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I Editor's Introduction 

Jane C. Blake 
Editor 

The VAX 9000, Digital 's first mainframe computer, 
is the topic of papers in this issue of the Digital 
Technical Journal. As engineers writing for this 
issue relate, the primary goal of the project from the 
initial product strategy through manufacture was to 
design and build a very high-performance, highly 
reliable VAX system. 

Design engineers applied both CISC and RISC 
techniques to achieve high levels of performance 
for this tightly coupled multiprocessor system. 
In the opening paper, Dave Fite, Tryggve Fossum, 
and Dwight Manley explain the strategy behind the 
design. They begin with an overview of the system, 
the technology, and CAD tools, and then describe 
the redesign of VAX instructions into small tasks 
which can be efficiently pipelined. The authors 
also touch upon three additional aspects of the 
VAX 9000 system: the integration of vector process­
ing into the VAX architecture, new error handling 
techniques, and performance modeling. 

One measure of performance is the number of 
instructions processed per cycle. The average num­
ber of cycles per instruction is less than five, which 
is nearly half the instruction execution rate of pre­
vious VAX systems. To illustrate the architectural 
features that enable this level of performance, John 
Murray, Rick Hetherington, and Ron Salett have 
selected a small sample of VAX instructions. They 
describe the instruction flow through the pipeline, 
how instruction features combine to work on a sin­
gle macro, and how stages of the pipeline interact. 

In addition to the architectural improvements, 
machine performance is enhanced at the semi­
conductor level by a new generation of semicustom 
and custom integrated circuits that support a low 
cycle time. Matt Adiletta, Dick Doucette, John 
Hackenberg, Dale Leuthold, and Dennis Litwinetz 
give an overview of the bipolar technology used in 
the system. They then describe the methods used to 
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implement the 77 different gate array chips, the five 
custom chips, and the self-timed RAM architecture. 

An additional performance improvement for 
numeric computations is the VAX vector architec­
ture and is treated in the paper by Rich Brunner, 
Dileep Bhandarkar, Frank McKeen, Bimal Patel, Bill 
Rogers, and Greg Yoder. They discuss the architec­
tural model and particulars of the VAX 9000 imple­
mentation, which affords numerically intensive 
applications performance four to five times greater 
than can be achieved by the scalar processor. 

To ensure that the system performance gains 
at the semiconductor level were not diminished 
but were instead enhanced by packaging and inter­
connects, engineers developed several technologies 
unique in the industry. The technology behind the 
high-density signal carrier and the multichip unit 
are explained in the paper by Pete Dunbeck, Rich 
Dischler, Jim McElroy, and Frank Swiatowiec. 

Equally important to performance in the new 
9000 is system reliability as evidenced by the intro­
duction of the service processor unit. In their paper 
about the service processor, Matt Goldman, Paul 
Dormitzer, and Paul Leveille relate how the 
MicroVAX-based system embedded within the 9000 
detects, isolates, and corrects problems without 
interrupting the system. 

High system availability was also one impetus in 
the design of the power system. Some of the unique 
features of the power system, such as redundant 
regulators, improved load sharing and simula­
tion, are discussed by Derrick Chin, Barry Brown, 
Charles Butala, Luke Chang, Steve Chenetz, Jerry 
Cotter, Brian Lynch, Raj Natarajan, and Len Salafia. 

The two papers that close this issue address the 
topics of CAD methodology and system diagnosis. 
Don Hooper and John Eck describe a CAD method­
ology that combines advanced rule-based AI tech­
niques with an object-oriented database. The new 
methodology saves logic designers significant time 
and reduces errors. A complex system such as the 
VAX 9000 requires improved system diagnosis capa­
bilities to achieve the desired high system availabil­
ity. Karen Barnard and Bob Harokopus demonstrate 
how a new scan system, in combination with scan 
pattern testing, and symptom-directed diagnosis 
achieve this necessary diagnosis capability. 

The editors thank Rick Hetherington of the High 
Performance Systems Group for not only writing a 
paper but for his help in coordinating this issue. 
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State University. 

Paul H. Donnitze r As an undergraduate at Harvard University, Paul 
Dormitzer gained experience with the UNIX operating system by working as a 
programmer and operator. Upon receiving his B.A. in computer science in 1987, 
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physics and an M.S. (1966) in aeronautics and astronautics from MIT, and an 
M.B.A. (highest honors, 1984) from Babson College. 

David B. Fite Jr. Consultant engineer David Fite was a member of the initial 
architecture team for the VAX 9000 system. He developed the architecture for the 
branch prediction, instruction fetch, and instruction decode for the VAX 9000. 
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I Foreword 

Carl S. Gibson 
VAX 9000 Program Manager 

This issue of the Digital Technical Journal is a 
collection of papers describing the technologies, 
designs, and design methods employed in Digital's 
VAX 9000 mainframe/supercomputer, which was 
introduced in the fall of 1989. 

The VAX 9000 system embodies hundreds of 
innovations in most areas of design, manufacture, 
and service. In selecting papers for this journal, we 
have attempted to reflect the immense scope and 
variety of this program, which ranks among the 
largest and most complex in the history of our 
industry. 

ln the summer of 1983, a small group of us set 
about to determine what it would take for Digital to 
develop a true mainframe. We felt that a mainframe 
VAX would be a powerful addition to Digital's 
product family. The products that we have created 
took form, changed, and evolved over the months 
and years as technical challenges yielded to inno­
vations, rigor, and discipline. An undertaking on 
this scale necessarily undergoes numerous transi­
tions as new data emerges, assumptions are tested, 
and alternatives are eliminated. Technical break­
throughs built upon one another incrementally 
as we pressed the design closer to our goals. The 
primary objectives of very high system-level perfor­
mance and world-class reliability drove the design 
process and the changes that emerged. 

The planar logic packaging is illustrative of how 
changes and improvements built upon one another. 
The reliability benefits of minimal connections 
precipitated a logic packaging design change from 
stacked modules in dual backplanes to the planar 
array. This change-an optimization for reliabil­
ity- in the end actually helped performance and 
maintainability. Ultimately, though not envisioned 
at the time, the adoption of the planar array had 

a significant impact in that this structure enabled 
impingement air cooling and elimination of the 
bulky liquid system that was part of the initial 
design. The final design of the VAX 9000 system 
reflects, in myriad forms, this continual process of 
successive refinement toward shared goals. 

Design changes notwithstanding, our primary 
strategy remained constant. The reader will note 
that, while we innovated aggressively in CPU struc­
ture, implementation technologies, and design 
methodologies, we preserved full compatibility 
with the VAX, Digital storage, and Digital network­
ing and cluster architectures. We wanted Digital 
and our customers to be able to enjoy very high per­
formance levels in a product that was compatible 
with prior investments. Therefore, we drew as 
much as possible from existing products and 
designs from many Digital development groups. 
As a result, the VAX 9000 system incorporates 
Digital's standard XMI bus and popular Bl, Cl, and 
NI system-level interconnects. The system runs VMS 
and ULTRIX operating systems, VAX layered prod­
ucts, and all of our customers' and independent 
software vendors' tools and applications. This 
capability proved especially rewarding when in the 
final months of the project, our own VAX 9000 
prototypes, running our unmodified CAD tools, 
accelerated the processing of the inevitable last­
minute changes. 

High-performance computation fundamentally 
requires two key ingredients: short machine cycle 
times and maximum computational work per­
formed in each cycle. The semiconductor and 
multichip unit papers describe how we minimized 
the VAX 9000 cycle time by use of fast circuits, high­
density packaging, and high-speed interconnects. 
These papers are complemented by architecture 
descriptions through which the authors present the 
innovative features that minimize the number of 
cycles required to execute the VAX instruction set. 
These papers present the sophisticated pipelining 
techniques and vector processing capabilities incor­
porated in the VAX 9000 system. 

Equal in importance to the computational capa­
bilities of the product are the service and control 
features of the system. Papers covering the 
VAX 9000 service processor and the system's fault 
management capabilities provide the reader with 
insights into these important aspects of the 
product. 

The development strategy for the VAX 9000 
system was explicitly formulated to deal with enor­
mous technical and project complexity. Complex-
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ity itself was the single most formidable challenge 
facing the team. Apparent from the outset, was the 
fact that such an ambitious product required the 
integration of a very large number of discrete 
design objects; each had to be conceived, created, 
documented, tested, and ultimately integrated and 
verified as part of the whole. The reader will see 
the diversity of these efforts and recognize the 
challenge of unifying a design from this breadth of 
technical advancement. 

Central to our strategy was the creation of a 
unified design tool suite operating in a seamless, 
homogeneous VMS computing environment. The 
first few years of the project were devoted to con­
struction of this environment in parallel with top­
level design formulation. The recognition that 
rigorous design methods were crucial to our success 
was possibly one of the team's most powerful fun­
damental notions. Papers included in this journal 
illustrate some of the legacy of powerful CAD tools 
and structured design approaches created by the 
VAX 9000 team. 

As we have seen for the product, the methodol­
ogies were not immune to change as the project 
progressed. Working with rapidly evolving 
technologies, design process experts continually 
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adapted to evolving user needs. Concurrent design 
permeated every aspect of the project and domi­
nated the way people worked together, with many 
aspects of the technology and product design 
converging and adapting as we learned from our 
own processes. When the manufacturing process 
needed some help, designs could be reprocessed 
with the new rules and rereleased to keep things 
moving ahead. 

And, move ahead they did! Today, the VAX 9000 
system is installed at many customer sites where the 
systems are exceeding our original goals in both 
performance and dependability. It has been 
accepted by experienced, high-end computer users 
as a bona fide mainframe-a mainframe with the 
unique advantage of full integration with Digital's 
rich distributed processing architecture. 

The VAX 9000 system was created by engineers 
working in many disciplines and collaborating 
worldwide to invent hardware, software, and pro­
cesses that have significantly advanced the state 
of the art of computer design, manufacture, and 
service. The papers in this journal describe but a 
few representative examples of the creativity and 
determination of this large and dedicated team of 
professionals. 
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Design Strategy for the 
VAX 9000 System 

The VAX 9000 system is Digitals newest high-end processor in the VAX family. This 
paper describes the design strategy used to achieve high performance and shows how 
RISC concepts were applied to a CJSC architecture. New opportunities for parallelism 
in VAX program execution were found by breaking the VAX instructions into simple 
tasks which could be pipelined efficiently. By using independent, dedicated pipeline 
stages, execution rates approach one instruction per cycle. 

The task confronting the VAX 9000 design team 
was to develop a VAX system that outperformed 
any previous VAX system and that was competi­
tive with similarly sized processors from other 
vendors. Although the VAX system is based on one 
of the world's most popular computer architec­
tures, the VAX architecture's instruction complexi­
ties preclude efficient macroinstruction pipelining, 
such as that found in reduced instruction set com­
puters (RISC). RISC processors can be built with low 
gate counts to handle simple, fixed-length instruc­
tions sets, load/store architectures, and delayed 
branching. 

To compete with machines based on such archi­
tectures and still remain compatible with the VAX 
architecture, the design team chose to implement 
the VAX architecture on the VAX 9000 system by 
applying techniques that were similar to those used 
in RISC processors. We redesigned the VAX instruc­
tions into small, simple tasks, and designed dedi­
cated hardware that was optimized for each task. 
The result is a network of specialized processors, 
each of which has its own data paths and state 
machines, that operate in parallel and execute 
VAX instructions quickly. The most common, sim­
ple instructions are executed at the rate of one 
per cycle. 

System Overview 
The VAX 9000 system is a tightly coupled multipro­
cessor, which runs the symmetric multiprocessing 
(SMP) version of the VMS operating system and can 
have up to four processors sharing a central main 
memory. Figure I shows a simplified block diagram 
of the system. The major system components 
include four CPUs, two memory controllers, two 
I/0 controllers, and a service processor, which is 
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connected through the system control unit (SCU). 
Through a cross-bar switch, the scu provides high­
speed, simultaneous transfers among the central 
processors, I/0 devices, and memory banks. System 
cache consistency is maintained with duplicate tag 
directories located in the scu. As references are 
made to memory, the addresses are checked against 
the tag directories. If a cache hit occurs, the cache in 
question is requested to invalidate or write back to 
main memory. The scu supplies a bandwidth that 
allows near linear performance improvement as 
new processors are added to the system. The mem­
ory is interleaved on cache block boundaries to 
provide bandwidth for multiple CPUs and vector 
processors. 

Four XMI backplane buses provide high band­
width paths to I/0 devices. Although the XMI is used 
as the system bus in VAX 6000 systems, the XMI is 
used exclusively for 1/0 in the VAX 9000 system. 
Several new adapters were designed to increase 
throughput and reduce latency for I/0 transactions. 
These adapters include connections to the CI, the 
NI, the BI, and local disk controllers. Although high­
performance 1/0 features, such as disk striping, 
solid-state disk, and load balancing have been added 
to all VAX systems, the VAX 9000 system benefits the 
most from these features because it has the I/0 back­
plane bandwidth to take advantage of them. A block 
diagram of a single VAX 9000 CPU connected to the 
scu and the major data paths between the two units 
is shown in Figure 2. 1 

Technology Contributions to 
Improved Performance 
The central processor cycle time has been reduced 
to 16 nanoseconds (ns) mainly by the use of fast 
emitter-coupled logic (ECL) semiconductors and 
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Figure 1 VAX 9000 System Diagram 

fast self-timed random-access memories (RAMs) for 
registers and caches, and by decreasing the inter­
connect wire length between components. 

Motorola's Macrocell Array III (MCA3) technology 
provided both macrocell array and standard cell 
capabilities. The entire system is composed of 77 
unique MCA3 options and 5 custom chip types. A 
single MCA3 contains 838 cells (414 major, 224 
input, and 200 output), which yield 10,000 equiva­
lent gates, and 256 J/0 pins. Maximum power 
dissipation is 30.0 watts, with unloaded gate prop­
agation delays of 120 picoseconds (ps). Perfor­
mance-critical operations, such as multiplication, 
division, integer and vector register accesses, and 
system clocking, were further aided by employing 
custom chips.2 

Caches for instruction stream and memory 
data, scratch pad registers, and control stores all 
require high-speed local storage. Two versions of 
a proprietary self-timed RAM were designed for 
these specific applications. A 4 kilobit (Kb) self­
timed RAM, at 5.5 ns, and a I6Kb self-timed RAM, 
at 11.5 ns, provide internal input and output 
latches and write pulse generation circuitry. Multi­
ple access modes allow highly pipelined operations 
to take advantage of shorter access times. 

Each new semiconductor generation reduces 
cycle time, which increases the relative importance 
of interconnect delay. High density signal carriers 
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(HDSC), tape automated bonding, and a single 
planar module all reduce the interconnect delay 
between active components in the VAX 9000 
system. Strict impedance control is maintained 
throughout the system. Clock skew is minimized by 
employing fixed-length , differential transmission 
and dedicated routing layers. 

CAD Contributions to Improved 
Performance 
Hundreds of computer-aided design (CAD) tools 
were used during the design and construction of 
the VAX 9000 system. However, none of these tools 
was more important in improving performance 
than the physical layout and timing analysis tools. 
Once the design team had placed large functional 
sections, placement tools refined individual macro­
cell selection and pin placements. Over 33,000 pins 
were selected to minimize overall wire length and 
maximize critical interconnections. 

Routing presented several challenges. All levels of 
interconnect included critical signals, differential 
pairs, and fixed-length requirements. The HDSC 
contains large cutouts that enable die attachment 
and allow cooling through the back panel. These 
large routing restrictions and special routing 
characteristics could not be handled by existing 
CAD tools. Therefore, we developed Chameleon, 
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a general-purpose router. With Chameleon, cross­
talk is minimized, and crossing counts are main­
tained and used to increase signal integrity, which 
improves performance. 

To model the timing relationships within the 
system, we used sophisticated CAD tools to gener­
ate an accurate representation of the VAX 9000 
system. Detailed timing models of each macrocell 
device were created using the SPICE simulator 
program.3 Chameleon and signal integrity tools 
provided delay values for each signal within the 
MCA3, HDSC, and planar modules. CPUDLY , using 
the AUTODLY timing tool, tied the various pieces 
together and gave the design engineers a powerful 
view of the timing domain. 

Instruction Processing 
VAX systems exist in a variety of environments and 
run thousands of applications. With any new, high­
performance VAX system, it is important to increase 
the speed of all applications and to continue to 
provide general-purpose computer power. Given 
the size of the installed VAX base and the nature 
of the applications, performance gains should not 
require code modifications. Digital has gathered 
substantial information on how VAX processors are 
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used. This data formed the basis for design deci­
sions and trade-offs we made in the development 
of the VAX 9000 system. 

Simple Instructions 
In many VAX programs, only a few opcodes are 
responsible for a large percentage of the instruc­
tions issued. Most of these opcodes are simple and 
limited to a single arithmetic or logical operation. 
Often, one of the operands is in memory. A typical 
example is 

ADDL3 ( RO ), R1 , R2 

Because of the high frequency of these instructions, 
speeding up these instructions is a top priority. 
Most of the high performance achieved on RISC pro­
cessors is derived because these instructions are 
pipelined. In a complex instruction set computer 
(CISC), such as a VAX system, pipelining macro­
instructions is more complex. Therefore, previous 
VAX implementations have pipelined operations at 
the microinstruction level:' 

Processing simple instructions in a VAX system 
involves obtaining and decoding the instruction, 
fetching source operands, performing an opera­
tion, and storing the result. The most important 
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Figure 2 VAX 9000 CPU/Vector Block Diagram 
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difference between the way a VAX processor and a 
RISC processor process simple instructions is how 
the variable length instructions and memory speci­
fiers are handled. VAX operands may reside in 
general-purpose registers (similar to RISC 
operands), in memory, or may be embedded in the 
instruction stream. The VAX architecture provides 
a rich selection of memory operand specifiers, 
which often require computations to create the 
address. In a RISC processor, only load and store 
instructions access main memory. 

The instruction preprocessing stage (I-box) 
decodes instructions and fetches operands in the 
VAX 9000 system. In the execution stage (E-box), 
simple VAX instructions resemble RISC instructions. 
A simple opcode describes the operation, a single 
register file provides source operands, and a desti­
nation queue supplies a result descriptor. The I-box 
operates in parallel as with the E-box, which func­
tions as a RISC processor by executing one instruc­
tion each cycle. Execution occurs without the need 
to identify the operand's source or addressing com­
plexity. Figure 3 illustrates how simple instructions 
flow through the VAX 9000 pipeline. Although all 
VAX implementations perform these tasks, the VAX 

9000 implementation uses separate, independent 
hardware units to overlap the work because con­
current operation is a prerequisite for single-cycle 
instruction execution. 

Instruction Cache 
We used an instruction cache in the I-box to 
decrease instruction stream fetch latency and 
reduce the bandwidth requirements on the main 
cache. Choosing a virtually addressed cache further 
reduced latency and simplified the design by 
removing the need for duplicate translation buffers. 
The virtual instruction cache is an 8 kilobyte (KB) 

cache with a quadword line size, 32-byte blocks, 
and a single-cycle access time. Line valid bits are 
maintained to allow variable size fills from the main 
data cache. Because the average VAX code block size 
is 16 to 20 bytes, the block size of the virtual instruc­
tion cache provides a good balance between the 
instruction decode stage and the main cache. 

Table 1 Decode Cycles Required 

Instruction 

MULF3 R3,R5,R7 

ADDL3 S"#48,R4,@(R2) + [R3) 

AOBLEQ S"#63,R 10, 10$ 

16 

Context switches, translation buffer changes, and 
instruction stream modifications all require that the 
virtual instruction cache be invalidated. Two com­
plete sets of block valid bits reduce cache sweeps to 
a single cycle, if consecutive sweeps do not occur 
within 256 cycles of each other. Block size and fre­
quent sweeping reduce the virtual instruction 
cache's hit rate to approximately% percent, but by 
filling through the main cache, the miss penalty is 
minimized. 

Instruction Decode 
Because the majority of instructions executed 
require only a single cycle to execute, the instruc­
tion decade's task of keeping ahead of the E-box is 
not simple. Most instructions must be decoded in a 
single cycle to keep the VAX 9000 system's ticks­
per-instruction (tpi) low. 

For example, VAX instructions may contain up to 
six operand specifiers. With 59 different specifier 
addressing modes, instruction lengths can vary 
from a single byte to more than 50 bytes. However, 
the overall average VAX instruction length is 3.8 
bytes, and 98 percent of instructions require only 
8 or less bytes.5 Furthermore, % percent of VAX 

instructions executed use only 3 or less specifiers. 
In each machine cycle, a 9-byte instruction buffer 

is presented to the decode stage (XBAR). The 
instruction buffer contains instruction stream data 
prefetched from the virtual instruction cache. 
Instruction decoding consists of generating an ini­
tial microaddress, detennining the number of 
specifiers for the instruction, including each speci­
fier access mode and data type, and forwarding the 
appropriate specifier data to the operand process­
ing stages. The XBAR can handle up to three specifi­
ers. Instructions that contain more than three 
specifiers require additional decode cycles. Since 
general-purpose register specifiers occur approxi­
mately 41 percent of the time, three register specifi­
ers can be processed concurrently.6 Short literals 
comprise nearly 16 percent of the specifiers. How­
ever, the XBAR can only decode a single short literal 
per cycle. The remaining specifiers must all be 
processed by the operand processing unit, which 

VAX-11/780 VAX 8650 VAX 9000 

3 2 
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Figure 3 The VAX 9000 Instruction Pipeline 

decodes a single complex specifier per cycle. Unlike 
preceding processors, the XBAR handles multiple 
specifiers in any order. Table 1 shows the number of 
decode cycles required for several VAX processors. 

Operand Pre/etching 
Because most simple instructions are decoded and 
executed in a single cycle by various pipeline stages, 
instruction operands also must be handled in a 
single cycle. Multiple, specialized operand units 
increase operand processing throughput. From one 
to three register operands may be forwarded to the 
E-box by one register unit per cycle. A dedicated 
shon literal unit expands all VAX data formats. The 
operand processing unit performs complex address 
calculations and requests memory operand data 
from the cache unit (M-box). Both the operand pro­
cessing and shon literal units can perform multiple 
cycle operations. 
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Load/Store Architecture 
Load/store architectures separate memory accesses 
from computation. Loads can be scheduled to place 
arriving memory data at a functional unit just as an 
operation begins. To achieve this effect with VAX 

instructions, memory specifiers are treated as load/ 
store instructions. VAX memory specifiers describe 
the effective addresses of memory operands. VAX 

memory specifiers do not contain the source and 
destination registers that are specified in RISC load/ 
store instructions. Rather, the VAX 9000 system 
assigns temporary register file locations to buffer 
memory data. By processing specifiers early in the 
pipeline, data can be scheduled to arrive at the 
appropriate time. 

Memory specifiers act as independent instruc­
tions executed in the operand processing unit. This 
unit creates the operand's effective address and for­
wards it to the M-box. For loads, the actual memory 
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data is returned to the E-box register file. The trans­
lated physical address is saved in a queue of write 
addresses for store/destination specifiers. When 
execution results arrive from the E-box, the previ­
ously saved address is used to write the data into 
the cache. 

Conflict Detection and Resolution 
Macropipelining in the VAX 9000 system relies on 
autonomous units operating in parallel. Each inde­
pendent unit is optimized for an individual task. 
However, macropipelining does require that mech­
anisms be added to resolve data dependencies 
among instruction processing units. Data conflicts 
occur when an instruction's results are required by 
an earlier pipeline stage. An addressing data conflict 
appears in the following example: 

MOVL RO ,R1 
MOVE TAELECR1> , R2 

Any dedicated address calculating hardware must 
wait for the MOVL instruction results before per­
forming the MOVB instruction's effective address 
computation. A memory conflict is another form 
of data dependency. 

In the following example, 

MOVE RO, CR 1) 

MOVE CR2) ,R3 

a prefetch unit could read the second instruction's 
source operand while the E-box writes the first 
instruction's results, if the values of registers RI and 
R2 are different. However, when the registers con­
tain identical values, the read must be delayed until 
the write occurs. The VAX 9000 system uses several 
different mechanisms to detect and resolve data 
dependencies. Passing pointers, scoreboard masks 
within the I-box, the write queue in the M-box, and 
architectural restrictions are all used to handle vari­
ous conflicts. 

Register Conflicts The simplest hardware mecha­
nism employed in the VAX 9000 system is the use of 
pointers to reference data. The operand processing 
unit oversees a 16-entry source queue, an 8-entry 
destination queue, and a 16-entry source list. A sin­
gle pointer is inserted into the source queue for 
each source specifier. The pointer represents either 
a register number, in the case of general-purpose 
register operands, or a tag that indicates an entry in 
the source list where the operand data is located. A 
pointer is added to the destination queue for each 
destination. This pointer represents a register num-
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ber or a flag which indicates that the result should 
be written to memory. 

The instruction issue unit removes source 
pointers from the source queue. These pointers are 
used to address either the general-purpose registers 
or source list for the actual source data. Destination 
pointers from the destination queue determine 
where results should be written. Register conflicts 
can be detected by comparing the source pointers 
needed to issue an instruction with all issued desti­
nation pointers in the destination queue. For exam­
ple, in Figure 4, the MULL3 's RO source queue entry 
would match the ADDL3 's RO destination queue 
entry. A write to the general-purpose registers by 
the E-box removes the destination queue entry, and 
the instruction issue can resume. 

SRCQ SLIST DSTQ 

R1 rlO DATA RO 

R2 MEM 

#0 I-

RO 

ADDL3 R1 ,R2,RO 
MULL3 (R3),RO,(R4) 

Figure 4 Register Conflict Detection 

Addressing Conflicts To resolve addressing data 
conflicts, the I-box maintains a read/write register 
scoreboard. Two register masks are created for 
each instruction decoded. The first register mask 
denotes the general-purpose registers that the E-box 
will read for the instruction, and the second register 
mask specifies the general-purpose register writes. 
Each bit in these register masks refers to a single 
VAX general-purpose register. Specifiers that are 
being processed in the operand processing unit are 
checked against up to six previous instruction 
masks. From the first example above, the specifier 
(TABLE(Rl)) requires that the operand processing 
unit read R 1. If the R l bit is asserted in any preced­
ing instruction's scoreboard write masks, this effec­
tive address calculation must be deferred. 

The VAX architecture presents a unique address­
ing conflict problem because some specifiers, 
such as -(Rn) and (Rn)+, modify general-purpose 
registers. 

In the following example, 

SUEL2 RO ,R1 
ADDL2 (RO>+,R2 
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the (RO)+ specifier modifies the contents of RO. 
Therefore, the operand processing unit cannot 
update the general-purpose register without affect­
ing the prior instruction. The read masks are used 
to detect this type of conflict. All specifiers that 
modify general-purpose registers must check the 
scoreboard read masks before proceeding with 
the instruction. Thus, when a conflict occurs, the 
general-purpose register modification stalls. 

When an instruction completes execution, the 
instruction's read/write mask is removed from the 
scoreboard. In all addressing conflicts, specifier 
processing continues once the blocking mask is 
removed. 

Memory Conflicts The write queue is used to 
resolve memory conflicts. Physical addresses, 
received from the translation buffer, are inserted 
into an eight-entry FIFO. These addresses are later 
paired with the proper write data from the E-box 
and written into the M-box. To avoid prefetching 
stale data, all memory addresses for source memory 
operands are translated and compared with the 
addresses in the write queue. When no address con­
flict occurs, the data from memory is forwarded 
to the source list. Operand requests that conflict 
with a pending write address are stalled until the 
conflict is resolved. The conflict is resolved when 
the appropriate write data is received. The conflict­
ing address is then removed from the write queue. 

Miscellaneous Conflicts The VAX architecture 
includes instructions with operands that either are 
not known when the instruction is decoded (e.g. , 
INSQUE, MTPR), or modify large portions of mem­
ory (e.g., MOVC5). To avoid conflicts from these 
instructions, the I-box suspends processing mem­
ory specifiers until the instruction execution is 
completed. Self-modifying code presents another 
form of conflict, which is solved by an REI instruc­
tion that notifies the hardware of this condition. 

Branch Instructions 
Branch instructions have a substantial influence on 
the overall performance of a VAX processor. On 
average, a VAX processor executes 3.9 instructions, 
including the branch, before a branch starts a new 
instruction sequence. Instructions that modify the 
program counter represent nearly 40 percent of the 
total instructions executed. The VAX 9000 system 
uses a 1024-entry branch cache and a two-tiered 
prediction scheme to increase the average code 
block size and reduce the branch-taken latency. 
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Unlike its predecessors, the VAX 9000 system com­
mits all its resources to a single branch path. The 
prediction hardware selects the path of execution 
to resolve memory conflicts for those branch 
instructions that are decoded before results are 
available. This path selection is based on prior his­
tory, if the branch hits in the branch cache. If the 
branch does not hit in the branch cache, the path 
is predicted staticly, based on the instruction's 
opcode. When the branch executes, the prediction 
is compared to the actual results. The pipeline is 
flushed back to the correct code path if the branch 
prediction was incorrect. 

The entries in the branch cache store the branch 
results of the previous execution of the branch and 
the target address, if the branch was taken. Because 
the branch cache is a one-way associative cache that 
can store only 1024 entries, the results have an aver­
age hit rate of approximately 80 percent. However, 
correct predictions occur 85 percent of the time 
from the cache, as opposed to an average hit rate of 
56 percent, when the predictions are based solely 
on opcode. Loop branches are always predicted 
as taken, which increases the overall correct pre­
diction rate to close to 89 percent. By caching 
branch targets, the calculation may be avoided and 
a latency factor of one-cycle branch taken is 
achieved. The branch cache can store a sufficient 
amount of branch context to eliminate the need 
to sweep the cache. 

The I-box can process instructions with up to 
two conditional branches outstanding. Uncondi­
tional branches (e.g. , BSBW, BRB) are processed as 
ordinary instructions by simply changing the 
instruction flow. To reduce the penalty for a bad 
prediction, which results in a four-cycle penalty, 
operand specifiers that modify general-purpose 
registers are not processed under a branch predic­
tion and cause the operand processing unit to stall. 
Also, branch instruction execution is overlapped 
with the previous instruction to provide the actual 
branch results earlier. 

Compute-intensive Instructions 
Compute-intensive instructions require multiple 
execution stage cycles. Common examples of these 
instructions are multiplication, division, and float­
ing point operations. All VAX implementations 
employ dedicated logic for compute-intensive 
instructions that occur frequently. Less frequently 
used instructions depend on microcode-controlled 
arithmetic and logical data paths. The VAX 9000 
system contains four independent execution pro-
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cessors. The integer, floating point, multiply, and 
divide units execute the VAX instruction set. The 
I-box preprocesses instructions, which allows 
instruction execution to overlap in these units. In 
each cycle, a new instruction can be initiated in 
the appropriate unit prior to the completion of 
previous instructions. The floating point and multi­
ply units are pipelined and can accept one instruc­
tion each cycle. The integer unit is pipelined for 
simple instructions. However, complex instructions 
must use microcode control to perform multicycle 
operations. 

Pipelined instructions are issued in order and 
proceed through the data path without further 
microcode control. Upon completion, instruction 
results are retired in the same instruction order. The 
instructions must be processed in order because the 
result of one operation is often needed in a sub­
sequent operation . Therefore, the pipelines must be 
short and contain data bypasses to make results 
available quickly. The multiply, float, and divide 
units' internal data paths are 64-bits wide. To under­
stand how the pipelined and overlapped operations 
apply to the following operation, 

y(i) = y(i) + C(i) 

consider the program: 

LOOP : MULG3 R6,CRO>+,R4 
MULG3 R6,CRO)+,R2 
ADDG2 R4,CR1>+ 
ADDG2 R2, CR1 >+ 

The two MULG 3/ ADDG 2 instruction pairs prevent 
a pipeline stall that could occur because of data 
dependencies. The instructions further reduce the 
loop overhead, which is already fairly small 
because the loop control instruction was predicted 
correctly. Instructions and source operands are 
prefetched. The multiply and add units accept the 
instructions as they become available. The memory 
references are made as the operand processing unit 
processes memory specifiers. The majority of speci­
fier processing is performed independently of the 
instruction execution. 

Memory-intensive Instrnctions 
Some VAX instruction classes are primarily memory 
operations that require only minor computation. 
Typical examples of these instructions are char­
acter string, decimal, and privileged operating sys­
tem. Pipelined execution offers little advantage to 
memory-intensive instructions because the number 
of memory references is not reduced as the number 
of cycles required for execution is reduced by new 
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implementations. Because memory bandwidth is 
critical, the VAX 9000 system provides features to 
benefit these instructions. 

For example, the virtual instruction cache ser­
vices most instruction stream references, which 
frees the main cache to service prefetched operand 
references. Both the virtual instruction cache and 
the main cache have 64-bit data paths, important 
for character string operations and extended pre­
cision arithmetic. The caches are fully pipelined 
and allow one read per cycle. The main cache block 
size is 64 bytes, exploiting spatial locality. When 
cache references do miss, data is wrapped and the 
most critical data is returned first. A write back, 
write allocation algorithm further reduces main 
memory and cache bandwidth requirements and 
reduces latency. 

The VAX system is a virtual memory architecture. 
Virtual addresses need to be translated to physical 
addresses through page tables in memory. A trans­
lation buffer caches the most recently used page 
tables entries. VAX systems, such as the VAX-11/780 
system, process translation buffer misses in micro­
code, which can be time-consuming. However, the 
VAX 9000 system uses a memory management pro­
cessor to process translation buffer misses as part 
of instruction preprocessing. This operation is per­
formed early in the pipeline and is faster than 
microcode. 

The CALL and RETURN instructions push and pop 
registers on the stack, and these instructions can 
be memory-bound. The VAX 9000 system contains 
both the control logic and the bandwidth to process 
these registers at a rate of one per cycle. 

Unconventional Instrnctions 
Special, dedicated hardware was added to the 
VAX 9000 system to process those VAX instructions 
that did not fit into the categories listed above. The 
additional hardware operates within the pipeline 
architecture and cycle time, and the cost of adding 
the hardware was minimal. 

In the following example, 

MOVL RO,-CSP> <----------> PUSHL RO 

the MOVL and PUSHL instructions perform identical 
operations, but the PUSHL instruction does not 
explicitly specify a destination address. On pre­
vious VAX systems, the instruction prefetching 
would stall until the current instruction execution 
was completed. However, the VAX 9000 modi­
fies such instructions during the decode stage by 
adding the implied specifiers. The benefits of this 

Vol. 2 No. 4 Fa// 1990 Digital Tecbnlcaljounial 



enhancement are more evident in the following 
instructions. 

BSBW 10$ <----------> MOVAL Return_PC,-CSP) 
RSB <----------> JMP @CSP>+ 

Similarly, instructions such as LOCC and CMPC3 

implicitly reference the general-purpose registers. 
The instruction decode stage creates a read/write 
mask with these references, which allows instruc­
tion prefetching to continue. 

To aid handling instructions like PUSHR and 
CALL, the integer execution unit contains special 
bit mask manipulation hardware, which opti­
mizes general-purpose register saves and restores. 
The VAX instruction set contains variable-length, 
bit-field instructions that handle non-byte data. 
These instructions can reference memory within a 
512 megabyte (MB) range. The field referenced is 
within the first 8 bytes of the base address more 
than 95 percent of the time. Therefore, to allow 
instruction prefetching to continue, the operand 
processing unit assumes that the field is within the 
initial quadword and requests that data. If, during 
execution, the field destination actually resides out­
side the prefetched quadword, the correct data is 
fetched and the pipeline is flushed to avoid poten­
tial memory conflicts. 

Integrating Vector Processing 
The VAX 9000 project team was instrumental in 
integrating vector operations and data types into 
the VAX architecture. For many scientific applica­
tions, the use of vectors improves performance in 
three ways: 

• Vector instructions specify many operations in 
a single opcode, which eliminates instruction 
stream decode as a processing bottleneck. 

• Vector registers increase available local storage. 

• Vector registers support high peak perfor­
mance through high bandwidth and short access 
latency. 

The VAX vector architecture implements a load/ 
store architecture, which permits the hardware to 
deal with large pieces of memory in a uniform 
manner and increases the use of parallelism. 

We added the vector instructions and data types 
to the VAX architecture in an integrated fashion. 
Scalar and vector instructions are mixed throughout 
the pipelines. Systems that do not include vector 
processors emulate vector instructions with soft­
ware, a technique especially useful for program 
development.-·8 
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Logical Integration 
The VAX 9000 vector processor connects to the 
scalar CPU as an additional functional execution 
unit. Vector instructions are processed, and 
operands are stored, in queues, the same as are 
scalar instructions. As instructions are issued, a con­
trol word is sent with instruction operands to the 
vector processor. The processor contains vector 
registers and arithmetic units. Addresses for load, 
store, gather, and scatter operations are also gener­
ated by the vector processor. Vector data is stored in 
the main cache, and both the scalar and vector pro­
cessors have fast, shared access to that data. 

Physical Integration 
The VAX 9000 scalar and vector processors reside 
on a single planar board. Three multichip unit slots 
are reserved for the optional vector processor, 
which is field-installable. The integration of the vec­
tor processor directly with the scalar processor 
keeps critical interconnects short and reduces vec­
tor instruction overhead. 

Error Handling 
Reliability, availability, and integrity are critical fac­
tors in a high-performance computer system. These 
factors are affected by the quality of the physical 
design (i.e., worst-case design), effective cooling, 
redundant power supplies, and quality controls 
during manufacture. Still, failures are possible, and 
the VAX 9000 design had to deal effectively with 
errors. 

Error handling in the VAX 9000 system has two 
main goals: 

• Minimize system service disruption from indi­
vidual failures 

• Maximize the failure information collected for 
use in preventive and corrective maintenance 

A large percentage of hardware failures are inter­
mittent, and many solid hardware failures start as 
intermittent. The VAX 9000 system was designed to 
recover from these failures and to use the failure 
data to predict (and prevent) future problems. 

To gather information effectively, VAX 9000 stor­
age elements (i.e., latches, flip flops, and RAM cells) 
are visible to the service processor unit through a 
serial diagnostic bus. Most state information that 
is relevant to isolate the failing component is avail­
able for error analysis programs that can be run at 
a convenient time. The result of this processing is 
then used to isolate the failing components for 
quick repair. 
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To access the storage elements through the visi­
bility chain, the system clocks must be disabled, 
which disrupts the system operation for a period 
of time. The error may also have affected the exe­
cution of the instructions in the pipeline. Error 
handling minimizes these disruptions by making 
them invisible to the users almost all the time. 

The macroinstruction is the unit of execution in 
a program that is visible to the user. Between 
instructions, the program state is clearly defined 
in terms of memory contents and register values. 
Interrupts and exceptions are handled between 
instructions to save this state in an orderly fashion . 
It is important to handle errors the same way. 

Two problems arose in trying to provide the 
same method of error handling. First, instructions 
go through many stages in a pipelined computer, 
and several instructions will be in progress at the 
same time. It is difficult to identify a beginning 
and end for each instruction. Second, even when 
boundaries are established, errors can occur at any 
time and the errors do not automatically line up 
with instruction boundaries. 

To solve this, we made the E-box the point of syn­
chronization between error handling and instruc­
tion execution. In the instruction execution model, 
the E-box accepts operands, then computes and 
delivers results for storage. If an error occurs that 
directly affects one of these steps, the error is 
synchronous to the execution of that instruction. 
Asynchronous errors do not directly affect any of 
these steps and are treated as interrupts, i.e., pro­
cessed after the E-box completes an instruction but 
before it starts another instruction. 

A synchronous error causes a trap to occur in 
the E-box when the E-box requests data from the 
subsystem with the error. Since such data can be 
unavailable as a result of virtual access problems, 
the E-box is ready to deal with exceptions at 
that time, and errors can use the same pipelined 
mechanism. 

We do not differentiate between those syn­
chronous errors that affect computation in the 
E-box and those that do not. Instead, if the program 
visible state of the machine has not been modi­
fied, the instruction is backed up to the beginning 
and restarted. Performing this task is not a prob­
lem, since the state is normally not changed until 
the result is stored at the end of the instruction. 
Errors occurring in early pipeline stages are easily 
recoverable. In a few cases, memory and registers 
could have been modified early and, as a result, 
be affected by the error. Status flags indicate if this 
has happened . 
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By getting to an instruction boundary, the clocks 
can be stopped in an orderly fashion, and the state 
can be read out, including temporary data to be 
used for failure analysis. The machine can be reset 
to start processing at the instruction boundary once 
the clocks are started again. 

While the clock is stopped, the CPU cannot inter­
act with other subsystems or 1/0 processors. To 
keep these functions from being blocked and possi­
bly timing out, we only stop the clock to the CPU in 
error, not all the clocks in the system. We also 
sweep the cache of written data before the clock is 
stopped, and 1/0 interrupts are directed to other 
CPUs in a symmetric multiprocessing system. 

Performance Modeling 
When multiple features are added to a CPU design 
to individually enhance performance, some of 
those features can interact negatively with each 
other to decrease performance. Therefore, we 
designed a performance model to help us evaluate 
the performance of the design and make trade-offs 
where necessary. Although instructions were not 
executed on the model, it is an accurate cycle-by­
cycle model of the system for most instruction oper­
ations. Equally important, the model was written at 
a high level, which made it easy to modify and use 
to experiment with different features before they 
were added to the design. 

Cycle Time 
A perennial CPU design issue is the trade-off 
between cycle time and cycles per instructions. In 
a VAX system, the cycle time is often limited by the 
RAM speed in the control store and cache. We mod­
eled a machine at 8 ns and one at 16 ns for the VAX 

9000 system. At 8 ns, the pipelines became longer. 
Although the peak throughput almost doubled, 
the model showed that the net performance gain 
did not offset the risks associated with the shorter 
cycle time. 

I-stream Synchronization 
The VAX architecture requires that changes to the 
instruction stream be synchronized with an REI 
instruction. This synchronization makes it easier to 
implement an instruction cache that is separate 
from the main cache. To synchronize, either all 
memory writes can be watched or the I-cache can 
be cleared on every REI. The first alternative entails 
high hardware costs, and the second can affect 
performance. However, the model showed us that 
the performance impact would be minimal if the 
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I-cache was refilled from the main cache rather than 
from main memory because the critical parameters 
were the main cache bandwidth and the I-cache 
invalidation time, rather than the refill latency. 

Branch Prediction 
The branch prediction scheme used in the 
VAX 9000 system was analyzed in great detail. 
We investigated the use of multiple history bits to 
improve the effectiveness of branch prediction. 
In all cases, the use of extra bits provided less than 
a 1 percent improvement in system performance. 
Furthermore, no multiple bit scheme could be 
implemented without increasing cycle time 
because multiple history bit branch prediction 
schemes update status each time a branch is 
encountered. Therefore, we chose to use a single­
bit technique in the VAX 9000 design. Unlike multi­
ple bit schemes that read and write history bits 
for each branch instruction encountered, the single­
bit technique updates the history bit only when the 
prediction is wrong. The single-bit scheme is both 
faster and simpler. 

Cache Parameters 
The main data cache was accurately modeled. The 
VAX 9000 system uses a first-in first-out {FIFO) block 
replacement scheme. The performance model pre­
dicted that a true least recently used replacement 
policy would provide an insignificant improvement 
in performance over the FIFO method. Also, a true 
least recently used policy requires that status be 
read and written for each cache access. In con­
trast, the FIFO replacement policy updates status 
only when a cache miss has occurred. Further, the 
update can be done in parallel with the writing of 
data into the cache block. Although the 128-byte 
cache block provided a better cache hit, we chose 
the 64-byte block because it produced better system 
level performance. 

We chose two-set associativity because the model 
clearly indicated that performance would degrade 
with a direct-mapped scheme. The model also pre­
dicted that a four-way set associative cache would 
not improve performance enough to justify the 
extra hardware, design complexity, and cycle time 
penalty. 

The data bypass mechanism, the write queue, 
and the parallel translation buffer fix-up mecha­
nisms were implemented after the performance 
model indicated significant performance gains 
would be achieved from these features. 
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We also used the performance model as a verifi­
cation tool. The model provided us with early 
warnings when a feature did not function in the 
model, or when the cycle count differed from the 
count in the gate-level simulation. For example, 
from the model, we became aware of problems in 
the design of how conflicts between instructions 
in specifier processing were handled. Periodically, 
we compared the performance model to the logical 
model. Both models were subjected to the same 
instruction sequences. Deviations of more than 
±5.0 percent were investigated. Some design bugs 
were found that did not affect the results of the pro­
gram but which did keep performance features 
from working properly. The average deviation was 
on the order of± 1.0 percent. 

Performance tests are among the first programs 
run on a functional prototype. The VAX 9000 sys­
tem performed almost as expected. Table 2 com­
pares the actual performance of a VAX 9000 system 
to its predicted performance for a small sample of 
modeled programs. The accuracy of the predictions 
highlights the increasing importance of models in 
the modern engineering process. 

Table 2 Performance Measurements 
of a VAX 9000 System 

Predicted Measured 
Program Name (VUPs*) (VUPs*) 

HANOI 28.54 25.53 

FFT45 36.87 37.85 

GAUSS 32.72 32.57 

WHETS 27.78 27.17 

WHETD 34.48 34.89 

• Performance measured in VAX units of performance (VUP), where 
the performance of the VAX-11nso system = 1.0 VUP. 

Vector Performance 
Vector processing was modeled using graphical 
descriptions of the pipeline. The graphical descrip­
tions were essentially critical path method schedul­
ing charts. This approach is reasonable because 
vector processing makes regular demands on sys­
tem resources. In fact, the regularity of resource 
demand patterns was a major reason that vector 
processing techniques were developed. By using 
the pipeline schedules, we realized that data should 
be prefetched to ensure good vector performance. 
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Performance Measurement 
Table 3 compares the VAX 9000 scalar and vector 
processors performance to other members of the 
VAX family of processors. 

Table 3 Performance of the VAX 9000 
Scalar and Vector Processors 

VAX 9000 VAX 9000 
VAX 8550 Scalar Vector 

Program System Processor Processor 
Name (VUPs*) (VUPs*) (VUPs*) 

A3D 6.55 65.54 77.45 

DYFESM 5.12 31.88 40.49 

EMIT 5.86 41.65 79.86 

CFFT2D 5.52 25.76 64.18 

BMK8A1 5.45 30.65 83.84 

MXM 5.93 40.81 269.32 

• Performance measured in VAX units of performance (VUP), where 
the performance of the VAX-11/780 system = 1.0 VUP. 

The variations in these performance numbers 
indicate that significan t performance improve­
ments can be achieved by using applications that 
take advantage of machine resources. The numbers 
also highlight opportunities. By modifying appli­
cations to cap italize on machine features, large per­
formance gains may be realized. Performance gains 
of 100 to 200 percent are often realized and may 
substantially extend the lives of older programs. 

