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I Editor's Introduction 

Jane C. Blake 
Editor 

Digital's transaction processing systems are inte­
grated hardware and software products that operate 
in a distributed environment to support commer­
cial applications, such as bank cash withdrawals, 
credit card transactions, and global trading. For 
these applications, data integrity and continuous 
access to shared resources are necessary system 
characteristics; anything less would jeopardize the 
revenues of business operations that depend on 
these applications. Papers in this issue of the Journal 
look at some of Digital's techologies and products 
that provide these system characteristics in three 
areas: distributed transaction processing, database 
access, and system fault tolerance. 

Opening the issue is a discussion of the architec­
ture, DECdta, which ensures reliable interoperation 
in a distributed environment. Phil Bernstein, Bill 
Emberton, and Vijay Trehan define some transaction 
processing terminology and analyze a TP applica­
tion to illustrate the need for separate architectural 
components. They then present overviews of each 
of the components and interfaces of the distributed 
transaction processing architecture, giving partic­
ular attention to transaction management. 

Two products, the ACMS and DECintact monitors 
implement several of the functions defined by th~ 
DECdta architecture and are the twin topics of a 
paper by Tom Speer and Mark Storm. Although 
based on different implementation strategies, both 
ACMS and DECintact provide TP-specific services 
for developing, executing, and managing TP appli­
cations. Tom and Mark discuss the two strategies 
and then highlight the functional similarities and 
differences of each monitor product. 

The ACMS and DECintact monitors are layered on 
the VMS operating system, which provides base 
services for distributed transaction management. 
Described by Bill Laing, Jim Johnson, and Bob 
Landau, these VMS services, called DECdtm, are an 
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addition to the operating system kernel and address 
the problem of integrating data from multiple sys­
tems and databases. The authors describe the three 
DECdtm components, an optimized implementa­
tion of the two-phase commit protocol, and some 
VAXcluster-specific optimizations. 

The next two papers turn to the issues of measur­
ing TP system performance and of sizing a system 
to ensure a TP application will run efficiently. Walt 
Kohler, Yun-Ping Hsu, Tom Rogers, and Wael Bahaa­
El-Din discuss how Digital measures and models TP 
system performance. They present an overview of 
the industry-standard TPC Benchmark A and Digital's 
implementation, and then describe an alternative 
to benchmark measurement - a multilevel analyti­
cal model ofTP system performance that simplifies 
the system's complex behavior to a manageable set 
of parameters. The discussion of performance con­
tinues but takes a different perspective in the paper 
on sizing TP systems. Bill Zahavi, Fran Habib, and 
Ken Omahen have written about a methodology 
for estimating the appropriate system size for a TP 
application. The tools, techniques and algorithms 
they describe are used when an application is still 
in its early stages of development. 

High performance must extend to the database 
system. In their paper on database availability, 
Ananth Raghavan and T.K. Rengarajan examine 
strategies and novel techniques that minimize the 
affects of downtime situations. The two databases 
referenced in their discussion are the VAX Rdb/VMS 
and VAX DBMS systems. Both systems use a database 
kernel called KODA, which provides transaction 
capabilities and commit processing. Peter Spiro, 
AshokJoshi, and T.K. Rengarajan explain the impor­
tance of commit processing relative to throughput 
and describe new designs for improving the perfor­
mance of group commit processing. These designs 
were tested, and the results of these tests and the 
authors' observations are presented. 

Equally as important in TP systems as database 
availability is system availability. The topic of the 
final paper in this issue is a system designed to be 
continously available, the VAXft 3000 fault -tolerant 
system. Authors Bill Bruckert, Carlos Alonso, and 
Jim Melvin give an overview of the system and then 
focus on the four-phase verification strategy devised 
to ensure transparent system recovery from errors. 

I thank Carlos Borgialli for his help in preparing 
this issue and for writing the issue's Foreword. 
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I Foreword 

Carlos G. Borgialli 
Senior Manager, DEctp Software 
Engineering 

Transaction processing is one of the largest, most 
rapidly growing segments of the computer indus­
try. Digital's strategy is to be a leader in transaction 
processing, and toward that end we are making 
technological advances and delivering products to 
meet the evolving needs of businesses that rely on 
transaction processing systems. 

Because of the speed and reliability with which 
transaction processing systems capture and dis­
play up-to-date information, they enable businesses 
to make well-informed, timely decisions. Industries 
for which transaction processing systems are a sig­
nificant asset include banking, laboratory automa­
tion, manufacturing, government, and insurance. 
For these industries and others, transaction pro­
cessing is an information lifeline that supports the 
achievement of daily business objectives and in 
many instances provides a competitive advantage. 

Many older transaction processing systems on 
which businesses rely are centralized and tied to a 
particular vendor. A great deal of money and time 
has been invested in these systems to keep pace 
with business expansion. As expansion continues 
beyond geographic boundaries, however, the cen­
tralized, single-vendor transaction processing sys­
tems are less and less likely to offer the flexibility 
needed for round-the-dock, reliable, business 
operations conducted worldwide. Transaction pro­
cessing technology therefore must evolve to 
respond to the new business environment and at 
the same time protect the investment made in 
existing systems. 

Our research efforts and innovative products 
provide the transaction processing systems that 
businesses need today. The demand for distributed 
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rather than centralized systems has focused atten­
tion on system management. Queuing services, 
highly available systems, heterogeneous environ­
ments, security services, and computer-aided soft­
ware engineering (CASE) are a few examples of 
areas in which research and advanced develop­
ment efforts have had and will continue to have a 
major impact on the capabilities of transaction 
processing systems. 

Transaction processing solutions require the 
application of a wide range of technology and the 
integration of multiple software and hardware 
products: from desktop to mainframe; from presen­
tation services and user interfaces to TP monitors, 
database systems, and computer-aided software 
engineering tools; from optimization of system 
performance to optimization of availability. Making 
all of this technology work well together is a great 
challenge, but a challenge Digital is uniquely posi­
tioned to meet. 

Digital ensures broad application of its trans­
action processing technology by defining an 
architecture, the Digital Distributed Transaction 
Architecture (DECdta). DECdta, about which you will 
read in this issue, defines the major components of 
a Digital TP system and the way those components 
can form an integrated transaction processing sys­
tem. The DECdta architecture describes how data 
and processing are easily distributed among multi­
ple VAX processors, as well as how the components 
can interoperate in a heterogeneous environment. 

The DECdta architecture is based on the client/ 
server computing model, which allows Digital to 
apply its traditional strengths in networking and 
expandability to transaction processing system 
solutions. In the DECdta client/server computing 
model, the client portion interacts with the user to 
create processing requests, and the server portion 
performs the data manipulation and computation 
to execute the processing request. This computing 
model facilitates the division of a TP system into 
small components in three ways. It allows for dis­
tribution of functions among VAX processors; it 
partitions the work performed by one or more of 
the components to allow for parallel processing; 
or it replicates functions to achieve higher avail­
ability goals. These options permit the customer 
to purchase the configuration that meets present 
needs, confident that the system will allow smooth 
expansion in the future. 

Further, the DECdta architecture sets a direction 
for its evolution through different products in a 



coordinated manner. It provides for the cooper­
ation and interoperation of components imple­
mented on different platforms, and it supports the 
expansion of customer applications to meet growth 
requirements. The DECdta architecture is designed 
to work with other Digital architectures such as the 
Digital Network Architecture (DNA), the network 
application services (NAS), and the Digital database 
architecture (DDA). Moreover, the DECdta architec­
ture supports industry standards that enable the 
portability of applications and their interopera­
tion in a heterogeneous environment, such as the 
standard application programming interfaces being 
developed by the X/Open Transaction Processing 
Working Group and the IEEE POSIX. Standard wire 
protocols that provide for systems interoperation 
in a multivendor, heterogeneous environment are 
being developed by the International Standards 
Organization as part of the Open System Inter­
connection activities. 

Among the products Digital has developed speci­
fically for TP systems are the TP monitors. These 
monitors provide the system integration "glue;' if 
you will. Rather than act as their own systems inte­
grators, customers who use Digital's TP monitors 
are able to spend more time on solving business 
problems and less time on solving software inte­
gration problems, such as how to make forms and 
database products work together smoothly. 

Digital's TP monitors run on all types of hard­
ware configurations, including local area networks 
(IANs), wide area networks (WANs), and VAXcluster 
systems. The DECdta client/server computing model 
provides the necessary flexibility to change hard­
ware configurations, thus allowing reconfigura­
tion without the need for any source code changes. 

The two TP monitors, DECintact and VAX ACMS, 
integrate vital Digital technologies such as the 
Digital Distributed Transaction Manager (DECdtm) 
and products such as Digital's forms systems 
(DECforms) and our Rdb/VMS or VAX DBMS data­
base products. DECdtm uses the two-phase com­
mit protocol to solve the complex problem of 
coordinating updates to multiple data resources 
or databases. 

Major developments in Digital's database prod­
ucts have enhanced the strengths of its overall 
product offerings. The two mainstream database 
products noted above, Rdb/VMS and VAX DBMS, 
layer on top of a database kernel called KODA, thus 
providing data access independent of any data 
model. The services made available by KODA, 

besides its high performance, allow Digital's data­
base products to efficiently support TP applica­
tions as well as to provide rich functionality for 
general-purpose database applications. 

For those TP systems that require user inter­
faces, DECforms provides a device-independent, 
easy-to-use human interface and permits the sup­
port of multiple devices and users within a single 
application. 

TP systems that require high availability or con­
tinuous operations are supported by the VAX fam­
ily of hardware and software. The introduction of 
the fault-tolerant VAXft 3000 system, added to the 
successful VAXcluster system, allows for a high 
level of system availability. Performance needs 
also are being met by a combination of hardware 
resources, including the VAX 9000 system. 

This combination of architecture, software, and 
hardware technology, and support for emerging 
industry standards places Digital in an excellent 
position to become the industry leader for dis­
tributed, portable transaction processing systems. 
The papers in this issue of the Journal provide a 
view of the key elements of Digital's distributed 
transaction processing technologies. 

Many individuals, teams, organizations, and busi­
ness partners are responsible for bringing Digital's 
TP vision to fruition. Their dedication, hard work, 
and creativity will continue to drive the develop­
ment of new technologies that enhance our family 
of products and services. 
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Philip A. Bernstein 
William T. Emberton 

Vijay Trehan 

DECdta - Digital's Distributed 
Transaction Processing 
Architecture 

Digitals Distributed Transaction Processing Architecture (DECdta) describes the 
modules and interfaces that are common to Digitals transaction processing 
(DECtp) products. The architecture allows easy distribution of DECtp products. 
In particular, it supports client/server style applications. Distributed transaction 
management is the main Junction that ties DECdta modules together. It ensures 
that application programs, database systems, and other resource managers inter­
operate reliably in a distributed system. 

Transaction processing (TP) is the activity of execut­
ing requests to access shared resources, typically 
databases. A computer system that is configured to 
execute TP applications is called a TP system. 

A transaction is an execution of a set of opera­
tions on shared resources that has the following 
properties: 

• Atomicity. Either all of the transaction's opera­
tions execute, or the transaction has no effect 
at all. 

• Serializability. The set of all operations that exe­
cute on behalf of the transaction appears to 
execute serially with respect to the set of opera­
tions executed by every other transaction. 

• Durability. The effects of the transaction's oper­
ations are resistant to failures. 

A transaction terminates by executing the com­
mit or abort operation. Commit tells the system to 
install the effect of the transaction's operations 
permanently. Abort tells the system to undo the 
effects of the transaction's operations. 

For enhanced reliability and availability, a TP 
application uses transactions to execute requests. 
That is, the application receives a request message 
(from a display, computer, or other device) , exe­
cutes one or more transactions to process the 
request, and possibly sends a reply to the origina­
tor of the request or to some other party specified 
by the originator. 

TP applications are essential to the operation 
of many industries, such as finance , retail, health 
care, transportation, government, communications, 
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and manufacturing. Given the broad range of appli­
cations of TP, Digital offers a wide variety of prod­
ucts with which to build TP systems. 

DECtp is an umbrella term that refers to Digital's 
TP products. The goal of DECtp is to offer an inte­
grated set of hardware and software products 
that supports the development, execution, and 
management of TP applications for enterprises of 
all sizes. 

DECtp systems include software components 
that are specialized for TP, notably TP monitors 
such as the ACMS and DECintact TP monitors, and 
transaction managers such as the DECdtm trans­
action manager. 1·

2 DECtp systems also require the 
integration of general-purpose hardware products 
(processors, storage, communications, and termi­
nals) and software products (operating systems, 
database systems, and communication gateways). 
These products are typically integrated as shown 
in Figure 1. 

TP APPLICATION 

TP MONITOR DATABASE SYSTEMS FORMS MANAGER 

OPERATING SYSTEM COMMUNICATION SYSTEM 

PROCESSORS MASS STORAGE NETWORK DESKTOP 
DEVICES 

Figure I Layering of Products to Support 
a TP Application 
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DECdta - Digitals Distributed Transaction Processing Architecture 

Applications on DECtp systems can be designed 
using a client/server paradigm. This paradigm is 
especially useful for separating the work of prepar­
ing a request from that of running transactions. 
Request preparation can be done by a front-end 
system, that is, one that is close to the user, in 
which processor cycles are inexpensive and inter­
active feedback is easy to obtain. Transaction 
execution can be done by a larger back-end sys­
tem, that is, one that manages large databases 
and may be far from the user. Back-end systems 
may themselves be distributed. Each back-end 
system manages a portion of the enterprise 
database and executes applications, usually ones 
that make heavy use of the database on that back 
end. DECtp products are modularized to allow easy 
distribution across front ends and back ends, 
which enables them to support client/server style 
applications. DECtp systems thereby simplify pro­
gramming and reconfiguration in a distributed 
system. 

Digital's Distributed Transaction Processing 
Architecture (DECdta) defines the modularization 
and distribution structure that is common to DECtp 
products. Distributed transaction management is 
the main function that ties this structure together. 
This paper describes the DECdta structure and 
explains how DECdta components are integrated 
by distributed transaction management. 

Current versions of DECtp products implement 
most, but not all, modules and interfaces in the 
DECdta architecture. Gaps between the architec­
ture and products will be filled over time. DECtp 
products that currently implement DECdta compo­
nents are referenced throughout the paper. 

TP Application Structure 
By analyzing TP applications, we can see where the 
need arises for separate DECdta components. A 
typical TP application is structured as follows: 

Step I: The client application interacts with a 
user (a person or machine) to gather input, e.g., 
using a forms manager. 

Step 2: The client maps the user's input into a 
request, that is, a message that asks the system to 
perform some work. The client sends the request 
to a server application to process the request. 

A request may be direct or queued. If direct, the 
client expects a server to process the request right 
away. If queued, the client deposits the request 
in a queue from which a server can dequeue the 
request later. 
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Step 3: A server processes the request by 
executing one or more transactions. Each trans­
action may 

a. Access multiple resources 

b. Call programs, some of which may be remote 

c. Generate requests to execute other transactions 

d. Interact with a user 

e. Return a reply when the transaction finishes 

Step 4: If the transaction produces a reply, then 
the client interacts with the user to display that 
reply, e.g., using a forms manager. 

Each of the above steps involves the interaction 
of two or more programs. In many cases, it is desir­
able that these programs be distributed. To dis­
tribute them conveniently, it is important that the 
programs be in separate components. For exam­
ple, consider the following: 

• The presentation service that operates the dis­
play and the application that controls which 
form to display may be distributed. 

One may want to off-load presentation services 
and related functions to front ends, while allow­
ing programs on back ends to control which 
forms are displayed to users. This capability is 
useful in Steps 1, 3d, and 4 above to gather input 
and display output. To ensure that the presenta­
tion service and application can be distributed, 
the presentation service should correspond to a 
separate DECdta component. 

• The client application that sends a request and 
the server application that processes the request 
may be distributed. The applications may com­
municate through a network or a queue. 

In Step 2, front-end applications may want to 
send requests directly to back-end applications 
or to place requests in queues that are managed 
on back ends. Similarly, in Step 3c, a trans­
action, T, may enqueue a request to run another 
transaction, where the queue resides on a dif­
ferent system than T. To maximize the flexibil­
ity of distributing request management, request 
management should correspond to a separate 
DECdta component. 

• Two transaction managers that want to run a 
commit protocol may be distributed. 

For a transaction to be distributed across different 
systems, as in Step 3b, the transaction management 
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services must be distributed. To ensure that each 
transaction is atomic, the transaction managers on 
these systems must control transaction commit­
ment using a common commit protocol. To com­
plicate matters, there is more than one widely used 
protocol for transaction commitment. To the 
extent possible, a system should allow interopera­
tion of these protocols. 

To ensure that transaction managers can be dis­
tributed, the transaction manager should be a 
component of DECdta. To ensure that they can 
interoperate, their transaction protocol should 
also be in DECdta. To ensure that different commit 
protocols can be supported, the part of transaction 
management that defines the protocol for inter­
action with remote transaction managers should 
be separated from the part that coordinates trans­
action execution across local resources. In the 
DECdta architecture, the former is called a commu­
nication manager, and the latter is called a trans­
action manager. 

Interoperation of transaction managers and 
resource managers, such as database systems, also 
affects the modularization of DECdta components. 
A transaction may involve different types of 
resources, as in Step 3a. For example, it may update 
data that is managed by different database systems. 
To control transaction commitment, the transac­
tion manager must interact with different resource 
managers, possibly supplied by different vendors. 
This requires that resource managers be separate 
components of DECdta. 

The DECdta Architecture 
Having seen where the need for DECdta compo­
nents arises, we are now ready to describe the 
DECdta architecture as a whole, including the func­
tions of and interfaces to each component. 

Most DECdta interfaces are public. Some of the 
public interfaces are controlled by official stan­
dards bodies and industry consortia; i.e., they are 
"open" interfaces. Others are controlled solely by 
Digital. DECdta interfaces and protocols will be 
published and aligned with industry standards, as 
appropriate. 

DECdta components are abstract entities. They 
do not necessarily map one-to-one to hardware 
components, software components (e.g., pro­
grams or products), or execution environments 
(e.g., a single-threaded process, a multithreaded 
process, or an operating system service). Rather, a 
DECdta component may be implemented as multi­
ple software components, for example, as several 
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processes. Alternatively, several DECdta compo­
nents may be implemented as a single software 
component. For example, an operating system or 
TP monitor typically offers the facilities of more 
than one DECdta component. 

The following are the components ofDECdta: 

• An application program is any program that 
uses services ofDECdta components. 

• A resource manager manages resources that sup­
port transaction semantics. 

• A transaction manager coordinates transaction 
termination (i.e., commit and abort). 

• A communication manager supports a trans­
action communication protocol between TP 
systems. 

• A presentation manager supports device-inde­
pendent interactions with a presentation device. 

• A request manager facilitates the submission of 
requests to execute transactions. 

DECdta components are layered on services that 
are provided by the underlying operating system 
and distributed system platform, and are not speci­
fic to TP, as shown in Figure 2. 

Application Program 
We use the term application program to mean a 
program that uses the services provided by other 
DECdta components. An application program 
could be a customer-written program, a layered 
product, or a DECdta component. 

In the DECdta architecture, we distinguish two 
special types of application program: request ini­
tiators and transaction servers. A request initiator 
is a DECdta component that prepares and submits 
a request for the execution of a transaction. To 
create a request, the request initiator usually inter­
acts with a presentation manager that provides an 
interface to a device, such as a terminal, a work­
station, a digital private branch exchange, or an 
automated teller machine. 

A transaction server can demarcate a trans­
action, interact with one or more resource man­
agers to access recoverable resources on behalf of 
the transaction, invoke other transaction servers, 
and respond to calls from request initiators. 

For a simple request, a transaction server 
receives the request, processes it, and optionally 
returns a reply to the request initiator. A conver­
sational request is like a simple request, except that 
while processing the request, the transaction 

Vol. 3 No. 1 Winter 1991 Digital Technical Journal 



DECdta - Digitals Distributed Transaction Processing Architecture 

APPLICATION PROGRAMS 

TP SERVICES 

REQUEST 
INITIATOR 

REQUEST 
MANAGER 

PRESENTATION 
MANAGER 

REQUEST 
MANAGER 

OPERATING SYSTEM AND DISTRIBUTED SYSTEM SERVICES 

DISTRIBUTED 
NAME SERVICE 

DISTRIBUTED 
TIME SERVICE 

THREAD 
MANAGEMENT 
SERVICE 

TRANSACTION SERVER 

RESOURCE 
MANAGER 

TRANSACTION 
MANAGER 

COMMUNICATION 
MANAGER 

OTHER 
COMMUNICATION 
MANAGERS 

UID SERVICE AUTHENTICATION 
SERVICE 

Figure 2 DECdta Components and Inteifaces 

server exchanges one or more messages with the 
user, usually through the request initiator. 

In principle, a request initiator could also execute 
transactions (not shown in Figure 2). That is, the dis­
tinction between request initiators and transaction 
servers is for clarity only, and does not restrict an 
application from performing request initiation func­
tions in a transaction. Architecturally, this amounts 
to saying that request initiation functions can exe­
cute in a transaction server. 

Resource Manager 
A resource manager performs operations on shared 
resources. We are especially interested in recover­
able resource managers, those that obey transaction 
semantics. In particular, a recoverable resource 
manager undoes a transaction 's updates to the 
resources if the transaction aborts. Other recover­
able resource manager activities in support of trans­
actions are described in the next section. In the rest 
of this paper, we use "resource manager" to mean 
"recoverable resource manager." 

In a TP system, the most common kind of 
resource manager is a database system. Some pre­
sentation managers and communication managers 
may also be resource managers. A resource man-
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ager may be written by a customer, a third party, 
or Digital. 

Each resource manager type offers a resource­
manager-specific interface that is used by applica­
tion programs to access and modify recoverable 
resources managed by the resource manager. A des­
cription of these resource manager interfaces is 
outside the scope of DECdta. However, many of 
these resource manager interfaces have architec­
tures defined by industry standards, such as SQL 
(e.g., the VAX Rdb/VMS product), CODASYL data man­
ipulation language (e.g., the VAX DBMS product), and 
COBOL file operations (e.g., RMS in the VMS system). 

One type of resource manager that plays a spe­
cial role in TP systems is a queue resource manager. 
It manages recoverable queues, which are often 
used to store requests. 3 It allows application pro­
grams to place elements into queues and retrieve 
them, so that application programs can communi­
cate even though they execute independently and 
asynchronously. For example, an application pro­
gram that sends elements can communicate with 
one that receives elements even if the two applica­
tion programs are not operationai simultaneously. 
This communication arrangement improves avail­
ability and facilitates batch input of elements. 
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A queue resource manager interface supports 
such operations as open-queue, close-queue, 
enqueue, dequeue, and read-element. The ACMS 
and DECintact TP monitors both have queue 
resource managers as components. 

Transaction Manager 
A transaction manager supports the transaction 
abstraction. It is responsible for ensuring the atom­
icity of each transaction by telling each resource 
manager in a transaction when to commit. It uses 
a two-phase commit protocol to ensure that either 
all resource managers accessed by a transaction 
commit the transaction or they all abort the trans­
action.4 To support transaction atomicity, a trans­
action manager provides the following functions: 

• Transaction demarcation operations allow appli­
cation programs or resource managers to start 
and commit or abort a transaction. (Resource 
managers sometimes start a transaction to exe­
cute a resource operation if the caller is not 
executing a transaction. The SQL standard 
requires this.) 

• Transaction execution operations allow 
resource managers and communication man­
agers to declare themselves part of an existing 
transaction. 

• Two-phase commit operations allow resource 
managers and communication managers to 
change a transaction's state (to "prepared," "com­
mitted," or "aborted"). 

The serializability of transactions is primarily 
the responsibility of the resource managers. 
Usually, a resource manager ensures serializability 
by setting locks on resources accessed by each 
transaction, and by releasing the locks after the 
transaction manager tells the resource manager 
to commit. (fhe latter activity makes serializabil­
ity partly the responsibility of the transaction 
manager.) If transactions become deadlocked, a 
resource manager may detect the deadlock and 
abort one of the deadlocked transactions. 

The durability of transactions is a responsibility 
of transaction managers and resource managers. 
The transact ion manager is responsible for the 
durability of the commit or abort decision. A 
resource manager is responsible for the durability 
of operations of committed transactions. Usually, 
it ensures durability by storing a description of 
each transaction's resource operations and state 
changes in a stable (e.g., disk-resident) log. It can 
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later use the log to reconstruct transactions' states 
while recovering from a failure. 

A detailed description of the DECdta transaction 
manager component appears in the Transaction 
Manager Architecture section. 

Communication Manager 
A communication manager provides services for 
communication between named objects in a TP 
system, such as application programs and trans­
action managers. Some communication managers 
participate in coordinating the termination of a 
transaction by propagating the transaction man­
ager's two-phase commit operations as messages 
to remote communication managers. Other com­
munication managers propagate application data 
and transaction context, such as a transaction iden­
tifier, from one node to another. Some do both. 

A TP system can support multiple communica­
tion managers. These communication managers 
can interact with other nodes using different com­
mit protocols or message-passing protocols, and 
may be part of different name spaces, security 
domains, system management domains, etc. 
Examples are an IBM SNA LU6.2 communication 
manager or an ISO-TP communication manager. 

By supporting multiple communication man­
agers, the DECdta architecture enhances the inter­
operability ofTP systems. Different TP systems can 
interoperate by executing a transaction using dif­
ferent commit protocols. 

A communication manager offers an interface 
for application programs to communicate with 
other application programs. Different communica­
tion managers may offer different communication 
paradigms, such as remote procedure call or peer­
to-peer message passing. 

A communication manager also has an interface 
to its local transaction manager. It uses this inter­
face to tell the transaction manager when a trans­
action has spread to a new node and to obtain 
information about transaction commitment, which 
it exchanges with communication managers on 
remote nodes. 

Presentation Manager 
A presentation manager provides an application 
program with a record-oriented interface to a pre­
sentation device. Its services are used by applica­
tion programs, usually request initiators. By using 
presentation manager services, instead of directly 
accessing a presentation device, application pro­
grams become device independent. 
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A forms manager is one type of presentation 
manager. Just as a database system supports opera­
tions to define, open, close, and access databases, a 
forms manager supports operations to define, 
enable, disable, and access forms. A form includes 
the definition of the fields (with different 
attributes) that make up the form. It also includes 
services to map the fields into device-independent 
application records, to perform data validation, 
and to perform data conversion to map fields onto 
device-specific frames. 

One presentation manager is Digital's DECforms 
forms management product. The DECforms prod­
uct is the first implementation of the ANSI/ISO 
Forms Interface Management Systems standard 
(CODASYL FIMS).' 

Request Manager 
A request manager provides services to authenti­
cate the source of requests (a user and/or a presen­
tation device), to submit requests, and to receive 
replies from the execution of requests. It supports 
such operations as send-request and receive-reply. 
Send-request must provide the identity of the 
source device, the identity of the user who entered 
the request, the identity of the application pro­
gram to be invoked, and the input data to the 
program. 

A request manager can either pass the request 
directly to an application program, or it can store 
requests in a queue. In the latter case, another 
request manager can subsequently schedule the 
request by dequeuing the request and invoking an 
application program. The ACMS System Interface is 
an example of an existing request manager inter­
face for direct requests. The ACMS Queued Trans­
action Initiator is an example of a request manager 
that schedules queued requests.' 

Transaction Manager Architecture 
DECdta components are tied together by the trans­
action abstraction. Transactions allow application 
programs, resource managers, request managers 
(indirectly through queue resource managers), and 
communication managers to interoperate reliably. 
Since transactions play an especially important 
role in the DECdta architecture, we describe the 
transaction management functions in more detail. 

The DECdta architecture includes interfaces 
between transaction managers and application 
programs, resource managers, and communication 
managers, as shown in Figure 3. It also includes a 
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Figure 3 Transaction Manager Architecture 

transaction manager protocol, whose messages are 
propagated by communication managers. This pro­
tocol is used by Digital's DECdtm distributed trans­
action manager. 2 

From a transaction manager's viewpoint, a trans­
action consists of transaction demarcation opera­
tions, transaction execution operations, two-phase 
commit operations, and recovery operations. 

• The transaction demarcation operations are 
issued by an application program to a transac­
tion manager and include operations to start 
and either end or abort a transaction. 

