
VAX 9000 Series

Digital Technical Journal
Digital Equipment Corporation

Volume 2 Number 4
Fall 1990

Cover Design
Digital s VAX 9000 mainframe system is the theme of this issue.

Our cover depicts several simple instructions flowing through

the VAX 9000 instruction execution pipeline. High performance

was achieved by breaking the VAX instructions into small simple

tasks that could be pipelined efficiently. Concurrent operation

on up to six instructions simultaneously resulted in a execution

rate of one simple VAX instntction per clock period.

Gloria Monroy of the High Performance Systems Group designed

the cover graphic, which was implemented in cooperation

with David Comberg of the Corporate Design Group.

Editorial
jane C. Blake, Editor
Barbara Lindmark, Associate EditOr

Circulation
Catherine M. Phillips, AdministratOr
Suzanne J. Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Nancy jones, Typographer
Peter Woodbury, IllustratOr and Designer

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Robert M. Glorioso
john W. McCredie
Mahendra R. Patel
F. Grant Saviers
Robert K. Spitz
Victor A. Vyssotsky

The Digital Technicaljoumal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO I-31B68, Maynard,
Massachusetts 01754-2571. Subscriptions tO the journal are S40.00

for four issues and must be prepaid in u.s. funds. University and
college professors and Ph. D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent 10 The Digital Tecbnicaljournal at the published-by address.
Inquiries can also be sent electronically 10 D'I:J@CRL.DEC.COM

Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNALor by interoffice mail to mailstop MLO I -3/B68.
Orders should include badge number, cost center, site location
code and address. U.S. engineers in Engineering and Manufacturing
receive complimentary subscriptions; engineers in these organiza­
tions in countries outside the u.s. should contact the journal office
to receive their complimentary subscriptions. All employees must
advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editOr at the published-by or network address.

Copyright ll:J 1990 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation ·s authorship is permitted.
AU rights reserved.

The information in this Journal is subject 10 change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in
this journal.

ISSN 0898-901 X

Documentation Number EY-E762 E-DP

The following are trademarks of Digital Equipment Corporation:
Cl, DECsystem-10, DECSYSTEM-20, Digital, the Digital logo, HDSC,
MC!J, Micro VAX, Nl, PDP-I, Ul;fRIX, VAX, VAX-11/780, VAX 6000,

VAX 8000, VAX 8600, VAX 8650, VAX 9000, VAXBI, VMS, X MI.

IBM is a registered trademark of International Business Machines
Corporation.

Kapton is a trademark of E. I. duPont de Nemours & Company.

MOSAIC 111 is a trademark of Motorola Corporation.

Micromaster Plus is a registered trademark of t.:rx Company.

Book production was done by Digital's Educational Services
Media Communications Group in Bedford, MA.

I Contents

11 Foreword
Carl S. Gibson

13 Design Strategy for the VAX 9000 System
David B. Fite Jr., Tryggve Fossum, and Dwight Manley

25 VAX Instructions That Ill-ustrate the Architectural Features
of the VAX 9000 CPU
John E. Murray, Ricky C. Hetherington, and Ronald M. Salett

VAX 9000 Series

43 Semiconductor Technology in a High-performance VAX System
Matthew). Adiletta, Richard L. Doucette, John H. Hackenberg,
Dale H. Leuthold, and Dennis M. Litwinetz

61 Vector Processing on the VAX 9000 System
Richard A. Brunner, Dileep P Bhandarkar, Francis X. McKeen,
Bimal Patel, William). Rogers Jr., and Gregory L. Yoder

80 HDSC and Multichip Unit Design and Manufacture
Peter 8. Dunbeck, Richard). Dischler, James 8. McElroy,
and Frank). Swiatowiec

90 The VAX 9000 Service Processor Unit
Matthew S. Goldman, Paul H. Dormitzer, and Paul A. Leveille

102 The Unique Features of the VAX 9000 Power System Design .
Derrick). Chin, Barry G. Brown, Charles F. Butala, Luke L. Chang,
Steven). Chenetz, Gerald E. Cotter, Brian T. Lynch, Thiagarajan Natarajan,
and Leonard J. Salafia

118 Synthesis in the CAD System Used to Design the VAX 9000 System
Donald F. Hooper and John C. Eck

130 Hierarchical Fault Detection and Isolation Strategy
for the VAX 9000 System
Karen E. Barnard and Robert P Harokopus

I Editor's Introduction

Jane C. Blake
Editor

The VAX 9000, Digital 's first mainframe computer,
is the topic of papers in this issue of the Digital
Technical Journal. As engineers writing for this
issue relate, the primary goal of the project from the
initial product strategy through manufacture was to
design and build a very high-performance, highly
reliable VAX system.

Design engineers applied both CISC and RISC
techniques to achieve high levels of performance
for this tightly coupled multiprocessor system.
In the opening paper, Dave Fite, Tryggve Fossum,
and Dwight Manley explain the strategy behind the
design. They begin with an overview of the system,
the technology, and CAD tools, and then describe
the redesign of VAX instructions into small tasks
which can be efficiently pipelined. The authors
also touch upon three additional aspects of the
VAX 9000 system: the integration of vector process­
ing into the VAX architecture, new error handling
techniques, and performance modeling.

One measure of performance is the number of
instructions processed per cycle. The average num­
ber of cycles per instruction is less than five, which
is nearly half the instruction execution rate of pre­
vious VAX systems. To illustrate the architectural
features that enable this level of performance, John
Murray, Rick Hetherington, and Ron Salett have
selected a small sample of VAX instructions. They
describe the instruction flow through the pipeline,
how instruction features combine to work on a sin­
gle macro, and how stages of the pipeline interact.

In addition to the architectural improvements,
machine performance is enhanced at the semi­
conductor level by a new generation of semicustom
and custom integrated circuits that support a low
cycle time. Matt Adiletta, Dick Doucette, John
Hackenberg, Dale Leuthold, and Dennis Litwinetz
give an overview of the bipolar technology used in
the system. They then describe the methods used to

2

implement the 77 different gate array chips, the five
custom chips, and the self-timed RAM architecture.

An additional performance improvement for
numeric computations is the VAX vector architec­
ture and is treated in the paper by Rich Brunner,
Dileep Bhandarkar, Frank McKeen, Bimal Patel, Bill
Rogers, and Greg Yoder. They discuss the architec­
tural model and particulars of the VAX 9000 imple­
mentation, which affords numerically intensive
applications performance four to five times greater
than can be achieved by the scalar processor.

To ensure that the system performance gains
at the semiconductor level were not diminished
but were instead enhanced by packaging and inter­
connects, engineers developed several technologies
unique in the industry. The technology behind the
high-density signal carrier and the multichip unit
are explained in the paper by Pete Dunbeck, Rich
Dischler, Jim McElroy, and Frank Swiatowiec.

Equally important to performance in the new
9000 is system reliability as evidenced by the intro­
duction of the service processor unit. In their paper
about the service processor, Matt Goldman, Paul
Dormitzer, and Paul Leveille relate how the
MicroVAX-based system embedded within the 9000
detects, isolates, and corrects problems without
interrupting the system.

High system availability was also one impetus in
the design of the power system. Some of the unique
features of the power system, such as redundant
regulators, improved load sharing and simula­
tion, are discussed by Derrick Chin, Barry Brown,
Charles Butala, Luke Chang, Steve Chenetz, Jerry
Cotter, Brian Lynch, Raj Natarajan, and Len Salafia.

The two papers that close this issue address the
topics of CAD methodology and system diagnosis.
Don Hooper and John Eck describe a CAD method­
ology that combines advanced rule-based AI tech­
niques with an object-oriented database. The new
methodology saves logic designers significant time
and reduces errors. A complex system such as the
VAX 9000 requires improved system diagnosis capa­
bilities to achieve the desired high system availabil­
ity. Karen Barnard and Bob Harokopus demonstrate
how a new scan system, in combination with scan
pattern testing, and symptom-directed diagnosis
achieve this necessary diagnosis capability.

The editors thank Rick Hetherington of the High
Performance Systems Group for not only writing a
paper but for his help in coordinating this issue.

Biographies

Matthew J. Adiletta Matthew Adiletta is currently contributing to the
implementation of a new processor architecture and performing a technology
evaluation to determine the technology for the implementation. He joined
Digital in 1985 to work on a high-performance RISC architecture. Matt was not
only the architect for the VAX 9000 system, but he also implemented the integer
and floating point multiply and divide units and developed an ECL custom chip
process. He holds one patent and has several patents pending. Matt received a
B.S.E.E. (honors, 1985) from the University of Connecticut.

Karen E. Barnard A senior software engineer with the High Power Business
Unit CPU Development Group, Karen Barnard wrote the read-only memory­
based diagnostic for the VAX 9000 service processor unit's scan control module
and developed the scan pattern diagnostic for the VAX 9000 CPU and scu. Karen
also worked on the debugging structural test process for the VAX 9000 kernel
environment. Prior to joining Digital in 1986, Karen was with Data General
Corporation. She received a B.S. (1983) in computer science from the Worcester
Polytechnical Institute.

Dileep P. Bhandarkar As technical director for RISC systems, Dileep
Bhandarkar is responsible for leading the architectural direction of RISC prod­
ucts. He joined Digital in 1978 and was responsible for managing the evolution of
the VAX architecture. Dileep was the chief architect for VAX vector processing
and coarchitect ofDigital's RISC architecture. He holds one patent for his work at
Digital and has several patents pending. His degrees in electrical engineering
include a Bachelor of Technology from the Indian Institute of Technology and an
M.S. and a Ph .D. from Carnegie-Mellon University.

Barry G. Brown The concept of designing DC-to-DC converters as system
elements rather than individual "power supplies" was introduced into the high­
power systems products by Barry Brown. He created and developed a highly
flexible, high-reliability DC-to-DC conversion system for the VAX 9000 series.
Barry designed, implemented, and verified the power system for the VAX 9000
Model 200 systems. He was a principal engineer for the Codex Corporation
before coming to Digital in 1984. Barry is a graduate of Woolwich Polytechnic
and Harlow Technical College.

I

3

Biographies

4

Richard A. Brunner As a principal engineer, Richard Brunner is the architect
currently responsible for the engineering refinement and control of both
the VAX and VAX vector architectures. He is the editor of the VAX Architecture
Reference Manual and coauthor of the VAX Vector Handbook and several papers
on the VAX vector architecture. He received a B.S. (high honors, 1984) in elec­
trical engineering from Case Western Reserve University and an M .S. (1987) in
computer engineering from Rensselaer Polytechnic Institute. He is a member of
IEEE and Tau Beta Pi.

Charles F. Butala Presently responsible for the power system design and
architecture of the VAX 9000 Model 400 systems, Charles Butala is a consulting
engineer in the Information Systems Business Unit Power Systems Group. Since
he joined Digital in 1976, he has been responsible for several power system design
projects, including the VAX 8600 system. He is a member of IEEE and Tau Beta Pi,
and holds honorary society membership in Eta Kappa Nu. Charles received
a B.S.E.E. (1968) from Illinois Institute of Technology and an M.S.E.E. from
Northeastern University.

Luke L. Chang After receiving his M.S. in electrical engineering from Virginia
Polytechnic Institute and State University in 1988, Luke Chang joined the Power
Systems Technology and Regulations Group. He is currently a hardware engineer
and is responsible for developing simulation tools to perform high-quality
software design verification tests for the next generation DC-to-DC power con­
verters. Luke's previous responsibilities include transient analysis and testing of
the VAX 9000 memory power distribution system, and power system cost reduc­
tion studies.

Steve n J. Chenetz As a principal engineer in the Information Systems Busi­
ness Unit Power Systems Group, Steven Chenetz is currently working on the
H7390 for a high-power VAX system. He previously was a member of the design
and development teams for the H7380 of the VAX 9000 system, the H7188 envi­
ronmental monitoring module for the VAX 8600 power system, the VAX 8600
clock distribution system, and signal integrity for the VAX 8600 system. Steve
joined Digital upon graduation from Rensselaer Polytechnic Institute in 1981.
He has an M.S.E.E. from Northeastern University (1987).

Derrick J. Chin Derrick Chin is the engineering manager for several Infor­
mation Systems Business Unit power groups and is design engineer of the
VAX 9000 processor's DC power distribution system. His association with Digital
began in 1961, and he has participated in many projects, from the PDP-I and the
DECsystem- IO to the VAX 8650 systems. His responsibilities have ranged from
development of precision displays, circuit design, and core and semiconductor
memories to environmental monitoring modules and power systems. He holds a
B.S.E.E. (1959) from MIT.

Gerald E. Cotte r Principal engineer Gerald Cotter is a member of the Infor­
mation Systems Business Unit Power Systems Group. He was the project engineer
and coarchitect of the VAX 9000 power control system (PCS). Jerry was the PCS
interface to Customer Service and Support Engineering, Manufacturing, and
Service Processor Unit Groups. He participated in development of the PCS and
power system test strategies and the initial design of the T01060 power and envi­
ronmental monitor module. His previous work includes the VAX 8600 system's
power and control subsystem.

Richard). Dischler In his position of systems engineer for the High Perfor­
mance Systems Group, Richard Dischler worked on the VAX 9000 signal integrity
project. He also was a member of the project team for the electrical design of
HDSC and micropackaging for multichip units, planar boards, and connectors for
the VAX 9000 system. Rich held similar responsibilities in the development of the
VAX 8600 system. He joined Digital in 1982, and his previous experience was at
Applied Research Laboratories. He holds a B.S.E.E. (1982) from Pennsylvania
State University.

Paul H. Donnitze r As an undergraduate at Harvard University, Paul
Dormitzer gained experience with the UNIX operating system by working as a
programmer and operator. Upon receiving his B.A. in computer science in 1987,
he joined Digital's High Performance Systems Group. He is currently an engineer
in the High Performance Business Unit CPU Engineering Group. Paul's primary
responsibilities are in the development of error recovery processes for high­
power systems, such as the VAX 9000 system.

Richard L. Doucette Since joining Digital in 1979, Richard Doucette has been
a member of several high-performance systems project teams. As a senior engi­
neer on the VAX 8600 team, he helped introduce the Motorola Macrocell Array I
(MCA 1) technology into Digital and was responsible for its design analysis and
characterization in the system. As engineering manager on the VAX 9000 team,
he was responsible for the incorporation of MCA3 technology, custom chips, and
self-timed RAM components in the system. He holds a B.S.E.E. (1973) from the
University of Maine.

Pete r B. Dunbeck Peter Dunbeck is an engineering manager in the High
Performance Business Unit Technology Research and Engineering Group. He
held various positions on the VAX 9000 program between 1985 and 1990, includ­
ing technology program manager and design engineering manager for the multi­
chip unit. Before joining Digital in 1984 as a manufacturing engineer, Peter
developed energy conservation programs for Thermo Electron. He holds a B.S.
(1977) in mechanical engineering from Virginia Tech and an S.M. (1979) in aero­
nautics and astronautics from MIT.

I

5

Biographies

6

John C. Eck The development of the majority of the physical design CAD tools
used in the VAX 9000 system was managed by John Eck. He is a software engi­
neer manager in the High Performance Systems CAD and Diagnostics Group.
John was employed as the manager of the Automated Design Department of
Badger Company before coming to Digital in 1984. He holds a B.S. (1964) in
physics and an M.S. (1966) in aeronautics and astronautics from MIT, and an
M.B.A. (highest honors, 1984) from Babson College.

David B. Fite Jr. Consultant engineer David Fite was a member of the initial
architecture team for the VAX 9000 system. He developed the architecture for the
branch prediction, instruction fetch, and instruction decode for the VAX 9000.

His previous work includes responsibility for prototype debugging on the VAX

8600 system. Dave joined Digital in 1982. He has one patent and several patent
applications pending. He is a graduate of Worcester Polytechnic Institute with a
B.S. (honors) in electrical engineering.

Tryggve Fossum Tryggve Fossum is the system architect of the VAX 9000 sys­
tem. He received a B.S. (1968) from the University of Oslo and earned his Ph.D.
(1972) from the University of Illinois. Tryggve joined Digital in 1973 and worked
on the design of high-end computers, notably the VAX-11/780 system. As a pro­
ject leader on the VAX 8600 team, he guided the design of the floating point accel­
erator. He has also worked on several research projects, including an early raster
scan graphics workstation, and a workstation with an integrated disk system.

Matthew S. Goldman As a senior engineer on the VAX 9000 project team,
Matthew Goldman designed the scan control chip, which contains the control
logic for the VAX 9000 scan system. He was also the responsible engineer for
all VAX 9000 service processor hardware. Prior to joining Digital's High Perfor­
mance Systems CPU Group in 1986, Matt was a design engineer for Raytheon
Company. He is a member of Tau Beta Pi and Eta Kappa Nu. Matt holds a
B.S. (highest honors, 1983) and an M.S. (1988) in electrical engineering from
Worcester Polytechnic Institute.

John H. Hackenberg In 1968, John Hackenberg came to Digital as a tech­
nician on the KI-IO project, leaving after two years to serve in the armed forces.
He returned to Digital in 1971 and worked on the designs for various high-end
systems, including the KL-10. As a consulting engineer on the VAX 8600 project,
he worked in the area of signal integrity. John was the project leader for the MCA3

gate array used in the VAX 9000 system and is currently developing a bipolar gate
array. He holds a B.S.E.T. (1979) from the University oflowell.

Robert P. Harokopus A cum laude graduate of the University of Michigan,
Robert Harokopus received a B.S. (1986) in computer engineering and is now
studying for an M.S. in computer engineering from Boston University. Bob is a
senior software engineer and joined Digital in 1986. He developed the symptom­
directed diagnosis software used in the VAX 9000 service processor unit. Bob
also developed software for the HIDE CAD tool and SCEPTER automatic test
pattern generator, both of which were used in the VAX 9000 design project. He is
a member of Tau Beta Pi and Eta Kappa Nu.

Ricky C. Hetherington As a principal engineer with the High Performance
Systems Group, Ricky Hetherington is currently the project leader of the transla­
tion buffer and cache design of the VAX 9000 system. He holds one patent and has
several patents pending on the various design features of the VAX 9000 M-box.
Rick joined Digital in 1982 as a senior engineer in Digital 's Large Computer
Group. He has a B.S. from Pennsylvania State University.

Donald F. Hooper Don Hooper is a consulting engineer in both logic design
and CAD disciplines. He initiated and led the development of the Synthesis of
Integral Design program, Digital's first synthesis tool. Before coming to Digital
in 1979, he was architect for the Itel 7031 mainframe and cache designer for the
Itel Advanced System 4. He is a graduate of Don Bosco Technical Institute. Don
holds patents in speech recognition circuits, the tag and queuing system for
Digital's first pipelined CPU, and the control storage pipe for the VAX 8600
system. In addition, he has several patents pending in logic synthesis.

Dale H. Leuthold A member of the technical staff of the Integral Circuit
Design Group, Dale Leuthold led the design team for the VAX 9000 vector regis­
ter chip. He is currently working on random-access memory development for
high-speed mainframes. Dale was responsible for bipolar integrated circuit
design at Signetics Corporation and Trilogy Systems Corporation before coming
to Digital in 1986. He holds one patent and has one patent pending. Dale received
a B.S. from Oregon State University.

Paul A. Leveille In his nearly ten-year relationship with Digital, Paul Leveille
has specialized in the development of high-power systems, particularly the
VAX 8600 and VAX 9000 systems. As a principal engineer in the High Perfor­
mance Business Unit, he helped define the VAX 9000 service processor sub­
system and was responsible for developing the scan control firmware and
portions of the service processor application software. Paul's previous responsi­
bilities include console diagnostics, firmware, and application software.

I

7

Biographies

8

Dennis M. Litwinetz The project leader for the design of four standard cell
and custom chips for the VAX 9000, Dennis Litwinetz is a consulting engineer
in the High Performance Business Unit. He has previously participated in the
design of two standard cell chip designs for the VAX 8600 system. He joined
Digital in 1967 as a technician for the DECsystem- IO Engineering Group. Dennis
has a patent pending for the VAX 9000 self-timed register file design. He received
a B.S.E.E.T. from Lowell Technological Institute and an M.S.C.E. from the
University of Lowell.

Brian T. Lynch Brian Lynch is a principal hardware engineer in the Informa­
tion Systems Business Unit Power Systems Group. In this position, he designed
and developed the H7382 bias power supply used in the VAX 9000 system. He is
presently working on power solutions for future high-performance systems.
Prior to joining Digital in 1972, Brian was responsible for power converter and
analog module design at Intronics. He has a B.S.E.E. (1978) from Worcester
Polytechnic Institute.

Dwight Manley As a principal engineer on the VAX 9000 project, Dwight
Manley was responsible for all of the performance modeling of the VAX 9000
CPU design. His present responsibilities include writing code for a Digital
Extended Math Library product. Dwight joined Digital in 1979 as a member of
the Systems Performance Analysis Group. Prior to that time, he worked as a
systems programmer for the Bell Telephone System. Dwight has a B.S. (1971) in
mathematics from the University of Massachusetts and an M.S. (1976) from
Northeastern University.

James B. McElroy Jim McElroy is the multichip unit operations manager. His
work on the VAX 9000 system began with interconnect and packaging, followed
by the management of the physical technology efforts. He then became the
manufacturing systems program manager for the introduction of the VAX 9000
system into manufacturing. Before joining Digital in 1976, Jim worked at RCA on
packaging and interconnect design for military computer systems. He received a
B.S.M.E. and an M.S.M.E. from Northeastern University.

Francis X. McKeen The project leader for the V-box unit of the VAX 9000
system was Francis McKeen. Prior to working on the VAX 9000 system, he wrote
microcode for the VAX 8600 and VAX 8650 systems. Frank is a principal engineer
and has been with Digital for seven years. He holds one patent and has several
patent applications pending. Frank received a B.S.E.E. from Northeastern
University and is a member of IEEE.

John E. Murray The coauthor of Microarcbitecture of the VAX 9()()(), John
Murray is a consulting engineer in the High Performance Business Unit. He
served as project leader of the design team for the I-box unit of the VAX 9000. He
joined Digital in 1982. John's previous employer was ICL in the United Kingdom,
where he was a design engineer. He received a B.Sc. (1969) from Warwick
University He holds one patent and has several patents pending.

lbiagarajan Natarajan Thiagarajan Natarajan is manager of a DC-to-DC
converter group in the Information Systems Business Unit. His group develops
a high-density and highly reliable DC-to-DC converter, associated hybrids, semi­
conductor components, and the distribution system for the next generation,
high-performance VAX systems. Raj's prior experience includes positions at
General Electric, Bell Laboratories, and Perkin Elmer Corporation. He has a
Ph.D. in electrical engineering, has been awarded one patent, and has authored
approximately seventeen technical papers.

Bunal Patel Principal engineer Bimal Patel joined Digital in 1986 as a senior
engineer. His primary responsibility since that time was the design of the V-box
unit of the VAX 9000 system. Bimal was previously employed as a senior engineer
in the CPU Design Group of Prime Computer, Inc. He has an M.S. in computer
engineering from Boston University.

William J . Rogers Jr. William Rogers is an engineer in the VAX 9000 CPU
Group, where he developed the design of the control logic of the V-box unit for
the VAX 9000. Prior to working on this high-performance system, Bill was a
member of the SASE Support Engineering Group. He joined Digital in 1986 and is
a member of IEEE and Tau Beta Pi. He received a B.S. (1986) in electrical engineer­
ing from Michigan Technological University.

Leonard J. Salafia The development of the AC front end for the VAX 9000
system was the responsibility of Leonard Salafia, who is the manager of the
AC Power Interface Development Group. His previous work at Digital includes
supervising the development of storage system power products for the Central
Power Supply Engineering Group and for the Storage Systems Power Group. Len
worked for General Electric prior to coming to Digital in 1980. He holds a
B.S.E.E. (magna cum laude, 1969) from the University of Hartford and an
M.S.E.E. (1976) from Rensselaer Polytechnic Institute.

9

Biographies

10

Ronald M. Salett As a consulting engineer in the High Performance Systems
Group, Ron Salett is currently leading the development of a new high-perfor­
mance CPU . As a project leader for the VAX 9000 system, he was responsible
for the architecture, design, and microcode of the execution unit. Since joining
Digital in 1977, Ron has also worked as an architect and project leader on
low-end integrated PDP-11 systems. He holds two patents. Ron holds a B.S.E.E.

(1975) from Carnegie-Mellon University and an M.S.E.E. (1979) from Worcester
Polytechnic Institute.

Frank J. Swiatowiec In 1988, Frank Swiatowiec became HDSC operations
manager, with the primary responsibility to transition Digital's new HDSC tech­
nology to volume production. He was one of the engineering managers responsi­
ble for the definition and development of the HDSC. Frank had over 15 years of
experience in the semiconductor industry when he joined Digital in 1986. While
with Motorola Corporation, he was awarded four patents on ECL circuit designs.
Frank holds a B.S.E.E. from the University of Illinois and an M.S .E.E. from
Arizona State University.

Gregory L. Yoder Gregory Yoder is a senior hardware engineer with the High
Performance Systems CPU Engineering Group. His primary responsibilities on
the VAX 9000 system included the design and testing of the V-box unit, and pro­
totype system debug, for which he received an excellence award. He also
assisted Manufacturing in producing and installing external field test VAX 9000
machines. Greg joined Digital in 1988, after participating in a one-year co-op
session at IBM. He holds a B.S.E.E. from Pennsylvania State University.

I Foreword

Carl S. Gibson
VAX 9000 Program Manager

This issue of the Digital Technical Journal is a
collection of papers describing the technologies,
designs, and design methods employed in Digital's
VAX 9000 mainframe/supercomputer, which was
introduced in the fall of 1989.

The VAX 9000 system embodies hundreds of
innovations in most areas of design, manufacture,
and service. In selecting papers for this journal, we
have attempted to reflect the immense scope and
variety of this program, which ranks among the
largest and most complex in the history of our
industry.

ln the summer of 1983, a small group of us set
about to determine what it would take for Digital to
develop a true mainframe. We felt that a mainframe
VAX would be a powerful addition to Digital's
product family. The products that we have created
took form, changed, and evolved over the months
and years as technical challenges yielded to inno­
vations, rigor, and discipline. An undertaking on
this scale necessarily undergoes numerous transi­
tions as new data emerges, assumptions are tested,
and alternatives are eliminated. Technical break­
throughs built upon one another incrementally
as we pressed the design closer to our goals. The
primary objectives of very high system-level perfor­
mance and world-class reliability drove the design
process and the changes that emerged.

The planar logic packaging is illustrative of how
changes and improvements built upon one another.
The reliability benefits of minimal connections
precipitated a logic packaging design change from
stacked modules in dual backplanes to the planar
array. This change-an optimization for reliabil­
ity- in the end actually helped performance and
maintainability. Ultimately, though not envisioned
at the time, the adoption of the planar array had

a significant impact in that this structure enabled
impingement air cooling and elimination of the
bulky liquid system that was part of the initial
design. The final design of the VAX 9000 system
reflects, in myriad forms, this continual process of
successive refinement toward shared goals.

Design changes notwithstanding, our primary
strategy remained constant. The reader will note
that, while we innovated aggressively in CPU struc­
ture, implementation technologies, and design
methodologies, we preserved full compatibility
with the VAX, Digital storage, and Digital network­
ing and cluster architectures. We wanted Digital
and our customers to be able to enjoy very high per­
formance levels in a product that was compatible
with prior investments. Therefore, we drew as
much as possible from existing products and
designs from many Digital development groups.
As a result, the VAX 9000 system incorporates
Digital's standard XMI bus and popular Bl, Cl, and
NI system-level interconnects. The system runs VMS
and ULTRIX operating systems, VAX layered prod­
ucts, and all of our customers' and independent
software vendors' tools and applications. This
capability proved especially rewarding when in the
final months of the project, our own VAX 9000
prototypes, running our unmodified CAD tools,
accelerated the processing of the inevitable last­
minute changes.

High-performance computation fundamentally
requires two key ingredients: short machine cycle
times and maximum computational work per­
formed in each cycle. The semiconductor and
multichip unit papers describe how we minimized
the VAX 9000 cycle time by use of fast circuits, high­
density packaging, and high-speed interconnects.
These papers are complemented by architecture
descriptions through which the authors present the
innovative features that minimize the number of
cycles required to execute the VAX instruction set.
These papers present the sophisticated pipelining
techniques and vector processing capabilities incor­
porated in the VAX 9000 system.

Equal in importance to the computational capa­
bilities of the product are the service and control
features of the system. Papers covering the
VAX 9000 service processor and the system's fault
management capabilities provide the reader with
insights into these important aspects of the
product.

The development strategy for the VAX 9000
system was explicitly formulated to deal with enor­
mous technical and project complexity. Complex-

II

ity itself was the single most formidable challenge
facing the team. Apparent from the outset, was the
fact that such an ambitious product required the
integration of a very large number of discrete
design objects; each had to be conceived, created,
documented, tested, and ultimately integrated and
verified as part of the whole. The reader will see
the diversity of these efforts and recognize the
challenge of unifying a design from this breadth of
technical advancement.

Central to our strategy was the creation of a
unified design tool suite operating in a seamless,
homogeneous VMS computing environment. The
first few years of the project were devoted to con­
struction of this environment in parallel with top­
level design formulation. The recognition that
rigorous design methods were crucial to our success
was possibly one of the team's most powerful fun­
damental notions. Papers included in this journal
illustrate some of the legacy of powerful CAD tools
and structured design approaches created by the
VAX 9000 team.

As we have seen for the product, the methodol­
ogies were not immune to change as the project
progressed. Working with rapidly evolving
technologies, design process experts continually

12

adapted to evolving user needs. Concurrent design
permeated every aspect of the project and domi­
nated the way people worked together, with many
aspects of the technology and product design
converging and adapting as we learned from our
own processes. When the manufacturing process
needed some help, designs could be reprocessed
with the new rules and rereleased to keep things
moving ahead.

And, move ahead they did! Today, the VAX 9000
system is installed at many customer sites where the
systems are exceeding our original goals in both
performance and dependability. It has been
accepted by experienced, high-end computer users
as a bona fide mainframe-a mainframe with the
unique advantage of full integration with Digital's
rich distributed processing architecture.

The VAX 9000 system was created by engineers
working in many disciplines and collaborating
worldwide to invent hardware, software, and pro­
cesses that have significantly advanced the state
of the art of computer design, manufacture, and
service. The papers in this journal describe but a
few representative examples of the creativity and
determination of this large and dedicated team of
professionals.

David B. Fite Jr.
Tryggve Fossum
Dwight Manley

Design Strategy for the
VAX 9000 System

The VAX 9000 system is Digitals newest high-end processor in the VAX family. This
paper describes the design strategy used to achieve high performance and shows how
RISC concepts were applied to a CJSC architecture. New opportunities for parallelism
in VAX program execution were found by breaking the VAX instructions into simple
tasks which could be pipelined efficiently. By using independent, dedicated pipeline
stages, execution rates approach one instruction per cycle.

The task confronting the VAX 9000 design team
was to develop a VAX system that outperformed
any previous VAX system and that was competi­
tive with similarly sized processors from other
vendors. Although the VAX system is based on one
of the world's most popular computer architec­
tures, the VAX architecture's instruction complexi­
ties preclude efficient macroinstruction pipelining,
such as that found in reduced instruction set com­
puters (RISC). RISC processors can be built with low
gate counts to handle simple, fixed-length instruc­
tions sets, load/store architectures, and delayed
branching.

To compete with machines based on such archi­
tectures and still remain compatible with the VAX
architecture, the design team chose to implement
the VAX architecture on the VAX 9000 system by
applying techniques that were similar to those used
in RISC processors. We redesigned the VAX instruc­
tions into small, simple tasks, and designed dedi­
cated hardware that was optimized for each task.
The result is a network of specialized processors,
each of which has its own data paths and state
machines, that operate in parallel and execute
VAX instructions quickly. The most common, sim­
ple instructions are executed at the rate of one
per cycle.

System Overview
The VAX 9000 system is a tightly coupled multipro­
cessor, which runs the symmetric multiprocessing
(SMP) version of the VMS operating system and can
have up to four processors sharing a central main
memory. Figure I shows a simplified block diagram
of the system. The major system components
include four CPUs, two memory controllers, two
I/0 controllers, and a service processor, which is

Digital Tecbnicaljounial Vol. 2 No. 4 Fall 1990

connected through the system control unit (SCU).
Through a cross-bar switch, the scu provides high­
speed, simultaneous transfers among the central
processors, I/0 devices, and memory banks. System
cache consistency is maintained with duplicate tag
directories located in the scu. As references are
made to memory, the addresses are checked against
the tag directories. If a cache hit occurs, the cache in
question is requested to invalidate or write back to
main memory. The scu supplies a bandwidth that
allows near linear performance improvement as
new processors are added to the system. The mem­
ory is interleaved on cache block boundaries to
provide bandwidth for multiple CPUs and vector
processors.

Four XMI backplane buses provide high band­
width paths to I/0 devices. Although the XMI is used
as the system bus in VAX 6000 systems, the XMI is
used exclusively for 1/0 in the VAX 9000 system.
Several new adapters were designed to increase
throughput and reduce latency for I/0 transactions.
These adapters include connections to the CI, the
NI, the BI, and local disk controllers. Although high­
performance 1/0 features, such as disk striping,
solid-state disk, and load balancing have been added
to all VAX systems, the VAX 9000 system benefits the
most from these features because it has the I/0 back­
plane bandwidth to take advantage of them. A block
diagram of a single VAX 9000 CPU connected to the
scu and the major data paths between the two units
is shown in Figure 2. 1

Technology Contributions to
Improved Performance
The central processor cycle time has been reduced
to 16 nanoseconds (ns) mainly by the use of fast
emitter-coupled logic (ECL) semiconductors and

13

VAX 9000 Series

XMI

XMI

XJA

DODD
DODD~~
DODD
DODD
VAX 9000 CPUNECTOR

XMI

XMI

XJA

VAX9000 CPU

Figure 1 VAX 9000 System Diagram

fast self-timed random-access memories (RAMs) for
registers and caches, and by decreasing the inter­
connect wire length between components.

Motorola's Macrocell Array III (MCA3) technology
provided both macrocell array and standard cell
capabilities. The entire system is composed of 77
unique MCA3 options and 5 custom chip types. A
single MCA3 contains 838 cells (414 major, 224
input, and 200 output), which yield 10,000 equiva­
lent gates, and 256 J/0 pins. Maximum power
dissipation is 30.0 watts, with unloaded gate prop­
agation delays of 120 picoseconds (ps). Perfor­
mance-critical operations, such as multiplication,
division, integer and vector register accesses, and
system clocking, were further aided by employing
custom chips.2

Caches for instruction stream and memory
data, scratch pad registers, and control stores all
require high-speed local storage. Two versions of
a proprietary self-timed RAM were designed for
these specific applications. A 4 kilobit (Kb) self­
timed RAM, at 5.5 ns, and a I6Kb self-timed RAM,
at 11.5 ns, provide internal input and output
latches and write pulse generation circuitry. Multi­
ple access modes allow highly pipelined operations
to take advantage of shorter access times.

Each new semiconductor generation reduces
cycle time, which increases the relative importance
of interconnect delay. High density signal carriers

14

(HDSC), tape automated bonding, and a single
planar module all reduce the interconnect delay
between active components in the VAX 9000
system. Strict impedance control is maintained
throughout the system. Clock skew is minimized by
employing fixed-length , differential transmission
and dedicated routing layers.

CAD Contributions to Improved
Performance
Hundreds of computer-aided design (CAD) tools
were used during the design and construction of
the VAX 9000 system. However, none of these tools
was more important in improving performance
than the physical layout and timing analysis tools.
Once the design team had placed large functional
sections, placement tools refined individual macro­
cell selection and pin placements. Over 33,000 pins
were selected to minimize overall wire length and
maximize critical interconnections.

Routing presented several challenges. All levels of
interconnect included critical signals, differential
pairs, and fixed-length requirements. The HDSC
contains large cutouts that enable die attachment
and allow cooling through the back panel. These
large routing restrictions and special routing
characteristics could not be handled by existing
CAD tools. Therefore, we developed Chameleon,

Vol. 2 No. 4 Fall 1990 Dtgttal Tecbnica[Journal

a general-purpose router. With Chameleon, cross­
talk is minimized, and crossing counts are main­
tained and used to increase signal integrity, which
improves performance.

To model the timing relationships within the
system, we used sophisticated CAD tools to gener­
ate an accurate representation of the VAX 9000
system. Detailed timing models of each macrocell
device were created using the SPICE simulator
program.3 Chameleon and signal integrity tools
provided delay values for each signal within the
MCA3, HDSC, and planar modules. CPUDLY , using
the AUTODLY timing tool, tied the various pieces
together and gave the design engineers a powerful
view of the timing domain.

Instruction Processing
VAX systems exist in a variety of environments and
run thousands of applications. With any new, high­
performance VAX system, it is important to increase
the speed of all applications and to continue to
provide general-purpose computer power. Given
the size of the installed VAX base and the nature
of the applications, performance gains should not
require code modifications. Digital has gathered
substantial information on how VAX processors are

DATA
SWITCH

scu

--,
' '
' ' : E-BOX

INSTRUCTION :
BUFFER

Design Strategy for the VAX 9000 System

used. This data formed the basis for design deci­
sions and trade-offs we made in the development
of the VAX 9000 system.

Simple Instructions
In many VAX programs, only a few opcodes are
responsible for a large percentage of the instruc­
tions issued. Most of these opcodes are simple and
limited to a single arithmetic or logical operation.
Often, one of the operands is in memory. A typical
example is

ADDL3 (RO), R1 , R2

Because of the high frequency of these instructions,
speeding up these instructions is a top priority.
Most of the high performance achieved on RISC pro­
cessors is derived because these instructions are
pipelined. In a complex instruction set computer
(CISC), such as a VAX system, pipelining macro­
instructions is more complex. Therefore, previous
VAX implementations have pipelined operations at
the microinstruction level:'

Processing simple instructions in a VAX system
involves obtaining and decoding the instruction,
fetching source operands, performing an opera­
tion, and storing the result. The most important

INTEGER
UNIT

FLOATING
POINT UNIT

MULTIPLY
UNIT

DIVIDE
UNIT

RETIRE
UNIT

--------- ·----- --- -- ------- -- ------ ---- -

V-BOX

VECTOR
MULTIPLY
UNIT

•-------------------------, ...--- - - -,
WRITE
QUEUE
{WRTQ)

M-BOX :

Figure 2 VAX 9000 CPU/Vector Block Diagram

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990 15

VAX 9000 Series

difference between the way a VAX processor and a
RISC processor process simple instructions is how
the variable length instructions and memory speci­
fiers are handled. VAX operands may reside in
general-purpose registers (similar to RISC
operands), in memory, or may be embedded in the
instruction stream. The VAX architecture provides
a rich selection of memory operand specifiers,
which often require computations to create the
address. In a RISC processor, only load and store
instructions access main memory.

The instruction preprocessing stage (I-box)
decodes instructions and fetches operands in the
VAX 9000 system. In the execution stage (E-box),
simple VAX instructions resemble RISC instructions.
A simple opcode describes the operation, a single
register file provides source operands, and a desti­
nation queue supplies a result descriptor. The I-box
operates in parallel as with the E-box, which func­
tions as a RISC processor by executing one instruc­
tion each cycle. Execution occurs without the need
to identify the operand's source or addressing com­
plexity. Figure 3 illustrates how simple instructions
flow through the VAX 9000 pipeline. Although all
VAX implementations perform these tasks, the VAX

9000 implementation uses separate, independent
hardware units to overlap the work because con­
current operation is a prerequisite for single-cycle
instruction execution.

Instruction Cache
We used an instruction cache in the I-box to
decrease instruction stream fetch latency and
reduce the bandwidth requirements on the main
cache. Choosing a virtually addressed cache further
reduced latency and simplified the design by
removing the need for duplicate translation buffers.
The virtual instruction cache is an 8 kilobyte (KB)

cache with a quadword line size, 32-byte blocks,
and a single-cycle access time. Line valid bits are
maintained to allow variable size fills from the main
data cache. Because the average VAX code block size
is 16 to 20 bytes, the block size of the virtual instruc­
tion cache provides a good balance between the
instruction decode stage and the main cache.

Table 1 Decode Cycles Required

Instruction

MULF3 R3,R5,R7

ADDL3 S"#48,R4,@(R2) + [R3)

AOBLEQ S"#63,R 10, 10$

16

Context switches, translation buffer changes, and
instruction stream modifications all require that the
virtual instruction cache be invalidated. Two com­
plete sets of block valid bits reduce cache sweeps to
a single cycle, if consecutive sweeps do not occur
within 256 cycles of each other. Block size and fre­
quent sweeping reduce the virtual instruction
cache's hit rate to approximately% percent, but by
filling through the main cache, the miss penalty is
minimized.

Instruction Decode
Because the majority of instructions executed
require only a single cycle to execute, the instruc­
tion decade's task of keeping ahead of the E-box is
not simple. Most instructions must be decoded in a
single cycle to keep the VAX 9000 system's ticks­
per-instruction (tpi) low.

For example, VAX instructions may contain up to
six operand specifiers. With 59 different specifier
addressing modes, instruction lengths can vary
from a single byte to more than 50 bytes. However,
the overall average VAX instruction length is 3.8
bytes, and 98 percent of instructions require only
8 or less bytes.5 Furthermore, % percent of VAX

instructions executed use only 3 or less specifiers.
In each machine cycle, a 9-byte instruction buffer

is presented to the decode stage (XBAR). The
instruction buffer contains instruction stream data
prefetched from the virtual instruction cache.
Instruction decoding consists of generating an ini­
tial microaddress, detennining the number of
specifiers for the instruction, including each speci­
fier access mode and data type, and forwarding the
appropriate specifier data to the operand process­
ing stages. The XBAR can handle up to three specifi­
ers. Instructions that contain more than three
specifiers require additional decode cycles. Since
general-purpose register specifiers occur approxi­
mately 41 percent of the time, three register specifi­
ers can be processed concurrently.6 Short literals
comprise nearly 16 percent of the specifiers. How­
ever, the XBAR can only decode a single short literal
per cycle. The remaining specifiers must all be
processed by the operand processing unit, which

VAX-11/780 VAX 8650 VAX 9000

3 2
5 4 1

3 3

Vol. 2 No. 4 Fall 1990 Digital TecbnicalJournal

Design Strategy for the VAX 9()()() System

OPERATION CYCLE

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PC
GENERATION

VlCACCESS

INSTRUCTION
DECODE

SPECIFIER
PROCESSING

TRANSLATE
ADDRESS

DATA CACHE
ACCESS

MULTIPLY UNIT
EXECUTION

FLOATING UNIT
EXECUTION

INTEGER UNIT
EXECUTION

RETIRE

REGISTER
WRITE

DATA CACHE
ACCESS

ADDF3

SOBGEO R6,LOOP •
Figure 3 The VAX 9000 Instruction Pipeline

decodes a single complex specifier per cycle. Unlike
preceding processors, the XBAR handles multiple
specifiers in any order. Table 1 shows the number of
decode cycles required for several VAX processors.

Operand Pre/etching
Because most simple instructions are decoded and
executed in a single cycle by various pipeline stages,
instruction operands also must be handled in a
single cycle. Multiple, specialized operand units
increase operand processing throughput. From one
to three register operands may be forwarded to the
E-box by one register unit per cycle. A dedicated
shon literal unit expands all VAX data formats. The
operand processing unit performs complex address
calculations and requests memory operand data
from the cache unit (M-box). Both the operand pro­
cessing and shon literal units can perform multiple
cycle operations.

Dtgttal Tecbntcal]ournal Vol. 2 No. 4 Fall 1990

Load/Store Architecture
Load/store architectures separate memory accesses
from computation. Loads can be scheduled to place
arriving memory data at a functional unit just as an
operation begins. To achieve this effect with VAX

instructions, memory specifiers are treated as load/
store instructions. VAX memory specifiers describe
the effective addresses of memory operands. VAX

memory specifiers do not contain the source and
destination registers that are specified in RISC load/
store instructions. Rather, the VAX 9000 system
assigns temporary register file locations to buffer
memory data. By processing specifiers early in the
pipeline, data can be scheduled to arrive at the
appropriate time.

Memory specifiers act as independent instruc­
tions executed in the operand processing unit. This
unit creates the operand's effective address and for­
wards it to the M-box. For loads, the actual memory

17

VAX 9000 Series

data is returned to the E-box register file. The trans­
lated physical address is saved in a queue of write
addresses for store/destination specifiers. When
execution results arrive from the E-box, the previ­
ously saved address is used to write the data into
the cache.

Conflict Detection and Resolution
Macropipelining in the VAX 9000 system relies on
autonomous units operating in parallel. Each inde­
pendent unit is optimized for an individual task.
However, macropipelining does require that mech­
anisms be added to resolve data dependencies
among instruction processing units. Data conflicts
occur when an instruction's results are required by
an earlier pipeline stage. An addressing data conflict
appears in the following example:

MOVL RO ,R1
MOVE TAELECR1> , R2

Any dedicated address calculating hardware must
wait for the MOVL instruction results before per­
forming the MOVB instruction's effective address
computation. A memory conflict is another form
of data dependency.

In the following example,

MOVE RO, CR 1)

MOVE CR2) ,R3

a prefetch unit could read the second instruction's
source operand while the E-box writes the first
instruction's results, if the values of registers RI and
R2 are different. However, when the registers con­
tain identical values, the read must be delayed until
the write occurs. The VAX 9000 system uses several
different mechanisms to detect and resolve data
dependencies. Passing pointers, scoreboard masks
within the I-box, the write queue in the M-box, and
architectural restrictions are all used to handle vari­
ous conflicts.

Register Conflicts The simplest hardware mecha­
nism employed in the VAX 9000 system is the use of
pointers to reference data. The operand processing
unit oversees a 16-entry source queue, an 8-entry
destination queue, and a 16-entry source list. A sin­
gle pointer is inserted into the source queue for
each source specifier. The pointer represents either
a register number, in the case of general-purpose
register operands, or a tag that indicates an entry in
the source list where the operand data is located. A
pointer is added to the destination queue for each
destination. This pointer represents a register num-

18

ber or a flag which indicates that the result should
be written to memory.

The instruction issue unit removes source
pointers from the source queue. These pointers are
used to address either the general-purpose registers
or source list for the actual source data. Destination
pointers from the destination queue determine
where results should be written. Register conflicts
can be detected by comparing the source pointers
needed to issue an instruction with all issued desti­
nation pointers in the destination queue. For exam­
ple, in Figure 4, the MULL3 's RO source queue entry
would match the ADDL3 's RO destination queue
entry. A write to the general-purpose registers by
the E-box removes the destination queue entry, and
the instruction issue can resume.

SRCQ SLIST DSTQ

R1 rlO DATA RO

R2 MEM

#0 I-

RO

ADDL3 R1 ,R2,RO
MULL3 (R3),RO,(R4)

Figure 4 Register Conflict Detection

Addressing Conflicts To resolve addressing data
conflicts, the I-box maintains a read/write register
scoreboard. Two register masks are created for
each instruction decoded. The first register mask
denotes the general-purpose registers that the E-box
will read for the instruction, and the second register
mask specifies the general-purpose register writes.
Each bit in these register masks refers to a single
VAX general-purpose register. Specifiers that are
being processed in the operand processing unit are
checked against up to six previous instruction
masks. From the first example above, the specifier
(TABLE(Rl)) requires that the operand processing
unit read R 1. If the R l bit is asserted in any preced­
ing instruction's scoreboard write masks, this effec­
tive address calculation must be deferred.

The VAX architecture presents a unique address­
ing conflict problem because some specifiers,
such as -(Rn) and (Rn)+, modify general-purpose
registers.

In the following example,

SUEL2 RO ,R1
ADDL2 (RO>+,R2

Vol. 2 No. 4 Fall 1990 Dtgttal Tecbntcaljournal

the (RO)+ specifier modifies the contents of RO.
Therefore, the operand processing unit cannot
update the general-purpose register without affect­
ing the prior instruction. The read masks are used
to detect this type of conflict. All specifiers that
modify general-purpose registers must check the
scoreboard read masks before proceeding with
the instruction. Thus, when a conflict occurs, the
general-purpose register modification stalls.

When an instruction completes execution, the
instruction's read/write mask is removed from the
scoreboard. In all addressing conflicts, specifier
processing continues once the blocking mask is
removed.

Memory Conflicts The write queue is used to
resolve memory conflicts. Physical addresses,
received from the translation buffer, are inserted
into an eight-entry FIFO. These addresses are later
paired with the proper write data from the E-box
and written into the M-box. To avoid prefetching
stale data, all memory addresses for source memory
operands are translated and compared with the
addresses in the write queue. When no address con­
flict occurs, the data from memory is forwarded
to the source list. Operand requests that conflict
with a pending write address are stalled until the
conflict is resolved. The conflict is resolved when
the appropriate write data is received. The conflict­
ing address is then removed from the write queue.

Miscellaneous Conflicts The VAX architecture
includes instructions with operands that either are
not known when the instruction is decoded (e.g. ,
INSQUE, MTPR), or modify large portions of mem­
ory (e.g., MOVC5). To avoid conflicts from these
instructions, the I-box suspends processing mem­
ory specifiers until the instruction execution is
completed. Self-modifying code presents another
form of conflict, which is solved by an REI instruc­
tion that notifies the hardware of this condition.

Branch Instructions
Branch instructions have a substantial influence on
the overall performance of a VAX processor. On
average, a VAX processor executes 3.9 instructions,
including the branch, before a branch starts a new
instruction sequence. Instructions that modify the
program counter represent nearly 40 percent of the
total instructions executed. The VAX 9000 system
uses a 1024-entry branch cache and a two-tiered
prediction scheme to increase the average code
block size and reduce the branch-taken latency.

Digital TecbnicalJournal lk>I. 2 No. 4 Fa/11990

Design Strategy for the VAX 9000 System

Unlike its predecessors, the VAX 9000 system com­
mits all its resources to a single branch path. The
prediction hardware selects the path of execution
to resolve memory conflicts for those branch
instructions that are decoded before results are
available. This path selection is based on prior his­
tory, if the branch hits in the branch cache. If the
branch does not hit in the branch cache, the path
is predicted staticly, based on the instruction's
opcode. When the branch executes, the prediction
is compared to the actual results. The pipeline is
flushed back to the correct code path if the branch
prediction was incorrect.

The entries in the branch cache store the branch
results of the previous execution of the branch and
the target address, if the branch was taken. Because
the branch cache is a one-way associative cache that
can store only 1024 entries, the results have an aver­
age hit rate of approximately 80 percent. However,
correct predictions occur 85 percent of the time
from the cache, as opposed to an average hit rate of
56 percent, when the predictions are based solely
on opcode. Loop branches are always predicted
as taken, which increases the overall correct pre­
diction rate to close to 89 percent. By caching
branch targets, the calculation may be avoided and
a latency factor of one-cycle branch taken is
achieved. The branch cache can store a sufficient
amount of branch context to eliminate the need
to sweep the cache.

The I-box can process instructions with up to
two conditional branches outstanding. Uncondi­
tional branches (e.g. , BSBW, BRB) are processed as
ordinary instructions by simply changing the
instruction flow. To reduce the penalty for a bad
prediction, which results in a four-cycle penalty,
operand specifiers that modify general-purpose
registers are not processed under a branch predic­
tion and cause the operand processing unit to stall.
Also, branch instruction execution is overlapped
with the previous instruction to provide the actual
branch results earlier.

Compute-intensive Instructions
Compute-intensive instructions require multiple
execution stage cycles. Common examples of these
instructions are multiplication, division, and float­
ing point operations. All VAX implementations
employ dedicated logic for compute-intensive
instructions that occur frequently. Less frequently
used instructions depend on microcode-controlled
arithmetic and logical data paths. The VAX 9000
system contains four independent execution pro-

19

VAX 9000 Series

cessors. The integer, floating point, multiply, and
divide units execute the VAX instruction set. The
I-box preprocesses instructions, which allows
instruction execution to overlap in these units. In
each cycle, a new instruction can be initiated in
the appropriate unit prior to the completion of
previous instructions. The floating point and multi­
ply units are pipelined and can accept one instruc­
tion each cycle. The integer unit is pipelined for
simple instructions. However, complex instructions
must use microcode control to perform multicycle
operations.

Pipelined instructions are issued in order and
proceed through the data path without further
microcode control. Upon completion, instruction
results are retired in the same instruction order. The
instructions must be processed in order because the
result of one operation is often needed in a sub­
sequent operation . Therefore, the pipelines must be
short and contain data bypasses to make results
available quickly. The multiply, float, and divide
units' internal data paths are 64-bits wide. To under­
stand how the pipelined and overlapped operations
apply to the following operation,

y(i) = y(i) + C(i)

consider the program:

LOOP : MULG3 R6,CRO>+,R4
MULG3 R6,CRO)+,R2
ADDG2 R4,CR1>+
ADDG2 R2, CR1 >+

The two MULG 3/ ADDG 2 instruction pairs prevent
a pipeline stall that could occur because of data
dependencies. The instructions further reduce the
loop overhead, which is already fairly small
because the loop control instruction was predicted
correctly. Instructions and source operands are
prefetched. The multiply and add units accept the
instructions as they become available. The memory
references are made as the operand processing unit
processes memory specifiers. The majority of speci­
fier processing is performed independently of the
instruction execution.

Memory-intensive Instrnctions
Some VAX instruction classes are primarily memory
operations that require only minor computation.
Typical examples of these instructions are char­
acter string, decimal, and privileged operating sys­
tem. Pipelined execution offers little advantage to
memory-intensive instructions because the number
of memory references is not reduced as the number
of cycles required for execution is reduced by new

20

implementations. Because memory bandwidth is
critical, the VAX 9000 system provides features to
benefit these instructions.

