendor liaison for desktop
Postscript printer products. He chairs the DECprint PAP Architecture Team
and was a contributor to the PrintServer 40 internal hardware/firmware archi
tecture. Tom represented Digital on American and international standards com
mittees on computer graphics from 1979 to 1989. He led several firmware teams
and is coinventor of the ReGIS Graphics Protocol. Tom has a B.S.E.E. from Tufts
University and an M.S.E.C.E. from the University of Massachusetts at Amherst.

Peter A. Sichel As a principal software engineer in the Video Terminals Archi
tecture Group, Peter Sichel led the development of the ACCESS.bus architecture
and device protocol specifications, in addition to writing the initial ACCESS.bus
device firmware. He worked on the VT420 video terminal and the DECterm
DECwindows terminal emulator, and helps maintain Digital standards for video
terminals and keyboards. Peter joined Digital in 1981 after receiving B.S. and M.S.
degrees in computer engineering from the University of Michigan.

Guido R. Simone Guido Simone is a principal engineer in the Print Systems
Engineering Group and was the project leader and architect for the turbo
PrintServ<;r 20 controller. He is currently working on the development of a
new print system architecture to be used with advanced printing technologies.
In previous work, Guido was the project leader and architect for an rtVAX
78R32 CPU chip-based laser printer controller. Before joining Digital in 1980, he
received a B.S. in electrical engineering from Rensselaer Polytechnic Institute.

I

5

Biographies

6

Gary P. Vaillette Senior hardware engineer Gary Vaillette has been involved
in the design and implementation of printing system hardware since joining
Digital in 1983. His current work includes performance characterization of
Postscript printers and PrintServer products, and hardware implementation of
CCITI decompression in the turbo PrintServer 20 product. Previously, Gary
worked at Data General Corporation and helped to develop their token bus
network product. He holds an A.A.E.E (1974) from Quinsigamond Community
College and expects to receive a B.S.C.S. (May 1992) from Boston University.

Catherine F. Winsor As a senior engineer in the Video, Image and Print Sys
tems Group, Cathy Winsor has worked on image accelerators. As the project
leader for the DECimage 1200 hardware and the image utility library software,
Cathy was involved in the planning and development of an image-capable
VT1200. She is currently leading the project to support imaging on the next
generation of Digital's x terminals. The project includes an image accelerator
board and XIE software. Cathy received an A.B. in engineering sciences from
Dartmouth College and a B.S.E.E. from the Thayer School of Engineering.

I. Foreword

Larry Cabrinety
Vice President,
Video, Image and Print
Systems Group

For the millions of people worldwide who use
Digital's computer equipment, the computer is not
the sophisticated system in the back room, or the
complex network. It is the equipment they use
each day-the terminal or monitor, keyboard and
mouse, desktop printer or network printer system.

Today's users demand products with high levels
of usability and superior ergonomic features.
Digital's products set worldwide standards for the
user interface to computer systems. In the 90s our
focus is to offer products that operate in multi
vendor environments with the goal of delivering a
complete computing solution. In this issue you will
read about some of the Video, Image and Print Sys
tems (VIPS) Group's products and technologies that
support network computing and standards-based
environments.

Digital entered the video terminal market in 1975
with the Vf52 for its time-sharing users. Its replace
ment, the VflOO, embodied two important princi
ples-the use of standards in data communications
interchange and the protection of customer invest
ments through backward compatibility of new gen
erations of products. The Vf220, introduced in
1983, and the cost-effective Vf320 terminals saw
the addition of functionality and ergonomic fea
tures which established Digital as a leader in the
commodities market.

In March 1990, Digital entered the x terminal
market with the introduction of the VflOOO, fol
lowed by the Vf1200 and Vf1300 terminals later
that year. The emergence of MIT's X Window
Systems as the accepted industry standard for
windowing systems provided a standards-based
environment for distributed applications display

processing. The X terminal user can now benefit
from the graphical user interface, sophisticated
applications, and standards of performance previ
ously available only on workstations. x terminals
run Xll server code which is operating system
independent and ideally suited for heterogeneous,
network-based computing environments. In this
issue you will read about the engineering decisions
made as the x terminals were developed.

There is a growing need in the industry to have
imaging applications run alongside conventional
text and graphics applications. Technical docu
mentation is an example of this. Imaging applica
tions, however, have special requirements to achieve
acceptable end-user performance. Although the Xll
software can handle images as bit-map data, soft
ware and hardware assistance is required to achieve
acceptable performance. Digital has designed
DECimage hardware accelerators for rapid process
ing of image data. This technology is included in
the DECimage 1200 and will be incorporated in
following generations of X terminals. To make this
possible, Digital developed extensions to the
X server software that support the high-speed
transport and display of image data. To assure open
standards, the extensions have been proposed to
MIT for incorporation into releases of the Xll
server software.

In November 1990, Digital announced its next
generation of x terminals. The VXT2000 terminal
provides virtual memory and supports both a tra
ditional host-based model with software down
loaded to the terminals as well as the server style of
X terminal computing.

The VXT2000 terminal was designed to support
TCP/IP and LAT protocols, and further demonstrates
our commitment to openness and support for cus
tomers' multivendor environments. This same phi
losophy is seen in our printer products and our open
desktop bus.

Digital pioneered the distributed printing busi
ness with networked laser printers. This prod
uct area began when we combined two concepts
which had not been combined before-mid-range
laser printers and networks. In the mid-1980s most
large-scale computing was done on mainframe
computers with large printers attached directly
to these systems. Typically these dedicated print
ers were only accessible to users on that particular
system. Digital's distributed computing provided
an alternative to the mainframe. By combining the
power of multiple systems in clusters or on net
works, a new distributed large system was created.

7

Foreword

A printing solution was needed to effectively work
in this new distributed computing environment.
The PrintServer series addressed this need.

PrintServer products enabled printing resources
to be directly connected to networks for the first
time, and since they were on the network and not
tied to any one system, they were accessible by all
systems on those networks. They enabled the com
plex printer functionality previously found only in
dedicated mainframe printers to be distributed
throughout end-user environments.

As these mid-range printers migrated out of the
computer room and into the office, new demands
for functionality were created. Large groups of users
brought many different requirements for printing,
and our goal was to satisfy as many as possible in a
single PrintServer. For example, some people need
"A" size paper for office correspondence, while
others may need "B" size paper for CAD/CAM or
accounting work, and still others need transparen
cies for presentations. The PrintServer is flexible
enough to have all of these different types of
media available and offer both simplex and duplex
printing.

In 1985 when Digital was first developing the
PrintServer, there was no industry standard way
of describing the contents of a page to a printer.
Each major vendor had its proprietary language,
and none offered the compatibility necessary to
achieve our print system vision. Our goal was to
create a family of products, from large to small,
that offered compatibility for all applications. To
achieve this goal we had to select a protocol
that would enable us to print any file on any
printer. At that time Adobe Systems, the developer
of Postscript, was a small start-up company in
Silicon Valley. Postscript was not a standard, and in
fact, only a single Postscript laser printer model
had been shipped, the original Apple LaserWriter.
Our technical community felt Postscript was the
best solution to our needs, and at that point Digital
committed to adopting Postscript as our strategic
page description language. Postscript printers and
Postscript application support are now pervasive
throughout the industry and standard printing
protocols enable interactive communication with
hosts on the network.

Significant advances have taken place in the
PrintServer series over the past seven years. An
entire MicroVAX II system was housed within the

8

original PrintServer 40, along with custom hard
ware acceleration boards developed by the Hard
copy Group to enable printing at 40 pages per
minute. In this issue you will read about the single
board controller that replaces the MicroVAX II and
offers far more processing power. Using the latest
system-on-a-chip technology, our new turbo board
provides leadership performance for our printers.
The CCITI image decompression chip enables us to
provide full-speed image printing to our customers
as the image market develops.

The first PrintServer systems supported printing
from VMS hosts over DECnet networks. Since then
the breadth of platform support has increased to
include first ULTRIX systems and then UNIX operat
ing systems. A software kit for Sun systems will be
available soon. In expanding PrintServer connectiv
ity to include UNIX systems and TCP/IP networks,
we again faced the problem that no network print
ing protocol existed for TCP/IP. With the help of
Digital's experts at the Western Research Labora
tory, we were able to develop a solution. In this
issue, we discuss the creation of a network printer
access protocol for TCP/IP. Today this network pro
tocol is a proposed standard at the Internet Engi
neering Task Force, the body controlling the TCP/IP
protocol.

The development of the ACCESS.bus product has
brought an easy, standard way to link a desktop
computer to many interactive user interfaces. This
open desktop bus is currently implemented on the
Personal DECstation 5000 workstation, and imple
mentations on future RISC workstations and video
terminals is underway. Developers of Digital's prod
ucts will continue to place a high priority on open
standards. The papers included in this issue of the
Digital Technical Journal will provide insight into
the key areas of technology used in the design and
development of VIPS products.

Christopher J Payson
Christopher J Cianciolo

Robert N. Crouse
Catherine E Winsor

Hardware Accelerators for
Bitonal Image Processing

Electronic imaging systems transfer views of real-world scenes or objects into
digital bits for storage, manipulation, and viewing. In the area of bi tonal images,
a large market exists in document management, which consists of scanning vol
umes of papers for storage and retrieval. However, high scan densities produce
huge volumes of data, requiring compression and decompression techniques to pre
serve system memory and improve system throughput. These techniques, as well as
general image processing algorithms, are compute-intensive and require high
memory bandwidth. To address the memory issues, and to achieve interactive
image display performance, Digital has designed a series of bitonal image hard
ware accelerators. The intent was to create interactive media view stations, with
imaging applications alongside other applications. In addition to achieving mem
ory, performance, and versatility goals, the hardware accelerators have signifi
cantly improved final image legibility.

Bitonal image technology, which can be viewed as
the electronic version of today's microfilm method,
is experiencing a high rate of growth. However, the
electronic image data objects generated and manip
ulated in this technology are very large and require
intensive processing. In a generic system, these
requirements can result in poor image processing
performance or reduced application performance.
To address these needs, Digital has designed a series
of imaging hardware accelerators for use in the doc
ument management market.

This paper provides a brief tutorial on electronic
imaging. It begins with a general description of the
imaging data type and compares this type to the
standard text and graphics data types. It continues
with a discussion of specific issues in bi tonal imag
ing, such as image data size, network transport
method, rendering speed, and end-user legibility.
The paper then focuses on Digital's DECimage 1200
hardware accelerator for the VT1200 X window
terminal developed by the Video, Image and Print
Systems Group. It concludes with future image
accelerator demands for the processing of multi
media applications and continuous-tone images.

Introduction to Imaging
Just as graphics technology blossomed in the 1980s,
electronic imaging and its associated technologies

Digital TecbnicalJournal Vol. 3 No. 4 Fall 1991

should come of age in the 1990s. Digital imaging
is already in use in many areas and new applica
tions are being created for both commercial and
scientific markets. The emergence of digital images
as standard data types supported by the majority
of systems (like text and graphics of today) seems
assured. For a greater understanding of specific
imaging applications, this section presents general
imaging concepts and terms used throughout the
paper.

Concepts and Terms
In its simplest form, imaging is the digital repre
sentation of real-world scenes or objects. Just as a
camera transfers a view of the real world onto a
chemical film, an electronic imaging system trans
fers the same view into digital bits for storage,
manipulation, and viewing. In this paper, the term
image refers to the digital bits and bytes that repre
sent the real-world view.

The process of digitizing the view may be done
through various methods, e.g., an image scanner
or image camera. A scanner is the conceptual
inverse of a normal printer. A printer accepts an
electronic stream of bits that describe how to
place the ink on the paper to create the desired
picture. Conversely, optical sensors in the scanner
transform light intensity values reflected from a

9

Image Processing, Video Terminals, and Printer Technologies

sheet of paper and create a stream of electronic bits
to describe the picture. Similar sensors in the focal
plane of a camera produce the other common digi
tization method, the electronic image camera.

The format of a digitized image has many param
eters. A pixel is the common name for a group of
digitized image bits that all correspond to the same
location in the image. This pixel contains informa
tion about the intensity and color of the image at
one location, in a format that can be interpreted
and transformed into a visible dot on a display
device such as a printer or screen. The amount of
information in the pixel classifies the image into
one of three basic types.

• A bitonal image has only one bit in each pixel;
the bit is either a one or a zero, representing one
of two possible colors (usually black and white).

• A gray-scale image has multiple bits in each pixel,
where each pixel represents an intensity value
between one color (all zeros) and another color
(all ones). Since the two colors are usually black
and white, they produce a range of gray-scale
values to represent the image.

• A color image has multiple components per
pixel, where each component is a group of
bits representing a value within a given range.
Each component of a color image corresponds
to a part of the color space in which it is repre
sented. Color spaces may be thought of as dif
ferent ways of representing the analog, visible
range of colors in a digitized, numeric form. The
most popular color spaces are television's YlN

format (one gray-scale and two color compo
nents) and the bit-mapped computer display's
RGB format (red, green, and blue components).

The resolution of an image is simply the density
of pixels per unit distance; the most common den
sities are measured in dots per inch (dpi), where
a pixel is called a dot. For example, a facsimile
machine (which is nothing more than a scanner,
printer, and phone modem in the same unit) typi
cally scans and prints at 100 dpi, although newer
models are capable of up to 400 dpi. As another
example, most workstation display monitors are
capable of 75- to 100-dpi resolution, and some high
end monitors achieve up to 300-dpi resolution.

To display an image at a density different from
its scanned density, without altering the image's
original size, requires the image to be scaled, so
that the new image density matches the output

10

media density. Scaling an image may be as simple as
replicating and dropping pixels, or it may involve
interpolation and other algorithms that take neigh
boring pixels into account. Generally, the more
complex scaling algorithms require more process
ing power but yield higher-quality images, where
quality refers to how well the original scene is rep
resented in the resulting image.

Before an image can be displayed, its pixel values
often require conversion to account for the charac
teristics of the display device. As a simple example,
a color image cannot retain its color when output
to a black-and-white video monitor or printer. In
general, when a device can display fewer colors
than an image contains, the image pixel values must
be quantized. Simple quantizing, or thresholding,
can be used to reduce the number of image colors
to the number of display colors, but can result in
loss of image quality. Dithering is a more sophisti
cated method of quantizing, which produces the
illusion of true gray scale or color. Although dither
ing need use no more colors than simple quantiz
ing, it results in displayed images of much higher
quality.

Image compression is a transformation process
used to reduce the amount of memory required to
store the information that represents the image.
Different compression methods are used for bitonal
images than those used for gray-scale and color
images. These methods are standardized to specify
exactly how to compress and decompress each
type of image. For bitonal images, the most com
mon standards are the ones used in facsimile
machines, i.e., Recommendations T.4 and T.6 of the
Comite Consultatif Internationale de Telegraphique
et Telephonique (CCITT). 1,2 Commonly known as
the Group 3 and Group 4 standards, the desig
nations are often shortened to G3-1D, G3-2D, and
G4-2D, referring to the particular standard group
and to the coding method, which may be either
one- or two-dimensional. For gray-scale and color
images, the Joint Photographic Experts Group
QPEG) standard is now emerging as a joint effort of
the International Standards Organization (ISO) and
CCITT.3 Whichever format or process is used, com
pression is a compute-intensive task that involves
mathematically removing redundancy from the
pixel data.

A typical compression method creates an
encoded bit stream which cannot be displayed
directly; the compressed bits must be decom
pressed before anything recognizable may be

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

displayed. The term compression ratio represents
the size of the original image divided by the size of
the compressed form. For bitonal images using
the CCITI standards, the ratio is commonly 20: 1 on
normal paper documents, but can vary widely with
the actual content of the image. The CCITI stan
dards are also "lossless" methods, which means that
the decompressed image is guaranteed to be iden
tical to the original image (not one bit different).
In contrast, many "lossy" compression methods
allow the user to vary the compression ratio such
that a low ratio yields a nearly perfect image repro
duction and a high ratio yields a visible degradation
in image quality. This trade-off between compres
sion and image quality is very useful because of the
wide range of applications in imaging. An applica
tion need pay no more in memory space and band
width than necessary to meet image quality
requirements.

A New Data Type and Its Features
The image data type is fundamentally different
from text and graphics. When a user views charac
ters or pictures on a display device, the source of
that view is usually not important. A sheet of text
from a printer may have come from either a text file
where the printer's own fonts were used, a graph
ics file where the characters were drawn with line
primitives, or an image file where the original text
document was scanned into the system. In any
case, the same letters and words present the user
with approximately the same information; the dif
ferences are mostly in character quality and format.

In spite of their large storage space require
ments, images have several advantages over graph
ics or text. First, consider the process of getting
the information into the computer. With the imag
ing process, documents may be scanned automati
cally in a few seconds or less, compared to the time
required for someone to type the information cor
rectly (absolutely no errors) into a text file. Also,
even though the software exists to convert elec
tronic raster images into graphic primitive files, the
process loses detail from the original image and is
relatively slow. Next, consider the variety of infor
mation possible on a sheet of paper: a user can
not easily reproduce a diagram or a signature on a
document. A scanned image preserves not only the
characters, but their font, size, boldness, relative
position, any pictures on the page, and even
smudges or tears depending on the quality of the
image scan.

Dtgila.l Tecbnica.lJourna.l Vol . 3 No. 4 Fall 1991

Hardware Accelerators for Bi tonal Image Processing

The major drawback in the imaging process is
increased data size, which results in storage mem
ory and network transport problems. High scan
densities and color information components create
large volumes of data for each image; a bitonal
image scanned at 300 dpi from an 8.5-by-11-inch
sheet of paper requires over 1 megabyte of mem
ory in its original pixel form. Therefore, compres
sion and decompression are integral parts of any
imaging system. Even in compressed form, a bi tonal
image of a text page requires about 50 kilobytes
of storage, whereas its American standard code
for information interchange (ASCII) text equivalent
requires only 4 to 5 kilobytes. Similarly, a graphics
file to describe a simple block diagram is much
smaller than its scanned image equivalent.

Based on these advantages and limitations, sev
eral applications have emerged as perfect matches
for imaging technology. Bitonal images are used
in the expanding market of document manage
ment, which consists of scanning volumes of
papers into images. These images are stored and
indexed for later searching and viewing. Basically
an electronic file cabinet, this system results in
large savings in physical cabinet space, extremely
fast document access, and the ability for multiple
users to access the same document simultaneously.
Gray-scale imaging is often used in medical appli
cations. Electronic versions of x rays can be sent
instantly to any specialist in the world for diagno
sis, and the ordering of sequential computer-aided
testing (CAl)-scan images into a "volume" can pro
vide valuable three-dimensional views. The appli
cations for color imaging are relatively new and
still emerging, but some are already in use commer
cially, e.g., license and conference registration pho
tographs. A further extension to still imaging is
digital video, which can be considered as a stream
of still images. In conjunction with audio, digital
video is commonly known as multimedia, applica
tions for which range from promotional presenta
tions to a manufacturing assembly process tutorial.

In this paper, we focus on the static bitonal imag
ing method of representing real-world data inside
computers. Static imaging is a simpler method of
representing a broader range of information than
the text and graphics media types, but it carries
a greater requirement for processing power and
memory space. In addition, static imaging can be
viewed as one part of true multimedia, as can text,
graphics, audio, video, and any other media for
mats. Yet static imaging does not have the system

11

Image Processing , Video Terminals, and Printer Technologies

speed requirements of a motion video and audio
system, which must present data at real-time rates.
As long as the user can deal with static images at
an interactive rate, i.e., being able to view the
images in the format of choice as fast as the user
can select them, then static imaging is a powerful
media presentation tool. The next section presents
the important issues concerning bitonal imaging in
a document management environment.

Bitonal Imaging Issues
As previously mentioned, bitonal electronic imag
ing as an alternative to paper documents offers
many benefits, such as reduced physical storage
space, instant and simultaneous access of scanned
images, and in general a more accessible media.
Serious issues need to be resolved before a produc
tive imaging operation can be implemented. The
chief issues are the image data size, transport
method, perceived rendering speed, and final legi
bility. In the following sections, we examine each
issue and present solutions.

Digitized Image Data Size
The most important issue concerns image data size.
Images are typically documents, drawings, or pic
tures that have been digitized into a computer
readable form for storage and retrieval. Depending
on the dot density of the scanner, a single image
can be 1 to 30 megabytes or more in size. However,
storing a single image in its scanned form is not the
typical usage model. Instead, a company may have
tens of thousands of scanned documents. Clearly,
with today's storage technologies, a company can
not afford to store such a large volume of images
in that format.

A typical ASCII file representing the text on an
8.5-by-11-inch sheet of paper requires approxi-

Table 1 Sample Bitonal Image Sizes

Scan
Document Type Density
(Paper Size) (dpi)

A size 100
(8.5 x 11 inch) 200

300

Esize 100
(44 x 34 inch) 200

300

mately 3 kilobytes of memory. lf the same sheet of
paper is digitized by scanning at various dot den
sities, the resulting data files are huge, as shown
by the decompressed bi tonal image sizes in Table 1.
Note that Table 2 includes the size of the scanned
image if scanned in gray-scale and color modes,
although using these modes would not make sense
on a black-and-white sheet of paper. The image
sizes are included for comparison and are discussed
in the section Future Image Accelerator Require
ments. The data presented in Tables 1 and 2 illus
trates that the size of the original ASCII file is much
smaller than any of the scanned versions. The data
also gives evidence that scanned images, in general,
require considerable memory.

Since the typical use for bitonal images is for
volume document archival, an imaging application
must include a compression process to reduce mem
ory usage. This process must transform the original
scanned image file to a much smaller file without
losing the content of the original scanned data.

Compression algorithms may take different paths
to achieve the same result, but they share one basic
process, the removal of redundant information to
reduce the object size. A common compression
routine searches the pixel data for groupings, or
"run lengths," of black or white pixels. Each run
length is assigned a code significantly shorter than
the run length itself. The codes are assigned by
statistics, where the most frequent run lengths
are assigned the shortest codes; statistics have been
amassed on a variety of document types for differ
ent scan densities and document sizes. A compres
sion process parses through the original image
file, generating another file that contains the codes
representing the original image. Figure 1, a sample
bitonal image compression, illustrates these com
pressed codes in a serial bit stream.

Kilo~ytes of Data
Pixel Form Typical
(Decompressed) Compressed

114 46
457 47

1027 50

1826 106
7305 114

16436 127

12 Vol. 3 No. 4 Fall 1991 Digital Technical Journal

Table 2 Sample Gray-scale and Color
Image Sizes

Document Type
and Size

128 x 128 pixel, 12 bits per pixel
gray-scale image
512 x 512 pixel, 8 bits per pixel
color image
512 x 512 pixel, 24 bits per pixel
color image

8.5 x 11 inch, 100 dpi, 24 bits
per pixel, color image

Kilobytes of Data
in Pixel Form
(Decompressed)

24

256

768

2740

Several algorithms for bitonal compression are
widely used today. As mentioned in the previous
section, the most common for bitonal images are
the CCITT standards G3-1D, G3-2D, and G4-2D, which
all use the approach just described. For the one
dimensional method, the algorithm creates run
lengths from all pixels on the same scan line. In the
two-dimensional methods, the algorithm some
times creates run lengths the same way, but the
previous scan line is also examined. Some codes
represent run lengths and even whole scan lines
as "the same as the one in the previous scan line,
except offset by N pixels," where N is a small inte
ger. The two-dimensional method takes advan
tage of most of the redundancy in an image and
returns the smallest compressed file. In addition to
preserving system memory, these compression
methods significantly improve network transport
performance.

IMAGE PIXELS

Hardware Accelerators for Bitonal Image Processing

Network Transport Constraints
The network transport performance for an image
is important, because images are most often stored
on a remote system and viewed on a widespread
group of display stations. For example, one group in
an insurance company receives and scans claim
papers to create a centralized image database,
while users in another group access the documents
simultaneously to process claims. For the imaging
system to be productive, this image data needs
to be transported quickly from one group to the
other: telephone attendants answering calls must
have immediate access to the data.

Scanned image documents take a long time to
transport between systems, simply because they are
so large. When compression techniques are used, a
typical uncompressed image stored in 1 megabyte
can be reduced to approximately 50 kilobytes.
Since transport time is proportional to the number
of packets that must be sent across the network,
reducing the data size to 5 percent of its original
size also reduces the transport time to 5 percent
of the original time. Therefore, you can now send
twenty compressed images in the same time previ
ously spent sending one uncompressed image.

Even with compression techniques, the image
files are still larger than their text file equivalents.
Moreover, most network protocols limit their
packet size to a maximum number of bytes, i.e., an
image file larger than the maximum packet size
gets divided over multiple packets. If the protocol
requires an acknowledgment between packets, then
the transport of a large file over a busy network
becomes a lengthy operation.

······~ ····· i .. I _____ O"""~•E-S-CA_N_ L_IN_ E_ O_ F___.P~"""X.i...EL-S-------1

600 WHITE 250 WHITE 845 WHITE

::?/ 7=K \
... 01 1010000101000 000001101000 0101 1101011011 000001101000 011010010000011 ...

COMPRESSED CODES IN A CONTINUOUS BIT STREAM

Figure 1 Bitonal Image Compression

Dtgttal TecbntcalJournal Vol. 3 No. 4 Fall 1991 13

Image Processing, Video Terminals, and Printer Technologies

The platform for our most recent accelerator is
the Vfl200 X window terminal, which uses the
local area transport (I.Al) network protocol. We
soon realized that the X server packet size was
limited to 16 kilobytes and the typical A-size
compressed document was approximately 50 kilo
bytes. With this arrangement, each image transport
would have required four large data packets and
four acknowledgment packets. Working with the
X Window Terminal Base System Software Group,
we were able to raise the packet size limit to
64 kilobytes. The base system group also imple
mented a delayed acknowledgment scheme, which
eliminates the need for the client to wait for an
acknowledgment packet before sending the next
data packet. Table 3 shows compressed image data
taken during the DECimage 1200 development
cycle. Notice that the network transport times
for Digital document interchange format (DDIF)
decrease sharply after the packet changes.

Perceived Rendering Speed
Because the image scanning and compression
operations occur only once, they are not as
performance-critical as the decompression and
rendering for display operations, which are done
many times. Decompression and rendering are part
of the system's display response time, which is a
critical factor in a system designed for high-volume
applications that access thousands of images daily.
This time is measured from the instant the user
presses the key to select an image to view, to the
moment the image is displayed completely on the
screen. The display response time is a function of
the disk read time, network transport time, and dis
play station render time.

Although network transport time and disk file
read time have a direct effect on the response time,
accelerator developers rarely have any control over

them. The disk access time data from the DECimage
project analysis shown in Table 3 demonstrates that
the disk file read time is a significant portion of the
overall response time. Thus, the display station
render time is the only area of the display response
time which can be clearly influenced and is, there
fore, the main focus of our image accelerators. The
local processing that must occur at the display sta
tion is not a trivial task; an image must be decom
pressed, scaled, and clipped to fit the user's current
window size, and optionally rotated.

The decompression procedure inverts the com
pression process; both are computationally com
plex. Input to the procedure is compressed data,
and output is the original scan line pixel data,
which can be written to a display device. Scaling
the data to fit the current window or fill a region
of interest is not trivial either: a huge input data
stream must be processed (the decompressed, orig
inal file), and a moderate output data stream must
be created (the viewable image to be displayed).
While simple pixel replicate and drop algorithms
may be used to scale the data, a more sophisticated
scaling algorithm has been shown to greatly
enhance the output image quality.

In addition to scaling and clipping, the orthogo
nal rotation of images (in 90-degree increments)
is a useful function on a display station. Some docu
ments may have words running in one direction
while pictures are oriented another way, or the user
may wish to view a portrait-mode image in land
scape mode. In either case, orthogonal rotation
can help the user understand the information; i.e.,
the increased time to rotate the view is warranted.

When an image is scanned, particularly with a
hand-held scanner, the paper is never perfectly
aligned. Thus, the image often requires a rotation of
1 to 10 degrees to make the view appear straight
in the image file. However, multiple users want the

Table 3 DDIF Image File Read Time and File Transport Performance

Network Transport Time
(milliseconds)

Disk Read Time After Before
Image Size (milliseconds) Packet Packet
(kilobytes) MicroVAX II VAX8800 VAX6440 Change Change

19 1223 480 281 325 960

41 1534 655 332 61 4 1792

99 2351 1035 598 1351 3928

157 3288 1380 716 2283 6430

14 Vol. 3 No. 4 Fall 1991 Digital TecbntcalJournal

information from the document as quickly as pos
sible, and should not have to rotate the image by
a few degrees to make it perfectly straight on the
screen. Therefore, this minimal rotation should
be done after the initial scanning process; i.e.,
only once, prior to indexing the material into
the database, and not by every user in a distributed
environment. Because any form of rotation is
compute-intensive, allowing the user to perform
minimal rotations at a high-volume view station
would reduce the application's perceived ren
dering speed and add little value to the station's
function.

Final Legibility
While the primary issue facing imaging applica
tions is data size, image viewing issues must also be
addressed. In short, an effective bitonal imaging
display system must be responsive to overall image
display performance and the resulting quality of
the image displayed. To enhance our products, we
optimized the display performance parameters as
best we could, given that some parameters are not
under our control. Improvements to monitor reso
lution and scanner densities continue to increase
the legibility of images. An affordable image system
should increase the image legibility by rendering
a bitonal image into a gray-scale image using stan
dard image processing techniques. We discuss the
method used in our accelerators, i.e., an intelligent
scale operation in the hardware pipeline, in the
next section.