Vector applications tend to fall into three cate­
gories. The first category generally does not contain 
much parallel content. This category is represented 
by A3D and DYFESM in Table 3. Vectorizing such 
programs improves performance by a modest 
O to 50 percent. Programs EMIT and CFFT2D in 
Table 3 represent the second category, which are 
applications of moderate parallel content. Applica­
tions in this category realize a 50 to 150 percent 
performance gain when vectorized. Applications 
in the third category, highest parallel content, 
demonstrate performance improvements of more 
than 150 percent when vectorized. Programs 
BMK8Al and MXM in Table 3 are examples of this 
class of application. 

Often, modest code changes can realize dramatic 
performance improvements. By simply redefining 
array dimensions or loop specifications, an applica­
tion can move from the first category to the third 
category. 

24 

Acknowledgments 
Many people contributed to reaching the VAX 9000 
performance goals. The authors would especially 
like to thank David Orbits, whose advanced devel­
opment work on high-performance VAX designs 
became the basis for the performance model; and 
Bill Grundmann, Rick Hetherington, John Murray, 
Bill Smith, and David Webb, who comprised, 
with the authors, the original VAX 9000 architec­
ture team. 

References 

1. ). Murray et al. , "VAX Instructions That Illustrate 
the Architectural Features of the VAX 9000 CPU," 
Digital Technical Journal, vol. 2, no. 4 (Fall 
1990, this issue): 25-42. 

2. M. Adiletta et al. , "Semiconductor Technology 
in a High-performance VAX System," Digital 
Technical Journal, vol. 2, no. 4 (Fall 1990, this 
issue): 43-60. 

3. SPICE is a general-p urpose circuit sim ulator 
program developed by Lawrence Nagel and 
Ellis Cohen of the Department of Electrical 
Engineering and Computer Sciences, University 
of California, Berkeley. 

4. D. Clark, "Pipelining and Performance in the 
VAX 8800 Processor," Architectural Support 
for Programming Languages and Operating 
Systems (ACM, October 1987). 

5. C. Wiecek, "A Case Study of VAX-11 Instruction 
Set Usage for Compiler Execution," Proceedings 
of the Symposium on Architectural Support 
for Programming Languages and Operating 
Systems(ACM, March 1982): 177-184. 

6. ). Erner and D. Clark, "A Characterization of 
Processor Performance in the VAX-111780," 
Proceedings of the 11th Annual Symposium on 
Computer Architecture (Ann Arbor: June 1984): 
301-310. 

7. VAX Vector Processing Handbook (Maynard: 
Digital Equipment Corporation, Order ]'.'lo. 
EC-H0419-46, 1989). 

8. R. Brunner and D. Bhandarkar, "Vector Exten­
sions to the VAX Architecture," Proceedings 
of COMPCON '90 (San Francisco: Spring 1990). 

Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljou rnal 



John E. Murray 
Ricky C. Hetherington 

Ronald M. Salett 

VAX Instructions That 
Illustrate the Architectural 
Features of the VAX 9000 CPU 

The VAX 9000 system is Digitals largest and most powerful VAX system. As such, 
it offers many unique features that required the use of advanced technology and 
innovative architecture in the design of the system. Overall, the VAX 9000 micro­
architecture produces a high level of system performance and the lowest cycle time 
of any VAX processor, i.e., less than five cycles per instruction. Three sections of the 
VAX 9000 CPU - the instruction fetch and decode unit (I-box), the execution unit 
(E-box), and the data cache and main memory interface unit (M-box)-are 
illustrated in this paper through descriptions of a small sample of VAX instructions. 
These instructions are discussed in relation to their flow through the pipeline, how 
their architectural features combine to work on a single macro instruction, and how 
various stages of the pipeline interact. 

In October 1989, Digital introduced its VAX 9000 
family of high-performance scalar, vector, and par­
allel processors. The VAX 9000 system is designed 
to be expandable from one to four processors, with 
an optional integrated vector facility available on 
each processor. The design team obtained high 
levels of performance with advanced technology 
and innovative architectural features.1

•
2 The tech­

nology provided a platform that has the shortest 
cycle time for any VAX processor. Most VAX proces­
sors average ten or more cycles per instruction, 
whereas the architectural features of the VAX 9000 
system reduce that average below five. 

The VAX architecture is a complex instruction set 
architecture. VAX instructions vary in length and 
number of operand specifiers. The opcode may be 
one or two bytes long. The number of specifiers 
is implied by the opcode. Each specifier's length is 
determined by the specifier type, and the length can 
vary by up to 17 bytes.3 Although the VAX 9000 
implements a large number of instructions in a 
single cycle, some instructions need to be imple­
mented in tens of cycles. In these cases, microcode 
assistance is required. To increase performance, 
many features were included in the VAX 9000 
system that have not been implemented in previ­
ous VAX systems. The system contains a virtual 
instruction cache, a branch prediction cache, 
multiple specifier evaluation units, deep instruction 
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prefetch, hardware translation buffer fix-up unit, 
write address buffer and conflict checker, multi­
ported write-back cache, independent arithmetic 
units, and separate issue and retire queues. These 
features are pipelined and do not interact in a 
straightforward way. Many stages are not directly 
linked to the subsequent stage but feed a queue 
or first-in first-out (FIFO) buffer. The subsequent 
stage works on the output of the FIFO buffer. The 
pipeline is not a fixed-length and many operations 
are done in parallel. 

The architectural features do not function totally 
independent of one another. In fact, the highest 
level of performance is achieved when all the units 
function in harmony. This paper highlights the 
implementation of the macropipeline found in the 
three major subsystems of the VAX 9000. These 
subsystems are the instruction fetch and decode 
unit (I-box), the execution unit (E-box), and the data 
cache and main memory interface (M-box). 

The design team for the VAX 9000 system's 
I-box evolved a cost-effective subsystem that out­
performs all previous VAX systems. As shown in 
Figure 1, the I-box processes the majority of instruc­
tions in just one cycle. It combines a single cycle 
access virtual instruction cache with a 25-byte 
instruction buffer and an instruction decode cross 
bar that can decode three specifiers per cycle. To 
minimize cycle-wasting stalls, a branch prediction 
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unit handles transitions from one code block to 
another. In addition, the operand processing unit 
receives and processes specifiers from the decode 
unit. The specifiers are passed either to the E-box as 
pointers, literal data or addresses, or to the M-box 
as virtual addresses. 

Figure 2 illustrates how the front end of the 
M-box translates addresses by using either a trans­
lation buffer or an autonomous virtual-to-physical 
address translation unit. Physical addresses for 
reads are used to access a two-way associative 
write-back cache and to fetch data from memory 
through the system control unit (SCU), if the data 
is missing from the cache. Read data is returned to 
the E-box. Write addresses from the operand pro­
cessing unit are translated and queued by the M-box 
until the E-box provides the data for the write. 

The E-box of the VAX 9000 CPU performs all 
scalar operations. As shown in Figure 3, the E-box 
is a pipelined design that incorporates a micro­
sequencer to control functional unit operation. 
Other dedicated control logic directs the flow 
through the pipe stages. 

A multiported register file provides general­
purpose registers and temporarily holds memory 
data. The data is processed by one of the four 
arithmetic functional units. Results pass through a 
retirement multiplexer to the register file or the 
M-box data cache, as shown in Figure 4. Multiple 
VAX instructions are executed concurrently in the 
E-box pipeline. The primary goal of the E-box is 
to produce a 32-bit result each cycle, which allows 
the majority of the simple, but most frequent, VAX 
instructions to be executed in one cycle. This goal 
is achieved when four requirements are met. First, 
the I-box must have commands available for the 
E-box. Second, operand data, often from the M-box 
data cache, must be available. Third, pipelined or 
single-cycle latency functional units are required 
for single-cycle throughput. Finally, results must 
be transferred from the functional units. E-box 
features, such as queues, data bypass paths, and 
powerful arithmetic units, help the system attain 
a high-performance level. Stalls are avoided and 
each instruction is executed in a minimal amount 
of time. 

The M-box of the VAX 9000 CPU is the primary 
source of memory data. Therefore, it contains the 
virtual address translation buffer and the data 
cache. The M-box is multiported and pipelined with 
two autonomous pipeline segments. Each segment 
occupies one machine cycle, and the cache access 
latency is, therefore, two cycles long. During the 
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first cycle, the M-box receives and prioritizes vir­
tually (or physically) addressed memory requests. 
The M-box then indexes the translation buffer to 
produce a 33-bit physical address and to perform 
protection and validity checks. The second pipe­
lined cycle involves data cache access, data align­
ment, if required, and pon response. There are 
numerous architectural features within both seg­
ments that are targeted at high bandwidth for 
prefetching and storing scalar and vector operands. 

To illustrate the various features of the VAX 9000 
microarchitecture, we have selected the code 
sequence shown in Figure 5.4 In the following sec­
tions, we discuss each instruction as it progresses 
through the pipeline as if it were the only instruc­
tion in the pipeline. We then summarize by consid­
ering the same instructions as a block of code. 

VAX Instruction ADDL2 
The ADDL2 instruction uses general-purpose regis­
ter RS as an address to memory. The contents of 
that location are added to general-purpose register 
R7, and the result is written back to the same loca­
tion in memory. The instruction is encoded in three 
bytes: opcode, register, and base register. 

Cycles One through Three 
If we assume that the ADDL2 instruction is the first 
instruction either in an interrupt routine or follow­
ing a context switch, the program counter is gener­
ated by the E-box and passed to the I-box on a 32-bit 
bus. The program counter is latched and used to 
access the virtual instruction cache during cycle 
one. The virtual instruction cache contains up to 
8 kilobytes (KB) in 32-byte blocks and 8-byte lines 
of instruction stream data. 

Bits < 12:3> of the program counter's prefetch 
buffer are used to access an 8-byte line from the 
virtual instruction cache. Bits < 12: 5> are used to 
access a tag, a valid block, and four quadword valid 
bits. The tag is compared with bits <31:13> of the 
program counter's pref etch buffer. If the tag and the 
bits match, the block and the quadword within the 
block are valid, and the instruction is in the vinual 
instruction cache (i.e. , a hit). Bits <2:0> of the pre­
fetch buffer are used to rotate the quadword for the 
opcode byte to be loaded into byte O of the I-buffer 
at the end of cycle one. Similar to the VAX 8650 
system, the first byte of the I-buffer is the operation 
code (opcode) of the instruction.5 

The ADDL2 is three bytes long and normally 
fits in one line of the virtual instruction cache. If 
the ADDL2 instruction crosses· a line boundary, a 
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GPR - GENERAL PURPOSE REGISTER 
GPRS - GENERAL PURPOSE REGISTERS 
XGPR - X GENERAL PURPOSE REGISTER 
YGPR - Y GENERAL PURPOSE REGISTER 
OP D - OP DECODE 

Figure 1 Block Diagram of the VAX 9000 System 1-box 
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Figure 4 Cache Unit of the VAX 9000SystemM-box 

subsequent cycle is required to access the second 
line. The average VAX instruction is 3.8 bytes long. 
Therefore, a virtual instruction cache hit delivers 
about two instructions to the 1-buffer.6 

Other VAX processors generally require a cycle 
to decode the opcode and one or more cycles to 
decode each subsequent specifier.7-11 However, the 
VAX 9000 CPU's instruction decode cross bar can 
decode the vast majority of common instructions in 
a single cycle. 

If the three bytes of the ADDL2 instruction were 
loaded into the I-buffer at the end of cycle one, the 
bytes would be decoded during cycle two. The 
decode unit (XBAR) passes data from the I-buffer to 
a short literal unit, a register/pointer unit or an 
operand processing unit. As the opcode and speci­
fier bytes are decoded in parallel, the XBAR deter­
mines in less than a cycle that both specifier bytes 

should be routed to the register/pointer unit and 
that the memory specifier should be routed to the 
operand processing unit. 

In parallel with the XBAR decode process dur­
ing cycle two, the program counter is passed to the 
E-box from the I-box. The opcode is used to address 
the fork random-access memories (RAMs) in the 
E-box that provide a fork address to the microse­
quencer. At the end of cycle two, the decoded bytes 
are shifted out of the I-buffer, and the subsequent 
instruction is presented to the XBAR in cycle three. 

The fork address from the I-box is then used to 
address a fork RAM in the E-box. For each opcode, 
the fork RAM provides an entry address into the 
control store, indicates which functional unit 
should begin the execution, and specifies how 
many source operands are needed in the first cycle. 
The fork address is modified when an instruction 

68 57 CO 0080 22 1$: ADDL2 R7, (RB) 
53 6044 00 41 0083 23 SUBF3 #0,5, (RO)[R4], R3 

59 85 9999A999 535940C2 BF 45FD 0088 24 MULG3 #2345.5, (RS)+, R9 
E3 00000121 ' EFOD E4 0095 25 BBSC #1 3, BDATA, 1$ 

Figure 5 VAX Instructions That Illustrate the Major Features of the VAX 9000 System 
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is restarted after it was interrupted before comple­
tion. Memory management faults on the instruction 
stream also modify the fork. At the end of cycle two, 
the fork RAM data is latched in a fork queue, and the 
instruction program counter is latched in the pro­
gram counter queue. 

The register/pointer unit accepts the register and 
specifier byte at the end of cycle two. During cycle 
three, the register/pointer unit passes two source 
pointers (general-purpose register R7 and memory 
data) and the destination pointer (memory destina­
tion) to the E-box. The source one pointer points to 
general-purpose register R7. The memory data will 
be returned eventually to a 16-bit deep circular 
queue, called the source list, in the E-box. The regis­
ter/pointer unit tracks the source list pointers and 
allocates a source list entry to the memory data. The 
source list address is passed to the E-box and the 
operand processing unit. The destination pointer 
simply indicates that the result of the instruction 
goes to memory. 

Further, during cycle three, the operand process­
ing unit generates the memory address and passes 
it to the M-box. For the register deferred specifier 
(RS), the operand processing unit accesses its local 
copy of RS and passes it to the M-box, together with 
the source list tag received from the register/pointer 
unit and a control function that indicates the mem­
ory location is to be read and then written. 

The fork queue is a cyclical, eight-entry FIFO 

buffer that is flushed for interrupts, exceptions, 
or incorrect branch predictions. For the ADDL2 
instruction, the queue passes part of the fork RAM 
data to the microsequencer, which is idle and 
awaiting a valid fork, early in the third cycle. Fork 
RAM data is used to generate the appropriate con­
trol store address for all control store RAMs. The 
remaining fork RAM data is passed to the issue 
control by the end of the third cycle. 

Cycle Four 
At the start of cycle four, the M-box receives a com­
mand from the operand processing unit to perform 
a read with a write-check. The M-box must read a 
longword from memory, send the longword to the 
E-box, and check for write access. The command is 
accompanied by a 32-bit virtual address, a tag field, 
context (size of operand), and the request signal. 

Arbitration for access to the translation buffer 
occurs every cycle. If the operand processing unit 
wins arbitration, the command is decoded and the 
context is checked against the starting address to 
determine if additional virtual addresses are 
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required. The M-box includes a feature that adds 
four addresses to E-box or operand processing unit 
addresses, if the size and alignment of the request 
crosses a quadword boundary. Other VAX systems 
trap on unaligned accesses using E-box cycles 
and require using microcode to generate the incre­
mented address and subsequent fetch . 

In parallel to the arbitration process, virtual 
bits· 31, < 17:09> index the 1024-entry translation 
buffer. The translation buffer is a direct-mapped, 
associative memory that contains the results of 
the most recent 1024 translations. Bits < 30: 18> 
are compared, validated, and protection-checked 
against the tag field. The physical frame number is 
a 24-bit field that is appended to the virtual address 
bits <9:0> to create the 33-bit physical address. The 
self-timed RAM used for the translation buffer is a 
1024 by 4 self-timed RAM with a 4.5 nanosecond 
(ns) access time. 

Protection checking occurs during the latter por­
tion of cycle four. The example we are discussing is 
a request for a read and write check. Therefore, 
both read and write access are checked. Fault indi­
cation is forwarded with the request to the data 
cache and subsequently, with the data, to the E-box. 
If the request has a valid entry in the translation 
buffer and no protection violations exist (i.e., trans­
lation buffer hit), a data cache access is required in 
cycle five. 

The two source pointers and the destination 
pointer from the I-box are latched in the source and 
destination queues, respectively, at the start of cycle 
four. The source queue holds 16 entries and can 
receive 2 entries per cycle. The destination queue 
holds eight entries. Both queues are circular FIFO 

queues that can be flushed with the fork queue. The 
two source pointers are also latched in the source 
operand logic at the start of cycle four. The source 
operand logic determines which two source 
pointers to use each cycle. The pointers can come 
from the source queue, the I-box, the microword, 
the register log, and several special functions. In this 
example, the two pointers are selected directly 
from the latched I-box pointers because using the 
source queue would have required an extra cycle. 

The selected pointers address the register file 
and are passed to the issue logic early in the fourth 
cycle. The register file contains the 15 general­
purpose registers, RO through R 14. These registers 
can be written by either the E-box or the I-box for 
autoincrement or autodecrement specifiers. T he 
first pointer accesses general-purpose register R7. 
The contents of general-purpose register R7 are 
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passed to the data distribution logic by the end of 
cycle four. The second pointer accesses one of the 
16 locations in the source list. The source list is a 
queue for source operand data that is written by the 
I-box, with immediate or short literal data, or by the 
M-box, with memory data. The pointer is used to 
access the appropriate source list register, and the 
data is passed to the data distribution logic. 

The issue control uses the fork RAM data and the 
source pointers to determine if the instruction 
can be executed. The issue control checks that the 
target functional unit is ready and that all the 
required source operands are available. In this 
example, the integer unit is ready, the first operand 
(i.e., the general-purpose register R7) is available, 
but the second operand (i.e., memory data) is not. 
Because normal issue cannot occur without the 
second operand, we created a special issue control 
to handle this case. When issue is prevented only 
by the lack of a single memory operand, the instruc­
tion is "issued with bypass." To save an operational 
cycle, when the M-box delivers the missing 
operand, that operand bypasses the source list and 
passes immediately to the waiting functional unit. 
The issue control signals the fork and source queues 
that entries were used and can now be removed. 

Cycle Five 
Cycle five begins with the cache data and tag self­
timed RAMs latching the physical address. The 
priority request was selected by the cache control 
in the latter portion of cycle four. The default prior­
ity request selection is the write queue. However, 
if the default is used and a translation buffer hit 
occurs, the current address from the translation 
buffer is used. The first stage of the M-box, or the 
translation buffer stage, is referred to as the front 
end. It provides the cache with a 4-bit cycle-identifi­
cation field that identifies the command type and 
port. In addition, a context field provides the cache 
with the data size. The request for the second speci­
fier of the ADDL2 is a cache read and a write check. 

The write queue is a key feature of the M-box and 
the VAX 9000 system. The write queue is an 8-entry 
FIFO buffer that holds pretranslated operand mem­
ory destination addresses and allows the operand 
processing unit to continue prefetching operands 
after memory destination operands. The write 
queue is designed to be a content-addressable 
memory that checks for memory conflicts as sub­
sequent memory source operands are accessed. 
Entries in the write queue are discarded when the 
E-box completes execution and a successful cache 
write occurs. 
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A write check inserts the physical address and 
a number of status bits into the write queue. The 
status bits are termed valid, fault, twice (asserted for 
the final entry when writing unaligned operands 
that require more than one address), last, PCD 
(page crossing danger alert), and blocked. The write 
check illustrated in this example has a valid and 
last flag asserted. 

The cache tag is accessed in the middle of cycle 
five. The cache tag store is two-way set associa­
tive, with 1024 entries per set. Each entry repre­
sents a 64-byte block of memory data. The tag store 
also contains 16 valid bits (i.e., one per longword) 
and a written bit because memory update requires a 
write back. The cache tag is used to determine if the 
requested data resides in the data cache and, if not, 
whether the cache data held there needs to be writ­
ten back to memory. 

If a cache hit occurs, the data, with an asserted 
response line and tag, is sent to the E-box. The tag 
field tells the E-box where to place the field in the 
source list. In cycle five, the issue logic asserts a 
microword hold signal throughout the E-box. 
Because execution did not occur in cycle five 
and the latched microword was not used, the 
microword latches must be held until execution 
can occur. 

Cycles Six through Ten 
At the start of cycle six, the M-box data is latched 
to the data distribution logic. The data is immedi­
ately passed to the integer unit, where the add oper­
ation is performed. The results of that operation are 
sent to the retire logic by the end of cycle six. The 
issue logic deassens the microword hold signal to 
allow subsequent microwords to become latched. 
The issue logic also makes an entry in the eight­
location result queue. The result queue is used to 
maintain write ordering when multiple functional 
units are operating in parallel and also acts as a 
scoreboard for register conflicts. A general-purpose 
register is not a valid source operand if the register is 
in the result queue waiting to be updated by a func­
tional unit. When the functional unit specified by 
the top entry of the result queue completes the 
operation, the results are retired and the queue 
entry is discarded. The integer unit always com­
pletes in a single cycle. Therefore, the ADDL2 
instruction is discarded from the result queue by 
the end of cycle six. 

In cycle seven, the retire multiplexer selects the 
integer unit result data and sends it to the M-box to 
be written. A request signal for an op write also is 
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sent for the M-box to initiate the write. The M-box 
indicates that the address translation was successful 
to ensure that a memory management fault does not 
occur. A signal that the instruction is done removes 
the instruction program counter from the program 
counter queue and indicates successful address 
translation completion to the I-box. 

At the start of cycle eight, the E-box sends the 
results of the ADDL2 instruction to the M-box to be 
written into the data cache. The write data interface 
from the E-box to the M-box is 32 bits wide. The 
M-box has two 32-bit data buffers that receive the 
write data and hold the data until the tag status is 
appropriate for the write to occur. The E-box sig­
nals the M-box to perform the write. This signal 
does not affect the front end of the M-box because 
address translation has already occurred. The signal 
is a request to the cache control and arbitration for 
an op write. The top entry of the write queue holds 
the status and complete physical address for the 
write destination of the ADDL2 instruction. Because 
this is a modify operand, write' access is checked 
and reported to the E-box when the operand is read 
from memory. 

A two-cycle cache write starts in cycle nine. The 
first cycle is the lookup cycle. The cache control 
selects the write queue address to address the 
cache. Before the write can occur, the cache block 
must be dedicated to this particular physical 
address. 

The cache tag store and data cache are read in 
parallel. If the operand is unaligned or is less than 
a longword, the cache data line read during the 
lookup cycle is captured and merged in the next 
cycle with the data from the E-box. To ensure data 
consistency, data is allowed to exist in the cache in 
one of two states, read only or written. The scu 
controls the data in up to four individual CPU 
caches. Read-only data may be valid in multiple 
caches, but written data may only exist in one 
cache. Thus, before an M-box can change data, it 
must ask permission from the scu. 

In this example, the operand is longword­
aligned, and the write occurs in cycle ten if the 
block in the cache tag store has a valid and written 
status. The write also occurs for aligned longwords 
and quadwords in cycle ten if the cache block is 
completely invalid. If this cache block has a read 
status (i.e., valid and not written), a command is 
sent to the scu to request permission to write. The 
write is delayed until the scu responds with 
approval to write. 

Cycle ten is the cache data write cycle. Write 
enables to the self-timed RAMs in the data cache are 
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asserted in this cycle as a result of the tag store 
lookup cycle in cycle nine. The tag store is updated 
only if a valid bit had to be asserted. However, a 
partially valid and written cache block that may 
require setting the appropriate valid bit can be 
written. Each line of the cache is protected with 
byte parity. However, because it is a write-back 
cache, the reliability of the machine is significantly 
enhanced using an error-correcting code. The 
check-bit pattern for the error-correcting code 
storage is generated and stored separately. 

VAX Instruction SUBF3 
The SUBF3 instruction subtracts one half of the 
F _float format number addressed by general-pur­
pose register R8 and indexed by general-purpose 
register R9. The resultant number is placed into 
general-purpose register R3. The instruction is 
encoded in five bytes: opcode, shon literal, index 
register, base register, and destination register. 

Cycle One 
As with all VAX instructions, the first cycle of the 
SUBF3 may be either a virtual instruction cache 
access or a simple shift to the low-order bytes of the 
I-buffer. In a few cases, the instruction not in the 
cache. Consider an example where the SUBF3 
instruction is preceded by a long instruction that 
is gradually decoded for several cycles. As a result, 
the SUBF3 instructions cross a vinual instruction 
cache block boundary. The virtual instruction cache 
is accessed for instruction stream data every cycle, 
but the address is incremented only when the data 
is latched in one of three instruction stream buffers, 
I-buffer (9 bytes), I-hex (8 bytes), or l-bex2 (8 bytes). 

If only one byte or if no valid bytes exist in the 
I-buffer, the vinual instruction cache data is loaded 
directly into the I-buffer. If the I-hex is empty and 
the I-buffer contains between two and eight valid 
bytes, the vinual instruction cache data is merged 
with the the I-buffer data and the remaining bytes 
are loaded into the I-hex. 

If there is a virtual instruction cache miss (i.e., the 
data is not in the virtual instruction cache) and there 
are no valid bytes in the I-hex, the I-box passes a 
request to the M-box for data. Generally, the request 
will be for a virtual instruction cache block, i.e., 
32 bytes, because the I-box decodes instructions 
sequentially across a block boundary. However, a 
branch or interrupt may direct the decode into the 
middle of a block. In such a case, the I-box requests 
the remainder of the target instruction stream in 
that block. The first cycle of the SUBF3 accesses the 
vinual instruction cache only to find what data is 
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not in the cache. The address and the request then 
are passed to the M-box. 

In the next cycle, the result of the virtual instruc­
tion cache tag match is signaled to the M-box 
through an I-box abort signal. If a virtual instruc­
tion cache miss has occurred, the block in the 
virtual instruction cache is cleared and the I-box 
awaits the data from the M-box. The M-box passes 
eight bytes of data to the I-box. The third cycle 
after a virtual instruction cache miss is found in the 
I-box when hits occur in both the translation buffer 
and the cache. The data sent to the I-box is written 
and read through the virtual instruction cache self­
timed RAMs to the I-buffer or the 1-bex. The virtual 
instruction cache's tag, valid block, and the relevant 
valid quadword are written next. If the I-buffer is 
empty, the eight bytes of SUBF3 instruction are 
written into the I-buffer. In subsequent cycles, the 
following instruction stream quadwords are writ­
ten into the virtual instruction cache, with a new 
quadword valid bit, until the end of the block is 
reached. The data is also available to the I-buffer. 

Cycle one of the SUBF3 instruction could be 
fetching the instruction stream from the virtual 
instruction cache, as described for the ADDL2 
instruction, or it could be already in the I-buffer 
(e.g., bytes <8:3>) following the ADDL2 instruction 
(i.e. , bytes <2:0> ). In the latter case, the SUBF3 
instruction would be shifted into the lower bytes 
as the ADDL2 instruction is shifted out. 

Cycles Two through Eight 
In cycle two, the SUBF3 instruction is completely 
decoded and shifted out of the I-buffer. As a result, 
the following actions occur: 

• The fork address is passed to the E-box. 

• The short literal is passed to the short literal 
expansion unit. 

• The base and index registers are passed to the 
operand processing unit. 

• The destination general-purpose register R3 
and the two sources are passed to the register/ 
pointer unit . 

During cycle three, the register/pointer unit allo­
cates the next available entry in the source list to the 
short literal and the subsequent entry in the indexed 
memory reference. The E-box is informed of these 
allocations as pointers to the relevant entries are 
passed to the pointer queues in the source one and 
source two pointers. The register/pointer unit also 
passes the destination register to the destination 
queue in the E-box. 
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The operand processing unit passes the tag, 
with the address for the indexed memory specifier 
request, from the register/pointer unit to the 
M-box. The address is generated by the adder in 
the operand processing unit. In parallel with the 
operand processing unit and register/pointer unit , 
the short literal expansion unit takes the 6-bit field 
and expands it to a 32-bit F _floating number. 

During cycle four, the short literal is written 
through the I-box data bus to the relevant entry 
in source list. Issue control can issue with bypass 
because only the memory data for operand two is 
missing. 

The E-box stalls until the memory data arrives. 
Because the I-box and the M-box generally are func­
tioning ahead of the E-box, memory stalls are short 
or nonexistent . In this example, the memory data 
arrives at the end of cycle five, as was the case with 
the ADDL2 instruction. 

In cycle four, the M-box operates for the SUBF3 
instruction in a similar manner to its cycle four 
activity for the ADDL2 instruction. At the start of 
the cycle, a command, address, context, and tag 
field are sent from the operand processing unit to 
the M-box. The command is a simple operand read. 
Arbitration occurs early in the cycle. The trans­
lation buffer is then accessed, and the physical 
address is sent to the cache. 

Cycle five begins when the data cache receives 
the physical address for the operand processing 
unit to read. The tag store lookup and address 
matching are performed simultaneously with the 
data read, and the data is available to the E-box at 
the end of the cycle. If the operand read results in a 
cache miss, the M-box must assemble a command 
and an address, which are sent to the scu to enable 
the scu to access a 64-byte block of memory data. 
In addition, the data cache tells the SCU which set 
the cache will replace with the new cache block. If 
the current cache block contains valid and written 
data, the block must be written back to main mem­
ory before the new cache block arrives. 

The SCU sends a command and an address back 
to the M-box when the memory data is ready. The 
send takes approximately 26 cycles and is followed, 
within a short period of time, by eight cycles of data 
transfer. Each cycle is 8 bytes long. The requested 
quadword is returned first to respond to the 
requesting port during the first cycle of the cache 
refill. On the eighth cycle of cache refill, the tag 
store is updated. 

The floating point functional unit is started in 
cycle six, as specified by the fork RAM data. Both 
source operands are delivered, and the microword 
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indicates a SUBF operation. The floating point unit 
requires two cycles to perform the SUBF operation. 
Unpacking and alignment occur in the first cycle. 
The floating point unit signals the issue control that 
the result will be available at the end of the follow­
ing cycle. The issue control enters the general­
purpose register R3 destination but must wait 
another cycle before beginning retirement. If the 
next instruction requires that the floating point unit 
and the operands be available, the instruction 
would be issued in this cycle because the floating 
point unit is fully pipelined. 

The second execution cycle occurs in cycle 
seven. The floating point unit adds, normalizes, 
rounds, and packs. The result is latched in the float­
ing point unit at the end of the cycle, and the issue 
control discards the top entry from the result queue 
to retire the data. 

In cycle eight, the retire multiplexer selects the 
floating point unit result data and sends that data to 
the data distribution logic. The data distribution 
logic holds the result, which will be written into 
general-purpose register R3 in the register file dur­
ing the next cycle. The write is purposely delayed 
to permit it to be aborted if an arithmetic fault 
occurs. By holding the result in the data distribution 
logic, result bypassing into the data path can act as 
a source operand. The result is written into the reg­
ister file at the beginning of cycle nine. 

VAX Instruction MULG3 
The MULG3 instruction takes the G_format floating 
number, addressed by general-purpose register R5, 
from the instruction stream, multiplies it by the 
immediate constant 2345.675, which is also a 
G_format number, and puts the result in general­
purpose registers R9 and R 10. General-purpose 
register R5 also is incremented by eight as a side 
effect of the specifier evaluation. The opcode is 
2 bytes long, the constant is a nine-byte immediate 
specifier, and the autoincrement and register speci­
fiers are each a single byte. Thus, the instruction is 
encoded in 13 bytes. 

Cycles One through Five 
As in cycle one of the SUBF3 instruction, the MULG3 
instruction can either be a virtual instruction cache 
access cycle or part of the instruction already can be 
in the I-buffer and shifted to the least significant 
byte as the previous instruction is shifted out. For 
example, if the previous instruction is the SUBF3 
#0. 5 (RO)[R4] R3 in bytes <4:0> of the I-buffer, the 
first four bytes of the MULG 3 instruction could be 
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in bytes <8:5>. The four remaining bytes of the 
immediate specifier could be valid in the 1-bex and 
the rest of the instruction could be contained in the 
I-bex2. At the end of cycle one, the first four bytes 
are shifted to the low four bytes of the I-buffer. The 
next four bytes are merged from the I-bex to the 
high four bytes of the I-buffer. The 1-bex is now 
empty, and the bytes in the I-bex2 can be loaded 
into the 1-bex. 

Because the MULG3 instruction has a 2-byte-long 
opcode, the only decoding necessary in cycle two is 
to note the 2-byte length and shift out the first byte 
so as to align the specifiers to be the same as a single 
byte opcode instruction. The specifiers are then in 
bytes< 1 :8> of the I-buffer. As the first opcode byte 
(in this case, #FD) is shifted out, the next valid byte 
in the 1-bex is merged into byte 9 of the I-buffer, 
which leaves seven valid bytes in the 1-bex. 

Decoding really begins in cycle three. The fork's 
address is sent to the E-box, and bit <8> is set to 
indicate a 2-byte-long opcode. The first five bytes 
of the immediate specifier are passed to the 
operand processing unit. The first byte also is 
passed to the register/pointer unit for source list 
allocation. The five bytes shifted out of the I-buffer 
are replenished from the 1-bex, which leaves two 
valid bytes in the 1-bex. 

In cycle four, the register/pointer unit allocates 
the two entries in the source list for the immediate 
G_floating number by passing a source one pointer 
to the E-box and the tag to the operand processing 
unit. The operand processing unit passes the first 
longword of the immediate G_floating number to 
the unit's output buffer. 

The next four bytes of the immediate are passed 
from the I-buffer to the operand processing unit. 
The remaining two valid bytes from the 1-bex are 
merged into the I-buffer. The 1-bex is then loaded 
with eight bytes from the virtual instruction cache. 

In cycle five, the autoincrement and register 
specifiers are decoded and the remaining bytes of 
the instruction are shifted out. Five bytes from the 
1-bex are merged with the four valid bytes in the 
I-buffer. The autoincrement general-purpose regis­
ter R5 is passed to the operand processing unit 
and the register/pointer unit, which also receives 
general-purpose register R9. The first longword of 
the immediate specifier is passed from the operand 
processing unit output buffer, through the I-box, to 
the source list entry allocated by the register/ 
pointer unit. The second longword is passed to the 
operand processing unit output buffer. 
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The first microword is accessed and distributed 
throughout the E-box. The microsequencer uses 
the fast fields of the microword to generate the final 
control store address for this instruction. The 
microinstruction is not issued because it requires 
two source operands and the second source pointer 
is not yet available. 

Cycle Six 
In cycle six, the register/pointer unit allocates two 
source list entries for the autoincrement specifier, 
passes this information to the E-box in the source 
one pointer, and passes a tag to the operand pro­
cessing unit. The general-purpose register R9 is 
passed to the E-box as the destination pointer. 

The operand processing unit accesses general­
purpose register RS and passes it, with a tag and a 
quadword read request, as an address to the M-box. 
In parallel, the operand processing unit writes 
general-purpose register RS, incremented by 8-byte 
lengths in the unit's output buffer. The second long­
word of the immediate specifier is written to the 
source list at the relevant entry. 

The operand processing unit sends the M-box a 
read request quadword for the double-precision 
floating point operand. If the address is on a quad­
word boundary, the front end of the M-box will not 
produce any additional virtual addresses because 
the operand will not cross a page boundary or a 
cache line boundary. If there is a miss in the trans­
lation buffer for this reference, all other arbitration 
stops and control are given to the state machine of 
the translation buffer fix-up unit. 

Bits <31 :09> of the request are captured by the 
translation buffer's fix-up unit in parallel with the 
translation buffer RAM's access to achieve an early 
start on miss processing. The fork to the state 
machine is sensitive to bits <31:30> of the virtual 
address. Therefore, when a translation buffer miss 
occurs, a constrained control word flow begins 
based on the values of bits <31:30>. Because this is 
a user mode, the value is zero. Therefore, on the 
first cycle following the translation buffer miss, the 
virtual page number is compared against the PO 
length register, POLR. On the next machine cycle, 
the POBR (i.e., base register) is added to the virtual 
page number to create the system virtual address of 
the process page table entry. The fix-up unit acts the 
same as any other port into the translation buffer, 
and makes a virtual read request with an aligned 
longword context. The state machine is controlled 
by a microword that branches to itself until one of 
three events occurs: a miss in the translation buffer 
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(the fix-up unit processes double misses), a memory 
management fault, or a cache response. The cache 
response, which is the event most likely to occur, 
signals the state machine to return to idle and pre­
pare for the next miss. Hardware control external 
to the fix-up unit writes the entry into the trans­
lation buffer, and the original request is retried. 
This time there is a translation buffer hit, and the 
physical address is sent to the cache. Single misses 
in the translation buffer require seven cycles to pro­
cess. A double miss requires 13 cycles, assuming 
data cache hits occur. 

The issue control asserts the microword hold 
signal to force the microword latches to hold the 
first microword until it can be executed. The micro­
sequencer regenerates the control store address of 
the second microword each cycle until the execu­
tion stall ends. 

Cycles Seven through Thirteen 
Cycle seven is the data cache read cycle for the 
quadword operand processing unit request that 
was translated in the previous cycle. The VAX 9000 
system has a 128KB data cache, with a block size of 
64 bytes and access width of 8 bytes. The 64-bit 
access width matches the 64-bit data path to the 
E-box, which was constructed to provide high 
bandwidth for double-precision operand transfers. 
When a cache hit results for the read of an aligned 
quadword, both the normal response line and the 
quadword response signal are asserted to alert the 
E-box that the M-box is sending a quadword of data. 

In cycle seven, general-purpose register RS of 
both the E-box and I-box is written with the incre­
mented value. In addition, both source pointers 
and the first source operand are available to the 
issue control. Because only the second operand is 
missing, the microinstruction can be issued with 
bypass awaiting memory data. 

The quadword operand is available to the M-box 
at the end of cycle eight. The low longword is 
latched in the data distribution logic of the E-box, 
and the high longword is held in the M-box. 

In cycle nine, the quadword operand is written 
into the register file at the two source list locations 
allocated by the operand processing unit. However, 
the low longword is available as a source immedi­
ately. The low longword of the short literal operand 
and the low longword of the memory operand are 
passed to the multiply functional unit at the start of 
cycle nine. The multiply unit performs the first 
cycle of execution, which includes· unpacking and 
multiplying the most significant bits of the two 
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operands. Issue control drops the microword hold 
signal to allow the second microword to be latched. 
An entry, which specifies general-purpose register 
R9 as the destination for the low longword of the 
result, is made to the result queue. The second 
microword is issued because the multiplier requires 
the next half of each source operand and both are 
available from the register file. 

The microsequencer then attempts to generate a 
new control store address from the next entry in 
the fork queue. If no new forks are available, the 
microsequencer remains idle. 

In the tenth cycle, the multiply unit receives the 
high longword of both source operands. The sec­
ond execution cycle is performed, which includes 
unpacking and three simultaneous multiplications 
of the appropriate combinations of the most and 
least significant bits of the two operands. The multi­
plier signals the issue control that the result will be 
available in the following cycle. The issue control 
makes an entry, which specifies general-purpose 
register RIO as the destination for the high long­
word of the result, in the result queue. The multiply 
functional unit is fully pipelined and could be issued 
in this cycle to start subsequent operations. 

Cycle eleven is the third and final execution cycle. 
The multiplier accumulates the four products it 
produced in the two previous cycles, rounds, and 
packs the final double-precision result. The issue 
control discards the top entry from the result queue 
to retire the low longword of the result . 

In cycle twelve, the retire multiplexer selects the 
multiply unit result data and sends it to the data dis­
tribution logic. The issue control discards another 
entry from the result queue to retire the high long­
word of the result. The low longword of the result is 
written into the register file 's general-purpose regis­
ter R9 in cycle thirteen. The high longword of the 
result is written into general-purpose register RIO in 
the next cycle as the instruction is completed. 

VAX Instruction BBSC 
The BBSC instruction tests a bit in memory, 
branches if the bit is set, and clears the bit . The 
BDATA is the base address in memory with the 
number 13 position-bit offset. The majority of VAX 

field instructions have a position offset of less than 
64 bits. Therefore, the VAX 9000 system's I-box 
prefetches the quadword addressed by the base. 
As with all conditional branches, the result of the 
test is predicted and the VAX 9000 system's I-box 
continues to fetch instructions along the predicted 
path. The BBSC is encoded in eight bytes: one 
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opcode, one short literal position, five for the base 
address (a 4-byte displacement off the program 
counter), and one displacement. 

Cycles One and Two 
Cycle one for the BBSC can be fetching the instruc­
tion stream from the virtual instruction cache, as 
described for cycle one of the ADDL2 instruction, or 
it already can be in the I-buffer (e.g., bytes <8:3>) 
and the 1-bex (i.e., bytes <7:6>) following the 
MULG3 (i.e., bytes <2:0> ). In the latter case, the 
BBSC instruction is shifted into the lower bytes as 
the MULG3 instruction is shifted out. 

The decode of the BBSC begins with passing the 
short literal, number 13, to the short literal expan­
sion unit and the program counter/relative base 
address to the operand processing unit. Informa­
tion on both specifiers is passed to the register/ 
pointer unit. In this cycle, the fork address is also 
passed to the E-box. The fork address is modified 
for field instructions if the base is a register. There­
fore, passing the fork address is delayed until the 
base specifier is decoded. In this example, the base 
is decoded in the cycle after the opcode is received. 
If the base is a register, the field instruction takes a 
different microcode flow. 

During cycle two, the decoder passes the pro­
gram counter decoder for the program count of 
the instruction to be decoded to the operand pro­
cessing unit. The program counter is passed to the 
operand processing unit and the E-box in the first 
decode cycle. Whenever a specifier is passed to the 
operand processing unit, the XBAR also sends a 
specifier offset delta. When the delta is added to the 
program counter's decoder, the address of the last 
byte of the specifier plus one is produced. 

As the short literal and program counter/relative 
specifiers are decoded, they are discarded from the 
I-buffer. The BBSC displacement is shifted to the 
first byte of the I-buffer. The data arriving from the 
cache is merged into bytes <8:2>, and the other 
byte is placed in the 1-bex. 

The branch prediction unit begins operating 
during the first decode cycle. A prediction for the 
branch must accompany the fork address sent to 
the E-box. The prediction is made by using the 
program counter to access a branch prediction 
cache and determine how the branch behaved the 
last time it was decoded (i.e. , one history bit). If 
the branch is in the cache, the prediction is that 
the branch will behave the same as the last time. If 
the branch is not in the cache, a prediction is made 
based on the normal behavior of this conditional 
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branch. For example, a BEQL (58 percent) and a 
BBSC (73 percent) normally do not branch, whereas 
a BNEQ (62 percent) normally branches. If the BBSC 
instruction is in the cache and branched last time, 
this information is indicated to the E-box, with the 
I-box prediction given as true. 

Cycle Three 
In this cycle, the register/pointer unit allocates one 
entry in the source list for the position specifier and 
three entries for the base specifier. The unit then 
passes the source one, source two, and destination 
pointers to the E-box. 

In the operand processing unit, the address of the 
last byte of the specifier plus one is first calculated 
using the program counter of the instruction and 
the delta provided by the XBAR. The displacement 
from the instruction is then added to this calcula­
tion. The result is latched in the operand processing 
unit's output buffer and passed to the M-box. The 
operand processing unit also passes a quadword, 
field modify function, and the source list tag. 

The short literal expansion unit extends the size 
of the position specifier to a longword and latches it 
in the unit's output buffer. In this example, the 
extension is done with zeros. The XBAR passes the 
branch displacement byte and an updated value of 
the program counter's delta to the operand process­
ing unit. The delta of the program counter and the 
branch displacement are also sent to the branch 
prediction unit as instruction lengths. The BBSC 
instruction is completely decoded, and the opcode 
and displacement are discarded from the I-buffer. 
The branch prediction unit does most of its work 
during the last decode cycle of a branch. For the 
majority of conditional branches, the last decode 
cycle is also the first. 

The branch prediction cache contains 1024 
entries. Each entry has a history bit, a 32-bit target 
program counter, a 6-bit instruction length, and a 
16-bit branch displacement and its tag. The entries 
are addressed by bits 9 through O of the program 
counter's decoder. If the tag matches bits < 31: 10> 
of the program counter's decoder, the entry is 
assumed to be the entry, or a hit, for this branch. 

If a hit occurs and the history bit shows that the 
branch was not taken last time, the branch predic­
tion unit latches this state information and allows 
the subsequent instruction stream to be decoded. 
The operand processing unit produces the target 
address as soon as it is not busy. The target address 
must be stored in the program counter's unwind 
buffer in case the prediction is incorrect. The E-box 
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indicates the correctness of the prediction as soon 
as possible. For simple branches, the E-box could 
indicate that the prediction is incorrect before the 
branch is fully decoded. 

If a hit occurs but the history bit shows that the 
branch was taken last time, the branch prediction 
unit latches this state information and stops the 
decoding of the subsequent instruction stream by 
clearing the I-buffer and the 1-bex. The program 
counter of the subsequent instruction is stored in 
the program counter's unwind buffer. The program 
counter's target address, which is received from the 
branch prediction unit cache, is passed to the pro­
gram counter's prefetch buffer. The target address 
that is later provided by the operand processing 
unit may be discarded. The branch displacement 
and instruction length from the branch prediction 
cache are latched. For the following discussion on 
the remaining cycles in the BBSC instruction, we 
have assumed that the BBSC instruction is a branch 
prediction hit and that the branch was taken the last 
time decoding occurred. 

Cycle Four 
In cycle four, both the operand processing and 
short literal expansion units contain data to be 
passed to the source list. The operand processing 
unit normally has the higher priority of the two. 
Therefore, the short literal expansion unit will stall. 
The operand processing unit passes the base 
address to the source list through the I-box. In the 
operand processing unit, the new delta of the pro­
gram counter is added to the program counter, the 
sign of the branch's displacement is extended from 
a byte to 32 bits, and the two are added to produce 
the new target address. The result is latched in the 
operand processing unit output buffer. 

The virtual instruction cache is accessed for the 
target instruction. If the instruction is in the vir­
tual instruction cache, it is passed to the I-buffer. 
However, there is a gap in the pipeline because no 
instruction can be decoded this cycle. 

The displacement and instruction length from 
the branch cache are compared with the actual dis­
placement and instruction length. Normally, these 
lengths match. However, if they are different, the 
target address from the branch prediction unit 
cache is probably incorrect. The fetching and 
decoding of instructions must wait until the 
operand processing unit provides the correct 
address. 

At the start of cycle four, the M-box receives 
a request from the operand processing unit. This 

37 



VAX 9000 Series 

request differs from all requests previously 
described in that it contains a command that gets 
special treatment in the M-box. The command is 
an "opu read with write check no block." 

The command is used because the VAX 9000 CPU 
contains an optimization that enhances the perfor­
mance of bit field instructions. With this command, 
the operand processing unit prefetches a quadword 
of data, starting from the address pointed to by the 
base, without looking at the value of the position 
operand. Hopefully, the majority of bit fields are 
within 64 bits of the base. The special command 
tells the M-box that if a fault should occur, it should 
pass the fault, with an operand, to the E-box and 
not close down the operand processing unit port or 
put a lock on the fault parameters. The command is 
an unaligned quadword operand and, as such, 
requires that the M-box produce additional virtual 
addresses to correctly access the cache. A quad­
word is unaligned when bits <2:0> are nonzero. 
For this example, we have assumed that the starting 
address is xxxxxxx 1. 

