
Transaction Processing, Databases,
and Fault-tolerant Systems

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 1

Winter 1991

Cover Design
Transaction processing is the common theme for papers in this

issue. The automatic teller machine on our cover represents one

of the many businesses that rely on TP systems. If we could look

behind the familiar machine, we would see the products and

technologies - here symbolized by linked databases - that

suppo1·t reliable and speedy processing of transactions worldwide.

The cover was designed by Dave Bryant of Digital's Media

Communications Group.

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor

Ci.rculation
Catherine M. Phillips, Administrator
Suzanne). Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Nancy jones, Typographer
Peter Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Robert M. Glorioso
Richard). Hollingsworth

john W McCredie
Alan G. Nemeth
Mahendra R. Patel
F. Grant Sa viers
Robert K. Spitz
Victor A. Vyssotsky

Gayn B. Winters

The Digital Tecbnicaljoumal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO l-3/B68, Maynard,
Massachusetts 0175 4-2571. Subscriptions to the journal are $40.00
for four issues and must be prepaid in .S. funds. niversity and
college professors and Ph.D. students in the electrical engineering

and computer science fields receive complimentary subscriptions
upon request. Orders , inquiries, and address changes should be
sent to The Digital Tecbn.ical}oumal at the published-by address.
Inquiries can also be sent electronically to DTJ®CRJ..DEC.COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, M A 01730 -1493.

Digital employees may send subscription orders on the ENET to

RDVAX::JOURNAI. or by interoffice mail to mailstop MLO I-3/B68.
Orders should include badge number, cost center, site location code
and address. All employees must advise of changes of address.

Comn1ents on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright <D 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not

distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All

rights reserved.

The information in this journal is subject to change without
notice and should not be construed as a commitment by Digital

Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this journal.

ISSN 0898-901 X

Documentation Number EY-F588E-DP

The following are trademarks of Digital Equipment Corporation:
DEC, DECforms, DECintact, DECnet, DECserver, DECtp, Digital, the
Digital logo, LAT, Rdb/VMS, TA, VAX ACMS, VAX CDD, VAX COBOL,
VAX DBMS, VAX Performance Advisor, VAX RALLY, VAX Rdb/VMS,
VAX RMS, VAX SPM, VAX SQL, VAX 6000, VAX 9000, VAXcluster,
VA.Xft, VAXserver, VMS.

IBM is a registered trademark of International Business Machines
Corporation.

TPC Benchmark is a trademark of the Transaction Processing
Performance Council.

Book production was done by Digital's Educational Services
Media Communications Group in Bedford, MA.

u u

I Contents

8 Foreword
Carlos G. Borgialli

10 DECdta-Digital's Distributed
Transaction Processing Architecture

Transaction Processing, Databases,
and Fault-tolerant Systems

Philip A. Bernstein, William T. Emberton, and Vi jay Trehan

18 Digital's Transaction Processing Monitors
Thomas G. Speer and Mark W. Storm

33 Transaction Management Support in the
VMS operating System Kernel
William A. uing, James E. Johnson, and Robert V. undau

45 Per:formance Evaluation of
Transaction Processing Systems
Walter H. Kohler, Yun-Ping Hsu, Thomas K. Rogers,
and Wael H. Bahaa-El-Oin

58 Tools and Techniques for Preliminary Sizing of
Transaction Processing Applications
William Z. Zahavi, Frances A. Habib, and Kenneth]. Omahen

65 Database Availability for Transaction Processing
Ananth Raghavan and T. K. Rengarajan

70 Designing an Optimized Transaction Commit Protocol
Peter M. Spiro, Ashok M. Joshi, and T. K. Rengarajan

79 Verification of the First Fault-tolerant mx System
William E Brockert, Carlos Alonso, and James M. Melvin

1

I Editor's Introduction

Jane C. Blake
Editor

Digital's transaction processing systems are inte­
grated hardware and software products that operate
in a distributed environment to support commer­
cial applications, such as bank cash withdrawals,
credit card transactions, and global trading. For
these applications, data integrity and continuous
access to shared resources are necessary system
characteristics; anything less would jeopardize the
revenues of business operations that depend on
these applications. Papers in this issue of the Journal
look at some of Digital's techologies and products
that provide these system characteristics in three
areas: distributed transaction processing, database
access, and system fault tolerance.

Opening the issue is a discussion of the architec­
ture, DECdta, which ensures reliable interoperation
in a distributed environment. Phil Bernstein, Bill
Emberton, and Vijay Trehan define some transaction
processing terminology and analyze a TP applica­
tion to illustrate the need for separate architectural
components. They then present overviews of each
of the components and interfaces of the distributed
transaction processing architecture, giving partic­
ular attention to transaction management.

Two products, the ACMS and DECintact monitors
implement several of the functions defined by th~
DECdta architecture and are the twin topics of a
paper by Tom Speer and Mark Storm. Although
based on different implementation strategies, both
ACMS and DECintact provide TP-specific services
for developing, executing, and managing TP appli­
cations. Tom and Mark discuss the two strategies
and then highlight the functional similarities and
differences of each monitor product.

The ACMS and DECintact monitors are layered on
the VMS operating system, which provides base
services for distributed transaction management.
Described by Bill Laing, Jim Johnson, and Bob
Landau, these VMS services, called DECdtm, are an

2

addition to the operating system kernel and address
the problem of integrating data from multiple sys­
tems and databases. The authors describe the three
DECdtm components, an optimized implementa­
tion of the two-phase commit protocol, and some
VAXcluster-specific optimizations.

The next two papers turn to the issues of measur­
ing TP system performance and of sizing a system
to ensure a TP application will run efficiently. Walt
Kohler, Yun-Ping Hsu, Tom Rogers, and Wael Bahaa­
El-Din discuss how Digital measures and models TP
system performance. They present an overview of
the industry-standard TPC Benchmark A and Digital's
implementation, and then describe an alternative
to benchmark measurement - a multilevel analyti­
cal model ofTP system performance that simplifies
the system's complex behavior to a manageable set
of parameters. The discussion of performance con­
tinues but takes a different perspective in the paper
on sizing TP systems. Bill Zahavi, Fran Habib, and
Ken Omahen have written about a methodology
for estimating the appropriate system size for a TP
application. The tools, techniques and algorithms
they describe are used when an application is still
in its early stages of development.

High performance must extend to the database
system. In their paper on database availability,
Ananth Raghavan and T.K. Rengarajan examine
strategies and novel techniques that minimize the
affects of downtime situations. The two databases
referenced in their discussion are the VAX Rdb/VMS
and VAX DBMS systems. Both systems use a database
kernel called KODA, which provides transaction
capabilities and commit processing. Peter Spiro,
AshokJoshi, and T.K. Rengarajan explain the impor­
tance of commit processing relative to throughput
and describe new designs for improving the perfor­
mance of group commit processing. These designs
were tested, and the results of these tests and the
authors' observations are presented.

Equally as important in TP systems as database
availability is system availability. The topic of the
final paper in this issue is a system designed to be
continously available, the VAXft 3000 fault -tolerant
system. Authors Bill Bruckert, Carlos Alonso, and
Jim Melvin give an overview of the system and then
focus on the four-phase verification strategy devised
to ensure transparent system recovery from errors.

I thank Carlos Borgialli for his help in preparing
this issue and for writing the issue's Foreword.

Biographies I

Carlos Alonso A principal software engineer, Carlos Alonso is a team leader
for the project to port the System-v operating system to the VA.Xft 3000.
Previously, he was the project leader for various VA.Xft 3000 system validation
development efforts. As a member of the research group, Carlos developed the
test bed for evaluating concurrency control algorithms using the VMS
Distributed Lock Manager, and he designed the prototype alternate lock
rebuild algorithm for cluster transitions. He holds a B.S.E.E. (1979) from Tulane
University and an M.S.C.S. (1980) from Boston University.

Wael Hilal Bahaa-El-Din Wael Bahaa-El-Din joined Digital in 1987 as a senior
consultant to the Systems Performance Group, Database Systems. He has led a
number of studies to evaluate performance database and transaction process­
ing systems under response time constraints. After receiving his Ph.D. (1984) in
computer and information science from Ohio State University, Wael spent
three years as an assistant professor at the University of Houston. He is
a member of ACMS and IEEE, and he has written numerous articles for profes­
sional journals and conferences.

Philip A. Ber n ste in As a senior consultant engineer, Philip Bernstein is both
an architectural consultant in the Transaction Processing Systems Group and a
researcher at the Cambridge Research Laboratory. Prior to joining Digital in 1987,
he was a professor at Wang Institute of Graduate Studies and at Harvard Univer­
sity, a vice president at Sequoia Systems, and a researcher at the Computer
Corporation of America. He has published over 60 papers and coauthored two
books. Phil received a B.S. (1971) in engineering from Cornell University and a
Ph.D. (1975) in computer science from the University of Toronto.

William F. Brockert William Bruckert is a consulting engineer who joined
Digital in 1969 after receiving a B.S.E.E. degree from the University of
Massachusetts. He received an M.S.E.E./C.E. degree from the same university
in 1981. Beginning as a worldwide product support engineer, Bill later worked
on a number of DECsystem-10/20 designs. He developed the cache, memory,
and 1/0 subsystem for the VAX 8600 processor and was the system architect
of the VAX 8650 processor. His most recent role was as the architect of the VA.Xft
3000 system. Bill currently holds seven patents.

3

4

William T. Emberton As a principal software engineer, William Emberton is
currently involved in the development of Queue Management Architecture. He
is also involved in X/Open and POSIX TP Standards work and is a member
of the team that is developing the overall DECtp product architecture. Previ­
ously, he worked on the initial versions of the DECdta architecture. Before com­
ing to Digital in 1987, Bill held positions as Director of Software Development
at National Semiconductor and Manager of Systems Development for Inter­
national Retail Systems at NCR. He was educated at London University.

Frances A. Habib Fran Habib is a principal software engineer involved with
the development of transaction processing workload characterization and siz­
ing tools. Previously, Fran worked at Data General and GTE Laboratories as a
management science consultant. She holds an M.S. in operations research from
MIT and a B.S. in engineering and applied science from Harvard. Fran is a full
member of ORSA and belongs to ACM, IEEE, and the ACM SIGMETRICS special
interest group on modeling and performance evaluation of computer systems.

Yun-Ping Hsu Yun-Ping is currently a principal software engineer in the
Transaction Processing Systems Performance and Characterization Group. He
joined Digital in October 1987, after receiving his master's degree in electrical
and computer engineering from the University of Massachusetts at Amherst. In
his position, Yun-Ping is responsible for performance modeling and bench­
mark measurement of both ACMS- and DECintact-based TP systems. He also
participated in the TPC Benchmark A standardization activity during 1989. He is
a member of ACM and IEEE.

James E. Johnson A consulting software engineer, Jim Johnson has worked
for the VMS Engineering Group since joining Digital in 1984. He is currently a
project leader for VMS Engineering in Europe. Prior to this work, Jim led the
RMS project, and after relocating to the UK three years ago, he was responsible
for much of the design and implementation of the DECdtm services. At the same
time, Jim was an active participant in the transaction management architecture
review group. He has applied for a patent pertaining to the two-phase commit
protocol optimization currently used in DECdtm services.

Ashok M. Joshi Ashok Joshi is a principal software engineer interested in
database systems, transaction processing, and object-based programming. He is
presently working on the KODA subsystem, which provides record storage for
Rdb/VMS and DBMS software. For the Rdb/VMS project, he developed hash
indexing and record placement features, and he worked on optimizing the lock
protocols. Ashok came to Digital after receiving a bachelor's degree in electrical
engineering from the Indian Institute of Technology, Bombay, and a master's
degree in computer science from the University of Wisconsin, Madison.

Walter H. Kohler As a software engineering senior manager, Walt is respon­
sible for TP system performance measurement and analysis and leads Digital's
TP benchmark standards activities. Before joining Digital in 1988, Walt was a vis­
iting scientist and technical consultant to Digital and a professor of electrical
and computer engineering at the University of Massachusetts at Amherst. He
holds B.S., M.S., and Ph.D. degrees in electrical engineering, all from Princeton
University. Walt recently received the IEEE/CS Meritorious Service Award, and
he has published over 25 technical articles.

William A. Laing William Laing is a senior consultant engineer based in
Newbury, England. He is the technical leader for production systems support
for the VMS operating system. During five years spent in the U.S., Bill was
responsible for the design and initial development of symmetrical multi­
processing support in the VMS system. He joined Digital in 1981, after doing
research on operating systems at Edinburgh University for nine years. Bill holds
a B.Sc. (1972) in mathematics and computer science and an M.Phil. (1976) in
computer science, both from Edinburgh University.

Robert V. Landau Principal software engineer Robert Landau is a member of
the VMS Engineering Group, based in Newbury, England. He is currently the
project leader of a VMS advanced development team investigating a high-perfor­
mance, transaction-based, flat file system. Before joining Digital in 1987, Bob
worked for a variety of software houses specializing in database-related prod­
ucts. He studied botany at London University and, subsequently, obtained a
teaching qualification from Hereford College.

James M. Melvin As a principal design engineer,Jim was responsible for the
specification of hardware error-handling mechanisms in the VAXft system and is
presently an engineering project leader for future VAXft systems. He also speci­
fied and led the implementation of the hardware system simulation platform
and the hardware design verification test plan. Jim joined Digital in 1984 and
holds a B.S.E.E. (1984) and an M.S. (1989) in engineering management from
Worcester Polytechnic Institute. He holds three patents on the VAXft 3000 sys­
tem, all related to error handling in a fault-tolerant system.

Kenneth}. Omahen A principal engineer, Kenneth Omahen is developing
object-oriented queuing network solvers. He designed a variety of perfor­
mance tools and performed design support studies which influenced a number
of Digital products. Prior to joining Digital, Ken worked at Bell Telephone
Laboratories, lectured at the University of Newcastle-Upon-Tyne, and was a
faculty member at Purdue University. He received a B.S. degree in science engi­
neering from Northwestern University and M.S. and Ph.D. degrees in informa­
tion sciences from the University of Chicago.

5

Biographies

6

Ananth Raghavan Since joining Digital in 1988, Ananth Raghavan has been
a software engineer who has led projects for the KODA/Rdb Group. Previous to
this position, he was a teaching assistant in the computer science department
of the University of Wisconsin. Ananth holds a B.S. (1985) degree in mechani­
cal engineering from the Indian Institute of Technology, Madras, and an M.S.
(1987) degree in computer science from the University of Wisconsin, Madison.
He has two patent applications pending for his work on undo and undo/redo
database algorithms.

T. K. Rengarajan T. K. Rengarajan has been a member of the Database
Systems Group since 1987 and works on the KODA software kernel for database
management systems. He is involved in the support for WORM devices and
global buffer management in the VAXcluster environment. His work in the areas
of boundary element methods and database management systems is reported in
several published papers and patent applications. Ranga holds an M.S. degree in
computer-aided design from the University of Kentucky and an M.S. in com­
puter science from the University of Wisconsin.

Thomas K. Rogers Thomas Rogers is a project leader for the Transaction
Processing Systems Performance and Characterization Group. He is respon­
sible for testing the VAX 9000 Model 210 system using the TPC Benchmark A
standard. Prior to joining Digital in January 1988, Tom worked for Sperry
Corporation as a technical specialist for the Northeast region. He received a
bachelor of science degree in mathematical sciences in 1979 from Johns
Hopkins University.

Thomas G. Speer As a principal software engineer in the DECtp/East
Engineering Group, Thomas Speer is currently leading the DECintact V2.0 pro­
ject. In this position, his major responsibility is defining the requirements for
DECintact support of DECdtm services, client/server database access, and sup­
port for the DECforms product. Since joining Digital in 1981, Tom has worked
on several development projects, including FORTRAN-10/20 and RMS-20. He holds
degrees from Harvard University, Rutgers University, and Simmons College. He
is a member of Phi Beta Kappa.

Peter M. Spiro Peter Spiro, a principal software engineer, is currently
involved in optimizing database technology for RISC machines. He has worked
on database facilities such as access methods, journaling and recovery, trans­
action protocols, and buffer management. Peter joined Digital in 1985, after
receiving M.S. degrees in forest science and computer science from the
University of Wisconsin. He has a patent pending for a method of database jour­
naling and recovery, and he authored a paper for an earlier issue of the Digital

Technical journal. In addition, Peter enjoys the game of Ping-Pong.

Mark W. Storm Consulting engineer Mark Storm was one of the original
designers of the ACMS monitor, and he has been involved in the development of
TP products for more than ten years. Currently, he is acting technical director
for the East Coast Transaction Processing Engineering Group, as well as manag­
ing a small advanced development group. After joining Digital in 1976, Mark
worked on COBOL compilers for the PDP-11 systems and developed the first
native COBOL compiler for the VAX computer. He holds a B.S. (with honors) in
computer science from the University of Southern Mississippi.

Vijay Trehan Since joining Digital in 1978, Vijay Trehan has contributed to
several architecture projects. He is the technical director responsible for
DECtp architecture, design, and standards work. Prior to this assignment, Vijay
was the architect for the DECdtm protocol, architect for the DDIS data inter­
change format, and initiator of work on the DDIF document interchange format
and compound document strategy. He holds a B.S. (1972) in mechanical engi­
neering from the Indian Institute of Technology and an M.S. (1974) in operations
research from Syracuse University.

William Z. Zahavi As an engineering manager, Bill is responsible for the
design and development of predictive sizing tools for transaction processing
applications. Before joining Digital in 1987, he was a technical consultant for
Sperry Corporation, specializing in systems performance analysis and capacity
planning. Bill received an M.B.A. from Northeastern University and a B.S. in
mathematics from the University of Virginia. He is an active member of the
Computer Measurement Group, and frequently presents at CMG conferences.

7

I Foreword

Carlos G. Borgialli
Senior Manager, DEctp Software
Engineering

Transaction processing is one of the largest, most
rapidly growing segments of the computer indus­
try. Digital's strategy is to be a leader in transaction
processing, and toward that end we are making
technological advances and delivering products to
meet the evolving needs of businesses that rely on
transaction processing systems.

Because of the speed and reliability with which
transaction processing systems capture and dis­
play up-to-date information, they enable businesses
to make well-informed, timely decisions. Industries
for which transaction processing systems are a sig­
nificant asset include banking, laboratory automa­
tion, manufacturing, government, and insurance.
For these industries and others, transaction pro­
cessing is an information lifeline that supports the
achievement of daily business objectives and in
many instances provides a competitive advantage.

Many older transaction processing systems on
which businesses rely are centralized and tied to a
particular vendor. A great deal of money and time
has been invested in these systems to keep pace
with business expansion. As expansion continues
beyond geographic boundaries, however, the cen­
tralized, single-vendor transaction processing sys­
tems are less and less likely to offer the flexibility
needed for round-the-dock, reliable, business
operations conducted worldwide. Transaction pro­
cessing technology therefore must evolve to
respond to the new business environment and at
the same time protect the investment made in
existing systems.

Our research efforts and innovative products
provide the transaction processing systems that
businesses need today. The demand for distributed

8

rather than centralized systems has focused atten­
tion on system management. Queuing services,
highly available systems, heterogeneous environ­
ments, security services, and computer-aided soft­
ware engineering (CASE) are a few examples of
areas in which research and advanced develop­
ment efforts have had and will continue to have a
major impact on the capabilities of transaction
processing systems.

Transaction processing solutions require the
application of a wide range of technology and the
integration of multiple software and hardware
products: from desktop to mainframe; from presen­
tation services and user interfaces to TP monitors,
database systems, and computer-aided software
engineering tools; from optimization of system
performance to optimization of availability. Making
all of this technology work well together is a great
challenge, but a challenge Digital is uniquely posi­
tioned to meet.

Digital ensures broad application of its trans­
action processing technology by defining an
architecture, the Digital Distributed Transaction
Architecture (DECdta). DECdta, about which you will
read in this issue, defines the major components of
a Digital TP system and the way those components
can form an integrated transaction processing sys­
tem. The DECdta architecture describes how data
and processing are easily distributed among multi­
ple VAX processors, as well as how the components
can interoperate in a heterogeneous environment.

The DECdta architecture is based on the client/
server computing model, which allows Digital to
apply its traditional strengths in networking and
expandability to transaction processing system
solutions. In the DECdta client/server computing
model, the client portion interacts with the user to
create processing requests, and the server portion
performs the data manipulation and computation
to execute the processing request. This computing
model facilitates the division of a TP system into
small components in three ways. It allows for dis­
tribution of functions among VAX processors; it
partitions the work performed by one or more of
the components to allow for parallel processing;
or it replicates functions to achieve higher avail­
ability goals. These options permit the customer
to purchase the configuration that meets present
needs, confident that the system will allow smooth
expansion in the future.

Further, the DECdta architecture sets a direction
for its evolution through different products in a

coordinated manner. It provides for the cooper­
ation and interoperation of components imple­
mented on different platforms, and it supports the
expansion of customer applications to meet growth
requirements. The DECdta architecture is designed
to work with other Digital architectures such as the
Digital Network Architecture (DNA), the network
application services (NAS), and the Digital database
architecture (DDA). Moreover, the DECdta architec­
ture supports industry standards that enable the
portability of applications and their interopera­
tion in a heterogeneous environment, such as the
standard application programming interfaces being
developed by the X/Open Transaction Processing
Working Group and the IEEE POSIX. Standard wire
protocols that provide for systems interoperation
in a multivendor, heterogeneous environment are
being developed by the International Standards
Organization as part of the Open System Inter­
connection activities.

Among the products Digital has developed speci­
fically for TP systems are the TP monitors. These
monitors provide the system integration "glue;' if
you will. Rather than act as their own systems inte­
grators, customers who use Digital's TP monitors
are able to spend more time on solving business
problems and less time on solving software inte­
gration problems, such as how to make forms and
database products work together smoothly.

Digital's TP monitors run on all types of hard­
ware configurations, including local area networks
(IANs), wide area networks (WANs), and VAXcluster
systems. The DECdta client/server computing model
provides the necessary flexibility to change hard­
ware configurations, thus allowing reconfigura­
tion without the need for any source code changes.

The two TP monitors, DECintact and VAX ACMS,
integrate vital Digital technologies such as the
Digital Distributed Transaction Manager (DECdtm)
and products such as Digital's forms systems
(DECforms) and our Rdb/VMS or VAX DBMS data­
base products. DECdtm uses the two-phase com­
mit protocol to solve the complex problem of
coordinating updates to multiple data resources
or databases.

Major developments in Digital's database prod­
ucts have enhanced the strengths of its overall
product offerings. The two mainstream database
products noted above, Rdb/VMS and VAX DBMS,
layer on top of a database kernel called KODA, thus
providing data access independent of any data
model. The services made available by KODA,

besides its high performance, allow Digital's data­
base products to efficiently support TP applica­
tions as well as to provide rich functionality for
general-purpose database applications.

For those TP systems that require user inter­
faces, DECforms provides a device-independent,
easy-to-use human interface and permits the sup­
port of multiple devices and users within a single
application.

TP systems that require high availability or con­
tinuous operations are supported by the VAX fam­
ily of hardware and software. The introduction of
the fault-tolerant VAXft 3000 system, added to the
successful VAXcluster system, allows for a high
level of system availability. Performance needs
also are being met by a combination of hardware
resources, including the VAX 9000 system.

This combination of architecture, software, and
hardware technology, and support for emerging
industry standards places Digital in an excellent
position to become the industry leader for dis­
tributed, portable transaction processing systems.
The papers in this issue of the Journal provide a
view of the key elements of Digital's distributed
transaction processing technologies.

Many individuals, teams, organizations, and busi­
ness partners are responsible for bringing Digital's
TP vision to fruition. Their dedication, hard work,
and creativity will continue to drive the develop­
ment of new technologies that enhance our family
of products and services.

9

I

Philip A. Bernstein
William T. Emberton

Vijay Trehan

DECdta - Digital's Distributed
Transaction Processing
Architecture

Digitals Distributed Transaction Processing Architecture (DECdta) describes the
modules and interfaces that are common to Digitals transaction processing
(DECtp) products. The architecture allows easy distribution of DECtp products.
In particular, it supports client/server style applications. Distributed transaction
management is the main Junction that ties DECdta modules together. It ensures
that application programs, database systems, and other resource managers inter­
operate reliably in a distributed system.

Transaction processing (TP) is the activity of execut­
ing requests to access shared resources, typically
databases. A computer system that is configured to
execute TP applications is called a TP system.

A transaction is an execution of a set of opera­
tions on shared resources that has the following
properties:

• Atomicity. Either all of the transaction's opera­
tions execute, or the transaction has no effect
at all.

• Serializability. The set of all operations that exe­
cute on behalf of the transaction appears to
execute serially with respect to the set of opera­
tions executed by every other transaction.

• Durability. The effects of the transaction's oper­
ations are resistant to failures.

A transaction terminates by executing the com­
mit or abort operation. Commit tells the system to
install the effect of the transaction's operations
permanently. Abort tells the system to undo the
effects of the transaction's operations.

For enhanced reliability and availability, a TP
application uses transactions to execute requests.
That is, the application receives a request message
(from a display, computer, or other device) , exe­
cutes one or more transactions to process the
request, and possibly sends a reply to the origina­
tor of the request or to some other party specified
by the originator.

TP applications are essential to the operation
of many industries, such as finance , retail, health
care, transportation, government, communications,

10

and manufacturing. Given the broad range of appli­
cations of TP, Digital offers a wide variety of prod­
ucts with which to build TP systems.

DECtp is an umbrella term that refers to Digital's
TP products. The goal of DECtp is to offer an inte­
grated set of hardware and software products
that supports the development, execution, and
management of TP applications for enterprises of
all sizes.

DECtp systems include software components
that are specialized for TP, notably TP monitors
such as the ACMS and DECintact TP monitors, and
transaction managers such as the DECdtm trans­
action manager. 1·

2 DECtp systems also require the
integration of general-purpose hardware products
(processors, storage, communications, and termi­
nals) and software products (operating systems,
database systems, and communication gateways).
These products are typically integrated as shown
in Figure 1.

TP APPLICATION

TP MONITOR DATABASE SYSTEMS FORMS MANAGER

OPERATING SYSTEM COMMUNICATION SYSTEM

PROCESSORS MASS STORAGE NETWORK DESKTOP
DEVICES

Figure I Layering of Products to Support
a TP Application

Vol. 3 No. 1 Winter 1991 Digital Technical journal

DECdta - Digitals Distributed Transaction Processing Architecture

Applications on DECtp systems can be designed
using a client/server paradigm. This paradigm is
especially useful for separating the work of prepar­
ing a request from that of running transactions.
Request preparation can be done by a front-end
system, that is, one that is close to the user, in
which processor cycles are inexpensive and inter­
active feedback is easy to obtain. Transaction
execution can be done by a larger back-end sys­
tem, that is, one that manages large databases
and may be far from the user. Back-end systems
may themselves be distributed. Each back-end
system manages a portion of the enterprise
database and executes applications, usually ones
that make heavy use of the database on that back
end. DECtp products are modularized to allow easy
distribution across front ends and back ends,
which enables them to support client/server style
applications. DECtp systems thereby simplify pro­
gramming and reconfiguration in a distributed
system.

Digital's Distributed Transaction Processing
Architecture (DECdta) defines the modularization
and distribution structure that is common to DECtp
products. Distributed transaction management is
the main function that ties this structure together.
This paper describes the DECdta structure and
explains how DECdta components are integrated
by distributed transaction management.

Current versions of DECtp products implement
most, but not all, modules and interfaces in the
DECdta architecture. Gaps between the architec­
ture and products will be filled over time. DECtp
products that currently implement DECdta compo­
nents are referenced throughout the paper.

TP Application Structure
By analyzing TP applications, we can see where the
need arises for separate DECdta components. A
typical TP application is structured as follows:

Step I: The client application interacts with a
user (a person or machine) to gather input, e.g.,
using a forms manager.

Step 2: The client maps the user's input into a
request, that is, a message that asks the system to
perform some work. The client sends the request
to a server application to process the request.

A request may be direct or queued. If direct, the
client expects a server to process the request right
away. If queued, the client deposits the request
in a queue from which a server can dequeue the
request later.

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Step 3: A server processes the request by
executing one or more transactions. Each trans­
action may

a. Access multiple resources

b. Call programs, some of which may be remote

c. Generate requests to execute other transactions

d. Interact with a user

e. Return a reply when the transaction finishes

Step 4: If the transaction produces a reply, then
the client interacts with the user to display that
reply, e.g., using a forms manager.

Each of the above steps involves the interaction
of two or more programs. In many cases, it is desir­
able that these programs be distributed. To dis­
tribute them conveniently, it is important that the
programs be in separate components. For exam­
ple, consider the following:

• The presentation service that operates the dis­
play and the application that controls which
form to display may be distributed.

One may want to off-load presentation services
and related functions to front ends, while allow­
ing programs on back ends to control which
forms are displayed to users. This capability is
useful in Steps 1, 3d, and 4 above to gather input
and display output. To ensure that the presenta­
tion service and application can be distributed,
the presentation service should correspond to a
separate DECdta component.

• The client application that sends a request and
the server application that processes the request
may be distributed. The applications may com­
municate through a network or a queue.

In Step 2, front-end applications may want to
send requests directly to back-end applications
or to place requests in queues that are managed
on back ends. Similarly, in Step 3c, a trans­
action, T, may enqueue a request to run another
transaction, where the queue resides on a dif­
ferent system than T. To maximize the flexibil­
ity of distributing request management, request
management should correspond to a separate
DECdta component.

• Two transaction managers that want to run a
commit protocol may be distributed.

For a transaction to be distributed across different
systems, as in Step 3b, the transaction management

11

Transaction Processing, Databases, and Fault-tolerant Systems

services must be distributed. To ensure that each
transaction is atomic, the transaction managers on
these systems must control transaction commit­
ment using a common commit protocol. To com­
plicate matters, there is more than one widely used
protocol for transaction commitment. To the
extent possible, a system should allow interopera­
tion of these protocols.

To ensure that transaction managers can be dis­
tributed, the transaction manager should be a
component of DECdta. To ensure that they can
interoperate, their transaction protocol should
also be in DECdta. To ensure that different commit
protocols can be supported, the part of transaction
management that defines the protocol for inter­
action with remote transaction managers should
be separated from the part that coordinates trans­
action execution across local resources. In the
DECdta architecture, the former is called a commu­
nication manager, and the latter is called a trans­
action manager.

Interoperation of transaction managers and
resource managers, such as database systems, also
affects the modularization of DECdta components.
A transaction may involve different types of
resources, as in Step 3a. For example, it may update
data that is managed by different database systems.
To control transaction commitment, the transac­
tion manager must interact with different resource
managers, possibly supplied by different vendors.
This requires that resource managers be separate
components of DECdta.

The DECdta Architecture
Having seen where the need for DECdta compo­
nents arises, we are now ready to describe the
DECdta architecture as a whole, including the func­
tions of and interfaces to each component.

Most DECdta interfaces are public. Some of the
public interfaces are controlled by official stan­
dards bodies and industry consortia; i.e., they are
"open" interfaces. Others are controlled solely by
Digital. DECdta interfaces and protocols will be
published and aligned with industry standards, as
appropriate.

DECdta components are abstract entities. They
do not necessarily map one-to-one to hardware
components, software components (e.g., pro­
grams or products), or execution environments
(e.g., a single-threaded process, a multithreaded
process, or an operating system service). Rather, a
DECdta component may be implemented as multi­
ple software components, for example, as several

12

processes. Alternatively, several DECdta compo­
nents may be implemented as a single software
component. For example, an operating system or
TP monitor typically offers the facilities of more
than one DECdta component.

The following are the components ofDECdta:

• An application program is any program that
uses services ofDECdta components.

• A resource manager manages resources that sup­
port transaction semantics.

• A transaction manager coordinates transaction
termination (i.e., commit and abort).

• A communication manager supports a trans­
action communication protocol between TP
systems.

• A presentation manager supports device-inde­
pendent interactions with a presentation device.

• A request manager facilitates the submission of
requests to execute transactions.

DECdta components are layered on services that
are provided by the underlying operating system
and distributed system platform, and are not speci­
fic to TP, as shown in Figure 2.

Application Program
We use the term application program to mean a
program that uses the services provided by other
DECdta components. An application program
could be a customer-written program, a layered
product, or a DECdta component.

In the DECdta architecture, we distinguish two
special types of application program: request ini­
tiators and transaction servers. A request initiator
is a DECdta component that prepares and submits
a request for the execution of a transaction. To
create a request, the request initiator usually inter­
acts with a presentation manager that provides an
interface to a device, such as a terminal, a work­
station, a digital private branch exchange, or an
automated teller machine.

A transaction server can demarcate a trans­
action, interact with one or more resource man­
agers to access recoverable resources on behalf of
the transaction, invoke other transaction servers,
and respond to calls from request initiators.

