
DECwindows Program

Digital Technical Journal

X Toolkit

XUb

Digital Equipment Corporation

Volume 2 Number 3
Summer 1990

H

10 lJRNAl .I 1G

pplications

X I Toolkit

lnt1in.d
.·. ---A.------------------------------·.·
' .. • ..
I .•••••••111••··············:·· f. I t • ·, l t f I I I t l \ t I t t f I I I t t I > f t I I I J t I t t I I f I I ft f t ft• f I ft I I t t, t I I I t \I• f' I J t It f • i. I I I I• t 1
1•1

:: : .. : t It t'. '-'• ~\'/ .. I .. t t,_. f ... ti/ ~ .,. ~ \ ... f I S-
1

... ,..,) t If I., I: t
4 J .. t: r\ t fl: t' /.' li .. ; I .. j~ ... /.' .. 1 I'.': ·: ft,,.\\

t I I i f ' t f ~ t t f ,(f I t I t I J" • I I l f I It I J I J I J, I I I I , t I f I i J I I , • f 1 I • I 6 I t J f t I • I I :i I I I I ~ t I f i • t I j, ' i t I ' t I J. I I t t 11 I t I I I t t , t t \1 I~ I I I JI t ft ~·m I I •tt t I I I I il l I It! t. J t t l, ft ft t t t ,t t I f t ,I.) t I • It 1 t
lltllfilft1t•l.tltt14, ,t •, I 1f1 • ... •• , 000 t,ttttltt1i1ltttlft•fttti•ltti\ _f.

f 11 t t ~ H -1 tJ It It f I I ft It, t •, I 1' t I • I I · f I. I I It I It It t t t t t t • t f It*' I ... tt f i fi •
f' t • , • t t t J • t t I • t 1 • t t t , f t t t t t t t , I I . . . I I I t ' t I I t t I t t t t I t J t i ~ • f I I I (C t ~ f; t t

t , f t It t t t t t f • t .9 J ft t t f t I l • ff I.ft, t' t • t I t. I ti f ft I t t ' I t f It t • .t t • t t t .t • 11 t I I f I It t ft It I t t f ~ff•
t I f I t t f I • ' f I I I t I · ~ I t • I t f t • I I i I I I f. ;t I I I t t I I I t I t I t I I I I ~ ; t f t t • I I f I f t I l I I) l I f I • I t I I J I l t) t

f. I I I t f I t I t t f t ; I f J J j i t f I ,- ~ t 't j I I ; I I f 1 I I ! I I I I I • I I I I t I t I t t • I I I I I t I I f t. t f t t I) I f t' I f 1 I I 1 l l. • if•••··············••••ttti .• ,• ,•..• , .•...... ,,, .•...••••.. , , .•. .. · ·•·.·•· .. · .. · .. · .. · .. · .. · .. · .. · .. · ·•· .. ·•· .. · .. · .. · ... , .. · .. · .. · .. · .. · .. · _ .. ,.·.·.·.·.· .. · .. · .. · .. · .. · ... · .. ·•· .. · .. · .. · .· .. · ·•·•·•· .. · .. · .. · .. · .. · .. · .. · .. · .. · .. · .. · .. · •· ·•· .. ·.·•· .. \:,:·:·
X Servt<,.r

.. ...

Cover Design
This issue features papers on DECwindows architecture and

applications. Our cover design is a display of several windows called

up on a VAXstation 3500 screen. The DEC windows applications used

to create the display are DEC write, DEC paint, and DEC image.

The cover was designed by David Comberg of the Corporate Design

Group with technical assistance from Victor Bah/ of the Image

Systems Advanced Development Group.

Editorial
Jane C. Blake, Editor
Barbara Lindmark, Associate Editor
Richard W. Beane, Managing Editor

Circulation
Catherine M. Phillips, AdministratOr
Suzanne). Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Gaye Tatro, Typographer
Peter Woodbury, IllustratOr and Designer

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
Mahendra R. Patel
F. Gram Saviers
Robert K. Spitz
William D. Strecker
VictOr A. Vyssotsky

The Digital Technicaljournal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLOI-3/Il68, Maynard,
Massachusens 01754-2571 . Subscriptions to the Journal are S40.00
for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical journal at the published-by address.

Inquiries can also be sent electronically 10 DTJ@CRL.DEC.COM.
Single copies and back issues are available for S 16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX,JOURNALor by interoffice mail tO mailstop MLOI-3/Il68.
Orders should include badge number, cost center, site location code
and address. u.s. engineers in Engineering and Manufacturing
receive complimentary subscriptions; engineers in these organi
zations in countries outside the u.s. should contact the Journal office
to receive their complimentary subscriptions. All employees must
advise of changes of address.

Comments on the content of any paper are welcomed and may be
sent to the editor at the published-by or network address.

Copyright<tl 1990 Digital Equipment Corporation. Copying with
out fee is permiued provided that such copies are made for use in
educational institutions by faculty members and are not distributed
for commercial advantage. Abstracting with credit of Digital Equip
ment Corporation's authorship is permiued. All rights reserved.

The information in this Journal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this Journal.

ISSN 0898-90 I X

Documentation Number EY-E756E-DP

The following are trademarks of Digital Equipment Corporation,
ALL-IN- 1, CDA, DEC net, DECstation 3100, DECwindows, DECwrite,
Digital, the Digital logo, MicroVAX, ULTRIX, VAX, VAX 8000,
VAX 8650, VAXC, VAX SCAN, VAXcluster, VAXset, VAXstation,
VAXstation 100, VAXstation 2000, VAXstation 3100, VAXstation
3540/3520, VAXstation IIIGPX, VAXstation 8000, VMS, XU I.

Apple II, HyperCard, and Macintosh are trademarks of Apple
Computer, Inc.

MS-DOS is a registered trademark and MS-Windows is a trademark of
Microsoft Corporation.

os/2 and Presentation Manager are trademarks of International
Business Machines Corporation.

OSF/Motif is a trademark of Open Software Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark of American Telephone & Telegraph
Company.

X Window System is a trademark of the Massachuseus Institute of
Technology.

Book production was done by Digital's Educational Services Media
Communications Group in Bedford, MA.

I Contents

7 Foreword
Richard Treadway

9 An Overview of the DECwindows Architecture
Scott A. McGregor

16 TbeSampleXll Server Architecture
Susan Angebranndt and Todd D. Newman

24 Development of the XVI Toolkit
Leo P. Treggiari and Michael D. Collins

34 The DECwindows User Interface Language
Stephen R. Greenwood

44 The Evolution of the X User Interface Style
Thomas M. Spine and Jacob L. VanNoy

DECwindows Program

52 PEX: A Network-transparent Three-dimensional Graphics System
Randi). Rost, Jeffrey D. Friedberg, and Peter L. Nishimoto

64 XDPS: A Display Postscript System &tension for DECwindows
Christopher A. Kent

7 4 The Development of DECwindows VMS Mail
Michael R. Ryan and James H. VanGilder

84 Ethernet Performance of Remote DECwindows Applications
Dinesh Mirchandani and Prabuddha Biswas

I

I Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital Technical Journal focuses
on Digital's DECwindows program, its architecture,
and applications for the window environment. The
DECwindows program begins with the X Window
System, which was developed at MIT with the sup
port of Digital and IBM. Papers herein describe how
Digital's engineers have built on X as well as con
tributed to related industry standards that help to
ensure compatibility across systems.

Involved early in both the X Window and the
DECwindows projects, Scott McGregor describes
the DECwindows architecture as an upwardly com
patible superset of X. In his overview paper for this
issue, Scott reviews aspects of the X design and the
significant enhancements made by Digital in the
development of its DECwindows program.

The backbone of this program is the Xll protocol
for which Digital has developed a sample server
implementation. In their paper, Susan Angebranndt
and Todd Newman review the development of the
Xll server, which is the basis for all Digital product
servers. Now publicly available, the Xll server is
also a sample for all developers of X server product
implementations.

Several layers above the Xll server is the XUI
toolkit. Leo Treggiari and Mike Collins discuss this
set of run-time routines and application develop
ment tools, which is the primary programming
interface to DECwindows applications. This toolkit
was chosen as the base programming interface for
the Open Software Foundation's Motif toolkit.

The XUI toolkit contains hundreds of attributes,
actions, and widgets, which can contain thousands
of lines of code. Steve Greenwood relates how
the user interface language (UIL) was developed
to manage the complexity of the toolkit. UIL pre
serves the conceptual simplicity of the toolkit by
allowing application developers to specify inter
faces without writing the multitude of code lines
normally required.

2

The style of user interaction with computers is
then addressed by Tom Spine and Jake VanNoy. As
they point out, the XUI style represents a change in
approach for Digital to modem, graphic, direct
manipulation user interfaces and to consistency
across applications. XUI has evolved to provide a
consistent means of user interaction for applica
tions across the VMS, ULTRIX, and MS-DOS systems.

Extensions to the X architecture are the topics of
two papers. PEX, an extension of X to support the
PHIGS standard, is the subject of a paper by Randi
Rost, Jeff Friedberg, and Peter Nishimoto. The
authors describe some unique features of PEX and
present the major design decisions made in its
development.

Chris Kent is the author of a paper about XDPS,
another extension supported by DECwindows.
XDPS was jointly developed by Digital and Adobe
Systems Inc. to integrate the X imaging model and
Display Postscript. As Chris explains, XDPS was
designed to give application programmers the best
features of the X and Postscript systems.

Our last two papers address the topics of appli
cation development for the DECwindows environ
ment and explain how the performance of such
applications can be measured. The implementation
of DEC windows VMS mail is an example of an appli
cation development effort described here by Mike
Ryan and Jim VanGilder. Among the develop
ment issues discussed is the coordination needed
between the VMS and ULTRIX mail applications
developers to design a common interface for both
mail applications.

Dinesh Mirchandani and Prabuddha Biswas then
present the results of a study made to determine
whether distributed DECwindows applications
have an impact on the Ethernet network. The
authors developed a simulation model running on
a local area VAXcluster (LAVc) on the Ethernet to

predict the limiting system configuration in this
scenario.

I thank John Hurd of the DECwindows pro
gram and Jesse Grodnik of the Western Software
Laboratory for their help in preparing this issue.

Biographies

Susan Angebranndt A consulting engineer for the Open Systems Group in
Digital's Western Software Laboratory, Susan Angebranndt was the project
leader for the sample XU server. Susan also worked on the team that designed
and implemented the Display Postscript extension for the DECwindows
X servers. She joined Digital in 1986 and is a graduate of Carnegie-Mellon
University (1980) with a B.S. in applied mathematics.

Prabuddha Biswas Prabuddha Biswas joined Digital in 1985 after receiving a
B. Tech. from IIT, Delhi, India, and an M.S. from the University of Massachusetts.
Among the projects with which he has been invoived are the performance
analysis and modeling of software systems for the Business and Office Systems
Engineering (BOSE) Group and characterization of file system activity from com
mercial I/0 traces. Prabuddha has applied for a patent and has authored papers
for presentation to IEEE, ACM, and CMG conferences. He has received the BOSE
Achievement Award for outstanding contribution.

Michael D. Collins A member of the XUI toolkit team, Michael Collins con
tributed to the design and implementation of the toolkit version 1 and version 3,
and served as project leader for version 2. He is a principal software engineer in
the Commercial Languages and Tools Group of the Software Development
Technology organization. Mike is a member of ACM and AAAS and joined Digital
in 1987. He received a Bachelor of Environmental Design (1981) from the
University of Minnesota's School of Architecture.

Jeffrey D. Friedberg One of the chief architects of PEX, Jeffrey Friedberg is a
principal engineer in the Workstations Advanced Technology Group. Jeff is the
principal architect and document editor of the X multibuffering extension and
developer of a suite of software tools that allow distributed source control within
a networked ULTRIX environment. Currently, he is the project leader of the
group implementing PEX on the DECstation 5000 Model 200 workstation. Jeff
received a B.S. (1980) in computer science from Cornell University and is a
member of ACM and ACM SIGGRAPH.

I

3

Biographies

4

Stephen R. Greenwood Stephen Greenwood is a consulting software
engineer in the Commercial Languages and Tools Group. At present, he is a
member of the team building a new DECwindows design tool. He was the pro
ject leader and chief designer of the DECwindows user interface language {UIL)
and VAX SCAN programming language. Prior to joining Digital in 1981, Steve was
a principal engineer for Sperry Univac. He received a B.S. (1973) in physics from
Bucknell University and an M.S. (1975) in computer science from the University
of Wisconsin.

Christopher A. Kent The project leader for the Display Postscript server
extension, Christopher Kent is a principal engineer in Digital's Western Software
Laboratory. He was also one of the developers of the TCP/IP version of the
PrintServer 40 software and was a member of the development team for the
MultiTitan processor board. Chris received a B.S. (1979, magna cum laude) in
physics from Xavier University, and a Ph.D. (1986) in computer science from
Purdue University. He is a member of ACM and Usenix Association.

Scott A. McGregor Scott McGregor manages the Western Software Labora
tory in Palo Alto and is responsible for ULTRIX workstation software at Digital.
Previously, he was the DECwindows Program Architect and was one of the
designers of the X Window System. Before joining Digital in 1985, Scott led
the design and implementation of Microsoft's MS-Windows, and spent seven
years at the Xerox Palo Alto Research Center working on the Xerox Star and the
Cedar programming environment. He has degrees in Psychology and Computer
Science from Stanford University.

Dinesh Mirchandani As a senior software engineer in the VMS Engineering
Group, Dinesh Mirchandani is now working on the advanced development
of VAXcluster systems. Since joining Digital in 1985, he has evaluated the per
formance of Rdb/VMS and coo Plus and, through modeling, characterized the
performance of distributed systems based on DECwindows software. Dinesh
received a B.E. (1981, honors) in EEE from Birla Institute of Technology and
Science, India, and an M.S. (1985) in computer science from North Carolina
University. He is a member of Upsilon Pi Epsilon.

Todd D. Newman A principal engineer in the Workstation Advanced Tech
nology Development Group, Todd Newman has been involved with several
projects based on the sample Xll server. He was a member of the design and
implementation team of that server, as well as a member of the teams that
adapted the server to the DECstation 3100 workstation and extended the server
for the PEX graphics application. Todd worked at Microsoft Corporation before
joining Digital in 1986. He received an A.B. (1981) from Harvard University.

Peter L. Nishimoto Peter Nishimoto was project leader for the PEX imple
mentations on the DECstation 3100 and VAXstation 3100/SPX workstations. He
is also the coarchitect of the PEX protocol and a member of the multivendor PEX
architecture team. Peter is a principal software engineer in the Workstations
Software Group. Before joining Digital in 1986, he worked for Daisy Systems and
Vulcan Software. He holds a B.A. (1976, cum laude) in mathematics from Colgate
University and is a member of IEEE, ACM, and ACM SIGGRAPH.

RandiJ. Rost Principal engineer Randi Rost was the project leader for the PEX
specification effort, one of PEX's chief architects, and the PEX document editor.
Randi currently manages a group within the Workstations Advanced Technology
Group that is concentrating on photorealistic rendering. He has published over a
dozen technical papers and is the author of the X/Motif Quick Reference Guide.
He received a B.S. (1980, summa cum laude) from Mankato State University and
an M.S. from the University of California, both in computer science.

Michael R. Ryan Since joining Digital in 1984, Michael Ryan has worked
on several software development projects. He is the project leader for the
DECwindows VMS mail application and a contributing member of the develop
ment team for ALL-IN-I MAIL for DECwindows mail on the VMS system. Prior
to his involvement with the mail program, Mike did advanced development
for Business Communications Systems Engineering and VMS DIBOL compiler
development. Mike holds a B.S. and M.S. in computer science from Rensselaer
Polytechnic Institute.

Thomas M. Spine As a principal software engineer in the Software Usability
Engineering Group, Thomas Spine is developing software usability engineering
methodologies and contributing to the user interface design of several products.
Tom has published a number of papers on the usability of speech recognition
devices, file management with interactive computers, and usability engineering.
He received an A.B. (1982) in mathematics and psychology from Washington
University and an M.S. (1984) in industrial engineering from Virginia Polytechnic
Institute and State University.

Leo P. Treggiari Currently responsible for the development of the architec
ture of the XUI and Motif toolkits, Leo Treggiari is a consulting software engineer
with the Commercial Languages and Tools Group. He has acted as project leader
for a number of products within the group, including version 1.0 of the XUI
toolkit. Leo was a senior software engineer for Wang Laboratories before joining
Digital in 1979. He is a member of ACM and holds a B.S. (1975, summa cum laude)
in chemistry from Boston College.

I

5

Biographies

6

James H. VanGilder James VanGilder has developed several products for
Digital since joining the company in 1979, including the PDP-11 RPG II, VAX
DIBOL, BCSE advanced development, and DECwindows VMS mail version 1.0. He
is a principal software engineer in the Commercial Languages and Tools Group,
where he is at present acting as project leader for the development of the
DECwindows implementation of the OSF/Motiftoolkit.Jim worked for Motorola,
Inc., and Kollsman, Inc. before coming to Digital. He has a B.S. (1973) from
Arizona State University.

Jacob L. VanNoy A consulting software engineer, Jacob VanNoy has been the
DECwindows program architect since January 1989. He joined Digital in 1980
in the VMS Development Group and was part of the initial VMS workstation
software development team. During the DECwindows project version 1, Jake
was responsible for the content of the XUI Style Guide. He was also involved
in the design of many aspects of the user interface, including the design of XUI
toolkit. Jake received a B.S. and an M.S. in computer science from the University
of Pittsburgh.

I Foreword

Richard Treadway
Director
Open Software Strategy

In 1986 Digital's desktop strategy could only be
described as fragmented. On VMS workstations
we offered a proprietary windowing system, on
ULTRIX workstations we offered an early version of
the X Window System, and on PCs we offered
MS-Windows. Because of the diversity of systems, it
was very difficult to convince an application
builder to support our range of desktop systems.
Furthermore, this strategy was unsatisfactory to
customers. Our customers wanted a consistent user
interface that would allow them to access and
execute applications on the appropriate processor
anywhere in the distributed network.

In January 1987, Digital announced the
DECwindows system, which was a major design
change intended to solve these problems. The
system would provide a single application pro
gramming interface for application builders and
give users network-wide access to applications
through a common graphic user interface. The
DECwindows system also would have the exten
sibility and flexibility to grow into the next decade
and provide access to not only Digital systems, but
to any system in a multi vendor network. In essence,
the DECwindows system would bring the resources
of the network to a single point on the desk.

To rally the entire corporation behind such a
major change in direction, the DECwindows pro
gram put forward a simple vision to Digital's
engineers and customers. Unified access to the VMS
and ULTRIX operating systems would be provided
through a single programming interface for interac
tive graphic applications and a common user inter
face for all the desktop devices we support. This
simple and concerted focus made it possible

to manage the complexity involved in delivering
more than 50 components built by nine separate
groups located throughout the world in Nashua,
New Hampshire, Reading, England, Littleton,
Massachusetts, Palo Alto, California, and Valbonne,
France.

Our strategy was to base the DECwindows system
on standards and enhance that base. Standards
enable application designers to port applications
between different hardware and software plat
forms. In late 1986, no standards existed for
networked windowing systems. Therefore, in
choosing a basis for the DECwindows program,
we had to select a technology that not only met
our requirements but could be put forward to the
industry as a potential standard. For this reason, we
chose to base the DECwindows architecture on
MIT's X Window System.

After Digital's endorsement of the X Window
System in January 1987, eight other vendors, includ
ing Apollo and Hewlett-Packard, announced the X
Window System as the basis for their future
graphics-based computers.

Because the X Window System is hardware and
software platform-independent, we could provide
it on the VMS, ULTRIX, and MS-DOS operating
systems. The X architecture allows applications to
be transparently distributed throughout the net
work. This capability is critical in fulfilling our goal
to be the leader in distributed computing. The
X system allows applications executing anywhere
in the network to be displayed and controlled from
the user's desktop computer. In addition, the win
dowed computing model offers significant benefits
over the time-sharing, character-cell terminal
model. For example, sharing data among simulta
neously executing character-cell applications is
difficult, but in the X system, data-sharing is a fun
damental property. Finally, the X system protocol
can be extended to include future subsystems. This
feature is important in providing a path for the inte
gration of future technologies. As you will read in
this issue of the Digital Technical]ournal, we used
this capability to develop Display Postscript as an
extension to X.

The value the DECwindows system adds to the X
system is a consistent user interface, and a high
performance, robust, and flexible toolkit. The XUI
toolkit and style guide make possible the implemen
tation of applications that offer good interactive

7

I
performance. Because the same XUI toolkit runs
on both the VMS and ULTRIX systems, developers
can provide their applications on both operating
systems with a single implementation.

To test the robustness, performance, and usabil
ity of the toolkit and style guide, we committed to
develop a highly complex interactive application,
the DECwrite editor, on both the VMS and ULTRIX

operating systems. We learned a great deal about
DECwindows performance and quality from that
project. The ability to test our enabling technology
while we were building it was fundamental to our
success.

In addition to performance and completeness,
the DECwindows toolkit separates the definition of
user interfaces from application coding. The user
interface can be specified with a nonprocedural
language, called the user interface language (UIL).

The resultant definition is accessed at run-time by
the application. Separating form and function in
the DECwindows system is very imponant for
the development of international applications and
for the separation of user interface design from
application implementation.

For international applications, the user interface
can be completely translated without changes to
application code. This approach significantly
reduces the cost and complexity of translating
applications. Since the toolkit supports multiple
user interfaces, applications can switch languages
dynamically.

For user interface design, UIL 's separation of form
and function allows rapid prototyping in the user
interface. With UIL the user interface design need
no longer be entirely the programmer's respon
sibility. User interface design specialists can con
centrate solely on the interactive aspects of the
application without making programming changes.
All this can lead to better designed and easier to use
applications.

The DECwindows system is very significant to
Digital in two imponant ways. First, it is our first
open systems product. We initially thought the
value added by the DECwindows user interface and
toolkit would be our competitive advantage.
However, we came to realize that in a fully dis
tributed computing environment the user really

8

needs that same interface for all applications
regardless of the vendor's system. Therefore, the
DECwindows user interface had to support mul
tivendor systems to encourage application builders
to base their designs on it. That conclusion and the
opportunity to create a de facto standard led us
to create the X user interface (XUI) as a separate
component of the DECwindows system that we
would license to run on any system. When the
Open Software Foundation (OSF) announced a
request for technology to specify the user envi
ronment component, XUI was submitted and
eventually accepted as OSF/Motif. XUI marked the
first time Digital released technology that it once
considered proprietary to the industry.

Second, the DECwindows system initiated a new
design center for applications. The system was a
fundamental change from a time-sharing, character
cell model to a graphic, windowed, distributed
computing model. In this regard, the DECwindows
system presented application designers with a
whole set of opportunities for new application
capability and an associated set of complex
problems to solve.

As with any enabling technology, it takes time
and creativity to evolve techniques and method
ologies that allow the technology to be used effec
tively. The series of articles in this journal, which
includes papers on the style guide, toolkit, UIL and
XUI, will help you better understand how far we
have come and where we still have to go.

Scott A. McGregor I

An Overview of the
DECwindows Architecture

The DECwindows architecture builds on industry standards and adds enhancements
to provide greater perfomumce and reliability in the window environment. The
architecture is based on the X Window System developed at MIT, which consists
of three main components - the X seroer, Xlib, and the toolkit intrinsics. The
DECwindows implementation extends X in several ways. DECwindows uses
algorithms that expose additional interfaces, supports a broader choice of prrr
gramming languages, provides a complete set of tools for application development,
and promotes ease of use and user-interface consistency by means of a style guide.
In addition, the DECwindows architecture includes industry-standard interfaces
and extends the seroer to take advantage of Postscript, three-dimensional graphics,
and imaging.

The DECwindows architecture provides a complete
set of mechanisms that control windowing,
graphics, the user interface, and data interchange
in order to make easy the task of building high
quality applications that work well together. In this
role, the DECwindows architecture is a key com
ponent in Digital's Network Application Support
(NAS) in conjunction with other components such
as networking and printing.

It can be argued that the move from character
cell-oriented applications to window-based appli
cations is as significant as the move from batch
computing to time-sharing. The reasons for choos
ing to adopt the X Window System are as many as
they are varied; some of the most important are as
follows:

• Windowing systems provide a richer computing
environment that includes detailed graphics art
work and significantly improved ease of use.

• The direct manipulation of objects on the screen
is a more intuitive model of computer
applications.

• The prevalence of windowing systems has led
to increased expectations on the part of our
users. For example, users can start any number
of applications simultaneously, allow them to
remain running all day, and shift between them
by using a pointing device.

• Window-based applications allow for a natural
separation of form and function.

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

• Just as time-sharing allowed the creation of
applications that were inconceivable or impos·
sible in batch-oriented systems, windowing
systems support problem-solving approaches
that cannot be made to fit the time-sharing
model. For example, sharing data between
applications has often been cumbersome for
applications designed to run on character-cell
terminals. In contrast, the ability to share data
among cooperating applications is a fundamen
tal property of the X window model.

The DECwindows theme is to build on standards
and to add incremental value. Standards make sense
because application designers want portability
between hardware platforms. Users of applications
also want standards because it rarely makes sense to
learn new interaction techniques that are unique to
specific applications. The DECwindows architec
ture is built on and compatible with industry stan
dards such as the X Window System from MIT,
Motif from the Open Software Foundation, and
Adobe's Postscript page-description language. The
architecture is designed to allow easy integration
with various personal computer (PC) systems such
as those produced by IBM and Apple. The value of
Digital's offerings is in the performance and reliabil
ity of the implementation, the set of additional lay
ered libraries and services available, and integration
with other services defined by NAS.

Prior to the DECwindows "unification," there
were different windowing and applications solu
tions for each of the operating systems supported

9

DECwind ows Program

by Digital (VMS, ULTRJX, and MS-DOS). A goal of the
DECwindows architecture is to provide a common
user interface that spans all three operating
systems, and a programming interface common
across VMS and ULTRIX. Although memory limita
tions of the MS-DOS environment prevent us from
supporting the full DECwindows applications inter
face for current PCs (that is, until OS/2), the intent
is to make it easy to port DECwindows applications
between VMS and ULTRJX operating systems, and
straightforward to port applications that use
MS-Windows, the Presentation Manager, or Apple's
Macintosh.

Although the DECwindows architecture is based
on the X Window System, DECwindows is an
upward-compatible superset of that design. This
means that the DECwindows architecture has all the
advantages of the X Window System, as well as the
advantages of the Digital enhancements. The bal
ance of this paper presents a summary of the
X Window System and the additional components
and design enhancements that make up the
DECwindows products.

The X Window System
The history of the X Window System seems surpris
ing, given the role it plays today as a workstation
industry standard . X started out at Stanford
University as W W became X when it was jointly
adopted by MIT 's Laboratory for Computer Science
and Project Athena (an educational program jointly
funded by Digital and IBM). The first version of X
to be widely used and shipped as a product
was version 10 (XIO). X had three important fea
tures that made it popular: it provided a high
performance network protocol for windowing and
graphics, it was independent of workstation hard
ware, and it was available in source form to anyone
for the cost of the media.

Work on X version 11 (XU) began in 1986. This
effort was a serious attempt to reconsider some of
the original design ideas in order to make X into a
more functional system that would meet the needs
of a larger class of application developers. Graphics
state was added for performance, and precise
semantics were defined for the output routines.
Input events were generalized, and perhaps most
important, work began on a toolkit for applications
developers. Digital agreed to implement the sample
server, Xlib (the library of X routines), and the
toolkit that are available on the MIT Xll tape. MIT
has agreed to continue to support X and to control
the architecture and evolution of the system design.

10

X consists of three main components: the
X server, Xlib, and the toolkit intrinsics (also
known as Xt). The substructure of each of these
components is briefly described in the following
sections.1•

2 The overall architecture of the
X Window System, showing the relationship of
the server, network protocol, Xlib, Xt, and appli
cations is shown in Figure 1.

The X Server and the X Protocol
The task of an X server is to implement the
requests defined in the protocol and encoding
specifications.

The X server runs on the hardware where the
display and keyboard are located and provides low
level graphics, windowing, and user input func
tions. It relies on a very low-level interface that is
supplied for each type of supported workstation.
Clients communicate with an X server by means of
the network or "wire" protocol. This protocol, also
known as the X protocol, is a very precisely defined
interface. By tightly defining the semantics of the
wire protocol, it is made independent of the operat
ing system, the network transport technology, and
the programming language.

The X protocol defines the data structures used
to transmit requests between applications and
user-interface stations over the network .1

Applications do not normally generate protocol
requests themselves, but instead use Xlib or other
layered libraries.

Most X requests are asynchronous, meaning that
a client can send requests without waiting for the
completion of previous requests. This approach
allows for fast request processing through the use
of pipelining techniques in the server implemen
tation and in Xlib, and it means that the application
usually does not have to wait for the completion of
an operation. Some X requests (state queries , for
example) have return values, which the server

APPLICATION

::::== =~-x __ T_ (::.IN.:..T __ R:...IN.:..s __ 1c:.:S:.:..) _J EXTENSION CLIENT

XLIB LIBRARIES

X PROTOCOL

X SERVER EXTENSIONS SERVER

Figure 1 X Architecture

Vol. 2 No. 3 Summer 1990 Digital Tecbntcal]ournal

handles by generating a reply and sending it to
the client. Although the protocol does not provide
any explicit synchronization requests, any request
that depends on the completion of other requests
will block, pending execution of those requests.
(For example, Xlib synthesizes the xsync interface
by making a XGetlnputFocus request and discard
ing the return value.) Errors are also generated
asynchronously, and clients must be prepared to
receive error replies at arbitrary times after the
offending request.