Hardware Accelerator Design
As explained in the previous section, transforming
documents into a stream of electronic bits is not
the demanding part of a bitonal imaging process
for document management. Also, scanners and
dedicated image data-entry stations abound in the
marketplace already. Instead, the challenge lies in:
(1) managing the image data size to control
memory costs and reduce network slowdown;
(2) increasing the image rendering speed, i.e.,
decompress the image, scale it, and clip it to fit
the window size with optional rotation; and
(3) increasing the quality of the displayed images.
This section describes the way our strategy
influenced the design of DECimage products. We
also discuss the chips used for decompression and
scaling, and how Digital's existing client-server pro
tocols support these imaging hardware accelerators.

D igital Technical Jour nal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bi tonal Image Processing

General Design Strategy
The number of applications using bitonal image
data continues to increase. In general, these appli
cations attempt to offer low cost while achieving
an interactive level of performance, defined as
no more than 1 second from point of request to
complete image display. Ultimately, software may
provide this functionality without hardware accel
eration, but today's software cannot. Moreover, the
parameters of image systems are not static; scan
densities, overall image size, and the number of
images per database will all increase. These
increases will provide the most incentive for hard
ware assist at the low end of the X window ter
minals market, because software alone cannot
perform the amount of processing that users will
expect for their investment.

The User Model Although a single model cannot
suit every application, imaging is centered on cer
tain functions. Therefore, a user model built on
these functions would be very useful in mapping
individual steps to the hardware: hardware versus
software performance, the function's frequency of
use, and the cost of implementation.

The general user model for bitonal imaging sys
tems is relatively simple. A small market exists for
image entry stations, in which documents are
scanned, edited, and indexed into a database. While
a high throughput rate is important at these sta
tions, a general-purpose image accelerator is not
the solution-dedicated entry stations already
exist in the market. Instead, we designed a general
purpose platform, or versatile media view station,
to be used for imaging applications alongside other
applications. The user model for this larger market
is a set of operations for viewing and manipulating
images already entered into a database. The most
common operations in this model are decompres
sion, scaling, clipping, orthogonal rotation, and
region-of-interest zooming.

Display Performance and Quality Optimization
The main thrust of the DECimage accelerator is to
achieve interactive performance for the operations
defined in the user model. A secondary goal is to
bring added value to the system by increasing the
quality of the displayed image compared to the
quality of the scanned image. A side effect of maxi
mizing performance in hardware is that the main
system processor has work off-loaded from it, free
ing it for other tasks.

15

Image Processing, Video Terminals, and Printer Technologies

The general design of the accelerator uses a
pipelined approach. Since maximum performance
is desired and a large amount of data must be pro
cessed by the accelerator board, multiple passes
through the board are not feasible. Similarly, the tar
geted low cost does not allow a whole image buffer
on the board. With one exception (rotation), all
board processing should be done in one pipeline,
with the system processor simply feeding the input
end of the pipe and draining the output end.
Because of the large amount of data to be read from
the board and displayed on the screen, the proces
sor should only have to move that data, not do any
further operations on it. To this end, any logic
required to format the pixels for the display bitmap
should be included in the pipeline.

Cost Reduction through Less Expensive System
Components The net cost of a bitonal imaging
system is influenced by the capability of the assist
hardware. The capability of the hardware implies
flexibility in the choice of other system hardware.
In this regard, the most significant impact on cost
occurs in the memory and the display. A system that
makes use of fast decompression and scaling hard
ware can quickly display compressed images from
memory. This means either more images can be
maintained in the same memory, or the system can
operate with less memory than it would without
the assist hardware; less memory means lower cost.

A more dramatic effect on system cost is in the
display. Imaging systems generally need higher
density displays than nonimaging systems, but the
cost of a 150-dpi display is approximately twice the
cost of a 100-dpi display of the same dimensions.
However, we found that we could increase legibil
ity, i.e., expand a bitonal image to a gray-scale repre
sentation, by using an intelligent scale operation
in the hardware pipeline. For example, a bitonal
image rendered to a 100-dpi display using the intel
ligent scale process gives the perceived legibility
of the same image rendered to a 150-dpi display
with a simple scaling method. That is, by adding the
intelligent scale, a 100-dpi display can be used
where previously only a 150-dpi display would be
adequate.

Cost Reduction through Integration Presently, as
in the DECimage 1200, hardware-assisted image
manipulation exists as a board-level option. Higher
levels of integration with the base platform will
provide lower overal I cost for an imaging system.

16

The most straightforward method of integration is
to relocate the hardware from the present option
to the main system processor board; successive
steps of integration would consolidate mapped
hardware to fewer total devices. The most cost
effective integration will be the inclusion of the
mapped hardware in the processor in a way similar
to a floating-point unit (FPU). Just as graphics accel
eration is now being included in system processor
design, images will eventually achieve the status of
a required data type and thus be supported in the
base system processor.

Product Definition-What Does the User
Want?
The previously described strategy was used in the
design of the image accelerator board for the
DECimage 1200 system. The product requirements
called for a low-cost, high-performance document
image view station. These requirements evolved
from the belief that most users currently investi
gating imaging systems are interested in applica
tions and hardware that will enable them to quickly
and simultaneously view document images and run
their existing nonimaging applications. These users
are involved with commercial and business appli
cations, rather than scientific applications. The
DECimage 1200 system was planned for the manage
ment of insurance claims processing, hospital
patient medical records, bank records, and manu
facturing documents. As previously stated, the
imaging functions required for these view-oriented
applications are high-speed decompression, scal
ing, rotation, zooming, and clipping.

General Product Design
In defining the image capable system, the key
points in the product requirements list were

• High-performance image display

• Lowcost

• Bi tonal images only (not gray-scale or color)

• View-only functions

The need for high-performance display influ
enced the project team to design the hardware
accelerator board to handle image decompression,
scaling, and rotation. Previous performance test
ing on a 3-VUP (VAX-11/780 units of performance)
CPU had yielded image software display times from
5 to 19 seconds. These images were compressed

Vol. 3 No. 4 Fall 1991 Digital TechnicalJournal

according to the CCITI Group 4 standard (300 dpi,
8.5-by-11 inches), and ranged from 20 to 100 kilo
bytes in size. In addition, the software display times
were highly dependent on the image data content.
The more complex image files, which had lower
compression ratios, took significantly longer to
decompress, scale, and display than the simpler
image files. For example, an A-size, 300-dpi, CCITI
Group 4 compressed image with a compression
ratio of 10: 1 took approximately 18 seconds to
display, while another with a ratio of 33: 1 took
approximately 7 seconds.

The other three requirements led to decisions
about the specific design of the image accelerator
board. The need for low cost meant designing an
option for an existing low-cost platform, which led
us to Digital's VT1200 X window terminal. This
requirement also led to our support of the pro
posed X Image Extension (XIE) protocol.4 The XIE
protocol extends the Xll core protocol to enable
the transfer of compressed images across the wire
and to enable interactive image rendition and dis
play at the server. In the X windowing client-server
environment, image applications and compressed
image files exist on the client host machine, as
depicted in Figure 2. In addition, the XIE protocol
standardizes the interface-to-image functions in
the X windowing environment and enables the
development of a common application that can be
used on any XIE-capable station. The client applica
tion issues commands to the X server display sub
system and the XIE specialized image subsystem.
When a user selects an image to view, the com
pressed image file is transported from the client
side storage device to the X server memory.

Because the proposed accelerator would han
dle only bitonal images, we could specialize our
board to decompress only the standard CCITI

X/XIE CLIENT X/XIE
APPLICATION

X11 AND XIE SERVER

WIRE
PROTOCOL

'

COMPRESSED
IMAGE STORAGE DISPLAY IMAGE
• DISK HARDWARE
• CD ROM

Figure 2 X Client-seroer Architecture

Digital Technical Journal Vol. 3 No. 4 Fa/11991

Hardware Accelerators for Bi tonal Image Processing

Group 3 and Group 4 bitonal compression algo
rithms. This specialization allowed the use of a
Digital application-specific integrated circuit (ASIC)
decompression chip. Finally, the view-only require
ment limited the scope and complexity of the
design by eliminating the need for extra hardware
to handle the compression of images after they
have been scanned and edited.

Specific Product Design
The decisions described in the previous section led
to our design of an image accelerator board that
supports: CCITI Group 3 and Group 4 image decom
pression using an ASIC decompression chip; integer
scaling using an ASIC scaling chip; orthogonal rota
tion; and image display. Figure 3 shows a general
block diagram of the board and how it fits into
Digital's VT1200 system architecture. The accelera
tor board is attached to the system address/data
bus, and its registers, data input port, and data
output port are mapped into the CPU's VO space.
The accelerator board is accessed by reading and
writing specific addresses like any other system
memory space. Note that the image accelerator
logic is separate from the video terminal logic.
Decompressed images are read from the image
board and written to the base system video mem
ory for display.

The main operation consists of the following
steps: compressed image data is read from system
memory and written to the ASIC decompression
buffer by the processor; the data is then decom
pressed, scaled by the ASIC scaling chip, packed
into words, and written to the output buffer.
Figure 4 shows a detailed block diagram of the
image accelerator board logic. The scaling chip out
puts pixels of data (1 bit per pixel in this case)
which are packed into words using shift registers.
As soon as a word of data is available, the scaling
chip output halts. Control signals generated in pro
grammable array logic (PAL) write the packed word
into the output buffer and tell the scaling chip to
begin outputting pixels again. When the output
buffer is full, the processor reads the rendered
image data from the buffer. If rotation is required,
the processor writes the data to the rotation
matrix; otherwise, the data is clipped and written
to the bit map. The image driver software, after set
ting up the board, alternates between checking
whether the input buffer is empty and whether the
output buffer is full.

17

Image Processing, Video Terminals, and Printer Technologies

NETWORK
INTERFACE

SYSTEM
MEMORY

t

IMAGE
HARDWARE

SYSTEM ADDRESS/DATA BUS

OPTION
MEMORY

DIAGNOSTIC
ROM

VIDEO
MEMORY

DISPLAY

Figure 3 VT1200 System Architecture

The rotation circuit handles 90- and 270-degree
rotation, whereas 180-degree rotation is handled
in the data packing shift registers by changing the
shift direction. The circuit rotates an 8-by-8-bit
block of data at a time. The first byte of eight con
secutive scan lines is written into eight individual
byte-wide registers. The most significant bit (MSB)
of each of these registers is connected to the byte
wide rotation output port latch. A processor read
of this port triggers a simultaneous shift in all of the
rotation data registers so that the next bit of each
register is now latched at the rotation output port
for the next read. Figure 5 diagrams the rotation
circuitry just described.

To achieve the best performance, we pipelined
the functional blocks in the hardware. The scaling
engine does not need to wait for the entire image

INPUT
BUFFER

DECOMPRESSOR
CHIP

SCAN LINE
RAM BUFFER

t
SCALING
CHIP

to be decompressed before it can begin scaling;
instead, scaling begins as soon as the first byte of
data is output from the decompressor. Thus dif
ferent pieces of the image file are being decom
pressed, scaled, and rotated simultaneously. The
hardware pipeline also eliminates the need to
store the fully uncompressed image (approximately
1 megabyte of data for A-size 300-dpi images) in
memory. The compressed image is written from
system memory to the accelerator board and a
decompressed, scaled, and clipped image is read
from the board. Because of the speed of the hard
ware, the software can redisplay an image with dif
ferent scaling, clipping, or rotation parameters; it
merely changes the hardware setup for the differ
ent parameters and sends the compressed image
file back through the accelerator board pipeline.

DATA PACKING
CIRCUIT

FIFO OUTPUT
BUFFER

SYSTEM ADDRESS/DATA BUS

COMMAND
AND STATUS
REGISTER

8x8
ROTATION
MATRIX

Figu1·e 4 Block Diagram of DECimage 1200 Accelerator Hardware

18 Vol. 3 No. 4 Fall 1991 Digital Techntcal]our11al

8 SCAN LINES OF IMAGE DATA

8-BYTE
BLOCK
#1

I

8-BYTE
BLOCK
#2

8-BYTE
BLOCK
#3

!
8x8
ROTATION
MATRIX

...

0 1 2 3 4 5 6 7

SCAN LINE O 1-----------1

SCAN LINE 1

SCAN LINE 2 ---------t
SCAN LINE 3 1-----------1

SCAN LINE 4 1-------- ---1

SCAN LINE 5 1----------t
SCAN LINE 6 1-----------1
SCAN LINE 7 ..._ ______,

ROTATION
OUTPUT
REGISTER

0

2
3 -
l

4
5
6
7

0 1 2 3 4 5 6

I DISPLAY BYTE

Figure 5 Rotation Matrix

ASIC Design Description

7

I

The ASIC design consists of a decompressor chip,
which decodes the compressed image data to pixel
image data, and a scaling chip, which converts the
image from the input size to the desired display size.

Decompressor Chip The decompressor chip acts
as a CCITI binary image decoder. The chip contains
three distinct stages, which are pipelined for the
most efficient data processing. Double buffering
of compressed input data is implemented to enable
simultaneous input data loading and image decod
ing to occur. Compressed data is loaded into the
input buffer by the processor through a 16- or 32-bit
port. Handshaking controls the transfer of decom
pressed data from the decompressor's 8-bit-wide
output bus to the scaling chip.

The first stage of the decompressor chip con
verts CCITI-standard Huffman codes, which are of
variable-length, to 8-bit, fixed-length codes (FLCs). 5

A sequential tree follower circuit is implemented
to handle this conversion. Every Huffman code cor
responds to a unique path through the tree, which
ends at a leaf indicating the FLC. The 8-bit FLC is
sent to a first-in, first-out (FIFO) buffer, which holds
the data for the second stage.

The second stage of the chip generates a 16-bit,
run-length value from the FLC. The lower 15 bits of

Digital Technical Journal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bi tonal Image Processing

the word contain the number of consecutive white
or black pixels (called the run length). The upper
bit of the word contains the run-length color code
(0 for a white run and 1 for a black run). An FLC is
read from the FIFO buffer and decoded into one of
eight routine types. Each routine is made up of sev
eral states that control the color code toggling, run
length adder, and accumulator circuits. At the end
of each routine, a new word containing the run
length and color information is written into a FIFO
buffer for the final stage.

The final stage of the decompressor chip con
verts the run-length and color information to black
or white pixels. This stage outputs these pixels in
16-bit chunks when the scaling chip sends a signal
indicating a readiness to accept more data.

Scaling Chip The primary pu~pose of the scaling
chip is to input high-resolution document images
(300 dpi) and scale them for display on a medium
density monitor (100 dpi). The chip offers inde
pendent scaling in the horizontal and vertical
directions. The scaling design implemented in the
chip is a patented algorithm that maps the input
image space to the output image space. General
M-to-N pixel scaling is provided where M and N are
integers between 1 and 127, with the delta between
them less than 65. M represents the number of pix
els in and N represents the number of pixels out (in
the approximated scale factor).

Given an image input size and a desired display
size, we must find the M and N scale factors that
best approximate the desired scale factor, within
the range limits of Mand N as previously stated.
Thus an input width of 3300 and a desired out
put width of 550 are represented by an M of 6 and
an N of 1. The approximated M and N values are
loaded into the chip scale registers for downscaling
or upscaling.

The chip scaling logic uses the scale register val
ues to increment the input pointer position and
generate output pixels. A latched increment deci
sion term is updated every clock cycle, based on
the previous term and the scale register values.
When scaling down (where fewer pixels are output
than are input), the logic increments the input
pointer position every clock cycle, but only out
puts a pixel when the increment decision term is
greater than or equal to zero. Figure 6a illustrates
how this algorithm maps input pixels to output pix
els for a sample reduction. When scaling up (where
every input pixel represents at least one output

19

Image Processing, Video Terminals, and Printer Technologies

SCALE DOWN FROM 10 INPUT PIXELS TO 5 OUTPUT PIXELS
(M = 2 AND N = 1)

INIT = N = 1
DELTA 1 = 2N = 2
DEL T A2 = 2N - 2M = -2

INPUT

INCREMENT
DECISION
REGISTER

OUTPUT

•
D = 1

•
1

2

•
D=-1

3
0

D = 1

0
2

4
0

D =-1

5

•
D = 1

•
3

6

•
D = -1

7
0

D = 1

0
4

8

•
D =-1

9

•
D= 1

• 5

10

•
D=-1

(a) Downscaling

SCALE UP FROM 3 INPUT PIXELS TO 9 OUTPUT PIXELS
(M = 1 AND N = 3)

INIT = 2M-N =-1
DELTA1 = 2M = 2
DEL TA2 m 2M - 2N = --4

1 2 3
INPUT • • •
INCREMENT
DECISION D =-1 D = 1 D =-3 D =-1 D=1 D=-3 D =-1 D=1 D =-3
REGISTER

OUTPUT • • • 0 • 0 0 0 •
1 2 3 4 5 6 7 8 9

(b) Upscaling

Figure 6 Chip Scaling Examples

pixel), the logic outputs a pixel every clock cycle,
but only increments the input pointer position
when the increment decision term is greater than
or equal to zero. Figure 6b illustrates how this algo
rithm maps input pixels to output pixels for a sam
ple magnification. For both cases, the value of the
pixel (black or white) being output is the value of
the input pixel pointed at during that clock cycle.
In this description, simply substitute rows for pix
els to represent the vertical scaling process.

Software Support for the Hardware
Software support is needed to enhance the func
tions of the hardware accelerator in our image view
station. As mentioned in the section General
Product Design, the XIE protocol extends the Xll
core protocol to enable the transfer of compressed
images across the wire and to enable image rendi-

20

tion and display at the server using the hardware
accelerator board. Like the Xll protocol, the XIE
protocol consists of a client-side library called
XIElib, which provides client applications access
to image routines, and a server-side piece, which
executes the client requests. The XIE server imple
ments support at two levels: device-independent
and device-dependent. The device-dependent level
supports the functions that benefit from optimi
zation for a particular platform, or functions that
are implemented in hardware accelerators. The
device-independent level enables quick porting of
functionality from platform to platform. Figure 7
illustrates the X/XIE client-server architecture.

The client-side XIElib offers the minimum
functions necessary for image rendition and dis
play. The toolkit level offers higher-level routines
that assist with windows application development.

Vol. 3 No. 4 Falt 1991 Dtgttal Techntcal]ournal

APPLICATIONS

XLIB

IMAGE
TOOLKIT

XIELIB

~

X ~ XIE PROTOCOL PROTOCOL ----- ----- ------

XSERVER

DEVICE INDEPENDENT (DIX)

XIE SERVER

DEVICE DEPENDENT (DDX)

IMAGING
HARDWARE

Figure 7 X/XIE Architecture

An example of a routine at this level might be
ImageDisplay, which displays an image in a previ
ously created window. ImageDisplay parameters
might include x and y scaling values, the rotation
angle, and region-of-interest coordinates. Whether
programming with the XIE protocol at the library
or toolkit level, applications developers benefit
from the platform interoperability of the standard
interface. Image accelerator hardware and opti
mized device-dependent XIE code changes the
application's image display performance, but an
application developed using the XIE protocol can
run on any XIE-capable server.

Accelerator Performance Results
With the DECimage 1200 X terminal, we have
achieved interactive performance rates, reduced
memory usage, and increased final image legibility.
We achieved these rates by transporting com
pressed files instead of huge pixel files and by imple
menting specialized image processing hardware.
The DECimage 1200 can read, transport, decom
press, scale, and display an 8.5-by-11-inch bitonal
document in 1 to 2 seconds. Successive displays,
i.e. , rotating, region-of-interest zooming, panning
around the image, all occur in less than 1 second,

Digital Tecbnical]ournal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bi tonal bnage Processing

which is essentially as fast as the user can ask for
the displays. This speed is possible because the
image already resides in compressed form in the
server memory. Thus, the image does not have to
be read from the disk or transported across the
network.

Future Image Accelerator
Requirements
Hardware accelerators will continue to be required
for bitonal imaging until software can provide the
same functionality at the same performance level.
This section discusses the more complex image
schemes that are used for gray-scale imaging and
multimedia applications. In contrast to bitonal
imaging, these applications will require the use of
hardware accelerators well into the future.

Other applications will require richer user inter
faces utilizing continuous-tone images, video, and
audio. All of these new data types are generally
data-intensive, and compression or decompression
of any one of them is a significant processing bur
den. Handling them in combination indicates that
the need for specialized hardware assistance will
persist for the foreseeable future.

Continuous-tone Images
Bitonal images are either black or white at each
point, but some applications require smoothly
shaded or colored images. These images are typi
cally referred to as continuous-tone images, a term
that denotes either color or gray-scale, e.g., photo
graphs, X rays, and still video. The representation
and required processing of this image format is
significantly different from that of bitonal images.

Continuous-tone images are represented by mul
tiple bits per pixel. This format allows a greater
range of values for each pixel, which yields greater
accuracy in the representation of the original
object. Additionally, each pixel can consist of mul
tiple components, as in the case of color. The num
ber of bits used to represent a continuous-tone
image is chosen according to the nature of the
image.

For example, medical X rays require a high
degree of accuracy. Consequently, 12 bits are gener
ally regarded as the minimum acceptable for the
rendering of this class of image. Color images typi
cally require 8 bits per pixel for each component
(YlTV or RGB format) for a total of 24 bits per pixel.
Table 2 shows the relative size of samples of each
image. The need to express these images in a

21

Image Processing, Video Terminals, and Printer Technologies

compressed format is obvious from the storage
space requirements and the current storage media
limits.

The compression of continuous-tone images can
be accomplished in several ways. However, most
imaging applications are not closed systems;
inevitably, each system needs to manipulate images
that are not of its own making. For this reason we
adopted the JPEG standard, which specifies an algo
rithm for the compression of gray-scale and color
images. Specifically, the JPEG compression method
is based on the two-dimensional (2D) discrete
cosine transform (DCI). The DCT decomposes an
8-by-8 rectangle of pixels into its 64 2D spatial
frequency components. The sum of these 64 2D
sinusoids exactly reconstructs the 8-by-8 rectangle.
However, the rectangle is approximated-and com
pression is achieved-by discarding most of the
64 components. Typically adjacent pixel values
vary slowly, thus there is little energy in most of the
discarded high-frequency components.

The edges of objects generally contribute to the
high-frequency components of an image, whereas
the low-frequency components are made up of
intensities that vary more gradually. The more
frequency components included in the approxi
mation, the more accurate the approximation
becomes. Table 4 shows some sample JPEG image
compression ratios.6

The most popular part of the JPEG standard,
the "baseline" method, was defined to be easily
mapped into software, firmware , or hardware.
Straightforward DCT algorithms can be efficiently
implemented in firmware for programmable DSP
chips, due to their pipelined architecture. The first
systems to embody the standard did so using DSPs,

Table 4 Typical Compression Parameters
for JPEG

Compression Compression Rendered Image
Ratio Method Integrity

2:1 Lossless Highest quality-
no data loss

12:1 Lossy Excellent quality-
in distinguishable
from the original

32:1 Lossy Good quality-
satisfactory for
most applications

100:1 Lossy Low quality-
recognizable

22

because any change to either the evolving standard
or a standard extension could be easily introduced
to the firmware. The fastest implementations are
achieved by special-purpose hardware accelerators.

The JPEG implementation does not require hard
ware, i.e. , the algorithm can be performed com
pletely in software. The case for hardware assist
is made in performance. Table 5 describes the
reduced instruction set computer (RISC) processor
performance, in millions of operations per second
(mops), needed to provide the specified operation
at a motion video rate of 30 frames per second.7
However, generic RISC processors of those speeds
are not available today. Therefore, dedicated, cus
tom very large-scale integration (VLSI) devices
(such as the CLSS0-10 from C-Cube Microsystems)
must be used to perform the operations.8 Even
if the motion video rate is not required, the ASIC
devices offer the simplest hardware solution.

Live Video and Video Compression
Video captures the natural progression of events in
an environment, and is therefore a natural and
efficient way to communicate. Consider, for exam
ple, the assembly of a set of components. One way
to express the assembly process is to show a series
of photographs of the assembly at successive steps
of completion. As an alternative, video can show
the actual assembly process from start to finish.
Subtle details of the process such as part rotations
and movements can be clearly conveyed, with the
added dimension of time.

Obviously, information expressed in video form
can be valuable; however, significant problems arise
in adapting video for use in computer systems.
First, the huge data size of video applications can
strain the system's storage capability. Video can
be characterized as a stream of continuous-tone
images. Each of these images consists of pixel val
ues with individual components making up each
pixel. For video to have full effectiveness, the still
images must be presented at video rates. In many
cases the rate to faithfully reproduce motion is
30 frames per second, which means that one
minute of uncompressed video (512-by-480 pixels
at 24 bits per pixel) would consume over 1 gigabyte
of storage. In addition to storage demands, large
volumes of data cause bandwidth problems.
Presenting 30 frames per second to the video out
put with the above parameters would require a
transfer rate of more than 22 megabytes per sec
ond from the storage device to the video output.

Vol. 3 No. 4 Fall 1991 Digital Technical journal

Hardware Accelerators for Bitonal Image Processing

Table 5 Processing Requirements for Imaging Functions

Processor
Imaging Processor Operations per Pixel* Operations
Functions Read Write ALUt

Pixel move .25 .25 0

Point operation 2 1 1

3 x 3 convolve 9 1 8
8 X 80CT 24 14

8 x 8 block 128 1 191
matching

•RISC processor, 1 M pixels, 30 frames per second (fps), 8 bits.
tALU = arithmetic logic unit

Thus, reducing the amount of data used to repre
sent the video stream would alleviate both storage
and bandwidth concerns.

The starting point for the compression of video
is with still images and, as previously mentioned,
the JPEG algorithm can be used to compress still
continuous-tone images. Because video can be rep
resented as a sequence of still images, the algorithm
could be applied to each still. This procedure
would produce a sequence of compressed video
frames, each frame independent of the other
frames in the sequence.

The evolving Motion Picture Experts Group
(MPEG) standard takes advantage of frame-to-frame
similarities in a video sequence, thereby enabling
more efficient compression than the application
of the JPEG algorithm alone.9 In most situations,
video sequences contain high degrees of similar
ity between adjacent frames. The compression of
video can be increased by encoding a frame using
only the differences from the previous frame. The
majority of scenes can be greatly compressed; how
ever, scene transitions, ligh ting changes, or condi
tions of extreme motion need to be compressed as
independent frames.

The need for hardware assist in this area is com
pelling. Table 5 shows that to sustain a JPEG decom
pression at 30 frames per second would require a
1950-mops p rocessor. The same result can be
obtained using the CL550-10 JPEG Image Compres
sion Processor.9 Although this device does not
make use of interframe similarities to increase com
pression efficiency, a device implementing the
MPEG standard would exploit these similarities.
Table 5 shows that motion compensation, to be
supported at 30 frames per second, requires a
9600-mops processor.

Digital Technical Journal Vol. 3 No. 4 Fa/11991

Multiply Total at 30 fps (mops)

0 .5 15

0 4 120

9 27 810

16 65 1950

0 320 9600

Audio and Audio Compression
Video is usually accompanied by audio. The audio
can be reproduced as it was recorded (with the
video), or it can be mixed with the video from
a separate source (such as a compact disc (CD)
player). The audio data is defined by application
requirements. If the application allows lower
quality, the audio can be sampled at lower rates
with fewer bits per sample, such as telephony rates,
which are sampled at 8 kilohertz and 8 bits per
sample. For applications requiring high-quality
(CD) audio, samples are usually taken at 44 kilo
hertz and 16 bits per sample.

Integrating audio data into an application creates
special problems. The major characteristic that
differentiates audio from the other data formats
presented here is its continuous nature. Audio
must flow uninterrupted for it to convey any mean
ing. In video systems, the flow of frames may slow
down under heavy system loading. The user may
never notice it, or may not be annoyed by it. Audio,
however, cannot slow or stop. For this reason, large
buffers are used to allow for load variations that
may affect audio reproduction.

A more subtle p roblem in creating applications
using audio is in synchronization. Audio data is
usually included to add another dimension of infor
mation to the application (such as speech).
Without a method of synchronizing the video and
audio, one data stream will dr ift out of phase with
the other. One way to include synchronization is to
use time stamps on the audio and video. This is par
ticularly useful because standard time codes are
used in most production machines.

The compression of audio data is not as efficient
as that of the other data formats. Since a statistical
approach to coding audio is highly dependent on

23

Image Processing, Video Terminals, an d Printer Technologies

the type of input (i.e., voice, musical instrument),
another method is required for generalized inputs.
Differential pulse code modulation (DPCM) is often
used to encode audio data. DPCM codes only the dif
ference between adjacent sample values. Since the
difference in value between samples is usually less
than the magnitude of the sample, modest compres
sion can be achieved (4: 1). The limitation using this
technique is in the coding of high-frequency data.

Hardware assist for the audio data format will
probably come in the form of hardware to perform
functions other than compression. For instance,
DSP algorithms can perform equalization, noise
reduction, and special effects.

Multimedia
As the term implies, multimedia may integrate all
of the previously mentioned image formats. The
word "may" is important in this context. This area
has been mainly technology-driven, due to such
factors as lack of standards, developing 1/0 devices,
insufficient system bandwidth, differing data for
mats, and a vast amount of software integration.

It is currently a topic of debate whether typical
users will require the ability to create, as opposed
to only access, multimedia source material. How
ever, for discussion purposes, multimedia plat
forms can be classified into two categories:
authoring and user. Authoring refers to creation
of multimedia source material and requires differ
ent capabilities than user platforms. In the creation
of a multimedia application, data from many differ
ent devices may need to be digitized and cross-

AUTHORING

VIDEOCASSETIE
RECORDER

VIDEODISK

1/0 AND DEVICE
CONTROL
COMPRESSION/
DECOMPRESSION

NETWORK

LIVE
VIDEO/AUDIO

COMPACT
DISK

referenced. As the data is incorporated, it is com
pressed and stored. Authors require the capability
to edit and mix video and audio passages to get the
desired result. Moreover, the video and audio may
originate from different devices and may even be in
different formats.