For a simple request, a transaction server
receives the request, processes it, and optionally
returns a reply to the request initiator. A conver­
sational request is like a simple request, except that
while processing the request, the transaction

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

DECdta - Digitals Distributed Transaction Processing Architecture

APPLICATION PROGRAMS

TP SERVICES

REQUEST
INITIATOR

REQUEST
MANAGER

PRESENTATION
MANAGER

REQUEST
MANAGER

OPERATING SYSTEM AND DISTRIBUTED SYSTEM SERVICES

DISTRIBUTED
NAME SERVICE

DISTRIBUTED
TIME SERVICE

THREAD
MANAGEMENT
SERVICE

TRANSACTION SERVER

RESOURCE
MANAGER

TRANSACTION
MANAGER

COMMUNICATION
MANAGER

OTHER
COMMUNICATION
MANAGERS

UID SERVICE AUTHENTICATION
SERVICE

Figure 2 DECdta Components and Inteifaces

server exchanges one or more messages with the
user, usually through the request initiator.

In principle, a request initiator could also execute
transactions (not shown in Figure 2). That is, the dis­
tinction between request initiators and transaction
servers is for clarity only, and does not restrict an
application from performing request initiation func­
tions in a transaction. Architecturally, this amounts
to saying that request initiation functions can exe­
cute in a transaction server.

Resource Manager
A resource manager performs operations on shared
resources. We are especially interested in recover­
able resource managers, those that obey transaction
semantics. In particular, a recoverable resource
manager undoes a transaction 's updates to the
resources if the transaction aborts. Other recover­
able resource manager activities in support of trans­
actions are described in the next section. In the rest
of this paper, we use "resource manager" to mean
"recoverable resource manager."

In a TP system, the most common kind of
resource manager is a database system. Some pre­
sentation managers and communication managers
may also be resource managers. A resource man-

Digital TechnicalJor,rnal Vol. 3 No. 1 Winter 1991

ager may be written by a customer, a third party,
or Digital.

Each resource manager type offers a resource­
manager-specific interface that is used by applica­
tion programs to access and modify recoverable
resources managed by the resource manager. A des­
cription of these resource manager interfaces is
outside the scope of DECdta. However, many of
these resource manager interfaces have architec­
tures defined by industry standards, such as SQL
(e.g., the VAX Rdb/VMS product), CODASYL data man­
ipulation language (e.g., the VAX DBMS product), and
COBOL file operations (e.g., RMS in the VMS system).

One type of resource manager that plays a spe­
cial role in TP systems is a queue resource manager.
It manages recoverable queues, which are often
used to store requests. 3 It allows application pro­
grams to place elements into queues and retrieve
them, so that application programs can communi­
cate even though they execute independently and
asynchronously. For example, an application pro­
gram that sends elements can communicate with
one that receives elements even if the two applica­
tion programs are not operationai simultaneously.
This communication arrangement improves avail­
ability and facilitates batch input of elements.

13

Transaction Processing, Databases, and Fault-toleran t Systems

A queue resource manager interface supports
such operations as open-queue, close-queue,
enqueue, dequeue, and read-element. The ACMS
and DECintact TP monitors both have queue
resource managers as components.

Transaction Manager
A transaction manager supports the transaction
abstraction. It is responsible for ensuring the atom­
icity of each transaction by telling each resource
manager in a transaction when to commit. It uses
a two-phase commit protocol to ensure that either
all resource managers accessed by a transaction
commit the transaction or they all abort the trans­
action.4 To support transaction atomicity, a trans­
action manager provides the following functions:

• Transaction demarcation operations allow appli­
cation programs or resource managers to start
and commit or abort a transaction. (Resource
managers sometimes start a transaction to exe­
cute a resource operation if the caller is not
executing a transaction. The SQL standard
requires this.)

• Transaction execution operations allow
resource managers and communication man­
agers to declare themselves part of an existing
transaction.

• Two-phase commit operations allow resource
managers and communication managers to
change a transaction's state (to "prepared," "com­
mitted," or "aborted").

The serializability of transactions is primarily
the responsibility of the resource managers.
Usually, a resource manager ensures serializability
by setting locks on resources accessed by each
transaction, and by releasing the locks after the
transaction manager tells the resource manager
to commit. (fhe latter activity makes serializabil­
ity partly the responsibility of the transaction
manager.) If transactions become deadlocked, a
resource manager may detect the deadlock and
abort one of the deadlocked transactions.

The durability of transactions is a responsibility
of transaction managers and resource managers.
The transact ion manager is responsible for the
durability of the commit or abort decision. A
resource manager is responsible for the durability
of operations of committed transactions. Usually,
it ensures durability by storing a description of
each transaction's resource operations and state
changes in a stable (e.g., disk-resident) log. It can

14

later use the log to reconstruct transactions' states
while recovering from a failure.

A detailed description of the DECdta transaction
manager component appears in the Transaction
Manager Architecture section.

Communication Manager
A communication manager provides services for
communication between named objects in a TP
system, such as application programs and trans­
action managers. Some communication managers
participate in coordinating the termination of a
transaction by propagating the transaction man­
ager's two-phase commit operations as messages
to remote communication managers. Other com­
munication managers propagate application data
and transaction context, such as a transaction iden­
tifier, from one node to another. Some do both.

A TP system can support multiple communica­
tion managers. These communication managers
can interact with other nodes using different com­
mit protocols or message-passing protocols, and
may be part of different name spaces, security
domains, system management domains, etc.
Examples are an IBM SNA LU6.2 communication
manager or an ISO-TP communication manager.

By supporting multiple communication man­
agers, the DECdta architecture enhances the inter­
operability ofTP systems. Different TP systems can
interoperate by executing a transaction using dif­
ferent commit protocols.

A communication manager offers an interface
for application programs to communicate with
other application programs. Different communica­
tion managers may offer different communication
paradigms, such as remote procedure call or peer­
to-peer message passing.

A communication manager also has an interface
to its local transaction manager. It uses this inter­
face to tell the transaction manager when a trans­
action has spread to a new node and to obtain
information about transaction commitment, which
it exchanges with communication managers on
remote nodes.

Presentation Manager
A presentation manager provides an application
program with a record-oriented interface to a pre­
sentation device. Its services are used by applica­
tion programs, usually request initiators. By using
presentation manager services, instead of directly
accessing a presentation device, application pro­
grams become device independent.

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

DECdta - Digital's Distributed Transaction Processing Architecture

A forms manager is one type of presentation
manager. Just as a database system supports opera­
tions to define, open, close, and access databases, a
forms manager supports operations to define,
enable, disable, and access forms. A form includes
the definition of the fields (with different
attributes) that make up the form. It also includes
services to map the fields into device-independent
application records, to perform data validation,
and to perform data conversion to map fields onto
device-specific frames.

One presentation manager is Digital's DECforms
forms management product. The DECforms prod­
uct is the first implementation of the ANSI/ISO
Forms Interface Management Systems standard
(CODASYL FIMS).'

Request Manager
A request manager provides services to authenti­
cate the source of requests (a user and/or a presen­
tation device), to submit requests, and to receive
replies from the execution of requests. It supports
such operations as send-request and receive-reply.
Send-request must provide the identity of the
source device, the identity of the user who entered
the request, the identity of the application pro­
gram to be invoked, and the input data to the
program.

A request manager can either pass the request
directly to an application program, or it can store
requests in a queue. In the latter case, another
request manager can subsequently schedule the
request by dequeuing the request and invoking an
application program. The ACMS System Interface is
an example of an existing request manager inter­
face for direct requests. The ACMS Queued Trans­
action Initiator is an example of a request manager
that schedules queued requests.'

Transaction Manager Architecture
DECdta components are tied together by the trans­
action abstraction. Transactions allow application
programs, resource managers, request managers
(indirectly through queue resource managers), and
communication managers to interoperate reliably.
Since transactions play an especially important
role in the DECdta architecture, we describe the
transaction management functions in more detail.

The DECdta architecture includes interfaces
between transaction managers and application
programs, resource managers, and communication
managers, as shown in Figure 3. It also includes a

Digital Tecbnical]ournal Vol. 3 No. 1 Winter 1991

APPLICATION
PROGRAM

RESOURCE
MANAGER

TRANSACTION
MANAGER

COMMUNICATION
MANAGER

OTHER
COMMUNICATION
MANAGERS

Figure 3 Transaction Manager Architecture

transaction manager protocol, whose messages are
propagated by communication managers. This pro­
tocol is used by Digital's DECdtm distributed trans­
action manager. 2

From a transaction manager's viewpoint, a trans­
action consists of transaction demarcation opera­
tions, transaction execution operations, two-phase
commit operations, and recovery operations.

• The transaction demarcation operations are
issued by an application program to a transac­
tion manager and include operations to start
and either end or abort a transaction.

• Transaction execution operations are issued by
resource managers and communication man­
agers to a transaction manager. They include
operations

- For a resource manager or communication
manager to join an existing transaction

- For a communication manager to tell a trans­
action manager to start a new branch of a
transaction that already exists at another node

• Two-phase commit operations are issued by a
transaction manager to resource managers,
communication managers, and through com­
munication managers to other transaction man­
agers, and vice-versa. They include operations

- For a transaction manager to ask a resource
manager or communication manager to pre­
pare, commit, or abort a transaction

- For a resource manager or communica­
tion manager to tell a transaction manager
whether it has prepared, committed, or
aborted a transaction

15

Transaction Processing, Databases, and Fault-tolerant Systems

- For a communication manager to ask a trans­
action manager to prepare, commit, or abort
a transaction

- For a transaction manager to tell a commu­
nication manager whether it has prepared,
committed, or aborted a transaction

• Recovery operations are issued by a resource
manager to its transaction manager to deter­
mine the state of a transaction (i.e., committed
or aborted).

In response to a start operation invoked by an
application program, the transaction manager dis­
penses a unique transaction identifier for the trans­
action. The transaction manager that processes the
start operation is that transaction's home trans­
action manager.

When an application program invokes an opera­
tion supported by a resource manager, the
resource manager must find out the transaction
identifier of the application program's transaction.
This can happen in different ways. For example, the
application program may tag the operation with
the transaction identifier, or the resource manager
may look up the transaction identifier in the appli­
cation program's context. When a resource man­
ager receives its first operation on behalf of a
transaction, T, it must join T, meaning that it must
tell a transaction manager that it is a subordinate
for T. Alternatively, the DECdta architecture sup­
ports a model in which a resource manager may ask
to be joined automatically to all transactions man­
aged by its transaction manager, rather than asking
to join each transaction separately.

A transaction, T, spreads from one node, Node 1,
to another node, Node 2, by sending a message
(through a communication manager) from an appli­
cation program that is executing T at Node 1 to
an application program at Node 2. When T sends
a message from Node 1 to Node 2 for the first
time, the communication managers at Node 1 and
Node 2 must perform branch registration. This
function may be performed automatically by the
communication managers. Or, it may be done man­
ually by the application program, which tells the
communication managers at Node 1 and Node 2
that the transaction has spread to Node 2. In either
case, the result is as follows: the communication
manager at Node 1 becomes the subordinate of the
transaction manager at Node 1 for T and the supe­
rior of the communication manager at Node 2
for T; and the communication manager at Node 2
becomes the superior of the transaction manager

16

at Node 2 for T. This arrangement allows the com­
mit protocol between transaction managers to be
propagated properly by communication managers.

After the transaction is done with its application
work, the application program that started transac­
tion T may invoke an "end" operation at the home
transaction manager to commit T. This causes the
home transaction manager to ask its subordinate
resource managers and communication managers
to try to commit T. The transaction manager does
this by using a two-phase commit protocol. The
protocol ensures that either all subordinate
resource managers commit the transaction or they
all abort the transaction.

In phase 1, the home transaction manager asks
its subordinates for T to prepare T. A subordinate
prepares T by doing what is necessary to guarantee
that it can either commit Tor abort T if asked to do
so by its superior; this guarantee is valid even if
it fails immediately after becoming prepared. To
prepareT,

• Each subordinate for T recursively propagates
the prepare request to its subordinates for T

• Each resource manager subordinate writes all of
T's updates to stable storage

• Each resource manager and transaction manager
subordinate writes a prepare-record to stable
storage

A subordinate for T replies with a "yes" vote if
and when it has completed its stable writes and all
of its subordinates for T have voted "yes"; other­
wise, it votes "no." If any subordinate for T does not
acknowledge the request to prepare within the
timeout period, then the home transaction man­
ager aborts T; the effect is the same as issuing an
abort operation.

In phase 2, when the home transaction manager
has received "yes" votes from all of its subordinates
for T, it decides to commit T. It writes a commit
record for T to stable storage and tells its subordi­
nates for T to commit T. Each subordinate for T
writes a commit record for T to stable storage and
recursively propagates the commit request to its
subordinates for T. A subordinate for T replies with
an acknowledgment if and when it has committed
the transaction (in the case of a resource manager
subordinate) and has received acknowledgments
from all subordinates for T. When the home trans­
action manager receives acknowledgments from all
of its subordinates for T, the transaction commit­
ment is complete.

Vol . 3 No. I Winter 1991 Digita l Tech 11 ica / Jour11a/

DECdta - Digitals Distributed Transaction Processing Architecture

To recover from a failure, all resource managers
that participated in a transaction must examine
their logs on stable storage to determine what to
do. If the log contains a commit or abort record for
T, then T completed. No action is required. If the
log contains no prepare, commit, or abort record
for T, then T was active. T must be aborted. If the
log contains a prepare record for T, but no com­
mit or abort record for T, T was between phases 1
and 2. The resource manager must ask its superior
transaction manager whether to commit or abort
the transaction.

An inherent problem in all two-phase commit
protocols is that a resource manager is blocked
between phases 1 and 2, that is, after voting "yes"
and before receiving the commit or abort decision.
It cannot commit or abort the transaction until the
transaction manager tells it which to do. If its trans­
action manager fails, the resource manager may be
blocked indefinitely, until either the transaction
manager recovers or an external agent, such as a
system manager, steps in to tell the resource man­
ager whether to commit or abort.

A transaction T may spontaneously abort due to
system errors at any time during its execution. Or,
an application program (prior to completing its
work) or a resource manager (prior to voting "yes")
may tell its transaction manager to abort T. In
either case, the transaction manager then tells
all of its subordinates for T to undo the effects
of T's resource manager operations. Subordinate
resource managers abort T, and subordinate com­
munication managers recursively propagate the
abort request to their subordinates for T.

The two-phase commit protocol is optimized for
those cases in which the number of messages
exchanged can be reduced below that of the gen­
eral case (e.g., if there is only one subordinate
resource manager, if a resource manager did not
modify resources, or if the presumed-abort proto­
col was used to save acknowledgments).6

Summary
We have presented an overview of the OECdta
architecture. As part of this overview, we intro­
duced the components and explained the function
of each interface. We also described the DECdta
transaction management architecture in some
detail. Over time, many interfaces of the DECdta
model will be made public via product offerings or
architecture publications.

Dtgtlal Tecbntcaljournal Vol. 3 No. l Winter 1991

Acknowledgments
This architecture grew from discussions with many
colleagues. We thank them all for their help, espe­
cially Dieter Gawlick, Bill laing, Dave Lomet, Bruce
Mann, Barry Rubinson, Diogenes Torres, and the TP
architecture group, including Edward Braginsky,
Tony DellaFera, George Gajnak, Per Gyllstrom, and
YoavRaz.

References

1. T. Speer and M. Storm, "Digital's Transaction
Processing Monitors," Digital Technical journal,
vol. 3, no. 1 (Winter 1991, this issue): 18-32.

2. W. laing,]. Johnson, and R. landau, "Transaction
Management Support in the VMS Operating
System Kernel," Digital Technical journal, vol. 3,
no. 1 (Winter 1991, this issue): 33-44.

3. P. Bernstein, V Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems (Reading, MA: Addison-Wesley, 1987).

4. P. Bernstein, M. Hsu, and B. Mann, "Implement­
ing Recoverable Requests Using Queues,"
Proceedings 1990 ACM SIGMOD Conference on
Management of Data (May 1990).

S. FIMS Journal of Development (Norfolk, VA:
CODASYL FIMS Committee,July 1990).

6. C. Mohan, B. Lindsay, and R. Obermarck,
"Transaction Management in the R• Distributed
Database Management System," ACM Trans­
actions on Database Systems, vol. 11, no. 4
(December 1986).

17

Digitals Transaction
Processing Monitors

Thomas G. Speer I
Mark W. Storm

Digital provides two transaction processing (IP) monitor products - ACMS
(Application Control and Management System) and DECintact (Integrated Appli­
cation Control). Each monitor is a unified set of transaction processing services for
the application environment. These services are layered on the VMS operating sys­
tem. Although there is a large functional overlap between the two, both products
achieve similar goals by means of some significantly different implementation
strategies. Flow control and multithreading in the ACMS monitor is managed by
means of a fourth-generation language (4GL) task definition language. Flow control
and multithreading in the DECintact monitor is managed at the application level
by third-generation language (3GL) calls to a library of services. The ACMS monitor
supports a deferred task model of queuing, and the DECintact monitor supports a
message-based model. Over time, the persistent distinguishing feature between the
two monitors will be their differetzt application programming intetfaces.

Transaction processing is the execution of an
application that performs an administrative func­
tion by accessing a shared database. Within trans­
action processing, processing monitors provide
the software "glue" that ties together many soft­
ware components into a transaction processing
system solution.

A typical transaction processing application
involves interaction with many terminal users by
means of a presentation manager or forms system
to collect user requests. Information gathered by
the presentation manager is then used to query or
update one or more databases that reflect the cur­
rent state of the business. A characteristic of trans­
action processing systems and applications is
many users performing a small number of similar
functions against a common database. A trans­
action processing monitor is a system environment
that supports the efficient development, execu­
tion, and management of such applications.

Processing monitors are usually built on top of
or as extensions to the operating system and other
products such as database systems and presenta­
tion services. By so doing, additional components
can be integrated into a system and can fill "holes"
by providing functions that are specifically needed
by transaction processing applications. Some
examples of these functions are application con­
trol and management, transaction-processing-

18

specific execution environments, and transaction­
processing-specific programming interfaces.

Digital provides two transaction processing
monitors: the Application Control and Manage­
ment System (ACMS) and the DECintact monitor.
Both monitors are built on top of the VMS operat­
ing system. Each monitor provides a unified set
of transaction-processing-specific services to the
application environment, and a large functional
overlap exists between the services each monitor
provides. The distinguishing factor between the
two monitors is in the area of application program­
ming styles and interfaces - fourth-generation
language (4GL) versus third-generation language
(3GL). This distinction represents Digital's recog­
nition that customers have their own styles of
application programming. Those that prefer 4GL
styles should be able to build transaction process­
ing applications using Digital's TP monitors with­
out changing their style. Similarly, those that prefer
3GL styles should also be able to build TP applica­
tions using Digital's TP monitors without changing
their style.

The ACMS monitor was first introduced by Digital
in 1984. The ACMS monitor addresses the require­
ments of large, complex transaction processing
applications by making them easier to develop and
manage. The ACMS monitor also creates an efficient
execution environment for these applications.

Vol. 3 No. 1 Winter 1991 Digital Tech11 ica/Journal

The DECintact monitor (Integrated Application
Control) was originally developed by a third-party
vendor. Purchased and introduced by Digital in
1988, it has been installed in major financial insti­
tutions and manufacturing sites. The DECintact
monitor includes its own presentation manager,
support for DECforms, a recoverable queuing sub­
system, a transaction manager, and a resource man­
ager that provides its own recovery of RMS (Record
Management Services) files.

This paper highlights the important similarities
and differences of the ACMS and DECintact monitors
in terms of goals and implementation strategies.

Development Environment
Transaction processing monitors provide a view
of the transaction processing system for appli­
cation development. Therefore, the ACMS and
DECintact monitors must embody a style of pro­
gram development.

ACMS Programming Style
A "divide and conquer" approach was used in the
ACMS monitor. The work typically involved in
developing a TP application was divided into logi­
cally separate functions described below. Each of
these functions was then "conquered" by a special
utility or approach.

In the ACMS monitor, an "application" is defined
as a collection of selectable units of work called
tasks. A separate application definition facility
isolates the system management characteristics of
the application (such as resource allocation, file
location, and protection) from the logic of the
application.

The specification of menus is also decoupled
from the application. A nonprocedural (4GL)
method of defining menu layouts is used in which
the layouts are compiled into form files and data
structures to be used at run-time. Each menu entry
points either to another menu or to an application
and a task. (Decoupling menus from the applica­
tion allows user menus to be independent of how
the tasks are grouped into applications.)

In addition to separate menu specification and
system management characteristics, the applica­
tion logic is broken down into the three logical
parts of interactive TP applications:

• Exchange steps support the exchange of data
with the end user. This exchange is typically
accomplished by displaying a form on a terminal
screen and collecting the input.

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Digital's Transaction Processing Monitors

• Processing steps perform computational pro­
cessing and database or file 1/0 through standard
subroutines. The subroutines are written in
any language that accepts records passed by
reference.

• The task definition language defines the flow of
control between processing steps and exchange
steps and specifies transaction demarcation.
Work spaces are special records that the ACMS
monitor provides to pass data between the task
definition, exchange steps, and processing steps.

A compiler, called the application definition util-
ity (ADU), is implemented in the ACMS monitor to
compile the task definition language into binary
data structures. The run-time system is table-driven,
rather than interpreted, by these structures.

Digital is the only vendor that supplies this "divide
and conquer" solution to building large complex TP
applications. We believe this approach - unique in
the industry - reduces complexity, thus making
applications easier to produce and to manage.

DECintact Programming Style
The approach to application development used in
the DECintact monitor provides the application
developer with 3GL control over the transaction
processing services required. This approach
allows application prototyping and development
to be done rapidly. Moreover, the application can
make the most efficient use of monitor services
by selecting and controlling only those services
required for a particular task.

In the DECintact monitor, an application is
defined as one or more programs written entirely
in 3GL and supported by the VMS system. The code
written by the application developer manages all
flow control, user interaction, and data manipu­
lation through the utilities and service libraries
provided by the DECintact monitor. All DECintact
services are callable, including most services pro­
vided by the DECintact utilities. The DECintact
services are as follows:

• A library of presentation services used for all
interaction with users. The application developer
includes calls to these services for form manip­
ulation and display. Forms are created with a
forms editor utility and can be updated dynami­
cally. Forms are displayed by the DECintact
terminal manager in emulated block mode.
Device- and terminal-dependent information is
completely separated from the implementation
of the application.

19

Transaction Processing, Databases, and Fault-tolerant Systems

• The separation of specification of menus from
the application. DECintact menus are defined by
means of a menu database and are compiled into
data structures accessed at run-time. The menus
are tree-structured. Each entry points either to
another menu entry or to an executable applica­
tion image. The specification of menus is linked
to the DECintact monitor's security subsystem.
The DECintact terminal user sees only those
specific menu entries for which the user has
been granted access.

• A library of services for the control of file and
queue operations. In addit ion to layered access
to the RMS file system, the DECintact monitor
supports its own hash file format (a functional
analog to single-keyed indexed files in RMS)
which provides very fast, efficient record
retrieval. The application developer includes
calls to these services for managing RMS and
hash file 1/0 operations, demarcating recovery
unit boundaries, creating queues, placing data
items on queues, and removing data items from
queues. The queuing subsystem is typically an
integral part of application design and work
flow control. Application-defined DECintact
recovery units ensure that RMS, hash, and queue
operations can be committed or aborted atomi­
cally; that is, either all permanent effects of the
recovery unit happen, or none happen.

Because of DECintact's 3GL development envi-
ronment, application programmers who are accus­
tomed to calling procedure libraries from standard
VMS languages or who are familiar with other
transaction processing moni tors can easily learn
DECintact's services. Application prototypes can
be produced quickly because only skills in 3GL
are required. Further, completed applications
can be produced quickly because training time
is minimal.

On-line Execution Environment
Transaction processing monitors provide an execu­
tion environment tailored to the characteristics and
needs of transaction processing applications. This
environment generally has two aspects: on-line, for
interactive applications that use terminals; and off­
line, for noninteractive applications that use other
devices.

Traditional VMS timesharing applications are
implemented by allocating one VMS process to each
terminal user when the user logs in to the system.
An image activation is then done each time the ter-

20

minal user invokes a new function. This method is
most beneficial in simple transaction processing
applications that have a relatively small number of
users. However, as the number of users grows or as
the application becomes larger and more complex,
several problem areas may arise with this method:

• Resource use. As the number of processes grows,
more and more memory is needed to run the
system effectively.

• Start-up costs. Process creation, image activa­
tion, file opens, and database binds are expen­
sive operations in terms of system resources
utilized and time elapsed. These operations can
degrade system performance if done frequently.

• Contention. As the number of users simul­
taneously accessing a database or file grows,
contention for locks also increases. For many
applications, lock contention is a significant
factor in throughput.

• Processing location. Single process implementa­
tions limit distribution options.

ACMS On-line Execution
To address the problems listed above, Digital imple­
mented a client/server architecture in the ACMS
monitor. (Client/server is also called request/
response.) The basic run-time architecture consists
of three types of processes, as shown in Figure 1:
the command process, execution controller, and
procedure servers.

An agent in the ACMS monitor is a process that
submits work requests to an application. In the
ACMS system, the command process is a special
agent responsible for interactions with the termi­
nal user. (In terms of the DECdta architecture, the
command process implements the functions of
a request initiator, presentation manager, and
request manager for direct requests.)' The com­
mand process is generally created at system start­
up time, although ACMS commands allow it to
be started at other times. The process is multi­
threaded through the use of VMS asynchronous
system traps (AST). Thus, one command process
per node is generally sufficient for all terminals
handled by that node.

There are two subcomponents of the ACMS moni­
tor within the command process:

• System interface, which is a set of services for
submitting work requests and for interacting
with the ACMS application

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

FRONT-END NODE

MENU
DATABASE

+
COMMAND SYSTEM

~
PROCESS INTERFACE

DEC FORMS
SERVER

I
I
I
I
I

I

I
I
I
I

Digital's Transaction Processing Monitors

I BACK-END NODE ,

I
I TASK

I DEFINITION

I
+ I

I EXECUTION
CONTROLLER

___________________ I

KEY:

D
D

ACMS
PROCESSES

APPLICATION
PROCESSES

PROCEDURE
SERVERS

USER DATABASES

~----------_J

Figure 1 Basic Run-time Architecture of the ACMS Monitor

• DECforms, Digital's forms management product,
which implements the ANSI/ISO Forms Inter­
face Management System (FIMS) that provides
the presentation server for executing the
exchange steps

The command process reads the menu defini­
tion for a particular terminal user and determines
which menu to display. When the terminal user
selects a particular menu entry, the command pro­
cess calls the ACMS system interface services to
submit the task. The system interface uses logical
names from the VMS system to translate the appli­
cation name into the address of the execution con­
troller that represents that applicat ion. The system
interface then sends a message to the execution
controller. The message contains the locations of
the presentation server and an index into the task
definition tables for the particular task. The status
of the task is returned in the response. During the
course of task execution, the command process
accepts callbacks from the task to display a form
for interaction with the terminal user.

The execution controller executes the task
definition language and creates and manages pro­
cedure servers. The controller is created at appli­
cation start-up time and is multithreaded by
using VMS ASTs. There is one execution controller
per application. (In terms of the DECdta archi­
tecture, the execution controller and the proce-

Digital Techn ical jour nal Vol. 3 No. 1 Winter 1991

dure servers implement the functions of a trans­
action server.) '

When the execution controller receives a request
from the command process, it invokes DECdtm
(Digital Distributed Transaction Manager) services
to join the transaction if the agent passes the
transaction identifier. If the agent does not pass a
transaction identifier, there is no transaction to
join and a DECdtm or resource-manager-specific
transaction is started as specified in the task defini­
tion. The execution controller then uses the task
index to find the tables that represent the task.
When the execution of a task reaches an exchange
step, the execution controller sends a callback to
the command process for a form to be displayed
and the input to be collected for the task. When
the request to display a form is sent to the com­
mand process, the execution controller dismisses
the AST to enable other threads to execute. When
the response to the request arrives from the
exchange step, an AST is added to the queue for
the execution controller.

When a task comes to a processing step, the exe­
cution controller allocates a free procedure server
to the task. It then sends a request to the proce­
dure server to execute the particular procedure
and dismisses the AST. If no procedure server is
free, the execut ion controller puts the request
on a waiting list and dismisses the AST. When a

21

Transaction Processing, Databases, and Fault-tolerant Systems

procedure server becomes free, the execution con­
troller checks the wait list and allocates the proce­
dure server to the next task, if any, on the wait list.

Procedure servers are created and deleted by
the execution controller. Procedure servers are a
collection of user-written procedures that perform
computation and provide database or file accesses
for the application. The procedures are written in
standard languages and use no special services. The
ACMS system creates a transfer vector from the
server definition. This transfer vector is linked into
the server image. With this vector, the ACMS system
code can receive incoming messages and translate
them into calls to the procedure.

A procedure server is specified with initialization
and termination procedures, which are routines
supplied by the user. The ACMS monitor calls these
procedures whenever a procedure server is created
and deleted. The initialization procedure opens
files and performs database bind operations. The
termination procedure does clean-up work, such
as closing files prior to process exit.

The ACMS architecture addresses the problem
areas discussed in the On-line Execution Environ­
ment section in several ways.

Resource Use Because procedure se. vers are allo­
cated only for the time required to execute a pro­
cessing step, the servers are available for other
use while a terminal user types in data for the
form. Thus, the system can execute efficiently with
fewer procedure servers than active terminal
users. Improvement gains in resource use can vary,
depending on the application. Our debit and credit
benchmark experiments with the ACMS monitor
and the Rdb/VMS relational database system indi­
cated that the most improvement occurs with one
procedure server for every one or two transactions
per second (TPS). These benchmarks equate to
1 procedure server for every 10 to 20 active termi­
nal users.

The use of procedure servers and the multi­
threaded character of the execution controller and
the command process allow the architecture to
reduce the number of processes and, therefore, the
number of resources needed. The optimal solution
for resource use would consist of one large multi­
threaded process that performed all processing.
However, we chose to trade off some resource use
in the architecture in favor of other gains.

• Ease of use - Multithreaded applications are
generally more difficult to code than single-

22

threaded applications. For this reason, proce­
dure server subroutines in the ACMS system
can be written in a standard fashion by using
standard calls to Rdb/VMS and the VMS system.

• Error isolation - In one large multithreaded
process, the threads are not completely pro­
tected within the process. An application logic
error in one thread can corrupt data in a thread
that is executing for a different user. A severe
error in one thread could potentially bring
down the entire application. The multithreaded
processes in the ACMS architecture (i.e., the
execution controller and command process)
are provided by Digital. Because no applica­
tion code executes directly in these processes,
we can guarantee that no application coding
error can affect them. Procedure servers are
single-threaded. Therefore, an application logic
error in a procedure server is isolated to affect
only the task that is executing in the proce­
dure server.

Start-up Costs The run-time environment is basi­
cally "static," which means that the start-up costs
(i.e., system resources and elapsed time) are
incurred infrequently (i.e., at system and appli­
cation start-up time). A timesharing user who is
running many different applications causes image
activations and rundowns by switching among
images. Because the terminal user in the ACMS
system is separated from the applications pro­
cesses, the process of switching applications
involves only changing message destinations and
incurs minimal overhead.

Contention The database accesses in the ACMS
environment are channeled through a relatively
few, but heavily used, number of processes. The
typical VMS timesharing environment uses a large
number of lightly used processes. By reducing
the number of processes that access the database,
the contention for locks is reduced.

Processing Location Because the ACMS monitor
is a multiprocess architecture, the command pro­
cess and forms processing can be done close to the
terminal user on small, inexpensive machines. This
method takes advantage of the inexpensive pro­
cessing power available on these smaller machines
while the rest of the application executes on a
larger VAXcluster system.

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

DECintact On-line Execution
Although the specific components of the DECintact
monitor vary from those of the ACMS monitor, the
basic architecture is very similar. Figure 2 shows the
application configured locally to the front end. The
run-time architecture consists of three types of
DECintact system processes - terminal manager/
dispatcher, DECforms servers, server manager -
and, typically, one or more application processes.
When forms processing is distributed, the same
application is configured as shown in Figure 3.

The DECintact monitor can run in multiple
copies on any one VAX node. Each copy can be an
independent run-time environment; or it can share
data and resources, such as user security profiles
and menu definitions, with other copies on the
same system. Thus, independent development,
testing, and production environments can reside
on the same node.

In the DECintact system, the terminal manager/
dispatcher process (one per copy) is responsible
for the following:

• Displaying DECintact forms

• Coordinating DECforms forms display

• Interacting with local applications

• Communicating, through DECnet, with remote
DECintact copies

• Maintaining security authorization, including
the dynamic generation of user-specific menus

MENU
DATABASE

Digital's Transaction Processing Monitors

Applications designated in the local menu data­
base as remote applications cause the front-end
terminal manager/dispatcher process to communi­
cate with the cooperating back-end terminal
manager/dispatcher process through a task-to-task
DECnet link. (In terms of the DECdta architecture,
the terminal manager/dispatcher implements the
functions of presentation manager, request initia­
tor, and request manager for direct requests.)'

When a user selects the remote task, that user's
request is sent to the back end and is treated by the
application as a local request. The terminal man­
ager/dispatcher process is started automatically as
part of a copy start-up and is multithreaded.
Therefore, one such process can handle all the ter­
minal users for a particular DECintact copy.

When the terminal user selects a menu task, one
of the following actions occurs, depending on
whether the task is local or remote and whether it
is single- or multithreaded.