Specialized hardware in the front end of the 
M-box detects if the starting address requires 
sequencing (i.e. , the addition of a constant of 4 to 
the current address) and how many sequenced 
addresses are necessary. In this case, three addresses 
are required. The first is the starting address (i.e., 
addr = xxxxxxx 1 ), which is received from the 
operand processing unit. As the starting address is 
accessing the translation buffer, a constant of 4 is 
added and the sequence port requests a virtual 
address (i.e., addr = xxxxxxx5) from the translation 
buffer at the start of cycle five. 

The issue control uses the fork RAM data to deter­
mine that the integer unit and two source operands 
are required. Because only the first operand is miss­
ing from the source list, the instruction is issued 
with bypass. The microsequencer generates the sec­
ond control store address based on the fast access 
fields of the first microword. 

Cycle Five 
Decoding the target instruction stream begins in 
cycle five. The operand processing unit sends the 
target address to the branch prediction unit through 
the program counter's target address. However, as 
noted earlier, the target address sent is discarded. 
Because the operand processing unit does not use 
the I-box data register, the short literal expansion 
unit can pass the short literal to the source list. 

The branch prediction unit now waits either for 
the E-box to indicate the correctness of the predic-
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tion or for subsequent branches to be decoded. The 
unit predicts a maximum of three branches before it 
stalls decoding to resolve the first branch. 

As the address xxxxxxx5 is accessing the trans­
lation buffer, the final address is produced by 
adding 4, which makes a translation buffer request 
(i.e., addr = xxxxxxx9) through the sequencer port 
in cycle six. The three translation buffer accesses 
are contiguous and interruptible. Data alignment is 
performed by the M-box, but the alignment is con­
strained to longwords. When an unaligned quad­
word is detected, the front end of the M-box alters 
the context field that it passes to the data cache 
unit. The quadword request is effectively broken 
into two unaligned longwords, which are properly 
rotated into the low longword of the quadword 
interface and sent to the E-box independently. 

Cycle five is the data cache read cycle for the first 
unaligned longword. Because the starting address is 
xxxxxxxl, the entire longword is contained in the 
cache line. Therefore, one additional rotation cycle 
is all that is required before the data is sent to the 
E-box. The M-box pipe is effectively lengthened by 
a cycle when it is performing unaligned operations. 
Because cycle five is a data cache read cycle, no 
response is issued to the E-box. In addition to the 
data cache read, the physical address is placed in 
the write queue. A memory write is required after 
the bit is tested. A status bit for a new quadword is 
set in the write queue. The new quadword indicates 
that this is the starting address of an operand and 
writes should not take place until an entry appears 
in the write queue with a last bit assertion. 

Because the first operand is written into the 
source list, the operand is available to the integer 
unit at the start of cycle six. The microword hold 
signal is asserted to hold the first microword during 
the stall. The microsequencer regenerates the con­
trol store address of the second microword. 

Cycles Six through Nine 
In cycle six, the data cache is read again with 
address xxxxxxx5, which is the same cache line 
read in cycle five. However, because the context is 
a longword, one additional byte of data must be 
read from the cache to satisfy the request. Also, in 
cycle six, rotation of the data read in cycle five is 
completed, and the M-box responds to the E-box. 
Finally, address xxxxxxx5 is placed in the write 
queue. 

By using source pointers from the source queue, 
the position and base address operands are selected 
by the fork RAM and passed to the integer unit. If 
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the base address operand page faults, the base speci­
fier was an indirect specifier. The M-box returns 
the data to the E-box as faulty, rather than returning 
the indirect address to the I-box. The return to the 
E-box results in a memory management page fault. 
Both operands are saved in registers within the 
integer unit. Also, the position is divided by eight 
by shifting, and is saved. The source pointer used to 
get the base address as source two is incremented 
and used to select the next source list entry, which 
is the low longword of the prefetched quadword 
field. Issue control determines that only the source 
two operand is missing and issues the second 
microword with bypass. The microword hold sig­
nal is deasserted and the microsequencer generates 
the control store address of the third microword. 

Cycle seven begins with a data cache read of 
address xxxxxxx9. The rotator is spinning the 
three bytes <7:5> of interest from the cache read 
in cycle seven to the correct position. No response 
is issued to the E-box because this unaligned refer­
ence requires two data cache reads to fulfill. The 
address xxxxxxx:9 and the last bit are inserted into 
the write queue. The M-box delivers the required 
longword, and execution begins immediately. The 
second execution cycle calculates the target byte 
address. The position, divided by eight, is added to 
the base address. The microsequencer generates 
the fourth control store address by using the next 
address field of the microword. No operands are 
selected for the next cycle, and the next instruction 
is issued normally. 

Cycle eight is a rotation-only cycle. The one byte 
<8> of interest, read from the cache in the previous 
cycle, is rotated into the correct position (i.e., byte 
<0:3>), and the M-box sends the data to the E-box 
by issuing a response. 

The third execution cycle uses the bit position to 
set up the special encoder in the integer unit and 
clear the appropriate bit. The source two register 
file pointer is incremented again to select the high 
longword from the source list. This microword 
branches on three conditions determined by hard­
ware functions. The first condition indicates if the 
low longword of the prefetched field has a page 
fault. If a fault does exist, the microword flow 
checks whether the longword is needed or not. As 
noted earlier, the longword was prefetched in 
the hope that the bit position was within the first 
64 bits of the base. If the bit is not within the first 
longword, the page fault can be disregarded. The 
second branch checks whether the position is 
greater than 63 bits. If it is greater, the microcode 
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must ignore the prefetched quadword and initiate 
a byte-read directly to the M-box for the appro­
priate byte. The third branch checks whether the 
position is greater than 31 bits. This check is used to 
determine which prefetched longword to use when 
the position is in the 64-bit range. In this example, 
the bit position of 13 means that the bit is in the low 
longword and no page fault is assumed. 

Issue control determines that only the source two 
operand, which is the high longword, is missing. 
The fourth microword is issued with bypass, and 
the microsequencer generates the control store 
address of the fifth microword. 

In cycle nine, the M-box delivers the high long­
word and execution begins immediately. The 
encoder in the integer unit clears the correct bit in 
the low longword of the field . The microsequencer 
generates the sixth control store address, and the 
next cycle is issued normally. 

Cycles Ten through Fifteen 
In cycle ten, the E-box initiates a byte write to the 
M-box. Data is passed to the M-box, and the appro­
priate byte is shifted to the low byte location. The 
sixth and final microinstruction is issued normally. 

In cycle eleven, the M-box receives an explicit 
E-box write request to retire the BBSC instruction 
with a memory write. Explicit writes differ from 
writes initiated by the I-box in that the E-box sup­
plies a virtual address with the data, whereas the 
I-box provides a virtual address and the E-box sub­
sequently provides the data for I-box writes. How­
ever, three entries exist in the write queue for the 
prefetched quadword. These entries were placed in 
the queue for memory conflict-checking purposes 
and cannot be used for writing purposes because 
only a byte of data is being written and not a quad­
word. The write field command from the E-box 
forces the write queue control to discard the three 
entries. The front end of the E-box accesses the 
translation buffer and checks for write success 
during this cycle. If the write is successful, the phys­
ical address and the context of the byte are sent to 
the data cache. 

The final execution cycle determines if the 
branch prediction was correct . The bit specified 
by the correct position is shifted to the least signi­
ficant position in the shifter, where it can be used 
for a macrobranch comparison. The macrobranch 
result is compared to the I-box branch prediction 
in cycle twelve. The microword also indicates that 
the microsequencer should start forking for new 
macro instructions. 
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Cycle twelve is the data cache lookup cycle for 
the byte-write operation. The data size is less than a 
longword. Therefore, the byte that is to be written 
must be merged with the seven unaffected bytes of 
the cache line. 

Two signals are sent to inform the I-box of the 
branch prediction status. The branch valid signal 
indicates that a branch prediction validation has 
occurred, and the branch signal indicates if the vali­
dation was correct. 

The branch prediction logic receives the branch 
valid signal. If the prediction was correct, the pro­
gram counter's unwind buffer is discarded and the 
branch logic state returns to idle. If the prediction 
was incorrect, any data for subsequent instructions 
is flushed from the pointer, source list, fork, and 
program counter queues and the program counter 
is restored from the unwind buffer. 

The byte of E-box data is rotated and merged 
with the cache line that was read during the lookup 
cycle in cycle thirteen. In cycle fourteen, if the pre­
diction was incorrect, the branch prediction cache 
is written by using the program counter's unwind 
buffer as the target address. The prediction also is 
amended; the branch logic state returns to idle; and 
the virtual instruction cache is accessed using the 
program counter's prefetch buffer for the sub­
sequent instruction. The data cache is then written. 

Interactions between Instructions 
A short cycle time and features, such as a virtual 
instruction cache, multiple specifier decode, multi­
ple operand and instruction prefetch, queues for 
decoded instructions, and multiple functional units, 
combine to produce a system with several variable 
length overlapping pipelines interconnected with 
various buffers and queues. There are more than 
twenty different functions that could be counted as 
single pipeline stages but many operate in parallel 
such that the pipeline is considered to vary between 
eight or nine stages. 

We have described each instruction as a single 
entity moving through the various VAX 9000 
pipeline stages. However, many interactions exist 
between instructions that can decrease the speed of 
the system. Bypasses are required in several stages 
in case the previous instruction generates results 
that the current instruction needs. In some cases, 
the pipeline must stall as it runs dry, or an upstream 
stage must wait for a result that is in a stage several 
cycles downstream. To maximize performance, the 
I-box decodes up to five instructions ahead of the 
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E-box. This process evens the flow through the 
pipeline and keeps the E-box busy. Figure 6 illus­
trates the code block as it moves down the pipe. 

The first stage is the virtual instruction cache 
access, or fetch, stage as the instruction is read from 
the virtual instruction cache. Some instructions 
do not need an actual virtual instruction cache 
access but are in the I-buffer from a previous virtual 
instruction cache fetch. The instruction decode 
takes place in the decode, or XBAR, stage. The 
I-buffer is shifted and the fork RAM is accessed in 
this stage as well. 

The specifier, or operand processing unit, stage 
has several parallel functional units: the operand 
processing unit, the short literal expansion unit, 
and the register/pointer unit. The microaddress 
generation occurs in this stage. Together with the 
translation buffer cache lookup, the I-box can pass 
data to the E-box, and the microword access can 
occur in the translation buffer stage. The cache 
stage includes issue and source list access. The 
execute stage can be executed in either the integer 
unit, float unit, multiply/divide unit, or all three. 
The E-box can retire only one issued microinstruc­
tion each cycle, but not all issued instructions 
need to be retired. The final E-box stage is the write 
general-purpose registers stage, where the registers 
are updated. However, the M-box can access cache 
or queues for writes at the same time. The last stage 
is the cache data write stage. 

The ADDL2 instruction flows through nine stages 
without problems, if there are no previous instruc­
tions in the pipeline and all the caches hit. The 
SUBF3 takes two cycles to execute and ends in the 
write general-purpose registers stage. 

The MULG3 needs four cycles for decoding. The 
operand processing unit is busy for three cycles. 
The E-box issues two microinstructions, the second 
of which requires two execute cycles. The MULG3 

includes two retire and write general-purpose regis­
ters cycles. The BBSC uses two decode cycles, and 
the translation buffer is accessed three times for the 
unaligned quadword. The first four bytes of data 
from the cache need an extra cycle to pass through 
the rotator, and the second four bytes need two 
cache accesses and the rotator cycles. Six micro­
instructions are issued in the BBSC instruction, and 
the E-box write needs a translation buffer lookup 
before the cache lookup can occur. Figure 6 also 
illustrates the E-box stall that occurs because the 
two MULG3 retire cycles delay the first BBSC retire 
cycle and second issue cycle. 
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2 3 4 5 6 7 

VIC 

XBR/ IBUF 

OPU/FPL/SL 

TB/L DATA 

CACHE/ ISSUE/ READ_ SLIST 

EXECUTE- INT/MUL/FLOAT 

RETIRE 

WRITE-GPA/QUEUE 

WRITE-DATA 

KEY: 

~ ADDL2 ~ SUBF3 ~ MULG3 ~ BBSC 

Figure 6 VAX 9000 lnstrnction Pipeline 

Overall some part of this set of instructions is 
being worked on for 22 cycles. After cycle nine the 
I-box can be prefetching and decoding the instruc­
tions after the branch, either the instructions 
directly following the branch or instructions that 
are branched to. The number of retire cycles used or 
wasted by a sequence of instructions is a good mea­
sure of the time taken to execute those instruction . 
If the prediction is correct, these four instructions 
execute in 15 cycles; but if the prediction is incor­
rect, these instructions take 21 cycles. 

Conclusion 
The various advanced architectural features con­
tributed to the low number of cycles required for 
an average VAX instruction. The virtual instruction 
cache provides a high bandwidth of instruction 
stream to the I-buffer (8 bytes per cycle) and 
requires a much lower bandwidth from the M-box 
(8 bytes every 12 cycles). The large I-buffer presents 
9 bytes of instruction stream for decoding. The 
instruction decoder (XBAR) delivers up to three 
specifiers per cycle. The operand processing unit 
calculates operand addresses and branch target 
addresses. The branch prediction unit accurately 
predicts the majority of branches, and instruction 
decoding continues down the predicted path so 
that no time is lost waiting for results from com­
pares. The I-box prefetches and decodes up to five 
instructions ahead of the E-box. The translation 
buffer contains up to 1024 virtual-to-physical 
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address translations. However, if the required trans­
lation is not contained in the translation buffer, the 
fix-up unit autonomously creates an entry, which 
eliminates the usual latency involved when an 
E-box is used to translate addresses. The M-box also 
pretranslates write addresses and stores them in the 
write queue for subsequent access and conflict 
checking. The 128KB, two-way associative, write­
back cache provides a very low miss rate, high 
bandwidth, and low latency. The queues of 
decoded instructions allow the I-box pipeline to 
be less tightly coupled to the E-box. The multiple 
functional units in the E-box allow multiple VAX 

instructions to be executed in parallel. The archi­
tectural features of the VAX 9000 interact to pro­
duce a CPU that executes VAX instructions in the 
least number of cycles or ticks. The low number of 
ticks per instruction, combined with the short cycle 
time, produce the highest performance VAX system 
now available. 
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Semiconductor Technology 
in a High-performance 
VAX System 

The VAX 9000 system is the newest member of Digital's VAX family of computer 
systems. The 9000 is a higb-perfomzance ECL processor, with a very fast, 16-nano­
second cycle time. To achieve this high level of performance, a new generation of 
semicustom and custom integrated circuits was required for the scalar CPU and the 
vector processing option. Goofs for circuit density, performance, and skew mainte­
nance were fulfilled with the development of a high-speed gate array, special custom 
chips used in key applications, and a high-speed RAM employing a neu• architecture. 

The semiconductor requirements for the VAX 9000 
system posed a number of challenges for Digital's 
Integrated Circuits Development Group. Those 
requirements included a tremendous number of 
equivalent logic gates (1,037,400 gates) and a large 
amount of RAM in the processor (3,280,000 bits). 
Moreover, the project's performance goal of over 
30 VAX-11/780 units of performance (VUPs) 
required the development of state-of-the-art semi­
conductors and the use of innovative techniques to 
design them. 

Given the project's goals, the JC technologists 
evaluated several competing semiconductor tech­
nologies and decided to implement most of the 
logic within the 9000 system in a high-speed, high­
density, 10,000-gate array. The gate array provides 
a broad range of speed and power-dissipation 
options. Working with Motorola, the JC Group first 
engineered the base 10,000-gate macrocell array 
(MCA), which is implemented in Motorola's MOSAIC 
III process. Logic engineers then designed the 77 
different gate array chips (options) on the base 
array, using a rich library of logic functions and a set 
of automated place and route tools. Additionally, 
they designed five custom chips, invented a fast 
cycle time, self-timed random access memory 
(STRAM) architecture, and designed a multichip unit 
to interconnect all these high-performance JCs. 1 

Four different design methods were used to 
implement the chips. The MCAx chips employ a gate 
array design technique. The CDxx, the VRGx, and 
the STRAM chips required a full custom approach. 
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The STGx chip was implemented using a silicon 
compiler technique. The MULx and DIVx chips 
mwere implemented using a standard cell design 
approach. Statistics on 9000 system chip design are 
given in Table 1. 

This paper describes the VAX 9000 MCA JIJ gate 
array, the development of each of the five custom 
chips, and the STRAM architecture. Before our dis­
cussion of the gate array, we present a brief 
overview of the semiconductor technology used 
to fabricate the array and the custom chips. 

Semiconductor Technology 
In 1985, the VAX 8800 series was Digital's largest 
and most powerful system, offering single-CPU per­
formance of eight VUPs. The 8800 CPU logic was 
Motorola's Macrocell Array I (MCA I) gate array, 
which was fabricated in MOSAIC I bipolar technol­
ogy. In comparison, the VAX 9000 goal of 30 VUPs 
was aggressive, and the IC Group realized a new 
semiconductor technology was required. 

At the start of the project, the technologists evalu­
ated semiconductor vendors to determine what 
was the "best" technology available to implement 
the new system. CMOS, BiCMOS, bipolar, and GaAs 
IC technologies were evaluated. Among the factors 
considered were logic density, gate delays, on- and 
off-chip interconnect delays, manufacturing risks, 
and product delivery. 

Although very high gate densities were available 
with CMOS technology, the logic gate delays proved 
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Table 1 VAX 9000 Chip Statistics 

Die Size 
Chip Description (Millimeters) 

MCAx MCA Ill gate array chip 9.8x 9.8 
CD xx Clock distribution chip 6.2x6.2 
STGx Self-timed register file chip 9.8x9.8 
MULx Multiplication chip 9.8x9.8 
DIVx Division chip 9.8x 9.8 
VRGx Vector register file chip 9.8x 9.8 
1KSR 1 K x 4 self-timed RAM 4.9x 3.6 
4KSR 4K x 4 self-timed RAM 6.4 x 4.2 

to be too slow to meet the cycle time requirement. 
Also, the CMOS output circuits could not drive sig­
nals off-chip into a 50-ohm transmission line as 
quickly as a bipolar transistor, which limited the 
speed of signal between I Cs. 

BiCMOS offers the advantage of highly dense 
CMOS coupled with bipolar drive capability. How­
ever, the technologies available at the time were 
optimized for the best CMOS transistors with a com­
promised bipolar device. This approach limited the 
overall performance of the circuit to a level roughly 
equivalent to that of previous generation bipolar 
devices, which would not be aggressive enough to 
meet the CPU performance needs. 

Gallium arsenide (GaAs) ICs offer a theoretical 
performance advantage of between two and three 
to one over silicon implementations. The group 
found IC densities were lower than those of bipolar 
devices, however; and the on-chip speed advantage 
was countered by the need for more off-chip sig­
nals in the critical paths of the CPU. Also, because 
the manufacturing technology of GaAs ICs was 
immature, very few companies had attempted to 
sell GaAs into the commercial marketplace. So 
while this technology was considered for a time in 
some applications where alternatives also existed, 
GaAs were eventually dropped from consideration 
because of the uncertainty of availability. 

The IC Group also studied Motorola's third 
generation of their oxide-isolated self-aligned 
implanted circuits (MOSAIC III) bipolar technology.2 

It offered a factor of six in speed advantage over 
the previously used MOSAIC I technology and had 
the potential of providing eight to ten times the 
logic density. Although not as dense as CMOS or 
BiCMOS, MOSAIC III was much faster than either of 
those technologies and much denser than any avail­
able GaAs technology. In addition, although many 
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Signal Transistor RAM Power 
Pins Count Bits (Watts) 

256 40.1K 30 
170 7.2K 13.9 
152 29.3K 17.8 

182 48.4K 30.9 
112 29.2K 23.9 
198 76.0K 9216 24.9 

33 28.0K 4096 2.4 
35 103.0K 16384 2.4 

of the manufacturing steps were new, most of them 
were based on previously proven techniques. The 
group therefore concluded that MOSAIC III was 
best suited to meet the challenges of the VAX 9000 
system. 

The MOSAIC III process is an advanced silicon 
bipolar process which yields a transistor structure 
with a polysilicon base, emitter and collector elec­
trodes, polysilicon resistors, and three layers of 
metalization. Compared to the MOSAIC I device 
used in the 8800, the critical collector-base junction 
of this transistor structure takes up approximately 
50 percent less area, as shown in Figure 1. Com­
bined with shallower junctions and reduced base 
resistance, the intrinsic device performance was 
improved by a factor of three. Further, the poly­
silicon resistor produced with this process has far 
lower parasitic capacitance than the MOSAIC I 
monosilicon resistor. Some key performance mod­
eling parameters and density metrics are provided 
with the figure. 

The VAX 9000 packaging imposed other require­
ments on the semiconductor technology. Power 
dissipation increased from 5 watts for the MCA I to 
30 watts for the MCA III because of the increase in 
gate density from I ,200 to 10,000 gates. Therefore it 
was determined that all chips should be mounted 
directly to the multichip unit cold plate for opti­
mum cooling. For manufacturing economy, it was 
desirable to bond the multiple leads of the chip 
directly to the pads on the high-density signal car­
rier (HDSC). Consequently, all CPU chips must be 
provided to the multichip unit assembly site in a 
tape automated bond (TAB) package. As shown in 
Figure 2, chips are mounted in a plastic carrier suit­
able for automated handling, and the surface of the 
die is protected from mechanical damage with an 
epoxy encapsulent. 
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MCA JOK Gate Array 
A high-performance emitter coup led logic (ECL) 

gate array with 10,000 equivalent gates and 256 
inputs/outputs has been developed for the VAX 
9000 system. The gate array design approach used 
in the VAX 9000 system ensures the shortest possi­
ble turnaround time from option mask to hardware, 
thereby reducing the system design time. In this 
approach, cell boundaries are defined with all tran­
sistors and resistors fo,ed within the cells. When a 
cell function is selected from a predefined cell 
library, the cell customization occurs at the metal 
between the transistors and resistors. Then, to 
define the function of the gate array option, the 
metalization between cells is customized. This 
approach allows the semiconductor foundry to 
build many wafers up to the customization level; 
when a gate array is to be built, only the custom 
metal is required . As noted above, 77 different IOK 
ECl gate array options are used in the VAX 9000 sys­
tem. This gate array has a rich selection of logic cells 
with different power settings for the logicians to 
use to meet performance and power requirements. 

number of logic cells for a given signal pin count are 
available for the logic designers. Technologists eval­
uated several key factors to determine the gate array 
physical layout and to ensure its success: 

• Area of the silicon chip versus yield 

• 1/0 pad pitch 

• Maximum power dissipation 

• Speed of the gates 

• Maximum number of logic cells 

Successful trial layouts of the lOK ECl gate array 
floor plan were completed before any VAX 9000 
options were started. 

Using Rent's Rule, technologists maintained a bal­
ance between the number of gates and the package 
I/0 count. This balance ensures that a maximum 

The gate array floor plan, shown in Figure 3, 
comprises a central core area of 414 major (M) cells, 
divisible into quarter cell functions, arranged in an 
array of 20 rows and 21 columns, less 6 sites for the 
master bias generators and special clock generator 
circuits. The number of transistors used in a quarter 
cell is based on the logic cell most frequently used 
in the lOK ECl gate array, the scan latch. A ring of 
200 output (0) cells is interspersed with 224 inter­
face (I) cells. The ring surrounds the internal cells 
and interfaces the pad drivers with the internal 

MOSAIC Ill P+ POL YSILICON N+ POL YSILICON 

:::£aL"~~¥~ 
_L~--~+--~ 

POLYSILICON RESISTOR ,) NPN TRANSISTOR: 

MONOSILICON RESISTOR 

_,. I 
.,,,.,,. I 

;,,. I 

// C-B JUNCTION AREA I 
// I 

, I 
I I 

I p ,- - - '.:.-.:::-= ~:._) l ________ _ l 
NPN TRANSISTOR 

MOSAIC I 

NPN Fr: 5 GHz 
Rb: 1475 ohms 
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CJ5 : 185 ff 

DRAWN EMITIER SIZE: 3µm x 4µm 
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16 GHz 
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20 ff 
24 ff 
54 ff 
1.75µm x 4µm 
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12µm 

Figure I Comparison of MOSAIC Ill and MOSAIC I Devices 
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cells. The 256 I/0 pad cells along with the 104 
power pads are located around the perimeter of the 
lOK gate array. The metalization system uses three 
interconnect layers. The customized routing chan­
nels reside on the first and second metal layers with 
interconnecting vias between the two layers of 
metal. The top metal layer and parts of metal I and 2 
provide power and ground distribution. 

The lOK ECL gate array used in the VAX 9000 is 
approximately ten times more dense than the ECL 

gate array used in the VAX 8800 system. The gate 
delays in the 9000 are improved six times over gate 
delays in the VAX 8800. Table 2 compares the IOK 
ECL gate array used in the VAX 9000 to the ECL gate 
array used in the VAX 8800. 

Previous gate array designs , in general, have 
provided only two levels of series gating, thereby 
limiting the complexity of functions that can be 
designed with one current switch. Within this gate 
array, three levels of series gating at both internal 
and output macrocells provide additional "AND" 

(product) gate functions at very high speed with 
one switch delay and at a lower power level. Fig­
ure 4 compares three-level series gating and two­
level series gating for a "2-3-4-4 AND/OR" logic 
function (internal gate). Table 3 lists the differences 
in typical gate performance for a low power gate. 
The table also compares low power gate and high 
power gate. Notice the power difference between 
the two-level and three-level high power gate. 

46 

Figure 2 Chip in TAB Package Mounted on 
Plastic Carrier and Encapsulated 

Table 2 Comparison of Number of Cells 
and Delays in the VAX 8800 and 
VAX 9000 Gate Arrays 

VAX8800 VAX 9000 
Gate Array Gate Array 

Internal major 48 414 
cells 

Output cells 26 200 

Input cells 25 224 

Input cells 1.05 nano- 175 pico-
gate delay seconds seconds 

(high power) 

Metal delay 2.6 pico- 1.3 pico-
(fall delays) seconds seconds 

per mil per mil 

All current switches within the array are pow­
ered from the main supply voltage VEE 1. Three­
level-series gated functions are implemented in the 
VAX 9000 gate array option, which requires VEE I 
to be set to -5.2 V. Input cells are powered from a 
second, lower supply voltage VEE2 (-3.4 V) to save 
power. The output emitter followers of M, I, and 
O cells as well as series-terminated ECL (STECL) 

output followers employ constant current source 
pulldowns to VEE2 to save power. The constant cur­
rent source pulldowns minimize the sensitivity of 
AC performance to variations in power supply. This 
same termination scheme was used in VAX 9000 
custom chips. 

One of the technologists' main goals was to mini­
mize power consumption of each macrocell while 
obtaining the highest possible performance from 
the IOK ECL gate array. The overall IOK ECL Gate 
Array power is limited to 30 watts because of the 
cooling requirements, the internal power distribu­
tion, and the current density limits on power pins. 

A unique feature included in the IOK ECL gate 
array that previous gate arrays do not have is series­
terminated ECL (ST ECL) outputs. STECL outputs 

Table 3 Comparison of Two-level and 
Three-level Series Gating 

Two levels 
of Gating 

Three Levels 
of Gating 

Gate delay from 300 picoseconds 250 picoseconds 
input pin A 
to output pin YA 
(low power) 

Low power gate 
High power gate 

9.88 milliwatts 
18.20 milliwatts 

8.84 milliwatts 
13.00 milliwatts 
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------· ~-~-

Figure 3 Photomicrograph of the Gate Array 

include a constant current source pulldown and a 
series terminating resistor. This feature allows the 
elimination of off-chip termination resistors used 
in conventional 50-ohm ECL outputs. STECL out­
puts allow shorter interconnections between chips 
on the multichip unit because the chips can be 
placed closer to each other, thus improving perfor­
mance. Another advantage of using STECL outputs 
over 50-ohm outputs is that less than half of the 
simultaneous switching output noise is coupled to 
unswitched outputs. All custom chips used in the 
VAX 9900 employ STECL termination. 

Clock Distribution Chip- CDxx 
The major function of the clock distribution chip 
(CDxx), shown in Figure 5, is to distribute master 
and reference clocks to each MCA on a multichip 
unit. There are eight pairs of differential master and 
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reference clocks. The chip also supplies clocks to 
all STRAMs on the unit. Each of the STRAM's four 
groups of six clocks can be programmed to one of 
eight possible clock phases. This flexibility in pro­
gramming allows the system designer to select the 
appropriate clocks for STRAMs in order to meet 
system timing requirements. 

In addition to providing the functions above, 
the design goals for the CDxx project included the 
following: 

• Minimize the space occupied by the chip on the 
multichip unit 

• Provide scan control and scan distribution 

• Include a wideband amplifier 

• Ensure low clock skew 

• Provide a temperature-detecting circuit 
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SCAN RING 12 :::CAN RING 13 

HOT CIRCUIT 

Figure 5 Photomicrograph of CDxx Chip 

Minimizing the real estate occupied by the chip 
was complicated by additional functions located on 
the CDxx, such as scan and the temperature detect­
ing circuits. The minimization was accomplished 
by employing a custom chip design approach in 
which each element (cell) is optimized and then 
manually placed and routed to achieve a compact 
design. As it turned out, the size of the chip was not 
determined by the amount of real estate needed to 
implement the circuits, but rather by the number of 
pins required to communicate to the rest of the 
multichip unit. 

Since a CDxx is mounted on every multichip unit 
in the CPU, the scan distribution and control logic 
are located on this chip. The CDxx chips in the sys­
tem are chained together on the system scan bus. 
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Each CDxx receives its scan control signals from the 
previous CDxx in the chain or from the service pro­
cessor. As shown in Figure 5, there are three scan 
rings located on the CDxx. Ring 12 is a 16-bit ring 
reserved for the CDxx STRAM clock generation con­
trol ring. This ring controls the STRAM clock phase 
selection and enable for each of the four STRAM 

clock groups. Ring 13 is a 14-bit ring reserved for the 
CDxx scan control. Data is shifted into this ring and 
then loaded into CDxx control registers. Ring 14 is a 
47-bit ring reserved for the CDxx information scan 
ring. Data is loaded into this ring from CDxx data 
registers and shifted out to the service processor. 

The design of the wideband amplifier was 
prompted by the need for the clock distribution 
chip to receive two differential sinusoidal master 
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and reference clock signals as inputs. These signals 
are transformer coupled from the clock source. 
The master clock runs at one eighth the system 
cycle time, and the reference clock runs at the sys­
tem cycle time. The wideband amplifier receives 
differential sinusoidal signals of relatively small 
amplitude - less than 125 millivolts peak to peak­
and transforms them to IOOK ECL levels on output. 
The design of the input circuits meets these crite­
ria and typically functions with inputs less than 
65 millivolts. 

All the clocks are distributed by the CDxx as pairs 
of differential signals. The distribution of these 
docks is, of course, to be done with minimal clock 
skew. Clock skew is the difference in delay time 
between different clock outputs measured from a 
common point. The common point in this case is 
the number of master clock inputs to the chip. To 
maintain low clock skew, technologists designed 
fast gates and minimized the number of cascaded 
gates in the clock path. Also, all the metal that inter­
connects the cells in the clock path is controlled for 
equal delay. As a result, the measured clock skew 
is less than 100 picoseconds on a chip for master, 
reference, and STRAM clocks. The delay of master 
dock input to output is less than 1 nanosecond (ns). 

The temperature-detecting circuit on the CDxx 
warns the system when a device junction tempera­
ture approaches the maximum allowed tempera­
ture on a multichip unit. As implemented, the 
circuit is controlled from the system console. The 
console loads the CD.xx with a number that repre­
sents the temperature the circuit must use as a point 
of comparison. If the junction temperature of the 
CDxx is higher than the programmed value, the cir­
cuit trips and notifies the console of a temperature 
problem. The console then takes corrective action. 

Self-timed Register File Chip- STGx 
The self-timed register file chip (STGx) is employed 
in the VAX 9000 to provide four register banks 
accessible through multiple read and write ports. 
The four banks include a microcode scratch-pad 
register bank, the VAX general-purpose register 
set, a memory data register storage bank, and an 
instruction data register bank. The performance 
requirements for the STGx were quite rigid and 
guided several key design decisions, including den­
sity and layout. The read access time was to be less 
than 5 ns. The write access time was to be less than 
6 ns. In other words, the chip must read or write 
any one of its 64 locations in 5 or 6 ns, respectively. 
Both goals have been met . In fact, the read access 
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time is typically less than 4 ns, and the write time 
is typically less than 5 ns. Figure 6 is a photomicro­
graph of the STGx chip. 

The STGx is a 64-word by 18-bit ECL register file 
containing three write ports and two read ports. 
The 64 words are separated into four 16-word by 
18-bit storage array sections. Each of the four stor­
age banks has dual read capability. Storage bank one 
has dual write capability; storage banks two and 
three have triple write capability; and storage bank 
four has single write capability. Simultaneous write 
access to the array is possible through all ports with 
correct results occurring; the only exception is in 
the case of writes to the same location from multi­
ple ports, which is an undefined operation. A write 
followed by a read access to the array- even to the 
same address-is possible with correct results 
occurring. The chip has two clock inputs for con­
trolling reads and writes. 

One requirement for the design was to include a 
self-timed write capability so that the system need 
not provide properly timed write pulses to the chip. 
In the system, the chip is clocked with STRAM 
clocks for reading and writing. The design uses 
these clocks to latch read address information, to 
latch write address information, and to latch input 
data. In addition, the design takes the leading edge 
of the write clock to generate a delayed write pulse. 
The delayed write pulse is used to write the appro­
priate word in the 64-word by 18-bit array, taking 
into account the time needed to decode the write 
address. 

The design style used to implement the self-timed 
register file chip is similar to a silicon compiler tech­
nique. The · chip's storage area is made up of four 
arrays. The input address register for both read and 
write ports, the input data latches, and the data out­
put drivers are arrangements of cells in strips. The 
placement and routing of these arrays and strips was 
procedurally performed using custom layout tools. 
Once the blocks were assembled and placed, inter­
connections among blocks, strips, and pins were 
then routed manually. 

Multiplication Chip-MULx 
The architecture of the scalar processor defined an 
integrated floating point processor. Unlike most 
RISC processors, which off-load all floating point 
operations to a separate floating point processor, 
the VAX 9000 system handles floating point opera­
tions within the E-box .-i The multiplication unit 
therefore supports both integer and floating point 
formats. To achieve this support, a custom chip was 
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WRITE CLOCK GENERATION A AND B READ ADDRESS LATCHES 

Figure 6 Photomicrograph of STGx Chip 

required that provided superior performance, spe­
cial logic gates, and improved density. Custom chip 
technology provided enough density to accommo­
date a 32-bit by 32-bit, eight-logic-level multiplica­
tion array in a single chip (MULx). To minimize the 
cost and time of custom design, designers employed 
standard cell design techniques in which the cell 
height was fixed and the width could vary to take 
advantage of packing density. By constraining 
the design in this fashion, the High Performance 
Systems Group's CAD suite could be employed to 
place and route the chip. Special logic gates 
eliminated three logic levels, and high-powered fast 
gates provided the performance to permit a 32-bit 
by 32-bit multiply operation in less than 9 ns. Fig­
ure 7 shows a photomicrograph of the MULx chip. 
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Three MULx chips were required in the scalar 
processor to achieve double-precision performance 
in which every 64 ns a 56-bit multiplication could 
complete. Each MULx chip has two 32-bit input data 
buses. The MULx chip is also employed to perform 
all integer multiply operations in a single 16-ns 
cycle. 

The scalar processor, which has 32-bit-wide data 
paths, delivers double-precision input data in two 
cycles. In the first cycle, each MULx consumes the 
most significant high bits of each operand. All three 
MULx chips latch this data while also unpacking 
it, multiplying it, and then latching the product. 
One of the MULx chips' results is then saved. In the 
second cycle, the remaining double-precision data, 
the least significant low bits, is consumed, and each 
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Figure 7 Photomicrograph of MUL:x Chip 

MULx chip unpacks the data and performs a unique 
multiply: operand A high bits and operand B low 
bits; operand A low bits and operand B high bits; 
and operand A low bits and operand B low bits. 

An MCA III gate array accumulates all these 
results, and another rounds and packs the bits into a 
VAX floating point product. Since each MULx needs 
to know which partial product it must compute in 
the second cycle, two personality bits are included 
that are loaded by means of the system scan chain. 

MULx chips are also used in the vector processor. 
The vector processor (V-box) has 64-bit-wide data 
paths. Four MULx chips are employed to complete a 
double-precision multiply every 16 ns. Since the 
operand unpacking differs between the scalar and 
vector processors as a result of how fast operands 
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are delivered, each MULx has an additional person­
ality bit for indkating whether the MULx is in the 
V-box or E-box. 

The MULx chip, as used in both the scalar and 
vector processors, is a 32-bit by 32-bit ECL parallel 
multiplier which is fully pipelined for a 16-ns cycle 
time. It performs both two's complement and sign/ 
magnitude multiplication. In a single cycle, the chip 
unpacks VAX floating point formats F, D, and G, or 
integer formats long, word, and byte; performs 
exponent calculations and sign handling; and com­
pletes up to a 32-bit by 32-bit multiplication . 

If the operation is double precision, the 64-bit 
result is a partial result . It must be accumulated with 
three other partial results to form the double-preci­
sion, correctly rounded, and normalized product. 
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If the operation is an integer type, then the 64-bit 
two's complement result is the VAX integer product. 
Along with producing this integer product, MULx 
also produces the correct condition codes. Integer 
operations require one machine cycle to complete. 
Operands are not latched at input. Instead they are 
immediately unpacked and sent to the multiplica­
tion array. This multipurpose array then produces a 
set of sum and carry product vectors. These vectors 
are then added in a full carry lookahead adder 
(CLA). This adder comprises a 31-bit adder and a 
32-bit adder, cascaded. The produced sum is the 
64-bit product, which is then latched. The output 
of the latch is used to compute integer-type con­
dition codes. 

The integer instructions supported include VAX 
MULB, MULW, and MULL. EMUL is also directly sup­
ported, along with the Z and N bit condition codes. 
Finally, to assist in H format-type multiplications, 
a true 32-bit by 32-bit magnitude multiplication is 
also supported, called EXTMUL (extended multiply). 
There is a 64-bit data path back into the E-box for 
EMUL- and EXTMUL-type operations. 

Six features of the MULx design that improve per­
formance and minimize logic should be noted. 
First, unlike traditional designs, the MULx design 
does not include Booth recoding of the multiplier 
operand. Booth recoding offers no logic savings 
either in timing or real estate when the multiplica­
tion array reduction scheme is optimal. Second, a 
Baugh-Wooley two's complement algorithm was 
used to implement integer multiplication.4 Third, 
engineers designed special full adder logic gates to 
integrate multiplication summand generation into 
the full adder cell and to eliminate the need for an 
additional logic level. Fourth, a unique multipli­
cation reduction algorithm was developed which 
provides the initial routing advantages of a Wallace 
tree, with the minimal logic of a Dadda tree.5•

6 Fifth, 
a ripple is formed in the reduction array. The ripple 
facilitates the start of the least significant 31-bit 
CLA addition at least one logic level sooner than 
the most significant 32 bits and does not require a 
carry-in input to the upper 32-bit adder. Finally, by 
developing a very fast 4-3-2-1 AND/OR gate, engi­
neers were able to remove two additional logic 
levels in both CLA adder networks. 

To avoid bugs in the array design, since bugs in an 
array consisting of 1000 full adders could have sig­
nificantly affected the product shipment schedule, 
engineers developed a FORTRAN program to logi­
cally interconnect and physically place the array. 

Any bugs would be algorithmic and not random, 
and algorithmic bugs should be obvious. In addi-
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tion, by algorithmically placing the array, signi­
ficant density improvements were realized. This 
program provides a Wallace-Dadda implementa­
tion that logically reduces 32 rows in 8 logic levels, 
and consumes as many initial summand bits. It 
also uses the least number of full adders as theoreti­
cally possible, while delivering the least significant 
32 bits of sum and carries at least one full logic level 
sooner than the most significant bits. 

Division Cbip-DIVx 
The iterative divide function performed by the divi­
sion chip, DIVx, requires a significant amount of 
hardware, the density of which a standard cell chip 
affords. Two gate arrays would be required to per­
form the same function, in which case a timing­
critical path crossing would occur between the two 
chips. Therefore, the IC designers implemented the 
DIVx chip as a standard cell design by building 
on the techniques developed for the MULx chip 
described above. Also, like the MULx design, the 
goals for the DIVx design project were to optimize 
performance and minimize real estate use by fitting 
the iterative divide function in a single chip. 

The IC designers employed a standard cell tech­
nique in which four horizontal sections are defined, 
each section having a different number of columns. 
Reference cells are located in the center row of each 
section and provide ECL reference voltages to the 
cells above and below in that section's columns. 
Placement was driven for performance, with quo­
tient selection logic being distributed to where it 
was required. This method made for an irregular 
structure, as can been seen in Figure 8. 

The VAX 9000 system optimizes both multiplica­
tion and division by providing separate functional 
units. Each functional unit performs both integer 
and floating point operations. This approach differs 
from the one taken by most processor architects, 
who conceptually link multiplication and division. 
Usually, algorithms are chosen that can share hard­
ware at the expense of the performance of either 
operation. The separate division unit in the 9000 
provides superior performance for both integer and 
floating point operations. The DIVx chip is also 
used by the V-box to perform very fast vector divi­
sion operations, as shown in Table 4. 

Division is an iterative process. Unlike the case of 
multiplication, one cannot predict the summands 
and then reduce the summand matrix. The two 
approaches to division most commonly used are 
the Taylor Series convergence algorithm and a sub­
tract and shift algorithm? The algorithm employed 
in the 9000 is a variation on the subtract and shift 
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Table 4 Division Performance 

Data Type 

Integer: byte 

Floating 
point: 

word 
long 

F-format 
D-format 
G-format 

Cycles 

3-4 
3-5 
3-8 

7 
13 
12 

Time 
(Nanoseconds) 

48-64 
48-80 

48-128 

112 
208 
192 

method, which allows for savings in hardware as 
well as increased performance. 

In this method, an imprecise quotient is selected 
based on a truncated estimated partial remainder 

and a truncated version of the exact divisor. This 
imprecise quotient digit is corrected when the next 
guess quotient digit is selected. The selected digits 
may be positive or negative. The positive digits are 
accumulated in a positive-value shift register. The 
negative digits are accumulated in a negative-value 
shift register. The final corrected binary quotient is 
then formed by subtracting the negative register 
from the positive register. 

The algorithm is based on a signed digit notation 
scheme. To determine two quotient bits, the bits 
may be chosen from a digit set that includes 
{-2,-1,-0, +o, +l, +2 }. Thedigitsetissimplyan 
expanded form of the common nonrestoring digit 
set that typically uses { -1, 0, + 1 } . In nonrestoring 
algorithms, the quotient is normally corrected as 

Figure 8 Photomicrograph of D/Vx Chip 
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needed; whereas here, it is not corrected until the 
entire iterative process is completed. The next sig­
nificant difference between this division technique 
and the nonrestoring method is that the quotient 
bits selected are based on an estimate of the partial 
.remainder and divisor rather than the exact values. 
The first advantage of this method is that an esti­
mate can be obtained faster than the exact value. 
Second, a truncated estimate is acceptable, rather 
than a full-width estimate. Consequently, this 
method saves a significant amount of hardware and 
increases the speed of the ope.ration. If one were to 
complete each partial remainder, up to three addi­
tional chips would be required and the delay would 
more than double. 

The trick to the method lies in the quotient selec­
tion. The selection is based on partial remainder 
range transformations which guarantee that a 
quotient digit selected in one iteration may be cor­
rected to the exact quotient digit on the next 
iteration. Therefore, although six quotient digits 
a.re determined per major iteration, an additional 
minor iteration is required to guarantee the least 
significant digit of the major iteration. The major 
and minor iteration terms refer to the architecture 
of the divide iterative hardware. The DIVx produces 
six quotient bits per machine cycle. This is a radix 
64 division technique. However, the high radix 
division is accomplished by overlapping lesser 
radix divisions. In particular, there are three sets of 
radix 4 division groups. The first two sets a.re over­
lapped, so that the critical path through the radix 
64 division is actually the critical path through two 
radix 4 divisions. A minor iteration is the path 
through one radix 4 division group. A major itera­
tion is the path th.rough the overlapped set of two 
radix 4 division groups, followed by the final radix 
4 group. It is important to note that extra iterations 
do not adversely affect the corrected quotient. 
Finally, to produce the corrected quotient, the set 
of negative quotient digits is subtracted from the 
set of positive quotient digits, where each digit is 
properly radix 2 weighted, based on the order of 
selection. (That is, the first quotient digit selected is 
the most significant bit of the correct quotient.) 

Vector Register File Chip- VRGx 
The VAX 9000 architecture adds vector inst.ructions 
to the standard VAX environment, thus a vector 
register file was required. There were two primary 
design requirements for the vector register file. 
First, the register file and associated cross-bar logic 
had to fit in a single multichip unit; and second, the 
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.register file had to perform read and write at dif­
ferent addresses within a single 16-ns clock cycle. 
These requirements could not be met with available 
memory and logic chips, thus necessitating the 
development of a fully custom vector register chip. 

The vector .register file is 64 bits wide and con­
sists of 16 vector registers with 64 elements each. 
The vector register chip, VRGx, was developed as an 
8-bit slice of the 64-bit vector register file. The chip 
contains 9216 bits of RAM for data storage and the 
cross-bar logic ( 6000 equivalent gates) that allows 
access from the five read ports and three write 
ports. Integrating the register memory and the 
cross-bar logic on the same chip allowed timing to 
be optimized so that the system timing require­
ments we.re met. 

VRGx Chip Physical Features and 
Organization 
The VRGx chip is fabricated using the MOSAIC III ECL 
process, which was not designed as a memory pro­
cess. Coordination with the vendor resulted in the 
addition of an implant step for the memory-cell­
bit line emitters. Key features of the process are 
three metal interconnect layers, oxide isolation, 
and polysilicon emitters with a drawn width of 
1.75 microns. 

Figure 9 shows the locations of the major circuit 
blocks in the VRGx chip. The major blocks of the 
VRGx chip are five read ports, three write ports, 
and 16 vector registers in the RAM bank array. The 
block diagram, Figure 10, shows the main data 
paths. The 16 vector registers are implemented as 
64-word by 9-bit single port RAMs. Eight bits are a 
slice of the 64-bit vector register file and the ninth 
bit is for byte parity. 