As defined above, "user systems" do not require
all of the functions that authoring systems need:
only decompression is required in a typical user
system. Most existing user systems require an ana
log video source (videodisk), which is purchased
as part of the application. The device control is per
formed by the application, i.e., when a user selects
a passage to be replayed, the application sends
commands to the videodisk. Figure 8 depicts an
authoring system and a user system, along with
suggested VO capability.

Next-generation multimedia platforms will make
full use of digital video and audio. This implies that
systems will be able to receive and transmit multi
media applications and data over networks. This
interactive capability will improve the efficiency of
many mundane applications and devices. For exam
ple, electronic mail can be extended with video and
audio annotations, or meetings can be transformed
into video teleconferencing. The adoption of com
pletely digital data for multimedia also implies that
the platform 1/0 will change. Some user systems
will not require analog device interfaces or control:
the user will load the application over the network
or from an optical disk.

Each of the image formats described in this
section has different characteristics, and each will

VIDEODISK

USER

VIDEOCASSETIE
RECORDER

1/0 AND DEVICE
CONTROL
DECOMPRESSION

NETWORK

Figure 8 Sample Multimedia Platforms

24 Vol. 3 No. 4 Fall 1991 Digital Technical Journal

be presented in the embodiment of multimedia.
Given the size, processing requirements (compres
sion and decompression), and real-time demands of
applications, hardware assist will be a necessity

Summary
Imaging is a unique data type with special sys
tem requirements. To achieve interactive rates of
bitonal image display performance today, hardware
accelerators are needed; that has been the primary
focus of this paper. In the future, a general-purpose
processor should be able to handle the imaging pro
cess at the necessary speed, and beyond that, the
processor should be affordable in a low-cost bitonal
imaging system. However, the bitonal document
processing market will not wait; it is in a high state
of growth and requires that products like accelera
tors be developed for at least a few years.

Continuous-tone documents and multimedia
applications will place an even heavier processing
load on an imaging system. These areas will require
accelerators for several years. As imaging applica
tions, including bitonal, expand to cover more mar
kets, the quality enhancements and performance
benchmarks met by accelerators today will set
customer expectations. Consequently, our future
imaging products must be designed to meet these
expectations.

Acknowledgments
The authors wish to express thanks to the
x Window Terminal Hardware and Software Design
Groups for their support in developing the
DECimage 1200 option. The two major ASICs used
in the design were developed for previous pro
jects, and those two design teams are also offered
our thanks. Special thanks to Frank Glazer and
Tim Hellman for their insightful research on the
image rendering process.

Digital Technical Journal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bi tonal Image Processing

References and Note

1. Standardization of Group 3 Facsimile Appa
ratus for Document Transmission, CCIIT
Recommendations, Volume VI-Fascicle VII.3,
Recommendation T.4 (1980).

2. Facsimile Coding Schemes and Coding Control
Functions for Group 4 Facsimile Apparatus,
CCIIT Recommendations, Volume VII-Fascicle
VII.3, Recommendation T.6 (1984).

3. Digital Compression and Coding of Continuous
Tone Still Images, Part I, Requirements and
Guidelines, ISO/IEC JTCl Draft International
Standard 10918-1 (November 1991).

4.]. Mauro, X Image Extension Concepts, Version
2.4 (Cambridge: MIT X Consortium, June 1988).

5. D. A. Huffman, "A Method for the Construction
of Minimum Redundancy Codes," Proceedings
IRE, vol. 40 (1%2): 1098-1101.

6. G. K. Wallace, "The JPEG Still Picture Compres
sion Algorithm," Communications of the ACM,
vol. 34, no. 4 (April 1991): 30-44.

7. Table 5 is adapted from Y. Kim, "Image Com
puting Requirements for the 1990's: From Multi
media to Medicine," Proceedings of Electronic
Imaging West (April 1991).

8. CL550 JPEG Image Compression Processor, Pre
liminary Data Book (San Jose, CA: C-Cube
Microsystems Inc., November 1990).

9. Coding of Moving Pictures and Associated
Audio, Committee Draft of Standard ISO 11172:
ISO/MPEG 90/176 (December 1990).

25

X Window Terminals

Bjorn Engberg
Thomas Porcher

X window terminals occupy a niche between X window workstations and graphics
terminals. The purpose of terminals in general is to provide low-cost user access to
host computers or smaller dedicated systems. X window terminals further the
advance in graphics terminals and provide new and interesting ways to utilize host
systems. Ethernet cable provides for graphics performance previously not seen in
terminals. The X Window System developed try MIT allows multiple applications
to be displayed and controlled from the user's workstation. Now, with X window
terminals, the same powerful user interface is available on host and other non
workstation computers.

In mid 1987, the Video, Image and Print Systems
(VIPS) Group began the design of Digital's first
x window terminal, the VTIOOO terminal and its
code upgrade, the VT1200 terminal. Our goal was to
design and implement an x window terminal that
would allow the use of windowing capabilities on
large computer systems. In 1989, Digital developed
the VT1300 X terminal and in 1991 the VXT 2000
x terminal. The designs of these X window termi
nals are all quite different. Our design approach
changed as the underlying technology changed.

This paper first compares host-system comput
ing with applications that run on workstations.
It summarizes the significance of the x Window
System developed by MIT and discusses the client
server model. The paper then presents the need for
x window terminals and follows their development
stages. It compares and contrasts Digital's differ
ent design strategies for the VTIOOO, VT1200, and
VT1300 X terminals. The paper concludes with a
summary of the recently announced VXT 2000
X terminal.

&u:kground
Before the development of the X Window Sys
tem, there was very little overlap in functionality
between workstations and other kinds of comput
ers. Workstations had stunning and fast graphics,
and many powerful applications were available on
them. Those applications were not available to users
of basic 80-by-24 character-cell text display termi
nals connected to a host system located in a clean
room. Graphics terminals, of course, allowed the use
of ReGIS or another protocol for math and business

26

graphics, but their performance was far below the
expectations of a workstation user. Few people
have the patience to run, for example, a computer
aided design application on a VT240 terminal, assum
ing such a version of the application is available.

Although a workstation offers fast graphics capa
bilities, its applications sometimes need more CPU
power or more disk space to do calculations in a
timely fashion. Graphics applications written for
workstations could not run on faster host comput
ers, which did not provide a display. Nor was there
a standard way to get data from the host to display
on a workstation. Each application required a
unique solution to this problem.

Since the introduction of the new client-server
model of computing and modem networks, many
tasks can be divided into subtasks that can run
on the most suitable processor. The X Window Sys
tem uses the client-server approach, as shown in
Figure 1. The application is viewed as an X client,
and a workstation or a terminal can run an X server
that controls the display. The x server also controls
input from the keyboard and mouse or other point
ing devices.

CLIENT X CLIENT

XWIRE

SERVER X SERVER

Figure 1 Client-server Model

Vol. 3 No. 4 Fa/11991 Digital Tecbntcal]ournal

An X client and an X server use an X wire to
communicate, as shown in Figure 2. The X wire
is simply a two-way error-free byte stream, which
can be implemented in many different ways. The
X Window System architecture does not stipu
late how the X wire should be implemented, but
several de facto standards have emerged. Manu
facturers have designed X wires usually based on
the data transport mechanisms that were available
and convenient when the X Window System was
implemented. The X wires use transmission control
protocol/internet protocol (TCP/IP), DECnet, Local
Area Transport (LAT), and other protocols, and even
shared memory buffers as a transport to avoid
protocol overhead. A single implementation often
supports several transport mechanisms.

The X server typically executes on a processor
with display hardware. The x client can execute on
almost any processor. It may execute on the same

XCLIENT XCLIENT XCUENT

XWIRES

X CLIENT X CLIENT

XSERVER

Figure 2 X Wires

TRADITIONAL
WORKSTATION

APPLICATION

GRAPHICS
LIBRARY

WINDOWING
SOFTWARE

DISPLAY HARDWARE

KEYBOARD SCREEN

X Window Terminals

CPU as the X server, or it may execute on a host,
another workstation, or a compute server. The
X server can be connected to several X clients
simultaneously, with any combination of local
(running on the same CPU) or remote (running on
another CPU) X clients. The X server treats local and
remote clients equally.

Workstation Environment
Figure 3 compares a traditional non-X windowing
workstation with an X windowing workstation. In
both workstations the application must use a
graphics library to communicate with the display
hardware and software.

In an X windowing client environment, the
library of routines is called Xlib. An application
designer can choose from a wide variety of toolkits,
which are essentially a level of additional library
routines between the application and Xlib. The use
of a toolkit can significantly reduce the amount
of work an application programmer has to do. The
application software, Xlib, optional toolkit, and
other libraries compose the X client, as shown in
Figure 4.

With few exceptions, the X server comes with
the display hardware and input devices (keyboard
and pointer) indicated in Figure 5.

The X Window System with its flexibility neatly
solves the problems of CPU power and disk space
versus display availability. Applications written for
x can execute on a wide variety of computers, and
the results can be displayed on any of a multitude
of devices, even on a workstation that would not

XWINDOWING
WORKSTATION

APPLICATION

XLIB

XWIRE

X SERVER

DISPLAY HARDWARE

KEYBOARD SCREEN

MOUSE MOUSE

Figure 3 Inside the Workstation

Digital Tecbnicril Journal Vol. 3 No. 4 Fall 1991 27

Image Processing, Video Terminals, and Printer Technologies

APPLICATION

OPTIONAL TOOLKIT
AND OTHER LIBRARIES

XLIB

Figure4

X PROTOCOL HANDLER

DISPLAY AND
INPUT HARDWARE

TheXClient

Figure 5 The X Server

X CLIENT

XSERVER

have the capacity to run the application locally.
Figure 6 shows how the X Window System fits into
a network environment.

The X Window System has already generated
many useful applications, and its widespread popu
larity ensures that many more applications will be
made available in the future.

Need for X Terminals
In a study to determine how workstations are used,
the VIPS Group found that many users did not take
advantage of the full potential of their work-

HOST CPU 1 HOSTCPU2

stations. In a software development or document
editing environment, the users often set up their
workstations as terminals. They usually created a
few terminal emulation windows and used SET

HOST or RLOGIN commands to connect to a host
system on which they stored their working envi
ronment and files. Only two features of a work
station were frequently used. Users kept several
terminal emulators on their screens at the same
time, and set the terminal emulator windows to be
larger than 80 by 24 characters. Only rarely did the
average workstation user take advantage of the full
power of graphics applications.

The results of our study indicated a need for
a cost-effective alternative to a workstation that
would provide the features desired by a large num
ber of users. We envisioned a new kind of termi
nal, one that would allow people to have multiple
windows of arbitrary size, to connect with mul
tiple hosts, and, since the X architecture allowed it,
to be able to use the same kind of graphics as a
workstation.

From an X architecture standpoint, x terminals
and X workstations are quite similar. They can in
fact use the same hardware. For example, Digital 's
VT1300 terminal runs on the same hardware as the
VAXstation 3100 workstation. x terminal software
can also be made to run well on hardware plat
forms that are not suitable for workstations.

X CLIENT X CLIENT X CLIENT X CLIENT

28

NETWORK
INTERFACE NETWORK INTERFACE

X WINDOWING WORKSTAT ION

NETWORK
INTERFACE

KEYBOARD

X CLIENT

X SERVER

MOUSE

X CLIENT

SCREEN

Figure 6 X Window Network Environment

ETHERNET

Vol. 3 No. 4 Fall 1991 Digital Tecb,iical]ournal

The main architectural difference between
the X terminal and X workstation software is that
X terminals are closed systems that do not sup
port local user applications. Although this may
seem to be an unnecessary restriction, it does allow
X terminals to be made for less money. An open sys
tem that allows any user application to run locally
must have an established CPU architecture, a sup
ported operating system, such as the VMS, UNIX,
or ULTRIX system, and, subsequently, sufficient
memory and/or disk space to support such an envi
ronment. A closed system, on the other hand, can
be designed with simpler hardware, a smaller oper
ating system, less memory, and thus lower cost.
The absence of the ability to run user applications
locally does not impact usability significantly since
the user can run any desired application on another
CPU. Digital's VTlOOO and VT1200 X terminals were
designed based on this approach.

X Tenninal Environment
X terminals often have local applications, but they
must be built into the terminal by the designers.
The VT1200 terminal has a video terminal emulator
(VTE), a window manager, and a terminal manager
as the local applications. The VTE allows the VT1200
terminal to make American National Standards
Institute (ANSI) character-cell connections to a

HOST CPU 1 HOST CPU 2

X Window Terminals

host, via the Ethernet or the serial lines as shown
in Figure 7. This capability makes the VT1200 ter
minal useful in an environment that does not have
X window support.

Although any X server can run windows soft
ware, it does not provide a user interface. To manip
ulate the windows, the user needs a window
manager. The window manager creates window
frames that allow the user to invoke functions to
move windows, resize windows, change stacking
order, and use icons. This capability also makes the
VT1200 terminal useful when no host is available to
run a remote window manager. A terminal with a
local window manager generates less network
traffic, and window management is not slowed
by host congestion or network round-trip delays.
The VT1200 X terminal allows use of a remote win
dow manager, if the user prefers a different style of
window management.

The local terminal manager provides the user
interface to initiate connections to host systems.
It is also responsible for the terminal customization
interface.

All clients communicate with the X server using
standard X wire commands only. Any window man
ager, remote or local, can manage all the windows
on the screen, regardless of whether the clients are
remote or local.

X CLIENT TEXT TEXT

NETWORK
INTERFACE

SERIAL
LINES

APPLICATION APPLICATION X CLIENT

NETWORK INTERFACE

VT1200 X TERMINAL

NETWORK
INTERFACE

TERMINAL
EMULATOR

KEYBOARD

WINDOW
MANAGER

X SERVER

MOUSE

TERMINAL
MANAGER

SCREEN

ETHERNET

Figure 7 The X Terminal Environment

Digital Technical Journal Vol. 3 No. 4 Fall 1991 29

Image Processing, Video Terminals, and Printer Technologies

Development of X Window Terminals
The development process of the VTlOOO and
VT1200 x terminals has important lessons to teach
us. The knowledge we gained in 1987 has helped us
develop future generations ofx terminals.

When we designed the VTlOOO x terminal and
its code upgrade, the VT1200, we held many discus
sions within the group and with people from other
groups. We planned many iterations before we
arrived at the final architecture. It was by no means
the only way to design an x terminal, and in 1989

we tried a different approach with the design of the
VT1300 terminal. We knew that the best decision at
a particular time might be very different from the
best decision one year later, since the technical and
marketing environment is constantly changing.
New tools, standards, and practices enter the field
while others become obsolete. Newer products
must always have new features to meet changing
technology requirements.

Hardware Platform
Our first step was to discuss the hardware plat
form and select the kind of CPU to use, memory
size, 1/0 considerations, type of display, etc. We
studied many different CPUs to determine which
one would provide the most capabilities for the
lowest cost. A VAX chip was rejected because, at the
time, it was far too expensive for the required price
range of the VTlOOO terminal. The Motorola 68000

series CPUs are quite powerful, but we had to con
sider other factors such as availability of software
and hardware tools, cross compilers and linkers
that could run on the VMS system, and hardware
debugging facilities of sufficient power. We finally
selected Texas Instruments' TMS34010 micro
processor with video support and several built-in
graphics instructions that made it a cost-effective
solution. It also came with VMS development tools,
a c compiler, an assembler and linker, a single-step,
hardware trace buffer with disassembler, and a
powerful in-circuit emulator that made it possible
to control execution in detail, inspect registers and
memory, and set break points and hardware watch
points (for example, break when writing value x
into locationy).

We further discussed the kind of 1/0 to use. A
sample implementation of the MIT X server on a
VAXstation 2000 workstation and a primitive serial
line protocol showed, as expected, that serial lines
were clearly insufficient to carry the X wire proto-

30

col without some compression of the wire protocol
itself. We had to build Digital's first x terminal with
an Ethernet interface.

We needed to determine if this hardware platform
could give us sufficient performance. We made sev
eral performance estimates, based on what we
knew then about the X server and other software
components. We went through each step in as much
detail as we could (before anything was built). We
calculated how many instructions were necessary
to perform each task in the chain of receiving a
command and displaying it on the screen. By know
ing the speed of the CPU, we could estimate per
formance in characters or vectors per second.
Our estimates showed that the VTlOOO x terminal
would not be exceedingly fast, but the perfor
mance would most probably be sufficient, defi
nitely faster than a VAXstation 2000 in most cases.

In retrospect, actual performance of the VTlOOO
terminal and the later software upgrade, the
VT1200, was close to our estimates, but it took sev
eral passes of code optimization to achieve such
performance.

We also discussed alternate hardware designs
for performance improvements. One solution pro
posed two CPUs, the TMS34010 microprocessor to
handle the display and a 68000 microprocessor to
handle 1/0 and other tasks. Unfortunately, we found
no easy way to balance the workload between the
two CPUs. We estimated that the different software
components would have the following relative CPU
demands:

• Interrupts, 5 percent

• Communications, 10 percent

• Operating system, 5 percent

• X server (minus display routines), 60 percent

• Display routines, 20 percent

To equalize the load between the CPUs, we would
have had to split the x server in two, a solution that
was not feasible. Any other split of tasks would
cause one CPU to spend most of its time waiting
for the other, and the overall performance gain
would be minimal. Communication between mul
tiple CPUs is complex and is very difficult to debug.
Therefore, we decided that two CPUs were not
worth the trouble or the cost. The best way to
double performance is to install a single CPU that
is twice as fast. At that time, the TMS34020 was

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

already being mentioned as a follow-up micro
processor. Since its software would be compatible
with the TMS34010, we decided to keep it in mind
for possible use in a future terminal.

Code Selection
The use of read-only memory (ROM}based code
versus downloaded code has been debated for
some time. ROM-based code starts up faster and
incurs less network traffic at startup time (espe
cially on a site with many X terminals), but is not
flexible when software is upgraded. On the other
hand, downloaded code can be easily distributed.
An entire site can be upgraded with one or a few
installations by a system manager as opposed to
changing ROMs in a large number of terminals.
(With the Vfl200 X terminal, customers can change
ROM boards.) From the point of view of terminal
business, it made sense to use ROM-based code in
1987. We reasoned that not all sites would have
Ethernet, but with ROMs the x terminal would
still be useful as a multiwindow terminal emula
tor. We realized that such concerns would change
with time, and on the whole, downloaded code
would become the better approach. The only
exceptions would be in the home or small office
markets where a boot host or an Ethernet might not
be available. Subsequent X terminals are being
made in both downloaded (for example, in the
Vfl300 terminal) and ROM versions.

Operating System Selection
Next we considered which operating system to
use. We looked at other vendors' operating sys
tems, but found they were either too complex and
big or inadequate. One of our coworkers had writ
ten a very compact operating system for a VAX
system used on another project. We used it in our
prototype and then adapted it for the TMS34010
processor. We implemented additional functions
to run the rest of the software with minimum
changes.

There are many advantages to working with
"your own" operating system. It is easy to make
changes, to work around tricky problems, and to
make special enhancements. But operating system
code is difficult to debug. Timing is very critical,
and throughout the project, we found strange bugs
in code that had initially appeared to be all right
to everyone involved. We found bugs under heavy
load conditions after a rare sequence of events

Digital Tecbntcal]ournal Vol. 3 No. 4 Fall 1991

X Window Terminals

uncovered little timing windows and race condi
tions that had not been handled properly. Even
with in-circuit emulators, such bugs could take
weeks to track down.

In the Vfl300 we decided to use the VAXELN
operating system. We wanted to avoid the possibil
ity of time wasted on finding and patching holes in
the design of a new operating system.

LocalTerrninalManager
The VflOOO X terminal is self-starting at power-up,
but without a host system, it needs a local user
interface. We decided that this interface should
resemble a workstation session manager and thus
called it the local terminal manager. Although it
covers a different set of functions, we wanted the
local terminal manager to implement a similar set of
objects and operations (the "look and feel" or style)
of a workstation session manager. The style of the
DECWindows session manager was chosen to make
it easier for a user to switch between an X terminal
and a DECWindows workstation. We wrote a subset
toolkit for all the "customize" screens and ensured
that the VfE could use the same subset toolkit for
its "customize" screens. As DECWindows has pro
gressed, subsequent X terminals have adapted the
new user interface preferences, in this case Motif.

Local Terminal Emulator
We considered a local terminal emulator to be an
important component. We knew that X-based ter
minal emulators could run on the host, but in 1987
hosts with X windowing support were rare. Since
we were in the terminal group, a terminal that
could not manipulate ordinary text by itself was
considered unsellable. We wanted the ability to
access both X and non-X hosts and we wanted
to support multiple text windows. Therefore we
defined the terminal emulator as an X client so that
text windows could coexist with X client windows.
This feature has proved to be exceptionally popu
lar. A large number of users use nothing but video
terminal emulator windows. They are not inter
ested in X windowing graphics, but do want mul
tiple and/or larger text windows on a large screen.

Local Window Manager
We debated whether or not to implement a local
window manager. The DECwindows window man
ager was under development and was constantly
changing. The DECwindows window manager

31

Image Processing, Video Terminals, and Printer Technologies

contained far too many VMS dependencies to be
ported easily. Also the x terminal did not have
enough memory to run the DECwindows toolkit
locally. We could have ported other window man
agers, but they lacked the essential characteristics
of the DECWindows window manager. For a while
we considered letting the local clients have a primi
tive way to manage their own windows, until a full
featured window manager could be started on a
host. Again, this alternative lacked the DECWindows
system's qualities. We eventually decided to write
a window manager based only on Xlib and our
subset toolkit calls. It has the essential characteris
tics of the DECwindows product. Also, since the
DECWindows window manager of necessity would
keep changing, we wrote the local window man
ager in such a way that it could relinquish control
to a remote window manager. This solution gave us
the most flexibility for this hardware platform. The
recently announced VXT 2000 x terminal has been
designed with virtual memory to accommodate a
well-established unmodified window manager, the
Motif Window Manager.

XSeroer
We also needed to choose an X server. We could
have based our code on the distribution tape from
MIT, but at the time the x Window System was not
yet a mature product. Every implementor had to

spend considerable time stabilizing the implemen
tation enough to yield a product and improve per
formance. Since the VMS DECWindows Group had
been writing code for the server, we decided to use
DECWindows code. Once the porting effort started,
we found that most of the performance had been
improved by VAX MACRO code. Consequently, we
had to re-engineer all the modules or adapt new
ones from the MIT tape. As we kept porting and
enhancing performance, our code changed more
and more until it became extremely difficult to
track bug fixes made by the DECWindows Group.
The MIT patches were also nearly impossible to use
because of code changes and because our starting
code was one step removed from the tape.

Today the MIT x server is a mature product;
patches and bug fixes are readily available from
MIT and from the X community. In our current
X terminals, the high degree of portability of the
MIT X server allows us to keep most of the MIT
x server source code almost unchanged so patches
are easily applied.

32

Communications Protocol
Many communications protocols were available,
but our choice was dictated by market pressures
rather than technical reasons. The market demanded
TCP/IP. DECnet would have been acceptable, but
it was running out of available addresses, at least
within Digital. DECnet address space supports
only 64,000 nodes and requires manual address
and name assignments. After waiting weeks to get
addresses for a few workstations, we realized that
adding thousands of X terminals into Digital's inter
nal network would not be possible. DECnet Phase v
software has solved this problem.

Next we looked at the LAT protocol used by
Digital terminal servers and found that it had sev
eral advantages. First, the VMS operating system
supports the LAT protocol. LAT uses unique 48-bit
Ethernet addresses to identify each node, which
allows a large node address space. LAT also does not
require any system management to add another ter
minal. A user can connect a terminal to a power
source, and the terminal automatically becomes
part of the network. Our performance evaluations
found that the LAT interface on the host could be
written to incur less host overhead than DECnet,
which is important when many x terminals are con
nected to hosts.

Changes were needed in the VMS LAT driver to
accommodate X wire and font service connections.
The VMS Software Engineering Group worked with
us to ensure that we would have those changes
on schedule and in the appropriate VMS releases.
As a result, we chose the LAT protocol for the VMS
community and TCP/IP for users of ULTRIX and UNIX
systems.

Font File System
Storing fonts and changing font file formats were
major problems. Since the VTlOOO X terminal did
not have a local file system, some fonts had to be
stored in ROM to allow the VTlOOO terminal to func
tion in standalone mode. A quick review of the
available DECWindows fonts showed that not all of
them fit in the ROM space allowed for the terminal.
Furthermore, customer-designed fonts or new font
releases could not be accommodated. The solution
was to be able to read fonts from a host system.
This approach provided a font service on the VMS
system, and enabled font files to be read over the
Internet. We designed a process called the font dae
mon to run on the VMS operating system. This pro-

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

cess could deliver font data on request to one or
several vnooo terminals. The VMS system's font
daemon uses the LAT protocol to deliver the fonts
and protects somewhat against font file format
changes. In many ways, the design of the font
daemon makes it a precursor to a general font
server, and it is very similar to the X Font Server
being delivered by MIT in the latest release of the
x Window System.

To use the font service, the terminal user must
specify a font path in the VT1200 local terminal
manager. Specifying a host name is sufficient to
access the default font path, although users with
their own font files can optionally search other
directories. At startup, the VT1200 terminal makes a
font connection to the host's font service and deliv
ers the font path specification to the font service.
The font service sends font names and other basic
font information about all the fonts in the selected
path. When the VT1200 X server needs a font, the
VT1200 first searches the ROM-based fonts; if it is
not there, a request to read the font is sent to the
font daemon. The daemon sends the required infor
mation to the VT1200, and the X server can display
characters from that font. Since memory is limited,
the VT1200 has font caching, a mechanism to dis
card fonts no longer used or to discard the least
used fonts. Our current X terminals increase the
robustness of the font mechanism; for example,
they provide recovery should the font service or its
host become unavailable.

The special LAT code that we used on VMS sys
tems for the font service was not available on
UNIX and ULTRIX operating systems. Since inter
net protocol (IP) was available, we could use the
trivial file transfer protocol (TFTP) to read a file
from a host system, if the system manager set the
proper protections. We chose TFTP for its ease
of implementation and its wide availability on
UNIX and ULTRIX systems. The TFTP font path in a
VT1200 terminal specifies a host IP address and a
complete path to a file (usually named font.paths)
that contains the complete path to all the font
files that the VT1200 can use. The terminal can
then access all those font files, again through TFTP,
to obtain font names and other basic information
about each font. When a client wishes to use a font,
the proper font file can be read again, this time to
load the complete font. Since this process is time
consuming, the font path pointing to the file has
an alternate format in which the font name fol
lows the complete path to each file. Using this alter-

Digital Technical Journal Vol. 3 No. 4 Fall 1991

X Window Terminals

nate format, the VT1200 terminal does not have to
open and read the font file until a client actually
intends to use it.

Comparison of X Terminals
The VT1200 and VT1300 X window terminals
were built using different approaches to solve
the problems encountered during development.
The x terminal is a new and flexible concept; there
is no single "best" design. Table 1 compares the
most important differences between the two termi
nals. We also include the specifics for the VXT 2000
Xterminal.

The VT1200 is ROM-based; all its software is per
manently resident in the terminal. The VT1300 soft
ware is downloaded, so a host or bootserver on the
same network must supply the terminal with a load
image at power-up.

Since downloaded terminals are dependent on
the existence of at least one working host system,
the user interface can be designed differently.
While the VT1200 x terminal has a built-in user
interface, the VT1300 does not need it. The VT1300
terminal automatically makes an x connection to a
host at power-up, and the user is presented with
the same DECwindows login box as on a work
station. The VT1300 has no local clients; all clients
run on the host system.

The VT1200 terminal uses the LAT protocol for
its ease of use and minimal network management
demands. The VT1300 terminal uses the DECnet
software already implemented in the VAXELN oper
ating system used internally. Both terminals sup
port TCP/IP.

VXT 2000 X Terminal
One problem that has plagued all X terminals is
limited memory space. Workstations usually have a
virtual memory system, which provides large pag
ing and swap areas on a disk, and applications
and X servers can use more memory space than
the hardware has. Until now X terminals have not
had virtual memory systems. 1f too many applica
tions made excessive demands, or if a client created
large off-screen images (called "pixmaps" in the
X Window System) the terminals quickly used all
memory space. 1f the X server implementation
was correct, an error was reported and a client
might try a less demanding approach. In other
cases, the terminal or client might simply crash.
One alternative was to install more memory in the

33

Image Processing, Video Terminals, and Printer Technologies

Table 1 Comparison of X Window Terminals

VT1200 Terminal

Monochrome only

1 bit plane
Code in ROM

No virtual memory

2-4MB RAM

TMS34010 CPU

VT1300 Terminal

Color only

4 or 8 bit planes

Code downloaded
No virtual memory

8-32MB RAM
VAX CPU

VXT 2000 Terminal

Monochrome and color

1 or 8 bit planes
Code downloaded

Virtual memory
4-16MB RAM

VAX CPU
Special operating system

Local clients:

VAXELN operating system

No local clients
Special operating system

Local clients:
Terminal manager
Window manager
Video terminal emulator

Terminal manager
Motif window manager
DECterm terminal emulator

Local customization Customized on host
just as a workstation

Local customization
Centralized customization

Choice of host (LAT only) Automatic X window
login to boot host

Choice of host
(LAT and TCP/IP using XDMCP)

LAT protocol
TCP/IP protocol

Special hardware

DECnet protocol

TCP/IP protocol
Available on several
workstation platforms

LAT protocol

TCP/IP protocol
Uses standard hardware

X terminal, although this can be costly and offers no
guarantees.