The X protocol also describes the following:

• Connections, which provide the communication
path between server and client

• Windows, which provide the mechanism for
interaction between the user and the application

• Events, which provide notification of mouse
and keyboard actions, as well as a mechanism
for control of (and communication between)
multiple, simultaneous applications

• Graphics routines, which provide the mech
anism for an application to draw information on
a display

Xlib and the Xt Intrinsics
Xlib is the basic library of X routines. Xt, or
intrinsics, is a library of routines that introduces the
"widget" model and that can be thought of as a
toolkit for builders of user interfaces.

The distinction between Xlib and the intrinsics is
partly architectural and partly due to the incremen
tal evolution of the X standard. Originally, Xlib was
simply a procedural interface to the X wire proto
col; but it soon became a repository for commonly
used utility routines as well. During the design
phase ofX version 11, it made sense to create a sepa
rate "toolkit" library to introduce (1) more con
ventions for windows (that is, "widgets") than were
originally envisioned in the protocol, and (2) a
mechanism for dispatching events.

Because of the difficulty of separating widget
functionality from the calling interface, a distinc
tion was made between the Xt intrinsics and the
widget set. The intrinsics supplied a mechanism for
creating widgets without imposing policy, and
the widget set (with its associated calling interface)
defined a particular look and feel. Thus, the
DECwindows toolkit (now known as XVI) was born,
consisting of the standard intrinsics library shared
with MIT and a set of widgets unique to Digital.
The XVI toolkit is described further below. MIT also

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

An Overview of the DECwindows Architecture

provides some sample widgets, known as the
Athena widgets.

Xlib Xlib provides a "veneer" library over the wire
protocol so that applications can use a procedure
call interface. Xlib converts the parameters passed
to the procedural interface into the network proto
col format and translates messages from the server
into return values for the application. Xlib also pro
vides a set of utility routines needed by most
applications.

The Xlib interface consists of almost 300 routines
that either map directly to X protocol requests or
provide utility functions on the client side.
DECwindows follows the standard MIT definition of
Xlib very closely, with a few additions noted below.

The functions available in Xlib include setting up
connections with a server, querying the server, cre
ating resources and windows, performing graphics
output, and obtaining user input events from the
keyboard and pointing device.

The Xlib interface is the lowest level interface
that applications are expected to use; in other
words, an application should not use the worksta
tion hardware interface directly, nor should it
directly generate X protocol requests.

Intrinsics The intrinsics are a set of routines that
make it easy to create the window types that imple
ment user-interface features such as scroll bars,
dialog boxes, and editable text fields. Such a win
dow type is called a widget. Since intrinsics aid
in building widgets, the intrinsics are sometimes
called a toolkit for builders of toolkits. Although
the definition of the widget model is the primary
task of the intrinsics, utility routines are also
included to handle user input (event management)
and to provide caching services so that widgets can
share graphics contexts.

Like the lower layers of X, the intrinsics layer
is "policy free" in that it seeks to provide a mech
anism rather than to enforce a particular style
of user-interface or program interaction. The XVI
toolkit, described briefly below, is the layer
that specifies DECwindows user-interface policies
by providing a common set of widgets layered on
the intrinsics.

DECwindows Enhancements to X
DECwindows extends the X Window System in a
number of significant ways.

• Quality of implementation for the standard
X components - DECwindows enhances the

11

DECwindows Program

sample MIT implementation by using algorithms
that expose additional interfaces, or by allowing
more flexibility. Examples include faster win
dow repositioning algorithms, international key
board support, and font caching. Robustness
is another important implementation quality;
Digital has led the effort in developing an
X validation test suite.

• A choice of programming languages - MIT
supports only a C and a Common LISP interface
for Xlib. DECwindows supports standard UNIX
C as well as the complete set of VAX stan
dard language bindings, including FORTRAN,
ADA, and PASCAL.

• XUI toolkit- The X Window System compo
nents stop short of providing a complete set
of tools needed for application development.
DECwindows provides libraries for user
interface primitives (widgets), resource man
agement, and internationalization. Additional
development tools are also included. The XUI
toolkit makes it easy to write applications that
follow the XUI Style Guide.

• XUI Style Guide - To promote ease of use and
user-interface consistency among applications,
DECwindows includes a set of guidelines for
application developers. All applications devel
oped by Digital conform to these guidelines.

• Industry-standard interfaces - In addition to the
X interfaces, DECwindows includes industry
standard libraries such as PHIGS and GKS.

• Extension libraries - X provides a mechanism
for extensions to the server's capabilities.
The DECwindows architecture takes advantage
of this feature to provide Postscript, three
dimensional graphics, and imaging capabilities.

• Base applications - DECwindows includes a
set of base applications useful to all work
station users, such as window and session
managers, terminal emulators, and personal
productivity tools.

The X architecture (shown in Figure I) is
expanded in DECwindows as shown in Figure 2.

In Figure 2, the Xll wire protocol denotes the
line between client and server. On the client side,
the "staircase layering" of the application layer
shows the ability for applications to intermix calls
to any of the client-side libraries. In other words,
the application can use whatever level of abstrac
tion is most appropriate for the job at hand.

12

APPLICATION

INDUSTRY
STANDARD
LIBRARIES EXTENSION -......&.--------! LIBRARIES

XUI TOOLKIT o PEX CLIENT
-1.- ------......1 • POSTSCRIPT

XT (INTRINSICS) • IMAGING

XLIB

TRANSPORT MECHANISM

X11 PROTOCOL

TRANSPORT MECHANISM

EXTENSIONS

X SERVER KERNEL • PEX SERVER
• POSTSCRIPT
• IMAGING

Figure 2 DECwindows Architecture

The remaining sections of this paper describe
DECwindows enhancements to the X server, the
extension of Xlib, the XUI toolkit and style guide,
and the extension and industry-standard libraries.

DECwindows Enhancements to the
XSeroer
Although the semantics of the server operations
are tightly constrained by the X protocol, there
is a fair degree of freedom in the design and
implementation of the server itself. The ULTRIX
implementation has tracked the MIT version quite
closely, whereas the VMS in1plementation diverged
early on in an attempt to add value. In both cases,
there are some significant enhancements that
Digital has made to the standard MIT server.

The MIT sample server is divided into two major
components: device-dependent X (DDX) and
device-independent X (DIX). The DIX code is highly
portable and designed to be independent of operat
ing system and hardware. The DDX code contains
both operating system (e.g. , memory management)
and display hardware dependencies. The goal for
the original server design was to maximize the
portability of the code, making the DIX component
as large as possible, even at the cost of performance.
Re-implementing the server to be entirely device
dependent would provide the best performance,
but would require a major effort to support each
new workstation product. The goal for the

Vol. 2 No. 3 Summer 1990 Digital Tecbntcal]ournal

DECwindows server is to seek a compromise that
provides higher performance without completely
sacrificing portability.

The DECwindows X server implementation dif
fers from the MIT X server implementation in the
following ways:

• Font and glyph caching- In the MIT X server,
a font is either in memory or it is not. The
DECwindows X server provides glyph caching,
so that a portion of a font may be stored in
memory. Glyph caching is especially important
for users of ideographic (e.g., Far Eastern) fonts.

• Run-time loading of DDX, DIX, transport mecha
nisms, and extensions (on VMS)-The advantage
of run-time loading is that an application need
not load code until it is actually needed. Thus the
apparent performance of an application can
improve, because it does not need to initialize all
functions before it invokes any function.

• Multiple, simultaneous transport mechanisms
The X server can have an arbitrary number of
open connections at a time, and these connec
tions can use the transport mechanism available
(e.g., to a given remote node) or most desirable
(e.g., shared memory for a local client).

DECwindows Extension to Xlib
As noted earlier, the DECwindows Xlib implemen
tation follows the standard MIT definition of Xlib
very closely. Some of the few differences from the
X implementation are summarized below.

F.xteru:led Keyboard Support The XLookupString
routine has been extended to support international
character sets. The DECwindows Xlib implemen
tation supports the Alt-Space (Compose-Space)
introducer sequence to enter key sequences that
generate characters not available on the user's key
board. The intention is to expand these capabilities
further to support Asian languages and "soft" key
board displays on the user's screen.

Asynchronous Event Notification Events from the
X server are synchronous, meaning the events must
be read from a queue by the application. A
DECwindows specific enhancement allows for an
asynchronous notification of the arrival of an event,
through an AST on the VMS system, and a signal on
the ULTRIX system. In addition, Xlib may be called
from this asynchronous event call.

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

An Overview of the DEC windows Architecture

VMS-specific Extensions Under the VMS operating
system, Xlib (along with the other layered libraries)
is a shareable library. Shareable libraries reduce the
size of an application's image.

XUIToolkit
The XUI toolkit is layered on top of Xlib and the Xt
intrinsics and is the first layer that defines the user
interface policy of the DECwindows architecture:
The XUI toolkit consists of three major com
ponents:

• The XUI toolkit widgets

• The DECwindows resource management facil
ities

• The cut-and-paste interfaces

The goal of the XUI toolkit is to make it easy for
an application designer to write an application by
providing the designer with widgets for almost all
the common user-interface components. Applica
tions are expected to write widgets for their own
unique function, but functions that are common
across applications are supported by the XUI
toolkit. For example, a spreadsheet application
would likely create its own widget class for the
cell array, but it would use XUI toolkit widgets to
display error messages and menus. Although the
application needs to create its own widgets to
differentiate it from other applications, sharing
the commonly used widgets has two advantages:
the application writer has less code to write and
maintain, and consistency between application
is increased.

To achieve the goal of interapplication consis
tency, the XUI toolkit is closely tied to the XUI Style
Guide in its selection of widgets to implement, and
in the functions and visual appearance of those
widgets. In other words, the XUI toolkit is an imple
mentation of the user interface specified by the
style guide.

XU! Style Guide
The XUI Style Guide is a set of user-interface guide
lines that describe preferred screen appearance,
types of application/user interactions, proper use
of keyboard and mouse functions, and so on. In
human terms, it might be described as a guide to
effective communication~·5

The XUI Style Guide has three main areas of
emphasis:

13

DECwindows Program

• Use of graphics to present information

• Use of direct manipulation, in cases in which
users point at and directly interact with objects
on the screen

• User-interface consistency

The style guide provides enough detail to let
application designers achieve a high level of consis
tency, but by itself, it cannot guarantee that the
designer will do a good job. Guiding the creation of
consistent applications might be compared to guid
ing the creation of musical compositions in a
specific style, like jazz or the blues. Although a good
guide might provide the fundamentals, the com
poser still needs to hear examples of the music in
order to copy the style. And a composer can still
write bad compositions even if the guide is followed
to the letter.

Extension Libraries
The X architecture supports an extension facility so
that functions can be added to the core routines.
Extensions allow support for special workstation
hardware capabilities as well as for operations that
are seldom used.

An extension consists of two components: a
hardware-dependent extension to the X server, and
a client-side library that sends requests to the server
using the extension protocol. Figure 2 illustrates
the position of the extensions within the X server.
A routine is provided in Xlib to test whether a par
ticular named extension is supported in a server or
to query the set of supported extensions.

Extension libraries supported by DECwindows
include the following:

• PEX, a high-performance three-dimensional
graphics library

• Display Postscript, a graphics output library that
uses Adobe's Postscript imaging model

In addition, some anticipated extension libraries
include the following:

• Input, extended support for tablets, dial boxes
and other user input devices (part of the MIT
XllR4 release)

• Nonrectangular windows, which permits win
dows to be defined as arbitrary shapes rather
than limited to rectangles

14

• Imaging, a library of functions that support oper
ations on scanned images

• Multimedia, support for sound and video

/ndustry-standtlrd Libraries
Industry-standard libraries are either officially sanc
tioned or de facto standards that enjoy wide popu
larity in the industry. Application developers use
these interfaces when they want to minimize the
cost of supporting multiple graphics and/or win
dowing environments (including DECwindows)
from a single application.

DECwindows implements GKS, PHIGS, and other
industry-standard programming interfaces by: (1)
providing shells on top of Xlib and other standard
X libraries, (2) by extending the Xll wire protocol
and using it directly, or (3) by some combination of
the two.

Since GKS is a two-dimensional interface, it is
strictly layered on top of Xlib and the XUI toolkit .

Since PHIGS seeks to take advantage of three
dimensional hardware capabilities not exposed by
Xlib, PHIGS uses a combination of the PEX three
dimensional extension to Xll and the existing pro
gramming libraries.

Summary
The DECwindows architecture offers significant
new technology for building applications; it is
based on the graphical user interface and the use
of an operating-system-independent "client-server"
model to distinguish between where an application
is run versus where it appears to the user. The archi
tecture also provides a high degree of source-level
compatibility between ULTRIX and VMS, which per
mits applications to be easily ported between the
two operating systems.

DECwindows is based on the industry-standard
X Window System, including the X server, the
X wire protocol, Xlib, and the Xt intrinsics. It offers
value beyond these standards through improved
implementation as well as by incremental func
tionality. The architecture has proven both robust
and extensible, making it the preferred base for
new applications created by Digital and by our
software partners.

A Postscript
Since the original creation of the DECwindows
product, a new organization came into being to

drive convergence of open systems standards. The
Open Software Foundation (OSF) evaluated tech-

Vol. 2 No. 3 Summer 1990 Dig ita l Tecbnical]o un1a/

nology from a number of companies and created a
toolkit called Motif that combines XUI from Digital
and the visual appearance from Microsoft and
Hewlett-Packard. In 1990, Motif will replace XUI as
the toolkit in Digital's DECwindows architecture.

Given the wide acceptance of X and Motif, the
DECwindows architecture has truly become an
industry standard, much to the credit of the many
Digital engineers who put in their imagination and
hard work.

References

1. R. Scheifler, J. Gettys, and R. Newman,
X Window System C Library and Protocol
Reference (Bedford: Digital Press, 1988).

2.). McCormack, P. Asente, and R. Swick, X Toolkit

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

An Overoiew of the DECwindows Architecture

Library - C Language Interface, X Version 11
Release 3 (Cambridge: Massachusetts Institute of
Technology, 1988).

3. L. Treggiari and M. Collins, "Development of the
XUI Toolkit," Digital Technical]ournal, vol. 2,
no. 3 (Summer 1990, this issue): 24-33.

4. T. Spine and). VanNoy, "The Evolution of the X
User Interface Style," Digital Technical journal,
vol. 2, no. 3 (Summer 1990, this issue): 44 -51.

5. XU/ Style Guide (Maynard: Digital Equipment
Corporation, Order No. AA-MB20A-TE, 1988).

General Reference

R. Scheifler and). Gettys, "The X Window System,"
ACM Transactions on Graphics, vol. 5, no. 2 (April
1986).

15

Susan Angebranndt I
ToddD. Newman

The Sample Xll Server
Architecture

1be XII protocol is the backbone of Digitals DECwindows program. 1be sample
seroer is an implementation of the protocol. 1be seroer was developed by Digital and
has become the basis for all Digital product seroers. As part of Digitals commitment
to support open system standards within the industry, the seroer code was donated to
MIT. Because the software is now publicly available, the seroer is the starting point
for the X seroer product implementations for all other vendors. This paper describes
the architecture of the sample seroer and comments on the implementation.

The Need for a Sample Server
The X Window System protocol was developed
jointly by MIT and Digital.1 The protocol permits
network-transparent access to the input, window
ing, and two-dimensional graphics capabilities
of workstations and display systems. Further, the
protocol presents a high-performance, device
independent graphics model. As such, it provides
a hierarchy of resizable, overlapping windows,
which support the easy building of a wide variety
of applications and user interface styles.

The server is an implementation of the
X protocol. Its job is to arbitrate access to the
display and to the keyboard and pointing device,
generally a mouse. Applications that use the
X protocol are called clients. Clients communi
cate with a server through an 8-bit byte stream.
A simple packet stream protocol is layered on top
of the byte stream. For example, a packet of com
mands might create a window and draw an arc.

Our goal was to design and implement a sample
server based on the X Window System version II
(X 11) protocol. By sample we mean an example
implementation of the protocol that other devel
opers can use to implement the X protocol on
their workstations. When we began, there was a
sample implementation of version 10 (XlO) of the
X Window System already in use on UNIX system
based products. This XIO sample server had been
ported to Digital, Sun, Apollo, and IBM PC/RT
workstations, among others. But the XlO protocol
was not suited to advanced graphics devices. The
XlO implementation was based on the VAXstation
100 graphics primitives and architecture. There
fore, it was difficult to make performance enhance
ments on hardware other than the VAXstation 100

16

workstation because of assumptions in the XlO
protocol and its sample code.

Xll was more advanced that Xl0.2 Xll com
pletely overhauled the XlO protocol. It considered
the needs of operating systems other than the UNIX
system, as well as graphics devices other than the
VAXstation 100. Because of the massive changes
from XlO to XII, the sample server had to be
reimplemented from scratch. It was important
that this implementation not depend on a specific
device but apply to a wide range of workstations.

Digital wanted to develop and promote XII as a
de facto standard in the workstation market, just as
we promote the UNIX system (in the form of
Digital's ULTRIX system) as a standard. We felt a
common, open windowing environment was as
important as a common, open operating system
environment. XlO was too limited in scope and
capabilities to become popular on workstations
with advanced graphics. By making the sample
implementation publicly available, other vendors
would be more likely to adopt XII as a standard.

Digital receives several direct benefits from
making the sample server publicly available. It is
the basis for all current Digital server implementa
tions on the VMS, ULTRIX, and PC systems. MIT
maintains the bulk of the source code. Therefore,
Digital benefits from the changes, enhancements,
and bug fixes done not only by MIT but by other
companies that use the server. Also, we can easily
incorporate server extensions, such as Hewlett
Packard's input extension. Over 75 percent of the
code in the ULTRIX system-based DECstation 3100
color server is from MIT. Therefore, this server can
be ported easily to new graphics devices because
few lines of code need to be modified.

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

Design Goals and Constraints
Designing and writing software to be used on a
wide class of machines is a lesson in compromises.
In this section, we list our goals and constraints. In
the sections following, we give an overview of the
server architecture and some porting concerns.
Finally, we evaluate our end result.

Tailorabk
The primary technical goal of the project was to
provide code that would remain useful on current
and future operating systems and graphics devices.
Writing portable code is not new. Software is often
ported. Just as often, performance is decreased in
favor of the increased portability. For example, the
UNIX operating system has been ported often, but
the system's performance is diminished on all but a
few architectures.3 Customization is needed to
regain the speed lost in favor of generality. There
fore, our server design had to emphasize portability
and customization in equal measure. We term the
software design using this approach as tailorable.
Almost every other design consideration or con
straint grew out of the requirement tailorability.

Standards
The sample server is used by a wide audience, on
a variety of workstations. Our implementation was
constrained by some of the "least common denomi
nator" features found on most workstations. We
wanted to be assured that most vendors would be
able to use our implementation.

An example of such a constraint was in the choice
of language used for the server. We preferred to
implement the X protocol in a multithreaded,
object-oriented language. However, the implemen
tation is in the C language because most other
vendors provide C compilers. Therefore, the C
language would provide a more universal· stan
dard. The problems with using the C language are
discussed in more detail in the Sample Server in
Retrospect section of this paper.

Firewalls and !Ayering
Modularity makes software easier to maintain and
modify. Whole modules can be reimplemented
with different internal data structures and proce
dures. As long as interfaces and firewalls are main
tained, the rest of the system will continue to
function.

We also chose to use modularity because we
could reuse software by partitioning the software

Digital Tecbntcaljournal Vol. :Z No. 3 Summer 1990

The Sample Xll Server Architecture

into layers. Layers that were machine-independent
could be completely portable. Machine-defined
layers required modification to port to a new archi
tecture. Therefore, our goal was to provide as much
machine-independent code as possible.

Simplicity
Because of our time constraints, we opted to keep
our approach simple. Simplicity meant adding an
extra level of indirection or an extra procedure call
in some cases. However, it is easier to optimize the
code later by deletion than by addition.

Simplicity was also achieved by setting restric
tions and understanding limits. The bitmap
graphics workstations that might run the
X protocol currently range from the 8-bit Apple II
through the 16-bit IBM PC to Digital 's 32-bit
VAXstation 3520 workstation. Frame buffers range
from the I-bit-deep VAXstation 2000 workstation to
the 24-bit-deep frame buffer of the VAXstation 3520
workstation. The X protocol supports frame buffers
up to 32 bits deep. As a practical observation, no
machines with 8-bit integers would have enough
performance to run the X protocol.

Although the X protocol supports many different
graphics devices, we had to implement for only
one device for practical purposes. We chose the
most general device, one with no graphics hard
ware, which would enable us to write all the
drawing algorithms in software. When other
developers use the sample code, they can replace
our software algorithms with calls to their hard
ware graphics routines. We selected the mono
chrome VAXstation 2000, running the ULTRIX
operating system. The frame buffer is treated as
main memory. However, it is impossible to gen
eralize from one example. Therefore, as we were
writing the sample, we had two other development
engineers port it to the VAXstation 8000 and
VAXstation 11-GPX workstations.

Architecture
The server architecture reflects our perception of
how the code would be ported to new machines
and operating systems. The architecture has three
major layers: device-independent X (DIX), operat
ing system (OS), and device-dependent X (DDX).

The DIX layer contains device-independent
routines, OS contains operating system-specific
routines, and oox contains device-specific rou
tines. The operating system interface insulates
DIX from the details of file access, network com-

17

DECwindows Program

munication, and the keyboard and mouse. DDX is
the graphics interface, which is a virtual interface to
the painting routines.

Procedures in DIX should rarely require changes,
OS should be written once per operating system
(or version of the UNIX operating system), and DDX

should be modified for each graphics platform.
For example, when porting from one ULTRIX

graphics subsystem to another, the only layer to
be modified would be DDX. However, some rou
tines in DDX will be shared across different ULTRIX

graphics subsystems.

Shared Data Structure
Firewalls are created by strictly defining the
exported routines and the data structures that are
shared by the layers. Although the C language does
not explicitly support objects, we treated the
shared data structures as objects, which let us
hide information between any two layers. Each
structure contains state variables, i.e., attributes,
and procedure vectors, i.e., methods. DIX writes
the state and calls the methods. DDX and os read
the state and set the methods. In addition, each
structure has an opaque pointer, which is usually an
implementation-specific structure that belongs to
either DDX or OS. Screens, drawables, and graphics
contexts are the primary data structures shared
between the different layers in the server.

The X protocol supports multiple screens that are
connected to the same server. In other words, one
workstation can have multiple displays connected
to the same keyboard and pointer. Therefore, all
information about a particular screen is bundled
into one data structure of attributes and proce
dures. Resources that are defined per screen are
color maps, cursors, and fonts.

Windows and pixmaps are considered draw
ables. Windows are rectangular graphic areas on
the screen into which graphics routines can be
drawn. Pixmaps are graphics drawing areas located
off-screen. All graphics operations work on draw
ables, and operations can copy areas from one
drawable to another.

Graphics contexts contain state variables, such as
foreground and background pixel value (i.e., color);
the current line style and width; the current tile
or stipple for pattern generation; and the current
font for text generation. Graphics contexts also
include functions that support fundamental paint
ing operations, e.g., drawing lines, polygons, arcs,
text, and copying areas of drawables.

18

Device-independent X
DIX dispatches requests to either DDX or OS,
manipulates a tree of windows and their associated
properties, maintains the input focus, and sends
mouse and keyboard events to the appropriate
clients. In addition, DDX checks client requests for
the correct length and maps identifiers created by
a client to the server's internal data structures.

The core of DIX is a loop, called the dispatch
loop. Each time around the loop, DIX sends the
accumulated input events and processes requests
from the clients to DDX or OS. The loop, shown
below, is the most organized way for the server to
process the asynchronous client requests.

while (true) {
if (inputPending)

Process inputEvents();
nextRequest = WaitForSomething();
if (newConnection)

lnitializeConnection();
if (Connect ionDied)

CleanUpConnection();
DispatchRequest (nextRequest);

Requests fall into three categories:

• Edits to internal data structures, e.g., setting the
keyboard click on or off

• Queries on internal resources, e.g., asking the
placement of a window on the display

• Drawing requests, which are handled by calls to
DDX

Edit requests usually set some state shared by DIX

and either DDX or OS. A side effect of the edit is a
bear trap set by DIX. When a painting request
occurs, the bear trap is triggered. DDX notices the
state change and sets the method associated with
the new attribute values.

Keyboard and Mouse Handling
Input events from the keyboard and mouse travel
in the reverse direction of requests, that is, from the
workstation to the client application.

Some examples of synchronous events are grabs
and input focus change. Synchronous events are
initiated by clients or the window manager and are
very similar to requests. These events result in state
changes, some of which are visible on the screen.
However, whereas requests generate at most one
reply or error, events may cause the creation of
more events.

Vol. 2 No. 3 Summer 1990 Digital Tecbnlca/Journal

A linked list of clients and the interest the clients
have expressed in an event or events is stored in the
window. The direct path in the window hierarchy
is cached. The path extends from the root window
down to the window containing the mouse (i.e.,
pointer focus) and from the root to the window
where the keyboard events are sent (i.e., keyboard
focus). This method makes it easier to generate
events, such as notification that the pointer has
crossed a window boundary, which are then passed
to all the windows in the chain.

Asynchronous events occur outside the server's
control. The events include button presses, key
board events, and mouse motion events. Once
started, many server operations must be performed
to completion. However, the asynchronous events
continue to occur while the server is busy process
ing requests. Even if the server itself is synchro
nous, it must look to the clients as though events
are occurring asynchronously. The C language
does not support interrupt handling. Therefore,
the server cannot handle the events while perform
ing a client request. The device driver notes new
input events. The server then attempts to simulate
an asynchronous response by polling for events
between each request the server processes.

We learned from the XlO implementation that a
rapid response to new input events was required
to achieve the responsiveness necessary for good
user interaction. Copying data from one layer to
another would degrade response time substantially.
Because of this need, DIX and DDX had to use the
same physical memory location and data structure
to represent the event state.

A problem existed in that different devices want
to represent their input queue differently. For
example, some may want head and tail pointers,
a single or double linked list, or a circular buffer.
Further, some may want a list and a count, whereas
others might use a null-terminated list and not need
a second value at all. The server solves the problem
by representing the input stream by two 32-bit
words. The two words are not required to be
adjacent because they are pointed to by a two-entry
array. If the values in the words are different, there
is keyboard or mouse input. The DDX implemen
tation decides which representation for the input
queue is best-suited to its hardware.

The relative sequence between keyboard and
mouse events must be maintained to implement the
X protocol properly. Clients must be able to deter
mine the order that the user pressed the keys or
moved the mouse. All Digital workstations merge

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

The Sample XII Server Architecture

these input streams at the device driver level, which
makes event processing easy for the server. If
merging were not done at the device driver level,
DDX would need to ensure that each event was
time-stamped very accurately in order to tell if a
mouse event occurred before a keyboard event.

Operating System wyer
The X protocol is operating system-independent. A
few operating system functions are provided, such
as file access. In keeping with the operating system
independence, our server implementation design
hides the specific details of the operating system
from DIX as much as possible. A narrow OS layer
ensures that our code is more portable. Below are
two examples of operating system independence:
the font interface and the scheduler that determines
which client request to service next.

Font Interface If the client wishes to open a font
by name, the server must find the font. The
X protocol does not dictate how or where the font
is stored. For example, there might be a file per
font, or fonts may be stored in read-only memory
(ROM). Our interface provides only one routine to
translate from the name the client gives to the oper
ating system-specific name. We allow the developer
to provide the most appropriate implementation.

Scheduler Interface The OS interface hides client
communication and scheduling from DIX. The
specific policy and details for deciding which client
should be serviced next is hidden in the OS layer.
Again, one basic routine is provided in the interface
to the scheduler.

Our implementation of the sample server sched
uler was based on the XlO code. The XlO version
had performed fairly well. Still, we felt that on dif
ferent operating systems or after the sample server
had been tuned, the XlO scheduler performance
might not be sufficient. To allow for tailoring, we
put the scheduling decisions in the OS implemen
tation. Thus, tuning the scheduler policy for a
specific operating system would not necessitate
changes to the DIX layer.

Device-dependent X
The DDX interface was the most difficult interface
to design because it is the interface to the painting
routines. The two goals for the interface were to
provide enough flexibility for easy adaptation to
different graphics devices and to provide a fast path
between DIX and DDX for painting requests.

19

DECwindows Program

The goal of the DDX implementation was to pro
vide enough code to enable developers to quickly
port our sample to their hardware. In line with our
goal to provide as much device-independent code
as possible, we wrote general-purpose routines,
called machine-independent (MI) routines, for each
routine in DDX. These routines make minimal
assumptions about the underlying graphics device.
The server is ported to a new device by writing
painting methods that take advantage of that dev
ice's particular graphics capabilities and by using
the general-purpose (i.e., software-only) methods
for operations the device does not support.

In what follows, the software graphics algo
rithms that we provide in the sample server are
called device and machine-independent algorithms.
When a developer ports our server to a device, the
implementation of these algorithms is called device
dependent.