If the application is local and single-threaded, a
VMS process may be created that activates the
application image associated with this task. The
terminal manager/dispatcher, upon start up, may
create a user-specified number of application shell
VMS processes to activate subsequent application
images. If such a shell exists when the user selects
a task, this process is used to run the application
image. Each user who selects a given menu entry
receives an individual VMS process and image.

If the application is local and multi threaded, the
terminal manager/dispatcher first determines

TERMINAL MANAGER/ ,.-~-..
DISPATCHER

MUL TITHAEADEO
APPLICATION

KEY:

D
D

DECINTACT
PROCESSES

APPLICATION
PROCESSES

DECFORMS
SERVERS

DATABASE
SEAVERS

USER DATABASES

SERVER
MANAGER

Figure 2 Basic Run-time Architecture of the DEC intact Monitor

Digital Technical Journal Vol. 3 No. 1 Winter 1991 23

Transaction Processing, Databases, and Fault-tolerant Systems

-----------------,
FRONT-END NODE

MENU
DATABASE

TERMINAL MANAGER/
DISPATCHER

DEC FORMS
SERVERS

~----------------~

KEY:

D DECINTACT
PROCESSES

APPLICATION
PROCESSES

I BACK-END NODE ,

I
I
I
I
I
I

MENU
DATABASE

TERMINAL MANAGER/
DISPATCHER

MUL TITHREADED
APPLICATION

DATABASE
SERVERS

USER DATABASES

SERVER
MANAGER

__________________ J

Figure 3 DECintact Basic Architecture with Distributed Forms Processing

whether this task has already been activated by pre­
vious users. If the task has not been activated and
a shell is not available, the terminal manager/
dispatcher creates a VMS process for the applica­
tion and activates the image. If the task is already
activated, the terminal manager/dispatcher con­
nects the user to the active task. The user becomes
another thread of execution within the image.
Multithreaded applications handle many simulta­
neous users within the context of one VMS process
and image.

Remote applications, whether single- or multi­
threaded, route the menu task selection to a remote
terminal manager/dispatcher process. On receipt
of the request, the remote terminal manager/
dispatcher processes the selection locally by using
the same procedures as described above.

Local DECintact forms interaction is handled in
the following manner by the local terminal man­
ager/dispatcher. The application's call to display a
form sends a request to the terminal manager. The
terminal manager locates the form in its database
of active forms, displays the form on the user's ter­
minal, and returns control to the application when

24

the user has entered all data in the form. If the
application is remote, form information is sent
between cooperating local and remote terminal
manager processes; the interface is transparent to
the application.

In addition to supporting DECintact forms, the
DECintact monitor also supports applications that
use DECforms as their presentation service. The
implementation of this support follows the same
client/server model used by the ACMS system's
support for DECforms and shares much of the
underlying run-time interprocess communication
code used by the ACMS monitor. Functionally, the
two implementations of DECforms support are also
similar to the ACMS monitor. Both implemen­
tations offer transparent support for distributed
DECforms processing, automatic forms caching
(i.e., propagation of updated DECforms in a distrib­
uted environment), and DECforms session caching
for increased performance.

The DECintact monitor supports application­
level, single- and multi threaded environments. The
DECintact monitor's threading package allows appli­
cation programmers to use standard languages

Vol. 3 No. 1 Winter 1991 Digital Techn ical j ournal

supported by the VMS system to write multi­
threaded processes. Applications declare them­
selves as either single- or multithreaded. With the
exception of the declaration, there is little differ­
ence between the way an on-line multithreaded
application and its single-threaded counterpart
must be coded. For on-line applications, thread
creation, deletion, and management are automatic.
New threads are created when a terminal user
selects the multithreaded application and are
deleted when the user leaves the application.

In a single-threaded application, the following
occurs:

• Each user receives an individual VMS process and
image context (e.g., 200 users, 200 processes).

• All terminal and file 1/0 is synchronous.

• The application image normally exits when the
application work is completed.

In a multithreaded on-line application, the fol­
lowing occurs:

• One VMS process/image can handle many simul­
taneous users.

• All terminal and file 1/0 is asynchronous.

• New threads are created automatically when
new users are connected to the process.

• The application image does not exit when all
currently allocated threads have completed exe­
cution but remains for use by new on-line users.

For each thread in a multithreaded application
image, the DECintact system maintains thread con­
text and state information. Each 1/0 request is
issued asynchronously. Immediately after control
is returned, but before the 1/0 request completes,
the DECintact system saves the currently executing
thread's context and schedules another thread to
execute. When the thread's 1/0 completion AST is
delivered, the thread's context is restored, and the
thread is inserted on an internally maintained list
of threads eligible for execution.

A thread's context consists of the following:

• An internally maintained thread block contain­
ing state information

• The stack

• Standard DECintact work spaces that are allo­
cated to each thread and that maintain terminal
and file management context

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Digitals Transaction Processing Monitors

• Local storage (e.g., the $LOCAL PSECT in COBOL
applications) that the application has designated
as thread-specific

The PSECT naming convention allows the
application to decide which variable storage is
thread-specific and which is process-global.
Thread-specific storage is unavailable to other
threads in the same process because it is saved
and restored on each thread switch. Process-global
storage is always available to all threads in the
process and can be used when interthread commu­
nication or synchronization is desired.

The use of multithreading in the DECintact sys­
tem is appropriate for higher volume multiuser
applications that perform frequent 1/0. Such appli­
cation usage is typical in transaction processing
environments. Because thread switches occur only
when 1/0 is requested or when locking requests
are issued, this environment may not be recom­
mended for applications that perform infrequent
1/0 or that expect very small numbers of concur­
rent users, such as end-of-day accounting pro­
grams or other batch-oriented processing. These
kinds of applications typically choose to declare
themselves as single-threaded.

All 1/0 from within a multithreaded DECintact
application process is asynchronous. Therefore,
the DECintact system provides a client/server inter­
face between multithreaded applications and syn­
chronous database systems, such as VAX DBMS
(Database Management System) and Rdb/VMS sys­
tems. The interface is provided because calling a
synchronous database operation directly from
within a multithreaded application would stall the
calling thread and all other threads until the call
completed. Figure 2 shows that a typical on-line
DECintact application accessing Rdb/VMS, for
example, is written in two pieces:

• A multi threaded, on-line piece (the client), that
handles forms requests from multiple users

• A single-threaded, database server piece (a server
instance), that performs the actual synchronous
database 1/0

This client/server approach to database access is
functionally very similar to that of ACMS procedure
servers and offers similar benefits. Like the ACMS
monitor, the DECintact monitor offers system man­
agement facilities to define pools of servers and to
adjust them dynamically at run-time in accordance
with load. Similar algorithms are used in both mon­
itors to allocate server instances to client threads

25

Transaction Processing, Databases, and Fault-tolerant Systems

and to start up new instances, as necessary. The
DECintact server code, like the ACMS procedure
server code, can define initialization and termina­
tion procedures to perform once-only start-up and
shut-down processing. With DECintact transaction
semantics, which are layered on DECdtm services,
a client can declare a global transaction that the
server instance will join. The server instance can
also declare its own independent transaction or no
transaction. (In terms of the DECdta architecture,
this client/server approach implements the func­
tions of a transaction server.)' The principal differ­
ence between the DECintact and ACMS approach is
that DECintact clients and servers use a message­
based 3GL communications interface to send and
receive work requests. Control in the ACMS moni­
tor resides in the execution controller.

As the ACMS monitor does, the DECintact archi­
tecture addresses the problem areas discussed in
the On-line Execution section in several ways.
Also, as with the ACMS approach, the factors we
chose to trade off allowed us to achieve better effi­
ciency, performance, and ease of use.

Resource Use The DECintact system's multi­
threaded methodology economizes on VMS
resources. Similar to the method used in the ACMS
monitor, the system reduces process creations
and image activations. A major difference between
the ACMS and DECintact architectures is the way
the DECintact monitor implements multithread­
ing support. The transparent implementation of
threading capabilities means that coding multi­
threaded applications is no more difficult than
coding traditional single-threaded applications. As
with any application-level threading scheme, how­
ever, the responsibility for ensuring that a logic
error in one thread is isolated to that thread lies
with the application. The DECintact client/server
facilities for accessing databases, like those used in
the ACMS monitor, can realize similar benefits in
process reuse, throughput, and error isolation.

Start-up Costs The DECintact architecture, like
the ACMS architecture, distributes start-up costs
(i.e., system resources and elapsed time) between
two points: the start of the DECintact system, and
the start of applications. System start-up can
involve prestarting VMS process shells (as dis­
cussed previously) for subsequent application
image activation. On-line application start-up is
executed on demand when the first user selects a
particular menu task. Multithreaded applications,

26

once started, do not exit but wait for new user
threads as users select the application. Thus, the
DECintact terminal user can switch between appli­
cation images and incur only an inexpensive
thread creation.

Contention As in the ACMS monitor, database
accesses in the DECintact client/server environ­
ment are channeled through a relatively few, but
heavily used, number of processes rather than
through a large number of lightly used processes.
This reduction decreases lock contention.

Processing Location Forms processing can be
off-loaded to a front end and brought closer to the
terminal user. Thus smaller, less expensive CPUs
can be used while the rest of the application exe­
cutes on a larger back-end machine or cluster. In
the DECintact monitor, the front end can consist of
forms processing only or a mix of forms process­
ing and application remote queuing work.

Off-line Execution
Many transaction processing applications are used
with nonterminal devices, such as a bar code
reader or a communications link used for an elec­
tronic funds transfer application. Because there is
no human interaction with these applications,
they have two requirements that differ from the
requirements of interactive applications: tasks must
be simple data entries, and the system must handle
failures transparently.

ACMS Off-line Execution
The ACMS monitor's goal for off-line processing is
to allow simple transaction capture to continue
when the application is not available. A typical
example is the continued capture of data on a man­
ufacturing assembly line by a MicroVAX system
when the application is unavailable. The ACMS
monitor provides two mechanisms for support­
ing nonterminal devices: queuing agents and user­
written agents.

Figure 4 illustrates the ACMS queuing model.
A queuing system is a resource manager that
processes entries, with priorities, in first-in, first ­
out (FIFO) order. (In terms of DECdta, this is the
queue resource manager.)' The ACMS queuing facil­
ity is built upon RMS-indexed files. The primary
goal of ACMS queuing is to provide a store­
and-forward mechanism to allow task requests
to be collected for later execution. By using
the ACMS$ENQUE_TASK service, a user can write

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

r---------------------l NODEA I
I I
I BARCODE AGENT I
I READER ACMS$ENQUEUE_TASK{) I
I I
I I

: ~~~~E ~ i
I ~ I
I
~--------------------~

NODE B

KEY:

D
D

TASK
DEFINITION

USER DATABASES

ACMS
PROCESSES

APPLICATION
PROCESSES

-----,

EXECUTION
CONTROLLER

PROCEDURE
SERVERS -

Figure 4 ACMS Queuing Agents

a process that captures a task request and safely
stores the task on a local disk queue.

The ACMS monitor provides a special agent,
called the queued task initiator (QTI), which takes
a task entry from the queue and submits it to the
appropriate execution controller. The QTI starts a
DECdtm transaction, removes the task entry from
the queue within that transaction, invokes the
ACMS task, and passes the transaction identifier. (In
the DECdta architecture, the QTI implements the
functions of a request manager for queued
requests.)' The task then joins that transaction.
The removal from the queue is atomic with the
commit of the task, and no task entry is lost or
executed twice.

Figure 5 shows the ACMS user-written agent
model for off-line processing. With the ACMS sys­
tem interface, users may write their own versions
of the command process. Note that because these
agents cannot be safely stored on disks, this
method is generally not as reliable as using queues.
User-written agents can be used, however, with
DECdtm and the fault-tolerant VAXft 3000 system
to produce a reliable front-end system. To do so, a

Dtgttal Tecbntcal]ournal Vol. 3 No. 1 Winter 1991

Digital's Transaction Processing Monitors

user writes an agent that captures the input for the
task and then starts a DECdtm transaction. The
agent uses the system interface services to invoke
the ACMS task and passes the transaction identifier
and the input data. When the task call completes,
the agent commits the transaction. If DECdtm
returns an error on the commit, the agent loops
back to start another transaction and to resubmit
the task. If a VAXcluster system is used for the appli­
cation, this configuration will survive any single
point of failure.

DECintact Off-line Execution
The DECintact monitor provides several facilities
for applications to perform off-line processing.
These facilities allow applications to

• Interface with and process data from nontermi­
nal devices and asynchronous events

• Control transaction capture, store and forward,
interprocess communication, and business work
flow through the DECintact queuing subsystem

Off-line Multitbreading Off-line, multithreaded
DECintact applications are typically used to service

r---------------------1
I VAXFT 3000

I I
I BARCODE SYSTEM I
I READERS AGENT INTERFACE I
I I
I I ___ _J

,------------

KEY:

BACK-END NODE

TASK
DEFINITION EXECUTION

CONTROLLER

E}- PROCEDURE
SERVERS_____.

USER DATABASES

D
D

ACMS
PROCESSES

APPLICATION
PROCESSES

Figure 5 ACMS User-written Agent Model
for Off-line Processing

27

Transaction Processing, Databases, and Fault-tolerant Systems

asynchronous events, such as the arrival of an
electronic funds transfer message or the addition
to the queue of an item already on a DECintact
queue. The application programmer explicitly
controls how many threads are created, when they
are created, and which execution path or paths
each thread will follow. Off-line, multithreaded
applications are well-suited to message switching
systems and other aspects of electronic funds
transfer in which each thread may be dedicated to
servicing a different kind of event.

DECintact Queues The primary goal of the
DECintact queuing subsystem is to support a work
flow model of business transactions. (In the
DECdta architecture, the DECintact queuing sub­
system implements the functions of a queue
resource manager and request initiator for queued
requests.)' In a typical DECintact application that
relies on queuing, the state of the business trans­
action may be represented by the queue on which
a particular queue item resides at the moment. An
item moves from queue to queue as the item's
processing state changes, much as a work item
moves from desk to desk. The superset of queue
items that reside on queues throughout the appli­
cation at any one time represents the state of trans­
actions currently executing. Depending on the
number of programs that need to process data dur­
ing the course of a transaction, a queue item may
be inserted on several different queues before the
transaction completes. The application also may
wish to chain together several small transactions
within the context of a larger business transaction.
The DECintact queuing system functions through­
out the application: from the front end, where
queues collect and route incoming data; to the
back end, where queues can be integrated with
data files in recovery units; and in between, where
different programs in the application can use
queues to share data.

The DECintact queuing subsystem consists of a
comprehensive set of callable services for the cre­
ation and manipulation of queues, queue sets, and
queue items. Queue item operations performed
within the context of a DECintact transaction are
fully atomic along with DECintact file operations.

In addition to overall workflow control, the
DECintact queuing system allows the following:

• Deferred processing - An item can be queued
by one process and then removed from the
queue later by another process for processing.
Deferred processing is useful when the volume

28

of data entry is concentrated at particular times
of day; applications can assign themselves to
one or more queues and can be notified when
an item is inserted on the queue.

• Store-and-forward processing - When users at
the front end of the system write items to local
queues, data entry can be continuous in the
event of back-end system failure or whenever a
program that is needed to process data is tem­
porarily unavailable.

• Interprocess communication - Locally between
applications sharing a node and by means of
the DECintact remote queuing facility, applica­
tions can use the queuing system to reliably
exchange application data between processes
and applications.

A fundamental difference between ACMS queues
and DECintact queues is that the ACMS system
inserts tasks onto the queues, and the DECintact
system inserts data items. In DECintact queuing,
each data item contains both user-supplied data
and a header that includes an item key and other
control information. The header is used by the
queuing system to control the movement of the
item from queue to queue. Each queue item can be
assigned an item priority. Items can be removed
from the queue in FIFO order, in FIFO order within
item priority, or by direct access using the item
key. Queues can be stopped and started for inser­
tion, removal, or both. Queues can also be redi­
rected transparently at the system management
level to running applications.

In the DECintact monitor, alert thresholds can be
specified on a queue-by-queue basis to alert the
system manager when queue levels reach defined
amounts. Individual queue items can be held
against removal or released. Queues can be grouped
together into logical entities, called queue sets,
which look and behave to the application the same
as individual queues. Queue sets have added facili­
ties for broadcast insertion on all members of a
queue set and a choice of removing algorithms that
can weight relative item- and queue-level priorities
from the queue.

DECintact queues can be automatically distrib­
uted. At the system management level, a local
queue can be designated as remote outbound. That
is to say, items added to this queue are shipped
transparently across the network to a correspond­
ing remote inbound queue on the destination
node. The transfer is hand led by the DECintact
queuing system by using exactly-once semantics

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

(i.e., the item is guaranteed to be sent once and
only once). From the point of view of the appli­
cation that is adding or removing items from the
queue, remote queues behave exactly as local
queues behave.

To better understand some of the uses for
DECintact queuing, consider a simplified but repre­
sentative electronic funds transfer example built
on the DECintact monitor. Figure 6 shows the ele­
ments of such an application. In this application,
transactions might be initiated either locally by
clerks entering data into the system from user-

NODE A

Digital's Transaction Processing Monitors

generated documents or by an off-line application
that receives data from another branch or bank.
The transactions are verified or repaired by other
clerks in a different department of the bank. The
transactions are then sent to destination banks
over one or more network services.

To implement this application, the developer uses
queues to route, safely store, and synchronize data
as it progresses through the system, and to priori­
tize data items. Data items are given priority levels,
based on application-defined criteria, such as trans­
fer amount, destination bank, or time-to-closing.

)1 II, TERMINAL MANAGER/
DISPATCHER g--.________, DATA ENTRY

APPLICATION

OUTBOUND ,-..---~
QUEUE

r------------------------------- -
NODEB

TERMINAL MANAGER/
DISPATCHER

DATABASE
SEAVERS

USER DATABASES

--

VERIFY AND
REPAIR ...-----------,
QUEUE

VERIFY AND REPAIR
APPLICATION

FE DWIRE
PROCESS

SUPERVISOR
QUEUE

r----:s.--- FEDWIRE
NETWORK

~-------------------------------J
KEY:

D DECINTACT
PROCESSES

APPLICATION
PROCESSES

Figure 6 Elements of a DECintact Electronics Funds Transfer

Digital Technical Journal Vol. 3 No. 1 Winter 1991 29

Transaction Processing, Databases, and Fault-tolerant Systems

As illustrated in Figure 6, the terminal manager
controls terminals for the Data Entry and Verify and
Repair applications. Clerks enter data from user­
generated documents on-line as complete messages.
Verification and repair clerks receive these mes­
sages as work items from the verify and repair
queue through the Verify and Repair application.
The result of verification is either a validated mes­
sage, which is ultimately sent to a destination bank,
or an unverifiable message, which is routed to the
supervisor queue for special handling. After special
handling, the message rejoins the processing flow
by returning to the verify and repair queue. After
validation, the messages are inserted in the
Fedwire xmt queue and sent over the network to
the Federal Reserve System. The Fedwire Process
application controls the physical interface to
the communication line and implements the
Fedwire protocol. The validated messages are also
used to update a local database by means of
database server programs.

The Fedwire xmt queue could be defined as a
queue set, which would permit the Fedwire
Process application to remove items from the
queue by a number of algorithms that bias the
transfer amount by queue and item priority.
Similarly, this queue set could be passively repriori­
tized near the close of the business day. In other
words, the DECintact system administrator could
use the DECintact queue utility near the end of the
day to change queue-wide priorities and ensure
that items with a higher priority level in the queue
set would be sent over the Fedwire first, without
changing any application code.

Application Management
Typically, transaction processing applications are
crucial to the business running the applications. If
the applications cannot perform their functions
reliably or securely, business activity may have to
cease altogether or be curtailed, as in the case of an
inventory control application or electronic funds
processing application. Therefore, the applica­
tions require additional controls to ensure that the
applications and the access by users to the appli­
cations are limited to exactly what is needed for
the business.

ACMS Application Management
Of the many features and tools for monitoring and
controlling the system offered in the ACMS moni­
tor, three areas are most often used.

30

• Controlling and restricting terminal user
environments

• Controlling and restricting the application

• Ability to dynamically make changes to the appli­
cation without stopping work

In addition to using the VMS user authorization
file (VMS SYSUAF), the ACMS monitor provides utili­
ties to define which users and terminals have
access to the ACMS system. Controlled terminals
are terminals defined by one of these utilities to be
owned by the ACMS monitor. These terminals are
allocated by the ACMS monitor when the ACMS
system is started. When a user presses the Return
key, the ACMS monitor displays its login prompt.
Unless the user has login access, the VMS system
cannot be accessed. The user's access is restricted
to only those ACMS functions that the user is per­
mitted to invoke. This restriction prevents a user
from damaging the integrity of data on the system.
The ACMS monitor also allows access support for
terminals that are automatically logged in to the
ACMS system, such as a terminal on a shop floor.
Such access is useful for unprivileged users who
are not accustomed to computers. They can enter
data without understanding the process for log­
ging in to the system.

For application control, the ACMS monitor uses a
protected directory, ACMS$DIRECTORY, to store the
application definition files. The application autho­
rization utility (AAU) ensures that special authori­
zation is required for a user to make changes to an
application.

In the ACMS monitor, the application is a single
point of control. The ACMS/START APPLICATION and
ACMS/STOP APPLICATION commands cause the exe­
cution controller for the application to be created
and deleted. An operator can control the times
when an application is accessible. For example, an
application can be controlled to run only on
Fridays or only between certain hours. The control
of access times can also be used to restrict access
while changes or repairs are made to the applica­
tion. This type of access control is difficult to
achieve with only the VMS system because the VMS
system does not provide these capabilities.

The execution controller does access-control
list checking that is specified for each task. This
mechanism can restrict user access by function.
For example, a user could have the privilege to
make a particular update to a-database but not have
access to read or make changes to any other parts

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

of that database. The execution controller achieves
a much finer level of control than do the mecha­
nisms of the VMS system or the database system.

DECintact Application Management
The DECintact monitor controls access to the whole
system and to individual tasks by means of a secu­
rity subsystem. The subsystem adds transaction­
processing-specific features to basic VMS security.

• User security profiles specify the DECintact user
name and password (DECintact users are not
required to have an entry in the VMS SYSUAF
file); levels of security entitlement; inclusive and
exclusive hours of permissible sign-on; menu
entries authorized for the user. Only one user
under a given DECintact user name can be signed
on to the DECintact system at any one time on
any one node.

• Dedicated terminal security profiles are used, in
conjunction with user security profiles, to pro­
vide geographic entitlement.

• CAPTIVE and INITIAL_MENU user attributes
restrict users to a specific menu level of func­
tions and prevent the user from accessing outer
levels.

• User-specific menus are menu entries for which
an explicit authorization has been granted in the
user profile and are the only menu items visible
on the menu presented to terminal users. The
DECintact monitor does include an exception for
users who have an auditor privilege. Auditors
can see all menu functions but must be specifi­
cally authorized to execute any single function.

• The subsystem provides the ability to dynami­
cally enable or disable specific menu functions.

• Password revalidation is an attribute that can be
associated with a menu function. If set, the user
must reenter the DECintact user name and pass­
word before being allowed to access the function.

The DECintact monitor supports both controlled
or dedicated terminals and terminals assigned LAT
terminal server application ports, as does the ACMS
monitor. These terminals are owned by, and allo­
cated to, the DECintact system. When a user types
any character at these terminals, a DECintact sign­
on screen is displayed, and the user is prevented
from logging in to the VMS system.

Geographic entitlement limits certain DECintact
terminal-based functions to certain terminals or

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Digital's Transaction Processing Monitors

even to certain users on certain terminals. The three
elements in geographic entitlement are as follows:

• The user security profile enables a function to be
accessed by a certain user.

• The terminal security profile enables a function
to be accessed at a certain terminal.

• A GEOG attribute is associated with a menu
entry in the terminal manager/dispatcher's
menu database. This attribute, when associated
with a function, demands that there be an appli­
cable terminal security profile before the func­
tion can be accessed.

Normally, if a function is enabled in a user
profile, the user can access the function without
further checks. If the GEOG attribute is associated
with the function, however, that function must
be enabled in the user profile and in the terminal
profile before it can be accessed.

Geographic entitlement is frequently a require­
ment in financial environments which have specific
and rigid security protocols. For example, a bank
officer may be authorized to execute certain sensi­
tive functions available only at dedicated terminals
when the officer is signed-in at the home office.
The same officer may be authorized to execute
only a subset of less sensitive functions when
signed-in from a branch office. Such sensitive func­
tions can be protected by requiring that the user
profile and the dedicated terminal profile enable
the function.

Applications and resources are controlled
within the context of a DECintact copy's run-time
and management environment. Multiple copies
can be established on the same VMS system.
Different groups of users can maintain a certain
level of autonomy (e.g., separate applications and
data files), but all users can also share some or all
functions and resources of a given DECintact ver­
sion. A typical example of this concept, that is, the
ability to create multiple DECintact copies for isola­
tion and partitioning, is the common practice of
establishing development, acceptance testing, and
production DECintact environments. Managing
applications and resources within a development
environment, for example, can differ from manag­
ing applications and resources within a production
environment with a different system manager.

Access to menu functions is controlled by the
INTACT MANAGE DISABLE/ENABLE command. This
command removes or restores specified functions

31

Transaction Processing, Databases, and Fault-tolerant Systems

dynamically from all menus in the DECintact copy
and disables or enables their selection by subse­
quent users. (Current accessors of the specified
function are allowed to complete the function.)
The execution of single- and multithreaded appli­
cations or DECintact system components can be
shut down by the INTACT MANAGE SHUTDOWN
command. This command issues a mailbox request
to the application or component, which then initi­
ates an orderly shutdown. Access to the system by
inclusive and exclusive time of day is controlled on
a per-user basis through the DECintact security
subsystem. In addition to these commands and
functions, the queuing subsystem is managed by
means of a queue management utility. This utility
creates and deletes queues and queue sets, modi­
fies queue and queue set attributes, and performs
all other functions necessary for managing the
DECintact queuing subsystem.

In general, the DECintact monitor's security and
application control focuses on the front end by
concentrating access checking at the point of sys­
tem sign-in and menu generation. The ACMS system
concentrates more on the back-end parts of the
system by means of VMS access control lists (ACL)
on specified tasks. The ACMS approach is built on
VMS security and system access (the SYSUAF file)
and reflects an environment in which the VMS sys­
tem and the transaction processing security func­
tions are typically performed by the same system
management agency. The DECintact monitor's sys­
tem access is handled more independently of the
VMS system and reflects an environment in which
transaction-processing-specific security functions
may be performed by a different department from
those of the general VMS security system.

Conclusion
The ACMS and DECintact transaction processing
monitors provide a unified set of transaction-pro­
cessing-specific services to the application envi­
ronment. A large functional overlap exists between
the services each monitor provides. Where the
functions provided by each monitor are identical
or similar (e.g., client/server database access and
support for DECforms), the factors that distinguish
one from the other are primari I y a result of the use
of 4GL and 3GL application programming styles
and interfaces. Where notable functional differ­
ences remain (as in each product's respective
queuing or security systems), the differences are
primarily ones of emphasis rather than func­
tional incompatibility. The set of common features

32

shared by both monitors has been growing with
the latest releases of the ACMS and DECintact
monitors. This external convergence has been fos­
tered and made possible by an internal conver­
gence, which is based on sharing the underlying
code that supports the common features of each
monitor. As more common features are introduced
and enhanced in the DECtp system, the investment
in applications built on either monitor can be
protected and the distinctive programming styles
of both can be preserved.

Reference

1. P. A. Bernstein, W. T. Emberton, and V. Trehan,
"DECdta - Digital's Distributed Transaction Pro­
cessing Architecture," Digital Technical journal,
vol. 3, no. 1 (Winter 1991, this issue): 10-17.

Vo l . 3 No. 1 Win ter 1991 Digita l Technical jour na l

William A. Laing
James E. Johnson
Robert V. Landau

Transaction Management
Support in the l-MS
operating System Kernel

Distributed transaction management support is an enhancement to the VMS oper­
ating system. This support provides services in the vMS operating system for atomic
transactions that may span multiple resource managers, such as those for Jla.t files,
network databases, and relational databases. These transactions may also be distrib­
uted across multiple nodes in a network, independent of the communications
mechanisms used by either the application programs or the resource managers.
The Digital distributed transaction manager (DECdtm) services implement an opti­
mized variant of the two-phase commit protocol to ensure transaction atomicity.
Additionally, these services take advantage of the unique VAXcluster capabilities to
greatly reduce the potential for blocking that occurs with the traditional twophase
commit protocol. These features, now part of the vMS operating system, are readily
available to multiple resource managers and to many applications outside the
traditional transaction processing monitor environment.

Businesses are becoming critically dependent on
the availability and integrity of data stored on com­
puter systems. As these businesses expand and
merge, they acquire ever greater amounts of on-line
data, often on disparate computer systems and often
in disparate databases. The Digital distributed trans­
action manager (DECdtm) services described in
this paper address the problem of integrating data
from multiple computer systems and multiple
databases while maintaining data integrity under
transaction control.

The DECdtm services are a set of transaction pro­
cessing features embedded in the VMS operating
system. These services support distributed atomic
transactions and implement an optimized variant
of the well-known, two-phase commit protocol.

Design Goals
Our overall design goal was to provide base services
on which higher layers of software could be built.
This software would support reliable and robust
applications, while maintaining data integrity.

Many researchers report that an atomic trans­
action is a very powerful abstraction for building
robust applications that consistently update data.1

•
2

Supporting such an abstraction makes it possible
both to respond to partial failures and to maintain

Digital Techt1ical]ourt1al Vol. 3 No. 1 Winter 1991

data consistency. Moreover, a simplifying abstrac­
tion is crucial when one is faced with the complex­
ity of a distributed system.

With increasingly reliable hardware and the
influx of more general-purpose, fault-tolerant sys­
tems, the focus on reliability has shifted from
hardware to software.~ Recent discussions indicate
that the key requirements for building systems
with a 100-year mean time between failures may be
(1) software-fault containment, using processes,
and (2) software-fault masking, using process check­
pointing and transactions.4

It was clear that we could use transactions as a
pervasive technique to increase application avail­
ability and data consistency. Further, we saw that
this technique had merit in a general-purpose oper­
ating system that supports transaction processing,
as well as timesharing, office automation, and tech­
nical computing.

The design of DECdtm services also reflects sev­
eral other Digital and VMS design strategies:

• Pervasive availability and reliability. As organi­
zations become increasingly dependent on their
information systems, the need for all applica­
tions to be universally available and highly reli­
able increases. Features that ensure application

33

Transaction Processing, Databases, and Fault-tolerant Systems

availability and data integrity, such as journaling
and two-phase commit, must be available to all
applications, and not limited to those tradition­
ally thought of as "transaction processing."

• Operating environment consistency. Embedding
features in the operating system that are required
by a broad range of utilities ensures consistency
in two areas: first, in the functionality across all
layered software products, and, second, in the
interface for developers. For instance, if several
distributed database products require the two­
phase commit protocol, incorporating the
protocol into the underlying system allows
programmers to focus on providing "value­
added" features for their products instead of
re-creating a common routine or protocol.

• Flexibility and interoperability. Our vision
includes making DECdtm interfaces available to
any developer or customer, allowing a broad
range of software products to take advantage of
the VMS environment. Future DECdtm services
are also being designed to conform to de facto
and international standards for transaction pro­
cessing, thereby ensuring that VMS applications
can interoperate with applications on other
vendors' systems.

Transaction Manager - Some
Definitions
To grasp the concept of transaction manager, some
basic terms must first be understood:

• Resource manager. A software entity that con­
trols both the access and recovery of a resource.
For example, a database manager serves as the
resource manager for a database.

• Transaction. The execution of a set of opera­
tions with the properties of atomicity, serializ­
ability, and durability on recoverable resources.

• Atomicity. Either all the operations of a trans­
action complete, or the transaction has no effect
at all.

• Serializability. All operations that executed for
the transaction must appear to execute serially,
with respect to every other transaction.

• Durability. The effects of operations that exe­
cuted on behalf of the transaction are resilient
to failures.

A transaction manager supports the transaction
abstraction by providing the following services:

34

• Demarcation operations to start, commit, and
abort a transaction

• Execution operations for resource managers to
declare themselves part of a transaction and for
transaction branch managers to declare the dis­
tribution of a transaction

• Two-phase commit operations for resource man­
agers and other transaction managers to change
the transaction state (to either "preparing" or
"committing") or to acknowledge receipt of a
request to change state

Benefits of Embedding Transaction
Semantics in the Kernel
Several benefits are achieved by embedding trans­
action semantics in the kernel of the VMS operating
system. Briefly, these benefits include consistency,
interoperability, and flexibility. Embedding trans­
action semantics in the kernel makes a set of
services available to different environments and
products in a consistent manner. As a consequence,
interoperability between products is encouraged,
as well as investment in the development of "value­
added" features. The inherent flexibility allows a
programmer to choose a transaction processing
monitor, such as VAX ACMS, and to access multiple
databases anywhere in the network. The program­
mer may also write an application that reads a
VAX DBMS CODASYL database, updates an Rdb/VMS
relational database, and writes report records to
a sequential VAX RMS file - all in a single trans­
action. Because all database and transaction pro­
cessing products use DECdtm services, a failure at
any point in the transaction causes all updates to
be backed out and the files to be restored to their
original state.