In the next generation of Digital's X terminals,
the VXT 2000, this problem has found a cost
effective solution. Based on the VAX architecture,
the VXT 2000 terminal uses virtual memory and
downloaded code. The Digital InfoServer, an
Ethernet storage server, provides the load image,
virtual memory paging space, fonts, and customiza
tion storage. The same InfoServer also solves
another problem: now the X terminal has access to
a file system. This allows more extensive customi
zation, as well as centralized management of the

HOST

VXT 2000
XTERMINAL

HOST

customization of all X terminals on the network.
Figure 8 shows the con.figuration for the VXT 2000
Xterminal.

Conclusion
X terminals are not intended to replace work
stations. Nor will workstations replace host sys
tems or completely displace X terminals in the
foreseeable future. It is likely that host computers
will always be faster and have more memory and
disk space than reasonably priced workstations
of the same era. It is also likely that terminals can
be built cheaper than workstations of reasonable

VXT 2000
XTERMINAL

ETHERNET

VXT 2000
X TERMINAL

Figure 8 The VXT 2000 Network Environment

34 Vol. 3 No. 4 Fall 1991 Digital Tecbr1icalJ011rnal

performance for some time to come. As long as that
is the case, there will be a market for X terminals
and host systems. Future x terminals will be faster,
and have more built-in functionality, more local
applications, X extensions, and most likely, addi
tional hardware features. x terminals will be the
networked terminals of the 1990s.

Acknowledgments
We wish to thank the members of the VT1200 devel
opment team who worked many long hours on this
project. Thanks to everyone inside and outside
the Video, Image and Print Systems Group who
contributed helpful suggestions, constructive criti
cism, and important hours using and testing the
products. Thanks to the LAT and VMS Software
Engineering Groups for incorporating the changes
needed for the VT1200 X terminal to be useful.
Thanks to the VIPS Quality Group for ensuring that
as few bugs as possible remained in the product
when shipped.

Digital Technical Journal Vol. 3 No. 4 Fall 1991

X Window Terminals

35

Peter A. Sichel I

ACCESS.bus, an Open Desktop Bus

With the_ recent introduction of the ACCESS.bus product, Digital bas affirmed its
commitment to open systems and thus to facilitating better solutions for inter
active computing. This open desktop bus provides a simple, uniform way to link
a desktop computer to as many as 14 low-speed I/0 devices such as a keyboard,
mouse, tablet, or three-dimensional tracker. ACCESS.bus features a 100-kilobit-per
second maximum data rate, hardware arbitration, dynamic reconfiguration, a
mature capabilities grammar to support generic device drivers, and off-the-shelf,
low-cost J2C microcontroller technology.

As the cost of personal interactive computing
decreases, the range of applications and the need
for specialized 1/0 devices is growing dramatically.
Traditional personal computers were designed to
accept only a small number of standard devices;
adding devices beyond those originally envisioned
usually requires specialized hardware or software.
Custom interfacing is expensive for vendors and
users and thus limits the availability of new devices.

ACCESS.bus provides a simple, uniform way to
link a desktop computer to a number of low-speed
1/0 devices such as a keyboard, a mouse, a tablet, or
a three-dimensional (3-D) tracker. Designed from
the beginning as an open desktop bus, ACCESS.bus
facilitates cooperative solutions using equipment
from different vendors. This paper describes the
ACCESS.bus design and gives some insight into how
the idea was adopted at Digital.

Design Goal, Process, and Advantages
The design goal for the desktop bus follows from
our experience within the Video, Image and Print
Systems (VIPS) Input Device Group with trying to
support new devices on Digital terminals and
workstations. While various new devices have been
successfully prototyped over the years, the need
for nonstandard hardware and custom software
drivers was always an expensive, time-consuming
obstacle. Even after successful prototyping, these
devices could not be readily adapted to our stan
dard systems, limiting their use to custom applica
tions. In designing the desktop bus, our goal was to
make it as easy as possible to interface previously
unavailable 1/0 devices to our systems in a way
that was both practical and marketable. This sec
tion explains the benefits of using a desktop bus,

36

describes the process we went through to convert
to a new bus architecture, and summarizes the key
advantages of the chosen design.

The basic desktop bus concept is illustrated in
Figure I. The bus allows multiple, low-speed 1/0
devices to be interconnected and thus interfaced
through a single host port. Desktop bus devices
such as a keyboard or a tablet, which are not hand
held, provide two connectors and allow another
device to be daisychained. A hand-held device
such as a mouse can be placed at the end of the
daisychain, or a connector expansion box can be
attached to accommodate additional devices that
do not provide two connectors.

HOST
PRINTER

KEYBOARD TABLET

CONNECTOR
EXPANSION
BOX

0----1 TRACKBALL

MOUSE JOYSTICK BAR CODE
READER
WAND

JOYSTICK

Figure I Basic Desktop Bus

Vol. 3 No. 4 Fall 1991 Digital Technical]our1,al

The desktop bus has the following benefits:

• Enables greater flexibility and variety of use

• Reduces the cost of connecting multiple devices

• Expedites bringing new technology to market

• Helps leverage third-party devices

The first benefit, greater flexibility, can be simply
achieved by allowing additional devices and more
modular solutions. We further extended this bene
fit by designing a way for devices to be added at run
time without disrupting system operation. Con
figuration should be automatic; connecting stan
dard devices should not require powering down or
rebooting the system before a new device can be
used. The desktop bus supports multiple like
devices without switches or jumpers.

The second benefit, reduced cost, was crucial to
having the bus accepted as a solution across a wide
range of products from low-end video terminals
to high-end workstations. We recognized that con
temporary electrical techniques could eliminate
the need for level translation circuits, -12 volt (V)
power supplies, and perhaps some of the protec
tive components used with RS-232 interfacing.
Although many devices would now require two
connectors, system cost would decrease because
we would need to supply only as many connectors
as the number of devices to be attached, or possibly
one more.

The third benefit, expediting the time to market
for new technology, allows us to better satisfy
changing requirements. Key to this benefit is hav
ing the means to connect new devices without
changing the system hardware or software. Based
on our experience with input devices, we devel
oped the concept of device capability reporting
and generic device protocols. Standard devices
like keyboards and locators, e .g., mice, tablets, and
trackballs, all work in similar ways. For this class
of device, we define a simple device protocol and
a way to parameterize and report device unique
characteristics. A single generic driver can adapt
itself to work with a class of similar devices so
that no custom software is required for basic opera
tion of standard devices.

Leveraging third-party devices, the fourth
benefit, is aimed at satisfying diverse customer
requirements. Because the use of computers con
tinues to proliferate, the range of applications far
exceeds that which any one vendor can master.

D igita l Technica l Journal Vol. 3 No. 4 Fall 1991

ACCESS.bus, an OjJen Desktop Bus

By making the bus truly open, we encourage third
parties to add value to our systems.

The benefits of a desktop bus are significant. But
converting to a new architecture, especially one
that is not backward compatible, is expensive in
terms of the time and effort required. How does a
large corporation build agreement to make such
an investment decision? The desktop bus project
started as a grass roots engineering effort and grad
ually built momentum. The process was one of
dialogue to attract partners. Initially, three groups
with slightly different objectives worked together
to develop the bus. The visibility of separate groups
jointly supporting the bus concept was essential to
transform the idea into action. People are more
willing to accept an idea that others around them
have already adopted.

The three groups that initiated the desktop
bus project were our VIPS Input Device Group in
Westford, MA, mentioned previously; the Work
station Systems Engineering (WSE) Group, located
in Palo Alto, CA; and the Video Advanced Develop
ment (AID) Group in Albuquerque, NM. Our Input
Device Group was looking for ways to simplify the
process of prototyping specialized input devices
and of getting related software support for our
video terminals and workstations. WSE was devel
oping a low-cost, personal workstation and needed
a flexible way to support multiple input devices
without greatly increasing the cost of the base
workstation. The Albuquerque AID Group had been
experimenting with next generation 1/0 devices,
i.e., force-feedback joystick, 3-D tracker, and real
time audio and video, and was interested in having
these technologies adopted by other Digital groups.
This AID Group had used PC technology success
fully in one of its previous video projects.

In January of 1990, engineers from each group
realized they were working on similar problems
and began to collaborate. The WSE Group was to
build the desktop bus host interface and software
drivers into their workstation; the VIPS Group was
to help define the device protocols and supply
desktop bus keyboards and mice; and the Albu
querque AID Group was to support bus devel
opment and prototype additional devices. Within
four months, VIPS had defined the basic protocols
and could demonstrate a working PC keyboard
and mouse. These early prototypes helped per
suade WSE to support the project and, in tum,
helped reinforce the importance of the project to
the VIPS Group.

37

Image Processing, Video Terminals, and Printer Technologies

We began presenting the desktop bus idea to
interested groups within Digital and received many
useful suggestions including

• Use the same keycodes as on the LK201 keyboard
to eliminate the need to rewrite keyboard
lookup tables.

• Store the country keyboard variation inside
the keyboard so users will not need to enter it
manually.

• Keep the devices simple, without modes.

In addition, third-party input device vendors
made the following suggestions.

• Use a modular connector that is easy to plug and
unplug correctly.

• Provide enough power for several additional
devices.

• Allow vendors to supply their own device
drivers; tuning their own device drivers is part
of the value added by the vendor.

The bus idea was elegant and generally well
received. Most of the reservations centered around
the likely impact on existing system components,
the current problems, and whether conversion to
the bus was feasible. Because we recognized that
other groups were facing tight development sched
ules, we did not pressure these groups to support
our desktop bus work. We presented the desktop
bus as a possible solution to interface problems,
made our design information available, and worked
to incorporate suggestions. But as the development
work progressed, more partners supported our
effort.

Once we decided to use a desktop bus, we
looked at available designs, including the Apple
DeskTop Bus, the Musical Instrument Digital
Interface (MIDI), and serial buses offered by other
semiconductor vendors, and evaluated these alter
natives with respect to our design goal. Key advan
tages of the design chosen, i.e., the ACCESS.bus, are

• Off-the-shelf interintegrated circuit (PC) micro
controller technology with maximum data rate
of 100 kilobits per second (kb/s). This technol
ogy is low-cost, yet fast enough for sophisticated
input devices like a 3-D tracker.

• Built-in hardware arbitration, which simplifies
the software and allows reliable communication
without inventing a new protocol.

38

• Dynamic reconfiguration. The hardware and
software allow bus devices to be "hot-plugged"
and used immediately, without restarting the
system. The devices are recognized automati
cally and assigned unique addresses. This advan
tage results in a plug-and-play user interface.

• A mature capabilities grammar to support generic
device drivers. An extensible free-form grammar
allows devices to describe their characteristics
to a generic driver. Most common devices can
work with standard drivers.

Bus or network interconnection has become
widely accepted as a means of providing flexible
open solutions. To appreciate ACCESS.bus, it is help
ful to position its performance capabilities with
respect to those of other network interconnect
technologies, as shown in Table 1.

Table 1 Network Interconnects

Order of Magnitude
Performance

Bus Type (kilobits per second)

Apple DeskTop Bus,
ACCESS.bus

LocalTalk

Ethernet

FDDI

10-100

100-1,000
1,000-10,000
10,000-100,000

At first glance, the 100-kb/s speed of the
ACCESS.bus may seem adequate for large desktop
devices like printers and modems. But these
devices can transmit long data streams indepen
dent of any user activity and, if not restricted, could
compromise the interactive performance of the
bus. Thus, ACCESS.bus is intended for low-speed
activities that people perform with their hands
and is fast enough to handle multiple interactive
devices like a keyboard, mouse, or 3-D tracker.

Hardware Description
Before discussing the ACCESS.bus design, we pre
sent a description of the Philips PC technology
upon which the design is based. Details of the
specific ACCESS.bus implementation follow.

Interintegrated Circuit Fundamentals
ACCESS.bus extends the Philips PC bus to operate
off-board and, thus, connect desktop devices. The
PC is a two-wire serial clock and serial data

Vol. 3 No. 4 Fall 1991 Digital TechnicalJournal

open-collector bus. An open-collector design means
that the clock and data lines are normally in a high
impedance floating state and are pulled up to a log
ical high state.

A device that wants to send a message waits for
any message frame in progress to complete, then
asserts a START signal to become bus master and
begins to generate data and clock signals. The bus
clock is synchronized among all devices by its
wired AND connection. Each device, whether
transmitting or receiving, stretches the low period
of the clock until ready for the next bit to be trans
ferred. When the last device is ready, the bus clock
is allowed to go high, generating a rising edge on
the serial clock. At this time, all active devices
sense the state of the bus data line. For a receiving
device, the state represents the received data bit.
For a transmitting device, the state determines
whether the device has successfully asserted its
data on the bus. A transmitter that is sending a logi
cal high state and detects that the data line is being
held low by another sender, recognizes that it has
lost arbitration and must try again later. When a
"collision" or arbitration occurs, no data is lost, one
message is transmitted and received, and the
remaining messages must be sent again.

12c data messages are transmitted as 8-bit bytes,
with each byte being acknowledged by a ninth
ACKNOWLEDGE bit from the receiver. PC technol
ogy also defines unique START and STOP signals to
delimit message frames. The first byte of any mes
sage frame is always the destination address.

ACCESS.bus Pbysical Implementation
Details of the physical implementation of ACCESS.bus
are as follows:

• Basic electrical configuration. ACCESS.bus uses
four-pin, shielded, modular-type connectors that
feature positive orientation and locking tabs.
Data and power for the bus are transmitted over
low-capacitance, four-wire, shielded cable. The
four conductors are used for ground, serial data,
serial clock, and + 12 V.

• Available power. The maximum available power
for all devices is 12 Vat 500 milliamperes (mA).
ACCESS.bus devices may supply their own power
from a separate source, if needed. A power-up
reset circuit must still be provided to reset the
device when bus power is applied.

• Cable length. The maximum cable length for
the entire bus is 8 meters. The limiting factor is a

Digital TecbntculJournul Vol. 3 No. 4 Fu/11991

ACCESS.bus, an Open Desktop Bus

maximum capacitance not to exceed 700 pico
farads (pF).

• Number of devices. The maximum number of
ACCESS.bus devices allowed on the bus is 14.
Limiting factors are the device addressing range
and the power distribution (a total of 500 mA for
all devices).

• Hardware interfaces. ACCESS.bus hardware inter
faces are implemented using standard FC micro
controllers developed by the Signetics Company
or under license from Philips Corporation. (Sig
netics Company is a division of North American
Philips Corporation.)

ACCESS.bus Protocol
Every device on the bus is a microcontroller with
an FC interface and behaves as either a master
transmitter or a slave receiver, exclusively, as
defined by the PC Bus Specification.

Message Format
A message transmits information between a device
and the computer or between the computer and one
or more devices. There is one exception: a device
may attempt to reset other devices assigned to the
same address by sending a Reset message to itself.

ACCESS.bus messages have the following format:

Byte
Number

1

2

3

4 through
(length+ 3)

length + 4

Bit Number
[123 4 5678]

destaddr I O] Destination
address

srcaddr 10 l Source
address

[P I length Protocol
flag, length
(the number
of data bytes
from O to 127)

body Consists
of Oto 127
data bytes

checksum

Initially, devices respond to a default power-up
address. During the configuration process, the com
puter assigns a unique address to every device on
the bus. Messages are either device data stream
(P=O) or control/status (P=l), as indicated by the

39

Image Processing, Video Terminals, and Printer Technologies

protocol flag . The minimum length of a message is
4 bytes; the maximum length is 131 bytes (127 data
bytes and 4 bytes for overhead). The message
checksum is computed as the logical XOR of all pre
vious bytes, including the message address.

Standard Messages
The ACCESS.bus protocol defines the seven stan
dard interface messages summarized in Table 2.
Parameters defined within the body of the message
are listed in parentheses.

Identification
Since the ACCESS.bus is a bus-topology network,
unique identification strings are used to distinguish
devices. These strings are structured as follows:

protocol revision:
module revision:
vendor name:
module name:
device number:

1 byte (e.g., "A")
7 bytes (e.g., "Xl.3 ")
8 bytes (e.g., "DEC ")
8 bytes (e.g., "LK501 ")
32-bit signed integer

The module revision, vendor name, and module
name strings are left-justified ASCII character
strings padded with spaces. The device number
string is a 32-bit two's complement signed integer
and may be either a random number (if negative) or
a unique serial number (if positive).

Configuration Process
The configuration process is used to detect what
devices are present on the bus, assign each device a

unique address, and connect devices to the appropri
ate software driver. Configuration normally occurs
at system start-up, or at any time when the com
puter detects the addition or removal of a device.

Power-up/Reset Phase
When reset or powered up, a device always reverts
to the default address and sends an Attention
message to alert the computer to its presence. At
system start-up or reinitialization, the computer
sends a Reset message to all FC addresses in the
ACCESS.bus device address range (14 messages) to
ensure that all devices on the bus respond at the
power-up default address.

Identification Phase
To begin address assignment, the computer sends
an Identification message at the device default
address. Every device at this address must then
respond with an Identification Reply message. As
each device sends its message, the FC arbitration
mechanism automatically separates the messages
based on the identification strings. The computer
can then assign an address to each device by includ
ing the matching identification string in the Assign
Address message. When a device receives this mes
sage and finds a complete match with the identifi
cation string, it moves its device address to the new
assigned value. As soon as a device has a unique
address, it is allowed to send data to the computer.

The FC physical bus protocol allows multiple
devices on the bus at the same time if those devices

Table 2 Standard ACCESS.bus Protocol Messages

Computer-to-device Messages

Reset()

Identification Request ()

Assign Address (identification string,
new address)

Capabilities Request (offset)

Device-to-computer Messages

Attention (status)

Identification Reply (identification string)

Capabilities Reply (offset, data fragment)

40

Purpose

Force device to power-up state and default 12C address.

Ask device for its "identification string."

Tell device with matching "identification string" to change its
address to "new address."

Ask device to send the fragment of its capabilities information
that starts at "offset."

Inform computer that a device has finished its power-up/reset
test and needs to be configured; "status" is the test result.

Reply to Identification Request with device's unique
"identification string."

Reply to Capabilities Request with "data fragment," a fragment
of the device's capabilities string; the computer uses "offset"
to reassemble fragments.

Vol. 3 No. 4 Fall 1991 D igita l Technical Jou rnal

are transmitting exactly the same message. In the
rare event that two like devices report the same
random number or are mistakenly assigned to the
same address, each interactive device transmits a
Reset message to its assigned address prior to send
ing its first data message after being assigned a new
address. The self-addressed Reset message forces
other devices at the same address back to the
power-up default address, as if they had just been
hot-plugged. The message guarantees that each
device has a unique address, but not until the
device is actually used. The pseudo-random number
(or serial number, if available) distinguishes devices
at identification time before they are used, allowing
the host to inventory which devices are present.

Capabilities Phase
Device capabilities is the set of information that
describes the functional characteristics of an
ACCESS.bus peripheral. The purpose of capabilities
information is to allow software to recognize and
use the features of bus devices without prior
knowledge of their particular implementation. By
having locator devices report their resolution, for
example, generic software can be written to sup
port a range of device resolutions. Capabilities
information provides a level of device indepen
dence and modularity.

The structure of capabilities information is
designed to be simple and compact for efficiency,
but also extensible to support new devices without
requiring changes to existing software or periph
erals. These objectives are supported by making
the structure hierarchical and representing capabil
ities information in a form that applications (and
humans) can use directly. The capabilities informa
tion is an ASCII string constructed from a simple,
readable grammar. The grammar allows text strings
to be formed into lists, nested lists, and lists with
tagged elements. The capabilities string for a loca
tor might read as follows:

Cprot<locator>
type(mouse)

)

buttons< 1CL> 2CR> 3CM) >
dim(2) rel res(200 inch) range(-127 127)
dO(dname(X))
d1Cdname(Y))

After assigning a unique address to a device, the
computer retrieves the device's capabilities string
as a series of fragments using the Capabilities
Request and Capabilities Reply messages. The com-

D igital Technical]ourn.al Vol. 3 No. 4 Fall 1991

ACCESS.bus, an Open Desktop Bus

puter then parses the capabilities string to choose
the appropriate application driver for the device.
The parsed string is also made available to applica
tion programs using the device.

Normal Operation
During normal operation, the computer periodi
cally requests inactive devices to identify them
selves. If a device is found to be missing, or a new
device appears by sending an Attention message at
the default address, the computer sends an Identi
fication Request message to each device address
previously recorded as in use (up to 14 messages) to
confirm which devices are still present. The com
puter also sends a Reset message to each device
address previously recorded as not in use. The com
puter then begins the address assignment process
by sending an Identification message to the default
address and assigning each device that responds to
an unused device address.

Generic Device Concepts
ACCESS.bus uses the concept of generic device
drivers to support familiar 1/0 devices using only a
few drivers. Generic specifications for keyboards,
locators, and text devices have been developed.

Keyboards
The keyboard device protocol attempts to define
the simplest set of functions from which a Digital
LK201 or a common personal computer keyboard
user interface can be built. A generic keyboard con
sists of an array of key stations assigned numbers
between 8 and 255. When any key station transi
tions between open and closed, the entire list of
key stations currently closed or depressed is trans
mitted to the host. This reporting scheme is func
tionally complete; the host can detect every key
transition, and the scheme provides information
about the full state of the keyboard on each report.
No special resynchronization reports are required.

In addition to reporting key stations, the generic
keyboard device can support simple feedback
mechanisms such as keyclicks, bells, and light
emitting diodes. These mechanisms are controlled
explicitly from the host so that minimal keyboard
state modeling is required. The capabilities infor
mation is used to identify the keyboard mapping
table and the feedback mechanisms available. The
keyboard mapping table can also be stored in the
keyboard itself as part of the capabilities string.

41

Image Processing, Video Terminals, and Printer Technologies

Locators
The locator device protocol is designed to accom
modate a range of basic locator devices such as
a mouse or tablet. More complex devices can be
modeled as a combination of basic devices or can
provide their own device driver, thus minimizing
the burden on the protocol.

A generic locator consists of one or more dimen
sions described by numeric values and, optionally,
a small number of key switches. The standard driver
requires the locator device to identify the type of
data it will report from a small list of options and
adjusts to handle this data type. These options are

• Number of dimensions, e.g., two, for a mouse or
a tablet

• Dimension type: absolute, i.e., referenced to
some fixed origin, like a tablet; or relative, i.e.,
changed since last report, like a mouse

• Resolution in divisions per unit, e.g., counts per
inch or counts per revolution

• Dynamic range of values that can be reported,
i.e., the minimum and maximum values

• Number of key switches, from Oto 15

The assignment of scalar-value dimensions
returned from one or more devices to the user
interface functions is left to the application. How
ever, to accommodate most conventions, the scalar
dimensions and the key switches can be labeled in
the capabilities string.

Text Devices
The text device protocol is intended to provide a
simple way to transmit character data to and from
character devices such as a bar code reader or a
small character display. A generic text device trans
mi ts a stream of 8-bit bytes from a character set.
Simple control messages are defined to support
flow control and to select communication parame
ters that might be used to interface with a modem.
The capabilities string contains information that
identifies the specific character set and communi
cation parameters used.

Summary
The ACCESS.bus network interconnect offers the
possibility of a standardized, low-speed, plug-and
play serial communications channel that can untan
gle peripheral interfacing and open the way to new

42

applications. As the advantages of this open desk
top bus design become well known, we expect
wider adoption of this product. The ACCESS.bus
is currently implemented on Digital's Personal
DECstation 5000 workstation, with implementa
tions underway for the next generation of RISC
workstations and video terminals.

Acknowledgments
Many people contributed to the design and devel
opment of ACCESS.bus. I would especially like to
acknowledge Tom Stockebrand and Tom Furlong
for their vision and early support; Chris Cued, Mark
Shepard, and Ernie Souliere for their contributions
to the ACCESS.bus electrical design and protocols;
and Robert Clemens for the excellent demonstra
tion hardware and firmware development support.

General References

D. Lieberman, "Desktop Bus Is Born Free," Elec
tronic Engineering Times (September 2, 1991): 16.

ACCESS.bus Developer's Kit (Palo Alto, CA: Digital
Equipment Corporation, Workstation Systems
Engineering TRI/ADD Program, 1991).

Signetics /2C Bus Specification (Sunnyvale, CA:
Signetics Company, a Division of North American
Philips Corporation, February 1987).

Vol . 3 No. 4 Fall 1991 Dig ital Technical journal

Richard Landau
Alan Guenther

Design of the DECprint
Common Printer Supervisor
for VMS Systems

DECprint Printing Seroices software controls a variety of printer features for a wide
range of printers. It supports several different page description languages, handles
multiple media simultaneously, and uses different I/0 interconnections and commu
nication protocols. Operating within the VMS printing environment, it imple
ments a large number of user-specified options to the PRINT command. DECprint
Printing Services functions as the superoisor in the VMS printing system for all
Postscript printers supplied by Digital. The common printer supervisor has an espe
cially flexible internal structure and processing method to seroe complex printing
environments.

The increasing variety and complexity of printing
devices in the last decade have strained the abili
ties of operating systems to support them. Users
demand access to, and control over, the increas
ingly sophisticated features of their printers. At the
same time, application programming resources are
stretched by the requirement to support various
devices and features. Modern operating systems
include printing systems that support printers and
insulate applications from many details of printing.

DECprint Printing Services software was designed
to handle a wide variety of printers, with a range
of 1/0 connections, media handling capabilities,
finishing equipment, data syntaxes, and so forth.
It provides the controlling software that supports
the full range of Digital printers capable of printing
Postscript documents.

DECprint Printing Services functions as a compo
nent of the VMS printing system at the level of
printer supervisor, called symbiont in VMS termi
nology. The supervisor is known within Digital as
the _DECprint common printer supervisor or com
mon print symbiont (CPS). It is called common
because it replaces a number of different symbionts
and is common to a range of printers. CPS is a com
pletely new program developed by the Video,
Image and Print Systems Group.

This paper explores the environment in which
printing systems now reside. It describes the struc
ture and functions of DECprint Printing Services and

D igital TecbntcalJournal Vol . 3 No. 4 Fall 1991

the design of CPS, focusing on its capabilities within
the VMS system. The paper then discusses the oper
ation of the VMS printing system and the enhanced
printing environment made possible by CPS.

Printing System mmensions
A printing system is the set of software and hard
ware components through which print requests
pass from the time the user decides to print a docu
ment until the appropriate hard copy arrives.

The variety of printing devices in use is a chal
lenge for the printing system and for applica
tion programmers. We use the word "printer" in
this article to imply the full range of output devices
that are attached to systems and networks. A sys
tem today must support a wide number of dimen
sions: marking technologies, media, medium sizes,
speeds, transmission rates, and interconnects.

The DECprint Model of Printing
The DECprint model of printing is composed of sev
eral layers. Each layer has defined functions and 1/0
interfaces. The layers of the DECprint model and their
relationships to VMS and CPS are shown in Figure 1.
This model of printing describes a useful structure
with consistent functions and responsibilities.

• Application. An application program creates
information that the user may want to print. All
types of applications fit into the model at this

43

Image Processing, Video Terminals, and Printer Technologies

JOB
SUBMISSION
INTERFACE

(NETWORK)
PRINTING
INTERFACE

PRINTER
ACCESS
INTERFACE

DECPRINT ARCHITECTURE

APPLICATION

USER
INTERFACE

- -1- - - - --

PRINT
CLIENT

---~----

PRINT
SPOOLER

I
p
s

PRINT
SUPERVISOR

----i----
MARKING
ENGINE

I p

FINISHING
EQUIPMENT

RINT
ERVICE

RINTER

VMS

DIGITAL
COMMAND
LANGUAGE

--+--
SYS$SNDJBC

--+--
QUEUE
MANAGER

I
PRINT
SYMBIONT

--+--
PRINTERS

CPS

COMMON
PRINT
SYMBIONT

Figure I Relationships of the VMS Printing System Components to the DECprint Model

level, from data processing programs and simple
text editors to high-quality document formatting
and publishing applications. The application may
present a printing interface directly to the user,
or may create a final form document from which
the user can access other printing interfaces.

• User printing interface. A user expresses the
desire to print through a user interface to the
printing system. The interface may be oriented
to written commands, to user selection of
menu choices, or to a point-and-select graphical
interface.

• Job submission interface. User interface pro
grams communicate with the lower levels of the
printing system through an application program
ming interface (API) to the print client. The API

contains full capabilities for creating, destroying,
and managing print jobs of all types. The job sub
mission interface may be operating system
specific or may be based on emerging standards
for network printing.

44

• Print client. The client accepts requests through
its API, performs defaulting for the user, assists in
selecting the correct print service, gathers the
print instructions and document files, and sub
mits the job to the print service. The protocol
used to submit the job may be operating system
specific or may be based on emerging standards
for network printing. The print service may be
local to the print client (and the user), or it may
be located elsewhere in the network.

• Print service. The print service is a convenient
abstraction that includes the print spooler and all
subsequent layers in the execution of the print
job, for some set of physical printers. Printers
are often grouped together based on their static
characteristics, such as type of printer, printer
data syntax, and default media.

• Print spooler. The print spooler accepts the print
job from the client, spools the files and queues
the job for later execution if necessary, and
then schedules the job for execution. If the job

Vol. 3 No. 4 Fall 1991 Digital Tecb,iical Jounial

Design of the DECprint Common Printer Supervisor for VMS Systems

requires resources that are not immediately avail
able, human intervention may be necessary. For
example, if a job requires a special print medium,
then an operator or other printer attendant must
provide the medium for the printer. If the job
requires a special font, the spooler may be able to
obtain the font from a library without human
intervention.