DDX and DIX share two main data structures:
windows and graphics state. A window describes a
painting surface and the painting that may have
already been done on it. A graphics state describes
the painting process. In other words, a window is
similar to a canvas, and a graphics state is similar to
a paintbrush.

The key to our design is to allow each implemen
tation of DDX to select the appropriate painting
method based on the graphics attributes at runtime.
The DDX implementation updates the general
purpose methods by marking the graphics state
dirty whenever an attribute changes. However,
DDX does not change any of the procedures until
a graphics request actually occurs. This process is
called validation. When DIX receives a painting
request, only one comparison is needed to validate
that the graphics state is consistent. If it is, the
correct method can immediately be used. This pro
cess provides a fast path between DIX and DDX.
If the methods are not set correctly, DIX first calls
the more time-consuming process of updating the
methods.

For example, on Digital's VAXstation 11-GPX
workstations, lines can be drawn using hardware
assist. However, the method used to draw thin solid
lines, i.e. , width equals zero, differs from the
one used to draw line widths greater than zero.
On-off dashed lines are also separate routines,
depending on the line width. The developer must
write four special-purpose routines for the cases
the hardware can handle: GPXZerolineSolid,
GPXZerolineDashed, GPXWideLlneSolid, and
GPXWidelineDashed. A sample of the code to

20

set the line routine in the graphics state is shown in
Figure I.

When DIX receives a line drawing request, part of
the code in Figure I would become

if(gc.dirty>
C • gc. validate) Cgc) ;

c• gc . line>Cgc , window, data) ;

Each X protocol graphics request encapsulates
substantial functionality. Some vendors' devices
provide hardware assistance for all functions
specified by the X protocol, whereas others
provide only a subset or none at all. However, the
X protocol states that any server implementation
must be able to paint in all possible styles on
any drawable. To make compliance easier, we pro
vided machine-independent implementations of
the painting code to supplement the hardware.

Because of machine differences, we could
not provide a completely generic, machine
independent server. As a result, we designed the
MI routines to assume three bootstrapping pro
cedures. Developers must write these routines to
port our server to their machines. (Note: A span is
a row of pixels and a region is a column of spans.)

• FillSpans fills a region with the texture specified
in the current graphics state.

• SetSpans copies the contents of a source region
to a destination window using the bitwise com
position function from the current graphics
state.

• GetSpans reads a region from the current
contents of a window.

These bootstrapping procedures must be written
for each port and turn the bits in the frame buffer
on or off. Our sample server provides an example
software implementation of the bootstrap routines
for a frame buffer with no hardware-assist.

Fonts
Another important function of the X server is the
ability to paint text on the display. A font is stored i,n
a file and contains the character bitmaps (i.e., the
glyphs), information about each character (e.g.',
bounding box or kerning data), and information
about the overall font (e.g., family or number of
characters).

Text must be painted quickly and efficiently.
Users also want to share fonts with each other,
for example, through electronic mail. Thus, easy
exchange requires a portable, ASCII format. How-

Vol. 2 No. 3 Summer 1990 Digital Tecbnkal]ournal

The Sample Xll Server Architecture

if Cgc.lineWidth =z 0) {

switch Cgc . lineStyle> {

case Solid : gc.line GPXZerolineSolid ;
break;

case DnOffDash : gc . line GPXZerolineDashed ;
break;

else
switch Cgc.lineStyle)

case Solid : gc . line = GPXWidelineSolid;
break;

case OnDffDash: gc.line = GPXWidelineDashed;
break;

Figure 1 Sample Line Drawing Routine

ever, different graphics devices represent their font
data in a variety of ways. The VAXstation 11-GPX
workstation stores fonts in off-screen memory and
expects a specific format defined by the hardware.
On the other hand, the DECstation 3100 worksta
tion is a main memory frame buffer, and the font
format is more flexible because it is defined by soft
ware. On the VAXstation 11-GPX workstation, an
ASCII format would require a translation. ASCII
formats are not generally compact and would
require extra performance overhead to be read
and accessed.

An alternative to the ASCII format was to use a
binary font format. Such a format would allow
quick access, and the ASCII fonts could be converted
from a general format to a device-specific format.
However, this alternative would lead to a prolif
eration of on-disk font files, one for each device.
For example, ULTRIX systems would need three
separate formats: one for the VAXstation 3540/3520
workstation, one for the VAXstation 11-GPX and the
VAXstation 3100 workstations, and one for the
DECstation 3100 workstation. Therefore, a binary
format alone was not the solution.

As a compromise, we provided an ASCII format
and a binary format. We expect each vendor to use
one binary format, regardless of operating system
or machine architecture. Thus, our ULTRIX imple
mentation uses the same binary format on both the
VAX system-based workstations and the RISC based
systems. Because the VAXstation 11-GPX servers have
hardware-assist for font drawing and require a spe-

Dtgttal Tecbntcal]ournal Vol. 2 No. 3 Summer 1990

cial format, these servers must translate when ini
tializing a font; but the performance impact is small.

The ASCII format we chose was a modification of
the Adobe bitmap distribution format. The format
required a few enhancements for information that
X required but Adobe had not provided.

Tailoring Strategies
Many workstations have their own graphics proces
sors that can substantially increase drawing per
formance. Because of this, developers frequently
want to implement DDX on top of these graphics
subsystems. However, many X clients only draw
small objects or a few objects ar a time. Also, the
semantics of the graphics primitives might not
match the definitions in the X protocol. The
overhead for translating X requests into graphics
system primitives may dominate the drawing time.
As a result, the server is slower than a simple main
memory frame buffer system.

Because dedicated graphics hardware usually
performs high-level operations, e.g., line and text
drawing, a port begins by replacing the drawing
methods in the graphics state to routines that sup
port the graphics subsystem. However, a graphics
processor might not support the full generality
of the X protocol. One typical situation in older
hardware is text drawing that can only be drawn as
the bitwise composite function OR, whereas the
X routines require more sophisticated text-drawing
capabilities.

The strategy is to use the hardware capabilities

21

DECwindows Program

when they match the X protocol specification. If
the hardware does not match, then the MI routines
are used. The correct drawing methods, based on
the current graphics attributes, are selected by the
graphics state validate routine.

The following two examples describe what a
developer might do when porting the sample server
to hardware that does not comply with the
Xprotocol.

Hardwired Fonts The X protocol allows the glyph
in a single font to vary in width. However, some
graphics processors can draw only glyphs with a
fixed width. During validation, the text-painting
method is changed in the graphics state, depending
upon whether the font is fixed or variable width.
Fixed-width fonts go directly to the graphics pro
cessor. Variable-width fonts are drawn in software,
using routines based upon MI routines. Validation
works in this example because the font is an
attribute of the graphics state.

Hardware Clipping Restrictions The capability to
clip graphics requests to an irregular region is a
requirement of the X protocol. However, some
graphics processors have clipping restrictions. For
example, the VAXstation II-GPX workstation cannot
paint some text strings that are clipped on the left.
Unlike the hardwired font example above, the
string is not an attribute of the graphics state. At
validation, the DDX layer cannot tell whether a
string will be clipped to the left, it only knows the
font . Therefore, the actual painting routine must
check if the string is clipped to the left. If so, the
painting is executed by the graphics processor.
If any part is clipped, the entire operation is done
by MI code. This restriction cannot be handled in
the same manner as font widths because it is impos
sible to know in advance if the drawing request will
be clipped.

Sample Server in Retrospect
As noted earlier, designing software to be used on
a wide variety of devices requires making many
compromises. Some of our decisions were good,
and some could have been better.

Problem Areas
Some areas of the sample server implementation
could have been improved. For example, we
learned a valuable lesson from using the ULTRIX
system-based VAX.station workstations as our devel
opment environment. A machine that tolerates
NULL pointer access will not discover when code

22

is written carelessly. Many errors were found only
after the system was ported to Sun workstations.
Other problems were the result of design con
straints over which we had no control. Also, we
could have improved the tuning we did for small
memory machines. There is little hope of
recovering if the server runs out of memory.

The C Ltmguage The C language caused many
problems. Although the language is relatively stan
dardized, it has many drawbacks. For our purposes,
the major deficiency was a lack of support for infor
mation hiding. The language provides no support
for hiding data structures defined in DDX or OS

from the DIX layer.
Another problem with the C language is the

ambiguous representation of int. The only certain
fact about int is that short is no longer than long.•
Given our time constraints and the class of
machines we planned to support, we had to assume
that C type long is at least 32 bits and the C type
short is at least 16, which was a bad assumption.
Machines with 16-bit words were not addressed
adequately because the sample assumes that the C
type int is a 32-bit integer. Therefore, our server
must be substantially reworked for 16-bit machines.

We also had C compiler problems. We tried not to
rely on the implementation of the portable C com
piler that comes with the ULTRIX system because
not every vendor supports this compiler.

MI Routines The MI painting methods are useful
for quick bootstrapping. However, by designing MI
routines to support generality, we sacrificed per
formance. Writing general-purpose code requires
care and diligent adherence to the rules for writing
portable code. The rules include not relying on
machine instructions, compiler idiosyncrasies, or
knowledge of the hardware. No assembly language
was allowed. The MI wide-line code is an example
of a feature in which performance was severely
affected by these constraints because we had to use
floating point arithmetic rather than write a
machine-independent, fixed-point math package.

The Best of the Server
The biggest issue raised by our design was the
potential performance degradation that could
result from the inclusion of so much device
independent software. Was the cost of a common
code base and device independence too great?
We estimated the impact to be 5 percent for the
simplest request and even less for more com-

Vol. 2 No. 3 Summer 1990 Digital Tecbntca/Journal

plicated, time-consuming rendering requests. We
felt this performance impact was relatively small
and worth the time saved in future software
development and maintenance.

Our server can be ported to a new device in a few
days, simply by writing the bootstrapping routines.
An undergraduate at MIT ported the server to a
UNIX system-based IBM PC/RT in three days.

To test our server ideas, we chose to implement
our sample to run on a monochrome VAXstation
2000 workstation, where the frame buffer is treated
as main memory. Our DDX implementation
includes the MI routines. Also, we included some
examples of less general, device-specific, faster
procedures that can be plugged in, such as thin
lines, terminal emulator text, and bitblt. These less
general routines are called monochrome frame
buffers (MFB) and are the device-specific routines
that most implementers will rewrite for their
graphics hardware.

As shown in Figure 2, 45 percent of the server's
code resides in DIX. If MI routines are included as
part of DIX, then 67 percent of the code is device
independent. Therefore, we believe we met our
original goal to provide as much device
independent code as possible. We provided a fast
path between DDX and DIX. Approximately 25 lines
of C code-90 percent of which is error-checking
on the request packet-exist between the points at
which DIX receives a request and then sends it on to
DDX.

The DDX interface is moderately large, i.e., 102
routines, but contains well-defined, completely
separate functions. The ability to customize the
DDX implementation provides flexibility. Although
we cannot predict what display capabilities will
be available in the future, we did provide the ability
to easily patch in unforeseen functions as they
develop.

Of the 102 routines in the interface, 29 are paint
ing methods in the graphics state. Another 8 are
routines to update and validate the graphics state.
In our implementation, some of the 29 painting
methods are broken down further into special cases
that are selected at validation time. For example, the
line-painting method has 5 routines, but the arc
painting method has only 1 MI routine.

Our sample server's speed had to be at least as
good as the XlO implementation to entice XlO users
to switch to Xll. Overall, our implementation
running on the VAXstation 2000 runs about 25 per
cent faster than the XlO implementation on the
same machine.

Digital Tecbnlcal]ournal Vol. 2 No. 3 Summer 1990

The Sample XJJ Server Architecture

OPERATING
SYSTEM
CODE (7%)

MONOCHROME FRAME
BUFFER (26%)

DEVICE-INDEPENDENT
CODE (45%)

MACHINE-INDEPENDENT
ROUTINES (22%)

Figure 2 Implementation Sizes

Writing software that is portable to a wide range
of operating systems, compilers, and graphics
devices requires many design trade-offs. Our
implementation of the Xll protocol is tailorable
to other systems, without a loss of performance
or generality.

Acknowledgments
First and foremost, we thank the other members of
the server implementation team, Raymond Drewry,
who was responsible for the DDX interface design;
and Phil Karlton, who was on the protocol design
team, and designed and implemented the event
code and font format. Because there were so many
contributors to the Xll server, especially at Digital
and MIT, it is difficult to name them all, but we
would especially like to thank Burns Fisher (Digital)
and Bob Scheifler (MIT) for assisting with the
design; Jim Gettys (Digital) for writing Xlib; and
David Carver (Digital), Adam de Boor (Berkeley),
RichardJohnsson (Digital), Jack Palovich (Hewlett
Packard), and David Rosenthal (Sun) for testing our
porting capabilities.

References

1. R. Scheifler et al., X Window System (Bedford:
Digital Press, Order No. EY-67373-DP, 1988).

2. R. Scheifler and J. Gettys, "The X Window
System," ACM Transactions on Graphics, vol. 5,
no. 2 (April 1986): 79-109.

3. S. Johnson and D. Richie, "Portability of C
Programs and the UNIX System," The Bell System
Technical Journal, vol. 57, no. 6 (July-August
1978): 2021-2048.

4. B. Kernighan and D. Richie, The C Programming
Language (Englewood Cliffs: Prentice-Hall, Inc.,
1978).

23

Leo P. Treggiart I
Michael D. Collins

Development of the XU/
Toolkit

The XU/ toolkit is a set of run-time routines and application development tools based
upon the X Window System version 11 (XJJ). A programmer can use these tools to
create application programs that implement the user interface techniques and
appearance guidelines used by a DECwindows system. The toolkit was developed in
parallel with the X toolkit intrinsics and is layered on top of the intrinsics. Within the
architecture, no layer is hidden from another layer. Programmers can mix calls to
all layers. BeCtluse of the toolkit's maturity, performance, and adherence to stan
dards in its design, XU/ was chosen as the base programming interface for the Open
Software Foundation's Motif toolkit.

The XUI toolkit consists of a set of user interface
objects, called widgets and gadgets. It is layered on
top of the MIT X Window System toolkit intrinsics,
which provides routines for manipulating widgets.
The XUI toolkit also contains a number of utility
routines, including compound string manipulation,
cut and paste, and a resource manager used in con
junction with the user interface language {UIL).1'

2

Figure 1 illustrates the toolkit and its relationship
to the other layers of the OECwindows architecture.
As stated, the XUI toolkit is layered upon the
X toolkit intrinsics which, in tum, is layered upon
Xlib. The architectural design of these layers is such
that no layer masks the other layers. An application
can mix and match calls to all three libraries. For
example, Xlib provides the basic graphic primitives
to draw items, such as lines or arcs. Therefore,
neither the intrinsics nor toolkit libraries attempts
to provide that functionality. If the application
needs to perform low-level graphics drawing, it
uses Xlib.

Genesis of the Toolkit
In 1985, our group perceived the need for a
graphical user interface toolkit for Digital's work
stations. At that time, we were part of the Software
Development Technologies (SDT) organization and
were developing layered software and run-time
libraries for the VMS operating system. Initially,
our goal was to build a toolkit for use within
SOT. However, when we learned that the VMS
Engineering Group was in the early stages of design
ing a toolkit for the VAX Workstation Software

24

(VWS), which was the windowing system on the
VMS system, we began working with them. At the
same time, engineers from the ULTRIX Engineering
Group were working with MIT to design and
implement the X Window System. In late 1986,
Digital evaluated the VMS and X windowing sys
tems and selected the MIT X 11 Window System as
its strategic windowing system. Once this decision
was made, the VMS, ULTRIX, and SOT groups all
began working together towards a common goal.

The goal was twofold: work with MIT to define a
standard set of X toolkit intrinsics, and define for
Digital a widget set layered on top of these stan
dard intrinsics. Separating the intrinsic or generic
support facilities from the actual widget set being
implemented meant that Digital's user interface
policy could be embedded only in the widgets,
which increased the probability that the intrinsics
would become standardized.

APPLICATIONS

XUI TOOLKIT

X TOOLKIT INTRINSICS

XLIB

X PROTOCOL

X SERVER

Figure 1 DEC windows Architecture

Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

Therefore, we did not define the intrinsics to
support any particular user interface style. The
intrinsics try to support any possible X system
based user interface style, and the widget set
implements a particular user interface style.

Design Goals
As the primary programming interface to
DECwindows applications, the XUI toolkit had
many design goals:

• Programming ease for application developers to
support a windowing environment

• Conformance to the XUI Style Guide

• Conversion ease to a foreign language for an
application built using the toolkit

• Performance suitability for a direct manipulation
user interface

• Portability to all Digital development platforms

• Increased application interoperability between
the VMS and ULTRIX operating systems

• Optimization of the network transparency pro
vided by the underlying windowing system

Programming Ease
Applications developers first had to learn to design
and program a direct manipulation user interface
before building a DECwindows application. To
make this learning easier, the XUI Style Guide
was developed as an aid to designing user inter
faces.3 A number of decisions were made during
the design of the intrinsics and the toolkit that
aided programming.

Object-oriented Method Early in the design of the
X toolkit intrinsics, we decided to use an object
oriented approach for programming simplicity and
more flexibility in sharing data and functionality.
The basic object of the intrinsics is a widget, which
is a combination of an X window and particular
input and output semantics. Examples of widgets
are menus, push-buttons, and scroll bars.

Object-oriented programming provides a level of
data abstraction that helps manage the complexity
of direct manipulation user interfaces. Widgets can
be manipulated generically, regardless of the type of
widget. For example, any widget can be destroyed
by calling the intrinsics routine XtDestroyWidget.
Therefore, the number of programming calls

Dig i tal TecbnicalJounial Vol. 2 No. 3 Summer 1990

Development of the XUI Toolkit

that an application developer must remember is
reduced. Also, it is easier to write tools that do not
need a specific knowledge of any widget.

Object-oriented programming uses the concept
of classes and inheritance. A class is a type of
widget. All widgets of a particular class share a
certain amount of commonality. The widgets have
the same set of resources that can be set to modify
appearance and function. Widgets also share many
methods or procedures. For example, the same
routine is used to draw the contents of any label
widget. By using classes, the toolkit can define the
attributes that are common to a widget type once in
the application, rather than store attributes in every
widget in a class (i.e., a widget instance). Thus,
classes reduce the amount of memory needed by
widget instances. Widget classes in the XUI toolkit
are arranged in a class hierarchy as illustrated in
Figure 2.

In this hierarchy, a widget class can inherit func
tionality from its superclasses. As shown in Fig
ure 2, the push-button widget class is a subclass of
the label widget class. As such, it can inherit all of
the label widget's functionality to perform layout,
and display pixmaps and strings. The functionality
need only be rewritten if the push-button needs to
operate _in a manner different from the label. Inheri
tance makes it easier for the widget developer to
create new widget classes and add functionality to
the existing classes.

The object orientation of the intrinsics and the
toolkit are implemented using programming con
ventions of the C programming language rather
than directly in an object-oriented language, such as
C++. When we made this decision, C was already
the implementation language for all X Window
System base components and neither C++ nor any
other object-oriented programming language was
widely available or used. Relying on object-oriented
conventions rather than language features did, how
ever, make it more awkward to create a new widget
class than would have been the case with C++.

Separation of Form and Function A major goal in
designing any user interface programming software
package is the separation of form, i.e., user interface
and function. The advantages of this separation are

• The user interface can be designed separately
from the application functions.

• The user interface can be tested and iteratively
modified based upon user feedback, without
affecting the rest of the application.

25

N

0
\

C
S

 T
E

X
T

C
O

LO
R

M

IX

S
 T

E
X

T

C
O

M
M

A
N

D

H
E

L
P

F
IL

E

S
E

LE
C

T
IO

N

M
A

IN

W
IN

D
O

W

A
T

IA
C

H
E

D

C
O

R
E

C
O

M
M

O
N

F
ig

u
re

 2

X
U

/
To

o
lk

it
 W

id
g

et
 C

la
ss

 H
ie

ra
rc

h
y

H
E

L
P

S

H
E

L
L

A

P
P

LI
C

A
T

IO
N

S

H
E

L
L

W
IN

D
O

W

T
O

G
G

LE

T
R

A
N

S
IE

N
T

S

H
E

L
L

H
ID

D
E

N

S
H

E
L

L

L
IS

T
 B

O
X

• An application can support more than one user
interface that is using the same application code.
This feature is especially useful for changing the
language and other aspects of an application for
a user in another culture. Multiple interfaces can
also be used to tailor a single application to sup
port different classes of users.

The OECwindows user interface language (UIL)
and resource manager (ORM) are the tools which
allow form and function to be separated. Ull is
a specification language that describes the initial
state of a user interface, i.e., it describes the objects
used in the interface and the application callbacks
to be invoked when the interface changes state.4

ORM provides the application with a run-time
library for accessing the compiled Ull descriptions.
ORM, therefore, builds the run-time structures nec
essary to actually create the user interface during
execution of the application.

Conformance to the XU/ Style The toolkit had to
support XUI style at a detail level in both look and
feel. Supporting the look primarily meant setting
default values for the many graphic aspects of a
widget, such as the border width of a push-button.
Supporting the feel meant establishing tables that
translate user events, such as button press, into
a widget action, such as highlight. Defining the
widgets that compose the toolkit was based on
partitioning the XUI style look and feel demands
into logical pieces and on predicting application
needs.

Although a widget would have many customiz
able attributes, all of which could be controlled by
the application, we wanted to make it easy for an
application developer to design and implement a
OECwindows application that conformed to the
XUI style. A widget should, by default, select
conforming values for any attribute the application
could have but did not set. Therefore, we imple
mented a default look and feel that matched the
precise user interactions defined in the style guide
and the precise graphic design that was defined
for XUI by our graphic artists. However, we also
made the widgets as flexible as possible. Although
widgets defaulted to the XUI style, the custom
ization methods inherent in the intrinsics, e.g. ,
resource and translation management, could be
used to customize a widget to another style. This
design philosophy helped give applications a con
sistent look and feel but did not constrain user
interface innovation.

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 19'.JO

Development of the XU/ Toolkit

Further, we decided to structure the set of
widgets based upon the object's function as seen by
the application's developer rather than as seen
by the application's user. An example is the use
of buttons in menus and dialog boxes. Both
menus and dialog boxes contain buttons that
directly invoke application actions (i.e., push
buttons). However, the graphical appearance and
user invocation syntax of the buttons is different
depending upon whether the button is placed
within a menu or a dialog box. The toolkit,
however, presents only one push-button class
to the application programmer. The buttons are
dynamically configured based upon the environ
ment in which they are placed. Thus, an application
developer can change the environment of a widget
without changing any other code.

Conformance to Standards The OECwindows
program was intended to be based on MIT's
X Window System standard. Therefore, the tool
kit had to be based upon the standard X toolkit
intrinsics. It was a challenge to do so because the
toolkit and the intrinsics were designed, imple
mented, and standardized in parallel.

The standard language bindings for the intrinsics
were designed for the C language. However,
we were mindful of the requirements of other
languages and attempted not to prohibit other
language bindings from being possible. It is a well
known technology to provide multiple language
bindings, in the form of header file definitions
and entry point names, for a single set of run-time
routines. Digital used this approach in providing
VAX procedure calling standard bindings for Xlib,
the intrinsics, and the toolkit.

A special problem arose in defining the bindings
for the intrinsics because the intrinsics would call
back into the application code to provide noti
fication of a user action such as a button press. The
intrinsics, however, has no knowledge of the
language used in the called procedure. Therefore,
we had to restrict the parameter passing mech
anism in callbacks to the set that could be under
stood by most languages. Parameters to callbacks
are passed by a reference mechanism as opposed to
a value mechanism that is commonly used when
calling C procedures.

Performance
From the beginning of the OECwindows program
development, a team of Digital software usability
engineers worked closely with the OECwindows
developers to design the XUI style and define user

27

DECwindows Program

interaction performance goals for the DECwindows
interface. The DECwindows environment uses a
direct manipulation user interface model that
requires real-time responses to user actions. The
success of direct manipulation is dependent upon
creating the illusion that objects are being phys
ically manipulated. For example, if the interface
is sufficiently slow, the user fails to perceive a
cause-and-effect relationship between a button
press and a push-button highlighting. Once such a
relationship is lost, much of the interface illusion
breaks down.

To test the interface's performance, the software
usability engineers defined a number of scenarios
that consisted of test scripts and covered six major
functional areas:

• Menu manipulation

• Dialog box manipulation

• Window manager operations

• Text operations

• Dragging graphics objects within a window

• Application start-up and shutdown

Each test was described in enough detail to sup
port designing a simple DECwindows application
that would measure the system performance. Our
goal was to use a small number of tests to cover the
most critical areas of user interface performance.
For each test, performance numbers were given in
terms of worst case, planned level, best case, and
competitive level. The worst case defined the worst
acceptable level. The planned level represented
success. Once the planned level was attained for
an attribute, further resources would be focused on
those attributes that did not yet meet the planned
level. The best case was a state-of-the-art limit for
the test. The competitive level was the average
performance seen on competitive systems.

Obviously, the design of the intrinsics and the
toolkit played a major role in our ability to meet
these goals. The problems we encountered are
included in the performance discussion in the Initial
Implementation section of this paper.

Internationalization
UIL and ORM are major components of the inter
nationalization of DECwindows applications. The
majority of an application's culture-specific infor
mation can be separated from the executable image

28

by putting text strings and other culturally variant
data into UIL files rather than the application code.
Because an application is bound to a UIL description
at run-time as opposed to compilation or link time,
an application can be moved from one country to
another without a different application executable
image.

Compound strings are another major internation
alization component. The initial design of the tool
kit was based upon ASCII null-terminated strings,
which acted as the data representation for text
strings passed between the application and the
widgets. However, based on input from engineering
groups around the world, we decided that ASCII was
not sufficient. A simple example demonstrates why
this is true. The Digital corporate name in Japan was
Nihon Digital in English, in Japanese it is B *
Digital. To display this name as the title of
a window, the application must pass a widget a
single string with characters in Japanese Kanji and
Latin fonts.

Compound strings allow a single text object to be
composed of multiple segments. Each segment has
its own character set and characters. Thus, Nihon
Digital is a compound string with two segments.
The first segment is in the Japanese Kanji character
set, with the characters B *, and the second seg
ment is in a Latin character set, with the characters
Digital.

We implemented a compound string library that
provided applications with basic string manipu
lation facilities. The toolkit was revised to enable
application-widget interfaces to use compound
strings rather than ASCII strings. As the
DECwindows program and the Open Software
Foundation's (OSF) Motif evolved, the actual data
representation also evolved. Currently, both sys
tems use the International Standards Organaation's
(ISO) Abstract Syntax Notation (ASN.l) encoding
that is compatible with Digital's document inter
change syntax, DDIS.5

The toolkit also provides a mechanism that
dynamically selects the appropriate UIL description
based on a run-time determination of the user's
cultural preference. This mechanism further capi
talizes on the run-time binding of UIL descriptions
and application code. The mechanism was designed
as a logical extension to the X/Open portability
guide native language switching mechanism (XPG
NLS).6 The XPG NLS is a de facto standard supported
by OSF that is primarily targeted at character-cell
environments. We extended the XPG NLS model to
encompass run-time selection of cultural databases

Vol. 2 No. 3 Summer 1990 Dtgttal Tecbntcal]ournal

that affect such things as UIL descriptions and HELP
databases.

Resource and schedule pressures precluded
changing the text widget from ASCII to compound
strings in conjunction with the rest of the toolkit.
As a result, we had to build a non-ASCII text widget
for the Asian and Hebrew markets. The second
major release of the toolkit included a compound
string text widget and an ASCII text widget.

Portability and Interoperability
A goal of the entire DECwindows program was to
define an application programming environment
that would be the same for the VMS and ULTRIX
operating systems. If the VMS and ULTRIX engineers
worked together to design and implement the base
software, expenses would be reduced. Therefore,
the toolkit and the intrinsics were written simul
taneously in the C language for the VMS and ULTRIX
systems.

We wanted all DECwindows components to
capitalize on the network transparency provided
by the underlying windowing system. That is, the
DECwindows components should interoperate
with other systems that supported the X protocol
in a heterogeneous networked environment.
Therefore, we were careful not to build specific
DECwindows features into the toolkit.

Initial Implementation
The initial development of the toolkit presented
the software engineers with a number of challenges.
The major challenge was to develop several differ
ent layers · of the architecture at the same time.
Further, none of the layers had proven suitable
for their designed task. Therefore, it was difficult
to predict the performance characteristics of the
layers.

To reduce the inherent risks of this situation,
we established a development plan that allowed
major functionality to become available for serious
application development early in the product devel
opment cycle. We then used the applications to
determine whether the goals of the DECwindows
program, in general, and the toolkit, in particular,
were being met.

Intrinsics and Toolkit Codevelopment
Our plan to design and implement the toolkit and
the intrinsics simultaneously was further com
plicated by the fact that the layers below the intrin
sics, i.e., Xlib and the X protocol, also were being
changed. Some of the changes were driven by the

Digital Tecbnlcal]ournal Vol. 2 No. 3 Summer 1990

Development of tbe XU/ Toolkit

needs of the toolkit and intrinsics. Others were due
to the lack of maturity of the XU protocol. Because
of these changes, we had to respond to a number of
releases of the lower layers of the architecture.