Two-phase Commit Protocol
DECdtm services use an optimized variant of the
technique referred to as two-phase commit. The
technique is a member of the class of protocols
known as Atomic Commit Protocols. This class
guarantees two outcomes: first, a single yes or no
decision is reached among a distributed set of par­
ticipants; and, second, this decision is consistently
propagated to all participants, regardless of sub­
sequent machine or communications failures. This
guarantee is used in transaction processing to help
achieve the atomicity property of a transaction.

The basic two-phase commit protocol is straight­
forward and well known. It has been the subject of
considerable research and technical literature for

Vol. 3 No. 1 Winter 1991 Dig i tal Technical journal

Transaction Management Support in the VMS Operating System Kernel

several years. s,G,7,s,9 The following section describes
in detail this general two-phase commit protocol
for those who wish to have more information on
the subject.

The Basic Two-phase Commit
Protocol
The two-phase commit protocol occurs between
two types of participants: one coordinator and one
or more subordinates. The coordinator must arrive
at a yes or no decision (typically called the "com­
mit decision") and propagate that decision to all
subordinates, regardless of any ensuing failures.
Conversely, the subordinates must maintain cer­
tain guarantees (as described below) and must
defer to the coordinator for the result of the com­
mit decision. As the name suggests, two-phase
commit occurs in two distinct phases, which the
coordinator drives.

SUBORDINATE

END TRANS FROM
APPLICATION

In the first phase, called the prepare phase, the
coordinator issues "requests to prepare" to all sub­
ordinates. The subordinates then vote, either a "yes
vote" or a "veto." Implicit in a "yes vote" is the guar­
antee that the subordinate will neither commit nor
abort the transaction (decide yes or no) without an
explicit order from the coordinator. This guarantee
must be maintained despite any subsequent fail­
ures and usually requires the subordinate to place
sufficient data on disk (prior to the "yes vote") to
ensure that the operations can be either completed
or backed out.

The second phase, called the commit phase,
begins after the coordinator receives all expected
votes. Based on the subordinate votes, the coor­
dinator decides to commit if there are no "veto"
votes; otherwise, it decides to abort. The coordina­
tor propagates the decision to all subordinates as
either an "order to commit" or an "order to abort."

COORDINATOR

INCREASING
TIME

REQUEST TO PREPARE

FORCE WRITE
"PREPARE"
RECORD

YES VOTE

"COMMIT" j
---..... El FORCE WRITE

COMMIT POINT --i--- RECORD
NOTIFY
APPLICATION

------ORDER TO COMMIT

LAZY WRITE
"COMMIT"
RECORD

DONE

LAZY WRITE
"FORGET"
RECORD

LAZY WRITE
"FORGET"
RECORD

Figure 1 Simple Two-phase Commit Time Line

Digital Technical Journal Vol. 3 No. 1 Winter 1991 35

Transaction Processing, Databases, and Fault-tolerant Systems

Because the coordinator's decision must survive
failures, a record of the decision is usually stored
on disk before the orders are sent to the subordi­
nates. When the subordinates complete process­
ing, they send an acknowledgment back to the
coordinator that they are "done." This allows the
coordinator to reclaim disk storage from com­
pleted transactions. Figure 1 shows a time line of
the two-phase commit sequence.

A subordinate node may also function as a supe­
rior (intermediate) node to follow-on subordinates.

In such cases, there is a tree-structured relation­
ship between the coordinator and the full set of sub­
ordinates. Intermediate nodes must propagate the
messages down the tree and collect responses back
up the tree. Figure 2 shows a time line for a two­
phase commit sequence with an intermediate node.

Most of us have had direct contact with the two­
phase commit protocol. It occurs in many activities.
Consider the typical wedding ceremony as pre­
sented below, which is actually a very precise two­
phase commit.

SUBORDINATE INTERMEDIATE COORDINATOR

INCREASING
TIME

j

FORCE WRITE
"PREPARE''
RECORD

YESVOTE

LAZY WRITE
"COMMIT"
RECORD

DONE

El
LAZY WRITE
"FORGET"
RECORD

END TRANS FROM
APPLICATION

-----REQUEST TO PREPARE

-..... El FORCE WRITE
"PREPARE"

,.- RECORD ----YESVOTE

-..... F===1 FORCE WRITE
L..J "COMMIT"

COMMIT POINT - ,.- RECORD
NOTIFY
APPLICATION

ORDER TO COMMIT

LAZY WRITE
"FORGET"
RECORD

LAZY WRITE
"FORGET"
RECORD

Figure 2 Three-node Two-phase Commit Time Line

36 Vol. 3 No. 1 Winter 1991 Digital TecbntcalJournal

Transaction Management Support in the VMS Operating System Kernel

Official:
Bride:

Will you, Mary, take John ... ?
I will.

Official:
Groom:

Will you, John, take Mary ... ?
I will.

Official: I now pronounce you man and wife.

The above dialog can be viewed as a two-phase
commit:

Coordinator:
Participant 1:
Coordinator:
Participant 2:
Coordinator:

Request to Prepare?
Yes Vote.
Request to Prepare?
Yes Vote.
Commit Decision.
Order to Commit.

The basic two-phase commit protocol is straight­
forward, survives failures, and produces a single,
consistent yes or no decision. However, this proto­
col is rarely used in commercial products. Opti­
mizations are often applied to minimize message
exchanges and physical disk writes. These optimi­
zations are important particularly to the trans­
action processing market because the market is
very performance sensitive, and two-phase com­
mit occurs after the application is complete. Thus,
two-phase commit is reasonably considered an
added overhead cost. We have endeavored to reduce
the cost in a number of ways, resulting in low
overhead and a scalable protocol embodied in the
DECdtm services. Some of the optimizations are
described later in another section.

COMMUNICATION
INTERFACE

RESOURCE
MANAGER
REGISTRY

TRANSACTION
COORDINATOR

RESOURCE
MANAGER
SERVICES

t
USER BRANCH

MANAGEMENT SERVICES
SERVICES

-

Components of the DECdtm Services
The DECdtm services were developed as three sep­
arate components: a transaction manager, a log
manager, and a communication manager. Together,
these components provide support for distributed
transaction management. The transaction manager
is the central component. The log manager ser­
vices enable the transaction manager to store data
on nonvolatile storage. The communication man­
ager provides a location-independent interprocess
communication service used by the transaction
and log managers. Figure 3 shows the relationships
among these components.

The Digital Distributed Transaction
Manager
As the central component of the DECdtm services,
the transaction manager is responsible for the
application interface to the DECdtm services. This
section presents the system services the trans­
action manager comprises.

The transaction coordinator is the core of the
transaction manager. It implements the transaction
state machine and knows which resource man­
agers and subordinate transaction managers are
involved in a transaction. The coordinator also con­
trols what is written to nonvolatile storage and
manages the volatile list of active transactions.

The user services are routines that implement
the START_TRANSACTION, END_TRANSACTION, and
ABORT_TRANSACTION transaction system services.

VOLATILE
REGISTRY

LOGGING
INTERFACE

t
INFORMATION
SERVICES

-

TO REMOTE
DECDTM

TO HARDENED
REGISTRY

EXTERNAL
INTERFACE

Figure 3 Components of the DECdtm Seroices

Dtgttal Tecbntcal]ournal Vol. 3 No. 1 Winter 1991 37

Transaction Processing, Databases, and Fault-tolerant Systems

They validate user parameters, dispense a trans­
action identifier, pass state transition requests to
the transaction coordinator, and return informa­
tion about the transaction outcome.

The branch management services support the
creation and demarcation of branches in the dis­
tributed transaction tree. New branches are con­
structed when subordinate application programs
are invoked in a distributed environment. The ser­
vices are called on to attach an application pro­
gram to the transaction, to demarcate the work
done in that application as part of the transaction,
and finally to return information about the trans­
action outcome.

The resource manager services are routines that
provide the interface between the DECdtm services
and the cooperating resource managers. This inter­
face allows resource managers to declare them­
selves to the transaction manager and to register
their involvement in the "voting" stage of the two­
phase commit process of a specific transaction.

Finally, the information services routines are
the interface that allows resource managers to
query and update transaction information stored
by DECdtm services. This information is stored
in either the volatile-active transaction list or the
nonvolatile transaction log. Resource managers
may resolve and possibly modify the state of
"in-doubt" transactions through these services.

The Log Manager
The log manager provides the transaction manager
with an interface for storing sufficient information
in nonvolatile storage to ensure that the outcome
of a transaction can be consistently resolved. This
interface is available to operating system compo­
nents. The log manager also supports the creation,
deletion, and general management of the trans­
action logs used by the transaction manager. An
additional utility enables operators to examine
transaction logs and, in extreme cases, makes it
possible to change the state of any transaction.

The Communication Manager
The communication manager provides a command/
response message-passing facility to the trans­
action manager and the log manager. The interface
is specifically designed to offer high-performance,
low-latency services to operating system com­
ponents. The command/response, connection­
oriented, message-passing system allows clients
to exchange messages. The clients may reside on
the same node, within the same cluster, or within

38

a homogeneous VMS wide area network. The com­
munication manager also provides highly optimized
local (that is, intranode) and intracluster trans­
ports. In addition, this service component multi­
plexes communication links across a single, cached
DECnet virtual circuit to improve the performance
of creating and destroying wide area links.

Transaction Processing Model
Digital's transaction processing model entails the
cooperation of several distinct elements for correct
execution of a distributed transaction. These ele­
ments are (1) the application programmer, (2) the
resource managers, (3) the integration of the
DECdtm services into the VMS operating system,
(4) transaction trees, and (5) vote-gathering and
the final outcome.

Application Programmer
The application programmer must bracket a series
of operations with START_TRANSACTION and
END_TRANSACTION calls. This bracketing demar­
cates the unit of work that the system is to treat as
a single atomic unit. The application programmer
may call the DECdtm services to create the branches
of the distributed transaction tree.

Resource Managers
Resource managers, such as VAX RMS, VAX Rdb/VMS,
and VAX DBMS, that access recoverable resources
during a transaction inform the DECdtm services of
their involvement in the transaction. The resource
managers can then participate in the voting phase
and react appropriately to the decision on the final
outcome of the transaction. Resource managers
must also provide recovery mechanisms to restore
resources they manage to a transaction-consistent
state in the event of a failure .

Integration in the Operating System
The DECdtm services are a basic component of the
VMS operating system. These services are responsi­
ble for maintaining the overall state of the distrib­
uted transaction and for ensuring that sufficient
information is recorded on stable storage . Such
information is essential in the event of a failure so
that resource managers can obtain a consistent
view of the outcome of transactions.

Each VMS node in a network normally contains
one transaction manager object. This object main­
tains a list of participants in transactions that are
active on the node. This list consists of resource
managers local to the node and the transaction
manager objects located on other nodes.

Vol . 3 No. 1 Winter 1991 Dtgttal Technical Journal

Transaction Management Support in the VMS Operating System Kernel

Transaction Trees
The node on which the transaction originated (that
is, the node on which the START_TRANSACTION
service was called) may be viewed as the "root" of
a distributed transaction tree. The transaction
manager object on this node is usually responsible
for coordinating the transaction commit phase of
the transaction. The transaction tree grows as
applications call on the branch management ser­
vices of the transaction manager object.

The transaction identifier dispensed by the
START_TRANSACTION service is an input parameter
to the branch services. This parameter identifies
two concerns for the local transaction manager
object: (1) to which transaction tree the new branch
should be added, and (2) which transaction man­
ager object is the immediate superior in the tree.

Resource managers join specific branches in a
transaction tree by calling the resource manager
services of the local transaction manager object.

Vote-gathering and the Final Outcome
When the "commit" phase of the transaction is
entered (triggered by an application call to
END_TRANSACTION), each transaction manager
object involved in the transaction must gather the
"votes" of the locally registered resource managers
and the subordinate transaction manager objects.
The results are forwarded to the coordinating trans­
action manager object.

The coordinating transaction manager object
eventually informs the locally registered resource
managers and the subordinate transaction manager
objects of the final outcome of the transaction. The
subordinate transaction manager objects, in turn,
propagate this information to locally registered
resource managers as well as to any subordinate
transaction manager objects.

Protocol optimizations
The DECdtm services use several previously pub­
lished optimizations and extend those optimiza­
tions with a number that are unique to VAXcluster
systems. In this section we present these general
optimizations, a discussion ofVAXcluster consider­
ations, and two VAXcluster-specific optimizations.

General Optimizations
The following sections describe some previously
published optimizations.

Presumed Abort DECdtm services use the "pre­
sumed abort" optimization."· 9 This optimization
states that, if no information can be found for a

D igital Technical Journal Vol. 3 No. I Winter 1991

transaction by the coordinator, the transaction
aborts. This removes the need to write an abort
decision to disk and to subsequently acknowledge
the order to abort. In addition, subordinates that
do not modify any data during the transaction (that
is, they are "read only"), avoid writing information
to disk or participating in the commit phase.

Lazy Commit Log Write The DECdtm services
can act as intermediate nodes in a distributed trans­
action. In this mode, they write a "prepare" record
prior to responding with a "yes vote." They also
write a "commit" record upon receipt of an order
to commit. This latter record is written so that the
coordinator need not be asked about the commit
decision should the intermediate node fail. This
refinement isolates the intermediate node's recov­
ery from communication failures between it and
the coordinator.

Performance is enhanced when the DECdtm ser­
vices write the commit record on an intermediate
node in a "nonurgent" or "lazy" manner. 10 The lazy
write buffers the information and waits for an
urgent request to trigger the group commit timer
to write the data to disk. Typically, this operation
avoids a disk write at the intermediate node. The
increase in the length of time before the commit
record is written is negligible.

One-phase Commit A key consideration in the
design of the DECdtm services was to incur mini­
mal impact on the performance of Digital's data­
base products. We exploited two attributes to
achieve this goal. First, all current users are limited
to non-distributed transactions (those that involve
only a single subordinate). Second, the two-phase
commit protocol requires that all subordinates
respond with a "yes vote" to commit the trans­
action. This allows a highly optimized path for
single subordinate transactions. Such transactions
require no writes to disk by the DECdtm services
and execute in one phase. The subordinate is told
that it is the only voting party in the transaction
and, if it is willing to respond with a "yes vote," it
should proceed and perform its order to commit
processing.

VAXcluster Considerations
The optimizations listed above (and others not
described here) provide the DECdtm services
with a competitive two-phase commit protocol.
VAXcluster technology, though, offers other
untapped potential. VAXcluster systems offer sev­
eral unique features, in particular, the guarantee

39

Transaction Processing, Databases, and Fault-tolerant Systems

against partitioning, the distributed lock manager,
and the ability to share disk access between CPUs. 11

Within a VAXcluster system, use of these unique
features allows the DECdtm services to avoid a
blocked condition which occurs during the short
period of time when a subordinate node responds
with a "yes vote" and communication with its
coordinator is lost. Normally, the subordinate is
unable to proceed with that transaction's commit
until communications have been restored.

Outside a VAXcluster system, the DECdtm ser­
vices would indeed be blocked. If, however, the
subordinate and its coordinator are in the same
VAXcluster system, this will not occur. If communi­
cation is lost, a subordinate node knows, as a result
of the guarantee against partitioning, that its coor­
dinator has failed.

Because a subordinate node can access the trans­
action log of the failed coordinator, it may imme­
diately "host" its failed coordinator's recovery.
Communications to the hosted coordinator are
quickly restored, and the subordinate node is able
to complete the transaction commit.

VAXcluster-specific Optimizations
Once the blocking potential was removed from
intra-VAXcluster transactions, several additional
protocol optimizations became practical. The
optimizations described in this section are dynam­
ically enabled if the subordinate and its coordina­
tor are both in the same VAXcluster system.

Early Prepare Log Write As mentioned earlier, an
intermediate node must write a "prepare" record
prior to responding with a "yes vote." The pres­
ence of this record in an intermediate node's
log indicates that the node must get the outcome
of the transaction from the coordinator and, thus,
it is subject to blocking. Therefore, the prepare
record is typically written after all the expected
votes are returned, which adds to commit-time
latency.

The DECdtm services are free from blocking con­
cerns within a VAXcluster system; the vast majority
of transactions do commit. This factor prompted
an optimization that writes a prepare record while
simultaneously collecting the subordinate votes.
This reduces commit-time latency.

No Commit Log Write The lazy commit log write
optimization described above causes the inter­
mediate node's commit record to be written and,
thus, minimizes the potential for blocking should
the intermediate node fail. Note that this is not a
concern for the intra-VAXduster case. Therefore, no
commit record is written at the intermediate node.

Pe,:formance Evaluation
Table 1 describes the message and log write costs
of the DECdtm services p rotocol and compares it
to the basic two-phase commit protocol, as well
as to the standard presumed abort variant previ­
ously described."·9

Table 1 Logging and Message Cost by Two-phase Commit (2PC) Protocol Variant

Coordinator Intermediate
Coordinator Log Write Message Log Write Message

Basic 2PC: 2, 1 forced 2N 2, 2 forced 2
Presumed Abort: 2, 1 forced 2N 2, 2forced 2
(RO intermediate) 2, 1 forced 1N 0 1

Normal DECdtm: 2, 1 forced 2N 2, 1 forced 2
(RO intermediate) 2, 1 forced 1N 0 1

lntracluster: 2, 1 forced 2N 1, 1 forced* 2
(RO intermediate) 2, 1 forced 1N 0 1

DECdtm 1PC: 0 1

Notes:

Log writes are total writes, forced. The table entry 2, 1 forced means that there are two total log writes, one of which is forced. A forced write
must complete before the protocol makes a transition to the next state.

RO means Read Only.

Where a message is listed as xN, N represents the number of intermediates that fit that category.

• In this instance, forced means that the log write is initiated optimistically; thus, it has lower latency.

40 Vol. 3 No. I Winter 1991 Digital Technicaljournal

Transaction Management Support in the VMS Operating System Kernel

Ease-of-use Evaluatio n
A primary goal in providing transaction processing
primitives within the VMS kernel was to supply
many disparate applications with a straightforward
interface to distributed transaction management.
This contrasts with most commercially available
systems, where distributed transaction manage­
ment functionality is available only from a trans­
action processing monitor. This latter form restricts
the functionality to applications written to exe­
cute under the control of the transaction process­
ing monitor, and it effectively precludes other
applications from making use of the technology.

From the outset of development, we endeavored
to provide an interface that was suitable for as
many applications as possible. We made early ver­
sions of the DECdtm services available within
Digital to decrease the "time to market" for soft­
ware products that wished to exploit distributed
transaction processing technology. As of July 1990,
at least seven Digital software products have been
modified to use the DECdtm services. These
products are VAX Rdb/VMS, VAX DBMS, VAX RMS
Journaling, VAX ACMS, DECintact, VAX RALLY,
and VAXSQL.

In general, the modifications to these products
have been relatively minor, as might be inferred

from the short time it took to make the required
changes. Based on this experience, we expect third­
party software vendors to rapidly take advantage of
the DECdtm services as they become available as
part of the standard VMS operating system.

To incorporate the DECdtm services into a
recoverable resource manager, the existing inter­
nal transaction management module with calls
to the DECdtm services must be replaced. The
resource manager must also be modified to cor­
rectly respond to the prepare and commit callbacks
by the DECdtm services. Further, the recovery
logic of the resource manager must be modified to
obtain from the DECdtm services the state of "in
doubt" transactions.

Example of DECdtm Usage
The model and pseudocode shown in Figures 4a
and b illustrate the use of DECdtm services in a
simple example of a distributed transaction. The
transaction spans two nodes, NODE_A and NODE_B,
in a VMS network. During the course of the trans­
action, recoverable resources managed by resource
managers, RM_A and RM_B, are modified. Two
"application" programs, APPL_A and APPL_B, that
run on NODE_A and NODE_B, respectively, make
normal procedural calls to RM_A and RM_B. APPL_A

INODEA- - - -- - - - - - - - - - - -I INODEB- - - - - - - - - - - - - ---
I I I
I I I
I -+-----j- DECDTM

I I I
I I I
I I I
I I I

USER BRANCH RESOURCE

SERVICES SERVICES MANAGER
SERVICES

I I I
I I I
I I I
I I I

+ +

~ ~
I I I t t
I I I
I • ~· • • • •••• J.
I I

....... APPL_B ======I RM_B
I

I I I
I I I
I __________________ I I __________________ _

KEY:

IPC CONNECTION

RPG

- SYSTEM SERVICE CALL

RM

APPL

PROCEDURE CALL

RESOURCE MANAGER

APPLICATION

Figure 4a Model Illustrating the Use of DECdtm Services

Digital Technical Journal Vol. 3 No. 1 Winter 1991 41

Transaction Processing, Databases, and Fault-tolerant Systems

PROGRAM APPL A

Establish communications with remote application

IPC_LINK Cnode="NODE_B", application="APPL_B", Link=Link_id);

! Exchange transaction manager names
!
LIBSGETJPI CJPIS_COMMIT_DOMAIN,,,my_cd);
IPC_TRANSCEIVE Clink=Link_id, send_data=my_cd,

receive_data=your_cd);

Start a transaction

SSTART_TRANSW Ciosb=status, tid=tid);

! Make a procedural call to RM_A to perform an operation
!
RM_A Ctid, requested_operation);

! Now create a transaction branch for the remote application

SADD_BRANCHW Ciosb=status, tid=tid, branch=bid,
cd_name=your_cd);

! Ask APPL_B to do something as part of this transaction

IPC TRANSCEIVE Clink=Link_id, send_data=Ctid, bid, data),
receive_data=status);

! And end the transaction

SEND_TRANSW Ciosb=status, tid=tid);

PROGRAM APPL B Clink id)

42

! Exchange transaction manager names
!
IPC_RECEIVE Clink=Link_id, data=sup_cd);
LIBSGETJPI CJPIS_COMMIT_DOMAIN,,,my_cd);
IPC_REPLY Clink=Link_id, data=my_cd);

! Now we execute transaction requests

Loop;
IPC RECEIVE Clink=Link_id, data=Ctid, bid, data));
! Start the transaction branch created by APPL_A.

SSTART_BRANCHW Ciosb=status, tid=tid, branch=bid,
cd_name=sup_cd);

! Make a procedural call to RM_B to perform an operation

RM_B Ctid, requested_operation);

! Tell APPL_A we are done

IPC REPLY Clink=Link_id, data=SSS_NORMAL);

Declare that we are finished for this transaction and
wait for it to complete

SREADY_TO_COMMITW Ciosb=status, tid=tid);
end_Loop;

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

Transaction Management Support in the VMS Operating System Kernel

ROUTINE RM_A Ctid, requested_operation)

If this is the first operation, register with DECdtm services as a
! resource manager. As part of the registration we declare an event
! routine that will be called during the voting process.
I

if first time we've been called then
$DECLARE_R MW Ciosb=status, name="RM_A", evtrtn=R M_A_EV ENT,

rm_id=rm_handle);

! Inform DECdtm services of our interest in this transaction

if tid has not previously been seen then
$JOIN_RMW Ciosb=status, rm_id=rm_handle, tid=tid,

part_id=participant);

Perform the requested operation

DO_OPERATION Crequested_operation>;
RETURN

ROUTI NE RM_A_EVENT Cevent_block)

! Select action from the DECdtm services event type

CASE event_block.DDTM$L_OPTYPE FRO M ... TO .•.

Do "request to prepare" processing

[DDTM$K_PREPARE]:
DO_PREPARE_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TID);

Do "order to commit" processing

[DDT M$K_CO MM IT]:
DO_COM MIT_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TI D);

Do "order to abort" processing

[D D TM$ K_A B O R TJ :
DO_ABORT_ACTIVITY Cresult=status, tid=event_type.DDTM$A_TID);

ESAC;

Inform the DECdtm services of the final status of our event
! processing.
!
$FINISH_RMOPW Ciosb=iosb, part_id=event_type.DDTM$ L_P ART_ID,

retsts=status);
RETURN

Figure 4b Pseudocode Illustrating the Use of DECdtm Services

and APPL_B use an interprocess communication
mechanism to communicate information across
the network. The DECdtm service calls are pre­
fixed with a dollar sign ($).

ROUTINE RM_A_EVENT, is invoked by the DECdtm
services during transaction state transitions.

The code for the resource managers, RM_A and
RM_B, is identical with respect to calls for the
DECdtm services. The resource manager routine,

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Conclusions
The addition of a distributed transaction manager
to the kernel of the general-purpose VMS operating
system makes distributed transactions available

43

Transaction Processing, Databases, and Fault-tolerant Systems

to a wide spectrum of applications. This design
and implementation was accomplished with com­
parative ease and with quality performance. In
addition to utilizing the most commonly described
optimizations of the two-phase commit protocol,
we have used optimizations that exploit some of
the unique benefits of the VAXcluster system.

Acknowledgments
We wish to gratefully acknowledge the contrib­
utions of all the transaction processing architects
involved, and in particular Vi jay Trehan, for deliver­
ing to us an understandable and implement­
able architecture. We also extend our thanks to
Phil Bernstein for his encouragement and advice,
and to our initial users, Bill Wright, Peter Spiro,
and Lenny Szubowicz, for their persistence and
good nature.

Finally, and most importantly, we would like
to thank all the DECdtm development engineers
and the others who helped ship the product:
Stuart Bayley, Cathy Foley, Mike Grossmith, Tom
Harding, Tony Hasler, Mark Howell, Dave Marsh,
Julian Palmer, Kevin Playford, and Chris Whitaker.

References

I. R. Haskin, Y. Malachi, W Sawdon, and G. Chan,
"Recovery Management in Quicksilver," ACM

Transactions on Computer Systems, vol. 6,
no. I (February 1988).

2. A. Spector et al., Camelot: A Distributed Trans­
action Facility for Mach and the Internet - An
Interim Report (Pittsburgh: Carnegie Mellon
University, Department of Computer Science,
June 1987).

3. W Bruckert, C. Alonso, and]. Melvin, "Verifi­
cation of the First Fault-tolerant VAX System,"
Digital Technical journal, vol. 3, no. I (Winter
1991, this issue): 79-85.

4.]. Gray, "A Census of Tandem System Availa­
bility between 1985 and 1990," Tandem Techni­
cal Report 90.1, part no. 33579 (January 1990).

5. P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Data­
base Systems (Reading, MA: Addison-Wesley,
1987).

6.]. Gray, "Notes on Database Operating Systems,"
In Operating Systems: An Advanced Course
(Berlin: Springer-Verlag, 1978).

44

7. B. Lampson, "Atomic Transactions," In Dis­
tributed Systems-Architecture and Imple­
mentation: An Advanced Course, edited by
G. Goos and]. Hartmanis (Berlin: Springer­
Verlag, 1981).

8. C. Mohan, B. Lindsay, and R. Obermarck,
"Transaction Management in the R* Distributed
Database Management System," ACM Trans­
actions on Computer Systems, vol. 11, no. 4
(December 1986).

9. C. Mohan and B. Lindsay, "Efficient Commit
Protocol for the Tree of Processes Model of
Distributed Transactions," Proceedings of the
2nd ACM SIGACT/SIGOPS Symposium on Prin­
dples of Distributed Computing (Montreal,
August 1983).

10. D. Duchamp, "Analysis of Transaction Manage­
ment Performance," Proceedings of the Twelfth
ACM Symposium on Operating Systems Prin­
ciples (Special issue), vol. 23, no. 5 (December
1989): 177-190.

11. N. Kronenberg, H. Levy, and W Strecker,
"VAXclusters: A Closely-Coupled Distributed
System," ACM Transactions on Computer
Systems, vol. 4, no. 2 (May 1986).

Vol. 3 No. 1 Winter 1991 Digital TecbntcalJournal

Walter H. Kohler
Yun-Ping Hsu

Thomas K. Rogers
WaelH Bahaa-El-Din

Peiformance Evaluation
of Transaction Processing
Systems

Performance and price/performance are important attributes to consider when
evaluating a transaction processing system. Two major approaches to performance
evaluation are measurement and modeling. TPC Benchmark A is an industry stan­
dard benchmark for measuring a transaction processing systems performance and
price/performance. Digital bas implemented TPC Benchmark A in a distributed
transaction processing environment. Benchmark measurements were performed
on the VAX 9000 Model 210 and the VAX 4000 Model JOO systems. Further, a compre­
hensive analytical model was developed and customized to model the performance
behavior of TPC Benchmark A on Digitals transaction processing platforms. This
model was validated using measurement results and bas proven to be an accurate
performance prediction tool.

Transaction processing systems are complex in
nature and are usually characterized by a large
number of interactive terminals and users, a large
volume of on-line data and storage devices, and a
high volume of concurrent and shared database
accesses. Transaction processing systems require
layers of software components and hardware
devices to work in concert. Performance and
price/performance are two important attributes
for customers to consider when selecting trans­
action processing systems. Performance is impor­
tant because transaction processing systems are
frequently used to operate the customer's business
or handle mission-critical tasks. Therefore, a certain
level of throughput and response time guarantee
are required from the systems during normal oper­
ation. Price/performance is the total system and
maintenance cost in dollars, normalized by the per­
formance metric.

The performance of a transaction processing
system is often measured by its throughput in trans­
actions per second (TPS) that satisfies a response
t ime constraint. For example, 90 percent of the
transactions must have a response time that is less
than 2 seconds. This throughput, qualified by the
associated response time constraint, is called the
maximum qualified throughput (MQTh). In a trans­
action processing environment, the most mean­
ingful response time definition is the end-to-end

Digital Technical Journal Vol. 3 No. I Winter 1991

response time, i.e., the response time observed by
a user at a terminal. The end-to-end response time
represents the time required by all components
that compose the transaction processing system.

The two major approaches used for evaluating
transaction processing system performance are
measurement and modeling. The measurement
approach is the most realistic way of evaluating the
performance of a system. Performance measure­
ment results from standard benchmarks have been
the most accepted form of performance assess­
ment of transaction processing systems. However,
due to the complexity of transaction processing
systems, such measurements are usually very expen­
sive, very time-consuming, and difficult to perform.

Modeling uses simulation or analytical model­
ing techniques. Compared to the measurement
approach, modeling makes it easier to produce
results and requires less computing resources.
Performance models are also flexible . Models can
be used to answer "what-if" types of questions and
to provide insights into the complex performance
behavior of transaction processing systems, which
is difficult (if not impossible) to observe in the
measurement environment. Performance models
are widely used in research and engineering com­
munities to provide valuable analysis of design
alternatives, architecture evaluation, and capacity
planning. Simplifying assumptions are usually

45

Transaction Processing, Databases, and Fault-tolerant Systems

made in the modeling approach. Therefore, perfor­
mance models require validation, through detailed
simulation or measurement, before predictions
from the models are accepted.

This paper presents Digital's benchmark measure­
ment and modeling app roaches to transaction
p rocessing system performance evaluation. The
paper includes an overview of the current industry
standard transaction processing benchmark, the
TPC Benchmark A, and a description of Digital's
implementation of the benchmark, including the
distinguishing features of the implementation and
the benchmark methodology. The performance
measurement results that were achieved by using
the TPC Benchmark A are also presented. Finally, a
multilevel analytical model of the performance
behavior of transaction p rocessing systems with
response time constraints is presented and vali­
dated against measurement results.

TPC Benchmark A-An Overview
The TPC Benchmark A simulates a simple banking
environment and exercises key components of
the system under test (SUl) by using a simple,
update-intensive transaction type. The benchmark
is intended to simulate a class of transaction pro­
cessing app lication environments, not the entire
range of transact ion processing environments.
Nevertheless, the single transaction type specified
by the TPC Benchmark A standard provides a simple
and repeatable unit of work.

The benchmark can be run in either a local
area network (LAN) or a wide area network (WAN)
configuration. The related throughput metrics
are tpsA-Local and tpsA-Wide, respectively. The
benchmark specification defines the general appli­
cation requirements, database design and scaling
rules, testing and pricing guidelines, full disclo­
sure report requirements, and an audit checklist.'
The following sections provide an overview of
the benchmark.

Application Environment
The TPC Benchmark A workload is patterned after a
simplified banking application . In this model, the
bank contains one or more branches. Each branch
has 10 tellers and 100,000 customer accounts. A
transaction occurs when a teller enters a deposit
or a withdrawal for a customer against an account
at a branch location. Each teller enters transactions
at an average rate of one every 10 seconds. Figure 1
illustrates this simplified banking environment.

Transaction Logic
The transaction logic of the TPC Benchmark A
workload can be described in terms of the bank
environment shown in Figure 1. A teller deposits
in or withdraws money from an account, updates
the current cash position of the teller and branch,
and makes an entry of the transaction in a history
file. The pseudocode shown in Figure 2 represents
the transaction.