• Printer supervisor. The supervisor directly con
trols the printer. It interprets the print instruc
tions for the job, manages the printer and its fin
ishing equipment, and writes the document data
to the page description language (PDL) inter
preter. It also monitors the status of the printer,
supplies some resources on demand, and responds
to error conditions. On the VMS operating sys
tem, the printer supervisor is called a symbiont;
on ULTRIX and UNIX systems, a daemon.

• PDL interpreter. Generally, final form document
data is written in a data syntax intended for print
ing, but it is not in the native form required
by the marking engine. A PDL interpreter trans
forms the printer language into the lower-level
form for the marking engine. For example, in a typ
ical laser printer, a Postscript interpreter trans
forms the Postscript language into a device-level
bit map and media control instructions for
the print engine. In a simpler impact printer,
the controller turns characters and control
sequences into pin timing and paper movement
instructions.

• Marking engine. The marking engine consists of
the media transport and printing mechanisms,
generally controlled at a low level. Marking may
be done by a wide spectrum of technologies, and
the media used may also vary widely. For the
most part, descriptions in this paper use raster
devices such as laser printers as examples.

• Finishing equipment. The overall printing sys
tem includes finishing options that are not often
considered part of the (largely electronic) print
ing system. Currently affordable components of
the printing system are typically automated. For
example, several years ago duplex (two-sided)
printing was not economical for most office
applications; today it is, and many office printers
include this finishing feature. Stapling, on the
other hand, is still not economical for most office
applications, though it is implemented in many
high-end production printers.

Digital Technical Journal Vol. 3 No. 4 Fall 1991

Implementations of the model in various operat
ing systems and printers may express the layers
differently, sometimes skipping certain layers. The
VMS printing system contains components at most
levels of the DECprint model. The DECprint com
mon printer supervisor (CPS) operates within the
VMS system, as indicated in Figure 1. We designed
CPS to satisfy the requirements and projected needs
of users, system managers, and programmers. In the
next section we discuss the design of CPS.

Sharing Devices
Printers are often shared, especially high-end or
specialized, expensive devices. Since shared print
ers are not always immediately available to the
user or application program, the printing system
is required to hold jobs for printing later. The sys
tem must be able to store the user's instructions for
printing, along with the contents of the document,
until they are needed.

Insulating the Application from Details
A printing system insulates applications from the
details of printing devices. For example, DECprint
Printing Services provides communications mecha
nisms and protocols, determines whether a shared
device is currently busy, and sometimes translates
printer data syntax.

Application programmers generally prefer to
deal with as few external interfaces as needed to
perform the task. Thus it is desirable to minimize
the number of different classes of printing devices
while maximizing the variety and flexibility of
printing devices. The DECprint architecture speci
fies that the printing system take responsibility for
matching the needs of the application to the capa
bilities of the output device, whenever possible.
For example, a printing system might need the abil
ity to transform the printer data stream from a
data syntax used by the application to a data syntax
used by the printer. Hidden transformation makes
the system easier for applications to use. DECprint
Printing Services provides a certain number of
printer data syntax transformations of this type,
from languages such as DEC PPL3 (which is com
monly referred to as "ANSI" within Digital) and
ReGIS to Postscript, and from Postscript to printer
bitmaps.

Internal Structure of CPS
In designing CPS, our primary goal was to create a
flexible system that would handle all the printer

45

Image Pr o cessing, Video Terminals, and Printer Technologies

features we could foresee and many that we could
not foresee, a system that could be modified as
needed to handle not just new printers but new
classes of printers. CPS is capable of managing a
wide variety of character, line, page, and document
printers.

To create a flexible printing system, we needed to
design a highly modular internal structure. This inter
nal structure combines modules into sequences at
several levels to provide a general framework for
controlling and manipulating 1/0 devices.

At the bottom level of the structure are filter
modules, which are lightweight, independently
schedulable subprocesses within a VMS process.
Filter modules communicate with each other by
means of 1/0 routines and a shared data structure
containing job information. Pointers to the 1/0 rou
tines and shared data are supplied in the invoca
tion of the filter module. The effect of the stream
1/0 routines is much like that of pipes in the UNIX

operating systems.
At the next higher level is a set of communicating

filter modules; each stream of filter modules is
called a job step. Finally, a module called the print
job analyzer combines a sequence of job steps to
handle a complete print job.

Filter Modules and job Steps
Filter modules can read input from a preceding filter
module and write data to a succeeding filter mod
ule. Filter modules may perform functions such as
reading a file, converting carriage control, translat
ing data syntax, or writing data to the printer. A
filter module receives as arguments an input stream
and an output stream, like a UNIX process, and a
shared data structure, unlike a UNIX process. A sim
ple filter module reads data from the input stream,
processes data, and writes data to the output stream.

A filter module may condition its operation based
on information from the shared data structure or
the contents of the data stream. For example, a
translator filter module might format data based on
the page size, margins, and aspect ratio specified
in the shared data structure, or based on control
sequences in the data stream, or both.

Not all filter modules use the input or output
streams. The file reader filter module reads from the
file instead of the input stream. Similarly, the device
output module writes to the printer instead of the
output stream.

A job step is a set of filter modules piped together
to perform one complete subtask. A subtask may be

46

as simple as "create a separator page" or as complex
as the sequence "read a file, perform carriage con
trol conversion, add /HEADER, translate from ANSI

data syntax to Postscript, and write the result to
the printer." A print job is a set of job steps that per
forms all functions the user requests explicitly or
implicitly. The CPS facility that translates selected
printer data syntaxes into the PostScript language is
discussed in the section Data Syntax Translation.

Print Job Analyzers
To simplify the addition of new printers and new
classes of printers, CPS contains a software struc
ture that corresponds to the hardware mechanisms
of a printer.

A print job analyzer (PJA) determines which
job steps are required to process a job. CPS includes
a separate print job analyzer for each major class
of printer that it supports: serial Postscript,
PrintServer, and LN03 Image printer devices. When
the symbiont begins execution, a PJA is chosen based
on the type of device associated with the queue.
This PJA is used until the symbiont is stopped. If a
terminal device, such as a TT or TX or LT device, is
associated with the queue, then the PJA for a serial
device is invoked. If an LD device is used, then the
PJA for an LN03Q printer is chosen. Otherwise, the
PJA associated with PrintServer devices is used.

Each PJA contains a list of all job steps required to
execute a job on the class of printers it supports.
The PJA selects the job steps it needs from this list,
depending upon the instructions received from the
queue manager.

Job steps are linked together. The first job step
chosen by the PJA is linked to the termination of the
PJA itself; when the PJA finishes compiling the job,
it terminates, thus starting the execution of the job.
At the beginning of each job step, each filter mod
ule is assigned stack space and a stack frame. Its ini
tial program counter address and arguments are
stored in its saved registers for process activation.

CPS uses a piped stream 1/0 mechanism similar in
function to a UNIX stream; a filter module's input
comes from the output of the previous module, and
its output becomes input to the following module.
By convention, the first filter module of the job step
is activated first in the job step; when a filter blocks
for output, the next filter module is activated. That
filter module then runs until it blocks for input or
output, at which point the previous or following
filter module is activated.

Vol. 3 No. 4 Falt 1991 Dtgital Technical Journal

Design of the DECprint Common Printer Supervisor for VMS Systems

Table 1 Simplified Job-step Sequence

Job Step Function

init_ps_device

check_prologues

sheet_count
job_burst

sheet_size

wait_sheet_size

file_setup

get_ vmbytes

wait_vmbytes

file_out

sync

init_ps_device

sheet_count
wait_sheet_count

job_trailer

sync

disconnect

Ensure the device is "fixed up."
Ensure that persistent
prologues are loaded.

Get the beginning page count.

Print job burst page.

Get the current sheet_size.
Wait for the sheet_size before
continuing.

Send any file /SETUP modules.
Get the amount of local printer
memory available on the
printer.

Wait for the local printer
memory message from the
printer.

Read the file to print and send
it to the DECansi translator.
Wait for the printer to finish all
pages.
Ensure the device is "fixed up."

Get the ending page count.

Wait for the page count to
come back.

Print the job trailer page.

Wait for the printer to finish
the job-trailer page.

Release the printer.

JOB STEPS

FILTER
MODULES

J
READ FILE
SETUP

DEVICE
OUTPUT

READ GET
VMBYTES
MODULE

DEVICE
OUTPUT

Table 1 shows a simplified listing of the job steps
compiled by the serial PJA to process a simple job:
one file to be printed in ANSI mode. Each of the job
steps shown contains one or more filter modules
piped together. For example the job-burst job step
has two modules piped together: the job-burst mod
ule and the write-to-printer module. Figure 2 shows
several job steps with several filter modules each.

If an error occurs at any point in the processing
of a job, CPS skips job steps until it reaches the
identified error job step set by the PJA. In Table 1,
the error job step points to the sync job step that
precedes the job-trailer job step. In this case, CPS
resynchronizes with the printer and prints the job-
trailer page, including the error message.

Event Handling
In addition to the output side of processing a job,
there is a corresponding input side. The input side
reads messages from the printer, parses them, and
notifies the appropriate handler of the event. The
handler is chosen based on the type of message sent.

• CPS internal messages are dispatched to the
appropriate symbiont routines. For instance,
printer resource messages contain information
that affect CPS internal operations: paper size is
stored for later use by layup (the general map
ping of page images to sheets) and translators;
virtual memory size is stored for translators; and
page count is stored for later use in accounting.

WAIT
FOR
VMBYTES

READ
FILE

CARRIAGE
CONTROL
CONVERTER

ANSI
TRANSLATOR

DEVICE
OUTPUT

Note that data flows from top to bottom and job steps progress from left to right.

Figure 2 Job Steps and Filter Modules

Digital Technical Journal Vol. 3 No. 4 Fall 1991 47

Image Processing , Video Terminals, and Printer Technologies

• Printer status messages are dispatched to the
operator and, in some cases, to the current user.
CPS uses the normal VMS OPCOM notification
mechanism to send messages to the system oper
ator. If the user specified /NOTIFY in the print
instructions, then CPS uses the VMS $BRKTHRU

system service to send the message to the user
also.

In some cases, printer status messages require
additional processing. For example, paper jams
require special handling on some printers: since
CPS cannot determine how many pages were lost
in the jam, it invokes human intervention by plac
ing the job on hold. The operator or user can
determine what parts of the job, if any, to reprint.

• Program status messages and user data messages
are dispatched to the job log. If the user specified
/NOTIFY, then they are also displayed with the
$BRKTHRU system service. These messages may
be printed or logged.

The input and output sides of the symbiont run
asynchronously most of the time, but occasionally it
is necessary for the output side to wait for a mes
sage from the printer. This synchronization between
the input side and output side of the symbiont is
accomplished by an internal event-signaling facil
ity. When synchronization is required, the output
side waits for a specific named event and the input
side signals that event when it is detected. For
example, at the end of a job, CPS needs the final
printer sheet_count in order to calculate the
sheet_count for the job; this count is printed on the
trailer page and stored in the VMS accounting
records. When CPS needs the sheet_count, the out
put side waits for an event named sheet_count. The
input side parses the incoming sheet_count mes
sage, stores the returned value in the shared data
structure, and signals the sheet_count event. The
processing of this event is asynchronous: at the
time the message comes in, the output side may or
may not have stalled while waiting for the
sheet_count event. If the output side was waiting
for that event, it is scheduled for further process
ing; if the output side was not waiting, the event is
remembered, in case the output side attempts to
wait for this condition in the near future.

In the next section we describe the ways CPS is
controlled and managed in the VMS printing system
and how it expands printing capabilities in the VMS
environment.

48

The VMS Printing System Environment
CPS functions as a component of the VMS printing
system at the level of printer supervisor. As such, it
interacts with, and is shaped by, the other compo
nents of the VMS system. The term printer super
visor is used in this paper to be consistent with the
terminology of the emerging International Stan
dards Organization (ISO) Document Printing Appli
cation draft standard, ISO/IEC DIS 10175.

Components
The VMS Batch/Print system is a general queue man
agement service, capable of queuing, scheduling,
and executing jobs in response to a variety of user
specified instructions.1 On the VMS system, the
printing instructions are stored in a print job
object, which is placed in a queue of jobs for a
printer. Modern print jobs often resemble batch
jobs, due to complex stored processing instruc
tions and the heavy computing load placed on
graphics printer controllers.

The VMS printing system contains components at
most levels of the DECprint architectural model.

• User printing interface. The VMS system includes
interactive Digital Command Language (DCL)
interfaces for printing and managing print jobs,
printers, and the printing system itself.2 For
DECWindows applications, the DECWindows Print
Widget provides a graphical interface that per
mits users to specify all the options for printing,
and the Ail-IN-1 application provides character
cell menus for choosing print options, including
the enhanced options offered by CPS.

• Job submission interface. The VMS system
includes program call interfaces that give the
program all the capabilities of the DCL user
interface.3

• Print client and service for remote printing. The
distributed queuing services product currently
provides transparent remote printing in net
works using a proprietary network protocol.

• Print spooler. The VMS Job Controller, recently
replaced by the VMS Queue Manager, functions as
queue manager and scheduler. (The function of
spooling printer data to temporary files is per
formed by the VMS file system and is transparent
to most components of the printing system.)

• Printer supervisors. The VMS system provides
two standard symbionts to support most line

Vol. 3 No. 4 Fall 1991 D igital Technical Journal

Design of the DECprint Common Printer Supervisor for VMS Systems

printers and serial printers. PRTSMB supports
printers attached directly to communication
ports on the CPU, e.g., the printer port on a VAX
workstation. LATSYM provides support for print
ers attached to the serial or parallel ports of
DECserver network communications servers. For
Postscript printers, CPS is used instead of these
standard symbionts.

The VMS printing system also contains compo
nents that affect CPS processing.

• Device control libraries are collections of small
text sequences that can be inserted into the data
stream from the symbiont to the printer. The
sequences are ideally organized into text libraries
containing named modules, with a separate
library for each type of output device. Device
control modules can be associated with a printer
queue by the system manager as part of a FORM
definition or a job reset function, or accessed
directly by the user with the /SETUP qualifier.

Device control libraries frequently contain
device-specific control sequences that alter the
format of the text and pages, for example, setting
printer paper margins, setting character pitch, or
enabling landscape printing. They may also con
tain downloadable font data or preprinted data
for each page.

• VMS form definitions contain page size and mar
gin specifications that guide the print formatting
process for a print job. The user can also specify
page setup strings and can prohibit the symbiont
from wrapping lines during processing.

VilfS Print Queues
VMS has several distinctly different types of queues.
Execution queues process jobs through a symbiont,
and generic queues transfer jobs to other queues.
Often generic queues are used for load balancing:
one generic queue may feed several printers of sim
ilar capability and location.

CPS also uses generic queues in an unusual way.
Default attributes can be specified for generic
queues that cause all jobs submitted through the
queues to inherit certain default print instructions.
For example, a queue can be established that, by
default, assumes that jobs are Postscript docu
ments, or assumes that jobs should be printed in
landscape orientation. This ability to set default
queue attributes is essential for supporting applica
tions that can specify the queue name for a print

Digital Technical Journal Vol. 3 No. 4 Fall 1991

job, but cannot specify certain other qualifiers such
as DATA_TYPE. It can also permit users of old appli
cations to access new features of the printing
system.

VilfS Print Commands and Inteifaces
The VMS printing system is manipulated through
DCL commands and qualifiers. Many of the
qualifiers are handled by the queue manager and
have no impact on the operation of print sym
bionts; others directly affect the operation of CPS. 2

The VMS system also supplies a call interface to
these functions. 3

VilfS Inteifaces to Symbionts
The VMS Job Controller/Queue Manager provides
two interfaces for customizing print symbionts: the
PSM module-replacement interface, and the SMB
server symbiont interface. CPS is currently imple
mented as a single-stream symbiont through the
SMB interface.

The SMB interface permits a user to replace the
flow of control of the symbiont with a separate pro
cess. The process may be written in any style and
structure suitable to the task at hand, and need fol
low only certain minor guidelines with respect to
the operating system environment. To use the SMB
interface, we replaced the entire symbiont process.
The result was much greater flexibility, but we
were required to write more program code.

The SMB interface provides services to the sym
biont process through subroutine entry points and
callbacks that pass messages between the symbiont
and the VMS queue manager. Messages from the
system to the symbiont specify functions such as
start up, shut down, begin job, pause, resume, and
interrupt. Messages from the symbiont to the
system return information such as job status, job
completed, device status and error information,
and checkpoint and accounting data.

Range of Printers Supported
CPS currently supports the full range of Postscript
printers supplied by Digital, from a low-speed
color printer up to a 40-page-per-minute laser
printer that can handle 11 different paper sizes.

Spedal l/0 Processing
CPS supports several different means of communi
cation with the printer: serial, Ethernet, and a spe
cial high-speed video connection.

49

Image Processing, Video Terminals, and Printer Technologies

The serial connection may be either a direct con
nection between the computer and the printer or
a local area transport (LAl) connection by which
printer is attached to a serial port of a DECserver
terminal server. The two methods differ only in
the way jobs are started and terminated. For
LAT-connected printers, CPS must establish and dis
miss the LAT connection at the start and end of
each job.

Once the connection is established with the
serial printer (via LAT or direct connect), CPS begins
a dialogue with the printer using an asynchronous
serial line protocol and Postscript programs. The
asynchronous serial line protocol, defined by
Adobe Systems Inc., consists of five control charac
ters that alter or query the state of the printer.

The symbiont forces the printer into an idle state
by a series of control/T, control/C, and control/D
characters. When a control/T results in an IDLE
message from the printer, the symbiont and printer
are ready to process a job.

PrintServer printers on Ethernet networks are
DECnet nodes. To write to a PrintServer printer, CPS
establishes a DECnet task-to-task session at the
beginning of the job. The dialogue required for syn
chronizing serial printers is not necessary for the
Ethernet printers; the PrintServer protocols pro
vide synchronization and device control opera
tions through separate control channels.

Printers connected through Ethernet use several
protocols, which are layered on DECnet task-to-task
communications. The protocol used depends upon
the version of the PrintServer code.

The local area print service (LAPS) protocol was
developed for the PrintServer family and is still in
use. The Common Printer Access Protocol (CPAP)
will replace LAPS in all PrintServer printers.4 PAP is
based on the earlier Reid-Kent protocol, Internet
Socket 170, and is being discussed as a possible new
Internet standard.5

Spedal Processing/or "Dumb" Printers
In some printer configurations, it is economical to
use the workstation or CPU as the printer con
troller. In this case, the printer includes only the
print engine and media handling and finishing
equipment, and none of the electronics, comput
ers, and interpreter programs that render the
graphics language into the elements required by the
print engine (usually an array of pixels). Such a
"dumb" printer is physically connected to the com
puter by a very high-speed link such as a direct

50

video connection or data bus. For such a controller
less printer to be generally useful, the printing
system must emulate an existing class of printer.

The LN03 Image printer (LN03Q) is a bit-map
printer of this type. It uses a special high-speed
OMA bit-map interface that plugs into a Q-bus and
provides the speed required for printing scanned
images. The protocol between this interface and
the printer consists of bit maps and a small amount
of status and synchronization information.

The engine itself includes only the laser imaging
and paper handling equipment. CPS handles the
rest of the controller functions in the host com
puter. Because of the level of support and emula
tion provided, the LN03Q printer appears to be an
ordinary Postscript job printer with some special
image capabilities.

For a given print job, CPS performs the normal
processing up to the point at which the PostScript
language data stream would normally be sent to the
printer. At this point, CPS directs the data stream to
a special Postscript interpreter subroutine that pro
duces a bit-map image of the printed page in mem
ory. The bit-map image is then sent to the printer
through a special LNV21 direct memory access 1/0

interface on the Q-bus.
The software for the LN03Q printer also has one

special processing path. The LN03Q printer is
intended as an image printer for bit-map images.
CPS supports image files containing page images
that are scanned or precomputed at device resolu
tion (300 dots per inch) and optionally compressed
with Comite Consultatif Internationale de Tele
graphique et Telephonique (CCITl) Group 3 (ID) or
Group 4 (2D) compression methods. Image files can
be transmitted directly to the printer without con
verting to Postscript. Image files can only be sent
directly to the printer if they are printed one page
per sheet; if the user requests printing multiple pages
per sheet, or other layup functions, then the image
is processed through the Postscript interpreter.

Image files are structured in Digital document
interchange format (DDIF), which expresses text,
graphics, and images together. Files intended for the
LN03Q printer must contain only image bit maps.

If the print job specifies DATA_ TYPE= DDIF or the
file is a DDIF file, then CPS examines the file in a spe
cial mode. If the file correctly contains only image
bit maps, CPS decompresses the images in memory
if necessary, using the DECimage Image Support
Library routines, and then sends the uncompressed
bit map directly to the LN03Q print engine. Thus

Vol. 3 No. 4 Fall 1991 D igital Technical Journal

Design of the DECprint Common Printer Supervisor for VMS Systems

the image goes directly to the printer without pass
ing through the Postscript interpreter.

Special Processing in CPS
CPS includes a number of special features and func
tions to satisfy the requirements of the DECprint
architecture and the VMS printing system. In this
section, we discuss the features that extend the
process of standard print symbionts or are com
pletely new.

Reading Print Instructions
CPS reads the print instructions for a job from the
VMS queue manager through the SMB$READ_
MESSAGE and SMB$READ_MESSAGE_ITEM functions
of the SMB interface. Print instructions are
expressed as attributes with values. Each attribute
has an associated numeric code and symbol, called
an item code, and a value of a specific data type.
The symbiont reads each item code and value, and
stores the information in a static data structure.
The information is used later to determine the pro
cessing sequence for the job, special information to
be displayed on separator pages, and so forth.

Bidirectional Communication with
Postscript Printers
CPS requires a full duplex communications path to
PostScript printers since they report many condi
tions by sending messages to the host computer.
These messages include device status messages,
program status and error messages, user data mes
sages, and replies to CPS inquiries.

CPS also requests information from the printer
for synchronization, formatting, and accounting
purposes. For instance, to determine how to for
mat ANSI text, the symbiont needs to know what
paper is loaded in the printer.

CPS receives the messages from the printer and
parses them to determine what it should do with
the message. If the message is device status, then
CPS routes the message to the operator and/or the
user whose job is being printed. If the message is an
internal CPS communication, then CPS processes it.
Otherwise, the message is either a program status
message or a user data message. In either case it is
logged for the user.

All messages are parsed except user data mes
sages. Messages from the printer's interpreter are
converted to a standard format that would, if
desired, permit the message to be translated into
the user's native language.

Digita l Technical Journal Vol. 3 No. 4 Fall 1991

Data Syntax Translation
CPS provides a facility that translates selected
printer data syntaxes into the Postscript language.
The translating programs are subroutines, some
quite large and complex, that accept a data stream
in one format and produce a data stream in another
format. The translators are responsible for all for
matting, including sheet size, page orientation,
aspect ratio, and type sizes; CPS is responsible for
all 1/0 and coordination with the printer. The trans
lation facility currently supports the following
printer data syntaxes: DEC PPL3, ReGIS, Tektronix
4010/4014, and PCL Level 4.

The translation facility has several restrictions. A
file may consist of only one data syntax, and all files
in a job must be of the same data syntax.

In general, CPS performs the translation from
one data syntax to another on the host computer.
In this way, simple printers that support only the
Postscript language internally can be extended
to support a number of printer languages. This
reduces the requirement for a complex printer con
troller that supports multiple data syntaxes inter
nally. Host translation can guarantee consistent use
across jobs of the printer's internal fonts, page ori
entation, finishing equipment, and page layup The
general mapping of page images to sheets supplied
as part of CPS requires that the printer operate in
Postscript mode. To ensure consistent use of fonts
and consistent positioning of pages with respect to
finishing such as duplexing and stapling, all lan
guage translation must be done by the symbiont.

Page Layup Multiple Pages per Sheet
Page layup is the process of printing more than one
page image on a sheet of paper. When more than
one page image is placed on a sheet of paper, the
images are rotated and scaled to fit on the page, but
are altered in no other way. The layup facility works
with all data types, including Postscript and PCL
data syntaxes. Layup also permits formatting for
larger paper sizes and then printing on smaller
sheets.

Layup is invoked explicitly with one or both
of the extended qualifiers NUMBER_UP and LAYlW _
DEFINITION. NUMBER_UP specifies the maximum
number of page images that will be printed on a
single side of a sheet; for example, two-up printing
is specified by the "NUMBER_UP=2" option. Two or
four page images per side may save significant quan
tities of paper for draft printing, handouts, and the
like. Up to 100 page images may be placed on a

51

Image Processing, Video Terminals, and Printer Technologies

single sheet of paper for thumbnail draft printing to
review the overall layout of a document.

Layup may also be invoked through a combina
tion of PAGE_SIZE and SHEET_SIZE with NUMBER_UP.
For example, the combination of PAGE_SIZE=E,
SHEET_SIZE=A,NUMBER_UP=l permits printing
draft copies of large-format documents on small
paper. Conversely, the combination of PAGE_
SIZE=A,SHEET_SIZE=B,NUMBER_UP= 1 magnifies the
smaller page to fit the larger sheet.

Du,plex Printing
Printing on both sides of the paper introduces a
number of new options and interactions that
require special processing in CPS. CPS begins each
document on the first side of a new sheet, so that
recto and verso (right-hand and left-hand) pages
and alternating margins are aligned with the cor
rect sides of sheets as they are stacked by the
printer. This function also interacts with the direc
tion in which the medium is physically loaded into
the printer if the medium is not symmetric left-to
right, top-to-bottom, or front-to-back, such as pre
drilled paper.

The interactions of PDL coordinate systems, page
layup, media selection, asymmetric media, duplex
printing, and binding are the most elusive engineer
ing problems in the printing application space. No
general model of these interactions has been devel
oped, despite considerable effort in standards com
mittees. It appears that it is necessary to implement
every possible option.

Separator Pages
CPS prints all the separator pages defined by the
VMS queuing system as well as some generated by
CPS. Flag, burst, and trailer pages for job and file lev
els are available as defined by VMS, and contain
the same information presented in a highly legible
format. In addition to the standard VMS infor
mation, the job trailer page also contains the first
two PostScript language errors returned from the
printer. This often makes it unnecessary to use
MESSAGES=PRINT to see simple errors.

To ensure that the job separator pages can always
be printed correctly, CPS resets the PDL interpreter
in the printer before printing these pages. The CPS
generated separator pages do not alter the coordi
nate system of the interpreter; the user's document
starts printing with the default Postscript state. File
separator pages, in contrast, print in the current

52

Postscript environment, including the altered page
geometry, e.g. , layup established by the print job.

CPS defines two new separator pages. The file
error page is printed when a file cannot be opened
or an error occurs while reading the file. The file
error page informs the user of the error condition
which caused it to be printed. The job log page con
tains up to 40 lines of the job log file. The job log file
contains job events such as job start and job com
pletion as well as program status messages and user
data returned from the printer.

Managing Printer Resources
Once communication is established with the
serial printer, the symbiont must establish what
resources are available on the printer. These
resources include prologues, which are commonly
used Postscript routines, the amount of available
virtual memory, and the medium in the default
paper tray. For example, CPS persistently loads the
Postscript prologue for the output of the ANSI text
translator into the Postscript interpreter. This
resource might be lost to the printer because of a
power failure or might become obsolete due to a
software upgrade. CPS interrogates the printer at
the beginning of any job requiring the translator
prologue and loads a new prologue, if necessary.
CPS also performs similar processing for the
Postscript prologue that is used to generate the
separator pages.

For traditional resources such as paper, CPS relies
on status messages from the printer to indicate that
the printer is stopped because paper supply is
empty or jammed. These conditions are relayed to
the operator and to the current user by standard
VMS mechanisms.

Library Search Lists
In the standard VMS print symbiont, only one
device control library may be associated with a
queue. This is not a problem since the standard VMS
print symbiont deals with only one data syntax.
(Recall that device control libraries are often writ
ten in device-dependent data syntax.) CPS, on the
other hand, uses more than one data syntax when
printing a non-Postscript job: the data stream to the
printer is Postscript, but the data stream to the
translator is in another data syntax.

Early versions of symbionts that supported
Postscript suffered from the same restriction: only
one device control library was available, and its

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

Design of the DECprint Common Printer Supervisor for VMS Systems

modules were expressed in Postscript. This made it
impossible for users to share device control
libraries with their standard VMS print symbiont
and their non-PostScript printers.

To solve the problem of multiple data syntaxes
in a job, CPS introduced device control library
search lists. The system manager, rather than speci
fying a single file specification in the INITIALIZE/
QUEUE/LlBRARY command, creates a logical name
instead. CPS translates that specific logical name
and uses each element of the result as a device con
trol library. Each library in the search list can have a
data syntax associated with it by adding the
qualifier, /DATA_TYPE=.

CPS supplies a device control library,
CPS$DEVCU, which must be included in the search
list, usually as the first, or only, element in the
search list.

Summary
The DECprint model of printing describes a useful
structure with consistent functions and responsi
bilities. CPS is an advanced print symbiont that runs
in the VMS printing system. It includes many spe
cialized functions to support the features of a wide
range of modern printing devices. It provides, we
feel, an extraordinary level of support. It was
designed with a highly modular and flexible inter
nal structure to permit enhancements to be engi
neered with minimal interactions with current
operations.

CPS is currently shipping its fourth version. This
version fully supports the ten different Postscript
printers supplied by Digital, which range from a
low-speed color printer to a high-speed laser
printer. It also supports five different data syntaxes
in which applications can write documents. We
expect that more printers and more capabilities
will be added in future versions, and that CPS will
require a minimum of additional engineering effort
due to its very general internal structure.