The intrinsics design was changed several times
during the first year of development as a result of
two major factors. First, the problems and defi
ciencies of the intrinsics and the toolkit became
apparent when we began to write serious appli
cations. Second, other companies became more
involved in the definition of the intrinsics standard.
Therefore, we had to work with a formal process of
proposing and reviewing changes to the standard
and negotiating the inclusion of those changes with
engineers from MIT and other companies. As each
of these changes then became standardized, each
would, in turn, cause changes in widget code,
which caused changes in application code.

Each time a significant change in a layer of the
architecture occurred, all of the layers above it had
to change in a coordinated manner to provide a
consistent development environment. Much time
was spent in planning the management of these
changes. Also, the changes necessitated rewriting
code that had already been completed. We had not
accounted for the time taken by these unanticipated
changes in our original development plans.

Distributed Engineering/or
Multiple Platforms
The development of the toolkit involved Digital
engineering teams worldwide. The intrinsics were
developed in California, primarily on ULTRIX
system-based workstations, by a team of engineers
familiar with the ULTRIX system. The toolkit was
developed in New Hampshire, primarily on VMS
system-based workstations, by a team of engineers
familiar with the VMS system. As a result, some
problems occurred at software integration points.
However, the codevelopment effort ensured that
the final software provided the same programming
interface, with the same quality, on multiple operat
ing system platforms.

Performance
Performance was the most serious problem encoun
tered during early implementation. The first inter
nal field test of the DECwindows software provided
fairly complete functionality for the toolkit and the
layers below it. However, the DECwindows devel
opers, including the toolkit team, had devoted
nearly all their efforts toward developing the func
tionality and postponed measuring, examining, and

29

DECwindows Program

improving performance. Now that we had an exist
ing collection of applications, serious work could
begin on performance.

In the initial measurements of the system's per
formance against the goals described earlier, even
the worst-case goal was missed in many areas. Early
investigation also indicated that the performance
problem did not seem to be localized. That is, the
problems could not be isolated to a single compo
nent in the architecture. With this information, a
task force with members from most DECwindows
development groups was convened to determine
where the performance problems were and what
could be done about them.

We quickly learned that we could not determine
where the performance problems were as easily
as we could have in the typical engineering
environment to which we were accustomed.
Our experience was in evaluating isolated layered
applications, such as compilers, and individual
primitive operations, such as system calls. How
ever, the user interface actions that were being
measured involved the issuance of possibly hun
dreds of X primitives, and the interaction of up to
three separate processes (i.e., the application, the
X server, and the window manager). Although the
usual evaluation tools were of some help, additional
tools were needed.

Existing tools, such as the VAX performance and
coverage analyzer on the VMS system, were used to
locate performance bottlenecks. These tools helped
but did not provide the level of improvements that
were necessary. A number of internal tools to aid in
X performance analysis were used to supplement
the traditional tools. These X performance tools
included:

• An instrumented X server that counted the
resources an application requested, such as
graphic contexts, windows, and pixmaps

• A set of tests that measured the performance of
Xlib primitive calls

• A protocol monitor that recorded the inter
actions between an application and the X server

• A tool that recorded the dynamic memory
allocation of an application

By using these tools on the applications, a large
amount of data was collected and evaluated. Some
of the more important observations were:

30

• Applications were using more server resources
than anticipated. The most common overuse
was windows because each user interface object
had its own X window. However, application use
of other resources, such as graphic contexts,
pixmaps, and fonts was also at a higher level than
anticipated.

• Applications were using too much memory. The
object-oriented design of the toolkit and the XUI
Style Guide encouraged applications to use hun
dreds or thousands of widgets, and each widget
was then using about 600 bytes of memory. A
number of X toolkit intrinsics features, such as
resource management and translation manage
ment, also used a large amount of memory.

• Application start-up was slow. Loading the
large programming libraries, connecting to the
X server, and creating widgets were some of
the principal functions that slowed application
start-up.

• The Digital Xll server design was optimized for
graphic primitives, e.g., line and text drawing.
The performance of these operations was very
good. However, in optimizing the graphics
aspect, the design had traded performance in
windowing operations, for example, window
creation and mapping. The analysis showed that
windowing operation performance was impor
tant throughout much of the direct manipulation
style user interface.

• Many context switches existed between the
server and the application during time-critical
operations. Even simple applications required
the coordinated efforts of the application, a
window manager, and a server. Careful analysis
and planning were needed to minimize the
communication traffic and switching among the
processes.

• The basic round-trip time between the server
and the application using the DECnet transport
was higher than anticipated. This factor
increased the need to reduce the amount of com
munication traffic between the application and
the server.

Solutions were designed and tasks defined to help
fix the problems. Steps were taken in all layers of
the architecture to reduce CPU utilization, memory
utilization, and communication traffic. The two
most radical design changes were the design and

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

implementation of both a shared memory transport
and gadgets.

Shared memory transports were implemented
by the server groups. The transports significantly
lowered the basic round-trip communication time
between the application and the server. The toolkit
group led the design of gadgets.

Gadgets Given the results of the performance
analysis, it became clear that the performance goals
would never be met if every user interface object
required its own X window. We had to significantly
reduce the number of windows without substan
tially redesigning the application programming
interfaces of the intrinsics or toolkit. The perfor
mance data showed that at least 50 percent of the
widgets created by a typical application consisted
of labels, push-buttons, and toggle buttons used in
menus and dialog boxes. If we could eliminate the
windows for these objects, we would significantly
reduce the number of X windows. The intrinsics
developers proposed a solution that was not a
radical departure from the existing widget model,
could be implemented quickly in the intrinsics, and
could be taken advantage of easily in applications.
The answer was gadgets.

Gadgets are windowless widgets. Prior to
gadgets, the lowest level class in the intrinsics
was the core class, which contained all the fields
necessary to support a windowed widget. Because
the toolkit was object-oriented, the intrinsics
developers suggested that we break the core class
into smaller subclasses that could support generic
objects, as well as windowless user interface
objects. We defined three classes above the core
class:

• The object class contains the base information
required to define any type of object in the
intrinsics object mechanism, which eliminates
the user interface objects restriction.

• The rectangle object class contains the infor
mation necessary to define a rectangular user
interface object, and is used as the superclass for
gadgets.

• The window object class contains the remaining
fields from the core class, which are the fields
necessary for a windowed user interface object.

As a result of these classes, gadgets for labels,
push buttons, toggle buttons, and separators were
implemented in the toolkit and used by the

Digital Tecbnlcal]ournal Vol. 2 No. 3 Summer 1990

Development of the XU/ Toolkit

applications. The XUI toolkit gadget class hierarchy
is shown in Figure 3.

LABEL GADGET

PULL DOWN MENU
ENTRY GADGET

PUSH BUTTON
GADGET

TOGGLE BUTTON
GADGET

SEPARATOR
GADGET

Figure 3 XU/ Toolkit Gadget Class Hierarchy

Gadgets reduced the number of X windows,
reduced the use of application memory, and
reduced application start-up time. Although we
provided gadget support in the sample X toolkit
intrinsics release 3 implementation, the capability
was not documented in the specification because
of time constraints. Gadget support is included in
the X toolkit intrinsics release 4 specification, the
current X Window System release.

Retrospective
Much of the design and implementation of the XUI

toolkit was accurate, and some of it could have been
improved.

What Worked Well
Some of the things that worked exceptionally well
during the toolkit's design were

• The VAX notes conferencing system provided
a high-speed communication channel between
the toolkit developers and users. It proved
invaluable in facilitating the development and
usage of the toolkit.

31

DECwindows Program

• Developing the toolkit simultaneously on the
VMS and ULTRIX systems was easier than antici
pated. We were able to limit ourselves to the use
of standard C language and X Window System
features. The amount of operating system depen
dent code in the toolkit is very small.

• Distributed development worked fairly well.
At times there might have been too many
developers involved, but published schedules
and extensive use of electronic mail allowed
us to integrate pieces being simultaneously
developed in Israel, France, New Hampshire,
California, and Japan. We believe the history of
the DECwindows program shows that it is
possible to do large-scale distributed software
development.

Improvement Areas
The text widget was designed with more function
ality than was required for most usage. If we had
recognized earlier that not as much design intricacy
was needed, we could have devoted more time and
resources to addressing the issue of a compound
string text widget.

The intrinsics were designed around a single
thread of execution. There is considerable pressure
from applications that are multithreaded to allow
use of the toolkit from multiple simultaneous
threads of execution. Currently, this is not possible.

Documentation was started early and proved
invaluable, but we did not have sufficient resources
to produce less formal, "how-to" manuals. The
scope and scale of the DECwindows programming
environment is quite large. Some basic but com
prehensive manuals on how to get started would
have complemented the documentation we did
produce and made programming much easier for
application developers.

Tbe XU/ Toolkit as tbe Basts for
OSFIMOTIF
Early in the DECwindows program development,
Digital and several other companies founded the
Open Software Foundation (OSF}. Towards the end
of DECwindows version I development, OSF issued
a request for technology to become OSF's User
Environment Component. In response, Digital
submitted the XUI Style Guide, XUI toolkit, and
window manager as a package. Altogether, OSF
received a total of 38 submissions.

32

OSF chose the XUI toolkit as the base application
programming interface and implementation for the
Motif toolkit? Because of the OSF's members desire
for Presentation Manager compatibility, the XUI
toolkit was modified to use Hewlett-Packard's
three-dimensional appearance and be compatible
with Microsoft's Presentation Manager behavior.

Digital is currently transitioning from the XUI
toolkit to the Motif toolkit for the DECwindows
program. Although the transition for an application
requires some changes, most of the XUI toolkit
programming concepts remain. The group that
designed and implemented the XUI toolkit is now
focused on delivering the Digital implementation
of the OSF/Motif toolkit. We are working closely
with OSF on the evolution of the toolkit through
specification and design reviews. We are also work
ing with other Digital groups to make the transition
as smooth as possible.

Tbe Future and Standards
In summary, the XUI toolkit provided a success
ful user interface programming toolkit for the
DECwindows program and provided the basis for
OSF's graphical user interface toolkit, OSF/Motif.
For the future, the definition of the OSF/Motif tool
kit belongs to OSF and its member companies,
which is a major benefit for application developers.
The user interface component of an application can
now be ported to many different systems. End users
also benefit because a consistent user interface will
exist on many different systems.

We will remain heavily involved in the evolution
of the Motif toolkit to help ensure that it maintains
the quality required of it as the user interface toolkit
for the DECwindows programming environment.
However, now that the toolkit is an OSF standard
rather than a Digital proprietary interface, we are
faced with some new challenges.

We can no longer change (or not change) the
Motif toolkit to fit our proprietary needs. If we
want to make changes, we must propose the
changes through the OSF process. Also, we must
accept changes made by OSF, even if those changes
create rather than solve problems for us.

For example, the XUI toolkit, as with all other
VMS run-time libraries, is packaged as a shareable
image. One of the goals of VMS shareable images is
binary-upward compatibility. This compatibility
allows the VMS system to ship new versions of a
shareable image, which may fix bugs or improve

Vol. 2 No. 3 Summer 1990 Digital Tecbnica/Journal

performance, without requiring the application to
be relinked. However, with OSF-defined changes,
we cannot ensure binary-upward compatibility
between releases of Motif. At present, we are work
ing on how to solve these problems.

Acknowledgments
We would like to thank the many people who
contributed to the development of the intrinsics
and the XUI toolkit, especially the members of
the toolkit and UIL teams who combined excep
tional talent and dedication to produce the toolkit
programming environment: Vick Bennison, Jeff
Orthober, Jay Bolgatz, Steve Greenwood, Scott
Smith, Ross Faneuf, Marc Zehngut, Dave Utz, John
Ronan, Dan Mullen, Jerry Harrow, Steve Grass,
Pat Chandler, Jeff Reyer, Jim VanGilder, Roger
Brinkley, and Bob Pellegrino. We would also like to
thank the engineering groups who provided
essential components to the XUI toolkit: the
Western Software Lab in Palo Alto, California;
Asian-based Systems in New Hampshire, Japan, and
Israel; the Commercial Languages and Tools Group
in Valbonne, France; and the Software Usability
Group in New Hampshire.

Digita l Tecbntca/Journal Vol. 2 No. 3 Summer 1990

Development of the XU/ Toolkit

References

1. VMS DECwindows Toolkit Routines Reference
Manual (Maynard: Digital Equipment Corpora
tion, Order Nos. AA-MG23B-TE, AA-MK88B-TE,
October 1989).

2. VMS DECwindows Guide to Application
Programming (Maynard: Digital Equipment
Corporation, Order No. AA-MG21A-TE, October
1989).

3. T. Spine and). VanNoy, "The Evolution of the
X User Interface Style," Digital Technical
Journal, vol. 2., no. 3 (Summer 1990, this issue):
44-51.

4. S. Greenwood, "The DECwindows User Inter
face Language," Digital Technical Journal, vol.
2, no. 3 (Summer 1990, this issue): 34-43.

5. R. Travis, "CDA Overview," Digital Technical
Journal, vol. 2, no. 1 (Winter 1990): 8-15.

6. X/Open Portability Guide XS/ Supplementary
Definitions (Englewood Cliffs: Prentice-Hall,
Inc., U.S.A., December 1988).

7. SF/Motif Programmer's Reference Manual, revi
sion 1.0 (Cambridge: Open Software Foundation,
Inc., August 1989).

33

Stephen R. Greenwood I

The DECwindows User
Interface Language

A key theme of the DECwindows program is to improve productivity for both the
end user and the developer of an application. End user productivity can improve
through the use of a windowing environment; the developers' productivity is
improved by the the availability of a high-level set of constructs for building a win
dowing application. The user interface language (UIL) plays an important role in
enhancing productivity. UIL significantly reduces the cost to build and maintain
DECwindows applications by providing a specification language for describing an
application interface. This paper analyzes the motivation for developing UJL, its key
features, several interesting implementation issues, and possible future directions
for the language and the product.

The DECwindows user interface language (UIL)
aids application developers in managing the com
plexity of DECwindows interfaces. This paper
investigates UIL 's relationship to the other
DECwindows program components and how UIL
deals with managing interface complexity. Speci
fically, the paper discusses the history ofUIL, its key
concepts, major implementation issues, and the
future of the language.

History of the User Interface
Language
January 1988 was the target date for the first inter
nal release of the DECwindows program. To meet
that deadline, much of the high-level strategy for
the DECwindows program had been set by August
1987. Digital was making a major move into the
workstation market with products built around the
X windows protocol developed at MIT.1 Both the
ULTRIX and VMS system development groups were
producing servers and host libraries that conformed
to the X standard. The object-oriented XUI toolkit
was under development. It would implement the
standard set of objects and operations (often called
the "look and feel" or style) of the DECwindows
program. The toolkit would layer on top of the
X windows platform being developed on both
operating systems.

To be viable in the marketplace, the DECwindows
program had to be more than a toolkit based on the
X Window System. Applications had to illustrate
the DECwindows style, capture the growing seg-

34

ment of the market that had no interest in typing a
command line, and show Digital's commitment to
the workstation market through the DECwindows
program.

The XUI toolkit was, and still is, the key to
leveraging applications. It presents DECwindows
concepts at a high level and still allows substantial
flexibility in controlling those concepts. Widgets
are the high-level abstractions that map one-to-one
with the graphic components of an interface. If a
dialog box that contains a set of toggle buttons is
needed, a dialog box widget that contains a set of
toggle button widgets is created. Widgets provide
flexibility through their attributes. Each attribute
controls some visual aspect of the widget's appear
ance on the screen. By giving most attributes a
default setting that conforms to the DECwindows
style, applications can look similar but have the
power to be different.

A DECwindows interface can be created by
invoking procedures in the XUI toolkit. These
procedures create widgets, specify the widgets'
attributes, specify the actions to be invoked when
the widgets are manipulated, and control when
widgets should be displayed or hidden from view.
Attributes and their corresponding values are
passed to a creation routine, using a variable length
array. If one widget will contain other widgets, as
in the case of a dialog box, the container is created
first. Each of the widgets contained within the
dialog box is then created by designating the dialog
box as its parent. Once the entire structure has been

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcal]ournal

constructed, another call is made to an XUI toolkit
routine to display the dialog box and its contents on
the screen.

Although the toolkit made the process of
mapping Widgets to screen artifacts conceptually
simple, the coordination and sheer number of arti
facts made the process complex. An application's
attributes, actions, and contained widgets, which
could number in the hundreds, might require
several thousand lines of code to construct. To see
the structure of the application interface within that
code required discipline.

UIL was the tool developed to manage the
complexity of the interface. UIL preserves the
simple conceptual model established by the tool
kit. Through the UIL specification language, an
application developer states the widgets that com
pose the interface, their attributes, and the relation
ships among them. Missing from a UIL-specified
interface are the thousands of lines of code to
construct the interface.

Range of Solutions
Several approaches to the problem of managing a
large number of windows exist in the industry.

One approach is Microsoft's Resource Script File,
which contains ASCII descriptions of user interface
components.2 The resource script file gives textual
descriptions of fonts and windows. For dialog
boxes, the attributes of the box and the objects that
are within the box are specified. An application
uses the information in the script file to create its
interface. The application controls the degree to
which the application interface is described by a
script file versus being described in the code of the
application.

Another approach is to build interfaces through
direct manipulation.3 With this approach, the inter
face designer uses a workstation to construct the
interface as it will appear to the user of the
application. The interface is built by selecting the
appropriate components from a palette or list and
placing them on the screen. For example, if the
designer chooses a dialog box, a default dialog box
is displayed on the screen. The designer can then
manipulate the borders of the box until it is the
correct size. Toggle buttons and list boxes can be
selected from a palette and placed wherever desired
within the dialog box. Each graphical artifact has
a list of attributes that can be displayed and mod
ified by the designer. The effects of the changes
to the attributes are displayed immediately. The
Macintosh resource editor and SuperCard are
examples of this approach~·5

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

The DEC windows User I n terj ace La.nguage

Graphical solutions are the best method for a
designer to see how each window will look. The
designer receives an immediate picture of the place
ment, size, and visual characteristics of each
graphic component. To build such a system, a
working toolkit with dialog boxes, list boxes,
labels, and toggles is necessary. In fact, the toolkit
had best be quite mature. The XUI toolkit was not
ready in August 1987. Therefore, despite the many
advantages of graphical solutions, a specification
language was the correct solution to support inter
face building in the DECwindows program at that
time. The language could be constructed and ready
to leverage building DECwindows interfaces by the
target date of}anuary 1988.

UIL Constructs
The user interface language (UIL) is a simple, text
based language. Its objective is to specify the

• Graphical objects in a DECwindows interface

• Attributes of each graphical object

• Actions each graphical object can trigger

• Relationships among these graphical objects

The code fragment in Figure 1 illustrates the
specification of two widgets using UIL.6 Widgets
are the most common graphical objects in the XUI
toolkit. (Note: The XUI toolkit supports both
widgets and gadgets, the latter being a restrictive
form of widget. UIL defines objects that may be
either widgets or gadgets. A more detailed explana
tion is provided in the Support for Defining UIL
Objects section of this paper.)

The first declaration in Figure 1 defines a popup
dialog box, called OPEN_LIBRARY This declaration
contains two subparts that specify the attributes for
the dialog box and also the other widgets that the
dialog box contains. The attributes listed are
specific to the popup_dialog_box widget. Each
attribute also has a type, such as integer, string,
Boolean, or another object. All of the attributes of a
popup_dialog_box widget need not be listed. Each
attribute has a default value that is used when a
value is not specified for that attribute.

The OPEN_LIBRARY widget contains six other
objects listed in its controls clause, which specifies
the objects contained within the object being
defined. Both the XUI toolkit and the X Window
System use a tree to describe the relationships
between objects, i.e., widgets in the case of the
toolkit, and windows in the case of the X Window

35

DECwindows Program

! + +

l Dialog box for determining the library to open
! --
object OPEN_LIBRARY
{ arguments

{ title

popup_d i alog_box widget

"Open Library" ;
DWHC _MODELESS ;
TRUE ;

style
default_po5 i tion
defaul Lbut ton
take_focu5
height

push_button OK _PUSHBUTTON ;
TRUE ;

width
} ;

control5
5imple_text
label
li5Lbox
toggle_button
pu5h_button
pu5h_button

} ;
} ;

z 400 ;
350 ;

LIBRARY_ TEXT ;
LIBRARY _LABEL ;
LIBRARY _LI ST ;
ADD_TO_LIST ;
OK_PUSHBUTTON ;
DISMISS_PUSHBUTTON ;

object OK_PUSHBUTTON : pu5h_button widget
arguments
{ label_label "OK" ;

x

y
} ;

100 ;
s 300 ;

text field
label for text field
existing library li5t
add text field to list
do the open
can ce 1 the open

cal lback5
{ activate

help
} ;

s procedure CLICKCLIBRARY_OK_PUSHBUTTON> ;
procedure HELPCLIBRARY _OK _PUSHBUTTON) ;

} ;

Figure 1 UIL Specification of Two Widgets

System. The object that controls or contains all
other objects is at the root of the tree. Each child of
the root lists the objects that the child controls. This
paradigm is represented in UIL with the controls
clause. In the example illustrated in Figure 1, the
popup_dialog_box widget controls a

• Push button to start the open library operation

• Dismiss button to cancel the open library
operation

The second object definition describes the third
property of a widget, called callbacks. Callbacks
are DECwindows terminology for actions that
the widget can trigger. The term callback is used
because the widget is calling the creator of the
widget back to react to an event defined by that
widget. The widget OK_PUSHBUTTON states that
for the activate action, the procedure CLICK should
be called; for the help action, the procedure HELP
should be called.

• Text object for soliciting the name of the library

• Label for the text object just described

• List box with the names of existing libraries

• Toggle button that will cause the library named
in the text object to be placed in the list

36 Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal

Each widget has a specific set of callbacks that it
makes. Many of the callbacks, such as help and
activate, are common to more than one widget.
The sequence of actions performed by the user to
trigger the callback can also be programmed by the
application through its translation table attribute.
Most applications, however, accept the defaults for
these sequences since the defaults are programmed
to conform to the DECwindows style. For example,
activate is a down click on mouse button (MB) 1.

By convention, a procedure invoked as a call
back has three arguments. One of these arguments
is the widget identifier, a unique value used to
distinguish one widget from another. Using this
identifier, a callback can inquire about any of the
widget's attributes at run-time. The second argu
ment is application-defined information that can
be designated in UIL. The value of this second argu
ment is often used to distinguish which widget has
initiated the callback. In the example in Figure 1,
all help callbacks may invoke the HELP procedure.
The HELP procedure determines the information
to be displayed based on the value of the
application-defined argument. The third argument
varies widely from one type of widget to another.
It normally contains useful state information about
the widget, such as the state of a toggle button.

The concepts covered so far in this section are
the core of a UIL specification. UIL is a declarative
language. It contains no constructs that specify
flow of control, such as the if-then-else or loop
constructs found in programming languages like C
or FORTRAN. The language simply states the objects
in an interface, the attributes of each object, the
procedures to invoke when an object is manipu
lated, which objects are contained within other
objects, and what those other objects are.

Creating an Interface with UIL
To create an interface for an application, the infor
mation in a UIL specification must be transformed
into a series of calls that will invoke the necessary
XUI toolkit routines to create that interface.

This transformation can be implemented in
many ways. The Challenges in Implementing UIL
section of this paper discusses a few of those possi
bilities. Digital's solution consists of compiling the
UIL specification into a binary format that resides
on disk, called a user interface description (Um)
file. The XUI toolkit includes routines that can cre
ate all or part of an interface from the description in
a um file. The steps to create an interface using UIL
are discussed in more detail below.

Digital Tecbntcal]ournal Vol. 1 No. 3 Summer 1990

The DECwindows User Interface Language

Step 1: Creating a UJL Specification File The UIL
specifications are ASCII files that contain the defini
tions of the widgets in the interface, the widgets'
attributes, and actions that result in callbacks to the
application. The order of the widget definitions in a
UIL specification is irrelevant. The controls clause
indicates the parent-child relationship between the
widgets. The MANAGED attribute controls whether
a child is visible when its parent is visible. The
MANAGED attribute is also the default attribute
in UIL. If a child widget is attributed as being
MANAGED, it will be visible when the parent
widget is visible.

Step 2: Compiling the UJL Specification Two pur
poses are served by compiling the specification.
First, the compiler checks the specification to
ensure that the attributes, callbacks, and children
described for a widget are valid for that widget.
Furthermore, for attributes, the compiler checks
that the type of value for that attribute is correct.
Checking is very important and is done before the
application is run. The checks need not be per
formed by the XUI toolkit creation routines and
actually are not. Attributes or callbacks not sup
ported by a widget are simply ignored at run-time.
Attribute values of the wrong type cause the
application to misbehave. The second purpose of
«ompilation is to produce the um file.

Step 3: Creating the Callback and Driving Routines
An application is a program written in a program
ming language, such as the C language. The applica
tion must call several XUI toolkit routines to create
the interface:

• Call A initializes the toolkit

• Call B registers the um files that describe the
interface

• Call C designates addresses of callback routines

• Call D builds the interface

• Call E starts delivering events to the application

Calls A and E are standard to all DECwindows
applications. Calls B, C, and D are unique to UIL and
take the place of the thousands of lines of code
described earlier.

The callback routines listed in the UIL specifi
cation must also be a part of the application pro
gram. um files are not object files. Therefore, the
addresses in the application that correspond to the

37

DECwindows Program

callbacks listed in the UID file must be registered
with the toolkit. This is call C in the list above.

Call D in the list above is the subject of the next
step.

Step 4: Building the Interface To create and display
a part of the interface, the application program
must fetch that part of the interface using a routine
in the toolkit. The fetch operation specifies an
object in the interface. The toolkit then creates
that object with the specified attributes and call
backs. Furthermore, the fetch call fetches any
child of the object and creates the child object
as well. In fact, the entire tree of objects con
tained within the original object is created. In the
case shown in Figure 1, if the popup_dialog_box
OPEN_LIBRARY were fetched, the widgets for the
popup_dialog_box, the six children of the box, and
the children's children would be created.

The fetch routine returns the widget identifier of
the widget the routine created. The tree of widgets
is displayed by calling the toolkit routine to manage
that widget. Because the UIL specification listed the
containing widgets to be displayed, the single call to
manage the fetched widget displays both the widget
and the containing widgets.

UID files actually hold a template of each tree
of widgets. Consequently, a tree of widgets can
be fetched as many times as needed. Each fetch
produces a new set of widgets.

UIL Hierarchies
Customization is another important facet of an
interface. Users of a tool prefer that the tool's inter
face be tailored for the user's environment.
Customi7..ation can involve such things as changing
all text to a foreign language, omitting advanced
features, or changing the default settings of toggle
buttons and text fields. Separating the interface
from the functions that implement the interface, as
is the case with UIL, inherently provides some
degree of customization capability. However, UIL
also provides hierarchies of interfaces that simplify
customization.

A UIL hierarchy is a list of UID files. The XUI
toolkit receives the UID list when a user declares an
intent to use UIL (call Bin the last section). When an
application directs the XUI toolkit to fetch a widget,
the toolkit initially searches for the widget in the
first UID file on the list. If the widget is not found,
the toolkit continues to search down the list until it
finds the widget. In this hierarchy, parts of an inter
face can be overridden by redefining the interface

38

in another file that is located earlier in the hierarchy
list. The balance of the interface is located in
another UID file later in the list.

UIL further supports the hierarchy concept by
permitting every named resource to have one of
three attributes: exported, imported, or private. An
exported resource is visible outside the UID file.
Thus, an exported resource is a value or widget that
can be fetched at run-time. An imported resource is
not defined in the UID file. The resource is expected
to be supplied by a corresponding exported
resource in another UID file in the hierarchy. Private
resources are local to a UID file and cannot be
overridden by another definition of the same name
in the hierarchy list.

With these attributes and the hierarchy, UIL
allows a designer considerable control in tailoring
an application. Those parts of the application that
can be tailored without breaking the application
can be exported. The names of buttons, labels, and
titles are commonly exported resources where a
user can supply alternate definitions. On the other
hand, the designer may designate that a button
widget, e.g., the buttons used to insert the control
rods, may not be altered. In this case, the button
widget is designated private, and the button cannot
be customized.

Support for Defining UIL Objects
UIL is not a large language. However, it extensively
supports widget definition.

The values of toolkit attributes include strings,
compound strings (e.g., non-Latin text, such as
Kanji and Hebrew), icons, integers, widgets,
Booleans, and fonts. UIL contains primitives to
express these values. Arithmetic operations are
provided for integers and concatenation for string,.
UIL also provides lists for common sets of attributes,
callbacks, and controls. The list can be defined once
and subsequently used in multiple places.

Combining the widgets in the toolkit to build
more specialized or complex widgets is an impor
tant part of the XUI toolkit. UIL supports this con
cept in two ways. First , UIL contains constructs for
defining new attributes and callbacks. These can be
used in conjunction with a user-defined widget to
specify widgets for which the compiler has no
knowledge. The second technique is to reconfigure
the compiler to understand the new widget. The
Challenges in Implementing UIL section of this
paper discusses this technique in more detail.

A UIL specification defines objects. The XUI
toolkit creates widgets. We use two different terms

Vol. 2 No. 3 Summer 1990 Digital TecbnlcalJounial

because the toolkit creates two kinds of objects:
widgets and gadgets. A gadget is a more efficient
and more restricted form of widget. An application
that does not need all the capabilities of a label or
push-button widget may use a label or push-button
gadget. In general, gadgets use less time and mem
ory than the corresponding widget. UIL supports
gadgets and widgets, but calls them both objects.
Users can change from one to the other in the UIL

specification. Thus, it is simple to develop an appli
cation by using widgets and then converting parts
to gadgets during the tuning of the application.