• Transaction execution operations are issued by 
resource managers and communication man­
agers to a transaction manager. They include 
operations 

- For a resource manager or communication 
manager to join an existing transaction 

- For a communication manager to tell a trans­
action manager to start a new branch of a 
transaction that already exists at another node 

• Two-phase commit operations are issued by a 
transaction manager to resource managers, 
communication managers, and through com­
munication managers to other transaction man­
agers, and vice-versa. They include operations 

- For a transaction manager to ask a resource 
manager or communication manager to pre­
pare, commit, or abort a transaction 

- For a resource manager or communica­
tion manager to tell a transaction manager 
whether it has prepared, committed, or 
aborted a transaction 
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- For a communication manager to ask a trans­
action manager to prepare, commit, or abort 
a transaction 

- For a transaction manager to tell a commu­
nication manager whether it has prepared, 
committed, or aborted a transaction 

• Recovery operations are issued by a resource 
manager to its transaction manager to deter­
mine the state of a transaction (i.e., committed 
or aborted). 

In response to a start operation invoked by an 
application program, the transaction manager dis­
penses a unique transaction identifier for the trans­
action. The transaction manager that processes the 
start operation is that transaction's home trans­
action manager. 

When an application program invokes an opera­
tion supported by a resource manager, the 
resource manager must find out the transaction 
identifier of the application program's transaction. 
This can happen in different ways. For example, the 
application program may tag the operation with 
the transaction identifier, or the resource manager 
may look up the transaction identifier in the appli­
cation program's context. When a resource man­
ager receives its first operation on behalf of a 
transaction, T, it must join T, meaning that it must 
tell a transaction manager that it is a subordinate 
for T. Alternatively, the DECdta architecture sup­
ports a model in which a resource manager may ask 
to be joined automatically to all transactions man­
aged by its transaction manager, rather than asking 
to join each transaction separately. 

A transaction, T, spreads from one node, Node 1, 
to another node, Node 2, by sending a message 
(through a communication manager) from an appli­
cation program that is executing T at Node 1 to 
an application program at Node 2. When T sends 
a message from Node 1 to Node 2 for the first 
time, the communication managers at Node 1 and 
Node 2 must perform branch registration. This 
function may be performed automatically by the 
communication managers. Or, it may be done man­
ually by the application program, which tells the 
communication managers at Node 1 and Node 2 
that the transaction has spread to Node 2. In either 
case, the result is as follows: the communication 
manager at Node 1 becomes the subordinate of the 
transaction manager at Node 1 for T and the supe­
rior of the communication manager at Node 2 
for T; and the communication manager at Node 2 
becomes the superior of the transaction manager 
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at Node 2 for T. This arrangement allows the com­
mit protocol between transaction managers to be 
propagated properly by communication managers. 

After the transaction is done with its application 
work, the application program that started transac­
tion T may invoke an "end" operation at the home 
transaction manager to commit T. This causes the 
home transaction manager to ask its subordinate 
resource managers and communication managers 
to try to commit T. The transaction manager does 
this by using a two-phase commit protocol. The 
protocol ensures that either all subordinate 
resource managers commit the transaction or they 
all abort the transaction. 

In phase 1, the home transaction manager asks 
its subordinates for T to prepare T. A subordinate 
prepares T by doing what is necessary to guarantee 
that it can either commit Tor abort T if asked to do 
so by its superior; this guarantee is valid even if 
it fails immediately after becoming prepared. To 
prepareT, 

• Each subordinate for T recursively propagates 
the prepare request to its subordinates for T 

• Each resource manager subordinate writes all of 
T's updates to stable storage 

• Each resource manager and transaction manager 
subordinate writes a prepare-record to stable 
storage 

A subordinate for T replies with a "yes" vote if 
and when it has completed its stable writes and all 
of its subordinates for T have voted "yes"; other­
wise, it votes "no." If any subordinate for T does not 
acknowledge the request to prepare within the 
timeout period, then the home transaction man­
ager aborts T; the effect is the same as issuing an 
abort operation. 

In phase 2, when the home transaction manager 
has received "yes" votes from all of its subordinates 
for T, it decides to commit T. It writes a commit 
record for T to stable storage and tells its subordi­
nates for T to commit T. Each subordinate for T 
writes a commit record for T to stable storage and 
recursively propagates the commit request to its 
subordinates for T. A subordinate for T replies with 
an acknowledgment if and when it has committed 
the transaction (in the case of a resource manager 
subordinate) and has received acknowledgments 
from all subordinates for T. When the home trans­
action manager receives acknowledgments from all 
of its subordinates for T, the transaction commit­
ment is complete. 
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To recover from a failure, all resource managers 
that participated in a transaction must examine 
their logs on stable storage to determine what to 
do. If the log contains a commit or abort record for 
T, then T completed. No action is required. If the 
log contains no prepare, commit, or abort record 
for T, then T was active. T must be aborted. If the 
log contains a prepare record for T, but no com­
mit or abort record for T, T was between phases 1 
and 2. The resource manager must ask its superior 
transaction manager whether to commit or abort 
the transaction. 

An inherent problem in all two-phase commit 
protocols is that a resource manager is blocked 
between phases 1 and 2, that is, after voting "yes" 
and before receiving the commit or abort decision. 
It cannot commit or abort the transaction until the 
transaction manager tells it which to do. If its trans­
action manager fails, the resource manager may be 
blocked indefinitely, until either the transaction 
manager recovers or an external agent, such as a 
system manager, steps in to tell the resource man­
ager whether to commit or abort. 

A transaction T may spontaneously abort due to 
system errors at any time during its execution. Or, 
an application program (prior to completing its 
work) or a resource manager (prior to voting "yes") 
may tell its transaction manager to abort T. In 
either case, the transaction manager then tells 
all of its subordinates for T to undo the effects 
of T's resource manager operations. Subordinate 
resource managers abort T, and subordinate com­
munication managers recursively propagate the 
abort request to their subordinates for T. 

The two-phase commit protocol is optimized for 
those cases in which the number of messages 
exchanged can be reduced below that of the gen­
eral case (e.g., if there is only one subordinate 
resource manager, if a resource manager did not 
modify resources, or if the presumed-abort proto­
col was used to save acknowledgments).6 

Summary 
We have presented an overview of the OECdta 
architecture. As part of this overview, we intro­
duced the components and explained the function 
of each interface. We also described the DECdta 
transaction management architecture in some 
detail. Over time, many interfaces of the DECdta 
model will be made public via product offerings or 
architecture publications. 
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Digitals Transaction 
Processing Monitors 

Thomas G. Speer I 
Mark W. Storm 

Digital provides two transaction processing (IP) monitor products - ACMS 
(Application Control and Management System) and DECintact (Integrated Appli­
cation Control). Each monitor is a unified set of transaction processing services for 
the application environment. These services are layered on the VMS operating sys­
tem. Although there is a large functional overlap between the two, both products 
achieve similar goals by means of some significantly different implementation 
strategies. Flow control and multithreading in the ACMS monitor is managed by 
means of a fourth-generation language ( 4GL) task definition language. Flow control 
and multithreading in the DECintact monitor is managed at the application level 
by third-generation language (3GL) calls to a library of services. The ACMS monitor 
supports a deferred task model of queuing, and the DECintact monitor supports a 
message-based model. Over time, the persistent distinguishing feature between the 
two monitors will be their differetzt application programming intetfaces. 

Transaction processing is the execution of an 
application that performs an administrative func­
tion by accessing a shared database. Within trans­
action processing, processing monitors provide 
the software "glue" that ties together many soft­
ware components into a transaction processing 
system solution. 

A typical transaction processing application 
involves interaction with many terminal users by 
means of a presentation manager or forms system 
to collect user requests. Information gathered by 
the presentation manager is then used to query or 
update one or more databases that reflect the cur­
rent state of the business. A characteristic of trans­
action processing systems and applications is 
many users performing a small number of similar 
functions against a common database. A trans­
action processing monitor is a system environment 
that supports the efficient development, execu­
tion, and management of such applications. 

Processing monitors are usually built on top of 
or as extensions to the operating system and other 
products such as database systems and presenta­
tion services. By so doing, additional components 
can be integrated into a system and can fill "holes" 
by providing functions that are specifically needed 
by transaction processing applications. Some 
examples of these functions are application con­
trol and management, transaction-processing-
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specific execution environments, and transaction­
processing-specific programming interfaces. 

Digital provides two transaction processing 
monitors: the Application Control and Manage­
ment System (ACMS) and the DECintact monitor. 
Both monitors are built on top of the VMS operat­
ing system. Each monitor provides a unified set 
of transaction-processing-specific services to the 
application environment, and a large functional 
overlap exists between the services each monitor 
provides. The distinguishing factor between the 
two monitors is in the area of application program­
ming styles and interfaces - fourth-generation 
language ( 4GL) versus third-generation language 
(3GL). This distinction represents Digital's recog­
nition that customers have their own styles of 
application programming. Those that prefer 4GL 
styles should be able to build transaction process­
ing applications using Digital's TP monitors with­
out changing their style. Similarly, those that prefer 
3GL styles should also be able to build TP applica­
tions using Digital's TP monitors without changing 
their style. 

The ACMS monitor was first introduced by Digital 
in 1984. The ACMS monitor addresses the require­
ments of large, complex transaction processing 
applications by making them easier to develop and 
manage. The ACMS monitor also creates an efficient 
execution environment for these applications. 
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The DECintact monitor (Integrated Application 
Control) was originally developed by a third-party 
vendor. Purchased and introduced by Digital in 
1988, it has been installed in major financial insti­
tutions and manufacturing sites. The DECintact 
monitor includes its own presentation manager, 
support for DECforms, a recoverable queuing sub­
system, a transaction manager, and a resource man­
ager that provides its own recovery of RMS (Record 
Management Services) files. 

This paper highlights the important similarities 
and differences of the ACMS and DECintact monitors 
in terms of goals and implementation strategies. 

Development Environment 
Transaction processing monitors provide a view 
of the transaction processing system for appli­
cation development. Therefore, the ACMS and 
DECintact monitors must embody a style of pro­
gram development. 

ACMS Programming Style 
A "divide and conquer" approach was used in the 
ACMS monitor. The work typically involved in 
developing a TP application was divided into logi­
cally separate functions described below. Each of 
these functions was then "conquered" by a special 
utility or approach. 

In the ACMS monitor, an "application" is defined 
as a collection of selectable units of work called 
tasks. A separate application definition facility 
isolates the system management characteristics of 
the application (such as resource allocation, file 
location, and protection) from the logic of the 
application. 

The specification of menus is also decoupled 
from the application. A nonprocedural ( 4GL) 
method of defining menu layouts is used in which 
the layouts are compiled into form files and data 
structures to be used at run-time. Each menu entry 
points either to another menu or to an application 
and a task. (Decoupling menus from the applica­
tion allows user menus to be independent of how 
the tasks are grouped into applications.) 

In addition to separate menu specification and 
system management characteristics, the applica­
tion logic is broken down into the three logical 
parts of interactive TP applications: 

• Exchange steps support the exchange of data 
with the end user. This exchange is typically 
accomplished by displaying a form on a terminal 
screen and collecting the input. 
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• Processing steps perform computational pro­
cessing and database or file 1/0 through standard 
subroutines. The subroutines are written in 
any language that accepts records passed by 
reference. 

• The task definition language defines the flow of 
control between processing steps and exchange 
steps and specifies transaction demarcation. 
Work spaces are special records that the ACMS 
monitor provides to pass data between the task 
definition, exchange steps, and processing steps. 

A compiler, called the application definition util-
ity (ADU), is implemented in the ACMS monitor to 
compile the task definition language into binary 
data structures. The run-time system is table-driven, 
rather than interpreted, by these structures. 

Digital is the only vendor that supplies this "divide 
and conquer" solution to building large complex TP 
applications. We believe this approach - unique in 
the industry - reduces complexity, thus making 
applications easier to produce and to manage. 

DECintact Programming Style 
The approach to application development used in 
the DECintact monitor provides the application 
developer with 3GL control over the transaction 
processing services required. This approach 
allows application prototyping and development 
to be done rapidly. Moreover, the application can 
make the most efficient use of monitor services 
by selecting and controlling only those services 
required for a particular task. 

In the DECintact monitor, an application is 
defined as one or more programs written entirely 
in 3GL and supported by the VMS system. The code 
written by the application developer manages all 
flow control, user interaction, and data manipu­
lation through the utilities and service libraries 
provided by the DECintact monitor. All DECintact 
services are callable, including most services pro­
vided by the DECintact utilities. The DECintact 
services are as follows: 

• A library of presentation services used for all 
interaction with users. The application developer 
includes calls to these services for form manip­
ulation and display. Forms are created with a 
forms editor utility and can be updated dynami­
cally. Forms are displayed by the DECintact 
terminal manager in emulated block mode. 
Device- and terminal-dependent information is 
completely separated from the implementation 
of the application. 
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• The separation of specification of menus from 
the application. DECintact menus are defined by 
means of a menu database and are compiled into 
data structures accessed at run-time. The menus 
are tree-structured. Each entry points either to 
another menu entry or to an executable applica­
tion image. The specification of menus is linked 
to the DECintact monitor's security subsystem. 
The DECintact terminal user sees only those 
specific menu entries for which the user has 
been granted access. 

• A library of services for the control of file and 
queue operations. In addit ion to layered access 
to the RMS file system, the DECintact monitor 
supports its own hash file format (a functional 
analog to single-keyed indexed files in RMS) 
which provides very fast, efficient record 
retrieval. The application developer includes 
calls to these services for managing RMS and 
hash file 1/0 operations, demarcating recovery 
unit boundaries, creating queues, placing data 
items on queues, and removing data items from 
queues. The queuing subsystem is typically an 
integral part of application design and work 
flow control. Application-defined DECintact 
recovery units ensure that RMS, hash, and queue 
operations can be committed or aborted atomi­
cally; that is, either all permanent effects of the 
recovery unit happen, or none happen. 

Because of DECintact's 3GL development envi-
ronment, application programmers who are accus­
tomed to calling procedure libraries from standard 
VMS languages or who are familiar with other 
transaction processing moni tors can easily learn 
DECintact's services. Application prototypes can 
be produced quickly because only skills in 3GL 
are required. Further, completed applications 
can be produced quickly because training time 
is minimal. 

On-line Execution Environment 
Transaction processing monitors provide an execu­
tion environment tailored to the characteristics and 
needs of transaction processing applications. This 
environment generally has two aspects: on-line, for 
interactive applications that use terminals; and off­
line, for noninteractive applications that use other 
devices. 

Traditional VMS timesharing applications are 
implemented by allocating one VMS process to each 
terminal user when the user logs in to the system. 
An image activation is then done each time the ter-
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minal user invokes a new function. This method is 
most beneficial in simple transaction processing 
applications that have a relatively small number of 
users. However, as the number of users grows or as 
the application becomes larger and more complex, 
several problem areas may arise with this method: 

• Resource use. As the number of processes grows, 
more and more memory is needed to run the 
system effectively. 

• Start-up costs. Process creation, image activa­
tion, file opens, and database binds are expen­
sive operations in terms of system resources 
utilized and time elapsed. These operations can 
degrade system performance if done frequently. 

• Contention. As the number of users simul­
taneously accessing a database or file grows, 
contention for locks also increases. For many 
applications, lock contention is a significant 
factor in throughput. 

• Processing location. Single process implementa­
tions limit distribution options. 

ACMS On-line Execution 
To address the problems listed above, Digital imple­
mented a client/server architecture in the ACMS 
monitor. (Client/server is also called request/ 
response.) The basic run-time architecture consists 
of three types of processes, as shown in Figure 1: 
the command process, execution controller, and 
procedure servers. 

An agent in the ACMS monitor is a process that 
submits work requests to an application. In the 
ACMS system, the command process is a special 
agent responsible for interactions with the termi­
nal user. (In terms of the DECdta architecture, the 
command process implements the functions of 
a request initiator, presentation manager, and 
request manager for direct requests.)' The com­
mand process is generally created at system start­
up time, although ACMS commands allow it to 
be started at other times. The process is multi­
threaded through the use of VMS asynchronous 
system traps (AST). Thus, one command process 
per node is generally sufficient for all terminals 
handled by that node. 

There are two subcomponents of the ACMS moni­
tor within the command process: 

• System interface, which is a set of services for 
submitting work requests and for interacting 
with the ACMS application 
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Figure 1 Basic Run-time Architecture of the ACMS Monitor 

• DECforms, Digital's forms management product, 
which implements the ANSI/ISO Forms Inter­
face Management System (FIMS) that provides 
the presentation server for executing the 
exchange steps 

The command process reads the menu defini­
tion for a particular terminal user and determines 
which menu to display. When the terminal user 
selects a particular menu entry, the command pro­
cess calls the ACMS system interface services to 
submit the task. The system interface uses logical 
names from the VMS system to translate the appli­
cation name into the address of the execution con­
troller that represents that applicat ion. The system 
interface then sends a message to the execution 
controller. The message contains the locations of 
the presentation server and an index into the task 
definition tables for the particular task. The status 
of the task is returned in the response. During the 
course of task execution, the command process 
accepts callbacks from the task to display a form 
for interaction with the terminal user. 

The execution controller executes the task 
definition language and creates and manages pro­
cedure servers. The controller is created at appli­
cation start-up time and is multithreaded by 
using VMS ASTs. There is one execution controller 
per application. (In terms of the DECdta archi­
tecture, the execution controller and the proce-
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dure servers implement the functions of a trans­
action server.) ' 

When the execution controller receives a request 
from the command process, it invokes DECdtm 
(Digital Distributed Transaction Manager) services 
to join the transaction if the agent passes the 
transaction identifier. If the agent does not pass a 
transaction identifier, there is no transaction to 
join and a DECdtm or resource-manager-specific 
transaction is started as specified in the task defini­
tion. The execution controller then uses the task 
index to find the tables that represent the task. 
When the execution of a task reaches an exchange 
step, the execution controller sends a callback to 
the command process for a form to be displayed 
and the input to be collected for the task. When 
the request to display a form is sent to the com­
mand process, the execution controller dismisses 
the AST to enable other threads to execute. When 
the response to the request arrives from the 
exchange step, an AST is added to the queue for 
the execution controller. 

When a task comes to a processing step, the exe­
cution controller allocates a free procedure server 
to the task. It then sends a request to the proce­
dure server to execute the particular procedure 
and dismisses the AST. If no procedure server is 
free, the execut ion controller puts the request 
on a waiting list and dismisses the AST. When a 
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procedure server becomes free, the execution con­
troller checks the wait list and allocates the proce­
dure server to the next task, if any, on the wait list. 

Procedure servers are created and deleted by 
the execution controller. Procedure servers are a 
collection of user-written procedures that perform 
computation and provide database or file accesses 
for the application. The procedures are written in 
standard languages and use no special services. The 
ACMS system creates a transfer vector from the 
server definition. This transfer vector is linked into 
the server image. With this vector, the ACMS system 
code can receive incoming messages and translate 
them into calls to the procedure. 

A procedure server is specified with initialization 
and termination procedures, which are routines 
supplied by the user. The ACMS monitor calls these 
procedures whenever a procedure server is created 
and deleted. The initialization procedure opens 
files and performs database bind operations. The 
termination procedure does clean-up work, such 
as closing files prior to process exit. 

The ACMS architecture addresses the problem 
areas discussed in the On-line Execution Environ­
ment section in several ways. 

Resource Use Because procedure se. vers are allo­
cated only for the time required to execute a pro­
cessing step, the servers are available for other 
use while a terminal user types in data for the 
form. Thus, the system can execute efficiently with 
fewer procedure servers than active terminal 
users. Improvement gains in resource use can vary, 
depending on the application. Our debit and credit 
benchmark experiments with the ACMS monitor 
and the Rdb/VMS relational database system indi­
cated that the most improvement occurs with one 
procedure server for every one or two transactions 
per second (TPS). These benchmarks equate to 
1 procedure server for every 10 to 20 active termi­
nal users. 

The use of procedure servers and the multi­
threaded character of the execution controller and 
the command process allow the architecture to 
reduce the number of processes and, therefore, the 
number of resources needed. The optimal solution 
for resource use would consist of one large multi­
threaded process that performed all processing. 
However, we chose to trade off some resource use 
in the architecture in favor of other gains. 

• Ease of use - Multithreaded applications are 
generally more difficult to code than single-
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threaded applications. For this reason, proce­
dure server subroutines in the ACMS system 
can be written in a standard fashion by using 
standard calls to Rdb/VMS and the VMS system. 

• Error isolation - In one large multithreaded 
process, the threads are not completely pro­
tected within the process. An application logic 
error in one thread can corrupt data in a thread 
that is executing for a different user. A severe 
error in one thread could potentially bring 
down the entire application. The multithreaded 
processes in the ACMS architecture (i.e., the 
execution controller and command process) 
are provided by Digital. Because no applica­
tion code executes directly in these processes, 
we can guarantee that no application coding 
error can affect them. Procedure servers are 
single-threaded. Therefore, an application logic 
error in a procedure server is isolated to affect 
only the task that is executing in the proce­
dure server. 

Start-up Costs The run-time environment is basi­
cally "static," which means that the start-up costs 
(i.e., system resources and elapsed time) are 
incurred infrequently (i.e., at system and appli­
cation start-up time). A timesharing user who is 
running many different applications causes image 
activations and rundowns by switching among 
images. Because the terminal user in the ACMS 
system is separated from the applications pro­
cesses, the process of switching applications 
involves only changing message destinations and 
incurs minimal overhead. 

Contention The database accesses in the ACMS 
environment are channeled through a relatively 
few, but heavily used, number of processes. The 
typical VMS timesharing environment uses a large 
number of lightly used processes. By reducing 
the number of processes that access the database, 
the contention for locks is reduced. 

Processing Location Because the ACMS monitor 
is a multiprocess architecture, the command pro­
cess and forms processing can be done close to the 
terminal user on small, inexpensive machines. This 
method takes advantage of the inexpensive pro­
cessing power available on these smaller machines 
while the rest of the application executes on a 
larger VAXcluster system. 
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DECintact On-line Execution 
Although the specific components of the DECintact 
monitor vary from those of the ACMS monitor, the 
basic architecture is very similar. Figure 2 shows the 
application configured locally to the front end. The 
run-time architecture consists of three types of 
DECintact system processes - terminal manager/ 
dispatcher, DECforms servers, server manager -
and, typically, one or more application processes. 
When forms processing is distributed, the same 
application is configured as shown in Figure 3. 

The DECintact monitor can run in multiple 
copies on any one VAX node. Each copy can be an 
independent run-time environment; or it can share 
data and resources, such as user security profiles 
and menu definitions, with other copies on the 
same system. Thus, independent development, 
testing, and production environments can reside 
on the same node. 

In the DECintact system, the terminal manager/ 
dispatcher process (one per copy) is responsible 
for the following: 

• Displaying DECintact forms 

• Coordinating DECforms forms display 

• Interacting with local applications 

• Communicating, through DECnet, with remote 
DECintact copies 

• Maintaining security authorization, including 
the dynamic generation of user-specific menus 

MENU 
DATABASE 

Digital's Transaction Processing Monitors 

Applications designated in the local menu data­
base as remote applications cause the front-end 
terminal manager/dispatcher process to communi­
cate with the cooperating back-end terminal 
manager/dispatcher process through a task-to-task 
DECnet link. (In terms of the DECdta architecture, 
the terminal manager/dispatcher implements the 
functions of presentation manager, request initia­
tor, and request manager for direct requests.)' 

When a user selects the remote task, that user's 
request is sent to the back end and is treated by the 
application as a local request. The terminal man­
ager/dispatcher process is started automatically as 
part of a copy start-up and is multithreaded. 
Therefore, one such process can handle all the ter­
minal users for a particular DECintact copy. 

When the terminal user selects a menu task, one 
of the following actions occurs, depending on 
whether the task is local or remote and whether it 
is single- or multithreaded. 

If the application is local and single-threaded, a 
VMS process may be created that activates the 
application image associated with this task. The 
terminal manager/dispatcher, upon start up, may 
create a user-specified number of application shell 
VMS processes to activate subsequent application 
images. If such a shell exists when the user selects 
a task, this process is used to run the application 
image. Each user who selects a given menu entry 
receives an individual VMS process and image. 

If the application is local and multi threaded, the 
terminal manager/dispatcher first determines 
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Figure 2 Basic Run-time Architecture of the DEC intact Monitor 
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Figure 3 DECintact Basic Architecture with Distributed Forms Processing 

whether this task has already been activated by pre­
vious users. If the task has not been activated and 
a shell is not available, the terminal manager/ 
dispatcher creates a VMS process for the applica­
tion and activates the image. If the task is already 
activated, the terminal manager/dispatcher con­
nects the user to the active task. The user becomes 
another thread of execution within the image. 
Multithreaded applications handle many simulta­
neous users within the context of one VMS process 
and image. 

Remote applications, whether single- or multi­
threaded, route the menu task selection to a remote 
terminal manager/dispatcher process. On receipt 
of the request, the remote terminal manager/ 
dispatcher processes the selection locally by using 
the same procedures as described above. 

Local DECintact forms interaction is handled in 
the following manner by the local terminal man­
ager/dispatcher. The application's call to display a 
form sends a request to the terminal manager. The 
terminal manager locates the form in its database 
of active forms, displays the form on the user's ter­
minal, and returns control to the application when 
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the user has entered all data in the form. If the 
application is remote, form information is sent 
between cooperating local and remote terminal 
manager processes; the interface is transparent to 
the application. 

In addition to supporting DECintact forms, the 
DECintact monitor also supports applications that 
use DECforms as their presentation service. The 
implementation of this support follows the same 
client/server model used by the ACMS system's 
support for DECforms and shares much of the 
underlying run-time interprocess communication 
code used by the ACMS monitor. Functionally, the 
two implementations of DECforms support are also 
similar to the ACMS monitor. Both implemen­
tations offer transparent support for distributed 
DECforms processing, automatic forms caching 
(i.e., propagation of updated DECforms in a distrib­
uted environment), and DECforms session caching 
for increased performance. 

The DECintact monitor supports application­
level, single- and multi threaded environments. The 
DECintact monitor's threading package allows appli­
cation programmers to use standard languages 
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supported by the VMS system to write multi­
threaded processes. Applications declare them­
selves as either single- or multithreaded. With the 
exception of the declaration, there is little differ­
ence between the way an on-line multithreaded 
application and its single-threaded counterpart 
must be coded. For on-line applications, thread 
creation, deletion, and management are automatic. 
New threads are created when a terminal user 
selects the multithreaded application and are 
deleted when the user leaves the application. 

In a single-threaded application, the following 
occurs: 

• Each user receives an individual VMS process and 
image context (e.g., 200 users, 200 processes). 

• All terminal and file 1/0 is synchronous. 

• The application image normally exits when the 
application work is completed. 

In a multithreaded on-line application, the fol­
lowing occurs: 

• One VMS process/image can handle many simul­
taneous users. 

• All terminal and file 1/0 is asynchronous. 

• New threads are created automatically when 
new users are connected to the process. 

• The application image does not exit when all 
currently allocated threads have completed exe­
cution but remains for use by new on-line users. 

For each thread in a multithreaded application 
image, the DECintact system maintains thread con­
text and state information. Each 1/0 request is 
issued asynchronously. Immediately after control 
is returned, but before the 1/0 request completes, 
the DECintact system saves the currently executing 
thread's context and schedules another thread to 
execute. When the thread's 1/0 completion AST is 
delivered, the thread's context is restored, and the 
thread is inserted on an internally maintained list 
of threads eligible for execution. 

A thread's context consists of the following: 

• An internally maintained thread block contain­
ing state information 

• The stack 

• Standard DECintact work spaces that are allo­
cated to each thread and that maintain terminal 
and file management context 
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• Local storage (e.g., the $LOCAL PSECT in COBOL 
applications) that the application has designated 
as thread-specific 

The PSECT naming convention allows the 
application to decide which variable storage is 
thread-specific and which is process-global. 
Thread-specific storage is unavailable to other 
threads in the same process because it is saved 
and restored on each thread switch. Process-global 
storage is always available to all threads in the 
process and can be used when interthread commu­
nication or synchronization is desired. 

The use of multithreading in the DECintact sys­
tem is appropriate for higher volume multiuser 
applications that perform frequent 1/0. Such appli­
cation usage is typical in transaction processing 
environments. Because thread switches occur only 
when 1/0 is requested or when locking requests 
are issued, this environment may not be recom­
mended for applications that perform infrequent 
1/0 or that expect very small numbers of concur­
rent users, such as end-of-day accounting pro­
grams or other batch-oriented processing. These 
kinds of applications typically choose to declare 
themselves as single-threaded. 