Timing 
A register RAM can be read from one address and 
written from a different address in one 16-ns clock 
cycle. This dual operation is made possible by a 2 
to 1 multiplexer on the RAM address inputs. The 
read address is applied during the first portion of 
the cycle, and the write address is applied during 
the second portion of the cycle. Splitting the clock 
cycle into read and write portions eliminates 
conflict between read and write ports in the event 
that a single register RAM is selected for both read 
and write. Read data is held in a latch during the sec­
ond portion of the cycle and is unaffected by the 
write operation. 

A single clock cycle consists of nonoverlapping 
clock phases A and B. Latches on the read and write 
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Figure 9 Photomicrograph of VRGx Chip 

port inputs are clocked by phase A, and read port 
output latches are clocked by phase B. For a read 
operation initiated on phase A, the output read data 
becomes valid during phase B. 

Cross-bar Logic 
Cross-bar logic in the RAM bank array makes each of 
the 16 vector register RAMs independently accessi­
ble from the read and write ports. Enable inputs on 
the ports prevent invalid addresses from conflicting 
with intended addresses. Read and write ports may 
point to the same register RAM, but different write 
ports may not point to the same RAM. Also, differ­
ent read ports may only point to the same RAM if the 
vector element address is the same. All conflicts 
must be resolved external to the chip. 
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A read port consists of an enable, a 4-bit register 
select, a 6-bit vector element address, and a 9-bit 
output. An enabled read port applies a register 
select code that points to a particular RAM bank. At 
that RAM bank, a 5 to 1 multiplexer selects the vec­
tor element address from the active read port and 
applies it to the read address of the RAM. Then the 
RAM output passes through a 16 to 1 multiplexer 
controlled by the register select code, so that the 
selected RAM output reaches the output of the active 
read port. 

A write port consists of an enable, a 4-bit register 
select, a 6-bit vector element address, and a 9-bit 
write data input. An enabled write port applies a 
register select code that points to a particular RAM 
bank. At that RAM bank, a 3 to 1 multiplexer selects 
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Figure 10 VRGx Chip Block Diagram 

the vector element address from the active write 
port and applies it to the write address of the RAM. 
Also, a 3 to I multiplexer selects the write data 
from the active write port and applies it to the RAM 
data input. 

RAM Technology 
The normal transistors in an ECL process are of the 
NPN type, where the collector is a buried N-doped 
region. For memory cells, a lateral PNP transistor is 
placed in the same collector region, and the com­
bined structure has the latching characteristics of a 
silicon controlled rectifier (SCR}. The memory cell 
array in the 64 by 9 register RAMs is implemented 
with ECL SCR memory cells. 

The SCR memory cell shown in Figure 11 consists 
of two cross-coupled SCR structures. Extra NPN 
emitters connect to the bit lines and provide a 
means of writing and sensing the cell. The "on" side 
of the cell saturates, allowing the bit line emitter to 
conduct in the inverse mode. Inverse gain of the bit 
line emitters must be limited to avoid excessive 
leakage into the unselected cells. An added process 
step applies a special base implant to the bit line 
emitters only to control their inverse gain. 

Advantages of the SCR cell include good density, 
low standby power, large sense voltage differen-

Digital Tecbntcal]ournal Vol. 2 No. 4 Fall 1990 

tial, and low sensitivity to alpha-particle-induced 
soft errors. The cell has one limitation: excess 
charge storage due to write current can delay sub­
sequent writing to the opposite state. This problem 
is eliminated with a special bit line current steering 
circuit that makes write current state dependent 
(Figure 11 ). 

The SCR memory cell in Figure 11 is written by 
applying a high current (four times read current) to 
the "off' bit line emitter. The current steering tran­
sistors prevent this current from reaching a bit line 
emitter that is already "on." Thus, attempting to 
write a cell that is already in the desired state does 
not result in any additional cell current beyond the 
normal read current, and no additional charge stor­
age occurs. 

Other Chip Features 
Other noteworthy chip features include scan logic, 
parity error detect logic, and a data pipeline for 
write port O data. Scan operation gives access to the 
register RAMs. In a single scan-in and scan-out oper­
ation, it is possible to read five registers and to write 
three registers. 

Parity checking logic is used to detect input 
errors and set error flags. There is a parity check on 
the 9-bit write port data inputs. Another parity 
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Figure 11 SCR Memory Cell with Bit Line 
Current Steering Circuit 

checker is applied to address and control inputs. 
These are assigned to three parity groups, with a 
parity bit input for each group. 

The write port O data pipeline allows a delay of 
one, two, and three clock cycles to be selected, 
delaying the write port data as necessary to resolve 
register access conflicts. 

Self-timed RAM 
In the VAX 9000 system - as in any high-perfor­
mance CPU - fast memory is used for cache and 
control store applications. Engineers traditionally 
use very fast static RAMs within the CPU for mem­
ory. Logic designers, however, have long recognized 
that CPU performance is often limited as a result of 
the time needed to access data in these RAMs. This 
limitation is not only the result of the access time 
and write cycle performance of the devices them­
selves, but also of the off-chip circuitry and inter­
connect used for write pulse generation and 
distribution. The logic designers and technologists 
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for the VAX 9000 knew that unless some architec­
tural improvements were made to the traditional 
static RAM, much of the RAM performance improve­
ments would be lost in the wiring interconnect. 
They also realized that Digital's memory suppliers 
would have to be convinced that a new RAM archi­
tecture would be marketable to their other cus­
tomers. After several design iterations, the tech­
nologists submitted a set of specifications for a 
synchronous, self-timed RAM (STRAM) to several 
suppliers for their review. After extensive market 
surveys, our memory suppliers agreed that this new 
architecture could eventually become a new stan­
dard for high-speed static RAMs. 

The VAX 9000 system requires two configura­
tions of the basic STRAM device: IK words by 4 bits, 
and 4K words by 4 bits. A block diagram of the 
STRAM is shown in Figure 12. The STRAM is similar 
to the traditional RAM in that it has chip select, input 
address and data, and output data. However, the 
STRAM also has several nontraditional inputs such 
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as write, a differential clock, and a reference voltage 
(Vbb). Latches added to all inputs and outputs 
provide pipelined timing. An internal write pulse 
generator controls write operations and eliminates 
the need to generate and distribute the write pulse 
signal externally on the module. Also two optional 
output configurations are provided: a 50-ohm drive 
open emitter for standard parallel termination on 
the module, and a resistor and pulldown current 
source which is wired externally to implement 
STECL or on-chip source termination. 

The clock buffer design allows inputs to be 
driven differentially from off-chip to minimize 
clock skew. The clock buffer is also designed to 
accommodate customers who are not greatly con­
cerned about skew or who may be more concerned 
about conserving routing area. One input of the 
clock buffer may be tied to the output pin of the 
reference generator which provides the standard 
ECL threshold voltage (Vbb ), allowing the other 
input of the clock buffer to be driven in a single­
ended mode. 

LATCH 

Input and output latches are clocked on opposite 
edges of the internal differential clock buffer. Tim­
ing diagrams are shown in Figure 13. On a falling 
edge of CLK H, data and address inputs flow into the 
RAM array. 

If write is asserted during the next rising edge 
of CLK H, then a write cycle is initiated, and the 
input data is stored in the memory at the address 
presented at the ADR inputs. At the same time, the 
data is passed through the multiplexer and the out­
put latch. 

If write is deasserted on the rising edge of CLK H, 
then the STRAM is in a read cycle and input data is 
ignored. The data stored in the RAM at the address 
presented at the ADR inputs flows out to the multi­
plexer and output latch. 

If chip select (CS) is deasserted prior to the rising 
edge of CLK H, then write and read operations are 
disabled and the output latches are reset low. 

For proper operation of the STRAM, certain 
timing requirements must be fulfilled. The write 
operation is terminated by either the falling edge of 
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Figure 12 STRAM Block Diagram 
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Figure 13 STRAM Timing Diagrams 

CLK H or by the internal write pulse generator, 
whichever occurs first. Therefore CLK H must be 
assened long enough to ensure that data is properly 
written into the memory array. The internal write 
pulse generator provides an output having the 
proper duration as determined by a string of gates. 

Also, the assenion of the internal write pulse sig­
nal must be delayed by an amount equal to the inter­
nal access time of the RAM. In this way, the correct 
data is stored, and not the data previously stored in 
the input registers. The delay is accomplished by 
the row delay circuit, which is also simply a string 
of gates. These features give the STRAM its "self­
timed" nature. 
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Vector Processing on the 
VAX 9000 System 

The VAX 9000 system provides the first emitter-coupled logic (ECL) implementation of 
the VAX vector architecture. The optional vector processor on the VAX 9000 system 
addresses the computing needs of numerically intensive applications with a peak 
perfonnance of 125 MFLOPS for double-precision calculations. The innovative 
design of the vector register file allows the vector processor to overlap the execution of 
up to three vector instructions. Supported by both the VMS and ULTRIX operating 
systems, the vector processor on the VAX 9000 system provides four to five times 
perfonnance improvement for vectorizable applications over its scalar processor. 

For a long time, vector processing was the domain 
of large, expensive supercomputers such as the 
CRAY-1.1 However, with the availability of low cost, 
pipelined floating point arithmetic chips, and the 
maturation of vectorizing compilers, vector pro­
cessing has become a mainstream technology for 
scientific applications.2 Applications that can bene­
fit from vector processing include finite element 
analysis, signal processing, and computational fluid 
dynamics. The recent addition of integrated vector 
processing to the VAX architecture and its imple­
mentation on the VAX 9000 system provides these 
applications with an improvement in execution 
time of four to five times over that of a VAX 9000 sys­
tem without vector processing. Vector processing 
extends the performance range of VAX systems. 

The vector processor on the VAX 9000 system, 
referred to as the V-box, is the first emitter-coupled 
logic (ECL) implementation of the VAX vector archi­
tecture. The definition of the architecture and the 
development of the V-box started in 1986, two years 
after the design of the rest of the VAX 9000 CPU. 
Thus, the design of the V-box was synergistic with 
the definition of the VAX vector architecture. The 
major goal of the V-box design was to provide 
adequate vector performance (four to five times 
speed-up over scalar) without impacting the design 
of the remainder of the VAX 9000 CPU and the 
memory subsystem, which were too far along in 
development to change. With vector performance 
comparable to a CRAY -1 and a peak performance of 
125 MFLOPS for double-precision calculations, the 
V-box fulfills this goal. 
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This paper describes the VAX vector architecture 
and its implementation by the VAX 9000 V-box. The 
first part of the paper discusses the architectural 
model that all VAX vector processors must follow. 
The second part shows the actual realization of this 
architecture in the VAX 9000 V-box and explains the 
innovative techniques the V-box uses to achieve 
good performance. The paper concludes with 
preliminary vector performance numbers for the 
VAX 9000 system on some standard vector bench­
marks and a number of vector code examples. 

VAX Vector Architecture 
The VAX vector architecture defines the instruction 
set, registers, and behavior that all VAX vector 
implementations, such as the VAX 9000 V-box, must 
follow.3 The vector architecture effort started in 
December 1985. At that time several CPU develop­
ment projects were well underway, including the 
VAX 9000 system. With the expectation of provid­
ing four to five times performance improvement 
for vectorizable applications, Digital decided to add 
vector processing to the VAX 9000 system, even 
though the system was in an advanced stage of 
development. A decision also was made to provide 
a complementary metal oxide semiconductor 
(CMOS) implementation of the architecture on the 
VAX 6000 Model 400 system.4 

Because both systems could not tolerate major 
changes without a major slip in schedule, the archi­
tecture required an approach that made few 
changes to the scalar processor- that part of a VAX 
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processor that executes the regular VAX instruction 
set. Furthermore, because not all applications and 
markets can benefit from vector processing, Digital 
decided not to require vector processing on every 
new VAX processor. Therefore, vector processing is 
offered as an optional capability. The scalar proces­
sor decodes vector instructions and passed them 
to its associated vector processor. All processing 
of vector instructions is handled by the vector pro­
cessor. Mechanisms are provided for vector-scalar 
synchronization and handling of vector exceptions 
by the scalar processor. 

Although the architecture had to account for the 
implementation constraints of both ongoing CMOS 

and ECL projects, it had to be general and flexible 
enough to allow future, more integrated implemen­
tations at higher performance. The architecture 
also had to minimize its impact on the existing VMS 
and ULTRIX operating systems because major 
changes could significantly delay software support 
for vector processing. 

Basic Architecture 
The VAX vector architecture uses a vector-register­
based design first pioneered by Seymour Cray.1 

There are 16 vector registers, each of which holds 
64 elements; an element is 64-bits. Instructions 
which operate on longword integers or F _floating 
point data, only manipulate the low-order 32 bits 
of each element- sometimes referred to as long­
word elements. 

A number of vector control registers control 
which elements of a vector register are processed 
by an instruction. The vector length register (VLR) 
limits the highest-numbered vector register ele­
ment that is processed by a vector instruction. The 
vector mask register (VMR) consists of a 64-bit mask, 
in which each mask bit corresponds to one of the 
possible element positions in a vector register. 
When instructions are executed under control of 
the vector mask register, only those elements for 
which the corresponding mask bit is true are pro­
cessed by the instruction. Vector compare instruc­
tions set the value of the vector mask register. 

The vector count register (VCR) receives the 
number of elements generated by the compressed 
IOTA instruction, which is similar to COMPRESSED 
IOTA on the CRAY-2.5 All VAX vector instructions use 
two-byte extended opcodes. Any necessary scalar 
operands (e.g., base address and stride for vector 
memory instructions) are specified by standard VAX 
scalar operand specifiers. The instruction formats 
allow all VAX vector instructions to be encoded in 
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seven classes. The seven basic instruction groups 
and their opcodes are shown in Table 1. 

Within each class, all instructions have the same 
number and types of operands, which allows the 
scalar processor to use block-decoding techniques. 
The differences in operation between the individ­
ual instructions within a class are irrelevant to the 
scalar processor and need only be known by the 
vector processor. Important features of the instruc­
tion set are 

• Support for random-strided vector memory data 
through gather (VGATH) and scatter (VSCAT) 
instructions 

• Generation of compressed IOTA vectors (through 
the IOTA instruction) to be used as offsets to the 
gather and scatter instructions 

• Merging vector registers through the VMERGE 
instruction 

• The ability for any vector instruction to operate 
under control of the vector mask register 

Additional control information for a vector 
instruction is provided in the vector control word 
(shown as cntrl in Table 1), which is a scalar 
operand to most vector instructions. The control 
word operand can be specified using any VAX 

addressing mode. However, VAX compilers gener­
ally use immediate mode addressing (that is, place 
the control word within the instruction stream). 
The format of the vector control word is shown in 
Figure 1. 

The Va, Vb, and Ve fields indicate the source and 
destination vector registers to be used by the 
instruction. These fields also indicate the specific 
operation to be performed by a vector compare or 
convert instruction. The MOE bit indicates whether 
the particular instruction operates under control of 
the vector mask register. The MTF bit determines 
what bit value corresponds to "true" for vector 
mask register bits. It allows a compiler to vectorize 
if-then-else constructs. The EXC bit is used in vector 
arithmetic instructions to enable integer overflow 
and floating underflow exception reporting. The 
MI bit is used in vector memory load instructions to 
indicate modify-intent. Figure 2 shows the encod­
ing for some typical VAX vector instructions. 

Vector Execution Model 
With the addition of vector processing, a typical 
VAX processor consists of a scalar processor and an 
associated vector processor; the two are referred to 
as a scalar/vector pair. A VAX multiprocessor system 
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Table 1 VAX Vector Instruction Classes 

Vector Memory, Constant-stride Vector-scalar Double-precision Arithmetic 
opcode cntrl, base, stride opcode cntrl, scalar 

VLDL Load longword vector data VSADDD O_floating add 
VLDQ Load quadword vector data VSADDG G_floating add 
VSTL Store longword vector data VSCMPD O_floating compare 
VSTQ Store quadword vector data VSCMPG G_floating compare 

VSDIVD O_floating divide 

Vector Memory, Random-stride VSDIVG G_floating divide 

opcode cntrl, base VSMULD O_floating multiply 
VSMULG G_floating multiply 

VGATHL Gather longword vector data VSSUBD D_floating subtract 

VGATHQ Gather quadword vector data VSSUBG G_floating subtract 

VSCATL Scatter longword vector data VSMERGE Merge 

VSCATQ Scatter quadword vector data 
Vector-vector Arithmetic 

Vector-Scalar Single-precision Arithmetic opcode cntrl or regnum 

opcode cntrl, scalar 
VVADDL Integer longword add 

VSADDL Integer longword add VVADDF F _floating add 

VSADDF F _floating add VVADDD D_floating add 

VSBICL Bit clear longword VVADDG G_floating add 

VSBISL Bit set longword VVBICL Bit clear longword 

VSCMPL Integer longword compare VVBISL Bit set longword 

VSCMPF F _floating compare VVCMPL Integer longword compare 

VSDIVF F _floating divide VVCMPF F _floating compare 

VSMULL Integer longword multiply VVCMPD O_floating compare 

VSMULF F _floating multiply VVCMPG G_floating compare 

VSSLLL Shift left logical longword VVCVT Convert 

VSSRLL Shift right logical longword VVDIVF F _floating divide 

VSSUBL Integer longword subtract VVDIVD O_floating divide 

VSSUBF F _floating subtract VVDIVG G_floating divide 

VSXORL Exclusive-or longword VVMERGE Merge 

IOTA Generate compressed IOTA VVMULL Integer longword multiply 

vector VVMULF F _floating multiply 
VVMULD O_floating multiply 

Vector Control Register Read VVMULG G_floating multiply 

opcode regnum, destination VVSLLL Shift left logical longword 
VVSRLL Shift right logical longword 

MFVP Move from vector processor VVSUBL Integer longword subtract 
VVSUBF F _floating subtract 

Vector Control Register Write VVSUBD O_floating subtract 

opcode regnum, scalar VVSUBG G_floating subtract 
VVXORL Exclusive-or longword 

MTVP Move to vector processor 
VSYNC Synchronize vector memory 

access 
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MOE MTF EXC 0 VNCONVERT FCN VB VG/COMPARE FCN 
Ml 

Figure 1 Vector Control Word 

comprises a number of these scalar/vector pairs. 
Asymmetric configurations can exist when only 
some of the VAX processors in a multiprocessor 
system contain a vector processor. 

For good performance, the scalar processor oper­
ates asynchronously from its vector processor 
whenever possible. Asynchronous operation allows 
the execution of scalar instructions to be over­
lapped with the execution of vector instructions. 
Furthermore, the servicing of interrupts and scalar 
exceptions by the scalar processor does not disturb 
the execution of the vector processor, which is 
freed from the complexity of resuming the execu­
tion of vector instructions after such events. How-

ever, the asynchronous execution does cause the 
reporting of vector exceptions to be imprecise. 
Special instructions, which are described in the 
Synchronization section, are provided to ensure 
synchronous operation when necessary. 

ASSEMBLER FORMAT: 

VVEQLF V6,V7 

VVADDF/1 V1 ,V2,V3 

VSMULF/U R4,V4,V5 

INSTRUCTION FORMAT: 

Both scalar and vector instructions are initially 
fetched from memory and decoded by the scalar 
processor. If the opcode indicates a vector instruc­
tion, the opcode and necessary scalar operands are 
issued to the vector processor and placed in its 
instruction queue. The vector processor accesses 
memory directly for any vector data that it must 
read or write. For most vector instructions, once the 
scalar processor successfully issues the vector 

;IF V6[i] = V7[i] THEN VMR[i] = 1, ELSE VMR[i] = 0 
; {VVEQLF IS A VVCMPF PSEUDO-OPCODE) 
; V3 = V1 + V2. DO ADDITION UNDER CONTROL OF VMR 
; WITH MATCH = 1 
; V5 = R4'V4 WITH UNDERFLOW EXCEPTION CHECKING ENABLED 

VVCMPF 
VVADDF 
VSMULF 

cntrl.rw 
cntrl.rw 
cntrl.rw, src.rl 

; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD 
; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD 
; INSTRUCTION CONSISTS OF OPCODE, CONTROL WORD, AND SCALAR SOURCE 

ENCODING IN MEMORY: 

FD 

C4 

BF 

71 

06 

FD 

84 

BF 

23 

C1 

FD 

A5 

BF 

45 

20 

54 

BYTE 

:~ :> TWO-BYTE OPCODE FOR VVCMPF 

:2 - OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD) 

:3 - CONTROL WORD <7:0>: COMPARE FCN IS EQLAND V7 IS A SOURCE 

:4 - CONTROL WORD <15:8>: V6 IS A SOURCE 

:
5 

--........_ TWO-BYTE OPCODE FOR VVADDF :6 ___..,.... 

:7 ----- OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD) 

:8 - CONTROL WORD <7:0>: V3 IS DESTINATION AND V2 IS A SOURCE 

:9 - CONTROL WORD <15:8>: V1 IS A SOURCE, MASKED OPERATIONS ARE ENABLED, AND MATCH = 1 

:: :> TWO-BYTE OPCODE FOR VSMULF 

:C - OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD) 

:D - CONTROL WORD <7:0>: V5 IS DESTINATION AND V4 IS A SOURCE 

:E - CONTROL WORD <15:8>: VA IS IGNORED, UNDERFLOW EXCEPTION CHECKING IS ENABLED 

:F - OPERAND SPECIFIER FOR REGISTER MODE WITH SCALAR DATA IN R4 

Figure 2 Vector Instruction Encoding 
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instruction, it proceeds to process other instruc­
tions and does not wait for the vector instruction to 
complete. An execution model is shown in Figure 3. 

When the scalar processor attempts to issue a 
vector instruction, it checks to see if the vector pro­
cessor is disabled-that is, whether it will accept 
further vector instructions. If the vector processor 
is disabled, then the scalar processor takes a "vec­
tor processor disabled" fault . An operating system 
handler is then invoked on the scalar processor to 
examine the various error-reporting registers on the 
vector processor to determine the disabling con­
dition. The vector processor disables itself to report 
the occurrence of vector aritlunetic exceptions or 
hardware errors. The operating system disables the 
vector processor, usually to indicate the unavaila­
bility of the vector processor, by writing to a privi­
leged vector register. If the disabling condition can 
be corrected, the handler enables the vector proces­
sor and directs the scalar processor to reissue the 
faulted vector instruction. 

Within the constraint of maintaining the proper 
ordering among the operations of data-dependent 
instructions, the architecture explicitly allows the 
vector processor to execute any number of the 
instructions in its queue concurrently and retire 
them out of order. Thus, a VAX vector implementa­
tion can chain and overlap instructions to the 
extent best suited for its technology and cost­
performance. In addition, by making this feature an 
explicit part of the architecture, software is pro-
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16GB 

INSTRUCTION 
STREAM 

DATA 
STREAM 

INSTRUCTIONS 

DATA 

VAX 
SCALAR 
CPU 

VECTOR DATA 
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vided with a programming model that ensures 
correct results regardless of the extent a particular 
implementation chains or overlaps. This approach 
differs with respect to some other existing vector 
architectures, such as the IBM S/370 vector archi­
tecture, which give the appearance of sequential 
instruction execution.6 

A VAX vector implementation may have its own 
memory management hardware, translation buffer, 
and cache; or it may share those of the scalar pro­
cessor. In high-end vector implementations, such as 
the VAX 9000 system, the vector and scalar proces­
sors are tightly coupled. The problems of limited 
chip area and translation buffer and cache coher­
ency can be lessened by allowing high-speed mem­
ory management hardware and cache to be shared 
by both vector and scalar processors. For other 
implementations, such as the VAX 6000 Model 400 
system, the vector and scalar processors are not so 
tightly coupled, and there is a performance advan­
tage in allowing separate memory management 
hardware and cache.4 Little additional effort is nec­
essary by an operating system to support separate 
vector memory management hardware and cache. 

A vector processor can treat vector memory 
management exceptions (MME) in a synchronous 
manner, as the VAX 9000 V-box does. Once the 
scalar processor issues a vector memory instruc­
tion, it pauses until the vector processor deter­
mines whether an MME will be encountered by the 
instruction. If an MME will occur, then a precise 

OPCODE, CONTROL WORD 

DISABLE/STATUS 

VECTOR PROCESSOR 

CONTROL 
REGISTERS 

INSTRUCTION 
QUEUE 

VECTOR REGISTERS 

Figure 3 Vector Execution Unit 
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exception is taken on the scalar processor and the 
appropriate operating system handler is invoked. 
If no MME will occur, the scalar processor proceeds 
to process other instructions and the vector proces­
sor completes the memory instruction. In the case 
of referencing a unity-strided vector, which occurs 
most frequently, the MME checking takes only 
a short time at the beginning because the vector 
is contained in two or less pages. (MME checking is 
done at the page level.) 

Context Switching 
Because of the asynchronous operation of the vec­
tor and scalar processors, the vector context state of 
a process is separate from its scalar context state. 
Thus, it is possible for an operating system to swap 
in a new process to the scalar processor while 
allowing the vector context of the previous process 
to remain on the vector processor. When the previ­
ous process is swapped out, the vector processor is 
disabled by the operating system to prevent other 
processes from accessing this vector context. 

If the subsequent processes do not use the vec­
tor processor, then the operating system avoids 
the overhead of saving and subsequently restoring 
8 kilobytes (KB) of vector context state for the orig­
inal process. If another process does use the vector 
processor, the operating system must reenable the 
vector processor, save the vector state of the origi­
nal process, load the vector context of the new 
process, and, finally, make the vector processor 
available. This full context switch can take up to 
100 microseconds on the VAX 9000 system. 

Assuming that only a few processes require the 
vector processor, it is likely that when the original 
process is rescheduled to the same scalar/vector 
pair, the process will find its vector context state 
residing on the vector processor. By using this tech­
nique, which is referred to as "cheap vector context 
switching," both the VMS and ULTRIX operating sys­
tems reduce the time required to swap in a process 
that uses the vector processor. 

Exceptions 
Most of the exceptions encountered by VAX vector 
instructions are identical to those that occur for 
VAX scalar instructions. The arithmetic exceptions 
are exactly the same. The memory management 
exceptions have been extended to include two new 
vector exceptions: vector 1/0 space reference and 
vector alignment fault. As in the VAX scalar architec­
ture, the reporting of floating underflow and integer 
overflow exceptions can be disabled by setting the 
EXC bit in the vector control word. 
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Vector arithmetic exceptions are reported in an 
imprecise manner by vector processor disabled 
faults. When an exception occurs in the processing 
of a vector element, the vector processor records 
the exception in both a privileged exception regis­
ter (the vector arithmetic exception register, VAER) 
and in the corresponding element of the destination 
vector register specified by the instruction. The vec­
tor processor then disables itself from receiving 
further vector instructions. However, the vector 
processor continues to execute the instruction that 
encountered the exception to completion by pro­
cessing the remaining vector register elements. 

As stated earlier, memory management excep­
tions can be reported precisely by a VAX vector 
processor to its scalar processor, as the VAX 9000 
V-box does, and the scalar processor takes a normal 
VAX memory management fault . Exception infor­
mation is placed on the stack in the same format as 
for scalar memory management exceptions. The 
use of the same format minimizes the effort needed 
by an operating system to support these exceptions. 

Memory management exceptions were extended 
for vectors to include two new exception para­
meter bits: vector 1/0 space reference and vector 
alignment fault . A vector 1/0 space reference occurs 
whenever an attempt is made to load or store vector 
data to 1/0 space. Because of the performance 
degradation of unaligned memory data, a vector 
alignment fault occurs whenever an element being 
accessed by a vector memory instruction does not 
begin at an address that is an integer multiple of the 
length of the element in bytes. For example, a long­
word (4-byte) element in memory should begin at 
an address which is an integer multiple of 4 bytes. 

Synchronization 
In most cases, if is desirable for the vector processor 
to operate asynchronously with the scalar proces­
sor to achieve good performance. However, there 
are cases in which the operation of the vector and 
scalar processors must be synchronized to ensure 
correct results. Rather than forcing the vector pro­
cessor to detect and automatically provide synchro­
nization in these cases, the architecture provides 
special instructions, which software can use, to 
accomplish the synchronization. Some of these 
instructions are discussed below. Software must 
determine when to use these synchronization 
instructions to ensure correct results or establish 
exception checkpoints. Given the necessary sophis­
tication of vectorizing compilers, this requirement 
is not onerous. 
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Vector and scalar memory references may be 
issued simultaneously. Therefore, these references 
must be synchronized to prevent a conflict from 
occurring when accessing shared memory loca­
tions. This synchronization is provided by the 
MSYNC function of the MFVP instruction. Once the 
MSYNC function is invoked, the scalar processor 
does not issue further instructions until all pre­
vious vector and scalar memory references have 
completed. 

Because the vector and scalar processors execute 
asynchronously, software cannot determine when a 
vector exception will be reported. However, soft­
ware requires that exceptions be reported at certain 
checkpoints. For example, exceptions incurred in a 
procedure must be reported within the context of 
that procedure before another procedure is called. 
This exception reporting synchroni7.ation is pro­
vided by the SYNC function of the MFVP instruction . 
Once SYNC is invoked, the scalar processor does not 
issue further instructions until the exceptions of 
previous vector instructions, if any, are reported. 

VAX 9000 V-box Overview 
The VAX 9000 V-box is one of four tightly coupled, 
parallel function units that compose the VAX 9000 
CPU. As such, it shares, with the rest of the CPU, 
both the large 128KB data cache and the very fast 
address translation hardware. As a result, the V-box 
has very fast access to memory data. The V-box is 
connected to the CPU through the scalar execution 
unit as shown in Figure 4. This connection consists 
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M-BOX 

VECTOR 
CONTROL 1-----1~ 
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of a 64-bit data path, which brings instructions and 
data to the vector unit, and a 32-bit path, which 
sends data to the scalar unit. All vector memory 
instructions send data through this data path. 

As Figure 4 also shows, the V-box is composed of 
the following subunits: vector register unit, vector 
add unit, vector multiply unit, vector mask unit, 
vector address unit, and vector control unit. Each of 
these subunits can function in parallel, which 
allows up to two vector arithmetic instructions 
and one vector memory instruction to be executed 
simultaneously. Crucial to this instruction over­
lapping ability is the vector register unit, which 
supports up to eight simultaneous accesses from 
the other subunits. 

Physically, the V-box resides on the same planar 
board as the remainder of the VAX 9000 CPU. Three 
multichip units (MCUs) are reserved for the V-box, 
which is a field-installable option. The V-box com­
prises 25 ECL Motorola Macrocell Array Ills (MCA3 ).7 
(For brevity, a macrocell array is referred to as a 
"chip" in this paper.) The operation of these sub­
units and the techniques used to enhance their per­
formance are described in the following sections. 

Vector Control Unit 
The vector control unit receives and coordinates 
the execution of vector instructions within the 
V-box. The VAX 9000 scalar execution engine 
(E-box) transfers both an encoded version of the 
vector instruction and the necessary scalar data to 
the unit, which loads the instruction and data into a 

VECTOR 
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UNIT 

MASKI 
ADDRESS 

Figure 4 V-bo.x Organization (with VAX 9000 CPU) 
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circular queue as shown in Figure 5. The queue can 
buffer a few pending instructions while the remain­
ing V-box subunits are executing others. Without 
the queue, the V-box could not accept pending 
instructions when all of its subunits are busy, thus, 
p ropagating a stall condition to the scalar execution 
unit and resulting in poor performance. 

The scalar data that is required by a vector 
instruction is placed in the queue one location 
behind the instruction quadword . Whenever the 
queue contains two entries, the vector control unit 
returns a signal to the scalar execution unit and 
requests that subsequent instruction issue be 
delayed until the number of entries in the queue 
has diminished to one or less. The queue is cir­
cular in nature and wraps around to the beginning 
automatically. 

When an instruction is loaded into the queue, a 
pointer directs the instruction to the decode logic 
shown in Figure 5. If there is enough instruction 
data available in the queue and the necessary sub­
unit is not busy, then the vector control unit sends 
the instruction data from the queue to the register 
conflict logic. The register conflict logic determines 
if the vector registers required by the instruction are 
already in use by the other subunits, a condition 
called register conflict. The determination is made 
by comparing the vector register addresses that 

E-BOX 
VECTOR 
DATA 

are to be used by already executing vector instruc­
tions in the next cycle against the vector register 
addresses required by the new instruction. If none 
of the addresses overlap then the instruction is free 
to issue. If an overlap does exist, the instruction is 
held until the next cycle, when it can then be issued 
to the appropriate subunit. (The lack of significant 
cycle delay in this case is due to the optimal design 
of the vector register unit.) If there are no register 
conflicts, the instruction is issued immediately to 
the appropriate subunit. 

As the vector control unit issues the instruction to 
the subunit, it also sends scalar source operands, 
if any, and the addresses of the vector registers 
required by the instruction to the vector register 
unit. The vector register unit latches the scalar data 
for the duration of that instruction. For each cycle 
of the instruction's execution, the register unit then 
sends the necessary scalar and register data to the 
appropriate subunit. The vector control unit also 
contains the vector length register and sends a copy 
of it with every instruction that is issued to a sub­
unit. By supplying each subunit with a copy of 
the vector length register, writes to the register by 
MTVP instructions do not affect instructions cur­
rently executing under the register's previous value. 
Without this mechanism, writes to the vector 
length register would be delayed until previously 
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executing instructions had finished, which would 
result in poor performance. 

Upon reaching the subunit, most vector instruc­
tions execute at one cycle per element, after the 
initial pipeline latency. However, the vector divide 
instructions (VSDIV and VVDIV) execute at a varying 
number of cycles, depending on the floating point 
format (F, D, or G). (To simplify the vector control 
logic, no other vector instructions are issued once 
a vector divide starts.) Results are returned to the 
vector register unit or vector mask unit as they are 
generated, depending on the instruction. 

As described earlier, microcode in the scalar exe­
cution engine encodes vector instructions into an 
instruction quadword before passing them to the 
V-box. Table 2 shows the high-order 32 bits of the 
format used for every instruction sent to the V-box. 
This quadword contains fields that indicate the 
instruction, appropriate V-box subunit to execute 
the instruction, and format of the vector control 
word. The low-order 32 bits of the instruction quad­
word contain the vector control word for the vector 
instruction. The instruction quadwords present the 
V-box with a fixed format instruction that smoothly 
fits into a fixed-length instruction queue, requires 
little subsequent decoding, and has fields that can 
be directly gated to selection logic. As a result, the 
time needed by the V-box to decode vector instruc­
tions is reduced and performance is increased. 

Vector Register Unit 
The vector register unit or file, as its name implies, 
contains the logic and fast memory that imple­
ment the 16 VAX vector registers on the V-box. The 
block diagram of the vector register file is shown in 
Figure 6. The vector register file has three write 
ports and five read ports. By using the innovative 
technique described below, these ports provide the 
multiple accesses needed to feed two operands per 
cycle to the vector add and multiply units, and one 
operand to the vector address-mask unit. This unit 
is the single largest contributor to the excellent vec­
tor performance of the VAX 9000 system. 

The file consists of 16 vector registers. Each 
register contains 64 elements, and each element is 
72-bits wide (64 data, 8 parity). The vector register 
file is implemented as a byte-sliced custom chip, 
which has a single parity bit per data port. Three 
writes and five reads to the file can occur simulta­
neously in any cycle. All writes must be to different 
register banks. However, multiple reads can occur 
to the same bank if the same element is required by 
each read access. Internally to the vector register 
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unit, reads occur during the first half of the cycle, 
and writes occur during the last half. A write and 
read enabling signal is generated for each register 
bank every cycle. Each cycle, data is selected from 
one of the three write ports to be written into any 
enabled register banks. Write port O has a four-stage 
pipe to buffer data corning from the E-box, through 
the control logic, which cannot be written due to a 
register bank conflict. The vector register file also 
has three scalar registers (one each for the vector 
address-mask unit, vector add unit, and vector mul­
tiply unit) to hold scalar source operands for vector­
scalar instructions. Write port O is used to write 
these registers. Each enabled read port selects an 
element from one of the 16 register banks or scalar 
registers (for vector-scalar instructions) and trans­
fers it to one of the other subunits. 

The vector register file uses a technique referred 
to as "barber poling" to improve the use of chaining 
and overlapped instruction execution. As Figure 7 
shows, barber poling spreads each architecturally 
defined vector register across all vector register 
banks. Elements are laid out such that the first 
vector element of each vector register is in location 
O of the same physical register bank and element b 
of vector register n is in location b of vector register 
bank ([n +b]modulo 16). 

By using this technique, a vector register conflict 
causes the vector control unit to delay the issuing 
of a new vector instruction for no more than three 
cycles. If the more standard technique of placing all 
elements of one vector register in the same bank 
were used, a vector register conflict could cause 
the execution of a new instruction to be delayed by 
64 cycles. The 64-cycle delay would have frustrated 
attempts at overlapping and severely degraded the 
vector performance of the VAX 9000 system. 

Vector Add Unit 
The vector add unit executes most vector instruc­
tions, including both floating point and integer 
addition, subtraction, comparison; vector convert; 
vector shift logical; vector logical operations; and 
vector merges. For brevity, these instructions are 
referred to as add-class instructions. One of the 
challenges in designing the vector add unit was the 
need to perform both integer and floating point 
arithmetic. 

The organization of the vector add unit is shown 
in Figure 8. It is a pipelined structure that comprises 
two identical chips for unpacking and aligning 
operands (VFSA and VFSB); one chip for performing 
arithmetic and logical operations (VFAD); and a 

69 



VAX 9000 Series 

Table 2 Encoded Instruction Quadword (bits <63:32>) 

Vector OPCODE Control Word Type 
Instruction <39:32> <42:40> 

VVSUBFNSSUBF 
VVSUBGNSSUBG 
VVSUBDNSSUBD 
VVSUBUVSSUBL 
VVCMPUVSCMPL 
VVSLUVSSLL 
VVSRUVSSRL 
VVBISUVSBISL 
VVBICUVSBICL 
VVXORUVSXORL 
VVMERGENSMERGE 
VVADDDNSADDD 
VVADDFNSADDF 
VVADDGNSADDG 
VVADDUVSADDL 
VVCMPDNSCMPD 
VVCMPFNSCMPF 
VVCMPGNSCMPG 
VVCMPDNSCMPD 
VVCVTDF 
VVCVTDL 
VVCVTFD 
VVCVTFG 
VVCVTFL 
VVCVTGF 
VVCVTGL 
VVCVTLD 
VVCVTLF 
VVCVTLG 
VVCVTDL 
VVCVTFL 
VVCVTGL 
VVMULUVSMULL 
VVMULFNSMULF 
VVMULDNSMULD 
VVMULGNSMULG 
VVDIVFNSDIVF 
VVDIVDNSDIVD 
VVDIVGNSDIVG 
VLDL 
VLDQ 
Block load 
VSTL 
VSTQ 
VGATHL 
VGATHQ 
VSCATL 
VSCATQ 
IOTA 
LoadVLR 
LoadlowVMR 
Load high VMR 
Store low VMR 
Store high VMR 
Store unaligned address 
LoadVPSR 
LoadVAER 
StoreVAER 
RESET 

Bits <63:47> are reserved. 

OF9 
ODB 
002 
OF6 
OF5 
034 
026 
086 
08E 
088 
OAE 
092 
089 
098 
086 
005 
OFD 
ODD 
005 
011 
016 
03A 
038 
03E 
019 
01E 
032 
031 
033 
017 
03F 
01F 
003 
004 
005 
006 
ooc 
OOD 
OOE 
001 
002 
ooc 
003 
004 
005 
006 
010 
011 
012 
007 
009 
OOA 
OOD 
OOE 
013 
014 
015 
008 
OOF 

2/6 
2/6 
2/6 
2/6 
3/7 
2/6 
2/6 
2/6 
2/6 
2/6 
5/1 
2/6 
2/6 
2/6 
2/6 
3/7 
3/7 
3/7 
3/7 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

2/6 
2/6 
2/6 
2/6 
2/6 
2/6 
2/6 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 

Dispatch Type 
<46:43> 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
2 
3 
3 
3 
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FROM VML FROM CONTROL FROM VAD 

VML 
RESULT VCT WT DAT VAD RESULT 
W~ITT2 W~ITTO W~ITT1 

SREG4LD-------+----+---+-~ 

SREG2LD--------<>---+-~ SCALAR 4 

SCALAR 2 84 

SCALAR O 82 

SREGO LD -------+~ 

so 
WRPORTOCNFSEL+-------- --------,----~ 

~-~-~ 

SELECT WRITE DATA FOR EACH REG BANK FROM WRITE PORTS 

WRITE 
REG BANKO WT EN REG BANKO RD EN 

ENABLE 
REG BANK15 WT EN REG BANK15 RD EN LOGIC MEMORY 

WPORTS 0-2 --+---< 

ARRAY 
WRITE REG BANKO WT ADR REG BANKO RD ADR 

READ 
ENABLE RPORTS 0-4 
LOGIC 

READ 
ADDRESS 

REG BANK15 WT ADR REG BANK15 RD ADR ADDRESS RPORTS0-4 
LOGIC LOGIC 

WPORTS 0-2 --..----, 

SELECT DATA FOR EACH READ PORT FROM REG BANKS 

so 

RPORTO RPORT1 RPORT2 RPORT3 RPORT 4 
TO MASK LOGIC TO VML LOGIC TO ADDER LOGIC 

Figure 6 Vector Register Unit 

remaining chip for normalizing, rounding, and 
packing the result (VFPK). The data paths between 
the chips are all 64-bits wide. 

The pipeline latency through this unit for both 
single-precision (integer and F _floating) and dou­
ble-precision (G_floating and D_floating) formats is 
only three cycles. Thus, the vector/scalar cross-over 
number for add-class instructions is quite small 
(that is, the minimum number of vector elements 
needed for the V-box to surpass the performance 
of the remainder of the VAX 9000 CPU for this class 
of instructions.) As a result, the V-box achieves good 
performance for add-class instructions with small­
sized vectors and large-sized vectors (large-sized 
vectors being naturally favored by the technique of 
pipelining). 

V3 [63J 
V4 [62J 

: I VO [50) I 
I VO [49J I 

I VO [48)1 

V14 4 
V14[3J V15 [3J 
V15 [2J VO [2J 
VO [1J V1 [1J 
V1 [OJ V2 [OJ 

BANKO BANK 1 BANK2 

V14 [15J 
V15 [14J 
VO [13J 

V12 [1J 
V13 [OJ 

V15 [63J I VO [63J j 
VO [62J 

V14[17] 
V14 [16J V15 [16J 
V15 [15J VO [15J 
VO [14J 

: 

BANK 13 BANK 14 BANK 15 

When the vector add unit begins to execute an 
instruction, it receives two source elements from 
the vector register unit each cycle. The elements are 
latched into the unpacking logic, one element for 

Figure 7 Barber Poling 
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each of the two chips. During the next cycle, each 
unpacking chip concurrently unpacks and aligns 
its source element, if necessary, and forwards the 
result to the addition or logical-operation logic, 
depending on the instruction. Within the same 
cycle, the addition chip uses the two sources from 
the unpacking logic to generate a result, which is 
then latched. 

During the final cycle, the result is sent to the 
packing chip, which normalizes, rounds, and packs, 
if necessary, the result and sends it to the vector 
register unit to be written. Exception checking and 
reporting are also done in the last cycle by the pack­
ing chip, which maintains the vector add unit's 
copy of the vector arithmetic excep tion register 
(VAER). When the instruction completes, the vector 
add unit sends its VAER copy to the vector mask unit 
to be merged with the VAER copy from the vector 
multiply unit. 

The vector add unit does not differentiate 
between masked and unmasked vector instructions. 

I VFSA 

I~ 
I 

~ xp~.__ _ ___ _, 

I 

EXCEPTION ENABLE 

MASK BIT 
EXCEPTION 

I 
DEST REGIS.-T_E_,R.___.__ _ __, 

VAER 

32 

VAERTOVMKB 

ADDER 

EXPONENT 

64 

The complexity of skipping over masked-out ele­
ments would have added extra cycles of pipeline 
latency and resulted in less performance for small­
sized vectors. For masked as well as unmasked 
instructions, the vector add unit operates from the 
first up to the last element (as indicated by the 
vector length register) of both source registers. The 
actual masking of results is handled by the vector 
control unit, which blocks the vector register unit 
from receiving masked-out results as they are 
being sent by the vector add unit. However, the 
packing chip does use vector mask register bits to 
suppress exception generation for results that are 
masked out. 

Floating Point Operation When executing vector 
floating point instructions, the unpacking logic 
takes the various fields of a floating point element 
and expands and rearranges it into a more conve­
nient format for the addition logic, i.e. , the element 
is "unpacked ." As a result of this process, the addi-

SOURCE B 

VFSB 

___l_ 
MASK BIT I 

LOGICAL 

I 2 

MUX/LATCH 

I 

VFAD 

I 
I 

I 
VFPK 

ADDER LOGIC 

Figure 8 Vector Add Unit 
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tion logic is simplified because all VAX floating point 
formats (F, D, and G) are unpacked into an identical 
format. The unpacking involves decoding the sign, 
inserting the hidden bit, and rearranging the frac­
tion bits. For all VAX floating point formats, the 
fractional part is expanded to 56 bits. (F _floating 
and G _floating are expanded with zeros on the 
right.) The fractional part is then surrounded on the 
right with two guard bits and a rounding bit to 
form a 59-bit fraction. The overflow and guard bits 
ensure the accuracy of rounded results. 

After the elements are unpacked, the unpacking 
chips align the elements by taking the fractional 
part of the smaller magnitude number and shifting 
it to the right until its exponent is equal to that of 
the larger magnitude number. Each unpacking chip 
also receives the exponent bits of the other chip's 
element. Therefore, the alignment process can be 
done in parallel before the elements are sent to the 
addition logic that requires the alignment. If during 
the alignment of an element for a vector floating 
point subtract instruction, a one is shifted out of the 
59-bit fraction field, then a "sticky bit" is generated. 
This sticky bit is used by the addition logic in the 
next cycle as a carry into the subtraction. 

The unpacked, aligned elements are then sent to 
the add chip, which produces a result and then par­
tially normalizes the result before sending it to the 
packing chip. Again, if the shifting during normal­
ization shifts a one out of the fraction field, a sticky 
bit is generated. Finally the partially normalized 
result and the second sticky bit are sent to the pack­
ing chip which completes the normalization and 
rounding and adjusts the exponent field accord­
ingly. To save an extra cycle, the packing chip com­
putes two exponents values, one for each value of 
the carry-over in the rounding process. Final selec­
tion of the exponent and its exception is done using 
the actual carry-over of the rounding logic. The 
proper exponent and the normalized fraction are 
then rearranged into the appropriate floating point 
format, and the assembled element is sent to the 
vector register unit. 

Integer and Logical Instructions For vector inte­
ger and logical instructions, the elements bypass the 
alignment logic and are sent to the add chip (VFAD) 
for all but the logical shift right instruction (VVSLRL 

and VSSLRL). For logical shift right instructions, the 
alignment logic does the shifting because the shift­
ing circuitry is already needed for the alignment of 
fractions in floating point elements. The exponent 
unpacking logic is used to pass on the logical shift 
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right count to the alignment logic, which then 
sends the shifted result to the add chip. The add 
chip operates on the low-order 32 bits of these 
elements and passes through the high-order 32 bits 
unchanged to the packing chip. For logical shift­
left instructions (VVSLLL and VSSLLL), the low-order 
32 bits also pass through the add chip unchanged. 