For example, the virtual instruction cache ser­
vices most instruction stream references, which
frees the main cache to service prefetched operand
references. Both the virtual instruction cache and
the main cache have 64-bit data paths, important
for character string operations and extended pre­
cision arithmetic. The caches are fully pipelined
and allow one read per cycle. The main cache block
size is 64 bytes, exploiting spatial locality. When
cache references do miss, data is wrapped and the
most critical data is returned first. A write back,
write allocation algorithm further reduces main
memory and cache bandwidth requirements and
reduces latency.

The VAX system is a virtual memory architecture.
Virtual addresses need to be translated to physical
addresses through page tables in memory. A trans­
lation buffer caches the most recently used page
tables entries. VAX systems, such as the VAX-11/780
system, process translation buffer misses in micro­
code, which can be time-consuming. However, the
VAX 9000 system uses a memory management pro­
cessor to process translation buffer misses as part
of instruction preprocessing. This operation is per­
formed early in the pipeline and is faster than
microcode.

The CALL and RETURN instructions push and pop
registers on the stack, and these instructions can
be memory-bound. The VAX 9000 system contains
both the control logic and the bandwidth to process
these registers at a rate of one per cycle.

Unconventional Instrnctions
Special, dedicated hardware was added to the
VAX 9000 system to process those VAX instructions
that did not fit into the categories listed above. The
additional hardware operates within the pipeline
architecture and cycle time, and the cost of adding
the hardware was minimal.

In the following example,

MOVL RO,-CSP> <----------> PUSHL RO

the MOVL and PUSHL instructions perform identical
operations, but the PUSHL instruction does not
explicitly specify a destination address. On pre­
vious VAX systems, the instruction prefetching
would stall until the current instruction execution
was completed. However, the VAX 9000 modi­
fies such instructions during the decode stage by
adding the implied specifiers. The benefits of this

Vol. 2 No. 4 Fa// 1990 Digital Tecbnlcaljounial

enhancement are more evident in the following
instructions.

BSBW 10$ <----------> MOVAL Return_PC,-CSP)
RSB <----------> JMP @CSP>+

Similarly, instructions such as LOCC and CMPC3

implicitly reference the general-purpose registers.
The instruction decode stage creates a read/write
mask with these references, which allows instruc­
tion prefetching to continue.

To aid handling instructions like PUSHR and
CALL, the integer execution unit contains special
bit mask manipulation hardware, which opti­
mizes general-purpose register saves and restores.
The VAX instruction set contains variable-length,
bit-field instructions that handle non-byte data.
These instructions can reference memory within a
512 megabyte (MB) range. The field referenced is
within the first 8 bytes of the base address more
than 95 percent of the time. Therefore, to allow
instruction prefetching to continue, the operand
processing unit assumes that the field is within the
initial quadword and requests that data. If, during
execution, the field destination actually resides out­
side the prefetched quadword, the correct data is
fetched and the pipeline is flushed to avoid poten­
tial memory conflicts.

Integrating Vector Processing
The VAX 9000 project team was instrumental in
integrating vector operations and data types into
the VAX architecture. For many scientific applica­
tions, the use of vectors improves performance in
three ways:

• Vector instructions specify many operations in
a single opcode, which eliminates instruction
stream decode as a processing bottleneck.

• Vector registers increase available local storage.

• Vector registers support high peak perfor­
mance through high bandwidth and short access
latency.

The VAX vector architecture implements a load/
store architecture, which permits the hardware to
deal with large pieces of memory in a uniform
manner and increases the use of parallelism.

We added the vector instructions and data types
to the VAX architecture in an integrated fashion.
Scalar and vector instructions are mixed throughout
the pipelines. Systems that do not include vector
processors emulate vector instructions with soft­
ware, a technique especially useful for program
development.-·8

Dtgttal Tecbntcaljournal Vol. 2 No. 4 Fa/11990

Design Strategy for the VAX 9000 System

Logical Integration
The VAX 9000 vector processor connects to the
scalar CPU as an additional functional execution
unit. Vector instructions are processed, and
operands are stored, in queues, the same as are
scalar instructions. As instructions are issued, a con­
trol word is sent with instruction operands to the
vector processor. The processor contains vector
registers and arithmetic units. Addresses for load,
store, gather, and scatter operations are also gener­
ated by the vector processor. Vector data is stored in
the main cache, and both the scalar and vector pro­
cessors have fast, shared access to that data.

Physical Integration
The VAX 9000 scalar and vector processors reside
on a single planar board. Three multichip unit slots
are reserved for the optional vector processor,
which is field-installable. The integration of the vec­
tor processor directly with the scalar processor
keeps critical interconnects short and reduces vec­
tor instruction overhead.

Error Handling
Reliability, availability, and integrity are critical fac­
tors in a high-performance computer system. These
factors are affected by the quality of the physical
design (i.e., worst-case design), effective cooling,
redundant power supplies, and quality controls
during manufacture. Still, failures are possible, and
the VAX 9000 design had to deal effectively with
errors.

Error handling in the VAX 9000 system has two
main goals:

• Minimize system service disruption from indi­
vidual failures

• Maximize the failure information collected for
use in preventive and corrective maintenance

A large percentage of hardware failures are inter­
mittent, and many solid hardware failures start as
intermittent. The VAX 9000 system was designed to
recover from these failures and to use the failure
data to predict (and prevent) future problems.

To gather information effectively, VAX 9000 stor­
age elements (i.e., latches, flip flops, and RAM cells)
are visible to the service processor unit through a
serial diagnostic bus. Most state information that
is relevant to isolate the failing component is avail­
able for error analysis programs that can be run at
a convenient time. The result of this processing is
then used to isolate the failing components for
quick repair.

21

VAX 9000 Series

To access the storage elements through the visi­
bility chain, the system clocks must be disabled,
which disrupts the system operation for a period
of time. The error may also have affected the exe­
cution of the instructions in the pipeline. Error
handling minimizes these disruptions by making
them invisible to the users almost all the time.

The macroinstruction is the unit of execution in
a program that is visible to the user. Between
instructions, the program state is clearly defined
in terms of memory contents and register values.
Interrupts and exceptions are handled between
instructions to save this state in an orderly fashion .
It is important to handle errors the same way.

Two problems arose in trying to provide the
same method of error handling. First, instructions
go through many stages in a pipelined computer,
and several instructions will be in progress at the
same time. It is difficult to identify a beginning
and end for each instruction. Second, even when
boundaries are established, errors can occur at any
time and the errors do not automatically line up
with instruction boundaries.

To solve this, we made the E-box the point of syn­
chronization between error handling and instruc­
tion execution. In the instruction execution model,
the E-box accepts operands, then computes and
delivers results for storage. If an error occurs that
directly affects one of these steps, the error is
synchronous to the execution of that instruction.
Asynchronous errors do not directly affect any of
these steps and are treated as interrupts, i.e., pro­
cessed after the E-box completes an instruction but
before it starts another instruction.

A synchronous error causes a trap to occur in
the E-box when the E-box requests data from the
subsystem with the error. Since such data can be
unavailable as a result of virtual access problems,
the E-box is ready to deal with exceptions at
that time, and errors can use the same pipelined
mechanism.

We do not differentiate between those syn­
chronous errors that affect computation in the
E-box and those that do not. Instead, if the program
visible state of the machine has not been modi­
fied, the instruction is backed up to the beginning
and restarted. Performing this task is not a prob­
lem, since the state is normally not changed until
the result is stored at the end of the instruction.
Errors occurring in early pipeline stages are easily
recoverable. In a few cases, memory and registers
could have been modified early and, as a result,
be affected by the error. Status flags indicate if this
has happened .

22

By getting to an instruction boundary, the clocks
can be stopped in an orderly fashion, and the state
can be read out, including temporary data to be
used for failure analysis. The machine can be reset
to start processing at the instruction boundary once
the clocks are started again.

While the clock is stopped, the CPU cannot inter­
act with other subsystems or 1/0 processors. To
keep these functions from being blocked and possi­
bly timing out, we only stop the clock to the CPU in
error, not all the clocks in the system. We also
sweep the cache of written data before the clock is
stopped, and 1/0 interrupts are directed to other
CPUs in a symmetric multiprocessing system.

Performance Modeling
When multiple features are added to a CPU design
to individually enhance performance, some of
those features can interact negatively with each
other to decrease performance. Therefore, we
designed a performance model to help us evaluate
the performance of the design and make trade-offs
where necessary. Although instructions were not
executed on the model, it is an accurate cycle-by­
cycle model of the system for most instruction oper­
ations. Equally important, the model was written at
a high level, which made it easy to modify and use
to experiment with different features before they
were added to the design.

Cycle Time
A perennial CPU design issue is the trade-off
between cycle time and cycles per instructions. In
a VAX system, the cycle time is often limited by the
RAM speed in the control store and cache. We mod­
eled a machine at 8 ns and one at 16 ns for the VAX

9000 system. At 8 ns, the pipelines became longer.
Although the peak throughput almost doubled,
the model showed that the net performance gain
did not offset the risks associated with the shorter
cycle time.

I-stream Synchronization
The VAX architecture requires that changes to the
instruction stream be synchronized with an REI
instruction. This synchronization makes it easier to
implement an instruction cache that is separate
from the main cache. To synchronize, either all
memory writes can be watched or the I-cache can
be cleared on every REI. The first alternative entails
high hardware costs, and the second can affect
performance. However, the model showed us that
the performance impact would be minimal if the

Vol. 2 No. 4 Fall 1990 Dtgttal Tecbntca/Journal

I-cache was refilled from the main cache rather than
from main memory because the critical parameters
were the main cache bandwidth and the I-cache
invalidation time, rather than the refill latency.

Branch Prediction
The branch prediction scheme used in the
VAX 9000 system was analyzed in great detail.
We investigated the use of multiple history bits to
improve the effectiveness of branch prediction.
In all cases, the use of extra bits provided less than
a 1 percent improvement in system performance.
Furthermore, no multiple bit scheme could be
implemented without increasing cycle time
because multiple history bit branch prediction
schemes update status each time a branch is
encountered. Therefore, we chose to use a single­
bit technique in the VAX 9000 design. Unlike multi­
ple bit schemes that read and write history bits
for each branch instruction encountered, the single­
bit technique updates the history bit only when the
prediction is wrong. The single-bit scheme is both
faster and simpler.

Cache Parameters
The main data cache was accurately modeled. The
VAX 9000 system uses a first-in first-out {FIFO) block
replacement scheme. The performance model pre­
dicted that a true least recently used replacement
policy would provide an insignificant improvement
in performance over the FIFO method. Also, a true
least recently used policy requires that status be
read and written for each cache access. In con­
trast, the FIFO replacement policy updates status
only when a cache miss has occurred. Further, the
update can be done in parallel with the writing of
data into the cache block. Although the 128-byte
cache block provided a better cache hit, we chose
the 64-byte block because it produced better system
level performance.

We chose two-set associativity because the model
clearly indicated that performance would degrade
with a direct-mapped scheme. The model also pre­
dicted that a four-way set associative cache would
not improve performance enough to justify the
extra hardware, design complexity, and cycle time
penalty.

The data bypass mechanism, the write queue,
and the parallel translation buffer fix-up mecha­
nisms were implemented after the performance
model indicated significant performance gains
would be achieved from these features.

Digital Tecbnica/Journal Vol. 2 No. 4 Fall 1990

Design Strategy for the VAX 9000 System

We also used the performance model as a verifi­
cation tool. The model provided us with early
warnings when a feature did not function in the
model, or when the cycle count differed from the
count in the gate-level simulation. For example,
from the model, we became aware of problems in
the design of how conflicts between instructions
in specifier processing were handled. Periodically,
we compared the performance model to the logical
model. Both models were subjected to the same
instruction sequences. Deviations of more than
±5.0 percent were investigated. Some design bugs
were found that did not affect the results of the pro­
gram but which did keep performance features
from working properly. The average deviation was
on the order of± 1.0 percent.

Performance tests are among the first programs
run on a functional prototype. The VAX 9000 sys­
tem performed almost as expected. Table 2 com­
pares the actual performance of a VAX 9000 system
to its predicted performance for a small sample of
modeled programs. The accuracy of the predictions
highlights the increasing importance of models in
the modern engineering process.

Table 2 Performance Measurements
of a VAX 9000 System

Predicted Measured
Program Name (VUPs*) (VUPs*)

HANOI 28.54 25.53

FFT45 36.87 37.85

GAUSS 32.72 32.57

WHETS 27.78 27.17

WHETD 34.48 34.89

• Performance measured in VAX units of performance (VUP), where
the performance of the VAX-11nso system = 1.0 VUP.

Vector Performance
Vector processing was modeled using graphical
descriptions of the pipeline. The graphical descrip­
tions were essentially critical path method schedul­
ing charts. This approach is reasonable because
vector processing makes regular demands on sys­
tem resources. In fact, the regularity of resource
demand patterns was a major reason that vector
processing techniques were developed. By using
the pipeline schedules, we realized that data should
be prefetched to ensure good vector performance.

23

VAX 9000 Series

Performance Measurement
Table 3 compares the VAX 9000 scalar and vector
processors performance to other members of the
VAX family of processors.

Table 3 Performance of the VAX 9000
Scalar and Vector Processors

VAX 9000 VAX 9000
VAX 8550 Scalar Vector

Program System Processor Processor
Name (VUPs*) (VUPs*) (VUPs*)

A3D 6.55 65.54 77.45

DYFESM 5.12 31.88 40.49

EMIT 5.86 41.65 79.86

CFFT2D 5.52 25.76 64.18

BMK8A1 5.45 30.65 83.84

MXM 5.93 40.81 269.32

• Performance measured in VAX units of performance (VUP), where
the performance of the VAX-11/780 system = 1.0 VUP.

The variations in these performance numbers
indicate that significan t performance improve­
ments can be achieved by using applications that
take advantage of machine resources. The numbers
also highlight opportunities. By modifying appli­
cations to cap italize on machine features, large per­
formance gains may be realized. Performance gains
of 100 to 200 percent are often realized and may
substantially extend the lives of older programs.

Vector applications tend to fall into three cate­
gories. The first category generally does not contain
much parallel content. This category is represented
by A3D and DYFESM in Table 3. Vectorizing such
programs improves performance by a modest
O to 50 percent. Programs EMIT and CFFT2D in
Table 3 represent the second category, which are
applications of moderate parallel content. Applica­
tions in this category realize a 50 to 150 percent
performance gain when vectorized. Applications
in the third category, highest parallel content,
demonstrate performance improvements of more
than 150 percent when vectorized. Programs
BMK8Al and MXM in Table 3 are examples of this
class of application.

Often, modest code changes can realize dramatic
performance improvements. By simply redefining
array dimensions or loop specifications, an applica­
tion can move from the first category to the third
category.

24

Acknowledgments
Many people contributed to reaching the VAX 9000
performance goals. The authors would especially
like to thank David Orbits, whose advanced devel­
opment work on high-performance VAX designs
became the basis for the performance model; and
Bill Grundmann, Rick Hetherington, John Murray,
Bill Smith, and David Webb, who comprised,
with the authors, the original VAX 9000 architec­
ture team.

References

1.). Murray et al. , "VAX Instructions That Illustrate
the Architectural Features of the VAX 9000 CPU,"
Digital Technical Journal, vol. 2, no. 4 (Fall
1990, this issue): 25-42.

2. M. Adiletta et al. , "Semiconductor Technology
in a High-performance VAX System," Digital
Technical Journal, vol. 2, no. 4 (Fall 1990, this
issue): 43-60.

3. SPICE is a general-p urpose circuit sim ulator
program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical
Engineering and Computer Sciences, University
of California, Berkeley.

4. D. Clark, "Pipelining and Performance in the
VAX 8800 Processor," Architectural Support
for Programming Languages and Operating
Systems (ACM, October 1987).

5. C. Wiecek, "A Case Study of VAX-11 Instruction
Set Usage for Compiler Execution," Proceedings
of the Symposium on Architectural Support
for Programming Languages and Operating
Systems(ACM, March 1982): 177-184.

6.). Erner and D. Clark, "A Characterization of
Processor Performance in the VAX-111780,"
Proceedings of the 11th Annual Symposium on
Computer Architecture (Ann Arbor: June 1984):
301-310.

7. VAX Vector Processing Handbook (Maynard:
Digital Equipment Corporation, Order]'.'lo.
EC-H0419-46, 1989).

8. R. Brunner and D. Bhandarkar, "Vector Exten­
sions to the VAX Architecture," Proceedings
of COMPCON '90 (San Francisco: Spring 1990).

Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljou rnal

John E. Murray
Ricky C. Hetherington

Ronald M. Salett

VAX Instructions That
Illustrate the Architectural
Features of the VAX 9000 CPU

The VAX 9000 system is Digitals largest and most powerful VAX system. As such,
it offers many unique features that required the use of advanced technology and
innovative architecture in the design of the system. Overall, the VAX 9000 micro­
architecture produces a high level of system performance and the lowest cycle time
of any VAX processor, i.e., less than five cycles per instruction. Three sections of the
VAX 9000 CPU - the instruction fetch and decode unit (I-box), the execution unit
(E-box), and the data cache and main memory interface unit (M-box)-are
illustrated in this paper through descriptions of a small sample of VAX instructions.
These instructions are discussed in relation to their flow through the pipeline, how
their architectural features combine to work on a single macro instruction, and how
various stages of the pipeline interact.

In October 1989, Digital introduced its VAX 9000
family of high-performance scalar, vector, and par­
allel processors. The VAX 9000 system is designed
to be expandable from one to four processors, with
an optional integrated vector facility available on
each processor. The design team obtained high
levels of performance with advanced technology
and innovative architectural features.1

•
2 The tech­

nology provided a platform that has the shortest
cycle time for any VAX processor. Most VAX proces­
sors average ten or more cycles per instruction,
whereas the architectural features of the VAX 9000
system reduce that average below five.

The VAX architecture is a complex instruction set
architecture. VAX instructions vary in length and
number of operand specifiers. The opcode may be
one or two bytes long. The number of specifiers
is implied by the opcode. Each specifier's length is
determined by the specifier type, and the length can
vary by up to 17 bytes.3 Although the VAX 9000
implements a large number of instructions in a
single cycle, some instructions need to be imple­
mented in tens of cycles. In these cases, microcode
assistance is required. To increase performance,
many features were included in the VAX 9000
system that have not been implemented in previ­
ous VAX systems. The system contains a virtual
instruction cache, a branch prediction cache,
multiple specifier evaluation units, deep instruction

D igital Tecbnical]ournal Vol. 2 No. 4 Fa/11990

prefetch, hardware translation buffer fix-up unit,
write address buffer and conflict checker, multi­
ported write-back cache, independent arithmetic
units, and separate issue and retire queues. These
features are pipelined and do not interact in a
straightforward way. Many stages are not directly
linked to the subsequent stage but feed a queue
or first-in first-out (FIFO) buffer. The subsequent
stage works on the output of the FIFO buffer. The
pipeline is not a fixed-length and many operations
are done in parallel.

The architectural features do not function totally
independent of one another. In fact, the highest
level of performance is achieved when all the units
function in harmony. This paper highlights the
implementation of the macropipeline found in the
three major subsystems of the VAX 9000. These
subsystems are the instruction fetch and decode
unit (I-box), the execution unit (E-box), and the data
cache and main memory interface (M-box).

The design team for the VAX 9000 system's
I-box evolved a cost-effective subsystem that out­
performs all previous VAX systems. As shown in
Figure 1, the I-box processes the majority of instruc­
tions in just one cycle. It combines a single cycle
access virtual instruction cache with a 25-byte
instruction buffer and an instruction decode cross
bar that can decode three specifiers per cycle. To
minimize cycle-wasting stalls, a branch prediction

25

VAX 9000 Series

unit handles transitions from one code block to
another. In addition, the operand processing unit
receives and processes specifiers from the decode
unit. The specifiers are passed either to the E-box as
pointers, literal data or addresses, or to the M-box
as virtual addresses.

Figure 2 illustrates how the front end of the
M-box translates addresses by using either a trans­
lation buffer or an autonomous virtual-to-physical
address translation unit. Physical addresses for
reads are used to access a two-way associative
write-back cache and to fetch data from memory
through the system control unit (SCU), if the data
is missing from the cache. Read data is returned to
the E-box. Write addresses from the operand pro­
cessing unit are translated and queued by the M-box
until the E-box provides the data for the write.

The E-box of the VAX 9000 CPU performs all
scalar operations. As shown in Figure 3, the E-box
is a pipelined design that incorporates a micro­
sequencer to control functional unit operation.
Other dedicated control logic directs the flow
through the pipe stages.

A multiported register file provides general­
purpose registers and temporarily holds memory
data. The data is processed by one of the four
arithmetic functional units. Results pass through a
retirement multiplexer to the register file or the
M-box data cache, as shown in Figure 4. Multiple
VAX instructions are executed concurrently in the
E-box pipeline. The primary goal of the E-box is
to produce a 32-bit result each cycle, which allows
the majority of the simple, but most frequent, VAX
instructions to be executed in one cycle. This goal
is achieved when four requirements are met. First,
the I-box must have commands available for the
E-box. Second, operand data, often from the M-box
data cache, must be available. Third, pipelined or
single-cycle latency functional units are required
for single-cycle throughput. Finally, results must
be transferred from the functional units. E-box
features, such as queues, data bypass paths, and
powerful arithmetic units, help the system attain
a high-performance level. Stalls are avoided and
each instruction is executed in a minimal amount
of time.

The M-box of the VAX 9000 CPU is the primary
source of memory data. Therefore, it contains the
virtual address translation buffer and the data
cache. The M-box is multiported and pipelined with
two autonomous pipeline segments. Each segment
occupies one machine cycle, and the cache access
latency is, therefore, two cycles long. During the

26

first cycle, the M-box receives and prioritizes vir­
tually (or physically) addressed memory requests.
The M-box then indexes the translation buffer to
produce a 33-bit physical address and to perform
protection and validity checks. The second pipe­
lined cycle involves data cache access, data align­
ment, if required, and pon response. There are
numerous architectural features within both seg­
ments that are targeted at high bandwidth for
prefetching and storing scalar and vector operands.

To illustrate the various features of the VAX 9000
microarchitecture, we have selected the code
sequence shown in Figure 5.4 In the following sec­
tions, we discuss each instruction as it progresses
through the pipeline as if it were the only instruc­
tion in the pipeline. We then summarize by consid­
ering the same instructions as a block of code.

VAX Instruction ADDL2
The ADDL2 instruction uses general-purpose regis­
ter RS as an address to memory. The contents of
that location are added to general-purpose register
R7, and the result is written back to the same loca­
tion in memory. The instruction is encoded in three
bytes: opcode, register, and base register.

Cycles One through Three
If we assume that the ADDL2 instruction is the first
instruction either in an interrupt routine or follow­
ing a context switch, the program counter is gener­
ated by the E-box and passed to the I-box on a 32-bit
bus. The program counter is latched and used to
access the virtual instruction cache during cycle
one. The virtual instruction cache contains up to
8 kilobytes (KB) in 32-byte blocks and 8-byte lines
of instruction stream data.

Bits < 12:3> of the program counter's prefetch
buffer are used to access an 8-byte line from the
virtual instruction cache. Bits < 12: 5> are used to
access a tag, a valid block, and four quadword valid
bits. The tag is compared with bits <31:13> of the
program counter's pref etch buffer. If the tag and the
bits match, the block and the quadword within the
block are valid, and the instruction is in the vinual
instruction cache (i.e. , a hit). Bits <2:0> of the pre­
fetch buffer are used to rotate the quadword for the
opcode byte to be loaded into byte O of the I-buffer
at the end of cycle one. Similar to the VAX 8650
system, the first byte of the I-buffer is the operation
code (opcode) of the instruction.5

The ADDL2 is three bytes long and normally
fits in one line of the virtual instruction cache. If
the ADDL2 instruction crosses· a line boundary, a

i-i'J/. 2 No. 4 Fall 1990 Dig ital Teclmicaljournal

t::,
(IQ" ...
i.
~
i::r :s
£ .;:
Q
;:

i ...
& ,..
I\;

~ ...
is' ::::

§
E-BOX
RESULT

M-BOX_IB_DATA

BP
TARGET
PC

FORK
ADDRESS

OP ADDRESS

S1 POINTER

S2 POINTER

DEST POINTER

FETCH STAGE DECODE STAGE SPECIFIER STAGE

KEY:
VIR - VIRTUAL INSTRUCTION CACHE
SI - SOURCE 1
S2-SOURCE 2
DEST - DESTINATION
IB - I-BUFFER
P PC - PREFETCH PROGRAM COUNTER

U PC - UNWIND PROGRAM COUNTER
D PC - DECODE PROGRAM COUNTER
S PC - SPECIFIER PROGRAM COUNTER
BP - BRANCH PREDICTION
PC - PROGRAM COUNTER
OPU - OPERAND PROCESSING UNIT

SL - SHORT LITERAL
GPR - GENERAL PURPOSE REGISTER
GPRS - GENERAL PURPOSE REGISTERS
XGPR - X GENERAL PURPOSE REGISTER
YGPR - Y GENERAL PURPOSE REGISTER
OP D - OP DECODE

Figure 1 Block Diagram of the VAX 9000 System 1-box

SL D - SHORT LITERAL DECODE
R1 - REGISTER 1
R2 - REGISTER 2
R3 - REGISTER 3
DISP - DISPENSER

I-BOX DATA

VAX 9000 Series

I-BOX QUEUES

M-BOX ==============~:>!

CONTROL
LOGIC

MICRO­
SEQUENCER

REGISTER
FILE

INTEGER UNIT

Figure 2 Front End of the VAX 9()()() System M-box

I-BUFFER

~ OPU

E-BOX

MISS

t===============>

SEQUENCER

FIX-UP

TRANSLATION
BUFFER

TRANSLATION
BUFFER
FIX-UP

Figure 3 Block Diagram of the VAX 9000 System E-box

V-BOX

M-BOX

28 Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

I-BUFFER

OPERAND
PROCESSING
UNIT

E-BOX

WRITE
QUEUE

32

MAIN MEMORY~64

CACHE

E-BOX
WRITE BUFFER

E-BOX
WRITE BUFFER

FILL BUFFER

E-BOX 64

OPERAND
PROCESSING
UNIT

I-BUFFER

M·BOX

WRITE BACK

32

64

32

Figure 4 Cache Unit of the VAX 9000SystemM-box

subsequent cycle is required to access the second
line. The average VAX instruction is 3.8 bytes long.
Therefore, a virtual instruction cache hit delivers
about two instructions to the 1-buffer.6

Other VAX processors generally require a cycle
to decode the opcode and one or more cycles to
decode each subsequent specifier.7-11 However, the
VAX 9000 CPU's instruction decode cross bar can
decode the vast majority of common instructions in
a single cycle.

If the three bytes of the ADDL2 instruction were
loaded into the I-buffer at the end of cycle one, the
bytes would be decoded during cycle two. The
decode unit (XBAR) passes data from the I-buffer to
a short literal unit, a register/pointer unit or an
operand processing unit. As the opcode and speci­
fier bytes are decoded in parallel, the XBAR deter­
mines in less than a cycle that both specifier bytes

should be routed to the register/pointer unit and
that the memory specifier should be routed to the
operand processing unit.

In parallel with the XBAR decode process dur­
ing cycle two, the program counter is passed to the
E-box from the I-box. The opcode is used to address
the fork random-access memories (RAMs) in the
E-box that provide a fork address to the microse­
quencer. At the end of cycle two, the decoded bytes
are shifted out of the I-buffer, and the subsequent
instruction is presented to the XBAR in cycle three.

The fork address from the I-box is then used to
address a fork RAM in the E-box. For each opcode,
the fork RAM provides an entry address into the
control store, indicates which functional unit
should begin the execution, and specifies how
many source operands are needed in the first cycle.
The fork address is modified when an instruction

68 57 CO 0080 22 1$: ADDL2 R7, (RB)
53 6044 00 41 0083 23 SUBF3 #0,5, (RO)[R4], R3

59 85 9999A999 535940C2 BF 45FD 0088 24 MULG3 #2345.5, (RS)+, R9
E3 00000121 ' EFOD E4 0095 25 BBSC #1 3, BDATA, 1$

Figure 5 VAX Instructions That Illustrate the Major Features of the VAX 9000 System

Digital Tecbnical]ournal Vol . 2 No. 4 Fa /11990 29

VAX 9000 Series

is restarted after it was interrupted before comple­
tion. Memory management faults on the instruction
stream also modify the fork. At the end of cycle two,
the fork RAM data is latched in a fork queue, and the
instruction program counter is latched in the pro­
gram counter queue.

The register/pointer unit accepts the register and
specifier byte at the end of cycle two. During cycle
three, the register/pointer unit passes two source
pointers (general-purpose register R7 and memory
data) and the destination pointer (memory destina­
tion) to the E-box. The source one pointer points to
general-purpose register R7. The memory data will
be returned eventually to a 16-bit deep circular
queue, called the source list, in the E-box. The regis­
ter/pointer unit tracks the source list pointers and
allocates a source list entry to the memory data. The
source list address is passed to the E-box and the
operand processing unit. The destination pointer
simply indicates that the result of the instruction
goes to memory.

Further, during cycle three, the operand process­
ing unit generates the memory address and passes
it to the M-box. For the register deferred specifier
(RS), the operand processing unit accesses its local
copy of RS and passes it to the M-box, together with
the source list tag received from the register/pointer
unit and a control function that indicates the mem­
ory location is to be read and then written.

The fork queue is a cyclical, eight-entry FIFO

buffer that is flushed for interrupts, exceptions,
or incorrect branch predictions. For the ADDL2
instruction, the queue passes part of the fork RAM
data to the microsequencer, which is idle and
awaiting a valid fork, early in the third cycle. Fork
RAM data is used to generate the appropriate con­
trol store address for all control store RAMs. The
remaining fork RAM data is passed to the issue
control by the end of the third cycle.

Cycle Four
At the start of cycle four, the M-box receives a com­
mand from the operand processing unit to perform
a read with a write-check. The M-box must read a
longword from memory, send the longword to the
E-box, and check for write access. The command is
accompanied by a 32-bit virtual address, a tag field,
context (size of operand), and the request signal.

Arbitration for access to the translation buffer
occurs every cycle. If the operand processing unit
wins arbitration, the command is decoded and the
context is checked against the starting address to
determine if additional virtual addresses are

30

required. The M-box includes a feature that adds
four addresses to E-box or operand processing unit
addresses, if the size and alignment of the request
crosses a quadword boundary. Other VAX systems
trap on unaligned accesses using E-box cycles
and require using microcode to generate the incre­
mented address and subsequent fetch .

In parallel to the arbitration process, virtual
bits· 31, < 17:09> index the 1024-entry translation
buffer. The translation buffer is a direct-mapped,
associative memory that contains the results of
the most recent 1024 translations. Bits < 30: 18>
are compared, validated, and protection-checked
against the tag field. The physical frame number is
a 24-bit field that is appended to the virtual address
bits <9:0> to create the 33-bit physical address. The
self-timed RAM used for the translation buffer is a
1024 by 4 self-timed RAM with a 4.5 nanosecond
(ns) access time.

Protection checking occurs during the latter por­
tion of cycle four. The example we are discussing is
a request for a read and write check. Therefore,
both read and write access are checked. Fault indi­
cation is forwarded with the request to the data
cache and subsequently, with the data, to the E-box.
If the request has a valid entry in the translation
buffer and no protection violations exist (i.e., trans­
lation buffer hit), a data cache access is required in
cycle five.

The two source pointers and the destination
pointer from the I-box are latched in the source and
destination queues, respectively, at the start of cycle
four. The source queue holds 16 entries and can
receive 2 entries per cycle. The destination queue
holds eight entries. Both queues are circular FIFO

queues that can be flushed with the fork queue. The
two source pointers are also latched in the source
operand logic at the start of cycle four. The source
operand logic determines which two source
pointers to use each cycle. The pointers can come
from the source queue, the I-box, the microword,
the register log, and several special functions. In this
example, the two pointers are selected directly
from the latched I-box pointers because using the
source queue would have required an extra cycle.

The selected pointers address the register file
and are passed to the issue logic early in the fourth
cycle. The register file contains the 15 general­
purpose registers, RO through R 14. These registers
can be written by either the E-box or the I-box for
autoincrement or autodecrement specifiers. T he
first pointer accesses general-purpose register R7.
The contents of general-purpose register R7 are

Vol. 2 No. 4 Fall 19')0 Digital Tecbnlcaljounral

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

passed to the data distribution logic by the end of
cycle four. The second pointer accesses one of the
16 locations in the source list. The source list is a
queue for source operand data that is written by the
I-box, with immediate or short literal data, or by the
M-box, with memory data. The pointer is used to
access the appropriate source list register, and the
data is passed to the data distribution logic.

The issue control uses the fork RAM data and the
source pointers to determine if the instruction
can be executed. The issue control checks that the
target functional unit is ready and that all the
required source operands are available. In this
example, the integer unit is ready, the first operand
(i.e., the general-purpose register R7) is available,
but the second operand (i.e., memory data) is not.
Because normal issue cannot occur without the
second operand, we created a special issue control
to handle this case. When issue is prevented only
by the lack of a single memory operand, the instruc­
tion is "issued with bypass." To save an operational
cycle, when the M-box delivers the missing
operand, that operand bypasses the source list and
passes immediately to the waiting functional unit.
The issue control signals the fork and source queues
that entries were used and can now be removed.

Cycle Five
Cycle five begins with the cache data and tag self­
timed RAMs latching the physical address. The
priority request was selected by the cache control
in the latter portion of cycle four. The default prior­
ity request selection is the write queue. However,
if the default is used and a translation buffer hit
occurs, the current address from the translation
buffer is used. The first stage of the M-box, or the
translation buffer stage, is referred to as the front
end. It provides the cache with a 4-bit cycle-identifi­
cation field that identifies the command type and
port. In addition, a context field provides the cache
with the data size. The request for the second speci­
fier of the ADDL2 is a cache read and a write check.

The write queue is a key feature of the M-box and
the VAX 9000 system. The write queue is an 8-entry
FIFO buffer that holds pretranslated operand mem­
ory destination addresses and allows the operand
processing unit to continue prefetching operands
after memory destination operands. The write
queue is designed to be a content-addressable
memory that checks for memory conflicts as sub­
sequent memory source operands are accessed.
Entries in the write queue are discarded when the
E-box completes execution and a successful cache
write occurs.

Digital Tecbnica/Journa/ Vol. 2 No. 4 Fall 1990

A write check inserts the physical address and
a number of status bits into the write queue. The
status bits are termed valid, fault, twice (asserted for
the final entry when writing unaligned operands
that require more than one address), last, PCD
(page crossing danger alert), and blocked. The write
check illustrated in this example has a valid and
last flag asserted.

The cache tag is accessed in the middle of cycle
five. The cache tag store is two-way set associa­
tive, with 1024 entries per set. Each entry repre­
sents a 64-byte block of memory data. The tag store
also contains 16 valid bits (i.e., one per longword)
and a written bit because memory update requires a
write back. The cache tag is used to determine if the
requested data resides in the data cache and, if not,
whether the cache data held there needs to be writ­
ten back to memory.

If a cache hit occurs, the data, with an asserted
response line and tag, is sent to the E-box. The tag
field tells the E-box where to place the field in the
source list. In cycle five, the issue logic asserts a
microword hold signal throughout the E-box.
Because execution did not occur in cycle five
and the latched microword was not used, the
microword latches must be held until execution
can occur.

Cycles Six through Ten
At the start of cycle six, the M-box data is latched
to the data distribution logic. The data is immedi­
ately passed to the integer unit, where the add oper­
ation is performed. The results of that operation are
sent to the retire logic by the end of cycle six. The
issue logic deassens the microword hold signal to
allow subsequent microwords to become latched.
The issue logic also makes an entry in the eight­
location result queue. The result queue is used to
maintain write ordering when multiple functional
units are operating in parallel and also acts as a
scoreboard for register conflicts. A general-purpose
register is not a valid source operand if the register is
in the result queue waiting to be updated by a func­
tional unit. When the functional unit specified by
the top entry of the result queue completes the
operation, the results are retired and the queue
entry is discarded. The integer unit always com­
pletes in a single cycle. Therefore, the ADDL2
instruction is discarded from the result queue by
the end of cycle six.

In cycle seven, the retire multiplexer selects the
integer unit result data and sends it to the M-box to
be written. A request signal for an op write also is

31

VAX 9000 Series

sent for the M-box to initiate the write. The M-box
indicates that the address translation was successful
to ensure that a memory management fault does not
occur. A signal that the instruction is done removes
the instruction program counter from the program
counter queue and indicates successful address
translation completion to the I-box.

At the start of cycle eight, the E-box sends the
results of the ADDL2 instruction to the M-box to be
written into the data cache. The write data interface
from the E-box to the M-box is 32 bits wide. The
M-box has two 32-bit data buffers that receive the
write data and hold the data until the tag status is
appropriate for the write to occur. The E-box sig­
nals the M-box to perform the write. This signal
does not affect the front end of the M-box because
address translation has already occurred. The signal
is a request to the cache control and arbitration for
an op write. The top entry of the write queue holds
the status and complete physical address for the
write destination of the ADDL2 instruction. Because
this is a modify operand, write' access is checked
and reported to the E-box when the operand is read
from memory.

A two-cycle cache write starts in cycle nine. The
first cycle is the lookup cycle. The cache control
selects the write queue address to address the
cache. Before the write can occur, the cache block
must be dedicated to this particular physical
address.

The cache tag store and data cache are read in
parallel. If the operand is unaligned or is less than
a longword, the cache data line read during the
lookup cycle is captured and merged in the next
cycle with the data from the E-box. To ensure data
consistency, data is allowed to exist in the cache in
one of two states, read only or written. The scu
controls the data in up to four individual CPU
caches. Read-only data may be valid in multiple
caches, but written data may only exist in one
cache. Thus, before an M-box can change data, it
must ask permission from the scu.

In this example, the operand is longword­
aligned, and the write occurs in cycle ten if the
block in the cache tag store has a valid and written
status. The write also occurs for aligned longwords
and quadwords in cycle ten if the cache block is
completely invalid. If this cache block has a read
status (i.e., valid and not written), a command is
sent to the scu to request permission to write. The
write is delayed until the scu responds with
approval to write.

Cycle ten is the cache data write cycle. Write
enables to the self-timed RAMs in the data cache are

32

asserted in this cycle as a result of the tag store
lookup cycle in cycle nine. The tag store is updated
only if a valid bit had to be asserted. However, a
partially valid and written cache block that may
require setting the appropriate valid bit can be
written. Each line of the cache is protected with
byte parity. However, because it is a write-back
cache, the reliability of the machine is significantly
enhanced using an error-correcting code. The
check-bit pattern for the error-correcting code
storage is generated and stored separately.

VAX Instruction SUBF3
The SUBF3 instruction subtracts one half of the
F _float format number addressed by general-pur­
pose register R8 and indexed by general-purpose
register R9. The resultant number is placed into
general-purpose register R3. The instruction is
encoded in five bytes: opcode, shon literal, index
register, base register, and destination register.

Cycle One
As with all VAX instructions, the first cycle of the
SUBF3 may be either a virtual instruction cache
access or a simple shift to the low-order bytes of the
I-buffer. In a few cases, the instruction not in the
cache. Consider an example where the SUBF3
instruction is preceded by a long instruction that
is gradually decoded for several cycles. As a result,
the SUBF3 instructions cross a vinual instruction
cache block boundary. The virtual instruction cache
is accessed for instruction stream data every cycle,
but the address is incremented only when the data
is latched in one of three instruction stream buffers,
I-buffer (9 bytes), I-hex (8 bytes), or l-bex2 (8 bytes).

If only one byte or if no valid bytes exist in the
I-buffer, the vinual instruction cache data is loaded
directly into the I-buffer. If the I-hex is empty and
the I-buffer contains between two and eight valid
bytes, the vinual instruction cache data is merged
with the the I-buffer data and the remaining bytes
are loaded into the I-hex.

If there is a virtual instruction cache miss (i.e., the
data is not in the virtual instruction cache) and there
are no valid bytes in the I-hex, the I-box passes a
request to the M-box for data. Generally, the request
will be for a virtual instruction cache block, i.e.,
32 bytes, because the I-box decodes instructions
sequentially across a block boundary. However, a
branch or interrupt may direct the decode into the
middle of a block. In such a case, the I-box requests
the remainder of the target instruction stream in
that block. The first cycle of the SUBF3 accesses the
vinual instruction cache only to find what data is

Vol. 2 No. 4 Fall /9<)0 Digital Tecbnical]ournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

not in the cache. The address and the request then
are passed to the M-box.

In the next cycle, the result of the virtual instruc­
tion cache tag match is signaled to the M-box
through an I-box abort signal. If a virtual instruc­
tion cache miss has occurred, the block in the
virtual instruction cache is cleared and the I-box
awaits the data from the M-box. The M-box passes
eight bytes of data to the I-box. The third cycle
after a virtual instruction cache miss is found in the
I-box when hits occur in both the translation buffer
and the cache. The data sent to the I-box is written
and read through the virtual instruction cache self­
timed RAMs to the I-buffer or the 1-bex. The virtual
instruction cache's tag, valid block, and the relevant
valid quadword are written next. If the I-buffer is
empty, the eight bytes of SUBF3 instruction are
written into the I-buffer. In subsequent cycles, the
following instruction stream quadwords are writ­
ten into the virtual instruction cache, with a new
quadword valid bit, until the end of the block is
reached. The data is also available to the I-buffer.

Cycle one of the SUBF3 instruction could be
fetching the instruction stream from the virtual
instruction cache, as described for the ADDL2
instruction, or it could be already in the I-buffer
(e.g., bytes <8:3>) following the ADDL2 instruction
(i.e. , bytes <2:0>). In the latter case, the SUBF3
instruction would be shifted into the lower bytes
as the ADDL2 instruction is shifted out.

Cycles Two through Eight
In cycle two, the SUBF3 instruction is completely
decoded and shifted out of the I-buffer. As a result,
the following actions occur:

• The fork address is passed to the E-box.

• The short literal is passed to the short literal
expansion unit.

• The base and index registers are passed to the
operand processing unit.

• The destination general-purpose register R3
and the two sources are passed to the register/
pointer unit .

During cycle three, the register/pointer unit allo­
cates the next available entry in the source list to the
short literal and the subsequent entry in the indexed
memory reference. The E-box is informed of these
allocations as pointers to the relevant entries are
passed to the pointer queues in the source one and
source two pointers. The register/pointer unit also
passes the destination register to the destination
queue in the E-box.

Dtgttal Tecbnical]ournal Vol. 2 No. 4 Fall 1990

The operand processing unit passes the tag,
with the address for the indexed memory specifier
request, from the register/pointer unit to the
M-box. The address is generated by the adder in
the operand processing unit. In parallel with the
operand processing unit and register/pointer unit ,
the short literal expansion unit takes the 6-bit field
and expands it to a 32-bit F _floating number.

During cycle four, the short literal is written
through the I-box data bus to the relevant entry
in source list. Issue control can issue with bypass
because only the memory data for operand two is
missing.

The E-box stalls until the memory data arrives.
Because the I-box and the M-box generally are func­
tioning ahead of the E-box, memory stalls are short
or nonexistent . In this example, the memory data
arrives at the end of cycle five, as was the case with
the ADDL2 instruction.

In cycle four, the M-box operates for the SUBF3
instruction in a similar manner to its cycle four
activity for the ADDL2 instruction. At the start of
the cycle, a command, address, context, and tag
field are sent from the operand processing unit to
the M-box. The command is a simple operand read.
Arbitration occurs early in the cycle. The trans­
lation buffer is then accessed, and the physical
address is sent to the cache.

Cycle five begins when the data cache receives
the physical address for the operand processing
unit to read. The tag store lookup and address
matching are performed simultaneously with the
data read, and the data is available to the E-box at
the end of the cycle. If the operand read results in a
cache miss, the M-box must assemble a command
and an address, which are sent to the scu to enable
the scu to access a 64-byte block of memory data.
In addition, the data cache tells the SCU which set
the cache will replace with the new cache block. If
the current cache block contains valid and written
data, the block must be written back to main mem­
ory before the new cache block arrives.

The SCU sends a command and an address back
to the M-box when the memory data is ready. The
send takes approximately 26 cycles and is followed,
within a short period of time, by eight cycles of data
transfer. Each cycle is 8 bytes long. The requested
quadword is returned first to respond to the
requesting port during the first cycle of the cache
refill. On the eighth cycle of cache refill, the tag
store is updated.

The floating point functional unit is started in
cycle six, as specified by the fork RAM data. Both
source operands are delivered, and the microword

33

VAX 9000 Series

indicates a SUBF operation. The floating point unit
requires two cycles to perform the SUBF operation.
Unpacking and alignment occur in the first cycle.
The floating point unit signals the issue control that
the result will be available at the end of the follow­
ing cycle. The issue control enters the general­
purpose register R3 destination but must wait
another cycle before beginning retirement. If the
next instruction requires that the floating point unit
and the operands be available, the instruction
would be issued in this cycle because the floating
point unit is fully pipelined.

The second execution cycle occurs in cycle
seven. The floating point unit adds, normalizes,
rounds, and packs. The result is latched in the float­
ing point unit at the end of the cycle, and the issue
control discards the top entry from the result queue
to retire the data.

In cycle eight, the retire multiplexer selects the
floating point unit result data and sends that data to
the data distribution logic. The data distribution
logic holds the result, which will be written into
general-purpose register R3 in the register file dur­
ing the next cycle. The write is purposely delayed
to permit it to be aborted if an arithmetic fault
occurs. By holding the result in the data distribution
logic, result bypassing into the data path can act as
a source operand. The result is written into the reg­
ister file at the beginning of cycle nine.

VAX Instruction MULG3
The MULG3 instruction takes the G_format floating
number, addressed by general-purpose register R5,
from the instruction stream, multiplies it by the
immediate constant 2345.675, which is also a
G_format number, and puts the result in general­
purpose registers R9 and R 10. General-purpose
register R5 also is incremented by eight as a side
effect of the specifier evaluation. The opcode is
2 bytes long, the constant is a nine-byte immediate
specifier, and the autoincrement and register speci­
fiers are each a single byte. Thus, the instruction is
encoded in 13 bytes.

Cycles One through Five
As in cycle one of the SUBF3 instruction, the MULG3
instruction can either be a virtual instruction cache
access cycle or part of the instruction already can be
in the I-buffer and shifted to the least significant
byte as the previous instruction is shifted out. For
example, if the previous instruction is the SUBF3
#0. 5 (RO)[R4] R3 in bytes <4:0> of the I-buffer, the
first four bytes of the MULG 3 instruction could be

34

in bytes <8:5>. The four remaining bytes of the
immediate specifier could be valid in the 1-bex and
the rest of the instruction could be contained in the
I-bex2. At the end of cycle one, the first four bytes
are shifted to the low four bytes of the I-buffer. The
next four bytes are merged from the I-bex to the
high four bytes of the I-buffer. The 1-bex is now
empty, and the bytes in the I-bex2 can be loaded
into the 1-bex.

Because the MULG3 instruction has a 2-byte-long
opcode, the only decoding necessary in cycle two is
to note the 2-byte length and shift out the first byte
so as to align the specifiers to be the same as a single
byte opcode instruction. The specifiers are then in
bytes< 1 :8> of the I-buffer. As the first opcode byte
(in this case, #FD) is shifted out, the next valid byte
in the 1-bex is merged into byte 9 of the I-buffer,
which leaves seven valid bytes in the 1-bex.

Decoding really begins in cycle three. The fork's
address is sent to the E-box, and bit <8> is set to
indicate a 2-byte-long opcode. The first five bytes
of the immediate specifier are passed to the
operand processing unit. The first byte also is
passed to the register/pointer unit for source list
allocation. The five bytes shifted out of the I-buffer
are replenished from the 1-bex, which leaves two
valid bytes in the 1-bex.

In cycle four, the register/pointer unit allocates
the two entries in the source list for the immediate
G_floating number by passing a source one pointer
to the E-box and the tag to the operand processing
unit. The operand processing unit passes the first
longword of the immediate G_floating number to
the unit's output buffer.

The next four bytes of the immediate are passed
from the I-buffer to the operand processing unit.
The remaining two valid bytes from the 1-bex are
merged into the I-buffer. The 1-bex is then loaded
with eight bytes from the virtual instruction cache.

In cycle five, the autoincrement and register
specifiers are decoded and the remaining bytes of
the instruction are shifted out. Five bytes from the
1-bex are merged with the four valid bytes in the
I-buffer. The autoincrement general-purpose regis­
ter R5 is passed to the operand processing unit
and the register/pointer unit, which also receives
general-purpose register R9. The first longword of
the immediate specifier is passed from the operand
processing unit output buffer, through the I-box, to
the source list entry allocated by the register/
pointer unit. The second longword is passed to the
operand processing unit output buffer.

Vol. 2 No. 4 Fa/11990 Digital Tecbnicaljournal

VAX lnstrnctions That Illustrate the Architectural Features of the VAX 9000 CPU

The first microword is accessed and distributed
throughout the E-box. The microsequencer uses
the fast fields of the microword to generate the final
control store address for this instruction. The
microinstruction is not issued because it requires
two source operands and the second source pointer
is not yet available.

Cycle Six
In cycle six, the register/pointer unit allocates two
source list entries for the autoincrement specifier,
passes this information to the E-box in the source
one pointer, and passes a tag to the operand pro­
cessing unit. The general-purpose register R9 is
passed to the E-box as the destination pointer.

The operand processing unit accesses general­
purpose register RS and passes it, with a tag and a
quadword read request, as an address to the M-box.
In parallel, the operand processing unit writes
general-purpose register RS, incremented by 8-byte
lengths in the unit's output buffer. The second long­
word of the immediate specifier is written to the
source list at the relevant entry.

The operand processing unit sends the M-box a
read request quadword for the double-precision
floating point operand. If the address is on a quad­
word boundary, the front end of the M-box will not
produce any additional virtual addresses because
the operand will not cross a page boundary or a
cache line boundary. If there is a miss in the trans­
lation buffer for this reference, all other arbitration
stops and control are given to the state machine of
the translation buffer fix-up unit.

Bits <31 :09> of the request are captured by the
translation buffer's fix-up unit in parallel with the
translation buffer RAM's access to achieve an early
start on miss processing. The fork to the state
machine is sensitive to bits <31:30> of the virtual
address. Therefore, when a translation buffer miss
occurs, a constrained control word flow begins
based on the values of bits <31:30>. Because this is
a user mode, the value is zero. Therefore, on the
first cycle following the translation buffer miss, the
virtual page number is compared against the PO
length register, POLR. On the next machine cycle,
the POBR (i.e., base register) is added to the virtual
page number to create the system virtual address of
the process page table entry. The fix-up unit acts the
same as any other port into the translation buffer,
and makes a virtual read request with an aligned
longword context. The state machine is controlled
by a microword that branches to itself until one of
three events occurs: a miss in the translation buffer

Digital Tecbnlcal]ournal Vol. 2 No. 4 Fall 1990

(the fix-up unit processes double misses), a memory
management fault, or a cache response. The cache
response, which is the event most likely to occur,
signals the state machine to return to idle and pre­
pare for the next miss. Hardware control external
to the fix-up unit writes the entry into the trans­
lation buffer, and the original request is retried.
This time there is a translation buffer hit, and the
physical address is sent to the cache. Single misses
in the translation buffer require seven cycles to pro­
cess. A double miss requires 13 cycles, assuming
data cache hits occur.

The issue control asserts the microword hold
signal to force the microword latches to hold the
first microword until it can be executed. The micro­
sequencer regenerates the control store address of
the second microword each cycle until the execu­
tion stall ends.

Cycles Seven through Thirteen
Cycle seven is the data cache read cycle for the
quadword operand processing unit request that
was translated in the previous cycle. The VAX 9000
system has a 128KB data cache, with a block size of
64 bytes and access width of 8 bytes. The 64-bit
access width matches the 64-bit data path to the
E-box, which was constructed to provide high
bandwidth for double-precision operand transfers.
When a cache hit results for the read of an aligned
quadword, both the normal response line and the
quadword response signal are asserted to alert the
E-box that the M-box is sending a quadword of data.

In cycle seven, general-purpose register RS of
both the E-box and I-box is written with the incre­
mented value. In addition, both source pointers
and the first source operand are available to the
issue control. Because only the second operand is
missing, the microinstruction can be issued with
bypass awaiting memory data.

The quadword operand is available to the M-box
at the end of cycle eight. The low longword is
latched in the data distribution logic of the E-box,
and the high longword is held in the M-box.

In cycle nine, the quadword operand is written
into the register file at the two source list locations
allocated by the operand processing unit. However,
the low longword is available as a source immedi­
ately. The low longword of the short literal operand
and the low longword of the memory operand are
passed to the multiply functional unit at the start of
cycle nine. The multiply unit performs the first
cycle of execution, which includes· unpacking and
multiplying the most significant bits of the two

35

VAX 9000 Series

operands. Issue control drops the microword hold
signal to allow the second microword to be latched.
An entry, which specifies general-purpose register
R9 as the destination for the low longword of the
result, is made to the result queue. The second
microword is issued because the multiplier requires
the next half of each source operand and both are
available from the register file.

The microsequencer then attempts to generate a
new control store address from the next entry in
the fork queue. If no new forks are available, the
microsequencer remains idle.