Acknowledgments
We would like to thank Peter Conklin for actively
initiating CPS and Gary L. Brown for even more
actively expanding it. We would also like to thank
past and current CPS developers: Ned Batchelder,
Cathy Callahan, Mark DeVries, Rich Emmel, Dave
Gabbe, David Larrick, Klara Levin, Mary Marotta,
Doug Stefanelli, and Charlotte Timlege. We would
like to thank Bill Fisher for his extensive comments

Digita l TeclmicalJour nal Vol. 3 No. 4 Fall 1991

on this article. Finally, we thank the many sites and
people who have tested the DECprint Printing
Services software.

References

1. VMS Utility Routines Manual (Maynard: Digital
Equipment Corporation, Order No. AA-LA67B-TE,
1990).

2. VMS DCL Dictionary, 2 vols. (Maynard: Digital
Equipment Corporation, Order Nos. AA-PBK5A-TE
and AA-PBK6A-TE, 1991).

3. Vilt'S System Services Reference (Maynard: Digital
Equipment Corporation, Order No. AA-LA69A-TE,
1991).

4.]. Jones, A. Kachrani, and T. Powers, "The
Common Printer Access Protocol," Digital
Technical Journal, vol. 3, no. 4 (Fall 1991, this
issue): 55-60.

5. B. Reid and C. Kent, "TCP/IP PrintServer Print
Server Protocol," Western Research Lab Technical
Note TN-4 (Maynard: Digital Equipment
Corporation, 1988).

General References

Guide to Maintaining a Vilt'S System (Maynard:
Digital Equipment Corporation, Order No.
AA-LA34A-TE, 1990).

DECprint Printing Services User's Guide (Maynard:
Digital Equipment Corporation, Order No.
AA-PBZGA-TE, 1991).

DECprint Printing Services System Manager's
Guide (Maynard: Digital Equipment Corporation,
Order No. AA-PBZFA-TE, 1990).

Digital ANSI-Compliant Printing Protocol Level 3
Programming Reference Manual (Maynard: Digital
Equipment Corporation, Order No. EK-PPLV3-PM,
1991).

Digital ANSI-Compliant Printing Protocol Level 3
Programming Supplement (Maynard: Digital
Equipment Corporation, Order No. EK-PPLV3-PS,
1991).

PostScript Translator's Reference Manual for ReGIS
and Tektronix 4010/4014 (Maynard: Digital
Equipment Corporation, Order No. AA-PBWFA-TE,
1991).

53

Image Processing, Video Terminals, and Printer Technologies

Postscript Printers Programmer's Supplement
(Maynard: Digital Equipment Corporation, Order
No. EK-POSTP-PS, 1991).

Postscript Language Reference Manual, 2nd ed.,
Adobe Systems Incorporated, ISBN 0-201-18127-4
(Reading, MA: Addison-Wesley, 1990).

Information Technology-Text and Office Sys
tems-Document Printing Application (DPA),

ISO/IEC JTC1/SC18 N, Draft International Standards
10175-1 and 10175-2 (September 1991).

CDA Base Services Technical Overview (Maynard:
Digital Equipment Corporation, Order No.
AA-PHJYA-TE, 1991).

Creating Compound Documents Using CDA Base
Services (Maynard: Digital Equipment Corporation,
Order No. AA-PHK2A-TE, 1989).

Writing Converters Using CDA Base Services
(Maynard: Digital Equipment Corporation, Order
No. AA-PHKlA-TE, 1991).

CDA Base Services Reference Manual, 2 vols.
(Maynard: Digital Equipment Corporation, Order
Nos. AA-PHJZA-TE and AA-PHKOA-TE, 1991).

CDA: DDIF Technical Specification (Maynard: Digital
Equipment Corporation, Order No. AA-PHK3A-TE,
1991).

CDA: DTIF Technical Specification (Maynard: Digital
Equipment Corporation, Order No. AA-PHK4A-TE,
1991).

DDIS Syntax Specification (Maynard: Digital
Equipment Corporation, Order No. EL-00081-00-1,
1987).

54 Vol. 3 No. 4 Fall 1991 Digital TecbntcalJournal

James D. Jones
Ajay P. Kachrani

Thomas E. Powers

The Common Printer Access Protocol

The DEC PrintServer Supporting Host Software version 4.0 incorporates Digital's
first implementation of the new common printer access protocol (CPAP). This pr<r
tocol is compatible with the local area print server (LAPS) protocol, which was
optimized for VilfS access and DECnet transport, and with the Reid-Kent proto
col, a PostScript-based, TCP/IP-connected print server for a dient-server environ
ment. The CPAP protocol supports a van'ety of data presentation protocols
and allows printers to be connected to driving applications by various communica
tions and process-to-process interfaces. The protocol also couples entities running
different operating systems across disparate networks. Because of its superior
performance, the new CPAP protocol has been accepted by the Open Software
Foundation for inclusion in a future release of OSF/ 1.

The presentation of computerized data has become
a remarkably sophisticated and subtle operation.
Video displays now support windows with com
plex allocations of display space, variable fonts, and
real-time user input operations. Printing devices
now offer support for publication-quality fonts,
line art, and images. These devices can present
visual objects on a variety of media, from many
sources, and in variable orientations and presenta
tion modes. In addition, both video and printing
devices are now decoupled from dedicated com
puting environments, and are shareable from many
hosts and by many users or programs.

Now, only the simplest printing devices are lim
ited to presenting just characters, and many users
are finding such restricted capabilities inadequate.
Also, most printing devices still require dedicated
connections to single computers. However, more
printers now offer full network accessibility; i.e.,
network printers are capable of offering sophisti
cated services to a wide variety of users and their
applications.

The paper entitled "Design of the DECprint
Common Printer Supervisor for VMS Systems"
in this issue of the Digital Technical Journal
describes access methods and interrelations
among services that provide for these increasingly
sophisticated data presentation capabilities. 1 The
printer access protocol (PAP), a service interface in
the DECprint architecture, couples the printer
supervisor component to the logical printer for
presenting data and otherwise controlling a physi-

Dig ita l Teclmical Journal Vol. 3 No. 4 Fall 1991

cal printing device. The common printer access
protocol (CPAP) described in this paper provides
the fundamental services required by a printer
supervisor for the presentation of data and collec
tion of accounting information. In addition, the
CPAP supplies easier network access between
printer supervisors and printers, as well as ancil
lary control of printers for network management
and device configuration. The CPAP also provides
services to distribute the processing requirements
of the printer itself, most notably a mechanism for
delivery of network font services. This last capabil
ity allows a printer to offer what amounts to vir
tual services, i.e., the ability to configure itself
dynamically to the demands of a print job without
the involvement of the printer supervisor.

This paper begins with a discussion of the
influence of existing protocols and the DECprint
architecture on our CPAP design goals. The sections
that follow present the printer session concepts
and the functional interface between the protocol
and applications. We then describe the implemen
tation of the new protocol in a server environment,
including interoperability, compatibility, and the
translation of the older PrintServer protocol. At the
close of the paper, we discuss ongoing standard
ization issues.

History
The PrintServer 40, Digital's first fully networked
printer, was first shipped in 1986. Its local area print
server (LAPS) protocol was analogous to later

55

Image Processing, Video Terminals, and Printer Technologies

printer access protocols. The PrintServer 40 was a
ground-breaking product for Digital, and the LAPS
protocol was a major aspect of the PrintServer
development effort, portions of which date back to
1983. The LAPS protocol was designed and devel
oped with particular product-oriented deliverables
in mind, and was optimized for VMS access and
DECnet transport. While this protocol predates
much of the architectural work now being imple
mented in Digital's printing products, it was (and
still is) a significant element of PrintServer archi
tecture and implementation.

Work began on more general PAPs in 1987 as
part of the early work on the DECprint architec
ture (known at the time as the Printing Systems
Model). The specifics of what would become the
CPAP emerged in late 1988 in two internal papers
by Brian Reid and Chris Kent of Digital's Western
Research Laboratory. These papers presented the
initial design concepts for a Postscript-based,
TCP/IP-connected (transmission control protocol/
internet protocol) print server in a clearly defined
client-server environment. This print server proto
col came to be known as the Reid-Kent protocol.

Design Rationale and Goals
By early 1988, design goals for (and constraints on) a
PAP were well understood, and had been collected
and published as part of Digital's Printing Systems
Model. Chief among these goals and constraints was
the need to support a variety of data presentation
protocols, and to allow printers to be connected to
driving applications by a variety of communica
tions and process-to-process interfaces.

The increasing corporate commitment to open
systems made it clear that a PAP would also have to
couple entities running various operating systems
across different networks. Thus, the DECprint PAP
architecture team decided early in the design pro
cess that a PAP should be designed for public
access; that is, the specification for the protocol
should be put into the public domain and submit
ted for industry standardization.

Interoperability is a most serious constraint.
Digital has a strong tradition of maintaining back
ward compatibility within and among its product
families. In a distributed processing environment,
however, backward compatibility takes on the
added burden of interoperability. Multiple clients
must communicate with multiple servers, any of
which can be upgraded to new versions of sup
ported protocols asynchronously. Addressing this

56

problem was a major conceptual test in the first
implementation of a CPAP server. This is discussed
in more detail in the section The CPAP Server
Implementation.

The Reid-Kent protocol met many of the techni
cal design requirements for a new PAP. It was built
on industry-standard components, and contained
no proprietary technology that would prevent its
publication.

However, certain PAP design goals were not cov
ered by the Reid-Kent protocol in its 1988 version.

• There was no facility to select a specific page
description language (POL) for printers support
ing multiple interpreters.

• There was no method for soliciting the capabili
ties and media available on the printer.

• The only language supported was English
(contrary to the corporate guidelines for
internationalization).

• Data sent from the printer was not categorized;
user-specific information was mixed with opera
tor and service data.

• No means was provided to solicit the status of
the printer.

• There was no encoding to discriminate between
binary and text files.

However, these flaws were largely omissions
from the design goals, not fundamental conflicts
with them. The architecture team decided that the
Reid-Kent protocol could be extended to address
these omissions without serious conflict. In fact,
the necessary extensions were designed to allow
clients and servers conforming to the original Reid
Kent protocol to remain in conformity with the full
CPAP specification.

Architecture
The CPAP is primarily a communication-oriented
protocol, i.e., the presentation of its function is
closely coupled with its encoding. The major syn
tactic features of the CPAP derived from the Reid
Kent protocol are the following.

• All encodings are ASCII strings. This eases the
generation of protocol streams and ensures inde
pendence from the underlying communications
channels.

• No data fields are fixed length. This provides for
extensibility of the protocol and eases the gener
ation of a protocol stream.

Vol. 3 No. 4 Fall 1991 Digital TecbntcalJournal

• Multiple channels of communication use the
same basic format . Common parsing of separate
channels simplifies implementations.

• Simple numeric tokens define the operators.

Session Concepts
The CPAP architecture defines separate contexts for
each type of work the CPAP can perform. Each con
text requires that a separate session be established
for its own tasks, and each session involves the cre
ation and use of a separate network connection
between the controlling client and the server. Each
connection identifies the type of session the initia
tor requires. The CPAP defines three different ses
sion types: print, management, and console.

The set of CPAP operators allowed for a session is
restricted to those needed to support that type of
session. All session types have access to printer
status and configuration information. In addition,
multiple concurrent sessions are permitted. Print
sessions and management sessions may have one or
more virtual circuits active to a printer at a time.
The use of multiple circuits permits the streaming
of data to the printer over logically separate chan
nels, thereby eliminating application protocol over
head for the most frequent operations. In contrast,
console sessions use a single virtual circuit for
exchange of data with remote terminals.

Print Sessions Print sessions usually consist of a
series of documents printed for a user on a given
host by a printing service (a "printer supervisor"
as defined by the DECprint architecture). With the
operators provided by the CPAP, the printing ser
vice can determine the language interpreters,
printer options, fonts, prologues, and media that
are currently installed at the server. These opera
tors also provide the current operational state,
number of jobs queued to the printer, and the cur
rent job status. These features permit the printing
service to select the printer (server) that can satisfy
the user's request and to determine a method for
submitting the job to the printer.

Once the printing service has begun a session
and identified itself, it identifies the user and the
user's job code to the printer. This information may
be used by the printer to provide usage information
to a centralized accounting service. The printing
service can then present documents to the printer.
A transaction between the printing service and the
printer establishes which interpreter the printer

D igita l Tecbnlcal]ournal Vol. 3 No. 4 Fall 1991

The Common Printer Access Protocol

will use for each document and which virtual cir
cuit will be used for its transmission.

Selection of the proper virtual circuit for trans
mission of documents to the printer is performed
by passing tokens from the printer to the printing
service. The tokens are then mapped to whichever
virtual-circuit service is being used by both the
printing service and the print server. This map
ping approach avoids passing network-specific
information within the protocol. Not only does the
approach make the CPAP independent of the net
works on which it might run, it ensures that the
network services need no knowledge of CPAP
encodings. Such virtual-circuit mapping is criti
cal to allow CPAP client-server processing to be
implemented in a heterogeneous, internetworking
environment.

During the printing of the document, some data
presentation interpreters (Postscript, for example)
send data back to the user or print service. In addi
tion, the printer may run out of paper or toner,
may have a full output tray, or may encounter other
exception conditions not directly related to the
interpretation of page description data. The CPAP
categorizes such conditions and delivers relevant
messages to the user, the operator, or the event logs.

Upon completion of the job, the printing service
is notified of the media used, the number of pages
printed, and the printer processing time required
to complete the job. The protocol also includes a
provision to abort jobs, e.g., an improperly formed
document that might otherwise hang the printer.

Management Sessions The CPAP supports certain
printer services through management hosts. A man
agement host is a network entity (not necessarily
the same entity as the printing service) with which
the printer can exchange information or request
services. Such services include

• Time service

• Centralized event logging

• Centralized accounting

• Program loading and configuration

• Font services

An important aspect of the CPAP is that the
printer is always passive with regard to initiating
management services. A candidate management
host advertises that it has services to offer, and a
print server accepts or rejects the offer. Once a

57

Image Processing, Video Terminals, and Printer Technologies

connection with one or more management hosts
is established, the printer may use such hosts as
servers for time synchronization, configuration file
access, and font lookup. Additional functions for
these hosts may be loading program images, event
logging, accounting, and general file access.

File naming to access general file services is a
problem that needs special attention if the server
and the protocol are to maintain independence
from the host operating systems. Commonly used
files are identified in the CPAP by reserved tokens,
such as $CONFIG, $DEFAULTS, $RESOURCES, and
$SETUP. Arbitrary path names are allowed, but can
access only a limited domain (from a known root
directory) to preserve file system independence
and to maintain security.

Translation to the host's services is provided
by the host itself. This permits the printer to be
served by different hosts using a wide variety of
operating systems (and their implicitly different
file-naming conventions and syntaxes) without any
awareness of a management host's implementation
by the server.

Console Sessions A console session is a form of
printer management. The content of the data
exchanged during a console session is specific to
the printer, and is not specified by the CPAP.
Services performed within a console session might
include

• Operator services, such as telling a printer what
media have been loaded (e.g., by color, weight,
or transparency), or setting physical printer
defaults (e.g., duplex versus simplex, or default
medium selection)

• Network management configuration services,
such as controlling domain access to or from
the printer

• Troubleshooting or debugging services

Digital's implementation of console services on
current PrintServer products conforms to the
Enterprise Management Architecture.

Application Program Inteiface
The functional interface to any protocol provides
an additional abstraction between an application
and a protocol. This abstraction answers many of
today's software application needs, including inter
operability, portability, modularity, and reusabil
ity across multiple architectures. An application

58

programming interface (API) that allows access to
all CPAP facilities is included in the protocol's
specification.

A connection block, which is passed as a parame
ter to all functions, provides support for vari
ous printer types, their device identifications, and
descriptors for command and data channels. This
support includes separate command and data
channels for printers supporting multiple virtual
circuits or channels. Just as in the case of the data
stream form of the protocol, the API form allows
separate channels for data and commands.

A separate command channel allows ease of con
trol flow between client and server. This may
include the client receiving the server's status or
events, or the client sending aborts to the server.
For devices that support only a single channel, the
generic printer driver can set both command and
data channels to the same value. For supporting
multiple jobs active at the same time (job overlap),
a job identification (ID) parameter is passed with
all functions.

To support various message types, the address
of a read-callback routine is passed to the open
printer function along with a pointer to read-call
back arguments. These arguments may signal vari
ous events, or may consist of messages for the user,
operator, accounting, or resources available in the
printer.

An early version of the generic functional inter
face was part of MIT Project Athena's Palladium
Print System. The printer supervisor in Digital's
LN03R ScriptPrinter product was modified to cre
ate a generic printer interface for both the
ScriptPrinter device and the PrintServer family.
This conversion from an API-accessible base took
one week to execute, whereas it typically takes
six months of effort to develop a new printer
supervisor for a device as complex as the
PrintServer product.

The CPAP Server Implementation
The implementation of a protocol gives rise to
problems different from those related to its design.
When defining the architecture, one strives to pro
vide an ideal that includes all of the desired features
in an elegant manner. When performing an imple
mentation, one finds that elegance often has to take
a back seat to pragmatics. This is especially true
when the new protocol is intended to replace two
different protocols in a new version of an existing
product. Merely implementing the new protocol

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

is not enough-the implementation must some
how coexist with the protocols being replaced.

Digital's first production implementation of the
CPAP was targeted for the DEC PrintServer Sup
porting Host software version 4.0, which loads and
drives the PrintServer family of printers. For the
rest of this paper, we refer to this software by the
PrintServer product designation of LPS version 4.0.

We started the implementation by modifying
Digital's ULTRIX PrintServer client, which already
used the Reid-Kent subset of the CPAP, to use
DECnet network transport and run on the VMS oper
ating system. We then updated the LPS server
code to permit either DECnet or TCP/IP transport.
This was accomplished by using the direct-to-port
communication features of the VAXELN operating
system. The server establishes a circuit using the
appropriate transport and then spawns a process
for dealing with each incoming connection. Thus,
the same code can service print sessions, manage
ment sessions, and console sessions without con
cern for the type of network transport.

The CPAP was, by design, directly upward
compatible with the Reid-Kent protocol subset.
However, Digital's PrintServer offerings prior to
LPS version 4.0 were LAPS-based, and LAPS was not
CPAP-compatible. To permit users of existing
PrintServer printers to continue to use these
products, we had to find a way for the new CPAP
implementation to coexist with the older LAPS
application protocol. We achieved this coexistence
by having the server perform translations from the
older protocol to the new one in the server itself.
When the client establishes the initial connection,
the server senses which protocol is being used by
the client system. If the initial message indicates
the use of LAPS, the server spawns incoming and
outgoing filters to deal with the incoming connec
tion, and a new internal circuit replaces the
network connection to handle the interpretation
oftheCPAP.

The coding of the LAPS filters was the last step
in implementation before testing began. The
PrintServer 20, PrintServer 40, PrintServer 40 plus,
and the new turbo PrintServer 20 all had to be
tested using both LAPS and the Reid-Kent subset of
the CPAP. In addition, the new implementations of
the management client and the console client on
the VMS system required verification. This verifi
cation entailed a multitude of tests using the LPS
symbiont running on older versions of the VMS
operating system, the newer common print sym-

D ig ital Technical J ou r na l Vol. 3 No. 4 Fall 1991

The Common Printer Access Protocol

biont (CPS), several versions of the ULTRIX oper
ating system, and a source kit version running on
a Sun Microsystems workstation.

Unfortunately, this testing uncovered latent
defects in the implementation of the existing prod
ucts. We had to analyze each of these defects and
plan corrective action. Since updating the existing
products in the field is a difficult process (both
technically and procedurally), we corrected most
of the defects by altering the server to deal with the
problems. Retesting was performed over several
baselevels to ensure that our changes caused no
regression.

At one of the early baselevels, the interface
between the network distribution software and the
server's Postscript interpreter was updated to use a
stream-based connection in place of the previous
packet protocol. This update permitted the new
CPAP data channel to be mapped by reference to
the input of the Postscript PDL or any other PDL
supported by the printer. This change alone per
mitted the performance of the server to be main
tained even when the server was translating from
the old LAPS protocol to the CPAP.

In general, development proceeded incremen
tally, i.e., key features were identified and added
with each baselevel. While this technique limits the
complexity of producing the product, it raises an
important business issue. Specifically, the provi
sion of enhanced services in a client-server envi
ronment often exposes aspects of the proverbial
"chicken-and-egg" situation. There is little call to
offer enhanced features in a server if clients have
not been programmed to solicit the features. How
ever, clients are not readily upgraded to solicit
features that might not be widely available.

The LPS version 4.0 project team met its backward
compatibility design goals by including the LAPS-to
CPAP filters. In doing so, they undercut the need
to provide the enhanced feature support that the
CPAP was designed to deliver, since existing clients
(earlier versions) could not avail themselves of
the added features. In addition, the risks of includ
ing full CPAP support in LPS version 4.0 (possible
increase in time to market, and the creation or expo
sure of more latent defects in all supported environ
ments) seemed to outweigh the benefits. However,
a last-minute change to use the new protocol's data
channel for loading fonts yielded such a large per
formance advantage that resistance to using the
new features crumbled, and the project team was
allowed to submit the full protocol to field test.

59

Image Processing, Video Terminals, and Printer Technologies

Standardizat'ion
Network printing became widely available in the
mid-1980s, but products from different vendors
were not compatible. Network printing protocols
were largely proprietary efforts by vendors who
had developed them for their own printer prod
ucts. Digital 's PrintServer 40 and its LAPS protocol
were typical in this regard. By the late 1980s,
network printing was an established and competi
tive technology, but there was still little inter
operability among the various vendors ' products.

In the absence of printing protocol standards, the
Internet Engineering Task Force (IETF) formed a
Network Printing Protocol working group in
early 1990. This group's charter was to examine
printing protocols then in existence or under devel
opment, assess their applicability to Internet-wide
use, and suggest changes. Digital's representatives
to the IETF working group on the Palladium
Printing Systems standardization reported the inter
est shown in Digital's Reid-Kent protocol. Thus, in
July of 1990, Digital submitted a version of the PAP
that was under consideration by the DECprint PAP
architecture team.

Early consideration of this PAP by IETF and the
LPS version 4.0 implementation effort ran concur
rently. This provided a unique opportunity for
Digital's implementers to obtain feedback from a
very knowledgeable architectural community. In
turn, they could report implementation experi
ences that affected the review and progress of the
specification towards standardization. Implemen
tations of CPAP clients and servers by companies
other than Digital are in progress.

As part of Project Athena's Palladium Printing
System, the CPAP has been accepted by the Open
Software Foundation for inclusion in a future
release of OSF/1.

A draft of the CPAP is being circulated among
Internet members for comment. Meanwhile, work
on future enhancements continues. Work is now in
progress to specify a superset of the existing pro
tocol that deals with authentication and encryp
tion to strengthen security. This work is being
done in the spirit of the original migration from the
Reid-Kent protocol to the CPAP; i.e., the security
features being added will not adversely impact
users who do not need the new features.

Acktwwkdgments
The CPAP effort has been the work of many devel
opers. Chris Kent and Brian Reid drafted the base

6o

architecture and created the first prototype imple
mentations. Jim Jones championed the proto
col in the DECprint PAP architecture team (Alan
Guenther, Tom Hastings, Jim Jones, Tom Powers,
and Eric Rosen) and coded the LPS version 4.0
server. Carol Gallagher wrote the LAPS filters to
translate from the old protocol to the new. Mike
Augeri and John McLain ported the management
and console clients to the VMS system from the
ULTRIX system.]. K. Martin rewrote the Berkeley
Software Development (BSD) source kit to use the
new protocol. Ajay Kachrani developed our ULTRIX
and MIT Athena clients and represented the proto
col during early phases of the IETF standardization
effort. Many others supported these efforts, and
others are yet beginning to develop new CPAP
clients. We thank them all for their efforts.

Reference

1. R. Landau and A. Guenther, "Design of the
DECprint Common Printer Supervisor for VMS
Systems," Digital Technicaljournal, vol. 3, no. 4
(Fall 1991, this issue): 43-54.

Vol. 3 No. 4 Fall 1991 Digital TecbnicalJour,1al

Guido Simone
Jeffrey A. Metzger

Gary VaiUette

Design of the Turbo
PrintServer 20 Controller

The turbo PrintServer 20 controller is a performance enhancement of the original
PrintServer 20 system controller. The turbo controller was developed to enable
Postscript code to execute faster and thus improve page throughput for complex
documents. The RETrACE analysis system was designed to analyze the performance
of the original PrintServer 20 system and estimate expected performance future
systems. The turbo controller's processor and its three subsystems for memory,
write buffer, and bit-map data transfer were selected based on the analysis results.
Performance tests conducted on both the original and the turbo PrintServer 20
indicate the enhanced processing performance of the turbo controller.

In 1988 the turbo controller project was conceived
as a means of extending the life of the PrintServer 20
platform by introducing a performance-enhanced
system controller. The system controller in the
PrintServer 20 is housed within and powered by
the printer or "print engine"; it is a concise imple
mentation of a single-board computer containing a
CPU, a memory subsystem, an Ethernet interface,
and a printer interface. It supplies an environment
in which a multitasking software system manages
communications with remote clients and with the
print engine, performs data conversion from the
page description language (Postscript) to bit-map
images, and provides management of physical print
engine resources.

The original controller provided a maximum
print speed of 20 pages per minute, but this perfor
mance could not be maintained when the docu
ment included complex text, graphics, or images. To
improve page throughput for complex documents,
a controller was needed on which Postscript code
could execute faster. To enhance performance, the
competition was moving toward controllers based
on new industry-standard reduced instruction set
computer (RISC) processors. Therefore, to be com
petitive, Digital's new controller was required to
improve performance by five to eight times that of
the original controller, which had been based on
the rtVAX microprocessor.

As challenging as the performance improve
ment would be to achieve, budgetary pressures
forced restrictions on the implementation strategy.

Digital Tecbriical Jourrzal Vol. 3 No. 4 Fall 1991

We were to use existing, qualified chips wherever
possible in order to avoid new part qualification
costs and application-specific integrated circuit
(ASIC) development costs.

Early investigations indicated that the perfor
mance target was indeed achievable with existing
inexpensive RISC processors, as well as a high
speed Digital proprietary VAX processor. A RISC
processor would require porting a 2.5-megabyte
(MB) software system, which was far beyond the
scope of the project. The highest performance
VAX processor and the associated support chips,
which would not cause a problem with the soft
ware system, were far too expensive to be consid
ered. Alternatives were therefore limited to less
expensive, lower speed VAX processors: the low
risk, 60-nanosecond (ns) CMOS VAX or CVAX pro
cessor was proven, and the higher speed and more
cost-effective "system on a chip" or soc processor
was under development. Either choice would have
a minimal impact on the software system and
would provide a cost-effective solution.

The original performance estimates for the CVAX
and the SOC processors in general-purpose process
ing environments were below the lower bound of
the performance target. The design team was also
uncertain of the actual execution characteristics of
the PrintServer software. For these reasons, it was
decided to begin the project with a performance
analysis of the original controller to determine the
expected performance of a design based on either
processor.

61

Image Processing, Video Terminals, and Printer Technologies

This paper discusses the problems encountered
during our analysis and the solutions devised by the
Hardcopy Systems Engineering Group to overcome
them. The RETrACE tool suite, a performance analy
sis system, is described and the analysis results are
provided. The paper then discusses the hardware
architecture of the turbo controller and ends with a
presentation of the performance results obtained
for standard Postscript benchmarks.

Peifornunzce Analysis of the Original
Controller
The PrintServer 20 software system consists of a
VAXELN operating system, an Adobe Systems, Inc.
Postscript interpreter, and a substantial amount of
software to manage communications and resources.
The task of analyzing its performance was compli
cated by two additional factors . First, the software
system's behavior depended on the characteristics
of the user's Postscript document. Postscript is
an interpreted programming language. Thus, like
any computer program, low-level machine perfor
mance can be dramatically affected by the program
being executed. Second, and more painful, the
proprietary nature of the Postscript interpreter
prohibited us from obtaining code sources, and dis
cussing its internal architecture with engineers
from Adobe Systems.

While the characterization of a complex, par
tially proprietary, real-time software system is
difficult, it is not impossible. Programmer counter
address (PC) traces have offered many systems
designers very detailed insight into the execution
performance and characteristics of systems. PC
traces provide a means to observe a system at a
macroscopic level, allowing a view of the complex
interactions between the hardware and software
systems. System designers can use captured address
traces from current machine performance to extra
polate expected performance of future systems and
help them make architectural trade-offs.

The RETrACE Analysis System
The RETrACE tool suite was created to provide
a nonintrusive means of capturing real-time PC
traces and analyzing the captured addresses. The
tool suite consists of both hardware and software
components.

In order to keep expenses at a minimum, existing
hardware was used wherever possible. Only one
small module had to be developed to complete the
RETrACE hardware platform.

62

The RETrACE hardware consists of the following:

• Two interconnect boards boot and operate a
system controller on a table top. Developed as
part of the original PrintServer 20, the boards
connect the controller to a print engine and an
Ethernet.

• The PrintServer 20 server controller was modi
fied for use as an intelligent trace buffer system.

• The PrintServer 20 server controller's memory
capacity (12MB) was extended using the standard
4MB memory module used on the Kanji version
of the PrintServer 20.

• The RETrACE mother board was developed specif
ically for this tool suite. It contains a 32-bit wide,
first-in, first-out (FIFO) buffer and two loosely
coupled state machines.

• A standard PrintServer 20 system controller and
print engine were used as the "system under
observation.»