The Challenges in Implementing UIL
The challenges in implementing UIL are typical of
the constraints that most software projects face in
the 1990s. Resources are limited, and the product
has to have the vision to last a decade.

Time and personnel were at the top of the
resources list. In September 1987, UIL was a thought
with no concrete language specification. By January
1988, it was in field test. The project started with
one engineer; it was staffed with two engineers by
the end of September. Engineering resources
equivalent to the time of 1.5 engineers were added
to perform the run-time fetching of widgets in
October. Thus, by the field test date, the equivalent
of 3.5 engineers was assigned to the UIL project.

Neither of the starting engineers had any
experience in developing an application in the C
language. The C language was, however, the logical
choice for an implementation language because
UIL needed to run on both the VMS and ULTRIX

operating systems, and both systems had reason
ably compatible C compilers and run-time libraries.

The principles of the XUI toolkit were in place.
However, the list of widgets to be implemented and
their attributes and supported callbacks continually
changed up until the last field test update.

Thus, in addition to the personnel and time
constraints, the team was forced to deal with a new
implementation language and a toolkit whose
specification was in flux.

Careful planning of the parts and interfaces of the
compiler was the key to delivering the product on
schedule. To be ready in January, it was essential
that communications among the developers be
frequent and thorough because there was no time in
the schedule to redesign parts. To make the project
simpler, the compiler was separated into operating
system specific parts (those that needed to be
recoded for each operating system) and operating
system-independent parts (portable code that

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

The DECwindows User I nter/ace Language

would run on all systems). The operating system
specific sections were the command line parsing,
and within the I/0: reading the source, writing the
listing file, issuing diagnostics, and writing the um
file. The remaining parts were common code.

Changes in the Widgets
The compiler group worked closely with the XUI

toolkit group. Therefore, we knew early that the
specification of the widgets would change during
the implementation of the compiler. As a result,
we developed a small specification language for
describing the widgets, their attributes, their call
backs, and the kinds of widgets that could act as
children. A program was written in VAX SCAN to
read the widget specifications and create tables that
the compiler could use to validate widgets.7 Once
this mechanism was in place, the XUI toolkit
developers could provide the compiler group with
a new specification for a widget, and, within a few
hours, the compiler could be regenerated to include
the new specification.

The specification language aided the develop
ment of UIL in several ways. First, the compiler
group could concentrate more on the development
of the compiler and less on the validation of current
widgets in the toolkit. Second, communication
between the toolkit and the compiler groups was
enhanced. The toolkit group better understood the
impact of changes. The group recognized that new
widgets with attributes similar to those already
developed could be added to the compiler easily.
However, new types of arguments and new types of
relationships between widgets required more work
in the compiler.

The Open Systems Foundation (OSF) recognized
the advantage of a configurable compiler. The con
figurable compiler was one of the reasons OSF chose
the XUI toolkit as the basis for its windowing star.
dard. OSF envisioned that each of its members
might want a different set of widgets in their indi
vidual toolkits. The UIL compiler could be altered to
support each vendor without each vendor having
its own version of the source. Therefore, bugs fixes
and enhancements could be made to the base com
piler. Each vendor need only regenerate its version
of the compiler to incorporate the changes. The
vendor need not apply the set of changes to its
version of the compiler sources.

OSF was less impressed with the implementation
technique for configuring the compiler. VAX SCAN

is a Digital product that runs on VAX computers
supporting VMS systems. In accepting UIL, OSF

39

DECwindows Program

stipulated that the table generators be recoded in
a portable language. Due to time constraints, the
first version of Motif VIL emulated the work of the
VAX SCAN program in the C language.

Version 2 provided a better solution. A formal
language was devised for specifying widgets, and a
compiler was built to produce the tables needed by
the VIL compiler to perform its validations. These
tables also could be used by other tools, such as the
direct manipulation version of VIL or even the
toolkit, for a formal definition of a widget.

Determining the Form of a UID File
Several requirements were placed on the imple
mentation of VIL interfaces. First, the interface
needed to be created efficiently. If VIL-based inter
faces made the application run appreciably slower,
application developers would not use VIL for per
formance reasons. Second, an interface that used
VIL could not significantly increase the memory
requirements of the application. Third, operating
system independence was important to minimize
the additional work needed to port VIL to another
platform. Finally, the technique had to support the
hierarchy concept discussed in the last section.

We explored two designs for the form of UID
files. The first design was to produce an object file,
i.e. , .o files for ULTRIX systems and .obj files for VMS
systems. The second design was to encode VIL using
the X resource manager (XRM}, a database already
used in the XVI toolkit to retrieve user preferences.

Object files were appealing since they already
are a standard component of an application and
programmers have experience with using them.
With object files, the VIL compiler might be able to
produce the XVI toolkit's internal structures for
widgets. If it could, the creation of interfaces coded
using VIL would be even faster than using the
creation routines supplied by the toolkit. We opted,
however, not to use object files because they made
the compiler too dependent on the internal struc
ture of the toolkit. Each time the toolkit's internal
structures changed, the compiler would need to be
modified. We would also need to establish mech
anisms to handle the inevitable changes to the
toolkit in subsequent releases. If we did not, appli
cations that used VIL would need to be recompiled
for each subsequent release of the toolkit. This
violates the VAX and VMS systems convention of
upward compatibility, i.e., old programs continue
to run with newer versions of the operating system.

The second difficulty with object files was their
portability. Object files are different for each operat-

40

ing system, and storage allocation varies with each
hardware platform. The logistics of creating a new
object file emitter for each operating system and
hardware platform involved a considerable amount
of work, especially in an environment such as OSF.

XRM, the second potential solution, is an in
memory database that has a rather elegant retrieval
mechanism. Arbitrary values can be stored in the
database. Each value is associated with a key in the
form of:

string1. string2 stringM

where stringl through stringN are ASCII strings. To
retrieve a value from the database, the user provides
the retrieval key for that value, such as

CMS .OPEM_LIBRARY . OK_PUSHBUTTOM . COLOR

XRM then matches the key in the database that most
exactly matches the retrieval key. All of the database
keys in Figure 2, except the second and sixth keys,
match the retrieval key in some form.

XRM returns the fourth key because it most
exactly matches the start of the retrieval key and
does not contain any string not found in the
retrieval key.

The XVI toolkit includes routines to read an ASCII
file containing records, such as those shown in
Figure 2, and to create an XRM database. Routines
also exist to merge XRM databases. Given a retrieval
key, routines exist to find the value whose key best
matches the retrieval key.

The XRM database was already an integral part
of the toolkit. On creation, a widget determines the
value of its attributes by first looking at the attri
butes passed on the creation call. If the attributes
are not found in that list, the widget checks the XRM
database for a value for the attribute. The key used
to retrieve the value consists of the names of the
widgets from the root of the widget tree to the
widget interested in retrieving the value. Thus,

CMS . OPEM_LJBRARY . OK_PUSHBUTTOM . COLOR

is the retrieval key for the color attribute con
tained within the OK_PUSHBUTTON widget, within
the OPEN_LIBRARY widget, and within the CMS root
widget. If XRM does not find a match, the widget
uses a default value for the attribute.

To use XRM databases for UID files, the VIL com
piler emits an ASCII XRM file containing records that
encode the widgets described in a VIL specification.
However, the primitive parser for reading key-value
pairs into an XRM database could understand only
string and integer values. New types of values

Vol. 2 No. 3 Summer 1990 Dtgttal TecbntcalJournal

The DECwindows User Interface Language

1. COLOR • "black"
2. DI SMI SS_PUSHBUTTON.COLOR = "mauve"
3 . CMS.COLOR= "cian"
'I . CMS.OPEILLIBRARY.COLOR = "orange"
5 . OK_PUSHBUTTON.COLOR = "pink"
6 . CMS.OPEILLIBRARY.OK_PUSHBUTTON.LABEL.COLOR = "blue"

Figure 2 XRM Database Keys and Values

were needed to represent widgets and their call
backs. These minor problems would be easy to
overcome. Overall, this plan seemed to provide a
portable solution.

Unfortunately, one major problem that could not
be surmounted was performance in both the time
and space dimensions. The routines to create XRM
databases took 12 seconds to load 2000 values.
(Note: Measurements were taken on a standalone
VAXstation 2000 with 6 megabytes [MB] of mem
ory and one RD 32 disk drive.)

An object, such as the popup_dialog_box
OPEN_UBRARY, consisted of 1 widget, 7 attributes,
and 6 controls, for a total of 14 items. Each of these
items needed to be a value. If the average were 10
values per object, 2000 values only represented 200
objects. A system that could handle 10,000 objects
was needed.

Customization hierarchies also presented a
resource problem using XRM. Each of the files in
the hierarchy had to be initially loaded into its
own XRM database. These databases could then be
merged one at a time into the first database of the
hierarchy. Merging 2000 values into an XRM data
base took 10 seconds.

Memory was also an issue with XRM databases,
which are memory resident. Testing showed that
memory usage of 250 to 500 bytes per value was
common. A small to moderate application with
200 objects, each having 10 values, would produce
a 0.5 to lMB database. Once the XRM database was
built, the XUI toolkit would create another copy of
much of this information in its widget data struc
tures. Deleting the XRM database after it had been
used was a possibility. However, to follow that solu
tion required being able to predict when the last
request to fetch a widget tree had taken place.

Based on these problems, we determined that
storing UID files in XRM databases was not the
right solution. XRM is targeted at customizing attri-

Digi tal Tecbn i caljournal Vol. 2 No. 3 Suml1U!7" 1990

butes of specific widgets or classes of widgets and
not at creating entire interfaces. UIL needed its own
specialized database.

UID files and the software that retrieves data from
the files are designed to best fit all the requirements
stated at the start of this subsection. In the balance
of this section, the techniques used to meet the
requirements are discussed briefly.

Memory Usage
To meet the memory objective, only the part of a
UID file needed at the current time is kept in mem
ory. The rest of the interface description remains on
disk. The UID file is structured as a sequence of
blocks. Fetching a widget requires fetching the
block or blocks that hold that widget's description.
Once the description is fetched and used to create
the widget, the memory blocks can be released to
be used to read yet another widget description.

Performance
To meet the performance objective, a resource in
a UID file is located in one of two ways: by using
its ASCII name or by using an offset into the UID

file. The name mechanism is used for exported
resources, and the offset mechanism is employed
for private resources. The ASCII names are kept in
an index and mapped to their UID file offset by
using a B-tree algorithm.8

This scheme is a good compromise between the
requirements for efficiency and those for support
ing the hierarchy. The B-tree algorithm lets the
toolkit find a named resource with a minimum
number of reads from the UID files in the hierarchy.
Private resources can be addressed directly in the
UID file. The compiler attempts to write trees of
widgets in the order that the widgets will be
fetched. This decreases the number of disk reads
needed to fetch the interface from the UID file by

41

DECwindows Program

increasing the probability that the next widget
needed is in blocks currently in memory.

Operating System Independence
Operating system independence is addressed by
dividing the system into two layers. Only the lower
level has system-dependent routines for reading
blocks of the UID file into memory. The majority of
the code resides in the higher level of the system
and is operating system independent. This layer
interfaces with the XUI toolkit. It implements rou
tines to fetch a tree of widgets or fetch a value from
the UID file. The raw data kept in the UID file is simi
lar in structure to the data structures needed to call
the widget creation routines.

To create a widget, the higher level first loads
the description for this widget. It next builds the
argument list for the creation routine for this
widget. This list specifies the attributes and call
backs for the widget. Any of these arguments may
reference another named resource that needs to be
found in the hierarchy. Once the argument list is
built, the widget is created. The children of the
widget are built by using a recursive algorithm. The
final step is to manage the widget if that was
requested in the UID file .

The system works well. Most widgets are only
created once and in a serial order. The system can
read thousands of widget specifications through
a 4 kilobyte (KB) buffer without thrashing. The
system also allows the flexibility to resolve any
resource at run-time by looking through the hier
archy. At the same time, the system provides a much
faster mechanism for the private resources that are
more common.

Conclusions and the Future
The initial goal of the UIL project was to reduce the
burden of building DECwindows application inter
faces. The suite of DECwindows tools announced
with DECwindows version 1.0 impressed the indus
try. VAXSet, the VMS Debugger, DECwrite, and
many other products were all available shortly after
the DECwindows software was released. Almost all
of the products had UIL-based interfaces.

UIL offers many advantages. First, the user inter
face is extracted from the application. The many
objects used by an application are not mixed with
the other code of the application. The objects, their
attributes, and their relationships are clearly visible
in the specification and not subject to studying the
flow of control within the application. Because
the interface has been extracted into a specifica-

42

tion, its complexity is managed more easily. For
example, searching to see where an attribute is used
or if there is already a button that can be reused are
simple tasks.

Another advantage of UIL is the checking per
formed by the compiler. The compiler understands
the constraints posed by each widget. It will diag
nose many common construction errors when
describing or combining widgets. These are all
checks that can be made before an application is run
to ensure that the XUI toolkit's widgets are used
correctly. The toolkit, in fact , does not make many
of these checks. Invalid attributes, attribute values,
and relationships between widgets are sometimes
ignored and sometimes result in unpredictable
behavior. The toolkit is coded in this fashion for
two reasons. First, if an attribute does not apply to a
widget, the widget assumes it applies to its parent,
which may not be true. Second, each check made
decreases the efficiency of the toolkit. Therefore,
the toolkit relies on tools, such as UIL, to catch
construction errors.

UIL helped improve the XUI toolkit. Because it is
a language with a formal grammar, UIL provides an
excellent method to monitor the regularity of the
interfaces to the toolkit. Extensions to the toolkit
often require extensions to UIL. Therefore, in mak
ing a change, UIL makes it easier to understand how
the change will affect the entire toolkit.

UIL allowed the toolkit to grow. For example,
compound strings and gadgets were not part of the
January 1988 version of the toolkit. In the case of
compound strings, many text arguments changed
to require a compound string rather than an ASCII
string. Applications using UIL made very few
adjustments as a result of the compound string
changes. The UIL compiler allowed the designer
to continue to think in terms of strings. The com
piler, knowing the type of each attribute value,
determines whether an ASCII or compound string is
needed. Non-UIL-based applications had to be
edited wherever an ASCII string was replaced with a
compound string.

Gadgets require changes in a UIL specification.
An application developer can specify a particular
object or a class of objects to be gadgets. The com
piler supports experimenting with gadgets. First, it
tells the developer if a widget does not have a corre
sponding gadget form. Changing between widgets
and gadgets is performed simply by changing an
attribute. Because UID files are separate from the
application itself (i.e., not object modules), a new
UID file can be created and tried with the existing

Vol. 2 No. 3 Summer 1990 Dtgttal Tecbntcal]ournal

application. Non-UIL-based solutions are forced to
edit the application at each call site. The application
then needs to be recompiled and relinked.

Areas to Improve UIL
UIL is not the perfect solution to creating
DECwindows application interfaces. Trying to
adjust the geometry of an application, e.g., the size
and location of widgets, in a specification language
can be difficult. It may require fine-tuning and
rerunning programs several times before the solu
tion is found. Direct manipulation tools are far
superior in this area.

This is not to say that a specification language is
always inferior to direct manipulation. Changing an
interface from English to another language is easier
with a specification. The translator can read the
specification and be assured that all cases were
seen. If the need for multiple languages is antici
pated, all text strings can be isolated into a separate
area of the specification. With direct manipulation,
the entire application must be manipulated and
every piece of that application must be examined.
Maintaining a history of changes to an interface or
ensuring that a part of an interface is the same
in two applications is also difficult with direct
manipulation but does not present problems in a
specification.

Digital's UIL implementation also has areas that
can be improved. UIL attempted to support both
case-sensitive and case-insensitive names for both
C and non-C programmers. The toolkit attempted
to do the same thing. The intent was to make some
of the nuances of C programming less of an issue
to non-C programmers. Many C constructs
remained, and the programmer needed to remem
ber which interfaces adhered to C rules and which
did not. Motif wisely chose to use only one con
sistent interface.

Another area for improvement is the mapping
of callback names in UIL to the corresponding call
back procedures in an application. The application
developer must specify the mapping. The UIL com
piler can and should emit a segment of code that
will build the map.

User-defined widgets are another weak point of
the language. Although a vendor with access to
the sources of the compiler can add widgets to the
compiler, an application developer cannot. By
using the mechanism in the language, the developer
can define new attributes, callbacks, and widgets.
However, in doing so, the developer sacrifices the
normal error-checking performed by the compiler.
UIL needs a mechanism that allows the developer to

Digital TecbnicalJournal Vol. 2 No. 3 Summer 1990

The DECwindows User Interface Language

define new widgets and ensure that uses of the new
widgets are consistent with the definition.

Future Development
The future of UIL is bright. OSF has adopted UIL
as part of its Motif offering. Consequently, UIL
will be available on many Motif platforms. UIL will
also continue to mature within Digital by address
ing many of the weaknesses listed above and
continuing to support changes in the XUI toolkit.

Direct manipulation tools that support the XUI
toolkit will emerge in the not too distant future and
will play an important role in managing interfaces.
In fact, the coexistence of UIL and direct manipula
tion tools will be an interesting topic to monitor.
Vendors that combine the two ideas should do well
because they will be providing the best set of tools
to aid application developers in managing the com
plexity of their interfaces.

Acknowledgments
The development, documentation, and mainte
nance of UIL is a team effort, and I would like to
acknowledge the people who contributed to that
effort: Roger Brinkley, Ross Faneuf, Jerry Harrow,
Dan Mullen, Bob Pellegrino, Marybeth Raven,
Valerie Rodgers, Steve Rosenholm, CJ Schiraldi,
Scott Smith, Al Wojtas, and Marc Zehngut.

References

1. R. Scheifler, et al., X Window System C Library
and Protocol Reference (Bedford: Digital Press,
Order No. EY-6737E-DP, 1988).

2. Microsoft Windows Software Development Kit
Programmer's Reference (Redmond, WA:
Microsoft Corporation, 1986): 281-310.

3. L. Cardelli, Building User Interfaces by Direct
Manipulation (Palo Alto: Digital Equipment
Corporation, DEC-TR 526, 1987).

4. J. Hied and P. Norton, Inside the Apple Macintosh
(New York, NY: Simon and Schuster, 1989):
317-376.

5. D. Gookin, Ibe Complete SuperCard Handbook
(Radnor, PA: Compute! Books, 1989).

6. VMS DECwindows User Interface Language
Reference Manual (Maynard: Digital Equipment
Corporation, Order No. AA-MG22B-TE, 1989).

7. Guide to VAX SCAN (Maynard: Digital Equip
ment Corporation, Order No. AA-FU79C-TE,
1990).

8. D. Knuth, "Sorting and Searching," Ibe Art of
Computer Programming, vol 3. (Reading, MA:

Addison-Wesley Publishing Co., 1973): 473-480.

43

Thomas M. Spine I
Jacob L. Va nNoy

The Evolution of the
X User Interface Style

The X user interface (XU/} was a key element of the DECwindows program, version
1.0. XU/ changed Digital's approach to modern, graphic, direct-manipulation user
interfaces and consistency across applications. The XU/ style provides a consistent
means of user interaction across the VMS, ULTRIX, and MS-DOS operating systems
and the applications available on these operating system platfonns. The design was
used by the developers of the XU/ toolkit, as well as application designers. Further,
detailed attention to the iterative development of an application's graphic user
interface is now a standard aspect of the software development process.

In September 1986, Digital began work on a new
workstation software project, the DECwindows
architecture. Publicly announced in January 1987,
customers began receiving the first version of
the DECwindows base system and applications
inJanuary 1989.

The DECwindows architecture integrates the
user and graphical programming interfaces for the
MS-DOS, ULTRIX, and VMS operating systems. This
integration was accomplished in three ways. First,
the architecture offers network transparent win
dowing and interoperability between operating
systems by using the X Window System. Second,
it provides a common application development
environment with a Digital proprietary toolkit.
Third, a common workstation user interface
supports a consistent style of user-computer inter
action across the operating systems.

The X user interface (XUI) style fulfills the
requirements of the third component. The XUI style
is a consistent method of user-computer interaction
across operating systems and between applications.
Regardless of the operating system or application
used, common operations are performed by con
sistent actions. For example, resizing a window,
choosing a menu item, and selecting a file name are
all common operations that are independent of the
operating system or application being used.

Articulating an Interface Style
An interface style is sometimes called the look and
feel of an interface. The first part of this term, the
look, refers to the graphic or visual appearance of
the interface. The second part, the feel, refers to the

44

interface's interactive behavior. The look and the
feel of an interface are not independent. In response
to a user's input, for example, clicking a mouse but
ton, the interface's appearance will change. The
interface's behavior is indicated by this changing
appearance in direct response to a user's action.

Having gained experience with using a particular
computer system, most users tend to be quite good
at recognizing its look and feel. An analogy can be
drawn between interface styles and art styles. Given
a certain level of familiarity with an art style, many
people can easily categorize a painting that they
have never seen before. Thus, one can view a paint -
ing by Monet never seen before, yet automatically
know that the painting belongs to the Impressionist
style of art. Similarly, a user may have gained
enough experience with the DECwindows system
to be able to automatically categorize a new appli
cation as belonging to the XUI style the first time
they see it.

Although most people tend to be fairly good at
recognizing styles, articulating the characteristics of
a style tends to be a more difficult task. What are the
characteristics of a painting by Monet that make it
an example of Impressionist art? What are the char
acteristics of an XUI application that make it an
example of the XUI style? It is often easier to cate
gorize an example as belonging to a style than it is
to explain the characteristics that form the essence
of the style.

One of the challenges in the development of the
DECwindows architecture was to find ways to
describe the characteristics of the XUI style. This
articulation of the XUI look and feel was accom-

Vol. 2 No. 3 Summer 1990 Digital Tecbnical}ournal

plished by using many different approaches. These
approaches can be categorized as either describing
the style by analysis or by synthesis.

A style can be separated into parts, and the
functions and relationships of the parts can be
explained. Such an approach is description by
analysis. For example, a painting by Monet might
be analyzed by separating it into color and brush
strokes and explaining the relationship of these
components. In the development of the XUI style,
we used this approach in writing a technical speci
fication for the design. The XUI Style Guide was
then derived from this specification.1

Both the specification and the style guide provide
analytical descriptions of the XUI style. The inter
face style is separated into its parts, and the function
and relationship of the parts is explained. For exam
ple, the style guide specifies that a window consists
of a title bar, an optional menu bar, and a work area.
The relationship of these areas is explained and,
in tum, each area is then separated into its constit
uent parts. In this way, the XUI style is articulated by
successive decomposition and analysis.

An alternative way to describe a style is by syn
thesis. A synthetic approach to describing a style
relies on experiencing the coherent whole. For
example, the synthetic experience of Impression
ism can be obtained by viewing several paintings by
Impressionist artists. The most complete way to
accomplish a synthetic experience with computers
is through using the working system and its appli
cations. However, a working system did not exist
when the DECwindows architecture was being
developed. Therefore, we had to create alternative
ways to articulate a synthetic experience of the
style. The most common method was to use com
puter graphics programs to draw static pictures of
the interface design. We also used a computer pro
gram that would link static pictures together to
form facade prototypes. In fact, the entire XUI style
and many application interfaces were prototyped
in this fashion. These pictures and prototypes
articulated the XUI style by showing the interface's
composition as the component parts come together
to form the whole.

Styles Evolve Over Time
Interface styles, like most art styles, are not created
in a single moment of inspiration and design.
Rather, they are designed and developed over a
period of time. The XUI style is the result of an
evolutionary design process.

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

The Evolution of the X User Interface Style

The XUI style evolved over a period of more than
two years. The style has its roots in an advanced
development project that was underway prior to
the DECwindows program. During the two years of
the DECwindows program, the XUI style underwent
hundreds of updates, with each update evolving
from its predecessor.

This paper illustrates the evolution of the XUI
style from an exploratory advanced development
project to a finished product. We use five figures
from our design archives to show this evolution.
These figures show a sample text-editing applica
tion that we used to approximate understanding
the XUI style during its development. By illustrating
the XUI style through a sample application, this
paper attempts to describe the style through syn
thesis. However, we also describe the style through
analysis by explaining the nature and relationship of
many of the style's features.

Early Style Design
As early as 1984, customers were giving Digital a
clear message that they wanted consistency among
Digital applications. One customer noted that no
two Digital applications looked like they came from
the same company. Digital did not have a consistent
interface style among its workstation software
environments and applications. Clearly, a new and
better interface style was needed.

In response to the customer feedback, Digital's
VMS and Software Usability Engineering (SUE)
groups began to improve the interface to the VMS
workstation software (VWS). Incremental usability
improvements were used to influence the user
interface of vws versions 2 and 3. By early 1986,
the scope of these vws usability efforts had evolved
into designing a new full-scale user interface design
(UID) for workstation products. Although never
implemented in production software, the UID work
was the starting point for the development of the
XUistyle.

Characteristics of the UID
Figure 1 shows an example text editor design that
was produced for the UID project in 1986. This
figure is representative of the design work that pre
ceded the development of the XUI style. The design
in Figure 1 shows two primary characteristics of the
um effort. One characteristic is the influence of
the existing VWS software. The other is an emphasis
on innovation and exploration of new methods of
user-computer interaction.

45

DECwindows Program

From top to bottom the text editor window con
tains a title region, a button region, a work region,
a command region, and a message region. The
entire window's border was taken directly from the
current vws software.

The title region was also heavily influenced by
the then current VWS software. As in the vws
software, the application's name is horizontally
centered. A menu icon is on the left. Clicking the
primary mouse button on this icon would display a
menu of window manager operations. A keyboard
icon is on the right. When highlighted, as shown in
Figure I , this icon would indicate that the window
would receive input from the keyboard. These
aspects of the title region were taken directly from
the existing VWS interface.

To the left of the keyboard icon is a button
labeled "KNOB." This button illustrates the explor
atory nature of the UID effort. At the time, we
thought that workstations might be outfitted with a
knob similar to the knob attached to typewriter
platens. Users could click the primary mouse button
on this button and then tum the physical knob to
scroll the display backwards or forwards. The knob
idea was short-lived and was never documented in
any of the UID specifications. However, it is an
example of how we were trying to develop inno
vative ideas that went beyond the capabilities of
existing computer hardware and software.

The button bar is another exploratory feature of
the design. At the time, pull-down menus were
becoming a common feature in personal computer
and direct manipulation interfaces. One disadvan
tage of pull-down menus is that the menu items they
contain are hidden until the pull-down menu is
activated. This design used a button bar instead of
pull-down menus to ensure that all choices were
always visible to the user.

Another innovative aspect of the design is that
there are also no scroll bars. Instead, scroll borders
provide the primary navigation device. These bor
ders are depicted as a cross-hatch pattern in the
editing buffer, the command region, and the mes
sage region. When the mouse cursor is positioned
over these borders, the cursor shape would change
to a scroll cursor shape. Pressing or clicking the
primary mouse button on these borders would then
cause the file to scroll.

The Position button in the button region was
intended as a secondary, long-range navigation
device. Clicking the primary mouse button on the
Position button would result in a navigation win
dow. This window would represent the entire file

46

and contain an outline of what is currently being
viewed. This outline could then be moved by drag
ging it with the mouse to navigate to other parts of
the file. The navigation window was not described
in the style guide because it was not implemented in
the XUI toolkit. However, it was implemented in the
structured visual navigation (SVN) and graphical
object editor (GObE) widgets. This is an example of
how the DECwindows style is defined by more than
just the XUI style.

The dark horizontal regions separating the sub
areas of the window were intended to be window
pane borders, which could be dragged with the
mouse to increase or decrease the area devoted to a
given subarea.

Another prominent feature of the design is the
command line. We wanted to provide command
line equivalents for all direct manipulation com
mands. Users would have more flexibility because
they could choose their own input method, i.e.,
command line or direct manipulation. Also, macros
and initialization files could be created more easily
because there would be a language for all direct
manipulation commands.

The design in Figure 1 is a mixture of the existing
vws software and our initial attempt at creating a
new interface style that empowered users with new
methods of user-computer interaction.

Tbe First XU/ Style Design
In September 1986, Digital redefined its desktop
strategy and started developing the DECwindows
architecture. This new program ended the UID

EVE V2.0

·-~·~·~·~·;,,,,,,.,,,,,•,•,•,•,•,•.•:.•:.•.:•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,v,•,•,•,•,•,•,•,•::,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,•,",'•'•'•'•'•' ._ ,,,,,,,•,•,•.•,•,•,•· •• •••·-.,,,,:,

Applications for which scrolling makes no sense should not J
have scrolling borders ~

~ 7 .11. 11.2 Flne-greined Navigation in The Work Sub-region I
i Some applications, such as graphics editors, may require !I
i navigetion more precise than thet afforded by scrolling bo •I
i In this cose a fine positioning Icon is 11vallable in the menu i
:~ region. Selecting this icon causes the cursor to change int•t
I fine-positioning cursor as long as it Is in the work sub-re •]:
I Moving the fine-positioning cursor onto the work region and J
I clicking causes the work region contents to be atteched to • J
i cursor, such that subsequent cursor movements are mirror• J
:::.,:.;.;.: 1 •• :: -:-, ... ,.:.:.:::·-- , - ·, . .. ~ •••• - •• , ·::.- •••• ·:· ... ,. - . " :.• - • • _ .. J ·--.. ,·::.- ·-•:.,,- • , ••• ~ ·~~·

't EVE>,_replece_,· an~ }1at ion·:t~at, net 1in,.~r a~y '~ct,j~n]" ., J
,_,WM?.f.s g~i ~~:e~~~ ·;~. ~?··~~-~~~~~.:: ::::::·•W,,J

Figure 1 UID for an Example Text Editor

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

project, but Digital still needed a user interface
design that specified the look and feel of its appli
cations. Because the DECwindows architecture
was bridging three operating systems, it was more
important than ever that applications be consistent
with each other.