All 1/0 from within a multithreaded DECintact 
application process is asynchronous. Therefore, 
the DECintact system provides a client/server inter­
face between multithreaded applications and syn­
chronous database systems, such as VAX DBMS 
(Database Management System) and Rdb/VMS sys­
tems. The interface is provided because calling a 
synchronous database operation directly from 
within a multithreaded application would stall the 
calling thread and all other threads until the call 
completed. Figure 2 shows that a typical on-line 
DECintact application accessing Rdb/VMS, for 
example, is written in two pieces: 

• A multi threaded, on-line piece (the client), that 
handles forms requests from multiple users 

• A single-threaded, database server piece (a server 
instance), that performs the actual synchronous 
database 1/0 

This client/server approach to database access is 
functionally very similar to that of ACMS procedure 
servers and offers similar benefits. Like the ACMS 
monitor, the DECintact monitor offers system man­
agement facilities to define pools of servers and to 
adjust them dynamically at run-time in accordance 
with load. Similar algorithms are used in both mon­
itors to allocate server instances to client threads 
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and to start up new instances, as necessary. The 
DECintact server code, like the ACMS procedure 
server code, can define initialization and termina­
tion procedures to perform once-only start-up and 
shut-down processing. With DECintact transaction 
semantics, which are layered on DECdtm services, 
a client can declare a global transaction that the 
server instance will join. The server instance can 
also declare its own independent transaction or no 
transaction. (In terms of the DECdta architecture, 
this client/server approach implements the func­
tions of a transaction server.)' The principal differ­
ence between the DECintact and ACMS approach is 
that DECintact clients and servers use a message­
based 3GL communications interface to send and 
receive work requests. Control in the ACMS moni­
tor resides in the execution controller. 

As the ACMS monitor does, the DECintact archi­
tecture addresses the problem areas discussed in 
the On-line Execution section in several ways. 
Also, as with the ACMS approach, the factors we 
chose to trade off allowed us to achieve better effi­
ciency, performance, and ease of use. 

Resource Use The DECintact system's multi­
threaded methodology economizes on VMS 
resources. Similar to the method used in the ACMS 
monitor, the system reduces process creations 
and image activations. A major difference between 
the ACMS and DECintact architectures is the way 
the DECintact monitor implements multithread­
ing support. The transparent implementation of 
threading capabilities means that coding multi­
threaded applications is no more difficult than 
coding traditional single-threaded applications. As 
with any application-level threading scheme, how­
ever, the responsibility for ensuring that a logic 
error in one thread is isolated to that thread lies 
with the application. The DECintact client/server 
facilities for accessing databases, like those used in 
the ACMS monitor, can realize similar benefits in 
process reuse, throughput, and error isolation. 

Start-up Costs The DECintact architecture, like 
the ACMS architecture, distributes start-up costs 
(i.e., system resources and elapsed time) between 
two points: the start of the DECintact system, and 
the start of applications. System start-up can 
involve prestarting VMS process shells (as dis­
cussed previously) for subsequent application 
image activation. On-line application start-up is 
executed on demand when the first user selects a 
particular menu task. Multithreaded applications, 

26 

once started, do not exit but wait for new user 
threads as users select the application. Thus, the 
DECintact terminal user can switch between appli­
cation images and incur only an inexpensive 
thread creation. 

Contention As in the ACMS monitor, database 
accesses in the DECintact client/server environ­
ment are channeled through a relatively few, but 
heavily used, number of processes rather than 
through a large number of lightly used processes. 
This reduction decreases lock contention. 

Processing Location Forms processing can be 
off-loaded to a front end and brought closer to the 
terminal user. Thus smaller, less expensive CPUs 
can be used while the rest of the application exe­
cutes on a larger back-end machine or cluster. In 
the DECintact monitor, the front end can consist of 
forms processing only or a mix of forms process­
ing and application remote queuing work. 

Off-line Execution 
Many transaction processing applications are used 
with nonterminal devices, such as a bar code 
reader or a communications link used for an elec­
tronic funds transfer application. Because there is 
no human interaction with these applications, 
they have two requirements that differ from the 
requirements of interactive applications: tasks must 
be simple data entries, and the system must handle 
failures transparently. 

ACMS Off-line Execution 
The ACMS monitor's goal for off-line processing is 
to allow simple transaction capture to continue 
when the application is not available. A typical 
example is the continued capture of data on a man­
ufacturing assembly line by a MicroVAX system 
when the application is unavailable. The ACMS 
monitor provides two mechanisms for support­
ing nonterminal devices: queuing agents and user­
written agents. 

Figure 4 illustrates the ACMS queuing model. 
A queuing system is a resource manager that 
processes entries, with priorities, in first-in, first ­
out (FIFO) order. (In terms of DECdta, this is the 
queue resource manager.)' The ACMS queuing facil­
ity is built upon RMS-indexed files. The primary 
goal of ACMS queuing is to provide a store­
and-forward mechanism to allow task requests 
to be collected for later execution. By using 
the ACMS$ENQUE_TASK service, a user can write 
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a process that captures a task request and safely 
stores the task on a local disk queue. 

The ACMS monitor provides a special agent, 
called the queued task initiator (QTI), which takes 
a task entry from the queue and submits it to the 
appropriate execution controller. The QTI starts a 
DECdtm transaction, removes the task entry from 
the queue within that transaction, invokes the 
ACMS task, and passes the transaction identifier. (In 
the DECdta architecture, the QTI implements the 
functions of a request manager for queued 
requests.)' The task then joins that transaction. 
The removal from the queue is atomic with the 
commit of the task, and no task entry is lost or 
executed twice. 

Figure 5 shows the ACMS user-written agent 
model for off-line processing. With the ACMS sys­
tem interface, users may write their own versions 
of the command process. Note that because these 
agents cannot be safely stored on disks, this 
method is generally not as reliable as using queues. 
User-written agents can be used, however, with 
DECdtm and the fault-tolerant VAXft 3000 system 
to produce a reliable front-end system. To do so, a 
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user writes an agent that captures the input for the 
task and then starts a DECdtm transaction. The 
agent uses the system interface services to invoke 
the ACMS task and passes the transaction identifier 
and the input data. When the task call completes, 
the agent commits the transaction. If DECdtm 
returns an error on the commit, the agent loops 
back to start another transaction and to resubmit 
the task. If a VAXcluster system is used for the appli­
cation, this configuration will survive any single 
point of failure. 

DECintact Off-line Execution 
The DECintact monitor provides several facilities 
for applications to perform off-line processing. 
These facilities allow applications to 

• Interface with and process data from nontermi­
nal devices and asynchronous events 

• Control transaction capture, store and forward, 
interprocess communication, and business work 
flow through the DECintact queuing subsystem 

Off-line Multitbreading Off-line, multithreaded 
DECintact applications are typically used to service 
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asynchronous events, such as the arrival of an 
electronic funds transfer message or the addition 
to the queue of an item already on a DECintact 
queue. The application programmer explicitly 
controls how many threads are created, when they 
are created, and which execution path or paths 
each thread will follow. Off-line, multithreaded 
applications are well-suited to message switching 
systems and other aspects of electronic funds 
transfer in which each thread may be dedicated to 
servicing a different kind of event. 

DECintact Queues The primary goal of the 
DECintact queuing subsystem is to support a work 
flow model of business transactions. (In the 
DECdta architecture, the DECintact queuing sub­
system implements the functions of a queue 
resource manager and request initiator for queued 
requests.)' In a typical DECintact application that 
relies on queuing, the state of the business trans­
action may be represented by the queue on which 
a particular queue item resides at the moment. An 
item moves from queue to queue as the item's 
processing state changes, much as a work item 
moves from desk to desk. The superset of queue 
items that reside on queues throughout the appli­
cation at any one time represents the state of trans­
actions currently executing. Depending on the 
number of programs that need to process data dur­
ing the course of a transaction, a queue item may 
be inserted on several different queues before the 
transaction completes. The application also may 
wish to chain together several small transactions 
within the context of a larger business transaction. 
The DECintact queuing system functions through­
out the application: from the front end, where 
queues collect and route incoming data; to the 
back end, where queues can be integrated with 
data files in recovery units; and in between, where 
different programs in the application can use 
queues to share data. 

The DECintact queuing subsystem consists of a 
comprehensive set of callable services for the cre­
ation and manipulation of queues, queue sets, and 
queue items. Queue item operations performed 
within the context of a DECintact transaction are 
fully atomic along with DECintact file operations. 

In addition to overall workflow control, the 
DECintact queuing system allows the following: 

• Deferred processing - An item can be queued 
by one process and then removed from the 
queue later by another process for processing. 
Deferred processing is useful when the volume 
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of data entry is concentrated at particular times 
of day; applications can assign themselves to 
one or more queues and can be notified when 
an item is inserted on the queue. 

• Store-and-forward processing - When users at 
the front end of the system write items to local 
queues, data entry can be continuous in the 
event of back-end system failure or whenever a 
program that is needed to process data is tem­
porarily unavailable. 

• Interprocess communication - Locally between 
applications sharing a node and by means of 
the DECintact remote queuing facility, applica­
tions can use the queuing system to reliably 
exchange application data between processes 
and applications. 

A fundamental difference between ACMS queues 
and DECintact queues is that the ACMS system 
inserts tasks onto the queues, and the DECintact 
system inserts data items. In DECintact queuing, 
each data item contains both user-supplied data 
and a header that includes an item key and other 
control information. The header is used by the 
queuing system to control the movement of the 
item from queue to queue. Each queue item can be 
assigned an item priority. Items can be removed 
from the queue in FIFO order, in FIFO order within 
item priority, or by direct access using the item 
key. Queues can be stopped and started for inser­
tion, removal, or both. Queues can also be redi­
rected transparently at the system management 
level to running applications. 

In the DECintact monitor, alert thresholds can be 
specified on a queue-by-queue basis to alert the 
system manager when queue levels reach defined 
amounts. Individual queue items can be held 
against removal or released. Queues can be grouped 
together into logical entities, called queue sets, 
which look and behave to the application the same 
as individual queues. Queue sets have added facili­
ties for broadcast insertion on all members of a 
queue set and a choice of removing algorithms that 
can weight relative item- and queue-level priorities 
from the queue. 

DECintact queues can be automatically distrib­
uted. At the system management level, a local 
queue can be designated as remote outbound. That 
is to say, items added to this queue are shipped 
transparently across the network to a correspond­
ing remote inbound queue on the destination 
node. The transfer is hand led by the DECintact 
queuing system by using exactly-once semantics 
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(i.e., the item is guaranteed to be sent once and 
only once). From the point of view of the appli­
cation that is adding or removing items from the 
queue, remote queues behave exactly as local 
queues behave. 

To better understand some of the uses for 
DECintact queuing, consider a simplified but repre­
sentative electronic funds transfer example built 
on the DECintact monitor. Figure 6 shows the ele­
ments of such an application. In this application, 
transactions might be initiated either locally by 
clerks entering data into the system from user-

NODE A 
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generated documents or by an off-line application 
that receives data from another branch or bank. 
The transactions are verified or repaired by other 
clerks in a different department of the bank. The 
transactions are then sent to destination banks 
over one or more network services. 

To implement this application, the developer uses 
queues to route, safely store, and synchronize data 
as it progresses through the system, and to priori­
tize data items. Data items are given priority levels, 
based on application-defined criteria, such as trans­
fer amount, destination bank, or time-to-closing. 
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Figure 6 Elements of a DECintact Electronics Funds Transfer 
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As illustrated in Figure 6, the terminal manager 
controls terminals for the Data Entry and Verify and 
Repair applications. Clerks enter data from user­
generated documents on-line as complete messages. 
Verification and repair clerks receive these mes­
sages as work items from the verify and repair 
queue through the Verify and Repair application. 
The result of verification is either a validated mes­
sage, which is ultimately sent to a destination bank, 
or an unverifiable message, which is routed to the 
supervisor queue for special handling. After special 
handling, the message rejoins the processing flow 
by returning to the verify and repair queue. After 
validation, the messages are inserted in the 
Fedwire xmt queue and sent over the network to 
the Federal Reserve System. The Fedwire Process 
application controls the physical interface to 
the communication line and implements the 
Fedwire protocol. The validated messages are also 
used to update a local database by means of 
database server programs. 

The Fedwire xmt queue could be defined as a 
queue set, which would permit the Fedwire 
Process application to remove items from the 
queue by a number of algorithms that bias the 
transfer amount by queue and item priority. 
Similarly, this queue set could be passively repriori­
tized near the close of the business day. In other 
words, the DECintact system administrator could 
use the DECintact queue utility near the end of the 
day to change queue-wide priorities and ensure 
that items with a higher priority level in the queue 
set would be sent over the Fedwire first, without 
changing any application code. 

Application Management 
Typically, transaction processing applications are 
crucial to the business running the applications. If 
the applications cannot perform their functions 
reliably or securely, business activity may have to 
cease altogether or be curtailed, as in the case of an 
inventory control application or electronic funds 
processing application. Therefore, the applica­
tions require additional controls to ensure that the 
applications and the access by users to the appli­
cations are limited to exactly what is needed for 
the business. 

ACMS Application Management 
Of the many features and tools for monitoring and 
controlling the system offered in the ACMS moni­
tor, three areas are most often used. 
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• Controlling and restricting terminal user 
environments 

• Controlling and restricting the application 

• Ability to dynamically make changes to the appli­
cation without stopping work 

In addition to using the VMS user authorization 
file (VMS SYSUAF), the ACMS monitor provides utili­
ties to define which users and terminals have 
access to the ACMS system. Controlled terminals 
are terminals defined by one of these utilities to be 
owned by the ACMS monitor. These terminals are 
allocated by the ACMS monitor when the ACMS 
system is started. When a user presses the Return 
key, the ACMS monitor displays its login prompt. 
Unless the user has login access, the VMS system 
cannot be accessed. The user's access is restricted 
to only those ACMS functions that the user is per­
mitted to invoke. This restriction prevents a user 
from damaging the integrity of data on the system. 
The ACMS monitor also allows access support for 
terminals that are automatically logged in to the 
ACMS system, such as a terminal on a shop floor. 
Such access is useful for unprivileged users who 
are not accustomed to computers. They can enter 
data without understanding the process for log­
ging in to the system. 

For application control, the ACMS monitor uses a 
protected directory, ACMS$DIRECTORY, to store the 
application definition files. The application autho­
rization utility (AAU) ensures that special authori­
zation is required for a user to make changes to an 
application. 

In the ACMS monitor, the application is a single 
point of control. The ACMS/START APPLICATION and 
ACMS/STOP APPLICATION commands cause the exe­
cution controller for the application to be created 
and deleted. An operator can control the times 
when an application is accessible. For example, an 
application can be controlled to run only on 
Fridays or only between certain hours. The control 
of access times can also be used to restrict access 
while changes or repairs are made to the applica­
tion. This type of access control is difficult to 
achieve with only the VMS system because the VMS 
system does not provide these capabilities. 

The execution controller does access-control 
list checking that is specified for each task. This 
mechanism can restrict user access by function. 
For example, a user could have the privilege to 
make a particular update to a-database but not have 
access to read or make changes to any other parts 
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of that database. The execution controller achieves 
a much finer level of control than do the mecha­
nisms of the VMS system or the database system. 

DECintact Application Management 
The DECintact monitor controls access to the whole 
system and to individual tasks by means of a secu­
rity subsystem. The subsystem adds transaction­
processing-specific features to basic VMS security. 

• User security profiles specify the DECintact user 
name and password (DECintact users are not 
required to have an entry in the VMS SYSUAF 
file); levels of security entitlement; inclusive and 
exclusive hours of permissible sign-on; menu 
entries authorized for the user. Only one user 
under a given DECintact user name can be signed 
on to the DECintact system at any one time on 
any one node. 

• Dedicated terminal security profiles are used, in 
conjunction with user security profiles, to pro­
vide geographic entitlement. 

• CAPTIVE and INITIAL_MENU user attributes 
restrict users to a specific menu level of func­
tions and prevent the user from accessing outer 
levels. 

• User-specific menus are menu entries for which 
an explicit authorization has been granted in the 
user profile and are the only menu items visible 
on the menu presented to terminal users. The 
DECintact monitor does include an exception for 
users who have an auditor privilege. Auditors 
can see all menu functions but must be specifi­
cally authorized to execute any single function. 

• The subsystem provides the ability to dynami­
cally enable or disable specific menu functions. 

• Password revalidation is an attribute that can be 
associated with a menu function. If set, the user 
must reenter the DECintact user name and pass­
word before being allowed to access the function. 

The DECintact monitor supports both controlled 
or dedicated terminals and terminals assigned LAT 
terminal server application ports, as does the ACMS 
monitor. These terminals are owned by, and allo­
cated to, the DECintact system. When a user types 
any character at these terminals, a DECintact sign­
on screen is displayed, and the user is prevented 
from logging in to the VMS system. 

Geographic entitlement limits certain DECintact 
terminal-based functions to certain terminals or 
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even to certain users on certain terminals. The three 
elements in geographic entitlement are as follows: 

• The user security profile enables a function to be 
accessed by a certain user. 

• The terminal security profile enables a function 
to be accessed at a certain terminal. 

• A GEOG attribute is associated with a menu 
entry in the terminal manager/dispatcher's 
menu database. This attribute, when associated 
with a function, demands that there be an appli­
cable terminal security profile before the func­
tion can be accessed. 

Normally, if a function is enabled in a user 
profile, the user can access the function without 
further checks. If the GEOG attribute is associated 
with the function, however, that function must 
be enabled in the user profile and in the terminal 
profile before it can be accessed. 

Geographic entitlement is frequently a require­
ment in financial environments which have specific 
and rigid security protocols. For example, a bank 
officer may be authorized to execute certain sensi­
tive functions available only at dedicated terminals 
when the officer is signed-in at the home office. 
The same officer may be authorized to execute 
only a subset of less sensitive functions when 
signed-in from a branch office. Such sensitive func­
tions can be protected by requiring that the user 
profile and the dedicated terminal profile enable 
the function. 

Applications and resources are controlled 
within the context of a DECintact copy's run-time 
and management environment. Multiple copies 
can be established on the same VMS system. 
Different groups of users can maintain a certain 
level of autonomy (e.g., separate applications and 
data files), but all users can also share some or all 
functions and resources of a given DECintact ver­
sion. A typical example of this concept, that is, the 
ability to create multiple DECintact copies for isola­
tion and partitioning, is the common practice of 
establishing development, acceptance testing, and 
production DECintact environments. Managing 
applications and resources within a development 
environment, for example, can differ from manag­
ing applications and resources within a production 
environment with a different system manager. 

Access to menu functions is controlled by the 
INTACT MANAGE DISABLE/ENABLE command. This 
command removes or restores specified functions 
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dynamically from all menus in the DECintact copy 
and disables or enables their selection by subse­
quent users. (Current accessors of the specified 
function are allowed to complete the function.) 
The execution of single- and multithreaded appli­
cations or DECintact system components can be 
shut down by the INTACT MANAGE SHUTDOWN 
command. This command issues a mailbox request 
to the application or component, which then initi­
ates an orderly shutdown. Access to the system by 
inclusive and exclusive time of day is controlled on 
a per-user basis through the DECintact security 
subsystem. In addition to these commands and 
functions, the queuing subsystem is managed by 
means of a queue management utility. This utility 
creates and deletes queues and queue sets, modi­
fies queue and queue set attributes, and performs 
all other functions necessary for managing the 
DECintact queuing subsystem. 

In general, the DECintact monitor's security and 
application control focuses on the front end by 
concentrating access checking at the point of sys­
tem sign-in and menu generation. The ACMS system 
concentrates more on the back-end parts of the 
system by means of VMS access control lists (ACL) 
on specified tasks. The ACMS approach is built on 
VMS security and system access (the SYSUAF file) 
and reflects an environment in which the VMS sys­
tem and the transaction processing security func­
tions are typically performed by the same system 
management agency. The DECintact monitor's sys­
tem access is handled more independently of the 
VMS system and reflects an environment in which 
transaction-processing-specific security functions 
may be performed by a different department from 
those of the general VMS security system. 

Conclusion 
The ACMS and DECintact transaction processing 
monitors provide a unified set of transaction-pro­
cessing-specific services to the application envi­
ronment. A large functional overlap exists between 
the services each monitor provides. Where the 
functions provided by each monitor are identical 
or similar (e.g., client/server database access and 
support for DECforms), the factors that distinguish 
one from the other are primari I y a result of the use 
of 4GL and 3GL application programming styles 
and interfaces. Where notable functional differ­
ences remain (as in each product's respective 
queuing or security systems), the differences are 
primarily ones of emphasis rather than func­
tional incompatibility. The set of common features 
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shared by both monitors has been growing with 
the latest releases of the ACMS and DECintact 
monitors. This external convergence has been fos­
tered and made possible by an internal conver­
gence, which is based on sharing the underlying 
code that supports the common features of each 
monitor. As more common features are introduced 
and enhanced in the DECtp system, the investment 
in applications built on either monitor can be 
protected and the distinctive programming styles 
of both can be preserved. 
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Distributed transaction management support is an enhancement to the VMS oper­
ating system. This support provides services in the vMS operating system for atomic 
transactions that may span multiple resource managers, such as those for Jla.t files, 
network databases, and relational databases. These transactions may also be distrib­
uted across multiple nodes in a network, independent of the communications 
mechanisms used by either the application programs or the resource managers. 
The Digital distributed transaction manager (DECdtm) services implement an opti­
mized variant of the two-phase commit protocol to ensure transaction atomicity. 
Additionally, these services take advantage of the unique VAXcluster capabilities to 
greatly reduce the potential for blocking that occurs with the traditional twophase 
commit protocol. These features, now part of the vMS operating system, are readily 
available to multiple resource managers and to many applications outside the 
traditional transaction processing monitor environment. 

Businesses are becoming critically dependent on 
the availability and integrity of data stored on com­
puter systems. As these businesses expand and 
merge, they acquire ever greater amounts of on-line 
data, often on disparate computer systems and often 
in disparate databases. The Digital distributed trans­
action manager (DECdtm) services described in 
this paper address the problem of integrating data 
from multiple computer systems and multiple 
databases while maintaining data integrity under 
transaction control. 

The DECdtm services are a set of transaction pro­
cessing features embedded in the VMS operating 
system. These services support distributed atomic 
transactions and implement an optimized variant 
of the well-known, two-phase commit protocol. 

Design Goals 
Our overall design goal was to provide base services 
on which higher layers of software could be built. 
This software would support reliable and robust 
applications, while maintaining data integrity. 

Many researchers report that an atomic trans­
action is a very powerful abstraction for building 
robust applications that consistently update data.1

•
2 

Supporting such an abstraction makes it possible 
both to respond to partial failures and to maintain 
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data consistency. Moreover, a simplifying abstrac­
tion is crucial when one is faced with the complex­
ity of a distributed system. 

With increasingly reliable hardware and the 
influx of more general-purpose, fault-tolerant sys­
tems, the focus on reliability has shifted from 
hardware to software.~ Recent discussions indicate 
that the key requirements for building systems 
with a 100-year mean time between failures may be 
(1) software-fault containment, using processes, 
and (2) software-fault masking, using process check­
pointing and transactions.4 

It was clear that we could use transactions as a 
pervasive technique to increase application avail­
ability and data consistency. Further, we saw that 
this technique had merit in a general-purpose oper­
ating system that supports transaction processing, 
as well as timesharing, office automation, and tech­
nical computing. 

The design of DECdtm services also reflects sev­
eral other Digital and VMS design strategies: 

• Pervasive availability and reliability. As organi­
zations become increasingly dependent on their 
information systems, the need for all applica­
tions to be universally available and highly reli­
able increases. Features that ensure application 
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availability and data integrity, such as journaling 
and two-phase commit, must be available to all 
applications, and not limited to those tradition­
ally thought of as "transaction processing." 

• Operating environment consistency. Embedding 
features in the operating system that are required 
by a broad range of utilities ensures consistency 
in two areas: first, in the functionality across all 
layered software products, and, second, in the 
interface for developers. For instance, if several 
distributed database products require the two­
phase commit protocol, incorporating the 
protocol into the underlying system allows 
programmers to focus on providing "value­
added" features for their products instead of 
re-creating a common routine or protocol. 

• Flexibility and interoperability. Our vision 
includes making DECdtm interfaces available to 
any developer or customer, allowing a broad 
range of software products to take advantage of 
the VMS environment. Future DECdtm services 
are also being designed to conform to de facto 
and international standards for transaction pro­
cessing, thereby ensuring that VMS applications 
can interoperate with applications on other 
vendors' systems. 

Transaction Manager - Some 
Definitions 
To grasp the concept of transaction manager, some 
basic terms must first be understood: 

• Resource manager. A software entity that con­
trols both the access and recovery of a resource. 
For example, a database manager serves as the 
resource manager for a database. 

• Transaction. The execution of a set of opera­
tions with the properties of atomicity, serializ­
ability, and durability on recoverable resources. 

• Atomicity. Either all the operations of a trans­
action complete, or the transaction has no effect 
at all. 

• Serializability. All operations that executed for 
the transaction must appear to execute serially, 
with respect to every other transaction. 

• Durability. The effects of operations that exe­
cuted on behalf of the transaction are resilient 
to failures. 

A transaction manager supports the transaction 
abstraction by providing the following services: 
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• Demarcation operations to start, commit, and 
abort a transaction 

• Execution operations for resource managers to 
declare themselves part of a transaction and for 
transaction branch managers to declare the dis­
tribution of a transaction 

• Two-phase commit operations for resource man­
agers and other transaction managers to change 
the transaction state (to either "preparing" or 
"committing") or to acknowledge receipt of a 
request to change state 

Benefits of Embedding Transaction 
Semantics in the Kernel 
Several benefits are achieved by embedding trans­
action semantics in the kernel of the VMS operating 
system. Briefly, these benefits include consistency, 
interoperability, and flexibility. Embedding trans­
action semantics in the kernel makes a set of 
services available to different environments and 
products in a consistent manner. As a consequence, 
interoperability between products is encouraged, 
as well as investment in the development of "value­
added" features. The inherent flexibility allows a 
programmer to choose a transaction processing 
monitor, such as VAX ACMS, and to access multiple 
databases anywhere in the network. The program­
mer may also write an application that reads a 
VAX DBMS CODASYL database, updates an Rdb/VMS 
relational database, and writes report records to 
a sequential VAX RMS file - all in a single trans­
action. Because all database and transaction pro­
cessing products use DECdtm services, a failure at 
any point in the transaction causes all updates to 
be backed out and the files to be restored to their 
original state. 

Two-phase Commit Protocol 
DECdtm services use an optimized variant of the 
technique referred to as two-phase commit. The 
technique is a member of the class of protocols 
known as Atomic Commit Protocols. This class 
guarantees two outcomes: first, a single yes or no 
decision is reached among a distributed set of par­
ticipants; and, second, this decision is consistently 
propagated to all participants, regardless of sub­
sequent machine or communications failures. This 
guarantee is used in transaction processing to help 
achieve the atomicity property of a transaction. 

The basic two-phase commit protocol is straight­
forward and well known. It has been the subject of 
considerable research and technical literature for 
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several years. s,G,7,s,9 The following section describes 
in detail this general two-phase commit protocol 
for those who wish to have more information on 
the subject. 

The Basic Two-phase Commit 
Protocol 
The two-phase commit protocol occurs between 
two types of participants: one coordinator and one 
or more subordinates. The coordinator must arrive 
at a yes or no decision (typically called the "com­
mit decision") and propagate that decision to all 
subordinates, regardless of any ensuing failures. 
Conversely, the subordinates must maintain cer­
tain guarantees (as described below) and must 
defer to the coordinator for the result of the com­
mit decision. As the name suggests, two-phase 
commit occurs in two distinct phases, which the 
coordinator drives. 

SUBORDINATE 

END TRANS FROM 
APPLICATION 

In the first phase, called the prepare phase, the 
coordinator issues "requests to prepare" to all sub­
ordinates. The subordinates then vote, either a "yes 
vote" or a "veto." Implicit in a "yes vote" is the guar­
antee that the subordinate will neither commit nor 
abort the transaction (decide yes or no) without an 
explicit order from the coordinator. This guarantee 
must be maintained despite any subsequent fail­
ures and usually requires the subordinate to place 
sufficient data on disk (prior to the "yes vote") to 
ensure that the operations can be either completed 
or backed out. 

The second phase, called the commit phase, 
begins after the coordinator receives all expected 
votes. Based on the subordinate votes, the coor­
dinator decides to commit if there are no "veto" 
votes; otherwise, it decides to abort. The coordina­
tor propagates the decision to all subordinates as 
either an "order to commit" or an "order to abort." 