- - ---- --1

100.000 I
1-- - -----1
I 100,000 I

1--------1

ACCOUNTS I
I
I
I
I
I

I
I
I
I

10 I
TELLERS I

I
I

: CUSTOMERS :
L _ __ _ _ __ _J

I ACCOUNTS I
I I
I I
I I
I I
I I -...---+ •••

I
I
I
I

10 I
TELLERS I

I
I

: CUSTOMERS :
L ______ _ _J

I 100.000
I ACCOUNTS

I
I
I
I
I

I
I
I
I
I
I
I
I

10
TELLERS

: CUSTOMERS
L ____ _ _ _ _J

Figure 1 TPC Benchmark A Banking Environment

46 Vol. 3 No. 1 Winter 1991 Digital Tecbntcal]ournal

Performance Evaluation o/Transaction Processing Systems

Read 100 bytes including Bid, Tid, Aid, Delta from terminal
BEGIN TRANSACTION

Update Account where Account_ID = Aid:
Read Account_Balance from Account
Set Account_Balance = Account_Balance + Delta
Write Account_Balance to Account

Write to History:
Aid, Tid, Bid, Delta, Time_Stamp

Update Teller where Teller_ID = Tid:
Set Teller_Balance = Teller_Balance + Delta
Write Telle r Balance to Teller

Update Branch where Branch_ID = Bid:
Set Branch_Balance = Branch_Balance + Delta
Write Branch_Balance to Branch

COMMIT TRANSACTION
Write 200 bytes including Aid, Tid, Delta, Account_Balance
to terminal

Figure 2 TPC Benchmark A Transaction Pseudocode

Terminal Communication
For each transaction, the originating terminal is
required to transmit data to, and receive data from,
the system under test. The data sent to the system
under test must consist of at least 100 alphanumeric
data bytes, organized as at least four distinct fields:
Account_ID, Teller_ID, Branch_ID, and Delta. The
Branch_ID identifies the branch where the teller is
located. The Delta is the amount to be credited to,
or debited from, the specified account. The data
received from the system under test consists of at
least 200 data bytes, organized as the above four
input fields and the Account_Balance that results
from the successful commit operation of the
transaction.

Implementation Constraints
The TPC Benchmark A imposes several conditions
on the test environment.

• The transaction processing system must support
atomicity, consistency, isolation, and durability
(ACID) properties during the test.

• The tested system must preserve the effects of
committed transactions and ensure database
consistency after recovering from

- The failure of a single durable medium that
contains datatbase or recovery log data

- The crash and reboot of the system

- The loss of all or part of memory

Digital Tecbntcaljournal Vol. 3 No. 1 Winter 1991

• Eighty-five percent of the accounts processed
by a teller must belong to the home branch (the
one to which the teller belongs). Fifteen percent
of the accounts processed by a teller must be
owned by a remote branch (one to which the
teller does not belong). Accounts must be uni­
formly distributed and randomly selected.

Database Design
The database consists of four individual files/tables:
Branch, Teller, Account, and History, as defined in
Table 1. The overall size of the database is deter­
mined by the throughput capacity of the system.
Ten tellers, each entering transactions at an aver­
age rate of one transaction every 10 seconds, gener­
ate what is defined as a one-TPS load. Therefore,
each teller contributes one-tenth (1/10) TPS. The
history area must be large enough to store the his­
tory records generated during 90 eight-hour days
of operation at the published system TPS capacity.
For a system that has a processing capacity of
x TPS, the database is sized as shown in Table 2.

For example, to process 20 TPS, a system must
use a database that includes 20 branch records, 200
teller records, and 2,000,000 account records.
Because each teller uses a terminal, the price of the
system must include 200 terminals. A test that
results in a higher TPS rate is invalid unless the size
of the database and the number of terminals are
increased proportionately.

47

Transaction Processing, Databases, and Fault-tolerant Systems

Table 1 Database Entities

Record Bytes Fields Required Description

Branch 100 Branch_lD
Branch_Balance

Identifies the branch across the range of branches
Contains the branch's current cash balance

Teller 100 Teller_lD
Branch_lD
Teller _Balance

Identifies the teller across the range of tellers
Identifies the branch where the teller is located
Contains the teller's current cash balance

Account 100 Account_lD
Branch_lD
Account_Balance

Identifies the customer account uniquely for the entire database
Identifies the branch where the account is held
Contains the account's current cash balance

History 50 Account_lD
Teller_lD
Branch_lD
Amount

Identifies the account updated by the transact ion
Identifies the teller involved in the transaction
Identifies the branch associated with the teller
Contains the amount of credit or debit (delta) specified by
t he transaction

Time_Stamp Contains the date and time taken between the BEGIN
TRANSACTION and COMMIT TRANSACTION statements

Table 2 Database Sizing

Number of Records

1 x x
10 x x
100,000 x x
2,592,000 x x

Benchmark Metrics

Record Type

Branch records

Teller records

Account records

History records

TPC Benchmark A uses two basic metrics:

• Transactions per second (TPS) - throughput in
TPS, subject to a response time constraint, i.e.,
the MQTh, is measured while the system is in a
sustainable steady-state condition .

• Price per TPS (K$ff PS) - the p urchase price
and five-year maintenance costs associated with
oneTPS.

Transactions per Second To guarantee that the
tested system provides fast response to on-line
users, the TPC Benchmark A imposes a specific
response time constraint on the benchmark.
Ninety percent of all transactions must have a
response time of less than two seconds. The TPC
Benchmark A standard defines transaction response
time as the time interval between the transmission
from the terminal of the first byte of the input mes­
sage to the system under test to the arrival at the
terminal of the last byte of the output message
from the system under test.

The reported TPS is the total number of commit­
ted t ransactions that both started and completed

48

during an interval of steady-state performance,
divided by the elapsed time of the interval. The
steady-state measurement interval must be at least
15 minutes, and 90 percent of the transactions
must have a response time of less than 2 seconds.

Price per TPS The K$(fPS price/performance
metric measures the total system price in thou­
sands of dollars, normalized by the TPS rating of
the system. The priced system includes all the
components that a customer requires to achieve
the reported p erformance level and is defined by
the TPC Benchmark A standard as the

• Price of the system under test, including all hard­
ware, software, and maintenance for five years.

• Price of the terminals and network compo­
nents, and their maintenance for five years.

• Price of on-line storage for 90 days of history
records at the published TPS rate, which amounts
to 2,592,000 records per TPS. A storage medium
is considered to be on-line if any record can be
accessed randomly within one second.

• Price of additional products required for the
operation, administration, or maintenance of
the priced systems.

• Price of p roducts required for application
development.

All hardware and software used in the tested
configuration must be announced and generally
available to customers.

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

Performance Evaluation of Transaction Processing Systems

TPC Benchmark A Implementation
Digital 's implementation of the TPC Benchmark A
goes beyond the minimum requirements of the
TPC Benchmark A standard and uses Digital's dis­
tributed approach to transaction processing! For
example, Digital's TPC Benchmark A implementa­
tion includes forms management and transaction
p rocessing monitor software that are required in
most real transact ion processing environments
but are not required by the benchmark. The fol­
lowing sections provide an overview of Digital's
approach and implementation.

Transaction Processing Software
Environment
The three basic functions of a general-purpose
transact ion processing system are the user inter­
face (forms processing), applications management,
and database management. Digital has developed a
d istributed transaction architecture (DECdta) to
define how the major functions are partitioned
and supported by components that fit together to
form a complete t ransaction processing system.
Table 3 shows the software components in a typical
Digital transact ion processing environment.

Distributed Transaction Processing
Approach
Digital transaction processing systems can be dis­
tributed by placing one or more of the basic system
functions (i.e., user interface, application manager,

TERMINALS

COMMUNICATIONS

LOCAL OR
WIDE AREA
NETWORK

BACK-END
PROCESSORS 1---A_P_P_L_IC_A_T_IO_N~ -I

TP MONITOR

DATABASE

OPERATING SYSTEM

COMMUNICATIONS

Table 3 Transact ion Processing Software
Components

Component

Operat ing system
Communicat ions

Database
TPmonitor

Forms
Applicat ion

Example

VMS
LAT, DECnet

VAXRdbNMS
VAX ACMS, DECintact
DECforms

COBOL

database manager) on separate computers. In the
simplest form of a distributed transaction process­
ing system, the user interface component runs on a
front -end processor, and the application and data­
base components run on a back-end processor. The
configuration allows terminal and forms manage­
ment to be performed at a remote location, whereas
the application is processed at a central location.
The Digital transaction processing software com­
ponents are separable because their clearly defined
interfaces can be layered transparently onto a net­
work. How these components may be partit ioned
in the Digital distributed transaction processing
environment is illustrated in Figure 3.

TPC Benchmark A Test Environment
The Digital TPC Benchmark A tests are imple­
mented in a distributed transaction processing
environment using the transaction processing

FORMS

TP MONITOR

OPERATING SYSTEM

COMMUNICATIONS

r,.._,...... DATABASE
STORAGE

FRONT-END
PROCESSORS

Figure 3 Distributed Transaction Processing Environment

Digital Tecbnlcal]ournal Vol. 3 No. 1 Winter 1991 49

Transaction Processing, Databases, and Fault-tolerant Systems

software components shown in Figure 3. The user
interface component runs on one or more front­
end processors, whereas the application and
database components run on one or more back­
end processors. Transactions are entered from
teller terminals, which communicate with the
front-end processors. The front-end processors
then communicate with the back-end processors
to invoke the application servers and perform
database operations. The communications can
take place over either a local area or a wide area
network. However, to simplify testing, the TPC
Benchmark A standard allows sponsors to use
remote terminal emulators (RTEs) rather than real
terminals. Therefore, the TPC Benchmark A tests
base performance and price/performance results
on two distinctly configured systems, the target
system and the test system.

The target system is the configuration of hard­
ware and software components that customers can
use to perform transaction processing. With the
Digital distributed transaction processing approach,
user terminals initiate transactions and communi­
cate with the front-end processors. Front-end pro­
cessors communicate with a back-end processor
using the DECnet protocol.

The test system is the configuration of com­
ponents used in the lab to measure the perfor­
mance of the target system. The test system uses
RTEs, rather than user terminals, to generate the
workload and measure response time. (Note: In
previously published reports, based on Digital's
DebitCredit benchmark, the RTE emulated front­
end processors. In the TPC Benchmark A standard,
the RTE emulates only the user terminals.) The
RTE component

• Emulates the behavior of terminal users accord­
ing to the benchmark specification (e.g. , think
time, transaction parameters)

• Emulates terminal devices (e.g., conversion
and multiplexing into the local area transport
[LAT] protocol used by the DECserver terminal
servers)

• Records transaction messages and response
times (e.g. , the starting and ending times of
individual transactions from each emulated
terminal device)

Figure 4 depicts the test system configuration in
the LAN environment with one back-end proces­
sor, multiple front-end processors, and multiple
remote terminal emulators.

so

REMOTE
TERMINAL
EMULATORS

FRONT-END
PROCESSORS

ETHERNET

BACK-END
PROCESSOR

DATABASE

Figure 4 Test System Configuration

TPC Benchmark A Results
We now present the results of two TPC Benchmark
A tests based on audited benchmark experiments
performed on the VAX 9000 Model 210 and the
VAX 4000 Model 300 systems.3.4 These two systems
are representative of Digital's large and small trans­
action processing platforms. The benchmark was
implemented using the VAX ACMS transaction pro­
cessing monitor, the VAX Rdb/VMS relational data­
base management system, and the DECforms forms
management system on the VMS operating system.
Tables 4 and S show the back-end system configu­
rations for the VAX 9000 Model 210 and the VAX 4000
Model 300 systems, respectively. Table 6 shows the
system configuration of the front -end systems.

Measurement Results
The maximum qualified throughput and response
time results for the TPC Benchmark A are summa­
rized in Table 7 for the VAX 9000 Model 210 and the
VAX 4000 Model 300 systems. Both configurations
have sufficient main memory and disk drives such

Table 4 VAX 9000 Model 210 Back-end
System Configuration

Component Product Quantity

Processor VAX 9000 Model 210 1
Memory 256MB
Tape drive TA81 1
Disk controller KDM70 2
Disks RA92 16
Operating system VMS5.4 1
Communicat ions DECnet-VMS Phase IV

TP monitor VAX ACMS V3.1 1
Dictionary VAX COD/Plus V4.1 1
Application VAX COBOL V4.2 1
Database system VAX RdbNMS V4.0 1

Forms management DECforms V1 .2 1

Vol. 3 No. 1 Winter 1991 Digital Tecbntcaljournal

Peiformance Evaluation of Transaction Processing Systems

Table 5 VAX 4000 Model 300 Back-end
System Configuration

Component

Processor

Memory

Tape drive

Disk controller

Disks

Operating system

Communications

TPmonitor

Dictionary

Application

Database system

Product Quantity

VAX 4000 Model 300 1

64MB

TK70 1

DSSI 3

RF31 18

VMS 5.4 1

DECnet-VMS Phase IV 1

VAX ACMS V3.1

VAX COD/Plus V4.1

VAX COBOL V4.2

VAX RdbNMS V4.0 1

Forms management DECforms V1 .2 1

that the processors are effectively utilized with no
other bottleneck. Both systems achieved well over
90 percent CPU utilization at the maximum quali­
fied throughput under the response time constraint.
In addition to the throughput and response time,
the TPC Benchmark A specification requires that
several other data points and graphs be reported.
We demonstrate these data and graphs by using
the VAX 9000 Model 210 TPC Benchmark A results.

• Response Time in Relationship to TPS. Figure 5
shows the ninetieth percentile and average

2.0
cii
Cl 1.8 z
0 1.6 (..)
UJ
~ 1.4
UJ
::ii 1.2
j::
UJ 1.0
en z 0.8 0 c.. en 0.6
UJ
a:

0.4
20 30 40 50 60 70 80

TRANSACTIONS PER SECOND

KEY:

l::r---{::. AVERAGE

--.., 90TH PERCENTILE

Figure 5 VAX 9000 Response Time in
Relationship to Transactions
per Second

response times at 100 percent and approximately
80 percent and 50 percent of the maximum
qualified throughput. The mean transaction
response time still grows linearly with the
transaction rate up to the 70 TPS level, but the
ninetieth percentile response time curve has
started to rise quickly due to the high CPU uti­
lization and random arrival of transactions.

• Response Time Frequency Distribution. Figure 6
is a graphical representation of the transaction

Table 6 Front-end Run-time System Configuration

Component Product Quantity

Processor VAXserver 3100 Model 10 10 for VAX 9000 back-end
3 for VAX 4000 back-end

Memory

Disks

Operating system

Communications

TPmonitor

Forms management

RZ23 (104 MB)

VMS5.3
VMS5.4

DECnet-VMS Phase IV

VAX ACMS V3.1

DECforms V1 .2

Table 7 Maximum Qualified Throughput

16 MB for VAX 9000 back-end
12 MB for VAX 4000 back-end

16

1 for VAX 9000 back-end
1 for VAX 4000 back-end

1

Response Time (seconds)
System TPS (tpsA-Local) Average 90 percent Maximum

VAX 9000 Model 210

VAX 4000 Model 300

69.4

21.6

Digital TecbnlcalJournal Vol. 3 No. 1 Winter 1991

1.20

1.39

1.74

1.99

5.82

4.81

51

Transaction Processing, Databases, and Fault-tolerant Systems

Cl) 14000
z
0
~
(.)
<(
Cl)
z
<(
er:
I-

12000

10000

8000

l5 6000

ffi 4000
CD

~ 2000
z

I+-- AVERAGE = 1.20 SECONDS

I I-- 90TH PERCENTILE= 1.74 SECONDS

11

1 1

I
I

I
I
I

I+--- MAXIMUM = 5.82 SECONDS

I
I
I
I
I

0 2 4 6 8 10 12 14 16 18 20

RESPONSE TIME (SECONDS)

Figure 6 VAX 9000 Response Time Frequency
Distribution

response time distribution. The average, nine­
tieth percentile, and maximum transaction
response times are also marked on the graph.

• Transactions per Second over Time. The results
shown in Figure 7 demonstrate the sustainable
maximum qualified throughput. The one-minute
running average transaction throughputs dur­
ing the warm-up and data collection periods of
the experiment are plotted on the graph. This
graph shows that the throughput was steady
during the period of data collection.

• Average Response Time over Time. The results
shown in Figure 8 demonstrate the sustain­
able average response time in the experiment.
The one-minute running average transaction
response times during the warm-up and data
collection periods of the experiment are plotted
on the graph. This graph shows that the mean
response time was steady during the period of
data collection.

Comprehensive Analytical Model
Modeling techniques can be used as a supplement
or an alternative to the measurement approach.
The performance behavior of complex transaction
processing systems can be characterized by a set of
parameters, a set of performance metrics, and the
relationships among them. These parameters can
be used to describe the different resources avail­
able in the system, the database operations of trans­
actions, and the workload that the transaction
processing system undergoes. To completely rep­
resent such a system, the size of the parameter set
would be too huge to manage. An analytical model
simplifies, through abstraction, the complex behav­
ior of a system into a manageable set of parameters

52

0 z
0
(.)
LU
Cl)

er:
LU
CL
Cl)
z
0
~
(.)
<(
Cl)
z
<(
er:
I-

80

70

60
I

50 I
40 '-DATA COLLECTION _J
30 I INTERVAL I
20 I I
10 I I

I I
0 5 10 15 20 25 30

TIME (MINUTES)

Figure 7 VAX 9000 Transactions per Second
over Time

35

and policies. Such a model, after proper validation,
can be a powerful tool for many types of analysis,
as well as a performance prediction tool. Results
can be obtained quickly for any combination of
parameters.

A comprehensive analytical model of the perfor­
mance behavior of transaction processing systems
with a response time constraint was developed
and validated against measurement results. This
model is hierarchical and flexible for extension.
The following sections describe the basic con­
struction of the model and the customization made
to model the execution of TPC Benchmark A on
Digital's transaction processing systems. The
model can also be used to study different trans­
action processing workloads in addition to the
TPC Benchmark A.

Response Time Components
The main metric used in the model is the maxi­
mum qualified throughput under a response time
constraint. The response time constraint is in the

0 5

FigureB

I
I

!-DAT A COLLECTION -.!
I INTERVAL I

I I
I I

10 15 20 25 30

TIME (MINUTES)

V,4X 9000 Average Response Time
over Time

35

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

Performance Evaluation of Transaction Processing Systems

form of "x percent of transaction response times
are less than y seconds."

To evaluate throughput under such response time
constraint, the distribution of transaction response
times is determined by first decomposing the trans­
action response time into nonoverlapping and
independent components. The distribution of each
component is then evaluated. Finally, the overall
transaction response time distribution is derived
from the mathematical convolution of the compo­
nent response time distributions.

The logical flow of a transaction in a front-end
and back-end distributed transaction processing
system that is used to implement TPC Benchmark A
is depicted in Figure 9. The response time of a
transaction consists of three basic components:
front-end processing, back-end processing, and
communication delays.

• Front-end processing usually includes terminal
1/0 processing, forms/presentation services, and
communication with the back-end systems. In
the benchmark experiments, no disk 1/0 activity
was involved during the front-end processing.

• Back-end processing includes the execution of
application, database access, concurrency control,
and transaction commit processing. The back-end
processing usually involves a high degree of con­
currency and many disk 1/0 activities.

• Communication delays primarily include the
communications between the user terminal and
the front-end node, and the front-end and back­
end interactions.

(Note: These response time components do not
overlap with each other.)

Within the back-end system, the transaction
response time is further decomposed into two
additional components, CPU delays and non-CPU,
nonoverlapping delays. CPU delays include both
the CPU service and the CPU waiting times of trans­
actions. Non-CPU, nonoverlapping delays include:

• Logging delays, which include the time for trans­
action log writes and commit protocol delays

• Database 1/0 delays, which include both waiting
and service times for accessing storage devices

• Other delays, which include delays that result
from concurrency control (e.g., waiting for locks)
and waiting for messages

Two-level Approach
The model is configured in a two-level hierarchy, a
high level and a detailed level. The use of a hierarchy
allows a complex and detailed model that considers
many components and involves many parameters
to be constructed easily. Because of the hierarchical
approach, the model also provides flexibility for
modifications and extensions, and validation of
separate submodels.

The high-level model assumes the decomposition
of transaction response times, as described in the
Response Time Components section, and models
the behavior of the transaction processing system
by an open queuing system, as shown in Figure 10.
The queuing system consists of servers and delay
centers, which are connected in a queuing net­
work with the following assumptions:

• The front-end processing does not involve any
disk 1/0 operation, and the load on the front­
end systems is equally balanced.

.................... 1

I COMMUNICATION I FRONT-END I COMMUNICATION I BACK-END

END-TO-END---------------------------
RESPONSE
TIME

Figure 9 Response Time Components

Digital Technical Journal Vol. 3 No. 1 Winter 1991 53

Transaction Processing, Databases, and Fault-tolerant Systems

COMMUNICATION

COMMUNICATION
DELAYS

FRONT-END
PROCESSORS

~9
:J L8

BACK-END
PROCESSORS 1/0 DEVELOPMENT

1/0 DEVELOPMENT

Figure JO High-level Queuing Model for a Transaction Processing System

• The back-end is a shared-memory multiprocessor
system with symmetrical loads on all processors
(or it can be simply a uniprocessor).

• No intratransaction parallelism exists within
individual transaction execution.

• No mutual dependency exists between trans­
action response time components.

• Transaction arrivals to the processors have a
Poisson distribution.

These assumptions correspond to Digital's TPC Bench­
mark A testing methodology and implementation.

The front-end CPU is modeled as an M/M/1 queu­
ing center, and the back-end CPU is modeled as an
M/M/m queuing center. The transactions' CPU times
on the front-end and back-end systems are assumed
to be exponentially distributed (coefficient of vari­
ation equal to 1) due to the single type of trans­
action in the benchmark. (Note: An approximation
of M/G/m can be used to consider a coefficient of
variation other than 1 for the back-end transaction
CPU service time, especially in the multiprocessor
case when the bus is highly utilized.) Database 1/0,
logging 1/0, and other delays are modeled as delay
centers, with appropriate delay distributions. For
the model of the TPC Benchmark A workload, the
database 1/0, journaling 1/0, and other communi­
cation and synchronization delays are combined
into one delay center, called the LOO delay center,
which is represented by a 2-Erlang distribution.
The major input parameters for this high-level
model are the

• Number of front -end systems and the front-end
CPU service time per transaction

54

• Number of CPUs in the back-end system and the
back-end CPU service time per transaction

• Sum of the back-end database 1/0 response time,
journaling 1/0 response time, and other delay
times (i.e., the mean for the LOO delay center's
2-Erlang distribution)

• Response time constraint (in the form of x per­
centile less than y seconds)

The main result from the high-level model is the
MQTh. This high-level model presents a global pic­
ture of the performance behavior and manifests the
relationship between the most important parameters
of the transaction processing system and MQTh.

Some of the input parameters in the high-level
model are dynamic. The CPU service time of a trans­
action may vary with the throughput or number of
processors, and the database 1/0 or other delays
may also depend on the throughput. A good exam­
ple of a dynamic model is a tightly coupled multi­
processor system, with one bus interconnecting
the processors and with a shared common memory
(e.g., a VAX 6000 Model 440 system). Such a system
would run a single copy of the symmetrical multi­
processing operating system (e.g., the VMS system).
The average CPU service time of transactions is
affected by both hardware and software factors,
such as

• Hardware contention that results from conflict­
ing accesses to the shared bus and main memory
and that causes processor speed degradation
and longer CPU service time .

• Processor synchronization overhead that results
from the serialization of accesses to shared data

Vol . 3 No. 1 Winter 1991 Dtgttal Technical Journal

Performance Evaluation of Transaction Processing Systems

structures. Many operating systems use spin­
locks as the mechanism for processor-level
synchronization, and the processor spins (i.e.,
busy-waits) in the case of a conflict. In the
model, the busy-wait overhead is considered
to be part of the transaction code path, and
such contention elongates the transaction CPU
service time.

Four detailed-level submodels are used to
account for the dynamic behavior of these param­
eters: CPU-cache-bus-memory, busy-wait, 1/0 group,
andLOD.

The CPU-cache-bus-memory submodel consists
of many low-level parameters associated with the
workload, processor, cache, bus, and memory com­
ponents of multiprocessor systems. It models these
components by using a mixed queuing network
model that consists of both open and closed chains,
as shown in Figure 11. The most important output
from this submodel is the average number of CPU
clock cycles per instruction.

The busy-wait submodel models the spin-lock
contention that is associated with the two major
VMS spin-locks, called SCHED and IOLOCK8. This sub-­
model divides the state of a processor into several
nonoverlapping states and uses probability analy­
sis to derive busy-wait time. The 1/0 grouping sub-­
model models the group commit and group write
mechanisms of the VAX Rdb/VMS relational database
management system. This submodel affects the path
length of transaction because of the amortization
of disk 1/0 processing among grouped trans­
actions. The LOD submodel considers the disk 1/0
times and the lock contention of certain critical
resources in the VAX Rdb/VMS system.

Integrating the Two Levels of the Model
The two levels of the model are integrated by using
an iterative procedure outlined in Figure 12. It
starts at the detailed-level submodels, with initial
values for the MQTh, the transaction path length,
the busy-wait overhead, and the CPU utilization.

By applying the initialized parameters to the
submodels, the values of these parameters are
refined and input to the high-level model. The out­
put parameters from the high-level model are then
fed back to the detailed-level submodels, and this
iterative process continues until the MQTh con­
verges. In most cases, convergence is reached
within a few iterations.

Model Predictions
The back-end portion of the model was validated
against measurement results from numerous
DebitCredit benchmarks (Digital's precursor of the
TPC Benchmark A) on many VAX computers with
the VMS operating system, running VAX ACMS and
VAX Rdb/VMS software.' With sufficient detailed
parameters available (such as transaction instruc­
tion count, instruction cycle time, bus/memory
access time, cache hit ratio), the model correctly
estimated the MQTh and many intermediate results
for several multiprocessor VAX systems. The model
was then extended to include the front-end sys­
tems. In this section, we discuss applying this com­
plete end-to-end model to the TPC Benchmark A
on two VAX platforms, the VAX 9000 Model 210 and
the VAX 4000 Model 300 systems, and then compare
the results. The benchmark environment and imple­
mentation are described in the TPC Benchmark A
Implementation section of this paper.

MEMORY1 SINK 1-- ---------------------------------------,
I I
I I
I I
L- - - -- ------- I

KEY:

CLOSED CHAIN
OPEN CHAIN

BUS
I
I
I
I
I -r -

----1
I

I :
--~ 1 :

I :
I MEMORY m :

D J .__:-_-_-_-_-_-_-_-_-_-_-_-_--_-_-_-_-_-_-_-_-_-_-_-_-_--_-_-_-_-_-_-_-_-_-_-:_,
SOURCE

Figure 11 CPU-cache-bus-memory Submodel

Digital Technical Journal Vol. 3 No. 1 Winter 1991 55

Transaction Processing, Databases, and Fault-tolerant Systems

INIT IA LIZE:
TxnPL,MQTh,BusyWaitPL,CpuUtilization;

LOD-submodeLCinput:MQTh;output:LOD}
REPEAT

1/0-Grouping-submodel(input:MQTh;output:DioPerTxn,TxnPL};
REPEAT

REPEAT
BusyWait-submodel(input:TxnPL,BusyWaitPL,CpuUtilization,

DioPerTxn;output:BusyWaitPL};
UNTIL(BusyWaitPL converges};
CPU-Cache-Bus-Memory-submodel(input:TxnPL,BusyWaitPL;

output:CpuUtilization,AvgCpuSvcTime};
UNTIL(CpuUtilization converges>;
REPEAT

MQTh-model(input:AvgCpuSvcTime,LOD;output:MQTh,CpuUtilization};
LOD-submodeLCinput:MQ Th ;output:LOD};

UNTIL(MQTh converges>;
UNTIL(MQTh converges>;

Figure 12 The Iterative Procedure to Integrating Submodels

Because both the VAX 9000 Model 210 and the
VAX 4000 Model 300 systems are uniprocessor
systems, there is no other processor contending
for the processor-memory interconnect and mem­
ory subsystems. Such contention effects can there­
fore be ignored when modeling a uniprocessor
system. The transaction processing performance
prediction for the VAX 9000 Model 210 system is a
successful example of the application of our analyt­
ical model.

We needed an accurate estimate of TPC Bench­
mark A performance on the VAX 9000 Model 210
system before a VAX 9000 system was actually avail­
able for testing. The high-level (MQTh) model was
used with estimated values for the input parame­
ters, LOD and transaction CPU service time. The
estimated LOD was based on previous measure­
ment observations from the VAX 6000 systems. The
other parameter, back-end transaction CPU service
time, was derived from the

• Timing information of the VAX 9000 CPU

• Memory access time and cache miss penalty of
the VAX 9000 CPU

• Prediction of cache hit ratio of the VAX 9000 sys­
tem under the TPC Benchmark A workload

• Transaction path length of the TPC Benchmark A
implementation

• Instruction profile of the TPC Benchmark A
implementation

56

The high-level model predicted a range of MQTh,
with a high end of 70 TPS and with a strong proba­
bility that the high-end performance was achievable.

Additional predictions were made later, when an
early prototype version of the VAX 9000 Model 210
system was available for testing. A variant of the
DebitCredit benchmark, much smaller in scale and
easier to run, was performed on the prototype
system, with the emphasis on measuring the CPU
performance in a transaction processing environ­
ment. The result was used to extrapolate the CPU
service time of the TPC Benchmark A transactions
on the VAX 9000 Model 210 system and to refine
the early estimate. The results of these modifica­
tions supported the previous high-end estimate of
performance of 70 TPS and refined the low-end
performance to be 62 TPS. The final, audited TPC
Benchmark A measurement result of the VAX 9000
Model 210 system showed 69.4 TPS, which closely
matches the prediction. Table 8 compares the
results from benchmark measurement and the
analytical model outputs.

Table 8 Measurement Compared to Model
Predictions

System

VAX 9000 Model 210

VAX 4000 Model 300

Measured
MQTh

69.4

21.5

Modeled
MQTh

70.0

20.8

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

The VAX 4000 Model 300 TPC Benchmark A
results were also used as a validation case. VAX 4000
Model 300 systems use the same CMOS chip as
the VAX 6000 Model 400 series and the same
28-nanosecond (ns) CPU cycle time. However, in
the VAX 4000 series, the CPU-memory interconnect
is not the XMI bus but a direct primary memory
interconnect. This direct memory interconnect
results in fast main memory access. The processor,
cache, and main memory subsystems are otherwise
the same as in the VAX 6000 Model 400 systems.
Therefore, the detailed-level model and associated
parameters for the VAX 6000 Model 410 system
can be used by ignoring the bus access time. The
TPC Benchmark A measurement results are within
7 percent of the model prediction, which means
that our assumption on the memory access time
is acceptable.

Conclusion
Performance is one of the most important attrib­
utes in evaluating a transaction processing system.
However, because of the complex nature of trans­
action processing systems, a universal assessment
of transaction processing system performance is
impossible. The performance of a transaction pro­
cessing system is workload dependent, configura­
tion dependent, and implementation dependent. A
standard benchmark, like TPC Benchmark A, is a
step toward a fair comparison of transaction pro­
cessing performance by different vendors. But it is
only one transaction processing benchmark that
represents a limited class of applications. When
evaluating transaction processing systems perfor­
mance, a good understanding of the targeted appli­
cation environment and requirements is essential
before using any available benchmark result.
Additional benchmarks that represent a broader
range of commercial applications are expected to
be standardized by the Transaction Processing
Performance Council (TPC) in the coming years.

Performance modeling is an attractive alterna­
tive to benchmark measurement because it is less
expensive to perform and results can be compiled
more quickly. Modeling provides more insight
into the behavior of system components that are
treated as black boxes in most measurement exper­
iments. Modeling helps system designers to better
understand performance issues and to discover
existing or potential performance problems. Model­
ing also provides solutions for improving perfor­
mance by modeling different tuning or design
alternatives. The analytical model presented in this

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Performance Evaluation of Transa,ction Processing Systems

paper was validated and used extensively in many
engineering performance studies. The model also
helped the benchmark process to size the hard­
ware during preparation (e.g. , the number of
RTE and front-end systems needed, the size of
the database) and to provide an MQTh goal as a
sanity check and a tuning aid. The model could
be extended to represent additional distributed
configurations, such as shared-disk and "shared­
nothing" back-end transaction processing systems,
and could be applied to additional transaction pro­
cessing workloads.

Acknowledgments
The Digital TPC Benchmark A implementation and
measurements are the result of work by many
individuals within Digital. The authors would like
especially to thank Jim McKenzie, Martha Ryan,
Hwan Shen, and Bob Tanski for their work in the
TPC Benchmark A measurement experiments; and
Per Gyllstrom and Rabah Mediouni for their con­
tributions to the analytical model and validation.

References

1. Transaction Processing Performance Council,
TPC Benchmark A Standard Specification
(Menlo Park, CA: Waterside Associates,
November 1989).

2. Transaction Processing Systems Handbook
(Maynard: Digital Equipment Corporation,
Order No. EC-H0650-57, 1990).

3. TPC Benchmark: A Report for the VAX 9000
Model 210 System (Maynard: Digital Equipment
Corporation, Order No. EC-N0302-57, 1990).

4. TPC Benchmark: A Report for the VAX 4000
Model 300 System (Maynard: Digital Equipment
Corporation, Order No. EC-N0301-57, 1990).