In the tenth cycle, the multiply unit receives the
high longword of both source operands. The sec­
ond execution cycle is performed, which includes
unpacking and three simultaneous multiplications
of the appropriate combinations of the most and
least significant bits of the two operands. The multi­
plier signals the issue control that the result will be
available in the following cycle. The issue control
makes an entry, which specifies general-purpose
register RIO as the destination for the high long­
word of the result, in the result queue. The multiply
functional unit is fully pipelined and could be issued
in this cycle to start subsequent operations.

Cycle eleven is the third and final execution cycle.
The multiplier accumulates the four products it
produced in the two previous cycles, rounds, and
packs the final double-precision result. The issue
control discards the top entry from the result queue
to retire the low longword of the result .

In cycle twelve, the retire multiplexer selects the
multiply unit result data and sends it to the data dis­
tribution logic. The issue control discards another
entry from the result queue to retire the high long­
word of the result. The low longword of the result is
written into the register file 's general-purpose regis­
ter R9 in cycle thirteen. The high longword of the
result is written into general-purpose register RIO in
the next cycle as the instruction is completed.

VAX Instruction BBSC
The BBSC instruction tests a bit in memory,
branches if the bit is set, and clears the bit . The
BDATA is the base address in memory with the
number 13 position-bit offset. The majority of VAX

field instructions have a position offset of less than
64 bits. Therefore, the VAX 9000 system's I-box
prefetches the quadword addressed by the base.
As with all conditional branches, the result of the
test is predicted and the VAX 9000 system's I-box
continues to fetch instructions along the predicted
path. The BBSC is encoded in eight bytes: one

36

opcode, one short literal position, five for the base
address (a 4-byte displacement off the program
counter), and one displacement.

Cycles One and Two
Cycle one for the BBSC can be fetching the instruc­
tion stream from the virtual instruction cache, as
described for cycle one of the ADDL2 instruction, or
it already can be in the I-buffer (e.g., bytes <8:3>)
and the 1-bex (i.e., bytes <7:6>) following the
MULG3 (i.e., bytes <2:0>). In the latter case, the
BBSC instruction is shifted into the lower bytes as
the MULG3 instruction is shifted out.

The decode of the BBSC begins with passing the
short literal, number 13, to the short literal expan­
sion unit and the program counter/relative base
address to the operand processing unit. Informa­
tion on both specifiers is passed to the register/
pointer unit. In this cycle, the fork address is also
passed to the E-box. The fork address is modified
for field instructions if the base is a register. There­
fore, passing the fork address is delayed until the
base specifier is decoded. In this example, the base
is decoded in the cycle after the opcode is received.
If the base is a register, the field instruction takes a
different microcode flow.

During cycle two, the decoder passes the pro­
gram counter decoder for the program count of
the instruction to be decoded to the operand pro­
cessing unit. The program counter is passed to the
operand processing unit and the E-box in the first
decode cycle. Whenever a specifier is passed to the
operand processing unit, the XBAR also sends a
specifier offset delta. When the delta is added to the
program counter's decoder, the address of the last
byte of the specifier plus one is produced.

As the short literal and program counter/relative
specifiers are decoded, they are discarded from the
I-buffer. The BBSC displacement is shifted to the
first byte of the I-buffer. The data arriving from the
cache is merged into bytes <8:2>, and the other
byte is placed in the 1-bex.

The branch prediction unit begins operating
during the first decode cycle. A prediction for the
branch must accompany the fork address sent to
the E-box. The prediction is made by using the
program counter to access a branch prediction
cache and determine how the branch behaved the
last time it was decoded (i.e. , one history bit). If
the branch is in the cache, the prediction is that
the branch will behave the same as the last time. If
the branch is not in the cache, a prediction is made
based on the normal behavior of this conditional

Vol. 2 No. 4 Fa/11990 Digital Tecbnlcal]ournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

branch. For example, a BEQL (58 percent) and a
BBSC (73 percent) normally do not branch, whereas
a BNEQ (62 percent) normally branches. If the BBSC
instruction is in the cache and branched last time,
this information is indicated to the E-box, with the
I-box prediction given as true.

Cycle Three
In this cycle, the register/pointer unit allocates one
entry in the source list for the position specifier and
three entries for the base specifier. The unit then
passes the source one, source two, and destination
pointers to the E-box.

In the operand processing unit, the address of the
last byte of the specifier plus one is first calculated
using the program counter of the instruction and
the delta provided by the XBAR. The displacement
from the instruction is then added to this calcula­
tion. The result is latched in the operand processing
unit's output buffer and passed to the M-box. The
operand processing unit also passes a quadword,
field modify function, and the source list tag.

The short literal expansion unit extends the size
of the position specifier to a longword and latches it
in the unit's output buffer. In this example, the
extension is done with zeros. The XBAR passes the
branch displacement byte and an updated value of
the program counter's delta to the operand process­
ing unit. The delta of the program counter and the
branch displacement are also sent to the branch
prediction unit as instruction lengths. The BBSC
instruction is completely decoded, and the opcode
and displacement are discarded from the I-buffer.
The branch prediction unit does most of its work
during the last decode cycle of a branch. For the
majority of conditional branches, the last decode
cycle is also the first.

The branch prediction cache contains 1024
entries. Each entry has a history bit, a 32-bit target
program counter, a 6-bit instruction length, and a
16-bit branch displacement and its tag. The entries
are addressed by bits 9 through O of the program
counter's decoder. If the tag matches bits < 31: 10>
of the program counter's decoder, the entry is
assumed to be the entry, or a hit, for this branch.

If a hit occurs and the history bit shows that the
branch was not taken last time, the branch predic­
tion unit latches this state information and allows
the subsequent instruction stream to be decoded.
The operand processing unit produces the target
address as soon as it is not busy. The target address
must be stored in the program counter's unwind
buffer in case the prediction is incorrect. The E-box

Dtgttal Tecbntcaljournal Vol. 2 No. 4 Fall 1990

indicates the correctness of the prediction as soon
as possible. For simple branches, the E-box could
indicate that the prediction is incorrect before the
branch is fully decoded.

If a hit occurs but the history bit shows that the
branch was taken last time, the branch prediction
unit latches this state information and stops the
decoding of the subsequent instruction stream by
clearing the I-buffer and the 1-bex. The program
counter of the subsequent instruction is stored in
the program counter's unwind buffer. The program
counter's target address, which is received from the
branch prediction unit cache, is passed to the pro­
gram counter's prefetch buffer. The target address
that is later provided by the operand processing
unit may be discarded. The branch displacement
and instruction length from the branch prediction
cache are latched. For the following discussion on
the remaining cycles in the BBSC instruction, we
have assumed that the BBSC instruction is a branch
prediction hit and that the branch was taken the last
time decoding occurred.

Cycle Four
In cycle four, both the operand processing and
short literal expansion units contain data to be
passed to the source list. The operand processing
unit normally has the higher priority of the two.
Therefore, the short literal expansion unit will stall.
The operand processing unit passes the base
address to the source list through the I-box. In the
operand processing unit, the new delta of the pro­
gram counter is added to the program counter, the
sign of the branch's displacement is extended from
a byte to 32 bits, and the two are added to produce
the new target address. The result is latched in the
operand processing unit output buffer.

The virtual instruction cache is accessed for the
target instruction. If the instruction is in the vir­
tual instruction cache, it is passed to the I-buffer.
However, there is a gap in the pipeline because no
instruction can be decoded this cycle.

The displacement and instruction length from
the branch cache are compared with the actual dis­
placement and instruction length. Normally, these
lengths match. However, if they are different, the
target address from the branch prediction unit
cache is probably incorrect. The fetching and
decoding of instructions must wait until the
operand processing unit provides the correct
address.

At the start of cycle four, the M-box receives
a request from the operand processing unit. This

37

VAX 9000 Series

request differs from all requests previously
described in that it contains a command that gets
special treatment in the M-box. The command is
an "opu read with write check no block."

The command is used because the VAX 9000 CPU
contains an optimization that enhances the perfor­
mance of bit field instructions. With this command,
the operand processing unit prefetches a quadword
of data, starting from the address pointed to by the
base, without looking at the value of the position
operand. Hopefully, the majority of bit fields are
within 64 bits of the base. The special command
tells the M-box that if a fault should occur, it should
pass the fault, with an operand, to the E-box and
not close down the operand processing unit port or
put a lock on the fault parameters. The command is
an unaligned quadword operand and, as such,
requires that the M-box produce additional virtual
addresses to correctly access the cache. A quad­
word is unaligned when bits <2:0> are nonzero.
For this example, we have assumed that the starting
address is xxxxxxx 1.

Specialized hardware in the front end of the
M-box detects if the starting address requires
sequencing (i.e. , the addition of a constant of 4 to
the current address) and how many sequenced
addresses are necessary. In this case, three addresses
are required. The first is the starting address (i.e.,
addr = xxxxxxx 1), which is received from the
operand processing unit. As the starting address is
accessing the translation buffer, a constant of 4 is
added and the sequence port requests a virtual
address (i.e., addr = xxxxxxx5) from the translation
buffer at the start of cycle five.

The issue control uses the fork RAM data to deter­
mine that the integer unit and two source operands
are required. Because only the first operand is miss­
ing from the source list, the instruction is issued
with bypass. The microsequencer generates the sec­
ond control store address based on the fast access
fields of the first microword.

Cycle Five
Decoding the target instruction stream begins in
cycle five. The operand processing unit sends the
target address to the branch prediction unit through
the program counter's target address. However, as
noted earlier, the target address sent is discarded.
Because the operand processing unit does not use
the I-box data register, the short literal expansion
unit can pass the short literal to the source list.

The branch prediction unit now waits either for
the E-box to indicate the correctness of the predic-

38

tion or for subsequent branches to be decoded. The
unit predicts a maximum of three branches before it
stalls decoding to resolve the first branch.

As the address xxxxxxx5 is accessing the trans­
lation buffer, the final address is produced by
adding 4, which makes a translation buffer request
(i.e., addr = xxxxxxx9) through the sequencer port
in cycle six. The three translation buffer accesses
are contiguous and interruptible. Data alignment is
performed by the M-box, but the alignment is con­
strained to longwords. When an unaligned quad­
word is detected, the front end of the M-box alters
the context field that it passes to the data cache
unit. The quadword request is effectively broken
into two unaligned longwords, which are properly
rotated into the low longword of the quadword
interface and sent to the E-box independently.

Cycle five is the data cache read cycle for the first
unaligned longword. Because the starting address is
xxxxxxxl, the entire longword is contained in the
cache line. Therefore, one additional rotation cycle
is all that is required before the data is sent to the
E-box. The M-box pipe is effectively lengthened by
a cycle when it is performing unaligned operations.
Because cycle five is a data cache read cycle, no
response is issued to the E-box. In addition to the
data cache read, the physical address is placed in
the write queue. A memory write is required after
the bit is tested. A status bit for a new quadword is
set in the write queue. The new quadword indicates
that this is the starting address of an operand and
writes should not take place until an entry appears
in the write queue with a last bit assertion.

Because the first operand is written into the
source list, the operand is available to the integer
unit at the start of cycle six. The microword hold
signal is asserted to hold the first microword during
the stall. The microsequencer regenerates the con­
trol store address of the second microword.

Cycles Six through Nine
In cycle six, the data cache is read again with
address xxxxxxx5, which is the same cache line
read in cycle five. However, because the context is
a longword, one additional byte of data must be
read from the cache to satisfy the request. Also, in
cycle six, rotation of the data read in cycle five is
completed, and the M-box responds to the E-box.
Finally, address xxxxxxx5 is placed in the write
queue.

By using source pointers from the source queue,
the position and base address operands are selected
by the fork RAM and passed to the integer unit. If

Vol. 2 No. 4 Fall 1990 Digital TecbntcalJournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

the base address operand page faults, the base speci­
fier was an indirect specifier. The M-box returns
the data to the E-box as faulty, rather than returning
the indirect address to the I-box. The return to the
E-box results in a memory management page fault.
Both operands are saved in registers within the
integer unit. Also, the position is divided by eight
by shifting, and is saved. The source pointer used to
get the base address as source two is incremented
and used to select the next source list entry, which
is the low longword of the prefetched quadword
field. Issue control determines that only the source
two operand is missing and issues the second
microword with bypass. The microword hold sig­
nal is deasserted and the microsequencer generates
the control store address of the third microword.

Cycle seven begins with a data cache read of
address xxxxxxx9. The rotator is spinning the
three bytes <7:5> of interest from the cache read
in cycle seven to the correct position. No response
is issued to the E-box because this unaligned refer­
ence requires two data cache reads to fulfill. The
address xxxxxxx:9 and the last bit are inserted into
the write queue. The M-box delivers the required
longword, and execution begins immediately. The
second execution cycle calculates the target byte
address. The position, divided by eight, is added to
the base address. The microsequencer generates
the fourth control store address by using the next
address field of the microword. No operands are
selected for the next cycle, and the next instruction
is issued normally.

Cycle eight is a rotation-only cycle. The one byte
<8> of interest, read from the cache in the previous
cycle, is rotated into the correct position (i.e., byte
<0:3>), and the M-box sends the data to the E-box
by issuing a response.

The third execution cycle uses the bit position to
set up the special encoder in the integer unit and
clear the appropriate bit. The source two register
file pointer is incremented again to select the high
longword from the source list. This microword
branches on three conditions determined by hard­
ware functions. The first condition indicates if the
low longword of the prefetched field has a page
fault. If a fault does exist, the microword flow
checks whether the longword is needed or not. As
noted earlier, the longword was prefetched in
the hope that the bit position was within the first
64 bits of the base. If the bit is not within the first
longword, the page fault can be disregarded. The
second branch checks whether the position is
greater than 63 bits. If it is greater, the microcode

Dtgltal TecbnlcalJournal Vol. 2 No. 4 Fall 1990

must ignore the prefetched quadword and initiate
a byte-read directly to the M-box for the appro­
priate byte. The third branch checks whether the
position is greater than 31 bits. This check is used to
determine which prefetched longword to use when
the position is in the 64-bit range. In this example,
the bit position of 13 means that the bit is in the low
longword and no page fault is assumed.

Issue control determines that only the source two
operand, which is the high longword, is missing.
The fourth microword is issued with bypass, and
the microsequencer generates the control store
address of the fifth microword.

In cycle nine, the M-box delivers the high long­
word and execution begins immediately. The
encoder in the integer unit clears the correct bit in
the low longword of the field . The microsequencer
generates the sixth control store address, and the
next cycle is issued normally.

Cycles Ten through Fifteen
In cycle ten, the E-box initiates a byte write to the
M-box. Data is passed to the M-box, and the appro­
priate byte is shifted to the low byte location. The
sixth and final microinstruction is issued normally.

In cycle eleven, the M-box receives an explicit
E-box write request to retire the BBSC instruction
with a memory write. Explicit writes differ from
writes initiated by the I-box in that the E-box sup­
plies a virtual address with the data, whereas the
I-box provides a virtual address and the E-box sub­
sequently provides the data for I-box writes. How­
ever, three entries exist in the write queue for the
prefetched quadword. These entries were placed in
the queue for memory conflict-checking purposes
and cannot be used for writing purposes because
only a byte of data is being written and not a quad­
word. The write field command from the E-box
forces the write queue control to discard the three
entries. The front end of the E-box accesses the
translation buffer and checks for write success
during this cycle. If the write is successful, the phys­
ical address and the context of the byte are sent to
the data cache.

The final execution cycle determines if the
branch prediction was correct . The bit specified
by the correct position is shifted to the least signi­
ficant position in the shifter, where it can be used
for a macrobranch comparison. The macrobranch
result is compared to the I-box branch prediction
in cycle twelve. The microword also indicates that
the microsequencer should start forking for new
macro instructions.

39

VAX 9 000 Series

Cycle twelve is the data cache lookup cycle for
the byte-write operation. The data size is less than a
longword. Therefore, the byte that is to be written
must be merged with the seven unaffected bytes of
the cache line.

Two signals are sent to inform the I-box of the
branch prediction status. The branch valid signal
indicates that a branch prediction validation has
occurred, and the branch signal indicates if the vali­
dation was correct.

The branch prediction logic receives the branch
valid signal. If the prediction was correct, the pro­
gram counter's unwind buffer is discarded and the
branch logic state returns to idle. If the prediction
was incorrect, any data for subsequent instructions
is flushed from the pointer, source list, fork, and
program counter queues and the program counter
is restored from the unwind buffer.

The byte of E-box data is rotated and merged
with the cache line that was read during the lookup
cycle in cycle thirteen. In cycle fourteen, if the pre­
diction was incorrect, the branch prediction cache
is written by using the program counter's unwind
buffer as the target address. The prediction also is
amended; the branch logic state returns to idle; and
the virtual instruction cache is accessed using the
program counter's prefetch buffer for the sub­
sequent instruction. The data cache is then written.

Interactions between Instructions
A short cycle time and features, such as a virtual
instruction cache, multiple specifier decode, multi­
ple operand and instruction prefetch, queues for
decoded instructions, and multiple functional units,
combine to produce a system with several variable
length overlapping pipelines interconnected with
various buffers and queues. There are more than
twenty different functions that could be counted as
single pipeline stages but many operate in parallel
such that the pipeline is considered to vary between
eight or nine stages.

We have described each instruction as a single
entity moving through the various VAX 9000
pipeline stages. However, many interactions exist
between instructions that can decrease the speed of
the system. Bypasses are required in several stages
in case the previous instruction generates results
that the current instruction needs. In some cases,
the pipeline must stall as it runs dry, or an upstream
stage must wait for a result that is in a stage several
cycles downstream. To maximize performance, the
I-box decodes up to five instructions ahead of the

40

E-box. This process evens the flow through the
pipeline and keeps the E-box busy. Figure 6 illus­
trates the code block as it moves down the pipe.

The first stage is the virtual instruction cache
access, or fetch, stage as the instruction is read from
the virtual instruction cache. Some instructions
do not need an actual virtual instruction cache
access but are in the I-buffer from a previous virtual
instruction cache fetch. The instruction decode
takes place in the decode, or XBAR, stage. The
I-buffer is shifted and the fork RAM is accessed in
this stage as well.

The specifier, or operand processing unit, stage
has several parallel functional units: the operand
processing unit, the short literal expansion unit,
and the register/pointer unit. The microaddress
generation occurs in this stage. Together with the
translation buffer cache lookup, the I-box can pass
data to the E-box, and the microword access can
occur in the translation buffer stage. The cache
stage includes issue and source list access. The
execute stage can be executed in either the integer
unit, float unit, multiply/divide unit, or all three.
The E-box can retire only one issued microinstruc­
tion each cycle, but not all issued instructions
need to be retired. The final E-box stage is the write
general-purpose registers stage, where the registers
are updated. However, the M-box can access cache
or queues for writes at the same time. The last stage
is the cache data write stage.

The ADDL2 instruction flows through nine stages
without problems, if there are no previous instruc­
tions in the pipeline and all the caches hit. The
SUBF3 takes two cycles to execute and ends in the
write general-purpose registers stage.

The MULG3 needs four cycles for decoding. The
operand processing unit is busy for three cycles.
The E-box issues two microinstructions, the second
of which requires two execute cycles. The MULG3

includes two retire and write general-purpose regis­
ters cycles. The BBSC uses two decode cycles, and
the translation buffer is accessed three times for the
unaligned quadword. The first four bytes of data
from the cache need an extra cycle to pass through
the rotator, and the second four bytes need two
cache accesses and the rotator cycles. Six micro­
instructions are issued in the BBSC instruction, and
the E-box write needs a translation buffer lookup
before the cache lookup can occur. Figure 6 also
illustrates the E-box stall that occurs because the
two MULG3 retire cycles delay the first BBSC retire
cycle and second issue cycle.

Vol. 2 No. 4 Fa/11990 Dig ital Tecbnical]ounial

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

2 3 4 5 6 7

VIC

XBR/ IBUF

OPU/FPL/SL

TB/L DATA

CACHE/ ISSUE/ READ_ SLIST

EXECUTE- INT/MUL/FLOAT

RETIRE

WRITE-GPA/QUEUE

WRITE-DATA

KEY:

~ ADDL2 ~ SUBF3 ~ MULG3 ~ BBSC

Figure 6 VAX 9000 lnstrnction Pipeline

Overall some part of this set of instructions is
being worked on for 22 cycles. After cycle nine the
I-box can be prefetching and decoding the instruc­
tions after the branch, either the instructions
directly following the branch or instructions that
are branched to. The number of retire cycles used or
wasted by a sequence of instructions is a good mea­
sure of the time taken to execute those instruction .
If the prediction is correct, these four instructions
execute in 15 cycles; but if the prediction is incor­
rect, these instructions take 21 cycles.

Conclusion
The various advanced architectural features con­
tributed to the low number of cycles required for
an average VAX instruction. The virtual instruction
cache provides a high bandwidth of instruction
stream to the I-buffer (8 bytes per cycle) and
requires a much lower bandwidth from the M-box
(8 bytes every 12 cycles). The large I-buffer presents
9 bytes of instruction stream for decoding. The
instruction decoder (XBAR) delivers up to three
specifiers per cycle. The operand processing unit
calculates operand addresses and branch target
addresses. The branch prediction unit accurately
predicts the majority of branches, and instruction
decoding continues down the predicted path so
that no time is lost waiting for results from com­
pares. The I-box prefetches and decodes up to five
instructions ahead of the E-box. The translation
buffer contains up to 1024 virtual-to-physical

Dig ita l Tecbnlcaljournal Vol. 2 No. 4 Fall 1990

address translations. However, if the required trans­
lation is not contained in the translation buffer, the
fix-up unit autonomously creates an entry, which
eliminates the usual latency involved when an
E-box is used to translate addresses. The M-box also
pretranslates write addresses and stores them in the
write queue for subsequent access and conflict
checking. The 128KB, two-way associative, write­
back cache provides a very low miss rate, high
bandwidth, and low latency. The queues of
decoded instructions allow the I-box pipeline to
be less tightly coupled to the E-box. The multiple
functional units in the E-box allow multiple VAX

instructions to be executed in parallel. The archi­
tectural features of the VAX 9000 interact to pro­
duce a CPU that executes VAX instructions in the
least number of cycles or ticks. The low number of
ticks per instruction, combined with the short cycle
time, produce the highest performance VAX system
now available.

Acknowledgments
The design and implementation of the VAX 9000
was a team effort with contributions from many
people, including: Dave Fite, Mark Firstenberg, and
Mike McKean, who were responsible for the I-box;
Dave Webb, Maurice Steinman, Joe Macri, Brad
Hollister, and Basheer Ahmed, who designed the
M-box; Bill Grundmann, Larry He rman, Ginny
Lamere, Elaine Fite, Dan Stirling, Eileen Samberg,
Mark Haq, and Matt Adiletta, who were members of
the E-box design team.

41

VAX 9000 Series

References

1. D. Marshall and J. McElroy, "VAX 9000
Packaging-The Multichip Unit," Proceedings
of COMPCON '90 (San Francisco: Spring 1990):
54-57.

2. T. Fossum and D. Fite, "Designing a VAX for High
Performance," Proceedings of COMPCON '90
(San Francisco: Spring 1990): 36-43.

3. T. Leonard, VAX Architecture Reference Manual
(Bedford: Digital Press, Digital Equipment
Corporation, 1987).

4. J. Murray et al., "Microarchitecture of the
VAX 9000," Proceedings of COMPCON '90 (San
Francisco: Spring 1990): 44-53.

42

5. M. Troiani et al., "The VAX 8600 I-box, A
Pipelined Implementation of the VAX Archi­
tecture," Digital Technical]ournal, vol. 1, no. 1
(August 1985): 24-42.

6. J. Erner and D. Clark, "A Characterization of
Processor Performance in the VAX-11/780,"
Proceedings of the I I th Annual Symposium on
Computer Architecture (Ann Arbor: June 1984).

7. T. Fossum, J. McElroy, and W. English, "An Over­
view of the VAX 8600 System," Digital Technical
Journal, vol. 1, no. 1 (August 1985): 8-23.

8. S. Mishra, "The VAX 8800 Microarchitecture,"
Digital Technical]ournal, vol. I, no. 4 (February
1987): 20-33.

Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljournal

Matthew]. Adiletta
Richard L. Doucette
John H. Hackenberg

D ale H. Leuthold
Dennis M. Lttwinetz

Semiconductor Technology
in a High-performance
VAX System

The VAX 9000 system is the newest member of Digital's VAX family of computer
systems. The 9000 is a higb-perfomzance ECL processor, with a very fast, 16-nano­
second cycle time. To achieve this high level of performance, a new generation of
semicustom and custom integrated circuits was required for the scalar CPU and the
vector processing option. Goofs for circuit density, performance, and skew mainte­
nance were fulfilled with the development of a high-speed gate array, special custom
chips used in key applications, and a high-speed RAM employing a neu• architecture.

The semiconductor requirements for the VAX 9000
system posed a number of challenges for Digital's
Integrated Circuits Development Group. Those
requirements included a tremendous number of
equivalent logic gates (1,037,400 gates) and a large
amount of RAM in the processor (3,280,000 bits).
Moreover, the project's performance goal of over
30 VAX-11/780 units of performance (VUPs)
required the development of state-of-the-art semi­
conductors and the use of innovative techniques to
design them.

Given the project's goals, the JC technologists
evaluated several competing semiconductor tech­
nologies and decided to implement most of the
logic within the 9000 system in a high-speed, high­
density, 10,000-gate array. The gate array provides
a broad range of speed and power-dissipation
options. Working with Motorola, the JC Group first
engineered the base 10,000-gate macrocell array
(MCA), which is implemented in Motorola's MOSAIC
III process. Logic engineers then designed the 77
different gate array chips (options) on the base
array, using a rich library of logic functions and a set
of automated place and route tools. Additionally,
they designed five custom chips, invented a fast
cycle time, self-timed random access memory
(STRAM) architecture, and designed a multichip unit
to interconnect all these high-performance JCs. 1

Four different design methods were used to
implement the chips. The MCAx chips employ a gate
array design technique. The CDxx, the VRGx, and
the STRAM chips required a full custom approach.

Dtgttal Tecbntcaljournal Vol. 2 No. 4 Fall /9')()

The STGx chip was implemented using a silicon
compiler technique. The MULx and DIVx chips
mwere implemented using a standard cell design
approach. Statistics on 9000 system chip design are
given in Table 1.

This paper describes the VAX 9000 MCA JIJ gate
array, the development of each of the five custom
chips, and the STRAM architecture. Before our dis­
cussion of the gate array, we present a brief
overview of the semiconductor technology used
to fabricate the array and the custom chips.

Semiconductor Technology
In 1985, the VAX 8800 series was Digital's largest
and most powerful system, offering single-CPU per­
formance of eight VUPs. The 8800 CPU logic was
Motorola's Macrocell Array I (MCA I) gate array,
which was fabricated in MOSAIC I bipolar technol­
ogy. In comparison, the VAX 9000 goal of 30 VUPs
was aggressive, and the IC Group realized a new
semiconductor technology was required.

At the start of the project, the technologists evalu­
ated semiconductor vendors to determine what
was the "best" technology available to implement
the new system. CMOS, BiCMOS, bipolar, and GaAs
IC technologies were evaluated. Among the factors
considered were logic density, gate delays, on- and
off-chip interconnect delays, manufacturing risks,
and product delivery.

Although very high gate densities were available
with CMOS technology, the logic gate delays proved

43

VAX 9000 Series

Table 1 VAX 9000 Chip Statistics

Die Size
Chip Description (Millimeters)

MCAx MCA Ill gate array chip 9.8x 9.8
CD xx Clock distribution chip 6.2x6.2
STGx Self-timed register file chip 9.8x9.8
MULx Multiplication chip 9.8x9.8
DIVx Division chip 9.8x 9.8
VRGx Vector register file chip 9.8x 9.8
1KSR 1 K x 4 self-timed RAM 4.9x 3.6
4KSR 4K x 4 self-timed RAM 6.4 x 4.2

to be too slow to meet the cycle time requirement.
Also, the CMOS output circuits could not drive sig­
nals off-chip into a 50-ohm transmission line as
quickly as a bipolar transistor, which limited the
speed of signal between I Cs.

BiCMOS offers the advantage of highly dense
CMOS coupled with bipolar drive capability. How­
ever, the technologies available at the time were
optimized for the best CMOS transistors with a com­
promised bipolar device. This approach limited the
overall performance of the circuit to a level roughly
equivalent to that of previous generation bipolar
devices, which would not be aggressive enough to
meet the CPU performance needs.

Gallium arsenide (GaAs) ICs offer a theoretical
performance advantage of between two and three
to one over silicon implementations. The group
found IC densities were lower than those of bipolar
devices, however; and the on-chip speed advantage
was countered by the need for more off-chip sig­
nals in the critical paths of the CPU. Also, because
the manufacturing technology of GaAs ICs was
immature, very few companies had attempted to
sell GaAs into the commercial marketplace. So
while this technology was considered for a time in
some applications where alternatives also existed,
GaAs were eventually dropped from consideration
because of the uncertainty of availability.

The IC Group also studied Motorola's third
generation of their oxide-isolated self-aligned
implanted circuits (MOSAIC III) bipolar technology.2

It offered a factor of six in speed advantage over
the previously used MOSAIC I technology and had
the potential of providing eight to ten times the
logic density. Although not as dense as CMOS or
BiCMOS, MOSAIC III was much faster than either of
those technologies and much denser than any avail­
able GaAs technology. In addition, although many

44

Signal Transistor RAM Power
Pins Count Bits (Watts)

256 40.1K 30
170 7.2K 13.9
152 29.3K 17.8

182 48.4K 30.9
112 29.2K 23.9
198 76.0K 9216 24.9

33 28.0K 4096 2.4
35 103.0K 16384 2.4

of the manufacturing steps were new, most of them
were based on previously proven techniques. The
group therefore concluded that MOSAIC III was
best suited to meet the challenges of the VAX 9000
system.

The MOSAIC III process is an advanced silicon
bipolar process which yields a transistor structure
with a polysilicon base, emitter and collector elec­
trodes, polysilicon resistors, and three layers of
metalization. Compared to the MOSAIC I device
used in the 8800, the critical collector-base junction
of this transistor structure takes up approximately
50 percent less area, as shown in Figure 1. Com­
bined with shallower junctions and reduced base
resistance, the intrinsic device performance was
improved by a factor of three. Further, the poly­
silicon resistor produced with this process has far
lower parasitic capacitance than the MOSAIC I
monosilicon resistor. Some key performance mod­
eling parameters and density metrics are provided
with the figure.

The VAX 9000 packaging imposed other require­
ments on the semiconductor technology. Power
dissipation increased from 5 watts for the MCA I to
30 watts for the MCA III because of the increase in
gate density from I ,200 to 10,000 gates. Therefore it
was determined that all chips should be mounted
directly to the multichip unit cold plate for opti­
mum cooling. For manufacturing economy, it was
desirable to bond the multiple leads of the chip
directly to the pads on the high-density signal car­
rier (HDSC). Consequently, all CPU chips must be
provided to the multichip unit assembly site in a
tape automated bond (TAB) package. As shown in
Figure 2, chips are mounted in a plastic carrier suit­
able for automated handling, and the surface of the
die is protected from mechanical damage with an
epoxy encapsulent.

Vol. 2 No. 4 Fall / 'J'JO Dig ital TecbnicafJounial

Semiconductor Technology in a High-performance VAX System

MCA JOK Gate Array
A high-performance emitter coup led logic (ECL)

gate array with 10,000 equivalent gates and 256
inputs/outputs has been developed for the VAX
9000 system. The gate array design approach used
in the VAX 9000 system ensures the shortest possi­
ble turnaround time from option mask to hardware,
thereby reducing the system design time. In this
approach, cell boundaries are defined with all tran­
sistors and resistors fo,ed within the cells. When a
cell function is selected from a predefined cell
library, the cell customization occurs at the metal
between the transistors and resistors. Then, to
define the function of the gate array option, the
metalization between cells is customized. This
approach allows the semiconductor foundry to
build many wafers up to the customization level;
when a gate array is to be built, only the custom
metal is required . As noted above, 77 different IOK
ECl gate array options are used in the VAX 9000 sys­
tem. This gate array has a rich selection of logic cells
with different power settings for the logicians to
use to meet performance and power requirements.

number of logic cells for a given signal pin count are
available for the logic designers. Technologists eval­
uated several key factors to determine the gate array
physical layout and to ensure its success:

• Area of the silicon chip versus yield

• 1/0 pad pitch

• Maximum power dissipation

• Speed of the gates

• Maximum number of logic cells

Successful trial layouts of the lOK ECl gate array
floor plan were completed before any VAX 9000
options were started.

Using Rent's Rule, technologists maintained a bal­
ance between the number of gates and the package
I/0 count. This balance ensures that a maximum

The gate array floor plan, shown in Figure 3,
comprises a central core area of 414 major (M) cells,
divisible into quarter cell functions, arranged in an
array of 20 rows and 21 columns, less 6 sites for the
master bias generators and special clock generator
circuits. The number of transistors used in a quarter
cell is based on the logic cell most frequently used
in the lOK ECl gate array, the scan latch. A ring of
200 output (0) cells is interspersed with 224 inter­
face (I) cells. The ring surrounds the internal cells
and interfaces the pad drivers with the internal

MOSAIC Ill P+ POL YSILICON N+ POL YSILICON

:::£aL"~~¥~
_L~--~+--~

POLYSILICON RESISTOR ,) NPN TRANSISTOR:

MONOSILICON RESISTOR

_,. I
.,,,.,,. I

;,,. I

// C-B JUNCTION AREA I
// I

, I
I I

I p ,- - - '.:.-.:::-= ~:._) l ________ _ l
NPN TRANSISTOR

MOSAIC I

NPN Fr: 5 GHz
Rb: 1475 ohms

CJc: 50 ff
CJE: 45 ff
CJ5 : 185 ff

DRAWN EMITIER SIZE: 3µm x 4µm
METAL 1 PITCH: Bµm
METAL 2 PITCH: 15µm
METAL 3 PITCH: -

MOSAIC Ill

16 GHz
400 ohms
20 ff
24 ff
54 ff
1.75µm x 4µm
4.5µm
7µm
12µm

Figure I Comparison of MOSAIC Ill and MOSAIC I Devices

Digital TecbnicalJournal Vol. 2 No. 4 Fa ll / <)<JO 45

VAX 9000 Series

cells. The 256 I/0 pad cells along with the 104
power pads are located around the perimeter of the
lOK gate array. The metalization system uses three
interconnect layers. The customized routing chan­
nels reside on the first and second metal layers with
interconnecting vias between the two layers of
metal. The top metal layer and parts of metal I and 2
provide power and ground distribution.

The lOK ECL gate array used in the VAX 9000 is
approximately ten times more dense than the ECL

gate array used in the VAX 8800 system. The gate
delays in the 9000 are improved six times over gate
delays in the VAX 8800. Table 2 compares the IOK
ECL gate array used in the VAX 9000 to the ECL gate
array used in the VAX 8800.

Previous gate array designs , in general, have
provided only two levels of series gating, thereby
limiting the complexity of functions that can be
designed with one current switch. Within this gate
array, three levels of series gating at both internal
and output macrocells provide additional "AND"

(product) gate functions at very high speed with
one switch delay and at a lower power level. Fig­
ure 4 compares three-level series gating and two­
level series gating for a "2-3-4-4 AND/OR" logic
function (internal gate). Table 3 lists the differences
in typical gate performance for a low power gate.
The table also compares low power gate and high
power gate. Notice the power difference between
the two-level and three-level high power gate.

46

Figure 2 Chip in TAB Package Mounted on
Plastic Carrier and Encapsulated

Table 2 Comparison of Number of Cells
and Delays in the VAX 8800 and
VAX 9000 Gate Arrays

VAX8800 VAX 9000
Gate Array Gate Array

Internal major 48 414
cells

Output cells 26 200

Input cells 25 224

Input cells 1.05 nano- 175 pico-
gate delay seconds seconds

(high power)

Metal delay 2.6 pico- 1.3 pico-
(fall delays) seconds seconds

per mil per mil

All current switches within the array are pow­
ered from the main supply voltage VEE 1. Three­
level-series gated functions are implemented in the
VAX 9000 gate array option, which requires VEE I
to be set to -5.2 V. Input cells are powered from a
second, lower supply voltage VEE2 (-3.4 V) to save
power. The output emitter followers of M, I, and
O cells as well as series-terminated ECL (STECL)

output followers employ constant current source
pulldowns to VEE2 to save power. The constant cur­
rent source pulldowns minimize the sensitivity of
AC performance to variations in power supply. This
same termination scheme was used in VAX 9000
custom chips.

One of the technologists' main goals was to mini­
mize power consumption of each macrocell while
obtaining the highest possible performance from
the IOK ECL gate array. The overall IOK ECL Gate
Array power is limited to 30 watts because of the
cooling requirements, the internal power distribu­
tion, and the current density limits on power pins.

A unique feature included in the IOK ECL gate
array that previous gate arrays do not have is series­
terminated ECL (ST ECL) outputs. STECL outputs

Table 3 Comparison of Two-level and
Three-level Series Gating

Two levels
of Gating

Three Levels
of Gating

Gate delay from 300 picoseconds 250 picoseconds
input pin A
to output pin YA
(low power)

Low power gate
High power gate

9.88 milliwatts
18.20 milliwatts

8.84 milliwatts
13.00 milliwatts

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljounial

Semiconductor Technology in a High-performance VAX System

------· ~-~-

Figure 3 Photomicrograph of the Gate Array

include a constant current source pulldown and a
series terminating resistor. This feature allows the
elimination of off-chip termination resistors used
in conventional 50-ohm ECL outputs. STECL out­
puts allow shorter interconnections between chips
on the multichip unit because the chips can be
placed closer to each other, thus improving perfor­
mance. Another advantage of using STECL outputs
over 50-ohm outputs is that less than half of the
simultaneous switching output noise is coupled to
unswitched outputs. All custom chips used in the
VAX 9900 employ STECL termination.

Clock Distribution Chip- CDxx
The major function of the clock distribution chip
(CDxx), shown in Figure 5, is to distribute master
and reference clocks to each MCA on a multichip
unit. There are eight pairs of differential master and

D igi ta l Tecbnical]ournal i-bt. 2 No. 4 Fall 1990

reference clocks. The chip also supplies clocks to
all STRAMs on the unit. Each of the STRAM's four
groups of six clocks can be programmed to one of
eight possible clock phases. This flexibility in pro­
gramming allows the system designer to select the
appropriate clocks for STRAMs in order to meet
system timing requirements.

In addition to providing the functions above,
the design goals for the CDxx project included the
following:

• Minimize the space occupied by the chip on the
multichip unit

• Provide scan control and scan distribution

• Include a wideband amplifier

• Ensure low clock skew

• Provide a temperature-detecting circuit

47

VAX 9000 Series

vcc

--- --YA@

VBB1 VBB1 VBB1
- ---+- YB@

vcs,

VEE2-----

VEE1 VEE1 VEE1
ONE LEVEL OF GATING

----vcc

vcc

vcc

vcc

VBB3

VEE1--L-----'------- ---.
~ ---~- VEE2

THREE LEVELS OF GATING

Figure 4 Two-level Functions l!ersus Three-level Functions

48 Vol. 2 No. 4 Fall 1990 Digital Tecbntcal]ournal

Semiconductor Technology in a High-performance VAX System

SCAN RING 12 :::CAN RING 13

HOT CIRCUIT

Figure 5 Photomicrograph of CDxx Chip

Minimizing the real estate occupied by the chip
was complicated by additional functions located on
the CDxx, such as scan and the temperature detect­
ing circuits. The minimization was accomplished
by employing a custom chip design approach in
which each element (cell) is optimized and then
manually placed and routed to achieve a compact
design. As it turned out, the size of the chip was not
determined by the amount of real estate needed to
implement the circuits, but rather by the number of
pins required to communicate to the rest of the
multichip unit.

Since a CDxx is mounted on every multichip unit
in the CPU, the scan distribution and control logic
are located on this chip. The CDxx chips in the sys­
tem are chained together on the system scan bus.

Digital Tecbnical]ournal J,b/. 2 No. 4 Fall 1990

Each CDxx receives its scan control signals from the
previous CDxx in the chain or from the service pro­
cessor. As shown in Figure 5, there are three scan
rings located on the CDxx. Ring 12 is a 16-bit ring
reserved for the CDxx STRAM clock generation con­
trol ring. This ring controls the STRAM clock phase
selection and enable for each of the four STRAM

clock groups. Ring 13 is a 14-bit ring reserved for the
CDxx scan control. Data is shifted into this ring and
then loaded into CDxx control registers. Ring 14 is a
47-bit ring reserved for the CDxx information scan
ring. Data is loaded into this ring from CDxx data
registers and shifted out to the service processor.

The design of the wideband amplifier was
prompted by the need for the clock distribution
chip to receive two differential sinusoidal master

49

VAX 9000 Series

and reference clock signals as inputs. These signals
are transformer coupled from the clock source.
The master clock runs at one eighth the system
cycle time, and the reference clock runs at the sys­
tem cycle time. The wideband amplifier receives
differential sinusoidal signals of relatively small
amplitude - less than 125 millivolts peak to peak­
and transforms them to IOOK ECL levels on output.
The design of the input circuits meets these crite­
ria and typically functions with inputs less than
65 millivolts.

All the clocks are distributed by the CDxx as pairs
of differential signals. The distribution of these
docks is, of course, to be done with minimal clock
skew. Clock skew is the difference in delay time
between different clock outputs measured from a
common point. The common point in this case is
the number of master clock inputs to the chip. To
maintain low clock skew, technologists designed
fast gates and minimized the number of cascaded
gates in the clock path. Also, all the metal that inter­
connects the cells in the clock path is controlled for
equal delay. As a result, the measured clock skew
is less than 100 picoseconds on a chip for master,
reference, and STRAM clocks. The delay of master
dock input to output is less than 1 nanosecond (ns).

The temperature-detecting circuit on the CDxx
warns the system when a device junction tempera­
ture approaches the maximum allowed tempera­
ture on a multichip unit. As implemented, the
circuit is controlled from the system console. The
console loads the CD.xx with a number that repre­
sents the temperature the circuit must use as a point
of comparison. If the junction temperature of the
CDxx is higher than the programmed value, the cir­
cuit trips and notifies the console of a temperature
problem. The console then takes corrective action.

Self-timed Register File Chip- STGx
The self-timed register file chip (STGx) is employed
in the VAX 9000 to provide four register banks
accessible through multiple read and write ports.
The four banks include a microcode scratch-pad
register bank, the VAX general-purpose register
set, a memory data register storage bank, and an
instruction data register bank. The performance
requirements for the STGx were quite rigid and
guided several key design decisions, including den­
sity and layout. The read access time was to be less
than 5 ns. The write access time was to be less than
6 ns. In other words, the chip must read or write
any one of its 64 locations in 5 or 6 ns, respectively.
Both goals have been met . In fact, the read access

50

time is typically less than 4 ns, and the write time
is typically less than 5 ns. Figure 6 is a photomicro­
graph of the STGx chip.

The STGx is a 64-word by 18-bit ECL register file
containing three write ports and two read ports.
The 64 words are separated into four 16-word by
18-bit storage array sections. Each of the four stor­
age banks has dual read capability. Storage bank one
has dual write capability; storage banks two and
three have triple write capability; and storage bank
four has single write capability. Simultaneous write
access to the array is possible through all ports with
correct results occurring; the only exception is in
the case of writes to the same location from multi­
ple ports, which is an undefined operation. A write
followed by a read access to the array- even to the
same address-is possible with correct results
occurring. The chip has two clock inputs for con­
trolling reads and writes.

One requirement for the design was to include a
self-timed write capability so that the system need
not provide properly timed write pulses to the chip.
In the system, the chip is clocked with STRAM
clocks for reading and writing. The design uses
these clocks to latch read address information, to
latch write address information, and to latch input
data. In addition, the design takes the leading edge
of the write clock to generate a delayed write pulse.
The delayed write pulse is used to write the appro­
priate word in the 64-word by 18-bit array, taking
into account the time needed to decode the write
address.

The design style used to implement the self-timed
register file chip is similar to a silicon compiler tech­
nique. The · chip's storage area is made up of four
arrays. The input address register for both read and
write ports, the input data latches, and the data out­
put drivers are arrangements of cells in strips. The
placement and routing of these arrays and strips was
procedurally performed using custom layout tools.
Once the blocks were assembled and placed, inter­
connections among blocks, strips, and pins were
then routed manually.

Multiplication Chip-MULx
The architecture of the scalar processor defined an
integrated floating point processor. Unlike most
RISC processors, which off-load all floating point
operations to a separate floating point processor,
the VAX 9000 system handles floating point opera­
tions within the E-box .-i The multiplication unit
therefore supports both integer and floating point
formats. To achieve this support, a custom chip was

Vol. 2 So. -1 Fal/ / 'J'JO Digital TeclJnical]ournal

Semiconductor Technology in a High-performance VAX System

WRITE CLOCK GENERATION A AND B READ ADDRESS LATCHES

Figure 6 Photomicrograph of STGx Chip

required that provided superior performance, spe­
cial logic gates, and improved density. Custom chip
technology provided enough density to accommo­
date a 32-bit by 32-bit, eight-logic-level multiplica­
tion array in a single chip (MULx). To minimize the
cost and time of custom design, designers employed
standard cell design techniques in which the cell
height was fixed and the width could vary to take
advantage of packing density. By constraining
the design in this fashion, the High Performance
Systems Group's CAD suite could be employed to
place and route the chip. Special logic gates
eliminated three logic levels, and high-powered fast
gates provided the performance to permit a 32-bit
by 32-bit multiply operation in less than 9 ns. Fig­
ure 7 shows a photomicrograph of the MULx chip.

Digital Tecbnicaljournal VrJI. 2 No. 4 Fall 1990

Three MULx chips were required in the scalar
processor to achieve double-precision performance
in which every 64 ns a 56-bit multiplication could
complete. Each MULx chip has two 32-bit input data
buses. The MULx chip is also employed to perform
all integer multiply operations in a single 16-ns
cycle.

The scalar processor, which has 32-bit-wide data
paths, delivers double-precision input data in two
cycles. In the first cycle, each MULx consumes the
most significant high bits of each operand. All three
MULx chips latch this data while also unpacking
it, multiplying it, and then latching the product.
One of the MULx chips' results is then saved. In the
second cycle, the remaining double-precision data,
the least significant low bits, is consumed, and each

51

VAX 9000 Series

Figure 7 Photomicrograph of MUL:x Chip

MULx chip unpacks the data and performs a unique
multiply: operand A high bits and operand B low
bits; operand A low bits and operand B high bits;
and operand A low bits and operand B low bits.

An MCA III gate array accumulates all these
results, and another rounds and packs the bits into a
VAX floating point product. Since each MULx needs
to know which partial product it must compute in
the second cycle, two personality bits are included
that are loaded by means of the system scan chain.

MULx chips are also used in the vector processor.
The vector processor (V-box) has 64-bit-wide data
paths. Four MULx chips are employed to complete a
double-precision multiply every 16 ns. Since the
operand unpacking differs between the scalar and
vector processors as a result of how fast operands

52

are delivered, each MULx has an additional person­
ality bit for indkating whether the MULx is in the
V-box or E-box.

The MULx chip, as used in both the scalar and
vector processors, is a 32-bit by 32-bit ECL parallel
multiplier which is fully pipelined for a 16-ns cycle
time. It performs both two's complement and sign/
magnitude multiplication. In a single cycle, the chip
unpacks VAX floating point formats F, D, and G, or
integer formats long, word, and byte; performs
exponent calculations and sign handling; and com­
pletes up to a 32-bit by 32-bit multiplication .

If the operation is double precision, the 64-bit
result is a partial result . It must be accumulated with
three other partial results to form the double-preci­
sion, correctly rounded, and normalized product.

Vol. 2 No. 4 Fall 1990 Digital TecbnlcalJoun1al

Semiconductor Technology in a High-performance VAX System

If the operation is an integer type, then the 64-bit
two's complement result is the VAX integer product.
Along with producing this integer product, MULx
also produces the correct condition codes. Integer
operations require one machine cycle to complete.
Operands are not latched at input. Instead they are
immediately unpacked and sent to the multiplica­
tion array. This multipurpose array then produces a
set of sum and carry product vectors. These vectors
are then added in a full carry lookahead adder
(CLA). This adder comprises a 31-bit adder and a
32-bit adder, cascaded. The produced sum is the
64-bit product, which is then latched. The output
of the latch is used to compute integer-type con­
dition codes.

The integer instructions supported include VAX
MULB, MULW, and MULL. EMUL is also directly sup­
ported, along with the Z and N bit condition codes.
Finally, to assist in H format-type multiplications,
a true 32-bit by 32-bit magnitude multiplication is
also supported, called EXTMUL (extended multiply).
There is a 64-bit data path back into the E-box for
EMUL- and EXTMUL-type operations.

Six features of the MULx design that improve per­
formance and minimize logic should be noted.
First, unlike traditional designs, the MULx design
does not include Booth recoding of the multiplier
operand. Booth recoding offers no logic savings
either in timing or real estate when the multiplica­
tion array reduction scheme is optimal. Second, a
Baugh-Wooley two's complement algorithm was
used to implement integer multiplication.4 Third,
engineers designed special full adder logic gates to
integrate multiplication summand generation into
the full adder cell and to eliminate the need for an
additional logic level. Fourth, a unique multipli­
cation reduction algorithm was developed which
provides the initial routing advantages of a Wallace
tree, with the minimal logic of a Dadda tree.5•

6 Fifth,
a ripple is formed in the reduction array. The ripple
facilitates the start of the least significant 31-bit
CLA addition at least one logic level sooner than
the most significant 32 bits and does not require a
carry-in input to the upper 32-bit adder. Finally, by
developing a very fast 4-3-2-1 AND/OR gate, engi­
neers were able to remove two additional logic
levels in both CLA adder networks.

To avoid bugs in the array design, since bugs in an
array consisting of 1000 full adders could have sig­
nificantly affected the product shipment schedule,
engineers developed a FORTRAN program to logi­
cally interconnect and physically place the array.

Any bugs would be algorithmic and not random,
and algorithmic bugs should be obvious. In addi-

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990

tion, by algorithmically placing the array, signi­
ficant density improvements were realized. This
program provides a Wallace-Dadda implementa­
tion that logically reduces 32 rows in 8 logic levels,
and consumes as many initial summand bits. It
also uses the least number of full adders as theoreti­
cally possible, while delivering the least significant
32 bits of sum and carries at least one full logic level
sooner than the most significant bits.

Division Cbip-DIVx
The iterative divide function performed by the divi­
sion chip, DIVx, requires a significant amount of
hardware, the density of which a standard cell chip
affords. Two gate arrays would be required to per­
form the same function, in which case a timing­
critical path crossing would occur between the two
chips. Therefore, the IC designers implemented the
DIVx chip as a standard cell design by building
on the techniques developed for the MULx chip
described above. Also, like the MULx design, the
goals for the DIVx design project were to optimize
performance and minimize real estate use by fitting
the iterative divide function in a single chip.

The IC designers employed a standard cell tech­
nique in which four horizontal sections are defined,
each section having a different number of columns.
Reference cells are located in the center row of each
section and provide ECL reference voltages to the
cells above and below in that section's columns.
Placement was driven for performance, with quo­
tient selection logic being distributed to where it
was required. This method made for an irregular
structure, as can been seen in Figure 8.

The VAX 9000 system optimizes both multiplica­
tion and division by providing separate functional
units. Each functional unit performs both integer
and floating point operations. This approach differs
from the one taken by most processor architects,
who conceptually link multiplication and division.
Usually, algorithms are chosen that can share hard­
ware at the expense of the performance of either
operation. The separate division unit in the 9000
provides superior performance for both integer and
floating point operations. The DIVx chip is also
used by the V-box to perform very fast vector divi­
sion operations, as shown in Table 4.

Division is an iterative process. Unlike the case of
multiplication, one cannot predict the summands
and then reduce the summand matrix. The two
approaches to division most commonly used are
the Taylor Series convergence algorithm and a sub­
tract and shift algorithm? The algorithm employed
in the 9000 is a variation on the subtract and shift

53

VAX 9000 Series

Table 4 Division Performance

Data Type

Integer: byte

Floating
point:

word
long

F-format
D-format
G-format

Cycles

3-4
3-5
3-8

7
13
12

Time
(Nanoseconds)

48-64
48-80

48-128

112
208
192

method, which allows for savings in hardware as
well as increased performance.

In this method, an imprecise quotient is selected
based on a truncated estimated partial remainder

and a truncated version of the exact divisor. This
imprecise quotient digit is corrected when the next
guess quotient digit is selected. The selected digits
may be positive or negative. The positive digits are
accumulated in a positive-value shift register. The
negative digits are accumulated in a negative-value
shift register. The final corrected binary quotient is
then formed by subtracting the negative register
from the positive register.

The algorithm is based on a signed digit notation
scheme. To determine two quotient bits, the bits
may be chosen from a digit set that includes
{-2,-1,-0, +o, +l, +2 }. Thedigitsetissimplyan
expanded form of the common nonrestoring digit
set that typically uses { -1, 0, + 1 } . In nonrestoring
algorithms, the quotient is normally corrected as

Figure 8 Photomicrograph of D/Vx Chip

54 Vol. 2 No. 4 Fall 1990 Digital Tecbnica l j ournal

Semiconductor Technology in a High-perfomzance VAX System

needed; whereas here, it is not corrected until the
entire iterative process is completed. The next sig­
nificant difference between this division technique
and the nonrestoring method is that the quotient
bits selected are based on an estimate of the partial
.remainder and divisor rather than the exact values.
The first advantage of this method is that an esti­
mate can be obtained faster than the exact value.
Second, a truncated estimate is acceptable, rather
than a full-width estimate. Consequently, this
method saves a significant amount of hardware and
increases the speed of the ope.ration. If one were to
complete each partial remainder, up to three addi­
tional chips would be required and the delay would
more than double.