On the packing chip, the floating point normalize 
logic performs to do logical shift-left operations. 
The shift count is passed to the normalize logic 
from the unpacking logic during the first cycle. For 
all other integer and logical instructions, the nor­
malize count is forced to zero to pass the add chip 
result through. Finally, just before sending the result 
to the vector register unit, the packing chip checks 
for integer overflow exceptions. 

Merge Instructions For vector merge instructions 
(VVMERGE and VSMERGE), the unpacking chip with 
the masked-out element, based on the appropriate 
vector mask register bit, zeros that element out 
before sending it to the addition logic. The addition 
logic adds the zero to the other element, which has 
the effect of passing the value of the other element 
on to the packing chip. 

Vector Memory Operation 
Because vector applications tend to issue many 
vector memory instructions, the execution time of 
these instructions is a critical factor in the perfor­
mance of a vector processor. Therefore, the V-box 
was designed to minimize the execution time by 
taking advantage of the VAX 9000 CPU's large 128KB 
data cache, by prefetching vector data, and by 
fetching it in blocks instead of element by element. 

Memory requests by the V-box are sent through 
the VAX 9000 CPU to the cache and address trans­
lation hardware (M-box) of the VAX 9000 CPU. The 
M-box translates the 32-bit virtual addresses for vec­
tor data into physical addresses and accesses the 
proper locations in the data cache. The vector 
address-mask unit generates the virtual addresses 
for the vector elements. For vector load and gather 
instructions, the vector data is returned to the 
V-box through the E-box, and written to the proper 
vector registers. The M-box returns 64 bits of data 
each cycle. For vector store and scatter instructions, 
the vector elements are sent through the E-box to 
the M-box. Although the vector register unit is 
capable of sending 64 bits at a time, the E-box need 
only forward 32 bits per cycle to the M-box. The 
M-box requires two cycles to write the cache and 
does not actually write the 64-bit data until the 
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second cycle. (The first cycle performs the cache tag 
lookup.) Because the V-box implements synchro­
nous memory management exception reporting, 
once a vector memory instruction begins execu­
tion, no other vector instruction may be issued until 
the memory instruction completes. 

The VAX 9000 CPU prefetches vector data. This 
mechanism is used to move data from the main 
memory to cache in a manner which optimizes 
memory bandwidth . By using this method, a 25 
percent improvement in the performance of vector 
load instructions is achieved. The prefetching starts 
when the scalar microcode on the VAX 9000 CPU 
checks the stride of a VLDQ instruction. If this stride 
is 8 bytes long (quadwords are contiguous in mem­
ory), the microcode converts the instruction into a 
block load instruction and sends it to the V-box. 
The block load instruction directs the V-box to issue 
a series of block load requests for vector data. A 
block load request moves an entire cache block 
from the memory into the vector registers. These 
blocks are loaded into both the cache and the vector 
registers when they come from main memory. 
(Bypassing the cached to load the vector registers 
directly reduces the effect of a cache miss for vector 
data.) Otherwise, the memory requests are done for 
one register element at a time. 

In addition to converting the VLDQ to a block 
load instruction, the scalar microcode also issues 
prefetch requests to the M-box. The M-box deter­
mines if the data is valid in the cache. If so, no fur­
ther action is taken on the request. If not, the data 
is requested from main memory. In this manner 
several prefetch requests are started in successive 
cycles. This method results in multiple memory 
banks being used in parallel. Vector data comes 
back to the cache at a rate of 500 megabytes 
(MB) per second. The microcode stops issuing 
prefetch requests when all the vector data has been 
requested. This ensures that the requests from the 
V-box do not encounter many cache misses. 

Vector Address-Mask Unit 
The vector address-mask unit performs the address 
generation and memory requests needed to exe­
cute the vector memory instructions VLD, VST, 

VSCAT, and VGATH. It also contains the vector mask 
register and support logic for masked instructions. 
Further, it contains the complete vector arithmetic 
exception register (VAER), which it updates based 
on the status sent by the vector add and vector mul­
tiply units. 
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For vector memory instructions, the vector 
address-mask unit receives the base (starting mem­
ory address of the vector) and stride (distance 
between vector elements in memory) of the instruc­
tion from the vector control unit in an indirect 
manner through the vector register unit. Both the 
base and stride are 32 bits long. 

For most vector load and store instructions, the 
memory addresses for the vector data are generated 
in an iterative fashion. During the first cycle of exe­
cution, the base address bypasses the address adder 
and is immediately sent to the M-box to request the 
first element. Concurrently, the base and stride are 
added together by the address adder and latched to 
provide the address of the next element. In the next 
cycle, the latched address is sent to the M-box and 
to the address adder, where it is added to the stride 
to generate the next address. The process repeats 
until all element addresses have been issued. In 
tandem with the address generation, the vector 
control unit directs the vector register unit to send 
or receive the appropriate vector register element. 

For vector gather and scatter instructions, the 
memory addresses for the vector data are also 
issued in an iterative fashion. During the first cycle 
of execution, the base address is sent to the vector 
address unit. In the second cycle, the vector control 
unit directs the vector register unit to send the first 
element of the offset vector to the vector address 
unit, which adds it to the base and latches the result. 
In the third and subsequent cycles, the resulting 
address is sent to the M-box while the base and next 
offset are added together. The process repeats until 
all element addresses have been issued. In tandem 
with the address generation, the vector control unit 
directs the vector register unit to send or receive the 
appropriate vector register element. 

For masked vector load and gather instructions, 
addresses for all elements, masked and unmasked, 
are sent to the M-box. However, for masked-out 
elements, the request is modified from read to 
read no-op (i.e. , do not actually perform the read). 
This process prevents the M-box from taking cache 
misses and address translation exceptions on 
masked-out elements. For masked-out elements, 
the M-box returns a dummy value to the V-box, 
which blocks the value from being written to the 
vector register unit. The vector address unit directs 
the control unit to block writes, based on the value 
of the appropriate vector mask register bit. 

For masked vector store and scatter instructions, 
although both masked and unmasked elements 
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are read from the vector register unit, masked-out 
elements are stopped from reaching the M-box. The 
vector address unit, based on the vector mask regis­
ter, causes the E-box to discard the masked-out 
element instead of forwarding it to the M-box. 

As described earlier, a VLDQ instruction with a 
stride of 8 bytes (unity stride) is converted by the 
VAX 9000 scalar processor into a block load instruc­
tion when sent to the V-box. The vector address 
unit, in turn, issues a number of block load requests, 
each of which is for 64 bytes of data, to the M-box 
with the appropriate address and selection bits. 
There are eight selection bits, one for each quad­
word in the block, which tell the M-box whether to 
return the corresponding quadword to the V-box 
for that block load request. Generation of these 
selection bits by the vector address unit is com­
plicated because the starting address of a vector in 
memory is not aligned on a block boundary (i.e., 
starts within the middle of a block). The bits also 
depend on the vector mask register (for masked 
block loads). 

To handle unaligned, masked block loads, the 
vector address unit must generate selection bits that 
deselect those quadwords which are not part of the 
vector but lie within the same blocks as the first 
and last elements of the vector. In addition, it must 
deselect those quadwords within the vector that 
are masked out by the vector mask register. Both of 
the above requirements are handled by using an 
extended version of the vector mask register to 
generate the selection bits. This process involves 
conceptually extending the vector mask register on 
both ends with enough selection bits so that each 
quadword has a corresponding selection bit. For 
example, a vector starting at the last quadword of 
one block requires that seven selection bits be 
added at the beginning of the vector mask register 
and one bit be added after the end. 

Vector Multiply Unit 
The vector multiply unit performs all of the vector 
multiply and vector divide operations defined by 
the VAX vector architecture: VVMUL, VSMUL, 

VVDIV, and VSDIV. The unit can perform either one 
multiply instruction or one divide instruction at a 
time, but cannot perform both types of instruc­
tions simultaneously. In addition, the unit performs 
exception checking and reporting, as required, 
including floating overflow, floating underflow, and 
divide by zero exceptions. The unit consists of 
four custom multipliers: a custom divider, a divide 
unpack chip, and two packing chips. Physically, 
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these chips reside on the VML multichip unit of the 
VAX 9000 CPU. The custom multipliers and divider 
are identical to those used in the scalar execution 
engine (E-box).8 

Multiplication By using four parallel multipli­
ers, the pipeline latency through the multiplica­
tion logic for both single precision (integer and 
F _floating) and double precision (G_floating and 
D_floating) is only three cycles. Thus, the vector/ 
scalar cross-over number for multiplication is quite 
small. As a result, the V-box achieves good perfor­
mance for vector multiply instructions with small­
sized vectors as well as large. As a double-precision 
vector multiply instruction executes, two 64-bit 
elements are received from the vector register unit 
each cycle and are latched in the four custom 
multipliers, each of which does a 32-bit by 32-bit 
multiplication. 

As shown in Figure 9, the element bits are dis­
tributed in such a way that one multiplier operates 
on the high-order bits of both elements; one multi­
plier operates on the low-order bits of operand one 
and the high-order bits of operand two; one multi­
plier operates on the high-order bits of operand one 
and the low-order bits of operand two; and one 
multiplier operates on the low-order bits of both 
elements. 

During the next clock cycle, each of the four mul­
tipliers unpacks its inputs and sends them through 
a large multiplication array, which produces one 
64-bit partial product and latches the product. 
During the third cycle, the pack chips (VMLA and 
VMLB) add the four 64-bit partial products together 
to produce one result and prepare the result to be 
written back to the vector register unit. In this 
cycle, the four partial products are shifted accord­
ing to their weight. Weight is determined in relation 
to which bits the multiplier used to produce a 
result. For example, the multiplier that operated on 
the high-order 32 bits (most significant bits) of both 
elements produces the most significant partial 
product bits, and the multiplier that operated on 
the low-order 32 bits (least significant bits) of both 
elements produces the least significant partial 
product bits. The partial products must be aligned 
or shifted properly before they are added together. 
Once the partial products have been added, the 
final product is then rounded, normalized, and 
packed into the appropriate VAX integer or floating 
point format before being written into the vector 
register unit in the next cycle. 

The process and pipeline stages for single-preci­
sion multiplication (VVMULF and VSMULF) are 
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Figure 9 Vector Multiply Unit 

similar to the process used for double-precision 
multiplication. However, in single-precision multi­
plication, only one multiplier chip is needed to pro­
duce the result and the pack chips do not need to 
sum the partial p roduct. Integer multiplication is 
slightly different from floating point multiplication 
because it does not need to be accumulated or 
rounded. Thus, the correct product is produced 
by one mult iplier. The result bypasses the accumu­
lation and rounding logic and proceeds directly 
into the packing logic to be sent to the vector regis­
ter unit. 

The exponent handling for both multiplication 
and d ivision is performed by the same logic on the 
packing chips. Depending on the instruction being 
executed, the exponent is either added (multipli­
cation) or subtracted (division). The result of this 
operation is then piped to the next stage and the 
position of the hidden bit is determined. If the frac­
tional portion of the data must be shifted to ensure 
the hidden bit is in the correct position, the expo­
nent is then incremented or decremented accord-
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ingly. The normalize count (i.e. , shift count) is used 
to select the correct final exponent. Overflow and 
underflow exception checking can only be detected 
and reported after the final exponent is selected. If 
an exception is detected, then a reserved operand is 
written to the appropriate vector register element. 
The first stage of the exponent logic also checks for 
divide by zero and reserved operand exceptions. 

Division Vector division is a variable-cycle func­
tion. The number of cycles depends on the format 
of the operands. The custom divider is capable of 
producing six quotient bits per cycle. Therefore, 
F _floating point division is performed in 7 cycles, 
G_floating point in 12 cycles, and D_floating 
point in 13 cycles. Because of the variable number 
of cycles in a divide instruction, no other instruc­
tion can execute in the V-box while a divide is in 
process. Also, because of the iterative nature of divi­
sion (i.e., one division must be completed before 
another can be started), the instruction cannot be 
pipelined . 
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As a vector divide instruction executes, two 
64-bit elements are received from the vector regis­
ter unit each cycle and are latched in the divide 
unpack chip. The elements are unpacked, and the 
fractional portion of the elements is sent to the cus­
tom divider in 32-bit slices. The exponent portion 
is sent to the shared exponent logic on the packing 
chips, as described in the Multiplication section. 
During this cycle, time-critical values, such as com­
plemented element values and first-cycle quotient 
bits, are calculated and forwarded to the custom 
divider. 

When the divider receives the data, it uses an 
iterative algorithm to produce six quotient bits per 
cycle. The quotient bits produced are then sent to 
the packing chips, which may have to increment 
the quotient, depending on the value of subsequent 
quotient bits. The divider instructs the quotient 
accumulation logic whether or not incrementing is 
necessary. The partial quotient, once decided, is 
held in a bank of latches until all the quotient bits 
are received. When the entire quotient is available, 
the result is rounded, normalized, and packed by 
using the same logic path as multiplication. A mul­
tiplexer switches this packing logic between the 
multiplication and division logic. 

Peiformance Characteristics 
As of this writing, testing of the vector performance 
of the VAX 9000 system has only just begun. How­
ever, some preliminary results are presented in 
Table 3. We expect that these results will improve 
as testing continues and more code is optimized 
to take advantage of the chaining and overlapping 
provided by the V-box. 

Chaining and Overlapping 
Because of the design of the vector register unit, 
the V-box can concurrently execute a vector add-

Table 3 VAX 9000 Model 21 o Preliminary 
Performance Double-precision 
MFLOPS, Uniprocessor 

Size Vector 

Peak rate NA 125 
LFK (Geometric mean) 441 13.2 
LFK (Arithmetic average) 441 20.6 
UNPACK 10002 80 
FFT 4096 26 
Convolution 150x 1500 99.15 
Matrix multiply 642 111.36 
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class instruction, vector multiply instruction, and 
vector memory instruction. Unlike the VAX 6000 
Model 400 system, vector register conflicts between 
these instructions have little effect on overlapping.4 

With the VAX 9000 system, a conflict only delays 
the execution of the subsequent vector instruction 
by one or two cycles at most. 

However, the overlapping behavior of the V-box 
is sensitive to the issue order of vector instructions. 
If two vector instructions executed by the same 
V-box unit are issued one after the other, the second 
instruction is delayed until the V-box unit has fin­
ished executing the first. In addition, vector instruc­
tions issued after a vector memory instruction or 
divide instruction, do not begin execution until the 
previous instruction completes. A general rule in 
scheduling code for the VAX 9000 V-box, is to gen­
erate, whenever possible, instruction triples, where 
the first two instructions are a vector add-class and 
vector multiply instruction and the last instruction 
is a vector memory or vector divide instruction. 
Failing that, at least one vector add-class or vector 
multiply instruction should be issued before a vec­
tor memory or vector divide instruction. 

The following code examples demonstrate the 
usage of the VAX vector instruction set and the over­
lapping behavior of the VAX 9000 V-box. (Note: It 
should be assumed in the examples that all arrays 
are 8-byte double precision.) 

In the following DAXPY inner loop example, the 
first two VLDQ instructions do not overlap. How­
ever, the VSMULD, VVADDD, and VSTQ instructions 
do overlap. 

Do i • 1 , 64 
DYCi) = DYCi) + DA x DX(i) 

enddo 

vectorizes as: 

VLDQ DX , #8 , VO ; Load vector DX 
VLDQ/M DY, #8, V2 ; Load vector DY 

; with modify i ntent 
VSMULD DA, VO , V1 ; V1 = DA*DX 
VVADDD V1 , V2, V3 ; V3 . V1+DY 
VSTQ V3, DY, #8 ; Store vector DY 

The first two VLDQ instructions do not overlap in 
the following MERGE example, 

Do i • 1, 64 
a( i ) = b( i ) - cCi) 
if (a( i ) . gt. 0) then 

b(i) = a(i) 
el5e 

b( i) = cCi) 
endif 

enddo 
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vectorizes as: 

VLDQ 
VLDQ 
VVSUBD 
VSTQ 
VSLSSD 

VVMERGE 

VSTQ 

b, 18, VO 
c, 18, V1 
VO, V1, V2 
V2, a, 18 
1"xo,v2 

V1, V2, VO 

VO, b, 18 

; Load vector b 
;Load vector c 
;b-c 
; St ore vector a 
;Test a(*) and set mask 
; in VMR . CVSCMP 
;pseudo-op doing Less 
;Than Signed test> 
;Merge a and c into b 
;using mask in VMR 
;Store vector b 

However, the VVSUBD instruction does overlap 
with the VSTQ instruction. Both the VSLSSD 

(VSCMP) and VVMERGE instructions are executed by 
the vector add unit. Therefore, these two instruc­
tions do not overlap. However, the VVMERGE 

instruction does overlap with the VSTQ instruction. 
In an IF-THEN-ELSE example, such as the 

following, 

Do i = 1, 64 
if Ca(i) . gt. 0) then 

b(i) = cCi) 
else 

bCi) = cCi) I aCi) 
endif 

enddo 

vectorizes as: 

VLDQ a, 18, VO ;Load vector a 
VSLSSD i"xo, vo ;Test a(*) and set mask 

; in VMR . CVSCMP 
;pseudo-op doing Less 
;Than Signed test> 

VLDQ c, 18, V1 ; Load vector c 
VVDIVD/0 V1, VO , V2 ;Masked divide of c by a 

;for VMR[i) = 0 
VSTQ/1 V1, b. 18 ;Store "then" part of b(*) 
VSTQ/0 V2, b, 18 ;Store "else" part of b(*) 

Nothing overlaps the first VLDQ instruction, but 
the VSLSSD instruction does overlap the second 
VLDQ instruction. Nothing can overlap with the 
VVDIVD instruction. Thus, the VSTQ instruction 
does not begin execution until the VVDIVD instruc­
tion completes. The remaining VSTQ instruction 
waits for the first VSTQ instruction to complete. 

In the following scatter-gather example, none of 
the instructions is overlapped. 

Do i = 1, 64 
if Ca Ci) . eq . 0) then 

b(i) = cCi)/d(i) 
endif 

enddo 
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vectorizes as: 

VLDQ a, 18, VO ;Load vector a 
VSEQLD i"xo ,vo ;Test a(*) for zero and 

; set mask. CVSCMP pseudo-
;op doing Equal test> 

IOTA 18, V1 ;Make compressed 
;vector of offsets 
;write size of vector 
; to VCR 

MFVCR RO ;Move VCR into RO 
; CMFVP pseudo-op) 

MTV LR RO ; Load new VLR value 
; CMTVP pseudo-op) 

VGATHQ c, V1, V2 ;Gather vector c 
;using offsets in V1 

VGATHQ d, V1, V3 ;Gather vector d 
;using offsets in V1 

VVDIVD V2, V3, V4 ;Divide c by d 
VSCATQ V4, b, V1 ;Scatter vector busing 

;offsets in V1 

It should be noted in this example that the 
VSEQLD and the IOTA instructions do not overlap. 
This lack of overlap occurs because the IOTA 

instruction is actually done with microcode on the 
E-box, and the IOTA instruction cannot begin exe­
cution until the VSEQLD instruction has computed 
all the new vector mask register bits. The vector 
register access instructions (MFVCR and MTVLR) 

take only a few cycles and do not significantly affect 
the overlapping of other vector instructions. 

Summary 
By taking advantage of key features of the VAX 

vector architecture, such as instruction overlap­
ping, imprecise exceptions, and asynchronous 
interaction with the scalar processor, the vector 
processor of the VAX 9000 system provides super­
computing performance for computationally inten­
sive applications. Through the use of barber poling, 
the vector processor can overlap two vector arith­
metic instructioris with one memory instruction 
to deliver a peak double-precision performance of 
125MFLOPS. 
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HDSC and Multichip Unit 
Design and Manufacture 

The VAX 9000 system effectively integrates state-ofthe-art packaging and inter­
connects with advanced integrated circuits to achieve a short machine cycle time 
(16 nanoseconds) and a high rate of instroction execution. To meet highfrequency 
electrical signal and pin count requirements for the system, engineers chose tape 
automated bonding technology and consequently conceived and developed the high­
density signal carrier (HDSC). The HDSC offers densities three to five times greater 
than conventional printed circuit boards. This unique technology is manufactured 
using semiconductor and advanced printed circuit board techniques. The HDSC is 
at the heart of the multichip unit, a high-perfomumce logic module, with which the 
VAX 9000 CPUs and system control unit are constructed. 

Over the past decade, advances in the performance 
of integrated circuits (ICs) have outpaced advances 
in packaging and interconnect technologies. Thus a 
high-performance mainframe with conventionally 
packaged bipolar integrated circuits would experi­
ence interconnect delays that account for more 
than 50 percent of the system cycle time. Key to 
optimizing high-end mainframe performance, then, 
is the effective integration of state-of-the-an pack­
aging and interconnects with advanced integrated 
circuits. The high-density signal carrier (HDSC} and 
the multichip unit (MCU) are proprietary tech­
nologies that shrink interconnect paths and thus 
reduce the distance and electrical loading of signals 
between chips. These technologies use conven­
tional semiconductor and printed circuit board 
(PCB) equipment in many areas of manufacturing 
to improve reliability at a competitive cost. The 
result is shorter machine cycle time and higher 
instruction execution rate. The VAX 9000 CPUs and 
system control unit (SCU) are constructed entirely 
of multichip units on large planar modules. The SCU 
is composed of arrays of 6 multichip units, and the 
CPUs are composed of arrays of 16. 

Multicbip Unit Design Goals 
Beginning at the concept level and throughout the 
development and test phase, signal integrity con­
siderations guided the development of the HDSC 
and the multichip unit. Designers had to ensure 
th at the fast signals would not be disturbed by 
noise. The cycle time goal for the VAX 9000 system, 

80 

16 nanoseconds (ns), allows the system to operate at 
30 VAX units of performance (VUPs). 

To transmit electrical signals quickly between 
chips, wiring paths must have controlled ratios of 
wire size to distance from voltage planes. These 
impedance-controlled paths allow radio-frequency 
computer signals to propagate with minimal dis­
tortion. Prevention of noise on the signals is 
paramount and many details of the physical imple­
mentation, including spacings between wires, are 
critical to ensuring signal integrity. 

To meet the cycle time goal, high-frequency elec­
trical signal concerns needed to be considered in 
the design, concerns that would have been negligi­
ble for slower speed signals. Due to the physics of 
electrical fields, as electrical signals switch at high 
frequencies, they succeed in holding their shape 
(data) only if they are fed power extremely quickly, 
and if they are given short paths of uniform proper­
ties on which to travel. Due to the amount of power 
and the short amount of time a signal is given to 
arrive on chip, conventional chip carrier packages 
were disallowed for the VAX 9000 system. The sig­
nal paths had to be very short to be virtually noise­
less. To achieve this objective, engineers decided to 
enhance tape automated bonding (TAB) technology 
with a ground plane for electrical control of the 
wire impedances (paths). This reduction in chip 
package size also allowed all of the chips for the sys­
tem to be packaged into a tight area. Consequently, 
to fit wires between chips, extremely dense HDSC 
technology was conceived and developed. 
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The multichip unit also required careful thermal 
design attention because each chip consumes up to 
30 watts. Moreover, most multichip units contain 
four to eight of these chips plus self-timed RAMs 
(STRAMs). The key to success for the VAX 9000 
program was balancing the trade-offs between per­
formance requirements and technology develop­
ment risks. 

To meet the electrical and density requirements 
for the machine, engineers specified the following 
for the multichip unit: 

I. Series-terminated output drivers were required 
on chip. Therefore, external resistors are not 
needed on the multichip units or programmed 
into the design elsewhere. These external resis­
tors take up space and lower reliability. 

2. TAB was specified for manufacturing reasons. 
Short TAB tape was required to reduce switching 
noise on chips. Noise would have been generated 
if the TAB wires were longer. In the case of the 
noisiest chips, a ground plane was added to the 
tape to reduce noise. 

3. HDSC etch had to be two routing layers of 18-
micron by 9-micron wires on 75-micron centers 
to meet the density, resistivity, crosstalk, imped­
ance and other goals. 

4. Four power planes, each one powered from two 
sides, were required to distribute three voltage 
rails with acceptably high conductivity. 

5. Thin dielectric separates the power planes and 
produces high capacitance which filters noise 
and improves performance. This capacitance 
eliminates the need for discrete parts which con­
sume valuable space and lower reliability. 

6. Impedance control of the connectors on the 
multichip unit was needed to prevent signal dis­
turbance. Rules were generated for the number 
of ground pins. 

The heart of the multichip unit is the HDSC. The 
HDSC is an interconnect technology consisting of 
nine metal layers separated by polyimide dielectric 
and mounted on a copper baseplate. The top metal 
layer is a pad layer used to solder-attach all of the 
integrated circuits and connectors. The four metal 
layers below make up the signal core. The signal 
core is a controlled-impedance, dual buried strip­
line interconnect system used to wire all integrated 
circuits to each other and to the connectors. The 
power is brought from the perimeter of the HDSC to 
the integrated circuits through the bottom four 
metal layers. 
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All integrated circuits in the multichip unit are 
attached to the HDSC by a tape automated bonding 
(TAB) process. The VAX 9000 system uses four types 
of chips, all of which have emitter coupled logic 
(ECL}: gate arrays, custom chips, and two types of 
STRAMs. At each chip site, a cutout in the HDSC 
allows the chip to directly attach to the baseplate. 
The signals on and off the multichip unit are carried 
by four signal flex connectors which attach to the 
perimeter of the HDSC. The signal flex connector 
provides a separable interface to the planar board 
and extends the controlled-impedance electrical 
environment of the HDSC. Power is brought 
through two power connectors attached to oppo­
site sides of the HDSC. The signal flexes, the power 
connectors, and the baseplate are attached to the 
multichip unit housing. The housing provides the 
structure for the multichip unit and holds the com­
ponents needed to position and wipe the signal 
flex. The chips and HDSC surface are covered by a 
plastic lid. 

The high-powered chips are efficiently cooled by 
a short conductive path through the back of each 
chip. The thermal power is conducted from the 
chip to the baseplate and into a pin fin heat sink 
over which air is impinged to remove the heat. 

The following sections describe the implementa­
tion of the technology. 

1be HDSC Design and 
Manufacturing Process 
The goal for the HDSC project was to produce a 
high-density, high-performance, manufacturable 
printed circuit board. This goal was achieved. The 
density of the HDSC is three to five times greater 
than that of conventional printed circuit boards. 
Even at this density, the HDSC maintains the signal 
integrity of bipolar integrated circuits with edge 
speeds of 200 picoseconds. This section describes 
how the manufacture of the HDSC pushes the limits 
of printed circuit board and semiconductor equip­
ment into new types of applications. We also 
address the integration of computer-aided (CAD) 
tools, process controls, and test feedback, which 
helped us to achieve the results we sought. 

HDSC Technology 
As noted earlier, the HDSC has nine copper layers 
for power and signal distribution. The insulating 
material, polyimide, has a low dielectric constant 
of 3.5 as compared with oxide or nitrides used in 
integrated circuits or as compared with ceramic, 
which is used for hybrid circuits. The interconnect 
is laminated to a copper baseplate to provide 
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mechanical structure as well as attachment of the 
multichip unit heat sink. 

The conducting layers consist of the following: 

• Two layers for signal distribution 

• Two layers that serve as signal reference planes 

• Four layers for power distribution 

• One layer with bonding pads to attach the TAB 

and connectors 

The signal distribution is a single x-y pair that 
uses the reference planes to create a dual strip­
line interconnect. This interconnect provides a 
controlled-impedance signal path with minimal 
crosstalk. Table 1 lists the electrical and physical 
design parameters of the HDSC. 

Process Overoiew 
The HDSC is manufactured by two types of pro­
cesses: core processing and assembly processing. 
Figure 1 is a diagram of the HDSC process flow. 

The core process, described funher below, uses 
semiconductor manufacturing equipment and is 
similar to the manufacturing process for the back 
end of an integrated circuit. Two cores are manu­
factured: a signal core for strip-line signal inter­
connect, and a power core for the four planes 
(or layers) that distribute power throughout the 
finished HDSC. 

The second process, assembly, uses advanced 
printed circuit board techniques to laminate and 
interconnect the signal core and power core. The 
completed HDSC has solder pads to accept the outer 
lead bond of TAB integrated circuits, signal flex, and 
power flex. The HDSC is tested with a custom flying 
probe tester. Tests are made to ensure the HDSC is 
functional and meets electrical parameters. 

Table 1 HDSC Physical and Electrical 
Design Parameters 

Line pitch 75 microns 
Line width 18 microns 
Line thickness 

Dielectric thickness 
Dielectric constant 
Line impedance 

Line resistance 
Crossover capacitance 
Crosstal k 

Propagation delay 
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10 microns 
25 microns 
3.5 
60ohms 
1/0 ohm/centimeter 
3.6 femtofarads 
5.1 percent maximum 
66 picoseconds/ 
centimeter 

CORE PROCESS FLOW 
r-------------------
I SIGNAL CORE POWER CORE : 

I ! I I 
I + I 
I • 4 METAL LAYERS • 4 METAL LAYERS I 
I • 5 POLYIMIDE LAYERS • 5 POLYIMIDE LAYERS 
I • COPPER LINES ETCHED • WHOLE PLANES I 

• VIAS I 

: * * I L __ I_T~ST- ~ - -+- _L ~~ J __ J 
ASSEMBLY PROCESS FLOW 
---------, 
I • SUBSTRATE REMOVAL I 
I • LAMINATION I 
I • DRILL 

• LASER CUTIING I 
I • PAD LAYER 
I • BASE PLATE I -_ $ __ J 

TOMCU 

Figure 1 HDSC Core and Assembly Process Flow 

Core Processing The process for the manufacture 
of the signal and power cores, or the core process, 
consists of alternating between copper deposition 
and polyimide coating until the completed inter­
connect layers are built on the metal wafer. The pro­
cess is performed on a metal substrate shaped like a 
6-inch semiconductor wafer. Copper layers are 
deposited by a combination of sputtering and plat­
ing techniques. Patterns in the copper that become 
signal traces are generated by a semiconductor 
photolithographic technique. First, a photoresist is 
applied to the metal wafer. The resist is then 
exposed to the pattern in the mask that is held by 
the semiconductor wafer aligner. This pattern is 
then developed in the resist and etched into the 
copper. The remaining copper thickness is then 
added by plating. Another resist pattern is devel­
oped over the plated signal traces to define where 
a copper connection between interconnect layers 
will occur. This connection is called a via post, and 
it is also formed by a plating process. 

Polyimide is spun on to the wafers by integrated 
circuit photoresist spin tracks. The relatively thick 
polyimide (25 microns at signal layers) helps to 
planarize the surface of the wafers and also to cover 
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the patterned copper lines and copper posts. Semi­
conductor photolithography equipment is also 
used to generate patterns in resist through which 
holes (extensions of the via post) are plasma-etched 
in the polyimide. These vias are filled at the next 
copper deposition to create a connection between 
patterned layers. 

Both signal cores and power cores are electrically 
tested to ensure electrical functionality. 

Assembly Processing To complete an HDSC , a 
signal core is matched to a power core. The metal 
wafer that acted as a substrate is then removed, and 
the signal and power cores are laminated together. 
Connections from the power core to the signal core 
are made by drilling and then plating up through 
the drilled holes. The plating and etching processes 
used to form the plated-through holes also produce 
copper pads on the bonding layer. Solder is 
screened and reflowed onto the bonding pads. Die 
site holes which provide openings for bonding the 
chips to the baseplate are cut through the laminated 
signal and power cores (HDSC decal). A laser cuts 
out the die sites and trims the HDSC decal to its 
final size. The assembly is complete when the inter­
connect is laminated to a baseplate which provides 
mechanical structure. 

HDSC Test Process 
The goal of the HDSC test process was to ensure 
that the physical technology met the VAX 9000 sig­
nal integrity requirements, discussed earlier in this 
paper. Equally important was to ensure that the 
technology was manufacturable and verifiable 
(measurable). Engineers had to accurately convert 
design information to masks and to verify HDSC 
electrical results by testing. We therefore developed 
modeling and measurement techniques to establish 
physical and electrical design rules; implemented 
CAD tools to verify these design rules; developed 
software to generate test vectors from the CAD data­
base; and also developed production HDSC testers. 

Modeling and Measurement Techniques To deter­
mine what trade-offs would be required between 
the VAX 9000 signal integrity and the HDSC physical 
manufacturing capabilities, engineers needed both 
modeling and empirical measurement techniques. 
A software tool based on Monte Carlo Analysis 
was developed that could drive a three-dimensional 
capacitance model. This tool predicts electrical 
parameter sensitivity to different physical pro­
cessing variations. Early in the project, processing 
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engineers estimated the expected manufacturing 
distribution of critical signal core dimensions. Once 
HDSCs were manufactured, actual processing dis­
tributions were fed into the model which predicted 
yield against the specification. Based on this, the 
processes were adjusted to maximize yield. Models 
and electrical results were verified by time domain 
reflectance (TDR} and resistance-inductance-capaci­
tance (RLC) measurements. 

The high-frequency measurements necessary to 
characterize the interconnect were extremely sensi­
tive to probe card inductance and capacitance and 
probe contact resistance. Custom test fixtures were 
designed to perform the measurements. 

High-frequency test measurements in the pro­
duction environment are not practical, but we 
determined that resistance and capacitance testing 
could be used instead to verify the HDSC signal 
integrity. A production flying probe tester was 
developed to test HDSCs. Once again, probe para­
sitics were large compared to the type of measure­
ments necessary. Custom probe design, calibration 
methods, and software to drive the tester again 
were necessary. From HDSC graphic design files, 
test capacitance limits for every signal net are gener­
ated, which ensures electrical functionality as well 
as signal integrity. In addition, the resistance of 
every plated-through hole is measured, the integrity 
of power planes verified, and resistance and leakage 
measurements performed on test structures within 
the HDSC. 

CAD The VAX 9000 system design includes net 
lists and graphical files of the HDSC masking layers. 
To this data is added process control monitors, 
alignment marks, and pattern modifications 
required to meet the process design rules. After 
modifications, all data is verified by software that 
checks design rules and electrical rules. 

The data is used in a variety of applications. First 
it is converted to pattern-generation format so that 
from this data masks can be written and an inspec­
tion file can be generated to verify the mask-making 
process. The information is also used to drive 
numerically controlled equipment, such as the 
drills and lasers that perform die site cut outs. 
Finally, it is used to create a net-capacitance test file 
which drives the HDSC production testers. 

MCU Design and Manufacturing 
The multichip unit (MCU} takes full advantage of 
the integrated circuit and HDSC technologies to pro­
duce a high-performance logic module. The major 
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components of the multichip unit are shown in 
Figure 2. The components, their functions, and the 
assembly and test process are discussed in the next 
two sections. Table 2 summarizes the multichip unit 
specifications. 

All units have certain features that are fixed, 
regardless of logic design. These include the clock 
distribution chip, serialization pattern, signal con­
nector, power connector, housing and heat sink. 
The VAX 9000 system uses 20 unique logic design 
implementations, or options. The multichip unit 
features that make an option unique are the gate 

SIGNAL FLEX 
CONNECTOR 

ELASTOMER TRAY 
SUBASSEMBLY 

RETAINER~ 
SPRINGS lb 

ELASTOMER 
SUPPORT BEAM 

arrays (up to 8), the STRAMs (9 replace I gate array, 
24 replace 3 gate arrays), and the HDSC. 

TAB Semiconductors 
All semiconductors in the multichip units are inte­
grated circuits. Discrete devices and passives which 
consume more space and display lower reliability 
are not used. TAB is a chip-to-substrate interconnect 
made of layers of copper and polyimide film. The 
copper signal lines are patterned to mate with gold 
bumps on the IC perimeter and with solder-plated 
pads on the HDSC. 

MCULID 

POWER 
CONNECTOR 

HOUSING 

Figure 2 F.xploded View of an MCU 
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Table 2 Summary of MCU Specifications 

· Maximum power 
dissipation 

Maximum IC junction 
temperature 

Maximum number of 
VLSI chips 
Minimum chip lead 
pitch 

Size 
Plane 
Height 

Minimum pitch on 
planar module 

Weight 

Clock input frequency 

Signal 1/0 per MCU 

Signal rise time 
Voltage levels 

Maximum current 

270 watts (air cooled) 

85 degrees Celsius 
@ 25 degrees Celsius 
room temperature 
72 

200 microns 

14.12x13.21 centimeters 
5.44 centimeters 
14.38 x 13.46 centimeters 

1.59 kilograms 
(with heat sink) 
320 to 580 megahertz 

800 

600 picoseconds 

2 plus ground 
40 amperes per voltage 
level 

The TAB for the gate array and most of the custom 
chips is a two-metal-layer tape with 360 leads. A 
cross section of the gate array TAB is shown in 
Figure 3. The dielectric layers are polyimide film. 
One metal layer contains the etch lines used for 
both power and signal I/0 and the leads to bond to 
the chip and HDSC. The other layer is a reference 
plane to establish controlled impedance and to 
minimize the inductance of the power and ground 
paths. The reference plane is connected to the 
ground leads by vias etched through the Kapton 
and plated up. The gate array power is brought in 
through 104 power (two voltage levels) and ground 
leads. All of the signal leads are 60 ohms controlled 
impedance. The leads are 35 microns thick and cop­
per coated with about 0.5 micron of electroless tin . 

As shown in Figure 3, the TAB has an inner lead 
bond (ILB) pitch of 100 microns and an outer lead 
bond (OLB) pitch of 200 microns. The total span of 
the TAB when mounted is 2.4 centimeters. The leads 
are formed near the OLB to provide strain relief for 
the ILB and to protect the OLB from thermal stress. 
To minimize propagation time and noise, the length 
of the signal lines has been minimized by keeping 
the OLB pitch to the minimum compatible with 
manufacturing processes. The bond at the IC (at the 
ILB) is a gold-tin eutectic formed by gang thermal 
compression bonding. 
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The clock distribution custom chip (CDxx) and 
the STRAM use single-metal-layer tape with poly­
imide dielectric. The CDxx has 252 total leads 
with 84 power and ground leads. The CDxx has the 
same pin pitch as the gate array. The VAX 9000 
system uses two sizes of STRAMs (lK by 4 bits and 
4K by 4 bits) that have TAB tapes of different sizes. 
The STRAMs also use a single-metal-layer tape with 
48 leads. The minimum ILB pitch is 250 microns 
and the minimum OLB pitch is 450 microns. Single­
metal-layer tape was selected for these devices 
because it was less expensive than two-metal-layer, 
and two-metal-layer tape was not needed because of 
the shortened lead lengths on the STRAMs. Single­
metal-layer tape was acceptable for the CDxx chip 
because all the outputs are differential and syn­
chronous. Noise cancellation was guaranteed. 

All devices that use TAB are shipped in a 35-milli­
meter slide carrier. The devices are encapsulated in 
epoxy to minimize infiltration of moisture or corro­
sive ions and to reduce damage due to handling. 
The back sides of the chips are bare silicon because 

ENCAPSULATION 

IN ER LEAD 
BOND 
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INNER LEAD BOND 

TAB 

OUTER LEAD 
BOND 

INTEGRATED 
CIRCUIT 

Figure 3 Isometric of a Gate Array 
Showing Features of the TAB 
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no plating is required for epoxy die attach. The 
epoxy die attach is filled with microscopic particles 
to enhance the thermal conductivity while main­
taining electrical isolation between chips. 

Signal Flex Connector 
The signal flex connector is a high-density, con­
trolled-impedance connector used to transmit sig­
nals between the HDSCs and the planar module. 
Each multichip unit has four flex connectors with 
a combined signal I/0 of 800 in an area less than 
40 square centimeters. Figure 4 shows a cross sec­
tion of one signal flex connector. The body of the 
connector is a two-metal-layer flex print with 50-
and 60-ohm signal lines. The ground plane in the 
flex circuit is used as an AC return path. No power is 
carried through the signal flex. The signal plane 
contains 200 etch lines with a raised gold bump on 
each at the planar module interface. The connec­
tion to the HDSC is a solder bond similar to the sol­
der bonds for the TAB device. A window is opened 
through the polyimide to allow the formation of 
cantilevered, exposed, solder-plated leads. 

The raised bump on the flex circuit concentrates 
the contact force into a small area. The bump is 
solid copper that is plated over with nickel and hard 
gold. The force on the bump is generated by com­
pressing a molded silicone rubber elastomer. The 
compression of the connector causes the flex 
frame to engage a cam on the housing and wipe the 
contacts across the planar module pads. The con­
nector is compressed, nominally, 1.27 mm and 
wipes 0.46 mm. The bottom of the elastomer mates 
with a tray which has a contoured surface to vary 
the compression along the length of the elastomer. 
This contoured surface improves the uniformity of 
the force that the bumps exert on their pads. The 
connector has been designed to generate 100 grams 
minimum load on all bumps. The wipe action and 
the bump force of the connector minimize the 
effect of dust and environmental films on the mat­
ing surfaces. 

Power Connector 
The power consumed by the multichip unit is 
brought in through two power connectors mounted 
on opposite sides of the HDSC. The connector is 
composed of a flex circuit , a connector, and decou­
pling capacitors. The flex circuit is solder bonded to 
large pads on the HDSC surface. The flex has three 
copper conductive planes separated by polyimide 
dielectric. The connector has stamped metal con­
tacts soldered into the flex circuit and assembled 
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into a plastic housing. The connector plugs into flat 
blades on the bus bar of the planar module assem­
bly. The decoupling capacitors on the power flex 
circuit filter the medium-frequency switching noise 
on the MCU and the MCU power bus. 

Thermal Design 
The multichip unit was designed from conception 
to provide an efficient cooling path for the inte­
grated circuits. Figure 5 shows a cross section of the 

SIGNAL FLEX 
CIRCUIT 

PLANAR MODULE 

ELASTOMER FLEX CIRCUIT 
BUMP 

ELASTOMER 

ELASTOMER TRAY 

Figure 4 Signal Flex Connector with 
Detail of Bump 
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multichip unit. The heat dissipated by the chips is 
conducted through the silicon and the die attach 
into the baseplate. As mentioned above, the die 
attach is an epoxy heavily filled with microscopic 
diamond particles to increase thermal conductivity. 
The heat spreads out in the copper alloy baseplate 
and is conducted across a dry interface to an alu­
minum base of the pin fin heat sink. The heat sink 
has 600 aluminum pins, each 0.20 centimeters in 
diameter, pressed into the base. Air plenums in the 
cabinets direct at least 14.6 liters per second of air 
into each multichip unit heat sink. The thermal 
resistance for a 30-watt gate array is less than 2.0 
watts per degree Celsius which gives a junction 
temperature of 85 degrees Celsius with room air at 
25 degrees Celsius. This low junction temperature 
is a critical part of the high reliability of the multi­
chip unit. 

Clock Distribution 
The system clock on the VAX 9000 system is 
distributed to each of the multichip unit clock 
distribution chips (CD:xx). The CD:xx generates 40 
differential outputs which are routed through 
equal-length etch to the other chips. The CD:xx also 
distributes and controls the scan lines that test the 
unit both in manufacturing and in the field . The 
scan lines also allow the unit serial number and revi­
sion status to be read by the system console. 

Multicbip Unit Manufacturing 
Figure 6 shows the manufacturing process flow, 
which has three major work centers: 

• 54-class assembly and inspection 

• PIOOO assembly and inspection 

• Test and diagnose 

In the 54-class process, TAB semiconductor 
devices are assembled to the HDSC substrate, result­
ing in the subassembly known internally as a 54-
class module. In the P 1000 process, connector and 
housing components are assembled. At the last 
major center, the test process, final units are tested 
and, if necessary, diagnosed. A shop floor control 
system tracks the units through the line and pro­
vides critical component and process trace infor­
mation. In addition, this control system is used to 
monitor process parameters to ensure control of 
the line and consistent product quality. 

The following section provides insight into 
several of the process technologies we used to meet 
the manufacturing goals of the VAX 9000 system. 
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The insertion and soldering of leads is the most 
critical step in the multichip unit manufacturing 
process. Single-lead and multiple-lead gang bonding 
approaches were both considered. Gang reflow sol­
dering is an effective way to achieve repeatable, reli­
able connections for both the TAB semiconductors 
and the signal flex circuits. Early development work 
on manual machines required operator action for 
lead forming, lead alignment, and gang bonding. 
Today, critical process parameters- time, pressure, 
temperature-are computer controlled to speci­
fied values, and the process uses tools to assist the 
operator in material movement and vision systems 
to improve alignment of leads. Before bonding, the 
leads are covered with a low activation flux which 
is removed later in the process. 

Die Attach 
Another critical manufacturing step is the die attach 
process. The excellent thermal performance of the 
multichip unit is achieved by following these steps: 

• Careful control of the die attach materials with 
feedback to our suppliers. 

• Surface cleanliness specified and also managed 
with our suppliers. 

• Dispensing of epoxy. The filled epoxy is dis­
pensed by an x-y table that is computer con­
trolled to supply the correct pattern for the 
particular multichip unit type. 
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Figure 6 Manufacturing Process Flow 

• Establishment of bond line thickness and epoxy 
cure. Bond line thickness is accomplished by 
mechanically applying pressure while curing in 
a purged belt furnace. 

Inspection 
To ensure that all soldered leads are reliably 
bonded, leads must be inspected for shorts, mis­
alignments, opens, and weak joints. Shorts and mis­
alignments are discovered by an automated vision 
system that calls marginal points to the operator's 
attention. The operator can then determine if 
repair action is warranted. Inspection for opens and 
weak joints is done by striking the leads with a pulse 
of laser energy and then measuring the thermal 
decay profile. Repair is typically made by localized 
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short removal or single-point bonding. Over time, 
we believe that our materials and processes can be 
controlled to the point at which inspection and 
repair can be dramatically reduced. 

Final Test 
The goal of our test process was to ensure that 
multichip units would operate successfully in a 
system environment. Since no test equipment 
manufacturer offered a system that met our needs, 
we developed our own by working with several 
Digital groups as well as outside suppliers. The 
system contains three major stations. The first 
provides alignment information and can also read 
visual serial and part numbers. In the second sta­
tion, low voltage shorts are determined between 
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nearest neighbor leads. This step supplements our 
inspection for shorts described above. In the final 
station, we test for connector opens, thermal mea­
surement (die attach integrity), scan chain integrity, 
and scan pattern data. The scan pattern testing is 
done in several bursts of the clock at system speed. 
In addition, diagnose capability is provided by fly­
ing probes, voltage and clock margining, and a ther­
mal chuck to vary temperature. 