• The console terminal was selected from the stan
dard VT series of terminals.

A diagram of the RETrACE hardware system is
shown in Figure 1.

The RETrACE mother board performed the data
capture, using the modified controller's memory as
a large buffer. The board monitored the processor
bus of the system under observation by copying
all addresses and communications between the
rtVAX processor and its external floating-point
unit. This copied data was placed into a FIFO buffer
that in tum was written into the memory of the
modified controller using a direct memory access
(DMA) device. Since a standard PrintServer 20 con
troller and its optional memory expansion provide
16MB of storage, approximately 3 seconds of real
time execution address traces could be captured.
The data capture continued until the trace buffer
memory was exhausted, at which point the data
was uploaded over a network connection to a VAX
VMS computer for analysis.

Due to the design of the original PrintServer 20
system, many large data areas and code sections
were mapped into different explicit memory spaces.
This subdivision provided a means of determining
which code function was executing in any given
segment of the address trace. With a simple statisti
cal study it was possible to generate software exe
cution histograms and to determine many of the
characteristics of the system, including translation

Vol. 3 No. 4 Fall 1991 Digital TecbntcalJournal

PRINT
ENGINE

NETWORK

INTERCONNECT
MODULE

PRINTSERVER 20
SYSTEM
CONTROLLER

SYSTEM UNDER
OBSERVATION

Design of the Turbo PrintServer 20 Controller

RETRACE
CONSOLE
TERMINAL

i::::::::::i __ __.

RETRACE MOTHER
BOARD

MEMORY
OPTION

MODIFIED
PRINTSERVER 20
SYSTEM
CONTROLLER

INTERCONNECT
MODULE

NETWORK

Figure 1 RETrACE Analysis System Hardware

buffer, floating point, instruction stream (I-stream)
versus data stream (D-stream), read versus write,
and interrupt performance. Hit rates for fully asso
ciative caches of separate I-stream and D-stream,
as well as a combined I- and D-stream cache, were
also provided. These hit rates were determined for
first-level write-through caches from 128 bytes up
to 256 kilobytes (KB). Thus an upper bound for an
optimum-performance cached memory system
was determined.

Both processors under consideration possessed
the ability to access a memory subsystem at speeds
greater than that achievable with existing low-cost
dynamic random-access memory (DRAM) technol
ogy. The performance numbers predicted by the
processor groups indicated that cached memory
subsystems were required. Because these sub
systems can be expensive and their performance is
subject to the peculiarities of the software that
executes on them, a multilevel memory simulator
was developed to allow accurate studies to be per
formed on proposed cache architectures.

The simulator was configured at run-time to sim
ulate an arbitrary hierarchical memory system that
was N levels deep, with an arbitrary size, associa
tivity, performance, and behavior at each level.
The memory level nearest the processor was
defined as the first level, and the last as main mem
ory. The simulator processed a trace file by walk
ing each address in the file through the memory
hierarchy starting nearest the processor at the first
level. If a copy of the address was found at a given
memory level, then a hit was signaled and the next
address was processed. If that address was not

Digital Tecb11icalJournal Vol. 3 No. 4 Fall 1991

found, then a miss was signaled and the simulator
would proceed to the next level of memory in the
hierarchy.

Whenever a hit occurred at a given level, it
was logged and all levels of memory in the hier
archy above it would allocate entries based on
their defined allocation rules. While this procedure
indicated the memory system performance for
a proposed architecture, the overall system per
formance was still unknown. Using a simple rule
based on the average execution time per address
for the existing controller, and scaling that time
based on the clock speed increase of proposed pro
cessors, an overall performance number was esti
mated for a system based on either processor with
any arbitrary memory architecture.

Benchmark Selection
The RETrACE tools suite provided the components
required to study the execution characteristics of
the PrintServer system without changing the char
acteristics of its normal operation. The only diffi
culty was to narrow the focus of the benchmark list
to provide a representative sample of Postscript
documents to print. Due to time constraints, the
list was limited to five benchmarks.

BM 1 The BM 1 benchmark stresses those aspects of
the system that convert the mathematical represen
tations of characters to bit-map representations,
which comprise the form that is printed. This
benchmark uses several fonts in standard character
orientations, stressing both very large and small
character sizes.

63

I·

Image Processing, Video Terminals, and Printer Technologies

BM2 Of the same type as BMl, this benchmark
stresses the transforms from mathematical to bit
mapped character representations; however, the
characters printed are at arbitrary orientations
with sizes ranging from typical to very small.

BM3 The BM3 benchmark is one of the standard
benchmarks for Postscript performance qualifica
tion. It is a simple 41-page document that contains
several different fonts. The benchmark is designed
to characterize the standard text-handling per
formance of a printer. This benchmark is printed
twice to ensure that all characters to be printed
have been converted from mathematical outlines
to bit-map representations of the characters. Thus
the focus of the benchmark is to move the text
data through the system, to copy the character bit
maps to the lMB region in memory that contains
the image to be printed, and to print the image. It
should be noted that this is the only benchmark
that printed at engine speed on the PrintServer 20
system controller powered by the rtVAX system.

HOUSE A binary image file, the HOUSE benchmark
was used to stress the communications aspects of
the PrintServer system.

SCHEM The SCHEM benchmark was a vector repre
sentation of a logic schematic. This benchmark was
used to stress the Postscript interpreter's ability to
interpret nonnative Postscript code and to exhibit
the characteristics of drawing vectors.

Analysis Results
The thrust of the analysis was to provide credible
evidence to support architectural and implemen
tation trade-offs. The major areas of focus were

• Memory system organization

• Printer interface performance

• Main memory bandwidth

• Overall system performance

Memory System Organization The statistical anal
ysis of the trace information provided many clues
to direct our investigation toward the optimum
memory system architecture. The overall read-to
write ratio for the observed benchmarks ranged
from as low as 4.3:1 up to 5.5:1, which means for
a write-through cache system with a theoretical
100 percent read hit rate, the writes would degrade

64

the overall hit rate to approximately 81 to 84 per
cent. As the analysis of the data progressed, it was
understood that the write data must be studied
very closely since it could have a dramatic impact
on the overall cache miss rate. During the cache
model simulations, the hit rates of the I-stream
were between 85 to 90 percent. However, the
D-stream hit rates were between 35 to 45 percent,
with writes accounting for 60 to 90 percent of the
total D-stream misses. To achieve the greatest posi
tive effect on the hit rate of the system, enhance
ment of write-miss performance was the most
advantageous. The two options to improve this per
formance were either to implement a write-back
cache or to add a write buffer to the system. Further
cache simulations showed that a write buffer would
provide an 8 to 16 percent overall system perfor
mance improvement, which was equal to that of a
write-back cache. The write buffer, however, was
the more straightforward solution to implement.

Cache analysis revealed that the processors
required different memory architectures. The CVAX
had an internal IKB, two-way set associative cache.
This was to be configured as a mixed I- and D-stream
cache. An additional 32KB to 64KB, two-cycle write
through cache was to be added externally. This
would also be configured as a mixed I- and D-stream
cache. A single-longword, two-cycle write buffer
would provide enough buffering to reduce the
dramatic impact of write misses. The soc was
proposed to have an internal write-back cache
between 5KB and 8KB, with each IKB region mak
ing up a single set. Cache simulations indicated
that with a minimum internal mixed I- and D-stream
cache of 5KB, five-way set associative, an external
data cache would have to be over 64KB to have even
a negligible effect on overall system performance.
Therefore no external cache was recommended. To
mitigate the write-miss penalty, a two-cycle write
buffer of 4 to 6 longwords was recommended.

As an acceleration technique, the original
PrintServer 20 controller contained a memory
access capability that allowed data written to mem
ory to be logically ORed with data that was already
stored. This technique was particularly useful when
the software system was writing the image that was
ultimately printed. As part of the process of gener
ating an image to print, the individual characters
appearing on a page must be copied from a region
of memory called the font cache to another region
called the frame buffer. The frame buffer contains
the actual data that is sent to the print engine.

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

To complicate things, the data written to the frame
buffer must be able to overlay data that may already
be there, thus requiring a logical OR function.

When a document was printing at or near the
maximum engine speed of 20 pages per minute,
analysis showed this low-level copying function
consumed approximately 20 percent of the total
system time allotted to generate and print one page.
Thus a logical OR function in the memory system
would reduce the number of memory data cycles
from "2 reads 1 write" to "1 read 1 write," and
reduce the impact from a second read occupying a
useful cache location. Without this capability, the
degradation would be between 5 and 10 percent of
overall system performance when printing at or
near 20 pages per minute. Therefore memory capa
bility with a logical OR function was recommended.

Printer Interface Performance When a PrintServer
20 is printing, every page that exits the printer
requires the lMB frame buffer to be copied from
memory to the print engine interface. Changing a
program-controlled printer interface to one driven
by a DMA device provided two significant advan
tages. The first was to reduce the real-time require
ments on the PrintServer software system, and the
second was to allow for a limited degree of paral
lelism on the controller. The parallelism was due to
the ability of the processor to continue to execute
from its cache memory system while the DMA

device accessed memory. The processor only stops
executing when a cache miss occurs.

Main Memory Bandwidth With a CVAX processor
configured as recommended in the section Memory
System Organization, the main memory system
bandwidth requirement of the processor was
60 percent. For the soc, it was 70 percent when
an existing DRAM controller was used. A DMA

driven printer interface required 15 percent, and
an Ethernet interface required nominally 4 percent
with bursts up to 20 percent. Each subsystem was
scrutinized to reduce its required memory band
width. The resulting recommendation was to add a
32-bit bus to the memory subsystem to provide a
dedicated channel for all data being sent to the
printer interface. This provision would reduce
required memory bandwidth for the printer inter
face from 15 percent to about 7 percent. The sys
tem would then have a nominal memory bandwidth
requirement of 71 percent for a CVAX system and
81 percent for an SOC.

Digital Technica l Journal Vol. 3 No. 4 Fall 1991

Design of the Turbo PrintServer 20 Controller

Overall System Performance The execution char
acteristics of the original PrintServer 20 provided
some interesting surprises. Most floating-point
calculations were performed in double precision;
and even more interesting, for each floating-point
operation, there was a floating-point conversion
from single to double precision, and then back
again. Since the precise operations were not
required, a simple compiler switch removed the
conversions and provided a 3 percent overall sys
tem performance improvement for floating-point
intensive Postscript documents. A second surprise
came from the results of the BM3 benchmark,
which indicated a translation buffer hit rate of
85 percent. At the time of the discovery, the
PrintServer 20 was configured with a standard
MicroVAX processor; however, by substituting an
rtVAX, which uses one less memory access to refer
ence its page tables, an 11 percent system per
formance improvement was achieved. With this
improvement, the rtVAX processor provided
enough power to allow the original PrintServer 20
to ship with its 20-page-per-minute designation.
This information led the turbo controller designers
to determine that the translation buffer of the soc
would be large enough for all the entries required.

Results
The final analysis revealed that the expected perfor
mance of a CVAX or soc processor would place
either design on the low side of the performance
requirement. Therefore close attention to detail
would be required during the implementation
phase of the project as every ounce of performance
mattered. The expectation was to have a choice
between an soc processor with a 40-ns cycle time
and a CVAX processor with a 60-ns cycle time. The
performance improvements of the two processors
are compared in Table 1.

Table 1 Performance Improvement Relative
to Original PrintServer 20 Controller

soc CVAX
Benchmark Processor Processor

BM1 4.7 3.7
BM2 4.9 4.0
BM3 4.3 3.3
HOUSE 4.9 4.2
SCH EM 4.7 3.7

65

Image Processing, Video Terminals, and Printer Technologies

As the project schedule progressed, the risk asso
ciated with the new SOC processor decreased. As

this risk window collapsed, it was understood that
a turbo controller based on the soc processor
would not only perform better, but would also cost
less as it would not require an external cache.

Turbo Controller Hardware Design
The turbo controller was destined for a relatively
high-end printer. Therefore the hardware architec
ture had to provide maximum performance, even
though this implementation would increase costs.
Based on the results obtained during RETrACE analy
sis, the hardware design had the following imple
mentation goals:

• The soc would provide the CPU, the floating
point accelerator (FPA), and the cache subsystem.
No second-level cache would be implemented.

• A four- to six-entry write buffer would be
implemented.

• The transfer of bit-map data to the print engine
would require a 32-bit OMA subsystem with scan
erase capability.

• The memory subsystem would support OR-mode
memory access by the CPU and scan-erase access
by the OMA controller.

Although both the SOC and rtVAX chips comply
with the VAX architecture standard and both are
conceptually very similar, they have significant dif
ferences in the bus interface. For example, the
soc uses a quadword cycle (one 32-bit address fol
lowed by two 32-bit data reads) to fill one internal
cache block, while the rtVAX processor, which does
not support caching, does not use this type of
cycle. Also, the clocking system on the soc was
enhanced, and the timing relationships between
signals were modified to improve performance.

The changes to the SOC bus interface, plus the
required functional changes revealed by RETrACE
analysis, meant that very little of the original
PrintServer 20 controller design could be applied
to the new controller. One of the first questions to
be answered before the design of the turbo con
troller could begin, was whether or not one or
more ASICs would be required for the design. This
question had to be answered for three subsystems:

• Main memory

• Write buffer

• Bit-map data transfer subsystem

66

In each case existing chips satisfied some of the
requirements for the subsystem. In the end these
chips met all our requirements, but only because
they were used in ways not originally intended by
the chip designers.

Main Memory
Since the soc has a bus interface that is compati
ble with the CVAX chip, the most obvious chip to
use as a main memory controller was the CVAX
memory controller (CMCTL) chip.1 It responds to all
bus cycles generated by the soc, and since it was
already used on a number of platforms supported
by the VAXELN operating system, its use greatly
simplified porting VAXELN to the turbo controller.
However, the turbo controller requires two special
memory modes that are not provided directly by
the CMCTL, namely OR mode and scan-erase mode.
It was essential to devise a way to include these
two modes if the CMCTL were to be used.

OR-mode memory is a technique used to improve
performance during the writing of the page bit
map into memory (scan conversion). During nor
mal memory operation (called replace mode), the
destination operand in memory is replaced by the
source operand. During an OR-mode write cycle,
the destination operand is modified as follows:

• For each logical zero in the source data being
written, the corresponding destination bit in
memory remains unchanged.

• For each logical one in the source data being
written, the corresponding destination bit in
memory is written with the corresponding bit in
the pattern register.

• The pattern register is a 32-bit register which
determines the "color" pattern of the "ink" being
written on the page.

Figure 2 shows a portion of the logic between
the CMCTL and the memory array that implements
the OR-mode function in hardware. The OR-mode
operation is accomplished by inverting the source
data and connecting it to 32 independent write
enables of the memory array. When a zero is writ
ten, it is inverted and the write cycle for that bit
becomes a read cycle, thus preventing any change
to the memory contents. When a one is written, it
is inverted and the write is allowed to occur, but
the data actually written depends on the value pre
viously written into the pattern register.

Vol. 3 No. 4 Fall 1991 Dtgttal Techntca/Journal

MEMORY DATA BUS FROM CMCTL

-

32 D ~
PATIERN
REGISTER

32 [> f-+--c

OR-MODE
WRITE
DATA PATH

DATA DATA
IN OUT

WRITE
ENABLE

MAIN MEMORY
ARRAY

32
f----+-

Figure 2 OR-mode Circuit

32

[> -
READ
DATA PATH

Two features of the CMCTL chip make it possible
to implement OR-mode memory. First, its 64MB
address space is divided into 4 arrays of 4 banks
(16 banks total). Second, the CMCTL chip can selec
tively disable parity checking on an array.

The large address space of the CMCTL allows the
use of 2 arrays for replace mode and 2 arrays for
OR mode, since the turbo controller supports up to
32MB of memory. The control signals of the two
sets of arrays are combined such that OR mode and
replace mode access the same physical memory,
though in different ways. Parity error detection
is disabled on the OR-mode arrays; thus a read
through OR-mode address space cannot cause a par
ity error. This is necessary because OR-mode write
cycles may corrupt parity. Normally any bit map
created using OR-mode write cycles is read using
OR-mode read cycles.

The other special mode required for the main
memory system is called scan-erase mode. It is an
operating mode designed to improve bus utiliza
tion during the transfer of the bit map from main
memory to a FIFO buffer connected to the printer
data lines. This mode is made possible by a side
effect of the error-correcting code (ECC)/parity
generation logic in the CMCTL. Any time a masked
write occurs (any write other than an aligned long
word, such as a byte write), the destination long
word must first be read by the CMCTL, then
combined with the bytes to be written in order
to generate the parity or ECC check bits for that
longword.

Digital Technical Journal Vol. 3 No. 4 Fall 1991

Design of the Turbo PrintServer 20 Controller

Three operations occur during a single scan
erase cycle. Refer to the circuit drawing in Figure 3.

1. The bus master asserts the signal's "bit-map
load" and "bit-map erase" and requests a masked
write. The CMCTL performs a read, and the bit
map is read onto the memory data bus_

2. Bit-map data is automatically transferred from
the memory data bus into the FIFO buffer.

3. The CMCTL performs a write. However, since
the bit-map erase signal has disabled the data
path and the pull-down resistors have set the
data-in lines to all zeros, the write cycle, which
was intended by the designers of the chip as a
masked write, has in fact become a memory
clear operation.

Write Buffer
The LR3220 chip was chosen as the base for the
write buffer subsystem. It provides a six-entry FIFO
buffer for address, data, and byte mask and detects
whether the processor has requested a read at a
memory location for which a write is still pending.
It also supports two operating modes: LR3000
mode and Harvard mode.

If it were not for the Harvard-mode feature, it
would have been more difficult to include the
LR3220 chip into the turbo controller. The LR3000
processor, for which this chip was designed, has
staggered address timing. Some of the address and
byte-mask bits are asserted on the falling edge of
the clock, and the remaining bits are asserted on
the rising edge of the clock. When the LR3220 chip
is configured in LR3000 mode, the processor sub
system must meet these timing requirements.
However, when the LR3220 chip is configured in
Harvard mode, all address, data, and byte-mask
information is read at the same rising clock edge.

The basic strategy for including the write buffer
into the turbo controller was to insert the write buf
fer between the SOC and the rest of the system as
shown in Figure 4. The SOC would issue read and
write requests to the write buffer, and the write
buffer would issue read and write requests to the
rest of the system. During CPU cycles the soc and
the write buffer have a master-slave relationship
in which the soc is the master. The relationship
between the write buffer and the rest of the system
is also a master-slave relationship; however, the
write buffer is the master. In fact, the write-buffer
output interface must look almost identical to the
soc.

67

Image Processing, Video Terminals, and Printer Technologies

BIT-MAP LOAD

MEMORY DATA BUS FROM CMCTL

REPLACE-MODE
WRITE DATA PATH

[> 32
- , ,

BIT-MAP ERASE r
i

32 ,

DATA
IN

FIFO BUFFER

[[Il]
DATA TO
PRINT ENGINE -

I

DATA
32 [> f-+- -OUT

READ
DATA PATH

WRITE ENABLE
FROM CMCTL 1 COMMON
-----------+'-u- WRITE

ENABLE

MAIN MEMORY
ARRAY

Figure 3 Scan-erase Circuit

The structure of the write-buffer subsystem is
shown in Figure 5. The bus interface unit responds
to read or write requests from the soc. During
write cycles, the bus interface writes the data into
the LR3220 chip and immediately alerts the soc to
terminate the cycle quickly Whenever one or more

entries in the LR3220 chip have data, the bus cycle
generator (BCG) removes the next entry and issues
a write request to the appropriate subsystem.

The write-buffer subsystem allows the soc to
"read around" the write buffer, provided the address
being read does not have a pending write in the

TO OTHER

SYSTEM WRITE-BUFFER SUBSYSTEMS
-

ONA CHIP SUBSYSTEM

CVAX UNIVERSAL
MEMORY DIRECT MEMORY
CONTROLLER ACCESS
(CMCTL) CONTROLLER

I I
PRINTER MAIN
DATA FIFO MEMORY
BUFFER ARRAY

I
TO PRINT ENGINE

Figure 4 Interconnection of Turbo Controller Subsystems

68 Vol. 3 No. 4 Fall 1991 Digital Technical Journal

Design of the Turbo PrintServer 20 Controller

BUS CYCLE BUS LOCAL SOC CONTROL
INTERFACE CONTROL GENERATOR SYSTEM CONTROL

UNIT SIGNALS AND
,____

~
ARBITRATOR

-
-~ ADDRESS IN

L~ r---..... - ADDRESS OUT LATCH
SYSTEM DATA/ADDRESS

SOC DATA/ADDRESS DATA IN DATA OUT

SOC BYTE MASK
l,...,,--"'

MULTIPLEXER

LR3220 WRITE BUFFER SYSTEM BYTE MASK

Figure5

LR3220. To handle this, the BCG includes an arbitra
tion circuit. When the soc requests a read cycle,
the bus interface unit of the write buffer passes
the request to the BCG. The BCG responds once
it has completed any write cycle currently in
progress, provided that the address to be read does
not have a pending write in the write buffer. When
the slave device being read acknowledges the BCG,
the acknowledgment is passed back to the bus
interface and finally to the soc to terminate the
cycle. The BCG then resumes its task of removing
entries from the LR3220 chip and issuing writes to
the rest of the system.

In order to maintain data coherency, the write
buffer subsystem enforces some additional
protocols.

• All writes to any location other than main
memory require a write-flush cycle; that is, the
bus interface must wait until the LR3220 chip
is empty before writing the data to it. Further
more, the bus interface must wait until the BCG
has finished the cycle before it acknowledges the
soc and allows it to perform the next cycle.

• All reads to any location other than main mem
ory require a read flush, which has the same
restrictions as a write flush. These restrictions
are required to avoid the possibility of reading
around a pending 1/0 space write, which often
has side effects to other addresses.

• The write-buffer subsystem must pass all DMA
bus transactions to the soc to ensure that all
cached memory locations that are modified by
DMA cycles have their corresponding cache
entry invalidated.

Digital Technical journal Vol. 3 No. 4 Fall 1991

Write Buffer

Bit-map Transfer Subsystem
The bit-map transfer subsystem transfers bit-map
data, created by the Postscript interpreter, to the
print engine. It is composed of the 32-bit DMA con
troller, a FIFO subsystem, and scan-erase logic in
main memory as described in the section Main
Memory.

The main requirements for the 32-bit DMA con
troller were

• 32MB address range

• Ability to transfer 32 bits at a time

• Ability to transfer the frame buffer forward
(incrementing the source address) or backward
(decrementing the source address)

None of the available DMA controller chips met
all our requirements, but the AMD 9516 universal
DMA controller (UDC) met some of them. The UDC
is a 16-bit DMA controller with a 16MB address
range and the ability to increment or decrement the
source address. There were two drawbacks to the
use of this chip. The software would have to ensure
that the frame buffer was always within the lower
16MB of memory, and the UDC would use twice as
much bus bandwidth since it could transfer only
16 bits at a time.

It was proposed that the UDC could be used as a
full 32-bit DMA controller if it was connected to the
bus "incorrectly" by shifting the data/address lines
to the left by one bit. That is, data/address line O on
the UDC would be connected to data/address line 1
on the bus; data/address line 1 of the UDC would be
connected to data/address line 2 on the bus; etc.
This type of connection doubles the address range
of the chip and causes the source address on the

69

Image Processing, Video Terminals, and Printer Technologies

bus to increment by 4 bytes (32 bits) instead of
2 bytes (16 bits).

This decision had a few implementation impacts.
For example, the register definitions were now
incorrect, since all the bits in all the registers were
shifted one bit to the left. However, once the soft
ware was modified to compensate for this, the UDC
functioned properly as a 32-bit OMA controller.
When combined with the scan-erase feature of
main memory, it allowed us to achieve our bit-map
transfer goal of reading 32 bits from memory, load
ing it into the FIFO subsystem, and clearing the
memory location, all in a single OMA cycle.

Performance
In this section, the performance of the original
PrintServer 20 is compared to the enhanced perfor
mance of the turbo PrintServer 20.

Except for performance, the original PrintServer
20 and the turbo PrintServer 20 have identical func
tional capabilities. Table 2 lists the five functional
subsets that were characterized for performance
on both printers. The first four functional subsets
were rated using the Postscript real-time operator;
they measure the elapsed CPU time needed to
complete a test. The last functional subset was
rated according to the rate of pages exiting
the printer. The term "DECnet/DPS" refers to the
DECnet job (a job is one of several multiprocessing
tasks running on the controller) and the "dis
tributed PrintServer software" job. The term
"printer system" refers to the complete printer
system, including the Postscript job and the print
ing overhead jobs. The printer system was rated
according to the rate of pages exiting the printer.

Table 3 reports the general attributes of the five
files that were run with the RETrACE system and
characterized for performance.

Table 3 Benchmark File Attributes

File Name General Attributes of File

BM1.PS Contains 39 pages of text with
13 fonts of various sizes. Some
text st rings are at varying angles.

BM2.PS Contains 1 page of spiral text
of various point sizes.

BM3.PS Contains 41 pages of text with
5 fonts.

HOUSE.PS Contains a 1-page bitonal image
of 3000 blocks (DECnet limited).

SCH EM.PS Contains a 65-page schematic
of graphics (vectors) and text.

Math Operators Peiformance of the
Postscript Job
Figure 6 illustrates the controllers' performance
results in math operations per second. The test
determines the time needed to perform 50,000
primitive math operators (e.g., adding two num
bers 50,000 times) during a Postscript test docu
ment. The real-time operator reads the current
time, and the repeat construct repeats the math
operator. This test measures the performance of
the CPU only.

14000
Cl
z
8 12000
w
Cl)

a: 1000 0
w
a..
Cl) 8000 z
0
~ 6000
a:
~ 4000 '
0
I ,1

i 200

: ; I . ,- _[____,__,----": _______,_!_.I_I ___ ..._, ___
ADD DIV MUL SQRT COS EXP LOG

Table 2 Functional Subsets of the Printers KEY:

Functional Subsets Characterization

Postscript job Math operations per second

Postscript job

Postscript job

DECnet/DPS jobs

Printer system
excluding
DECnet/DPS

70

Text: characters per second

Graphics: vector inches per
second

DECnet/DPS: kilobytes per
second

Image printing: square
inches per second

D ORIGINAL CONTROLLER
• TURBO CONTROLLER
TURBO~ 6.7 x ORIGINAL CONTROLLER

Figure 6 PostScriptjob Performance with Math

Text Peiformance of the Postscript Job
Figure 7 compares the text performance of the
Postscript job on the original controller and the
turbo controller. The test determines how long it
takes the Postscript job to compose 250,000 equally

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

20000

Cl
z
0

15000 (.)
UJ
en
a:
UJ
a..
en 10000
a:
UJ
f-
(.)
<(
a: 5000 <(
::c

r r r (.)

i i J 0
2 4

KEY:

O ORIGINAL CONTROLLER
• TURBO CONTROLLER

6 8

FONT POINT SIZE

TURBO = 5.2 x ORIGINAL CONTROLLER

10 12

Figure 7 Postscript Job Performance with Text

sized characters to the page buffer in memory,
which eventually is sent to the print engine to be
printed.

Graphics Peiformance of Postscript Job
An important means of characterizing graphics per
formance is in vector inches per second. Figure 8
shows the results obtained by running a Postscript
vector program in which all vectors are at
45 degrees and vector lengths are from 0.1 inch to
3 inches.

3000

Cl

~ 2500
(.)
UJ

~ 2000
UJ
a..
~ 1500
::c
(.)

~ 1000
a:
0
f-
crl 500
>

0'-----'=------'=------'--
0.1 0.2 0.4 0.8 1.5

VECTOR LENGTH (INCHES)

KEY:

O ORIGINAL CONTROLLER
• TURBO CONTROLLER
TURBO= 4.6 x ORIGINAL CONTROLLER

Figure 8 Postscript Job Performance
with Graphics

Dig ital Technical Journal Vol. 3 No. 4 Fall 1991

3.0

Design of the Turbo PrintServer 20 Controller

Image Performance
The image test characterized the complete printer
system, including the Postscript job and the print
ing overhead jobs, but excluding the DECnet/DPS
time required to transfer an image file to a printer.
Three one-square-inch bitonal images at device
resolution were placed into the user dictionary
and were used repeatedly during the performance
measurement. The result of using these precached
images was to eliminate the DECnet and DPS soft
ware time that would be required to transfer a full
page image from a host to the printer. Performance
was measured by printing 10 pages of 80 square
inches of image per page.

The pages were printed landscape and portrait
to measure the image performance both on axis and
off axis. (On axis means that the printer sequen
tially prints all bits of a word from the image on a
single scan line. Off axis by 90 degrees means that
the printer prints one bit from each word and does
not print the next bit in the word until it is at
the same position on the next scan line.) Figure 9
shows the results of the image performance test in
square inches per second.

22.0

Cl 20.0 z
0 18.0 (.)
UJ 16.0 en
a: 14.0 UJ
a..
en 12.0
UJ
::c
(.)

10.0

~ 8.0
UJ
a: 6.0
<(
::::, 4.0 0 en 2.0

0
ON AXIS OFF AXIS

KEY:

O ORIGINAL CONTROLLER
• TURBO CONTROLLER
TURBO = 3.0 x ORIGINAL CONTROLLER

Figure 9 Image Performance Measurement
of the Printing System

DECnet/DPS Jobs Peiformance
DECnet/DPS transfer rates can be ignored for text
and graphics files, but these rates can consume
most of the time needed to print large image files.
For example, a single, letter-size page of image
contains more than lMB of image data, but the

71

Image Processing, Video Terminals, and Printer Technologies

corresponding Postscript file contains more than
2MB. Because the image data is represented in Amer
ican standard code for information interchange
(ASCII) hexadecimal characters in Postscript, 8 bits
of the Postscript file are needed to represent 4 bits
of image data.