The trick to the method lies in the quotient selec­
tion. The selection is based on partial remainder
range transformations which guarantee that a
quotient digit selected in one iteration may be cor­
rected to the exact quotient digit on the next
iteration. Therefore, although six quotient digits
a.re determined per major iteration, an additional
minor iteration is required to guarantee the least
significant digit of the major iteration. The major
and minor iteration terms refer to the architecture
of the divide iterative hardware. The DIVx produces
six quotient bits per machine cycle. This is a radix
64 division technique. However, the high radix
division is accomplished by overlapping lesser
radix divisions. In particular, there are three sets of
radix 4 division groups. The first two sets a.re over­
lapped, so that the critical path through the radix
64 division is actually the critical path through two
radix 4 divisions. A minor iteration is the path
through one radix 4 division group. A major itera­
tion is the path th.rough the overlapped set of two
radix 4 division groups, followed by the final radix
4 group. It is important to note that extra iterations
do not adversely affect the corrected quotient.
Finally, to produce the corrected quotient, the set
of negative quotient digits is subtracted from the
set of positive quotient digits, where each digit is
properly radix 2 weighted, based on the order of
selection. (That is, the first quotient digit selected is
the most significant bit of the correct quotient.)

Vector Register File Chip- VRGx
The VAX 9000 architecture adds vector inst.ructions
to the standard VAX environment, thus a vector
register file was required. There were two primary
design requirements for the vector register file.
First, the register file and associated cross-bar logic
had to fit in a single multichip unit; and second, the

Digital Tecbnlcaljourna/ Vol. 2 No. 4 Fall 1990

.register file had to perform read and write at dif­
ferent addresses within a single 16-ns clock cycle.
These requirements could not be met with available
memory and logic chips, thus necessitating the
development of a fully custom vector register chip.

The vector .register file is 64 bits wide and con­
sists of 16 vector registers with 64 elements each.
The vector register chip, VRGx, was developed as an
8-bit slice of the 64-bit vector register file. The chip
contains 9216 bits of RAM for data storage and the
cross-bar logic (6000 equivalent gates) that allows
access from the five read ports and three write
ports. Integrating the register memory and the
cross-bar logic on the same chip allowed timing to
be optimized so that the system timing require­
ments we.re met.

VRGx Chip Physical Features and
Organization
The VRGx chip is fabricated using the MOSAIC III ECL
process, which was not designed as a memory pro­
cess. Coordination with the vendor resulted in the
addition of an implant step for the memory-cell­
bit line emitters. Key features of the process are
three metal interconnect layers, oxide isolation,
and polysilicon emitters with a drawn width of
1.75 microns.

Figure 9 shows the locations of the major circuit
blocks in the VRGx chip. The major blocks of the
VRGx chip are five read ports, three write ports,
and 16 vector registers in the RAM bank array. The
block diagram, Figure 10, shows the main data
paths. The 16 vector registers are implemented as
64-word by 9-bit single port RAMs. Eight bits are a
slice of the 64-bit vector register file and the ninth
bit is for byte parity.

Timing
A register RAM can be read from one address and
written from a different address in one 16-ns clock
cycle. This dual operation is made possible by a 2
to 1 multiplexer on the RAM address inputs. The
read address is applied during the first portion of
the cycle, and the write address is applied during
the second portion of the cycle. Splitting the clock
cycle into read and write portions eliminates
conflict between read and write ports in the event
that a single register RAM is selected for both read
and write. Read data is held in a latch during the sec­
ond portion of the cycle and is unaffected by the
write operation.

A single clock cycle consists of nonoverlapping
clock phases A and B. Latches on the read and write

55

VAX 9000 Series

Figure 9 Photomicrograph of VRGx Chip

port inputs are clocked by phase A, and read port
output latches are clocked by phase B. For a read
operation initiated on phase A, the output read data
becomes valid during phase B.

Cross-bar Logic
Cross-bar logic in the RAM bank array makes each of
the 16 vector register RAMs independently accessi­
ble from the read and write ports. Enable inputs on
the ports prevent invalid addresses from conflicting
with intended addresses. Read and write ports may
point to the same register RAM, but different write
ports may not point to the same RAM. Also, differ­
ent read ports may only point to the same RAM if the
vector element address is the same. All conflicts
must be resolved external to the chip.

56

A read port consists of an enable, a 4-bit register
select, a 6-bit vector element address, and a 9-bit
output. An enabled read port applies a register
select code that points to a particular RAM bank. At
that RAM bank, a 5 to 1 multiplexer selects the vec­
tor element address from the active read port and
applies it to the read address of the RAM. Then the
RAM output passes through a 16 to 1 multiplexer
controlled by the register select code, so that the
selected RAM output reaches the output of the active
read port.

A write port consists of an enable, a 4-bit register
select, a 6-bit vector element address, and a 9-bit
write data input. An enabled write port applies a
register select code that points to a particular RAM
bank. At that RAM bank, a 3 to 1 multiplexer selects

Vol. 2 No. 4 Fall 1990 Digital Tecbntcal]ournal

Semiconductor Technology in a High-performance VAX" System

Sx Sx

SEL
ADDR<S:0> SEL

r- -------- - -,
SEL<3:0>

ENABLE

READ I I PORT READ

ADDRI gl 16:1 PORT

6
MUX OUT

5:1
MUX AR DO D0 <8:0>

3x

DIN<8:0>
ADDR 3:1 6

MUX AW

ADDR<S:0> RAM
WRITE 64 x 9

SEL<3:0>
PORT DATA 9

3:1 DI
SEL MUX

ENABLE

I RAM BANK
L--------- ...J

RAM BANK ARRAY, 16x

Figure 10 VRGx Chip Block Diagram

the vector element address from the active write
port and applies it to the write address of the RAM.
Also, a 3 to I multiplexer selects the write data
from the active write port and applies it to the RAM
data input.

RAM Technology
The normal transistors in an ECL process are of the
NPN type, where the collector is a buried N-doped
region. For memory cells, a lateral PNP transistor is
placed in the same collector region, and the com­
bined structure has the latching characteristics of a
silicon controlled rectifier (SCR}. The memory cell
array in the 64 by 9 register RAMs is implemented
with ECL SCR memory cells.

The SCR memory cell shown in Figure 11 consists
of two cross-coupled SCR structures. Extra NPN
emitters connect to the bit lines and provide a
means of writing and sensing the cell. The "on" side
of the cell saturates, allowing the bit line emitter to
conduct in the inverse mode. Inverse gain of the bit
line emitters must be limited to avoid excessive
leakage into the unselected cells. An added process
step applies a special base implant to the bit line
emitters only to control their inverse gain.

Advantages of the SCR cell include good density,
low standby power, large sense voltage differen-

Digital Tecbntcal]ournal Vol. 2 No. 4 Fall 1990

tial, and low sensitivity to alpha-particle-induced
soft errors. The cell has one limitation: excess
charge storage due to write current can delay sub­
sequent writing to the opposite state. This problem
is eliminated with a special bit line current steering
circuit that makes write current state dependent
(Figure 11).

The SCR memory cell in Figure 11 is written by
applying a high current (four times read current) to
the "off' bit line emitter. The current steering tran­
sistors prevent this current from reaching a bit line
emitter that is already "on." Thus, attempting to
write a cell that is already in the desired state does
not result in any additional cell current beyond the
normal read current, and no additional charge stor­
age occurs.

Other Chip Features
Other noteworthy chip features include scan logic,
parity error detect logic, and a data pipeline for
write port O data. Scan operation gives access to the
register RAMs. In a single scan-in and scan-out oper­
ation, it is possible to read five registers and to write
three registers.

Parity checking logic is used to detect input
errors and set error flags. There is a parity check on
the 9-bit write port data inputs. Another parity

57

VAX 9000 Series

WC1 wco

VR

r------1
UWL IR

I
I
I
I

I
I

BL
ON I

BR
I
I

LWL

L _M~M~R..! £_E~ _J i 0.51
1.51 !

! 0.51

0. 51 !

VR VR

KEY:

WC - WRITE CONTROL
UWL - UPPER WORD LINE
BL - BIT LINE (LEFT)
BR - BIT LINE (RIGHT)
LWL - LOWER WORD LINE
VR - VOLTAGE REFERENCE

Figure 11 SCR Memory Cell with Bit Line
Current Steering Circuit

checker is applied to address and control inputs.
These are assigned to three parity groups, with a
parity bit input for each group.

The write port O data pipeline allows a delay of
one, two, and three clock cycles to be selected,
delaying the write port data as necessary to resolve
register access conflicts.

Self-timed RAM
In the VAX 9000 system - as in any high-perfor­
mance CPU - fast memory is used for cache and
control store applications. Engineers traditionally
use very fast static RAMs within the CPU for mem­
ory. Logic designers, however, have long recognized
that CPU performance is often limited as a result of
the time needed to access data in these RAMs. This
limitation is not only the result of the access time
and write cycle performance of the devices them­
selves, but also of the off-chip circuitry and inter­
connect used for write pulse generation and
distribution. The logic designers and technologists

58

for the VAX 9000 knew that unless some architec­
tural improvements were made to the traditional
static RAM, much of the RAM performance improve­
ments would be lost in the wiring interconnect.
They also realized that Digital's memory suppliers
would have to be convinced that a new RAM archi­
tecture would be marketable to their other cus­
tomers. After several design iterations, the tech­
nologists submitted a set of specifications for a
synchronous, self-timed RAM (STRAM) to several
suppliers for their review. After extensive market
surveys, our memory suppliers agreed that this new
architecture could eventually become a new stan­
dard for high-speed static RAMs.

The VAX 9000 system requires two configura­
tions of the basic STRAM device: IK words by 4 bits,
and 4K words by 4 bits. A block diagram of the
STRAM is shown in Figure 12. The STRAM is similar
to the traditional RAM in that it has chip select, input
address and data, and output data. However, the
STRAM also has several nontraditional inputs such

Vol. 2 No. 4 Falt 1990 Digital Tecbnicaljournal

Semiconductor Technology in a High-performance VAX System

as write, a differential clock, and a reference voltage
(Vbb). Latches added to all inputs and outputs
provide pipelined timing. An internal write pulse
generator controls write operations and eliminates
the need to generate and distribute the write pulse
signal externally on the module. Also two optional
output configurations are provided: a 50-ohm drive
open emitter for standard parallel termination on
the module, and a resistor and pulldown current
source which is wired externally to implement
STECL or on-chip source termination.

The clock buffer design allows inputs to be
driven differentially from off-chip to minimize
clock skew. The clock buffer is also designed to
accommodate customers who are not greatly con­
cerned about skew or who may be more concerned
about conserving routing area. One input of the
clock buffer may be tied to the output pin of the
reference generator which provides the standard
ECL threshold voltage (Vbb), allowing the other
input of the clock buffer to be driven in a single­
ended mode.

LATCH

Input and output latches are clocked on opposite
edges of the internal differential clock buffer. Tim­
ing diagrams are shown in Figure 13. On a falling
edge of CLK H, data and address inputs flow into the
RAM array.

If write is asserted during the next rising edge
of CLK H, then a write cycle is initiated, and the
input data is stored in the memory at the address
presented at the ADR inputs. At the same time, the
data is passed through the multiplexer and the out­
put latch.

If write is deasserted on the rising edge of CLK H,
then the STRAM is in a read cycle and input data is
ignored. The data stored in the RAM at the address
presented at the ADR inputs flows out to the multi­
plexer and output latch.

If chip select (CS) is deasserted prior to the rising
edge of CLK H, then write and read operations are
disabled and the output latches are reset low.

For proper operation of the STRAM, certain
timing requirements must be fulfilled. The write
operation is terminated by either the falling edge of

DIN<3:0>H L----------1 RAM ARRAY
2M X 4

DOUT RAM
<3:0>H

ADDR<M-1 :O>H

WRITE L

CSL

CLOCK H

DIN DOUT
<3:0><3:0>
ADDA WR EN

---------o<M-1:0>

LATCH

Ot-t~----,--

WRITE
PULSE
GENERATOR

~----tDO EN

WR H
ENABLE H

CLOCK H

OcLKH

D CLKL

LATCH

Figure 12 STRAM Block Diagram

Digital Tecbntcaljoun1al Vol. 2 No. 4 Fa/11990

DO<ST><3:0>H

DLY
CLK
H

59

VAX 9000 Series

NOTE: CLOCK HIGH STATE MUST LAST LONG ENOUGH
TO COMPLETE A WRITE CYCLE

CLK

WRITE

I• .. I

KEY:

O RD - READ OPERATION CYCLE O
1 WR - WRITE OPERATION CYCLE 1

2 3

3

Figure 13 STRAM Timing Diagrams

CLK H or by the internal write pulse generator,
whichever occurs first. Therefore CLK H must be
assened long enough to ensure that data is properly
written into the memory array. The internal write
pulse generator provides an output having the
proper duration as determined by a string of gates.

Also, the assenion of the internal write pulse sig­
nal must be delayed by an amount equal to the inter­
nal access time of the RAM. In this way, the correct
data is stored, and not the data previously stored in
the input registers. The delay is accomplished by
the row delay circuit, which is also simply a string
of gates. These features give the STRAM its "self­
timed" nature.

Acknowledgments
The authors would like to acknowledge the follow­
ing individuals who panicipated in and contrib­
uted to the success of the VAX 9000 project: Jerry
Weisbach, · Andy Moroney, Bob Haller, Marc
Lamere, Mark Hamel, Tom Senna, Dave McCall,
Patty Kroesen, Rick Jones, Jim Jensen, Terry
Skrypek, Eugene Marteney, Paul Guglielmi, Elaine
Fite, Larry Herman, Bill Grundmann, Mark
Pascarelli, Fran Richard, Linda Greska, Jack Mason,
Chris Caiazzi, Roger Dame, Mike Normand Steve
Sullivan, Rob Reinschmidt, Bob Bechdolt, Mike
Warder, Mike Hickman, Brian Sadler, Wayne
Nunn, Rita Wespi, Gene Yee, Bruce Smith, Alisyn
Emerson , Jim Glanville.

60

References

1. D. Marshall and J. McElroy, "VAX 9000
Packaging, The Multi-Chip Unit," Proceedings of
COMPCON '90 (Spring 1990).

2. P. Zdebel et al., "MOSAIC III-A High Perfor­
mance Bipolar Technology with Self-Aligned
Devices," Proceedings of IEEE 1987 Bipolar
Circuits and Technology Meeting.

3. D. Fite and T. Fossum, "Designing a VAX for High
Performance," Proceedings of COMPCON '90
(Spring 1990).

4. C. Baugh and B. Wooley, "A Two's Complement
Parallel Array Multiplication Algorithm," Short
Note at COMPCON 73, 7th Annual IEEE
Computer Society International Conference
(February 1973).

5. C. Wallace, "A Suggestion for a Fast Multiplier,"
IEEE Transactions on Electronic Computers,
Vol. EC-13 (February 1964): 14-17.

6. L. Dadda, "Some Schemes for Parallel
Multipliers," Colloque sur l'Algebre de Boole
Oanuary 1965).

7. K. Hwang, Computer Arithmetic Principles,
Architecture, and Design (New York: John Wiley
and Sons, 1979): 213-283.

Vol. 2 No. 4 Fall 1990 Digital Tecbntcal]ournal

Richard A. Brunner
Dileep P. Bhandarkar

Francis X. McKeen
BimalPatel

William]. Rogers]r.
Gregory L. Yoder

Vector Processing on the
VAX 9000 System

The VAX 9000 system provides the first emitter-coupled logic (ECL) implementation of
the VAX vector architecture. The optional vector processor on the VAX 9000 system
addresses the computing needs of numerically intensive applications with a peak
perfonnance of 125 MFLOPS for double-precision calculations. The innovative
design of the vector register file allows the vector processor to overlap the execution of
up to three vector instructions. Supported by both the VMS and ULTRIX operating
systems, the vector processor on the VAX 9000 system provides four to five times
perfonnance improvement for vectorizable applications over its scalar processor.

For a long time, vector processing was the domain
of large, expensive supercomputers such as the
CRAY-1.1 However, with the availability of low cost,
pipelined floating point arithmetic chips, and the
maturation of vectorizing compilers, vector pro­
cessing has become a mainstream technology for
scientific applications.2 Applications that can bene­
fit from vector processing include finite element
analysis, signal processing, and computational fluid
dynamics. The recent addition of integrated vector
processing to the VAX architecture and its imple­
mentation on the VAX 9000 system provides these
applications with an improvement in execution
time of four to five times over that of a VAX 9000 sys­
tem without vector processing. Vector processing
extends the performance range of VAX systems.

The vector processor on the VAX 9000 system,
referred to as the V-box, is the first emitter-coupled
logic (ECL) implementation of the VAX vector archi­
tecture. The definition of the architecture and the
development of the V-box started in 1986, two years
after the design of the rest of the VAX 9000 CPU.
Thus, the design of the V-box was synergistic with
the definition of the VAX vector architecture. The
major goal of the V-box design was to provide
adequate vector performance (four to five times
speed-up over scalar) without impacting the design
of the remainder of the VAX 9000 CPU and the
memory subsystem, which were too far along in
development to change. With vector performance
comparable to a CRAY -1 and a peak performance of
125 MFLOPS for double-precision calculations, the
V-box fulfills this goal.

Digital TecbnicalJournal Vol. 2 No. 4 Fall 1990

This paper describes the VAX vector architecture
and its implementation by the VAX 9000 V-box. The
first part of the paper discusses the architectural
model that all VAX vector processors must follow.
The second part shows the actual realization of this
architecture in the VAX 9000 V-box and explains the
innovative techniques the V-box uses to achieve
good performance. The paper concludes with
preliminary vector performance numbers for the
VAX 9000 system on some standard vector bench­
marks and a number of vector code examples.

VAX Vector Architecture
The VAX vector architecture defines the instruction
set, registers, and behavior that all VAX vector
implementations, such as the VAX 9000 V-box, must
follow.3 The vector architecture effort started in
December 1985. At that time several CPU develop­
ment projects were well underway, including the
VAX 9000 system. With the expectation of provid­
ing four to five times performance improvement
for vectorizable applications, Digital decided to add
vector processing to the VAX 9000 system, even
though the system was in an advanced stage of
development. A decision also was made to provide
a complementary metal oxide semiconductor
(CMOS) implementation of the architecture on the
VAX 6000 Model 400 system.4

Because both systems could not tolerate major
changes without a major slip in schedule, the archi­
tecture required an approach that made few
changes to the scalar processor- that part of a VAX

61

VAX 9000 Series

processor that executes the regular VAX instruction
set. Furthermore, because not all applications and
markets can benefit from vector processing, Digital
decided not to require vector processing on every
new VAX processor. Therefore, vector processing is
offered as an optional capability. The scalar proces­
sor decodes vector instructions and passed them
to its associated vector processor. All processing
of vector instructions is handled by the vector pro­
cessor. Mechanisms are provided for vector-scalar
synchronization and handling of vector exceptions
by the scalar processor.

Although the architecture had to account for the
implementation constraints of both ongoing CMOS

and ECL projects, it had to be general and flexible
enough to allow future, more integrated implemen­
tations at higher performance. The architecture
also had to minimize its impact on the existing VMS
and ULTRIX operating systems because major
changes could significantly delay software support
for vector processing.

Basic Architecture
The VAX vector architecture uses a vector-register­
based design first pioneered by Seymour Cray.1

There are 16 vector registers, each of which holds
64 elements; an element is 64-bits. Instructions
which operate on longword integers or F _floating
point data, only manipulate the low-order 32 bits
of each element- sometimes referred to as long­
word elements.

A number of vector control registers control
which elements of a vector register are processed
by an instruction. The vector length register (VLR)
limits the highest-numbered vector register ele­
ment that is processed by a vector instruction. The
vector mask register (VMR) consists of a 64-bit mask,
in which each mask bit corresponds to one of the
possible element positions in a vector register.
When instructions are executed under control of
the vector mask register, only those elements for
which the corresponding mask bit is true are pro­
cessed by the instruction. Vector compare instruc­
tions set the value of the vector mask register.

The vector count register (VCR) receives the
number of elements generated by the compressed
IOTA instruction, which is similar to COMPRESSED
IOTA on the CRAY-2.5 All VAX vector instructions use
two-byte extended opcodes. Any necessary scalar
operands (e.g., base address and stride for vector
memory instructions) are specified by standard VAX
scalar operand specifiers. The instruction formats
allow all VAX vector instructions to be encoded in

62

seven classes. The seven basic instruction groups
and their opcodes are shown in Table 1.

Within each class, all instructions have the same
number and types of operands, which allows the
scalar processor to use block-decoding techniques.
The differences in operation between the individ­
ual instructions within a class are irrelevant to the
scalar processor and need only be known by the
vector processor. Important features of the instruc­
tion set are

• Support for random-strided vector memory data
through gather (VGATH) and scatter (VSCAT)
instructions

• Generation of compressed IOTA vectors (through
the IOTA instruction) to be used as offsets to the
gather and scatter instructions

• Merging vector registers through the VMERGE
instruction

• The ability for any vector instruction to operate
under control of the vector mask register

Additional control information for a vector
instruction is provided in the vector control word
(shown as cntrl in Table 1), which is a scalar
operand to most vector instructions. The control
word operand can be specified using any VAX

addressing mode. However, VAX compilers gener­
ally use immediate mode addressing (that is, place
the control word within the instruction stream).
The format of the vector control word is shown in
Figure 1.

The Va, Vb, and Ve fields indicate the source and
destination vector registers to be used by the
instruction. These fields also indicate the specific
operation to be performed by a vector compare or
convert instruction. The MOE bit indicates whether
the particular instruction operates under control of
the vector mask register. The MTF bit determines
what bit value corresponds to "true" for vector
mask register bits. It allows a compiler to vectorize
if-then-else constructs. The EXC bit is used in vector
arithmetic instructions to enable integer overflow
and floating underflow exception reporting. The
MI bit is used in vector memory load instructions to
indicate modify-intent. Figure 2 shows the encod­
ing for some typical VAX vector instructions.

Vector Execution Model
With the addition of vector processing, a typical
VAX processor consists of a scalar processor and an
associated vector processor; the two are referred to
as a scalar/vector pair. A VAX multiprocessor system

Vol. 2 No. 4 Fa// 1990 Digital TecbnicalJournal

Vector Processing on the VAX 9000 System

Table 1 VAX Vector Instruction Classes

Vector Memory, Constant-stride Vector-scalar Double-precision Arithmetic
opcode cntrl, base, stride opcode cntrl, scalar

VLDL Load longword vector data VSADDD O_floating add
VLDQ Load quadword vector data VSADDG G_floating add
VSTL Store longword vector data VSCMPD O_floating compare
VSTQ Store quadword vector data VSCMPG G_floating compare

VSDIVD O_floating divide

Vector Memory, Random-stride VSDIVG G_floating divide

opcode cntrl, base VSMULD O_floating multiply
VSMULG G_floating multiply

VGATHL Gather longword vector data VSSUBD D_floating subtract

VGATHQ Gather quadword vector data VSSUBG G_floating subtract

VSCATL Scatter longword vector data VSMERGE Merge

VSCATQ Scatter quadword vector data
Vector-vector Arithmetic

Vector-Scalar Single-precision Arithmetic opcode cntrl or regnum

opcode cntrl, scalar
VVADDL Integer longword add

VSADDL Integer longword add VVADDF F _floating add

VSADDF F _floating add VVADDD D_floating add

VSBICL Bit clear longword VVADDG G_floating add

VSBISL Bit set longword VVBICL Bit clear longword

VSCMPL Integer longword compare VVBISL Bit set longword

VSCMPF F _floating compare VVCMPL Integer longword compare

VSDIVF F _floating divide VVCMPF F _floating compare

VSMULL Integer longword multiply VVCMPD O_floating compare

VSMULF F _floating multiply VVCMPG G_floating compare

VSSLLL Shift left logical longword VVCVT Convert

VSSRLL Shift right logical longword VVDIVF F _floating divide

VSSUBL Integer longword subtract VVDIVD O_floating divide

VSSUBF F _floating subtract VVDIVG G_floating divide

VSXORL Exclusive-or longword VVMERGE Merge

IOTA Generate compressed IOTA VVMULL Integer longword multiply

vector VVMULF F _floating multiply
VVMULD O_floating multiply

Vector Control Register Read VVMULG G_floating multiply

opcode regnum, destination VVSLLL Shift left logical longword
VVSRLL Shift right logical longword

MFVP Move from vector processor VVSUBL Integer longword subtract
VVSUBF F _floating subtract

Vector Control Register Write VVSUBD O_floating subtract

opcode regnum, scalar VVSUBG G_floating subtract
VVXORL Exclusive-or longword

MTVP Move to vector processor
VSYNC Synchronize vector memory

access

Digital TecbntcalJournal Vol. 2 No. 4 Fall 1990 63

VAX 9000 Series

15 14 13 12 11 8 7 4 3 0

MOE MTF EXC 0 VNCONVERT FCN VB VG/COMPARE FCN
Ml

Figure 1 Vector Control Word

comprises a number of these scalar/vector pairs.
Asymmetric configurations can exist when only
some of the VAX processors in a multiprocessor
system contain a vector processor.

For good performance, the scalar processor oper­
ates asynchronously from its vector processor
whenever possible. Asynchronous operation allows
the execution of scalar instructions to be over­
lapped with the execution of vector instructions.
Furthermore, the servicing of interrupts and scalar
exceptions by the scalar processor does not disturb
the execution of the vector processor, which is
freed from the complexity of resuming the execu­
tion of vector instructions after such events. How-

ever, the asynchronous execution does cause the
reporting of vector exceptions to be imprecise.
Special instructions, which are described in the
Synchronization section, are provided to ensure
synchronous operation when necessary.

ASSEMBLER FORMAT:

VVEQLF V6,V7

VVADDF/1 V1 ,V2,V3

VSMULF/U R4,V4,V5

INSTRUCTION FORMAT:

Both scalar and vector instructions are initially
fetched from memory and decoded by the scalar
processor. If the opcode indicates a vector instruc­
tion, the opcode and necessary scalar operands are
issued to the vector processor and placed in its
instruction queue. The vector processor accesses
memory directly for any vector data that it must
read or write. For most vector instructions, once the
scalar processor successfully issues the vector

;IF V6[i] = V7[i] THEN VMR[i] = 1, ELSE VMR[i] = 0
; {VVEQLF IS A VVCMPF PSEUDO-OPCODE)
; V3 = V1 + V2. DO ADDITION UNDER CONTROL OF VMR
; WITH MATCH = 1
; V5 = R4'V4 WITH UNDERFLOW EXCEPTION CHECKING ENABLED

VVCMPF
VVADDF
VSMULF

cntrl.rw
cntrl.rw
cntrl.rw, src.rl

; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD
; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD
; INSTRUCTION CONSISTS OF OPCODE, CONTROL WORD, AND SCALAR SOURCE

ENCODING IN MEMORY:

FD

C4

BF

71

06

FD

84

BF

23

C1

FD

A5

BF

45

20

54

BYTE

:~ :> TWO-BYTE OPCODE FOR VVCMPF

:2 - OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD)

:3 - CONTROL WORD <7:0>: COMPARE FCN IS EQLAND V7 IS A SOURCE

:4 - CONTROL WORD <15:8>: V6 IS A SOURCE

:
5

--........_ TWO-BYTE OPCODE FOR VVADDF :6 ___..,....

:7 ----- OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD)

:8 - CONTROL WORD <7:0>: V3 IS DESTINATION AND V2 IS A SOURCE

:9 - CONTROL WORD <15:8>: V1 IS A SOURCE, MASKED OPERATIONS ARE ENABLED, AND MATCH = 1

:: :> TWO-BYTE OPCODE FOR VSMULF

:C - OPERAND SPECIFIER FOR IMMEDIATE MODE {FOR CONTROL WORD)

:D - CONTROL WORD <7:0>: V5 IS DESTINATION AND V4 IS A SOURCE

:E - CONTROL WORD <15:8>: VA IS IGNORED, UNDERFLOW EXCEPTION CHECKING IS ENABLED

:F - OPERAND SPECIFIER FOR REGISTER MODE WITH SCALAR DATA IN R4

Figure 2 Vector Instruction Encoding

64 Vol. 2 No. 4 Fall 1990 Digital Tecbnical]ournal

instruction, it proceeds to process other instruc­
tions and does not wait for the vector instruction to
complete. An execution model is shown in Figure 3.

When the scalar processor attempts to issue a
vector instruction, it checks to see if the vector pro­
cessor is disabled-that is, whether it will accept
further vector instructions. If the vector processor
is disabled, then the scalar processor takes a "vec­
tor processor disabled" fault . An operating system
handler is then invoked on the scalar processor to
examine the various error-reporting registers on the
vector processor to determine the disabling con­
dition. The vector processor disables itself to report
the occurrence of vector aritlunetic exceptions or
hardware errors. The operating system disables the
vector processor, usually to indicate the unavaila­
bility of the vector processor, by writing to a privi­
leged vector register. If the disabling condition can
be corrected, the handler enables the vector proces­
sor and directs the scalar processor to reissue the
faulted vector instruction.

Within the constraint of maintaining the proper
ordering among the operations of data-dependent
instructions, the architecture explicitly allows the
vector processor to execute any number of the
instructions in its queue concurrently and retire
them out of order. Thus, a VAX vector implementa­
tion can chain and overlap instructions to the
extent best suited for its technology and cost­
performance. In addition, by making this feature an
explicit part of the architecture, software is pro-

PHYSICAL
MEMORY

16GB

INSTRUCTION
STREAM

DATA
STREAM

INSTRUCTIONS

DATA

VAX
SCALAR
CPU

VECTOR DATA

Vector Processing on the VAX 9000 System

vided with a programming model that ensures
correct results regardless of the extent a particular
implementation chains or overlaps. This approach
differs with respect to some other existing vector
architectures, such as the IBM S/370 vector archi­
tecture, which give the appearance of sequential
instruction execution.6

A VAX vector implementation may have its own
memory management hardware, translation buffer,
and cache; or it may share those of the scalar pro­
cessor. In high-end vector implementations, such as
the VAX 9000 system, the vector and scalar proces­
sors are tightly coupled. The problems of limited
chip area and translation buffer and cache coher­
ency can be lessened by allowing high-speed mem­
ory management hardware and cache to be shared
by both vector and scalar processors. For other
implementations, such as the VAX 6000 Model 400
system, the vector and scalar processors are not so
tightly coupled, and there is a performance advan­
tage in allowing separate memory management
hardware and cache.4 Little additional effort is nec­
essary by an operating system to support separate
vector memory management hardware and cache.

A vector processor can treat vector memory
management exceptions (MME) in a synchronous
manner, as the VAX 9000 V-box does. Once the
scalar processor issues a vector memory instruc­
tion, it pauses until the vector processor deter­
mines whether an MME will be encountered by the
instruction. If an MME will occur, then a precise

OPCODE, CONTROL WORD

DISABLE/STATUS

VECTOR PROCESSOR

CONTROL
REGISTERS

INSTRUCTION
QUEUE

VECTOR REGISTERS

Figure 3 Vector Execution Unit

Dtgttal TecbntcalJounial Vol. 2 No. 4 Fa/11990 65

VAX 9000 Series

exception is taken on the scalar processor and the
appropriate operating system handler is invoked.
If no MME will occur, the scalar processor proceeds
to process other instructions and the vector proces­
sor completes the memory instruction. In the case
of referencing a unity-strided vector, which occurs
most frequently, the MME checking takes only
a short time at the beginning because the vector
is contained in two or less pages. (MME checking is
done at the page level.)

Context Switching
Because of the asynchronous operation of the vec­
tor and scalar processors, the vector context state of
a process is separate from its scalar context state.
Thus, it is possible for an operating system to swap
in a new process to the scalar processor while
allowing the vector context of the previous process
to remain on the vector processor. When the previ­
ous process is swapped out, the vector processor is
disabled by the operating system to prevent other
processes from accessing this vector context.

If the subsequent processes do not use the vec­
tor processor, then the operating system avoids
the overhead of saving and subsequently restoring
8 kilobytes (KB) of vector context state for the orig­
inal process. If another process does use the vector
processor, the operating system must reenable the
vector processor, save the vector state of the origi­
nal process, load the vector context of the new
process, and, finally, make the vector processor
available. This full context switch can take up to
100 microseconds on the VAX 9000 system.

Assuming that only a few processes require the
vector processor, it is likely that when the original
process is rescheduled to the same scalar/vector
pair, the process will find its vector context state
residing on the vector processor. By using this tech­
nique, which is referred to as "cheap vector context
switching," both the VMS and ULTRIX operating sys­
tems reduce the time required to swap in a process
that uses the vector processor.

Exceptions
Most of the exceptions encountered by VAX vector
instructions are identical to those that occur for
VAX scalar instructions. The arithmetic exceptions
are exactly the same. The memory management
exceptions have been extended to include two new
vector exceptions: vector 1/0 space reference and
vector alignment fault. As in the VAX scalar architec­
ture, the reporting of floating underflow and integer
overflow exceptions can be disabled by setting the
EXC bit in the vector control word.

66

Vector arithmetic exceptions are reported in an
imprecise manner by vector processor disabled
faults. When an exception occurs in the processing
of a vector element, the vector processor records
the exception in both a privileged exception regis­
ter (the vector arithmetic exception register, VAER)
and in the corresponding element of the destination
vector register specified by the instruction. The vec­
tor processor then disables itself from receiving
further vector instructions. However, the vector
processor continues to execute the instruction that
encountered the exception to completion by pro­
cessing the remaining vector register elements.

As stated earlier, memory management excep­
tions can be reported precisely by a VAX vector
processor to its scalar processor, as the VAX 9000
V-box does, and the scalar processor takes a normal
VAX memory management fault . Exception infor­
mation is placed on the stack in the same format as
for scalar memory management exceptions. The
use of the same format minimizes the effort needed
by an operating system to support these exceptions.

Memory management exceptions were extended
for vectors to include two new exception para­
meter bits: vector 1/0 space reference and vector
alignment fault . A vector 1/0 space reference occurs
whenever an attempt is made to load or store vector
data to 1/0 space. Because of the performance
degradation of unaligned memory data, a vector
alignment fault occurs whenever an element being
accessed by a vector memory instruction does not
begin at an address that is an integer multiple of the
length of the element in bytes. For example, a long­
word (4-byte) element in memory should begin at
an address which is an integer multiple of 4 bytes.

Synchronization
In most cases, if is desirable for the vector processor
to operate asynchronously with the scalar proces­
sor to achieve good performance. However, there
are cases in which the operation of the vector and
scalar processors must be synchronized to ensure
correct results. Rather than forcing the vector pro­
cessor to detect and automatically provide synchro­
nization in these cases, the architecture provides
special instructions, which software can use, to
accomplish the synchronization. Some of these
instructions are discussed below. Software must
determine when to use these synchronization
instructions to ensure correct results or establish
exception checkpoints. Given the necessary sophis­
tication of vectorizing compilers, this requirement
is not onerous.

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcal]ournal

Vector and scalar memory references may be
issued simultaneously. Therefore, these references
must be synchronized to prevent a conflict from
occurring when accessing shared memory loca­
tions. This synchronization is provided by the
MSYNC function of the MFVP instruction. Once the
MSYNC function is invoked, the scalar processor
does not issue further instructions until all pre­
vious vector and scalar memory references have
completed.

Because the vector and scalar processors execute
asynchronously, software cannot determine when a
vector exception will be reported. However, soft­
ware requires that exceptions be reported at certain
checkpoints. For example, exceptions incurred in a
procedure must be reported within the context of
that procedure before another procedure is called.
This exception reporting synchroni7.ation is pro­
vided by the SYNC function of the MFVP instruction .
Once SYNC is invoked, the scalar processor does not
issue further instructions until the exceptions of
previous vector instructions, if any, are reported.

VAX 9000 V-box Overview
The VAX 9000 V-box is one of four tightly coupled,
parallel function units that compose the VAX 9000
CPU. As such, it shares, with the rest of the CPU,
both the large 128KB data cache and the very fast
address translation hardware. As a result, the V-box
has very fast access to memory data. The V-box is
connected to the CPU through the scalar execution
unit as shown in Figure 4. This connection consists

I-BOX

E-BOX

M-BOX

VECTOR
CONTROL 1-----1~

1----1~ UNIT

Vector Processing on the VAX 9000 System

of a 64-bit data path, which brings instructions and
data to the vector unit, and a 32-bit path, which
sends data to the scalar unit. All vector memory
instructions send data through this data path.

As Figure 4 also shows, the V-box is composed of
the following subunits: vector register unit, vector
add unit, vector multiply unit, vector mask unit,
vector address unit, and vector control unit. Each of
these subunits can function in parallel, which
allows up to two vector arithmetic instructions
and one vector memory instruction to be executed
simultaneously. Crucial to this instruction over­
lapping ability is the vector register unit, which
supports up to eight simultaneous accesses from
the other subunits.

Physically, the V-box resides on the same planar
board as the remainder of the VAX 9000 CPU. Three
multichip units (MCUs) are reserved for the V-box,
which is a field-installable option. The V-box com­
prises 25 ECL Motorola Macrocell Array Ills (MCA3).7
(For brevity, a macrocell array is referred to as a
"chip" in this paper.) The operation of these sub­
units and the techniques used to enhance their per­
formance are described in the following sections.

Vector Control Unit
The vector control unit receives and coordinates
the execution of vector instructions within the
V-box. The VAX 9000 scalar execution engine
(E-box) transfers both an encoded version of the
vector instruction and the necessary scalar data to
the unit, which loads the instruction and data into a

VECTOR
REGISTER
UNIT

MASKI
ADDRESS

Figure 4 V-bo.x Organization (with VAX 9000 CPU)

Digital TecbntcalJournal Vol. 2 No. 4 Fall 1990 67

VAX 9000 Series

circular queue as shown in Figure 5. The queue can
buffer a few pending instructions while the remain­
ing V-box subunits are executing others. Without
the queue, the V-box could not accept pending
instructions when all of its subunits are busy, thus,
p ropagating a stall condition to the scalar execution
unit and resulting in poor performance.

The scalar data that is required by a vector
instruction is placed in the queue one location
behind the instruction quadword . Whenever the
queue contains two entries, the vector control unit
returns a signal to the scalar execution unit and
requests that subsequent instruction issue be
delayed until the number of entries in the queue
has diminished to one or less. The queue is cir­
cular in nature and wraps around to the beginning
automatically.

When an instruction is loaded into the queue, a
pointer directs the instruction to the decode logic
shown in Figure 5. If there is enough instruction
data available in the queue and the necessary sub­
unit is not busy, then the vector control unit sends
the instruction data from the queue to the register
conflict logic. The register conflict logic determines
if the vector registers required by the instruction are
already in use by the other subunits, a condition
called register conflict. The determination is made
by comparing the vector register addresses that

E-BOX
VECTOR
DATA

are to be used by already executing vector instruc­
tions in the next cycle against the vector register
addresses required by the new instruction. If none
of the addresses overlap then the instruction is free
to issue. If an overlap does exist, the instruction is
held until the next cycle, when it can then be issued
to the appropriate subunit. (The lack of significant
cycle delay in this case is due to the optimal design
of the vector register unit.) If there are no register
conflicts, the instruction is issued immediately to
the appropriate subunit.

As the vector control unit issues the instruction to
the subunit, it also sends scalar source operands,
if any, and the addresses of the vector registers
required by the instruction to the vector register
unit. The vector register unit latches the scalar data
for the duration of that instruction. For each cycle
of the instruction's execution, the register unit then
sends the necessary scalar and register data to the
appropriate subunit. The vector control unit also
contains the vector length register and sends a copy
of it with every instruction that is issued to a sub­
unit. By supplying each subunit with a copy of
the vector length register, writes to the register by
MTVP instructions do not affect instructions cur­
rently executing under the register's previous value.
Without this mechanism, writes to the vector
length register would be delayed until previously

,__ _ _. SCALAR DATA TO VECTOR
REGISTER FILE SOURCE/DESTINATION VECTOR

REGISTER ADDRESSES

ISSUE NEW
INSTRUCTION

BUFFER
BUFFER VALID COUNTER

SOURCE/
VECTOR DESTINATION
INSTRUCTION CONTROL REGISTER

WORD

DISPATCH
TYPE
DECODER

CONTROL
TYPE
DECODER

OPCODE
TYPE
DECODER

NO
CONFLICT

INSTRUCTION
ISSUE
DECISION
LOGIC

Figure 5 Vector Control Unit

ISSUE
NEW
INSTRUCTION

ADD

MUL

GEN

VECTOR NO
CONFLICT REGISTER

CONFLICT ,__ _ _

~--- CHECK
LOGIC

68 Vol. 2 No. 4 Fa/11990 Dtgtlal Tecbntcal]ournal

executing instructions had finished, which would
result in poor performance.

Upon reaching the subunit, most vector instruc­
tions execute at one cycle per element, after the
initial pipeline latency. However, the vector divide
instructions (VSDIV and VVDIV) execute at a varying
number of cycles, depending on the floating point
format (F, D, or G). (To simplify the vector control
logic, no other vector instructions are issued once
a vector divide starts.) Results are returned to the
vector register unit or vector mask unit as they are
generated, depending on the instruction.

As described earlier, microcode in the scalar exe­
cution engine encodes vector instructions into an
instruction quadword before passing them to the
V-box. Table 2 shows the high-order 32 bits of the
format used for every instruction sent to the V-box.
This quadword contains fields that indicate the
instruction, appropriate V-box subunit to execute
the instruction, and format of the vector control
word. The low-order 32 bits of the instruction quad­
word contain the vector control word for the vector
instruction. The instruction quadwords present the
V-box with a fixed format instruction that smoothly
fits into a fixed-length instruction queue, requires
little subsequent decoding, and has fields that can
be directly gated to selection logic. As a result, the
time needed by the V-box to decode vector instruc­
tions is reduced and performance is increased.

Vector Register Unit
The vector register unit or file, as its name implies,
contains the logic and fast memory that imple­
ment the 16 VAX vector registers on the V-box. The
block diagram of the vector register file is shown in
Figure 6. The vector register file has three write
ports and five read ports. By using the innovative
technique described below, these ports provide the
multiple accesses needed to feed two operands per
cycle to the vector add and multiply units, and one
operand to the vector address-mask unit. This unit
is the single largest contributor to the excellent vec­
tor performance of the VAX 9000 system.

The file consists of 16 vector registers. Each
register contains 64 elements, and each element is
72-bits wide (64 data, 8 parity). The vector register
file is implemented as a byte-sliced custom chip,
which has a single parity bit per data port. Three
writes and five reads to the file can occur simulta­
neously in any cycle. All writes must be to different
register banks. However, multiple reads can occur
to the same bank if the same element is required by
each read access. Internally to the vector register

Dtgttal TecbntcalJournal Vol. 2 No. 4 Fall 1990

Vector Processing on the VAX 9000 System

unit, reads occur during the first half of the cycle,
and writes occur during the last half. A write and
read enabling signal is generated for each register
bank every cycle. Each cycle, data is selected from
one of the three write ports to be written into any
enabled register banks. Write port O has a four-stage
pipe to buffer data corning from the E-box, through
the control logic, which cannot be written due to a
register bank conflict. The vector register file also
has three scalar registers (one each for the vector
address-mask unit, vector add unit, and vector mul­
tiply unit) to hold scalar source operands for vector­
scalar instructions. Write port O is used to write
these registers. Each enabled read port selects an
element from one of the 16 register banks or scalar
registers (for vector-scalar instructions) and trans­
fers it to one of the other subunits.

The vector register file uses a technique referred
to as "barber poling" to improve the use of chaining
and overlapped instruction execution. As Figure 7
shows, barber poling spreads each architecturally
defined vector register across all vector register
banks. Elements are laid out such that the first
vector element of each vector register is in location
O of the same physical register bank and element b
of vector register n is in location b of vector register
bank ([n +b]modulo 16).

By using this technique, a vector register conflict
causes the vector control unit to delay the issuing
of a new vector instruction for no more than three
cycles. If the more standard technique of placing all
elements of one vector register in the same bank
were used, a vector register conflict could cause
the execution of a new instruction to be delayed by
64 cycles. The 64-cycle delay would have frustrated
attempts at overlapping and severely degraded the
vector performance of the VAX 9000 system.

Vector Add Unit
The vector add unit executes most vector instruc­
tions, including both floating point and integer
addition, subtraction, comparison; vector convert;
vector shift logical; vector logical operations; and
vector merges. For brevity, these instructions are
referred to as add-class instructions. One of the
challenges in designing the vector add unit was the
need to perform both integer and floating point
arithmetic.

The organization of the vector add unit is shown
in Figure 8. It is a pipelined structure that comprises
two identical chips for unpacking and aligning
operands (VFSA and VFSB); one chip for performing
arithmetic and logical operations (VFAD); and a

69

VAX 9000 Series

Table 2 Encoded Instruction Quadword (bits <63:32>)

Vector OPCODE Control Word Type
Instruction <39:32> <42:40>

VVSUBFNSSUBF
VVSUBGNSSUBG
VVSUBDNSSUBD
VVSUBUVSSUBL
VVCMPUVSCMPL
VVSLUVSSLL
VVSRUVSSRL
VVBISUVSBISL
VVBICUVSBICL
VVXORUVSXORL
VVMERGENSMERGE
VVADDDNSADDD
VVADDFNSADDF
VVADDGNSADDG
VVADDUVSADDL
VVCMPDNSCMPD
VVCMPFNSCMPF
VVCMPGNSCMPG
VVCMPDNSCMPD
VVCVTDF
VVCVTDL
VVCVTFD
VVCVTFG
VVCVTFL
VVCVTGF
VVCVTGL
VVCVTLD
VVCVTLF
VVCVTLG
VVCVTDL
VVCVTFL
VVCVTGL
VVMULUVSMULL
VVMULFNSMULF
VVMULDNSMULD
VVMULGNSMULG
VVDIVFNSDIVF
VVDIVDNSDIVD
VVDIVGNSDIVG
VLDL
VLDQ
Block load
VSTL
VSTQ
VGATHL
VGATHQ
VSCATL
VSCATQ
IOTA
LoadVLR
LoadlowVMR
Load high VMR
Store low VMR
Store high VMR
Store unaligned address
LoadVPSR
LoadVAER
StoreVAER
RESET

Bits <63:47> are reserved.

OF9
ODB
002
OF6
OF5
034
026
086
08E
088
OAE
092
089
098
086
005
OFD
ODD
005
011
016
03A
038
03E
019
01E
032
031
033
017
03F
01F
003
004
005
006
ooc
OOD
OOE
001
002
ooc
003
004
005
006
010
011
012
007
009
OOA
OOD
OOE
013
014
015
008
OOF

2/6
2/6
2/6
2/6
3/7
2/6
2/6
2/6
2/6
2/6
5/1
2/6
2/6
2/6
2/6
3/7
3/7
3/7
3/7
4
4
4
4
4
4
4
4
4
4
4
4
4

2/6
2/6
2/6
2/6
2/6
2/6
2/6
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
2

Dispatch Type
<46:43>

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
3
3
3

70 Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljournal

Vector Processing on the VAX 9000 System

FROM VML FROM CONTROL FROM VAD

VML
RESULT VCT WT DAT VAD RESULT
W~ITT2 W~ITTO W~ITT1

SREG4LD-------+----+---+-~

SREG2LD--------<>---+-~ SCALAR 4

SCALAR 2 84

SCALAR O 82

SREGO LD -------+~

so
WRPORTOCNFSEL+-------- --------,----~

~-~-~

SELECT WRITE DATA FOR EACH REG BANK FROM WRITE PORTS

WRITE
REG BANKO WT EN REG BANKO RD EN

ENABLE
REG BANK15 WT EN REG BANK15 RD EN LOGIC MEMORY

WPORTS 0-2 --+---<

ARRAY
WRITE REG BANKO WT ADR REG BANKO RD ADR

READ
ENABLE RPORTS 0-4
LOGIC

READ
ADDRESS

REG BANK15 WT ADR REG BANK15 RD ADR ADDRESS RPORTS0-4
LOGIC LOGIC

WPORTS 0-2 --..----,

SELECT DATA FOR EACH READ PORT FROM REG BANKS

so

RPORTO RPORT1 RPORT2 RPORT3 RPORT 4
TO MASK LOGIC TO VML LOGIC TO ADDER LOGIC

Figure 6 Vector Register Unit

remaining chip for normalizing, rounding, and
packing the result (VFPK). The data paths between
the chips are all 64-bits wide.

The pipeline latency through this unit for both
single-precision (integer and F _floating) and dou­
ble-precision (G_floating and D_floating) formats is
only three cycles. Thus, the vector/scalar cross-over
number for add-class instructions is quite small
(that is, the minimum number of vector elements
needed for the V-box to surpass the performance
of the remainder of the VAX 9000 CPU for this class
of instructions.) As a result, the V-box achieves good
performance for add-class instructions with small­
sized vectors and large-sized vectors (large-sized
vectors being naturally favored by the technique of
pipelining).

V3 [63J
V4 [62J

: I VO [50) I
I VO [49J I

I VO [48)1

V14 4
V14[3J V15 [3J
V15 [2J VO [2J
VO [1J V1 [1J
V1 [OJ V2 [OJ

BANKO BANK 1 BANK2

V14 [15J
V15 [14J
VO [13J

V12 [1J
V13 [OJ

V15 [63J I VO [63J j
VO [62J

V14[17]
V14 [16J V15 [16J
V15 [15J VO [15J
VO [14J

:

BANK 13 BANK 14 BANK 15

When the vector add unit begins to execute an
instruction, it receives two source elements from
the vector register unit each cycle. The elements are
latched into the unpacking logic, one element for

Figure 7 Barber Poling

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990 71

VAX 9000 Series

each of the two chips. During the next cycle, each
unpacking chip concurrently unpacks and aligns
its source element, if necessary, and forwards the
result to the addition or logical-operation logic,
depending on the instruction. Within the same
cycle, the addition chip uses the two sources from
the unpacking logic to generate a result, which is
then latched.

During the final cycle, the result is sent to the
packing chip, which normalizes, rounds, and packs,
if necessary, the result and sends it to the vector
register unit to be written. Exception checking and
reporting are also done in the last cycle by the pack­
ing chip, which maintains the vector add unit's
copy of the vector arithmetic excep tion register
(VAER). When the instruction completes, the vector
add unit sends its VAER copy to the vector mask unit
to be merged with the VAER copy from the vector
multiply unit.

The vector add unit does not differentiate
between masked and unmasked vector instructions.

I VFSA

I~
I

~ xp~.__ _ ___ _,

I

EXCEPTION ENABLE

MASK BIT
EXCEPTION

I
DEST REGIS.-T_E_,R.___.__ _ __,

VAER

32

VAERTOVMKB

ADDER

EXPONENT

64

The complexity of skipping over masked-out ele­
ments would have added extra cycles of pipeline
latency and resulted in less performance for small­
sized vectors. For masked as well as unmasked
instructions, the vector add unit operates from the
first up to the last element (as indicated by the
vector length register) of both source registers. The
actual masking of results is handled by the vector
control unit, which blocks the vector register unit
from receiving masked-out results as they are
being sent by the vector add unit. However, the
packing chip does use vector mask register bits to
suppress exception generation for results that are
masked out.

Floating Point Operation When executing vector
floating point instructions, the unpacking logic
takes the various fields of a floating point element
and expands and rearranges it into a more conve­
nient format for the addition logic, i.e. , the element
is "unpacked ." As a result of this process, the addi-

SOURCE B

VFSB

___l_
MASK BIT I

LOGICAL

I 2

MUX/LATCH

I

VFAD

I
I

I
VFPK

ADDER LOGIC

Figure 8 Vector Add Unit

72 Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

tion logic is simplified because all VAX floating point
formats (F, D, and G) are unpacked into an identical
format. The unpacking involves decoding the sign,
inserting the hidden bit, and rearranging the frac­
tion bits. For all VAX floating point formats, the
fractional part is expanded to 56 bits. (F _floating
and G _floating are expanded with zeros on the
right.) The fractional part is then surrounded on the
right with two guard bits and a rounding bit to
form a 59-bit fraction. The overflow and guard bits
ensure the accuracy of rounded results.

After the elements are unpacked, the unpacking
chips align the elements by taking the fractional
part of the smaller magnitude number and shifting
it to the right until its exponent is equal to that of
the larger magnitude number. Each unpacking chip
also receives the exponent bits of the other chip's
element. Therefore, the alignment process can be
done in parallel before the elements are sent to the
addition logic that requires the alignment. If during
the alignment of an element for a vector floating
point subtract instruction, a one is shifted out of the
59-bit fraction field, then a "sticky bit" is generated.
This sticky bit is used by the addition logic in the
next cycle as a carry into the subtraction.

The unpacked, aligned elements are then sent to
the add chip, which produces a result and then par­
tially normalizes the result before sending it to the
packing chip. Again, if the shifting during normal­
ization shifts a one out of the fraction field, a sticky
bit is generated. Finally the partially normalized
result and the second sticky bit are sent to the pack­
ing chip which completes the normalization and
rounding and adjusts the exponent field accord­
ingly. To save an extra cycle, the packing chip com­
putes two exponents values, one for each value of
the carry-over in the rounding process. Final selec­
tion of the exponent and its exception is done using
the actual carry-over of the rounding logic. The
proper exponent and the normalized fraction are
then rearranged into the appropriate floating point
format, and the assembled element is sent to the
vector register unit.