COORDINATOR 

-----

INCREASING 
TIME 

REQUEST TO PREPARE 

-----
FORCE WRITE 
"PREPARE" 
RECORD 

YES VOTE 

"COMMIT" j 
---..... El FORCE WRITE 

COMMIT POINT --i--- RECORD 
NOTIFY 
APPLICATION 

------ORDER TO COMMIT 

----
LAZY WRITE 
"COMMIT" 
RECORD 

DONE 

LAZY WRITE 
"FORGET" 
RECORD 

LAZY WRITE 
"FORGET" 
RECORD 

Figure 1 Simple Two-phase Commit Time Line 
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Because the coordinator's decision must survive 
failures, a record of the decision is usually stored 
on disk before the orders are sent to the subordi­
nates. When the subordinates complete process­
ing, they send an acknowledgment back to the 
coordinator that they are "done." This allows the 
coordinator to reclaim disk storage from com­
pleted transactions. Figure 1 shows a time line of 
the two-phase commit sequence. 

A subordinate node may also function as a supe­
rior (intermediate) node to follow-on subordinates. 

In such cases, there is a tree-structured relation­
ship between the coordinator and the full set of sub­
ordinates. Intermediate nodes must propagate the 
messages down the tree and collect responses back 
up the tree. Figure 2 shows a time line for a two­
phase commit sequence with an intermediate node. 

Most of us have had direct contact with the two­
phase commit protocol. It occurs in many activities. 
Consider the typical wedding ceremony as pre­
sented below, which is actually a very precise two­
phase commit. 

SUBORDINATE INTERMEDIATE COORDINATOR 

INCREASING 
TIME 

j 
----

FORCE WRITE 
"PREPARE'' 
RECORD 

YESVOTE 

----
LAZY WRITE 
"COMMIT" 
RECORD 

DONE 

El 
LAZY WRITE 
"FORGET" 
RECORD 

END TRANS FROM 
APPLICATION 

-----REQUEST TO PREPARE 

-..... El FORCE WRITE 
"PREPARE" 

,.- RECORD ----YESVOTE 

-..... F===1 FORCE WRITE 
L..J "COMMIT" 

COMMIT POINT - ,.- RECORD 
NOTIFY 
APPLICATION 

ORDER TO COMMIT 

LAZY WRITE 
"FORGET" 
RECORD 

LAZY WRITE 
"FORGET" 
RECORD 

Figure 2 Three-node Two-phase Commit Time Line 

36 Vol. 3 No. 1 Winter 1991 Digital TecbntcalJournal 



Transaction Management Support in the VMS Operating System Kernel 

Official: 
Bride: 

Will you, Mary, take John ... ? 
I will. 

Official: 
Groom: 

Will you, John, take Mary ... ? 
I will. 

Official: I now pronounce you man and wife. 

The above dialog can be viewed as a two-phase 
commit: 

Coordinator: 
Participant 1: 
Coordinator: 
Participant 2: 
Coordinator: 

Request to Prepare? 
Yes Vote. 
Request to Prepare? 
Yes Vote. 
Commit Decision. 
Order to Commit. 

The basic two-phase commit protocol is straight­
forward, survives failures, and produces a single, 
consistent yes or no decision. However, this proto­
col is rarely used in commercial products. Opti­
mizations are often applied to minimize message 
exchanges and physical disk writes. These optimi­
zations are important particularly to the trans­
action processing market because the market is 
very performance sensitive, and two-phase com­
mit occurs after the application is complete. Thus, 
two-phase commit is reasonably considered an 
added overhead cost. We have endeavored to reduce 
the cost in a number of ways, resulting in low 
overhead and a scalable protocol embodied in the 
DECdtm services. Some of the optimizations are 
described later in another section. 

COMMUNICATION 
INTERFACE 

RESOURCE 
MANAGER 
REGISTRY 

TRANSACTION 
COORDINATOR 

RESOURCE 
MANAGER 
SERVICES 

t 
USER BRANCH 

MANAGEMENT SERVICES 
SERVICES 

-

Components of the DECdtm Services 
The DECdtm services were developed as three sep­
arate components: a transaction manager, a log 
manager, and a communication manager. Together, 
these components provide support for distributed 
transaction management. The transaction manager 
is the central component. The log manager ser­
vices enable the transaction manager to store data 
on nonvolatile storage. The communication man­
ager provides a location-independent interprocess 
communication service used by the transaction 
and log managers. Figure 3 shows the relationships 
among these components. 

The Digital Distributed Transaction 
Manager 
As the central component of the DECdtm services, 
the transaction manager is responsible for the 
application interface to the DECdtm services. This 
section presents the system services the trans­
action manager comprises. 

The transaction coordinator is the core of the 
transaction manager. It implements the transaction 
state machine and knows which resource man­
agers and subordinate transaction managers are 
involved in a transaction. The coordinator also con­
trols what is written to nonvolatile storage and 
manages the volatile list of active transactions. 

The user services are routines that implement 
the START_TRANSACTION, END_TRANSACTION, and 
ABORT_TRANSACTION transaction system services. 

VOLATILE 
REGISTRY 

LOGGING 
INTERFACE 

t 
INFORMATION 
SERVICES 

-

TO REMOTE 
DECDTM 

TO HARDENED 
REGISTRY 

EXTERNAL 
INTERFACE 

Figure 3 Components of the DECdtm Seroices 
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They validate user parameters, dispense a trans­
action identifier, pass state transition requests to 
the transaction coordinator, and return informa­
tion about the transaction outcome. 

The branch management services support the 
creation and demarcation of branches in the dis­
tributed transaction tree. New branches are con­
structed when subordinate application programs 
are invoked in a distributed environment. The ser­
vices are called on to attach an application pro­
gram to the transaction, to demarcate the work 
done in that application as part of the transaction, 
and finally to return information about the trans­
action outcome. 

The resource manager services are routines that 
provide the interface between the DECdtm services 
and the cooperating resource managers. This inter­
face allows resource managers to declare them­
selves to the transaction manager and to register 
their involvement in the "voting" stage of the two­
phase commit process of a specific transaction. 

Finally, the information services routines are 
the interface that allows resource managers to 
query and update transaction information stored 
by DECdtm services. This information is stored 
in either the volatile-active transaction list or the 
nonvolatile transaction log. Resource managers 
may resolve and possibly modify the state of 
"in-doubt" transactions through these services. 

The Log Manager 
The log manager provides the transaction manager 
with an interface for storing sufficient information 
in nonvolatile storage to ensure that the outcome 
of a transaction can be consistently resolved. This 
interface is available to operating system compo­
nents. The log manager also supports the creation, 
deletion, and general management of the trans­
action logs used by the transaction manager. An 
additional utility enables operators to examine 
transaction logs and, in extreme cases, makes it 
possible to change the state of any transaction. 

The Communication Manager 
The communication manager provides a command/ 
response message-passing facility to the trans­
action manager and the log manager. The interface 
is specifically designed to offer high-performance, 
low-latency services to operating system com­
ponents. The command/response, connection­
oriented, message-passing system allows clients 
to exchange messages. The clients may reside on 
the same node, within the same cluster, or within 
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a homogeneous VMS wide area network. The com­
munication manager also provides highly optimized 
local (that is, intranode) and intracluster trans­
ports. In addition, this service component multi­
plexes communication links across a single, cached 
DECnet virtual circuit to improve the performance 
of creating and destroying wide area links. 

Transaction Processing Model 
Digital's transaction processing model entails the 
cooperation of several distinct elements for correct 
execution of a distributed transaction. These ele­
ments are (1) the application programmer, (2) the 
resource managers, (3) the integration of the 
DECdtm services into the VMS operating system, 
(4) transaction trees, and (5) vote-gathering and 
the final outcome. 

Application Programmer 
The application programmer must bracket a series 
of operations with START_TRANSACTION and 
END_TRANSACTION calls. This bracketing demar­
cates the unit of work that the system is to treat as 
a single atomic unit. The application programmer 
may call the DECdtm services to create the branches 
of the distributed transaction tree. 

Resource Managers 
Resource managers, such as VAX RMS, VAX Rdb/VMS, 
and VAX DBMS, that access recoverable resources 
during a transaction inform the DECdtm services of 
their involvement in the transaction. The resource 
managers can then participate in the voting phase 
and react appropriately to the decision on the final 
outcome of the transaction. Resource managers 
must also provide recovery mechanisms to restore 
resources they manage to a transaction-consistent 
state in the event of a failure . 

Integration in the Operating System 
The DECdtm services are a basic component of the 
VMS operating system. These services are responsi­
ble for maintaining the overall state of the distrib­
uted transaction and for ensuring that sufficient 
information is recorded on stable storage . Such 
information is essential in the event of a failure so 
that resource managers can obtain a consistent 
view of the outcome of transactions. 

Each VMS node in a network normally contains 
one transaction manager object. This object main­
tains a list of participants in transactions that are 
active on the node. This list consists of resource 
managers local to the node and the transaction 
manager objects located on other nodes. 
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Transaction Trees 
The node on which the transaction originated (that 
is, the node on which the START_TRANSACTION 
service was called) may be viewed as the "root" of 
a distributed transaction tree. The transaction 
manager object on this node is usually responsible 
for coordinating the transaction commit phase of 
the transaction. The transaction tree grows as 
applications call on the branch management ser­
vices of the transaction manager object. 

The transaction identifier dispensed by the 
START_TRANSACTION service is an input parameter 
to the branch services. This parameter identifies 
two concerns for the local transaction manager 
object: (1) to which transaction tree the new branch 
should be added, and (2) which transaction man­
ager object is the immediate superior in the tree. 

Resource managers join specific branches in a 
transaction tree by calling the resource manager 
services of the local transaction manager object. 

Vote-gathering and the Final Outcome 
When the "commit" phase of the transaction is 
entered (triggered by an application call to 
END_TRANSACTION), each transaction manager 
object involved in the transaction must gather the 
"votes" of the locally registered resource managers 
and the subordinate transaction manager objects. 
The results are forwarded to the coordinating trans­
action manager object. 

The coordinating transaction manager object 
eventually informs the locally registered resource 
managers and the subordinate transaction manager 
objects of the final outcome of the transaction. The 
subordinate transaction manager objects, in turn, 
propagate this information to locally registered 
resource managers as well as to any subordinate 
transaction manager objects. 

Protocol optimizations 
The DECdtm services use several previously pub­
lished optimizations and extend those optimiza­
tions with a number that are unique to VAXcluster 
systems. In this section we present these general 
optimizations, a discussion ofVAXcluster consider­
ations, and two VAXcluster-specific optimizations. 

General Optimizations 
The following sections describe some previously 
published optimizations. 

Presumed Abort DECdtm services use the "pre­
sumed abort" optimization."· 9 This optimization 
states that, if no information can be found for a 
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transaction by the coordinator, the transaction 
aborts. This removes the need to write an abort 
decision to disk and to subsequently acknowledge 
the order to abort. In addition, subordinates that 
do not modify any data during the transaction (that 
is, they are "read only"), avoid writing information 
to disk or participating in the commit phase. 

Lazy Commit Log Write The DECdtm services 
can act as intermediate nodes in a distributed trans­
action. In this mode, they write a "prepare" record 
prior to responding with a "yes vote." They also 
write a "commit" record upon receipt of an order 
to commit. This latter record is written so that the 
coordinator need not be asked about the commit 
decision should the intermediate node fail. This 
refinement isolates the intermediate node's recov­
ery from communication failures between it and 
the coordinator. 

Performance is enhanced when the DECdtm ser­
vices write the commit record on an intermediate 
node in a "nonurgent" or "lazy" manner. 10 The lazy 
write buffers the information and waits for an 
urgent request to trigger the group commit timer 
to write the data to disk. Typically, this operation 
avoids a disk write at the intermediate node. The 
increase in the length of time before the commit 
record is written is negligible. 

One-phase Commit A key consideration in the 
design of the DECdtm services was to incur mini­
mal impact on the performance of Digital's data­
base products. We exploited two attributes to 
achieve this goal. First, all current users are limited 
to non-distributed transactions (those that involve 
only a single subordinate). Second, the two-phase 
commit protocol requires that all subordinates 
respond with a "yes vote" to commit the trans­
action. This allows a highly optimized path for 
single subordinate transactions. Such transactions 
require no writes to disk by the DECdtm services 
and execute in one phase. The subordinate is told 
that it is the only voting party in the transaction 
and, if it is willing to respond with a "yes vote," it 
should proceed and perform its order to commit 
processing. 

VAXcluster Considerations 
The optimizations listed above (and others not 
described here) provide the DECdtm services 
with a competitive two-phase commit protocol. 
VAXcluster technology, though, offers other 
untapped potential. VAXcluster systems offer sev­
eral unique features, in particular, the guarantee 
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against partitioning, the distributed lock manager, 
and the ability to share disk access between CPUs. 11 

Within a VAXcluster system, use of these unique 
features allows the DECdtm services to avoid a 
blocked condition which occurs during the short 
period of time when a subordinate node responds 
with a "yes vote" and communication with its 
coordinator is lost. Normally, the subordinate is 
unable to proceed with that transaction's commit 
until communications have been restored. 

Outside a VAXcluster system, the DECdtm ser­
vices would indeed be blocked. If, however, the 
subordinate and its coordinator are in the same 
VAXcluster system, this will not occur. If communi­
cation is lost, a subordinate node knows, as a result 
of the guarantee against partitioning, that its coor­
dinator has failed. 

Because a subordinate node can access the trans­
action log of the failed coordinator, it may imme­
diately "host" its failed coordinator's recovery. 
Communications to the hosted coordinator are 
quickly restored, and the subordinate node is able 
to complete the transaction commit. 

VAXcluster-specific Optimizations 
Once the blocking potential was removed from 
intra-VAXcluster transactions, several additional 
protocol optimizations became practical. The 
optimizations described in this section are dynam­
ically enabled if the subordinate and its coordina­
tor are both in the same VAXcluster system. 

Early Prepare Log Write As mentioned earlier, an 
intermediate node must write a "prepare" record 
prior to responding with a "yes vote." The pres­
ence of this record in an intermediate node's 
log indicates that the node must get the outcome 
of the transaction from the coordinator and, thus, 
it is subject to blocking. Therefore, the prepare 
record is typically written after all the expected 
votes are returned, which adds to commit-time 
latency. 

The DECdtm services are free from blocking con­
cerns within a VAXcluster system; the vast majority 
of transactions do commit. This factor prompted 
an optimization that writes a prepare record while 
simultaneously collecting the subordinate votes. 
This reduces commit-time latency. 

No Commit Log Write The lazy commit log write 
optimization described above causes the inter­
mediate node's commit record to be written and, 
thus, minimizes the potential for blocking should 
the intermediate node fail. Note that this is not a 
concern for the intra-VAXduster case. Therefore, no 
commit record is written at the intermediate node. 

Pe,:formance Evaluation 
Table 1 describes the message and log write costs 
of the DECdtm services p rotocol and compares it 
to the basic two-phase commit protocol, as well 
as to the standard presumed abort variant previ­
ously described."·9 

Table 1 Logging and Message Cost by Two-phase Commit (2PC) Protocol Variant 

Coordinator Intermediate 
Coordinator Log Write Message Log Write Message 

Basic 2PC: 2, 1 forced 2N 2, 2 forced 2 
Presumed Abort: 2, 1 forced 2N 2, 2forced 2 
(RO intermediate) 2, 1 forced 1N 0 1 

Normal DECdtm: 2, 1 forced 2N 2, 1 forced 2 
(RO intermediate) 2, 1 forced 1N 0 1 

lntracluster: 2, 1 forced 2N 1, 1 forced* 2 
(RO intermediate) 2, 1 forced 1N 0 1 

DECdtm 1PC: 0 1 

Notes: 

Log writes are total writes, forced. The table entry 2, 1 forced means that there are two total log writes, one of which is forced. A forced write 
must complete before the protocol makes a transition to the next state. 

RO means Read Only. 

Where a message is listed as xN, N represents the number of intermediates that fit that category. 

• In this instance, forced means that the log write is initiated optimistically; thus, it has lower latency. 
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Ease-of-use Evaluatio n 
A primary goal in providing transaction processing 
primitives within the VMS kernel was to supply 
many disparate applications with a straightforward 
interface to distributed transaction management. 
This contrasts with most commercially available 
systems, where distributed transaction manage­
ment functionality is available only from a trans­
action processing monitor. This latter form restricts 
the functionality to applications written to exe­
cute under the control of the transaction process­
ing monitor, and it effectively precludes other 
applications from making use of the technology. 

From the outset of development, we endeavored 
to provide an interface that was suitable for as 
many applications as possible. We made early ver­
sions of the DECdtm services available within 
Digital to decrease the "time to market" for soft­
ware products that wished to exploit distributed 
transaction processing technology. As of July 1990, 
at least seven Digital software products have been 
modified to use the DECdtm services. These 
products are VAX Rdb/VMS, VAX DBMS, VAX RMS 
Journaling, VAX ACMS, DECintact, VAX RALLY, 
and VAXSQL. 

In general, the modifications to these products 
have been relatively minor, as might be inferred 

from the short time it took to make the required 
changes. Based on this experience, we expect third­
party software vendors to rapidly take advantage of 
the DECdtm services as they become available as 
part of the standard VMS operating system. 

To incorporate the DECdtm services into a 
recoverable resource manager, the existing inter­
nal transaction management module with calls 
to the DECdtm services must be replaced. The 
resource manager must also be modified to cor­
rectly respond to the prepare and commit callbacks 
by the DECdtm services. Further, the recovery 
logic of the resource manager must be modified to 
obtain from the DECdtm services the state of "in 
doubt" transactions. 

Example of DECdtm Usage 
The model and pseudocode shown in Figures 4a 
and b illustrate the use of DECdtm services in a 
simple example of a distributed transaction. The 
transaction spans two nodes, NODE_A and NODE_B, 
in a VMS network. During the course of the trans­
action, recoverable resources managed by resource 
managers, RM_A and RM_B, are modified. Two 
"application" programs, APPL_A and APPL_B, that 
run on NODE_A and NODE_B, respectively, make 
normal procedural calls to RM_A and RM_B. APPL_A 

INODEA- - - -- - - - - - - - - - - -I INODEB- - - - - - - - - - - - - ---
I I I 
I I I 
I -+-----j- DECDTM 

I I I 
I I I 
I I I 
I I I 

USER BRANCH RESOURCE 

SERVICES SERVICES MANAGER 
SERVICES 

I I I 
I I I 
I I I 
I I I 

+ + 

~ ~ 
I I I t t 
I I I 
I • ~· • • • •••• J. 
I I 

....... APPL_B ======I RM_B 
I 

I I I 
I I I 
I __________________ I I __________________ _ 

KEY: 

IPC CONNECTION 

RPG 

- SYSTEM SERVICE CALL 

RM 

APPL 

PROCEDURE CALL 

RESOURCE MANAGER 

APPLICATION 

Figure 4a Model Illustrating the Use of DECdtm Services 
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PROGRAM APPL A 

Establish communications with remote application 

IPC_LINK Cnode="NODE_B", application="APPL_B", Link=Link_id); 

! Exchange transaction manager names 
! 
LIBSGETJPI CJPIS_COMMIT_DOMAIN,,,my_cd); 
IPC_TRANSCEIVE Clink=Link_id, send_data=my_cd, 

receive_data=your_cd); 

Start a transaction 

SSTART_TRANSW Ciosb=status, tid=tid); 

! Make a procedural call to RM_A to perform an operation 
! 
RM_A Ctid, requested_operation); 

! Now create a transaction branch for the remote application 

SADD_BRANCHW Ciosb=status, tid=tid, branch=bid, 
cd_name=your_cd); 

! Ask APPL_B to do something as part of this transaction 

IPC TRANSCEIVE Clink=Link_id, send_data=Ctid, bid, data), 
receive_data=status); 

! And end the transaction 

SEND_TRANSW Ciosb=status, tid=tid); 

PROGRAM APPL B Clink id) 
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! Exchange transaction manager names 
! 
IPC_RECEIVE Clink=Link_id, data=sup_cd); 
LIBSGETJPI CJPIS_COMMIT_DOMAIN,,,my_cd); 
IPC_REPLY Clink=Link_id, data=my_cd); 

! Now we execute transaction requests 

Loop; 
IPC RECEIVE Clink=Link_id, data=Ctid, bid, data)); 
! Start the transaction branch created by APPL_A. 

SSTART_BRANCHW Ciosb=status, tid=tid, branch=bid, 
cd_name=sup_cd); 

! Make a procedural call to RM_B to perform an operation 

RM_B Ctid, requested_operation); 

! Tell APPL_A we are done 

IPC REPLY Clink=Link_id, data=SSS_NORMAL); 

Declare that we are finished for this transaction and 
wait for it to complete 

SREADY_TO_COMMITW Ciosb=status, tid=tid); 
end_Loop; 
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ROUTINE RM_A Ctid, requested_operation) 

If this is the first operation, register with DECdtm services as a 
! resource manager. As part of the registration we declare an event 
! routine that will be called during the voting process. 
I 

if first time we've been called then 
$DECLARE_R MW Ciosb=status, name="RM_A", evtrtn=R M_A_EV ENT, 

rm_id=rm_handle); 

! Inform DECdtm services of our interest in this transaction 

if tid has not previously been seen then 
$JOIN_RMW Ciosb=status, rm_id=rm_handle, tid=tid, 

part_id=participant); 

Perform the requested operation 

DO_OPERATION Crequested_operation>; 
RETURN 

ROUTI NE RM_A_EVENT Cevent_block) 

! Select action from the DECdtm services event type 

CASE event_block.DDTM$L_OPTYPE FRO M ... TO .•. 

Do "request to prepare" processing 

[DDTM$K_PREPARE]: 
DO_PREPARE_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TID); 

Do "order to commit" processing 

[DDT M$K_CO MM IT]: 
DO_COM MIT_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TI D); 

Do "order to abort" processing 

[ D D TM$ K_A B O R TJ : 
DO_ABORT_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TID); 

ESAC; 

Inform the DECdtm services of the final status of our event 
! processing. 
! 
$FINISH_RMOPW Ciosb=iosb, part_id=event_type.DDTM$ L_P ART_ID, 

retsts=status); 
RETURN 

Figure 4b Pseudocode Illustrating the Use of DECdtm Services 

and APPL_B use an interprocess communication 
mechanism to communicate information across 
the network. The DECdtm service calls are pre­
fixed with a dollar sign ($). 

ROUTINE RM_A_EVENT, is invoked by the DECdtm 
services during transaction state transitions. 

The code for the resource managers, RM_A and 
RM_B, is identical with respect to calls for the 
DECdtm services. The resource manager routine, 
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Conclusions 
The addition of a distributed transaction manager 
to the kernel of the general-purpose VMS operating 
system makes distributed transactions available 
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to a wide spectrum of applications. This design 
and implementation was accomplished with com­
parative ease and with quality performance. In 
addition to utilizing the most commonly described 
optimizations of the two-phase commit protocol, 
we have used optimizations that exploit some of 
the unique benefits of the VAXcluster system. 
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Peiformance Evaluation 
of Transaction Processing 
Systems 

Performance and price/performance are important attributes to consider when 
evaluating a transaction processing system. Two major approaches to performance 
evaluation are measurement and modeling. TPC Benchmark A is an industry stan­
dard benchmark for measuring a transaction processing systems performance and 
price/performance. Digital bas implemented TPC Benchmark A in a distributed 
transaction processing environment. Benchmark measurements were performed 
on the VAX 9000 Model 210 and the VAX 4000 Model JOO systems. Further, a compre­
hensive analytical model was developed and customized to model the performance 
behavior of TPC Benchmark A on Digitals transaction processing platforms. This 
model was validated using measurement results and bas proven to be an accurate 
performance prediction tool. 

Transaction processing systems are complex in 
nature and are usually characterized by a large 
number of interactive terminals and users, a large 
volume of on-line data and storage devices, and a 
high volume of concurrent and shared database 
accesses. Transaction processing systems require 
layers of software components and hardware 
devices to work in concert. Performance and 
price/performance are two important attributes 
for customers to consider when selecting trans­
action processing systems. Performance is impor­
tant because transaction processing systems are 
frequently used to operate the customer's business 
or handle mission-critical tasks. Therefore, a certain 
level of throughput and response time guarantee 
are required from the systems during normal oper­
ation. Price/performance is the total system and 
maintenance cost in dollars, normalized by the per­
formance metric. 

The performance of a transaction processing 
system is often measured by its throughput in trans­
actions per second (TPS) that satisfies a response 
t ime constraint. For example, 90 percent of the 
transactions must have a response time that is less 
than 2 seconds. This throughput, qualified by the 
associated response time constraint, is called the 
maximum qualified throughput (MQTh). In a trans­
action processing environment, the most mean­
ingful response time definition is the end-to-end 
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response time, i.e., the response time observed by 
a user at a terminal. The end-to-end response time 
represents the time required by all components 
that compose the transaction processing system. 

The two major approaches used for evaluating 
transaction processing system performance are 
measurement and modeling. The measurement 
approach is the most realistic way of evaluating the 
performance of a system. Performance measure­
ment results from standard benchmarks have been 
the most accepted form of performance assess­
ment of transaction processing systems. However, 
due to the complexity of transaction processing 
systems, such measurements are usually very expen­
sive, very time-consuming, and difficult to perform. 

Modeling uses simulation or analytical model­
ing techniques. Compared to the measurement 
approach, modeling makes it easier to produce 
results and requires less computing resources. 
Performance models are also flexible . Models can 
be used to answer "what-if" types of questions and 
to provide insights into the complex performance 
behavior of transaction processing systems, which 
is difficult (if not impossible) to observe in the 
measurement environment. Performance models 
are widely used in research and engineering com­
munities to provide valuable analysis of design 
alternatives, architecture evaluation, and capacity 
planning. Simplifying assumptions are usually 
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made in the modeling approach. Therefore, perfor­
mance models require validation, through detailed 
simulation or measurement, before predictions 
from the models are accepted. 

This paper presents Digital's benchmark measure­
ment and modeling app roaches to transaction 
p rocessing system performance evaluation. The 
paper includes an overview of the current industry 
standard transaction processing benchmark, the 
TPC Benchmark A, and a description of Digital's 
implementation of the benchmark, including the 
distinguishing features of the implementation and 
the benchmark methodology. The performance 
measurement results that were achieved by using 
the TPC Benchmark A are also presented. Finally, a 
multilevel analytical model of the performance 
behavior of transaction p rocessing systems with 
response time constraints is presented and vali­
dated against measurement results. 

TPC Benchmark A-An Overview 
The TPC Benchmark A simulates a simple banking 
environment and exercises key components of 
the system under test (SUl) by using a simple, 
update-intensive transaction type. The benchmark 
is intended to simulate a class of transaction pro­
cessing app lication environments, not the entire 
range of transact ion processing environments. 
Nevertheless, the single transaction type specified 
by the TPC Benchmark A standard provides a simple 
and repeatable unit of work. 

The benchmark can be run in either a local 
area network (LAN) or a wide area network (WAN) 
configuration. The related throughput metrics 
are tpsA-Local and tpsA-Wide, respectively. The 
benchmark specification defines the general appli­
cation requirements, database design and scaling 
rules, testing and pricing guidelines, full disclo­
sure report requirements, and an audit checklist.' 
The following sections provide an overview of 
the benchmark. 

Application Environment 
The TPC Benchmark A workload is patterned after a 
simplified banking application . In this model, the 
bank contains one or more branches. Each branch 
has 10 tellers and 100,000 customer accounts. A 
transaction occurs when a teller enters a deposit 
or a withdrawal for a customer against an account 
at a branch location. Each teller enters transactions 
at an average rate of one every 10 seconds. Figure 1 
illustrates this simplified banking environment. 