To measure DECnet/DPS, a PostScript file of IMB
of comments was sent to the printer. The clock was
started when the beginning of the file was received
by the Postscript interpreter and stopped when the
end of the file was received. The assumption of this
test method was that the Postscript interpreter can
parse comment lines much faster than DECnet/DPS
can transfer them.

The DECnet/DPS transfer rate is basically propor
tional to the slower of the host and printer proces
sors. Figure 10 shows the DECnet/DPS results.

RETrACE Benchmark Files
The benchmark files listed in Table 4 are charac
terized both by the elapsed time from file arrival

90

80
Cl
z
0

70
(.)

60 w
(/)

a: 50 w
a..
(/) 40 w
I-

30 >-
CD
0

20 ...J
:;.:

10

0

KEY:

D ORIGINAL CONTROLLER
• TURBO CONTROLLER
TURBO = 4.9 x ORIGINAL CONTROLLER

Figure JO DECnet/DPS Jobs Performance

to file printed and by the amount of CPU time used
to print the job. For example, in the BM3 bench
mark, the speed is limited by the 20-page
per-minute print engine, but the CPU time needed
to print the file can be used as a performance
measurement.

Summary
The turbo controller enhanced the performance of
the PrintServer 20 printer system. Its design was
prompted by the need to maintain print speed
performance for complex documents containing
text, graphics, and images. The RETrACE system was
designed to analyze the PrintServer 20 system to
determine which architectural changes would pro
vide the greatest improvement in Postscript perfor
mance. By optimizing hardware only in areas where
it was truly worthwhile, we were able to use exist
ing chips and reduce development costs. The sub
systems of the turbo controller hardware that
were optimized as a result of this analysis were
the processor (SOC which provided CPU, floating
point accelerator, and cache subsystem), a memory
subsystem with OR-mode and scan-erase access,
a write-buffer subsystem, and a 32-bit DMA sub
system. Results of the performance tests for five
benchmarks, including Postscript jobs, indicate the
levels of enhanced performance.

Acknowledgments
Chris Mayer designed and implemented the
RETrACE multilevel cache simulator. He developed
a ticketing algorithm that simplified the manage
ment of delayed behavior memory constructs such
as write buffers.

Reference
1. D. K. Morgan, "The CVAX CMCTL-A CMOS

Memory Controller Chip," Digital Technical
Journal, vol. 1, no. 7 (August 1988): 139-143.

Table 4 Benchmark Files Characterized by Elapsed Time and CPU Time (Seconds)

Benchmark Original Turbo Original Turbo delta delta
File CPU CPU Elapsed Elapsed CPU Elapsed

BM1 7585 1707 7735 2050 4.4 3.8
BM2 238 51 241 51 4.7 4.7
BM3 56 15 128 120 3.7 1.1*
HOUSE 67 15 106 31 4.5 3.4
SC HEM 2802 625 3073 675 4.5 4.6
•umited by engine.

72 Vol. 3 No. 4 Fall 1991 Digital Technical Journal

I Further Readings

The Digital TechnicalJournal
publishes papers that explore
the technological foundations
of Digital's major products. Each
Journal focuses on at least one
product area and presents a
compilation of papers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Journal Advisory Board.
Digital engineers who would
like to contribute a paper
to the Journal should contact
the editor at RDVAX::BIAKE.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991
Discussions of VMS volume shadowing, VAXcluster
application design, and new availability features of
local area VAXcluster systems, together with details
of high-performance Ethernet and FDDI adapters,
and an analysis of FDDI LAN performance

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991
The FDDI LAN system and Digital's products that
support this technology, with an overview and
papers on the physical and data link layers,
Common Node Software, bridge and concentrator
devices and related management software, and an
ULTRIX network adapter

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991
The architecture and products of Digital's dis
tributed transaction processing systems, with
information on monitors, performance measure
ment, system sizing, database availability, commit
processing, and fault tolerance

VAX 9000 Series
Vol. 2, No. 4, Fall 1990
The technologies and processes used to build
Digital's first mainframe computer, including
papers on the architecture, microarchitecture,
chip set, vector processor, and power system,
as well as CAD and test methodologies

Digital Technical Journal Vol. 3 No. 4 Fall 1991

DECwindows Program
Vol. 2, No. 3, Summer 1990
An overview and descriptions of the enhance
ments Digital's engineers have made to MIT's
X Window System in such areas as the server, tool
kit, interface language, and graphics, as well as
contributions made to related industry standards

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990
The highly expandable and configurable midrange
family of VAX systems that includes a vector proc
essor, a high-performance scalar processor, and
advances in chip design and physical technology

Compound Document Architecture
Vol. 2, No. 1, Winter 1990
The CDA family of architectures and services that
support the creation, interchange, and processing
of compound documents in a heterogeneous net
work environment

Distributed Systems
Vol. 1, No. 9,June 1989
Products that allow system resource sharing
throughout a network, the methods and tools
to evaluate product and system performance

Storage Technology
Vol. 1, No. 8, February 1989
Engineering technologies used in the design, man
ufacture, and maintenance of Digital's storage and
information management products

CVAX-based Systems
Vol. 1, No. 7, August 1988
CVAX chip set design and multiprocessing archi
tecture of the midrange VAX 6200 family of systems
and the MicroVAX 3500/3600 systems

Software Productivity Tools
Vol. 1, No. 6, February 1988
Tools that assist programmers in the development
of high-quality, reliable software

VAXcluster Systems
Vol. 1, No. 5, September 1987
System communication architecture, design and
implementation of a distributed lock manager, and
performance measurements

VAX 8800 Family
Vol. 1, No. 4, February 1987
The microarchitecture, internal boxes, VAXBI bus,
and VMS support for the VAX 8800 high-end multi
processor, simulation, and CAD methodology

73

Further Readings

Networking Products
Vol. 1, No. 3, September 1986
The Digital Network Architecture (DNA), network
performance, LANbridge 100, DECnet-ULTRIX and
DECnet-DOS, monitor design

MicroVAX II System
Vol. 1, No. 2, March 1986
The implementation of the microprocessor and
floating point chips, CAD suite, MicroVAX work
station, disk controllers, and TK50 tape drive

VAX 8600 Processor
Vol. 1, No. 1, August 1985
The system design with pipelined architecture,
the I-box, F-box, packaging considerations, signal
integrity, and design for reliability

Subscriptions to the Digital Technical journal are
available on a yearly, prepaid basis. The subscrip
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, ML01-3/B68, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.
dollars, and checks should be made payable to
Digital Equipment Corporation.

Single copies and past issues of the Digital
Technical journal can be ordered from Digital
Press at a cost of $16.00 per copy.

Technical Papers by Digital Authors

R. Al-Jarr, "A Methodology for Evaluating Decision
Making Architectures for Automated Manufactur
ing Systems;' Eleventh IFAC Conference (August
1990).

S. Angebranndt, R. Hyde, D Luong, and N. Siravara,
"Integrating Audio and Telephony in a Distributed
Workstation Environment," Proceedings of the
Summer 1991 USENIX Conference CTune 1991).

S. Batra, M. Mallary, and A. Torabi, "Frequency
Response of Thin-film Heads with Longitudinal
and Transverse Anisotropy;' IEEE Intermag '90
(April 1990).

R. Csencsits, N. Riel, J. Dion and S. Arsenault,
"Interfacial Structure and Adhesion of Metal-on
polyamide," International Symposium for Testing
and Failure Analysis (October 1990).

R. Csencsits, J. Rose, R. St. Amand, L. Elliott,
A. Hartzell, L. Kisselgof, and). Lloyd, "Aluminum
Interconnect Microstructure and Its Role in
Electromigration;' International Symposium
for Testing and Failure Analysis (October 1990).

74

J. Delahunty and T. Kielty, "Automated Pareto
Analysis for Continuously Improving a VLSI
Fabrication Area's Process Stability," Advanced
Semiconductor Manufacturing Conference
(September 1990).

S. Dell, "Promoting Equality of the Sexes through
Technical Writing;' Sodety for Technical Commu
nication (August 1990).

B. Doyle and K. Mistry, "A Lifetime Prediction
Method for Hot-carrier Degradation in Surface
channel P-MOS Devices;' IEEE Transactions on
Electron Devices (May 1990).

E. Freedman and Z. Cvetanovic, "Efficient
Decomposition and Performance of Parallel
PDE, FFT, Monte Carlo Simulations Simplex
and Sparse Solvers;' IEEE Supercomputing '90
(November 1990).

A. Gardel and P. Deosthali, "Hub-centered Pro
duction Control of Wafer Fabrication," Advanced
Semiconductor Manufacturing Conference
(September 1990).

A. Hartzell, "Introduction of Argon as a Heat
Transfer Gas in a Single Wafer RIE System,"
International Symposium for Testing and
Failure Analysis (October 1990).

A. Heyman and). Thottuvelil, "Linear Averaged and
Sampled Data Models for Large Signal Control of
High Power Factor AC-DC Converters;' IEEE Power
Electronics Specialists CTune 1990).

L. Hill, "Video Signal Analysis for EMI Control,"
IEEE Electromag '91 (1991).

L. Hill and A. Metsler, "Video Subsystem Design
for EMI Control," IEEE Electromag '91 (1991).

S. Kasturi, "Forced Convection: The Key to the
Versatile Reflow Process," NEPCON East '90
aune 1990).

D. Mirchandani and P. Biswas, "Characterization
and Modeling Ethernet Performance of
Distributed DECWindows Applications;'
ACM Sigmetrics (May 1990).

W. Metz, "Automated On-line Optimization of an
Epitaxial Process," International Semiconductor
Manufacturing Sdence Symposium (May 1990).

K. Mistry, B. Doyle, and D. Krakauer, "Impact of
Snapback Induced Hole Injection on Gate Oxide
Reliability in N-MOSFET's," IEEE Electron Device
Letters (October 1990).

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

C. Pan, "Gas Lubrication;' ASME/STZE Tribology
Conference (October 1990).

A. Philipossian, "Fluid Dynamics Analysis of
Thermal Oxidation Systems via Residence Time
Distribution (RD1);' Electromechanical Society
(October 1990).

M. Sidman, "Convergence Properties of an
Adaptive Runout Correction System," ASME

Winter Meeting (November 1990).

M. Sidman, "Parametic System Identification
on Logarithmic Frequency Response Data,"
IEEE Transactions on Automatic Control
(September 1991).

D. Skendzic, "Two Transistor Flyback Converter
Design for EMI Control," IEEE Symposium on
Electromagnetic Compatibility (August 1990).

A. Smith and W Goller, "New Domain Configura
tion in Thin-film Heads," Intermag '90 (April 1990).

H. Smith and]. Beagle, "SIMS for Accurate
Process Monitoring in CoSi2-on-Si MOSFET
Technology," Secondary Ion Mass Spectrometry
(September 1989).

J. Thottuvelil, "Using SPICE to Model the Dynamic
Behavior of DC-to-DC Converters Employing Mag
netic Amplifiers;' IEEE Applied Power Electronics
Conference (March 1990).

R. Ulichney, "Frequency Analysis of Ordered
Dither;' Hard-copy Output OE/JASE 89 SPIE '89
Proceedings (1991).

R. Ulichney, "Challenges in Device Independent
Image Rendering;' Applied Vision Optical Society
of America Technical Digest Series '89 (1991).

E. Zimran, "Performance Efficient Mapping of
Applications to Parallel and Distributed Archi
tectures," International Conference on Parallel
Processing (August 1990).

Digital Press

Digital Press is the book publishing group of
Digital Equipment Corporation. The Press is an
international publisher of computer books and
journals on new technologies and products for
users, system and network managers, program
mers, and other professionals. Proposals and ideas
for books in these and related areas are welcomed.

The following book descriptions represent a
sample of the books available from Digital Press.

Digital Technical Journal Vol. 3 No. 4 Fall 1991

VAX/VMS: Writing Real Programs in DCL
Paul C. Anagnostopoulos, 1989, softbound,
409 pages, Order No. EY-C168E-DP-EEB ($29.95)

This book contains information that can help the
reader learn to write powerful and well-organized
programs in DCL, the command language for the
VAX/VMS operating system. The text includes a
review of the syntax and semantics of DCL and a
discussion of significant issues in the development
of serious DCL software. Programming paradigms
are presented, as well as the correct way to
implement them. The book presents good pro
gramming techniques and helps the student to
make effective use of the VMS operating system.

X WINDOW SYSTEM TOOLKIT:
1he Complete Programmer's Guide
and Specification
Paul]. Asente and Ralph R. Swick, 1990, softbound,
1000 pages, Order No. EY-E757E-DP-EEB ($44.95)

This book consists of two parts, "Programmer's
Guide" and "Specification." "Programmer's Guide"
describes how to use the X Toolkit to write
applications and widgets, and includes many
examples. Each chapter in this part contains an
application writer's section and a widget writer's
section. Application programmers need to read the
widget writer's sections only if they are curious
about what is going on behind the scenes;
widget programmers should read both sections.
"Specification" provides a complete and concise
description of every component of the x Toolkit
Intrinsics, as standardized by the MIT X Consor
tium. The level of detail in this part is sufficient
to enable a programmer to create a new imple
mentation of the x Toolkit.

PRODUCTION SOFIWARE TIIAT WORKS:
A Guide to the Concurrent Development
of Realtime Manufacturing Systems
John A. Behuniak, Iftikhar Ahmad, and
Ann M. Courtright, 1992, softbound, 204 pages,
Order No. EY-H895E-DP-EEB ($24.95)

This is a practical guidebook for manufacturing
managers and process engineers who must develop
better process methodologies to stay competitive
and for developers of real time manufacturing
software who need to cut time and costs from their
work. The presentation, which provides useful
advice and easy-to-follow procedures, addresses
three basic tasks of real time software development

75

Further Readings

in a manufacturing plant: (1) managing the design
of the system; (2) setting up and managing a
development organization; and (3) implementing
tools for successful completion and management.

UNIX FOR VMS USERS
Philip E. Bourne, 1990, softbound, 368 pages,
Order No. EY-C177E-DP-EEB ($28.95)

This book emphasizes the practical aspects of
making the transition from the VMS to the UNIX

operating system. Every concept presented is
illustrated with one or more examples, comparing
how to perform a particular task in each of the
two operating systems. The book is organized in a
logical order and covers the following topics: fun
damental concepts to be grasped before touching
the keyboard, the first terminal sessions, the first
commands, editing, communicating with users,
resource utilization, using devices, more advanced
commands, using high-level languages, program
ming the operating system, text processing, and
networking. Appendixes provide extensive cross
reference tables to make this a valuable reference
tool for even the experienced UNIX user.

LOGISTICAL EXCELLENCE:
It's Not Business as Usual
Donald]. Bowersox, Patricia]. Daugherty,
Cornelia L. Drogue, Richard N. Germain, and
Dale S. Rodgers, 1992, 300 pages,
Order No. EY-H953E-DP-EEB

This book focuses on the interpretation of research
findings that have been compiled to help managers
who seek to improve logistical competency within
their organization. It provides a sequential model,
the best practices of "excellent" logistics managers
with supportive statistical evidence, and extensive
coverage of Electronic Data Interchange in the
logistics process. It also includes a brief overview
of the expanding role that logistics has recently
played in the overall corporate strategy of increas
ing speed and quality. To facilitate interest and ease
of reading, an action-oriented case dialogue runs
throughout the eight chapters.

WRITING VAX/VMS APPLICATIONS USING
PASCAL
Theo de Klerk, 1991, hardbound, 748 pages,
Order No. EY-F592E-DP-EEB ($39.95)

Written for the professional application program
mer on the VAX/VMS operating system using the

76

VAX Pascal programming language, this is the first
book to actually discuss the construction of real
VMS applications. It sets forth a methodology for
producing high-quality, professional VMS appli
cations by focusing on the aspects of the VMS

operating system crucial to every well-written
application.

TIIE DIGITAL GUIDE TO SOFIWARE
DEVELOPMENT
The staff of the Corporate User Information
Products (CUIP/ASG), Digital Equipment
Corporation, 1989, softbound, 239 pages,
Order No. EY-C178E-DP-EEB ($27.95)

THE DIGITAL GUIDE TO SOFIWARE DEVELOPMENT

is the first published description of the method
ology that Digital uses to design and develop its
software. For the engineer and other professionals
associated with the creation and marketing of
software applications, this book gives a rare look at
the practices of an industry leader and provides a
model for others who wish to introduce software
engineering methods and tools into their own
companies. Also discussed are the use of selected
VMS case tools to expedite the process; the roles of
teams and team leaders; the use of review meetings
and documents; and formal procedures for testing
and maintenance. The guide includes numerous
diagrams and tables, clear guidelines for the coding
and documentation of software modules, a listing
of related VMS documentation, and coding guide
lines for VAX c.

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL SOFIWARE
The staff of the Corporate User Information
Products (CUIP/ASG), Digital Equipment
Corporation, 1991, softbound, 381 pages,
Order No. EY-F577E-DP-EEB ($28.95)

This book introduces the ground-breaking pack
aging and design guidelines recommended by
Digital for products destined for overseas markets.
Already used by more than 400 independent soft
ware vendors and development groups, as well as
by Digital engineers, this book offers an approach
that greatly simplifies the steps required to adapt
software to local markets once the parent product
has been released. The book features a description
of Digital's international product model, a scheme
for separating the core functions of a product from
those that require translation or modification for

Vol. 3 No. 4 Fall 1991 Digital Technical Journal

specific markets. Also included are guidelines for
developers working in DECWindows, VMS, and
ULTRIX environments; special considerations
involved in preparing a product for multibyte Asian
languages or for multilanguage environments; and
appendixes with information on the systems issues
in computer architecture.

USING MS-DOS KERMIT: Connecting your
PC to the Electronic World, Second Edition
Christine M. Gianone, 1991, softbound,
344 pages with software disk included,
Order No. EY-H893E-DP-EEB ($34.95)

As in the first edition, this software package leads
the novice step by step through installation, com
munication setup, terminal emulation, file transfer,
and script programming, and also serves as a com
plete reference work for the experienced user.
Complete with 5M-inch diskette containing the
official MS-DOS KERMIT Version 3.11 program from
Columbia University, this revision includes a new
section on local area networks, additional material
on running Kermit in windowed environments
such as Microsoft Windows and Quarterdeck
DesqView, a new appendix containing tables of
the escape sequences used by Kermit's text and
graphics terminal emulators, and expanded
descriptions of many of Kermit's features.

ENTERPRISE NETWORKING:
Working Together Apart
Raymond H. Grenier and George S. Metes, 1991,
hardbound, 260 pages, Order No. EY-H878E-DP-EEB
($29.95)

To successfully compete in the next century, com
panies must recognize and adapt to exponential
changes, including the dispersion of markets and
resources and acceleration in market demands.
ENTERPRISE NETWORKING: Working Together
Apart, describes how management can support
this distributed electronic information environ
ment and move through planned transitions to
a new organization, confident they will prosper.
Intended for individuals in charge of directing
transition of information-focused groups that
extend across geographies, this book is segmented
into four parts. The Introduction, Part I, defines
the assumptions and realities. Part II focuses on
Capability Based Environments. Part III discusses
Simultaneous Distributed Work, both Goals and
Processes, and Continuous Design and Quest for

D igital Technical Journal Vol. 3 No. 4 Fall 1991

Quality. The Epilogue, Part IV, concludes with
three appendices detailing Benchmarking, Build
ing Networks, and Networking Capabilities.

THE ART OF TECHNICAL DOCUMENTATION
Katherine Haramundanis, 1992, softbound,
267 pages, Order No. EY-H892E-DP-EEB ($28.95)

Written primarily for novice and aspiring technical
writers within the computer industry, The Art
of Technical Documentation has unique features,
including its advice on planning and process,
research techniques, use of graphics, audience
analysis, definition of quality, standards, and
careers that are valuable to experienced technical
writers as well. Haramundanis views the practice
of technical writing as being different from that
of scientific writing, and closer to investigative
reporting. In keeping with this premise, this book
is not a style guide that deals with all aspects of
typography and copy editing, but instead presents
the distilled knowledge of the author's many years
experience.

A COMPREHENSIVE GUIDE TO Rdb/VMS
Lilian Hobbs and Kenneth England, 1991,
softbound, 352 pages, Order No. EY-H873E-DP-EEB
($34.95)

The Rdb/VMS relational database system was
developed by Digital Equipment Corporation for
VAX computers using the VMS operating system.
This system is one of a number of information
management products that work together to
facilitate the sharing of information. The Rdb/VMS
system is used, for example, in high-performance
transaction processing systems. This book is based
on Rdb/VMS Version 4.0, which Digital made avail
able to customers at the end of 1990, and thus
includes the latest functionality.

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL USER INFORMATION

I

Scott Jones, Cynthia Kennelly, Claudia Mueller,
Marcia Sweezey, Bill Thomas, and Lydia Velez, 1992,
softbound, 214 pages, Order No. EY-H894E-DP-EEB
($24.95)

Designed for the busy professional, this book
presents models that extend beyond Digital and
English speaking countries in a quick read/
reference format. Nine chapters and four appen
dices outline methods for creating written, visual,

77

Further Readings

and verbal information for cost-effective trans
lation. Primarily for information specialists,
including writers, editors, illustrators, course
developers, and their managers, this book will also
help software developers and students enhance
their background in technical communication.

PRACTICAL KNOWLEDGE ENGINEERING:
Creat ing Successful Commercial Expert
Systems
Richard V. Kelly,Jr., softbound, 212 pages,
Order No. EY·F591E-DP·EEB ($28.95)

This book is a concise guide to practical methods
for initiating, designing, building, managing,
and demonstrating commercial expert systems.
It is a front-line report of what works (and what
does not) in the construction of expert systems,
drawn from the author's decade of experience
gained working on such projects in all major
areas of application for American, European, and
Japanese organizations. It also briefly reviews
the knowledge representation, programming,
and management techniques commonly used to
implement expert systems today, and describes the
intellectual, organizational, financial, and manage
rial issues that knowledge engineers face daily in
performing their jobs. Among the topics covered
are: prospecting for "legitimate" problems; fore
casting costs, establishing project metrics and
writing specifications; preparing for system
"demos"; interviewing and selecting engineering
team members; and solving common difficulties
in design and implementation.

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition
Henry M. Levy and Richard H. Eckhouse, Jr., 1989,
hardbound, 444 pages, Order No. EY-6740E-DP-EEB
($38.00)

This book is both a reference for computer profes
sionals and a text for students. A systems approach
helps the reader understand the issues crucial to
the comprehension, design, and use of modem
computer systems. Using the VAX computer as an
example, the first half of the book is a text suitable
for a complete course in assembly language pro
gramming. The second half of the book describes
higher-level systems issues in computer architec
ture, namely, support for operating systems and
operating systems structures, virtual memory,
parallel processing, microprogramming, caches,
and translation buffers.

78

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softbound, 460 pages,
Order No. EY-F575E-DP·EEB ($49.95)

VMS FILE SYSTEM INTERNALS, based on VMS Version
5.2, is a book for system programmers, software
specialists, system managers, applications design
ers, and other VAX/VMS users who need to under
stand the interfaces to and the data structures,
algorithms, and basic synchronization mechanisms
of the VMS file system. This system is the part of
the VAX/VMS operating system responsible for
storing and managing files and information in
memory and on secondary storage. The book is
also intended as a case study of the VMS implemen
tation of a file system for graduate and advanced
undergraduate courses in operating systems.

DECNET PHASE V: An OSI Implementation
James Martin and Joe Leben, 1992, hardbound,
572 pages, Order No. EY-H882E-DP-EEB ($49.95)

This book provides a first in-depth look at DECnet
Phase v and the important issues that must be
resolved in the design and implementation of very
large networks. It presents key Open Systems Inter
connection (OSI) concepts and shows how DECnet
Phase v hardware and software products imple
ment international standards associated with the
OSI model.

VAX/VMS OPERATING SYSTEM CONCEPTS
David Miller, 1991, hardbound, 512 pages,
Order No. EY-F590E-DP-EEB ($44.95)

This book begins with an overview that centers
on one visible aspect of an operating system,
terminal input and output; it proceeds into well
organized chapters on process definition, paging
and memory management, security, protection
and privacy; and it concludes with a chapter
on operating systems at Digital Equipment
Corporation. Each chapter provides an intro
duction, theoretical discussion, generally recog
nized solutions, algorithms and data structures,
and questions to encourage review of the central
concept presented.

THE VMS USER'S GUIDE
James E Peters, III and Patrick). Holmay, 1990,
softbound, 304 pages, Order No. EY-6739E-DP·EEB
($28.95)

This up-to-date guide fo r new VMS users p rovides
a sequence of steps for learning the VMS operating

Vol. 3 No. 4 Falt 1991 Digital Technical Journal

system and includes hands-on experiments with
step-by-step instructions. The book also can be
used as a reference for commands and utilities.
THE i-MS USER'S GUIDE, reflecting VMS Version 5,
provides complete VMS coverage-from logging
in to creating command procedures; contains
a thorough discussion of files and directories;
covers both the EDT and the EVE editors in detail;
and introduces programming with VAXTPU.
The guide includes learning aids in each chapter,
such as summaries that contain tables of the
commands introduced in the chapter, exercises
to reinforce and extend the skills learned, and
review quizzes.

THE MATRIX: Com p u ter Networks and
Co nferencing Systems Worldwide
John S. Quarterman, 1990, softbound, 719 pages,
Order No. EY-C176E-DP-EEB ($49.95)

This is the first reference book to describe in detail
the extensive yet largely unpublicized web of
public and private networks and conferencing
systems that has spread to virtually every corner
of the world. The first half provides extensive
background information on the history, terminol
ogy, standards, protocols, technologies, worldwide
networked communities, and probable future
course of networking systems throughout the
world. The second half describes specific confer
encing systems and the interconnections between
them-according to geographic region worldwide.
Maps are included when available. Syntaxes and
gateways are provided for sending mail from one
system to another. Additional chapters discuss a
number of well-known worldwide networks,
including the Internet and selected commercial
systems. Two appendices provide essential infor
mation on public data networks worldwide and
on selected legal issues.

X AND MOTIF QUICK REFERENCE GUIDE
Randi]. Rost, 1990, softbound, 369 pages,
Order No. EY-E758E-DP-EEB ($24.95)

Based on the newly released X Window System
Version 11, Release 4 and Motif Version 1.0, this
one-volume guide combines three major reference
works on XLlb, x Toolkit Intrinsics, and Motif
programming libraries in a compact, easy-to-access
format. Features include complete descriptions
of approximately 400 Xlib routines, 200 x Toolkit
Intrinsics, and 200 Motif routines. The guide is
organized into five major reference sections-

Digital Technical Journal Vol. 3 No. 4 Fall 1991

"X Protocol," " XLlb;' "X Toolkit Intrinsics;' "Motif;'
and "General X"; all routines and data structures
are organized alphabetically within each of these
sections.

FIFTH GENERATION MANAGEMENT:
Integrating Enterprises through Human
Networking
Charles M. Savage, 1990, hardbound, 267 pages,
Order No. EY-C186E-DP-EEB ($28.95)

This book explores the challenges managers face
as their organizations transition from the indus
trial era to the new era of knowledge networking.
The author contends that new technologies like
computer integrated manufacturing (CIM) will

I

not be successful until organizations transform
their structures from the steep hierarchies of
second generation management to the flattened
networks of the fifth generation. The book
contains two parts. In Book 1, "Five Days that
Changed the Enterprise," Savage narrates a case
study of senior executives confronting the prob
lems of a traditional organization as they work to
transform their company into a networked
organization. In Book 2, "Integrating Enterprises
through Human Networking," Savage draws on
contemporary management literature and his own
consulting experiences to present a logical case for
his recommendations. A concluding chapter offers
ten practical considerations that organizations
must address to prepare for change.

X WINDOW SYSTEM: The Complete Guide
to Xlib , PROTOCOL, XLFD, and ICCCM,
X Version 11, Release 4, Second Edition
Robert W Scheifler and James Gettys,
withJim Flowers, Ron Newman, and
David Rosenthal, 1990, softbound, 851 pages,
Order No. EY-E755E-DP-EEB ($49.95)

By combining four MIT x Consortium standards
into one volume, this book is the most complete
and up-to-date X Window System reference
available. In addition to the four standards, also
included are instructive diagrams, a detailed
glossary, and a comprehensive subject-oriented
index. The book consists of four main parts, each
with a standard specification produced by the
MIT x Consortium for X Version 11, Release 4:
Part I, "Xlib-c Language x Interface"; Part II,
"X Window System Protocol"; Part III, "Inter
Client Communications Conventions Manual";
and Part IV, "X Logical Font Description."

79

Further Readings

To receive a copy of our latest catalog or further
information on these or other publications from
Digital Press, please write:

Digital Press
Department EEB
1 Burlington Woods Drive
Burlington, MA 01803-4539

Or, you can order by calling DECdirect at
BOO-DIGITAL (800-344-4825).

When ordering be sure to refer to Catalog
CodeEEB.

80 Vol. 3 No. 4 Fall 1991 Digital Technical Journal

ISSN 0898-90 I X

Primed i n U . S . A . EY-H889E-DP/9 1 12 02 18 .0 DBP/NRO Copyrighr © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Hardware Accelerators for Bitonal Image Processing
	X Window Terminals
	ACCESS.bus, an Open Desktop Bus
	Design of the DECprint Common Printer Supervisor for VMS Systems
	The Common Printer Access Protocol
	Design of the Turbo PrintServer 20 Controller
	Further Readings
	Back cover