Integer and Logical Instructions For vector inte­
ger and logical instructions, the elements bypass the
alignment logic and are sent to the add chip (VFAD)
for all but the logical shift right instruction (VVSLRL

and VSSLRL). For logical shift right instructions, the
alignment logic does the shifting because the shift­
ing circuitry is already needed for the alignment of
fractions in floating point elements. The exponent
unpacking logic is used to pass on the logical shift

Digital Tecbntcaljournal Vol. 2 No. 4 Fa/11990

Vector Processing on the VAX 9000 System

right count to the alignment logic, which then
sends the shifted result to the add chip. The add
chip operates on the low-order 32 bits of these
elements and passes through the high-order 32 bits
unchanged to the packing chip. For logical shift­
left instructions (VVSLLL and VSSLLL), the low-order
32 bits also pass through the add chip unchanged.

On the packing chip, the floating point normalize
logic performs to do logical shift-left operations.
The shift count is passed to the normalize logic
from the unpacking logic during the first cycle. For
all other integer and logical instructions, the nor­
malize count is forced to zero to pass the add chip
result through. Finally, just before sending the result
to the vector register unit, the packing chip checks
for integer overflow exceptions.

Merge Instructions For vector merge instructions
(VVMERGE and VSMERGE), the unpacking chip with
the masked-out element, based on the appropriate
vector mask register bit, zeros that element out
before sending it to the addition logic. The addition
logic adds the zero to the other element, which has
the effect of passing the value of the other element
on to the packing chip.

Vector Memory Operation
Because vector applications tend to issue many
vector memory instructions, the execution time of
these instructions is a critical factor in the perfor­
mance of a vector processor. Therefore, the V-box
was designed to minimize the execution time by
taking advantage of the VAX 9000 CPU's large 128KB
data cache, by prefetching vector data, and by
fetching it in blocks instead of element by element.

Memory requests by the V-box are sent through
the VAX 9000 CPU to the cache and address trans­
lation hardware (M-box) of the VAX 9000 CPU. The
M-box translates the 32-bit virtual addresses for vec­
tor data into physical addresses and accesses the
proper locations in the data cache. The vector
address-mask unit generates the virtual addresses
for the vector elements. For vector load and gather
instructions, the vector data is returned to the
V-box through the E-box, and written to the proper
vector registers. The M-box returns 64 bits of data
each cycle. For vector store and scatter instructions,
the vector elements are sent through the E-box to
the M-box. Although the vector register unit is
capable of sending 64 bits at a time, the E-box need
only forward 32 bits per cycle to the M-box. The
M-box requires two cycles to write the cache and
does not actually write the 64-bit data until the

73

VAX 9000 Series

second cycle. (The first cycle performs the cache tag
lookup.) Because the V-box implements synchro­
nous memory management exception reporting,
once a vector memory instruction begins execu­
tion, no other vector instruction may be issued until
the memory instruction completes.

The VAX 9000 CPU prefetches vector data. This
mechanism is used to move data from the main
memory to cache in a manner which optimizes
memory bandwidth . By using this method, a 25
percent improvement in the performance of vector
load instructions is achieved. The prefetching starts
when the scalar microcode on the VAX 9000 CPU
checks the stride of a VLDQ instruction. If this stride
is 8 bytes long (quadwords are contiguous in mem­
ory), the microcode converts the instruction into a
block load instruction and sends it to the V-box.
The block load instruction directs the V-box to issue
a series of block load requests for vector data. A
block load request moves an entire cache block
from the memory into the vector registers. These
blocks are loaded into both the cache and the vector
registers when they come from main memory.
(Bypassing the cached to load the vector registers
directly reduces the effect of a cache miss for vector
data.) Otherwise, the memory requests are done for
one register element at a time.

In addition to converting the VLDQ to a block
load instruction, the scalar microcode also issues
prefetch requests to the M-box. The M-box deter­
mines if the data is valid in the cache. If so, no fur­
ther action is taken on the request. If not, the data
is requested from main memory. In this manner
several prefetch requests are started in successive
cycles. This method results in multiple memory
banks being used in parallel. Vector data comes
back to the cache at a rate of 500 megabytes
(MB) per second. The microcode stops issuing
prefetch requests when all the vector data has been
requested. This ensures that the requests from the
V-box do not encounter many cache misses.

Vector Address-Mask Unit
The vector address-mask unit performs the address
generation and memory requests needed to exe­
cute the vector memory instructions VLD, VST,

VSCAT, and VGATH. It also contains the vector mask
register and support logic for masked instructions.
Further, it contains the complete vector arithmetic
exception register (VAER), which it updates based
on the status sent by the vector add and vector mul­
tiply units.

74

For vector memory instructions, the vector
address-mask unit receives the base (starting mem­
ory address of the vector) and stride (distance
between vector elements in memory) of the instruc­
tion from the vector control unit in an indirect
manner through the vector register unit. Both the
base and stride are 32 bits long.

For most vector load and store instructions, the
memory addresses for the vector data are generated
in an iterative fashion. During the first cycle of exe­
cution, the base address bypasses the address adder
and is immediately sent to the M-box to request the
first element. Concurrently, the base and stride are
added together by the address adder and latched to
provide the address of the next element. In the next
cycle, the latched address is sent to the M-box and
to the address adder, where it is added to the stride
to generate the next address. The process repeats
until all element addresses have been issued. In
tandem with the address generation, the vector
control unit directs the vector register unit to send
or receive the appropriate vector register element.

For vector gather and scatter instructions, the
memory addresses for the vector data are also
issued in an iterative fashion. During the first cycle
of execution, the base address is sent to the vector
address unit. In the second cycle, the vector control
unit directs the vector register unit to send the first
element of the offset vector to the vector address
unit, which adds it to the base and latches the result.
In the third and subsequent cycles, the resulting
address is sent to the M-box while the base and next
offset are added together. The process repeats until
all element addresses have been issued. In tandem
with the address generation, the vector control unit
directs the vector register unit to send or receive the
appropriate vector register element.

For masked vector load and gather instructions,
addresses for all elements, masked and unmasked,
are sent to the M-box. However, for masked-out
elements, the request is modified from read to
read no-op (i.e. , do not actually perform the read).
This process prevents the M-box from taking cache
misses and address translation exceptions on
masked-out elements. For masked-out elements,
the M-box returns a dummy value to the V-box,
which blocks the value from being written to the
vector register unit. The vector address unit directs
the control unit to block writes, based on the value
of the appropriate vector mask register bit.

For masked vector store and scatter instructions,
although both masked and unmasked elements

Vol. 2 No. 4 Fall 1990 Dtgttal Tecbnlca/Journal

are read from the vector register unit, masked-out
elements are stopped from reaching the M-box. The
vector address unit, based on the vector mask regis­
ter, causes the E-box to discard the masked-out
element instead of forwarding it to the M-box.

As described earlier, a VLDQ instruction with a
stride of 8 bytes (unity stride) is converted by the
VAX 9000 scalar processor into a block load instruc­
tion when sent to the V-box. The vector address
unit, in turn, issues a number of block load requests,
each of which is for 64 bytes of data, to the M-box
with the appropriate address and selection bits.
There are eight selection bits, one for each quad­
word in the block, which tell the M-box whether to
return the corresponding quadword to the V-box
for that block load request. Generation of these
selection bits by the vector address unit is com­
plicated because the starting address of a vector in
memory is not aligned on a block boundary (i.e.,
starts within the middle of a block). The bits also
depend on the vector mask register (for masked
block loads).

To handle unaligned, masked block loads, the
vector address unit must generate selection bits that
deselect those quadwords which are not part of the
vector but lie within the same blocks as the first
and last elements of the vector. In addition, it must
deselect those quadwords within the vector that
are masked out by the vector mask register. Both of
the above requirements are handled by using an
extended version of the vector mask register to
generate the selection bits. This process involves
conceptually extending the vector mask register on
both ends with enough selection bits so that each
quadword has a corresponding selection bit. For
example, a vector starting at the last quadword of
one block requires that seven selection bits be
added at the beginning of the vector mask register
and one bit be added after the end.

Vector Multiply Unit
The vector multiply unit performs all of the vector
multiply and vector divide operations defined by
the VAX vector architecture: VVMUL, VSMUL,

VVDIV, and VSDIV. The unit can perform either one
multiply instruction or one divide instruction at a
time, but cannot perform both types of instruc­
tions simultaneously. In addition, the unit performs
exception checking and reporting, as required,
including floating overflow, floating underflow, and
divide by zero exceptions. The unit consists of
four custom multipliers: a custom divider, a divide
unpack chip, and two packing chips. Physically,

Dtgttal Tec:bntcal]ournal Vol. 2 No. 4 Fa/11990

Vector Processing on the VAX 9000 System

these chips reside on the VML multichip unit of the
VAX 9000 CPU. The custom multipliers and divider
are identical to those used in the scalar execution
engine (E-box).8

Multiplication By using four parallel multipli­
ers, the pipeline latency through the multiplica­
tion logic for both single precision (integer and
F _floating) and double precision (G_floating and
D_floating) is only three cycles. Thus, the vector/
scalar cross-over number for multiplication is quite
small. As a result, the V-box achieves good perfor­
mance for vector multiply instructions with small­
sized vectors as well as large. As a double-precision
vector multiply instruction executes, two 64-bit
elements are received from the vector register unit
each cycle and are latched in the four custom
multipliers, each of which does a 32-bit by 32-bit
multiplication.

As shown in Figure 9, the element bits are dis­
tributed in such a way that one multiplier operates
on the high-order bits of both elements; one multi­
plier operates on the low-order bits of operand one
and the high-order bits of operand two; one multi­
plier operates on the high-order bits of operand one
and the low-order bits of operand two; and one
multiplier operates on the low-order bits of both
elements.

During the next clock cycle, each of the four mul­
tipliers unpacks its inputs and sends them through
a large multiplication array, which produces one
64-bit partial product and latches the product.
During the third cycle, the pack chips (VMLA and
VMLB) add the four 64-bit partial products together
to produce one result and prepare the result to be
written back to the vector register unit. In this
cycle, the four partial products are shifted accord­
ing to their weight. Weight is determined in relation
to which bits the multiplier used to produce a
result. For example, the multiplier that operated on
the high-order 32 bits (most significant bits) of both
elements produces the most significant partial
product bits, and the multiplier that operated on
the low-order 32 bits (least significant bits) of both
elements produces the least significant partial
product bits. The partial products must be aligned
or shifted properly before they are added together.
Once the partial products have been added, the
final product is then rounded, normalized, and
packed into the appropriate VAX integer or floating
point format before being written into the vector
register unit in the next cycle.

The process and pipeline stages for single-preci­
sion multiplication (VVMULF and VSMULF) are

75

VAX 9000 Series

VREG_SOURCE1 (31 :OJ VREG_SOURCE1 (63:32J VREG_SOURCE1 [31 :OJ VREG_SOURCE1 [63:32J

CUSTOM
MULTIPLIERS

VREG_SOURCE2 {31 :0J

LATCH
SUBPRODUCTS

LATCH
SUBPRODUCTS

PARTIAL_PRODUCT1 {47:0J PARTIAL_PRODUCT1 (63:0J PARTIAL_PRODUCT1 (63:0J PARTIAL_PRODUCT1 [63:32J

VMLA/VMLS

! 47 01
RESULTS FROM
DIVISION ------~
ACCUMULATION INSTRUCTION _.-------'-~~~

TYPE ~---=-~
+ !63

COMMON
BETWEEN
MULTIPLIERS
AND
DIVIDERS

(FROM
DIVU}

EXCEPTION DATA AND
FINAL EXPONENT FROM
EXPONENT LOGIC

FINAL PRODUCT

/----- - - ---. NORMALIZE COUNT
TO EXPONENT LOGIC

(TO
DIVU}

VML_RESULT (63:0J

TOVREG

Figure 9 Vector Multiply Unit

similar to the process used for double-precision
multiplication. However, in single-precision multi­
plication, only one multiplier chip is needed to pro­
duce the result and the pack chips do not need to
sum the partial p roduct. Integer multiplication is
slightly different from floating point multiplication
because it does not need to be accumulated or
rounded. Thus, the correct product is produced
by one mult iplier. The result bypasses the accumu­
lation and rounding logic and proceeds directly
into the packing logic to be sent to the vector regis­
ter unit.

The exponent handling for both multiplication
and d ivision is performed by the same logic on the
packing chips. Depending on the instruction being
executed, the exponent is either added (multipli­
cation) or subtracted (division). The result of this
operation is then piped to the next stage and the
position of the hidden bit is determined. If the frac­
tional portion of the data must be shifted to ensure
the hidden bit is in the correct position, the expo­
nent is then incremented or decremented accord-

76

ingly. The normalize count (i.e. , shift count) is used
to select the correct final exponent. Overflow and
underflow exception checking can only be detected
and reported after the final exponent is selected. If
an exception is detected, then a reserved operand is
written to the appropriate vector register element.
The first stage of the exponent logic also checks for
divide by zero and reserved operand exceptions.

Division Vector division is a variable-cycle func­
tion. The number of cycles depends on the format
of the operands. The custom divider is capable of
producing six quotient bits per cycle. Therefore,
F _floating point division is performed in 7 cycles,
G_floating point in 12 cycles, and D_floating
point in 13 cycles. Because of the variable number
of cycles in a divide instruction, no other instruc­
tion can execute in the V-box while a divide is in
process. Also, because of the iterative nature of divi­
sion (i.e., one division must be completed before
another can be started), the instruction cannot be
pipelined .

Vol. 2 No. 4 Fall 1990 D igital TecbntcatJournal

As a vector divide instruction executes, two
64-bit elements are received from the vector regis­
ter unit each cycle and are latched in the divide
unpack chip. The elements are unpacked, and the
fractional portion of the elements is sent to the cus­
tom divider in 32-bit slices. The exponent portion
is sent to the shared exponent logic on the packing
chips, as described in the Multiplication section.
During this cycle, time-critical values, such as com­
plemented element values and first-cycle quotient
bits, are calculated and forwarded to the custom
divider.

When the divider receives the data, it uses an
iterative algorithm to produce six quotient bits per
cycle. The quotient bits produced are then sent to
the packing chips, which may have to increment
the quotient, depending on the value of subsequent
quotient bits. The divider instructs the quotient
accumulation logic whether or not incrementing is
necessary. The partial quotient, once decided, is
held in a bank of latches until all the quotient bits
are received. When the entire quotient is available,
the result is rounded, normalized, and packed by
using the same logic path as multiplication. A mul­
tiplexer switches this packing logic between the
multiplication and division logic.

Peiformance Characteristics
As of this writing, testing of the vector performance
of the VAX 9000 system has only just begun. How­
ever, some preliminary results are presented in
Table 3. We expect that these results will improve
as testing continues and more code is optimized
to take advantage of the chaining and overlapping
provided by the V-box.

Chaining and Overlapping
Because of the design of the vector register unit,
the V-box can concurrently execute a vector add-

Table 3 VAX 9000 Model 21 o Preliminary
Performance Double-precision
MFLOPS, Uniprocessor

Size Vector

Peak rate NA 125
LFK (Geometric mean) 441 13.2
LFK (Arithmetic average) 441 20.6
UNPACK 10002 80
FFT 4096 26
Convolution 150x 1500 99.15
Matrix multiply 642 111.36

Digital Tecbntcaljournal Vol. 2 No. 4 Fa/11990

Vector Processing on the VAX 9000 System

class instruction, vector multiply instruction, and
vector memory instruction. Unlike the VAX 6000
Model 400 system, vector register conflicts between
these instructions have little effect on overlapping.4

With the VAX 9000 system, a conflict only delays
the execution of the subsequent vector instruction
by one or two cycles at most.

However, the overlapping behavior of the V-box
is sensitive to the issue order of vector instructions.
If two vector instructions executed by the same
V-box unit are issued one after the other, the second
instruction is delayed until the V-box unit has fin­
ished executing the first. In addition, vector instruc­
tions issued after a vector memory instruction or
divide instruction, do not begin execution until the
previous instruction completes. A general rule in
scheduling code for the VAX 9000 V-box, is to gen­
erate, whenever possible, instruction triples, where
the first two instructions are a vector add-class and
vector multiply instruction and the last instruction
is a vector memory or vector divide instruction.
Failing that, at least one vector add-class or vector
multiply instruction should be issued before a vec­
tor memory or vector divide instruction.

The following code examples demonstrate the
usage of the VAX vector instruction set and the over­
lapping behavior of the VAX 9000 V-box. (Note: It
should be assumed in the examples that all arrays
are 8-byte double precision.)

In the following DAXPY inner loop example, the
first two VLDQ instructions do not overlap. How­
ever, the VSMULD, VVADDD, and VSTQ instructions
do overlap.

Do i • 1 , 64
DYCi) = DYCi) + DA x DX(i)

enddo

vectorizes as:

VLDQ DX , #8 , VO ; Load vector DX
VLDQ/M DY, #8, V2 ; Load vector DY

; with modify i ntent
VSMULD DA, VO , V1 ; V1 = DA*DX
VVADDD V1 , V2, V3 ; V3 . V1+DY
VSTQ V3, DY, #8 ; Store vector DY

The first two VLDQ instructions do not overlap in
the following MERGE example,

Do i • 1, 64
a(i) = b(i) - cCi)
if (a(i) . gt. 0) then

b(i) = a(i)
el5e

b(i) = cCi)
endif

enddo

77

VAX 9000 Series

vectorizes as:

VLDQ
VLDQ
VVSUBD
VSTQ
VSLSSD

VVMERGE

VSTQ

b, 18, VO
c, 18, V1
VO, V1, V2
V2, a, 18
1"xo,v2

V1, V2, VO

VO, b, 18

; Load vector b
;Load vector c
;b-c
; St ore vector a
;Test a(*) and set mask
; in VMR . CVSCMP
;pseudo-op doing Less
;Than Signed test>
;Merge a and c into b
;using mask in VMR
;Store vector b

However, the VVSUBD instruction does overlap
with the VSTQ instruction. Both the VSLSSD

(VSCMP) and VVMERGE instructions are executed by
the vector add unit. Therefore, these two instruc­
tions do not overlap. However, the VVMERGE

instruction does overlap with the VSTQ instruction.
In an IF-THEN-ELSE example, such as the

following,

Do i = 1, 64
if Ca(i) . gt. 0) then

b(i) = cCi)
else

bCi) = cCi) I aCi)
endif

enddo

vectorizes as:

VLDQ a, 18, VO ;Load vector a
VSLSSD i"xo, vo ;Test a(*) and set mask

; in VMR . CVSCMP
;pseudo-op doing Less
;Than Signed test>

VLDQ c, 18, V1 ; Load vector c
VVDIVD/0 V1, VO , V2 ;Masked divide of c by a

;for VMR[i) = 0
VSTQ/1 V1, b. 18 ;Store "then" part of b(*)
VSTQ/0 V2, b, 18 ;Store "else" part of b(*)

Nothing overlaps the first VLDQ instruction, but
the VSLSSD instruction does overlap the second
VLDQ instruction. Nothing can overlap with the
VVDIVD instruction. Thus, the VSTQ instruction
does not begin execution until the VVDIVD instruc­
tion completes. The remaining VSTQ instruction
waits for the first VSTQ instruction to complete.

In the following scatter-gather example, none of
the instructions is overlapped.

Do i = 1, 64
if Ca Ci) . eq . 0) then

b(i) = cCi)/d(i)
endif

enddo

78

vectorizes as:

VLDQ a, 18, VO ;Load vector a
VSEQLD i"xo ,vo ;Test a(*) for zero and

; set mask. CVSCMP pseudo-
;op doing Equal test>

IOTA 18, V1 ;Make compressed
;vector of offsets
;write size of vector
; to VCR

MFVCR RO ;Move VCR into RO
; CMFVP pseudo-op)

MTV LR RO ; Load new VLR value
; CMTVP pseudo-op)

VGATHQ c, V1, V2 ;Gather vector c
;using offsets in V1

VGATHQ d, V1, V3 ;Gather vector d
;using offsets in V1

VVDIVD V2, V3, V4 ;Divide c by d
VSCATQ V4, b, V1 ;Scatter vector busing

;offsets in V1

It should be noted in this example that the
VSEQLD and the IOTA instructions do not overlap.
This lack of overlap occurs because the IOTA

instruction is actually done with microcode on the
E-box, and the IOTA instruction cannot begin exe­
cution until the VSEQLD instruction has computed
all the new vector mask register bits. The vector
register access instructions (MFVCR and MTVLR)

take only a few cycles and do not significantly affect
the overlapping of other vector instructions.

Summary
By taking advantage of key features of the VAX

vector architecture, such as instruction overlap­
ping, imprecise exceptions, and asynchronous
interaction with the scalar processor, the vector
processor of the VAX 9000 system provides super­
computing performance for computationally inten­
sive applications. Through the use of barber poling,
the vector processor can overlap two vector arith­
metic instructioris with one memory instruction
to deliver a peak double-precision performance of
125MFLOPS.

Acknowledgments
The authors wish to acknowledge the technical
contributions of the following individuals to the
VAX vector architecture and the VAX 9000 V-box
design: Wayne Cardoza, Dave Cutler, Tryggve
Fossum, Rich Grove, Kevin Harris, Steve Hobbs,
Brian Koblenz, Dwight Manley, Dave Orbits,
Bob Supnik, Mike Tehranian, Cheryl Wiecek, and
Rich Witek.

Vol. 2 No. 4 Fall 1990 Digital TecbnlcalJournal

References

1. Russell, "The CRAY-I Computer System,"
ACM Proceedings, vol. 21, no. 1 (January 1978):
63-72.

2. VAX Vector Processing Handbook (Maynard:
Digital Equipment Corporation, Order No.
EC-H0419-46/89, 1989).

3. R. Brunner, VAX Architecture Reference Manual
(Bedford: Digital Press, Order No. EY-F576E-DP,
1990).

4. D. Fenwick et al., "A VLSI Implementation of
the VAX Vector Architecture," Proceedings of
COMPCON ~O(IEEE, Spring 1990).

Digital TecbnlcalJournal Vol. 2 No. 4 Fall 1990

Vector Processing on the VAX 9000 System

5. CRAY-2 Computer System Functional Descrip­
tion (Cray Research, Inc., 1985).

6. W. Buchholz, "The IBM System/370 Vector Archi­
tecture," IBM Systems Journal, vol. 25, no. I
(1986): 51-62.

7. D. Marshall and J. McElroy, "VAX 9000 Pack­
aging-The Multichip Unit," Proceedings of
COMPCON ~o (IEEE, Spring 1990).

8. M. Adiletta et al., "Semiconductor Technology
in a High-performance VAX System," Digital
Technical journal, vol. 2, no. 4 (Fall 1990, this
issue): 43-60.

79

Peter B. Dunbeck ·
Richard]. Discbler

James B. McElroy
Frank]. Swiatowiec

HDSC and Multichip Unit
Design and Manufacture

The VAX 9000 system effectively integrates state-ofthe-art packaging and inter­
connects with advanced integrated circuits to achieve a short machine cycle time
(16 nanoseconds) and a high rate of instroction execution. To meet highfrequency
electrical signal and pin count requirements for the system, engineers chose tape
automated bonding technology and consequently conceived and developed the high­
density signal carrier (HDSC). The HDSC offers densities three to five times greater
than conventional printed circuit boards. This unique technology is manufactured
using semiconductor and advanced printed circuit board techniques. The HDSC is
at the heart of the multichip unit, a high-perfomumce logic module, with which the
VAX 9000 CPUs and system control unit are constructed.

Over the past decade, advances in the performance
of integrated circuits (ICs) have outpaced advances
in packaging and interconnect technologies. Thus a
high-performance mainframe with conventionally
packaged bipolar integrated circuits would experi­
ence interconnect delays that account for more
than 50 percent of the system cycle time. Key to
optimizing high-end mainframe performance, then,
is the effective integration of state-of-the-an pack­
aging and interconnects with advanced integrated
circuits. The high-density signal carrier (HDSC} and
the multichip unit (MCU) are proprietary tech­
nologies that shrink interconnect paths and thus
reduce the distance and electrical loading of signals
between chips. These technologies use conven­
tional semiconductor and printed circuit board
(PCB) equipment in many areas of manufacturing
to improve reliability at a competitive cost. The
result is shorter machine cycle time and higher
instruction execution rate. The VAX 9000 CPUs and
system control unit (SCU) are constructed entirely
of multichip units on large planar modules. The SCU
is composed of arrays of 6 multichip units, and the
CPUs are composed of arrays of 16.

Multicbip Unit Design Goals
Beginning at the concept level and throughout the
development and test phase, signal integrity con­
siderations guided the development of the HDSC
and the multichip unit. Designers had to ensure
th at the fast signals would not be disturbed by
noise. The cycle time goal for the VAX 9000 system,

80

16 nanoseconds (ns), allows the system to operate at
30 VAX units of performance (VUPs).

To transmit electrical signals quickly between
chips, wiring paths must have controlled ratios of
wire size to distance from voltage planes. These
impedance-controlled paths allow radio-frequency
computer signals to propagate with minimal dis­
tortion. Prevention of noise on the signals is
paramount and many details of the physical imple­
mentation, including spacings between wires, are
critical to ensuring signal integrity.

To meet the cycle time goal, high-frequency elec­
trical signal concerns needed to be considered in
the design, concerns that would have been negligi­
ble for slower speed signals. Due to the physics of
electrical fields, as electrical signals switch at high
frequencies, they succeed in holding their shape
(data) only if they are fed power extremely quickly,
and if they are given short paths of uniform proper­
ties on which to travel. Due to the amount of power
and the short amount of time a signal is given to
arrive on chip, conventional chip carrier packages
were disallowed for the VAX 9000 system. The sig­
nal paths had to be very short to be virtually noise­
less. To achieve this objective, engineers decided to
enhance tape automated bonding (TAB) technology
with a ground plane for electrical control of the
wire impedances (paths). This reduction in chip
package size also allowed all of the chips for the sys­
tem to be packaged into a tight area. Consequently,
to fit wires between chips, extremely dense HDSC
technology was conceived and developed.

Vol. 2 No. 4 Fa/1 1990 Digital Tecbnica lJournal

The multichip unit also required careful thermal
design attention because each chip consumes up to
30 watts. Moreover, most multichip units contain
four to eight of these chips plus self-timed RAMs
(STRAMs). The key to success for the VAX 9000
program was balancing the trade-offs between per­
formance requirements and technology develop­
ment risks.

To meet the electrical and density requirements
for the machine, engineers specified the following
for the multichip unit:

I. Series-terminated output drivers were required
on chip. Therefore, external resistors are not
needed on the multichip units or programmed
into the design elsewhere. These external resis­
tors take up space and lower reliability.

2. TAB was specified for manufacturing reasons.
Short TAB tape was required to reduce switching
noise on chips. Noise would have been generated
if the TAB wires were longer. In the case of the
noisiest chips, a ground plane was added to the
tape to reduce noise.

3. HDSC etch had to be two routing layers of 18-
micron by 9-micron wires on 75-micron centers
to meet the density, resistivity, crosstalk, imped­
ance and other goals.

4. Four power planes, each one powered from two
sides, were required to distribute three voltage
rails with acceptably high conductivity.

5. Thin dielectric separates the power planes and
produces high capacitance which filters noise
and improves performance. This capacitance
eliminates the need for discrete parts which con­
sume valuable space and lower reliability.

6. Impedance control of the connectors on the
multichip unit was needed to prevent signal dis­
turbance. Rules were generated for the number
of ground pins.

The heart of the multichip unit is the HDSC. The
HDSC is an interconnect technology consisting of
nine metal layers separated by polyimide dielectric
and mounted on a copper baseplate. The top metal
layer is a pad layer used to solder-attach all of the
integrated circuits and connectors. The four metal
layers below make up the signal core. The signal
core is a controlled-impedance, dual buried strip­
line interconnect system used to wire all integrated
circuits to each other and to the connectors. The
power is brought from the perimeter of the HDSC to
the integrated circuits through the bottom four
metal layers.

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990

HDSC and Multichip Unit Design and Manufacture

All integrated circuits in the multichip unit are
attached to the HDSC by a tape automated bonding
(TAB) process. The VAX 9000 system uses four types
of chips, all of which have emitter coupled logic
(ECL}: gate arrays, custom chips, and two types of
STRAMs. At each chip site, a cutout in the HDSC
allows the chip to directly attach to the baseplate.
The signals on and off the multichip unit are carried
by four signal flex connectors which attach to the
perimeter of the HDSC. The signal flex connector
provides a separable interface to the planar board
and extends the controlled-impedance electrical
environment of the HDSC. Power is brought
through two power connectors attached to oppo­
site sides of the HDSC. The signal flexes, the power
connectors, and the baseplate are attached to the
multichip unit housing. The housing provides the
structure for the multichip unit and holds the com­
ponents needed to position and wipe the signal
flex. The chips and HDSC surface are covered by a
plastic lid.

The high-powered chips are efficiently cooled by
a short conductive path through the back of each
chip. The thermal power is conducted from the
chip to the baseplate and into a pin fin heat sink
over which air is impinged to remove the heat.

The following sections describe the implementa­
tion of the technology.

1be HDSC Design and
Manufacturing Process
The goal for the HDSC project was to produce a
high-density, high-performance, manufacturable
printed circuit board. This goal was achieved. The
density of the HDSC is three to five times greater
than that of conventional printed circuit boards.
Even at this density, the HDSC maintains the signal
integrity of bipolar integrated circuits with edge
speeds of 200 picoseconds. This section describes
how the manufacture of the HDSC pushes the limits
of printed circuit board and semiconductor equip­
ment into new types of applications. We also
address the integration of computer-aided (CAD)
tools, process controls, and test feedback, which
helped us to achieve the results we sought.

HDSC Technology
As noted earlier, the HDSC has nine copper layers
for power and signal distribution. The insulating
material, polyimide, has a low dielectric constant
of 3.5 as compared with oxide or nitrides used in
integrated circuits or as compared with ceramic,
which is used for hybrid circuits. The interconnect
is laminated to a copper baseplate to provide

81

VAX 9000 Series

mechanical structure as well as attachment of the
multichip unit heat sink.

The conducting layers consist of the following:

• Two layers for signal distribution

• Two layers that serve as signal reference planes

• Four layers for power distribution

• One layer with bonding pads to attach the TAB

and connectors

The signal distribution is a single x-y pair that
uses the reference planes to create a dual strip­
line interconnect. This interconnect provides a
controlled-impedance signal path with minimal
crosstalk. Table 1 lists the electrical and physical
design parameters of the HDSC.

Process Overoiew
The HDSC is manufactured by two types of pro­
cesses: core processing and assembly processing.
Figure 1 is a diagram of the HDSC process flow.

The core process, described funher below, uses
semiconductor manufacturing equipment and is
similar to the manufacturing process for the back
end of an integrated circuit. Two cores are manu­
factured: a signal core for strip-line signal inter­
connect, and a power core for the four planes
(or layers) that distribute power throughout the
finished HDSC.

The second process, assembly, uses advanced
printed circuit board techniques to laminate and
interconnect the signal core and power core. The
completed HDSC has solder pads to accept the outer
lead bond of TAB integrated circuits, signal flex, and
power flex. The HDSC is tested with a custom flying
probe tester. Tests are made to ensure the HDSC is
functional and meets electrical parameters.

Table 1 HDSC Physical and Electrical
Design Parameters

Line pitch 75 microns
Line width 18 microns
Line thickness

Dielectric thickness
Dielectric constant
Line impedance

Line resistance
Crossover capacitance
Crosstal k

Propagation delay

82

10 microns
25 microns
3.5
60ohms
1/0 ohm/centimeter
3.6 femtofarads
5.1 percent maximum
66 picoseconds/
centimeter

CORE PROCESS FLOW
r-------------------
I SIGNAL CORE POWER CORE :

I ! I I
I + I
I • 4 METAL LAYERS • 4 METAL LAYERS I
I • 5 POLYIMIDE LAYERS • 5 POLYIMIDE LAYERS
I • COPPER LINES ETCHED • WHOLE PLANES I

• VIAS I

: * * I L __ I_T~ST- ~ - -+- _L ~~ J __ J
ASSEMBLY PROCESS FLOW
---------,
I • SUBSTRATE REMOVAL I
I • LAMINATION I
I • DRILL

• LASER CUTIING I
I • PAD LAYER
I • BASE PLATE I -_ $ __ J

TOMCU

Figure 1 HDSC Core and Assembly Process Flow

Core Processing The process for the manufacture
of the signal and power cores, or the core process,
consists of alternating between copper deposition
and polyimide coating until the completed inter­
connect layers are built on the metal wafer. The pro­
cess is performed on a metal substrate shaped like a
6-inch semiconductor wafer. Copper layers are
deposited by a combination of sputtering and plat­
ing techniques. Patterns in the copper that become
signal traces are generated by a semiconductor
photolithographic technique. First, a photoresist is
applied to the metal wafer. The resist is then
exposed to the pattern in the mask that is held by
the semiconductor wafer aligner. This pattern is
then developed in the resist and etched into the
copper. The remaining copper thickness is then
added by plating. Another resist pattern is devel­
oped over the plated signal traces to define where
a copper connection between interconnect layers
will occur. This connection is called a via post, and
it is also formed by a plating process.

Polyimide is spun on to the wafers by integrated
circuit photoresist spin tracks. The relatively thick
polyimide (25 microns at signal layers) helps to
planarize the surface of the wafers and also to cover

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcal]ournal

the patterned copper lines and copper posts. Semi­
conductor photolithography equipment is also
used to generate patterns in resist through which
holes (extensions of the via post) are plasma-etched
in the polyimide. These vias are filled at the next
copper deposition to create a connection between
patterned layers.

Both signal cores and power cores are electrically
tested to ensure electrical functionality.

Assembly Processing To complete an HDSC , a
signal core is matched to a power core. The metal
wafer that acted as a substrate is then removed, and
the signal and power cores are laminated together.
Connections from the power core to the signal core
are made by drilling and then plating up through
the drilled holes. The plating and etching processes
used to form the plated-through holes also produce
copper pads on the bonding layer. Solder is
screened and reflowed onto the bonding pads. Die
site holes which provide openings for bonding the
chips to the baseplate are cut through the laminated
signal and power cores (HDSC decal). A laser cuts
out the die sites and trims the HDSC decal to its
final size. The assembly is complete when the inter­
connect is laminated to a baseplate which provides
mechanical structure.

HDSC Test Process
The goal of the HDSC test process was to ensure
that the physical technology met the VAX 9000 sig­
nal integrity requirements, discussed earlier in this
paper. Equally important was to ensure that the
technology was manufacturable and verifiable
(measurable). Engineers had to accurately convert
design information to masks and to verify HDSC
electrical results by testing. We therefore developed
modeling and measurement techniques to establish
physical and electrical design rules; implemented
CAD tools to verify these design rules; developed
software to generate test vectors from the CAD data­
base; and also developed production HDSC testers.

Modeling and Measurement Techniques To deter­
mine what trade-offs would be required between
the VAX 9000 signal integrity and the HDSC physical
manufacturing capabilities, engineers needed both
modeling and empirical measurement techniques.
A software tool based on Monte Carlo Analysis
was developed that could drive a three-dimensional
capacitance model. This tool predicts electrical
parameter sensitivity to different physical pro­
cessing variations. Early in the project, processing

Digital TecbntcalJournal Vol. 2 No. 4 Fall 1990

HDSC and Multichip Unit Design and Manufacture

engineers estimated the expected manufacturing
distribution of critical signal core dimensions. Once
HDSCs were manufactured, actual processing dis­
tributions were fed into the model which predicted
yield against the specification. Based on this, the
processes were adjusted to maximize yield. Models
and electrical results were verified by time domain
reflectance (TDR} and resistance-inductance-capaci­
tance (RLC) measurements.

The high-frequency measurements necessary to
characterize the interconnect were extremely sensi­
tive to probe card inductance and capacitance and
probe contact resistance. Custom test fixtures were
designed to perform the measurements.

High-frequency test measurements in the pro­
duction environment are not practical, but we
determined that resistance and capacitance testing
could be used instead to verify the HDSC signal
integrity. A production flying probe tester was
developed to test HDSCs. Once again, probe para­
sitics were large compared to the type of measure­
ments necessary. Custom probe design, calibration
methods, and software to drive the tester again
were necessary. From HDSC graphic design files,
test capacitance limits for every signal net are gener­
ated, which ensures electrical functionality as well
as signal integrity. In addition, the resistance of
every plated-through hole is measured, the integrity
of power planes verified, and resistance and leakage
measurements performed on test structures within
the HDSC.

CAD The VAX 9000 system design includes net
lists and graphical files of the HDSC masking layers.
To this data is added process control monitors,
alignment marks, and pattern modifications
required to meet the process design rules. After
modifications, all data is verified by software that
checks design rules and electrical rules.

The data is used in a variety of applications. First
it is converted to pattern-generation format so that
from this data masks can be written and an inspec­
tion file can be generated to verify the mask-making
process. The information is also used to drive
numerically controlled equipment, such as the
drills and lasers that perform die site cut outs.
Finally, it is used to create a net-capacitance test file
which drives the HDSC production testers.

MCU Design and Manufacturing
The multichip unit (MCU} takes full advantage of
the integrated circuit and HDSC technologies to pro­
duce a high-performance logic module. The major

83

VAX 9000 Series

components of the multichip unit are shown in
Figure 2. The components, their functions, and the
assembly and test process are discussed in the next
two sections. Table 2 summarizes the multichip unit
specifications.

All units have certain features that are fixed,
regardless of logic design. These include the clock
distribution chip, serialization pattern, signal con­
nector, power connector, housing and heat sink.
The VAX 9000 system uses 20 unique logic design
implementations, or options. The multichip unit
features that make an option unique are the gate

SIGNAL FLEX
CONNECTOR

ELASTOMER TRAY
SUBASSEMBLY

RETAINER~
SPRINGS lb

ELASTOMER
SUPPORT BEAM

arrays (up to 8), the STRAMs (9 replace I gate array,
24 replace 3 gate arrays), and the HDSC.

TAB Semiconductors
All semiconductors in the multichip units are inte­
grated circuits. Discrete devices and passives which
consume more space and display lower reliability
are not used. TAB is a chip-to-substrate interconnect
made of layers of copper and polyimide film. The
copper signal lines are patterned to mate with gold
bumps on the IC perimeter and with solder-plated
pads on the HDSC.

MCULID

POWER
CONNECTOR

HOUSING

Figure 2 F.xploded View of an MCU

84 Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

Table 2 Summary of MCU Specifications

· Maximum power
dissipation

Maximum IC junction
temperature

Maximum number of
VLSI chips
Minimum chip lead
pitch

Size
Plane
Height

Minimum pitch on
planar module

Weight

Clock input frequency

Signal 1/0 per MCU

Signal rise time
Voltage levels

Maximum current

270 watts (air cooled)

85 degrees Celsius
@ 25 degrees Celsius
room temperature
72

200 microns

14.12x13.21 centimeters
5.44 centimeters
14.38 x 13.46 centimeters

1.59 kilograms
(with heat sink)
320 to 580 megahertz

800

600 picoseconds

2 plus ground
40 amperes per voltage
level

The TAB for the gate array and most of the custom
chips is a two-metal-layer tape with 360 leads. A
cross section of the gate array TAB is shown in
Figure 3. The dielectric layers are polyimide film.
One metal layer contains the etch lines used for
both power and signal I/0 and the leads to bond to
the chip and HDSC. The other layer is a reference
plane to establish controlled impedance and to
minimize the inductance of the power and ground
paths. The reference plane is connected to the
ground leads by vias etched through the Kapton
and plated up. The gate array power is brought in
through 104 power (two voltage levels) and ground
leads. All of the signal leads are 60 ohms controlled
impedance. The leads are 35 microns thick and cop­
per coated with about 0.5 micron of electroless tin .

As shown in Figure 3, the TAB has an inner lead
bond (ILB) pitch of 100 microns and an outer lead
bond (OLB) pitch of 200 microns. The total span of
the TAB when mounted is 2.4 centimeters. The leads
are formed near the OLB to provide strain relief for
the ILB and to protect the OLB from thermal stress.
To minimize propagation time and noise, the length
of the signal lines has been minimized by keeping
the OLB pitch to the minimum compatible with
manufacturing processes. The bond at the IC (at the
ILB) is a gold-tin eutectic formed by gang thermal
compression bonding.

Digital TecbnicalJournal Vol. 2 No. 4 Fa/11990

HDSC and Multichip Unit Design and Manufacture

The clock distribution custom chip (CDxx) and
the STRAM use single-metal-layer tape with poly­
imide dielectric. The CDxx has 252 total leads
with 84 power and ground leads. The CDxx has the
same pin pitch as the gate array. The VAX 9000
system uses two sizes of STRAMs (lK by 4 bits and
4K by 4 bits) that have TAB tapes of different sizes.
The STRAMs also use a single-metal-layer tape with
48 leads. The minimum ILB pitch is 250 microns
and the minimum OLB pitch is 450 microns. Single­
metal-layer tape was selected for these devices
because it was less expensive than two-metal-layer,
and two-metal-layer tape was not needed because of
the shortened lead lengths on the STRAMs. Single­
metal-layer tape was acceptable for the CDxx chip
because all the outputs are differential and syn­
chronous. Noise cancellation was guaranteed.

All devices that use TAB are shipped in a 35-milli­
meter slide carrier. The devices are encapsulated in
epoxy to minimize infiltration of moisture or corro­
sive ions and to reduce damage due to handling.
The back sides of the chips are bare silicon because

ENCAPSULATION

IN ER LEAD
BOND

TAB

INNER LEAD BOND

TAB

OUTER LEAD
BOND

INTEGRATED
CIRCUIT

Figure 3 Isometric of a Gate Array
Showing Features of the TAB

85

VAX 9000 Series

no plating is required for epoxy die attach. The
epoxy die attach is filled with microscopic particles
to enhance the thermal conductivity while main­
taining electrical isolation between chips.

Signal Flex Connector
The signal flex connector is a high-density, con­
trolled-impedance connector used to transmit sig­
nals between the HDSCs and the planar module.
Each multichip unit has four flex connectors with
a combined signal I/0 of 800 in an area less than
40 square centimeters. Figure 4 shows a cross sec­
tion of one signal flex connector. The body of the
connector is a two-metal-layer flex print with 50-
and 60-ohm signal lines. The ground plane in the
flex circuit is used as an AC return path. No power is
carried through the signal flex. The signal plane
contains 200 etch lines with a raised gold bump on
each at the planar module interface. The connec­
tion to the HDSC is a solder bond similar to the sol­
der bonds for the TAB device. A window is opened
through the polyimide to allow the formation of
cantilevered, exposed, solder-plated leads.

The raised bump on the flex circuit concentrates
the contact force into a small area. The bump is
solid copper that is plated over with nickel and hard
gold. The force on the bump is generated by com­
pressing a molded silicone rubber elastomer. The
compression of the connector causes the flex
frame to engage a cam on the housing and wipe the
contacts across the planar module pads. The con­
nector is compressed, nominally, 1.27 mm and
wipes 0.46 mm. The bottom of the elastomer mates
with a tray which has a contoured surface to vary
the compression along the length of the elastomer.
This contoured surface improves the uniformity of
the force that the bumps exert on their pads. The
connector has been designed to generate 100 grams
minimum load on all bumps. The wipe action and
the bump force of the connector minimize the
effect of dust and environmental films on the mat­
ing surfaces.

Power Connector
The power consumed by the multichip unit is
brought in through two power connectors mounted
on opposite sides of the HDSC. The connector is
composed of a flex circuit , a connector, and decou­
pling capacitors. The flex circuit is solder bonded to
large pads on the HDSC surface. The flex has three
copper conductive planes separated by polyimide
dielectric. The connector has stamped metal con­
tacts soldered into the flex circuit and assembled

86

into a plastic housing. The connector plugs into flat
blades on the bus bar of the planar module assem­
bly. The decoupling capacitors on the power flex
circuit filter the medium-frequency switching noise
on the MCU and the MCU power bus.

Thermal Design
The multichip unit was designed from conception
to provide an efficient cooling path for the inte­
grated circuits. Figure 5 shows a cross section of the

SIGNAL FLEX
CIRCUIT

PLANAR MODULE

ELASTOMER FLEX CIRCUIT
BUMP

ELASTOMER

ELASTOMER TRAY

Figure 4 Signal Flex Connector with
Detail of Bump

Vol. 2 No. 4 Fall 1990 Digital Tecb11tcaljounial

multichip unit. The heat dissipated by the chips is
conducted through the silicon and the die attach
into the baseplate. As mentioned above, the die
attach is an epoxy heavily filled with microscopic
diamond particles to increase thermal conductivity.
The heat spreads out in the copper alloy baseplate
and is conducted across a dry interface to an alu­
minum base of the pin fin heat sink. The heat sink
has 600 aluminum pins, each 0.20 centimeters in
diameter, pressed into the base. Air plenums in the
cabinets direct at least 14.6 liters per second of air
into each multichip unit heat sink. The thermal
resistance for a 30-watt gate array is less than 2.0
watts per degree Celsius which gives a junction
temperature of 85 degrees Celsius with room air at
25 degrees Celsius. This low junction temperature
is a critical part of the high reliability of the multi­
chip unit.

Clock Distribution
The system clock on the VAX 9000 system is
distributed to each of the multichip unit clock
distribution chips (CD:xx). The CD:xx generates 40
differential outputs which are routed through
equal-length etch to the other chips. The CD:xx also
distributes and controls the scan lines that test the
unit both in manufacturing and in the field . The
scan lines also allow the unit serial number and revi­
sion status to be read by the system console.

Multicbip Unit Manufacturing
Figure 6 shows the manufacturing process flow,
which has three major work centers:

• 54-class assembly and inspection

• PIOOO assembly and inspection

• Test and diagnose

In the 54-class process, TAB semiconductor
devices are assembled to the HDSC substrate, result­
ing in the subassembly known internally as a 54-
class module. In the P 1000 process, connector and
housing components are assembled. At the last
major center, the test process, final units are tested
and, if necessary, diagnosed. A shop floor control
system tracks the units through the line and pro­
vides critical component and process trace infor­
mation. In addition, this control system is used to
monitor process parameters to ensure control of
the line and consistent product quality.

The following section provides insight into
several of the process technologies we used to meet
the manufacturing goals of the VAX 9000 system.

Digital Tecbnical]ournal Vol. 2 No. 4 Fa/11990

HDSC and Multichip Unit Design and Manufacture

/ SILICON DIE ATTACH

I HDSC

Rae :_-_-_-: ... __ ,
~~---~L - -1, _____ __.,

Figure 5 Thennal Path

TAB and Flex Circuit Bonding

BASE
PLATE

PINFIN
HEAT SINK

The insertion and soldering of leads is the most
critical step in the multichip unit manufacturing
process. Single-lead and multiple-lead gang bonding
approaches were both considered. Gang reflow sol­
dering is an effective way to achieve repeatable, reli­
able connections for both the TAB semiconductors
and the signal flex circuits. Early development work
on manual machines required operator action for
lead forming, lead alignment, and gang bonding.
Today, critical process parameters- time, pressure,
temperature-are computer controlled to speci­
fied values, and the process uses tools to assist the
operator in material movement and vision systems
to improve alignment of leads. Before bonding, the
leads are covered with a low activation flux which
is removed later in the process.

Die Attach
Another critical manufacturing step is the die attach
process. The excellent thermal performance of the
multichip unit is achieved by following these steps:

• Careful control of the die attach materials with
feedback to our suppliers.

• Surface cleanliness specified and also managed
with our suppliers.

• Dispensing of epoxy. The filled epoxy is dis­
pensed by an x-y table that is computer con­
trolled to supply the correct pattern for the
particular multichip unit type.

87

VAX 9000 Series

START
MCU PROCESS

START OF 54 CLASS ASSEMBLY

EPOXY CURE
IN FURNACE

END OF 54 CLASS ASSEMBLY

START OF P1000 ASSEMBLY

ALIGN HDSC
TO HOUSING

REJECT

TOUCH UP
SIGNAL FLEX '----~
BONDS

REJECT

INSTALL ELASTOMER
AND FORM FLEX
FRAME INTO HOUSING

END OF P1000 ASSEMBLY

START OF TEST AND REPAIR

TOUCH UP 1----~•·1--------lCOMPONENT
REPLACEMENT

REJECT

BOND

END OF TEST AND REPAIR

SHIP

REJECT

CHIP

Figure 6 Manufacturing Process Flow

• Establishment of bond line thickness and epoxy
cure. Bond line thickness is accomplished by
mechanically applying pressure while curing in
a purged belt furnace.

Inspection
To ensure that all soldered leads are reliably
bonded, leads must be inspected for shorts, mis­
alignments, opens, and weak joints. Shorts and mis­
alignments are discovered by an automated vision
system that calls marginal points to the operator's
attention. The operator can then determine if
repair action is warranted. Inspection for opens and
weak joints is done by striking the leads with a pulse
of laser energy and then measuring the thermal
decay profile. Repair is typically made by localized

88

short removal or single-point bonding. Over time,
we believe that our materials and processes can be
controlled to the point at which inspection and
repair can be dramatically reduced.

Final Test
The goal of our test process was to ensure that
multichip units would operate successfully in a
system environment. Since no test equipment
manufacturer offered a system that met our needs,
we developed our own by working with several
Digital groups as well as outside suppliers. The
system contains three major stations. The first
provides alignment information and can also read
visual serial and part numbers. In the second sta­
tion, low voltage shorts are determined between

Vol. 2 No. 4 Fall 1990 Digital Tecbnical]ournal

nearest neighbor leads. This step supplements our
inspection for shorts described above. In the final
station, we test for connector opens, thermal mea­
surement (die attach integrity), scan chain integrity,
and scan pattern data. The scan pattern testing is
done in several bursts of the clock at system speed.
In addition, diagnose capability is provided by fly­
ing probes, voltage and clock margining, and a ther­
mal chuck to vary temperature.

Conclusion
Successful use of advanced interconnect technolo­
gies requires a seamless phased development pro-

Digital Tecbntca/Journal Vol. 2 No. 4 Fall 1990

HDSC and Multichip Unit Design and Manufacture

cess that begins with advanced development and
continues through volume manufacture. The HDSC
and multichip unit technologies have successfully
achieved the volume manufacturing phase. Using
the products and technologies described
in this paper, we have played a key role in the intro­
duction of the VAX 9000 system to the marketplace.
Extensions of this manufacturing process will
ensure that this technology base can be applied
across a wide spectrum of products of both higher
and lower performance.

89

Matthew S. Goldman
Paul H. Dormitzer

Paul A. Leveille

The VAX 9000 Service
Processor Unit

The VAX 9000 seroice processor unit provides the front-end seroices needed to support
a highly available and reliable mainframe system. The unit is closely linked to the
VAX 9000 system to provide realtime detection and recovery of system failures.
However, the unit is independent enough to be isolated for maintenance without
affecting normal system processor operation. This combination is a first for VAX

systems. The seroice processor also provides various debugging features that were
essential for development and early manufacture of the VAX 9000 system. These
features utilize a system-wide scan architecture to achieve direct access to machine­
state, which provides extensive visibility and control of system logic functions. The
inclusion and use of such a scan architecture is a newfeature for a Digital processor.

The VAX 9000 service processor unit (SPU) is
designed to provide a dedicated subsystem for ser­
vice and maintenance support for the VAX 9000
family. The SPU serves two distinct roles. It func­
tions as the familiar operator interface (i.e., VAX

console) and as a maintenance vehicle used to diag­
nose and isolate system processor hardware faults.

The SPU performs the following major front-end
services:

• System initialization

• Power system control and monitoring

• Environmental monitoring

• Clock control and monitoring

• VAX 9000 operating system access to SPU mass
storage devices (disk and tape)

• Remote diagnosis port support

• System error detection, recovery, and reporting

The SPU also provides or assists in the following
system diagnosis functions:

• SPU module self-tests

• Scan system diagnostics

• Clock system diagnostics

• Scan pattern structural diagnostics

• Structure cell (e.g., self-timed random-access
memory (RAM]) diagnostics

90

• XMl-to-system control unit adapter interface test

• Symptom-directed diagnosis support

In addition to its use as the front-end processor
for the VAX 9000 system, the SPU was embedded
in several manufacturing and engineering test
vehicles. In the Debugging Features section of this
paper, we describe how the SPU was used as a
debugging tool during VAX 9000 product devel­
opment and the various debugging features we
provide to help locate design and fabrication
problems.

A major goal of the SPU was to perform system­
wide error detection and recovery functions for the
VAX 9000 processor. In the Error Handling section
of this paper, we detail the types of errors that the
SPU handles arid how error detection, reporting,
and recovery occurs.

Another of our design goals was to be able to
service the SPU without adversely affecting the
operation of the system processor. This feature was
needed to support the high availability require­
ments of a mainframe system. To meet this goal, we
designed mechanisms to enable the VAX 9000 oper­
ating system to determine that the SPU is not func­
tional (whereupon the operating system takes the
appropriate action to secure its own operation),
as well as recognize and reintegrate with the SPU
when the SPU is functional again.

If the VAX 9000 operating system attempts to
access one of the SPU-based processor registers and
the SPU does not respond, the failure is detected by

Vol. 2 No. 4 Fall 1990 Digital Tecbnica/Journa/

using the usual register time-out mechanism. How­
ever, because the SPU is responsible for system error
handling, SPU failures must be detected quickly to
enable the SPU to respond to a system error should
one occur. Consequently, we developed a keep­
alive protocol with which the VAX 9000 operating
system can determine SPU failures without relying
on operating system accesses to SPU-based pro­
cessor registers. The keep-alive mechanism is
described in more detail under the Error Handling
section of this paper. Both the time-out and keep­
alive mechanisms work regardless of whether the
SPU has an unexpected failure or undergoes a sched­
uled power-down.