Transaction Logic 
The transaction logic of the TPC Benchmark A 
workload can be described in terms of the bank 
environment shown in Figure 1. A teller deposits 
in or withdraws money from an account, updates 
the current cash position of the teller and branch, 
and makes an entry of the transaction in a history 
file. The pseudocode shown in Figure 2 represents 
the transaction. 
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1-- - -----1 
I 100,000 I 

1--------1 

ACCOUNTS I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

10 I 
TELLERS I 

I 
I 

: CUSTOMERS : 
L _ __ _ _ __ _J 

I ACCOUNTS I 
I I 
I I 
I I 
I I 
I I -...---+ ••• 

I 
I 
I 
I 

10 I 
TELLERS I 

I 
I 

: CUSTOMERS : 
L ______ _ _J 

I 100.000 
I ACCOUNTS 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

10 
TELLERS 
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Figure 1 TPC Benchmark A Banking Environment 
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Read 100 bytes including Bid, Tid, Aid, Delta from terminal 
BEGIN TRANSACTION 

Update Account where Account_ID = Aid: 
Read Account_Balance from Account 
Set Account_Balance = Account_Balance + Delta 
Write Account_Balance to Account 

Write to History: 
Aid, Tid, Bid, Delta, Time_Stamp 

Update Teller where Teller_ID = Tid: 
Set Teller_Balance = Teller_Balance + Delta 
Write Telle r Balance to Teller 

Update Branch where Branch_ID = Bid: 
Set Branch_Balance = Branch_Balance + Delta 
Write Branch_Balance to Branch 

COMMIT TRANSACTION 
Write 200 bytes including Aid, Tid, Delta, Account_Balance 
to terminal 

Figure 2 TPC Benchmark A Transaction Pseudocode 

Terminal Communication 
For each transaction, the originating terminal is 
required to transmit data to, and receive data from, 
the system under test. The data sent to the system 
under test must consist of at least 100 alphanumeric 
data bytes, organized as at least four distinct fields: 
Account_ID, Teller_ID, Branch_ID, and Delta. The 
Branch_ID identifies the branch where the teller is 
located. The Delta is the amount to be credited to, 
or debited from, the specified account. The data 
received from the system under test consists of at 
least 200 data bytes, organized as the above four 
input fields and the Account_Balance that results 
from the successful commit operation of the 
transaction. 

Implementation Constraints 
The TPC Benchmark A imposes several conditions 
on the test environment. 

• The transaction processing system must support 
atomicity, consistency, isolation, and durability 
(ACID) properties during the test. 

• The tested system must preserve the effects of 
committed transactions and ensure database 
consistency after recovering from 

- The failure of a single durable medium that 
contains datatbase or recovery log data 

- The crash and reboot of the system 

- The loss of all or part of memory 
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• Eighty-five percent of the accounts processed 
by a teller must belong to the home branch (the 
one to which the teller belongs). Fifteen percent 
of the accounts processed by a teller must be 
owned by a remote branch (one to which the 
teller does not belong). Accounts must be uni­
formly distributed and randomly selected. 

Database Design 
The database consists of four individual files/tables: 
Branch, Teller, Account, and History, as defined in 
Table 1. The overall size of the database is deter­
mined by the throughput capacity of the system. 
Ten tellers, each entering transactions at an aver­
age rate of one transaction every 10 seconds, gener­
ate what is defined as a one-TPS load. Therefore, 
each teller contributes one-tenth (1/10) TPS. The 
history area must be large enough to store the his­
tory records generated during 90 eight-hour days 
of operation at the published system TPS capacity. 
For a system that has a processing capacity of 
x TPS, the database is sized as shown in Table 2. 

For example, to process 20 TPS, a system must 
use a database that includes 20 branch records, 200 
teller records, and 2,000,000 account records. 
Because each teller uses a terminal, the price of the 
system must include 200 terminals. A test that 
results in a higher TPS rate is invalid unless the size 
of the database and the number of terminals are 
increased proportionately. 
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Table 1 Database Entities 

Record Bytes Fields Required Description 

Branch 100 Branch_lD 
Branch_Balance 

Identifies the branch across the range of branches 
Contains the branch's current cash balance 

Teller 100 Teller_lD 
Branch_lD 
Teller _Balance 

Identifies the teller across the range of tellers 
Identifies the branch where the teller is located 
Contains the teller's current cash balance 

Account 100 Account_lD 
Branch_lD 
Account_Balance 

Identifies the customer account uniquely for the entire database 
Identifies the branch where the account is held 
Contains the account's current cash balance 

History 50 Account_lD 
Teller_lD 
Branch_lD 
Amount 

Identifies the account updated by the transact ion 
Identifies the teller involved in the transaction 
Identifies the branch associated with the teller 
Contains the amount of credit or debit (delta) specified by 
t he transaction 

Time_Stamp Contains the date and time taken between the BEGIN 
TRANSACTION and COMMIT TRANSACTION statements 

Table 2 Database Sizing 

Number of Records 

1 x x 
10 x x 
100,000 x x 
2,592,000 x x 

Benchmark Metrics 

Record Type 

Branch records 

Teller records 

Account records 

History records 

TPC Benchmark A uses two basic metrics: 

• Transactions per second (TPS) - throughput in 
TPS, subject to a response time constraint, i.e., 
the MQTh, is measured while the system is in a 
sustainable steady-state condition . 

• Price per TPS (K$ff PS) - the p urchase price 
and five-year maintenance costs associated with 
oneTPS. 

Transactions per Second To guarantee that the 
tested system provides fast response to on-line 
users, the TPC Benchmark A imposes a specific 
response time constraint on the benchmark. 
Ninety percent of all transactions must have a 
response time of less than two seconds. The TPC 
Benchmark A standard defines transaction response 
time as the time interval between the transmission 
from the terminal of the first byte of the input mes­
sage to the system under test to the arrival at the 
terminal of the last byte of the output message 
from the system under test. 

The reported TPS is the total number of commit­
ted t ransactions that both started and completed 
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during an interval of steady-state performance, 
divided by the elapsed time of the interval. The 
steady-state measurement interval must be at least 
15 minutes, and 90 percent of the transactions 
must have a response time of less than 2 seconds. 

Price per TPS The K$(fPS price/performance 
metric measures the total system price in thou­
sands of dollars, normalized by the TPS rating of 
the system. The priced system includes all the 
components that a customer requires to achieve 
the reported p erformance level and is defined by 
the TPC Benchmark A standard as the 

• Price of the system under test, including all hard­
ware, software, and maintenance for five years. 

• Price of the terminals and network compo­
nents, and their maintenance for five years. 

• Price of on-line storage for 90 days of history 
records at the published TPS rate, which amounts 
to 2,592,000 records per TPS. A storage medium 
is considered to be on-line if any record can be 
accessed randomly within one second. 

• Price of additional products required for the 
operation, administration, or maintenance of 
the priced systems. 

• Price of p roducts required for application 
development. 

All hardware and software used in the tested 
configuration must be announced and generally 
available to customers. 
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TPC Benchmark A Implementation 
Digital 's implementation of the TPC Benchmark A 
goes beyond the minimum requirements of the 
TPC Benchmark A standard and uses Digital's dis­
tributed approach to transaction processing! For 
example, Digital's TPC Benchmark A implementa­
tion includes forms management and transaction 
p rocessing monitor software that are required in 
most real transact ion processing environments 
but are not required by the benchmark. The fol­
lowing sections provide an overview of Digital's 
approach and implementation. 

Transaction Processing Software 
Environment 
The three basic functions of a general-purpose 
transact ion processing system are the user inter­
face (forms processing), applications management, 
and database management. Digital has developed a 
d istributed transaction architecture (DECdta) to 
define how the major functions are partitioned 
and supported by components that fit together to 
form a complete t ransaction processing system. 
Table 3 shows the software components in a typical 
Digital transact ion processing environment. 

Distributed Transaction Processing 
Approach 
Digital transaction processing systems can be dis­
tributed by placing one or more of the basic system 
functions (i.e., user interface, application manager, 

TERMINALS 

COMMUNICATIONS 

LOCAL OR 
WIDE AREA 
NETWORK 

BACK-END 
PROCESSORS 1---A_P_P_L_IC_A_T_IO_N~ -I 

TP MONITOR 

DATABASE 

OPERATING SYSTEM 

COMMUNICATIONS 

Table 3 Transact ion Processing Software 
Components 

Component 

Operat ing system 
Communicat ions 

Database 
TPmonitor 

Forms 
Applicat ion 

Example 

VMS 
LAT, DECnet 

VAXRdbNMS 
VAX ACMS, DECintact 
DECforms 

COBOL 

database manager) on separate computers. In the 
simplest form of a distributed transaction process­
ing system, the user interface component runs on a 
front -end processor, and the application and data­
base components run on a back-end processor. The 
configuration allows terminal and forms manage­
ment to be performed at a remote location, whereas 
the application is processed at a central location. 
The Digital transaction processing software com­
ponents are separable because their clearly defined 
interfaces can be layered transparently onto a net­
work. How these components may be partit ioned 
in the Digital distributed transaction processing 
environment is illustrated in Figure 3. 

TPC Benchmark A Test Environment 
The Digital TPC Benchmark A tests are imple­
mented in a distributed transaction processing 
environment using the transaction processing 

FORMS 

TP MONITOR 

OPERATING SYSTEM 

COMMUNICATIONS 

r,.._,...... DATABASE 
STORAGE 

FRONT-END 
PROCESSORS 

Figure 3 Distributed Transaction Processing Environment 
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software components shown in Figure 3. The user 
interface component runs on one or more front­
end processors, whereas the application and 
database components run on one or more back­
end processors. Transactions are entered from 
teller terminals, which communicate with the 
front-end processors. The front-end processors 
then communicate with the back-end processors 
to invoke the application servers and perform 
database operations. The communications can 
take place over either a local area or a wide area 
network. However, to simplify testing, the TPC 
Benchmark A standard allows sponsors to use 
remote terminal emulators (RTEs) rather than real 
terminals. Therefore, the TPC Benchmark A tests 
base performance and price/performance results 
on two distinctly configured systems, the target 
system and the test system. 

The target system is the configuration of hard­
ware and software components that customers can 
use to perform transaction processing. With the 
Digital distributed transaction processing approach, 
user terminals initiate transactions and communi­
cate with the front-end processors. Front-end pro­
cessors communicate with a back-end processor 
using the DECnet protocol. 

The test system is the configuration of com­
ponents used in the lab to measure the perfor­
mance of the target system. The test system uses 
RTEs, rather than user terminals, to generate the 
workload and measure response time. (Note: In 
previously published reports, based on Digital's 
DebitCredit benchmark, the RTE emulated front­
end processors. In the TPC Benchmark A standard, 
the RTE emulates only the user terminals.) The 
RTE component 

• Emulates the behavior of terminal users accord­
ing to the benchmark specification (e.g. , think 
time, transaction parameters) 

• Emulates terminal devices (e.g., conversion 
and multiplexing into the local area transport 
[LAT] protocol used by the DECserver terminal 
servers) 

• Records transaction messages and response 
times (e.g. , the starting and ending times of 
individual transactions from each emulated 
terminal device) 

Figure 4 depicts the test system configuration in 
the LAN environment with one back-end proces­
sor, multiple front-end processors, and multiple 
remote terminal emulators. 

so 

REMOTE 
TERMINAL 
EMULATORS 

FRONT-END 
PROCESSORS 

ETHERNET 

BACK-END 
PROCESSOR 

DATABASE 

Figure 4 Test System Configuration 

TPC Benchmark A Results 
We now present the results of two TPC Benchmark 
A tests based on audited benchmark experiments 
performed on the VAX 9000 Model 210 and the 
VAX 4000 Model 300 systems.3.4 These two systems 
are representative of Digital's large and small trans­
action processing platforms. The benchmark was 
implemented using the VAX ACMS transaction pro­
cessing monitor, the VAX Rdb/VMS relational data­
base management system, and the DECforms forms 
management system on the VMS operating system. 
Tables 4 and S show the back-end system configu­
rations for the VAX 9000 Model 210 and the VAX 4000 
Model 300 systems, respectively. Table 6 shows the 
system configuration of the front -end systems. 

Measurement Results 
The maximum qualified throughput and response 
time results for the TPC Benchmark A are summa­
rized in Table 7 for the VAX 9000 Model 210 and the 
VAX 4000 Model 300 systems. Both configurations 
have sufficient main memory and disk drives such 

Table 4 VAX 9000 Model 210 Back-end 
System Configuration 

Component Product Quantity 

Processor VAX 9000 Model 210 1 
Memory 256MB 
Tape drive TA81 1 
Disk controller KDM70 2 
Disks RA92 16 
Operating system VMS5.4 1 
Communicat ions DECnet-VMS Phase IV 

TP monitor VAX ACMS V3.1 1 
Dictionary VAX COD/Plus V4.1 1 
Application VAX COBOL V4.2 1 
Database system VAX RdbNMS V4.0 1 

Forms management DECforms V1 .2 1 
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Table 5 VAX 4000 Model 300 Back-end 
System Configuration 

Component 

Processor 

Memory 

Tape drive 

Disk controller 

Disks 

Operating system 

Communications 

TPmonitor 

Dictionary 

Application 

Database system 

Product Quantity 

VAX 4000 Model 300 1 

64MB 

TK70 1 

DSSI 3 

RF31 18 

VMS 5.4 1 

DECnet-VMS Phase IV 1 

VAX ACMS V3.1 

VAX COD/Plus V4.1 

VAX COBOL V4.2 

VAX RdbNMS V4.0 1 

Forms management DECforms V1 .2 1 

that the processors are effectively utilized with no 
other bottleneck. Both systems achieved well over 
90 percent CPU utilization at the maximum quali­
fied throughput under the response time constraint. 
In addition to the throughput and response time, 
the TPC Benchmark A specification requires that 
several other data points and graphs be reported. 
We demonstrate these data and graphs by using 
the VAX 9000 Model 210 TPC Benchmark A results. 

• Response Time in Relationship to TPS. Figure 5 
shows the ninetieth percentile and average 

2.0 
cii 
Cl 1.8 z 
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UJ 
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UJ 
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en z 0.8 0 c.. en 0.6 
UJ 
a: 

0.4 
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TRANSACTIONS PER SECOND 

KEY: 

l::r---{::. AVERAGE 

--.., 90TH PERCENTILE 

Figure 5 VAX 9000 Response Time in 
Relationship to Transactions 
per Second 

response times at 100 percent and approximately 
80 percent and 50 percent of the maximum 
qualified throughput. The mean transaction 
response time still grows linearly with the 
transaction rate up to the 70 TPS level, but the 
ninetieth percentile response time curve has 
started to rise quickly due to the high CPU uti­
lization and random arrival of transactions. 

• Response Time Frequency Distribution. Figure 6 
is a graphical representation of the transaction 

Table 6 Front-end Run-time System Configuration 

Component Product Quantity 

Processor VAXserver 3100 Model 10 10 for VAX 9000 back-end 
3 for VAX 4000 back-end 

Memory 

Disks 

Operating system 

Communications 

TPmonitor 

Forms management 

RZ23 (104 MB) 

VMS5.3 
VMS5.4 

DECnet-VMS Phase IV 

VAX ACMS V3.1 

DECforms V1 .2 

Table 7 Maximum Qualified Throughput 

16 MB for VAX 9000 back-end 
12 MB for VAX 4000 back-end 

16 

1 for VAX 9000 back-end 
1 for VAX 4000 back-end 

1 

Response Time (seconds) 
System TPS (tpsA-Local) Average 90 percent Maximum 

VAX 9000 Model 210 

VAX 4000 Model 300 

69.4 

21.6 
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1.20 

1.39 

1.74 

1.99 

5.82 

4.81 
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Figure 6 VAX 9000 Response Time Frequency 
Distribution 

response time distribution. The average, nine­
tieth percentile, and maximum transaction 
response times are also marked on the graph. 

• Transactions per Second over Time. The results 
shown in Figure 7 demonstrate the sustainable 
maximum qualified throughput. The one-minute 
running average transaction throughputs dur­
ing the warm-up and data collection periods of 
the experiment are plotted on the graph. This 
graph shows that the throughput was steady 
during the period of data collection. 

• Average Response Time over Time. The results 
shown in Figure 8 demonstrate the sustain­
able average response time in the experiment. 
The one-minute running average transaction 
response times during the warm-up and data 
collection periods of the experiment are plotted 
on the graph. This graph shows that the mean 
response time was steady during the period of 
data collection. 

Comprehensive Analytical Model 
Modeling techniques can be used as a supplement 
or an alternative to the measurement approach. 
The performance behavior of complex transaction 
processing systems can be characterized by a set of 
parameters, a set of performance metrics, and the 
relationships among them. These parameters can 
be used to describe the different resources avail­
able in the system, the database operations of trans­
actions, and the workload that the transaction 
processing system undergoes. To completely rep­
resent such a system, the size of the parameter set 
would be too huge to manage. An analytical model 
simplifies, through abstraction, the complex behav­
ior of a system into a manageable set of parameters 
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and policies. Such a model, after proper validation, 
can be a powerful tool for many types of analysis, 
as well as a performance prediction tool. Results 
can be obtained quickly for any combination of 
parameters. 

A comprehensive analytical model of the perfor­
mance behavior of transaction processing systems 
with a response time constraint was developed 
and validated against measurement results. This 
model is hierarchical and flexible for extension. 
The following sections describe the basic con­
struction of the model and the customization made 
to model the execution of TPC Benchmark A on 
Digital's transaction processing systems. The 
model can also be used to study different trans­
action processing workloads in addition to the 
TPC Benchmark A. 

Response Time Components 
The main metric used in the model is the maxi­
mum qualified throughput under a response time 
constraint. The response time constraint is in the 

0 5 

FigureB 

I 
I 

!-DAT A COLLECTION -.! 
I INTERVAL I 

I I 
I I 

10 15 20 25 30 

TIME (MINUTES) 

V,4X 9000 Average Response Time 
over Time 

35 

Vol. 3 No. 1 Winter 1991 Digital Technical Journal 



Performance Evaluation of Transaction Processing Systems 

form of "x percent of transaction response times 
are less than y seconds." 

To evaluate throughput under such response time 
constraint, the distribution of transaction response 
times is determined by first decomposing the trans­
action response time into nonoverlapping and 
independent components. The distribution of each 
component is then evaluated. Finally, the overall 
transaction response time distribution is derived 
from the mathematical convolution of the compo­
nent response time distributions. 

The logical flow of a transaction in a front-end 
and back-end distributed transaction processing 
system that is used to implement TPC Benchmark A 
is depicted in Figure 9. The response time of a 
transaction consists of three basic components: 
front-end processing, back-end processing, and 
communication delays. 

• Front-end processing usually includes terminal 
1/0 processing, forms/presentation services, and 
communication with the back-end systems. In 
the benchmark experiments, no disk 1/0 activity 
was involved during the front-end processing. 

• Back-end processing includes the execution of 
application, database access, concurrency control, 
and transaction commit processing. The back-end 
processing usually involves a high degree of con­
currency and many disk 1/0 activities. 

• Communication delays primarily include the 
communications between the user terminal and 
the front-end node, and the front-end and back­
end interactions. 

(Note: These response time components do not 
overlap with each other.) 

Within the back-end system, the transaction 
response time is further decomposed into two 
additional components, CPU delays and non-CPU, 
nonoverlapping delays. CPU delays include both 
the CPU service and the CPU waiting times of trans­
actions. Non-CPU, nonoverlapping delays include: 

• Logging delays, which include the time for trans­
action log writes and commit protocol delays 

• Database 1/0 delays, which include both waiting 
and service times for accessing storage devices 

• Other delays, which include delays that result 
from concurrency control (e.g., waiting for locks) 
and waiting for messages 

Two-level Approach 
The model is configured in a two-level hierarchy, a 
high level and a detailed level. The use of a hierarchy 
allows a complex and detailed model that considers 
many components and involves many parameters 
to be constructed easily. Because of the hierarchical 
approach, the model also provides flexibility for 
modifications and extensions, and validation of 
separate submodels. 

The high-level model assumes the decomposition 
of transaction response times, as described in the 
Response Time Components section, and models 
the behavior of the transaction processing system 
by an open queuing system, as shown in Figure 10. 
The queuing system consists of servers and delay 
centers, which are connected in a queuing net­
work with the following assumptions: 

• The front-end processing does not involve any 
disk 1/0 operation, and the load on the front­
end systems is equally balanced. 

.................... 1 

I COMMUNICATION I FRONT-END I COMMUNICATION I BACK-END 

END-TO-END---------------------------
RESPONSE 
TIME 

Figure 9 Response Time Components 
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Figure JO High-level Queuing Model for a Transaction Processing System 

• The back-end is a shared-memory multiprocessor 
system with symmetrical loads on all processors 
(or it can be simply a uniprocessor). 

• No intratransaction parallelism exists within 
individual transaction execution. 

• No mutual dependency exists between trans­
action response time components. 

• Transaction arrivals to the processors have a 
Poisson distribution. 

These assumptions correspond to Digital's TPC Bench­
mark A testing methodology and implementation. 

The front-end CPU is modeled as an M/M/1 queu­
ing center, and the back-end CPU is modeled as an 
M/M/m queuing center. The transactions' CPU times 
on the front-end and back-end systems are assumed 
to be exponentially distributed (coefficient of vari­
ation equal to 1) due to the single type of trans­
action in the benchmark. (Note: An approximation 
of M/G/m can be used to consider a coefficient of 
variation other than 1 for the back-end transaction 
CPU service time, especially in the multiprocessor 
case when the bus is highly utilized.) Database 1/0, 
logging 1/0, and other delays are modeled as delay 
centers, with appropriate delay distributions. For 
the model of the TPC Benchmark A workload, the 
database 1/0, journaling 1/0, and other communi­
cation and synchronization delays are combined 
into one delay center, called the LOO delay center, 
which is represented by a 2-Erlang distribution. 
The major input parameters for this high-level 
model are the 

• Number of front -end systems and the front-end 
CPU service time per transaction 
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• Number of CPUs in the back-end system and the 
back-end CPU service time per transaction 

• Sum of the back-end database 1/0 response time, 
journaling 1/0 response time, and other delay 
times (i.e., the mean for the LOO delay center's 
2-Erlang distribution) 

• Response time constraint (in the form of x per­
centile less than y seconds) 

The main result from the high-level model is the 
MQTh. This high-level model presents a global pic­
ture of the performance behavior and manifests the 
relationship between the most important parameters 
of the transaction processing system and MQTh. 

Some of the input parameters in the high-level 
model are dynamic. The CPU service time of a trans­
action may vary with the throughput or number of 
processors, and the database 1/0 or other delays 
may also depend on the throughput. A good exam­
ple of a dynamic model is a tightly coupled multi­
processor system, with one bus interconnecting 
the processors and with a shared common memory 
(e.g., a VAX 6000 Model 440 system). Such a system 
would run a single copy of the symmetrical multi­
processing operating system (e.g., the VMS system). 
The average CPU service time of transactions is 
affected by both hardware and software factors, 
such as 

• Hardware contention that results from conflict­
ing accesses to the shared bus and main memory 
and that causes processor speed degradation 
and longer CPU service time . 

• Processor synchronization overhead that results 
from the serialization of accesses to shared data 
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structures. Many operating systems use spin­
locks as the mechanism for processor-level 
synchronization, and the processor spins (i.e., 
busy-waits) in the case of a conflict. In the 
model, the busy-wait overhead is considered 
to be part of the transaction code path, and 
such contention elongates the transaction CPU 
service time. 

Four detailed-level submodels are used to 
account for the dynamic behavior of these param­
eters: CPU-cache-bus-memory, busy-wait, 1/0 group, 
andLOD. 

The CPU-cache-bus-memory submodel consists 
of many low-level parameters associated with the 
workload, processor, cache, bus, and memory com­
ponents of multiprocessor systems. It models these 
components by using a mixed queuing network 
model that consists of both open and closed chains, 
as shown in Figure 11. The most important output 
from this submodel is the average number of CPU 
clock cycles per instruction. 

The busy-wait submodel models the spin-lock 
contention that is associated with the two major 
VMS spin-locks, called SCHED and IOLOCK8. This sub-­
model divides the state of a processor into several 
nonoverlapping states and uses probability analy­
sis to derive busy-wait time. The 1/0 grouping sub-­
model models the group commit and group write 
mechanisms of the VAX Rdb/VMS relational database 
management system. This submodel affects the path 
length of transaction because of the amortization 
of disk 1/0 processing among grouped trans­
actions. The LOD submodel considers the disk 1/0 
times and the lock contention of certain critical 
resources in the VAX Rdb/VMS system. 

Integrating the Two Levels of the Model 
The two levels of the model are integrated by using 
an iterative procedure outlined in Figure 12. It 
starts at the detailed-level submodels, with initial 
values for the MQTh, the transaction path length, 
the busy-wait overhead, and the CPU utilization. 

By applying the initialized parameters to the 
submodels, the values of these parameters are 
refined and input to the high-level model. The out­
put parameters from the high-level model are then 
fed back to the detailed-level submodels, and this 
iterative process continues until the MQTh con­
verges. In most cases, convergence is reached 
within a few iterations. 

Model Predictions 
The back-end portion of the model was validated 
against measurement results from numerous 
DebitCredit benchmarks (Digital's precursor of the 
TPC Benchmark A) on many VAX computers with 
the VMS operating system, running VAX ACMS and 
VAX Rdb/VMS software.' With sufficient detailed 
parameters available (such as transaction instruc­
tion count, instruction cycle time, bus/memory 
access time, cache hit ratio), the model correctly 
estimated the MQTh and many intermediate results 
for several multiprocessor VAX systems. The model 
was then extended to include the front-end sys­
tems. In this section, we discuss applying this com­
plete end-to-end model to the TPC Benchmark A 
on two VAX platforms, the VAX 9000 Model 210 and 
the VAX 4000 Model 300 systems, and then compare 
the results. The benchmark environment and imple­
mentation are described in the TPC Benchmark A 
Implementation section of this paper. 
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Figure 11 CPU-cache-bus-memory Submodel 
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INIT IA LIZE: 
TxnPL,MQTh,BusyWaitPL,CpuUtilization; 

LOD-submodeLCinput:MQTh;output:LOD} 
REPEAT 

1/0-Grouping-submodel(input:MQTh;output:DioPerTxn,TxnPL}; 
REPEAT 

REPEAT 
BusyWait-submodel(input:TxnPL,BusyWaitPL,CpuUtilization, 

DioPerTxn;output:BusyWaitPL}; 
UNTIL(BusyWaitPL converges}; 
CPU-Cache-Bus-Memory-submodel(input:TxnPL,BusyWaitPL; 

output:CpuUtilization,AvgCpuSvcTime}; 
UNTIL(CpuUtilization converges>; 
REPEAT 

MQTh-model(input:AvgCpuSvcTime,LOD;output:MQTh,CpuUtilization}; 
LOD-submodeLCinput:MQ Th ;output:LOD}; 

UNTIL(MQTh converges>; 
UNTIL(MQTh converges>; 

Figure 12 The Iterative Procedure to Integrating Submodels 

Because both the VAX 9000 Model 210 and the 
VAX 4000 Model 300 systems are uniprocessor 
systems, there is no other processor contending 
for the processor-memory interconnect and mem­
ory subsystems. Such contention effects can there­
fore be ignored when modeling a uniprocessor 
system. The transaction processing performance 
prediction for the VAX 9000 Model 210 system is a 
successful example of the application of our analyt­
ical model. 

We needed an accurate estimate of TPC Bench­
mark A performance on the VAX 9000 Model 210 
system before a VAX 9000 system was actually avail­
able for testing. The high-level (MQTh) model was 
used with estimated values for the input parame­
ters, LOD and transaction CPU service time. The 
estimated LOD was based on previous measure­
ment observations from the VAX 6000 systems. The 
other parameter, back-end transaction CPU service 
time, was derived from the 

• Timing information of the VAX 9000 CPU 

• Memory access time and cache miss penalty of 
the VAX 9000 CPU 

• Prediction of cache hit ratio of the VAX 9000 sys­
tem under the TPC Benchmark A workload 

• Transaction path length of the TPC Benchmark A 
implementation 

• Instruction profile of the TPC Benchmark A 
implementation 
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The high-level model predicted a range of MQTh, 
with a high end of 70 TPS and with a strong proba­
bility that the high-end performance was achievable. 

Additional predictions were made later, when an 
early prototype version of the VAX 9000 Model 210 
system was available for testing. A variant of the 
DebitCredit benchmark, much smaller in scale and 
easier to run, was performed on the prototype 
system, with the emphasis on measuring the CPU 
performance in a transaction processing environ­
ment. The result was used to extrapolate the CPU 
service time of the TPC Benchmark A transactions 
on the VAX 9000 Model 210 system and to refine 
the early estimate. The results of these modifica­
tions supported the previous high-end estimate of 
performance of 70 TPS and refined the low-end 
performance to be 62 TPS. The final, audited TPC 
Benchmark A measurement result of the VAX 9000 
Model 210 system showed 69.4 TPS, which closely 
matches the prediction. Table 8 compares the 
results from benchmark measurement and the 
analytical model outputs. 