Conclusion 
Successful use of advanced interconnect technolo­
gies requires a seamless phased development pro-
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cess that begins with advanced development and 
continues through volume manufacture. The HDSC 
and multichip unit technologies have successfully 
achieved the volume manufacturing phase. Using 
the products and technologies described 
in this paper, we have played a key role in the intro­
duction of the VAX 9000 system to the marketplace. 
Extensions of this manufacturing process will 
ensure that this technology base can be applied 
across a wide spectrum of products of both higher 
and lower performance. 
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The VAX 9000 Service 
Processor Unit 

The VAX 9000 seroice processor unit provides the front-end seroices needed to support 
a highly available and reliable mainframe system. The unit is closely linked to the 
VAX 9000 system to provide realtime detection and recovery of system failures. 
However, the unit is independent enough to be isolated for maintenance without 
affecting normal system processor operation. This combination is a first for VAX 

systems. The seroice processor also provides various debugging features that were 
essential for development and early manufacture of the VAX 9000 system. These 
features utilize a system-wide scan architecture to achieve direct access to machine­
state, which provides extensive visibility and control of system logic functions. The 
inclusion and use of such a scan architecture is a newfeature for a Digital processor. 

The VAX 9000 service processor unit (SPU) is 
designed to provide a dedicated subsystem for ser­
vice and maintenance support for the VAX 9000 
family. The SPU serves two distinct roles. It func­
tions as the familiar operator interface (i.e., VAX 

console) and as a maintenance vehicle used to diag­
nose and isolate system processor hardware faults. 

The SPU performs the following major front-end 
services: 

• System initialization 

• Power system control and monitoring 

• Environmental monitoring 

• Clock control and monitoring 

• VAX 9000 operating system access to SPU mass 
storage devices (disk and tape) 

• Remote diagnosis port support 

• System error detection, recovery, and reporting 

The SPU also provides or assists in the following 
system diagnosis functions: 

• SPU module self-tests 

• Scan system diagnostics 

• Clock system diagnostics 

• Scan pattern structural diagnostics 

• Structure cell (e.g., self-timed random-access 
memory (RAM]) diagnostics 
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• XMl-to-system control unit adapter interface test 

• Symptom-directed diagnosis support 

In addition to its use as the front-end processor 
for the VAX 9000 system, the SPU was embedded 
in several manufacturing and engineering test 
vehicles. In the Debugging Features section of this 
paper, we describe how the SPU was used as a 
debugging tool during VAX 9000 product devel­
opment and the various debugging features we 
provide to help locate design and fabrication 
problems. 

A major goal of the SPU was to perform system­
wide error detection and recovery functions for the 
VAX 9000 processor. In the Error Handling section 
of this paper, we detail the types of errors that the 
SPU handles arid how error detection, reporting, 
and recovery occurs. 

Another of our design goals was to be able to 
service the SPU without adversely affecting the 
operation of the system processor. This feature was 
needed to support the high availability require­
ments of a mainframe system. To meet this goal, we 
designed mechanisms to enable the VAX 9000 oper­
ating system to determine that the SPU is not func­
tional (whereupon the operating system takes the 
appropriate action to secure its own operation), 
as well as recognize and reintegrate with the SPU 
when the SPU is functional again. 

If the VAX 9000 operating system attempts to 
access one of the SPU-based processor registers and 
the SPU does not respond, the failure is detected by 
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using the usual register time-out mechanism. How­
ever, because the SPU is responsible for system error 
handling, SPU failures must be detected quickly to 
enable the SPU to respond to a system error should 
one occur. Consequently, we developed a keep­
alive protocol with which the VAX 9000 operating 
system can determine SPU failures without relying 
on operating system accesses to SPU-based pro­
cessor registers. The keep-alive mechanism is 
described in more detail under the Error Handling 
section of this paper. Both the time-out and keep­
alive mechanisms work regardless of whether the 
SPU has an unexpected failure or undergoes a sched­
uled power-down. 

Should the SPU require service, field upgrades 
may be performed easily and quickly because of the 
modularity of the hardware, which is primarily 
VAXBI bus interface-based adapters. The VAXBI 
backplane minimizes downtime because modules 
can be removed or inserted without requiring reca­
bling. When power to the SPU is restored, SPU self-
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tests are performed. The SPU's operating system 
then boots automatically and signals its availability 
to the VAX 9000 operating system. 

The SPU is designed to continue operation even 
if the SPU primary storage device, an RD54 
Winchester disk drive, fails, which further increases 
the availability of the SPU. For customers who 
require data security and high availability, we 
designed a system configuration option that does 
not use a disk drive. In this case, the SPU boots from 
TK50 cartridge tape. The SPU functions that require 
a disk drive for data storage (e.g. , SPU-generated 
error logs) are disabled in this configuration. 

SPU Architecture 
A block diagram of the SPU architecture is shown in 
Figure 1. The service processor module, scan con­
trol module, and power and environmental monitor 
were designed uniquely for the VAX 9000 system. 
The disk controller, tape controller, as well as the 
memory daughter board were available from other 
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Figure 1 VAX 9000 SPU Block Diagram and Interconnects 
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Digital products. Every SPU VAXBI adapter provides 
its own built-in self-test diagnostics.' 

SPU hardware is based on either industry-proven 
(e.g. , 7400-series TTL components, complementary 
metal oxide semiconductor (CMOS) gate arrays) 
or Digital-proven technology (e.g., VAXBI, Digital 
custom CMOS devices) to ensure that the unit is an 
effective debugging platform for a system processor 
based on leading edge technology. As a result, the 
inherent risk and learning curve associated with 
new technology were avoided and the SPU was 
ready and available during the VAX 9000 system 
prototype debugging process. 

The SPU also was made available to manufactur­
ing process and tester groups (e.g., multichip unit 
tester) for use with their designs. The advantages to 
this approach were that technicians became famil­
iar with the same subsystem that would be used in 
the VAX 9000 family, and the test programs could 
be transferred for use in other test environments 
that also used the SPU, including the VAX 9000 sys­
tem itself. 

The service processor module is the primary 
processing element of the SPU and is the VAXBI host 
adapter. Based on the MicroVAX 78032 chip and 
several custom-designed application-specific inte­
grated circuits (e.g., SPU-to-system control unit 
adapter, SPU memory controller), the module con­
tains all the hardware necessary to store and 
execute the SPU operating system. The on-board 
firmware contains a VAX standard console interface 
to load the SPU operating system during initializa­
tion and to assist in subsystem debugging. The SPU­
to-system control unit interface (SJ!) connects the 
service processor module to the system control unit 
and is the primary communication path between 
the SPU and the VAX 9000 operating system. 

The scan control module is the control interface 
to the VAX 9000 scan system, which is the visibility 
and maintenance path to the system processor. Like 
the service processor module, the scan control 
module is based on the MicroVAX 78032 chip and 
several custom-designed application-specific inte­
grated circuits (e.g., scan control chip, scan 
distribution chip). On-board firmware provides 
high-level functions that allow the service processor 
module to continue processing while scan-related 
operations, including logical-to-physical signal 
translations, are performed concurrently by the 
scan control module. The scan interconnect (SCI) 
connects the scan control module to the system 
processor (i.e., one to four CPUs and the system con­
trol unit) and the master clock module. Using this 
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interface, the system processor may also interrupt 
the SPU when the processor needs service. This 
type of interrupt request is known as an attention. 

The SPU is integrated into the system cabinet to 
better meet the performance requirements neces­
sary for system error recovery and VAX 9000 oper­
ating system boot. Cabinet integration substantially 
decreases interconnect distances to processor logic 
and ensures that all cables are kept internal to the 
cabinet. Another reason for choosing the VAXBI 
backplane card cage is that its form factor is small, 
which reduces the cabinet area needed (cabinet area 
is always in high demand), yet the user-definable 
zones provide the high pin density required for 
interconnects (i.e. , 1801/0 pins per VAXBI slot). 

Communication Path 
The SPU communicates with the system processor 
using the SJI. This interface is used to load the pri­
mary bootstrap into the VAX 9000 main memory, 
transfer error and machine-check information to 
the VAX 9000 operating system, provide file trans­
fer access between the VAX 9000 operating system 
and the SPU's RD54 disk drive, access system main 
memory, and access system I/0 registers. 

The VAX 9000 operating system accesses the SPU 
as if it were a standard 1/0 device. The SPU is an 
independent subsystem and does not rely on the 
execution unit of the system processor to be a con­
sole processing engine, as was done in previous 
VAX systems. There are several benefits to this 
design approach. Each CPU has equal access to the 
SPU and may interrupt the SPU to request service. 
In addition, the SPU may interrupt any of the CPUs 
to request an operating system service. The SPU 
may be used as a debugging tool during system pro­
cessor debugging because it does not require that 
any portion of the system processor be operational. 
The fact that the SPU could be used as a debugging 
tool was an extremely important benefit for the 
VAX 9000 system debugging effort. The debugger 
did not have easy access to the logic elements 
because of the advanced packaging and circuit inte­
gration of the VAX 9000 system. Therefore, SPU ser­
vices were utilized in lieu of logic probes. Further, 
because the SPU no longer uses the CPU for system 
access, console support microcode (i.e., the collec­
tion of microcode procedures traditionally used for 
access to the system processor, memory, and I/0 
registers) is not required. The benefit of this process 
is that valuable VAX 9000 control store space could 
be used for system microcode or to reduce the con­
trol store size. For example, in the VAX 8650 system, 

Vol. 2 No. 4 Fall 1990 Digital Tecbnical}ournal 



console support microcode occupies approxi­
mately 180 microword locations. 

VAX 9000 operating system access to the SPU is 
through the VAX console register set. We extended 
the VAX console register set to provide access to the 
enhanced capabilities of the SPU. Additional regis­
ters include transmit function request and param­
eter and receive function request and parameter 
(i.e., TXFCT, TXPRM, RXFCT, RXPRM). Table 1 lists 
the functions provided by these registers. 

SJI communications are in the form of 14-byte 
packets that contain the command (i.e., function), 
address, and data. Packets are sent and received 
over two 8-bit data paths that provide full duplex 
operation. Data transfers peak at 3. 5 megabytes 
(MB) per second for quadword transfers. 

When the VAX 9000 operating system executes a 
Move_to/from_Processor_Register instruction that 
specifies an SPU register, the system control unit 
sends an I/0 command packet, through the SJI, to 
the SPU to initiate the system request. Then the SPU 

typically uses an interrupt command packet, which 
generates an interrupt to the specified CPU. The 
two other packet types are direct memory access 
and error correction code. 

Visibility Path 
In the development and manufacture of a com­
plex computer system, extensive testing methods 
must be available to ensure functional operation 
and product quality. Design engineering no longer 
can use manual probing techniques in prototype 
debugging. Space limitations have resulted from 
advanced packaging and the close pitch of inte­
grated circuit IIO pins, which is due to high integra­
tion levels. Failure isolation must be performed in 
the manufacturing process, often without an exten­
sive knowledge of the machine design. 

A separate visibility and control path in the sys­
tem processor of the VAX 9000 system provides 
nearly 100 percent visibility to the machine-state. 
The visibility path eliminates the need to select a 
subset of visibility points to meet all test needs, as 
was done with previous VAX systems. In addition, 
the path allows designers to directly alter the entire 
machine-state, which is a major advantage for 
design and process debugging. A VAX 9000 uni­
processor (i.e., one CPU and system control unit) 
contains over 26,000 access points. 

The path is called the VAX 9000 scan system and 
is controlled by the service control module. The 
scan system is the foundation for direct access 
by prototype debuggers, system error recovery 
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Table 1 RXFCT/RXPRM and TXFCT/TXPRM 
Functions 

RXFCT/RXPRM Functions 
(SPU to System Processor) 

Remove processor 
Add processor 
Mark memory page bad 
Request pages of memory 
Send error log entry 
Send OPCOM message 
Get datagram buffer 
Send datagram 
Return datagram status 
Set keep-alive state 
Abort datalink 
Error interrupt 

TXFCT/TXPRM Functions 
(System Processor to SPU) 

Get hardware context (of a halted CPU) 
Virtual block file operation 
(access to SPU disk and tape) 
Keep-alive 
Send datagram 
Return datagram status 
Switch primary 
Reboot system request 
Clear warm start flag 
Clear cold start flag 
Boot secondary processor 
Halt CPU and remove from available set 
Halt CPU and keep in available set 
Console quiet 
Set interrupt mode 
Abort datalink 
Reset 1/0 system 
Disable vector unit 
Set keep-alive state 
Start processor 
Margin power 
Margin clock 
Fault signal 
Start error window 
End error window 
Report error in window 
Get error log entry 
Get unmarked error log entry and mark 
Enable halt restart 
Get 1/0 physical address memory map configuration 
Get physical address memory map configuration 
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software, and diagnostics to observe and alter the 
VAX 9000 machine-state. Some functions provided 
by the scan control module and supporting SPU 

software are 

• Load and save processor state 

• Scan pattern execution 

• Continuity testing of the processor's scan 
hardware 

• Multichip unit type and revision information 
extraction 

• Processor attention notification 

A block diagram of the VAX 9000 scan system 
is shown in Figure 2. The scan control module 
connects to the system planar module over the SCI. 

Scan and clock distribution logic, contained in a 
macrocell array on the planar module, distributes 
data and control signals over the scan bus to each of 
the multichip units. A clock distribution chip at the 
hub of each multichip unit further distributes the 
scan bus signals to the macrocell arrays, which are 
integrated circuits that contain system logic. 

As shown in Figure 3, the state devices within a 
macrocell array are scan latches. The latches are 
connected serially to form a ring or chain by con­
necting the Scan_Data_Out line of each latch to the 
Scan_Data_ln line of the next latch. The end links 
are connected to the clock distribution chip. When 
the system clocks are running, data is loaded into 
the latch from the system data input. During scan 
operation, system clocks are not active. Generated 
by the scan control module, the scan clocks load the 
latch with data from the scan data input. Conse­
quently, the scan control module reads system state 
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by issuing scan clocks, which serially shift system 
data to the scan control module. System state is 
changed when the scan control module drives new 
data to the system latches while issuing scan clocks. 

An architectural feature permits each multichip 
unit to generate an attention interrupt directly to 
the scan control module over the scan data return 
line. Attentions notify the SPU of system events, 
such as processor errors, memory self-test comple­
tion, CPU halts, and keep-alive responses. 

System diagnostics can diagnose the SCI by using 
the same control signals as used for scan system 
operation. Dedicated logic and special routing of 
the scan lines provide failure isolation. Stuck-at 
faults and disconnect conditions can be isolated to 
the multichip unit. 

Debugging Features 
In addition to its use as the VAX 9000 front-end 
processor, the SPU provides a variety of features 
for debugging and troubleshooting multichip unit 
logic configurations. These features were required 
because all multichip unit logic visibility and con­
trol is handled through the SCI, which connects 
directly to the SPU. The use of scan latches to access 
internal logic states is a first for VAX systems and 
challenged the designers to define and deliver the 
necessary tools and features to assist the multichip 
unit debugging effort. Furthermore, the features 
provided by the SPU had to apply to various tester 
environments, ranging from single multichip units 
mounted in probe stations to full system config­
urations. Additional requirements to support the 
clock and power system test stations made it clear 
that the SPU would have to be adaptable to a variety 
of environments. 

PLANAR 
MODULE 

MCUO 

Figure 2 VAX 9000 Scan System 
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Generic SPU Environment 
To satisfy the SPU's fundamental requirement of 
being adaptive to differing environments, test sta­
tions had to comply with the physical interfaces 
provided by the SPU in the VAX 9000 system. We did 
not have the resources to develop tester-specific 
interfaces, so it was agreed by all development 
groups that testers would comply with the SPU's 
system environment, as shown in Figure 4. 

This generic environment allowed SPU hardware 
and software development to concentrate on sup­
porting the needs of the VAX 9000 system and to 

receive valuable feedback and debug time from 
the test station groups prior to system processor 
availability. Several major benefits were achieved 
with this approach: 

• Because the SPU software had early exposure 
in the test station environments, the software 
was debugged and tested to an acceptable level 
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before full system configuration support was 
needed. In particular, the command language 
interpreter had to be ready to provide the basic 
SPU functions, such as file manipulation, com­
mand procedures, symbol and expression evalu­
ation, and command recall. 

• Technicians working at the test stations had an 
opportunity to develop an understanding of the 
SPU's operation that was then carried forward to 
other SPU-based debugging environments. 

• Economies of scale existed because one front­
end development effort supported both in-house 
test stations and the final product. 

• Many of the primitive debugging features devel­
oped for tester use were found to be just as 
valuable during actual system debugging, partic­
ularly the fundamental commands that allow 
direct control of the SCI signals. 
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Primitive Debugging Features 
One of the most basic features offered by the SPU is 
the ability to directly access the internal registers of 
the clock and power systems by using the EXAMINE 

and DEPOSIT commands. When combined with the 
general command language of the SPU, these com­
mands allow debuggers to create procedures to 
control, test, or interrogate various components of 
the VAX 9000 system. For example, command pro­
cedures have been created to monitor and exercise 

the power, clock, and SPU subsystems as part of the 
reliability and design verification test plans. 

Other low-level commands provide the means 
for debugging and troubleshooting the scan paths. 
For example, the SET and SHOW commands permit 
individual control of the SCI signals. Using these 
commands, the SCI can be observed statically and 
be stepped through its operations. Precise control 
of the SCI signals provides easier debugging of the 
scan paths in the early multichip units, primarily 

1 TO 5 TEST STATIONS OR 
VAX 9000 SYSTEM 
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because static signal operation gives more isolated 
feedback than an interconnect that runs at full 
speed through many state changes. 

Once the single-step operation of the SCI was ver­
ified, the full-speed operation of the scan logic in 
the multichip unit could be tested. Commands that 
collectively display and modify the scan latches of 
a single macrocell array were an effective way to 
verify the operation of this logic. Latch data are 
displayed in their physical form as a string of hexa­
decimal digits, the length of which varies from one 
macrocell array to the next, in the range of 100 to 
300 bits. Provisions also exist to select scan clock 
rates ranging from 3200 nanoseconds (ns) per bit to 
the full 100 ns per bit operation. 

High-level Debugging Features 
The use of the scan architecture as a means for 
initializing and debugging the VAX 9000 processor 
was a first for a VAX front-end. Because physical 
latch information is cryptic and difficult to use, we 
designed the SPU to provide the necessary trans­
lation from a logic signal name to its corresponding 
scan latch in the machine. We modeled the SPU's 
user interface after the user interface of DECSIM, 
one of Digital's logic simulation utilities. Engineer­
ing used the DECSIM interface during the VAX 9000 
design phase and was already familiar with its user 
interface. 

The majority of the user interface development 
work involved the EXAMINE and DEPOSIT com­
mands and their associated data structures that 
resemble the procedure usesd in the DECSIM sys­
tem. These commands provide access to the more 
than 26,000 signals accessible through the scan sys­
tem in a uniprocessor system. The SPU also main­
tains the design hierarchy of the signals, which 
permits signals to be referenced as they appear on 
the pages of the logic schematics. A watch point 
and trace point capability, modeled after similar 
features in the DECSIM system, simplifies the task of 
monitoring state changes in the machine. Because 
the processor clocks are single-stepped, signals 
which change state are displayed automatically. 

Using the DECSIM system as the model for these 
SPU features produced two advantages: 

• Designers moved from the simulation environ­
ment (i.e., using the DECSIM system) to actual 
debugging (i.e., using the SPU) with virtually no 
training. Although the precise syntax of the SPU's 
commands is not always identical to the syntax 
ofDECSIM commands, the concepts are the same. 
Therefore, first-time users overcome the differ­
ences quickly. 
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• All register transfer-level signal names corre­
spond with those present on logic schematics, 
including the logical design hierarchy. This cor­
respondence makes the relationship of displayed 
signal names and schematic signal names easy 
(e.g. , %CPU0.VAP.VAPO.ALU_FUNCTION_H<0>). 

The translation from a logical signal to its associ-
ated scan latch uses data structures supplied in a 
configuration database file, which is loaded into 
SPU memory during SPU initialization. All CPUs 
with identical multichip unit configurations (i.e. , 
same CPU revision) share the same configuration 
database memory image. The system control unit 
always requires its own database. Only two CPU 
revisions can be supported at one time because of 
SPU memory constraints for storing the separate 
configuration databases. However, by providing for 
two CPU revisions, the needs of single and dual CPU 
configurations were completely satisfied. Further, 
it was possible to upgrade homogeneous triple and 
quadruple configurations in a stepwise manner. 

Macrocode Execution 
Initial system-level multichip unit configurations 
consisted only of a scalar CPU. The system control 
unit was not yet available as a result of the extended 
simulation of the design. Fortunately, we had antici­
pated the possibility of running partial configu­
rations and could provide modes within the SPU 
software to redirect commands that normally 
access main memory (e.g., EXAMINE, LOAD) to 
access the CPU's 128 kilobyte (KB) system cache 
or 8KB virtual instruction cache instead. The first 
VAX macro-instructions were loaded and executed 
on the VAX 9000 system using this technique. An 
additional feature, which involved minor hooks in 
the system microcode, provided a means for the 
VAX instruction set diagnostic, EVKAA, to commu­
nicate with the console terminal through scan 
attentions rather than by using the system control 
unit. Thus, the diagnostic could run to completion. 

Advanced Debugging Features 
Although not obvious aids to VAX 9000 debug, the 
following features were indispensable or, at the 
least, reduced debugging time and effort: 

• A character-cell windowing capability that 
allows system microcode sources to be automat­
ically located, displayed, and updated on the 
screen as the system is single-stepped. We mod­
eled this feature after the VAX debugger's win­
dowing capability because most VAX engineers 
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are familiar with this capability. Windowing 
eliminated the need for hard-copy microcode 
listings and the logistical problems associated 
with their use. 

• By connecting the SPU to the engineering net­
work during development, timely updates of 
SPU software were made possible. This kept the 
VAX 9000 debugging effort, which was occur­
ring simultaneously on several systems, up to 
date with the latest SPU software fixes and 
enhancements. Together with the multisession 
capability of the SPU operating system, the use 
of the network made remote debugging a reality 
throughout the VAX 9000 debug phase. 

• Because the SPU had to initialize the VAX 9000 
system thousands of times during system debug­
ging, the unit was designed to perform system 
initialization as efficiently as possible. For exam­
ple, the loading of structures (e.g., control stores 
or cache tags) was optimized by overlapping the 
operation of three MicroVAX-based processors: 
the service processor module, the scan control 
module, and the disk controller. 

The debugging features located early design and 
fabrication problems in the clock, power, scan, and 
processor logic areas. Ultimately, the features were 
used to initialize and run the first VAX 9000 system. 

Error Handling 
To support high system availability, accurate and 
timely error detection and logging is required. 
Error data collection cannot depend upon host sys­
tem availability, and the data must be available when 
the system is not functional. Therefore, an indepen­
dent service subsystem that can collect data from all 
system components, render it into a useful format, 
and store and display the information is needed. 

The service subsystem must also be organized in 
such a way that if it fails, it does not directly cause 
system processor failures. Repair, reboot, and sys­
tem reintegration must occur without interfering 
with system processor operation. The SPU meets 
these requirements; it is a fully independent com­
puter that runs its own operating system with dedi­
cated peripherals. The SPU performs system-wide 
error detection and reporting functions and pro­
vides advanced error recovery features for the 
system processor. 

Error Detection 
The SPU reports errors in its own VAXBI adapters, 
the service processor module, the scan control 
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module, the power and environmental monitor, 
the disk controller, and the tape controller. It also 
reports errors in various parts of the VAX 9000 
system, such as the system control unit, the CPUs, 
the memory system, the master clock module, and 
the power and environmental systems. Because fail­
ures in any of these subsystems can incapacitate the 
VAX 9000 system, none of them reports its errors 
directly to the VAX 9000 operating system. 

SPU Errors The disk controller, tape controller, 
and scan control module use the VAXBI VAX port 
protocol to report errors. The power and environ­
mental monitor passes error information to the ser­
vice processor module through its private bus, the 
SPU-to-power control system interface. 

Environmental frceptions The power and envi­
ronmental monitor monitors the regulator intelli­
gence cards, airflow sensors, and temperature 
sensors throughout the system. When it detects any 
problems in operating voltages, currents, tempera­
tures, or airflow, it notifies the service processor 
operating system, which logs the error condition. 

Clock F,xceptions When the master clock module 
detects an error in either the clock phase or the 
clock frequency lock, it generates an attention to 
the scan control module, which interrupts the ser­
vice processor module. The SPU operating system 
logs the error condition. 

Memory Error Correction Code Events The main 
memory of the VAX 9000 system contains error­
correcting logic to correct single-bit errors and 
detect double-bit errors. When a memory location 
with a single-bit error is read, the system control 
unit corrects the error and passes the corrected data 
to the requesting device. It also writes an SPU regis­
ter with the error type and the failing memory 
address. The SPU operating system writes this infor­
mation to the error log. If the system control unit 
detects a double-bit error or reads a marked-bad 
location, it passes the bad data, marked as bad, to 
the requesting device and notifies the service pro­
cessor operating system, which logs the error. The 
bad data is handled locally by the requesting device, 
usually by generating an error of its own. 

CPU and System Control Unit Errors When a CPU 
detects an error in a parity checker, it attempts to 
come to an instruction boundary and halt. Once 
it has halted, the CPU sweeps its cache. When the 
cache sweep is completed, the CPU asserts an 
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attention to the scan control module to inform the 
SPU that recovery is required. When the system 
control unit detects an error, it first asserts a fatal 
error signal to each of the CPUs, and then asserts an 
attention. When the CPUs receive the fatal error sig­
nal, they attempt to come to an instruction 
boundary and halt. Once halted, the CPUs assert 
attention lines to the scan control module. The 
caches are not swept since their path to memory, 
the system control unit, is not working. 

Keep-alive, Timeout To ensure that a CPU is not 
hung by an undetected error, the SPU periodically 
sends a keep-alive interrupt to each CPU. CPU 
microcode services the interrupt at the next macro­
instruction boundary by asserting an attention to 
the scan control module. If the CPU should be hung 
by an undetected error, the SPU times out while it 
waits for the keep-alive reply attention and, thus, 
determines that there has been an error. Similarly, 
the primary CPU monitors the SPU by sending it a 
keep-alive request through the TXFCT register. If the 
SPU does not respond to this request within a time­
out period, the VAX 9000 operating system assumes 
that the SPU is hung and reboots it using a VAXBI 
reset. When the SPU reboots, it reintegrates itself 
with the rest of the VAX 9000 system without inter­
fering with system operation. 

Error Reporting 
When errors are reported to the SPU operating sys­
tem, the error formatting facility logs the error 
information locally and reliably transmits it to all 
intended receivers. The error formatter maintains 
the error log file ERRLOG.SYS on the SPU RD54 
drive, passes error log entries to the VAX 9000 oper­
ating system to be logged in the system error log, 
and also passes the entries to any SPU software that 
requests them. The error formatter writes the error 
log file using the SPU operating system disk I/0 func­
tions, passes the error log entries to the VAX 9000 
operating system using an RXFCT function, and 
passes the error log entries to other SPU processes 
using the SPU port protocol. If the RDS4 drive is not 
available, which prevents access to the SPU error 
log, the error formatter continues to send error log 
entries to the VAX 9000 operating system and to 
other SPU processes. 

The SPU error log contains all the error log entries 
collected by the SPU (but not those collected by the 
VAX 9000 operating system) and time stamps, 
which are logged every ten minutes. Should an SPU 
operating system crash occur, the time stamps may 
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be used to determine the approximate time of the 
crash. Errors are logged regardless of the state of the 
system processor. As a result, information is avail­
able for analysis even in the event of a total proces­
sor failure. The error log file may also be transferred 
to TKSO tape for off-site analysis. 

The error formatter passes error information to 
the VAX 9000 operating system by copying the error 
log entry to system memory and then invoking the 
RXFCT function to notify the VAX 9000 operating 
system that the entry is available. Should the operat­
ing system not respond to this notification, the 
error formatter assumes that the operating system 
has crashed and writes the error log entry to a tem­
porary data file. When the VAX 9000 operating sys­
tem reboots, it notifies the SPU by using a TXFCT 
function. The error formatter then reads any saved 
error log entries from the data file and transmits 
them to the VAX 9000 operating system. This proto­
col ensures that all collected error data is eventually 
reported in the system error log. 

The error formatter also maintains a SPU port to 
which any process running on the SPU may con­
nect. Connected processes receive copies of all 
error log entries as the entries are logged. This port 
is used by EWKCA, the symptom-directed diagnosis 
tool, which analyzes errors as they occur and 
determines which system components might have 
caused the failure. The port is also used for system 
debugging by the error insertion program to verify 
that errors are being logged and analyzed correctly. 

Snapshots In addition to its error logging facili­
ties, the SPU operating system provides the ability to 
take "snapshots" of the system processor state. The 
snapshot file provides a detailed record of system 
context, which allows engineers to take a snapshot 
of a hung system and reboot it, and then analyze the 
snapshot file while the system proceeds to perform 
other useful work. The snapshot display utility is 
used to examine the data in a snapshot file. In addi­
tion to formatting the data in the snapshot file, the 
snapshot display utility can be used to examine any 
scan latch in the file, by name, in the same fashion as 
the console EXAMINE command is used on the 
actual hardware. The data available in a snapshot 
file is summarized in Table 2. 

Error Recovery 
The high level of visibility achieved by the scan 
system allows the SPU to provide extensive error 
recovery facilities for the VAX 9000 processor. 
SPU-based recovery offers several advantages over 
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Table 2 Snapshot File Contents 

Revision Section 

All multichip unit revisions 

All SPU adapter revisions 

Microcode revisions 

All XMI adapter revisions 

All VAXBI adapter revisions 

Power Section 

All power control system registers 

"Sense power" results 

Clock Section 

All master clock module registers 

SPU Section 

All SPU-to-system control unit adapter registers 

1/0 Section 

XMI device error registers 

VAXBI device error registers 

XMl-to-system control unit error registers 

System Control Unit Section 

All scan latches 

Last 50 entries from system control unit micro 
program counter history buffer 

All cache tags 

All other logical structures (e.g., control stores) 

Configuration database version 

1/0 physical address memory map 

Memory physical address memory map 

Nonexistent physical address memory map 

CPU Section (Repeated Once for Each CPU) 

All scan latches 
Last 50 entries from program counter history buffer 

All cache tags 

All general-purpose registers 

All internal processor registers 

All other logical structures (e.g., control stores) 

Top 50 longwords of current mode stack 

Top 50 longwords of interrupt stack 

32 bytes of instruction stream around each 
program counter in history buffer 

Configuration database version 

50 micro program counters, collected by stepping 
the clocks 

100 

traditional microcode-based error handling. The 
CPU hardware resources that might otherwise be 
used for error handling were available for the logic 
designers to improve the system performance. 
Because the error data is processed external to the 
failing component, the recovery process itself is 
not suspect. Finally, because the system clocks are 
stopped while recovery takes place, erroneous data 
does not propagate throughout the system. 

Traditionally, many microwords in the CPU 
control store (approximately 500 in the VAX 8600 
system) are used for error recovery microcode. 
However, because the SPU is responsible for 
VAX 9000 error recovery, additional control store 
space is available for instruction microcode. If this 
had not been the case, we might have had to make a 
space trade-off between instruction and recovery 
microcode, which could have resulted in more 
emulated instructions and a performance penalty 
for VAX instruction execution speed. 

Because the scan system allows the SPU to deter­
mine the state of every scan latch in the CPUs and 
system control unit, logic designers were able to 
place error detectors anywhere in the design 
without organizing the detectors into microcode­
readable error registers. As a result, significantly 
more error detectors were used for precise error 
analysis than would have been possible if the scan 
system were not available. Each VAX 9000 CPU con­
tains over 450 error detector latches. 

Several advantages are derived from performing 
error recovery independently from a failed compo­
nent. The most obvious advantage is that hardware, 
which may be failing , is not used to control the 
recovery. Once the system processor state has been 
scanned out into SPU memory, analysis is a function 
of software running on a known good processor. 
The SPU analyzes the data and then scans a cor­
rect state into the system processor. The entire 
process is performed while the system clocks have 
been stopped. Therefore, processor errors cannot 
cause "error loops;" that is, the error recovery 
process itself gets errors from a corrupt processor 
state. SPU-based error recovery can completely 
reset a corrupt system, regardless of the degree of 
corruption. 

The VAX 9000 error-handling facility takes 
advantage of many advanced software features that 
are available in the SPU operating system. It uses 
configuration database information to access sys­
tem processor signals by name rather than by scan 
ring locations. Thus, one version of the error han­
dling code can handle several different physical 
processor variations. The error handler also uses the 
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SPU operating system structure access routines to 
read and write the processor structures, again, by 
burying the physical implementation in the config­
uration database. As a result, the error handler 
can look at the architectural features of the VAX pro­
cessor rather than at the gate-level design of the 
VAX 9000 system when performing error analysis. 
The benefit of this approach is that recovery proce­
dures are based on the system architecture, rather 
than on the machine implementation. 

One of our design goals for the VAX 9000 error­
handling system was to recover from most errors 
in under 500 milliseconds. Longer delays increase 
the probability that I/0 devices will time out while 
waiting for the operating system to respond to 
requests and cause the operating system to crash, 
even if the error-handling system successfully 
recovers from the error. The error handler meets 
this goal by taking maximum advantage of the 
multiprocessing capabilities of the tightly coupled 
hardware design of the service processor module 
and scan control module. Error recovery is split into 
a multistep process that keeps both SPU processors 
working on the problem simultaneously. 

The error handler recovers a failed system in five 
phases: data collection, data analysis, error recov­
ery, macrostep, and cleanup. In the data collection 
phase, the scan control module scans out all scan 
rings of the failed CPU or system control unit. In the 
analysis phase, the scanned data is used to deter­
mine which architectural features of the system 
have been corrupted (e.g., caches, general-purpose 
registers, internal processor registers, microcode 
stores, and the translation buffer). 

In the recovery phase, the error handler attempts 
to restore the system to a state in which no soft­
ware-visible data is corrupt. Therefore, the soft­
ware running on the VAX 9000 system, including 
the operating system, is unaware that an error has 
occurred. The error handler determines whether 
the system state can be restored successfully or if 
a machine check must be generated to allow the 
VAX 9000 operating system to attempt to handle the 
error on a higher level. It then restores the CPU to a 
known good operating state, by using latch data 
from the configuration database, and corrects any 
corrupted software-visible data. 

In the macrostep phase, the error handler turns 
on the system clocks to allow the failed CPU to 
attempt to macrostep one instruction. If the 
macrostep completes successfully, the recovery is 
considered successful and system operation is 
allowed to continue. In the clean-up phase, the SPU 
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processes the data from the data collection phase 
into an error log entry, posts the entry, and cleans 
up the data structures that will be used to recover 
from the next error. 

Errors that are too severe for the error handler to 
handle are signaled to the SPU command inter­
preter, which can run command scripts to com­
pletely reinitialize the machine and reboot the VAX 

9000 operating system. Examples of such severe 
errors are hard errors that prevent VAX 9000 oper­
ating system machine check code from running and 
errors that cause a CPU to fail its macrostep. 

Summary 
The SPU is a dedicated subsystem for service and 
maintenance support for the VAX 9000 family. It is 
closely linked to the VAX 9000 processor to provide 
system error recovery. It also presents a high-level 
interface with which debuggers may observe and 
control system processor activity. Through the use 
of a system-wide scan architecture, the SPU pro­
vides access to nearly 100 percent of processor 
machine-state. Finally, the use of the SPU in various 
tester environments greatly assisted the multichip 
unit debugging effort and provided advanced train­
ing for VAX 9000 system debuggers. 
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The VAX 9000 series represents Digitals fi-rst implementation of a mainframe com­
puter system. To be competitive in this market, the power system for the VAX 9000 
series had to provide high system availability. To meet this goo/, the system includes 
features neither considered nor found in previous large Digital computer systems. 
Some of these features are the use of redundancy in parts of the design and the 
addition of more power system diagnosis capability for quicker fault isolation and 
faulty unit replacement. Other features provide competitive advantages in specific 
marketplaces, such as meeting low hannonic distortion for AC input current, which 
is an emerging European AC power quality standard. Simulation tools, which are 
used more prevalently in digital logic, were used to improve the power design. 

The two key requirements of the VAX 9000 power 
system are high availability and the inclusion of 
competitive features. High availability for the power 
system means we had to achieve the highest unit 
regulator reliability possible by using the appropri­
ate technology available. Further, we had to deliver 
both more power system and cabinet environmen­
tal monitoring and diagnostic capability that could 
reduce the time spent in isolating and replacing a 
malfunctioning unit. Competitive features mean 
designing into the system features that would be 
either better than expected or advantageous to the 
VAX 9000 system in certain markets. 

A full discussion of all the methods used to meet 
these requirements is too long for this paper. There­
fore, the discussion in this paper focuses on some of 
the unique applications of the power technology 
and tools used in the design of the VAX 9000 system: 

• Power system architecture 

• Improved load sharing 

• Simulation 

• Increased control and monitoring 

• Low harmonic distortion 

One of the issues we had to decide in designing 
the power system architecture was how many regu-
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lators should be used. A large number of regulators 
in a power system can cause the mean time between 
failures (MTBF) to be lower than desired. Therefore, 
we chose to use redundant regulators in the power 
system architecture for improved availability. 

Another means of increasing the MTBF was 
achieved by improving the load sharing among the 
parallel regulators that power a low-voltage current 
load. With this feature, no one regulator operates 
at a percentage of maximum rating much higher 
than its parallel regulators, which eliminates the 
higher operating temperatures that can occur and, 
as a result, lowers the MTBF. 

High regulator reliability results from good cir­
cuit design. Three examples of the unique simula­
tion features that were used as checks on circuit 
designs are discussed in the Simulation section of 
this paper. In one case, simulation pointed the way 
to a circuit problem that was not initially apparent. 
In another case, simulation was used to verify on 
paper that the number of regulators chosen to 
power a specific load was sufficient. 

High availability can be achieved by reducing the 
time to isolate a system problem and replace the 
malfunctioning unit. A power and cabinet moni­
toring module, EMM, fulfilled this purpose in the 
VAX 8000 systems. The power control subsystem, 
PCS, used for this purpose in the VAX 9000 systems, 
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expands on the diagnostic and monitoring features 
oftheEMM. 

Meeting emerging European AC power quality 
standards was viewed by the European sales 
force as a distinct competitive advantage for the 
VAX 9000 system. A proposed standard we wanted 
to meet was to achieve low harmonic distortion of 
the input AC current wave form, which was met 
in the utility power conditioner (UPC) front-end 
design of the power system. High availability was 
designed into the UPC through such features as 
redundancy and increased immunity to power line 
disturbances from a commonly accepted industry 
practice of one AC cycle to ten AC cycles. 

VAX 9000 Power System Architecture 
The discussion of the power system architecture 
will focus on some of the architecture's major 
features: power zoning, N + 1 redundancy, and 
decoupling. 

• Power zoning enables parts of the system to be 
powered off for maintenance while the rest of 
the system remains operational. 

• N + 1 redundancy provides higher perceived 
system availability to counteract the impact of 
low system mean time between failures, which is 
a result of the large number of regulators. 

• Decoupling major sections of the power system 
allows future upgrades to be made without 
requiring significant changes to the rest of the 
system. 
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The basic power system architecture for the 
VAX 9000 Model 200 and Model 400 series is shown 
in Figures 1 and 2, respectively. Power processing in 
each model occurs in two distinct stages. First, an 
AC front end processes and converts AC utility input 
power to high-voltage DC, which is then bused 
about the power system. Second, DC-to-DC switch­
ing regulators convert the high-voltage DC to low­
voltage outputs, which are then distributed through 
high-current-carrying busbars to the various logic 
loads. An intelligent power control subsystem (PCS) 
provides control, sequencing, monitoring, and 
diagnostic capabilities. Dedicated bias regulators, 
which are powered from the high-voltage DC, 
provide housekeeping control (i.e., low power) and 
start-up power to each bank of output regulators. 

The high-voltage DC bus permits low-voltage out­
put regulators to be added or removed for different 
system configurations. The high-voltage DC bus also 
can be backed up with a battery unit that produces 
high-voltage DC from 48-volt batteries through a 
step-up switching regulator. This approach allows 
any specific low-voltage output to be produced, as 
needed, during the battery backup period without 
using specific battery-to-logic voltage output DC-to­
DC regulators. The battery required to backup the 
entire computer system would be larger than the 
computer itself. Therefore, diodes are inserted into 
the high-voltage DC distribution to partition the 
high-voltage DC bus, and only sections, such as the 
memory refresh operation and PCS control, are 
backed up. 

PCS 
(POWER CONTROL SUBSYSTEM) 
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BUS BUS 
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scu CPU 
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I 
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~ BIAS 
~ POWER 

Figure 1 VAX 9000 Model 200 Series Power System 
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Figure 2 VAX 9000 Model 400 Series Power System 

Power Zoning 
The power-zoning feature meets the maintain­
ability and high availability goals in the VAX 9000 
Model 400 series of triple and quadruple proces­
sors. In the power system's configuration, a pair of 
dual processors can be powered off for mainte­
nance, while the remaining powered-on processors 
maintain system operation. 

A quadruple processor configuration is not com­
posed of two identical dual processors. Some func­
tions of a quadruple processor are not replicated. 
The system control unit, the memory, the service 
p rocessor unit, and the PCS are common to both 
dual processors. Therefore, these functions are 
powered up by either front end. The high-voltage 
DC power bus is diode OR' d from either AC power 
source, through the dual diode, CR 1, and then fed to 
the output stages that power the common elements 
listed above. 

The diode-OR process in the VAX 9000 system 
does not provide for active loadsharing. Active 
loadsharing between each AC front end increases 
the overall actual power system reliability because 
it ensures that each AC front end supplies half the 
load. Otherwise, one AC front end could take most 
of the load (and be stressed higher), which would 
leave the other unit too lightly loaded. However, 
active load sharing is complicated by the physical 
distances between the AC front ends and the com­
plex handling of faults and partial faults in each 
AC front end. The load of the common elements in 
the VAX 9000 system is only 20 percent of the total 
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system. Therefore, the worst load imbalance does 
not justify the added complexity. 

The diode does not have a significant impact on 
overall power load reliability because conservative 
derating of the diode results in a lower diode oper­
ating temperature and hence higher reliability. 

We were concerned that power zoning could 
have an impact on the rest of the system as a result 
of powering down part of the system. However, 
analysis of the results showed that such a concern 
was unfounded. The high-voltage DC bus has rela­
tively long time constants (i.e., slow to react to 
changes). Therefore, turn-on and turn-off transients 
on the bus are smooth and gradual and do not 
generate quick-changing electromagnetic fields that 
could affect the operation of the sections of the 
system that are still functioning. 

N + I Redundancy 
Each processor in the VAX 9000 power system uses 
approximately 400 amperes from each of the two 
supply voltages. The ratings of the power semi­
conductors used in the outputs of the DC-to-DC 
regulators deliver an optimal regulator rating of 
approximately 240 amperes. Based on these rat­
ings, powering a CPU in the VAX 9000 system would 
require two regulators for each voltage. However, 
in a large system, such as the VAX 9000 system, the 
number of regulators can quickly add up, which 
would result in an equally quick drop in overall 
system reliability. Powering two CPUs from the 
same voltage bus reduces the number of regulators. 

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal 



The Unique Features of the VAX 9000 Power System Design 

Redundancy is then used to minimize the impact 
of the large number of regulators in the bus. 
By using redundancy, additional regulators on a 
voltage bus increase the perceived time between 
complete failures. 

For example, consider a voltage bus that requires 
two regulators to supply the load current. A fail­
ure in either regulator causes a complete failure. 
If another parallel regulator is added to supply 
the load current, the probability of a complete 
failure significantly decreases. In this case, if one 
regulator fails, the other two could supply the load. 
The statistical probability that another failure 
would occur before the failed regulator is replaced 
is very small. 

A system of N regulators at an individual failure 
rate of lambda (A) would have a system failure rate 
of N times A, or an MTBF of l divided by N times A.1 

The actual calculations are 

A (total) = N x A 

or 

MTBF= 1/A(total) = 1/(NxA) 

The failure rate calculation for a system that con­
tains one regulator more than required (N + 1) is 

A (total observed) = (N + 1) x N x Ax A I 
[{(N +l)xA}+(NxA)+u] 

MTBF (observed) = ( [ (N + 1) x A]+ 
(NxA)+ u )l[(N+ l )xNxAx A] 

It should be noted for the above equation, that u 
equals 1 divided by the time between fault and 
repair (service interval). 

Using this calculation, if a bus required 4 regu­
lators and each regulator had an MTBF of 400,000 
hours, the observed MTBF would be 100,000 hours. 
The observed MTBF with five regulators (i.e., N + 1) 
would be 23,989,000 hours, which is 239 times 
longer than the four regulator case. The maximum 
time between the fault occurrence and repair would 
be 2 weeks, or 336 hours. The observed MTBF is 
so large, compared to other elements in the system, 
the redundant regulators have an extremely small 
effect on the overall reliability. 

The number of redundant regulators per output 
voltage bus is limited to one in the VAX 9000 power 
system for space, weight, and cost reasons. N is the 
number of regulators required to supply the maxi­
mum current of a bus, and the addition of one more 
regulator is called N + 1 redundancy. 

N + 1 redundancy relies on the good regulators 
on the output bus to pick up the load from the failed 
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unit. This reliance has a significant impact on the 
design of the regulator, the regulator response time, 
and how the regulator handles the faults that can 
cause a failure. Fast regulator response (the time it 
takes to respond to a change in input or output) is 
needed to ensure that the output voltage does not 
dip too much when each regulator picks up its 
share of the load from the failed regulator. How­
ever, the faster response time makes it more diffi­
cult to keep the control functions of the unit stable. 
Moreover, the regulator input voltage range is 
designed to be relatively wide to tolerate wide 
swings in the high-voltage DC input. 

When one regulator in a bank of regulators oper­
ated in parallel fails, the output bus voltage dips 
until the other regulators, which are connected in 
parallel, can react and pick up the load currents. 
The magnitude of the dip depends on the time the 
input fuses in each regulator take to open and on 
the values of the input capacitors and the distribu­
tion impedances. 

Fast-opening fuses allow smaller voltage dips but 
are more prone to false nuisance openings. Slow­
opening fuses do not open for normal or nuisance 
surges, but allow a greater voltage dip. Large values 
of input capacitance provide the energy to open the 
fuses quickly, but the voltage recharging of the 
capacitors is longer. A high distribution impedance 
decouples the faults from other units but has a high 
power loss. 

Simulation and testing showed that the wide 
input range design of the regulators is sufficient to 
tolerate the high-voltage input dips caused by other 
faults. The regulator control and response time 
keep the low-voltage DC outputs within specifica­
tion when the input voltage is within its range. 

Other faults within the regulator can cause it to 
fail, but the load is picked up by the other regula­
tors, operating in parallel, on the bus. Clearly, faults 
such as a permanent short on the output bus, cannot 
be survived. Because the low-voltage output regula­
tors operate in parallel and in an N + 1 redundancy 
mode, the output voltage is not affected by most 
common single-fault conditions in the power sys­
tem hardware. 