Should the SPU require service, field upgrades
may be performed easily and quickly because of the
modularity of the hardware, which is primarily
VAXBI bus interface-based adapters. The VAXBI
backplane minimizes downtime because modules
can be removed or inserted without requiring reca­
bling. When power to the SPU is restored, SPU self-

TO/FROM
REST OF PCS

DISK
CONTROLLER
(T1031 KFBTA)

POWER AND
ENVIRONMENTAL
MONITOR
(T1060 PEM)

POWER CONTROL SYSTEM

VAXBI

SERVICE
PROCESSOR
MODULE
(T2051 SPM)

FIRMWARE

PTY ,._ __ ~

The VAX 9()()0 Service Processor Unit

tests are performed. The SPU's operating system
then boots automatically and signals its availability
to the VAX 9000 operating system.

The SPU is designed to continue operation even
if the SPU primary storage device, an RD54
Winchester disk drive, fails, which further increases
the availability of the SPU. For customers who
require data security and high availability, we
designed a system configuration option that does
not use a disk drive. In this case, the SPU boots from
TK50 cartridge tape. The SPU functions that require
a disk drive for data storage (e.g. , SPU-generated
error logs) are disabled in this configuration.

SPU Architecture
A block diagram of the SPU architecture is shown in
Figure 1. The service processor module, scan con­
trol module, and power and environmental monitor
were designed uniquely for the VAX 9000 system.
The disk controller, tape controller, as well as the
memory daughter board were available from other

TAPE/NETWORK·
CONTROLLER - --~
(T1034 DEBNK) NI*

SPU MEMORY SCAN

16 MBYTES CONTROL

ECC MODULE
(T2050 SCM)

SPUOS I FIRMWARE

SJI

•NI CONNECTION USED DURING SYSTEM PROCESSOR
DEVELOPMENT ONLY

Figure 1 VAX 9000 SPU Block Diagram and Interconnects

Dtgttal Tecbntcal]ournal Vol. 2 No. 4 Fall 1990 91

VAX 9000 Series

Digital products. Every SPU VAXBI adapter provides
its own built-in self-test diagnostics.'

SPU hardware is based on either industry-proven
(e.g. , 7400-series TTL components, complementary
metal oxide semiconductor (CMOS) gate arrays)
or Digital-proven technology (e.g., VAXBI, Digital
custom CMOS devices) to ensure that the unit is an
effective debugging platform for a system processor
based on leading edge technology. As a result, the
inherent risk and learning curve associated with
new technology were avoided and the SPU was
ready and available during the VAX 9000 system
prototype debugging process.

The SPU also was made available to manufactur­
ing process and tester groups (e.g., multichip unit
tester) for use with their designs. The advantages to
this approach were that technicians became famil­
iar with the same subsystem that would be used in
the VAX 9000 family, and the test programs could
be transferred for use in other test environments
that also used the SPU, including the VAX 9000 sys­
tem itself.

The service processor module is the primary
processing element of the SPU and is the VAXBI host
adapter. Based on the MicroVAX 78032 chip and
several custom-designed application-specific inte­
grated circuits (e.g., SPU-to-system control unit
adapter, SPU memory controller), the module con­
tains all the hardware necessary to store and
execute the SPU operating system. The on-board
firmware contains a VAX standard console interface
to load the SPU operating system during initializa­
tion and to assist in subsystem debugging. The SPU­
to-system control unit interface (SJ!) connects the
service processor module to the system control unit
and is the primary communication path between
the SPU and the VAX 9000 operating system.

The scan control module is the control interface
to the VAX 9000 scan system, which is the visibility
and maintenance path to the system processor. Like
the service processor module, the scan control
module is based on the MicroVAX 78032 chip and
several custom-designed application-specific inte­
grated circuits (e.g., scan control chip, scan
distribution chip). On-board firmware provides
high-level functions that allow the service processor
module to continue processing while scan-related
operations, including logical-to-physical signal
translations, are performed concurrently by the
scan control module. The scan interconnect (SCI)
connects the scan control module to the system
processor (i.e., one to four CPUs and the system con­
trol unit) and the master clock module. Using this

92

interface, the system processor may also interrupt
the SPU when the processor needs service. This
type of interrupt request is known as an attention.

The SPU is integrated into the system cabinet to
better meet the performance requirements neces­
sary for system error recovery and VAX 9000 oper­
ating system boot. Cabinet integration substantially
decreases interconnect distances to processor logic
and ensures that all cables are kept internal to the
cabinet. Another reason for choosing the VAXBI
backplane card cage is that its form factor is small,
which reduces the cabinet area needed (cabinet area
is always in high demand), yet the user-definable
zones provide the high pin density required for
interconnects (i.e. , 1801/0 pins per VAXBI slot).

Communication Path
The SPU communicates with the system processor
using the SJI. This interface is used to load the pri­
mary bootstrap into the VAX 9000 main memory,
transfer error and machine-check information to
the VAX 9000 operating system, provide file trans­
fer access between the VAX 9000 operating system
and the SPU's RD54 disk drive, access system main
memory, and access system I/0 registers.

The VAX 9000 operating system accesses the SPU
as if it were a standard 1/0 device. The SPU is an
independent subsystem and does not rely on the
execution unit of the system processor to be a con­
sole processing engine, as was done in previous
VAX systems. There are several benefits to this
design approach. Each CPU has equal access to the
SPU and may interrupt the SPU to request service.
In addition, the SPU may interrupt any of the CPUs
to request an operating system service. The SPU
may be used as a debugging tool during system pro­
cessor debugging because it does not require that
any portion of the system processor be operational.
The fact that the SPU could be used as a debugging
tool was an extremely important benefit for the
VAX 9000 system debugging effort. The debugger
did not have easy access to the logic elements
because of the advanced packaging and circuit inte­
gration of the VAX 9000 system. Therefore, SPU ser­
vices were utilized in lieu of logic probes. Further,
because the SPU no longer uses the CPU for system
access, console support microcode (i.e., the collec­
tion of microcode procedures traditionally used for
access to the system processor, memory, and I/0
registers) is not required. The benefit of this process
is that valuable VAX 9000 control store space could
be used for system microcode or to reduce the con­
trol store size. For example, in the VAX 8650 system,

Vol. 2 No. 4 Fall 1990 Digital Tecbnical}ournal

console support microcode occupies approxi­
mately 180 microword locations.

VAX 9000 operating system access to the SPU is
through the VAX console register set. We extended
the VAX console register set to provide access to the
enhanced capabilities of the SPU. Additional regis­
ters include transmit function request and param­
eter and receive function request and parameter
(i.e., TXFCT, TXPRM, RXFCT, RXPRM). Table 1 lists
the functions provided by these registers.

SJI communications are in the form of 14-byte
packets that contain the command (i.e., function),
address, and data. Packets are sent and received
over two 8-bit data paths that provide full duplex
operation. Data transfers peak at 3. 5 megabytes
(MB) per second for quadword transfers.

When the VAX 9000 operating system executes a
Move_to/from_Processor_Register instruction that
specifies an SPU register, the system control unit
sends an I/0 command packet, through the SJI, to
the SPU to initiate the system request. Then the SPU

typically uses an interrupt command packet, which
generates an interrupt to the specified CPU. The
two other packet types are direct memory access
and error correction code.

Visibility Path
In the development and manufacture of a com­
plex computer system, extensive testing methods
must be available to ensure functional operation
and product quality. Design engineering no longer
can use manual probing techniques in prototype
debugging. Space limitations have resulted from
advanced packaging and the close pitch of inte­
grated circuit IIO pins, which is due to high integra­
tion levels. Failure isolation must be performed in
the manufacturing process, often without an exten­
sive knowledge of the machine design.

A separate visibility and control path in the sys­
tem processor of the VAX 9000 system provides
nearly 100 percent visibility to the machine-state.
The visibility path eliminates the need to select a
subset of visibility points to meet all test needs, as
was done with previous VAX systems. In addition,
the path allows designers to directly alter the entire
machine-state, which is a major advantage for
design and process debugging. A VAX 9000 uni­
processor (i.e., one CPU and system control unit)
contains over 26,000 access points.

The path is called the VAX 9000 scan system and
is controlled by the service control module. The
scan system is the foundation for direct access
by prototype debuggers, system error recovery

Digital Tec:bnical]ournal Vol. 2 No. 4 Fall /<J<JO

The VAX 9000 Service Processor Unit

Table 1 RXFCT/RXPRM and TXFCT/TXPRM
Functions

RXFCT/RXPRM Functions
(SPU to System Processor)

Remove processor
Add processor
Mark memory page bad
Request pages of memory
Send error log entry
Send OPCOM message
Get datagram buffer
Send datagram
Return datagram status
Set keep-alive state
Abort datalink
Error interrupt

TXFCT/TXPRM Functions
(System Processor to SPU)

Get hardware context (of a halted CPU)
Virtual block file operation
(access to SPU disk and tape)
Keep-alive
Send datagram
Return datagram status
Switch primary
Reboot system request
Clear warm start flag
Clear cold start flag
Boot secondary processor
Halt CPU and remove from available set
Halt CPU and keep in available set
Console quiet
Set interrupt mode
Abort datalink
Reset 1/0 system
Disable vector unit
Set keep-alive state
Start processor
Margin power
Margin clock
Fault signal
Start error window
End error window
Report error in window
Get error log entry
Get unmarked error log entry and mark
Enable halt restart
Get 1/0 physical address memory map configuration
Get physical address memory map configuration

93

VAX 9000 Series

software, and diagnostics to observe and alter the
VAX 9000 machine-state. Some functions provided
by the scan control module and supporting SPU

software are

• Load and save processor state

• Scan pattern execution

• Continuity testing of the processor's scan
hardware

• Multichip unit type and revision information
extraction

• Processor attention notification

A block diagram of the VAX 9000 scan system
is shown in Figure 2. The scan control module
connects to the system planar module over the SCI.

Scan and clock distribution logic, contained in a
macrocell array on the planar module, distributes
data and control signals over the scan bus to each of
the multichip units. A clock distribution chip at the
hub of each multichip unit further distributes the
scan bus signals to the macrocell arrays, which are
integrated circuits that contain system logic.

As shown in Figure 3, the state devices within a
macrocell array are scan latches. The latches are
connected serially to form a ring or chain by con­
necting the Scan_Data_Out line of each latch to the
Scan_Data_ln line of the next latch. The end links
are connected to the clock distribution chip. When
the system clocks are running, data is loaded into
the latch from the system data input. During scan
operation, system clocks are not active. Generated
by the scan control module, the scan clocks load the
latch with data from the scan data input. Conse­
quently, the scan control module reads system state

SERVICE
PROCESSOR

SCAN
CONTROL
MODULE

SCI

scD· SCAN
DATA
RETURN

MC Un

SCAN DATA IN
AND CONTROL

"SCD . SCAN AND CLOCK DISTRIBUTION LOGIC

by issuing scan clocks, which serially shift system
data to the scan control module. System state is
changed when the scan control module drives new
data to the system latches while issuing scan clocks.

An architectural feature permits each multichip
unit to generate an attention interrupt directly to
the scan control module over the scan data return
line. Attentions notify the SPU of system events,
such as processor errors, memory self-test comple­
tion, CPU halts, and keep-alive responses.

System diagnostics can diagnose the SCI by using
the same control signals as used for scan system
operation. Dedicated logic and special routing of
the scan lines provide failure isolation. Stuck-at
faults and disconnect conditions can be isolated to
the multichip unit.

Debugging Features
In addition to its use as the VAX 9000 front-end
processor, the SPU provides a variety of features
for debugging and troubleshooting multichip unit
logic configurations. These features were required
because all multichip unit logic visibility and con­
trol is handled through the SCI, which connects
directly to the SPU. The use of scan latches to access
internal logic states is a first for VAX systems and
challenged the designers to define and deliver the
necessary tools and features to assist the multichip
unit debugging effort. Furthermore, the features
provided by the SPU had to apply to various tester
environments, ranging from single multichip units
mounted in probe stations to full system config­
urations. Additional requirements to support the
clock and power system test stations made it clear
that the SPU would have to be adaptable to a variety
of environments.

PLANAR
MODULE

MCUO

Figure 2 VAX 9000 Scan System

94 Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljournal

Generic SPU Environment
To satisfy the SPU's fundamental requirement of
being adaptive to differing environments, test sta­
tions had to comply with the physical interfaces
provided by the SPU in the VAX 9000 system. We did
not have the resources to develop tester-specific
interfaces, so it was agreed by all development
groups that testers would comply with the SPU's
system environment, as shown in Figure 4.

This generic environment allowed SPU hardware
and software development to concentrate on sup­
porting the needs of the VAX 9000 system and to

receive valuable feedback and debug time from
the test station groups prior to system processor
availability. Several major benefits were achieved
with this approach:

• Because the SPU software had early exposure
in the test station environments, the software
was debugged and tested to an acceptable level

SCAN
LATCH

DO
SYSTEM_DATA 01 a

HOLD HOLD

SCAN_DATA_IN SDI

SCAN_A_CLK SCK LATCH
D a

SYSTEM_A_CLK LO LO
SYSTEM B CLK
OR - -

The VAX 9000 Service Processor Unit

before full system configuration support was
needed. In particular, the command language
interpreter had to be ready to provide the basic
SPU functions, such as file manipulation, com­
mand procedures, symbol and expression evalu­
ation, and command recall.

• Technicians working at the test stations had an
opportunity to develop an understanding of the
SPU's operation that was then carried forward to
other SPU-based debugging environments.

• Economies of scale existed because one front­
end development effort supported both in-house
test stations and the final product.

• Many of the primitive debugging features devel­
oped for tester use were found to be just as
valuable during actual system debugging, partic­
ularly the fundamental commands that allow
direct control of the SCI signals.

SYSTEM
DATA IN D QA

QA SCAN DATA IN SDI QB

SYSTEM
DATA
OUTPUTS

SYSTEM
D QA DATA IN SYSTEM

DATA
QB SDI QB OUT

SCAN_B_CLK SCAN_DATA_OUT

D

(a) Macrocell

SCAN
LATCH

a
HOLD B

(b) Register Transfer Level Body

Figure 3 Scan Latch

Dtgttal Tecbntca/Journa/ Vol. 2 No. 4 Fa/11990

SYSTEM
DATA IN

SDI 09

SCAN
DATA
OUT

(c) Example of Scan Ring Routing

95

VAX 9000 Series

Primitive Debugging Features
One of the most basic features offered by the SPU is
the ability to directly access the internal registers of
the clock and power systems by using the EXAMINE

and DEPOSIT commands. When combined with the
general command language of the SPU, these com­
mands allow debuggers to create procedures to
control, test, or interrogate various components of
the VAX 9000 system. For example, command pro­
cedures have been created to monitor and exercise

the power, clock, and SPU subsystems as part of the
reliability and design verification test plans.

Other low-level commands provide the means
for debugging and troubleshooting the scan paths.
For example, the SET and SHOW commands permit
individual control of the SCI signals. Using these
commands, the SCI can be observed statically and
be stepped through its operations. Precise control
of the SCI signals provides easier debugging of the
scan paths in the early multichip units, primarily

1 TO 5 TEST STATIONS OR
VAX 9000 SYSTEM

96

SPU
"FRONT END"

CTY TIYCONTROL

RTY NI

RD54
DISK

scu '
CPU3

' SCAN
CONTROL CPU2

CPU1

CPUO

MGM
'

POWER .
CONTROL

KEY:
MGM - MASTER CLOCK MODULE
SCU - SYSTEM CONTROL UNIT
PCI - POWER CONTROL INTERFACE
CTY - CONSOLE TERMINAL
RTY - REMOTE TERMINAL
MCU- MULTICHIP UNIT
SCI - SCAN INTERCONNECT
NI - NETWORK INTERCONNECT

SCI

~ .
·~

'"-:-
~

~

.
PCI

l
I

I
I

I
I

MCU(s) UNDER
TEST

SCI ADAPTER

CLOCK SCI I SYSTEM
ADAPTER CLOCK

POWER SUPPLIES
AND SENSORS

CLOCK
SUBSYSTEM

POWER
SUBSYSTEM

Figure 4 Generic SPU Environment

Vol. 2 No. 4 Fall 1990 Digital Tecbnical]ournal

because static signal operation gives more isolated
feedback than an interconnect that runs at full
speed through many state changes.

Once the single-step operation of the SCI was ver­
ified, the full-speed operation of the scan logic in
the multichip unit could be tested. Commands that
collectively display and modify the scan latches of
a single macrocell array were an effective way to
verify the operation of this logic. Latch data are
displayed in their physical form as a string of hexa­
decimal digits, the length of which varies from one
macrocell array to the next, in the range of 100 to
300 bits. Provisions also exist to select scan clock
rates ranging from 3200 nanoseconds (ns) per bit to
the full 100 ns per bit operation.

High-level Debugging Features
The use of the scan architecture as a means for
initializing and debugging the VAX 9000 processor
was a first for a VAX front-end. Because physical
latch information is cryptic and difficult to use, we
designed the SPU to provide the necessary trans­
lation from a logic signal name to its corresponding
scan latch in the machine. We modeled the SPU's
user interface after the user interface of DECSIM,
one of Digital's logic simulation utilities. Engineer­
ing used the DECSIM interface during the VAX 9000
design phase and was already familiar with its user
interface.

The majority of the user interface development
work involved the EXAMINE and DEPOSIT com­
mands and their associated data structures that
resemble the procedure usesd in the DECSIM sys­
tem. These commands provide access to the more
than 26,000 signals accessible through the scan sys­
tem in a uniprocessor system. The SPU also main­
tains the design hierarchy of the signals, which
permits signals to be referenced as they appear on
the pages of the logic schematics. A watch point
and trace point capability, modeled after similar
features in the DECSIM system, simplifies the task of
monitoring state changes in the machine. Because
the processor clocks are single-stepped, signals
which change state are displayed automatically.

Using the DECSIM system as the model for these
SPU features produced two advantages:

• Designers moved from the simulation environ­
ment (i.e., using the DECSIM system) to actual
debugging (i.e., using the SPU) with virtually no
training. Although the precise syntax of the SPU's
commands is not always identical to the syntax
ofDECSIM commands, the concepts are the same.
Therefore, first-time users overcome the differ­
ences quickly.

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990

The VAX 9000 Service Processor Unit

• All register transfer-level signal names corre­
spond with those present on logic schematics,
including the logical design hierarchy. This cor­
respondence makes the relationship of displayed
signal names and schematic signal names easy
(e.g. , %CPU0.VAP.VAPO.ALU_FUNCTION_H<0>).

The translation from a logical signal to its associ-
ated scan latch uses data structures supplied in a
configuration database file, which is loaded into
SPU memory during SPU initialization. All CPUs
with identical multichip unit configurations (i.e. ,
same CPU revision) share the same configuration
database memory image. The system control unit
always requires its own database. Only two CPU
revisions can be supported at one time because of
SPU memory constraints for storing the separate
configuration databases. However, by providing for
two CPU revisions, the needs of single and dual CPU
configurations were completely satisfied. Further,
it was possible to upgrade homogeneous triple and
quadruple configurations in a stepwise manner.

Macrocode Execution
Initial system-level multichip unit configurations
consisted only of a scalar CPU. The system control
unit was not yet available as a result of the extended
simulation of the design. Fortunately, we had antici­
pated the possibility of running partial configu­
rations and could provide modes within the SPU
software to redirect commands that normally
access main memory (e.g., EXAMINE, LOAD) to
access the CPU's 128 kilobyte (KB) system cache
or 8KB virtual instruction cache instead. The first
VAX macro-instructions were loaded and executed
on the VAX 9000 system using this technique. An
additional feature, which involved minor hooks in
the system microcode, provided a means for the
VAX instruction set diagnostic, EVKAA, to commu­
nicate with the console terminal through scan
attentions rather than by using the system control
unit. Thus, the diagnostic could run to completion.

Advanced Debugging Features
Although not obvious aids to VAX 9000 debug, the
following features were indispensable or, at the
least, reduced debugging time and effort:

• A character-cell windowing capability that
allows system microcode sources to be automat­
ically located, displayed, and updated on the
screen as the system is single-stepped. We mod­
eled this feature after the VAX debugger's win­
dowing capability because most VAX engineers

97

VAX 9000 Series

are familiar with this capability. Windowing
eliminated the need for hard-copy microcode
listings and the logistical problems associated
with their use.

• By connecting the SPU to the engineering net­
work during development, timely updates of
SPU software were made possible. This kept the
VAX 9000 debugging effort, which was occur­
ring simultaneously on several systems, up to
date with the latest SPU software fixes and
enhancements. Together with the multisession
capability of the SPU operating system, the use
of the network made remote debugging a reality
throughout the VAX 9000 debug phase.

• Because the SPU had to initialize the VAX 9000
system thousands of times during system debug­
ging, the unit was designed to perform system
initialization as efficiently as possible. For exam­
ple, the loading of structures (e.g., control stores
or cache tags) was optimized by overlapping the
operation of three MicroVAX-based processors:
the service processor module, the scan control
module, and the disk controller.

The debugging features located early design and
fabrication problems in the clock, power, scan, and
processor logic areas. Ultimately, the features were
used to initialize and run the first VAX 9000 system.

Error Handling
To support high system availability, accurate and
timely error detection and logging is required.
Error data collection cannot depend upon host sys­
tem availability, and the data must be available when
the system is not functional. Therefore, an indepen­
dent service subsystem that can collect data from all
system components, render it into a useful format,
and store and display the information is needed.

The service subsystem must also be organized in
such a way that if it fails, it does not directly cause
system processor failures. Repair, reboot, and sys­
tem reintegration must occur without interfering
with system processor operation. The SPU meets
these requirements; it is a fully independent com­
puter that runs its own operating system with dedi­
cated peripherals. The SPU performs system-wide
error detection and reporting functions and pro­
vides advanced error recovery features for the
system processor.

Error Detection
The SPU reports errors in its own VAXBI adapters,
the service processor module, the scan control

98

module, the power and environmental monitor,
the disk controller, and the tape controller. It also
reports errors in various parts of the VAX 9000
system, such as the system control unit, the CPUs,
the memory system, the master clock module, and
the power and environmental systems. Because fail­
ures in any of these subsystems can incapacitate the
VAX 9000 system, none of them reports its errors
directly to the VAX 9000 operating system.

SPU Errors The disk controller, tape controller,
and scan control module use the VAXBI VAX port
protocol to report errors. The power and environ­
mental monitor passes error information to the ser­
vice processor module through its private bus, the
SPU-to-power control system interface.

Environmental frceptions The power and envi­
ronmental monitor monitors the regulator intelli­
gence cards, airflow sensors, and temperature
sensors throughout the system. When it detects any
problems in operating voltages, currents, tempera­
tures, or airflow, it notifies the service processor
operating system, which logs the error condition.

Clock F,xceptions When the master clock module
detects an error in either the clock phase or the
clock frequency lock, it generates an attention to
the scan control module, which interrupts the ser­
vice processor module. The SPU operating system
logs the error condition.

Memory Error Correction Code Events The main
memory of the VAX 9000 system contains error­
correcting logic to correct single-bit errors and
detect double-bit errors. When a memory location
with a single-bit error is read, the system control
unit corrects the error and passes the corrected data
to the requesting device. It also writes an SPU regis­
ter with the error type and the failing memory
address. The SPU operating system writes this infor­
mation to the error log. If the system control unit
detects a double-bit error or reads a marked-bad
location, it passes the bad data, marked as bad, to
the requesting device and notifies the service pro­
cessor operating system, which logs the error. The
bad data is handled locally by the requesting device,
usually by generating an error of its own.

CPU and System Control Unit Errors When a CPU
detects an error in a parity checker, it attempts to
come to an instruction boundary and halt. Once
it has halted, the CPU sweeps its cache. When the
cache sweep is completed, the CPU asserts an

Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljounial

attention to the scan control module to inform the
SPU that recovery is required. When the system
control unit detects an error, it first asserts a fatal
error signal to each of the CPUs, and then asserts an
attention. When the CPUs receive the fatal error sig­
nal, they attempt to come to an instruction
boundary and halt. Once halted, the CPUs assert
attention lines to the scan control module. The
caches are not swept since their path to memory,
the system control unit, is not working.

Keep-alive, Timeout To ensure that a CPU is not
hung by an undetected error, the SPU periodically
sends a keep-alive interrupt to each CPU. CPU
microcode services the interrupt at the next macro­
instruction boundary by asserting an attention to
the scan control module. If the CPU should be hung
by an undetected error, the SPU times out while it
waits for the keep-alive reply attention and, thus,
determines that there has been an error. Similarly,
the primary CPU monitors the SPU by sending it a
keep-alive request through the TXFCT register. If the
SPU does not respond to this request within a time­
out period, the VAX 9000 operating system assumes
that the SPU is hung and reboots it using a VAXBI
reset. When the SPU reboots, it reintegrates itself
with the rest of the VAX 9000 system without inter­
fering with system operation.

Error Reporting
When errors are reported to the SPU operating sys­
tem, the error formatting facility logs the error
information locally and reliably transmits it to all
intended receivers. The error formatter maintains
the error log file ERRLOG.SYS on the SPU RD54
drive, passes error log entries to the VAX 9000 oper­
ating system to be logged in the system error log,
and also passes the entries to any SPU software that
requests them. The error formatter writes the error
log file using the SPU operating system disk I/0 func­
tions, passes the error log entries to the VAX 9000
operating system using an RXFCT function, and
passes the error log entries to other SPU processes
using the SPU port protocol. If the RDS4 drive is not
available, which prevents access to the SPU error
log, the error formatter continues to send error log
entries to the VAX 9000 operating system and to
other SPU processes.

The SPU error log contains all the error log entries
collected by the SPU (but not those collected by the
VAX 9000 operating system) and time stamps,
which are logged every ten minutes. Should an SPU
operating system crash occur, the time stamps may

Digital Tecbnica/Journal Vol. 2 No. 4 Fall /990

The VAX 9000 Service Processor Unit

be used to determine the approximate time of the
crash. Errors are logged regardless of the state of the
system processor. As a result, information is avail­
able for analysis even in the event of a total proces­
sor failure. The error log file may also be transferred
to TKSO tape for off-site analysis.

The error formatter passes error information to
the VAX 9000 operating system by copying the error
log entry to system memory and then invoking the
RXFCT function to notify the VAX 9000 operating
system that the entry is available. Should the operat­
ing system not respond to this notification, the
error formatter assumes that the operating system
has crashed and writes the error log entry to a tem­
porary data file. When the VAX 9000 operating sys­
tem reboots, it notifies the SPU by using a TXFCT
function. The error formatter then reads any saved
error log entries from the data file and transmits
them to the VAX 9000 operating system. This proto­
col ensures that all collected error data is eventually
reported in the system error log.

The error formatter also maintains a SPU port to
which any process running on the SPU may con­
nect. Connected processes receive copies of all
error log entries as the entries are logged. This port
is used by EWKCA, the symptom-directed diagnosis
tool, which analyzes errors as they occur and
determines which system components might have
caused the failure. The port is also used for system
debugging by the error insertion program to verify
that errors are being logged and analyzed correctly.

Snapshots In addition to its error logging facili­
ties, the SPU operating system provides the ability to
take "snapshots" of the system processor state. The
snapshot file provides a detailed record of system
context, which allows engineers to take a snapshot
of a hung system and reboot it, and then analyze the
snapshot file while the system proceeds to perform
other useful work. The snapshot display utility is
used to examine the data in a snapshot file. In addi­
tion to formatting the data in the snapshot file, the
snapshot display utility can be used to examine any
scan latch in the file, by name, in the same fashion as
the console EXAMINE command is used on the
actual hardware. The data available in a snapshot
file is summarized in Table 2.

Error Recovery
The high level of visibility achieved by the scan
system allows the SPU to provide extensive error
recovery facilities for the VAX 9000 processor.
SPU-based recovery offers several advantages over

99

VAX 9000 Series

Table 2 Snapshot File Contents

Revision Section

All multichip unit revisions

All SPU adapter revisions

Microcode revisions

All XMI adapter revisions

All VAXBI adapter revisions

Power Section

All power control system registers

"Sense power" results

Clock Section

All master clock module registers

SPU Section

All SPU-to-system control unit adapter registers

1/0 Section

XMI device error registers

VAXBI device error registers

XMl-to-system control unit error registers

System Control Unit Section

All scan latches

Last 50 entries from system control unit micro
program counter history buffer

All cache tags

All other logical structures (e.g., control stores)

Configuration database version

1/0 physical address memory map

Memory physical address memory map

Nonexistent physical address memory map

CPU Section (Repeated Once for Each CPU)

All scan latches
Last 50 entries from program counter history buffer

All cache tags

All general-purpose registers

All internal processor registers

All other logical structures (e.g., control stores)

Top 50 longwords of current mode stack

Top 50 longwords of interrupt stack

32 bytes of instruction stream around each
program counter in history buffer

Configuration database version

50 micro program counters, collected by stepping
the clocks

100

traditional microcode-based error handling. The
CPU hardware resources that might otherwise be
used for error handling were available for the logic
designers to improve the system performance.
Because the error data is processed external to the
failing component, the recovery process itself is
not suspect. Finally, because the system clocks are
stopped while recovery takes place, erroneous data
does not propagate throughout the system.

Traditionally, many microwords in the CPU
control store (approximately 500 in the VAX 8600
system) are used for error recovery microcode.
However, because the SPU is responsible for
VAX 9000 error recovery, additional control store
space is available for instruction microcode. If this
had not been the case, we might have had to make a
space trade-off between instruction and recovery
microcode, which could have resulted in more
emulated instructions and a performance penalty
for VAX instruction execution speed.

Because the scan system allows the SPU to deter­
mine the state of every scan latch in the CPUs and
system control unit, logic designers were able to
place error detectors anywhere in the design
without organizing the detectors into microcode­
readable error registers. As a result, significantly
more error detectors were used for precise error
analysis than would have been possible if the scan
system were not available. Each VAX 9000 CPU con­
tains over 450 error detector latches.

Several advantages are derived from performing
error recovery independently from a failed compo­
nent. The most obvious advantage is that hardware,
which may be failing , is not used to control the
recovery. Once the system processor state has been
scanned out into SPU memory, analysis is a function
of software running on a known good processor.
The SPU analyzes the data and then scans a cor­
rect state into the system processor. The entire
process is performed while the system clocks have
been stopped. Therefore, processor errors cannot
cause "error loops;" that is, the error recovery
process itself gets errors from a corrupt processor
state. SPU-based error recovery can completely
reset a corrupt system, regardless of the degree of
corruption.

The VAX 9000 error-handling facility takes
advantage of many advanced software features that
are available in the SPU operating system. It uses
configuration database information to access sys­
tem processor signals by name rather than by scan
ring locations. Thus, one version of the error han­
dling code can handle several different physical
processor variations. The error handler also uses the

Vol. 2 No. 4 Fall 1990 Dtgttal Tecbnicaljournal

SPU operating system structure access routines to
read and write the processor structures, again, by
burying the physical implementation in the config­
uration database. As a result, the error handler
can look at the architectural features of the VAX pro­
cessor rather than at the gate-level design of the
VAX 9000 system when performing error analysis.
The benefit of this approach is that recovery proce­
dures are based on the system architecture, rather
than on the machine implementation.

One of our design goals for the VAX 9000 error­
handling system was to recover from most errors
in under 500 milliseconds. Longer delays increase
the probability that I/0 devices will time out while
waiting for the operating system to respond to
requests and cause the operating system to crash,
even if the error-handling system successfully
recovers from the error. The error handler meets
this goal by taking maximum advantage of the
multiprocessing capabilities of the tightly coupled
hardware design of the service processor module
and scan control module. Error recovery is split into
a multistep process that keeps both SPU processors
working on the problem simultaneously.

The error handler recovers a failed system in five
phases: data collection, data analysis, error recov­
ery, macrostep, and cleanup. In the data collection
phase, the scan control module scans out all scan
rings of the failed CPU or system control unit. In the
analysis phase, the scanned data is used to deter­
mine which architectural features of the system
have been corrupted (e.g., caches, general-purpose
registers, internal processor registers, microcode
stores, and the translation buffer).

In the recovery phase, the error handler attempts
to restore the system to a state in which no soft­
ware-visible data is corrupt. Therefore, the soft­
ware running on the VAX 9000 system, including
the operating system, is unaware that an error has
occurred. The error handler determines whether
the system state can be restored successfully or if
a machine check must be generated to allow the
VAX 9000 operating system to attempt to handle the
error on a higher level. It then restores the CPU to a
known good operating state, by using latch data
from the configuration database, and corrects any
corrupted software-visible data.

In the macrostep phase, the error handler turns
on the system clocks to allow the failed CPU to
attempt to macrostep one instruction. If the
macrostep completes successfully, the recovery is
considered successful and system operation is
allowed to continue. In the clean-up phase, the SPU

Digital TecbnicalJournal Vol. 2 No. 4 Fall 1990

The VAX 9000 Service Processor Unit

processes the data from the data collection phase
into an error log entry, posts the entry, and cleans
up the data structures that will be used to recover
from the next error.

Errors that are too severe for the error handler to
handle are signaled to the SPU command inter­
preter, which can run command scripts to com­
pletely reinitialize the machine and reboot the VAX

9000 operating system. Examples of such severe
errors are hard errors that prevent VAX 9000 oper­
ating system machine check code from running and
errors that cause a CPU to fail its macrostep.

Summary
The SPU is a dedicated subsystem for service and
maintenance support for the VAX 9000 family. It is
closely linked to the VAX 9000 processor to provide
system error recovery. It also presents a high-level
interface with which debuggers may observe and
control system processor activity. Through the use
of a system-wide scan architecture, the SPU pro­
vides access to nearly 100 percent of processor
machine-state. Finally, the use of the SPU in various
tester environments greatly assisted the multichip
unit debugging effort and provided advanced train­
ing for VAX 9000 system debuggers.

Acknowledgments
The authors wish to thank Michael Evans, the SPU

project leader, whose drive and ambition provided
the force behind the project's success. We also wish
to acknowledge the other members of the SPU

design team: Karen Barnard, Stephen Conway,
David D'Antonio, Susan DesMarais, and Brian Rost.

Reference

1. D. Chin et al., "The Unique Features of the VAX

9000 Power System Design," Digital Technical
Journal, vol. 2, no. 4 (Fall 1990, this issue):
102-117.

101

The Unique Features
ofthe VAX9000
Power System Design

DerrickJ. Chin
Barry G. Brown

Charles F. Butala
Luke L. Chang

StevenJ. Chenetz
Gerald E. Cotter

Brian T. Lynch
Thiagarajan Natarajan

LeonardJ. Salafia

The VAX 9000 series represents Digitals fi-rst implementation of a mainframe com­
puter system. To be competitive in this market, the power system for the VAX 9000
series had to provide high system availability. To meet this goo/, the system includes
features neither considered nor found in previous large Digital computer systems.
Some of these features are the use of redundancy in parts of the design and the
addition of more power system diagnosis capability for quicker fault isolation and
faulty unit replacement. Other features provide competitive advantages in specific
marketplaces, such as meeting low hannonic distortion for AC input current, which
is an emerging European AC power quality standard. Simulation tools, which are
used more prevalently in digital logic, were used to improve the power design.

The two key requirements of the VAX 9000 power
system are high availability and the inclusion of
competitive features. High availability for the power
system means we had to achieve the highest unit
regulator reliability possible by using the appropri­
ate technology available. Further, we had to deliver
both more power system and cabinet environmen­
tal monitoring and diagnostic capability that could
reduce the time spent in isolating and replacing a
malfunctioning unit. Competitive features mean
designing into the system features that would be
either better than expected or advantageous to the
VAX 9000 system in certain markets.

A full discussion of all the methods used to meet
these requirements is too long for this paper. There­
fore, the discussion in this paper focuses on some of
the unique applications of the power technology
and tools used in the design of the VAX 9000 system:

• Power system architecture

• Improved load sharing

• Simulation

• Increased control and monitoring

• Low harmonic distortion

One of the issues we had to decide in designing
the power system architecture was how many regu-

102

lators should be used. A large number of regulators
in a power system can cause the mean time between
failures (MTBF) to be lower than desired. Therefore,
we chose to use redundant regulators in the power
system architecture for improved availability.

Another means of increasing the MTBF was
achieved by improving the load sharing among the
parallel regulators that power a low-voltage current
load. With this feature, no one regulator operates
at a percentage of maximum rating much higher
than its parallel regulators, which eliminates the
higher operating temperatures that can occur and,
as a result, lowers the MTBF.

High regulator reliability results from good cir­
cuit design. Three examples of the unique simula­
tion features that were used as checks on circuit
designs are discussed in the Simulation section of
this paper. In one case, simulation pointed the way
to a circuit problem that was not initially apparent.
In another case, simulation was used to verify on
paper that the number of regulators chosen to
power a specific load was sufficient.

High availability can be achieved by reducing the
time to isolate a system problem and replace the
malfunctioning unit. A power and cabinet moni­
toring module, EMM, fulfilled this purpose in the
VAX 8000 systems. The power control subsystem,
PCS, used for this purpose in the VAX 9000 systems,

Vol. 2 No. 4 Fa/11990 Digital Tecbnica/Journal

The Unique Features of the VAX 9000 Power System Design

expands on the diagnostic and monitoring features
oftheEMM.

Meeting emerging European AC power quality
standards was viewed by the European sales
force as a distinct competitive advantage for the
VAX 9000 system. A proposed standard we wanted
to meet was to achieve low harmonic distortion of
the input AC current wave form, which was met
in the utility power conditioner (UPC) front-end
design of the power system. High availability was
designed into the UPC through such features as
redundancy and increased immunity to power line
disturbances from a commonly accepted industry
practice of one AC cycle to ten AC cycles.

VAX 9000 Power System Architecture
The discussion of the power system architecture
will focus on some of the architecture's major
features: power zoning, N + 1 redundancy, and
decoupling.

• Power zoning enables parts of the system to be
powered off for maintenance while the rest of
the system remains operational.

• N + 1 redundancy provides higher perceived
system availability to counteract the impact of
low system mean time between failures, which is
a result of the large number of regulators.

• Decoupling major sections of the power system
allows future upgrades to be made without
requiring significant changes to the rest of the
system.

UTILITY
POWER

120/208 VAC
3 PHASE

SERVICE
PROCESSOR
UNIT

SPU

H7390

I

I
I

I

300V
DC

BBU

ENVIRONMENTAL
MONITORS

BIAS
PS.

CAI

The basic power system architecture for the
VAX 9000 Model 200 and Model 400 series is shown
in Figures 1 and 2, respectively. Power processing in
each model occurs in two distinct stages. First, an
AC front end processes and converts AC utility input
power to high-voltage DC, which is then bused
about the power system. Second, DC-to-DC switch­
ing regulators convert the high-voltage DC to low­
voltage outputs, which are then distributed through
high-current-carrying busbars to the various logic
loads. An intelligent power control subsystem (PCS)
provides control, sequencing, monitoring, and
diagnostic capabilities. Dedicated bias regulators,
which are powered from the high-voltage DC,
provide housekeeping control (i.e., low power) and
start-up power to each bank of output regulators.

The high-voltage DC bus permits low-voltage out­
put regulators to be added or removed for different
system configurations. The high-voltage DC bus also
can be backed up with a battery unit that produces
high-voltage DC from 48-volt batteries through a
step-up switching regulator. This approach allows
any specific low-voltage output to be produced, as
needed, during the battery backup period without
using specific battery-to-logic voltage output DC-to­
DC regulators. The battery required to backup the
entire computer system would be larger than the
computer itself. Therefore, diodes are inserted into
the high-voltage DC distribution to partition the
high-voltage DC bus, and only sections, such as the
memory refresh operation and PCS control, are
backed up.

PCS
(POWER CONTROL SUBSYSTEM)

FANS

BUS BUS

- 5.2V

scu CPU

I
I
I

~ BIAS
~ POWER

Figure 1 VAX 9000 Model 200 Series Power System

Digital Tecbnical]ournal Vol. 2 No. 4 Fall /990 103

VAX 9000 Series

PCS SERVICE
PROCESSOR
UNIT

(POWER CONTROL SUBSYSTEM)

SPU

UTILITY
POWER

120/208
3 PHASE

I
I

I
I

I
ENVIRON- I
MENTAL I
MONITORS I

I

\
\
\
\
\

I 300V UTILITY
DC H7392 POWER ._,__.L__,_ __ _.L_ __ ___;_c:__:__J (UPC)

- 5.2V

CPU 0,1

1/0
POWER

120/208
3 PHASE

Figure 2 VAX 9000 Model 400 Series Power System

Power Zoning
The power-zoning feature meets the maintain­
ability and high availability goals in the VAX 9000
Model 400 series of triple and quadruple proces­
sors. In the power system's configuration, a pair of
dual processors can be powered off for mainte­
nance, while the remaining powered-on processors
maintain system operation.

A quadruple processor configuration is not com­
posed of two identical dual processors. Some func­
tions of a quadruple processor are not replicated.
The system control unit, the memory, the service
p rocessor unit, and the PCS are common to both
dual processors. Therefore, these functions are
powered up by either front end. The high-voltage
DC power bus is diode OR' d from either AC power
source, through the dual diode, CR 1, and then fed to
the output stages that power the common elements
listed above.

The diode-OR process in the VAX 9000 system
does not provide for active loadsharing. Active
loadsharing between each AC front end increases
the overall actual power system reliability because
it ensures that each AC front end supplies half the
load. Otherwise, one AC front end could take most
of the load (and be stressed higher), which would
leave the other unit too lightly loaded. However,
active load sharing is complicated by the physical
distances between the AC front ends and the com­
plex handling of faults and partial faults in each
AC front end. The load of the common elements in
the VAX 9000 system is only 20 percent of the total

104

system. Therefore, the worst load imbalance does
not justify the added complexity.

The diode does not have a significant impact on
overall power load reliability because conservative
derating of the diode results in a lower diode oper­
ating temperature and hence higher reliability.

We were concerned that power zoning could
have an impact on the rest of the system as a result
of powering down part of the system. However,
analysis of the results showed that such a concern
was unfounded. The high-voltage DC bus has rela­
tively long time constants (i.e., slow to react to
changes). Therefore, turn-on and turn-off transients
on the bus are smooth and gradual and do not
generate quick-changing electromagnetic fields that
could affect the operation of the sections of the
system that are still functioning.

N + I Redundancy
Each processor in the VAX 9000 power system uses
approximately 400 amperes from each of the two
supply voltages. The ratings of the power semi­
conductors used in the outputs of the DC-to-DC
regulators deliver an optimal regulator rating of
approximately 240 amperes. Based on these rat­
ings, powering a CPU in the VAX 9000 system would
require two regulators for each voltage. However,
in a large system, such as the VAX 9000 system, the
number of regulators can quickly add up, which
would result in an equally quick drop in overall
system reliability. Powering two CPUs from the
same voltage bus reduces the number of regulators.

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

The Unique Features of the VAX 9000 Power System Design

Redundancy is then used to minimize the impact
of the large number of regulators in the bus.
By using redundancy, additional regulators on a
voltage bus increase the perceived time between
complete failures.

For example, consider a voltage bus that requires
two regulators to supply the load current. A fail­
ure in either regulator causes a complete failure.
If another parallel regulator is added to supply
the load current, the probability of a complete
failure significantly decreases. In this case, if one
regulator fails, the other two could supply the load.
The statistical probability that another failure
would occur before the failed regulator is replaced
is very small.

A system of N regulators at an individual failure
rate of lambda (A) would have a system failure rate
of N times A, or an MTBF of l divided by N times A.1

The actual calculations are

A (total) = N x A

or

MTBF= 1/A(total) = 1/(NxA)

The failure rate calculation for a system that con­
tains one regulator more than required (N + 1) is

A (total observed) = (N + 1) x N x Ax A I
[{(N +l)xA}+(NxA)+u]

MTBF (observed) = ([(N + 1) x A]+
(NxA)+ u)l[(N+ l)xNxAx A]

It should be noted for the above equation, that u
equals 1 divided by the time between fault and
repair (service interval).

Using this calculation, if a bus required 4 regu­
lators and each regulator had an MTBF of 400,000
hours, the observed MTBF would be 100,000 hours.
The observed MTBF with five regulators (i.e., N + 1)
would be 23,989,000 hours, which is 239 times
longer than the four regulator case. The maximum
time between the fault occurrence and repair would
be 2 weeks, or 336 hours. The observed MTBF is
so large, compared to other elements in the system,
the redundant regulators have an extremely small
effect on the overall reliability.

The number of redundant regulators per output
voltage bus is limited to one in the VAX 9000 power
system for space, weight, and cost reasons. N is the
number of regulators required to supply the maxi­
mum current of a bus, and the addition of one more
regulator is called N + 1 redundancy.

N + 1 redundancy relies on the good regulators
on the output bus to pick up the load from the failed

Digital Tecbnical]ournal Vol. 2 No. 4 Fa[{ 1990

unit. This reliance has a significant impact on the
design of the regulator, the regulator response time,
and how the regulator handles the faults that can
cause a failure. Fast regulator response (the time it
takes to respond to a change in input or output) is
needed to ensure that the output voltage does not
dip too much when each regulator picks up its
share of the load from the failed regulator. How­
ever, the faster response time makes it more diffi­
cult to keep the control functions of the unit stable.
Moreover, the regulator input voltage range is
designed to be relatively wide to tolerate wide
swings in the high-voltage DC input.

When one regulator in a bank of regulators oper­
ated in parallel fails, the output bus voltage dips
until the other regulators, which are connected in
parallel, can react and pick up the load currents.
The magnitude of the dip depends on the time the
input fuses in each regulator take to open and on
the values of the input capacitors and the distribu­
tion impedances.

Fast-opening fuses allow smaller voltage dips but
are more prone to false nuisance openings. Slow­
opening fuses do not open for normal or nuisance
surges, but allow a greater voltage dip. Large values
of input capacitance provide the energy to open the
fuses quickly, but the voltage recharging of the
capacitors is longer. A high distribution impedance
decouples the faults from other units but has a high
power loss.

Simulation and testing showed that the wide
input range design of the regulators is sufficient to
tolerate the high-voltage input dips caused by other
faults. The regulator control and response time
keep the low-voltage DC outputs within specifica­
tion when the input voltage is within its range.

Other faults within the regulator can cause it to
fail, but the load is picked up by the other regula­
tors, operating in parallel, on the bus. Clearly, faults
such as a permanent short on the output bus, cannot
be survived. Because the low-voltage output regula­
tors operate in parallel and in an N + 1 redundancy
mode, the output voltage is not affected by most
common single-fault conditions in the power sys­
tem hardware.

Decoupling
A key feature of the power system's architecture is
that each major subsystem is relatively decoupled
from the other subsystems. Decoupling permits
each subsystem to be designed for its own require­
ments and to be changed or upgraded as the
requirements change (e.g., more cost effective,
improved technology, or different output voltage),

105

VAX 9000 Series

provided the interface and critical function remain
the same. For example, two significantly differ­
ent cost and performance options, H7392 or H7390,
for the AC front end can be used in different config­
urations, and the rest of the power system does not
need to be changed. Thus, power platforms can be
flexibly tailored to meet the needs of different com­
puter systems.

Achieving Low Harmonic Distortion
The AC front end of the VAX 9000 power system
processes and converts public utility AC power to
high-voltage DC. Our goal was to design the AC
front end to be highly reliable, have a high availabil­
ity, and meet the emerging European AC power
quality standards. One of those standards is to have
low harmonic distortion of the input AC current
waveform. These features were essential to support
the VAX 9000 system's entry into the mainframe
computer market. We also decided to meet the low
harmonic distortion standard of the AC front end
because the European marketing and sales force
viewed compliance with this standard as a distinct
competitive advantage.

Design Factors
The dominating design factor for the AC front
end was the size of the input power level, which
was approximately 20,000 watts. This size signifi­
cantly exceeded the power levels of previous AC
circuit designs for a single unit . The high power
consumption was a result of the use of 250,000
emitter-coupled logic (ECL) gates in the CPU and
512 megabytes (MB)ofmemory.

High Reliability and Availability To achieve high
reliability, we used conservative power derating lev­
els and good thermal management for key devices.
Typically, the device voltage ratings used are 80
percent of rating. The main switches and rectifiers
used in the power stages used 40 percent of rating.
Current derating is also conservatively placed at 40
percent. Stress is lessened because of lower device
function temperatures, which results in a longer
operational life, which equates to higher reliability.

We designed two approaches to attain high
availability. First, redundant circuitry was used for
the AC-to-DC circuit function. Second, we increased
immunity-to-line outage from the standard practice
of one cycle of outage protection to ten cycles. The
increase from one cycle to ten cycles of outage
immunity provides the VAX 9000 system with a
300 percent improvement in mean time between

106

observed system power outages over standard
Digital systems. This feature improves system
availability to the customer.

Harmonic Distortion The power system's design
had to meet the increasing restrictions on the inter­
face with the public power utility and be able to
withstand the occasional availability of only poor
power. Utility power is generated as a relatively
pure (i.e., low harmonic distortion) sine wave.
AC front ends and power supplies must convert this
sine wave of voltage to a ripple-free DC voltage for
ultimate consumption by the logic chips within the
computer system. Standard methods used for this
conversion create a nonlinear load on the sine wave
of voltage. This nonlinear load distorts the utility's
sine wave of voltage for other users, because of the
distribution system impedance, and usually appears
as interference for other users. In Europe, the
occurrence of this type of interference is planned
to be limited by restricting how much nonlinear
load current an AC front end can have. Therefore,
we had to design a unique circuitry that could
convert AC power to DC power at 20,000 watts
without high levels of current distortion to meet
this European requirement.

A design based on commercially available control
technology could not meet the stringent technical
requirements of high overall conversion efficiency
and stability of operation because conventional
AC-to-DC circuitry produces up to 30 percent dis­
tortion. Our goal was to comply with emerging
European requirements of harmonic current distor­
tion levels in the 5 percent range. However, at the
time we were designing the system, no circuitry at
this power level existed in the power conversion
industry. Therefore, we had to develop a unique
pulse-width modulator (PWM) circuit and control
equations for the input power conversion stage,
which is shown in Figure 3.

The pulse-width modulator combines the advan­
tages of low switching frequency, which reduces
switching losses in the converter, with exception­
ally short response time to all input line voltage
disturbances and to rapid changes in the required
computer power. The final design produces
less than 5 percent total harmonic distortion of
the input line current when the UPC is operated
at 20,000 watts load. The uniqueness of the PWM
increased the immunity-to-line voltage outages
from one cycle of outage protection to ten cycles.
Furthermore, the increase was achieved with­
out a corresponding tenfold increase in storage
capacitors.

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcaljournal

The Unique Features of the VAX 9000 Power System Design

AC
INPUT

IN PUT
XFMR

AC
FILTER RECTIFIER

PWM
CONVERTER

OUTPUT
FILTER

OUTPUT
SWITCH
r'\

0-----

AUX POWER
MODULE

AUX AC POWER AND
POWER LINE MONITOR

RIDE THROUGH
SWITCH

RIDE THROUGH
RECHARGE

RIDE THROUGH
CAPACITORS

FAST
DISCHARGE

POWER SUPPL
~-- - AND DIGITAL

POWER BUS

UPC
CONTROLS

TO UPC
CIRCUITS

DIGITAL POWER BUS
AND TOTAL CFF BUS

RIC
INTERFACE

Figure 3 UPC Block Diagram

Flexible Line Cord
The high power level and the requirements for a
flexible line cord and plug required that the Under­
writers Laboratory (UL) and Canadian Standards
Association (CSA) agencies expand the regulations
that governed the size of power cordage allowed in
a computer room. A flexible line cord connected to
the AC service is a requirement by Digital for all its
products. This feature is deemed valuable because it
is used both to facilitate the initial installation of the
computer and possible relocation at the customer's
site. Although delays can occur while waiting for a
national agency to amend one of its national regula­
tory codes, the approvals were received in time to
maintain the project 's schedule.

Improving Load Sharing
Detailed stress analyses show that when regulators
are operated in parallel, maximum reliability is
achieved when the load current is shared equally
among them.

Traditional Approach
A traditional approach to running regulators in par­
allel may be seen in VAX 8000 series machines.
In these processors, regulators that are designed for
standalone operation are placed in a parallel con­
figuration. Current sharing is forced by modifying
each supply's individual reference voltage through
external monitoring and control. In the case of
VAX 8000 machines, a maximum of four units
may be coupled in this way. Figure 4 shows that

Digital TecbnicalJournal Vol. 2 No. 4 Fall 1990

this method essentially uses equipment that
was designed to function as standalone regulated
voltage sources. By adding external control loops,
the equipment is forced to provide identical out­
put voltages, as measured at some defined point
in the system. If precise voltage matching is not
achieved, whichever supply had the higher voltage
consumes the load, up to its overcurrent sense
point. Thus, equal load sharing cannot happen.
Individual external controllers are required for
each converter, which makes the system more
complex. The VAX 9000 system requires up to five
converters per bus, and we could not achieve better
than 20 percent power sharing between modules
by using this method. No traditional methods could
support the number of converters in the VAX 9000
system. Also, most methods had a master-slave rela­
tionship that precluded maximizing a regulator's
reliability potential.

New Approach
As a result of the limitations of the traditional meth­
ods, we developed a new, less complex approach
to current sharing between parallel converters.
Although developed specifically for the VAX 9000
program, the features and utility of this approach
have universal application. The essential techno­
logical shift from prior practice is that in this system
the regulators are current sources rather than
voltage sources.