Because the um project had already produced a
good start on a user interface design that promoted
interapplication consistency, the VMS and SUE
groups saw the DECwindows program as an oppor
tunity to expand the um effort. Within three
months of the start of the DECwindows program,
we had revised the um specification to meet the
requirements of the DECwindows effort. The new
design was the starting point for the XUI style, i.e.,
the user interface look and feel for the DEC windows
architecture.

Initial XU/ Style Characteristics
Figure 2 shows the initial design for the XUI style.
As with Figure 1, we used an example text editor
to show the synthesis of the design. Evolved from
the um work, this design reflects some of the
influences of the earlier design, particularly the
influence of the vws software and the emphasis on
innovation. There are two other strong features of
this design. One is that compatibility with other
workstation and personal computer software was
more important than innovation. The other feature
is minimalist design.

The minimalist design influence is the strongest
aspect of the design shown in Figure 2, particularly
in contrast to Figure 1. The source of this influence
was Tufte's The Visual Display of Quantitative
Information, which calls for a minimum of clutter
in visual displays.2 All of the complex lines and pat
terns of the earlier um design have been replaced
by simpler lines. A thin, solid line outlines the entire
window and its title bar. Dotted lines separate the
subareas within the window. The visual effect of
these design changes is much lighter than the earlier
design.

Tufte also advocates the use of graphic and not
text representations to convey meaning. The key
board icon shown in Figure 1 has been replaced by
a graphic representation of a keyboard. The title bar
menu icon is still in the design. However, the word
"MENU" has been removed from the icon, leaving
just a series of horizontal lines to suggest visually a
menu.

Tufte's influence can also be seen in the modified
Digital logo to the right of the title bar menu icon.
By providing a stylized Digital logo, we were giving

D igital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

The Evolution of the X User Interface Style

the design a Digital corporate identity that would be
quickly recognized by users. This logo also had a
utilitarian purpose, however. A user customization
menu was generated by clicking the primary mouse
button on the logo.

One other graphic representation is included in
the title bar. This is the window resize icon shown
at the far right. By drawing a square within a square,
this icon was designed to suggest visually the
changing size of an application window. As subse
quent figures will show, the use of squares, and
squares within squares, became a central character
istic of the XUI design.

The um scroll border feature was removed to
improve compatibility with other workstation and
personal computer software. Scroll bars, a naviga
tion feature of several other interface styles, were
used instead. One innovative aspect of the design of
the scroll bars is that the slider size represents the
proportion of the file currently visible. In Figure 2,
the size of the horizontal slider is approximately 90
percent of the size of the scrolling region. This rep
resentation means that approximately 90 percent
of the horizontal width of the file is being viewed.
The vertical slider shows that approximately 20
percent of the vertical portion of the document is
being viewed. This proportional aspect of the scroll
bar design remains a feature of the current XUI style.

The um button bar was replaced by a region that
contains both pull-down menus and buttons. Pull
down menus were added because using buttons for
all of an application's functions required too much
screen real estate. The use of pull-down menus also
helped to promote industry compatibility. Several
other personal computer and workstation interface
styles were already using this feature. Industry
compatibility was further enhanced by using File
and Edit menus.

However, the pull-down menu and button region
does contain some innovative features. Vertical
lines were used to partition the region into several
sections. The first section contains the File and Edit
menus. The second contains application-specific
pull-down menus, for example, Commands and
Fonts. The arrow pointing to the right indicates
that there are more application-specific pull-down
menus. Clicking the primary mouse button on this
arrow would scroll the application-specific menus
to reveal the other menus. This design also required
an arrow pointed to the left, to scroll the menus
in the other direction. However, the left-pointing
arrow is not depicted in Figure 2. The region
contains both pull-down menus and direct-action

47

DECwindows Program

buttons. Help and Undo buttons were intended to
be standard parts of application interfaces. The use
of partitions, scrolling menus, and direct-action
buttons in this region are unique aspects of this
design.

The command and message regions from the
earlier UID project are still a part of this design.
They have been moved, however, to the top of the
window, just below the title region. Human factors
studies of the earlier design indicated that these
regions were often overlooked by users, and, there
fore, important messages might not be seen. The
regions were moved from the bottom to the top of
the window to increase their visibility. The two
regions were placed above the pull-down menu
region to ensure that the pull-down menus, when
activated, would not obscure them.

The initial XVI style design was derived from the
earlier design work of the UID project. It contains
features that were influenced by the VWS software
and the UID emphasis on innovation. The design in
Figure 2 reflects a minimal use of complex patterns
and a reliance on graphic representations. The
design also contains features designed to promote
industry compatibility.

Design Iterations
Because the DECwindows architecture was a
corporate-wide effort, it was important that a wide
range of development groups participate in the
design of the XVI style. Besides the SUE and VMS
groups, representatives from the ULTRIX, High
Performance Workstations, Software Development
Technologies, and the Personal Computer Systems
groups were key participants in the design effort.
A software engineer with training in both film and

Eve - myfile.tKl

Eve>

Selection started. Press re1111ove when finished

.·.·.x1.i.~.··_E-~it, .· ·.·.·. ··.·.c.~.~.~.~-~.~~.:.:,:,·.· .. ·.··. r ~·~-·~::: ·:·Li'~~lp 11 U~d~ 1
: +

This is the iniddle of a te,ct file. Notice the thumb on the
ri;ht sho111s that I a111 half •Olwl down the fl le, Cl"ld that this
screen takes up about Of"le third of the entire fl le. .
There is also some s11al I aiaount of •aterlal off the screen hor i:
as shown by the thunlb on the bot to•. .

Notice tM stCl"ldard screen, with tM addition of an optional ~-
COIIIIIDand I I ne and h I nts reg I on. The 111enu bar has pu I I down ~
••nus, as wel I as ,gerwrotlng panels. On tM riight ore some : -
i•Mdiate action buttons, 111ade 1111ore accessible ~ putting tt~11 :
ri;ht on the ne:nu bar.

The icon In the upper I• ft g.-ra t•s a sys t .. -. i ndo11 1111enu • I th ~
move:, •le options. TM icon n•xt to it is thei OECt.lindows ·
speci fie icon al la.Ing !JOU to llrn th9 cOIIIICll"Ki and hints : ...
,-..gions on or off, odd se:rol I bC>f""dw-s, and ou.r- application- ; +

Figure 2 Initial XU/ Style Design

48

design was also recruited to assume primary
responsibility for the visual aspects of the design.

From the starting point shown in Figure 2 to the
beta test of the DECwindows system, the XVI style
underwent dozens of revisions and updates. There
were five corporate-wide design reviews for the
style guide. The DECwindows interface designer
produced over 600 sketches of the style. Many of
these sketches were iterations and refinements
of previous sketches. Dozens, if not hundreds, of
sketches were also produced by application devel
opment groups as application-specific XVI style
interfaces were designed. Many of the development
groups also produced facade prototypes of their
application interfaces. Using these facade proto
types and early base levels of the DECwindows
system, the SUE group conducted human factors
studies with over 300 participants. All of these
activities were used to influence the further refine
ment of the XVI style.

The XU/ Style Takes Shape
One of the first designs resulting from this wider
sphere of influence is shown in Figure 3. In terms of
characteristics of the style, this design represents an
intermediate step between the initial XVI style
design shown in Figure 2 and the style at the end of
the development cycle.

One aspect of Figure 3 that is unrelated to the
design of the XVI style but very noticeable in the
figure is the use of vertical lines in place of text. We
made this change because we found that partici
pants in design studies and reviews were concen
trating on reading the illustrative text rather than
on the elements of the design. We changed later
designs to English letters arranged in random pat
terns, which gave reviewers a feel for how text
would appear in the design but which did not
distract their attention.

The minimalist design influence shown in Fig
ure 2 has been tempered in this design. Although
the previous design was an improvement over the
complex lines and patterns of the UID work, we had
taken too much away. From a visual standpoint,
the design in Figure 2 has very little definition.
In Figure 3, there are no dotted lines, only solid
lines. The design now has visual weight, yet it is
not too heavy.

The title bar has been simplified. In the previous
design, it had four different icons. Because we
were concerned that we were overloading the title
bar with functions, only the window menu icon
remains in this area.

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

The graphic design of the window menu icon
has been changed to resemble a miniature window.
The icon design now indicates visually that the
menu is related to window-specific functions. The
previous design, a series of parallel lines, only
suggested the existence of a menu rather than what
the menu might contain.

The modified Digital logo has been eliminated.
Because the XUI toolkit, which implements the
XUI style, would be used by both Digital and third
party application developers, a Digital-specific logo
would have been inappropriate. With this change,
the style guide specified that application custom
ization functions should be placed in a Customize
pull-down menu.

The keyboard representation also has been elimi
nated. The window that is receiving keyboard
input is now indicated by highlighting the entire
title bar (not shown in Figure 3). This change makes
the indicator physically larger to enable users to tell
quickly which window is receiving keyboard input
without searching for the small keyboard indicator.

The resize icon has been moved from the title
bar to the intersection of the vertical and horizontal
scroll bars. One reason for this change was to put
a useful function in the empty space at this inter
section. This design change gave application win
dows some diagonal balance, with the window
menu icon in the upper left and the resize icon in
the lower right.

An additional square has also been added to the
resize icon. Instead of just a square within a square,
it is now composed of three squares. This change
helped to suggest variable-sized windows, where
the previous design might have been interpreted
as suggesting only minimum and maximum-sized
windows.

The menu bar has been simplified and moved
to below the title bar, which increases standard
ization with the industry and decreases the com
plexity of the earlier design. The vertical partitions
and scrolling the application-specific menus have
been removed. These ideas were too complex to
promote usability and ease-of-learning.

On the right of the menu bar are a Hints pull
down menu and a Help icon, shown as a question
mark in Figure 3. These were placed at the right,
away from the other pull-down menus, to give users
a standard place to find functions pertaining to user
assistance.

Below the menu bar is a hints bar. In the previous
designs, this area was called the message region. We
changed the name from message to hints to obtain a

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

The Evolution of the X User Interface Style

Fl EYe: myfile.txt
File Edit Text Fonts Hi nts I?

11 11111 111 1111 11111 11 11111 111

11
11
111
111

111
111 11
11 11111111111111111111111111111111
111 11
111 111
11 111
11

111
11111111111111111111111111111 111 111
11 111
11 111
11 1111111111111111111111111111 11 11
111111111111111111111111111111 11 11

~~11 111 1111111 1111111111111111 '--.. " ~

E~> I -

Figure 3 Intermediate XU/ Style Design

better association with the Hints pull-down menu,
which contains functions pertaining to the hints
bar. These functions include the level of detail for
the hints, and turning hints on and off. The hints are
right-justified to be physically close to the hints
menu and ensure that they would not be obscured
by the other pull-down menus.

The visual appearance of the scroll bars has been
modified. By adding a line to the scrolling region,
the new design is intended to suggest physical
sliders similar to those found on modern stereo
equipment. The stepping arrows have also been
redesigned as double arrow heads. This change was
simply an attempt to design a more interesting and
distinct arrow.

The command line has been moved to the
bottom of the window to place less emphasis on the
command line equivalents of direct manipulation
actions. From a competitive viewpoint, command
line equivalents were viewed as less important than
the direct manipulation aspects of the XUI style.

The use of squares as a familiar building block in
the XUI style started to emerge in this design. The
window menu icon, the help icon, the scroll bar
stepping arrows, and the resize icon are all squares
of equal size. Squares are pleasing to the eye, and
they provide a visual symmetry and regularity to
much of the design.

The Beta Test XU/ Style
Figure 4 shows the XUI style as it appeared in the
beta test of the DECwindows system.

In a reversal of the title bar simplification shown
in Figure 3, three icons are now in the title bar. On

49

DECwindows Program

the left is the shrink-to-icon icon. On the right are
the push-to-back and resize icons. These icons are
located in the title bar to provide the user with
window manager functions. In the DECwindows
architecture, the window manager controls title
bars and window borders and applications control
everything in the window. Thus, window manager
functions could be placed only in the title bar.

The window menu from the previous designs
has been eliminated completely. Once the spec
ification of the DECwindows window manager
was completed, it was clear that this menu was not
necessary. The functions from this menu are now
provided by the three title bar icons or by direct
manipulation actions.

Each of the three title bar icons is constructed of
squares, and squares within squares. The square
subsequently became a strong characteristic of the
XUI style. The shrink-to-icon icon is composed of
four squares set within a square and is designed to
resemble a real window. Although applications are
encouraged to design their own shrink-to-icon
icons, this design is used as a default design. The
push-to-back icon is designed as two overlapping
squares set within a square that suggest overlapping
window corners.

There are two changes to the menu bar. One is
that the font used for the menu names has been
finalized. This font, Pellucida San Serif 12 point,
was chosen because it was designed specifically for
screen readability. This font is also used for the
application name in the title bar. The other change
is the specification of a Help pull-down menu rather
than the Hints menu and Help icon from the
previous design. The hints region and menu were
removed from the design because the constantly
changing hints were more distracting than useful.
The word "Help" was chosen to provide a consis
tency in the menu bar. Pull-down menus are all
indicated by words rather than a mixture of words
and graphic representations.

The visual appearance of the scroll bars' scrolling
regions has been modified again. The single line
shown in Figure 3 did not provide enough visibility.
It was lost in the context of an entire application
window. To increase the visual contrast, a series of
parallel lines were used to add darkness to the
appearance of this region.

When the design in Figure 3 was reviewed within
Digital, a comment consistently made was that the
stepping arrows were very similar to the stripes
worn by a sergeant in the U.S. Army. We were
searching for an arrow design that evoked a feeling
of direction not a feeling of military regimentation.

so

The design of the stepping arrows was changed to a
simple, triangular arrowhead. The intent of the new
design is to suggest visually the essence of direction
through the tip of an arrow.

The intersection of the two scroll bars contained
the resize icon in the previous design. When the
icon was moved to the title bar, the area had no
utilitarian function. The area is decorated with a
square so that it is not vacant, and an empty square
has been chosen to reinforce further the design
characteristic of squares as XUI style building
blocks.

The concept of a standard command region and
semantic equivalence of direct manipulation com
mands was removed. The debate over the syntax of
command lines never reached consensus within the
Digital review community. Some favored a new,
common syntax. Others favored a user-selectable
(i.e. , VMS versus ULTRIX operating system) syntax.
Others felt that a common syntax was not at all nec
essary. Ultimately, the idea was removed because
there was no apparent good solution to the problem
in a heterogeneous environment.

Figure 4 shows a clean and well-defined left
margin. The application name, which was centered
in the previous designs, has been moved to the left .
The first menu item, File, is positioned below and
flush left with the application name. The left margin
is further strengthened by the placement of the text
in the application's work area. This left margin,
however, is a failed aspect of the XUI style as
intended by the style guide versus what was imple
mented by the XUI toolkit. Although the left margin
was intended to be a feature of the XUI style, it was
specified in the style guide figures but not the text.
The toolkit developers did not notice this aspect
of the figures, and, therefore, did not implement a
left margin. This example highlights the difficulty
of specifying an interface style with the hundreds of
details that make up a style.

The design shown in Figure 4 virtually com
pleted the basis of the XUI style. One by one, the
influences of the earlier VWS software and the UID
project were all removed or highly modified.
Design reviews within Digital, human factors
studies, and the influence of a dedicated inter
face designer were the primary forces behind the
evolution of the style.

Final Style Details
The XUI style was nearly complete in the beta test
design shown in Figure 4. Human factors studies
and customer interviews during the beta test were
used to identify any serious problems that might

Vol. 2 No. 3 Summer 1990 Digital Tecbntcal]ournal

(;]•:fin I b!ll@l
File Edit Text Format Help
lkdsf lkjdsfli ldsn t dslkuo slkj dol dkj slkdfj 1lkjn ol dnoc:ldw ,6.

lkjds o e.kj od ghu kdjfu ewjnfudhc dlfjs sjh sdjfh ndol dbo s ks
ldkj dhi w ud wgl ndo wei auh o solo e jhgjhp aksp jh w hfu w
hjso no djo wno akjho olj wnoi

kjddoiu ni plj akj s pljdjso djo hos ojoisu skj jwoun soio w jol
lsj dihjo w joiu wkjbirap shih eboiw cniw sdfhiw kjweb hi wb
nsih akh a wsoi wjbl a jb vrhfuk ahdi Inoa wihof shoa ebiae
snoe ajhdie abii eboanoih rnlnajnb wnoh ahoy,, dnoh ajbiw
sbiub whbuw bn a jh anuh ajbnjp nk hih lsneu

dih sihjo wjno wlknogbi~q~oih sn dhfuuh w fhluhreg
hfuh wehbi a fhoue dhjo c:m jo joius ejhi sno zhouh qn
nfiu sjghe dnue slho kpq dujh dhiow djhiq dh,twyl,nos ihf
nfi sbu dh ebuyfa fniuge. fji abdbyabuydngkuc ka bnc:yge.
cbisbfi aljnluf &hnia nq hu ca ihjondf s aihoftnak o fbnguih a
fnbiuw dbnug indi a oigj aniunf ihj obugdh kugydjbiw ubf

ihj guhial fuh wb ogoih ubgakuh w p fiuhia dowbnu a
\. ! __ ,-__ , - ·-··l..1. ' 1..£. u,- ' .,..F\.._' \.,...:: "' 1 H .. -~ v

~I -~
Figure 4 XU/ Style during Beta Test

exist in the design and to gather input for require
ments for subsequent releases of the DECwindows
base system.

Figure 5 shows the final XUI style design for the
first release of the DECwindows system. We found
only one significant design problem with the XUI
style during the beta test: the visual design of the
scroll bars.

During the DECwindows system beta test, many
users complained of a figure-ground disorientation
with the scroll bars. They could not tell if the white
area was the scroll bar slider or the scrolling region.
This effect can be seen by examining the horizontal
scroll bar in Figure 4. The design change can be seen
in Figure 5. The parallel lines were removed from
the scrolling region and the width of the area was
reduced. Since the slider is now wider than the
scrolling region, there is no visual confusion about
which part is the slider. This design change also
required modification of the scroll bar arrows to
make the base of the arrows the same width as the
scrolling region.

Summary
The DECwindows XUI style development repre
sents a breakthrough in user interface development
for Digital. Before the project, little attention was
given to modern, graphic, direct-manipulation user
interfaces. Also, little attention was given to consis
tency across applications. With the DECwindows
XUI style, we now have a consistent means of user
interaction across the VMS, ULTRIX, and MS-DOS
operating systems and the applications available on
these operating system platforms. Further, detailed
attention to the iterative development of an applica-

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

Tbe Evolution of tbe X User Interface Style

ffl Editor: MVFILE.TXT rJJm
File Edit Text Format Help
lkdsf lkjdsfli ldsn fpo dslkuo slkj doi dkj slkdfj slkjn oi dnoddw 0
lkjds o akj od ghu lkdjfu ewjnfudhc dlfjs sjh sdjfh ndoi dbo s ks
ldkj dhi w ud wgi ndo wei auh o soio e jhgjhp aksp jh w hfu w
hjso no djo wno akjho slj wnoi

kjddoiu ni pij akj s pijdjso djo hos ojoisu skj jwoun soio w jol
lsj dihjo w joiu wkjbiy ap shih eboiw miw sdfhiw kjweb hi wb
nsih akh a wsoi wjbl akjb vrhfuk ahdi Inoa wihof shoa ebiae
snoe ajhdie abii eboanolh rnlnajnb wnoh ahoy,, dnoh ajblw
sbiub whbuw bn a jh anuh ajbnjp nk hih lsneu

dih sihjo wjno wlknogbiygvq~olh sn dhfuuh w fhiuhreg
hfuh wehbi a fhoue dhjo cmhjo jolus ejhl sno zhouh qn
nfiu sjghe dnue siho kpq dujh dhiow djh) dh,tw ybnos ihf
nfi sbu dh ebuyfa fni uge. fj i abdby a buy dn uc ka bnc:yge.
cbis bfi aljniuf &1>nia nq hu ca ihjondf s aihof tnak o fbnguih a
fnbiuw dbnug indi a oigj aniunf ihj obugdh kugydjbiw ubf

"' !hf.~ u~I. a! fuh w b ~\ oi.~ ~.~ut, ':! .fiuhia
0
~0:,', ~nu ~ 0

<J I I)

Figure 5 Completed XU/ Style Design

tion 's graphic user interface is now a standard
aspect of the software development process.

Acknowledgments
The authors would like to acknowledge those who
have contributed to the XUI style: Sue Bonde,
Alana Brassard, Tom Dahl, Charlie Frean, Hania
Gajewska, Peter George, Michael Good, Joel
Gringorten, Charles Haynes, Harry Hersh, Sandy
Jones, Phil Karlton, Scott McGregor, Eliot Tarlin,
Leo Treggiari, Smokey Wallace, John Whiteside,
Chauncey Wilson, Dennis Wixon, and the many
others who reviewed the revisions of the XUI Style
Guide and provided comments, suggestions, and
inspired ideas.

References

1. XU/ Style Guide (Maynard: Digital Equipment
Corporation, Order No. AA-MG20A-TE, 1988).

2. E. Tufte, Tbe Visual Display of Quantitative
lnfonnation (Cheshire, Connecticut: Graphics
Press, 1983).

51

RandiJ. Rost
Jeffrey D. Friedberg

Peter L. Nishimoto

PEX: A Network-transparent
Three-dimensional
Graphics System

PEX is an extension to the X Window System that is designed to efficiently support
PH/GS and much of the functionality in the proposed PH/GS+ extension to PH/GS.
PEX allows each window on the screen display to act as a complete, independent,
virtual three-dimensional graphics workstation. This paper presents a brief over
view of PEX and describes how it fits into the network environment of X. In addition,
the paper gives some details about X and PH/GS and discusses the major design
decisions made during the PEX design, as well as the ramifications of those decisions.
7be intent of this paper is to share some of the things designers learned in their efforts
to unify the different environments of X and PH/GS.

The X Window System is a network-transparent
windowing system developed at the Massachusetts
Institute of Technology. X contains support for win
dow management operations, input, and simple
two-dimensional graphics operations. X has rapidly
become a de facto industry standard in today's
raster graphics workstation marketplace because it
works well in the increasingly common computing
environment that consists of a network of dissimilar
workstations. Despite its popularity, X still has
some shortcomings. Its developers deliberately con
centrated on solving the problems of supporting
windowing, input, and simple graphics output
operations in the heterogeneous network environ
ment, and deferred other difficult problems, such
as providing direct support for three-dimensional
graphics and image processing!

This paper provides a brief overview of PEX
(PHIGS/PHIGS+ extension to X), which is an exten
sion to the core X Window System that provides
three-dimensional graphics support in the X envi
ronment .2·3·4 PEX is designed to efficiently support
three-dimensional graphics standards (PHIGS,
GKS-30, and the majority of the proposed PHIGS+
extension to PHIGS) in a standard network window
ing environment (the X Window System).~·6·

7 This
paper describes the overall architecture of PEX,
with emphasis on the features that make it unique.

© 1989-IEEE. Reprinted, with permission, from IEEE
Computer Graphics and Applications Magazine, Volume 9 ,
Numher4,July 1989.

52

The first two sections describe the history of the
PEX effort, and the problems and requirements that
motivated it. Subsequent sections describe the
major features of PEX and contain discussions of the
trade-offs that were evaluated during the design
process. Finally, the remaining open issues and their
current status are described.

History
Development of the X Window System began at MIT
in 1984. By 1986, X had evolved to the point that
it was receiving widespread use, had been ported
to many different workstation architectures, and
was supported as a product by some workstation
vendors. The version that was in use at that time
was known as X Version 10, or X 10.

In the spring of 1986, Digital 's Workstation
Systems Engineering Group began looking at ways
to support three-dimensional graphics applications
using XlO. A four-month project was launched
to define and implement an extension to the
XlO server and a client-side programming interface
that would provide efficient support for inter
active three-dimensional graphics applications. A
programming interface library called X31ib was
written. It contained routines to perform trans
formation, clipping, and light-source shading com
putations on primitives. The X 10 server was
extended to include support for two-dimensional
scan-conversion operations. Thus, the traditional
rendering pipeline was broken into two parts, with

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcal}ournal

PEX: A Network-transparent Three-dimensional Graphics System

floating point intensive operations occurring on the
client side of the network interface and pixel
intensive operations carried out within the server
extension. A solid modeling application, called
XModel, was developed to run on top of X3lib.
Considering the hardware capabilities of the target
device, the overall level of interactivity that was
achieved with XModel was quite acceptable.

During this time, a public effort was underway to
redesign X to make it a more commercially viable
product. The mechanism we designed for our pro
totype extension to X 10 became the basis for the
general extension mechanism for X version 11. The
specification for X 11 was largely completed by
November 1986, at which time a sample implemen
tation of the server and a rewrite of the X client-side
library interface (Xlib) were begun. (Throughout
the remainder of this paper the terms "X" and "X
Window System" are meant to imply X version 11 .)

In November 1986, an architecture group was
formed within Digital to design a three-dimensional
extension to X that could form the basis for a cor
porate three-dimensional graphics interface. The
major goals of this extension would be to extend
X gracefully to support three-dimensional graphics
in a windowing environment, to achieve good per
formance on a range of raster graphics devices in a
network environment, to support graphics stan
dards products, such as PHIGS and GKS-3D, and to
incorporate support for features, such as light
sources and reflection models, that were not found
in the current graphics standards. Timeliness was
also a key goal, since customers were demanding
access to the three-dimensional capabilities of the
hardware that were not accessible through X or the
current standards products. A first draft of the
specification was completed in January 1987, and
was revised several times before it was made
publicly available in May 1987 as X3D.

The PHIGS+ effort began in a public forum in
November 1986. Its goal was to extend PHIGS to
include more advanced rendering capabilities (light
sources, depth cuing, reflection models) and more
advanced primitives (parametric curves and sur
faces, meshes). In one respect, the goals of this
group and the Digital design team were similar: to
come up with ways to provide the advanced three
dimensional graphics capabilities that users were
demanding. The results of these two parallel efforts
(which started out being unrelated) were function
ally identical in many areas.

At a meeting at MIT in June 1987, representa
tives from Digital Equipment Corporation and

Digital Technical journal Vol. 2 No. 3 Summer 1990

Sun Microsystems jointly presented the X3D speci
fication and recommended that it be used as the
basis for defining an industry-standard three
dimensional extension to the X Window System.
At this meeting, an architecture team was formed
and chartered to revise and finalize the speci
fication. A series of three public reviews was held,
and the architecture team released a completed
version of the specification, now called PEX in
December 1987. Changes to the specification dur
ing this time were primarily aimed at providing
even better support for PHIGS and at supporting
more of the PHIGs+ functionality. A public
implementation of the PEX extension and a PHIGS/
PHIGS+ client interface library is now underway.
The software, when complete, will be freely
distributed in the same manner in which the
X software is currently available.

PEX Requirements
PEX had five major design requirements:

• Extend X in a graceful fashion to support three
dimensional graphics

• Support a performance range ofX platforms

• Provide efficient support for PHIGS and the sta
ble portions of PHIGS+

• Establish the definition of the PEX protocol in a
timely fashion

• Acceptance by the X community

Extend X to Support Three-dimensional Graphics
PEX was required to support three-dimensional
graphics in windows efficiently across a network
interface. Furthermore, it was important to provide
an extension to X that supported three-dimensional
graphics but did not violate any of the requirements
or philosophy that made X popular in the first
place. Central to the X philosophy is that the proto
col and the server support mechanism, not policy.
Therefore, it was a requirement that PEX provide
the mechanism to support three-dimensional
graphics, but defer policy to clients.

Support a Perjonnance Range of X Platforms
Part of the appeal of the X Window System was
that it would soon be available on a wide variety
of raster graphics workstation products. PEX had
to be designed for the same class of worksta
tion devices as X-those with keyboard, pointing
device, and raster graphics display. Consequently,

53

DECwindows Program

consideration had to be given to supporting render
ing computations on devices with little or no color
capability and to supporting display list traversal
on devices with little or no available display list
memory.

ProvideSupportforPHIGSandPH/GS+ Many end
users have committed themselves to applications
development using PHIGS, an emerging three
dimensional graphics standard, and many vendors
are trying to provide efficient PHIGS implemen
tations. To be widely accepted and used, PEX had
to support PHIGS very efficiently. Many customers
were demanding at least some additional attributes
to control lighting and depth-cuing operations and
higher order drawing primitives such as polygon
meshes and parametric curves and surfaces.
Supporting PHIGS+ features was desirable; but since
PHIGS+ was still under development, it was neces
sary only to incorporate functionality that was
considered to be stable. We had also convinced
ourselves that by supporting PHIGS efficiently, we
would automatically provide efficient support for
GKS-3D~ It was not a goal that the PEX protocol
map one-to-one with the PHIGS functional speci
fication. Had this been a goal, we would have been
incapable of meeting our first two requirements.