Table 8 Measurement Compared to Model 
Predictions 

System 

VAX 9000 Model 210 

VAX 4000 Model 300 

Measured 
MQTh 

69.4 

21.5 

Modeled 
MQTh 

70.0 

20.8 
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The VAX 4000 Model 300 TPC Benchmark A 
results were also used as a validation case. VAX 4000 
Model 300 systems use the same CMOS chip as 
the VAX 6000 Model 400 series and the same 
28-nanosecond (ns) CPU cycle time. However, in 
the VAX 4000 series, the CPU-memory interconnect 
is not the XMI bus but a direct primary memory 
interconnect. This direct memory interconnect 
results in fast main memory access. The processor, 
cache, and main memory subsystems are otherwise 
the same as in the VAX 6000 Model 400 systems. 
Therefore, the detailed-level model and associated 
parameters for the VAX 6000 Model 410 system 
can be used by ignoring the bus access time. The 
TPC Benchmark A measurement results are within 
7 percent of the model prediction, which means 
that our assumption on the memory access time 
is acceptable. 

Conclusion 
Performance is one of the most important attrib­
utes in evaluating a transaction processing system. 
However, because of the complex nature of trans­
action processing systems, a universal assessment 
of transaction processing system performance is 
impossible. The performance of a transaction pro­
cessing system is workload dependent, configura­
tion dependent, and implementation dependent. A 
standard benchmark, like TPC Benchmark A, is a 
step toward a fair comparison of transaction pro­
cessing performance by different vendors. But it is 
only one transaction processing benchmark that 
represents a limited class of applications. When 
evaluating transaction processing systems perfor­
mance, a good understanding of the targeted appli­
cation environment and requirements is essential 
before using any available benchmark result. 
Additional benchmarks that represent a broader 
range of commercial applications are expected to 
be standardized by the Transaction Processing 
Performance Council (TPC) in the coming years. 

Performance modeling is an attractive alterna­
tive to benchmark measurement because it is less 
expensive to perform and results can be compiled 
more quickly. Modeling provides more insight 
into the behavior of system components that are 
treated as black boxes in most measurement exper­
iments. Modeling helps system designers to better 
understand performance issues and to discover 
existing or potential performance problems. Model­
ing also provides solutions for improving perfor­
mance by modeling different tuning or design 
alternatives. The analytical model presented in this 
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paper was validated and used extensively in many 
engineering performance studies. The model also 
helped the benchmark process to size the hard­
ware during preparation (e.g. , the number of 
RTE and front-end systems needed, the size of 
the database) and to provide an MQTh goal as a 
sanity check and a tuning aid. The model could 
be extended to represent additional distributed 
configurations, such as shared-disk and "shared­
nothing" back-end transaction processing systems, 
and could be applied to additional transaction pro­
cessing workloads. 
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Tools and Techniques for Preliminary 
Sizing of Transaction Processing 
Applications 

Sizing transaction processing systems correctly is a difficult task. By nature, trans­
action processing applications are not predefined and can vary from the simple to 
the complex. Sizing during the analysis and design stages of the application devel­
opment cycle is particularly difficult. It is impossible to measure the resource 
requirements of an application which is not yet written or fully implemented. To 
make sizing easier and more accurate in these stages, a sizing methodology was 
developed that uses measurements from systems on which industry-standard 
benchmarks have been run and employs standard systems analysis techniques for 
acquiring sizing information. These metrics are then used to predict future trans­
action resource usage. 

The transaction processing marketplace is domi­
nated by commercial applications that support 
businesses. These applications contribute substan­
tially to the success or failure of a business, based on 
the level of performance the application provides. 
In transaction processing, poor application perfor­
mance can translate directly into lost revenues. 

The risk of implementing a transaction process­
ing application that performs poorly can be mini­
mized by estimating the proper system size in the 
early stages of application development. Sizing esti­
mation includes configuring the correct processor 
and proper number of disk drives and controllers, 
given the characteristics of the application. 

The sizing of transaction processing systems is 
a difficult activity. Unlike traditional applications 
such as mail, transaction processing applications 
are not predefined. Each customer's requirement 
is different and can vary from simple to complex. 
Therefore, Digital chose to develop a sizing method­
ology that specifically meets the unique require­
ments of transaction processing customers. The 
goal of this effort was to develop sizing tools and 
techniques that would help marketing groups and 
design consultants in recommending configura­
tions that meet the needs of Digital's customers. 
Digital's methodology evolved over time, as experi­
ence was gained in dealing with the real-world 
problems of transaction processing system sizing. 
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The development of Digital's transaction process­
ing sizing methodology was guided by several prin­
ciples. The first principle is that the methodology 
should rely heavily upon measurements of Digital 
systems running industry-standard transaction 
processing benchmarks. These benchmarks pro­
vide valuable data that quantifies the performance 
characteristics of different hardware and software 
configurations. 

The second principle is that systems analysis 
methodologies should be used to provide a frame­
work for acquiring sizing information. In partic­
ular, a multilevel view of a customer's business 
is adopted. This approach recognizes that a man­
ager's view of the business functions performed by 
an organization is different from a computer ana­
lyst's view of the transaction processing activity. 
The sizing methodology should accommodate both 
these views. 

The third principle is that the sizing methodol­
ogy must employ tools and techniques appropriate 
to the current stage of the customer's application 
design cycle. Early in the effort to develop a sizing 
methodology, it was found that a distinction must 
be made between preliminary sizing and sizing 
during later stages of the application development 
cycle. Preliminary sizing occurs during the analysis 
and design stages of the application development 
cycle. Therefore, no application software exists 
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which can be measured. Application software does 
exist in later stages of the application development 
cycle, and its measurement provides valuable input 
for more precise sizing activities. 

For example, if a customer is in the analysis or 
design stages of the application development cycle, 
it is unlikely that estimates can be obtained for 
such quantities as paging rates or memory usage. 
However, if the application is fully implemented, 
then tools such as the VAXcluster Performance 
Advisor (VPA) and the DECcp capacity planning 
products can be used for sizing. These tools pro­
vide facilities for measuring and analyzing data 
from a running system and for using the data as 
input to queuing models. 

The term sizing, as used in this paper, refers to 
preliminary sizing. The paper presents the metrics 
and algebra used in the sizing process for DECtp 
applications. It also describes the individual tools 
developed as part of Digital's transaction process­
ing sizing effort. 

Sizing 
The purpose of sizing tools is twofold. First, sizing 
tools are used to select the appropriate system 
components and to estimate the performance level 
of the system in terms of device utilization and 
user response times. Second, sizing tools bridge the 
gap between business specialists and computer 
specialists. This bridge translates the business units 
into functions that are performed on the system 
and, ultimately, into units of work that can be quan­
tified and measured in terms of system resources. 

In the sections that follow, a number of important 
elements of the sizing methodology are described. 
The first of these elements is the platform on which 
the transaction processing system will be imple­
mented. It is assumed that the customer will supply 
general preferences for the software and hardware 
configuration as part of the platform information. 
The Levels of Business Metrics section details the 
multilevel approach used to describe the work per­
formed by the business. The Sizing Metrics and 
Sizing Formulas sections describe the algoritluns 
that use platform and business metric information 
to perform transaction processing system sizing. 

Platforms 
The term platform is used in transaction process­
ing sizing methodology to encompass general cus­
tomer preferences for the hardware and software 
upon which the transaction processing application 
will run. 
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The hardware platform specifies the desired 
topology or processing style. For example, process­
ing style includes a centralized configuration and a 
front-end and back-end configuration as valid alter­
natives. The hardware platform may also include 
specific hardware components within the process­
ing style. (In this paper, the term processor refers 
to the overall processing unit, which may be com­
posed of multiple CPUs.) 

The software platform identifies the set of layered 
products to be used by the transaction processing 
application, with each software product identified 
by its name and version number. In the transaction 
processing environment, a software platform is 
composed of the transaction processing monitor, 
forms manager, database management system, appli­
cation language, and operating system. 

Different combinations of software platforms 
may be configured, depending on the hardware plat­
form used. A centralized configuration contains 
all the software components on the same system. A 
distributed system is comprised of a front-end pro­
cessor and a back-end processor; different software 
platforms may exist on each processor. 

Levels of Business Metrics 
The term business metrics refers collectively to 
the various ways to measure the work associated 
with a customer's business. In this section, various 
levels of business metrics are identified and the 
relationship between metrics at different levels is 
described.' As mentioned earlier, the levels corre­
spond to the multilevel view of business operation 
typically used for systems analysis. The organi­
zation or personnel most interested in a metric in 
relation to its business operation is noted in the 
discussion of each metric. 

The decomposition of the business application 
requirements into components that can be counted 
and quantified in terms of resource usage requires 
that a set of metrics be defined. These metrics 
reflect the business activity and the system load. 
The business metrics are the foundation for the 
development of several transaction processing siz­
ing tools and for a consistent algebra that connects 
the business units with the computer units. 

The business metrics are natural forecasting units, 
business functions, transactions, and the number 
of I/Os per transaction. The relationship among 
these levels is shown in Figure 1. In general, a busi­
ness may have one or more natural forecasting 
units. Each natural forecasting unit may drive one or 
more business functions. A business function may 
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Figure 1 Levels of Business Activity Characterization 

have multiple transactions, and a single transaction 
may be activated by different business functions . 
Every transaction issues a variety of 1/0 operations 
to one or more files, which may be physically 
located on zero, one, or more disks. This section 
discusses the business metrics but does not dis­
cuss the physical distribution of I/Os across disks, 
which is an implementation-specific item. 

A natural forecasting unit is a macrolevel indica­
tor of business volume. (It is also called a key vol­
ume indicator.) A business generally uses a volume 
indicator to measure the level of success of the 
business. The volume is often measured in time 
intervals that reflect the business cycle, such as 
weekly, monthly, or quarterly. For example, if busi­
ness volume indicators were "number of ticket sales 
per quarter," or "monthly production of widgets," 
then the corresponding natural forecasting units 
would be "ticket sales" and "widgets." Natural fore­
casting units are used by high-level executives to 
track the health of the overall business. 

Business functions are a logical unit of work per­
formed on behalf of a natural forecasting unit. For 
example, within an airline reservation system, a 
common business function might be "selling air­
line tickets." This business function may consist 
of multiple interactions with the computer (e.g., 
flight inquiry, customer credit check). The comple­
tion of the sale terminates the business function, 
and "airline ticket" acts as a natural forecasting unit 
for the enterprise selling the tickets. The measure­
ment metric for business functions is the num­
ber of business function occurrences per hour. 
Business functions may be used by middle-level 
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managers to track the activity of their departments. 
A transaction is an atomic unit of work for an 

application , and transaction response time is the 
primary performance measure seen by a user. Each 
of the interactions mentioned in the above busi­
ness function is a transaction. The measurement 
metric for a transaction is the number of trans­
action occurrences per business function. Trans­
actions may be used by low-level managers to track 
the activity of their groups. 

The bulk of commercial applications involves 
the maintaining and moving of information. This 
information is data that is often stored on perma­
nent storage devices such as rotational disks, solid 
state disks, or tapes. An 1/0 operation is the process 
by which a transaction accesses that data. The mea­
surement metric for the 1/0 profile is the number 
of 1/0 operations per transaction. 1/0 operations 
by each transaction are important to programmers 
or system analysts. 

In addition to issuing I/Os, each transaction 
requires a certain amount of CPU time to handle 
forms processing. (Forms processing time is not 
illustrated in Figure 1.) The measurement metric 
for forms processing time is the expected number 
of fields. The number of input and output fields 
per form are important metrics for users of a trans­
action processing application or programmer/ 
system analysts. 

By collecting information about a transaction 
processing application at various leve ls, high-level 
volume indicators are mapped to low-level units 
of 1/0 activity. This mapping is fundamental to the 
transaction processing sizing methodology. 
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Performance goals play a particularly important 
role in the sizing of transaction processing systems.2 
The major categories of performance goals com­
monly encountered in the transaction processing 
marketplace are bounds for 

• Device utilization(s) 

• Average response time for transactions 

• Response time quantiles for transactions 

For example, a customer might specify a required 
processor utilization of less than 70 percent. Such a 
constraint reflects the fact that system response 
time typically rises dramatically at higher proces­
sor utilizations. A common performance goal for 
response time is to use a transaction's average 
response time and response time quantiles. For 
example, the proposed system should have an aver­
age response time of x seconds, with 95 percent 
of all responses completing in less than or equal 
toy seconds, where xis less than y. Transaction 
response times are crucial for businesses. Poor 
response times translate directly into decreased 
productivity and lost revenues. 

When a customer generates a formal Request For 
Proposal (RFP), the performance goals for the 
transaction processing system typically are speci­
fied in detail. The specification of goals makes 
it easier to define the performance bounds. For 
customers who supply only general performance 
goals, it is assumed that the performance goal takes 
the form of bounds for device utilizations. 

Overall response time consists of incremental 
contributions by each major component of the 
overall system: 

• Front-end processor 

• Back-end processor 

• Communications network 

• Disk subsystem 

A main objective in this approach to sizing was 
to identify and use specific metrics that could be 
easily counted for each major component. For 
instance, the number of fields per form could be 
a metric used for sizing front-end processors 
because that number is specific and easily counted. 
As the path of a transaction is followed through the 
overall system, the units of work appropriate for 
each component become clear. These units become 
the metrics for sizing that particular component. 
The focus of this paper is on processor sizing with 
bounds on processor utilization. Processors gener-
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ally constitute the major expense in any proposed 
system solution. Mistakes in processor sizing are 
very expensive to fix, both in terms of customer 
satisfaction and cost. 

Sizing Metrics 
Transaction processing applications permit a large 
number of users to share access to a common data­
base crucial to the business and usually residing on 
disk memory. In an interactive transaction process­
ing environment, transactions generally involve 
some number of disk 1/0 operations, although the 
number is relatively small compared to those 
generated by batch transaction processing appli­
cations. CPU processing also is generally small and 
consists primarily of overhead for layered trans­
action processing software products. Although 
these numbers are small, they did influence the 
sizing methodology in several ways. 

Ratings for relative processor capacity in a trans­
action processing environment were developed 
to reflect the ability of a processor to support disk 
1/0 activity (as observed in benchmark tests). In 
addition, empirical studies of transaction process­
ing applications showed that, for purposes of pre­
liminary sizing, the number of disk I/Os generated 
by a transaction provides a good prediction of the 
required amount of CPU processing.3 Numerous 
industry-standard benchmark tests for product 
positioning were run on Digital's processors. These 
processors were configured as back-end proces­
sors in a distributed configuration with different 
software platforms. 

The base workload for this benchmark testing is 
currently the Transaction Processing Performance 
Council's TPC Benchmark A (TPC-A, formerly the 
DebitCredit benchmark)~·s·6 The most complete 
set of benchmark testing was run under Digital's 
VAX ACMS transaction processing monitor and 
VAX Rdb/VMS relational database. Therefore, results 
from this software platform on all Digital proces­
sors were used to compute the first sizing metric 
called the base load factor. 

The base load factor is a high-level metric that 
incorporates the contribution by all layered soft­
ware products on the back-end processor to the 
total CPU time per 1/0 operation. Load factors are 
computed by dividing the total CPU utilization by 
the number of achieved disk 1/0 operations per 
second. (The CPU utilization is normalized in the 
event that the processor is a Symmetrical Multi­
processing [SMP] system, to ensure that its value 
falls within the range of O to 100 percent.) The 
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calculation of load factor yields the total CPU time, 
in centiseconds (hundredths of seconds), required 
to support an application's single physical 1/0 
operation. 

The base load factors give the CPU time per 1/0 
required to run the base workload, TPC-A, on any 
Digital processor in a back-end configuration using 
the ACMS/Rdb. The CPU time per 1/0 can be esti­
mated for any workload. This generalized metric is 
called the application load factor. 

To relate the base load factors to workloads other 
than the base, an additional metric was defined 
called the intensity factor. The metric calculation 
for the intensity factor is the application load 
factor divided by the base load factor. The value in 
using intensity factors is that, once estimated (or 
calculated for running applications), intensity fac­
tors can be used to characterize any application in 
a way that can be applied across all processor types 
to estimate processor requirements. 

Intensity factors vary based on the software 
platform used. If a software platform other than a 
combined VAX ACMS and VAX Rdb/VMS platform is 
selected, the estimate of the intensity factor must 
be adjusted to reflect the resource usage character­
istics of the selected DECtp software platform. 

To estimate an appropriate intensity factor for a 
nonexistent application, judgment and experience 
with similar applications are required. However, 
measured cases from a range of DECtp applications 
shows relatively little variation in intensity factors. 
Guidelines to help determine intensity factors are 
included in the documentation for Digital's inter­
nally developed transaction processing sizing tools. 

The work required by any transaction pro­
cessing application is composed of two parts: the 
application/database and the forms management. 
This division of work corresponds to what occurs 
in a distributed configuration, where the forms pro­
cessing is off-loaded to one or more front-end pro­
cessors. Load factors and intensity factors are 
metrics that were developed to size the application/ 
database. To estimate the amount of CPU time 
required for forms management, a forms-specific 
metric is required. For a first-cut approximation, 
the expected number of (input) fields is used as the 
sizing metric. This number is obtained easily from 
the business-level description of the application. 

Sizing For mulas 
This section describes the underlying algebra devel­
oped for processor selection. Different formulas 
to estimate the CPU time required for both the 
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application/database and forms management were 
developed. These formulas are used separately for 
sizing back-end and front-end processors in a dis­
tributed configuration. The individual contribu­
tions of the formulas are combined for sizing a 
centralized configuration. 

The application/database is the work that takes 
place on the back-end processor of a distributed 
configuration. It is a function of physical disk 
accesses. To determine the minimal CPU time 
required to handle this load, processor utilization 
is used as the performance goal, setting up an 
inequality that is solved to obtain a corresponding 
load factor. The resulting load factor is then com­
pared to the table of base load factors to obtain a 
recommendation for a processor type. To rein­
force this dependence of load factors on processor 
types, load factor x refers to the associated pro­
cessor type x in the following calculations. 

One method for estimating the average CPU time 
per transaction is to multiply the number of I/Os 
per transaction by the load factor x and the inten­
sity factor. This yields CPU time per transaction, 
expressed in centiseconds per transaction. By mul­
tiplying this product by the transactions per sec­
ond rate, an expression for processor utilization is 
derived. Thus processor utilization (expressed as a 
percentage scaled between O and 100 percent) is 
the number of transactions per second, times the 
number of I/Os per transaction, times load factor x, 
times the intensity factor. 

The performance goal is a CPU utilization that is 
less than the utilization specified by the customer. 
Therefore, the calculation used to derive the load 
factor is the utilization percentage provided by the 
customer, divided by the number of transactions 
per second, times the number of I/Os per trans­
action, times the intensity factor. 

Once computed, the load factor is compared to 
those values in the base load factor table. The base 
load factor equal to or less than the computed value 
is selected, and its corresponding processor type, 
x, is returned as the minimal processor required to 
handle this workload. 

The four input parameters that need to be esti­
mated for inclusion in this inequality are 

• Processor utilization performance goal (tradi­
tionally set at around 70 percent, but may be set 
higher for Digital's newer, faster processors) 

• Target transactions per second (which may be 
derived from Digital's multilevel mapping of 
business metrics) 
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• I/Os per transaction (estimated from application 
description and database expertise) 

• Intensity factor (estimated from experience with 
similar applications) 

Note: Response time performance goals do not 
appear in this formula. This sizing formula deals 
strictly with ensuring adequate processor capacity. 
However, these performance parameters (includ­
ing the CPU service time per transaction) are fed 
into an analytic queuing solver embedded in some 
of the transaction processing sizing tools, which 
produces estimates of response times. 

Forms processing is the work that occurs either 
on the front-end processor of a distributed config­
uration or in a centralized configuration. It is not a 
function of physical disk accesses; rather, forms 
processing is CPU intensive. To estimate the CPU 
time (in seconds) required for forms processing, 
the following simple linear equation is used: 

y=c(a +bz) 

where y equals the CPU time for forms processing; 
a equals the CPU time per form per transaction 
instance, depending on the forms manager used; 
b equals the CPU time per field per transaction 
instance, depending on the forms manager used; 
z equals the expected number of fields; and c equals 
the scaling ratio, depending on the processor type. 
This equation was developed by feeding the results 
of controlled forms testing into a linear regression 
model to estimate the CPU cost per form and per 
field (i.e., a and b). The multiplicative term, c, is 
used to eliminate the dependence of factors a and 
b on the hardware platform used to run these tests. 

Sizing Tools 
Several sizing tools were constructed by using the 
above formulas as starting points. These tools dif­
fer in the range of required inputs and outputs, and 
in the expected technical sophistication of the user. 

The first tool developed is for quick, first­
approximation processor sizing. Currently embod­
ied as a DEcalc spreadsheet, with one screen for 
processor selection and one for transactions-per­
second sensitivity analysis, it can handle back-end, 
front-end, or centralized sizing. The first screen 
shows the range of processors required, given the 
target processor utilization, target transactions 
per second, expected number of fields, and the 
possible intensity factors and number of I/Os per 
transaction. (Because the estimation of these last 
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two inputs generally involves the most uncer­
tainty, the spreadsheet allows the user to input a 
range of values for each.) The second screen turns 
the analysis around, showing the resulting trans­
action-per-second ranges that can be supported by 
the processor type selected by the user, given the 
target processor utilization, expected number of 
fields, and possible intensity factors and number of 
I/Os per transaction. 

The basic sizing formula addresses issues that 
deal specifically with capacity but not with per­
formance. To predict behavior such as response 
times and queue lengths, modeling techniques that 
employ analytic solvers or simulators are needed. 
A second tool embeds an analytic queuing solver 
within itself to produce performance estimates. 
This tool is an automated system (i.e., a DECtp 
application) that requests information from the 
user according to the multilevel workload charac­
terization methodology. This starts from general 
business-level information and proceeds to request 
successively more detailed information about the 
application. The tool also contains a knowledge 
base of Digital's product characteristics (e.g., pro­
cessor and disk) and measured DECtp applications. 
The user can search through the measured cases to 
find a similar case, which could then be used to 
provide a starting point for estimating key applica­
tion parameters. The built-in product characteris­
tics shield the user from the numeric details of the 
sizing algorithms. 

A third tool is a spin-off from the second tool. 
This tool is a standalone analytic queuing solver with 
a simple textual interface. The tool is intended for 
the sophisticated user and assumes that the user 
has completed the level of analysis required to be 
able to supply the necessary technical input param­
eters. No automatic table lookups are provided. 
However, for a completely characterized applica­
tion, this tool gives the sophisticated user a quick 
means to obtain performance estimates and run 
sensitivity analyses. The complete DECtp software 
platform necessary to run the second tool is not 
required for this tool. 

Data Collection 
To use the sizing tools fully, certain data must be 
available, which allows measured workloads to be 
used to establish the basic metrics. Guidance in 
sizing unmeasured transaction processing applica­
tions is highly dependent on developing a knowl­
edge base of real-world transaction processing 
application descriptions and measurements. The 
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kinds of data that need to be stored within the 
knowledge base require the data collection tools to 
gather information consistent with the transaction 
processing sizing algebra. 

For each transaction type and for the aggregate 
of all the transaction types, the following informa­
tion is necessary to perform transaction process­
ing system sizing: 

• CPU time per disk 1/0 

• Disk 1/0 operations per transaction 

• Transaction rates 

• Logical-to-physical disk 1/0 ratio 

The CPU to 1/0 ratio can be derived from Digital's 
existing instrumentation products, such as the VAX 
Software Performance Monitor(SPM) and VAXcluster 
Performance Advisor (VPA) products.1 Both prod­
ucts can record and store data that reflects CPU 
usage levels and physical disk 1/0 rates. 

The DECtrace product collects event-driven data. 
It can collect resource items from layered soft­
ware products, including VAX ACMS monitor, the 
VAX Rdb/VMS and DBMS database systems, and if 
instrumented, from the application program itself. 
As an event collector, the DECtrace product can be 
used to track the rate at which events occur. 

The methods for determining the logical-to­
physical disk 1/0 ratio per transaction remain open 
for continuing study. Physical disk 1/0 operations 
are issued based on logical commands from the 
application. The find, update, or fetch commands 
from an SQL program translate into from zero to 
many thousands of physical disk 1/0 operations, 
depending upon where and how data is stored. 
Characteristics that affect this ratio include the 
length of the data tables, number of index keys, and 
access methods used to reach individual data items 
(i.e., sequential, random). 

Few tools currently available can provide data 
on physical 1/0 operations for workloads in the 
design stage. A knowledge base that stores the 
logical-to-physical disk 1/0 activity ratio is the best 
method available at this time for predicting that 
value. The knowledge base in the second sizing 
tool is beginning to be populated with application 
descriptions that include this type of information. 
It is anticipated that, as this tool becomes widely 
used in the field, many more application descrip­
tions will be stored in the knowledge base. Pooling 
individual application experiences into one central 
repository will create a valuable source of knowl­
edge that may be utilized to provide better infor­
mation for future sizing exercises. 
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Database Availability for 
Transaction Processing 

A transaction processing system relies on its database management system to supply 
high availability. Digital offers a network-based product, the VAX DBMS system, 
and a relational data-based product, the VAX Rdb/VMS database system, for its 
transaction processing systems. These database systems have several strategies to 
survive failures, disk bead crashes, revectored bad blocks, database corruptions, 
memory co"uptions, and memory overwrites by faulty application programs. 
They use base hardware technologies and also employ novel software techniques, 
such as parallel transaction recovery, recovery on surviving nodes of a VAXcluster 
system, restore and rollforward operations on areas of the database, on-line 
backup, verification and repair utilities, and executive mode protection of trusted 
database management system code. 

Modern businesses store critical data in database 
management systems. Much of the daily activity 
of business includes manipulation of data in the 
database. As businesses extend their operations 
worldwide, their databases are shared among 
office locations in different parts of the world. 
Consequently, these businesses require transac­
tion processing systems to be available for use at 
all times. This requirement translates directly to a 
goal of perfect availability for database manage­
ment systems. 

VAX DBMS and VAX Rdb/VMS database systems are 
based on network and relational data models, respec­
tively. Both systems use a kernel of code that is 
largely responsible for providing high availability. 
This layer of code is maintained by the KODA group. 
KODA is the physical subsystem for VAX DBMS and 
VAX Rdb/VMS database systems. It is responsible for 
all l/0, buffer management, concurrency control, 
transaction consistency, locking, journaling, and 
access methods. 

In this paper, we define database availability, 
and describe downtime situations and how such 
situations can be resolved. We then discuss the 
mechanisms that have been implemented to pro­
vide minimal loss of availability. 

Database Availability 
The unit of work in transaction processing systems 
is a transaction. We therefore define database avail­
ability as the ability to execute transactions. One 
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way the database management system provides 
high availability is by guaranteeing the proper­
ties of transactions: atomicity, serializability, and 
durability.' For example, if a transaction that has 
made updates to the database is aborted, other 
transactions must not be allowed to see these 
updates; the updates made by the aborted trans­
action must be removed from the database before 
other transactions may use that data. Yet, data that 
has not been accessed by the aborted transaction 
must continue to be available to other transactions. 

Downtime is the term used to refer to periods 
when the database is unavailable. Downtime is 
caused by either an unexpected failure (unex­
pected downtime) or scheduled maintenance on 
the database (scheduled downtime). Such classifi­
cations of downtime are useful. Unexpected down­
time is caused by factors that are beyond the 
control of the transaction processing system. For 
example, a disk failure is quite possible at any 
time during normal processing of transactions. 
However, scheduled downtime is entirely within 
the control of the database administrator. High 
availability demands that we eliminate scheduled 
downtime and ensure fast system recovery from 
unexpected failures. 

The layers of the software and hardware services 
which compose a transaction processing system 
are dependent on one another for high availability. 
The dependency among these services is illus­
trated in Figure 1. Each service depends on the 
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MANAGEMENT 
SYSTEM 
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I 
HARDWARE 
(CPU, DISK) 

I 
GENERAL 
ENVIRONMENT AVAILABILITY 

Figure 1 Layers of Availability in Transaction 
Processing Systems 

availability of the service in the lower layers. 
Errors and failures can occur in any layer, but may 
not be detected immediately. For example, in the 
case of a database management system, the effects 
of a database corruption may not be apparent until 
long after the corrupt ion (error) has occurred. 
Hence it is difficult to deal with such errors. On the 
other hand, failures are noticed immediately. 
Failures usually make the system unavailable and 
are the cause of unexpected downtime. 

Each layer can provide only as much availability 
as the immediate lower layer. Hence we can also 
express the perfect-ava ilability goal of a database 
management system as the goal of matching the 
availabi lity of the immediately lower layer, which 
in our case is the operating system. 

At the outset, it is clear that a database manage­
ment system layered on top of an operating system 
and hence only as available as the underlying oper­
ating system. However, a database management 
system is in general not as available as the under­
lying layer because of the need to guarantee the 
properties of transactions. 