We designed the current sources to have a com­
pliance range that covers a band of voltages that are

107

VAX 9000 Series

I
CONVERTER

f'
INTERNAL
REFERENCE
AND ERROR
AMP

ARENT~~ NSE-
cu
SE

I

CONVERTER

INTELLIGENT
CONTROL UNIT
(ONE PER
MODULE) f'

INTERNAL
REFERENCE
AND ERROR
AMP

3

LOAD

I
CONVERTER

INTELLIGENT INTELLIGENT . CONTROL UNIT CONTROL UNIT
(ONE PER (ONE PER
MODULE) f' MODULE)

INTERNAL
REFERENCE
AND ERROR
AMP

'

~
I

POWER
CONTROL
SYSTEM VOLTAGE CONTROL

Figure 4 Load Sharing by Voltage Control of Voltage Sources

normally found in logic circuits. By making the
regulator outputs fully floating, the VAX 9000
system requirements for + 5-volt, - 3.4-volt, and
- 5.2-volt buses are met with only one regulator
design, rather than a separate design for each
voltage. The VAX 9000 design is simpler and has a
lower manufacturing cost. The regulator is voltage
and polarity "blind" over its compliance range, and
any number of regulators may operate in parallel
to provide any amount of power required at any
voltage within the compliance range. Also, this
method automatically compensates for the effects
of stray resistances and different path lengths from
individual regulators on a bus.

The basic features of this new approach are
shown in Figure S. Individual regulators behave as
externally programmed current sources controlled
by a common control signal, such that each regu­
lator delivers the same current. If the outputs are
connected to a common load, the current in that
load is the sum of the individual regulator output
currents. The resulting voltage that appears across
the load is the product of that current and the equiv­
alent resistance of the load. Furthermore, if that
voltage is compared with a reference voltage in a
conventional error amplifier and the resulting error
signal is used to derive the regulators' external pro­
gramming source, then a voltage control loop exists
around the regulator system. Thus, although each

108

regulator acts as a current source, the system acts as
a controlled and regulated voltage source. Because
the voltage control loop only contains one pole, the
bandwidth of the control loop can be increased by
up to a factor of at least 15. As a result, the substan­
tially high current change requirements imposed
by high-speed memories, such as those used in the
VAX 9000 system, can be accommodated.

Principle of Operation
A two-transistor forward regulator is shown in
Figure 6. In this regulator, SI and S2 are switched

CONVERTER CONVERTER

V = (11 + 12 + 13) x Z LOAD

LOAD

CONVERTER

CURRENT
CONTROL

Figure 5 Load Sharing by Current Control
of Current Sources

Vol. 2 No. 4 Fa/11990 Digital Tecbnicaljounial

The Unique Features of the VAX 9000 Power System Design

into conduction simultaneously, which causes the
current to flow in the primary winding of trans­
former Tl at a level that is directly proportional to
the output current lout plus the slope of the current
due to Lout. This current also flows in the primary
winding of current sense transformer T2. The
resulting current that flows in T2 secondary wind­
ing develops a voltage across the load resistor, RL,
which is amplified in Al and applied to the input of
comparator Cl. Therefore, at this point, a voltage
pulse appears, the amplitude and shape of which
are directly proportional to the current flowing
in the output choke Lout during the Sl-to-S2 con­
duction period.

A conventional reference source/error amplifier
combination is placed across the output of the sup­
ply. The resulting error signal, called Vcontrol, is
applied to the other input of comparator Cl as a DC
level. The comparator is followed by gating and
drive circuits to the power switches.

Switching is initiated by a pulse within the gating
circuit that drives the power switches on. The cur­
rent flows in the output choke, Lout, and a propor­
tional voltage appears at the output of the amplifier
Al. As this voltage ramps, it crosses the threshold
set by Vcontrol at the Cl input. The comparator
output then changes state and causes the drive pulse
to the switches to cease.

If Vcontrol were a fixed value, the system would
be a constant current source. Therefore, the voltage
that would appear at its output would be the result

GATING
AND
DRIVE

VCONTROL

TOC2
THROUGH N

RL
s,(~t'x

LOUT' I ~
IOUT \

VREF

Figure 6 Two-transistor Forward Regulator

Digital Tecbnical}ournal Vol. 2 No. 4 Fa/11990

of that constant current, and whatever load is
placed across those terminals (i.e., Vout) would be
determined by the load value. By using an error
amplifier and reference, Vcontrol can be made a
variable quantity. Therefore, the regulator transfer
function can control its output current to any level
necessary to produce the desired voltage. In such a
system, a control voltage, which is derived from a
single error amplifier and reference, can be used as
the control input for several regulators that are
running in parallel. Thus, the current from multiple
regulators that feed a common bus can be shared.

Increased Control and Monitoring
In the VAX 8000 series, power and environmental
monitoring and control is provided by the H7188
environmental monitoring module (EMM). In the
VAX 9000 system, these functions are provided by
the power control system (PCS).

Basic Design of EMM and PCS
The EMM monitors the DC-to-DC regulator control,
air flow sensor, and cabinet temperature. It is also
the interface between the system console and the
power system. Conceptually, the EMM functions as a
peripheral device to the console similar to the way
an intelligent disk controller is a peripheral to a
CPU. The EMM is a single module that plugs into a
power back panel.

The PCS is a distributed data acquisition and
control system. It also interfaces between the
power and environmental systems and other parts
of the computer system. The PCS takes commands
from, and reports status changes to, the service
processor unit.

However, in the PCS, the conceptual model of
the EMM is extended to provide additional support
in hardware and firmware to off-load the service
processor unit and to simplify the software inter­
face to the PCS. The PCS includes many features that
enhance testability, fault coverage, fault isolation,
and system availability. The relationship of the PCS
modules to one another and to other system com­
ponents is illustrated in Figure 7. There are five
PCS modules:

• Power and environmental monitor (PEM)

• CPU regulator intelligence card (CPURIC)

• I/0 regulator intelligence card (IORIC)

• Signal interface panel (SIP)

• Operator control panel (OCP)

109

VAX 9000 Series

110

POWER BACKPLANE ...

en
a:
0

en en

i
a: as
~ en
en 3:
~o a: --' N IL.....J----'--'--'-.L....J__.._.

UJ ~ ~
~ <(S:

- -~

? TO OTHER POWER BACKPLANES ...

~ POWER BACKPLANE ...

en
a:

()
<((Il

0
ir O 00 00 en en
::::,~ coco coco en en z a: (')(') (')(')

~~ UJ 0 Q. r-- r--r-- r--r--
Q. en () J: J: J: J: J: (Il(Il I-> 3: en
0 0 ~
C\II a: co LL
(') a: UJ
r-- J:
J: <(I-

I BULKHEAD ~ 111-r--, ..,..........,-1 --,--,--,-! !--,--,----,!

JORIC BACKPLANE IORIC BACKPLANE 8 BULKHEAD I

a:
UJ <((Il

1- en en

~ ~~
<(

0
0
0 --

XMI XMI
BACK BACK

PANEL PANEL

<((Il <((Il

enen enen
<(<(<(<(

in in in in

~-TO
H4000S

I

' XMI
I

XMI
BACK I BACK
PANEL I PANEL

- ~
en

3: I-­
en &l
a: z
UJ z

~i
a:

(Il <(UJ
en en 1-
<C <(~
in in O

<(

0
0

._.____ ~

TO ..-- :i::

H4000S -

I
BBU 11----- ...r---::::-:::-::.1-----+1-
TEST SW I -• OCP ' SIP --I BBU 1

~ - ___ ___,_.. ~ BBU 2 ~-:____.

KEY:

=>

CJ
D

PEM '-------D ~=---!= SPM ,~
OTHER

SPU

MODULES

SPU Bl BACKPLANE

RICBUS
• TWO-WAY SERIAL COMMUNICATION
• POWER SYSTEM MASTER CLOCK
• CONTROL SIGNALS

PCS MODULES

OTHER SYSTEM COMPONENTS

Figure 7 PCS Block Diagram

t t t

Vol. 2 No. 4 Falt 1990 Digital Tecb11tcalJournal

The Uniqu.e Features of the VAX 9()()() Power System Design

Comparison of PCS and EMM.
The differences between a power system that uses
an EMM and one that uses the PCS are illustrated in
Table 1, which details the functions of each system.
Five-to-ten EMMs would be required to control and
monitor a system of the size and complexity of the
VAX 9000 system. Additional modules would be
required to support some of the functions provided
by the signal interface panel and PEM module.

Command Set Enhancements In comparison to
the EMM, the PCS offers an enhanced command set.
The PEM commands of READ, WRITE, BIS, BIC, and
MEASURE provide the same capabilities that the
seven EMM commands READ, WRITE, BIS, BIC,
MEASURE, EXAMINE, and DEPOSIT do. In addition,
the PEM supports six commands that are not imple­
mented by the EMM command set: DOWNLOAD,
MARGIN, SENSE, POWERON, POWEROFF, and
PASSTHRU.

The regulator interface card firmware supports
the DOWNLOAD command, which allows the
service processing unit's software to update, with
some restrictions, the PEM's or regulator interface
card's on-board EEPROM with new firmware. Thus,
the need for Customer Services to replace EPROMs
in the field if the firmware needs to be updated is
reduced because the latest PCS firmware is stored
on the service processor unit's load device.

The MARGIN, SENSE, POWERON, and POWEROFF
commands off-load work and complexity from the
service processor unit's software. By using these
commands, the service processor unit never needs
to interact directly with the regulator interface card
modules during normal system operation. Thus, the
amount of software required by the service proces­
sor unit to perform these functions is reduced. All
regulator interface card interaction is handled by
the PEM firmware.

The MARGIN command causes the PEM to margin
the specified bus voltages by ± 5 percent for fault
isolation purposes, such as trying to aggravate an
intermittent CPU hardware problem by reducing a
logic supply voltage by 5 percent. In response to the
SENSE command, the PEM returns a record that con­
tains the specified power or environmental data to
the service processor unit.

The POWERON and POWEROFF commands cause
the PEM firmware to turn the specified power buses
on or off in the proper sequence. When executing
all of these commands, the PEM firmware must send
messages to one or more regulator interface card
modules and perform extensive error checking to
verify that the power sequencing is proceeding cor-

Digital TecbntcatJounral Vol. 2 No. 4 Fall 1990

reedy. The PEM then returns a status byte, which
describes any error that occurred during command
execution, to the service processor unit.

The PASSTHRU command allows the service pro­
cessor unit's software to send commands directly
to the specified regulator interface card modules.
This command bypasses the PEM and allows the
operator to use other PCS fault isolation functions
that are not used by the service processor unit in
normal operation. The PASSTHRU command is used
for fault isolation purposes only and is not required
for normal system operation.

Measurement Accuracy The EMM's best measure­
ment of accuracy is ± 54 millivolts, which is
achieved when it is using an 8-bit analog-to-digital
converter. The CPURIC measurements are sub­
stantially more accurate and repeatable for several
reasons. The CPURIC uses a 12-bit analog-to-digital
converter that is calibrated for offset and gain by the
automatic calibration routines that run during
power-up self-test. To filter out noise, each parame­
ter is measured 64 times. These measurements are
averaged by the firmware before the parameter is
used by the monitoring or sense commands.

Through comparison measurements with a volt­
meter and a thermometer, the CPURIC measure­
ments have proven to be repeatable. Also, the
measurements are accurate to better than 10 milli­
volts, when measuring voltage, and to within one
degree Celsius, when measuring temperature.

Diagnostics and Testability Support The EMM
provided some visibility into the power and envi­
ronment system of the VAX 8000 series of computer
systems to aid diagnostic and testing. The PCS hard­
ware and firmware extend the functionality of the
EMM with features such as hardware loopback
circuitry which, when combined with diagnostics
included in the firmware, provide better fault detec­
tion and isolation than the EMM.

Enhanced Support for Increased System Availability
The features designed into the power system and
the PCS hardware and firmware support N + I
power buses and bias power supplies. The PCS also
supports the partitioning of power. The PCS allows
certain cabinets in a VAX 9000 Model 430 or Model
440 system to be powered-off for maintenance or
repair, while the remainder of the power system
continues to function to provide system availability
at reduced performance. The PCS recognizes when
power is reapplied to these cabinets and notifies the
service processor unit. The system then can be
reconfigured to include these cabinets.

111

VAX 9000 Series

Table 1 Comparative Functions of the Environmental Monitoring Module
and the Power Cont rol System

EMM in the VAX 8600 System

Digitally controls seven DC-to-DC regulators
configured in five buses

Measures and monitors four cabinet air
temperature thermistors
Monitors two air flow sensors
Controls and monitors one H7231 battery
backup unit
Measures and monitors one ground current input
Provides voltage sequencing in hardware

Displays up to 16 unique shutdown codes on four
magnetic indicators

Measurement accuracy
voltage: ±54 millivolts
temperature: ±2 degrees Fahrenheit

Digitally controls ±5 percent voltage margining
for eight DC-to-DC regulators
Measures and monitors 12 DC-to-DC regulator
voltage outputs
Monitors ten DC-to-DC regulator " module OK"
signals

The VAX 8600 system consists of two cabinets
of which one was monitored by a single EMM.

112

PCS in the VAX 9000 Model 440

Provides analog and digital control of up to
29 H7380 DC-to-DC regu lators, configured in eight
power buses

Measures and monitors ten cabinet air temperature
thermistors
Monitors 20 air flow sensors

Controls and monitors two H7231 battery
backup units
Measures and monitors two ground current inputs
Provides voltage sequencing in hardware
and software
Displays over 80 unique shutdown codes on a
diagnostic display

Measurement accuracy
voltage: ±10 mill ivolts
temperature: ±1 degree Fahrenheit

Provides analog and digital control of ±5 percent
voltage margining for eight power buses
Measures and monitors eight power bus
voltage outputs
Monitors 29 H7380 DC-to-DC regulator
" module OK" signals
Monitors 36 H7382 bias power supply
" module OK" signals
Monitors up to ten H7214 and H7215 " module OK"
signals used for 1/0 and service processing unit
power
Monitors up to 16 H7189 "module OK" signals in
the optional bus interface expansion cabinets
Provides bus overcurrent protection and monitoring
for eight power buses
Measures the output current from 29 H7380
DC-to-DC converters
Provides N + 1 support for eight power buses

Monitors the environmental status from four
optional bus interface expansion cabinets
Monitors the status from three H7386
overprotection modules
Monitors seven status lines from each of the two
utility port conditioners
Controls and monitors the operator control panel
The VAX 9000 Series 440 is a quadruple CPU
configuration of up to eleven cabinets. A PCS
configuration composed of eight CPURICs, two
IORICs, one operator control panel , one signal
interface panel, and one PEM is required to
support this system.

lk>I. 2 No. 4 Fall /')')O Digital Tecbnlcaljournal

The Unique Features of the VAX 9()()() Power System Design

Design for Further Improvement The EMM uses
the actual analog-to-digital converter to represent
temperature, voltage, and current. However, the
PCS represents voltage, temperature, and current in
a format that is independent of the actual analog­
to-digi tal converter values. Future upgrading of
measurement circuitry can be done without modi­
fying the service processor unit's software.

Power System Test Programs We developed exten­
sive power system test programs by using the
programmable console command language. These
scripts provided step-by-step control of power
sequencing and margining, and proved extremely
invaluable in processor system debugging, system
qualification, and manufacturing and field testing.
The tests were developed through a cooperative
effort of design engineering, manufacturing engi­
neering, and field engineering.

Simulation
The use of simulation in power converter design
is not as advanced as the use of simulation tools in
digital circuits. The level of complexity and number
of parasitic elements in power devices have pushed
computer CPU requirements beyond the reach of
many power circuit design groups. However, as
more computer power is becoming available at a
lower cost, simulation is being used increasingly to
improve power circuit design. The simulation tool
most widely used is Simulation Program with Inte­
grated Circuit Emphasis (SPICE) because of its ability
to be configured to any circuit configuration.2

In this section, we illustrate the benefits of sim­
ulation in the VAX 9000 power system design. We
provide examples of the use of simulation for cor­
recting designs, improving circuit designs through
inclusion of parasitic elements, and transient
analysis.

Simulation to Correct a Design
Simulation was used to correct a design in the linear
post regulator that was dneloped for the H7382
bias supply used in the VAX 9000 power system.
The design required that two regulators operate in
parallel for redundancy purposes. We wanted to
achieve good transient response by keeping the
output voltage within operating tolerance should
one of the two regulators fail. Because good tran­
sient response depends on good frequency loop
response, we had to determine the optimum fre­
quency response for the circuit.

Dtgttal Tecbntcal]ournal Vol. 2 No. 4 Fall/')')()

Because simulation models for many of the cir­
cuit components were not yet available, we could
not simulate the design. Therefore, we built the
circuit without simulation. The resulting frequency
response was lower than expected, and the circuit
tended to oscillate at the maximum output current
limit . Multiple attempts to improve the hardware
proved ineffective and time-consuming because we
did not know the cause of the problem. Then, the
actual schematic of the linear regulator controller
internal circuit became available, as did SPICE mod­
els of components.

We ran an accurate SPICE model but did not find
anything outstanding on the gain/frequency plots.
Next, we tried to find the cause by exaggerating
some simulated changes, such as removing the
current limit amplifier portion of the circuit from
the controller. With this change, we found that the
gain was close to being the same at two different
frequencies, 5 kilohertz (KHz) and 40 KHz. This
similarity meant that if the phase margins were
correct, instability might exist. To prevent this
possibility, we decided to increase the gain of the
regulator circuit below 30 KHz by making simu­
lated modifications to the circuit. With these
modifications, the gain plot below 30 KHz
increased and the waveform evened out close to
what we wanted it to be. We then modified the
hardware and achieved the desired performance.
However, we would have saved a substantial
amount of time if we could have simulated the cir­
cuit before we built it .

Improving Simulation Accuracy
In switching regulator design, parasitic (small,
undesirable but existing) elements of seemingly
negligible values, such as printed circuit board etch
inductances and transistor capacitances, can have
a significant impact on the behavior of the circuit.
For accurate simulation these elements must be
included in the simulation models. An example is
shown in the design of the output stage of the
H7380 regulator.

We wanted the regulator to take a high-voltage
DC input and produce a low-voltage (i.e. , 3.4-volt
DC to 5.5-volt DC) regulated output. Figure 8 shows
how this process is done by changing the high­
voltage DC input voltage to an AC square wave
through turning the transistors, Q 1 and Q2, on and
off. The transformer, T 1, steps down the AC square
wave and is followed by an output section for recti­
fication and filtering.

113

VAX 9000 Series

300VDC - -~----,

02
MUR460

M2

T1

TO RECTIFIER
AND FILTER

01
MUR460

300VDC_RTN - - - ---'----

Figure 8 H73BO Output Switching Stage

The initial model of the H7380 invener stage used
simple component models and did not consider any
printed circuit board inductances or transistor
capacitances because they seemed negligible com­
pared to other elements. We noted a discrepancy in
the voltage across the transistor Q 1 (Vds) during the
tum-off process between the simulated waveform,
shown in Figure 9, and the measured waveform,
shown in Figure 10.

Figure 9 shows that the voltage is initially zero
while the transistor is conducting but rises to 200
volts when the transistor is turned off. Figure 10
shows that ringing occurs as the voltage approaches
200 volts, with an overshoot to 240 volts. The
ringing and overshoot, not shown in Figure 9,
are caused by the circuit board inductance, trans­
former leakage inductance, and the capacitance of
the transistor.

PLOT: 1 TIME V(40,3)

2.50

2.00

'b
x 1.50

(/)

~ 1.00
§;!

0.50

o.oo'----.... ---..-L-_._ __ __,_ __ __,

114

0 2 4 6 8

SECONDS X ,0·7

Figure 9 Vds(QJ)Simulated Turnoff
without Parasitics

10

sov sv

ov~- ---
SOV 10MV 200NS

TIME (200 NANOSECONDS/DIVIDE)

Figure 10 Vds(QJ)Measured Turnoff

Figure 11 shows a more accurate model of the
output stage because the L 1 through L4 etch induc­
tances and C 1 and C2 transistor capacitances are
included. The current source, IPULSE, and the
resistor, RT, approximate the transformer. Figure 12
shows the result of the simulation model that
includes the L and C values shown in Figure 10.

When the simulation and the measured data are
correlated, the advantage of accurate simulation
becomes apparent. By using worst-case values for
the circuit parameters, the simulation can deter­
mine the maximum peak voltage. The model
depicted in Figure 12 shows that a device capable
of withstanding the expected 240 volts is needed.
Reliance on a less accurate model without para­
sitics could lead to the selection of a device capable
of withstanding only 200 volts. Thus, accurate
simulation allows the correct components and
component ratings to be chosen and ensures a
robust design.

Transient Analysis
A memory system that includes dynamic random­
access memory (RAM) chips presents a difficult
transient load problem to its power supply. The
problem arises from a combination of very high
changes in dynamic RAM supply current and cur­
rent change rise times that are typically more than
a thousand times faster than the reaction time of a
power system. The result is a temporary change in
the load supply voltage. To handle these fast current
edges, high-frequency capacitors are mounted on
memory boards near the dynamic RAMs. Also, low­
frequency, electrolytic capacitors, which provide a
source of local charge storage, are mounted on the

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcalfournal

The Unique Features of the VAX 9000 Power System Design

L1
15NH

02
MUR460

L2
25NH

RT
300

SIMULATION MODEL OF OUTPUT
CIRCUIT WITH PARASITICS

C2
100PF

I PULSE

C1
100PF

L3

25 NH

01
MUR460

L4
15NH

Figure 11 Final Model of H7380 Output
Switching Stage

memory boards to handle the magnitude of the
change. The capacitors help keep the supply voltage
within its operating range until the power supply
can react and sufficiently change the current it sup­
plies to the memory to stabilize the supply voltage.
An adequate supply design with specified capaci­
tors can keep the supply voltage within its operat­
ing tolerance. Simulation is used to determine the
correct mix of high and low frequency capacitors
and the number of regulators required to support
this high transient load.

Another power supply problem arises from the
use of N + 1 redundancy for parallel regulators.
When one of the regulators in a parallel regulator
configuration fails, the remaining regulators must
be able to take on the load from the failed regulator
and keep the supply voltage within operating toler­
ance. Because the remaining regulators cannot
react instantaneously, the load voltage drops until a
sufficient increase in current can be provided by the
remaining regulators.

For the VAX 9000 series memory system, a pro­
posed dynamic RAM power supply design consisted
of three H7380 DC-to-DC regulators, which would
operate in parallel (including N + 1 redundancy)
and be connected to the memory through power
distribution busbars. The numbers of high- and low-

Digital TecbntcalJournal Vol. 2 No. 4 Fall 1990

NQ

x
en
~
~

PLOT: 1 TIME V(40.3)

2.50

2.00

1.50

1.00

0.50

0.00
0 2 4 6 8

SECONDS X 10"7

Figure 12 Vds (QI) Simulated Turnoff
with Parasitics

10

frequency capacitors were also proposed. The
power supply was expected to be ready for load
testing before the memory or the busbars would
be available. Therefore, we had to verify that this
design could keep the memory supply voltage
within operating tolerance. We verified the design
by simulating the performance of the power system
and measuring the performance of the actual power
supply with a simulated load.

Power Supply Operating Voltage Tolerance The
memory designers specified the operating tolerance
of the dynamic RAM supply as + 5 volts, ± 10 per­
cent. Using IO percent as the supply tolerance
budget, the supply designer made the allocations
shown in Table 2 to all the factors that would cause
the load voltage to deviate from its nominal value of
+ 5 volts. As can be seen from this table, the sum of
x and y must be less than 350 millivolts or 7 percent
of+ 5 volts.

Memory Load The dynamic RAM supply current
was calculated to be a steady-state pulsed current
of 256 amperes that would last for 92 nano­
seconds (ns) and with rise and fall times of 20 ns,
as shown in Figure 13. The initial pulse magnitude
was 1024 amperes.

Table 2 Supply Tolerance Budget Allocation

Causes of
Voltage Deviation

Percentage
Millivolts of +5 Volts

Regulator tolerance 100 2

Back panel distribution 50
Transient load with two x
regulators
Failure of one regulator y

Total deviation budget 500 10

115

VAX 9000 Series

1024A

OA

l-288NS~

f---12.96 MICROSECONDS~

KEY:
A - AMPERES
NS - NANOSECONDS

Figure 13 VAX 9000 Model 400 Series Memory
Power System Dynamic RAM Load

Memory Power System SPICE Model In the SPICE

model of the supply, busbar, load and capacitors
that is shown in Figure 14, the three regulators are

SENSE POINT 1 + 5V

CLF

i IA "" IA

LLF

C2

R3

VA=

DC
0

--
KEY:

Al 1 2 10K
Cl 2 0 0.6N IC=2.5
R2 2 3 10K
R3 3 4 20K
C2 3 4 18P IC-5.0
R4 4 5 1K
VA 6 0 DC 5
RS 5 7 2K
C3 7 8 68N IC-3.0
VG 8 9 DC 2.5
R7 9 0 10MEG
R6 9 10 10K
C4 10 0 0.757N
GOUT 0 20 POLY(1) 10 0 0 678
01 20 21 DIODE
ROUT 21 0 17K

RS

modeled as a current source, Gout , controlled by
the regulator feedback voltage, Vf. Cout and Rout
represent the regulators combined output capaci­
tors and resistors. Most of the other clements in the
model are determined from component specifica­
tions. The relationship between Gout and Vf was
determined by laboratory measurements on a regu­
lator and resulted in the following equations. For
two regulators,

Gout= 339 x VJ = 339 x (V8-2.5)

For three regulators,

Gout =678 x V/ = 678 x (V8-2.5)

The load is represented as two current sources, IA

and IR, the characteristics of which were obtained
from the loads shown in Figure 13.

LBB ABB 01 20

GOUT

C3

R6
10 VF

R7 C4

GOUT 21 22 12300U IC=S.O
RESR 22 23 1M
LESL 23 0 2.4N
ABB 21 24 300U
LBB 24 1 150N
CHF 1 26 1.3M
RHF 26 27 21U
LHF 27 0 1.4P
CLF 1 25 108.8M
ALF 25 28 400U
LLF 28 0 0.3N
IA 1 0 PULSE O 512 A ONS

20 NS 20 NS 92 NS 288 NS
IA 1 0 PULSE O 512 A ONS

20NS 20NS 92 NS 12.96µ5

Figure 14 SPICE Model of VAX 9000 Memory Power System

116 Vol. 2 No. 4 Fall 1990 Digital Tecb11ical]ournal

The Unique Features of the VAX 9000 Power System Design

Simulation and Laboratory Measurements The
two previously stated conditions of interest result­
ing in large load voltage changes are the transient
load with two regulators and the failure of one
regulator.

For transient loads, a larger voltage change
occurs with two regulators rather than with three
because two regulators take longer than three to
adjust the supply current to the new load value.

Simulated Load For laboratory measurements,
the actual dynamic RAM load, as shown in Figure 13,
is difficult to design and build in a reasonable time
because of the magnitude and rise time combina­
tion. However, a load with a much slower rise time
could be easily built. Such a load, (I in Figure 14) is
expected through the busbar as the capacitors and
busbar slowed down the fast edges of the dynamic
RAM load. This simulated load was built and con­
nected to two regulators. The predicted waveform
and the measured waveform showed that the initial
shapes of the peak change, the peak magnitudes
(80 millivolts), and the times of occurrence of the
peak (300 microseconds) were all similar. However,
we could not measure the overshoot and ringing
after the peak because the busbar was not available.

Dtgttal Tecbntcal]ournal Vol. 2 No. 4 Fa ll / ')')()

Failure of One Regulator When one of the three
regulators fails, the other two regulators cannot
meet the increased load instantaneously. As a result,
the load voltage drops until the two regulators can
increase their output current sufficiently to reverse
the direction of the drop. The SPICE model for this
condition was run and the load voltage of the drop
was predicted. Laboratory measurements were
then taken with the simulated load and one regu­
lator was turned off. Both the predicted and mea­
sured waveforms had the same shapes, peak
magnitudes (100 millivolts), and times of occur­
rence of the peak (200 microseconds) after the
regulator was turned off. Therefore, we concluded
that the proposed design could meet the load
requirements.

References

1. P. O'Connor, Practical Reliability Engineering
2d ed. (New York: John Wiley and Sons, 1985).

2. SPICE is a general-purpose circuit simulator
program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical Engi­
neering and Computer Sciences, University of
California, Berkeley.

II7

Donald F. Hooper I
Jobn C. Eck

Synthesis in the CAD
System Used to Design
the VAX 9000 System

Ibe design of the VAX 9000 system represents a sixfold increase in complexity over the
VAX 8600/8650 system. Ibis increased complexity posed a significant challenge
because of the concurrent need to shorten the duration of the project design cycle and
convert all high-performance systems computer-aided design (CAD) software from
the DECSYSTEM-20 system to the VAX system. As part of the task of meeting these
challenges, the CAD Group proposed the implementation of a design methodology
that used logic synthesis for the first time in the development of a major product for
Digital. The primary objectives of this methodology were to increase the productivity
of the logic designers and to reduce the number of errors introduced during
conversion of high-level designs into gate-level strnctural designs.

Methodologies

Previous Methodology
In the previous development methodology, as
shown in Figure 1, logic designers specified high­
level designs on paper, and simulation engineers
transferred this rendition into a behavioral model.
Technology engineers developed the gate-level
cells. After the cells were defined and characterized
for function and timing, the logic designers gener­
ated schematic drawings by using graphical bodies
that represented the cells.

As changes were made to the schematics, the sim­
ulation engineers attempted to reflect these in the
behavioral model. Finally, a gate-level simulation
model was assembled from the completed schemat­
ics to verify that the design represented a valid VAX

system. This process was extremely laborious,
error-prone, and time-consuming. Therefore, we
concluded it could not be used to develop the VAX

9000 system, which is a 700,000 gate design and for
which the technology cells would not be defined
and characterized until late in the design stage.

Logic Synthesis
Our early research into logic synthesis began in
1982. Over the next two years, we explored new
synthesis ideas and constructed prototypes to
determine the feasibility of those ideas. For exam­
ple, one of our early logic minimization effons was
a program that emulated Brown's Laws of Form for

118

transformations of Boolean logic to reduce gate
counts and improve critical timing paths.' How­
ever, this program has had only limited success and
is not really usable as a released computer-aided
design (CAD) product. For example, the program
does not deal with selections of cells for com­
binational logic nor does it consider the myriad
problems involved in assembling a database for a
buildable gate array chip.

During 1984 and 1985, new anificial intelligence
(AI) and synthesis ideas were being developed. Uni­
versities and technical conununities were exploring
the potential of object-oriented databases, rule­
based AI, data flow design entry, and algorithmic
minimizations. We began the prototype develop­
ment of our system for integral design (SID) at
approximately the same time as the ideas for the
VAX 9000 hardware architecture were beginning to
be developed. In 1985, the SID program became an
internal CAD product for use in the development
of the VAX 9000 system. By combining the most
advanced rule-based AI techniques with an object­
oriented database, the core SID was designed to be
a repository of logic design knowledge. We hoped
that, over the years, SID would mature to perform
many highly repetitive logic design tasks at an
expert level.

From 1985 to 1988, the capabilities of the SID sys­
tem gradually improved until it was producing gate
array chips that met the VAX 9000 machine cycle
time, power, and electrical rules requirements.

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcaljournal

Synthesis in the CAD System Used to Design the VAX 9000 System

TECHNOLOGY
CELL DEFINITION

TECHNOLOGY
CHARACTERIZATION

BEHAVIOR MODEL
TEXT EDIT

BUG
REPORT

GATE-LEVEL
SCHEMATIC
ENTRY

PLACE ROUTE

BUG
REPORT

BUG
REPORT
GENERATED

Figure 1 Previous Design Methodology

New Methodology
The VAX 9000 development methodology, shown
in Figure 2, circumvents the need to wait for the
technology cells to be completely specified before
beginning logic design. This methodology uses
schematic entry and simulates the technology­
independent, register transfer level (RTL) bodies.

The RTL library for this type of entry includes
MUXes, latches, adders, comparators, incrementers,
decoders, and simple Boolean gates. The entry is
extracted to a common database format, called
CADEX, from which a simulation model is built. A
behavior model still exists, but its hierarchy
matches the RTL schematic hierarchy at key physi­
cal boundaries. Thus, simulation models can be
built that consist of a hierarchy of mixed behavior
and RTL models.

While logic designers are creating the RTL design,

Digital TecbnicalJournal Vnl. 2 No. 4 Fall 1990

technology engineers are defining the technology
cells. In parallel with these activities, synthesis
knowledge engineers are writing rules to transform
the RTL design into technology cells. These three
activities should be completed at the same time,
at which point, synthesis produces each of the
VAX 9000 system's 77 gate array chips. The goals
for the synthesis program were to

• Simplify design entry and thereby reduce sche­
matic complexity by a factor of 4

• Generate 90 percent of the VAX 9000 system's
logic through synthesis

• Reduce the number of simulation errors intro­
duced in the design

• Reduce the number of electrical rules violations
in the design

119

VAX 9000 Series

To generate a database for a buildable gate array
chip, the synthesis tool is required to

• Read technology-independent input standard
net list format, which can be in DECSIM behav­
ioral no tation or CADEX common database
format

• Minimize Boolean gates through state-of-the-art
minimization techniques

• Improve timing-critical paths through Boolean
transformations, cell/pin selections, power set­
tings, and net load allocations

• Choose the best available technology cells based
on timing, size (area), and power estimates

• Insert the clock system for the gate array chip

• Insert testability access logic for the service pro­
cessor unit

• Obey all electrical design rules for the gate array
chip

TECHNOLOGY
CELL DEFINITION

TECHNOLOGY
CHARACTERIZATION

SYNTHESIS RULES
TEXT EDIT

SYNTHESIZE
PLACE
ROUTE
SET POWER

• Make it easy to detect whether the tool has per­
formed well

• Simplify the improvement of the tool

SID Database
The design of the SID database is fundamental to the
robustness of the CAD system. Previous CAD data­
bases have all assumed that the data is stable at the
time that the CAD tools are working with it. Simu­
lation, timing verification, design rule checkers
(DRCs), and many other CAD tools assume that net
lists and components are fixed and unchanging.

In synthesis, although the data is maintained in
a form that makes it easy to update its parameter
values, the basic structure of gates, pins, and nets
remains the same. However, throughout most of the
synthesis process, the basic structures are in a state
of change. In fact, it is a characteristic of synthesis
that logic functions are removed and replaced with
new, functionally equivalent logic. Because of this
d ifference, we designed basic data structu res and

BEHAVIOR MODEL
TEXT EDIT

RTL
SCHEMATIC
ENTRY

(LOOP BACK)

BUG REPORT

BUG REPORT

BUG REPORT GENERATED

Figure 2 VAX 9000 D evelopment Methodology

120 Vol. 2 No. 4 Fall 1990 Digital Tecbnica/Journal

Synthesis in the CAD System Used to Design the VAX 9000 System

manipulation functions that would allow efficient
removal and replacement of logic.

We did use the primary objects of other CAD
systems: gates, pins, and nets. However, we made a
distinction between the definition of an object and
its use or instance. Also, because we wanted these
objects to be used at very high (i.e., behavioral and
RTL) levels and at the gate level, we renamed them
as models, ports, and signals. The primary database
objects for SID are

• Modeldef. The modeldef is the definition of a
logic function element. Analogous to a vendor
data sheet, modeldef contains parameters that
describe its function, timing, power, size, and
other general information. All bounded blocks
of logic function, from high levels of hierarchy
(e.g., floating point unit) to low levels (e.g.,
simple Boolean gates), are kept as modeldefs.
Typically, modeldefs are used multiple times and
used more at the lower levels of the database
hierarchy. For example, in the VAX 9000 system,
there ace two cache data multichip units, eight
multiplier chips, and many thousands of two­
input NOR gates.

• Modelinst. The modelinst is a use of a modeldef
that contains only those parameters unique to
itself. For example, two instances of a two-input
OR cell may be in different places on a chip
and, therefore, have different placement desig­
nators and timing characteristics. Each mod­
elinst points to its modeldef definition to inherit
the set of common definition parameters.

• Portdef. The portdef is the definition of an inter­
face to or from a modeldef. Portdef contains
parameters that describe its function, timing,
data width, and other general information.

• Portinst. The portinst is an interface to and from
a modelinst. Portinst contains parameters unique
to itself, such as timing and power settings.
Each portinst points to its corresponding port def
definition to inherit the set of common defini­
tion parameters.

• Signal. The signal is the means of connectivity
among modelinsts and between hierarchical
partitions. As shown in Figure 3, this connection
is established through the interface portinst or
portdef. For behavioral logic, the signal acts as a
data flow arc; for RTL!ogic, the signal acts as a bus;
and for gate-level logic, the signal acts as a net.

Synthesis rules must be able to walk the database
in any direction (i.e. , backward, forward, through

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990

hierarchy) looking for electrical rules violations or
logic function redundancy, and testing for timing­
critical path relationships. To perform these tasks,
we added a series of multidirectional pointers to the
SID database objects by using LISP capabilities.
When an object is declared as a symbol in the LISP
programming language, pointer management is
included automatically. The LISP language is well
known in the industry for its use in AI applications,
but it has a reputation as being slow. Our special
handling of direct database pointers enabled us to
produce a LISP application that resulted in excellent
run-time performance.

Once the data structures and their pointers were
defined, we began to create a rich set of database
access functions that had to be failproof. Therefore,
we wrote functions to insert and remove the
instance objects to ensure that the database pointer
connectivity was properly maintained. These func­
tions allowed us to effectively perform a many­
for-many replacement of modelinsts with a single
command.

Other secondary objects were defined to contain
such types of information as synthesis knowledge
(i.e., rules and groups of rules), general technology
characteristics (i.e., the maximum number of cells
on a chip), and general project-specific character­
istics (i.e., the cycle time of the machine).

The synthesis knowledge in the form of rules
occupies the majority of SID-compiled code and
over 10 megabytes (MB) of run-time memory.

Rule Language
Based on research and the perceived complexity of
the task at hand, we estimated that, to perform syn­
thesis at an expert level, possibly thousands of rules
would have to be written.

In researching current AI literature, we deter­
mined that existing rule languages were either too
cryptic or too verbose to allow us to write and
maintain a large rule set in a short time frame. Also,
we preferred to write more powerful rules than
those of previous rule-based systems. We wanted
each rule to be used for making complex decisions
and logic transformations based on timing, size,
power, and logic connectivity. The rule does not
"think." Instead, it mimics a logic designer looking
at the characteristics of some pre-existing design,
who then changes the design to improve it or make
it more compatible with the new technology. The
rule, for example, tests whether A and B are true,
and if so, performs transformation C.

Based on these needs, we began developing the
language Ruleform as the means for approxi-

121

VAX 9000 Series

KEY:

P = PORTOEF
P = PORTINST

r---------f RULE BASE

TECH

SIGNAL

Figure 3 SID Database Objects

mating the designer decision and logic synthesis
task. With this ?lpproach, the rule would mimic
what a logic designer had done once and that action
could be repeated again automatically in similar
circumstances.

In Ruleform, rules have a left side for decisions
and a right side for transformations, e.g., OPS-5, as
do other rule-based languages. However, to make
rules easier to read and write, Ruleform uses English
language sentence structures to describe both tests
and actions. The following predicate forms are used
for left-side tests:

• Dbobject verb

• Dbobject verb dbobject

• Adjective dbobject verb

• Adjective dbobject verb dbobject

Verbs are words such as IS, ARE, = , >,
15-BOOLEAN, JS_A_NUMBER; adjectives are words
such as ANY, ALL, NO. Dbobjects are database
objects or the parameters of these objects.

The command forms used for right-side actions
are command dbobject and command dbobject
preposition dbobject. Commands are words such as
INSERT, REMOVE, REPLACE, MODIFY; prepositions
are words such as WITH, TO, FROM. The dbobject
can be any of the primary database objects, sec­
ondary objects, or their parameters.

122

For more complex operations, we also allowed
LISP functions to be called by prefixing them with
the keyword LISP, or by insertion of a LISP expres­
sion. Thus, if the rule language cannot implement
a required function, a LISP algorithmic routine is
called. We used algorithmic transforms in the gener­
ation of adder carry-lookahead.

Ruleform Database Access
Because the database could be traversed in any
direction for any arbitrary distance through the
multidirectional pointer system, rules had to have
the same traversal capability. Therefore, the
dbobject of the Ruleform language is a shorthand
notation of the "database walk." Dbobject can be
used in a sentence to compare two database objects
by walking to both of them and using a predicate
for the comparison.

Had the database access been implemented in
pure LISP progranuning notation, the sentence
form would be lost in the many levels of expres­
sions enclosed in parentheses. One test would
occupy many lines of code and would read more
like a software program than an English sentence.
In this case, the chain of thought of the rule writer,
the purpose of which is to capture the step-by-step
thoughts of a logic designer in words, would proba­
bly be broken.

Vol. 2 No. 4 Fall 1990 Digital Tecbntcal]ournal

Synthesis in the CAD System Used to Design the VAX 9000 System

To improve the comprehension of the notation
used for identifying the database object, we devel­
oped an <object><dash> <object><dash><object> ...
notation for the walk to a database object. We also
developed functions that would compile this nota­
tion into a LISP expression, complete with all the
appropriate declarations for the most efficient run­
time performance. Figure 4 shows the use of this
notation.

Further, we incorporated into Ruleform a param­
eter definition mechanism that allowed us to define
any arbitrary parameter, name what object it
would attach to, and then use the name of the
parameter in the Ruleform database access. This
greatly expanded the role of synthesis in that it
could now be used for passing controls and infor­
mation to other CAD tools through parameters.
Parameters relieved the designers of much tedious
work, such as identifying clocks, logically equiva­
lent signals to the placement program CUT, and the
parity generator and checker signals to the diagnos­
tic program, called HIDE.

Writing the Rule
Many of the tasks logic designers perform become
automatic and intuitive over time. However, for a

dbob j ect
means

MODEL

INPUTS

SIGNAL-2ND- INS

INSTANCES-DRIVERS-SIGNAL-2ND-INS

SOURCES

DUSTS

MODEL -SOURCES

computer-based tool to develop a design, it must be
able to measure cell counts, power and timing, and
compare alternative implementations against bud­
gets of cell counts, power, and timing. To find the
critical path, a computer-based synthesis tool must
perform timing analysis in the same way that the
traditional timing verification tool does. In a sense,
the synthesis tool must preverify the decision
before casting the synthesis transformation in con­
crete. Therefore, for a computer to do logic design,
we had to analyze the steps that had become auto­
matic and intuitive, break those steps down, and
formalize them in minute detail.

Rule F,xa,mple
Consider an example of a simple cell-mapping rule.
The purpose of this rule is twofold: pick the most
appropriate cell for a configuration of Boolean
gates and attach the most critical path signals to
those input portinsts that have the fastest propaga­
tion delays through them.

A designer might determine the critical path from
experience or through trial and error. The designer
also might actually count loads on signals and add
estimated signal delay to gate delay of all paths
that might involve the timing-critical piece of logic.

get the name of the modeldef of the
current in5tance

get the inputs of the current modelinst

get the 5ignal of the second input of the
current model inst

get the in!ltance5 whose outputs are the
driving pertinacities of the signal of the
second input of the current model inst

get the instances whose outputs are the
driving pertinacities of the signals of
the inputs of the current model inst

get the instances whose inputs are the
load pertinacities of the signals of
the output s of the current model inst

get the name of the modeldefs of the
source model ins ts of the current model inst

Figure 4 Example of a LISP Expression

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990 123

VAX 9000 Series

These alternatives are all very time-consuming. We
decided a computer is best suited to do this type of
work. In SID, a timing analysis routine is run repeat­
edly, as the database changes, to set timing parame­
ters on every portinst of the design. The product of
these calculations is a timing debt number set on
every portinst. If the number is positive, the path is
over budget (i.e., is in timing trouble) by the number
in picoseconds given. If the number is negative, the
path is under budget (i.e., has slack). The timing
debt number allows the rules to access the timing
debt parameters to find critical paths.

In the example shown iri Figure 5, four Boolean
gates exist as a tree in the middle of a gate array cell.
The dest-side gate is a three-input OR, and the
source-side gates are two-input ANDs. The entire
cycle time of the machine depends upon the most
timing-critical path, which runs through the first
input of the second AND gate.

Because this rule replaces four gates, it has higher
priority over other rules that replace fewer gates.
When the rule arbiter is called with the OR as the
current instance, the arbiter executes the left side of
the rule (i.e., the first part up to the arrow). The left
side of the rule checks that the current instance is a
three-input OR and all source instances are two­
input ORs. It then chooses the most critical path
from among the inputs of the sources and notes the
other inputs of the sources that were not critical.
Because all of the tests in the left side of the rule
returned true, the rule is said to have "fired." The
right side of the rule may now be applied.

The right side removes the current instance,
i.e. , OR, and inserts the cell with the most crit­
ical path connected to the input that has a fast
propagation delay to the output. By removing the
OR, the destination of the ANDs is removed.
REMOVLIF _NO_DESTS then removes these ANDS.

The actual rule that does this transformation is

(defrule "mapCELln")

124

(model ha5_profile '(or3))
Call models-of-15t-sources-of-inputs

have_profi le '(and2))
(found{critical}-input5

is_most-critical 1)
(any {tagged}-inputs

are_not_in {critical})
-->
(replace• instance• with

out = CCELLn
(not ins-sources-{tagged })
(not ins-sources-{critical }))

(remove_if_dest5 5ources)

The rule also checks whether signal outputs of
the ANDs have more than one load. The rule allows
the transformation if the critical path has more than
one load, but disallows the transformation if the
noncritical paths have more than one load at the
output of the ANDS. Thus, duplication of the source
AND logic is prevented except when absolutely nec­
essary, e.g., to remove a wire delay to increase the
speed of a critical path.

Organization of Rules into Rule Bases
The quantity of rules required that the rules be orga­
nized into groups, called rule bases. As we defined
the minute steps of the logic design tasks, it was
apparent that groups of rules were separated by
levels of abstraction, as depicted in Figure 6. For
example, a sequence of logic design can be charac­
terized as a progression through the levels:

behavior --? RTL --? Boolean --? technology map --?
wiring, tweak --? parameter set --? placement --?

route 4 power adjust

We organized the rules by type of activity into
rule bases. We also developed a run-frame sequence
process that would apply these rule bases, in order,
from behavior through detailed adjustments at the
technology level. The rule bases are

• Behavior rule base, which contains rules to
expand behavior and RTL instances. These
rules transform high-level instances of adders,
incrementers, comparators, decoders, encoders,
and DECSIM behavior expressions into generic
Boolean instances. They also perform simple
bit replication for data path instances, such as
32-bit MUXes.

• Optimize rule base, which contains rules to
transform Boolean logic for minimization or
timing improvements. These rules performed
the well-known D'morgan, distributive, and
associative transformations to mold networks
of generic Boolean instances into a configuration
that is best suited to map into the cells of the
target technology.

• Map rule base, which contains rules to transform
generic Boolean and bit data path instances to
technology cells. This rule base actually was
divided into two rule bases, one that mapped
IIO cells and one that mapped internal gate
array cells.

• Wiring rule base, which contains rules to
improve timing by loading and logic adjustments

Vol. 2 No. 4 Fall 1990 Digital Tecbnical]ournal

Synthesis in the CAD System Used to Design the VAX 9000 System

MOST CRITICAL PATH
CELL N

SLON

SLOW

FAST

Figure 5 Critical Path Map

and rules to detect and correct electrical rules
(ERC) violations.

• Tuning rule base, which contains rules to adjust
power on intersections of multiple timing-criti­
cal paths.

• Parameter rule base, which contains rules to set
parameters for the placement and route pro­
grams. These rules include setting parameters
to identify logically equivalent signals, setting
pin groups to force collections of pins to be
near each other in placement, and weighting
parameters to force timing-critical signals to
be shortened.

• Placement and route, which are not rule bases
but CAD tools separate from the synthesis tool.
Placement and route of Motorola Macrocell
Array III (MCA3) gate arrays occur here in the
overall design sequence.

• Power rule base, which contains rules to adjust
power on gate array cells and cell output follow­
ers. After initial placement and routing, a more
accurate assessment of signal delay can be made.
The power rules track the power distribution
of the gate array cells and the contribution of
each cell's current settings to the power budgets
for ten regions of the chip. These rules adjust
current upward to improve the speed of critical

D ig ital Tecbntca/Jou rnal Vol. 2 No. 4 Fall 19')0

paths. The timing calculations for this rule base
use actual routed wire delays.

The Larger Physical Design Process
SID is part of a larger chip physical design process
that includes synthesis, placement, and routing.
The entire process is linked together in a two-pass
process, called loopback.

The first pass of loopback accomplishes three
goals: the initial synthesis of the chip based on esti­
mated interconnect delays, placement of those syn­
thesis results, and routing, which includes accurate
interconnect delay calculations.

The second pass of loopback accomplishes the
final synthesis with much more accurate inter­
connect delays and a high probability that the subse­
quent physical instantiation will achieve all design
goals for timing, space, and power. The final synthe­
sis made changes only where required. Final place­
ment began with the results of the first pass of
loopback, except where changes were made, and
routing rerouted only those nets that had been
modified. Our objective was to limit the number of
passes through loopback to two and avoid endless
cycles through the CAD tools.

The placement process itself consists of three
major phases. The global phase, called gravity col­
lapse, attempts to achieve relative orientation of
the various gates and disregard density. The distri-

125

VAX 9000 Series

BEHAVIOR
RULE BASE

ADDER, INCREMENTER,
COMPARATOR, ETC.
RULES

DIAGNOSTIC
LOGIC RULES

DATA PATH BIT
REPLICATION
RULES

OPTIMIZE
RULE BASE

BOOLEAN
RULES

TRUTH TABLE
RULES

MULTIPLEXER
RULES

SPECIAL
RULES

Figure 6 Knowledge RepresentaJion Hierarchy

bution phase, called regridding, attempts to assign
the gates to available positions and maintain the
desired orientation. The multipass final placement
phase swaps cell locations, gates, nets, and pins to
reduce weighted net lengths but still adhere to the
technology-supplied design rules.

During the local placement phase, synthesis-sup­
plied net weightings and equivalent net parameters
are utilized. The net weightings are part of the com­
plex algorithm used to determine whether a poten­
tial swap of a cell location, gate, pin, or equivalent
net is beneficial. The equivalent net parameters
allow the placement program to detach a net from
one pin and reattach it to another pin to supply an
equivalent signal. This p rocess was a particularly
common occurrence because synthesis had to sup­
ply the same or complementary signals to many
destinations and still adhere to a technology-driven
limitation of no more than four loads from any
one source.

Because the placement process introduces so
many changes in pins, gates, and nets, we felt it
was prudent for the placement program to simply
regenerate the CADEX database format when it

126

was finished. This approach avoided the problem
of developing a "back-annotation" process, which
would be required if modification of the existing
database were attempted and would be a complex
process, given the number of changes made. Also,
because most of the schematic source design is in
RTL format, many, if not most, of the placement­
introduced changes are not visible in the schematic.

Placement results were entered into our
internally developed routing CAD tool, called
Chameleon because of its ability to adjust to its
environment. Chameleon is a highly rules and
parameter-driven tool. It was used to route all
77 gate arrays, all 22 multichip units, and both the
CPU and system control unit planar boards of the
VAX 9000 system. For the 77 gate arrays in the
VAX 9000 system, the router achieved better than
99 percent completion. Further, the average net
was routed to between 101 and 102 percent of
its Manhattan net length. (Note: Determination of
Manhattan length is somewhat ill-defined when
copper-sharing is allowed, and some net segments
are common to multiple source-destination paths.)
The routing was so efficient, with regard to length,

Vol. 2 No. 4 Fall 1990 Digital Tecbnlcaljournal

Synthesis in the CAD System Used to Design the VAX 9000 System

that the synthesis and placement programs could
assume that determination of a net's end points
would effectively determine its eventual routed
length and, by extension, its interconnect delay.

Upon completion of the actual routing, inter­
connect delay calculations were made for every net
source-load combination by a router-related pro­
gram. We did these calculations at this point in
the process for two reasons. First, all the necessary
data was readily available in the router's database.
Second, accurate delay calculations were needed
by synthesis during the second pass of loopback to
verify the assumptions made during the first pass
and make any adjustments necessary to achieve tim­
ing and power constraints. For those few connec­
tions that were not routed completely, calculations
were made based on the Manhattan length and a
small contingency factor.

Problems
Developing and using the new synthesis design
methodology was not without problems. We were
able to fix some of these problems for the first
VAX 9000 system generation. However, because of
time and resource problems, others were deferred
to the next project.

Digital's previous CAD system ran on a combina­
tion of 36-bit DECSYSTEM-20 computers and 32-bit
VAX computers. In switching completely to the VAX
system for all CAD processes, we had to rewrite
much of the DECSYSTEM-20 computer's existing
code and replace the Stanford University design
system {SUDS) schematic drawing program with the
CAE2000 system. In replacing SUDS, we lost nearly
one million lines of code, which was used for such
tasks as wire listing, drawing, back annotation, and
electrical rules checks. Some of these were available
in the CAE2000 system, but others had to be devel­
oped external to that system.

We designed a common database format, called
CADEX, that allowed the CAD tools to communi­
cate with one another. For example, a design could
be extracted from CAE2000 drawings to CADEX,
which would supply the design to SID. In turn,
SID would write CADEX output, which would be
read by the placement program cut. This program
would then write CADEX output, and the cycle
would continue. New libraries had to be created for
RTL schematic bodies and MCA3 cells. Data formats
and parameters had to be defined for passing infor­
mation between the CAD tools.

In SUDS, results could be written back to the
drawing program (i.e., back annotation). We had

Digital Tecbntca/Journal Vol. 2 No. 4 Fa/1 / <J<)(J

hoped to be able to use the same process in the new
process, but were prohibited from doing so by defi­
ciencies in the CAE2000 system. As a result, the
overall CAD process had to be repeated from the
beginning many times.