Decoupling 
A key feature of the power system's architecture is 
that each major subsystem is relatively decoupled 
from the other subsystems. Decoupling permits 
each subsystem to be designed for its own require­
ments and to be changed or upgraded as the 
requirements change (e.g., more cost effective, 
improved technology, or different output voltage), 
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provided the interface and critical function remain 
the same. For example, two significantly differ­
ent cost and performance options, H7392 or H7390, 
for the AC front end can be used in different config­
urations, and the rest of the power system does not 
need to be changed. Thus, power platforms can be 
flexibly tailored to meet the needs of different com­
puter systems. 

Achieving Low Harmonic Distortion 
The AC front end of the VAX 9000 power system 
processes and converts public utility AC power to 
high-voltage DC. Our goal was to design the AC 
front end to be highly reliable, have a high availabil­
ity, and meet the emerging European AC power 
quality standards. One of those standards is to have 
low harmonic distortion of the input AC current 
waveform. These features were essential to support 
the VAX 9000 system's entry into the mainframe 
computer market. We also decided to meet the low 
harmonic distortion standard of the AC front end 
because the European marketing and sales force 
viewed compliance with this standard as a distinct 
competitive advantage. 

Design Factors 
The dominating design factor for the AC front 
end was the size of the input power level, which 
was approximately 20,000 watts. This size signifi­
cantly exceeded the power levels of previous AC 
circuit designs for a single unit . The high power 
consumption was a result of the use of 250,000 
emitter-coupled logic (ECL) gates in the CPU and 
512 megabytes (MB)ofmemory. 

High Reliability and Availability To achieve high 
reliability, we used conservative power derating lev­
els and good thermal management for key devices. 
Typically, the device voltage ratings used are 80 
percent of rating. The main switches and rectifiers 
used in the power stages used 40 percent of rating. 
Current derating is also conservatively placed at 40 
percent. Stress is lessened because of lower device 
function temperatures, which results in a longer 
operational life, which equates to higher reliability. 

We designed two approaches to attain high 
availability. First, redundant circuitry was used for 
the AC-to-DC circuit function. Second, we increased 
immunity-to-line outage from the standard practice 
of one cycle of outage protection to ten cycles. The 
increase from one cycle to ten cycles of outage 
immunity provides the VAX 9000 system with a 
300 percent improvement in mean time between 
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observed system power outages over standard 
Digital systems. This feature improves system 
availability to the customer. 

Harmonic Distortion The power system's design 
had to meet the increasing restrictions on the inter­
face with the public power utility and be able to 
withstand the occasional availability of only poor 
power. Utility power is generated as a relatively 
pure (i.e., low harmonic distortion) sine wave. 
AC front ends and power supplies must convert this 
sine wave of voltage to a ripple-free DC voltage for 
ultimate consumption by the logic chips within the 
computer system. Standard methods used for this 
conversion create a nonlinear load on the sine wave 
of voltage. This nonlinear load distorts the utility's 
sine wave of voltage for other users, because of the 
distribution system impedance, and usually appears 
as interference for other users. In Europe, the 
occurrence of this type of interference is planned 
to be limited by restricting how much nonlinear 
load current an AC front end can have. Therefore, 
we had to design a unique circuitry that could 
convert AC power to DC power at 20,000 watts 
without high levels of current distortion to meet 
this European requirement. 

A design based on commercially available control 
technology could not meet the stringent technical 
requirements of high overall conversion efficiency 
and stability of operation because conventional 
AC-to-DC circuitry produces up to 30 percent dis­
tortion. Our goal was to comply with emerging 
European requirements of harmonic current distor­
tion levels in the 5 percent range. However, at the 
time we were designing the system, no circuitry at 
this power level existed in the power conversion 
industry. Therefore, we had to develop a unique 
pulse-width modulator (PWM) circuit and control 
equations for the input power conversion stage, 
which is shown in Figure 3. 

The pulse-width modulator combines the advan­
tages of low switching frequency, which reduces 
switching losses in the converter, with exception­
ally short response time to all input line voltage 
disturbances and to rapid changes in the required 
computer power. The final design produces 
less than 5 percent total harmonic distortion of 
the input line current when the UPC is operated 
at 20,000 watts load. The uniqueness of the PWM 
increased the immunity-to-line voltage outages 
from one cycle of outage protection to ten cycles. 
Furthermore, the increase was achieved with­
out a corresponding tenfold increase in storage 
capacitors. 
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Flexible Line Cord 
The high power level and the requirements for a 
flexible line cord and plug required that the Under­
writers Laboratory (UL) and Canadian Standards 
Association (CSA) agencies expand the regulations 
that governed the size of power cordage allowed in 
a computer room. A flexible line cord connected to 
the AC service is a requirement by Digital for all its 
products. This feature is deemed valuable because it 
is used both to facilitate the initial installation of the 
computer and possible relocation at the customer's 
site. Although delays can occur while waiting for a 
national agency to amend one of its national regula­
tory codes, the approvals were received in time to 
maintain the project 's schedule. 

Improving Load Sharing 
Detailed stress analyses show that when regulators 
are operated in parallel, maximum reliability is 
achieved when the load current is shared equally 
among them. 

Traditional Approach 
A traditional approach to running regulators in par­
allel may be seen in VAX 8000 series machines. 
In these processors, regulators that are designed for 
standalone operation are placed in a parallel con­
figuration. Current sharing is forced by modifying 
each supply's individual reference voltage through 
external monitoring and control. In the case of 
VAX 8000 machines, a maximum of four units 
may be coupled in this way. Figure 4 shows that 
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this method essentially uses equipment that 
was designed to function as standalone regulated 
voltage sources. By adding external control loops, 
the equipment is forced to provide identical out­
put voltages, as measured at some defined point 
in the system. If precise voltage matching is not 
achieved, whichever supply had the higher voltage 
consumes the load, up to its overcurrent sense 
point. Thus, equal load sharing cannot happen. 
Individual external controllers are required for 
each converter, which makes the system more 
complex. The VAX 9000 system requires up to five 
converters per bus, and we could not achieve better 
than 20 percent power sharing between modules 
by using this method. No traditional methods could 
support the number of converters in the VAX 9000 
system. Also, most methods had a master-slave rela­
tionship that precluded maximizing a regulator's 
reliability potential. 

New Approach 
As a result of the limitations of the traditional meth­
ods, we developed a new, less complex approach 
to current sharing between parallel converters. 
Although developed specifically for the VAX 9000 
program, the features and utility of this approach 
have universal application. The essential techno­
logical shift from prior practice is that in this system 
the regulators are current sources rather than 
voltage sources. 

We designed the current sources to have a com­
pliance range that covers a band of voltages that are 
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Figure 4 Load Sharing by Voltage Control of Voltage Sources 

normally found in logic circuits. By making the 
regulator outputs fully floating, the VAX 9000 
system requirements for + 5-volt, - 3.4-volt, and 
- 5.2-volt buses are met with only one regulator 
design, rather than a separate design for each 
voltage. The VAX 9000 design is simpler and has a 
lower manufacturing cost. The regulator is voltage 
and polarity "blind" over its compliance range, and 
any number of regulators may operate in parallel 
to provide any amount of power required at any 
voltage within the compliance range. Also, this 
method automatically compensates for the effects 
of stray resistances and different path lengths from 
individual regulators on a bus. 

The basic features of this new approach are 
shown in Figure S. Individual regulators behave as 
externally programmed current sources controlled 
by a common control signal, such that each regu­
lator delivers the same current. If the outputs are 
connected to a common load, the current in that 
load is the sum of the individual regulator output 
currents. The resulting voltage that appears across 
the load is the product of that current and the equiv­
alent resistance of the load. Furthermore, if that 
voltage is compared with a reference voltage in a 
conventional error amplifier and the resulting error 
signal is used to derive the regulators' external pro­
gramming source, then a voltage control loop exists 
around the regulator system. Thus, although each 
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regulator acts as a current source, the system acts as 
a controlled and regulated voltage source. Because 
the voltage control loop only contains one pole, the 
bandwidth of the control loop can be increased by 
up to a factor of at least 15. As a result, the substan­
tially high current change requirements imposed 
by high-speed memories, such as those used in the 
VAX 9000 system, can be accommodated. 

Principle of Operation 
A two-transistor forward regulator is shown in 
Figure 6. In this regulator, SI and S2 are switched 

CONVERTER CONVERTER 

V = ( 11 + 12 + 13 ) x Z LOAD 

LOAD 

CONVERTER 

CURRENT 
CONTROL 

Figure 5 Load Sharing by Current Control 
of Current Sources 
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into conduction simultaneously, which causes the 
current to flow in the primary winding of trans­
former Tl at a level that is directly proportional to 
the output current lout plus the slope of the current 
due to Lout. This current also flows in the primary 
winding of current sense transformer T2. The 
resulting current that flows in T2 secondary wind­
ing develops a voltage across the load resistor, RL, 
which is amplified in Al and applied to the input of 
comparator Cl. Therefore, at this point, a voltage 
pulse appears, the amplitude and shape of which 
are directly proportional to the current flowing 
in the output choke Lout during the Sl-to-S2 con­
duction period. 

A conventional reference source/error amplifier 
combination is placed across the output of the sup­
ply. The resulting error signal, called Vcontrol, is 
applied to the other input of comparator Cl as a DC 
level. The comparator is followed by gating and 
drive circuits to the power switches. 

Switching is initiated by a pulse within the gating 
circuit that drives the power switches on. The cur­
rent flows in the output choke, Lout, and a propor­
tional voltage appears at the output of the amplifier 
Al. As this voltage ramps, it crosses the threshold 
set by Vcontrol at the Cl input. The comparator 
output then changes state and causes the drive pulse 
to the switches to cease. 

If Vcontrol were a fixed value, the system would 
be a constant current source. Therefore, the voltage 
that would appear at its output would be the result 
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LOUT' I ~ 
IOUT \ 

VREF 

Figure 6 Two-transistor Forward Regulator 
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of that constant current, and whatever load is 
placed across those terminals (i.e., Vout) would be 
determined by the load value. By using an error 
amplifier and reference, Vcontrol can be made a 
variable quantity. Therefore, the regulator transfer 
function can control its output current to any level 
necessary to produce the desired voltage. In such a 
system, a control voltage, which is derived from a 
single error amplifier and reference, can be used as 
the control input for several regulators that are 
running in parallel. Thus, the current from multiple 
regulators that feed a common bus can be shared. 

Increased Control and Monitoring 
In the VAX 8000 series, power and environmental 
monitoring and control is provided by the H7188 
environmental monitoring module (EMM). In the 
VAX 9000 system, these functions are provided by 
the power control system (PCS). 

Basic Design of EMM and PCS 
The EMM monitors the DC-to-DC regulator control, 
air flow sensor, and cabinet temperature. It is also 
the interface between the system console and the 
power system. Conceptually, the EMM functions as a 
peripheral device to the console similar to the way 
an intelligent disk controller is a peripheral to a 
CPU. The EMM is a single module that plugs into a 
power back panel. 

The PCS is a distributed data acquisition and 
control system. It also interfaces between the 
power and environmental systems and other parts 
of the computer system. The PCS takes commands 
from, and reports status changes to, the service 
processor unit. 

However, in the PCS, the conceptual model of 
the EMM is extended to provide additional support 
in hardware and firmware to off-load the service 
processor unit and to simplify the software inter­
face to the PCS. The PCS includes many features that 
enhance testability, fault coverage, fault isolation, 
and system availability. The relationship of the PCS 
modules to one another and to other system com­
ponents is illustrated in Figure 7. There are five 
PCS modules: 

• Power and environmental monitor (PEM) 

• CPU regulator intelligence card (CPURIC) 

• I/0 regulator intelligence card (IORIC) 

• Signal interface panel (SIP) 

• Operator control panel (OCP) 
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Comparison of PCS and EMM. 
The differences between a power system that uses 
an EMM and one that uses the PCS are illustrated in 
Table 1, which details the functions of each system. 
Five-to-ten EMMs would be required to control and 
monitor a system of the size and complexity of the 
VAX 9000 system. Additional modules would be 
required to support some of the functions provided 
by the signal interface panel and PEM module. 

Command Set Enhancements In comparison to 
the EMM, the PCS offers an enhanced command set. 
The PEM commands of READ, WRITE, BIS, BIC, and 
MEASURE provide the same capabilities that the 
seven EMM commands READ, WRITE, BIS, BIC, 
MEASURE, EXAMINE, and DEPOSIT do. In addition, 
the PEM supports six commands that are not imple­
mented by the EMM command set: DOWNLOAD, 
MARGIN, SENSE, POWERON, POWEROFF, and 
PASSTHRU. 

The regulator interface card firmware supports 
the DOWNLOAD command, which allows the 
service processing unit's software to update, with 
some restrictions, the PEM's or regulator interface 
card's on-board EEPROM with new firmware. Thus, 
the need for Customer Services to replace EPROMs 
in the field if the firmware needs to be updated is 
reduced because the latest PCS firmware is stored 
on the service processor unit's load device. 

The MARGIN, SENSE, POWERON, and POWEROFF 
commands off-load work and complexity from the 
service processor unit's software. By using these 
commands, the service processor unit never needs 
to interact directly with the regulator interface card 
modules during normal system operation. Thus, the 
amount of software required by the service proces­
sor unit to perform these functions is reduced. All 
regulator interface card interaction is handled by 
the PEM firmware. 

The MARGIN command causes the PEM to margin 
the specified bus voltages by ± 5 percent for fault 
isolation purposes, such as trying to aggravate an 
intermittent CPU hardware problem by reducing a 
logic supply voltage by 5 percent. In response to the 
SENSE command, the PEM returns a record that con­
tains the specified power or environmental data to 
the service processor unit. 

The POWERON and POWEROFF commands cause 
the PEM firmware to turn the specified power buses 
on or off in the proper sequence. When executing 
all of these commands, the PEM firmware must send 
messages to one or more regulator interface card 
modules and perform extensive error checking to 
verify that the power sequencing is proceeding cor-
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reedy. The PEM then returns a status byte, which 
describes any error that occurred during command 
execution, to the service processor unit. 

The PASSTHRU command allows the service pro­
cessor unit's software to send commands directly 
to the specified regulator interface card modules. 
This command bypasses the PEM and allows the 
operator to use other PCS fault isolation functions 
that are not used by the service processor unit in 
normal operation. The PASSTHRU command is used 
for fault isolation purposes only and is not required 
for normal system operation. 

Measurement Accuracy The EMM's best measure­
ment of accuracy is ± 54 millivolts, which is 
achieved when it is using an 8-bit analog-to-digital 
converter. The CPURIC measurements are sub­
stantially more accurate and repeatable for several 
reasons. The CPURIC uses a 12-bit analog-to-digital 
converter that is calibrated for offset and gain by the 
automatic calibration routines that run during 
power-up self-test. To filter out noise, each parame­
ter is measured 64 times. These measurements are 
averaged by the firmware before the parameter is 
used by the monitoring or sense commands. 

Through comparison measurements with a volt­
meter and a thermometer, the CPURIC measure­
ments have proven to be repeatable. Also, the 
measurements are accurate to better than 10 milli­
volts, when measuring voltage, and to within one 
degree Celsius, when measuring temperature. 

Diagnostics and Testability Support The EMM 
provided some visibility into the power and envi­
ronment system of the VAX 8000 series of computer 
systems to aid diagnostic and testing. The PCS hard­
ware and firmware extend the functionality of the 
EMM with features such as hardware loopback 
circuitry which, when combined with diagnostics 
included in the firmware, provide better fault detec­
tion and isolation than the EMM. 

Enhanced Support for Increased System Availability 
The features designed into the power system and 
the PCS hardware and firmware support N + I 
power buses and bias power supplies. The PCS also 
supports the partitioning of power. The PCS allows 
certain cabinets in a VAX 9000 Model 430 or Model 
440 system to be powered-off for maintenance or 
repair, while the remainder of the power system 
continues to function to provide system availability 
at reduced performance. The PCS recognizes when 
power is reapplied to these cabinets and notifies the 
service processor unit. The system then can be 
reconfigured to include these cabinets. 
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Table 1 Comparative Functions of the Environmental Monitoring Module 
and the Power Cont rol System 

EMM in the VAX 8600 System 

Digitally controls seven DC-to-DC regulators 
configured in five buses 

Measures and monitors four cabinet air 
temperature thermistors 
Monitors two air flow sensors 
Controls and monitors one H7231 battery 
backup unit 
Measures and monitors one ground current input 
Provides voltage sequencing in hardware 

Displays up to 16 unique shutdown codes on four 
magnetic indicators 

Measurement accuracy 
voltage: ±54 millivolts 
temperature: ±2 degrees Fahrenheit 

Digitally controls ±5 percent voltage margining 
for eight DC-to-DC regulators 
Measures and monitors 12 DC-to-DC regulator 
voltage outputs 
Monitors ten DC-to-DC regulator " module OK" 
signals 

The VAX 8600 system consists of two cabinets 
of which one was monitored by a single EMM. 
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PCS in the VAX 9000 Model 440 

Provides analog and digital control of up to 
29 H7380 DC-to-DC regu lators, configured in eight 
power buses 

Measures and monitors ten cabinet air temperature 
thermistors 
Monitors 20 air flow sensors 

Controls and monitors two H7231 battery 
backup units 
Measures and monitors two ground current inputs 
Provides voltage sequencing in hardware 
and software 
Displays over 80 unique shutdown codes on a 
diagnostic display 

Measurement accuracy 
voltage: ±10 mill ivolts 
temperature: ±1 degree Fahrenheit 

Provides analog and digital control of ±5 percent 
voltage margining for eight power buses 
Measures and monitors eight power bus 
voltage outputs 
Monitors 29 H7380 DC-to-DC regulator 
" module OK" signals 
Monitors 36 H7382 bias power supply 
" module OK" signals 
Monitors up to ten H7214 and H7215 " module OK" 
signals used for 1/0 and service processing unit 
power 
Monitors up to 16 H7189 "module OK" signals in 
the optional bus interface expansion cabinets 
Provides bus overcurrent protection and monitoring 
for eight power buses 
Measures the output current from 29 H7380 
DC-to-DC converters 
Provides N + 1 support for eight power buses 

Monitors the environmental status from four 
optional bus interface expansion cabinets 
Monitors the status from three H7386 
overprotection modules 
Monitors seven status lines from each of the two 
utility port conditioners 
Controls and monitors the operator control panel 
The VAX 9000 Series 440 is a quadruple CPU 
configuration of up to eleven cabinets. A PCS 
configuration composed of eight CPURICs, two 
IORICs, one operator control panel , one signal 
interface panel, and one PEM is required to 
support this system. 
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Design for Further Improvement The EMM uses 
the actual analog-to-digital converter to represent 
temperature, voltage, and current. However, the 
PCS represents voltage, temperature, and current in 
a format that is independent of the actual analog­
to-digi tal converter values. Future upgrading of 
measurement circuitry can be done without modi­
fying the service processor unit's software. 

Power System Test Programs We developed exten­
sive power system test programs by using the 
programmable console command language. These 
scripts provided step-by-step control of power 
sequencing and margining, and proved extremely 
invaluable in processor system debugging, system 
qualification, and manufacturing and field testing. 
The tests were developed through a cooperative 
effort of design engineering, manufacturing engi­
neering, and field engineering. 

Simulation 
The use of simulation in power converter design 
is not as advanced as the use of simulation tools in 
digital circuits. The level of complexity and number 
of parasitic elements in power devices have pushed 
computer CPU requirements beyond the reach of 
many power circuit design groups. However, as 
more computer power is becoming available at a 
lower cost, simulation is being used increasingly to 
improve power circuit design. The simulation tool 
most widely used is Simulation Program with Inte­
grated Circuit Emphasis (SPICE) because of its ability 
to be configured to any circuit configuration.2 

In this section, we illustrate the benefits of sim­
ulation in the VAX 9000 power system design. We 
provide examples of the use of simulation for cor­
recting designs, improving circuit designs through 
inclusion of parasitic elements, and transient 
analysis. 

Simulation to Correct a Design 
Simulation was used to correct a design in the linear 
post regulator that was dneloped for the H7382 
bias supply used in the VAX 9000 power system. 
The design required that two regulators operate in 
parallel for redundancy purposes. We wanted to 
achieve good transient response by keeping the 
output voltage within operating tolerance should 
one of the two regulators fail. Because good tran­
sient response depends on good frequency loop 
response, we had to determine the optimum fre­
quency response for the circuit. 
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Because simulation models for many of the cir­
cuit components were not yet available, we could 
not simulate the design. Therefore, we built the 
circuit without simulation. The resulting frequency 
response was lower than expected, and the circuit 
tended to oscillate at the maximum output current 
limit . Multiple attempts to improve the hardware 
proved ineffective and time-consuming because we 
did not know the cause of the problem. Then, the 
actual schematic of the linear regulator controller 
internal circuit became available, as did SPICE mod­
els of components. 

We ran an accurate SPICE model but did not find 
anything outstanding on the gain/frequency plots. 
Next, we tried to find the cause by exaggerating 
some simulated changes, such as removing the 
current limit amplifier portion of the circuit from 
the controller. With this change, we found that the 
gain was close to being the same at two different 
frequencies, 5 kilohertz (KHz) and 40 KHz. This 
similarity meant that if the phase margins were 
correct, instability might exist. To prevent this 
possibility, we decided to increase the gain of the 
regulator circuit below 30 KHz by making simu­
lated modifications to the circuit. With these 
modifications, the gain plot below 30 KHz 
increased and the waveform evened out close to 
what we wanted it to be. We then modified the 
hardware and achieved the desired performance. 
However, we would have saved a substantial 
amount of time if we could have simulated the cir­
cuit before we built it . 

Improving Simulation Accuracy 
In switching regulator design, parasitic (small, 
undesirable but existing) elements of seemingly 
negligible values, such as printed circuit board etch 
inductances and transistor capacitances, can have 
a significant impact on the behavior of the circuit. 
For accurate simulation these elements must be 
included in the simulation models. An example is 
shown in the design of the output stage of the 
H7380 regulator. 

We wanted the regulator to take a high-voltage 
DC input and produce a low-voltage (i.e. , 3.4-volt 
DC to 5.5-volt DC) regulated output. Figure 8 shows 
how this process is done by changing the high­
voltage DC input voltage to an AC square wave 
through turning the transistors, Q 1 and Q2, on and 
off. The transformer, T 1, steps down the AC square 
wave and is followed by an output section for recti­
fication and filtering. 
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Figure 8 H73BO Output Switching Stage 

The initial model of the H7380 invener stage used 
simple component models and did not consider any 
printed circuit board inductances or transistor 
capacitances because they seemed negligible com­
pared to other elements. We noted a discrepancy in 
the voltage across the transistor Q 1 (Vds) during the 
tum-off process between the simulated waveform, 
shown in Figure 9, and the measured waveform, 
shown in Figure 10. 

Figure 9 shows that the voltage is initially zero 
while the transistor is conducting but rises to 200 
volts when the transistor is turned off. Figure 10 
shows that ringing occurs as the voltage approaches 
200 volts, with an overshoot to 240 volts. The 
ringing and overshoot, not shown in Figure 9, 
are caused by the circuit board inductance, trans­
former leakage inductance, and the capacitance of 
the transistor. 
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Figure 10 Vds(QJ)Measured Turnoff 

Figure 11 shows a more accurate model of the 
output stage because the L 1 through L4 etch induc­
tances and C 1 and C2 transistor capacitances are 
included. The current source, IPULSE, and the 
resistor, RT, approximate the transformer. Figure 12 
shows the result of the simulation model that 
includes the L and C values shown in Figure 10. 

When the simulation and the measured data are 
correlated, the advantage of accurate simulation 
becomes apparent. By using worst-case values for 
the circuit parameters, the simulation can deter­
mine the maximum peak voltage. The model 
depicted in Figure 12 shows that a device capable 
of withstanding the expected 240 volts is needed. 
Reliance on a less accurate model without para­
sitics could lead to the selection of a device capable 
of withstanding only 200 volts. Thus, accurate 
simulation allows the correct components and 
component ratings to be chosen and ensures a 
robust design. 

Transient Analysis 
A memory system that includes dynamic random­
access memory (RAM) chips presents a difficult 
transient load problem to its power supply. The 
problem arises from a combination of very high 
changes in dynamic RAM supply current and cur­
rent change rise times that are typically more than 
a thousand times faster than the reaction time of a 
power system. The result is a temporary change in 
the load supply voltage. To handle these fast current 
edges, high-frequency capacitors are mounted on 
memory boards near the dynamic RAMs. Also, low­
frequency, electrolytic capacitors, which provide a 
source of local charge storage, are mounted on the 
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Figure 11 Final Model of H7380 Output 
Switching Stage 

memory boards to handle the magnitude of the 
change. The capacitors help keep the supply voltage 
within its operating range until the power supply 
can react and sufficiently change the current it sup­
plies to the memory to stabilize the supply voltage. 
An adequate supply design with specified capaci­
tors can keep the supply voltage within its operat­
ing tolerance. Simulation is used to determine the 
correct mix of high and low frequency capacitors 
and the number of regulators required to support 
this high transient load. 

Another power supply problem arises from the 
use of N + 1 redundancy for parallel regulators. 
When one of the regulators in a parallel regulator 
configuration fails, the remaining regulators must 
be able to take on the load from the failed regulator 
and keep the supply voltage within operating toler­
ance. Because the remaining regulators cannot 
react instantaneously, the load voltage drops until a 
sufficient increase in current can be provided by the 
remaining regulators. 

For the VAX 9000 series memory system, a pro­
posed dynamic RAM power supply design consisted 
of three H7380 DC-to-DC regulators, which would 
operate in parallel (including N + 1 redundancy) 
and be connected to the memory through power 
distribution busbars. The numbers of high- and low-
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frequency capacitors were also proposed. The 
power supply was expected to be ready for load 
testing before the memory or the busbars would 
be available. Therefore, we had to verify that this 
design could keep the memory supply voltage 
within operating tolerance. We verified the design 
by simulating the performance of the power system 
and measuring the performance of the actual power 
supply with a simulated load. 

Power Supply Operating Voltage Tolerance The 
memory designers specified the operating tolerance 
of the dynamic RAM supply as + 5 volts, ± 10 per­
cent. Using IO percent as the supply tolerance 
budget, the supply designer made the allocations 
shown in Table 2 to all the factors that would cause 
the load voltage to deviate from its nominal value of 
+ 5 volts. As can be seen from this table, the sum of 
x and y must be less than 350 millivolts or 7 percent 
of+ 5 volts. 

Memory Load The dynamic RAM supply current 
was calculated to be a steady-state pulsed current 
of 256 amperes that would last for 92 nano­
seconds (ns) and with rise and fall times of 20 ns, 
as shown in Figure 13. The initial pulse magnitude 
was 1024 amperes. 

Table 2 Supply Tolerance Budget Allocation 

Causes of 
Voltage Deviation 

Percentage 
Millivolts of +5 Volts 

Regulator tolerance 100 2 

Back panel distribution 50 
Transient load with two x 
regulators 
Failure of one regulator y 

Total deviation budget 500 10 
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Memory Power System SPICE Model In the SPICE 

model of the supply, busbar, load and capacitors 
that is shown in Figure 14, the three regulators are 
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01 20 21 DIODE 
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RS 

modeled as a current source, Gout , controlled by 
the regulator feedback voltage, Vf. Cout and Rout 
represent the regulators combined output capaci­
tors and resistors. Most of the other clements in the 
model are determined from component specifica­
tions. The relationship between Gout and Vf was 
determined by laboratory measurements on a regu­
lator and resulted in the following equations. For 
two regulators, 

Gout= 339 x VJ = 339 x (V8-2.5) 

For three regulators, 

Gout =678 x V/ = 678 x (V8-2.5) 

The load is represented as two current sources, IA 

and IR, the characteristics of which were obtained 
from the loads shown in Figure 13. 
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Figure 14 SPICE Model of VAX 9000 Memory Power System 
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Simulation and Laboratory Measurements The 
two previously stated conditions of interest result­
ing in large load voltage changes are the transient 
load with two regulators and the failure of one 
regulator. 

For transient loads, a larger voltage change 
occurs with two regulators rather than with three 
because two regulators take longer than three to 
adjust the supply current to the new load value. 

Simulated Load For laboratory measurements, 
the actual dynamic RAM load, as shown in Figure 13, 
is difficult to design and build in a reasonable time 
because of the magnitude and rise time combina­
tion. However, a load with a much slower rise time 
could be easily built. Such a load, (I in Figure 14) is 
expected through the busbar as the capacitors and 
busbar slowed down the fast edges of the dynamic 
RAM load. This simulated load was built and con­
nected to two regulators. The predicted waveform 
and the measured waveform showed that the initial 
shapes of the peak change, the peak magnitudes 
(80 millivolts), and the times of occurrence of the 
peak (300 microseconds) were all similar. However, 
we could not measure the overshoot and ringing 
after the peak because the busbar was not available. 
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Failure of One Regulator When one of the three 
regulators fails, the other two regulators cannot 
meet the increased load instantaneously. As a result, 
the load voltage drops until the two regulators can 
increase their output current sufficiently to reverse 
the direction of the drop. The SPICE model for this 
condition was run and the load voltage of the drop 
was predicted. Laboratory measurements were 
then taken with the simulated load and one regu­
lator was turned off. Both the predicted and mea­
sured waveforms had the same shapes, peak 
magnitudes (100 millivolts), and times of occur­
rence of the peak (200 microseconds) after the 
regulator was turned off. Therefore, we concluded 
that the proposed design could meet the load 
requirements. 
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Synthesis in the CAD 
System Used to Design 
the VAX 9000 System 

Ibe design of the VAX 9000 system represents a sixfold increase in complexity over the 
VAX 8600/8650 system. Ibis increased complexity posed a significant challenge 
because of the concurrent need to shorten the duration of the project design cycle and 
convert all high-performance systems computer-aided design (CAD) software from 
the DECSYSTEM-20 system to the VAX system. As part of the task of meeting these 
challenges, the CAD Group proposed the implementation of a design methodology 
that used logic synthesis for the first time in the development of a major product for 
Digital. The primary objectives of this methodology were to increase the productivity 
of the logic designers and to reduce the number of errors introduced during 
conversion of high-level designs into gate-level strnctural designs. 

Methodologies 

Previous Methodology 
In the previous development methodology, as 
shown in Figure 1, logic designers specified high­
level designs on paper, and simulation engineers 
transferred this rendition into a behavioral model. 
Technology engineers developed the gate-level 
cells. After the cells were defined and characterized 
for function and timing, the logic designers gener­
ated schematic drawings by using graphical bodies 
that represented the cells. 

As changes were made to the schematics, the sim­
ulation engineers attempted to reflect these in the 
behavioral model. Finally, a gate-level simulation 
model was assembled from the completed schemat­
ics to verify that the design represented a valid VAX 

system. This process was extremely laborious, 
error-prone, and time-consuming. Therefore, we 
concluded it could not be used to develop the VAX 

9000 system, which is a 700,000 gate design and for 
which the technology cells would not be defined 
and characterized until late in the design stage. 

Logic Synthesis 
Our early research into logic synthesis began in 
1982. Over the next two years, we explored new 
synthesis ideas and constructed prototypes to 
determine the feasibility of those ideas. For exam­
ple, one of our early logic minimization effons was 
a program that emulated Brown's Laws of Form for 
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transformations of Boolean logic to reduce gate 
counts and improve critical timing paths.' How­
ever, this program has had only limited success and 
is not really usable as a released computer-aided 
design (CAD) product. For example, the program 
does not deal with selections of cells for com­
binational logic nor does it consider the myriad 
problems involved in assembling a database for a 
buildable gate array chip. 

During 1984 and 1985, new anificial intelligence 
(AI) and synthesis ideas were being developed. Uni­
versities and technical conununities were exploring 
the potential of object-oriented databases, rule­
based AI, data flow design entry, and algorithmic 
minimizations. We began the prototype develop­
ment of our system for integral design (SID) at 
approximately the same time as the ideas for the 
VAX 9000 hardware architecture were beginning to 
be developed. In 1985, the SID program became an 
internal CAD product for use in the development 
of the VAX 9000 system. By combining the most 
advanced rule-based AI techniques with an object­
oriented database, the core SID was designed to be 
a repository of logic design knowledge. We hoped 
that, over the years, SID would mature to perform 
many highly repetitive logic design tasks at an 
expert level. 

From 1985 to 1988, the capabilities of the SID sys­
tem gradually improved until it was producing gate 
array chips that met the VAX 9000 machine cycle 
time, power, and electrical rules requirements. 
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Figure 1 Previous Design Methodology 

New Methodology 
The VAX 9000 development methodology, shown 
in Figure 2, circumvents the need to wait for the 
technology cells to be completely specified before 
beginning logic design. This methodology uses 
schematic entry and simulates the technology­
independent, register transfer level (RTL) bodies. 

The RTL library for this type of entry includes 
MUXes, latches, adders, comparators, incrementers, 
decoders, and simple Boolean gates. The entry is 
extracted to a common database format, called 
CADEX, from which a simulation model is built. A 
behavior model still exists, but its hierarchy 
matches the RTL schematic hierarchy at key physi­
cal boundaries. Thus, simulation models can be 
built that consist of a hierarchy of mixed behavior 
and RTL models. 

While logic designers are creating the RTL design, 
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technology engineers are defining the technology 
cells. In parallel with these activities, synthesis 
knowledge engineers are writing rules to transform 
the RTL design into technology cells. These three 
activities should be completed at the same time, 
at which point, synthesis produces each of the 
VAX 9000 system's 77 gate array chips. The goals 
for the synthesis program were to 

• Simplify design entry and thereby reduce sche­
matic complexity by a factor of 4 

• Generate 90 percent of the VAX 9000 system's 
logic through synthesis 

• Reduce the number of simulation errors intro­
duced in the design 

• Reduce the number of electrical rules violations 
in the design 
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To generate a database for a buildable gate array 
chip, the synthesis tool is required to 

• Read technology-independent input standard 
net list format, which can be in DECSIM behav­
ioral no tation or CADEX common database 
format 

• Minimize Boolean gates through state-of-the-art 
minimization techniques 

• Improve timing-critical paths through Boolean 
transformations, cell/pin selections, power set­
tings, and net load allocations 

• Choose the best available technology cells based 
on timing, size (area), and power estimates 

• Insert the clock system for the gate array chip 

• Insert testability access logic for the service pro­
cessor unit 

• Obey all electrical design rules for the gate array 
chip 
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• Make it easy to detect whether the tool has per­
formed well 

• Simplify the improvement of the tool 

SID Database 
The design of the SID database is fundamental to the 
robustness of the CAD system. Previous CAD data­
bases have all assumed that the data is stable at the 
time that the CAD tools are working with it. Simu­
lation, timing verification, design rule checkers 
(DRCs), and many other CAD tools assume that net 
lists and components are fixed and unchanging. 

In synthesis, although the data is maintained in 
a form that makes it easy to update its parameter 
values, the basic structure of gates, pins, and nets 
remains the same. However, throughout most of the 
synthesis process, the basic structures are in a state 
of change. In fact, it is a characteristic of synthesis 
that logic functions are removed and replaced with 
new, functionally equivalent logic. Because of this 
d ifference, we designed basic data structu res and 
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Figure 2 VAX 9000 D evelopment Methodology 
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manipulation functions that would allow efficient 
removal and replacement of logic. 

We did use the primary objects of other CAD 
systems: gates, pins, and nets. However, we made a 
distinction between the definition of an object and 
its use or instance. Also, because we wanted these 
objects to be used at very high (i.e., behavioral and 
RTL) levels and at the gate level, we renamed them 
as models, ports, and signals. The primary database 
objects for SID are 

• Modeldef. The modeldef is the definition of a 
logic function element. Analogous to a vendor 
data sheet, modeldef contains parameters that 
describe its function, timing, power, size, and 
other general information. All bounded blocks 
of logic function, from high levels of hierarchy 
(e.g., floating point unit) to low levels (e.g., 
simple Boolean gates), are kept as modeldefs. 
Typically, modeldefs are used multiple times and 
used more at the lower levels of the database 
hierarchy. For example, in the VAX 9000 system, 
there ace two cache data multichip units, eight 
multiplier chips, and many thousands of two­
input NOR gates. 

• Modelinst. The modelinst is a use of a modeldef 
that contains only those parameters unique to 
itself. For example, two instances of a two-input 
OR cell may be in different places on a chip 
and, therefore, have different placement desig­
nators and timing characteristics. Each mod­
elinst points to its modeldef definition to inherit 
the set of common definition parameters. 

• Portdef. The portdef is the definition of an inter­
face to or from a modeldef. Portdef contains 
parameters that describe its function, timing, 
data width, and other general information. 

• Portinst. The portinst is an interface to and from 
a modelinst. Portinst contains parameters unique 
to itself, such as timing and power settings. 
Each portinst points to its corresponding port def 
definition to inherit the set of common defini­
tion parameters. 

• Signal. The signal is the means of connectivity 
among modelinsts and between hierarchical 
partitions. As shown in Figure 3, this connection 
is established through the interface portinst or 
portdef. For behavioral logic, the signal acts as a 
data flow arc; for RTL!ogic, the signal acts as a bus; 
and for gate-level logic, the signal acts as a net. 

Synthesis rules must be able to walk the database 
in any direction (i.e. , backward, forward, through 

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990 

hierarchy) looking for electrical rules violations or 
logic function redundancy, and testing for timing­
critical path relationships. To perform these tasks, 
we added a series of multidirectional pointers to the 
SID database objects by using LISP capabilities. 
When an object is declared as a symbol in the LISP 
programming language, pointer management is 
included automatically. The LISP language is well 
known in the industry for its use in AI applications, 
but it has a reputation as being slow. Our special 
handling of direct database pointers enabled us to 
produce a LISP application that resulted in excellent 
run-time performance. 

Once the data structures and their pointers were 
defined, we began to create a rich set of database 
access functions that had to be failproof. Therefore, 
we wrote functions to insert and remove the 
instance objects to ensure that the database pointer 
connectivity was properly maintained. These func­
tions allowed us to effectively perform a many­
for-many replacement of modelinsts with a single 
command. 

Other secondary objects were defined to contain 
such types of information as synthesis knowledge 
(i.e., rules and groups of rules), general technology 
characteristics (i.e., the maximum number of cells 
on a chip), and general project-specific character­
istics (i.e., the cycle time of the machine). 

The synthesis knowledge in the form of rules 
occupies the majority of SID-compiled code and 
over 10 megabytes (MB) of run-time memory. 

Rule Language 
Based on research and the perceived complexity of 
the task at hand, we estimated that, to perform syn­
thesis at an expert level, possibly thousands of rules 
would have to be written. 

In researching current AI literature, we deter­
mined that existing rule languages were either too 
cryptic or too verbose to allow us to write and 
maintain a large rule set in a short time frame. Also, 
we preferred to write more powerful rules than 
those of previous rule-based systems. We wanted 
each rule to be used for making complex decisions 
and logic transformations based on timing, size, 
power, and logic connectivity. The rule does not 
"think." Instead, it mimics a logic designer looking 
at the characteristics of some pre-existing design, 
who then changes the design to improve it or make 
it more compatible with the new technology. The 
rule, for example, tests whether A and B are true, 
and if so, performs transformation C. 

Based on these needs, we began developing the 
language Ruleform as the means for approxi-
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Figure 3 SID Database Objects 

mating the designer decision and logic synthesis 
task. With this ?lpproach, the rule would mimic 
what a logic designer had done once and that action 
could be repeated again automatically in similar 
circumstances. 

In Ruleform, rules have a left side for decisions 
and a right side for transformations, e.g., OPS-5, as 
do other rule-based languages. However, to make 
rules easier to read and write, Ruleform uses English 
language sentence structures to describe both tests 
and actions. The following predicate forms are used 
for left-side tests: 

• Dbobject verb 

• Dbobject verb dbobject 

• Adjective dbobject verb 

• Adjective dbobject verb dbobject 

Verbs are words such as IS, ARE, = , >, 
15-BOOLEAN, JS_A_NUMBER; adjectives are words 
such as ANY, ALL, NO. Dbobjects are database 
objects or the parameters of these objects. 

The command forms used for right-side actions 
are command dbobject and command dbobject 
preposition dbobject. Commands are words such as 
INSERT, REMOVE, REPLACE, MODIFY; prepositions 
are words such as WITH, TO, FROM. The dbobject 
can be any of the primary database objects, sec­
ondary objects, or their parameters. 
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For more complex operations, we also allowed 
LISP functions to be called by prefixing them with 
the keyword LISP, or by insertion of a LISP expres­
sion. Thus, if the rule language cannot implement 
a required function, a LISP algorithmic routine is 
called. We used algorithmic transforms in the gener­
ation of adder carry-lookahead. 

Ruleform Database Access 
Because the database could be traversed in any 
direction for any arbitrary distance through the 
multidirectional pointer system, rules had to have 
the same traversal capability. Therefore, the 
dbobject of the Ruleform language is a shorthand 
notation of the "database walk." Dbobject can be 
used in a sentence to compare two database objects 
by walking to both of them and using a predicate 
for the comparison. 

Had the database access been implemented in 
pure LISP progranuning notation, the sentence 
form would be lost in the many levels of expres­
sions enclosed in parentheses. One test would 
occupy many lines of code and would read more 
like a software program than an English sentence. 
In this case, the chain of thought of the rule writer, 
the purpose of which is to capture the step-by-step 
thoughts of a logic designer in words, would proba­
bly be broken. 
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To improve the comprehension of the notation 
used for identifying the database object, we devel­
oped an <object><dash> <object><dash><object> ... 
notation for the walk to a database object. We also 
developed functions that would compile this nota­
tion into a LISP expression, complete with all the 
appropriate declarations for the most efficient run­
time performance. Figure 4 shows the use of this 
notation. 

Further, we incorporated into Ruleform a param­
eter definition mechanism that allowed us to define 
any arbitrary parameter, name what object it 
would attach to, and then use the name of the 
parameter in the Ruleform database access. This 
greatly expanded the role of synthesis in that it 
could now be used for passing controls and infor­
mation to other CAD tools through parameters. 
Parameters relieved the designers of much tedious 
work, such as identifying clocks, logically equiva­
lent signals to the placement program CUT, and the 
parity generator and checker signals to the diagnos­
tic program, called HIDE. 

Writing the Rule 
Many of the tasks logic designers perform become 
automatic and intuitive over time. However, for a 

dbob j ect 
means 

MODEL 

INPUTS 

SIGNAL-2ND- INS 

INSTANCES-DRIVERS-SIGNAL-2ND-INS 

SOURCES 

DUSTS 

MODEL -SOURCES 

computer-based tool to develop a design, it must be 
able to measure cell counts, power and timing, and 
compare alternative implementations against bud­
gets of cell counts, power, and timing. To find the 
critical path, a computer-based synthesis tool must 
perform timing analysis in the same way that the 
traditional timing verification tool does. In a sense, 
the synthesis tool must preverify the decision 
before casting the synthesis transformation in con­
crete. Therefore, for a computer to do logic design, 
we had to analyze the steps that had become auto­
matic and intuitive, break those steps down, and 
formalize them in minute detail. 

Rule F,xa,mple 
Consider an example of a simple cell-mapping rule. 
The purpose of this rule is twofold: pick the most 
appropriate cell for a configuration of Boolean 
gates and attach the most critical path signals to 
those input portinsts that have the fastest propaga­
tion delays through them. 

A designer might determine the critical path from 
experience or through trial and error. The designer 
also might actually count loads on signals and add 
estimated signal delay to gate delay of all paths 
that might involve the timing-critical piece of logic. 

get the name of the modeldef of the 
current in5tance 

get the inputs of the current modelinst 

get the 5ignal of the second input of the 
current model inst 

get the in!ltance5 whose outputs are the 
driving pertinacities of the signal of the 
second input of the current model inst 

get the instances whose outputs are the 
driving pertinacities of the signals of 
the inputs of the current model inst 

get the instances whose inputs are the 
load pertinacities of the signals of 
the output s of the current model inst 

get the name of the modeldefs of the 
source model ins ts of the current model inst 

Figure 4 Example of a LISP Expression 
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These alternatives are all very time-consuming. We 
decided a computer is best suited to do this type of 
work. In SID, a timing analysis routine is run repeat­
edly, as the database changes, to set timing parame­
ters on every portinst of the design. The product of 
these calculations is a timing debt number set on 
every portinst. If the number is positive, the path is 
over budget (i.e., is in timing trouble) by the number 
in picoseconds given. If the number is negative, the 
path is under budget (i.e., has slack). The timing 
debt number allows the rules to access the timing 
debt parameters to find critical paths. 

In the example shown iri Figure 5, four Boolean 
gates exist as a tree in the middle of a gate array cell. 
The dest-side gate is a three-input OR, and the 
source-side gates are two-input ANDs. The entire 
cycle time of the machine depends upon the most 
timing-critical path, which runs through the first 
input of the second AND gate. 

Because this rule replaces four gates, it has higher 
priority over other rules that replace fewer gates. 
When the rule arbiter is called with the OR as the 
current instance, the arbiter executes the left side of 
the rule (i.e., the first part up to the arrow). The left 
side of the rule checks that the current instance is a 
three-input OR and all source instances are two­
input ORs. It then chooses the most critical path 
from among the inputs of the sources and notes the 
other inputs of the sources that were not critical. 
Because all of the tests in the left side of the rule 
returned true, the rule is said to have "fired." The 
right side of the rule may now be applied. 

The right side removes the current instance, 
i.e. , OR, and inserts the cell with the most crit­
ical path connected to the input that has a fast 
propagation delay to the output. By removing the 
OR, the destination of the ANDs is removed. 
REMOVLIF _NO_DESTS then removes these ANDS. 

The actual rule that does this transformation is 

(defrule "mapCELln") 
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(model ha5_profile '(or3)) 
Call models-of-15t-sources-of-inputs 

have_profi le '(and2)) 
(found{critical}-input5 

is_most-critical 1) 
(any {tagged}-inputs 

are_not_in {critical}) 
--> 
(replace• instance• with 

out = CCELLn 
(not ins-sources-{tagged }) 
(not ins-sources-{critical })) 

(remove_if_dest5 5ources) 

The rule also checks whether signal outputs of 
the ANDs have more than one load. The rule allows 
the transformation if the critical path has more than 
one load, but disallows the transformation if the 
noncritical paths have more than one load at the 
output of the ANDS. Thus, duplication of the source 
AND logic is prevented except when absolutely nec­
essary, e.g., to remove a wire delay to increase the 
speed of a critical path. 