5. L. Wright, W. Kohler, and W. 2.ahavi, "The Digital
DebitCredit Benchmark: Methodology and
Results," Proceedings of the International
Conference on Managem ent and Performance
Evaluation of Computer Systems (December
1989): 84-92.

57

William Z Zabavi
Frances A. Habib

Kenneth]. Omaben

Tools and Techniques for Preliminary
Sizing of Transaction Processing
Applications

Sizing transaction processing systems correctly is a difficult task. By nature, trans­
action processing applications are not predefined and can vary from the simple to
the complex. Sizing during the analysis and design stages of the application devel­
opment cycle is particularly difficult. It is impossible to measure the resource
requirements of an application which is not yet written or fully implemented. To
make sizing easier and more accurate in these stages, a sizing methodology was
developed that uses measurements from systems on which industry-standard
benchmarks have been run and employs standard systems analysis techniques for
acquiring sizing information. These metrics are then used to predict future trans­
action resource usage.

The transaction processing marketplace is domi­
nated by commercial applications that support
businesses. These applications contribute substan­
tially to the success or failure of a business, based on
the level of performance the application provides.
In transaction processing, poor application perfor­
mance can translate directly into lost revenues.

The risk of implementing a transaction process­
ing application that performs poorly can be mini­
mized by estimating the proper system size in the
early stages of application development. Sizing esti­
mation includes configuring the correct processor
and proper number of disk drives and controllers,
given the characteristics of the application.

The sizing of transaction processing systems is
a difficult activity. Unlike traditional applications
such as mail, transaction processing applications
are not predefined. Each customer's requirement
is different and can vary from simple to complex.
Therefore, Digital chose to develop a sizing method­
ology that specifically meets the unique require­
ments of transaction processing customers. The
goal of this effort was to develop sizing tools and
techniques that would help marketing groups and
design consultants in recommending configura­
tions that meet the needs of Digital's customers.
Digital's methodology evolved over time, as experi­
ence was gained in dealing with the real-world
problems of transaction processing system sizing.

58

The development of Digital's transaction process­
ing sizing methodology was guided by several prin­
ciples. The first principle is that the methodology
should rely heavily upon measurements of Digital
systems running industry-standard transaction
processing benchmarks. These benchmarks pro­
vide valuable data that quantifies the performance
characteristics of different hardware and software
configurations.

The second principle is that systems analysis
methodologies should be used to provide a frame­
work for acquiring sizing information. In partic­
ular, a multilevel view of a customer's business
is adopted. This approach recognizes that a man­
ager's view of the business functions performed by
an organization is different from a computer ana­
lyst's view of the transaction processing activity.
The sizing methodology should accommodate both
these views.

The third principle is that the sizing methodol­
ogy must employ tools and techniques appropriate
to the current stage of the customer's application
design cycle. Early in the effort to develop a sizing
methodology, it was found that a distinction must
be made between preliminary sizing and sizing
during later stages of the application development
cycle. Preliminary sizing occurs during the analysis
and design stages of the application development
cycle. Therefore, no application software exists

Vol. 3 No. 1 Winter 1991 Dtgttal Technical Journal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

which can be measured. Application software does
exist in later stages of the application development
cycle, and its measurement provides valuable input
for more precise sizing activities.

For example, if a customer is in the analysis or
design stages of the application development cycle,
it is unlikely that estimates can be obtained for
such quantities as paging rates or memory usage.
However, if the application is fully implemented,
then tools such as the VAXcluster Performance
Advisor (VPA) and the DECcp capacity planning
products can be used for sizing. These tools pro­
vide facilities for measuring and analyzing data
from a running system and for using the data as
input to queuing models.

The term sizing, as used in this paper, refers to
preliminary sizing. The paper presents the metrics
and algebra used in the sizing process for DECtp
applications. It also describes the individual tools
developed as part of Digital's transaction process­
ing sizing effort.

Sizing
The purpose of sizing tools is twofold. First, sizing
tools are used to select the appropriate system
components and to estimate the performance level
of the system in terms of device utilization and
user response times. Second, sizing tools bridge the
gap between business specialists and computer
specialists. This bridge translates the business units
into functions that are performed on the system
and, ultimately, into units of work that can be quan­
tified and measured in terms of system resources.

In the sections that follow, a number of important
elements of the sizing methodology are described.
The first of these elements is the platform on which
the transaction processing system will be imple­
mented. It is assumed that the customer will supply
general preferences for the software and hardware
configuration as part of the platform information.
The Levels of Business Metrics section details the
multilevel approach used to describe the work per­
formed by the business. The Sizing Metrics and
Sizing Formulas sections describe the algoritluns
that use platform and business metric information
to perform transaction processing system sizing.

Platforms
The term platform is used in transaction process­
ing sizing methodology to encompass general cus­
tomer preferences for the hardware and software
upon which the transaction processing application
will run.

Digital Technical Journal Vol. 3 No. 1 Winter 1991

The hardware platform specifies the desired
topology or processing style. For example, process­
ing style includes a centralized configuration and a
front-end and back-end configuration as valid alter­
natives. The hardware platform may also include
specific hardware components within the process­
ing style. (In this paper, the term processor refers
to the overall processing unit, which may be com­
posed of multiple CPUs.)

The software platform identifies the set of layered
products to be used by the transaction processing
application, with each software product identified
by its name and version number. In the transaction
processing environment, a software platform is
composed of the transaction processing monitor,
forms manager, database management system, appli­
cation language, and operating system.

Different combinations of software platforms
may be configured, depending on the hardware plat­
form used. A centralized configuration contains
all the software components on the same system. A
distributed system is comprised of a front-end pro­
cessor and a back-end processor; different software
platforms may exist on each processor.

Levels of Business Metrics
The term business metrics refers collectively to
the various ways to measure the work associated
with a customer's business. In this section, various
levels of business metrics are identified and the
relationship between metrics at different levels is
described.' As mentioned earlier, the levels corre­
spond to the multilevel view of business operation
typically used for systems analysis. The organi­
zation or personnel most interested in a metric in
relation to its business operation is noted in the
discussion of each metric.

The decomposition of the business application
requirements into components that can be counted
and quantified in terms of resource usage requires
that a set of metrics be defined. These metrics
reflect the business activity and the system load.
The business metrics are the foundation for the
development of several transaction processing siz­
ing tools and for a consistent algebra that connects
the business units with the computer units.

The business metrics are natural forecasting units,
business functions, transactions, and the number
of I/Os per transaction. The relationship among
these levels is shown in Figure 1. In general, a busi­
ness may have one or more natural forecasting
units. Each natural forecasting unit may drive one or
more business functions. A business function may

59

Transaction Processing, Databases, and Fault-tolerant Systems

TRANSACTIONS

FILES

NATURAL
FORECASTING
UNIT

READS

BUSINESS
FUNCTION

NATURAL
FORECASTING
UNIT

1/0 ACTIVITY REQUIREMENTS

INSERTS UPDATE
READS

BUSINESS
FUNCTION

UPDATE
WRITES

Figure 1 Levels of Business Activity Characterization

have multiple transactions, and a single transaction
may be activated by different business functions .
Every transaction issues a variety of 1/0 operations
to one or more files, which may be physically
located on zero, one, or more disks. This section
discusses the business metrics but does not dis­
cuss the physical distribution of I/Os across disks,
which is an implementation-specific item.

A natural forecasting unit is a macrolevel indica­
tor of business volume. (It is also called a key vol­
ume indicator.) A business generally uses a volume
indicator to measure the level of success of the
business. The volume is often measured in time
intervals that reflect the business cycle, such as
weekly, monthly, or quarterly. For example, if busi­
ness volume indicators were "number of ticket sales
per quarter," or "monthly production of widgets,"
then the corresponding natural forecasting units
would be "ticket sales" and "widgets." Natural fore­
casting units are used by high-level executives to
track the health of the overall business.

Business functions are a logical unit of work per­
formed on behalf of a natural forecasting unit. For
example, within an airline reservation system, a
common business function might be "selling air­
line tickets." This business function may consist
of multiple interactions with the computer (e.g.,
flight inquiry, customer credit check). The comple­
tion of the sale terminates the business function,
and "airline ticket" acts as a natural forecasting unit
for the enterprise selling the tickets. The measure­
ment metric for business functions is the num­
ber of business function occurrences per hour.
Business functions may be used by middle-level

60

managers to track the activity of their departments.
A transaction is an atomic unit of work for an

application , and transaction response time is the
primary performance measure seen by a user. Each
of the interactions mentioned in the above busi­
ness function is a transaction. The measurement
metric for a transaction is the number of trans­
action occurrences per business function. Trans­
actions may be used by low-level managers to track
the activity of their groups.

The bulk of commercial applications involves
the maintaining and moving of information. This
information is data that is often stored on perma­
nent storage devices such as rotational disks, solid
state disks, or tapes. An 1/0 operation is the process
by which a transaction accesses that data. The mea­
surement metric for the 1/0 profile is the number
of 1/0 operations per transaction. 1/0 operations
by each transaction are important to programmers
or system analysts.

In addition to issuing I/Os, each transaction
requires a certain amount of CPU time to handle
forms processing. (Forms processing time is not
illustrated in Figure 1.) The measurement metric
for forms processing time is the expected number
of fields. The number of input and output fields
per form are important metrics for users of a trans­
action processing application or programmer/
system analysts.

By collecting information about a transaction
processing application at various leve ls, high-level
volume indicators are mapped to low-level units
of 1/0 activity. This mapping is fundamental to the
transaction processing sizing methodology.

Vol. 3 No. 1 Winter 1991 Dtgttal Techntcal]ournal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

Performance goals play a particularly important
role in the sizing of transaction processing systems.2
The major categories of performance goals com­
monly encountered in the transaction processing
marketplace are bounds for

• Device utilization(s)

• Average response time for transactions

• Response time quantiles for transactions

For example, a customer might specify a required
processor utilization of less than 70 percent. Such a
constraint reflects the fact that system response
time typically rises dramatically at higher proces­
sor utilizations. A common performance goal for
response time is to use a transaction's average
response time and response time quantiles. For
example, the proposed system should have an aver­
age response time of x seconds, with 95 percent
of all responses completing in less than or equal
toy seconds, where xis less than y. Transaction
response times are crucial for businesses. Poor
response times translate directly into decreased
productivity and lost revenues.

When a customer generates a formal Request For
Proposal (RFP), the performance goals for the
transaction processing system typically are speci­
fied in detail. The specification of goals makes
it easier to define the performance bounds. For
customers who supply only general performance
goals, it is assumed that the performance goal takes
the form of bounds for device utilizations.

Overall response time consists of incremental
contributions by each major component of the
overall system:

• Front-end processor

• Back-end processor

• Communications network

• Disk subsystem

A main objective in this approach to sizing was
to identify and use specific metrics that could be
easily counted for each major component. For
instance, the number of fields per form could be
a metric used for sizing front-end processors
because that number is specific and easily counted.
As the path of a transaction is followed through the
overall system, the units of work appropriate for
each component become clear. These units become
the metrics for sizing that particular component.
The focus of this paper is on processor sizing with
bounds on processor utilization. Processors gener-

Digital Technical Journal Vol. 3 No. I Winter 1991

ally constitute the major expense in any proposed
system solution. Mistakes in processor sizing are
very expensive to fix, both in terms of customer
satisfaction and cost.

Sizing Metrics
Transaction processing applications permit a large
number of users to share access to a common data­
base crucial to the business and usually residing on
disk memory. In an interactive transaction process­
ing environment, transactions generally involve
some number of disk 1/0 operations, although the
number is relatively small compared to those
generated by batch transaction processing appli­
cations. CPU processing also is generally small and
consists primarily of overhead for layered trans­
action processing software products. Although
these numbers are small, they did influence the
sizing methodology in several ways.

Ratings for relative processor capacity in a trans­
action processing environment were developed
to reflect the ability of a processor to support disk
1/0 activity (as observed in benchmark tests). In
addition, empirical studies of transaction process­
ing applications showed that, for purposes of pre­
liminary sizing, the number of disk I/Os generated
by a transaction provides a good prediction of the
required amount of CPU processing.3 Numerous
industry-standard benchmark tests for product
positioning were run on Digital's processors. These
processors were configured as back-end proces­
sors in a distributed configuration with different
software platforms.

The base workload for this benchmark testing is
currently the Transaction Processing Performance
Council's TPC Benchmark A (TPC-A, formerly the
DebitCredit benchmark)~·s·6 The most complete
set of benchmark testing was run under Digital's
VAX ACMS transaction processing monitor and
VAX Rdb/VMS relational database. Therefore, results
from this software platform on all Digital proces­
sors were used to compute the first sizing metric
called the base load factor.

The base load factor is a high-level metric that
incorporates the contribution by all layered soft­
ware products on the back-end processor to the
total CPU time per 1/0 operation. Load factors are
computed by dividing the total CPU utilization by
the number of achieved disk 1/0 operations per
second. (The CPU utilization is normalized in the
event that the processor is a Symmetrical Multi­
processing [SMP] system, to ensure that its value
falls within the range of O to 100 percent.) The

61

Transaction Processing, Databases, and Fault-tolerant Systems

calculation of load factor yields the total CPU time,
in centiseconds (hundredths of seconds), required
to support an application's single physical 1/0
operation.

The base load factors give the CPU time per 1/0
required to run the base workload, TPC-A, on any
Digital processor in a back-end configuration using
the ACMS/Rdb. The CPU time per 1/0 can be esti­
mated for any workload. This generalized metric is
called the application load factor.

To relate the base load factors to workloads other
than the base, an additional metric was defined
called the intensity factor. The metric calculation
for the intensity factor is the application load
factor divided by the base load factor. The value in
using intensity factors is that, once estimated (or
calculated for running applications), intensity fac­
tors can be used to characterize any application in
a way that can be applied across all processor types
to estimate processor requirements.

Intensity factors vary based on the software
platform used. If a software platform other than a
combined VAX ACMS and VAX Rdb/VMS platform is
selected, the estimate of the intensity factor must
be adjusted to reflect the resource usage character­
istics of the selected DECtp software platform.

To estimate an appropriate intensity factor for a
nonexistent application, judgment and experience
with similar applications are required. However,
measured cases from a range of DECtp applications
shows relatively little variation in intensity factors.
Guidelines to help determine intensity factors are
included in the documentation for Digital's inter­
nally developed transaction processing sizing tools.

The work required by any transaction pro­
cessing application is composed of two parts: the
application/database and the forms management.
This division of work corresponds to what occurs
in a distributed configuration, where the forms pro­
cessing is off-loaded to one or more front-end pro­
cessors. Load factors and intensity factors are
metrics that were developed to size the application/
database. To estimate the amount of CPU time
required for forms management, a forms-specific
metric is required. For a first-cut approximation,
the expected number of (input) fields is used as the
sizing metric. This number is obtained easily from
the business-level description of the application.

Sizing For mulas
This section describes the underlying algebra devel­
oped for processor selection. Different formulas
to estimate the CPU time required for both the

62

application/database and forms management were
developed. These formulas are used separately for
sizing back-end and front-end processors in a dis­
tributed configuration. The individual contribu­
tions of the formulas are combined for sizing a
centralized configuration.

The application/database is the work that takes
place on the back-end processor of a distributed
configuration. It is a function of physical disk
accesses. To determine the minimal CPU time
required to handle this load, processor utilization
is used as the performance goal, setting up an
inequality that is solved to obtain a corresponding
load factor. The resulting load factor is then com­
pared to the table of base load factors to obtain a
recommendation for a processor type. To rein­
force this dependence of load factors on processor
types, load factor x refers to the associated pro­
cessor type x in the following calculations.

One method for estimating the average CPU time
per transaction is to multiply the number of I/Os
per transaction by the load factor x and the inten­
sity factor. This yields CPU time per transaction,
expressed in centiseconds per transaction. By mul­
tiplying this product by the transactions per sec­
ond rate, an expression for processor utilization is
derived. Thus processor utilization (expressed as a
percentage scaled between O and 100 percent) is
the number of transactions per second, times the
number of I/Os per transaction, times load factor x,
times the intensity factor.

The performance goal is a CPU utilization that is
less than the utilization specified by the customer.
Therefore, the calculation used to derive the load
factor is the utilization percentage provided by the
customer, divided by the number of transactions
per second, times the number of I/Os per trans­
action, times the intensity factor.

Once computed, the load factor is compared to
those values in the base load factor table. The base
load factor equal to or less than the computed value
is selected, and its corresponding processor type,
x, is returned as the minimal processor required to
handle this workload.

The four input parameters that need to be esti­
mated for inclusion in this inequality are

• Processor utilization performance goal (tradi­
tionally set at around 70 percent, but may be set
higher for Digital's newer, faster processors)

• Target transactions per second (which may be
derived from Digital's multilevel mapping of
business metrics)

Vol. 3 No. 1 Winter 1991 Digital Techn ical Journal

Tools and Techniques for Preliminary Sizing of Transaction Processing Applications

• I/Os per transaction (estimated from application
description and database expertise)

• Intensity factor (estimated from experience with
similar applications)

Note: Response time performance goals do not
appear in this formula. This sizing formula deals
strictly with ensuring adequate processor capacity.
However, these performance parameters (includ­
ing the CPU service time per transaction) are fed
into an analytic queuing solver embedded in some
of the transaction processing sizing tools, which
produces estimates of response times.

Forms processing is the work that occurs either
on the front-end processor of a distributed config­
uration or in a centralized configuration. It is not a
function of physical disk accesses; rather, forms
processing is CPU intensive. To estimate the CPU
time (in seconds) required for forms processing,
the following simple linear equation is used:

y=c(a +bz)

where y equals the CPU time for forms processing;
a equals the CPU time per form per transaction
instance, depending on the forms manager used;
b equals the CPU time per field per transaction
instance, depending on the forms manager used;
z equals the expected number of fields; and c equals
the scaling ratio, depending on the processor type.
This equation was developed by feeding the results
of controlled forms testing into a linear regression
model to estimate the CPU cost per form and per
field (i.e., a and b). The multiplicative term, c, is
used to eliminate the dependence of factors a and
b on the hardware platform used to run these tests.

Sizing Tools
Several sizing tools were constructed by using the
above formulas as starting points. These tools dif­
fer in the range of required inputs and outputs, and
in the expected technical sophistication of the user.

The first tool developed is for quick, first­
approximation processor sizing. Currently embod­
ied as a DEcalc spreadsheet, with one screen for
processor selection and one for transactions-per­
second sensitivity analysis, it can handle back-end,
front-end, or centralized sizing. The first screen
shows the range of processors required, given the
target processor utilization, target transactions
per second, expected number of fields, and the
possible intensity factors and number of I/Os per
transaction. (Because the estimation of these last

Dig ita l Tecbn tcaljournal Vol . 3 No. I Winter 1991

two inputs generally involves the most uncer­
tainty, the spreadsheet allows the user to input a
range of values for each.) The second screen turns
the analysis around, showing the resulting trans­
action-per-second ranges that can be supported by
the processor type selected by the user, given the
target processor utilization, expected number of
fields, and possible intensity factors and number of
I/Os per transaction.

The basic sizing formula addresses issues that
deal specifically with capacity but not with per­
formance. To predict behavior such as response
times and queue lengths, modeling techniques that
employ analytic solvers or simulators are needed.
A second tool embeds an analytic queuing solver
within itself to produce performance estimates.
This tool is an automated system (i.e., a DECtp
application) that requests information from the
user according to the multilevel workload charac­
terization methodology. This starts from general
business-level information and proceeds to request
successively more detailed information about the
application. The tool also contains a knowledge
base of Digital's product characteristics (e.g., pro­
cessor and disk) and measured DECtp applications.
The user can search through the measured cases to
find a similar case, which could then be used to
provide a starting point for estimating key applica­
tion parameters. The built-in product characteris­
tics shield the user from the numeric details of the
sizing algorithms.

A third tool is a spin-off from the second tool.
This tool is a standalone analytic queuing solver with
a simple textual interface. The tool is intended for
the sophisticated user and assumes that the user
has completed the level of analysis required to be
able to supply the necessary technical input param­
eters. No automatic table lookups are provided.
However, for a completely characterized applica­
tion, this tool gives the sophisticated user a quick
means to obtain performance estimates and run
sensitivity analyses. The complete DECtp software
platform necessary to run the second tool is not
required for this tool.

Data Collection
To use the sizing tools fully, certain data must be
available, which allows measured workloads to be
used to establish the basic metrics. Guidance in
sizing unmeasured transaction processing applica­
tions is highly dependent on developing a knowl­
edge base of real-world transaction processing
application descriptions and measurements. The

63

Transaction Processing, Databases, and Fault-tolerant Systems

kinds of data that need to be stored within the
knowledge base require the data collection tools to
gather information consistent with the transaction
processing sizing algebra.

For each transaction type and for the aggregate
of all the transaction types, the following informa­
tion is necessary to perform transaction process­
ing system sizing:

• CPU time per disk 1/0

• Disk 1/0 operations per transaction

• Transaction rates

• Logical-to-physical disk 1/0 ratio

The CPU to 1/0 ratio can be derived from Digital's
existing instrumentation products, such as the VAX
Software Performance Monitor(SPM) and VAXcluster
Performance Advisor (VPA) products.1 Both prod­
ucts can record and store data that reflects CPU
usage levels and physical disk 1/0 rates.

The DECtrace product collects event-driven data.
It can collect resource items from layered soft­
ware products, including VAX ACMS monitor, the
VAX Rdb/VMS and DBMS database systems, and if
instrumented, from the application program itself.
As an event collector, the DECtrace product can be
used to track the rate at which events occur.

The methods for determining the logical-to­
physical disk 1/0 ratio per transaction remain open
for continuing study. Physical disk 1/0 operations
are issued based on logical commands from the
application. The find, update, or fetch commands
from an SQL program translate into from zero to
many thousands of physical disk 1/0 operations,
depending upon where and how data is stored.
Characteristics that affect this ratio include the
length of the data tables, number of index keys, and
access methods used to reach individual data items
(i.e., sequential, random).

Few tools currently available can provide data
on physical 1/0 operations for workloads in the
design stage. A knowledge base that stores the
logical-to-physical disk 1/0 activity ratio is the best
method available at this time for predicting that
value. The knowledge base in the second sizing
tool is beginning to be populated with application
descriptions that include this type of information.
It is anticipated that, as this tool becomes widely
used in the field, many more application descrip­
tions will be stored in the knowledge base. Pooling
individual application experiences into one central
repository will create a valuable source of knowl­
edge that may be utilized to provide better infor­
mation for future sizing exercises.

64

Acknowledgments
The authors would like to acknowledge our col­
leagues in the Transaction Processing Systems
Performance Group whose efforts led to the devel­
opment of these sizing tools, either through prod­
uct characterization, system support, objective
critique, or actual tool development. In particular,
we would like to acknowledge the contributions
made by Jim Bouhana to the development of the
sizing methodology and tools.

References

1. W Zahavi and J. Bouhana, "Business-Level Des­
cription of Transaction Processing Applications,"
CMG '88 Proceedings (1988): 720-726.

2. K. Omahen, "Practical Strategies for Config­
uring Balanced Transaction Processing Systems,"
IEEE COMPCON Spring '89 Proceedings (1989):
554-559.

3. W Zahavi, "A First Approximation Sizing
Technique - The 1/0 Operation as a Metric of
CPU Power," CMG '90 Conference Proceedings
(forthcoming December 10-14, 1990).

4. "TPC BENCHMARK A - Standard Specification,"
(Transaction Processing Performance Council,
November 1989).

5. "A Measure of Transaction Processing Power;
Datamation, vol. 31, no. 7 (April 1, 1985): 112-118.

6. L. Wright, W Kohler, and W Zahavi, "The Digital
DebitCredit Benchmark: Methodology and
Results," CMG '89 Conference Proceedings
(1989): 84-92.

7. F. Habib, Y Hsu, and K. Omahen, "Software
Measurement Tools for VAX/VMS Systems," CMG

Transactions (Summer 1988): 47- 78.

Vol. 3 No. 1 Winter 1991 Dtgtta l Tecbntcal Journal

Ananth Raghavan I
T. K. Rengarajan

Database Availability for
Transaction Processing

A transaction processing system relies on its database management system to supply
high availability. Digital offers a network-based product, the VAX DBMS system,
and a relational data-based product, the VAX Rdb/VMS database system, for its
transaction processing systems. These database systems have several strategies to
survive failures, disk bead crashes, revectored bad blocks, database corruptions,
memory co"uptions, and memory overwrites by faulty application programs.
They use base hardware technologies and also employ novel software techniques,
such as parallel transaction recovery, recovery on surviving nodes of a VAXcluster
system, restore and rollforward operations on areas of the database, on-line
backup, verification and repair utilities, and executive mode protection of trusted
database management system code.

Modern businesses store critical data in database
management systems. Much of the daily activity
of business includes manipulation of data in the
database. As businesses extend their operations
worldwide, their databases are shared among
office locations in different parts of the world.
Consequently, these businesses require transac­
tion processing systems to be available for use at
all times. This requirement translates directly to a
goal of perfect availability for database manage­
ment systems.

VAX DBMS and VAX Rdb/VMS database systems are
based on network and relational data models, respec­
tively. Both systems use a kernel of code that is
largely responsible for providing high availability.
This layer of code is maintained by the KODA group.
KODA is the physical subsystem for VAX DBMS and
VAX Rdb/VMS database systems. It is responsible for
all l/0, buffer management, concurrency control,
transaction consistency, locking, journaling, and
access methods.

In this paper, we define database availability,
and describe downtime situations and how such
situations can be resolved. We then discuss the
mechanisms that have been implemented to pro­
vide minimal loss of availability.

Database Availability
The unit of work in transaction processing systems
is a transaction. We therefore define database avail­
ability as the ability to execute transactions. One

Digital Technical Jou r nal Vol. 3 No. 1 Winter 1991

way the database management system provides
high availability is by guaranteeing the proper­
ties of transactions: atomicity, serializability, and
durability.' For example, if a transaction that has
made updates to the database is aborted, other
transactions must not be allowed to see these
updates; the updates made by the aborted trans­
action must be removed from the database before
other transactions may use that data. Yet, data that
has not been accessed by the aborted transaction
must continue to be available to other transactions.

Downtime is the term used to refer to periods
when the database is unavailable. Downtime is
caused by either an unexpected failure (unex­
pected downtime) or scheduled maintenance on
the database (scheduled downtime). Such classifi­
cations of downtime are useful. Unexpected down­
time is caused by factors that are beyond the
control of the transaction processing system. For
example, a disk failure is quite possible at any
time during normal processing of transactions.
However, scheduled downtime is entirely within
the control of the database administrator. High
availability demands that we eliminate scheduled
downtime and ensure fast system recovery from
unexpected failures.

The layers of the software and hardware services
which compose a transaction processing system
are dependent on one another for high availability.
The dependency among these services is illus­
trated in Figure 1. Each service depends on the

65

Transaction Processing, Databases, and Fault-tolerant Systems

I

APPLICATION
PROGRAM

I
DATABASE
MANAGEMENT
SYSTEM

I
OPERATING
SYSTEM (VMS)

I
HARDWARE
(CPU, DISK)

I
GENERAL
ENVIRONMENT AVAILABILITY

Figure 1 Layers of Availability in Transaction
Processing Systems

availability of the service in the lower layers.
Errors and failures can occur in any layer, but may
not be detected immediately. For example, in the
case of a database management system, the effects
of a database corruption may not be apparent until
long after the corrupt ion (error) has occurred.
Hence it is difficult to deal with such errors. On the
other hand, failures are noticed immediately.
Failures usually make the system unavailable and
are the cause of unexpected downtime.

Each layer can provide only as much availability
as the immediate lower layer. Hence we can also
express the perfect-ava ilability goal of a database
management system as the goal of matching the
availabi lity of the immediately lower layer, which
in our case is the operating system.

At the outset, it is clear that a database manage­
ment system layered on top of an operating system
and hence only as available as the underlying oper­
ating system. However, a database management
system is in general not as available as the under­
lying layer because of the need to guarantee the
properties of transactions.

Unexpected Downtime
In this section we discuss the causes of unex­
pected downtime and the techniques that mini­
mize downtime.

66

A database monitor must be started on a node
before a user's process running on that node can
access a database. The monitor oversees all data­
base activity on the node. It allows processes to
attach to and detach from databases and detects
failures. On detecting a failure , the monitor starts
a process to recover the transactions that did not
complete because of the failure . Note that this
database monitor is different from the TP monitor.2

Application Program Exceptions
Although transaction processing systems are based
on the client/server architecture, Digital's database
systems are process based. The privileged database
management system code is packaged in a share­
able library and linked with the application pro­
grams. Therefore, bugs in the applications have
a good chance of affecting the consistency of the
database. Such bugs in applications are one type of
failure that can make the database unavailable.

The VAX DBMS and VAX Rdb/VMS systems guard
against this class of failure by executing the data­
base management system code in the VAX execu­
tive mode. Since application programs execute in
user mode, they do not have access to data struc­
tures used by the database management system.
When a faulty application program attempts such
an access, the VMS operating system detects it and
generates an exception . This exception then forces
an image rundown of the application program.

In general, when an image rundown is initiated,
Digital 's database management products use the
condition-handling facility of VMS to abort the trans­
action. Condition handling of image rundown is
performed at two levels. Two condition handlers
are established, one in user mode and the other in
kernel mode. The user mode exit handler is usually
invoked, which rolls back the current transaction
and unbinds it from the database. In this case, the
rest of the users on the system are not affected at
all. The database remains available. The execution
of the user mode exit handler is, however, not
guaranteed by the VMS operating system. Under
some abnormal circumstances, the user mode exit
handlers may not be executed at all. In such cir­
cumstances, the kernel mode exit handler is
invoked by the VMS system. This handler resides
in the database monitor. The monitor starts a
database recovery (DBR) process. It is the responsi­
bility of the DBR process to roll back the effects of
the aborted transaction. To do this, the DBR pro­
cess first establishes a database freeze. This freeze
prevents other processes from acquiring locks that

Vol. 3 No. 1 Winter 1991 Digital TecbntcalJournal

were held by the aborted transaction and hence
see and update uncommitted data. (The VMS lock
manager releases all locks held by a process when
that process dies.) The DBR process then proceeds
to roll back the aborted transaction.

Code Corruptions
It is important to prevent coding mistakes within
the DBMS from irretrievably corrupting the data­
base. To protect the database management system
from coding mistakes, internal data structure con­
sistency is examined at different points in the
code. If any inconsistency is found, a bug-check
utility is called that dumps the internal database
format to a file. The utility then raises an excep­
tion that is handled by the monitor, and the DBR

process is started as described above.
To deal with corruptions to the database that are

undetected with this mechanism, an explicit utility
is provided that verifies the structural consistency
of the database. This verify utility may be executed
on-line, while users are still accessing the data­
base. Such verification may also be executed by a
database administrator (OBA) in response to a bug­
check dump. Once such a corruption is detected,
an on-line utility provides the ability to repair the
database.

In general, corruption in databases causes unex­
pected downtime. Digital provides the means of
detecting such corruption on-line and repairing
them on-line through recovery utilities.

Process Failure
In the VMS system, a process failure is always pre­
ceded by image rundown of the current image run­
ning as part of the process. Therefore, a process
failure is detected by the database monitor, which
then starts a DBR process to handle recovery.

Node Failure
Among the many mechanisms Digital provides for
availability is node failover within a cluster. When
a node fails, another node on the cluster detects
the failure and rolls back the lost transactions from
the failed node. Thus the failure of one node does
not cause transactions on other active nodes of the
cluster to come to a halt (except for the time the
DBR process enforces a freeze). It is the database
monitor that detects node failure and starts a
recovery process for every lost transaction on the
failed node. The database becomes available as
soon as recovery is complete for all the users on
the failed node.

Dtgttal Tecbntcaljournal Vol. 3 No. 1 Winter 1991

Database Availability for Transaction Processing

Power Failure
Power failure is a hardware failure. As soon as
power is restored, the VMS system boots. When a
process attaches to the database, a number of mes­
sages are passed between the process that is attach­
ing and the monitor. If the database is corrupt
(because of power failure), the monitor is so
informed by the attaching process, and again the
monitor starts recovery processes to return the
database to a consistent state. The database becomes
available as soon as recovery is complete for all
such failed users.

As described above, recovery is always accom­
plished by the monitor process starting DBR pro­
cesses to do the recovery. The only differences in
the case of process, node, or cluster failure is the
mechanism by which the monitor is informed of
the failure .

Disk Head Crash
Some failures can result in the loss or corruption of
the data on the stable storage device (disk). Digital
has a mechanism for bringing the database back to
a consistent state in such cases.

A disk head crash is a failure of hardware that is
usually characterized by the inability to read from
or write to the disk. Hence database storage areas
residing on that disk are unavailable and possibly
irretrievable. A disk head crash automatically aborts
transactions that need to read from or write to that
disk. In addition, recovery of these aborted trans­
actions is not possible since the recovery pro­
cesses need access to the same disk. In this case,
the database is shut down and access is denied until
the storage areas on the failed disk are brought on­
line. Areas are restored from backups and then
rolled forward until consistent with the rest of the
database. The after image journal (AIJ) files are used
to roll the areas forward. As soon as all the areas on
the failed disk have been restored onto a good disk
and rolled forward, the database becomes available.