Establish the Definition of the PEX Protocol Like
any development project, PEX had time· pressure.
The group that met at MIT in June 1987 decided on
an aggressive six-month schedule that would see
the PEX protocol finalized by December 1987. In an
effort to avoid large committee involvement that
would slow down development, a small working
group, the PEX architecture team, was chosen to
complete the PEX protocol specification. This
group, with representatives in Massachusetts, New
Hampshire, Colorado, and Northern California met
several times during the revision period and con
ducted most discussions through electronic mail
or by telephone. Without the ability to com
municate efficiently by electronic mail, the revision
process undoubtedly would have taken much
longer than it did. Through the use of electronic
mail, it was possible to formulate, discuss, and
resolve issues without the need for continual face
to-face meetings.

Acceptance by the X Community Rather than
develop still another proprietary three-dimensional
interface, it was a goal that we achieve consensus
within the X community for a three-dimensional

54

extension that would be widely supported and
available. Due to the network transparent nature of
X, this extension would provide customers with
true binary portability for their three-dimensional
applications. Such portability was not currently
possible (nor will it be possible) solely with graphics
standards such as PHIGS.

As in most software projects, extensibility,
ease of use, simplicity, and consistency of the net
work interface were also considered important
architectural goals.

PEX System Model

Data Flow
X is designed as a client/server system, as shown in
Figure 1. An X server process, containing the core
X server and any extensions, runs continuously on
each display system in a network. The server is
responsible for receiving and executing requests
from all clients and for reporting asynchronous
events back to any interested clients. Application
processes (clients) can establish a connection and
send requests to any device on the network that
is executing an X server process. Communication
between client and server is carried out using some
form of existing interprocess communication
protocol, such as TCP/IP, DECnet, or UNIX sockets.
The nature of the information that is passed
between X clients and servers is strictly defined
by the X protocol specification and the protocol
specifications for any extensions.9

The strict definition of the X communication
protocol provides the concept of network transpar-

CLIENT
PROCESS

SERVER
PROCESS

APPLICATIONS

PEX CLIENT :
INTERFACE I

I

X TOOLKIT

XLIB

X11 PROTOCOL AND
PEX PROTOCOL

NETWORK INTERFACE

PEX SERVER I CORE X
EXTENSION : SERVER

DISPLAY HARDWARE INTERFACE

Figure 1 XIPEX System Model

Vol. 2 No. 3 Summer 1990 Digital Tecbntcaljournal

PEX: A Network-transparent Three-dimensional Graphics System

ency. If all client and server processes strictly
adhere to the protocol, a client process on one
machine can send requests to a server process on
any machine on the network, regardless of the CPU,
operating system, or architecture of either of the
two machines. Similarly, a server process can exe
cute requests issued by any client on the network,
as long as the requests conform to the X protocol.
This capability can make the fact that the two
machines are connected through a network trans
parent to the end user. Client applications can be
written in such a way that they can access any
X server on the network without being rewritten,
recompiled, or even relinked.

Figure 1 also shows how data flows from
applications down to the target display device. It is
possible to build either PHIGS/PHIGS+ or GKS-30
programming interface libraries on top of PEX.
An application can make calls to PHIGS/PHIGS+,
GKS-30, Xlib, and X Toolkit libraries.Kl·11

•
12 These

libraries, in turn, format PEX and X protocol
request packets and send them to the designated
server process to be executed. The core X server
receives all incoming requests and hands PEX
requests over to the PEX server extension to be pro
cessed. The X server and the PEX server extension
are capable of issuing commands that cause primi
tives to be drawn on the display screen. Part of the
difficulty in designing PEX was in optimizing this
flow of data from the application, across the net
work interface, and down to the hardware for a per
formance range of devices.

Several problems arise in passing data in a hetero
geneous network environment. The first, handled
by X itself, is the potential discrepancy in the byte
ordering technique that is used on client and server
CPUs. In X, the server performs byte swapping, if
necessary, on incoming client data. Thus the byte
swapping problem is solved by definition, and the
PEX server extension must perform byte swapping
on PEX requests as necessary. One of the issues on
which we wavered considerably during the course
of designing PEX was the method to be used to
overcome potential differences in floating point
format between client and server CPUs, a problem
that X successfully avoided. It was clearly impor
tant to allow clients and servers to send floating
point values back and forth, but it was unclear as to
the most efficient mechanism to support this capa
bility. This problem did not seem to be identical to
the byte swapping problem since it was conceivable
that a device might be capable of dealing efficiently
with more than one floating point format. Conse-

Digital Tecbntcal]ournal Vol. 2 No. 3 Summer 1990

quently, we included a PEX request that reports the
floating point types that are supported by the
server. Clients are expected to send floating point
data to the server in one of the formats supported
by the server and to perform a translation them
selves, if necessary. Color formats are treated
similarly. A server may be efficient at dealing with
color values that are defined as RGB floating point
values, RGB short integers, RGB bytes, HLS float
ing point values, HSV floating point values, or CIE
floating point values. The client may query the
color formats that are supported by the server,
and convert color values (if necessary) to one of the
supported types.

Execution Semantics
PEX operations obey the execution semantics
defined by X. These state that:

• Each request is considered to be atomic
(indivisible)

• There is no implied scheduling between requests
received over separate connections

• Requests received over a single connection are
executed in the order they are received

Most X server implementations (including the
sample server from MIT) are single-threaded and,
thus, follow the X execution semantics by defini
tion. The semantics of various PEX operations have
been carefully defined to allow servers to be imple
mented with internal concurrency and yet preserve
the X execution semantics.

PEX operations, such as structure traversal and
rendering, may take considerable time to complete
that can lead to unacceptable behavior from a
client's point of view. For example, a client that
initiates a structure traversal can monopolize the
server's ability to process requests, effectively
preventing another client from doing simple text
editing in another window. Multithreaded or
yielding servers may avoid this behavior by allow
ing other requests to be processed while lengthy
operations are occurring. A connection blocks if a
request requires access to a resource that is already
engaged in a lengthy operation. After the lengthy
operation is completed, the connection unblocks
and the request is processed. For instance, if a client
initiates a structure traversal and then reads back
the pixels using a core X request, the "read pixels"
operation does not occur until the traversal has
completed. On the other hand, an application

55

DECwindows Program

performing lengthy rendering operations and a
text editing application may be supported simul
taneously if they are operating in independent
windows on the display.

Resources
Like X itself, the PEX architecture is object-oriented,
creating an environment that is flexible as well as
extensible. Clients can create, free, and manipulate
objects called resources. Partitioning the desired
functionality into resource types was a difficult
task. Earlier versions of PEX attempted to embed
some of the functionality into existing X resource
types. For example, we proposed adding three
dimensional rendering capability to X window
and pixmap resources. We ultimately decided that
it was better to create PEX-specific resource
types than to burden X resources with additional
attributes and semantics. The resources defined for
PEXare

• Lookup tables

• Pipeline contexts

• Renderers

• Namesets

• Structures

• Search contexts

• PHIGS workstations

• Pick measures

• PEXfonts

Lookup table resources are used to maintain lists
of attributes, such as those used for viewing, depth
cuing, illumination computations, and defining the
appearance of output primitives. A few generic PEX
requests are used to support the numerous table and
bundle functions defined in the PHIGS and PHIGS+
interfaces.

Pipeline contexts are used to provide the initial
state for the PEX rendering pipeline. Every attribute
that affects the behavior of the rendering pipeline is
defined as an attribute of the pipeline context.

Renderers encapsulate the functionality of a
structure traverser and a rendering pipeline.
Renderers are responsible for converting output
primitive commands into raster information that
can be displayed.

Name set resources contain arbitrary length lists
of identifiers that can be used to provide condi-

56

tional control over operations, such as highlighting,
visibility, structure searching, and detectability for
picking purposes.

Structures are simply lists of PEX output com
mands whose execution has been deferred.
PEX supports hierarchical display lists, since PEX
structures can call other structures.

Search context resources allow clients to estab
lish the parameters for performing an incremental
spatial search in world coordinates on output
primitives stored in a structure hierarchy.

The PHIGS abstraction of a workstation is sup
ported by the PHIGS workstation resource. These
resources conceptually have a built-in renderer and
implement the PHIGS notions of pick devices,
picture correctness, deferral modes, posted struc
tures and priorities, and view priorities.

The pick measure resource assists the PHIGS
workstation resource in implementing PHIGS pick
ing (hit-testing) semantics. Clients are allowed to
establish the parameters of the picking operation by
modifying the initial state of a pick measure
resource, and pick results are obtained by querying
the attributes of the pick measure.

Finally, PEX fonts have been defined to facili
tate three-dimensional transformations on text
primitives.

Rendering
The ability to transform geometric and color infor
mation into raster information (pixel locations and
pixel values) is embodied in a PEX resource called a
renderer, as shown in Figure 2. Conceptually, ren
derers contain a structure traverser (discussed in a
subsequent section), a state block that defines an
instance of a rendering pipeline, the resource iden
tification of the drawable element (window or
pixmap) to which raster data will be directed, and
an associated buffer of some sort for doing visible
surface computations. Clients may associate various
lookup table resources with a renderer. Certain
attributes that define the rendering pipeline (e.g.,
viewing, depth cuing, light source information)
may be obtained indirectly from these lookup
tables. Name set resources may also be associated
with renderers in order to provide control over
those output primitives that are to be highlighted or
treated as invisible.

A rendering pipeline can process output com
mands. Output commands consist of: commands
that modify attributes that affect all primitives (e.g. ,
set view index), commands that modify attributes
of a certain class of output primitive (e.g., set line

Vol. 2 No. 3 Summer 1990 Digita l Tecbntcaljournal

PBX: A Network-transparent Three-dimensional Graphics System

"RENDER OUTPUT COMMANDS"
REQUEST

"RENDER NETWORK"
REQUEST

r---- ----- ---- ----,
I
I YES STRUCTURE
I TRAVERSER
I
I l ,_ ___ _l __ L,
I I I

I RENDERING 1, STRUCTURES •.'
PIPELINE

I I :
I L---------J L---------------------

RASTER
DATA

Figure 2 Renderer Resource

color), and commands that contain geometric
information that is to be rendered (e.g., draw poly
line). Output primitives in PEX include the PHIGS

primitives marker, polyline, text, annotation text,
fill area (polygon), fill area set (polygon with holes),
cell array, and the PHIGS+ extensions to these
primitives; plus the PHIGS+ primitives polyhedron
(indexed polygons), triangle strip, quadrilateral
mesh, parametric polynomial curves and surfaces,
and trimmed nonuniform B-spline curves and
surfaces.

A renderer is made ready for rendering by an
explicit "begin rendering" command. This com
mand provides an opportunity for the renderer
to allocate and initialize hidden surface buffers
depending on the hidden surface algorithm to be
used, to copy initial rendering pipeline attributes
from a pipeline context, and to create a procedure
vector based on the root and depth of the target
drawable for efficient processing of output com
mands. An "end rendering" request causes any
buffered primitives to be rendered. A renderer
immediately processes any output commands it
receives. Clients that maintain their own display
lists may send output commands to a PEX renderer
for immediate execution. Alternatively, clients can
build up lists of output commands in structure
resources for later execution by a renderer.

Vertices, control points, and normals that pass
through the PEX rendering pipeline are transformed
by the stages defined in Figure 3. These stages are
identical to the PHIGS transformation pipeline.
First, geometry is transformed according to the
current composite modeling transformation and
clipped according to the modeling clipping volume.
Geometry is then further transformed by the view

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

orientation (viewing) and view mapping (projec
tion) transformations. Finally, clipping is performed
and the resulting geometry is transformed into win
dow coordinates, and then into physical device
coordinates.

PEX greatly expands the capabilities of the PHIGS

rendering pipeline by defining a series of color
transformations that must also occur. Just as geo
metry information is ultimately transformed to
pixel positions, colors must also be transformed
into physically realizable pixel values. A color that is
passed to PEX as part of a request consists of a color
type/color value pair. There are two fundamental
color types in PEX: direct and indexed. If the color
type is direct, the color value may be in one of a

OUTPUT PRIMITIVES

LOCAL MODELING
COORDINATE SYSTEM

COMPOSITE MODELING
TRANSFORMATION

WORLD
COORDINATE SYSTEM

MODELING
CLIPPING

CLIPPED WORLD
COORDINATE SYSTEM

VIEW ORIENTATION
TRANSFORMATION

VIEWING REFERENCE
COORDINATE SYSTEM

VIEW MAPPING
TRANSFORMATION

NORMALIZED PROJECTION
COORDINATE SYSTEM

CLIPPING

CLIPPED NORMALIZED PROJECTION
COORDINATE SYSTEM

X WINDOW
COORDINATE MAPPING

X WINDOW
COORDINATE SYSTEM

DEVICE COORDINATE
MAPPING

PHYSICAL DEVICE
COORDINATE SYSTEM

PHYSICAL DEVICE COORDINATES

Figure 3 Geometry Transformation Stages of the
Rendering Pipeline

57

DECwindows Program

number of supported color formats (e.g., RGB float
ing point, HLS floating point, etc.). If the color type
is indexed, the color value is a 16-bit integer value.
As shown in Figure 4, the first step of the color
transformation pipeline is to dereference indexed
colors using the color lookup table associated with
the renderer. Within the rendering pipeline, all
color computations (e.g., illumination, depth cuing,
clipping) are carried out in an implementation
dependent true color space, even for devices that
have a monochromic display.

After dereferencing, color values and geometry
are clipped together during the modeling clipping
stage. Light sources, geometry, the object's intrinsic
color, and the current reflection model are used to
compute the color of the illuminated object. The
result is further modified according to the current
depth-cuing parameters. Colors and geometry are
then simultaneously clipped to a three-dimensional
volume for display purposes. Color approximation,
the final color transformation step, converts color

INPUT COLOR

COLOR
DEREFERENCING

INTRINSIC COLOR

MODELING
CLIPPING

CLIPPED INTRINSIC COLOR

LIGHT SOURCE SHADING
COMPUTATION

SHADED COLOR

DEPTH-CUING
COMPUTATION

DEPTH-CUED COLOR

CLIPPING

CLIPPED COLOR

COLOR
APPROXIMATION

PHYSICAL DEVICE COLOR

Figure 4 Color Tra-nsformation Stages of the
Rendering Pipeline

58

values from the true color, rendering pipeline for
mat into pixel values that the device is capable of
displaying. Clients must provide renderers with
information on how to perform the quantization
through the use of a color approximation table. This
table contains information to compensate for the
drawable element's visual type and for the contents
of the color map associated with the device. At this
step dithering or conversion to monochromic
intensity values can be performed to produce out
put onto drawable elements with limited color
capabilities.

Except for the addition of color, there were few
issues surrounding the design of the rendering
pipeline since it was based on the transformation
pipeline contained in PHIGS. The major decision,
whether the majority of the rendering pipeline
was above the network interface or below it, was
made early in the project. Our first prototype,
X3lib, partitioned the problem so that all floating
point intensive transformation, shading, and three
dimensional clipping operations were performed
by the client CPU , and scan conversion and pixel
copy operations were performed by the server CPU.

This partitioning was ideal for our development
environment, which consisted of a VAX 8650
system as our main development machine and
MicroVAX GPX workstations acting as display
servers. Since the GPX workstation has no built-in
hardware to support structure traversal or floating
point intensive three-dimensional graphics opera
tions, and since we were dealing with fairly simple
models, it made sense to do these things on the
faster machine. A proposal calls for partitioning the
problem in a fashion very similar to that of the
X3lib project, since such a panitioning also works
well in an environment where the client and server
processes are closely coupled using a high band
width connection, as would be possible on the
Titan superworkstation.

PEX supports the entire rendering pipeline in the
server extension for two major reasons: to reduce
the amount of data flowing back and forth across
the network interface and to allow server extension
implementers to take advantage of any built-in
rendering hardware support that may exist in the
target device. The connection bandwidth assump
tion is a critical one. The attempt was to design
PEX so that it would perform reasonably well in
an environment where the client/server communi
cation occurs over a (comparatively) slow network
connection. Since the network connection can
form the performance bottleneck in such an

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcal]ournal

PEX: A Network-transpa,rent Three-dimensional Graphics System

environment, it is important to reduce the amount
of data that must be transmitted. As an illustra
tion, transferring the control points of a B-spline
surface would be faster than transferring the list of
polygons generated by tessellating the surface.

Structures
A structure resource consists of a list of output
commands whose execution has been deferred.
PEX structures are hierarchical, in that a structure
may include commands to execute other struc
tures. Structure resources are intended to be device
independent, allowing the same structure to be
displayed on screens with very different character
istics (e.g., monochrome versus color), albeit with a
very different appearance. Unlike PHIGS, which
maintains the concept of a single open structure for
the purposes of adding, deleting, or changing struc
ture elements, PEX structures each contain an ele
ment pointer, making each structure available for
editing at any time. In PEX, nonexistent structures
are not created automatically as in PHIGS. PEX struc
ture resources must be created explicitly, implying
that it is left to the PHIGS client library to detect ref
erences to nonexistent structures and explicitly cre
ate the PEX structures. This requirement is not
considered a problem since the PHIGS library must
maintain a list of created structure resources to
perform the application name-to-resource iden
tification mapping. like any X resource, structure
resources may be shared by cooperating clients.
For example, a library of machine parts can be
downloaded into the server and accessed by several
clients.

Structure Traversal
Structure traversal is the process of flattening a
hierarchical database into a single stream of ren
dering requests. PEX has several different ways to
support structure traversal. To reduce network
traffic and to allow implementers to take advantage
of any built-in hardware support for structure
traversal, PEX provides support for structures on
the server side of the network interface, as shown in
Figure 5a. To perform a traversal of a server-side
structure network, the client sends a "render net
work" request. A renderer resource then traverses
the specified structure network and internally gen
erates a stream of output commands for processing
by the rendering pipeline. As a result, a client may
convert its database into PEX structure resources to
regenerate the displayed image at any time without
retransmitting the entire database.

Digital Tecbnical]ounzal Vol. 2 No. 3 Summer 1990

While many graphics devices contain built-in
support for display lists, many other devices have
extremely limited capability to support structures
in the server. Serious main-memory constraints in a
system without dedicated structure memory could
cripple performance if the only way to do graphics
through PEX was to create structures and traverse
them. Therefore, as shown in Figure 5b, PEX pro
vides immediate mode, or client-side traversal
support. Here, the client has the responsibility of
maintaining its own database and issuing output
commands directly to a renderer to regenerate the
image. The client is also provided with hooks to
save and restore the state of the rendering pipeline
during the traversal of the database. An additional
benefit of immediate mode capability is that it may
be used to support the GKS and GKS-30 notion
of unretained segments. Furthermore, since the
capability to create user-defined data structures in
the server is not provided, immediate mode is
beneficial to applications that cannot take advan
tage of PEX structures. Immediate mode capability
allows such applications to maintain their unique
data structures themselves and issue immediate
mode requests to perform output.

Since structures may also be executed with an
immediate mode execute structure output com
mand, a client may choose to keep part of its data
base in server-side structure resources and retain
part on the client side, as shown in Figure 5c. This
allows a client to cache large or frequently used
structures in the server.

Figure 5d illustrates the final option for structure
traversal, which is provided by the PHIGS work
station resource. While the other methods attempt
to provide a mechanism for assisting with the
traversal of an application's graphical database, this
method provides a way for applications to relin
quish direct control of the traversal operation to the
server. It is possible to designate a list of structure
networks asposted to (associated with) a PHIGS

workstation resource. PEX includes requests that
can be used to explicitly retraverse a PHIGS work
station's list of posted structure networks to regen
erate a displayed image. Furthermore, requests that
affect the picture's correctness (e.g., modifications
to a posted structure) may cause the displayed
image to be regenerated implicitly

Supporting PH/GS
Providing a rich, flexible environment to support
PHIGS was an important goal of PEX. However,
PHIGS and X have fundamentally different design

59

DECwindows Program

CLIENT

"RENDER NETWORK"
REQUEST

RENDERER

DRAWABLE
ELEMENT

r-----,
I STRUCTURES :

L.-----..J

(a) Server-side Traversal

,------,
CLIENT I STRUCTURES :

L-----.J
OUTPUT COMMANDS AND
"EXECUTE STRUCTURE"

RENDERER

DRAWABLE
ELEMENT

.-------,
I STRUCTURES :
L _____ ...J

(c) Mixed Traversal

r------,
CLIENT I STRUCTURES I

L-----.J

OUTPUT COMMANDS

RENDERER

DRAWABLE
ELEMENT

(b) Client-side Traversal

CLIENT

"REDRAW ALL STRUCTURES"
REQUEST

PHIGS
WORKSTATION

r------, r-----,
: RENDERER t---l STRUCTURES :

L-- __ .J L------J

DRAWABLE
ELEMENT

(d) PH/GS Workstation Traversal .

Figure 5 Display List Traversal Options

philosophies, and resolving these differences in the
PEX design was not always easy. The fundamental
tenet of X is that the system must provide hooks
(mechanisms) rather than religion (policy).1 The
goal was to design PEX so that it provided hooks
to support PHIGS, but PHIGS defines functionality
that is not easily decomposed into modular build
ing blocks. A further complication is that certain
capabilities (e.g., highlighting) are very hardware
specific, and it is impossible to define a general
mechanism that will address all of the methods that
are in use in the industry. For such things, there was
no alternative to leaving the PEX specification as
general as the PHIGS specification to allow clients to
take advantage of the various hardware-assisted
methods that have been developed.

PHIGS is based on the concepts of the workstation
and the central structure store, both of which are
defined in a way that is less than ideally suited to the
network windowing environment of X. The PHIGS

60

concept of structures maps rather readily into the
X concept of resources that can be created, manipu
lated, and deleted. However, the possibility that an
application may be separated from the structures it
has created by a slow network connection is not
explicitly addressed in the PHIGS model. Using PEX,

the PHIGS central structure store is implemented as
a collection of client-side or server-side structures
that the PHIGS client library manages. In this
respect, PEX follows the lead of X by providing
mechanism, and leaves it to the PHIGS client library
to map its abstraction of a central structure store
onto the capabilities provided by PEX.

The component that caused the most difficulty
was the PHIGS abstraction of a workstation, which
is defined as a device with a single, static-sized
display and one or more input devices. The PHIGS

interface does not address the possibility of outside
agents (such as window managers) that may alter
the size or position of an application's windows, but

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

PEX: A Network-transparent Three-dimensional Graphics System

it is possible for the PHIGS client library to handle
the dynamics of windows in X without reporting
such occurrences back to PHIGS applications. The
PHIGS workstation abstraction also states that the
workstation has the ability to control when and
how picture changes are visualized. For example, a
PHIGS application can suggest that the workstation
simulate changes when possible rather than per
form another rendering of the entire picture. PHIGS
does not specify how these changes should be
simulated, only that they can be simulated if and
when the workstation finds it convenient to do so.
This PHIGS attitude of let the workstation decide is
exactly the opposite of the X philosophy of let the
client decide.

Rather than completely discard the philosophy
ofX in order to support PHIGS, the compromise that
was reached was to provide a resource devoted to
supporting all of the attributes and state of the
PHIGS workstation abstraction. The PHIGS work
station resource has the same functionality as a
renderer resource, but also supports the PHIGS
workstation abstraction's concepts of posted struc
tures, picture correctness, deferral and modifica
tion modes, view priorities, and picking.

This resource requires additional bookkeeping to
determine whether or not the displayed image is
correct. Because it has a built-in renderer and struc
ture traverser, it can automatically regenerate the
image when changes have been made to resources
that affect the displayed image. Since the PHIGS
workstation resource is capable of regenerating
the image implicitly, it must also maintain a list
of structures that are to be traversed whenever
regeneration occurs.

Supporting PHIGS virtual input devices also
involved some trade-offs. In X, all input events
are sent up to the clients for processing. In PHIGS,
the workstation handles all input. Due to general
experience with X and our work with the proto
type three-dimensional extension, it was believed
that most PHIGS input capabilities could be layered
on top of existing X input mechanisms. PHIGS
"locator" and "stroke" input may be implemented
using the X pointing device, but need to map device
coordinates to world coordinates. The PHIGS work
station supports a request to do such a mapping.
PEX includes support for picking operations, since
preselection and selection highlighting are usually
hardware-dependent and must be performed
efficiently to be useful. The PEX pick measure
resource is used to measure output primitives to
determine which ones satisfy a specific set of selec-

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

tion criteria. A device-dependent input record that
is passed to a pick measure initiates the picking
operation. It is hoped that at least one common
input record will be supported by all PEX imple
mentations (implementations are free to support
others as well) so that PEX clients may avoid one
of the portability problems that plague PHIGS
applications.

Open Issues

Lengthy Operations
Certain PEX requests, such as a complete structure
traversal, initiate operations that can take a long
time, particularly on devices with little or no hard
ware support for three-dimensional graphics
operations. However, this problem is not unique to
PEX. Certain core X requests (get/put pixmaps,
draw many polylines/polygons) and requests from
other X extensions can also take considerable time.
Although the ability to execute these types of
requests is useful, it is also desirable to execute
requests on other connections while the lengthy
operations are occurring. Furthermore, it is often
necessary to terminate (abort) a lengthy operation
that has been started.

Whether or not a server supports concurrency is
an implementation detail that should not be visible
to clients above the network interface. Conse
quently, the design of the PEX protocol does not
prohibit either single threaded or multithreaded
server implementations. How well PEX supports
multithreaded implementations cannot accurately
be gauged until a multithreaded X server proposal
(or implementation) is publicly available. The addi
tion of an "abort operation" request that is specific
to PEX is currently under consideration. If an abort
mechanism is designed that works across X and all
extensions, it can be considered in a future revision
ofPEX.

Input
There is still some question as to whether the use
of the X input mechanisms will be sufficient to
meet three-dimensional interactivity requirements.
Obtaining the mouse position from X and using it
as input to a PEX picking request requires a net
work round trip. The possibility of defining tightly
coupled input loops within the server has been
briefly explored. Interest has also been expressed in
supporting input devices other than the standard
X pointing device. It seems likely that these issues
will be investigated as part of a general effort to

61

DECwindows Program

extend the input capabilities of X. Until then,
because of general experience with X and with the
three-dimensional prototype extension, we believe
the X input mechanisms will suffice.

Fonts
The type of font required for PHIGS text support
requires more information than is present in
X fonts. PHIGS text fonts must be fully transform
able, hence they require a representation in some
normalized coordinate space. Although the type of
fonts that are required for PHIGS support may be
useful to other extensions, such fonts were defined
only within the aegis of PEX. This definition made it
possible to control the design of the font support
for PEX and the schedule for such support indepen
dently of other extension efforts. If PEX fonts prove
to be generally useful, a separate extension could be
defined to support them in the future.

Double Buffering
Certain applications find the use of double buffer
ing, or multibuffering, to be necessary to hide the
construction of displayed images or to produce
flicker-free animation. Neither PHIGS nor PHIGS+
explicitly includes double-buffering capabilities,
although some implementations of these stan
dards include double buffering implicitly or as an
extension. X itself does not include support for dou
ble buffering beyond drawing to an offscreen pix
map and copying the pixmap to a visible window.
Double buffering in PEX has been deferred as a
general X problem. Several proposals for double
buffering in X already exist, and work is underway
to establish a general solution, which may also
include accessing overlay planes and stereoscopic
viewing.13

Z-buffers
Most (but not all) of today's high-performance
rendering systems are based on some form of hard
ware 2-buffer support. Consequently, there has
been a strong temptation to expose 2-buffer capa
bilities to clients. This temptation has been resisted,
mostly on the grounds that exposing such capabil
ities would lead to a great many device-dependent
applications. However, as proposals for including
double-buffering support in X are firmed up, it may
be advantageous to incorporate additional 2-buffer
semantics and capabilities, such as defining initial Z
values and reading them back.

62

Conclusion
PEX is an extension to the X Window System that
has been designed to provide the capabilities of
PHIGS and other three-dimensional graphics stan
dards in the X environment. We consider the origi
nal design goals of PEX to have been well met. With
PEX, it is possible to create windows on the display
that function exactly as independent, three-dimen
sional workstations. A single workstation device
supporting PEX can maintain several virtual three
dimensional workstations on its screen simulta
neously, and resources can be shared among these
virtual workstations to reduce overall server load.
PEX can be implemented, with varying levels of per
formance, on a wide range of raster graphics work
stations. Client applications communicate with the
PEX server extension through a network connec
tion, which makes the fact that a network separates
the client and server CPUs transparent to the end
user. This network transparency provides the possi
bility of true applications portability within the
X environment. Application code need not be
rewritten, recompiled, or even relinked to take
advantage of a new workstation that supports X
andPEX.

The length of time between initial proposal and
public acceptance (six months) is unprecedented in
the computer graphics industry. With a public
implementation effort in progress, it is anticipated
that PEX will become widely available, thus giving
users windowing support and three-dimensional
graphics capability in a well-integrated, industry
standard environment for the first time.