As with any new development tool, we experi­
enced setbacks. For example, we developed the gen­
eration of an adder that algorithmically picked each
gate of the carry-lookahead for optimum configura­
tion of the Boolean trees with respect to fan-out and
path delays. We then wrote Boolean optimization
rules that attempted to merge ORs together as if no
fan-out existed between them. However, when we
did this, the carry-generate, least-critical OR paths
merged, which forced the more critical AND-OR
combinations into simple one-stage cells, with extra
levels of wire delay between them. Within a few
weeks, we were able to correct the faulty rules to
also consider the timing-critical paths, which
allowed the adder to improve along the carry­
propagate paths. Eventually, by working on the cell
selection, load allocations, and power setting, we
were able to produce a 64-bit adder at 3.2 nano­
seconds (ns) in the MCA3 technology. The best hand
design was 3.3 ns for a 59-bit adder. At the time,
the logic designers estimated that an extra stage
delay, or 3.7 ns for the 64-bit manual design, would
be required.

Since synthesis was new, there was a great deal of
skepticism as to whether it could perform as well as
a manual design. Some logic designers never gave it
a chance. Other designers encountered early prob­
lems with it or experienced schedule pressures and,
as a result, resumed using hand-design methods.
However, most designers stayed with the process
until it produced acceptable results. In the process,
they supplied feedback and algorithms that were
converted into additional SID rules. This work was
crucial to the evolution of the program. Only by
adding new rules provided by logic designers could
SID be improved for future designs. The successors
to the VAX 9000 system will reap the major benefits
from this work, through improved designer pro­
ductivity and time savings.

The effect of timing constraints and the general
accuracy of timing calculations on synthesis results
cannot be underestimated. We required that timing
budgets be specified to every chip to indicate the
timing criticality of each I/0 pin. The budgets were
specified from the 1/0 pin to latches of either of the
two clock phases (TA or TB). Default budgets were
applied on paths between latches that were con­
tained on the same chip. If a budget was missing,

127

VAX 9000 Series

SID considered that the speed of the path did not
matter. However, as we ran the paths without
budgets, we frequently found that SID had designed
the path to be too slow. We then had to specify a
budget for that path and repeat the testing process.
A better alternative would have been to have a tool
set the initial budgets for all I/0 pins and for the user
to modify budgets as necessary.

The accuracy of timing calculations is another
factor in the design results. Because SID used worst­
case gate delays rather than rise and fall delays,
its calculations of timing debt generally produced
incorrect numbers that indicated timing problems
that did not actually exist. Triggered by this inac­
curate timing data, the rules generated duplicated
logic to reduce signal load fan-outs and needlessly
increased chip power.

Ultimately, synthesis methodology enabled the
CAD system to produce accurate gate array designs.
With the Ruleform language, we improved the rules
to meet the changing needs. In the majority of cases,
rules that were not in time for one designer bene­
fited many other designers at a later design stage.
Using an ECO (engineering change order) process,
we adjusted the placements and power and
improved the timing-critical paths by requesting
specific power settings or fan-outs that the regular
execution of SID does not normally generate.

Results
Approximately 93 percent of the gate-level database
was synthesized from source RTL design, DECSIM,
and microcode truth tables. The other seven per­
cent was implemented in the source schematics in
the form of technology cells, known as CLEGOs.
Since the RTL often is quite similar to the finished
gates, this percentage is not an accurate reflection
of the amount of work involved. The RTL bodies
were quite simple and without technological
aspects, such as strange polarity inversions and
clock connections. However, they did require that
the designer specify all data paths and control logic
in the true and false sense; e.g. , A and B but not C
feeds the select to 32-bit data path MUX.

The ratio of database size for RTL bodies com­
pared to synthesized gates is a better measure of
how the design entry was simplified through the
use of RTL schematics and SID synthesis. The com­
parison was done for CADEX file sizes of the RTL
designs versus the synthesized gate designs just
prior to placement. The ratio of RTL logic complex­
ity versus gate logic complexity, for each CPU box,
is shown in Table 1.

128

Table 1 Ratio of RTL Logic Complexity to
Gate Logic Complexity

RTL Logic Gate Logic
Complexity Complexity

E-box 4.73
I-box 4.92

M-box 4.40

V-box 1 3.17

Average 4.30

The average ratio of 1 to 4.3 is interpreted to
indicate that 23 percent of the logic design work
(not counting placement, routing, simulation, and
timing verification) was done by logic designers and
77 percent by synthesis.

Another perspective is gained when we consider
the amount of synthesis rules that were applied.
The number of rules varies tremendously in relation
to the impact. For example, the adder-generation
rule, which takes about 1 CPU minute to complete
for a 32-bit adder, performs the equivalent of
approximately 4 person-days of work. On the other
extreme, a parameter-setting rule that is tested and
applied in .1 CPU seconds performs the equivalent
of 15 to 30 person-seconds of work.

Table 2 shows the approximate number of SID
rules applied during synthesis runs. The rules per­
formed different categories of activities for the 77
VAX 9000 system MCA3 gate array chips.

Thirteen bugs caused by synthesis were found
in the gate-level simulator. These bugs were either
typographical errors in the rules or incorrect
interaction within a set of rules. Although each rule
was tested independently for correctness through

Table 2 Activity Categories for the
VAX 9000 Gate Array Chip

Rules

Expand behavior instances to bit level
Minimize and optimize Boolean logic
Initially select macros and macropins
Detect and correct electrical and design
rule violations

Improve timing by loading and logic
adjustments

Set high-power on common-critical paths
Set parameters needed by other CAD
tools

Set high-power on timing-critical paths

Total number of rules applied

Number

28,567
11,550
58,597

7,392

85,008

3,850
165,000

24,024

383,988

Vol. 2 No. 4 Fall 1990 Digital Tec.b,iica/Journa/

Synthesis in the CAD System Used to Design the VAX 9000 System

full-pattern simulation, it was not possible to com­
pletely test the interaction of several rules. The
simulator found approximately 500 designer-intro­
duced bugs, and the breadboard found another
41 bugs. The breadboard was an early version of the
VAX 9000 system that was built with printed wiring
board technology for the purpose of faster simula­
tion and debugging of the design.

These numbers translate to about 1 bug per 200
gates designed by hand, compared to 1 bug per
20,000 gates designed by synthesis, when viewed
from the above ratio of 23 percent hand design
versus 77 percent synthesized design, using the
400,000 gate VAX 9000 source design. The fully
realized VAX 9000 system is 700,000 gates when
multiple uses of chips are considered.

In addition to the more traditional synthesis
functions of logic minimization and technology
cell mapping, we used the tool to insert clock logic,
scan logic, AC test circuits, parameters to control
placement and routing, information to the test pat­
tern generation tool, diagnostic isolation tool, and
simulation tools. All these functions made the logic
designers' job much easier through automation of
some tedious and error-prone work.

We also found a unique application for synthesis
rules in the improvement of wire delays on the chip
by rearranging and rebuffering signal nets, based on
timing debts. A set of nearly 15 rules resulted in a 10
percent path delay improvement across the board
for all gate array chips, including the 7 percent of
logic done in CLEGO technology cells.

SID-synthesized gate arrays were found to have
no electrical rules violations caused by the tool. A
few electrical rules errors were, however, intro­
duced by manual ECOs. An example of electrical
rules error is the connection of two incompatible
technology gates, such as an internal chip cell to a
chip output pad.

As shown in Table 3, the run-times for synthesis,
placement, and route for MCA chips varied greatly,
depending on design complexity.

Table 3 Average Run-times for MCA Chips

MCA Chip

Synthesis
Placement
Route

Delaycalc

Average Run-time

30 minutes to 3 hours
4 to 10 hours
4 to 12 hours
1 to 2 hours

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990

Acknowledgments
The authors would like to acknowledge the devel­
opers of the SID, CUT, and Chameleon programs for
their contributions and dedication to the develop­
ment of the VAX 9000 product: Ron Bosslet, Mike
Boucher, Ed Fortmiller, Herb Kolk, Snehamay
Kundu, Nevine Nassif, Jayanth Rajun, Steve Root,
Dave Tonge!, Dave Wall, Yu Wang, and Greg Zima.

Reference

1. G. Brown, wws of Form (New York: E.P. Dutton
Publishers, 1979).

General References

R. Brayton et al., Logic Minimization Algorithms
for VLSI Synthesis (Boston: Kluwer Academic
Publishers, 1984).

]. Darringer et al., "LSS: A System for Production
Logic Synthesis," IBM Journal of Research and
Development, vol. 28, no. 5 (September 1984):
537-545.

T. Kowalski and D. Thomas, "The VLSI Design Auto­
mation Assistant: What's in a Knowledge Base," 22nd
Design Automation Conference (1985): 252-258.

K. Bartlett et al., "Synthesis and Optimization
of Multilevel Logic under Timing Constraints,"
IEEE Transactions on Computer-aided Design,
vol. CAD-5, no. 4 (October 1986): 582-595.

A. Goldberg and D. Robson, Smalltalk 80, 1be
La,nguage and Its Implementation (Reading, MA:
Addison-Wesley, 1983).

M. Burstein and M. Youssef, "Timing Influenced
Layout Design," 22nd Design Automation Confer­
ence (1985): 124-136.

R. Brayton et al., "MIS: A Multiple-Level Logic
Optimization System," IEEE Transactions on
Computer-aided Design, vol. CAD-6, no. 6
(November 1987): 1062-1081.

129

Karen E. Barnard I
Robert P. Harokopus

Hierarchical Fault Detection
and Isolation Strategy for
the VAX 9000 System

The VAX 9000 system was designed to compete in the mainframe market. Mainframe
customers not only require high processor performance and throughput, but also a
system which is reliable and always available. 'fhis paper demonstrates how the
newly implemented scan system, in conjunction with scan pattern testing and
symptom-directed diagnosis (SDD), is essential to sa.tisfy these needs. SDD is the use
of on-line error detectors and state information sa.ved at the time of an error to
isolate the fault that caused the error. 'fhe scan system of the VAX 9000 system allows
individual state elements in the processor to be set and sensed, and is the basis for
fault detection and isolation.

As computer technology becomes more advanced,
designs are becoming more dense. Density implies
volume. For example, the typical chip on Digital's
most advanced CPU, the VAX 9000 system, contains
8000 gates. The VAX 9000 logic packaging also
compounds the diagnostic problems by making the
gates physically impossible to reach with a logic
analyzer.

As the gate volume increases and the logic
becomes less accessible, the problems increase for
manufacture of the design, debug of the prototypes,
and repair of the machine in the field. The debug­
ging stages and the hardware repair process require
that faults be found quickly and accurately to
ensure that downtime is m inimal and valuable
resources and inventory are not wasted. This paper
presents the solution used in the VAX 9000 system
for detecting and isolating hard and intermittent
faults. The diagnostic solution for the VAX 9000
system comprises the scan system, tools to generate
test data, utilities to submit the test data to the scan­
nable logic, and an expert system to record symp­
toms and produce a callout over time.

Traditional Fault Detection and
Isolation Methods
Excluding the MicroVAX chip, all VAXCPUs designed
prior to the VAX 9000 CPU are supported by macro­
diagnostics and microdiagnostics.

Macrodiagnostics execute from the system's main
memory and verify that the CPU can successfully

130

behave as the VAX architecture mandates. Micro­
diagnostics execute from control store random­
access memory (RAM) and have access to internal
state elements of the CPU. Although microdiagnos­
tics were intended to provide better fault isolation
than macrodiagnostics, isolation is still not optimal
because the access points comprise only a fraction
of the total CPU. Since both types of diagnostics
provide imprecise fault isolation, an engineer must
be highly skilled in the analysis of both the code
and the internal workings of the CPU to repair a bro­
ken machine.

To avoid the time-consuming process of manual
fault isolation, the field engineer often extensively
replaces modules, which is a costly repair method.
Historically, this practice has been a problem not
only for Digital but for the entire computer indus­
try. Another disadvantage is that these diagnostics
are executed using the suspect logic, which can
produce incorrect test results. Finally, both diagnos­
tics often fail to provide the desired fault resolution
because of fault propagation. The fault spreads
across module boundaries because a typical test
executes several instructions and each instruction
requires one or more CPU cycles before the results
are analyzed.

Solution for a High-volume Design
The solution used in the VAX 9000 system to
improve fault detection and isolation preserves the
role of the functional diagnostics and addresses the

Vol. 2 No. 4 Fall 1990 D ig ital Tecbnlcal]ournal

Hierarchical limit Detection and Isolation Strategy for the VAX 9000 System

inherent problems of those diagnostics. An integral
scan system addresses the density and packaging
issues. The CAD processes that automatically gener­
ate test data address the complexity and schedule
issues. The scan system also reduces the problem
of fault propagation by providing a mechanism to
stimulate the machine and examine the results after
just one machine cycle. Further, more direct control
over most of the internal logic elements improves
test coverage and fault isolation.

Increased Visibility
ln the VAX 9000 CPU design, multichip unit technol­
ogy created a machine that could not be built or
diagnosed without a marked increase in visibility
points. In previous VAX systems, the number of visi­
bility points for microdiagnostics varies from one
machine to another. For example, the VAX 8700
system has just over 150 visibility points, and the
VAX 8600 and 8650 systems have over 3000 visibil­
ity points. Most points are read-only points, and the
diagnostic processor has limited direct control over
initializing individual CPU state elements. In con­
trast, the VAX 9000 scan system provides access to
over 20,000 internal machine state elements for
both reading and writing and direct access to all
internal RAM and register structures. The design of
the VAX 9000 system significantly improves CPU

and system control unit logic visibility.
The scan system is used for diagnostic purposes

and to initialize the state of the CPU and system
control unit. Because the number of windows into
the system are increased, the design can be parti­
tioned into smaller regions, which improves fault
isolation. The fault detection and isolation strategy
depends on components that vary in complexity
from a simple scan latch to automatic generation of
the test data.

An important feature of the scan system is that
the scan latches can be influenced by the scan sys­
tem and by the system logic. Therefore, the scan
system functions can be tested and verified inde­
pendently of the system logic. However, if the scan
system is not functioning properly, the scan pattern
diagnostic cannot produce valid results. Therefore,
scan system faults must be fixed before running the
scan patterns.

Testing Hierarchy
Testing for the VAX 9000 system begins with diag­
nostics that are run automatically when the system
is powered up. These tests ensure that the service

Digital Tecbnlcal]ournal Vol. 2 No. 4 Fall 1990

processor unit and the scan system's basic compo­
nents do not contain any faults.

After the tests are executed, the service processor
unit's operating system is booted and the scan hard­
core diagnostic is run. The hard-core diagnostic
assumes that the system has passed the power-up
diagnostics and, therefore, the scan controller will
operate properly. The hard-core diagnostic tests the
components of the scan system that reside on the
CPU and system control unit planar modules. If
the scan system is broken, the machine cannot be
initialized. When the system passes the hard-core
diagnostic, the scan pattern diagnostic tests the
integrity of the scannable system logic.

The functional diagnostics and system exercisers
are run after the scan pattern diagnostic has verified
that no structural problems exist. In the testing
hierarchy of the VAX 9000 system, functional diag­
nostics are as important as structural testing. Func­
tional diagnostics verify that the design represents
a valid VAX system.

Timely Testing
In the course of developing a system design, several
revisions of the system components are usually
required. Each revision represents a different
machine for testing purposes. To test each revision
of the VAX 9000 design in a timely manner, a tool,
called Scan Environment Patterns for Test and
Repair {SCEPTER), was developed to generate test
data. SCEPTER, an automatic pattern and test gen­
erator, takes as input the data used to manufacture
the multichip units and structural models that simu­
late the design. Both inputs are produced during
the logic design process.

SCEPTER Process
Pattern generation for the VAX 9000 system is a
recursive process that initializes the scannable
latches in a logic model, simulates one or more
system clocks, and reads the contents of the scan
latches. The contents are read as variable-length
vectors, one bit for each scan latch in the design.
The vectors to initialize the logic, the timing defini­
tions and the expected result, and mask vectors are
written by SCEPTER into an ASCII file. The scope of
the testing for a particular file is determined by the
scope of the model that was input to SCEPTER.

SCEPTER is quite flexible and can generate data files
that target a Motorola Macrocell Array III (MCA3),

a multichip unit, or CPU.

The SCEPTER data files are translated into binary
formats to reduce the size of the files and to allow

131

VAX 9000 Series

one pattern generator to satisfy the requirements
and abilities of every test environment. The envi­
ronments that use data generated by SCEPTER are

• Trillium's Micromaster Plus, the MCA tester used
by the MCA3 vendor and Digital for the manufac­
turing test process. The tester ensures that the
chip internal logic is fault-free prior to mounting
it on the multichip unit.

• MCU tester, which is a comprehensive multichip
unit tester Digital developed for the manufactur­
ing test process. This mulcistation high-volume
tester has access to the multichip unit's I/0 pins
and can probe the multichip unit and MCA pins.

• Manual probe station, which started out as an
engineering tool but has evolved into auxiliary
diagnosis too in the multichip unit test process.
It is used to diagnose multichip units that have
been removed from a VAX 9000 system because
of suspected faults.

• VAX 9000 kernel environment is used by Engi­
neering, Manufacturing, and Customer Services
to verify MCU installation.

Pattern Generation Process
The automatic test and pattern generation (ATPG)
process begins by determining what portion of
the design is to be tested. A computer-aided design
(CAD) tool partitions the models into chunks
before SCEPTER is run. A chunk can consist of an
MCA, a multichip unit, one CPU, or any portions of
these units.

Typically, one multichip unit is considered to be
the targeted device for testing, and any multichip
units that communicate with the targeted multichip
unit also are included in the test process.

Once the model is established, the recursive pro­
cess of initializing, simulating the system clock, and
reading the results continues until the generation
algorithms are satisfied that no additional faults can
be detected. The simulation time can be lengthy in
this process, and, therefore, reduced coverage lim­
its are set for multichip unit pattern generation.
MCA pattern generation usually produces better
than 98.5 percent coverage.

Basic Theory of Structural Testing
As discussed earlier, the scan system narrows the
scope of testing to an area as small as one system
clock cycle. If the scan latches are strategically
placed, a fault's source can be pinpointed to a rela­
tively small region. The size of the region is directly

132

related to how far apart the scan latches are placed.
The spacing of the scan latches also affects the isola­
tion callout. The number of components involved
in a callout can be decreased if scan latches are situ­
ated such that, on input to a chip, a signal feeds a
scan latch prior to the signal being used in combi­
national logic. Figure 1 illustrates the callout that
occurs if a fault is detected on either of the two sig­
nals shown.

The callout for signal A, where the chip is insu­
lated with scan latches, is 30 percent smaller than
the callout for signal B, which does not have
boundary scan latches. The difference is even larger
for signals that converge on a common area of com­
binational logic.

Using Boundary Scan to Improve
Fault Isolation
The example in Figure 1 does not illustrate what
happens to the isolation callout in the case of a
multibit signal that communicates with several
chips. Figures 2 and 3 demonstrate the effect that
fanIN has on fault isolation. Figure 2 has boundary
scan, and Figure 3 does not. The following discus­
sion centers on these two figures.

The callout in Figure 3 includes an extra compo­
nent, i.e., combinational logic, for each chip. If a
scan latch is placed between the combinational
logic and the chip boundary, the callout list can
be reduced. The reduction between the callouts in
Figures 2 and 3 is 55 percent.

The hierarchical test strategy, which was detailed
earlier, confirms the following items as good on the
MCU tester prior to installing the multichip unit on
the planar module:

• Chips 1, 2, 3, and 5

• MCUxHDSC

• MCUyHDSC

• MCUx flex connectors

• MCUy flex connectors

Although these items are confirmed as good, a
fault can still exist on the planar module or in the
flex connectors. Because the flex connectors are
moving connectors and subject to abrasion, they
have the highest probability of breaking and are,
therefore, the weakest link in the multichip unit
assembly.

As such, these connectors require the greatest
protection and deserve a high-level of suspicion

Vol. 2 No. 4 Fall /990 Digital Tecbnicaljoun1al

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

MCU 1

FAULT ..

•SIGNAL A:

MCAx
MCU 1 HDSC
CPU PLANAR
MCU 2 HDSC
MCAy

MCAx

FAULT"

MCAx

SIGNAL____A__H <O>

1 CLOCK CYCLE

SIGNAL_ B_ H <0>

1 CLOCK CYCLE

MCU 2

MCAy

MCAy

.. SIGNAL B:

MC Ax
MCAx COMBINATIONAL LOGIC
MCU 1 HDSC
CPU PLANAR
MCU 2 HDSC
MCAy COMBINATIONAL LOGIC
MCAy

Figure 1 Example of Two Faults with and without Scan Latches
on the Module Boundaries

when isolating faults. As a result of testing in the
manufacturing process, the chip's internal logic and
the HDSC systems can now be temporarily removed
from the callout. If a fault occurs, boundary scan
latches can isolate the fault to one signal. Without
boundary scan, all three signals have to be included
in the callout because the fault source cannot be
accurately pinpointed.

In this example, provided that no other faults are
present, each multichip unit's flex connector has
an equal probability of having caused the fault. For
every inch of flex connector, there are 30 signal
connections. A minor piece of debris on a con­
nector can potentially cause a number of failures.
Therefore, the least costly repair strategy is to reseat
the multichip unit after cleaning the flex connector
and the pads on the planar module.

If the fault is still present after reseating the multi­
chip unit, the multichip units are swapped and the

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990

patterns are rerun. If the run is failure-free, then the
cause of the fault is on the removed multichip unit.
The defective unit is sent to a repair depot for diag­
nosis and repair.

For discussion purposes, if additional faults are
detected on one of the multichip units during the
testing, then that multichip unit should be the first
one to be reseated or swapped. Thus, the highest
number of faults can be eliminated for one MCU

replacement. The remainder of the repair verifica­
tion procedure would be the same as in the case
where no other faults existed.

Scan Pattern Diagnostic
The scan pattern diagnostic is a utility that resides
on the service processor unit's system disk and
processes the structural test data generated by
SCEPTER. The scan pattern diagnostic runs each file
based on the user's input.

133

VAX 9000 Series

MCUx

CHIP1

CHIP2

CHIP3

CALLOUT FOR SAME FAULT
USING BOUNDARY SCAN:

5 ITEMS

1. CHIP 1
2. CHIP 5
3. MCUx HDSC
4. MCUy HDSC
5. PLANAR

FAULT

MC Uy

KEY:

D

CHIP 4

CHIPS

SCAN LATCH -+ DETECTION POINTS
FOR FAULTS

--D OACL-t COMBINATIONAL LOGIC

Figure 2 Fan/N with Boundary Scan

The interface supports flexibility for testing the
scannable logic in the system control unit and one
to four CPUs. The scan pattern data files contain the
data required to test the hardware as discussed ear­
lier in the Pattern Generation Process section.

The diagnostic packages the test data into scan
operations that are submitted to the scan control
module through the service processor unit sys­
tem calls. The scan pattern diagnostic checks the
returned status; and if faults are detected, saves
the physical location of each fault in an internal
database.

134

SCEPTER provides isolation maps, which are lists
of the components that may be responsible for the
fault detected by a given scan latch. There is one
isolation map for each scan latch involved in the
testing. When a scan latch detects a failure, the
scan pattern diagnostic uses its physical location
to access the isolation map provided by SCEPTER.
The contents of the maps are used in the isolation
callout.

Proper Niche for Structural Testing
We did not design the structural test process for the

Vol. 2 No. 4 Fall /<J<JO Digital Tecbntcaljournat

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

MCUx

CHIP1

FAULT

CHIP2

CHIP3

CALLOUT WITHOUT BOUNDARY SCAN:

11 ITEMS

1. CHIP 1
2. CHIP 2
3. CHIP 3
4. CHIP 5
5. CHIP 1 CL
6. CHIP 2 CL
7. CHIP 3 CL
8. CHIP 5 CL
9. MCUx HDSC
10. PLANAR
11 . MCUy HDSC

MC Uy

KEY:

D
-D

CHIP4

CHIPS

CHIPS

SCAN LATCH -+ DETECTION POINT
FOR FAULTS

ORCL -+ COMBINATIONAL LOGIC

Figure 3 Fan/N without Boundary Scan

VAX 9000 system to cover every test problem.
Instead, we designed the process to ensure that the
hardware can physically operate as described by
the design data. Structural testing cannot be used to
determine if the VAX 9000 system is operating as a
VAX system, that is the job of the functional diag­
nostics. Further, structural testing cannot be used
to determine if the system is robust enough to sup­
port multiuser traffic; the User Environment Test
Package (UETP) exercises the system hardware and
operating system. The structural test process also

Digital Tecbnicaljounial Vol. 2 No. 4 Fall 1990

cannot be used to find problems with the design.
Architectural verification tests perform that func­
tion. Finally, structural testing cannot be used to
detect intermittent faults. Because this type of fault
requires the presence of special conditions which
the test data may not provide, on-line error detec­
tors and symptom-directed diagnosis are more
effective alternatives.

Structural testing must be performed at a low
level. It should be done when power failures or
power surges occur, when multichip units on the

l35

VAX 9000 Series

CPU or system control unit planar are swapped, or
when signal-carrying cables are installed. The scan
patterns also should be run if the system crashes
or applications begin to behave erratically for no
apparent reason. Initially, when a system problem
occurs, the cause must be isolated to either the soft­
ware or hardware to initiate the correct remedial
action. If the hardware appears to be the cause, then
the hardware diagnostic strategy must be followed
to obtain optimal fault isolation in a minimal
amount of time.

Structural Test Process
The VAX 9000 system's structural test process
shows that, given the proper pattern data files,
faults can be detected and isolated faster than with
traditional methods that use the symptoms from
the functional diagnostics. Structural testing not
only fills a gap in Digital's test hierarchy, but also
preserves the benefits derived from the functional
diagnostics. As a result, logic designers and manu­
facturing engineers can concentrate on higher level
problems, and field engineers can repair and bring a
broken machine back on-line faster.

The structural test process has also produced an
automatic test data generator. This generator is flex­
ible enough to support testing for Digital's future
processor designs, which include a scan system.
This tool will prove to be essential in bringing the
next innovative complex design to market on time.
It makes design testing, prototype debugging, and
repair more thorough and efficient.

Structural testing cannot address the unique
problems presented by intermittent faults. These
faults require constant monitoring and a mecha­
nism to log the symptoms and isolate over time.

Symptom-directed Diagnosis
As computer systems have become more complex,
the occurrence of intermittent faults has increased
dramatically. This phenomenon results mainly from
the increasing densities of chips and interconnec­
tions. Traditional test-directed diagnostics are inef­
fective in isolating intermittent faults because they
rely on the ability to re-create the failure condition,
which is seldom possible to do. Intermittent faults
are usually as a result of marginal components and
may only occur when certain conditions are met,
such as the specific workload on the system. In con­
trast to test-directed diagnostics, symptom-directed
diagnosis uses symptom information saved at the
time of the failure to isolate the fault. Symptom
information includes useful machine states, such as

136

error detector states, multiplexer select values,
memory addresses, and register values.

The VAX 9000 symptom-directed diagnosis
strategy is composed of four major components.
First, on-line hardware error detectors are used to
achieve maximum coverage and an error-reporting
process logs the necessary symptom information
when errors are detected. Second, hardware error
detectors and secondary syndromes are used to
build symptom-directed diagnosis fault isolation
rules that achieve the minimum possible callout of
faulty field replaceable units. Third, symptom­
directed diagnosis CAD tools calculate the coverage
provided by on-line error detection and evaluate
the quality of fault isolation provided by these
detectors. Fourth, on-line, symptom-directed diag­
nosis software performs fault isolation for both
single-error and multiple-error events.

Fault Detection Coverage and
Error Logging
On-line hardware error detection is essential for
detecting intermittent faults. On high availability
mainframes such as the VAX 9000 system, it is essen­
tial to detect or "cover" a high percentage of inter­
mittent faults. This section discusses the coverage
measurement of on-line error detection for the
VAX 9000 system. The VAX 9000 system error­
logging process is also discussed.

On-line Error Detection
Hardware components are subject to temporary
failures because of signal noise, environmental devi­
ations, marginal devices, and other factors. To com­
pensate for these inevitabilities, the VAX 9000
kernel includes over 450 error latches, which store
the results from hardware error-detection circuits,
such as parity and error-correcting code checkers.
The detection of faults is critical to an orderly and
predictable error-handling process. Error-detection
circuits not only ensure the data integrity of the sys­
tem, but also provide information that can be used
for symptom-directed diagnosis fault isolation.

The placement of error-detection hardware is
critical to the effectiveness of the process. The
goals for error detector placement on the VAX 9000
system included:

• Maximizing coverage of higher failure
components

• Minimizing the callout of faulty field replaceable
units

Vol. 2 No. 4 Fall 1990 Digital Tecbntcaljournal

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

• Minimizing pin use and cell count

• Minimizing effects on system performance

Coverage Calculation
One of the purposes of hardware error detection is
to ensure that the VAX 9000 system behaves in a
predictable manner when a fault occurs. Therefore,
a high percentage of errors must be covered by on­
line error detection. If a fault is not detected, then
the machine may operate or fail in an unpredictable
manner. Undetected faults complicate the error
reporting and recovery processes and limit the
quality of the symptom information available for
symptom-directed diagnosis fault isolation.

Reliability Weighted Coverage The coverage
provided by on-line error detectors is measured in
terms of the reliability of the various components
in the design. In other words, the coverage calcula­
tion is weighted according to the probability of fail­
ure of each device in the logic.

Reliability weighting is performed by first
assigning a relative failure weight to each primitive
physical element. Examples of primitive physical
elements are gate array cells, self-timed RAM cells,
the high-density signal carrier, multichip unit
flex connectors, and planar module etch. A weight
of one is assigned to the most reliable primitive
physical element and all others are scaled propor­
tionally upward.

Each signal in the machine is then assigned a fail­
ure weight by calculating the sum of the weights of
each of the primitive elements that compose the
signal. For example, a multichip unit interconnect
signal is composed of two multichip unit flex con­
nector primitive elements and one planar module
etch primitive element. Therefore, the weight of
this signal would be two times the multichip unit
flex connector weight plus one times the planar
module etch failure weight.

Probability of Detection The second aspect
of the coverage calculation is the probability that a
fault on a given signal will be detected by an on-line
error detector. This aspect is called the signal proba­
bility of detection and is calculated by computing
an error domain for each on-line error detector in
the system. The error domain of a given detector is
the sum of all of the signals in the design that have a
greater than zero probability of being detected if
they are faulted. The detector covers each signal in
its error domain.

Dtgttal Tecbntca/Journa/ Vol. 2 No. 4 Fall /'}<JO

Computation of the error domains for each on­
line error detector in the design results in a signal
probability of detection for each covered signal.
Uncovered signals are assigned a zero signal proba­
bility of detection.

Coverage Formula The signal probability of
detection data and the signal reliability weight cal­
culations are used to determine the system on-line
error detector coverage. The formula for this calcu­
lation is

,,
E(P; xRw,)
; .. , c = -,-, ------

E(100; x Rw;)
j ., /

where n equals the number of signals in the system,
p equals the signal probability of detection, RW

equals the signal reliability weight, and C equals the
system coverage.

A symptom-directed diagnosis CAD tool, called
the hardware isolation domain evaluator (HIDE),

was developed to automate the process of deter­
mining the signal reliability weights, probabilities
of detection, and overall system coverage. HIDE is
discussed in more detail in the CAD Tools and
Processes section of this paper.

VAX 9000 Error-reporting Process
The error-reporting process on the VAX 9000 sys­
tem facilitates symptom-directed diagnosis by sav­
ing critical symptom information that can be used
for fault isolation. The VAX 9000 service processor
unit initiates and controls the error-reporting pro­
cess. The service processor unit monitors each of
the VAX 9000 subsystems and reports conditions
that deviate from normal operation. The service
processor unit recovers the failed status from the
subsystem in error and generates an error log entry,
which contains important machine-state symptom
information saved at the time that the error was
detected. This information is analyzed by symp­
tom-directed diagnosis fault isolation tools to deter­
mine the source of the error.

Fault Isolation Rules
The symptom-directed diagnosis fault isolation
tools use a knowledge base of fault isolation rules to
determine how to analyze the data inside the error
log entry. The fault isolation rules were designed by
reliability engineering experts who understand the
behavior of the machine when it fails.

137

VAX 9000 Series

There are two basic types of fault isolation rules,
single event and multiple event. Single-event rules
are used for analyzing single error events (i.e., one
error log entry). Multiple-event rules are used for
analyzing multiple error events that occur over a
specified interval of time.

Single Event Fault Isolation Rules
There are several categories of single event fault iso­
lation rules. These rules are derived from the on-line
error detection designed into the VAX 9000 system.

PrinUlry Syndrome Fault Isolation Rules Primary
syndromes are the error latches that detect and
report error events. Each error latch stores the
result of an on-line error detector. Each error detec­
tor covers a section of logic in the system. By map­
ping this logic to the physical partit ion (i.e., field
replaceable units), the values of set error latches can
be used as a first -pass fault isolation. In many
instances, this analysis alone is sufficient to deter­
mine the faulty field replaceable unit .

Secondary Syndrome Fault Isolation Rules In some
instances, the fault isolation provided by the pri­
mary synd romes may not localize the fault suffi­
ciently. For example, if the primary syndrome field

FRU 1

FRU 3

D0 -07
PARITY

D8
/ /

/ GENERATOR /

D0 -08 ~ , ,, ,, MUX

FRU 2
DO-C;.8

,, 01
/

~
DO; D7 PARITY

D8 ,
/ GENERATOR /

replaceable unit callout results in more than one
field replaceable unit having a significant possibility
of failure, then secondary syndromes must be used
to reduce the callout. Secondary syndromes are key
machine states, other than error latches, that are
stored in the error log entry. Examples of secondary
syndromes include multiplexer select lines, mem­
ory address values, and other path-sensitive control
signals. These signal states are used to determine
the specific path that was sensitized when an error
occurred . The nonsensitized path(s) can then be
removed from the callout. An example of how sec­
ondary syndromes are used for fault isolation is
shown in Figure 4.

Fault Propagation Rules Sometimes a single-error
event can trigger multiple error detectors because
of fault propagation or domain intersection .

Fault propagation occurs when a fault in a given
error domain (i.e., the p ropagation source) propa­
gates into other error domains (i.e., the propagation
destinations). To identify the real source of the
error, the possible fault propagation paths must be
found and the precedence of the error detectors in
each propagation path must be identified . When
multiple error latches are set, the propagation rules
can then be applied to eliminate all p ropagation

PARITY
I--

ERROR PARITY _ERROR - CHECKER LATCH

MUJLSELECT

PARITY _ERROR MUJLSELECT CALLOUT

UNKNOWN FRU 1
FRU 2
FRU 3

O FRU 1
FRU 3
FRU 2
FRU 3

Figure 4 Secondary Syndrome Example: MUX Select Used f or Fault Isolation Refinement

138 Vol. 2 No. 4 Fall /')'JO D igital Tecbnicaljour11al

Hierarchical Fa.ult Detection and Isolation Strategy for the VAX 9000 System

destinations for each propagation source in the call­
out. An example of fault propagation is shown in
Figure 5.

Domain Intersection Rules Domain intersection
results when two or more error detectors cover a
common piece of logic. This information is used to
refine the callout when multiple error latches are set
in the VAX 9000 system as shown in Figure 6.

Multiple Event Fault Isolation Rules
Multiple-event rules attempt to correlate separate
error events to find a common problem. This type
of analysis is beneficial when an intermittent or
transient problem is not diagnosed sufficiently by
single-event symptom-directed diagnosis rules.

For example, if a logic fault were analyzed with
single-event, symptom-directed diagnosis rules, an
intermittent logic fault could be concluded as hav-

FRU 1

00-07 PARITY
-~-~~ GENERATOR

FRU 2

ing occurred. Such an analysis would result in a call­
out of the faulty field replaceable unit. However,
multiple-event rules include checking for certain
environmental deviations in close proximity to a
logic fault. In this case, multiple-event analysis
would attempt to correlate the logic fault with the
environmental deviations to determine if the fault
is transient in nature. If this were the case, a callout
would not be required.

Multiple-event rules can also be used to enforce
the callout refinement provided by secondary
syndromes, fault propagation, and domain inter­
section. For example, in a VAX 9000 system that
repeatedly generates identical or similar error log
entries, multiple event analysis can correlate these
entries to a single intermittent fault. It can provide
a scenario of which is the most likely secondary
syndrome path to be sensitized and the most likely
error domain to detect the error first. In this case,

00-08

PARITY
CHECKER

PARITY
CHECKER

ERROR PARITY _ERROR_ 1
LATCH

ERROR t--~P_A_R_IT_Y_- _E_RR_O_R_--2~~~ ~
LATCH

NO PROPAGATION
INFORMATION

PARITY _ERROR_ 1 PARITY _ERROR--2 CALLOUT

FRU 1
FRU 2

WITH PROPAGATION
INFORMATION

FRU 1

Figure 5 Fault Propagation Example

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990 139

VAX 9000 Series

FRU 1 FRU 2

00-07
PARITY

08 00-08 /
/ /

/ GENERATOR / n
FRU 3

PARITY _ERROR_ 1 PARITY _ERROR-2 CALLOUT

0

0

FRU 1
FRU 2
FRU 1
FRU 3
FRU 1

PARITY _ERROR_ 1 PARITY ERROR
CHECKER

i---
LATCH

PARITY ERROR PARITY _ERROR-2
CHECKER - LATCH

Figure 6 Domain Intersection Example

multiple-event analysis can view these events as a
single problem rather than seeing each error log
entry in isolation.

CAD Tools and Processes
To ensure that the VAX 9000 symptom-directed
diagnosis fault coverage and isolation goals were
achieved, CAD tools were needed to measure the
quality of the on-line error detection in the design.
Tools also were needed to help develop symptom­
directed diagnosis fault isolation rules and to facili­
tate the conversion of these rules into a format that
could be used by the fault isolation software.

Some of the significant symptom-directed diag­
nosis CAD tools that were developed and used for
the VAX 9000 system are discussed below.

Hardware Isolation Domain Evaluator
The hardware isolation domain evaluator (HIDE)

CAD tool was developed to provide symptom­
directed diagnosis fault coverage and isolation
information to the VAX 9000 logic designers. HIDE

also can generate simple symptom-directed diag­
nosis fault isolation rules for use in the system fault
isolation matrices.

One of the goals for HIDE was to provide early
feedback to logic designers on the quality of on-line

140

error detection in designs. Early feedback gave
designers time to make design changes if coverage
or isolation goals were not achieved. Further, the
information provided by HIDE helps designers
select locations for error detectors and gave design­
ers quick feedback on the implications of detector
placement and design changes.

Symptom Diagnosis Infonnation
Language
The symptom-directed diagnosis fault isolation
rules for the VAX 9000 system were coded into a set
of system fault isolation matrix files, called symp­
tom diagnosis information files. Symptom diagnosis
information is a language that is designed to express
both single-event and multiple-event, symptom­
directed diagnosis fault isolation rules in an objec­
tive and consistent manner.

In earlier VAX systems, new fault isolation tools
were needed for each new computer system. In the
VAX 9000 system, the symptom diagnosis informa­
tion language provides a general-purpose means to
specify symptom-directed diagnosis fault isolation
rules. The files are used as the rule base for the
symptom-directed diagnosis fault isolation tools,
which means that the tools can be used for future
computer system designs.

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

On-line Fault Isolation Software
The VAX 9000 system contains on-line symptom­
directed diagnosis software that automatically diag­
noses faults as they occur. The software produces
an isolation callout of the possible faulty field
replaceable units that is automatically received by
Digital customer service centers through a symp­
tom-directed diagnosis reporting process. This
process is designed to minimize the repair time
for VAX 9000 systems. It automatically notifies
Digital of problems and provides a repair plan to
Customer Services before personnel are sent to the
customer's site.

Service Processor Diagnostic
The VAX 9000 service processor unit contains a
symptom-directed diagnosis fault isolation process
that performs single-event analysis. This pro­
cess runs in the background waiting for error log
entries. When an error log entry is generated, the
process analyzes the error log entry and produces
an encoded callout of possible faulty field replace­
able units.

The symptom-directed diagnosis fault isolation
algorithm is performed by a general-purpose diag­
nostic engine. This engine uses a binary version
of the symptom diagnosis information file, i.e. ,
binary-coded matrix, as a rule base for its analysis.
The diagnostic engine can analyze any error log
entry that has a valid corresponding binary-coded
matrix file.

In addition to the encoded callout, the single­
event fault isolation process produces status infor­
mation from each error event that is used for
multiple-event analysis.

VAXsimPLUS
The VAXsimPLUS tool runs on the VAX 9000 CPU and
performs symptom-directed diagnosis multiple­
event analysis. The tool analyzes information gen­
erated by the single-event, symptom-directed
diagnosis process using multiple-event, binary­
coded matrix files. The VAXsimPLUS tool uses the
same general-purpose diagnostic engine as the
single-event, symptom-directed diagnosis process.
The output of the VAXsimPLUS tool is a syndrome
entry that collapses several error events into a single
error analysis theory.

Summary
A complete test and diagnosis strategy for a large
computer system, such as the VAX 9000 system,
requires off-line testing and its on-line counterpart,
symptom-directed diagnosis. Off-line testing pro-

Digital TecbnlcalJournal Vol . .! No. 4 Fall 1990

vides a hierarchical mechanism for testing each
component before it is assembled into the next
level. In off-line testing, the use of the scan system
provides high coverage and accurate fault isolation.
Scan testing also has proven effective during all
phases of the VAX 9000 system product develop­
ment: design, manufacturing, prototype debug,
and customer support.

Symptom-directed diagnosis is a sophisticated
tool that provides detection and isolation of inter­
mittent faults. Intermittent faults have been a signif­
icant problem in the past because of the difficulty to
re-create the conditions that lead to such faults.
Symptom-directed diagnosis solves the problem of
intermittent faults by analyzing symptom informa­
tion generated by on-line error handlers rather than
by attempting to re-create the fault. Thus, the use
of symptom-directed diagnosis provides greater
machine availability for the VAX 9000 system.

Acknowledgments
The implementation of the VAX 9000 fault detec­
tion and isolation strategy would have been impos­
sible if not for the perseverance and dedication to
high quality shown by the following people: Jeff
Barry, Dominic Carr, Steve Conway, Ed Crowley,
Betty Daley, Tony Dancona, Dave D'Antonio, Chris
Demos, Sue DesMarais, Paul Dormitzer, Rick
Dusek, Mike Evans, Skip Gaede, Mike Gavronsky,
Philippe Girard, Matt Goldman, Francis Gravel,
Chris Joseph, Dale Keck, Tom Krehel, Charlie
Kretz, Butch Leitz, Helen Lenane, Paul Leveille,
Keith Mayhue, Chris McCabe, Robert Nobrega,
Mike Newman, Paul Paternoster, Brian Rost, Dan
Schullman, Scott Sitterly, Norm Sozio, Tamar
Wexler, Tom Winter, Ted Wojcik, Richard Wood,
Eugene Xia, and the members of the MCU tester and
MCA3 test development teams.

General References

A. Miczo, Digital Logic Testing (New York: Harper
and Row Publishers, Inc., 1986).

N. Tendoikar and R. Swann, "Automated Diag­
nostic Methodology for the IBM 3081 Processor
Complex," IBM Journal of Research and Devel­
opment, vol. 26, no. I Oanuary 1982): 78-88.

H. Tanaka et al. , "System Level Fault Dictionary
Generation," IEEE International Test Conference
Proceedings (New York, 1988): 884-887.

M. Goldman et al. , "Tbe VAX 9000 Service Pro­
cessor Unit," Digital Technical Journal, vol. 2,
no. 4 (Fall 1990, this issue): 90- 101.

141

I Further Readings

The Digital Technical Journal
publishes papers that explore the
technological foundations of Digitals
major products. Each Journal focuses
on at least one product area and
presents a compilation of papers
written by the engineers who devel­
oped the product. The content for
the Journal is selected by theJournal
Advisory Board, which includes four
vice presidents and five senior engi­
neering managers.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

DECwindows Program
Vol. 2, No. 3 Summer 1990
An overview and descriptions of the enhancements
Digital's engineers have made to MIT's X Window
System in such areas as the server, toolkit, interface
language, and graphics, as well as contributions
made to related industry standards

VAX 6ooo Model 400 System
lfJl. 2, No. 2, Spring 1990
The highly expandable and configurable midrange
family of VAX systems that includes a vector proces­
sor, a high-performance scalar processor, and
advances in chip design and physical technology

Compound Docwnent Architecture
lvl. 2, No. 1, Winter 1990
The CDA family of architectures and services that
support the creation, interchange, and processing
of compound documents in a heterogeneous net­
work environment

Distributed Systems
Vol. 1, No. 9,June 1989
Products that allow system resource sharing
throughout a network, the methods and tools
to evaluate product and system performance

Storage Technology
Vol. 1, No. B, February 1989
Engineering technologies used in the design, manu­
facture, and maintenance of Digital's storage and
information management products

142

CVAX-based Systems
lvl. 1, No. 7, August 1988
CVAX chip set design and multiprocessing architec­
ture of the midrange VAX 6200 family of systems
and the MicroVAX 3500/3600 systems

Software Productivity Tools
lfJl. 1, No. 6, February 1988
Tools that assist programmers in the development
of high-quality, reliable software

VAXcluster Systems
lfJl. 1, No. 5, September 1987
System communication architecture, design and
implementation of a distributed lock manager, and
performance measurements

VAX 8800 Family
lvl. 1, No. 4, February 1987
The microarchitecture, internal boxes, VAXBI bus,
and VMS support for the VAX 8800 high-end multi­
processor, simulation, and CAD methodology

Networking Products
lfJl. 1, No. 3, September 1986
The Digital Network Architecture (DNA), network
performance, LANbridge 100), DECnet-ULTRIX and
DECnet-DOS, monitor design

MicroVAX II System
lvl. 1, No. 2, March 1986
The implementation of the microprocessor and
floating point chips, CAD suite, MicroVAX work­
station, disk controllers, and TK50 tape drive

VAX 8600 Processor
lvl. 1, No. 1, August 1985
The system design with pipelined architecture,
the I-box, F-box, packaging considerations, signal
integrity, and design for reliability

Subscriptions to the Digital Technical Journal are
available on a yearly, prepaid basis. The subscrip-
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, MLO 1-3/868, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.
dollars, and checks should be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Digital Technical
Journal can be ordered from Digital Press at a cost
of $16.00 per copy.

lk, /. 2 No. 4 Fall 1990 Digital Tecbnicaljounwl

- ~-------------- --- - -

1

Technical Papers and Books by Digital Authors

Dileep Bhandarkar and Richard Brunner, "VAX
Vector Architecture," Proceedings of 17th Annual
International Symposium on Computer Architec­
ture (IEEE, May 1990}: 204-215.

David G. Shurtleff and Colin Strutt, "Extensibil­
ity of an Enterprise Management Director," in
Network Management and Control, edited by
A. Kershenbaum, M. Malek, and M. Wall (New York:
Plenum Press, 1990): 129-141.

Xi-Ren Cao, "System Representations and Per­
formance Sensitivity Estimates of Discrete Event
Systems," Mathematics and Computers in
Simulation, vol. 31 (1989}: 113-122.

Xi-Ren Cao, "On a Sample Performance Function of
Jackson Queueing Networks," Operations Research,
vol. 36, no. 1 (1988): 128-136.

Xi-Ren Cao and Y C. Ho, "Estimating Sojourn Time
Sensitivity in Queueing Networks Using Perturbation
Analysis," Journal of Optimization Theory and
Applications, vol. 53, no. 3 (1987): 353-375.

Xi-Ren Cao, "First-Order Perturbation Analysis of a
Single Multi-Class Finite Source Queue," Performance
Evaluation, vol. 7 (1987): 31-41.

D. Lomet and B. Salzberg, "Access Method for Multi­
version Data," Proceedings of ACM SIGMOD Confer­
ence (May 1989}: 315-324.

D. Lomet and B. Salzberg, "A Robust Multi-attribute
Search Structure," Proceedings of International
Conference on Data Engineering (February 1989):
296-304.

D. Lomet, "A Simple Bounded Disorder File
Organization with Good Performance," ACM
Transactions on Database Systems 13, vol. 4
(December 1988): 525-551.

P. Bernstein and D. Lomet, "CASE Requirements
for Extensible Database Systems," Data Engineer­
ing, vol. 10, no. 2 Oune 1987): 2-9.

W. Lin win and D. Lomet, "A New Method for Fast
Data Search with Keys," IEEE Software, vol. 4, no. 2
(March 1987): 16-24.

D. Lomet, "Partial Expansions for File Organizations
with an Index," ACM Transactions on Database
Systems, vol. 12, no. I (March 1987): 65-84.

Dtgttal Tecbntcaljournal Vol. 2 No. 4 Fall 1990

Digital Press

Digital Press is the book publishing group of Digital
Equipment Corporation. Digital Press publishes
books internationally for computer professionals,
specializing in the areas of networking and data
communication, artificial intelligence, computer
integrated manufacturing, windowing systems, and
the VMS operating system. Digital Press welcomes
proposals and ideas in these and related areas.

VAXNMS: Writing Real Programs in DCL
Paul C. Anagnostopoulos, 1989, softbound,
409 pages ($29.95)

X WINDOW SYSTEM TOOLKIT:
The Complete Programmer's Guide
and Specification
Paul J. Asente and Ralph R. Swick, 1990, softbound,
1,000 pages ($44.95)

UNIX FOR VMS USERS
Philip E. Bourne, 1990, softbound, 368 pages
($28.95)

INFORMATION TECHNOLOGY
STANDARDIZATION: Theory, Practice,
and Organizations
Carl F. Cargill, 1989, softbound, 252 pages ($24.95)

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
Corporate User Publication Group of Digital
Equipment Corporation, 1990, softbound,
239 pages ($27.95)

VMS INTERNALS AND DATA STRUCTURES:
Version 5 Update Xpress, Volumes 1,2,3,4,5
Ruth E. Goldenberg and Lawrence). Kenah, 1989,
1990, 1991, all softbound ($27.95)

VAXNMS INTERNALS AND DATA
STRUCTURES: Version 4.4
Lawrence J. Kenah, Ruth E. Goldenberg, and
Simon F. Bate, 1988, softbound, 979 pages ($75.00)

THE USER'S DIRECTORY OF COMPUTER
NETWORKS
Tracy L. LaQuey, 1990, softbound, 630 pages
($34.95)

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition
Henry M. Levy and Richard H. Eckhouse, Jr. , 1989,
hardbound, 444 pages ($38.00)

143

Further Readings

USING MS-DOS KERMIT: Co nnecting
Your PC to the Electronic World
Christine M. Gianone, 1990, softbound, 244 pages,
with Kermit Diskette ($29.95)

SOLVING BUSINESS PROBLEMS WITH MRP II
Alan D. Luber, 1991, hardbound, 300 pages ($34.95)

VMS FILE SYSTEM INTERNALS
Kirby McCoy, 1990, softcover, 460 pages ($49.95)

TECHNICAL ASPECTS OF DATA
COMMUNICATION, Third Edition
John E. McNamara, 1988, hardbound, 383 pages
($42 .00)

LISP STYLE and DESIGN
Molly M. Miller and Eric Benson, 1990, softbound,
214 pages ($26.95)

THE VMS USER'S GUIDE
James F. Peters III and Patrick]. Holmay, 1990,
softbound, 304 pages ($28.95)

THE MATRIX: Computer Networks and
Co nferencing Systems Worldwide
John S. Quarterman, 1990, softbound, 719 pages
($49.95)

X AND MOTIF QUICK REFERENCE GUIDE
Randi]. Rost, 1990, softbound, 369 pages ($24.95)

FIFfH GENERATION MANAGEMENT:
Inte grating Enterprises lbrough
Human Networking
Charles M. Savage, 1990, hardbound, 267 pages
($28.95)

144

A BEGINNER'S GUIDE TO VAX/VMS
UTILITIES AND APPLICATIONS
Ronald M. Sawey and Troy T. Stokes, 1989,
softbound, 278 pages ($26.95)

X WINDOW SYSTEM, Second Edition
Robert Scheifler and James Gettys, 1990, softbound,
851 pages ($49.95)

COMMON LISP: The Language,
Second Edition
Guy L. Steele Jr., 1990, 1,029 pages
($38.95 in softbound, $46.95 in hardbound)

WORKING WITH WPS-PLUS
Charlotte Temple and Dolores Cordeiro, 1990,
softbound, 235 pages ($24.95)

ABCs OF MUMPS: An Introduction for Novice
and Intermediate Programmers
Richard F. Walters, 1989, softbound, 303 pages
($25.95)

To receive information on these or other publica­
tions from Digital Press, write:

Digital Press
Department DTJ
12 Crosby Drive
Bedford, MA 01730
617/276-1536

Vol. 2 No. 4 Fall 1990 D igital Tecbntcaljournal

ISSN 0898-90 1X

Printed i n USA EY -E762E-DPI90 09 02 26.0 BUO Copyright © 1 990 Digital Equipment Corporation AU Rights Reserved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design Strategy for the VAX 9000 System
	VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU
	Semiconductor Technology in a High-performance VAX System
	Vector Processing on the VAX 9000 System
	HDSC and Multicbip Unit Design and Manufacture
	The VAX 9000 Service Processor Unit
	The Unique Features of tbe VAX 9000 Power System Design
	Synthesis in the CAD System Used to Design the VAX 9000 System
	Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System
	Further Readings
	Back cover