Organization of Rules into Rule Bases 
The quantity of rules required that the rules be orga­
nized into groups, called rule bases. As we defined 
the minute steps of the logic design tasks, it was 
apparent that groups of rules were separated by 
levels of abstraction, as depicted in Figure 6. For 
example, a sequence of logic design can be charac­
terized as a progression through the levels: 

behavior --? RTL --? Boolean --? technology map --? 
wiring, tweak --? parameter set --? placement --? 

route 4 power adjust 

We organized the rules by type of activity into 
rule bases. We also developed a run-frame sequence 
process that would apply these rule bases, in order, 
from behavior through detailed adjustments at the 
technology level. The rule bases are 

• Behavior rule base, which contains rules to 
expand behavior and RTL instances. These 
rules transform high-level instances of adders, 
incrementers, comparators, decoders, encoders, 
and DECSIM behavior expressions into generic 
Boolean instances. They also perform simple 
bit replication for data path instances, such as 
32-bit MUXes. 

• Optimize rule base, which contains rules to 
transform Boolean logic for minimization or 
timing improvements. These rules performed 
the well-known D'morgan, distributive, and 
associative transformations to mold networks 
of generic Boolean instances into a configuration 
that is best suited to map into the cells of the 
target technology. 

• Map rule base, which contains rules to transform 
generic Boolean and bit data path instances to 
technology cells. This rule base actually was 
divided into two rule bases, one that mapped 
IIO cells and one that mapped internal gate 
array cells. 

• Wiring rule base, which contains rules to 
improve timing by loading and logic adjustments 
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Figure 5 Critical Path Map 

and rules to detect and correct electrical rules 
(ERC) violations. 

• Tuning rule base, which contains rules to adjust 
power on intersections of multiple timing-criti­
cal paths. 

• Parameter rule base, which contains rules to set 
parameters for the placement and route pro­
grams. These rules include setting parameters 
to identify logically equivalent signals, setting 
pin groups to force collections of pins to be 
near each other in placement, and weighting 
parameters to force timing-critical signals to 
be shortened. 

• Placement and route, which are not rule bases 
but CAD tools separate from the synthesis tool. 
Placement and route of Motorola Macrocell 
Array III (MCA3) gate arrays occur here in the 
overall design sequence. 

• Power rule base, which contains rules to adjust 
power on gate array cells and cell output follow­
ers. After initial placement and routing, a more 
accurate assessment of signal delay can be made. 
The power rules track the power distribution 
of the gate array cells and the contribution of 
each cell's current settings to the power budgets 
for ten regions of the chip. These rules adjust 
current upward to improve the speed of critical 
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paths. The timing calculations for this rule base 
use actual routed wire delays. 

The Larger Physical Design Process 
SID is part of a larger chip physical design process 
that includes synthesis, placement, and routing. 
The entire process is linked together in a two-pass 
process, called loopback. 

The first pass of loopback accomplishes three 
goals: the initial synthesis of the chip based on esti­
mated interconnect delays, placement of those syn­
thesis results, and routing, which includes accurate 
interconnect delay calculations. 

The second pass of loopback accomplishes the 
final synthesis with much more accurate inter­
connect delays and a high probability that the subse­
quent physical instantiation will achieve all design 
goals for timing, space, and power. The final synthe­
sis made changes only where required. Final place­
ment began with the results of the first pass of 
loopback, except where changes were made, and 
routing rerouted only those nets that had been 
modified. Our objective was to limit the number of 
passes through loopback to two and avoid endless 
cycles through the CAD tools. 

The placement process itself consists of three 
major phases. The global phase, called gravity col­
lapse, attempts to achieve relative orientation of 
the various gates and disregard density. The distri-
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Figure 6 Knowledge RepresentaJion Hierarchy 

bution phase, called regridding, attempts to assign 
the gates to available positions and maintain the 
desired orientation. The multipass final placement 
phase swaps cell locations, gates, nets, and pins to 
reduce weighted net lengths but still adhere to the 
technology-supplied design rules. 

During the local placement phase, synthesis-sup­
plied net weightings and equivalent net parameters 
are utilized. The net weightings are part of the com­
plex algorithm used to determine whether a poten­
tial swap of a cell location, gate, pin, or equivalent 
net is beneficial. The equivalent net parameters 
allow the placement program to detach a net from 
one pin and reattach it to another pin to supply an 
equivalent signal. This p rocess was a particularly 
common occurrence because synthesis had to sup­
ply the same or complementary signals to many 
destinations and still adhere to a technology-driven 
limitation of no more than four loads from any 
one source. 

Because the placement process introduces so 
many changes in pins, gates, and nets, we felt it 
was prudent for the placement program to simply 
regenerate the CADEX database format when it 
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was finished. This approach avoided the problem 
of developing a "back-annotation" process, which 
would be required if modification of the existing 
database were attempted and would be a complex 
process, given the number of changes made. Also, 
because most of the schematic source design is in 
RTL format, many, if not most, of the placement­
introduced changes are not visible in the schematic. 

Placement results were entered into our 
internally developed routing CAD tool, called 
Chameleon because of its ability to adjust to its 
environment. Chameleon is a highly rules and 
parameter-driven tool. It was used to route all 
77 gate arrays, all 22 multichip units, and both the 
CPU and system control unit planar boards of the 
VAX 9000 system. For the 77 gate arrays in the 
VAX 9000 system, the router achieved better than 
99 percent completion. Further, the average net 
was routed to between 101 and 102 percent of 
its Manhattan net length. (Note: Determination of 
Manhattan length is somewhat ill-defined when 
copper-sharing is allowed, and some net segments 
are common to multiple source-destination paths.) 
The routing was so efficient, with regard to length, 
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that the synthesis and placement programs could 
assume that determination of a net's end points 
would effectively determine its eventual routed 
length and, by extension, its interconnect delay. 

Upon completion of the actual routing, inter­
connect delay calculations were made for every net 
source-load combination by a router-related pro­
gram. We did these calculations at this point in 
the process for two reasons. First, all the necessary 
data was readily available in the router's database. 
Second, accurate delay calculations were needed 
by synthesis during the second pass of loopback to 
verify the assumptions made during the first pass 
and make any adjustments necessary to achieve tim­
ing and power constraints. For those few connec­
tions that were not routed completely, calculations 
were made based on the Manhattan length and a 
small contingency factor. 

Problems 
Developing and using the new synthesis design 
methodology was not without problems. We were 
able to fix some of these problems for the first 
VAX 9000 system generation. However, because of 
time and resource problems, others were deferred 
to the next project. 

Digital's previous CAD system ran on a combina­
tion of 36-bit DECSYSTEM-20 computers and 32-bit 
VAX computers. In switching completely to the VAX 
system for all CAD processes, we had to rewrite 
much of the DECSYSTEM-20 computer's existing 
code and replace the Stanford University design 
system {SUDS) schematic drawing program with the 
CAE2000 system. In replacing SUDS, we lost nearly 
one million lines of code, which was used for such 
tasks as wire listing, drawing, back annotation, and 
electrical rules checks. Some of these were available 
in the CAE2000 system, but others had to be devel­
oped external to that system. 

We designed a common database format, called 
CADEX, that allowed the CAD tools to communi­
cate with one another. For example, a design could 
be extracted from CAE2000 drawings to CADEX, 
which would supply the design to SID. In turn, 
SID would write CADEX output, which would be 
read by the placement program cut. This program 
would then write CADEX output, and the cycle 
would continue. New libraries had to be created for 
RTL schematic bodies and MCA3 cells. Data formats 
and parameters had to be defined for passing infor­
mation between the CAD tools. 

In SUDS, results could be written back to the 
drawing program (i.e., back annotation). We had 
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hoped to be able to use the same process in the new 
process, but were prohibited from doing so by defi­
ciencies in the CAE2000 system. As a result, the 
overall CAD process had to be repeated from the 
beginning many times. 

As with any new development tool, we experi­
enced setbacks. For example, we developed the gen­
eration of an adder that algorithmically picked each 
gate of the carry-lookahead for optimum configura­
tion of the Boolean trees with respect to fan-out and 
path delays. We then wrote Boolean optimization 
rules that attempted to merge ORs together as if no 
fan-out existed between them. However, when we 
did this, the carry-generate, least-critical OR paths 
merged, which forced the more critical AND-OR 
combinations into simple one-stage cells, with extra 
levels of wire delay between them. Within a few 
weeks, we were able to correct the faulty rules to 
also consider the timing-critical paths, which 
allowed the adder to improve along the carry­
propagate paths. Eventually, by working on the cell 
selection, load allocations, and power setting, we 
were able to produce a 64-bit adder at 3.2 nano­
seconds (ns) in the MCA3 technology. The best hand 
design was 3.3 ns for a 59-bit adder. At the time, 
the logic designers estimated that an extra stage 
delay, or 3.7 ns for the 64-bit manual design, would 
be required. 

Since synthesis was new, there was a great deal of 
skepticism as to whether it could perform as well as 
a manual design. Some logic designers never gave it 
a chance. Other designers encountered early prob­
lems with it or experienced schedule pressures and, 
as a result, resumed using hand-design methods. 
However, most designers stayed with the process 
until it produced acceptable results. In the process, 
they supplied feedback and algorithms that were 
converted into additional SID rules. This work was 
crucial to the evolution of the program. Only by 
adding new rules provided by logic designers could 
SID be improved for future designs. The successors 
to the VAX 9000 system will reap the major benefits 
from this work, through improved designer pro­
ductivity and time savings. 

The effect of timing constraints and the general 
accuracy of timing calculations on synthesis results 
cannot be underestimated. We required that timing 
budgets be specified to every chip to indicate the 
timing criticality of each I/0 pin. The budgets were 
specified from the 1/0 pin to latches of either of the 
two clock phases (TA or TB). Default budgets were 
applied on paths between latches that were con­
tained on the same chip. If a budget was missing, 
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SID considered that the speed of the path did not 
matter. However, as we ran the paths without 
budgets, we frequently found that SID had designed 
the path to be too slow. We then had to specify a 
budget for that path and repeat the testing process. 
A better alternative would have been to have a tool 
set the initial budgets for all I/0 pins and for the user 
to modify budgets as necessary. 

The accuracy of timing calculations is another 
factor in the design results. Because SID used worst­
case gate delays rather than rise and fall delays, 
its calculations of timing debt generally produced 
incorrect numbers that indicated timing problems 
that did not actually exist. Triggered by this inac­
curate timing data, the rules generated duplicated 
logic to reduce signal load fan-outs and needlessly 
increased chip power. 

Ultimately, synthesis methodology enabled the 
CAD system to produce accurate gate array designs. 
With the Ruleform language, we improved the rules 
to meet the changing needs. In the majority of cases, 
rules that were not in time for one designer bene­
fited many other designers at a later design stage. 
Using an ECO (engineering change order) process, 
we adjusted the placements and power and 
improved the timing-critical paths by requesting 
specific power settings or fan-outs that the regular 
execution of SID does not normally generate. 

Results 
Approximately 93 percent of the gate-level database 
was synthesized from source RTL design, DECSIM, 
and microcode truth tables. The other seven per­
cent was implemented in the source schematics in 
the form of technology cells, known as CLEGOs. 
Since the RTL often is quite similar to the finished 
gates, this percentage is not an accurate reflection 
of the amount of work involved. The RTL bodies 
were quite simple and without technological 
aspects, such as strange polarity inversions and 
clock connections. However, they did require that 
the designer specify all data paths and control logic 
in the true and false sense; e.g. , A and B but not C 
feeds the select to 32-bit data path MUX. 

The ratio of database size for RTL bodies com­
pared to synthesized gates is a better measure of 
how the design entry was simplified through the 
use of RTL schematics and SID synthesis. The com­
parison was done for CADEX file sizes of the RTL 
designs versus the synthesized gate designs just 
prior to placement. The ratio of RTL logic complex­
ity versus gate logic complexity, for each CPU box, 
is shown in Table 1. 

128 

Table 1 Ratio of RTL Logic Complexity to 
Gate Logic Complexity 

RTL Logic Gate Logic 
Complexity Complexity 

E-box 4.73 
I-box 4.92 

M-box 4.40 

V-box 1 3.17 

Average 4.30 

The average ratio of 1 to 4.3 is interpreted to 
indicate that 23 percent of the logic design work 
(not counting placement, routing, simulation, and 
timing verification) was done by logic designers and 
77 percent by synthesis. 

Another perspective is gained when we consider 
the amount of synthesis rules that were applied. 
The number of rules varies tremendously in relation 
to the impact. For example, the adder-generation 
rule, which takes about 1 CPU minute to complete 
for a 32-bit adder, performs the equivalent of 
approximately 4 person-days of work. On the other 
extreme, a parameter-setting rule that is tested and 
applied in .1 CPU seconds performs the equivalent 
of 15 to 30 person-seconds of work. 

Table 2 shows the approximate number of SID 
rules applied during synthesis runs. The rules per­
formed different categories of activities for the 77 
VAX 9000 system MCA3 gate array chips. 

Thirteen bugs caused by synthesis were found 
in the gate-level simulator. These bugs were either 
typographical errors in the rules or incorrect 
interaction within a set of rules. Although each rule 
was tested independently for correctness through 

Table 2 Activity Categories for the 
VAX 9000 Gate Array Chip 

Rules 

Expand behavior instances to bit level 
Minimize and optimize Boolean logic 
Initially select macros and macropins 
Detect and correct electrical and design 
rule violations 

Improve timing by loading and logic 
adjustments 

Set high-power on common-critical paths 
Set parameters needed by other CAD 
tools 

Set high-power on timing-critical paths 

Total number of rules applied 

Number 

28,567 
11,550 
58,597 

7,392 

85,008 

3,850 
165,000 

24,024 

383,988 
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full-pattern simulation, it was not possible to com­
pletely test the interaction of several rules. The 
simulator found approximately 500 designer-intro­
duced bugs, and the breadboard found another 
41 bugs. The breadboard was an early version of the 
VAX 9000 system that was built with printed wiring 
board technology for the purpose of faster simula­
tion and debugging of the design. 

These numbers translate to about 1 bug per 200 
gates designed by hand, compared to 1 bug per 
20,000 gates designed by synthesis, when viewed 
from the above ratio of 23 percent hand design 
versus 77 percent synthesized design, using the 
400,000 gate VAX 9000 source design. The fully 
realized VAX 9000 system is 700,000 gates when 
multiple uses of chips are considered. 

In addition to the more traditional synthesis 
functions of logic minimization and technology 
cell mapping, we used the tool to insert clock logic, 
scan logic, AC test circuits, parameters to control 
placement and routing, information to the test pat­
tern generation tool, diagnostic isolation tool, and 
simulation tools. All these functions made the logic 
designers' job much easier through automation of 
some tedious and error-prone work. 

We also found a unique application for synthesis 
rules in the improvement of wire delays on the chip 
by rearranging and rebuffering signal nets, based on 
timing debts. A set of nearly 15 rules resulted in a 10 
percent path delay improvement across the board 
for all gate array chips, including the 7 percent of 
logic done in CLEGO technology cells. 

SID-synthesized gate arrays were found to have 
no electrical rules violations caused by the tool. A 
few electrical rules errors were, however, intro­
duced by manual ECOs. An example of electrical 
rules error is the connection of two incompatible 
technology gates, such as an internal chip cell to a 
chip output pad. 

As shown in Table 3, the run-times for synthesis, 
placement, and route for MCA chips varied greatly, 
depending on design complexity. 

Table 3 Average Run-times for MCA Chips 

MCA Chip 

Synthesis 
Placement 
Route 

Delaycalc 

Average Run-time 

30 minutes to 3 hours 
4 to 10 hours 
4 to 12 hours 
1 to 2 hours 
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Robert P. Harokopus 

Hierarchical Fault Detection 
and Isolation Strategy for 
the VAX 9000 System 

The VAX 9000 system was designed to compete in the mainframe market. Mainframe 
customers not only require high processor performance and throughput, but also a 
system which is reliable and always available. 'fhis paper demonstrates how the 
newly implemented scan system, in conjunction with scan pattern testing and 
symptom-directed diagnosis (SDD ), is essential to sa.tisfy these needs. SDD is the use 
of on-line error detectors and state information sa.ved at the time of an error to 
isolate the fault that caused the error. 'fhe scan system of the VAX 9000 system allows 
individual state elements in the processor to be set and sensed, and is the basis for 
fault detection and isolation. 

As computer technology becomes more advanced, 
designs are becoming more dense. Density implies 
volume. For example, the typical chip on Digital's 
most advanced CPU, the VAX 9000 system, contains 
8000 gates. The VAX 9000 logic packaging also 
compounds the diagnostic problems by making the 
gates physically impossible to reach with a logic 
analyzer. 

As the gate volume increases and the logic 
becomes less accessible, the problems increase for 
manufacture of the design, debug of the prototypes, 
and repair of the machine in the field. The debug­
ging stages and the hardware repair process require 
that faults be found quickly and accurately to 
ensure that downtime is m inimal and valuable 
resources and inventory are not wasted. This paper 
presents the solution used in the VAX 9000 system 
for detecting and isolating hard and intermittent 
faults. The diagnostic solution for the VAX 9000 
system comprises the scan system, tools to generate 
test data, utilities to submit the test data to the scan­
nable logic, and an expert system to record symp­
toms and produce a callout over time. 

Traditional Fault Detection and 
Isolation Methods 
Excluding the MicroVAX chip, all VAXCPUs designed 
prior to the VAX 9000 CPU are supported by macro­
diagnostics and microdiagnostics. 

Macrodiagnostics execute from the system's main 
memory and verify that the CPU can successfully 
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behave as the VAX architecture mandates. Micro­
diagnostics execute from control store random­
access memory (RAM) and have access to internal 
state elements of the CPU. Although microdiagnos­
tics were intended to provide better fault isolation 
than macrodiagnostics, isolation is still not optimal 
because the access points comprise only a fraction 
of the total CPU. Since both types of diagnostics 
provide imprecise fault isolation, an engineer must 
be highly skilled in the analysis of both the code 
and the internal workings of the CPU to repair a bro­
ken machine. 

To avoid the time-consuming process of manual 
fault isolation, the field engineer often extensively 
replaces modules, which is a costly repair method. 
Historically, this practice has been a problem not 
only for Digital but for the entire computer indus­
try. Another disadvantage is that these diagnostics 
are executed using the suspect logic, which can 
produce incorrect test results. Finally, both diagnos­
tics often fail to provide the desired fault resolution 
because of fault propagation. The fault spreads 
across module boundaries because a typical test 
executes several instructions and each instruction 
requires one or more CPU cycles before the results 
are analyzed. 

Solution for a High-volume Design 
The solution used in the VAX 9000 system to 
improve fault detection and isolation preserves the 
role of the functional diagnostics and addresses the 
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inherent problems of those diagnostics. An integral 
scan system addresses the density and packaging 
issues. The CAD processes that automatically gener­
ate test data address the complexity and schedule 
issues. The scan system also reduces the problem 
of fault propagation by providing a mechanism to 
stimulate the machine and examine the results after 
just one machine cycle. Further, more direct control 
over most of the internal logic elements improves 
test coverage and fault isolation. 

Increased Visibility 
ln the VAX 9000 CPU design, multichip unit technol­
ogy created a machine that could not be built or 
diagnosed without a marked increase in visibility 
points. In previous VAX systems, the number of visi­
bility points for microdiagnostics varies from one 
machine to another. For example, the VAX 8700 
system has just over 150 visibility points, and the 
VAX 8600 and 8650 systems have over 3000 visibil­
ity points. Most points are read-only points, and the 
diagnostic processor has limited direct control over 
initializing individual CPU state elements. In con­
trast, the VAX 9000 scan system provides access to 
over 20,000 internal machine state elements for 
both reading and writing and direct access to all 
internal RAM and register structures. The design of 
the VAX 9000 system significantly improves CPU 

and system control unit logic visibility. 
The scan system is used for diagnostic purposes 

and to initialize the state of the CPU and system 
control unit. Because the number of windows into 
the system are increased, the design can be parti­
tioned into smaller regions, which improves fault 
isolation. The fault detection and isolation strategy 
depends on components that vary in complexity 
from a simple scan latch to automatic generation of 
the test data. 

An important feature of the scan system is that 
the scan latches can be influenced by the scan sys­
tem and by the system logic. Therefore, the scan 
system functions can be tested and verified inde­
pendently of the system logic. However, if the scan 
system is not functioning properly, the scan pattern 
diagnostic cannot produce valid results. Therefore, 
scan system faults must be fixed before running the 
scan patterns. 

Testing Hierarchy 
Testing for the VAX 9000 system begins with diag­
nostics that are run automatically when the system 
is powered up. These tests ensure that the service 
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processor unit and the scan system's basic compo­
nents do not contain any faults. 

After the tests are executed, the service processor 
unit's operating system is booted and the scan hard­
core diagnostic is run. The hard-core diagnostic 
assumes that the system has passed the power-up 
diagnostics and, therefore, the scan controller will 
operate properly. The hard-core diagnostic tests the 
components of the scan system that reside on the 
CPU and system control unit planar modules. If 
the scan system is broken, the machine cannot be 
initialized. When the system passes the hard-core 
diagnostic, the scan pattern diagnostic tests the 
integrity of the scannable system logic. 

The functional diagnostics and system exercisers 
are run after the scan pattern diagnostic has verified 
that no structural problems exist. In the testing 
hierarchy of the VAX 9000 system, functional diag­
nostics are as important as structural testing. Func­
tional diagnostics verify that the design represents 
a valid VAX system. 

Timely Testing 
In the course of developing a system design, several 
revisions of the system components are usually 
required. Each revision represents a different 
machine for testing purposes. To test each revision 
of the VAX 9000 design in a timely manner, a tool, 
called Scan Environment Patterns for Test and 
Repair {SCEPTER), was developed to generate test 
data. SCEPTER, an automatic pattern and test gen­
erator, takes as input the data used to manufacture 
the multichip units and structural models that simu­
late the design. Both inputs are produced during 
the logic design process. 

SCEPTER Process 
Pattern generation for the VAX 9000 system is a 
recursive process that initializes the scannable 
latches in a logic model, simulates one or more 
system clocks, and reads the contents of the scan 
latches. The contents are read as variable-length 
vectors, one bit for each scan latch in the design. 
The vectors to initialize the logic, the timing defini­
tions and the expected result, and mask vectors are 
written by SCEPTER into an ASCII file. The scope of 
the testing for a particular file is determined by the 
scope of the model that was input to SCEPTER. 

SCEPTER is quite flexible and can generate data files 
that target a Motorola Macrocell Array III (MCA3), 

a multichip unit, or CPU. 

The SCEPTER data files are translated into binary 
formats to reduce the size of the files and to allow 
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one pattern generator to satisfy the requirements 
and abilities of every test environment. The envi­
ronments that use data generated by SCEPTER are 

• Trillium's Micromaster Plus, the MCA tester used 
by the MCA3 vendor and Digital for the manufac­
turing test process. The tester ensures that the 
chip internal logic is fault-free prior to mounting 
it on the multichip unit. 

• MCU tester, which is a comprehensive multichip 
unit tester Digital developed for the manufactur­
ing test process. This mulcistation high-volume 
tester has access to the multichip unit's I/0 pins 
and can probe the multichip unit and MCA pins. 

• Manual probe station, which started out as an 
engineering tool but has evolved into auxiliary 
diagnosis too in the multichip unit test process. 
It is used to diagnose multichip units that have 
been removed from a VAX 9000 system because 
of suspected faults. 

• VAX 9000 kernel environment is used by Engi­
neering, Manufacturing, and Customer Services 
to verify MCU installation. 

Pattern Generation Process 
The automatic test and pattern generation (ATPG) 
process begins by determining what portion of 
the design is to be tested. A computer-aided design 
(CAD) tool partitions the models into chunks 
before SCEPTER is run. A chunk can consist of an 
MCA, a multichip unit, one CPU, or any portions of 
these units. 

Typically, one multichip unit is considered to be 
the targeted device for testing, and any multichip 
units that communicate with the targeted multichip 
unit also are included in the test process. 

Once the model is established, the recursive pro­
cess of initializing, simulating the system clock, and 
reading the results continues until the generation 
algorithms are satisfied that no additional faults can 
be detected. The simulation time can be lengthy in 
this process, and, therefore, reduced coverage lim­
its are set for multichip unit pattern generation. 
MCA pattern generation usually produces better 
than 98.5 percent coverage. 

Basic Theory of Structural Testing 
As discussed earlier, the scan system narrows the 
scope of testing to an area as small as one system 
clock cycle. If the scan latches are strategically 
placed, a fault's source can be pinpointed to a rela­
tively small region. The size of the region is directly 
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related to how far apart the scan latches are placed. 
The spacing of the scan latches also affects the isola­
tion callout. The number of components involved 
in a callout can be decreased if scan latches are situ­
ated such that, on input to a chip, a signal feeds a 
scan latch prior to the signal being used in combi­
national logic. Figure 1 illustrates the callout that 
occurs if a fault is detected on either of the two sig­
nals shown. 

The callout for signal A, where the chip is insu­
lated with scan latches, is 30 percent smaller than 
the callout for signal B, which does not have 
boundary scan latches. The difference is even larger 
for signals that converge on a common area of com­
binational logic. 

Using Boundary Scan to Improve 
Fault Isolation 
The example in Figure 1 does not illustrate what 
happens to the isolation callout in the case of a 
multibit signal that communicates with several 
chips. Figures 2 and 3 demonstrate the effect that 
fanIN has on fault isolation. Figure 2 has boundary 
scan, and Figure 3 does not. The following discus­
sion centers on these two figures. 

The callout in Figure 3 includes an extra compo­
nent, i.e., combinational logic, for each chip. If a 
scan latch is placed between the combinational 
logic and the chip boundary, the callout list can 
be reduced. The reduction between the callouts in 
Figures 2 and 3 is 55 percent. 

The hierarchical test strategy, which was detailed 
earlier, confirms the following items as good on the 
MCU tester prior to installing the multichip unit on 
the planar module: 

• Chips 1, 2, 3, and 5 

• MCUxHDSC 

• MCUyHDSC 

• MCUx flex connectors 

• MCUy flex connectors 

Although these items are confirmed as good, a 
fault can still exist on the planar module or in the 
flex connectors. Because the flex connectors are 
moving connectors and subject to abrasion, they 
have the highest probability of breaking and are, 
therefore, the weakest link in the multichip unit 
assembly. 

As such, these connectors require the greatest 
protection and deserve a high-level of suspicion 
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MCU 1 

FAULT .. 

•SIGNAL A: 

MCAx 
MCU 1 HDSC 
CPU PLANAR 
MCU 2 HDSC 
MCAy 

MCAx 

FAULT" 

MCAx 

SIGNAL____A__H <O> 

1 CLOCK CYCLE 

SIGNAL_ B_ H <0> 

1 CLOCK CYCLE 

MCU 2 

MCAy 

MCAy 

.. SIGNAL B: 

MC Ax 
MCAx COMBINATIONAL LOGIC 
MCU 1 HDSC 
CPU PLANAR 
MCU 2 HDSC 
MCAy COMBINATIONAL LOGIC 
MCAy 

Figure 1 Example of Two Faults with and without Scan Latches 
on the Module Boundaries 

when isolating faults. As a result of testing in the 
manufacturing process, the chip's internal logic and 
the HDSC systems can now be temporarily removed 
from the callout. If a fault occurs, boundary scan 
latches can isolate the fault to one signal. Without 
boundary scan, all three signals have to be included 
in the callout because the fault source cannot be 
accurately pinpointed. 

In this example, provided that no other faults are 
present, each multichip unit's flex connector has 
an equal probability of having caused the fault. For 
every inch of flex connector, there are 30 signal 
connections. A minor piece of debris on a con­
nector can potentially cause a number of failures. 
Therefore, the least costly repair strategy is to reseat 
the multichip unit after cleaning the flex connector 
and the pads on the planar module. 

If the fault is still present after reseating the multi­
chip unit, the multichip units are swapped and the 
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patterns are rerun. If the run is failure-free, then the 
cause of the fault is on the removed multichip unit. 
The defective unit is sent to a repair depot for diag­
nosis and repair. 

For discussion purposes, if additional faults are 
detected on one of the multichip units during the 
testing, then that multichip unit should be the first 
one to be reseated or swapped. Thus, the highest 
number of faults can be eliminated for one MCU 

replacement. The remainder of the repair verifica­
tion procedure would be the same as in the case 
where no other faults existed. 

Scan Pattern Diagnostic 
The scan pattern diagnostic is a utility that resides 
on the service processor unit's system disk and 
processes the structural test data generated by 
SCEPTER. The scan pattern diagnostic runs each file 
based on the user's input. 
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MCUx 

CHIP1 

CHIP2 

CHIP3 

CALLOUT FOR SAME FAULT 
USING BOUNDARY SCAN: 

5 ITEMS 

1. CHIP 1 
2. CHIP 5 
3. MCUx HDSC 
4. MCUy HDSC 
5. PLANAR 

FAULT 

MC Uy 

KEY: 

D 

CHIP 4 

CHIPS 

SCAN LATCH -+ DETECTION POINTS 
FOR FAULTS 

--D OACL-t COMBINATIONAL LOGIC 

Figure 2 Fan/N with Boundary Scan 

The interface supports flexibility for testing the 
scannable logic in the system control unit and one 
to four CPUs. The scan pattern data files contain the 
data required to test the hardware as discussed ear­
lier in the Pattern Generation Process section. 

The diagnostic packages the test data into scan 
operations that are submitted to the scan control 
module through the service processor unit sys­
tem calls. The scan pattern diagnostic checks the 
returned status; and if faults are detected, saves 
the physical location of each fault in an internal 
database. 
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SCEPTER provides isolation maps, which are lists 
of the components that may be responsible for the 
fault detected by a given scan latch. There is one 
isolation map for each scan latch involved in the 
testing. When a scan latch detects a failure, the 
scan pattern diagnostic uses its physical location 
to access the isolation map provided by SCEPTER. 
The contents of the maps are used in the isolation 
callout. 

Proper Niche for Structural Testing 
We did not design the structural test process for the 
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MCUx 

CHIP1 

FAULT 

CHIP2 

CHIP3 

CALLOUT WITHOUT BOUNDARY SCAN: 

11 ITEMS 

1. CHIP 1 
2. CHIP 2 
3. CHIP 3 
4. CHIP 5 
5. CHIP 1 CL 
6. CHIP 2 CL 
7. CHIP 3 CL 
8. CHIP 5 CL 
9. MCUx HDSC 
10. PLANAR 
11 . MCUy HDSC 

MC Uy 

KEY: 

D 
-D 

CHIP4 

CHIPS 

CHIPS 

SCAN LATCH -+ DETECTION POINT 
FOR FAULTS 

ORCL -+ COMBINATIONAL LOGIC 

Figure 3 Fan/N without Boundary Scan 

VAX 9000 system to cover every test problem. 
Instead, we designed the process to ensure that the 
hardware can physically operate as described by 
the design data. Structural testing cannot be used to 
determine if the VAX 9000 system is operating as a 
VAX system, that is the job of the functional diag­
nostics. Further, structural testing cannot be used 
to determine if the system is robust enough to sup­
port multiuser traffic; the User Environment Test 
Package (UETP) exercises the system hardware and 
operating system. The structural test process also 
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cannot be used to find problems with the design. 
Architectural verification tests perform that func­
tion. Finally, structural testing cannot be used to 
detect intermittent faults. Because this type of fault 
requires the presence of special conditions which 
the test data may not provide, on-line error detec­
tors and symptom-directed diagnosis are more 
effective alternatives. 

Structural testing must be performed at a low 
level. It should be done when power failures or 
power surges occur, when multichip units on the 
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CPU or system control unit planar are swapped, or 
when signal-carrying cables are installed. The scan 
patterns also should be run if the system crashes 
or applications begin to behave erratically for no 
apparent reason. Initially, when a system problem 
occurs, the cause must be isolated to either the soft­
ware or hardware to initiate the correct remedial 
action. If the hardware appears to be the cause, then 
the hardware diagnostic strategy must be followed 
to obtain optimal fault isolation in a minimal 
amount of time. 

Structural Test Process 
The VAX 9000 system's structural test process 
shows that, given the proper pattern data files, 
faults can be detected and isolated faster than with 
traditional methods that use the symptoms from 
the functional diagnostics. Structural testing not 
only fills a gap in Digital's test hierarchy, but also 
preserves the benefits derived from the functional 
diagnostics. As a result, logic designers and manu­
facturing engineers can concentrate on higher level 
problems, and field engineers can repair and bring a 
broken machine back on-line faster. 

The structural test process has also produced an 
automatic test data generator. This generator is flex­
ible enough to support testing for Digital's future 
processor designs, which include a scan system. 
This tool will prove to be essential in bringing the 
next innovative complex design to market on time. 
It makes design testing, prototype debugging, and 
repair more thorough and efficient. 

Structural testing cannot address the unique 
problems presented by intermittent faults. These 
faults require constant monitoring and a mecha­
nism to log the symptoms and isolate over time. 

Symptom-directed Diagnosis 
As computer systems have become more complex, 
the occurrence of intermittent faults has increased 
dramatically. This phenomenon results mainly from 
the increasing densities of chips and interconnec­
tions. Traditional test-directed diagnostics are inef­
fective in isolating intermittent faults because they 
rely on the ability to re-create the failure condition, 
which is seldom possible to do. Intermittent faults 
are usually as a result of marginal components and 
may only occur when certain conditions are met, 
such as the specific workload on the system. In con­
trast to test-directed diagnostics, symptom-directed 
diagnosis uses symptom information saved at the 
time of the failure to isolate the fault. Symptom 
information includes useful machine states, such as 
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error detector states, multiplexer select values, 
memory addresses, and register values. 

The VAX 9000 symptom-directed diagnosis 
strategy is composed of four major components. 
First, on-line hardware error detectors are used to 
achieve maximum coverage and an error-reporting 
process logs the necessary symptom information 
when errors are detected. Second, hardware error 
detectors and secondary syndromes are used to 
build symptom-directed diagnosis fault isolation 
rules that achieve the minimum possible callout of 
faulty field replaceable units. Third, symptom­
directed diagnosis CAD tools calculate the coverage 
provided by on-line error detection and evaluate 
the quality of fault isolation provided by these 
detectors. Fourth, on-line, symptom-directed diag­
nosis software performs fault isolation for both 
single-error and multiple-error events. 

Fault Detection Coverage and 
Error Logging 
On-line hardware error detection is essential for 
detecting intermittent faults. On high availability 
mainframes such as the VAX 9000 system, it is essen­
tial to detect or "cover" a high percentage of inter­
mittent faults. This section discusses the coverage 
measurement of on-line error detection for the 
VAX 9000 system. The VAX 9000 system error­
logging process is also discussed. 

On-line Error Detection 
Hardware components are subject to temporary 
failures because of signal noise, environmental devi­
ations, marginal devices, and other factors. To com­
pensate for these inevitabilities, the VAX 9000 
kernel includes over 450 error latches, which store 
the results from hardware error-detection circuits, 
such as parity and error-correcting code checkers. 
The detection of faults is critical to an orderly and 
predictable error-handling process. Error-detection 
circuits not only ensure the data integrity of the sys­
tem, but also provide information that can be used 
for symptom-directed diagnosis fault isolation. 

The placement of error-detection hardware is 
critical to the effectiveness of the process. The 
goals for error detector placement on the VAX 9000 
system included: 

• Maximizing coverage of higher failure 
components 

• Minimizing the callout of faulty field replaceable 
units 
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• Minimizing pin use and cell count 

• Minimizing effects on system performance 

Coverage Calculation 
One of the purposes of hardware error detection is 
to ensure that the VAX 9000 system behaves in a 
predictable manner when a fault occurs. Therefore, 
a high percentage of errors must be covered by on­
line error detection. If a fault is not detected, then 
the machine may operate or fail in an unpredictable 
manner. Undetected faults complicate the error 
reporting and recovery processes and limit the 
quality of the symptom information available for 
symptom-directed diagnosis fault isolation. 

Reliability Weighted Coverage The coverage 
provided by on-line error detectors is measured in 
terms of the reliability of the various components 
in the design. In other words, the coverage calcula­
tion is weighted according to the probability of fail­
ure of each device in the logic. 

Reliability weighting is performed by first 
assigning a relative failure weight to each primitive 
physical element. Examples of primitive physical 
elements are gate array cells, self-timed RAM cells, 
the high-density signal carrier, multichip unit 
flex connectors, and planar module etch. A weight 
of one is assigned to the most reliable primitive 
physical element and all others are scaled propor­
tionally upward. 

Each signal in the machine is then assigned a fail­
ure weight by calculating the sum of the weights of 
each of the primitive elements that compose the 
signal. For example, a multichip unit interconnect 
signal is composed of two multichip unit flex con­
nector primitive elements and one planar module 
etch primitive element. Therefore, the weight of 
this signal would be two times the multichip unit 
flex connector weight plus one times the planar 
module etch failure weight. 

Probability of Detection The second aspect 
of the coverage calculation is the probability that a 
fault on a given signal will be detected by an on-line 
error detector. This aspect is called the signal proba­
bility of detection and is calculated by computing 
an error domain for each on-line error detector in 
the system. The error domain of a given detector is 
the sum of all of the signals in the design that have a 
greater than zero probability of being detected if 
they are faulted. The detector covers each signal in 
its error domain. 
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Computation of the error domains for each on­
line error detector in the design results in a signal 
probability of detection for each covered signal. 
Uncovered signals are assigned a zero signal proba­
bility of detection. 

Coverage Formula The signal probability of 
detection data and the signal reliability weight cal­
culations are used to determine the system on-line 
error detector coverage. The formula for this calcu­
lation is 

,, 
E(P; xRw,) 
; .. , c = -,-, ------

E( 100; x Rw;) 
j ., / 

where n equals the number of signals in the system, 
p equals the signal probability of detection, RW 

equals the signal reliability weight, and C equals the 
system coverage. 

A symptom-directed diagnosis CAD tool, called 
the hardware isolation domain evaluator (HIDE), 

was developed to automate the process of deter­
mining the signal reliability weights, probabilities 
of detection, and overall system coverage. HIDE is 
discussed in more detail in the CAD Tools and 
Processes section of this paper. 

VAX 9000 Error-reporting Process 
The error-reporting process on the VAX 9000 sys­
tem facilitates symptom-directed diagnosis by sav­
ing critical symptom information that can be used 
for fault isolation. The VAX 9000 service processor 
unit initiates and controls the error-reporting pro­
cess. The service processor unit monitors each of 
the VAX 9000 subsystems and reports conditions 
that deviate from normal operation. The service 
processor unit recovers the failed status from the 
subsystem in error and generates an error log entry, 
which contains important machine-state symptom 
information saved at the time that the error was 
detected. This information is analyzed by symp­
tom-directed diagnosis fault isolation tools to deter­
mine the source of the error. 

Fault Isolation Rules 
The symptom-directed diagnosis fault isolation 
tools use a knowledge base of fault isolation rules to 
determine how to analyze the data inside the error 
log entry. The fault isolation rules were designed by 
reliability engineering experts who understand the 
behavior of the machine when it fails. 
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There are two basic types of fault isolation rules, 
single event and multiple event. Single-event rules 
are used for analyzing single error events (i.e., one 
error log entry). Multiple-event rules are used for 
analyzing multiple error events that occur over a 
specified interval of time. 

Single Event Fault Isolation Rules 
There are several categories of single event fault iso­
lation rules. These rules are derived from the on-line 
error detection designed into the VAX 9000 system. 

PrinUlry Syndrome Fault Isolation Rules Primary 
syndromes are the error latches that detect and 
report error events. Each error latch stores the 
result of an on-line error detector. Each error detec­
tor covers a section of logic in the system. By map­
ping this logic to the physical partit ion (i.e., field 
replaceable units), the values of set error latches can 
be used as a first -pass fault isolation. In many 
instances, this analysis alone is sufficient to deter­
mine the faulty field replaceable unit . 

Secondary Syndrome Fault Isolation Rules In some 
instances, the fault isolation provided by the pri­
mary synd romes may not localize the fault suffi­
ciently. For example, if the primary syndrome field 
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replaceable unit callout results in more than one 
field replaceable unit having a significant possibility 
of failure, then secondary syndromes must be used 
to reduce the callout. Secondary syndromes are key 
machine states, other than error latches, that are 
stored in the error log entry. Examples of secondary 
syndromes include multiplexer select lines, mem­
ory address values, and other path-sensitive control 
signals. These signal states are used to determine 
the specific path that was sensitized when an error 
occurred . The nonsensitized path(s) can then be 
removed from the callout. An example of how sec­
ondary syndromes are used for fault isolation is 
shown in Figure 4. 

Fault Propagation Rules Sometimes a single-error 
event can trigger multiple error detectors because 
of fault propagation or domain intersection . 

Fault propagation occurs when a fault in a given 
error domain (i.e., the p ropagation source) propa­
gates into other error domains (i.e., the propagation 
destinations). To identify the real source of the 
error, the possible fault propagation paths must be 
found and the precedence of the error detectors in 
each propagation path must be identified . When 
multiple error latches are set, the propagation rules 
can then be applied to eliminate all p ropagation 
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destinations for each propagation source in the call­
out. An example of fault propagation is shown in 
Figure 5. 

Domain Intersection Rules Domain intersection 
results when two or more error detectors cover a 
common piece of logic. This information is used to 
refine the callout when multiple error latches are set 
in the VAX 9000 system as shown in Figure 6. 

Multiple Event Fault Isolation Rules 
Multiple-event rules attempt to correlate separate 
error events to find a common problem. This type 
of analysis is beneficial when an intermittent or 
transient problem is not diagnosed sufficiently by 
single-event symptom-directed diagnosis rules. 

For example, if a logic fault were analyzed with 
single-event, symptom-directed diagnosis rules, an 
intermittent logic fault could be concluded as hav-
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ing occurred. Such an analysis would result in a call­
out of the faulty field replaceable unit. However, 
multiple-event rules include checking for certain 
environmental deviations in close proximity to a 
logic fault. In this case, multiple-event analysis 
would attempt to correlate the logic fault with the 
environmental deviations to determine if the fault 
is transient in nature. If this were the case, a callout 
would not be required. 

Multiple-event rules can also be used to enforce 
the callout refinement provided by secondary 
syndromes, fault propagation, and domain inter­
section. For example, in a VAX 9000 system that 
repeatedly generates identical or similar error log 
entries, multiple event analysis can correlate these 
entries to a single intermittent fault. It can provide 
a scenario of which is the most likely secondary 
syndrome path to be sensitized and the most likely 
error domain to detect the error first. In this case, 
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multiple-event analysis can view these events as a 
single problem rather than seeing each error log 
entry in isolation. 

CAD Tools and Processes 
To ensure that the VAX 9000 symptom-directed 
diagnosis fault coverage and isolation goals were 
achieved, CAD tools were needed to measure the 
quality of the on-line error detection in the design. 
Tools also were needed to help develop symptom­
directed diagnosis fault isolation rules and to facili­
tate the conversion of these rules into a format that 
could be used by the fault isolation software. 

Some of the significant symptom-directed diag­
nosis CAD tools that were developed and used for 
the VAX 9000 system are discussed below. 

Hardware Isolation Domain Evaluator 
The hardware isolation domain evaluator (HIDE) 

CAD tool was developed to provide symptom­
directed diagnosis fault coverage and isolation 
information to the VAX 9000 logic designers. HIDE 

also can generate simple symptom-directed diag­
nosis fault isolation rules for use in the system fault 
isolation matrices. 

One of the goals for HIDE was to provide early 
feedback to logic designers on the quality of on-line 
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error detection in designs. Early feedback gave 
designers time to make design changes if coverage 
or isolation goals were not achieved. Further, the 
information provided by HIDE helps designers 
select locations for error detectors and gave design­
ers quick feedback on the implications of detector 
placement and design changes. 

Symptom Diagnosis Infonnation 
Language 
The symptom-directed diagnosis fault isolation 
rules for the VAX 9000 system were coded into a set 
of system fault isolation matrix files, called symp­
tom diagnosis information files. Symptom diagnosis 
information is a language that is designed to express 
both single-event and multiple-event, symptom­
directed diagnosis fault isolation rules in an objec­
tive and consistent manner. 

In earlier VAX systems, new fault isolation tools 
were needed for each new computer system. In the 
VAX 9000 system, the symptom diagnosis informa­
tion language provides a general-purpose means to 
specify symptom-directed diagnosis fault isolation 
rules. The files are used as the rule base for the 
symptom-directed diagnosis fault isolation tools, 
which means that the tools can be used for future 
computer system designs. 
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On-line Fault Isolation Software 
The VAX 9000 system contains on-line symptom­
directed diagnosis software that automatically diag­
noses faults as they occur. The software produces 
an isolation callout of the possible faulty field 
replaceable units that is automatically received by 
Digital customer service centers through a symp­
tom-directed diagnosis reporting process. This 
process is designed to minimize the repair time 
for VAX 9000 systems. It automatically notifies 
Digital of problems and provides a repair plan to 
Customer Services before personnel are sent to the 
customer's site. 

Service Processor Diagnostic 
The VAX 9000 service processor unit contains a 
symptom-directed diagnosis fault isolation process 
that performs single-event analysis. This pro­
cess runs in the background waiting for error log 
entries. When an error log entry is generated, the 
process analyzes the error log entry and produces 
an encoded callout of possible faulty field replace­
able units. 

The symptom-directed diagnosis fault isolation 
algorithm is performed by a general-purpose diag­
nostic engine. This engine uses a binary version 
of the symptom diagnosis information file, i.e. , 
binary-coded matrix, as a rule base for its analysis. 
The diagnostic engine can analyze any error log 
entry that has a valid corresponding binary-coded 
matrix file. 

In addition to the encoded callout, the single­
event fault isolation process produces status infor­
mation from each error event that is used for 
multiple-event analysis. 

VAXsimPLUS 
The VAXsimPLUS tool runs on the VAX 9000 CPU and 
performs symptom-directed diagnosis multiple­
event analysis. The tool analyzes information gen­
erated by the single-event, symptom-directed 
diagnosis process using multiple-event, binary­
coded matrix files. The VAXsimPLUS tool uses the 
same general-purpose diagnostic engine as the 
single-event, symptom-directed diagnosis process. 
The output of the VAXsimPLUS tool is a syndrome 
entry that collapses several error events into a single 
error analysis theory. 

Summary 
A complete test and diagnosis strategy for a large 
computer system, such as the VAX 9000 system, 
requires off-line testing and its on-line counterpart, 
symptom-directed diagnosis. Off-line testing pro-
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vides a hierarchical mechanism for testing each 
component before it is assembled into the next 
level. In off-line testing, the use of the scan system 
provides high coverage and accurate fault isolation. 
Scan testing also has proven effective during all 
phases of the VAX 9000 system product develop­
ment: design, manufacturing, prototype debug, 
and customer support. 

Symptom-directed diagnosis is a sophisticated 
tool that provides detection and isolation of inter­
mittent faults. Intermittent faults have been a signif­
icant problem in the past because of the difficulty to 
re-create the conditions that lead to such faults. 
Symptom-directed diagnosis solves the problem of 
intermittent faults by analyzing symptom informa­
tion generated by on-line error handlers rather than 
by attempting to re-create the fault. Thus, the use 
of symptom-directed diagnosis provides greater 
machine availability for the VAX 9000 system. 
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