Bad Disk Blocks
Bad blocks are hardware errors that often are not
detected when they happen. The bad blocks are
revectored, and the next time the disk block is
read, an error is reported. Bad blocks simply mean
that the contents of a disk block are lost forever.
The database administrator detects the problem
only when a database application fails to fetch data
on the revectored block. Such an error may cause a
certain transaction or a set of transactions to fail,
no matter how many attempts are made to execute

67

Transaction Processing, Databases, and Fault-tolerant Systems

the transactions. This failure constitutes reduced
availability; parts of the database are unavailable to
transactions. Exactly how much of the database
remains available depends on which blocks were
revectored.

The mechanism provided to reduce the possible
downtime is early detection. Digital's database
systems provide a verification utility that can be
executed while users are running transactions.
The verification utility checks the structural con­
sistency of the database. Once a bad block is
detected by such a utility, that area of the database
may be restored and rolled forward . These two
operations make the whole database temporarily
unavailable; however, the bad block is corrected,
and future downtime is avoided. The downtime
caused by the bad block may be traded off against
the downtime needed to restore and roll forward .

Site Failure
A site failure occurs when neither the computers
nor the disks are available. A site failure is usually
caused by a natural disaster such as an earthquake.
The best recourse for recovery is archival storage.
Digital provides mechanisms to back up the data­
base and AIJ files to tape. These tapes must then be
stored at a site away from the site at which the
database resides. Should a disaster happen, these
backup tapes can be used to restore the database.
However, the recovery may not be complete. It
cannot restore the effects of those committed trans­
actions that were not backed up to tape.

After a disaster, the database can be restored
and rolled forward to the state of the completion of
the last AIJ that was backed up to tape. Any trans­
actions that committed after the last AIJ was backed
up cannot be recovered at the alternate site. Such
transaction losses can be minimized by frequently
backing up the AIJ files .

Memory Errors
Memory errors are quite infrequent, and when
they happen, they usually are not detected. If the
error happens to a data record, it may never be
detected by any utility, but may be seen as incor­
rect data by the user. If the verification utility is run
on-line, it may also detect the errors. Again, the
database may only be partially available, as in the
case of bad blocks. However, it is possible to repair
the database while users are still accessing the
database. Digital's database management products
provide explicit repair facilities for this purpose.

68

The loss of availability during repair is not worse
than the loss due to the memory error itself.

As explained previously, the database monitor
plays an important part in ensuring database con­
sistency and availability. Most unexpected failure
scenarios are detected by the monitor, which then
starts recovery processes. In addition, some fail­
ures might require the use of backup files to
restore the database.

Scheduled Downtime
Most database systems have scheduled maintenance
operations that require a database shutdown. Data­
base backup for media recovery and verification to
check structural consistency are examples of oper­
ations that may require scheduled downtime. In
this section we describe ways to perform many of
these operations while the database is executing
transactions.

Backup
Digital's database systems allow two types of trans­
actions: update and "snapshot." The ability to back
up data on-line depends on the snapshot transaction
capability of the database.

Database backup is a standard way of recovering
from media failures . Digital's database systems pro­
vide the ability to do transaction consistent back­
ups of data on-line while users continue to change
the database.

The general scheme for snapshot transactions is
as follows. The update transactions of the database
preserve the previous versions of the database
records in the snapshot file. All versions of a data­
base record are chained. Only the current version
of the record is in the database area. The older ver­
sions are kept in the snapshot area. The versions
of the records are tagged with the transaction
numbers (TSNs). When a snapshot transaction (for
example, a database backup) needs to read a data­
base record, it traverses the chain for that database
record and then uses the appropriate version of
the record.

There are two modes of database operation with
respect to snapshot activity. In one mode, all update
transactions write snapshot copies of any records
they update. In the deferred snapshot mode, the
updates cause snapshot copies to be written only
if a snapshot t ransaction is active and requires old
versions of a record. In this mode, a snapshot trans­
action cannot start until all currently active update
transactions (which are not writing snapshot

Vol. 3 No. 1 Winter 1991 Dtgttal Techntcal]ournal

records) have completed; that is, the snapshot
transaction must wait for a quiet point in time. If
there are either active or pending snapshot trans­
actions when an update transaction starts, the
update transaction must write snapshot copies.

Here we see a trade-off between update trans­
actions and snapshot transactions. The database
is completely available to snapshot transactions
if all update transactions always write snapshot
copies. On the other hand, if the deferred snapshot
mode is enabled, update transactions need not
write snapshot copies if a snapshot transaction
in not active. This approach obviously results in
some loss of availability to snapshot transactions.

Verification
Database corruption can also result in downtime.
Although database corruption is not probable, it
is possible. Any database system that supports
critical data must provide facilities to ensure the
consistency of the database. Digital's database man­
agement systems provide verification utilities that
scan the database to check the structural consis­
tency of the database. These utilities may also be
executed on-line through the use of snapshot
transactions.

Alf Backup
The backup and the AIJ log are the two mechanisms
that provide media recovery for Digital's database
management products. The AIJ file is continuously
written to by all user processes updating the data­
base. We need to provide some ability to back up
the AIJ file since it monotonically increases in size
and eventually fills up the disk. Digital's database

Digital TecbntcalJournal Vol. 3 No. 1 Winter 1991

Database Availability for Transaction Processing

systems offer the ability to back up the AIJ file to
tape (or another device) on-line. The only restric­
tion is that a quiet point must be established for a
short period during which the backup operation
takes place. A quiet point is defined as a point
when the database is quiescent, i.e., there are no
active transactions.

On-line Schema Changes
Digital's database management systems allow users
to change metadata on-line, while users are still
accessing the database. Although this may be stan­
dard for relational database management systems,
it is not standard for network databases. The VAX

DBMS system provides a utility called the database
restructuring utility (DRU) to allow for on-line
schema modifications.

Acknowledgments
Many engineers have contributed to the develop­
ment of the algorithms described in this paper. We
have chosen not to enumerate all such contribu­
tions. However, we would like to recognize the con­
tributions of Peter Spiro, Ashok Joshi, Jeff Arnold,
and Rick Anderson who, together with the authors,
are members of the KODA team.

References
1. P. Bernstein, W. Emberton, and V Trehan,

"DECdta - Digital's Distributed Transaction Pro­
cessing Architecture;' Digital Tecbnicaljournal,
vol. 3, no. 1 (Winter 1991, this issue): 10-17.

2. T. Speer and M. Storm, "Digital's Transaction
Processing Monitors;' Digital Technical journal,
vol. 3, no. 1 (Winter 1991, this issue): 18-32.

69

Peter M. Spiro
Ashok M.Joshi

T. K Rengarajan

Designing an optimized
Transaction Commit
Protocol

Digital's database products, VAX Rdb/VMS and VAX DBMS, share the same database
kernel called KODA. KODA uses a grouping mechanism to commit many concurrent
transactions together. This feature enables high transaction rates in a transaction
processing (TP) environment. Since group commit processing affects the maximum
throughput of the transaction processing system, the KODA group designed and
implemented several grouping algorithms and studied their peiformance charac­
teristics. Preliminary results indicate that it is possible to achieve up to a <i6 percent
improvement in transaction throughput try using more efficient grouping designs.

Digital has two general-purpose database products,
Rdb/VMS software, which supports the relational
data model, and VAX DBMS software, which sup­
ports the CODASYL (Conference on Data Systems
Languages) data model. Both products layer on top
of a database kernel called KODA. In addition to
other database services, KODA provides the trans­
action capabilities and commit processing for these
two products.

In this paper, we address some of the issues rele­
vant to efficient commit processing. We begin by
explaining the importance of commit processing
in achieving high transaction throughput. Next, we
describe in detail the current algorithm for group
commit used in KODA. We then describe and con­
trast several new designs for performing a group
commit. Following these discussions, we present
our experimental results. And, finally, we discuss
the possible direction of future work and some
conclusions. No attempt is made to present formal
analysis or exhaustive empirical results for commit
processing; rather, the focus is on an intuitive
understanding of the concepts and trade-offs,
along with some empirical results that support our
conclusions.

Commit Processing
To follow a discussion of commit processing, two
basic terms must first be understood. We begin this
section by defining a transaction and the "moment
of commit:'

70

A transaction is the execution of one or more
statements that access data managed by a database
system. Generally, database management systems
guarantee that the effects of a transaction are atomic,
that is, either all updates performed within the con­
text of the transaction are recorded in the database,
or no updates are reflected in the database.

The point at which a transaction's effects become
durable is known as the "moment of commit." This
concept is important because it allows database
recovery to proceed in a predictable manner after
a transaction failure. If a transaction terminates
abnormally before it reaches the moment of com­
mit, then it aborts. As a result, the database system
performs transaction recovery, which removes all
effects of the transaction. However, if the trans­
action has passed the moment of commit, recovery
processing ensures that all changes made by the
transaction are permanent.

Transaction Profile
For the purpose of analysis, it is useful to divide a
transaction processed by KODA into four phases:
the transaction start phase, the data manipulation
phase, the logging phase, and the commit process­
ing phase. Figure 1 illustrates the phases of a trans­
action in time sequence. The first three phases are
collectively referred to as "the average transaction's
CPU cost (excluding the cost of commit)" and the
last phase (commit) as "the cost of writing a group
commit buffer."'

Vol. 3 No. 1 Winter 1991 Dtgttal Tecbntcal]ournal

START
DATA
MANIPULATION LOGGING COMMIT

TIME-

Figure 1 Phases in the Execution
of a Transaction

The transaction start phase involves acquiring
a transaction identifier and setting up control
data structures. This phase usually incurs a fixed
overhead.

The data manipulation phase involves executing
the actions dictated by an application program.
Obviously, the time spent in this phase and the
amount of processing required depend on the
nature of the application.

At some point a request is made to complete the
transaction. Accordingly in KODA, the transaction
enters the logging phase which involves updating
the database with the changes and writing the
undo/redo information to disk. The amount of work
done in the logging phase is usually small and con­
stant (less than one 1/0) for transaction processing.

Finally, the transaction enters the commit pro­
cessing phase. In KODA, this phase involves writing
commit information to disk, thereby ensuring that
the transaction's effects are recorded in the data­
base and now visible to other users.

For some transactions, the data manipulation
phase is very expensive, possibly requiring a large
number of I/Os and a great deal of CPU time. For
example, if 500 employees in a company were to
get a 10 percent salary increase, a transaction would
have to fetch and modify every employee/salary
record in the company database. The commit pro­
cessing phase, in this example, represents 0.2 per­
cent of the transaction duration. Thus, for this class
of transaction, commit processing is a small frac­
tion of the overall cost. Figure 2 illustrates the pro­
file of a transaction modifying 500 records.

tSTART

II
TIME -

COMMIT

LOGGING il
DATA 111 MANIPULATION

Figure 2 Profile of a Transaction Modifying
500Records

In contrast, for transaction processing applica­
tions such as hotel reservation systems, banking

Digital Tecbnical]ournal Vol. 3 No. 1 Winter 1991

Designing an Optimized Transaction Commit Protocol

applications, stock market transactions, or the
telephone system, the data manipulation phase is
usually short (requiring few I/Os). Instead, the log­
ging and commit phases comprise the bulk of the
work and must be optimized to allow high trans­
action throughput. The transaction profile for a
transaction modifying one record is shown in
Figure 3. Note that the commit processing phase
represents 36 percent of the transaction duration,
in this example.

Ir
START
DATA r MANIPULATION

II I LOGGING

TIME-

COMMIT

Figure 3 Profile of a Transaction Modifying
One Record

Group Commit
Generally, database systems must force write infor­
mation to disk in order to commit transactions. In
the event of a failure, this operation permits recov­
ery processing to determine which failed trans­
actions were active at the time of their termination
and which ones had reached their moment of com­
mit. This information is often in the form of lists of
transaction identifiers, called commit lists.

Many database systems perform an optimized
version of commit processing where commit infor­
mation for a group of transactions is written to disk
in one 1/0 operation, thereby, amortizing the cost
of the 1/0 across multiple transactions. So, rather
than having each transaction write its own commit
list to disk, one transaction writes to disk a com­
mit list containing the commit information for a
number of other transactions. This technique is
referred to in the literature as "group commit."2

Group commit processing is essential for achiev­
ing high throughput. If every transaction that
reached the commit stage had to actually perform
an 1/0 to the same disk to flush its own commit
information, the throughput of the database sys­
tem would be limited to the 1/0 rate of the disk. A
magnetic disk is capable of performing 30 1/0
operations per second. Consequently, in the
absence of group commit, the throughput of the
system is limited to 30 transactions per second
(TPS). Group commit is essential to breaking this
performance barrier.

71

Transaction Processing, Databases, and Fault-tolerant Systems

There are several variations of the basic algo­
rithms for grouping multiple commit lists into a
single 1/0. The specific group commit algorithm
chosen can significantly influence the throughput
and response times of transaction processing. One
study reports throughput gains of as much as 25
percent by selecting an optimal group commit
algorithm. I

At high transaction throughput (hundreds of
transactions per second), efficient commit process­
ing provides a significant performance advantage.
There is little information in the database litera­
ture about the efficiency of different methods of
performing a group commit. Therefore, we ana­
lyzed several grouping designs and evaluated their
performance benefits.

Factors Affecting Group Commit
Before proceeding to a description of the experi­
ments, it is useful to have a better understanding of
the factors affecting the behavior of the group com­
mit mechanism. This section discusses the group
size, the use of timers to stall transactions, and the
relationship between these two factors.

Group Size An important factor affecting group
commit is the number of transactions that partici­
pate in the group commit. There must be several
transactions in the group in order to benefit from
1/0 amortization. At the same time, transactions
should not be required to wait too long for the
group to build up to a large size, as this factor
would adversely affect throughput.

It is interesting to note that the incremental
advantage of adding one more transaction to a
group decreases as the group size increases. The
incremental savings is equal to 1/(G x (G + 1)),
where G is the initial group size. For example, if
the group consists of 2 transactions, each of them
does one-half a write. If the group size increases
to 3, the incremental savings in writes will be
(1/2 -1/3), or 1/6 per transaction. Ifwe do the same
calculation for a group size incremented from 10
to 11, the savings will be (1/10 - 1/11), or 1/110 of a
write per transaction.

In general, if G represents the group size, and I
represents the number of I/Os per second for the
disk, the maximum transaction commit rate is Ix G
TPS. For example, if the group size is 45 and the rate
is 30 I/Os per second to disk, the maximum trans­
action commit rate is 30 x 45, or 1350 TPS. Note that
a grouping of only 10 will restrict the maximum
TPS to 300 TPS, regardless of how powerful the

72

computer is. Therefore, the group size directly
affects the maximum transaction throughput of
the transaction processing system.

Use of Timers to Stall Transactions One of the
mechanisms to increase the size of the commit
group is the use of timers.1

•
2 Timers are used to

stall the transactions for a short period of time
(on the order of tens of milliseconds) during com­
mit processing. During the stall, more transactions
enter the commit processing phase and so the
group size becomes larger. The stalls provided by
the timers have the advantage of increasing the
group size, and the disadvantage of increasing the
response time.

Trade-offs This section discusses the trade-offs
between the size of the group and the use of timers
to stall transactions. Consider a system where there
are 50 active database programs, each repeatedly
processing transactions against a database. Assume
that on average each transaction takes between
0.4 and 0.5 seconds. Thus, at peak performance, the
database system can commit approximately 100
transactions every second, each program actually
completing two transactions in the one-second
time interval. Also, assume that the transactions
arrive at the commit point in a steady stream at dif­
ferent times.

If transaction commit is stalled for 0.2 sec­
onds to allow the commit group to build up, the
group then consists of about 20 transactions
(0.2 seconds x 100 TPS). In this case, each trans­
action only incurs a small delay at commit time,
averaging 0.10 seconds, and the database system
should be able to approach its peak throughput of
100 TPS. However, if the mechanism delays commit
processing for one second, an entirely different
behavior sequence occurs. Since the transactions
complete in approximately 0.5 seconds, they accu­
mulate at the commit stall and are forced to wait
until the one-second stall completes. The group
size then consists of 50 transactions, thereby maxi­
mizing the 1/0 amortization. However, throughput
is also limited to 50 TPS, since a group commit is
occurring only once per second.

Thus, it is necessary t~ balance response time
and the size of the commit group. The longer the
stall, the larger the group size; the larger the group
size, the better the 1/0 amortizat_ion that is achieved.
However, if the stall time is too long, it is possible
to limit transaction throughput because of wasted
CPU cycles.

Vol. 3 No. 1 Winter 1991 Dtgttal TecbntcalJournal

Motivation for Our Work
The concept of using commit timers is discussed
in great detail by Reuter.' However, there are signifi­
cant differences between his group commit scheme
and our scheme. These differences prompted the
work we present in this paper.

In Reuter's scheme, the timer expiration triggers
the group commit for everyone. In our scheme, no
single process is in charge of commit processing
based on a timer. Our commit processing is per­
formed by one of the processes desiring to write a
commit record. Our designs involve coordination
between the processes in order to elect the group
committer (a process).

Reuter's analysis to determine the optimum value
of the timer based on system load assumes that the
total transaction duration, the time taken for com­
mit processing, and the time taken for performing
the other phases are the same for all transactions.
In contrast, we do not make that assumption. Our
designs strive to adapt to the execution of many dif­
ferent transaction types under different system
loads. Because of the complexity introduced by
allowing variations in transaction classes, we do
not attempt to calculate the optimal timer values as
does Reuter.

Cooperative Commit Processing
In this section, we present the stages in perform­
ing the group commit with cooperating processes,
and we describe, in detail, the grouping design cur­
rently used in KODA, the Commit-Lock Design.

Group Committer
Assume that a number of transactions have com­
pleted all data manipulation and logging activity
and are ready to execute the commit processing
phase. To group the commit requests, the follow­
ing steps must be performed in KODA:

1. Each transaction must make its commit infor­
mation available to the group committer.

2. One of the processes must be selected as the
"group committer."

3. The other members of the group need to be
informed that their commit work will be com­
pleted by the group committer. These processes
must wait until the commit information is writ­
ten to disk by the group committer.

4. Once the group committer has written the com­
mit information to stable storage, it must inform
the other members that commit processing is
completed.

Digital Tecbnical]ournal Vol. 3 No. 1 Winter 1991

Designing an Optimized Transaction Commit Protocol

Commit-Lock Design
The Commit-Lock Design uses a VMS lock to gener­
ate groups of committing transactions; the lock is
also used to choose the group committer.

Once a process completes all its updates and
wants to commit its transaction, the procedure is
as follows. Each transaction must first declare its
intent to join a group commit. In KODA, each pro­
cess uses the interlocked queue instructions of the
VAX system running VMS software to enqueue a
block of commit information, known as a commit
packet, onto a globally accessible commit queue.
The commit queue and the commit packets are
located in a shared, writeable global section.

Each process then issues a lock request for the
commit lock. At this point, a number of other
processes are assumed to be going through the
same sequence; that is, they are posting their
commit packets and making lock requests for the
commit lock. One of these processes is granted
the commit lock. For the time being, assume the
process that currently acquires the lock acts as
the group committer.

The group committer, first, counts the number
of entries on the commit queue, providing the
number of transactions that will be part of the
group commit. Because of the VAX interlocked
queue instructions, scanning to obtain a count and
concurrent queue operations by other processes
can proceed simultaneously. The group committer
uses the information in each commit packet to
format the commit block which will be written
to disk. In KODA, the commit block is used as a
commit list, recording which transactions have
committed and which ones are active. In order to
commit for a transaction, the group committer
must mark each current transaction as completed.
In addition, as an optimization, the group commit­
ter assigns a new transaction identifier for each
process's next transaction. Figure 4 illustrates a
commit block ready to be flushed to disk.

Once the commit block is modified, the group
committer writes it to disk in one atomic 1/0. This
is the moment of commit for all transactions in
the group. Thus, all transactions that were active
and took part in this group commit are now stably
marked as committed. In addition, as explained
above, these transactions now have new transac­
tion identifiers. Next, the group committer sets a
commit flag in each commit packet for all recently
committed transactions, removes all commit pack­
ets from the commit queue, and, finally, releases
the commit lock. Figure 5 illustrates a committed

73

Transaction Processing, Databases, and Fault-toleran t Systems

COMMIT
QUEUE -

COMMIT
PACKET

CURR TIO
NEXT -TIO
COMMIT_FLG

37
0
0

CURR TIO 32 -- NEXT -TIO 0 --COMMIT_FLG 0

COMMIT GROUP

CURR_TID NEXT_TID
37 42
32 43
41 44

COMMIT BLOCK

KEY:

CURR TIO CURRENT TRANSACTION IDENTIFIER
NEXT -TIO NEXT TRANSACTION IDENTIFIER
COMMIT _FLG COMMIT FLAG

CURR TIO 41 CURR TIO 28 CURR TIO 39
NEXT -TIO 0 - NEXT -TIO 0 ~ NEXT -TIO 0
COMMIT_FLG 0 COMMIT_FLG 0 COMMIT_FLG 0

Figure 4 Commit Block Ready to be Flushed to Disk

group with new transact ion identifiers and with
commit flags set.

At this point, the remaining processes that were
part of the group commit are, in turn, granted
the commit lock. Because their commit flags are
already set, these processes realize they do not
need to perform a commit and, thus, release the
commit lock and proceed to the next transact ion.
After all these committed processes release the
commit lock, a process that did not take part in the

COMMIT
QUEUE

CURR TIO -1
NEXT-TIO 42
COMMIT _FLG 1

KEY:

CURR_TID -1
NEXT TIO 43
COMMIT _FLG 1

COMMIITED GROUP

CURR TIO -1
NEXT -TIO 44
COMMIT _FLG 1

CURR TIO CURRENT TRANSACTION IDENTIFIER
NEXT -TIO NEXT TRANSACTION IDENTIFIER
COMMIT_FLG COMMIT FLAG

group commit acquires the lock, notices it has not
been committed, and, therefore, initiates the next
group commit.

There are several interesting points about using
the VMS lock as the grouping mechanism. Even
though all the transactions are effectively commit·
ted after the commit block 1/0 has completed, the
transactions are still forced to proceed serial ly;
that is, each process is granted the lock, notices
that it is committed, and then releases the lock.

NEXT COMMIT PACKET

CURR TIO 28 CURR TIO 39 CURR TIO 29
NEXT -TIO O f-+ NEXT -TIO O f-+ NEXT -TIO 0
COMMIT_FLG 0 COMMIT_FLG 0 COMMIT_FLG 0

CURR TIO NEXT TIO
37- 42
32 43
41 44

Figure 5 Committed Group

74 Vol. 3 No. 1 Winter 1991 Dtgttal Technical journal

So there is a serial procession of lock enqueues/
dequeues before the next group can start.

This serial procession can be made more concur­
rent by, first, requesting the lock in a shared mode,
hoping that all processes committed are granted
the lock in unison. However, in practice, some pro­
cesses that are granted the lock are not committed.
These processes must then request the lock in an
exclusive mode. If this lock request is mastered on
a different node in a VAXcluster system, the lock
enqueue/dequeues are very expensive.

Also, there is no explicit stall time built into
the algorithm. The latency associated with the
lock enqueue/dequeue requests allows the commit
queue to build up. This stall is entirely dependent
on the contention for the lock, which in turn
depends on the throughput.

Group Commit Mechanisms -
Our New Designs
To improve on the transaction throughput provided
by the Commit-Lock Design, we developed three
different grouping designs, and we compared their
performances at high throughput. Note that the
basic paradigm of group commit for all these
designs is described in the Group Committer sec­
tion. Our designs are as follows.

Commit-Stall Design
In the Commit-Stall Design, the use of the commit
lock as the grouping mechanism is eliminated.
Instead, a process inserts its commit packet onto
the commit queue and, then, checks to see if it is
the first process on the queue. If so, the process
acts as the group committer. If not, the process
schedules its own wake-up call, then sleeps. Upon
waiting, the process checks to see if it has been
committed. If so, the process proceeds to its next
transaction. If not, the process again checks to see
if it is first on the commit queue. The algorithm
then repeats, as described above.

This method attempts to eliminate the serial
wake-up behavior displayed by using the commit
lock. Also, the duration for which each process
stalls can be varied per transaction to allow explicit
control of the group size. Note that if the stall time
is too small, a process may wake up and stall many
times before it is committed.

Willing-to-Wait Design
As we have seen before, a delay in the commit
sequence is a convenient means of converting a
response time advantage into a throughput gain. If
we increase the stall time, the transaction duration

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Designing an Optimized Transaction Commit Protocol

increases, which is undesirable. At the same time,
the grouping size for group commit increases,
which is desirable. The challenge is to determine
the optimal stall time. Reuter presented an analyti­
cal way of determining the optimal stall time for a
system with transactions of the same type.1

Ideally, we would like to devise a flexible scheme
that makes the trade-off we have just described in
real time and determines the optimum commit
stall time dynamically. However, we cannot deter­
mine the optimum stall time automatically, because
the database management system cannot judge
which is more important to the user in a general
customer situation - the transaction response time
or the throughput.

The Willing-to-Wait Design provides a user param­
eter called WIW time. This parameter represents
the amount of time the user is willing to wait for
the transaction to complete, given this wait will
benefit the complete system by increasing through­
put. WIW time may be specified by the user for each
transaction. Given such a user specification, it is
easy to calculate the commit stall to increase the
group size. This stall equals the WIW time minus
the time taken by the transaction thus far, but only
if the transaction has not already exceeded the
WIW time. For example, if a transaction comes to
commit processing in 0.5 second and the WIW time
is 2.0 seconds, the stall time is then 1.5 seconds. In
addition, we can make a further improvement by
reducing the stall time by the amount of time
needed for group commit processing. This delta
time is constant, on the order of 50 milliseconds
(one 1/0 plus some computation).

The WIW parameter gives the user control over
how much of the response time advantage (if any)
may be used by the system to improve transaction
throughput. The choice of an abnormally high value
of WIW by one process only affects its own trans­
action response time; it does not have any adverse
effect on the total throughput of the system. A low
value of WIW would cause small commit groups,
which in tum would limit the throughput. However,
this can be avoided by administrative controls on
the database that specify a minimum WIW time.

Hiber Design
The Hiber Design is similar to the Commit-Stall
Design, but, instead of each process scheduling its
own wake-up call, the group committer wakes up
all processes in the committed group. In addition,
the group committer must wake up the process
that will be the next group committer.

75

Transaction Processing, Databases, and Fault-tolerant Systems

Note, this design exhibits a serial wake-up behav­
ior like the Commit-Lock Design, however, the
mechanism is less costly than the VMS lock used by
the Commit-Lock Design. In the Hiber Design, if
a process is not the group committer, it simply
sleeps; it does not schedule its own wake-up call.
Therefore, each process is guaranteed to sleep and
wake up at most once per commit, in contrast to
the Commit-Stall Design. Another interesting char­
acteristic of the Hiber Design is that the group
committer can choose to either wake up the next
group committer immediately, or it can actually
schedule the wake-up call after a delay. Such a delay
allows the next group size to become larger.

Experiments
We implemented and tested the Commit-Lock, the
Commit-Stall, and the Willing-to-Wait designs in
KODA. The objectives of our experiments were

• To find out which design would yield the
maximum throughput under response time
constraints

• To understand the performance characteristics
of the designs

In the following sections, we present the details
of our experiments, the results we obtained, and
some observations.

Details of the Experiments
The hardware used for all of the following tests was
a VAX 6340 with four processors, each rated at 3.6
VAX units of performance (VlW). The total possible
CPU utilization was 400 percent and the total pro­
cessing power of the computer was 14.4 VUPs. As
the commit processing becomes more significant
in a transaction (in relation to the other phases),
the impact of the grouping mechanism on the trans­
action throughput increases. Therefore, in order
to accentuate the performance differences between
the various designs, we performed our experiments
using a transaction that involved no database activ­
ity except to follow the commit sequence. So, for
all practical purposes, the TPS data presented
in this paper can be interpreted as "commit
sequences per second." Also, note that our system
imposed an upper limit of 50 on the grouping size.

Results
Using the Commit-Lock Design, transaction pro­
cessing bottlenecked at 300 TPS. Performance
greatly improved with the Commit-Stall Design;
the maximum throughput was 464 TPS. The
Willing-to-Wait Design provided the highest

76

throughput, 500 TPS. Using this last design, it was
possible to achieve up to a 66 percent improve­
ment over the less-efficient Commit-Lock Design.
Although both timer schemes, i.e ., the Commit­
Stall and Willing-to-Wait designs, needed tuning to
set the parameters and the Commit-Lock Design
did not, we observed that the maximum through­
put obtained using timers is much better than that
obtained with the lock. These results were similar
to those of Reuter.

For our Willing-to-Wait Design, the minimum
transaction duration is the WIW time. Therefore,
the maximum TPS, the number of servers, and
the WIW stall time, measured in milliseconds,
are related by the formula: number of servers
x 1000/WlW = maximum TPS. For example, our
maximum TPS for the WIW design was obtained
with 50 servers and 90 milliseconds WIW time.
Using the formula, 50 x 1000/90 = 555. The actual
TPS achieved was 500, which is 90 percent of the
maximum TPS. This ratio is also a measure of the
effectiveness of the experiment.

During our experiments, the maximum group
size observed was 45 (with the Willing-to-Wait
Design). This is close to the system-imposed limit
of 50 and, so, we may be able to get better grouping
with higher limits on the size of the group.

Observations
In the Commit-Stall and the Willing-to-Wait designs,
given a constant stall, if the number of servers is
increased, the TPS increases and then decreases.
The rate of decrease is slower than the rate of
increase. The TPS decrease is due to CPU overload­
ing. The TPS increase is due to more servers trying
to execute transactions and better CPU utilization.
Figure 6 illustrates how TPS varies with the num­
ber of servers, given a constant stall WIW time.

Again, in the stalling designs, for a constant num­
ber of servers, if the stall is increased, the TPS
increases and then decreases. The TPS increase is
due to better grouping and the decrease is due to
CPU underutilization. Figures 7 and 8 show the
effects on TPS when you vary the commit-stall
time or the WIW time, while keeping the number
of servers constant.

To maximize TPS with the Commit-Stall Design,
the following "mountain-climbing" algorithm was
useful . This algorithm is based on the previous two
observations. Start with a reasonable value of the
stall and the number of servers, such that the CPU
is underutilized. Then increase the number of
servers. CPU utilization and the TPS increase.

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

0 480 z
0
(.) 460
UJ
(/)

a: 440
UJ
c..
(/) 420 z
0
~ 400 (.)
<(
(/)

380 z
<(
a:
I- 360

40 45 50 55 60 65 70 75

NUMBER OF SERVERS

NOTE: THE WILLING-TO-WAIT STALL TIME IS A CONSTANT
100 MILLISECONDS.

Figure 6 Transactions per Second in
Relationship to the Number of
Servers, Given a Constant
Willing-to-Wait Time

Continue until the CPU is overloaded; then, increase
the stall time. CPU utilization decreases, but the
TPS increases due to the larger group size.

This algorithm demonstrates that increasing
the number of servers and the stall by small
amounts at a time increases the TPS, but only up
to a limit. After this point, the TPS drops. When
close to the limit, the two factors may be varied
alternately in order to find the true maximum.
Table 1 shows the performance measurements of
the Commit-Stall Design. Comments are included
in the table to highlight the performance behavior
the data supports.

The same mountain-climbing algorithm is modi­
fied slightly to obtain the maximum TPS with the
Willing-to-Wait Design. The performance measure-

0 440 z
0
(.)

400 UJ
(/)

a:
UJ 360 c..
(/)
z
0 320
~
(.)
<(

280 (/)
z
<(
a:
I- 240

10 20 30 40 50 60 70 80

COMMIT-STALL TIME (MILLISECONDS)

NOTE: THE NUMBER OF SERVERS EQUALS 50.

Figure 7 Transactions per Second in
Relationship to the Commit-Stall
Time, Given a Constant Number
of Servers

Digital Tecbntcat]ournat Vol. 3 No. 1 Winter 1991

Designing an Optimized Transaction Commit Protocol

0 490 z
0 480 (.)
UJ
(/) 470 a:
UJ
c.. 460
(/)
z 450 0
~
(.) 440
<(
(/)

430 z
<(
a:

420 I-
90 100 110 120 130 140 150

WILLING-TO-WAIT TIME (MILLISECONDS)

NOTE: THE NUMBER OF SERVERS EQUALS 65.

Figure 8 Transactions per Second in
Relationship to the WTW Time,
Given a Constant Number
of Servers

ments of this design are presented in Table 2. As
we have seen before, the maximum TPS with this
design is inversely proportional to the WIW time,
while CPU is not fully utilized. The first four rows
of Table 2 illustrate this behavior. The rest of the
table follows the same pattern as Table I.

The Willing-to-Wait Design performs slightly
better than the Commit-Stall Design by adjusting
to the variations in the speed at which different
servers arrive at the commit point. Such variations
are compensated for by the variable stalls in the
Willing-to-Wait Design. Therefore, if the variation
is high and the commit sequence is a significant
portion of the transaction, we expect the Willing­
to-Wai t Design to perform much better than the
Commit-Stall Design.