Unexpected Downtime 
In this section we discuss the causes of unex­
pected downtime and the techniques that mini­
mize downtime. 
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A database monitor must be started on a node 
before a user's process running on that node can 
access a database. The monitor oversees all data­
base activity on the node. It allows processes to 
attach to and detach from databases and detects 
failures. On detecting a failure , the monitor starts 
a process to recover the transactions that did not 
complete because of the failure . Note that this 
database monitor is different from the TP monitor.2 

Application Program Exceptions 
Although transaction processing systems are based 
on the client/server architecture, Digital's database 
systems are process based. The privileged database 
management system code is packaged in a share­
able library and linked with the application pro­
grams. Therefore, bugs in the applications have 
a good chance of affecting the consistency of the 
database. Such bugs in applications are one type of 
failure that can make the database unavailable. 

The VAX DBMS and VAX Rdb/VMS systems guard 
against this class of failure by executing the data­
base management system code in the VAX execu­
tive mode. Since application programs execute in 
user mode, they do not have access to data struc­
tures used by the database management system. 
When a faulty application program attempts such 
an access, the VMS operating system detects it and 
generates an exception . This exception then forces 
an image rundown of the application program. 

In general, when an image rundown is initiated, 
Digital 's database management products use the 
condition-handling facility of VMS to abort the trans­
action. Condition handling of image rundown is 
performed at two levels. Two condition handlers 
are established, one in user mode and the other in 
kernel mode. The user mode exit handler is usually 
invoked, which rolls back the current transaction 
and unbinds it from the database. In this case, the 
rest of the users on the system are not affected at 
all. The database remains available. The execution 
of the user mode exit handler is, however, not 
guaranteed by the VMS operating system. Under 
some abnormal circumstances, the user mode exit 
handlers may not be executed at all. In such cir­
cumstances, the kernel mode exit handler is 
invoked by the VMS system. This handler resides 
in the database monitor. The monitor starts a 
database recovery (DBR) process. It is the responsi­
bility of the DBR process to roll back the effects of 
the aborted transaction. To do this, the DBR pro­
cess first establishes a database freeze. This freeze 
prevents other processes from acquiring locks that 
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were held by the aborted transaction and hence 
see and update uncommitted data. (The VMS lock 
manager releases all locks held by a process when 
that process dies.) The DBR process then proceeds 
to roll back the aborted transaction. 

Code Corruptions 
It is important to prevent coding mistakes within 
the DBMS from irretrievably corrupting the data­
base. To protect the database management system 
from coding mistakes, internal data structure con­
sistency is examined at different points in the 
code. If any inconsistency is found, a bug-check 
utility is called that dumps the internal database 
format to a file. The utility then raises an excep­
tion that is handled by the monitor, and the DBR 

process is started as described above. 
To deal with corruptions to the database that are 

undetected with this mechanism, an explicit utility 
is provided that verifies the structural consistency 
of the database. This verify utility may be executed 
on-line, while users are still accessing the data­
base. Such verification may also be executed by a 
database administrator (OBA) in response to a bug­
check dump. Once such a corruption is detected, 
an on-line utility provides the ability to repair the 
database. 

In general, corruption in databases causes unex­
pected downtime. Digital provides the means of 
detecting such corruption on-line and repairing 
them on-line through recovery utilities. 

Process Failure 
In the VMS system, a process failure is always pre­
ceded by image rundown of the current image run­
ning as part of the process. Therefore, a process 
failure is detected by the database monitor, which 
then starts a DBR process to handle recovery. 

Node Failure 
Among the many mechanisms Digital provides for 
availability is node failover within a cluster. When 
a node fails, another node on the cluster detects 
the failure and rolls back the lost transactions from 
the failed node. Thus the failure of one node does 
not cause transactions on other active nodes of the 
cluster to come to a halt (except for the time the 
DBR process enforces a freeze). It is the database 
monitor that detects node failure and starts a 
recovery process for every lost transaction on the 
failed node. The database becomes available as 
soon as recovery is complete for all the users on 
the failed node. 
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Power Failure 
Power failure is a hardware failure. As soon as 
power is restored, the VMS system boots. When a 
process attaches to the database, a number of mes­
sages are passed between the process that is attach­
ing and the monitor. If the database is corrupt 
(because of power failure), the monitor is so 
informed by the attaching process, and again the 
monitor starts recovery processes to return the 
database to a consistent state. The database becomes 
available as soon as recovery is complete for all 
such failed users. 

As described above, recovery is always accom­
plished by the monitor process starting DBR pro­
cesses to do the recovery. The only differences in 
the case of process, node, or cluster failure is the 
mechanism by which the monitor is informed of 
the failure . 

Disk Head Crash 
Some failures can result in the loss or corruption of 
the data on the stable storage device (disk). Digital 
has a mechanism for bringing the database back to 
a consistent state in such cases. 

A disk head crash is a failure of hardware that is 
usually characterized by the inability to read from 
or write to the disk. Hence database storage areas 
residing on that disk are unavailable and possibly 
irretrievable. A disk head crash automatically aborts 
transactions that need to read from or write to that 
disk. In addition, recovery of these aborted trans­
actions is not possible since the recovery pro­
cesses need access to the same disk. In this case, 
the database is shut down and access is denied until 
the storage areas on the failed disk are brought on­
line. Areas are restored from backups and then 
rolled forward until consistent with the rest of the 
database. The after image journal (AIJ) files are used 
to roll the areas forward. As soon as all the areas on 
the failed disk have been restored onto a good disk 
and rolled forward, the database becomes available. 

Bad Disk Blocks 
Bad blocks are hardware errors that often are not 
detected when they happen. The bad blocks are 
revectored, and the next time the disk block is 
read, an error is reported. Bad blocks simply mean 
that the contents of a disk block are lost forever. 
The database administrator detects the problem 
only when a database application fails to fetch data 
on the revectored block. Such an error may cause a 
certain transaction or a set of transactions to fail, 
no matter how many attempts are made to execute 
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the transactions. This failure constitutes reduced 
availability; parts of the database are unavailable to 
transactions. Exactly how much of the database 
remains available depends on which blocks were 
revectored. 

The mechanism provided to reduce the possible 
downtime is early detection. Digital's database 
systems provide a verification utility that can be 
executed while users are running transactions. 
The verification utility checks the structural con­
sistency of the database. Once a bad block is 
detected by such a utility, that area of the database 
may be restored and rolled forward . These two 
operations make the whole database temporarily 
unavailable; however, the bad block is corrected, 
and future downtime is avoided. The downtime 
caused by the bad block may be traded off against 
the downtime needed to restore and roll forward . 

Site Failure 
A site failure occurs when neither the computers 
nor the disks are available. A site failure is usually 
caused by a natural disaster such as an earthquake. 
The best recourse for recovery is archival storage. 
Digital provides mechanisms to back up the data­
base and AIJ files to tape. These tapes must then be 
stored at a site away from the site at which the 
database resides. Should a disaster happen, these 
backup tapes can be used to restore the database. 
However, the recovery may not be complete. It 
cannot restore the effects of those committed trans­
actions that were not backed up to tape. 

After a disaster, the database can be restored 
and rolled forward to the state of the completion of 
the last AIJ that was backed up to tape. Any trans­
actions that committed after the last AIJ was backed 
up cannot be recovered at the alternate site. Such 
transaction losses can be minimized by frequently 
backing up the AIJ files . 

Memory Errors 
Memory errors are quite infrequent, and when 
they happen, they usually are not detected. If the 
error happens to a data record, it may never be 
detected by any utility, but may be seen as incor­
rect data by the user. If the verification utility is run 
on-line, it may also detect the errors. Again, the 
database may only be partially available, as in the 
case of bad blocks. However, it is possible to repair 
the database while users are still accessing the 
database. Digital's database management products 
provide explicit repair facilities for this purpose. 
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The loss of availability during repair is not worse 
than the loss due to the memory error itself. 

As explained previously, the database monitor 
plays an important part in ensuring database con­
sistency and availability. Most unexpected failure 
scenarios are detected by the monitor, which then 
starts recovery processes. In addition, some fail­
ures might require the use of backup files to 
restore the database. 

Scheduled Downtime 
Most database systems have scheduled maintenance 
operations that require a database shutdown. Data­
base backup for media recovery and verification to 
check structural consistency are examples of oper­
ations that may require scheduled downtime. In 
this section we describe ways to perform many of 
these operations while the database is executing 
transactions. 

Backup 
Digital's database systems allow two types of trans­
actions: update and "snapshot." The ability to back 
up data on-line depends on the snapshot transaction 
capability of the database. 

Database backup is a standard way of recovering 
from media failures . Digital's database systems pro­
vide the ability to do transaction consistent back­
ups of data on-line while users continue to change 
the database. 

The general scheme for snapshot transactions is 
as follows. The update transactions of the database 
preserve the previous versions of the database 
records in the snapshot file. All versions of a data­
base record are chained. Only the current version 
of the record is in the database area. The older ver­
sions are kept in the snapshot area. The versions 
of the records are tagged with the transaction 
numbers (TSNs). When a snapshot transaction (for 
example, a database backup) needs to read a data­
base record, it traverses the chain for that database 
record and then uses the appropriate version of 
the record. 

There are two modes of database operation with 
respect to snapshot activity. In one mode, all update 
transactions write snapshot copies of any records 
they update. In the deferred snapshot mode, the 
updates cause snapshot copies to be written only 
if a snapshot t ransaction is active and requires old 
versions of a record. In this mode, a snapshot trans­
action cannot start until all currently active update 
transactions (which are not writing snapshot 
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records) have completed; that is, the snapshot 
transaction must wait for a quiet point in time. If 
there are either active or pending snapshot trans­
actions when an update transaction starts, the 
update transaction must write snapshot copies. 

Here we see a trade-off between update trans­
actions and snapshot transactions. The database 
is completely available to snapshot transactions 
if all update transactions always write snapshot 
copies. On the other hand, if the deferred snapshot 
mode is enabled, update transactions need not 
write snapshot copies if a snapshot transaction 
in not active. This approach obviously results in 
some loss of availability to snapshot transactions. 

Verification 
Database corruption can also result in downtime. 
Although database corruption is not probable, it 
is possible. Any database system that supports 
critical data must provide facilities to ensure the 
consistency of the database. Digital's database man­
agement systems provide verification utilities that 
scan the database to check the structural consis­
tency of the database. These utilities may also be 
executed on-line through the use of snapshot 
transactions. 

Alf Backup 
The backup and the AIJ log are the two mechanisms 
that provide media recovery for Digital's database 
management products. The AIJ file is continuously 
written to by all user processes updating the data­
base. We need to provide some ability to back up 
the AIJ file since it monotonically increases in size 
and eventually fills up the disk. Digital's database 
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systems offer the ability to back up the AIJ file to 
tape (or another device) on-line. The only restric­
tion is that a quiet point must be established for a 
short period during which the backup operation 
takes place. A quiet point is defined as a point 
when the database is quiescent, i.e., there are no 
active transactions. 

On-line Schema Changes 
Digital's database management systems allow users 
to change metadata on-line, while users are still 
accessing the database. Although this may be stan­
dard for relational database management systems, 
it is not standard for network databases. The VAX 

DBMS system provides a utility called the database 
restructuring utility (DRU) to allow for on-line 
schema modifications. 
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Digital's database products, VAX Rdb/VMS and VAX DBMS, share the same database 
kernel called KODA. KODA uses a grouping mechanism to commit many concurrent 
transactions together. This feature enables high transaction rates in a transaction 
processing (TP) environment. Since group commit processing affects the maximum 
throughput of the transaction processing system, the KODA group designed and 
implemented several grouping algorithms and studied their peiformance charac­
teristics. Preliminary results indicate that it is possible to achieve up to a <i6 percent 
improvement in transaction throughput try using more efficient grouping designs. 

Digital has two general-purpose database products, 
Rdb/VMS software, which supports the relational 
data model, and VAX DBMS software, which sup­
ports the CODASYL (Conference on Data Systems 
Languages) data model. Both products layer on top 
of a database kernel called KODA. In addition to 
other database services, KODA provides the trans­
action capabilities and commit processing for these 
two products. 

In this paper, we address some of the issues rele­
vant to efficient commit processing. We begin by 
explaining the importance of commit processing 
in achieving high transaction throughput. Next, we 
describe in detail the current algorithm for group 
commit used in KODA. We then describe and con­
trast several new designs for performing a group 
commit. Following these discussions, we present 
our experimental results. And, finally, we discuss 
the possible direction of future work and some 
conclusions. No attempt is made to present formal 
analysis or exhaustive empirical results for commit 
processing; rather, the focus is on an intuitive 
understanding of the concepts and trade-offs, 
along with some empirical results that support our 
conclusions. 

Commit Processing 
To follow a discussion of commit processing, two 
basic terms must first be understood. We begin this 
section by defining a transaction and the "moment 
of commit:' 
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A transaction is the execution of one or more 
statements that access data managed by a database 
system. Generally, database management systems 
guarantee that the effects of a transaction are atomic, 
that is, either all updates performed within the con­
text of the transaction are recorded in the database, 
or no updates are reflected in the database. 

The point at which a transaction's effects become 
durable is known as the "moment of commit." This 
concept is important because it allows database 
recovery to proceed in a predictable manner after 
a transaction failure. If a transaction terminates 
abnormally before it reaches the moment of com­
mit, then it aborts. As a result, the database system 
performs transaction recovery, which removes all 
effects of the transaction. However, if the trans­
action has passed the moment of commit, recovery 
processing ensures that all changes made by the 
transaction are permanent. 

Transaction Profile 
For the purpose of analysis, it is useful to divide a 
transaction processed by KODA into four phases: 
the transaction start phase, the data manipulation 
phase, the logging phase, and the commit process­
ing phase. Figure 1 illustrates the phases of a trans­
action in time sequence. The first three phases are 
collectively referred to as "the average transaction's 
CPU cost (excluding the cost of commit)" and the 
last phase (commit) as "the cost of writing a group 
commit buffer."' 
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Figure 1 Phases in the Execution 
of a Transaction 

The transaction start phase involves acquiring 
a transaction identifier and setting up control 
data structures. This phase usually incurs a fixed 
overhead. 

The data manipulation phase involves executing 
the actions dictated by an application program. 
Obviously, the time spent in this phase and the 
amount of processing required depend on the 
nature of the application. 

At some point a request is made to complete the 
transaction. Accordingly in KODA, the transaction 
enters the logging phase which involves updating 
the database with the changes and writing the 
undo/redo information to disk. The amount of work 
done in the logging phase is usually small and con­
stant (less than one 1/0) for transaction processing. 

Finally, the transaction enters the commit pro­
cessing phase. In KODA, this phase involves writing 
commit information to disk, thereby ensuring that 
the transaction's effects are recorded in the data­
base and now visible to other users. 

For some transactions, the data manipulation 
phase is very expensive, possibly requiring a large 
number of I/Os and a great deal of CPU time. For 
example, if 500 employees in a company were to 
get a 10 percent salary increase, a transaction would 
have to fetch and modify every employee/salary 
record in the company database. The commit pro­
cessing phase, in this example, represents 0.2 per­
cent of the transaction duration. Thus, for this class 
of transaction, commit processing is a small frac­
tion of the overall cost. Figure 2 illustrates the pro­
file of a transaction modifying 500 records. 

tSTART 

II 
TIME -

COMMIT 

LOGGING il 
DATA 111 MANIPULATION 

Figure 2 Profile of a Transaction Modifying 
500Records 

In contrast, for transaction processing applica­
tions such as hotel reservation systems, banking 
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applications, stock market transactions, or the 
telephone system, the data manipulation phase is 
usually short (requiring few I/Os). Instead, the log­
ging and commit phases comprise the bulk of the 
work and must be optimized to allow high trans­
action throughput. The transaction profile for a 
transaction modifying one record is shown in 
Figure 3. Note that the commit processing phase 
represents 36 percent of the transaction duration, 
in this example. 

Ir 
START 
DATA r MANIPULATION 

II I LOGGING 

TIME-

COMMIT 

Figure 3 Profile of a Transaction Modifying 
One Record 

Group Commit 
Generally, database systems must force write infor­
mation to disk in order to commit transactions. In 
the event of a failure, this operation permits recov­
ery processing to determine which failed trans­
actions were active at the time of their termination 
and which ones had reached their moment of com­
mit. This information is often in the form of lists of 
transaction identifiers, called commit lists. 

Many database systems perform an optimized 
version of commit processing where commit infor­
mation for a group of transactions is written to disk 
in one 1/0 operation, thereby, amortizing the cost 
of the 1/0 across multiple transactions. So, rather 
than having each transaction write its own commit 
list to disk, one transaction writes to disk a com­
mit list containing the commit information for a 
number of other transactions. This technique is 
referred to in the literature as "group commit."2 

Group commit processing is essential for achiev­
ing high throughput. If every transaction that 
reached the commit stage had to actually perform 
an 1/0 to the same disk to flush its own commit 
information, the throughput of the database sys­
tem would be limited to the 1/0 rate of the disk. A 
magnetic disk is capable of performing 30 1/0 
operations per second. Consequently, in the 
absence of group commit, the throughput of the 
system is limited to 30 transactions per second 
(TPS). Group commit is essential to breaking this 
performance barrier. 
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There are several variations of the basic algo­
rithms for grouping multiple commit lists into a 
single 1/0. The specific group commit algorithm 
chosen can significantly influence the throughput 
and response times of transaction processing. One 
study reports throughput gains of as much as 25 
percent by selecting an optimal group commit 
algorithm. I 

At high transaction throughput (hundreds of 
transactions per second), efficient commit process­
ing provides a significant performance advantage. 
There is little information in the database litera­
ture about the efficiency of different methods of 
performing a group commit. Therefore, we ana­
lyzed several grouping designs and evaluated their 
performance benefits. 

Factors Affecting Group Commit 
Before proceeding to a description of the experi­
ments, it is useful to have a better understanding of 
the factors affecting the behavior of the group com­
mit mechanism. This section discusses the group 
size, the use of timers to stall transactions, and the 
relationship between these two factors. 

Group Size An important factor affecting group 
commit is the number of transactions that partici­
pate in the group commit. There must be several 
transactions in the group in order to benefit from 
1/0 amortization. At the same time, transactions 
should not be required to wait too long for the 
group to build up to a large size, as this factor 
would adversely affect throughput. 

It is interesting to note that the incremental 
advantage of adding one more transaction to a 
group decreases as the group size increases. The 
incremental savings is equal to 1/(G x (G + 1)), 
where G is the initial group size. For example, if 
the group consists of 2 transactions, each of them 
does one-half a write. If the group size increases 
to 3, the incremental savings in writes will be 
(1/2 -1/3), or 1/6 per transaction. Ifwe do the same 
calculation for a group size incremented from 10 
to 11, the savings will be (1/10 - 1/11), or 1/110 of a 
write per transaction. 

In general, if G represents the group size, and I 
represents the number of I/Os per second for the 
disk, the maximum transaction commit rate is Ix G 
TPS. For example, if the group size is 45 and the rate 
is 30 I/Os per second to disk, the maximum trans­
action commit rate is 30 x 45, or 1350 TPS. Note that 
a grouping of only 10 will restrict the maximum 
TPS to 300 TPS, regardless of how powerful the 
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computer is. Therefore, the group size directly 
affects the maximum transaction throughput of 
the transaction processing system. 

Use of Timers to Stall Transactions One of the 
mechanisms to increase the size of the commit 
group is the use of timers.1

•
2 Timers are used to 

stall the transactions for a short period of time 
(on the order of tens of milliseconds) during com­
mit processing. During the stall, more transactions 
enter the commit processing phase and so the 
group size becomes larger. The stalls provided by 
the timers have the advantage of increasing the 
group size, and the disadvantage of increasing the 
response time. 

Trade-offs This section discusses the trade-offs 
between the size of the group and the use of timers 
to stall transactions. Consider a system where there 
are 50 active database programs, each repeatedly 
processing transactions against a database. Assume 
that on average each transaction takes between 
0.4 and 0.5 seconds. Thus, at peak performance, the 
database system can commit approximately 100 
transactions every second, each program actually 
completing two transactions in the one-second 
time interval. Also, assume that the transactions 
arrive at the commit point in a steady stream at dif­
ferent times. 

If transaction commit is stalled for 0.2 sec­
onds to allow the commit group to build up, the 
group then consists of about 20 transactions 
(0.2 seconds x 100 TPS). In this case, each trans­
action only incurs a small delay at commit time, 
averaging 0.10 seconds, and the database system 
should be able to approach its peak throughput of 
100 TPS. However, if the mechanism delays commit 
processing for one second, an entirely different 
behavior sequence occurs. Since the transactions 
complete in approximately 0.5 seconds, they accu­
mulate at the commit stall and are forced to wait 
until the one-second stall completes. The group 
size then consists of 50 transactions, thereby maxi­
mizing the 1/0 amortization. However, throughput 
is also limited to 50 TPS, since a group commit is 
occurring only once per second. 

Thus, it is necessary t~ balance response time 
and the size of the commit group. The longer the 
stall, the larger the group size; the larger the group 
size, the better the 1/0 amortizat_ion that is achieved. 
However, if the stall time is too long, it is possible 
to limit transaction throughput because of wasted 
CPU cycles. 
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Motivation for Our Work 
The concept of using commit timers is discussed 
in great detail by Reuter.' However, there are signifi­
cant differences between his group commit scheme 
and our scheme. These differences prompted the 
work we present in this paper. 

In Reuter's scheme, the timer expiration triggers 
the group commit for everyone. In our scheme, no 
single process is in charge of commit processing 
based on a timer. Our commit processing is per­
formed by one of the processes desiring to write a 
commit record. Our designs involve coordination 
between the processes in order to elect the group 
committer (a process). 

Reuter's analysis to determine the optimum value 
of the timer based on system load assumes that the 
total transaction duration, the time taken for com­
mit processing, and the time taken for performing 
the other phases are the same for all transactions. 
In contrast, we do not make that assumption. Our 
designs strive to adapt to the execution of many dif­
ferent transaction types under different system 
loads. Because of the complexity introduced by 
allowing variations in transaction classes, we do 
not attempt to calculate the optimal timer values as 
does Reuter. 

Cooperative Commit Processing 
In this section, we present the stages in perform­
ing the group commit with cooperating processes, 
and we describe, in detail, the grouping design cur­
rently used in KODA, the Commit-Lock Design. 

Group Committer 
Assume that a number of transactions have com­
pleted all data manipulation and logging activity 
and are ready to execute the commit processing 
phase. To group the commit requests, the follow­
ing steps must be performed in KODA: 

1. Each transaction must make its commit infor­
mation available to the group committer. 

2. One of the processes must be selected as the 
"group committer." 

3. The other members of the group need to be 
informed that their commit work will be com­
pleted by the group committer. These processes 
must wait until the commit information is writ­
ten to disk by the group committer. 

4. Once the group committer has written the com­
mit information to stable storage, it must inform 
the other members that commit processing is 
completed. 
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Commit-Lock Design 
The Commit-Lock Design uses a VMS lock to gener­
ate groups of committing transactions; the lock is 
also used to choose the group committer. 

Once a process completes all its updates and 
wants to commit its transaction, the procedure is 
as follows. Each transaction must first declare its 
intent to join a group commit. In KODA, each pro­
cess uses the interlocked queue instructions of the 
VAX system running VMS software to enqueue a 
block of commit information, known as a commit 
packet, onto a globally accessible commit queue. 
The commit queue and the commit packets are 
located in a shared, writeable global section. 

Each process then issues a lock request for the 
commit lock. At this point, a number of other 
processes are assumed to be going through the 
same sequence; that is, they are posting their 
commit packets and making lock requests for the 
commit lock. One of these processes is granted 
the commit lock. For the time being, assume the 
process that currently acquires the lock acts as 
the group committer. 

The group committer, first, counts the number 
of entries on the commit queue, providing the 
number of transactions that will be part of the 
group commit. Because of the VAX interlocked 
queue instructions, scanning to obtain a count and 
concurrent queue operations by other processes 
can proceed simultaneously. The group committer 
uses the information in each commit packet to 
format the commit block which will be written 
to disk. In KODA, the commit block is used as a 
commit list, recording which transactions have 
committed and which ones are active. In order to 
commit for a transaction, the group committer 
must mark each current transaction as completed. 
In addition, as an optimization, the group commit­
ter assigns a new transaction identifier for each 
process's next transaction. Figure 4 illustrates a 
commit block ready to be flushed to disk. 

Once the commit block is modified, the group 
committer writes it to disk in one atomic 1/0. This 
is the moment of commit for all transactions in 
the group. Thus, all transactions that were active 
and took part in this group commit are now stably 
marked as committed. In addition, as explained 
above, these transactions now have new transac­
tion identifiers. Next, the group committer sets a 
commit flag in each commit packet for all recently 
committed transactions, removes all commit pack­
ets from the commit queue, and, finally, releases 
the commit lock. Figure 5 illustrates a committed 
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Figure 4 Commit Block Ready to be Flushed to Disk 

group with new transact ion identifiers and with 
commit flags set. 

At this point, the remaining processes that were 
part of the group commit are, in turn, granted 
the commit lock. Because their commit flags are 
already set, these processes realize they do not 
need to perform a commit and, thus, release the 
commit lock and proceed to the next transact ion. 
After all these committed processes release the 
commit lock, a process that did not take part in the 
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group commit acquires the lock, notices it has not 
been committed, and, therefore, initiates the next 
group commit. 

There are several interesting points about using 
the VMS lock as the grouping mechanism. Even 
though all the transactions are effectively commit· 
ted after the commit block 1/0 has completed, the 
transactions are still forced to proceed serial ly; 
that is, each process is granted the lock, notices 
that it is committed, and then releases the lock. 
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Figure 5 Committed Group 
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So there is a serial procession of lock enqueues/ 
dequeues before the next group can start. 

This serial procession can be made more concur­
rent by, first, requesting the lock in a shared mode, 
hoping that all processes committed are granted 
the lock in unison. However, in practice, some pro­
cesses that are granted the lock are not committed. 
These processes must then request the lock in an 
exclusive mode. If this lock request is mastered on 
a different node in a VAXcluster system, the lock 
enqueue/dequeues are very expensive. 

Also, there is no explicit stall time built into 
the algorithm. The latency associated with the 
lock enqueue/dequeue requests allows the commit 
queue to build up. This stall is entirely dependent 
on the contention for the lock, which in turn 
depends on the throughput. 

Group Commit Mechanisms -
Our New Designs 
To improve on the transaction throughput provided 
by the Commit-Lock Design, we developed three 
different grouping designs, and we compared their 
performances at high throughput. Note that the 
basic paradigm of group commit for all these 
designs is described in the Group Committer sec­
tion. Our designs are as follows. 

Commit-Stall Design 
In the Commit-Stall Design, the use of the commit 
lock as the grouping mechanism is eliminated. 
Instead, a process inserts its commit packet onto 
the commit queue and, then, checks to see if it is 
the first process on the queue. If so, the process 
acts as the group committer. If not, the process 
schedules its own wake-up call, then sleeps. Upon 
waiting, the process checks to see if it has been 
committed. If so, the process proceeds to its next 
transaction. If not, the process again checks to see 
if it is first on the commit queue. The algorithm 
then repeats, as described above. 

This method attempts to eliminate the serial 
wake-up behavior displayed by using the commit 
lock. Also, the duration for which each process 
stalls can be varied per transaction to allow explicit 
control of the group size. Note that if the stall time 
is too small, a process may wake up and stall many 
times before it is committed. 

Willing-to-Wait Design 
As we have seen before, a delay in the commit 
sequence is a convenient means of converting a 
response time advantage into a throughput gain. If 
we increase the stall time, the transaction duration 
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increases, which is undesirable. At the same time, 
the grouping size for group commit increases, 
which is desirable. The challenge is to determine 
the optimal stall time. Reuter presented an analyti­
cal way of determining the optimal stall time for a 
system with transactions of the same type.1 

Ideally, we would like to devise a flexible scheme 
that makes the trade-off we have just described in 
real time and determines the optimum commit 
stall time dynamically. However, we cannot deter­
mine the optimum stall time automatically, because 
the database management system cannot judge 
which is more important to the user in a general 
customer situation - the transaction response time 
or the throughput. 

The Willing-to-Wait Design provides a user param­
eter called WIW time. This parameter represents 
the amount of time the user is willing to wait for 
the transaction to complete, given this wait will 
benefit the complete system by increasing through­
put. WIW time may be specified by the user for each 
transaction. Given such a user specification, it is 
easy to calculate the commit stall to increase the 
group size. This stall equals the WIW time minus 
the time taken by the transaction thus far, but only 
if the transaction has not already exceeded the 
WIW time. For example, if a transaction comes to 
commit processing in 0.5 second and the WIW time 
is 2.0 seconds, the stall time is then 1.5 seconds. In 
addition, we can make a further improvement by 
reducing the stall time by the amount of time 
needed for group commit processing. This delta 
time is constant, on the order of 50 milliseconds 
( one 1/0 plus some computation). 