Future Work
There is scope for more interesting work to further
optimize commit processing in the KODA database
kernel. First, we would like to perform experi­
ments on the Hiber Design and compare it to the
other designs. Next, we would like to explore ways
of combining the Hiber Design with either of the
two timer designs, Commit-Stall or Willing-to­
Wait. This may be the best design of all the above,
with a good mixture of automatic stall, low over­
head, and explicit control over the total stall time.
In addition, we would like to investigate the use of
timers to ease system management. For example, a
system administrator may increase the stalls for
all transactions on the system in order to ease CPU
contention, thereby increasing the overall effective­
ness of the system.

77

Transaction Processing, Databases, and Fault-tolerant Systems

Table 1 Commit-Stall Design Performance Data

Number of Commit Stall CPU Utilization
Servers (Milliseconds) (Percent)* TPS Comments

50 20 360 425 Starting point

55 20 375 454 Increased number of servers, therefore, higher TPS

60 20 378 457 Increased number of servers, therefore, CPU saturated

60 30 340 461 Increased stall, therefore, CPU less utilized

65 30 350 464 Increased number of servers, maximum TPS

70 30 360 456 "Over-the-hill" situation, same strategy of further
increasing the number of servers does not increase TPS

70 40 330 451 No benefit from increasing number of servers and stall

65 40 329 448 No benefit from just increasing stall

• Four processors were used in the experiments. Thus, the total possible CPU utilization is 400 percent.

Table2 Willing-to-Wait Performance Data

Willing-to-Wait
Number of Stall CPU Utilization
Servers (Mill iseconds) (Percent)* TPS Comments

45 100 285 426 Starting point, CPU not saturated

45 90 295 466 Decreased stall to load CPU, CPU still not saturated

45 80 344 498 Decreased stall again

45 70 363 471 Further decreased stall, CPU almost saturated

50 80 372 485 Increased number of servers, CPU more saturated

50 90 340 500 Increased stall to lower CPU usage, maximum TPS

55 90 349 465 "Over-the-hill"situation, same strategy of further
increasing number of servers does not increase TPS

50 100 324 468 No benefit from just increasing stall

• Four processors were used in the experiments. Thus, the total possible CPU utilization is 400 percent.

Conclusions
We have presented the concept of group commit
processing as well as a general analysis of various
options available , some trade-offs involved, and
some performance results indicating areas for pos­
sible improvement. It is clear that the choice of the
algorithm can significantly influence performance
at high transaction throughput. We are optimistic
that with some further investigation an optimal
commit sequence can be incorporated into Rdb/VMS
and VAX DBMS with considerable gains in trans­
action processing performance.

Acknowledgments
We wish to acknowledge the help provided by
Rabah Mediouni in performing the experiments
discussed in this paper. We would like to thank
Phil Bernstein and Dave Lomet for their careful

78

reviews of this paper. Also, we want to thank the
other KODA group members for their contri­
butions during informal discussions. Finally, we
would like to acknowledge the efforts of Steve Klein
who designed the original KODA group commit
mechanism.

References

1. P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett,
and A. Reuter, "Group Commit Timers and High
Volume Transaction Processing Systems," High
Performance Transaction Systems, Proceedings
of the 2nd International Workshop (September
1987).

2. D. Gawlick and D. Kinkade, "Varieties of Con­
currency Control in IMS/VS Fast Path," Database
Engineering (June 1985).

Vol. 3 No. 1 Winter 1991 Digital Teclmtcal]ournal

William F. Bruckert
Carlos Alonso

James M. Melvin

Verification of the First
Fault-tolerant l{4X System

The fault-tolerant character of the VAXft 3000 system required that plans be made
early in the development stages for the verification and test of the system. To ensure
proper test coverage of the fault-tolerant features, engineers built fault-insertion
points directly into the system hardware. During the verification process, test engi­
neers used hardware and software fault insertion in directed and random test
forms. A four-phase verification strategy was devised to ensure that the VAXft system
hardware and software was fully tested for error recovery that is transparent to
applications on the system.

The VAXft 3000 system provides transparent fault
tolerance for applications that run on the system.
&cause the 3000 includes fault-tolerant features,
verification of the system was unlike that ordinar­
ily conducted on VAX systems. To facilitate system
test, the verification strategy outlined a four-phase
approach which would require hardware to be
built into the system specifically for test purposes.

This paper presents a brief overview of the VAXft
system architecture and then describes the meth­
ods used to verify the system's fault tolerance.

VAXft 3000 Architectural Overview
The VAXft fault-tolerant system is designed to
recover from any single point of hardware failure.
Fault tolerance is provided transparently for all
applications running under the VMS operating
system. This section reviews the implementation
of the system to provide background for the main
discussion of the verification process.

The system comprises two duplicate systems,
called zones. Each zone is a fully functional com­
puter with enough elements to run an operating
system. These two zones, referred to as zone A and
zone B, are shown in Figure 1, which illustrates the
duplication of the system components. The two
independent zones are connected by duplicate
cross-link cables. The cabinet of each zone also
includes a battery, a power regulator, cooling fans,
and an AC power input. Each zone's hardware has
sufficient error checking to detect all single faults
within that zone.

Figure 2 is a block diagram of a single zone with
one 1/0 adapter. Note the portions of the zone

Digital Technical journal Vo l . 3 No. I Win ter 1991

labeled dual-rail and single-rail. The dual-rail por­
tions of the system have two independent sets
of hardware performing the same operations.
Correct operation is verified by comparison. The
fault-detection mechanism for the single-rail 1/0
modules combines checking codes and communi­
cation protocols.

The system performs 1/0 operations by sending
and receiving message packets. The packets are
exchanged between the CPU and various servers,
including disks, Ethernet, and synchronous lines.
These message packets are formed and interpreted
in the dual-rail portion of the system. They are pro­
tected in the single-rail portion of the machine by
check codes which are generated and checked in
the dual-rail portion of the machine. Corrupted
packets can be retransmitted through the same or
alternate paths.

In the normal mode of fault-tolerant operation,
both zones execute the same instruction at the
same time. The four processors (two in each zone)
appear to the operating system as a single logical
CPU. The hardware supplies the detection and
recovery facilities for faults detected in the CPU
and memory portions of the system. A defective
CPU module and its memory are automatically
removed from service by the hardware, and the
remaining CPU continues processing.

Error handling for the 1/0 interconnections is
managed differently. The paths to and from 1/0
adapters are duplicated for checking purposes. If a
fault is detected, the hardware retries the operation.
If the retry is successful, the error is logged, and
operation continues without software assistance.

79

Transaction Processing, Databases, and Fault-tolerant Systems

I

ZONE A

DISK OR
TAPE

>-er: E ~ I

G
I-
<{
co

l=

AC BOX

DUAL-RAIL

SINGLE-RAI L

>- >- >-er: er: er:
000
:::;; :::;; :::;;

>- w WW
er::::;; :::;; :::;;
0 er: er: er:

::::>:::;; 000

~~
a. w

~ ~ ~ o:::a;

I
FAN

Figure 1

~
~

MEMORY
CONTROL

OMA

CROSSLINK

FIREWALL

EDC

I I

CROSSLINK CABLES

A Dual-zone VAXft System

MEMORY
INTERFACE
BUS

CPU

CACHE

MEMORY
CONTROL

OMA

ZONES

CROSSLINK
CABLES
TOZONEB

CROSSLINK

MODULE ---z___-,,.
INTERCONNECT

FIREWALL

ETHERNET
ADAPTER

DISK
ADAPTER

EDC

Figure 2 Single-zone Structure of a VAXft 3000 System

D

II

CPU
MODULE

1/0ADAPTER

I

80 Vol. 3 No. 1 Winter 1991 Digital Technical Journal

If the retry is unsuccessful, the Fault-tolerant
System Services (FfSS) software performs error
recovery. FfSS is a layered software product that is
utilized with every VAXft 3000 system. It provides
the software necessary to complete system error
recovery. For system recovery from a failed 1/0
device, an alternate path or device is used. All
recoverable faults have an associated maximum
threshold value. If this threshold is exceeded, FfSS
performs appropriate device reconfiguration.

Verification of a Fault-tolerant
VAX System
This section entails a discussion of the types of sys­
tem tests and the fault-insertion techniques used
to ensure the correct operation of the VAXft system.
In addition, the four-phase verification strategy and
the procedures involved in each phase are reviewed.

There are two types of system tests: directed and
random. Directed tests, which test specific hard­
ware or software features, are used most frequently
in computer system verification and follow a strict
test sequence. Complex systems, however, cannot
be completely verified in a directed fashion.' As a
case in point, an operating system running on a
processor has innumerable states. Directed tests
verify functional operation under a particular set
of conditions. They may not, however, be used to
verify that same functionality under all possible
system conditions.

In comparison, random testing allows multiple
test processes to interact in a pseudo-random or
random fashion. In random testing, test coverage
is increased with additional run-time. Thus, once
the proper test processes are in place, the need to
develop additional tests in order to increase cover­
age is eliminated. This type of testing also reduces
the effects of the biases of the engineers generating
the tests. While directed testing can provide only a
limited level of coverage, this coverage level can be
well understood. Random testing offers a poten­
tially unbounded level of coverage; however, quan­
tifying this coverage is difficult if not impossible.

To achieve the proper level of verification, the
VAXft verification utilized a balance of directed
and random testing. Directed testing was used to
achieve a certain base level of functionality, and
random testing was used to expand the level of
coverage.

To permit testing of system fault tolerance in a
practical amount of time, some form of fault inser­
tion is required. The reliability of components used
in computer systems has been improving, and more

Digital Technical Journal Vol. 3 No. 1 Winter 1991

Verification of the First Fault-tolerant V,4X System

importantly, the number of components used to
implement any function has been dramatically
decreasing. These factors have produced a corre­
sponding reduction in system failure rates. Given
the high reliability of today's machines, it is not
practical from a verification standpoint to verify a
system by letting it run until failures occur.

Conceptually, faults can be inserted in two ways.
First, memory locations and registers can be cor­
rupted to mimic the results of gate-level faults
(software fault insertion). Second, gate-level faults
may be inserted directly into the hardware (hard­
ware fault insertion). There are advantages to
both techniques. One advantage of software­
implemented fault insertion is that no embedded
hardware support is required. 2 The advantage of
hardware fault insertion, on the other hand, is that
faults are more representative of actual hardware
failures and can reveal unanticipated side effects
from a gate-level failure. To utilize hardware fault
insertion, either a mechanism must be designed
into the system, or an external insertion device
must be developed once the hardware is available.
Given the physical feature size of the components
used today, it is virtually impossible to achieve ade­
quate fault-insertion coverage through an external
fault-insertion mechanism.

The error detection and recovery mechanism
determines which fault insertion technique is
suitable for each component. Some examples illus­
trate this point. For the lockstep portion of the
VAXft 3000 CPUs, software fault insertion is not suit­
able because the lockstep functionality prevents
corruption of memory or registers when faults
occur. Therefore, hardware faults cannot be mim­
icked by modifying memory contents. However,
the software fault-insertion technique was suitable
to test the 1/0 adapters since the system handles
faults in the adapters by detecting the corruption
of data. Hardware fault insertion was not suitable
because the 1/0 adapters were implemented with
standard components that did not support hard­
ware fault insertion.

Because the verification strategy for the 3000
was considered a fundamental part of the system
development effort, fault insertion points were
built directly into the system hardware. The amount
of logic necessary to implement fault insertion is
relatively small. The goals of the fault-insertion
hardware were to

• Eliminate any corruption of the environment
under test that could result from fault insertion.
For example, if a certain type of system write

81

Transaction Processing, Databases, and Fault-tolerant Systems

operation is required to insert a fault, then every
test case will be done on a system that is in a
"post-fault-insertion" state.

• Enable the user to distribute faults randomly
across the system.

• Allow insertion of faults during system operation.

• Enable testing of transient and solid faults.

The fault-insertion points are accessed through
a separate serial interface bus isolated from the
operating hardware. This separate interface ensures
that the environment under test is unbiased by
fault insertion.

Even with hardware support for fault insertion,
only a small number of fault-insertion points can
be implemented relative to the total number possi­
ble. Where the number of fault-insertion points is
small, the selection of the fault-insertion points
is important to achieve a random distribution.
Fault-insertion points were designed into most of
the custom chips in the VAXft system. When the
designers were choosing the fau lt-insertion points,
a single bit of a data path was considered sufficient
for data path coverage. Since a significant portion
of the chip area is consumed by data paths, a high
level of coverage of each chip was achieved with
relatively few fault-insertion points. The remaining
fault-insertion points could then be applied to the
control logic. Coverage of this logic was important
because control logic faults resu lt in error modes
that are more unpredictable than data path failures.

The effect that a given fault h.as on the system
depends on the current system operation and when
in that operation the fault was inserted. In the
3000, for example, a failure of bit 3 in a data path
will have significantly different behavior depend­
ing upon whether the data bit was incorrect during
the address transmission portion of a cycle or dur­
ing the succeeding data portion. Therefore, the
timing of the fault insertion was pseudo-random.
The choice of pseudo-random insertion was based
on the fact that the fault-insertion hardware oper­
ated asynchronously to the system under test. This
meant that faults could be inserted at any time,
without correlation to the activity of the system
under test.

Faults may be transient or solid in nature. For
design purposes, a solid fault was defined as a fail­
ure that will be present on retry of an operation.
A transient fault was defined as a fault that will not
be present on retry of the operation. Transient
faults do not require the removal of the device that

82

experienced the fault; solid faults do require device
removal. Since the system reacts differently to tran­
sient and hard faults, both types of faults had to
be verified in the VAXft system. Therefore, it was
required that the fault-insertion hardware be capa­
ble of inserting solid or transient faults. Solid faults
were inserted by continually applying the fault­
insertion signal. Transient faults were inserted by
applying the fault-insertion signal only until the
machine detected an error.

As noted earlier, the verification strategy utilized
both hardware and software fault insertion. The
hardware fault-insertion mechanisms allowed faults
to be inserted into any system environment, includ­
ing diagnostics, exercisers, and the VMS operating
system. As such, it was used for initial verification
as well as regression testing of the system. The veri­
fication strategy for the VAXft 3000 system involved
a multiphase effort. Each of the following four veri­
fication phases built upon the previous phase:

1. Hardware verification under simulation

2. Hardware verification with system exerciser and
fault insertion

3. System software verification with fault insertion

4. System application verification with fault
insertion

Figure 3 shows the functional layers of the
VAXft 3000 system in relation to the verification
phases. The numbered brackets to the right of
the diagram correlate to the testing coverage of
each layer. For example, the system software verifi­
cation, phase 3, verified the VMS system, Fault­
tolerant System Services (FTSS), and the hardware
platform.

The following sections briefly describe the four
phases of the VAXft verification.

Hardware Verification under Simulation
Functional design verification using software simu­
lation is inherently slow in a design as large as the
VAXft 3000 system. To use resources most efficiently,
a verification effort must incorporate a number of
different modeling levels, which means trading off
detail to achieve other goals such as speed.3

VAXft 3000 simulation occurred at two levels: the
module level and the system level. Module-level
simulation verified the base functionality of each
module. Once this verification was complete, a sys­
tem-level model was produced to validate the
intermodule functionality. The system-level model

Vol. 3 No. 1 Winter 1991 Digital Tecbntcal]ournal

Verification of the First Fault-tolerant VAX System

TEST PHASE COVERAGE
--~~~~~~~~~~~~-- ------------

USER APPLICATION

HOST-BASED VOLUME SHADOWING

VMS~4 PHASE4

FAULT-TOLERANT SYSTEM SERVICES PHASE 3

VAX FT 3000 HARDWARE } PHASE 1 } PHASE 2

Figure 3 Functional Layers of the VAXft 3000 System in Relation to the Verification Phases

consisted of a full dual-rail, dual-zone system with
an 1/0 adapter in each zone. At the final stage, full
system testing was performed.

More than 500 directed error test cases were
developed for gate-level system simulation. For each
test, the test environment was set up on a fully
operational system model, and then the fault was
inserted. A simulation controller was developed to
coordinate the system operations in the simulation
environment. The simulation controller provided
the following control over the testing:

• Initialization of all memory elements and certain
system registers to reduce test time

• Setup of all memory data buffers to be used in
testing

• Automated test execution

• Automated checking of test results

• Log of test results

For each test case, the test environment was
selected from the following: memory testing, 1/0
register access, direct memory access (DMA) traf­
fic, and interrupt cycles. In any given test case, any
number of the previous tests could be run. These
environments could be run with or without faults
inserted. In addition, each environment consisted
of multiple test cases. In an error handling test case,
the proper system environment required for the
test was set, and then the fault was inserted into
the system. The logic simulator used was designed
to verify logic design. When an illegal logic condi­
tion was detected, it produced an error response.
When a fault insertion resulted in an illegal logic
condition, the simulator· responded by invalidat­
ing the test. Because ofthis, a great deal of time was
spent to ensure that faults were inserted in a way

Digital Tecbntcal]ournal Vol. 3 No. 1 Winter 1991

that would not generate illegal conditions. Each
test case was considered successful only when the
system error registers contained the correct data
and the system had the ability to continue opera­
tion after the fault.

Hardware Verification with System
Exerciser and Fault Insertion
After the prototypes were available, the verification
effort shifted from simulation to fault insertion on
the hardware. The goal was to insert faults using an
exerciser that induced stressful, reproducible hard­
ware activity and that allowed us to analyze and
debug the fault easily.

Exerciser test cases were developed to stress
the various hardware functions. The tests were
designed to create maximum interrupt and data
transfer activity between the CPU and the 1/0
adapters. These functions could be tested individ­
ually or simultaneously. The exerciser scheduler
provided a degree of randomness such that the
interaction of functions was representative of a
real operating system. The fault-insertion hardware
was used to achieve a random distribution of fault
cases across the system.

Because it was possible to insert initial faults
while specific functions were performed, a great
degree of reproducibility was achieved that aided
debug efforts. Once the full suite of tests worked
correctly, fault insertion was performed while the
system continually switched between all func­
tions. This testing was more representative of actual
faults in customer environments, but was less
reproducible.

As previously mentioned, the hardware fault­
insertion tool allowed the insertion of both tran­
sient and solid failures. The VAXft 3000 hardware
recovers from transient failures and utilizes

83

Transaction Processing, Databases, and Fault-tolerant Systems

software recovery for hard failures. Since the goal
of phase 2 testing was to verify the hardware, the
focus was on transient fault insertion. Two criteria
for each error case determined the success of the
test. First and foremost, the system must continue
to run and to produce correct results. Second, the
error data that the system captures must be correct
based on the fault that was inserted. Correct error
data is important because it is used to identify the
failing component both for software recovery and
for servicing.

Although the simulation environment of phase I
was substantially slower than phase 2, it provided
the designers with more information. Therefore
when problems were discovered on the prototypes
used in phase 2, the failing case was transferred to
the simulator for further debugging. The hardware
verification also validated the models and test pro­
cedures used in the simulation environment.

System Software Verification with Fault
Insertion
In parallel with hardware verification, the VAXft 3000
system software error handling capabilities were
tested. This phase represented the next higher
level of testing. The goal was to verify the VAX func­
tionality of the 3000 system as well as the software
recovery mechanisms.

Digital has produced various test packages to
verify VAX functionality. Since the VAXft 3000 system
incorporates a VAX chip set used in the VAX 6000
series, it was possible to use several standard
test packages that had been used to verify that
system.'

Fault-tolerant verification, however, was not
addressed by any of the existing test packages.
Therefore, additional tests were developed by com­
bining the existing functional test suite with the
hardware fault-insertion tool and software fault­
insertion routines. Test cases used included cache
failure, clock failure, memory failure, intercon­
nect failures, and disk failures. These failures were
applied to the system during various system opera­
tions. In addition, servicing errors were also tested
by removing cables and modules while the system
was running. The completion criteria for tests
included the following:

• Detection of the fault

• Isolation of the failed hardware

• Continuation of the test processes without
interruption

84

System Application Verification with
Fault Insertion
The goals for the final phase of the VAXft 3000
verification were to run an application with fault
insertion and to demonstrate that any system
fault recovery action had no effect on the process
integrity and data integrity of the application. The
application used in the testing was based on the
standard DebitCredit banking benchmark and was
implemented using the DECintact layered product.
The bank has 10 branches, 100 tellers, and 3,600
customer accounts (10 tellers and 360 accounts
per branch). Traffic on the system was simulated
using terminal emulation process (VAXRTE) scripts
representing bank teller activity. The transaction
rate was initially one transaction per second (TPS)
and was varied up to the maximum TPS rate to stress
the system load.

The general test process can be described as
follows:

1. Started application execution. The terminal emu­
lation processes emulating the bank tellers were
started and continued until the system was
operating at the desired TPS rating.

2. Invoked fault insertion. A fault was selected at
random from a table of hardware and software
faults. The terminal emulation process submitted
stimuli to the application before, during, and
after fault insertion.

3. Stopped terminal emulation process. The appli­
cation was run until a quiescent state was
reached.

4. Performed result validation. The process integ­
rity and data integrity of the application were
validated.

All the meaningful events were logged and time­
stamped during the experiments. Process integrity
was proved by verifying continuity of transaction
processing through failures. The time stamps on
the transaction executions and the system error
logs allowed these two independent processes to
be correlated.

The proof of data integrity consisted of using the
following consistency rules for transactions:

1. The sum of the account balances is equal to the
sum of the teller balances, which is equal to the
sum of the branch balances.

2. For each branch, the sum of the teller balances is
equal to the branch balance.

Vol. 3 No. 1 Winter 1991 Digital Technical Journal

3. For each transaction processed, a new record
must be added to the history file.

Application verification under fault insertion
served as the final level of fault-tolerant validation.
Whereas the previous phases ensured that the vari­
ous components required for fault tolerance oper­
ated properly, the system application verification
demonstrated that these components could oper­
ate together to provide a fully fault-tolerant system.

Conclusions
The process of verifying fault tolerance requires
a strong architectural test plan. This plan must be
developed early in the design cycle because hard­
ware support for testing may be required. The veri­
fication plan must demonstrate cognizance of the
capabilities and limitations at each phase of the
development cycle. For example, the speed of sim­
ulation prohibits verification of software error
recovery in a simulation environment. Also, when
a system is implemented with VLSI technology, the
ability to physically insert faults into the system
by means of an external mechanical mechanism
may not be adequate to properly verify the correct
system error recovery. These and other issues
must be addressed before the chips are fabricated
or adequate error recovery verification may not be
possible. Inadequate error recovery verification
directly increases the risk of real, unrecoverable
faults resulting in system outages.

The verification plan for the VAXft 3000 system
consisted of the following phases and objectives:

1. Hardware simulation with fault insertion verified
error detection, hardware recovery, and error
data capture.

2. System exerciser with fault insertion enhanced
the coverage of the hardware simulation effort.

3. System software with fault insertion verified
software error recovery and reporting.

4. System software verification with fault inser­
tion verified the transparency of the system
error recovery to the application running on
the system.

The test of any fault tolerant system is to survive
a real fault while running a customer application.
Removing a module from a machine may be an
impressive test, but machines fail as a result of
modules falling out of the backplane. The initial
test of the VAXft 3000 system showed that the sys­
tem would survive most of the faults introduced.

Digital Technical Journal Vol . 3 No. 1 Winter 1991

Verification of the First Fault-tolerant VAX System

Tests also revealed problems that would have
resulted in system outages if left uncorrected.
System enhancements were made in the areas
of system recovery actions and repair call out.
Whereas some of the problems were simple
coding errors, others were errors in carefully
reviewed and documented algorithms. Simply put,
the collective wisdom of the designers was not
always sufficient to reach the degree of accuracy
desired for this fault-tolerant system.

As the VAXft product family evolves, perfor­
mance and functional enhancements will be avail­
able. The test processes described in this paper
will remain in use, so that every future release
of software will be better than the previous one.
The combination of hardware and software fault
insertion, coupled with physical system disruption
allows testing to occur at such a greatly accelerated
rate, that all testing performed will be repeated for
every new release.

References

I.]. Croll, L. Camilli, and A. Vaccaro, "Test and
Qualification of the VAX 6000 Model 400 System,"
Digital Technical journal, vol. 2, no. 2 (Spring
1990): 73-83.

2.]. Barton, E. Czeck, Z. Segall, and D. Siewiorek,
"Fault Injection Experiments Using FIAT (Fault
Injection-based Automated Testing," IEEE Trans­
actions on Computers, vol. 39, no. 4 (April 1990).

3. R. Calcagni and W. Sherwood, "VAX 6000 Model
400 CPU Chip Set Functional Design Verification,"
Digital Technical journal, vol. 2, no. 2 (Spring
1990): 64-72.

85

I Further Readings

The Digital TechnicalJoumal
publishes papers that explore
the technological foundations
of Digital's major products. Each
Journal focuses on at least one
product area and presents a
compilation of papers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Journal Advisory Board.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

VAX 9000 Series
Vol. 2, No. 4, Fall 1990
The technologies and processes used to build
Digital's first mainframe computer, including
papers on the architecture, microarchitecture,
chip set, vector processor, and power system,
as well as CAD and test methodologies

DECwindows Program
Vol. 2, No. 3, Summer 1990
An overview and descriptions of the enhancements
Digital's engineers have made to MIT's X Window
System in such areas as the server, toolkit, interface
language, and graphics, as well as contributions
made to related industry standards

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990
The highly expandable and configurable midrange
family of VAX systems that includes a vector pro­
cessor, a high-performance scalar processor, and
advances in chip design and physical technology

Compound Document Architecture
Vol. 2, No. l, Winter 1990
The CDA family of architectures and services that
support the creation, interchange, and processing
of compound documents in a heterogeneous
network environment

Distributed Systems
Vol. 1, No. 9,June 1989
Products that allow system resource sharing
throughout a network, the methods and tools to
evaluate product and system performance

Storage Technology
Vol. 1, No. 8, February 1989
Engineering technologies used in the design,

86

manufacture, and maintenance ofDigital's storage
and information management products

CVAX-based Systems
Vol. 1, No. 7, August 1988
CVAX chip set design and multiprocessing archi­
tecture of the mid-range VAX 6200 family of
systems and the MicroVAX 3500/3600 systems

Software Productivity Tools
Vol. 1, No. 6, February 1988
Tools that assist programmers in the development
of high-quality, reliable software

VAXcluster Systems
Vol. 1, No. 5, September 1987
System communication architecture, design and
implementation of a distributed lock manager,
and performance measurements

VAX 8800 Family
Vol. 1, No. 4, February 1987
The microarchitecture, internal boxes, VAXBI bus,
and VMS support for the VAX 8800 high-end multi­
processor, simulation, and CAD methodology

Networking Products
Vol. 1, No. 3, September 1986
The Digital Network Architecture (DNA), network
performance, LANbridge 100, DECnet-ULTRIX and
DECnet-DOS, monitor design

MicroVAX II System
Vol. 1, No. 2, March 1986
The implementation of the microprocessor and
floating point chips, CAD suite, MicroVAX work­
station, disk controllers, and TK50 tape drive

VAX 8600 Processor
Vol. 1, No. 1,August 1985
The system design with pipelined architecture,
the I-box, F-box, packaging considerations, signal
integrity, and design for reliability

Subscriptions to the Digital Technical Journal are
available on a yearly, prepaid basis. The subscrip­
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, ML01-3/B68, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.
dollars, and checks should be made payable to
Digital Equipment Corporation.

Single copies and past issues of the Digital
Technical Journal can be ordered from Digital
Press at a cost of $16.00 per copy.

Vol. 3 No. 1 Winter 1991 Digital Techn ical j ourna l

Technical Papers and Books by Digital Authors

P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems (Reading, MA: Addison-Wesley, 1987).

P. Bernstein, M. Hsu, and B. Mann, "Implementing
Recoverable Requests Using Queues," Proceedings
1990 ACM SIGMOD Conference on Management of
Data (May 1990).

T.K. Rengarajan, P. Spiro, and W. Wright, "High
Availability Mechanisms of VAX DBMS Software,"
Digital Technical journal, vol. 1, no. 8 (February
1989): 88-98.

K. Morse, "The VMS/MicroVMS Merge," DEC

Professional Magazine, vol. 7, no. 5 (May 1988).

K. Morse and R. Gamache, "VAX/SMP," DEC

Professional Magazine, vol. 7, no. 4 (April 1988).

K. Morse, "Shrinking VMS;' Datamation Ouly 15,
1984).

L. Frampton, J. Schriesheim, and M. Rountree,
"Planning for Distributed Processing;' Auerbach
Report on Communications (1989).

Digital Press

Digital Press is the book publishing group of Digital
Equipment Corporation. The Press is an interna­
tional publisher of computer books and journals
on new technologies and products for users, system
and network managers, programmers and other
professionals. Press editors welcome proposals and
ideas for books in these and related areas.

VAX/VMS: Writing Real Programs in DCL
Paul C. Anagnostopoulos, 1989, softbound,
409 pages ($29.95)

X WINDOW SYSTEM TOOLKIT: The Complete
Programmer's Guide and Specification
Paul]. Asente and Ralph R. Swick, 1990, softbound,
967 pages ($44.95)

UNIX FOR VMS USERS
Philip E. Bourne, 1990, softbound,
368 pages ($28.95)

VAX ARCHITECTURE REFERENCE MANUAL,
Second Edition
Richard A. Brunner, Editor, 1991, softbound,
560 pages ($44.95)

Digital Tecbnlcal]ournal Vol. 3 No. 1 Winter 1991

SOFTWARE DESIGN TECHNIQUES FOR LARGE
ADA SYSTEMS
William E. Byrne, 1991, hardbound,
314 pages ($44.95)

INFORMATION TECHNOLOGY STANDARDIZA­
TION: Theory, Practice, and Organizations
Carl F. Cargill, 1989, softbound,
252 pages ($24.95)

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
Corporate User Publication Group of Digital
Equipment Corporation, 1990, softbound,
239 pages ($27.95)

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL SOFTWARE
Corporate User Publication Group of Digital
Equipment Corporation, 1991, softbound,
400 pages ($28.95)

VMS INTERNALS AND DATA STRUCTURES:
Version 5 Update Xpress, Volumes 1,2,3,4,5
Ruth E. Goldenberg and Lawrence]. Kenah, 1989,
1990, 1991, all softbound ($35.00 each)

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition
Henry M. Levy and Richard H. EckhouseJr., 1989,
hardbound, 444 pages ($38.00)

USING MS-DOS KERMIT: Connecting Your PC
to the Electronic World
Christine M. Gianone, 1990, softbound,
244 pages, with Kermit Diskette ($29.95)

THE USER'S DIRECTORY OF COMPUTER
NETWORKS
Tracy L. LaQuey, 1990, softbound,
630 pages ($34.95)

SOLVING BUSINESS PROBLEMS WITH MRP II
Alan D. Luber, 1991, hardbound,
333 pages ($34.95)

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softcover,
460 pages ($49.95)

TECHNICAL ASPECTS OF DATA
COMMUNICATION, Third Edition
John E. McNamara, 1988, hardbound,
383 pages ($42.00)

LISP STYLE and DESIGN
Molly M. Miller and Eric Benson, 1990, softbound,
214 pages ($26.95)

87

I

Further Readings

THE VMS USER'S GUIDE
James E Peters III and Patrick]. Holmay, 1990,
softbound, 304 pages ($28.95)

THE MATRIX: Computer Networks and
Conferencing Systems Worldwide
John S. Quarterman, 1990, softbound,
719 pages ($49.95)

X AND MOTIF QUICK REFERENCE GUIDE
Randi]. Rost, 1990, softbound,
369 pages ($24.95)

FIFIH GENERATION MANAGEMENT:
Integrating Enterprises Through Human
Networking
Charles M. Savage, 1990, hardbound,
267 pages ($28.95)

A BEGINNER'S GUIDE TO VAX/VMS UTILITIES
AND APPLICATIONS
Ronald M. Sawey and Troy T. Stokes, 1989,
softbound, 278 pages ($26.95)

88

X WINDOW SYSTEM, Second Edition
Robert Scheifler and James Gettys, 1990,
softbound, 851 pages ($49.95)

COMMON LISP: The Language, Second Edition
Guy L. Steele Jr., 1990, 1,029 pages ($38.95 in
softbound, $46.95 in hardbound)

WORKING WITH WPS-PLUS
Charlotte Temple and Dolores Cordeiro, 1990,
softbound, 235 pages ($24.95)

To receive information on these or other publica­
tions from Digital Press, write:

Digital Press
Department DTJ
12 Crosby Drive
Bedford, MA 01730
617/276-1536

Or order directly by calling DECdirect at
800-DIGITAL (800-344-4825).

Vol. 3 No. I Winter 1991 Dtgttal Tech ,iicalJournal

ISSN 0898-901X

Printed in U.S.A. EY-F588E-DP/90 11 02 16.0 MCG/BUO Copyright © Digital Equipment Corporat ion. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	DECdta - Digital's Distributed Transaction Processing Architecture
	Digital's Transaction Processing Monitors
	Transaction Management Support in the VMS Operating System Kernel
	Performance Evaluation of Transaction Processing Systems
	Tools and Techniques for Preliminary Sizing of Transaction Processing Applications
	Database Availability for Transaction Processing
	Designing an Optimized Transaction Commit Protocol
	Verification of the First Fault-tolerant VAX System
	Further Readings
	Back cover