The WIW parameter gives the user control over 
how much of the response time advantage (if any) 
may be used by the system to improve transaction 
throughput. The choice of an abnormally high value 
of WIW by one process only affects its own trans­
action response time; it does not have any adverse 
effect on the total throughput of the system. A low 
value of WIW would cause small commit groups, 
which in tum would limit the throughput. However, 
this can be avoided by administrative controls on 
the database that specify a minimum WIW time. 

Hiber Design 
The Hiber Design is similar to the Commit-Stall 
Design, but, instead of each process scheduling its 
own wake-up call, the group committer wakes up 
all processes in the committed group. In addition, 
the group committer must wake up the process 
that will be the next group committer. 
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Note, this design exhibits a serial wake-up behav­
ior like the Commit-Lock Design, however, the 
mechanism is less costly than the VMS lock used by 
the Commit-Lock Design. In the Hiber Design, if 
a process is not the group committer, it simply 
sleeps; it does not schedule its own wake-up call. 
Therefore, each process is guaranteed to sleep and 
wake up at most once per commit, in contrast to 
the Commit-Stall Design. Another interesting char­
acteristic of the Hiber Design is that the group 
committer can choose to either wake up the next 
group committer immediately, or it can actually 
schedule the wake-up call after a delay. Such a delay 
allows the next group size to become larger. 

Experiments 
We implemented and tested the Commit-Lock, the 
Commit-Stall, and the Willing-to-Wait designs in 
KODA. The objectives of our experiments were 

• To find out which design would yield the 
maximum throughput under response time 
constraints 

• To understand the performance characteristics 
of the designs 

In the following sections, we present the details 
of our experiments, the results we obtained, and 
some observations. 

Details of the Experiments 
The hardware used for all of the following tests was 
a VAX 6340 with four processors, each rated at 3.6 
VAX units of performance (VlW). The total possible 
CPU utilization was 400 percent and the total pro­
cessing power of the computer was 14.4 VUPs. As 
the commit processing becomes more significant 
in a transaction (in relation to the other phases), 
the impact of the grouping mechanism on the trans­
action throughput increases. Therefore, in order 
to accentuate the performance differences between 
the various designs, we performed our experiments 
using a transaction that involved no database activ­
ity except to follow the commit sequence. So, for 
all practical purposes, the TPS data presented 
in this paper can be interpreted as "commit 
sequences per second." Also, note that our system 
imposed an upper limit of 50 on the grouping size. 

Results 
Using the Commit-Lock Design, transaction pro­
cessing bottlenecked at 300 TPS. Performance 
greatly improved with the Commit-Stall Design; 
the maximum throughput was 464 TPS. The 
Willing-to-Wait Design provided the highest 

76 

throughput, 500 TPS. Using this last design, it was 
possible to achieve up to a 66 percent improve­
ment over the less-efficient Commit-Lock Design. 
Although both timer schemes, i.e ., the Commit­
Stall and Willing-to-Wait designs, needed tuning to 
set the parameters and the Commit-Lock Design 
did not, we observed that the maximum through­
put obtained using timers is much better than that 
obtained with the lock. These results were similar 
to those of Reuter. 

For our Willing-to-Wait Design, the minimum 
transaction duration is the WIW time. Therefore, 
the maximum TPS, the number of servers, and 
the WIW stall time, measured in milliseconds, 
are related by the formula: number of servers 
x 1000/WlW = maximum TPS. For example, our 
maximum TPS for the WIW design was obtained 
with 50 servers and 90 milliseconds WIW time. 
Using the formula, 50 x 1000/90 = 555. The actual 
TPS achieved was 500, which is 90 percent of the 
maximum TPS. This ratio is also a measure of the 
effectiveness of the experiment. 

During our experiments, the maximum group 
size observed was 45 (with the Willing-to-Wait 
Design). This is close to the system-imposed limit 
of 50 and, so, we may be able to get better grouping 
with higher limits on the size of the group. 

Observations 
In the Commit-Stall and the Willing-to-Wait designs, 
given a constant stall, if the number of servers is 
increased, the TPS increases and then decreases. 
The rate of decrease is slower than the rate of 
increase. The TPS decrease is due to CPU overload­
ing. The TPS increase is due to more servers trying 
to execute transactions and better CPU utilization. 
Figure 6 illustrates how TPS varies with the num­
ber of servers, given a constant stall WIW time. 

Again, in the stalling designs, for a constant num­
ber of servers, if the stall is increased, the TPS 
increases and then decreases. The TPS increase is 
due to better grouping and the decrease is due to 
CPU underutilization. Figures 7 and 8 show the 
effects on TPS when you vary the commit-stall 
time or the WIW time, while keeping the number 
of servers constant. 

To maximize TPS with the Commit-Stall Design, 
the following "mountain-climbing" algorithm was 
useful . This algorithm is based on the previous two 
observations. Start with a reasonable value of the 
stall and the number of servers, such that the CPU 
is underutilized. Then increase the number of 
servers. CPU utilization and the TPS increase. 
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Continue until the CPU is overloaded; then, increase 
the stall time. CPU utilization decreases, but the 
TPS increases due to the larger group size. 

This algorithm demonstrates that increasing 
the number of servers and the stall by small 
amounts at a time increases the TPS, but only up 
to a limit. After this point, the TPS drops. When 
close to the limit, the two factors may be varied 
alternately in order to find the true maximum. 
Table 1 shows the performance measurements of 
the Commit-Stall Design. Comments are included 
in the table to highlight the performance behavior 
the data supports. 

The same mountain-climbing algorithm is modi­
fied slightly to obtain the maximum TPS with the 
Willing-to-Wait Design. The performance measure-
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ments of this design are presented in Table 2. As 
we have seen before, the maximum TPS with this 
design is inversely proportional to the WIW time, 
while CPU is not fully utilized. The first four rows 
of Table 2 illustrate this behavior. The rest of the 
table follows the same pattern as Table I. 

The Willing-to-Wait Design performs slightly 
better than the Commit-Stall Design by adjusting 
to the variations in the speed at which different 
servers arrive at the commit point. Such variations 
are compensated for by the variable stalls in the 
Willing-to-Wait Design. Therefore, if the variation 
is high and the commit sequence is a significant 
portion of the transaction, we expect the Willing­
to-Wai t Design to perform much better than the 
Commit-Stall Design. 

Future Work 
There is scope for more interesting work to further 
optimize commit processing in the KODA database 
kernel. First, we would like to perform experi­
ments on the Hiber Design and compare it to the 
other designs. Next, we would like to explore ways 
of combining the Hiber Design with either of the 
two timer designs, Commit-Stall or Willing-to­
Wait. This may be the best design of all the above, 
with a good mixture of automatic stall, low over­
head, and explicit control over the total stall time. 
In addition, we would like to investigate the use of 
timers to ease system management. For example, a 
system administrator may increase the stalls for 
all transactions on the system in order to ease CPU 
contention, thereby increasing the overall effective­
ness of the system. 
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Table 1 Commit-Stall Design Performance Data 

Number of Commit Stall CPU Utilization 
Servers (Milliseconds) (Percent)* TPS Comments 

50 20 360 425 Starting point 

55 20 375 454 Increased number of servers, therefore, higher TPS 

60 20 378 457 Increased number of servers, therefore, CPU saturated 

60 30 340 461 Increased stall, therefore, CPU less utilized 

65 30 350 464 Increased number of servers, maximum TPS 

70 30 360 456 "Over-the-hill" situation, same strategy of further 
increasing the number of servers does not increase TPS 

70 40 330 451 No benefit from increasing number of servers and stall 

65 40 329 448 No benefit from just increasing stall 

• Four processors were used in the experiments. Thus, the total possible CPU utilization is 400 percent. 

Table2 Willing-to-Wait Performance Data 

Willing-to-Wait 
Number of Stall CPU Utilization 
Servers (Mill iseconds) (Percent)* TPS Comments 

45 100 285 426 Starting point, CPU not saturated 

45 90 295 466 Decreased stall to load CPU, CPU still not saturated 

45 80 344 498 Decreased stall again 

45 70 363 471 Further decreased stall, CPU almost saturated 

50 80 372 485 Increased number of servers, CPU more saturated 

50 90 340 500 Increased stall to lower CPU usage, maximum TPS 

55 90 349 465 "Over-the-hill"situation, same strategy of further 
increasing number of servers does not increase TPS 

50 100 324 468 No benefit from just increasing stall 

• Four processors were used in the experiments. Thus, the total possible CPU utilization is 400 percent. 

Conclusions 
We have presented the concept of group commit 
processing as well as a general analysis of various 
options available , some trade-offs involved, and 
some performance results indicating areas for pos­
sible improvement. It is clear that the choice of the 
algorithm can significantly influence performance 
at high transaction throughput. We are optimistic 
that with some further investigation an optimal 
commit sequence can be incorporated into Rdb/VMS 
and VAX DBMS with considerable gains in trans­
action processing performance. 
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Verification of the First 
Fault-tolerant l{4X System 

The fault-tolerant character of the VAXft 3000 system required that plans be made 
early in the development stages for the verification and test of the system. To ensure 
proper test coverage of the fault-tolerant features, engineers built fault-insertion 
points directly into the system hardware. During the verification process, test engi­
neers used hardware and software fault insertion in directed and random test 
forms. A four-phase verification strategy was devised to ensure that the VAXft system 
hardware and software was fully tested for error recovery that is transparent to 
applications on the system. 

The VAXft 3000 system provides transparent fault 
tolerance for applications that run on the system. 
&cause the 3000 includes fault-tolerant features, 
verification of the system was unlike that ordinar­
ily conducted on VAX systems. To facilitate system 
test, the verification strategy outlined a four-phase 
approach which would require hardware to be 
built into the system specifically for test purposes. 

This paper presents a brief overview of the VAXft 
system architecture and then describes the meth­
ods used to verify the system's fault tolerance. 

VAXft 3000 Architectural Overview 
The VAXft fault-tolerant system is designed to 
recover from any single point of hardware failure. 
Fault tolerance is provided transparently for all 
applications running under the VMS operating 
system. This section reviews the implementation 
of the system to provide background for the main 
discussion of the verification process. 

The system comprises two duplicate systems, 
called zones. Each zone is a fully functional com­
puter with enough elements to run an operating 
system. These two zones, referred to as zone A and 
zone B, are shown in Figure 1, which illustrates the 
duplication of the system components. The two 
independent zones are connected by duplicate 
cross-link cables. The cabinet of each zone also 
includes a battery, a power regulator, cooling fans, 
and an AC power input. Each zone's hardware has 
sufficient error checking to detect all single faults 
within that zone. 

Figure 2 is a block diagram of a single zone with 
one 1/0 adapter. Note the portions of the zone 
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labeled dual-rail and single-rail. The dual-rail por­
tions of the system have two independent sets 
of hardware performing the same operations. 
Correct operation is verified by comparison. The 
fault-detection mechanism for the single-rail 1/0 
modules combines checking codes and communi­
cation protocols. 

The system performs 1/0 operations by sending 
and receiving message packets. The packets are 
exchanged between the CPU and various servers, 
including disks, Ethernet, and synchronous lines. 
These message packets are formed and interpreted 
in the dual-rail portion of the system. They are pro­
tected in the single-rail portion of the machine by 
check codes which are generated and checked in 
the dual-rail portion of the machine. Corrupted 
packets can be retransmitted through the same or 
alternate paths. 

In the normal mode of fault-tolerant operation, 
both zones execute the same instruction at the 
same time. The four processors (two in each zone) 
appear to the operating system as a single logical 
CPU. The hardware supplies the detection and 
recovery facilities for faults detected in the CPU 
and memory portions of the system. A defective 
CPU module and its memory are automatically 
removed from service by the hardware, and the 
remaining CPU continues processing. 

Error handling for the 1/0 interconnections is 
managed differently. The paths to and from 1/0 
adapters are duplicated for checking purposes. If a 
fault is detected, the hardware retries the operation. 
If the retry is successful, the error is logged, and 
operation continues without software assistance. 
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If the retry is unsuccessful, the Fault-tolerant 
System Services (FfSS) software performs error 
recovery. FfSS is a layered software product that is 
utilized with every VAXft 3000 system. It provides 
the software necessary to complete system error 
recovery. For system recovery from a failed 1/0 
device, an alternate path or device is used. All 
recoverable faults have an associated maximum 
threshold value. If this threshold is exceeded, FfSS 
performs appropriate device reconfiguration. 

Verification of a Fault-tolerant 
VAX System 
This section entails a discussion of the types of sys­
tem tests and the fault-insertion techniques used 
to ensure the correct operation of the VAXft system. 
In addition, the four-phase verification strategy and 
the procedures involved in each phase are reviewed. 

There are two types of system tests: directed and 
random. Directed tests, which test specific hard­
ware or software features, are used most frequently 
in computer system verification and follow a strict 
test sequence. Complex systems, however, cannot 
be completely verified in a directed fashion.' As a 
case in point, an operating system running on a 
processor has innumerable states. Directed tests 
verify functional operation under a particular set 
of conditions. They may not, however, be used to 
verify that same functionality under all possible 
system conditions. 

In comparison, random testing allows multiple 
test processes to interact in a pseudo-random or 
random fashion. In random testing, test coverage 
is increased with additional run-time. Thus, once 
the proper test processes are in place, the need to 
develop additional tests in order to increase cover­
age is eliminated. This type of testing also reduces 
the effects of the biases of the engineers generating 
the tests. While directed testing can provide only a 
limited level of coverage, this coverage level can be 
well understood. Random testing offers a poten­
tially unbounded level of coverage; however, quan­
tifying this coverage is difficult if not impossible. 

To achieve the proper level of verification, the 
VAXft verification utilized a balance of directed 
and random testing. Directed testing was used to 
achieve a certain base level of functionality, and 
random testing was used to expand the level of 
coverage. 

To permit testing of system fault tolerance in a 
practical amount of time, some form of fault inser­
tion is required. The reliability of components used 
in computer systems has been improving, and more 
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importantly, the number of components used to 
implement any function has been dramatically 
decreasing. These factors have produced a corre­
sponding reduction in system failure rates. Given 
the high reliability of today's machines, it is not 
practical from a verification standpoint to verify a 
system by letting it run until failures occur. 

Conceptually, faults can be inserted in two ways. 
First, memory locations and registers can be cor­
rupted to mimic the results of gate-level faults 
(software fault insertion). Second, gate-level faults 
may be inserted directly into the hardware (hard­
ware fault insertion). There are advantages to 
both techniques. One advantage of software­
implemented fault insertion is that no embedded 
hardware support is required. 2 The advantage of 
hardware fault insertion, on the other hand, is that 
faults are more representative of actual hardware 
failures and can reveal unanticipated side effects 
from a gate-level failure. To utilize hardware fault 
insertion, either a mechanism must be designed 
into the system, or an external insertion device 
must be developed once the hardware is available. 
Given the physical feature size of the components 
used today, it is virtually impossible to achieve ade­
quate fault-insertion coverage through an external 
fault-insertion mechanism. 

The error detection and recovery mechanism 
determines which fault insertion technique is 
suitable for each component. Some examples illus­
trate this point. For the lockstep portion of the 
VAXft 3000 CPUs, software fault insertion is not suit­
able because the lockstep functionality prevents 
corruption of memory or registers when faults 
occur. Therefore, hardware faults cannot be mim­
icked by modifying memory contents. However, 
the software fault-insertion technique was suitable 
to test the 1/0 adapters since the system handles 
faults in the adapters by detecting the corruption 
of data. Hardware fault insertion was not suitable 
because the 1/0 adapters were implemented with 
standard components that did not support hard­
ware fault insertion. 

Because the verification strategy for the 3000 
was considered a fundamental part of the system 
development effort, fault insertion points were 
built directly into the system hardware. The amount 
of logic necessary to implement fault insertion is 
relatively small. The goals of the fault-insertion 
hardware were to 

• Eliminate any corruption of the environment 
under test that could result from fault insertion. 
For example, if a certain type of system write 
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operation is required to insert a fault, then every 
test case will be done on a system that is in a 
"post-fault-insertion" state. 

• Enable the user to distribute faults randomly 
across the system. 

• Allow insertion of faults during system operation. 

• Enable testing of transient and solid faults. 

The fault-insertion points are accessed through 
a separate serial interface bus isolated from the 
operating hardware. This separate interface ensures 
that the environment under test is unbiased by 
fault insertion. 

Even with hardware support for fault insertion, 
only a small number of fault-insertion points can 
be implemented relative to the total number possi­
ble. Where the number of fault-insertion points is 
small, the selection of the fault-insertion points 
is important to achieve a random distribution. 
Fault-insertion points were designed into most of 
the custom chips in the VAXft system. When the 
designers were choosing the fau lt-insertion points, 
a single bit of a data path was considered sufficient 
for data path coverage. Since a significant portion 
of the chip area is consumed by data paths, a high 
level of coverage of each chip was achieved with 
relatively few fault-insertion points. The remaining 
fault-insertion points could then be applied to the 
control logic. Coverage of this logic was important 
because control logic faults resu lt in error modes 
that are more unpredictable than data path failures. 

The effect that a given fault h.as on the system 
depends on the current system operation and when 
in that operation the fault was inserted. In the 
3000, for example, a failure of bit 3 in a data path 
will have significantly different behavior depend­
ing upon whether the data bit was incorrect during 
the address transmission portion of a cycle or dur­
ing the succeeding data portion. Therefore, the 
timing of the fault insertion was pseudo-random. 
The choice of pseudo-random insertion was based 
on the fact that the fault-insertion hardware oper­
ated asynchronously to the system under test. This 
meant that faults could be inserted at any time, 
without correlation to the activity of the system 
under test. 

Faults may be transient or solid in nature. For 
design purposes, a solid fault was defined as a fail­
ure that will be present on retry of an operation. 
A transient fault was defined as a fault that will not 
be present on retry of the operation. Transient 
faults do not require the removal of the device that 
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experienced the fault; solid faults do require device 
removal. Since the system reacts differently to tran­
sient and hard faults, both types of faults had to 
be verified in the VAXft system. Therefore, it was 
required that the fault-insertion hardware be capa­
ble of inserting solid or transient faults. Solid faults 
were inserted by continually applying the fault­
insertion signal. Transient faults were inserted by 
applying the fault-insertion signal only until the 
machine detected an error. 

As noted earlier, the verification strategy utilized 
both hardware and software fault insertion. The 
hardware fault-insertion mechanisms allowed faults 
to be inserted into any system environment, includ­
ing diagnostics, exercisers, and the VMS operating 
system. As such, it was used for initial verification 
as well as regression testing of the system. The veri­
fication strategy for the VAXft 3000 system involved 
a multiphase effort. Each of the following four veri­
fication phases built upon the previous phase: 

1. Hardware verification under simulation 

2. Hardware verification with system exerciser and 
fault insertion 

3. System software verification with fault insertion 

4. System application verification with fault 
insertion 

Figure 3 shows the functional layers of the 
VAXft 3000 system in relation to the verification 
phases. The numbered brackets to the right of 
the diagram correlate to the testing coverage of 
each layer. For example, the system software verifi­
cation, phase 3, verified the VMS system, Fault­
tolerant System Services (FTSS), and the hardware 
platform. 

The following sections briefly describe the four 
phases of the VAXft verification. 

Hardware Verification under Simulation 
Functional design verification using software simu­
lation is inherently slow in a design as large as the 
VAXft 3000 system. To use resources most efficiently, 
a verification effort must incorporate a number of 
different modeling levels, which means trading off 
detail to achieve other goals such as speed.3 

VAXft 3000 simulation occurred at two levels: the 
module level and the system level. Module-level 
simulation verified the base functionality of each 
module. Once this verification was complete, a sys­
tem-level model was produced to validate the 
intermodule functionality. The system-level model 
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Figure 3 Functional Layers of the VAXft 3000 System in Relation to the Verification Phases 

consisted of a full dual-rail, dual-zone system with 
an 1/0 adapter in each zone. At the final stage, full 
system testing was performed. 

More than 500 directed error test cases were 
developed for gate-level system simulation. For each 
test, the test environment was set up on a fully 
operational system model, and then the fault was 
inserted. A simulation controller was developed to 
coordinate the system operations in the simulation 
environment. The simulation controller provided 
the following control over the testing: 

• Initialization of all memory elements and certain 
system registers to reduce test time 

• Setup of all memory data buffers to be used in 
testing 

• Automated test execution 

• Automated checking of test results 

• Log of test results 

For each test case, the test environment was 
selected from the following: memory testing, 1/0 
register access, direct memory access (DMA) traf­
fic, and interrupt cycles. In any given test case, any 
number of the previous tests could be run. These 
environments could be run with or without faults 
inserted. In addition, each environment consisted 
of multiple test cases. In an error handling test case, 
the proper system environment required for the 
test was set, and then the fault was inserted into 
the system. The logic simulator used was designed 
to verify logic design. When an illegal logic condi­
tion was detected, it produced an error response. 
When a fault insertion resulted in an illegal logic 
condition, the simulator· responded by invalidat­
ing the test. Because ofthis, a great deal of time was 
spent to ensure that faults were inserted in a way 
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that would not generate illegal conditions. Each 
test case was considered successful only when the 
system error registers contained the correct data 
and the system had the ability to continue opera­
tion after the fault. 

Hardware Verification with System 
Exerciser and Fault Insertion 
After the prototypes were available, the verification 
effort shifted from simulation to fault insertion on 
the hardware. The goal was to insert faults using an 
exerciser that induced stressful, reproducible hard­
ware activity and that allowed us to analyze and 
debug the fault easily. 

Exerciser test cases were developed to stress 
the various hardware functions. The tests were 
designed to create maximum interrupt and data 
transfer activity between the CPU and the 1/0 
adapters. These functions could be tested individ­
ually or simultaneously. The exerciser scheduler 
provided a degree of randomness such that the 
interaction of functions was representative of a 
real operating system. The fault-insertion hardware 
was used to achieve a random distribution of fault 
cases across the system. 

Because it was possible to insert initial faults 
while specific functions were performed, a great 
degree of reproducibility was achieved that aided 
debug efforts. Once the full suite of tests worked 
correctly, fault insertion was performed while the 
system continually switched between all func­
tions. This testing was more representative of actual 
faults in customer environments, but was less 
reproducible. 

As previously mentioned, the hardware fault­
insertion tool allowed the insertion of both tran­
sient and solid failures. The VAXft 3000 hardware 
recovers from transient failures and utilizes 
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software recovery for hard failures. Since the goal 
of phase 2 testing was to verify the hardware, the 
focus was on transient fault insertion. Two criteria 
for each error case determined the success of the 
test. First and foremost, the system must continue 
to run and to produce correct results. Second, the 
error data that the system captures must be correct 
based on the fault that was inserted. Correct error 
data is important because it is used to identify the 
failing component both for software recovery and 
for servicing. 

Although the simulation environment of phase I 
was substantially slower than phase 2, it provided 
the designers with more information. Therefore 
when problems were discovered on the prototypes 
used in phase 2, the failing case was transferred to 
the simulator for further debugging. The hardware 
verification also validated the models and test pro­
cedures used in the simulation environment. 

System Software Verification with Fault 
Insertion 
In parallel with hardware verification, the VAXft 3000 
system software error handling capabilities were 
tested. This phase represented the next higher 
level of testing. The goal was to verify the VAX func­
tionality of the 3000 system as well as the software 
recovery mechanisms. 

Digital has produced various test packages to 
verify VAX functionality. Since the VAXft 3000 system 
incorporates a VAX chip set used in the VAX 6000 
series, it was possible to use several standard 
test packages that had been used to verify that 
system.' 

Fault-tolerant verification, however, was not 
addressed by any of the existing test packages. 
Therefore, additional tests were developed by com­
bining the existing functional test suite with the 
hardware fault-insertion tool and software fault­
insertion routines. Test cases used included cache 
failure, clock failure, memory failure, intercon­
nect failures, and disk failures. These failures were 
applied to the system during various system opera­
tions. In addition, servicing errors were also tested 
by removing cables and modules while the system 
was running. The completion criteria for tests 
included the following: 

• Detection of the fault 

• Isolation of the failed hardware 

• Continuation of the test processes without 
interruption 
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System Application Verification with 
Fault Insertion 
The goals for the final phase of the VAXft 3000 
verification were to run an application with fault 
insertion and to demonstrate that any system 
fault recovery action had no effect on the process 
integrity and data integrity of the application. The 
application used in the testing was based on the 
standard DebitCredit banking benchmark and was 
implemented using the DECintact layered product. 
The bank has 10 branches, 100 tellers, and 3,600 
customer accounts (10 tellers and 360 accounts 
per branch). Traffic on the system was simulated 
using terminal emulation process (VAXRTE) scripts 
representing bank teller activity. The transaction 
rate was initially one transaction per second (TPS) 
and was varied up to the maximum TPS rate to stress 
the system load. 

The general test process can be described as 
follows: 

1. Started application execution. The terminal emu­
lation processes emulating the bank tellers were 
started and continued until the system was 
operating at the desired TPS rating. 

2. Invoked fault insertion. A fault was selected at 
random from a table of hardware and software 
faults. The terminal emulation process submitted 
stimuli to the application before, during, and 
after fault insertion. 

3. Stopped terminal emulation process. The appli­
cation was run until a quiescent state was 
reached. 

4. Performed result validation. The process integ­
rity and data integrity of the application were 
validated. 

All the meaningful events were logged and time­
stamped during the experiments. Process integrity 
was proved by verifying continuity of transaction 
processing through failures. The time stamps on 
the transaction executions and the system error 
logs allowed these two independent processes to 
be correlated. 

The proof of data integrity consisted of using the 
following consistency rules for transactions: 

1. The sum of the account balances is equal to the 
sum of the teller balances, which is equal to the 
sum of the branch balances. 

2. For each branch, the sum of the teller balances is 
equal to the branch balance. 
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3. For each transaction processed, a new record 
must be added to the history file. 

Application verification under fault insertion 
served as the final level of fault-tolerant validation. 
Whereas the previous phases ensured that the vari­
ous components required for fault tolerance oper­
ated properly, the system application verification 
demonstrated that these components could oper­
ate together to provide a fully fault-tolerant system. 

Conclusions 
The process of verifying fault tolerance requires 
a strong architectural test plan. This plan must be 
developed early in the design cycle because hard­
ware support for testing may be required. The veri­
fication plan must demonstrate cognizance of the 
capabilities and limitations at each phase of the 
development cycle. For example, the speed of sim­
ulation prohibits verification of software error 
recovery in a simulation environment. Also, when 
a system is implemented with VLSI technology, the 
ability to physically insert faults into the system 
by means of an external mechanical mechanism 
may not be adequate to properly verify the correct 
system error recovery. These and other issues 
must be addressed before the chips are fabricated 
or adequate error recovery verification may not be 
possible. Inadequate error recovery verification 
directly increases the risk of real, unrecoverable 
faults resulting in system outages. 

The verification plan for the VAXft 3000 system 
consisted of the following phases and objectives: 

1. Hardware simulation with fault insertion verified 
error detection, hardware recovery, and error 
data capture. 

2. System exerciser with fault insertion enhanced 
the coverage of the hardware simulation effort. 

3. System software with fault insertion verified 
software error recovery and reporting. 

4. System software verification with fault inser­
tion verified the transparency of the system 
error recovery to the application running on 
the system. 

The test of any fault tolerant system is to survive 
a real fault while running a customer application. 
Removing a module from a machine may be an 
impressive test, but machines fail as a result of 
modules falling out of the backplane. The initial 
test of the VAXft 3000 system showed that the sys­
tem would survive most of the faults introduced. 
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Tests also revealed problems that would have 
resulted in system outages if left uncorrected. 
System enhancements were made in the areas 
of system recovery actions and repair call out. 
Whereas some of the problems were simple 
coding errors, others were errors in carefully 
reviewed and documented algorithms. Simply put, 
the collective wisdom of the designers was not 
always sufficient to reach the degree of accuracy 
desired for this fault-tolerant system. 

As the VAXft product family evolves, perfor­
mance and functional enhancements will be avail­
able. The test processes described in this paper 
will remain in use, so that every future release 
of software will be better than the previous one. 
The combination of hardware and software fault 
insertion, coupled with physical system disruption 
allows testing to occur at such a greatly accelerated 
rate, that all testing performed will be repeated for 
every new release. 
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