Acknowledgments
The authors gratefully acknowledge the people
who have contributed to the design and develop
ment of PEX. In addition to the authors, the mem
bers of the PEX architecture team who were
responsible for revising and finalizing the PEX
specification after it was originally submitted to the
public forum were Jeffrey S. Saltz and John
McConnell (Digital), Marty Hess and Jim Van Loo
(Sun Microsystems, Inc.), Dave Gorgen and Tom
Gross (Apollo Computer Inc.), and Jeff Stevenson
(Hewlett-Packard Company). Bertram Herzog of
the University of Michigan is the chairman of the
X3D committee and was responsible for seeing that
the public process was carried out in a timely
fashion. Special thanks go to Robert W. Scheifler,
director of the X Consortium, for his invaluable
review and suggestions throughout the PEX effort.

Vol. 2 No. 3 Summer 1990 Digital Tecbntcal]ounial

PEX: A Network-transparent Three-dimensional Graphics System

Finally, we acknowledge Jeff Lane, director of
graphics software development for workstations at
Digital, whose advice, criticism, support, and
unbounded enthusiasm always seemed to come at
the right time.

References

1. R. Scheifler and]. Gettys, "The X Window
System," A CM Transactions on Graphics, vol.
5, no. 2 (April 1986): 79-109.

2. R. Rost,' PEX Introduction and Overview
(Cambridge: MIT X Consonium, May 1, 1988).

3. R. Rost, ed., PEX Protocol Specification
(Cambridge: MIT X Consortium, April 2,
1990).

4. S. Barry, ed., PEX Protocol Encoding Docu
ment(Cambridge: MIT X Consonium, April 2,
1990).

5. Programmer's Hierarchical Interactive
Graphics System (PH/GS) (International
Standards Organization, Draft Standard ISO

dp95921: 1987(E), October 1987).
6. Graphical Kernel System for Three Dimen

sions (GKS-3D) (International Standards
Organization, ISO/DIS 8805, April 1987).

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

7. "PHIGS+ Functional Description Revision 3.0,"
Computer Graphics, vol. 22, no. 3 Ouly,
1988): 125- 218.

8. W. Clifford, Jr. et al., "The Development of
PEX, a Three-dimensional Graphics Extension
to Xll ," Eurographics '88 Proceedings (Nice,
France, September 1988).

9. R. Scheifler, X Window System Protocol,
Version 11 (Cambridge: MIT Laboratory for
Computer Science, February 27, 1988).

10.]. Gettys et al., Xlib - C Language X Interface,
Protocol Version 11 (Cambridge: MIT Project
Athena, February 27, 1988).

11.]. McCormack et al., X Toolkit Intrinsics -C
Language X Interface, X version 11, release 2
(Cambridge: MIT Project Athena, February 27,
1988).

12. R. Swick and T. Weissman, X Toolkit
Widgets - C Language X Interface, X version
11, release 2 (Cambridge: MIT Project Athena,
February 27, 1988).

13.]. Friedberg et al., Extending X for Double
Buffering, Multibuffering, and Stereo, version
3.3 (Cambridge: MIT X Consonium, January
11, 1990).

63

Christopher A. Kent I

XDPS: A Display
Postscript System
Extension for DECwindows

XDPS extends the Display Postscript System into the DECwindows environment.
1be extension integrates the capabilities of both the X imaging model within
DECwindows and the Postscript language for screen display-Display Postscript.
Designers resolved differences between X and Postscript systems in order to add
a complete Postscript interpreter to the DECwindows seroer and a protocol that
defines application access. Most significant among the differences encountered was
each systems approach to graphical attributes, coordinate systems, color strategies,
and communications models. In their implementation of the extension protocol
and merger of the two graphics systems, the designers' overall goal was to provide
applications programmers the best features of each system without imposing
constraints on their use.

The Display Postscript System is Adobe Systems
Incorporated's implementation of the Postscript
language for workstations. The subject of this
paper, XDPS, is an extension to the X protocol
that brings the Display Postscript system to the
DECwindows program. (The DECwindows pro
gram is Digital's implementation of the X Window
System.) The extension is the result of a joint effort
by Digital and Adobe.

XDPS makes available the full capabilities of the
Postscript language and adapts these capabilities
for screen display, as opposed to printed pages. Fur
ther, XDPS fully integrates the Postscript imaging
model with the basic X imaging model. Applica
tions can freely mix standard X graphics requests
with XDPS requests. Thus the application pro
grammer can use either X graphics commands or
Postscript programs as appropriate.

XDPS is designed to be complementary to X. It
provides new capabilities that are missing from the
basic X imaging model. With XDPS, applications
can show text with arbitrarily rotated and scaled
fonts, ignore resolution and color model differ
ences, manipulate the coordinate system to be the
most convenient one, and deal more easily with
complex curves and shapes. Applications have
access to the entire Adobe font library. Application
writers can use Postscript for all graphics and be
assured that what is seen on the screen is exactly

64

what will be seen when the same graphics are
printed on a Postscript printer.

This paper discusses the design decisions made in
the development of XDPS and describes the major
features of the final extension. An overview of the
Display Postscript System's features is presented
as a preface to the main discussion. (All instances
of the name Postscript in this paper are references
to the Postscript language as defined by Adobe
Systems Incorporated, unless otherwise stated.)

Features of the Display Postscript
System
PostScript is the de facto industry standard page
description language. Unlike most of its predeces
sors, a PostScript file does not describe a set of bits
on a page. Rather, it is a program that is interpreted
in the printer. The effect of this interpretation is
that some bits get "painted" on the page. In this
manner, the interpreter, rather than the program,
can handle details concerning the device, such as
output resolution, spot size, and color model. The
same program can be used to describe a page on a
300 dpi (dot per inch) bitonal printer and a 1200 dpi
full-color film recorder. Each device's interpreter
can be tuned to make the output look as good as
possible.

The basic concept of the Postscript imaging
model is called "stencil and paint." The program-

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

XDPS: A Display PostScript System Extension for DECwindows

mer constructs an arbitrarily complex stencil
(known as a path) and then squeezes paint through
it. Paint can be a single color, a pattern, or a scanned
image. It is the interpreter's job to decide exactly
which bits get painted. The programmer can con
centrate on describing the desired image, rather
than on the details of the device.

The Display PostScript System (DPS} is an imple
mentation of Postscript for workstation displays.
It retains all the features of the PostScript language,
but serves an environment quite different from
that of printers. Screen displays require interactive
manipulation of graphics, frequent redisplays, com
plicated clipping and repainting to accommodate
overlapping, movable and resizable windows, and
simultaneous display of complex images in multiple
windows.

The Display Postscript System adds a number of
features to the Postscript language.1•

2
•3 The major

new features are as follows:

• Multiple execution contexts. A context can be
thought of as a virtual printer, or a separate pro
cess. A context is an instance of the interpreter
with its own input stream and output device.
Several contexts can share the same output
device. In its most simple usage, several appli
cations can simultaneously draw to the work
station display. In a more complicated usage,
several contexts can draw to the same window,
and each context is responsible for managing a
portion of the window's appearance.

• Multiprocessing support. Given multiple con
texts, application programmers need mecha
nisms to control them. DPS provides a range
of mechanisms, including fork, join, detach,
and monitor.

• Shared program memory (VM}. Shared VM is
an implementation of shared memory for the
multiple contexts. One context can define a
variable, procedure, or resource (such as a font)
in shared VM and allow it to be used by other
contexts in the system.

• Garbage collection. In the Display Postscript
System, programs are long lived in comparison
to the duration of Postscript print jobs. Conse
quently, the system requires more dynamic
memory management. DPS provides a garbage
collector that runs automatically and can be
activated at any time by programs.

• Graphics state objects. The Display Postscript
System adds the ability to encapsulate the

D igital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

Postscript graphics state in an object. With this
mechanism, application programs can switch
between several graphics states with a single
command, rather than rebuilding the graphics
state every time it is needed or using the standard
graphics state stack mechanism.

• Screen fonts. PostScript allows the user to paint
text with fonts at any size or orientation. Fonts
are described in terms of outlines, and the inter
preter scan converts these outlines into rasters of
the appropriate size and orientation. At large
point sizes and printer resolutions, this tech
nique works very well. At smaller point sizes
on low-resolution devices, the output is not as
clearly defined as one would like. To enhance the
readability of the resulting text in such cases, the
Display PostScript System provides a mechanism
to use tuned bitmaps for characters at certain
sizes and orientations instead of the output of the
scan converter.

• Optimized rendering operators. Many of the
operations in window system applications
involve operations on rectangles. The Display
Postscript System provides optimized versions
of several operators (such as fill and stroke)
that execute more quickly on rectangles than on
general paths.

• User paths. DPS provides a mechanism for the
user to cache paths that are to be used more than
once, and several operators for working with
these user paths.

Relationship oftbe Display Postscript
System and DECwindows
The Display Postscript System, described above, is
not a window system. Instead, it is a component
that can be integrated into any window system.
Vendors that license the Display PostScript System
from Adobe Systems must decide how best to inte
grate it into their window system offerings. Our
decision was to use the X protocol extension mech
anism to add the Postscript imaging model to the
DECwindows served

X applications (also known as clients) commun
icate with the server by sending a stream of asyn
chronous requests and receiving back a stream of
results and events. The core set of requests covers
all facets of window manipulation (geometry, loca
tion, visibility) and provides a simple, pixel-based
graphical model.5

Extensions add to the requests in the protocol,
and therefore add to the functionality available to

65

DECwindows Program

applications. XDPS adds a complete Postscript
interpreter to the DECwindows server, and the
extension's protocol defines how applications can
access and control the interpreter's operation.

In particular, applications can send PostScript
programs to the server and have the output appear
in a window or a pixmap. Core X requests and DPS
painting requests can be intermixed in the same
communications stream. Our task was to define the
semantics of the extension to the protocol to
provide the best interplay between the two sets of
requests.

X and Postscript have some similarities and dif
ferences that we had to consider when designing
the protocol. Table 1 compares characteristics of
X and Postscript.

The most significant difference between the two
models is that Postscript is a programming language
that produces graphical output as a side effect of
interpretation, whereas X is a window system pro
tocol with explicit graphics requests. In Postscript,
applications can define procedures to be invoked
later and can declare variables that have persistent
values. When invoked, these procedures can take
an arbitrary amount of time to execute. In X, all
graphics operations are immediate, and there is
very little persistent state.

Further, X has an input model, as well as a
graphical output model. Applications may elect to
be notified when certain input events occur or may
prescribe actions that the server should take on their
behalf (such as changing cursor shape on window
boundary crossings). The Display Postscript System
was not designed to handle input. In designing
the extension, we had to decide if it was important
to expose the input processing to the PostScript
programs running in the server.

Postscript allows users access to the file system
for purposes of file storage and retrieval, whereas
the X protocol allows no such access. We had to
decide how to trade off the convenience that file
access provides with file security.

X is pixel based; in Postscript, the user can define
the coordinate system that is most convenient. The
interpreter then translates to the device. In X, the
upper left corner of a drawable is always the origin
of its coordinate system. In PostScript, the user can
define the origin to be anywhere. As described fur
ther in the Coordinate Systems section, our task was
to determine how the two coordinate systems
would interact, which of the models are application
programs most likely to be used, and which model
is the least restrictive.

66

Table 1 The Postscript and X Models

Postscript

Programming language
with graphics as a side
effect

Page description
language
Display output only

User access to file
system

Resolution independent,
user-defined coordinate
system

Coordinate transforms

Fonts are scalable

Abstract, "true" color
model

Arbitrary execution times

x
Window system with
explicit graphics
requests

Windowing interface to
bitmap graphics device
Display output and
input devices

No explicit access to
file system
Resolution-dependent,
pixel-based system

No coordinate
transforms

Fonts are discrete

Many device-specific
color models
Discrete, fixed-length
requests

Postscript is based on a true color model: it
always attempts to give the user the best color the
device can provide, using halftone approximations
(dithering) if necessary.6 X makes no decisions
about colors and gives little help about colormap
and color strategies. Instead, X exposes the display
hardware's color model and forces the application
to handle the details of rendering colors across dif
ferent display hardware. On most displays, cells in
the colormap are a scarce resource. The XDPS team
therefore had to determine how to provide good
color rendition for Postscript programs while not
restricting the operation of other applications. Does
this mean that the PostScript interpreter needs to
preallocate a colormap for its own use? How can
the XDPS extension coexist with non-XDPS pro
grams that want to allocate many colors or use the
plane mask? A discussion of our solution is given
below in the section Color.

Finally, X has discrete requests of fixed length.
All the requests are atomic, and synchronization has
an exact meaning. The Postscript interpreter com
municates data to the application by means of a
readable/writable continuous stream of characters.

Figure 1 shows an example Postscript language
procedure. When invoked, it reads 10 lines (termi
nated by newlines) from the standard input stream
currentfile and prints them up the page (initiated by
show). All the text is painted red (initiated by 1 O O
setrgbcolor in the example). An application defines
this procedure, and the Postscript interpreter stores

Vol. 2 No. 3 Summer 1990 Dtgttal Tecbntcaljournal

XDPS: A Display Postscript System Extension for DECwindows

/print10Line5QfText{ %def
/y 10 def
1 0 0 5etrgbcolor
1 1 10 { %for

def

currentfil e 5tr readline
/y y 10 add def
10 exch moveto
pop 5how
for

Figure I A Simple Postscript Program

it. Later, the user can invoke the procedure and send
the 10 lines of text. The server cannot determine, by
simply examining the input stream, how long the
lines of text are, because it does not parse the
incoming Postscript language stream. Contrast this
procedure with the X protocol mechanism for the
same task. Each line is displayed by sending an
explicit PolyText request. The length of each line is
encoded in the request. The color for each line is
stored in the X graphics context that is passed with
each PolyText request . Again, the XDPS team had to
decide what mechanisms were needed to synchro
nize the applications and the server. Also, how
would we ensure fair scheduling of all applications?
These conununications models are quite different.
How can an application synchronize the X and
PostScript streams?

Implementation
Figure 2 illustrates the integration of the Display
Postscript System into the DECwindows environ
ment. The portions labeled in italics are the com
ponents that we added.

In the following sections, we discuss how the
design questions outlined above were resolved
in the XDPS system. We begin with the Graphics
Attributes section to address the most significant
point of difference between X and Postscript.

Graphics Attributes
One goal of the XDPS project was to integrate
Postscript with the core protocol and preserve the
principal X tenet: offer mechanism but do not
impose policy. We wanted applications to be able to
render into a drawable (a window or a pixmap)
with both X graphics requests and Postscript pro
grams. What ramifications would this place on the
protocol? For example, should every XDPS request

Digital Tecbnlcaljounial Vol. 2 No. 3 Summer 1990

require an explicit drawable and graphics context?
First with reference to the X attributes, recall

that we did not want to enforce policy, but rather
give the application the tools needed to do the job
without constraints on how the tools are used. For
example, an application should be able to draw
rotated text using DPS and also draw lines using
X requests.

Postscript has a graphics state that defines the
coordinate system, current drawing color, position,
path, clipping path, font, line style, halftone screen,
and transfer function. X also has a graphics context
(known as the Ge). We looked at those attributes of
the X GC that are not d uplicated by the PostScript
graphics state. Everything was covered except the
attributes controlling the clipping area in a window
(the client clip) and the plane mask. We therefore
decided to statically associate a GC with each
Postscript context. When imaging Postscript
graphics, the extension uses only the following
X attributes.

• Clipmask

• Clip x origin

• Clip y origin

• Subwindow mode

• Planemask

APPLICATION

XUI TOOLKIT I I
I

DPSL/B
XT (INTRINSICS)

XLIB XDPSL/8

;
X SERVER

DPS KERNEL OS
ADAPTER

DEV/CE-DEPENDENT DPS

DEVICE

Figure 2 1be Extension and the Display
Postscript System

OS

67

DECwindows Program

Everything else comes from the Postscript
graphics state. This approach allows the application
to use the same GC for X or Postscript graphics. The
X requests use all the attributes, e.g., foreground
and background colors, line style, and join style.

Coordinate Systems
The PostScript language, unlike X, allows an appli
cation to specify the drawing origin of the window.
When a Postscript context is created in XDPS,

the application specifies the origin relative to
the X coordinate system in the window. If the win
dow's size is changed, should the extension move
the Postscript origin, and if so, where?

We decided that it was most important to keep
the origin in the same position relative to any
graphics that the PostScript context has already
displayed. Graphics created at a later time will then
line up with any existing graphics. X provides a
mechanism called bit gravity for this operation.
We were able to exploit bit gravity without any
explicit work by the extension.

Figure 3 shows the effect of resizing a window
with northwest and southwest window gravity.
For example, in the first picture in the upper left,
there is a window with the PostScript context's
user coordinate origin at the lower left corner. The
window is resized to be taller and thinner. Since
the window has northwest gravity (the default
X origin is northwest), the graphics that already
appear in the window stay in the same position
relative to the upper left corner of the window. The
user coordinate origin stays in the same position
relative to the upper left corner. In this way, the
graphics stay in the same position relative to the
user coordinate origin.

The second example shows southwest gravity
set. In this case, the user coordinate origin stays in
the lower left corner, and the graphic moves lower
in the window so that it remains the same distance
from the bottom edge. Again, the graphic retains
the same position relative to the context's origin.

Since Postscript programs usually keep the origin
at the lower left corner of the drawing space, most
users of XDPS will want to set up their windows to
use southwest bit gravity. Note that the extension
does not force this origin. Also, the user's Postscript
transformation matrix is not changed in any way on
resize; the resize is seen as a change in clip, not a
scaling operation.

Color ·
Our primary decisions relative to color were
whether the application or the extension would

68

NORTHWEST GRAVITY

ABC - ABC

I I
1! I - - --~--
: ~POSTSCRIPT ORIGIN/ I

SOUTHWEST GRAVITY

ABC -
ABC

: ~ POSTSCRIPT ORIGIN~ !

=-==-----' I
I

Figure 3 Bit Gravity

allocate color cells, and what the allocation policy
would be. The Display PostScript System tries to
paint with the "best" color available, using a true
color model. It chooses colors from a smoothly
shaded cube of RGB colors, or ramp of gray shades,
stored in a colonnap. When possible, XDPS matches
actual RGB values if they are already associated with
a pixel in the colonnap. If an exact match is not
available, XDPS dithers to approximate the color.

The default colonnap is a scarce resource and
must be shared by multiple applications and
windows. We had to decide how to manage the
color cells used by the extension. To get high color
fidelity, we could use many cells. But if the exten
sion fills in most or all of the default colonnap with
its ramp and cube, the other, non-Postscript appli
cations are not able to allocate from the default
map. These applications have to allocate out
of private colonnaps. On displays with only one
colonnap, the screen become technicolor while
applications switch between different colonnaps.

On the other hand, some Postscript applications
use only a few colors. Filling in the map to get those
colors exactly right without dithering might be
wasteful.

Our solution is to use the standard colonnap
mechanism described in the Xlib manual.5 The
intention of the standard colonnap mechanism is to
provide a shared, filled-in color cube for appli
cations that want to use the true color model.

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

XDPS: A Display PostScript System Extension for DECwindows

Sharing is the key; multiple applications use the
same colormap entries to avoid turning the screen
technicolor. The cells in the map are allocated and
filled in with the cube; then a property is placed on
the root window that describes the color cube and
to which map it corresponds. XDPS applications
pass this information to the extension when a con
text is created. They can use the standard map
or create their own, and any visual can be used.
By default, on an eight-plane display, the exten
sion client library uses a standard colormap of 64
colors: four colors along each of the red, green, and
blue axes.

An XDPS application might know that it only uses
a few colors and does not want dithering. When it
draws in orange, for instance, it wants the exact
RGB values and not a halftone approximation. In
this case, the application can ask the extension to
allocate the colors when needed. When creating a
context, the application specifies a color cube
(which can be two entries-black and white) and
indicates that the extension should try to allocate
colormap cells with the actual RGB values and not
dither. If the extension tries to allocate a cell and the
colormap is full, the extension falls back and uses
the supplied color cube to dither.

Communication and Synchronization
As noted earlier, we had to determine how the
extension protocol would provide synchronization
between clients and the server. Also, we had to
ensure fair scheduling of all clients, whether or not
they use XDPS. This section discusses how we
layered Postscript's stream-based communication
model on top of the X request/reply/event model,
and how the extension protocol resolves these two
problems.

The Postscript communication model is a contin
uous stream of bytes. PostScript programs not only
read but also write a stream to the user. A program
can write data back. The program

SharedFontDirectory
{pop dup == findfont begin Unique!D u end}
forall

prints to the standard output stream the name and
unique identifier (ID) for all fonts known to the
PostScript interpreter. In contrast, X replies have a
well-known length.

The extension layers the PostScript standard out
put stream on top of X events. These events are 32
bytes long, with the first 5 bytes taken up with
overhead information which allows events to be
dispatched by a toolkit. The client library merges

Digital Tecbnical]ounial Vol. 2 No. 3 Summer 1990

these events into the event stream that an XDPS

program expects.
Following is a summary of the available protocol

requests:

• Initialize (indicate floating point format)

• Create a context (and specify color cube and
ramp)

• Give input (ASCII or binary)

• Get status of a context
- Running or needs input

- Notify when next state change occurs

• Destroy or interrupt a context

• Reset a context

At initialization, the server tells the application
which floating point representation it prefers, such
as the IEEE or the VAX format, and the expected byte
ordering. (All servers must support IEEE.)

Context creation requires a drawable, a GC (for
the client clip and plane mask), and the color
cube and gray ramp required for rendering colors.
These requests start another thread of execution in
the server and associate the new context with the
specified drawable.

Givelnput, the main request, provides data to the
standard input stream of the PostScript interpreter.

GetStatus and Destroy are nonsynchronous, out
of-band requests used to control contexts.

ResetContext allows the application to handle
Postscript language exceptions and return the
interpreter to a known state.

Given the two different communication models
for PostScript and X, what does it mean to synchro
nize the PostScript stream and the X request
stream? The Xlib routine xsync() is a handy tool
for debugging programs, and has a well-known
meaning. We wanted to provide the same sort of
capability for the Postscript stream.

Suppose the application sends the set of requests
shown in Figure 4. First, the client creates a
context, then maps two windows. Next, an XDPS

request defines the Postscript procedure
printlOLinesOfText (see Figure I), which reads
10 newline-terminated strings from the standard
input stream and prints them up the page. These
strings are only the definition, so the interpreter just
saves them and does not execute anything. The
next request is xsync. Since the Postscript inter
preter is not active, the X request buffer in the
server is empty, and both streams are synchronized.

69

DECwindows Program

P1

X2

X3

P4

XS

P6

X7

Create PS context

MapWindow

MapWindow

Givelnput (define print1 OlinesOfText)

XSync

invoke print1 OLinesOfText

XSync

Figure 4 Synchronizing X and Postscript
Request Streams

At P6, the application invokes printlOLinesOfText.
The Giveinput requests that follow are interpreted
as strings to be printed. If the next request is XSync,
it is not considered a string because it is not an
extension request. XSync has a different meaning to
the application at this point. The X request buffer is
empty; the Postscript interpreter neither has input
to process nor is it in a "done" state.

Requests must continue to be processed for this
application in order for the strings to be displayed.
Further, XDPS and X requests must be allowed to be
intermingled.

We defined the "done" state to mean that the
interpreter has been given input but has not neces
sarily executed it or finished a loop. In this state, the
two streams must be synchronized separately
with different requests. In practice, this synchro
nization is not difficult. It allows the application
to send X requests that monitor and control
(destroy, reset, interrupt) a context using only
one connection. We did not want to require an
application to start a new connection to control
the context, because this would require too much
communication overhead.

The GetStatus request is used to determine the
state of the interpreter. DPSWaitContext(), a client
routine, waits for the interpreter to finish execution
and return a value. The application then knows that
the interpreter is completely finished processing
all input.

Custom X Operators
We added several operators to the language that the
PostScript interpreter understands. These operators
supply the functionality that applications need.

• clientsync - The clientsync operator causes the
current context to pause and sends an event
to the application program. The context stays

70

frozen until the application sends a request to
resume the context. This operator complements
DPSWaitContext() in that it allows the Postscript
program executing in the server to wait for the
application program.

• setXgcdrawable, currentXgcdrawable-Applica
tions may wish to switch the output of a single
XDPS context among several drawables, or
change the GC. These operators allow Postscript
programs to set the GC and drawable associated
with a context and to query the current values.

• setXgcdrawablecolor, currentXgcdrawablecolor
- These operators are extended versions of
setXgcdrawable and currentXgcdrawable,
respectively. They additionally address color
rendering parameters in use by the current
context.

• setXoffset, currentXoffset- The origin of a con
text's device coordinate system is movable.
These operators allow the current origin to be
set or queried.

• setXrgbactual - The setXrgbactual operator tries
to allocate a new colormap entry that stores
the specified color. This allows applications
that need precise control over colors (that is,
they never want to dither) to always allocate
"exact" colors.

Scheduling
A user can define a Postscript program of arbitrary
length, that is, long in length or long in running
time. X requests, on the other hand, are more
predictable. The server schedules X requests only if
all the data is available (i.e., there is a length field at
the beginning of each packet), and the server knows
that a client has to be scheduled only when input is
available. As a result, X requests are always com
pleted before returning to the scheduler.

The Postscript interpreter in a context is never
really done, which conflicted with our goal to make
the scheduling fair. So each context is allowed to
run for 50 operators, and then returns to the sched
uler. In addition, there is a mechanism that forces
the interpreter to yield if there is any user input.
As a result, a client using the extension might be
rescheduled even when there are no requests in the
request buffer.

Therefore, we added yielding to the server sched
uler, as well as the ability to schedule an extension
application when there is no input pending. The
Giveinput extension request yields when conven-

Vol. 2 No. 3 Summer 1990 Digital Tecbntcaljournal

XDPS: A Display PostScript System Extension for DECwindows

ient (as described above); X requests yield when
completed, just as before.

File System Access
The Postscript language defines file system opera
tors, but allows each device to define access restric
tions. In devices without file systems, for example,
the LaserWriter and the LPS40, these file system
operators do not work.

The X protocol does not provide for explicit
access to the file system of the machine on which
the server is running. Access is not allowed both
because the application's file system might reside
on another machine and because the server might
be running with higher access permissions than
the application.

We felt that completely disallowing access was
too restrictive. A balance between open access and
no access was needed. We allowed access to
restricted directories, based on the file name. This
approach lets Postscript programs share image
data, libraries of procedures, or user-defined fonts,
but does not allow arbitrary access. There are
two directories: %tempdir% and %permdir%.
%tempdir% is emptied every time the server is
reset (when the user logs out or the machine is
rebooted), but % permdir% persists.

The Application Programmer
Perspective
For the application programmer, XDPS supplies a
library layered on top of the protocol. The library
provides mechanisms for creating, destroying, and
manipulating contexts. The library is responsible
for folding extension events into the normal X
event stream.

In addition, a utility, pswrap, allows program
mers to define C interfaces to arbitrary Postscript
language routines. Such an interface is called a
wrap. We also provide wraps for all the Postscript
operators.

Figure 5 is a simple example of a working applica
tion using XDPS. The application opens the display,
creates a window, creates a Postscript context,
associates the context with the window, executes
Postscript code in the context, and manipulates
the resulting output.

(Note Figure 5 is a complete working program,
not a pseudo-code example. As such, some details
are important to its execution but not to the discus
sion at hand. Also, the program is an example of
several bad programming practices: it ignores possi-

Digital Tecbntcaljournal Vol. 2 No. 3 Summer 1990

ble errors and is not event driven. Again, these
details are not relevant to this discussion and are
therefore ignored.)

This program builds a simple animation. It
creates 36 frames, each of which contains the string
"Display Postscript" in a different size, orientation,
and color. Each of these frames is rendered with
Postscript operators and saved in an X pixmap.
After all the rendering is complete, the program
loops through the 36 frames and copies them to the
screen without any delay between frames.

The program begins by opening the display, cre
ating a simple window, and causing the window to
appear on the screen. The program then creates a
DPS context; it does not associate the output with
any drawable. Then the program begins the loop to
create frames.

Each time through the loop, the program creates
a pixmap and attaches the output of the context
to the pixmap, with the user coordinate system
origin at the center of the pixmap. The program
then chooses and scales the Helvetica-bold font,
clears the pixmap to white, sets the drawing color,
and paints the text. Finally, when all the frames
have been created, the program goes into a tight
display loop.

The performance of this example program is
not greatly improved by the combination of
xcopy Area() and Postscript wraps. The same effect
could have been achieved by writing a simple
Postscript program and downloading it into the
server. A Postscript program can draw text in XDPS
relatively quickly. Most notable here is that the loop
that created the frames could have executed any
PostScript program - even one read from a file. The
final rate of display would be the same no matter
which Postscript program were used; only the
delay between program execution and the display
of the first frame would vary. A programmer work
ing only with X could not draw rotated text; and a
programmer using DPS could not write flip-book
style animation. The extension combines these
capabilities so the bes, features of each system can
be used.

Summary
It has been said that X is a window system, not
a graphics system. The XDPS extension for the
DECwindows program provides applications with a
rich graphical model that can be freely intermixed
with the core protocol. XDPS provides all the mech
anisms available in the Display Postscript System,
without imposing constraints on their use.

71

DECwindows Program

72

#include <X11/Xlib . h>
'include <DPS/dpsXclient . h>
'include <stdio . h>

'define SIZE
#define STEP
#define HSTEP

mainCargc, argv)
char ••argv ;

Display
Window
DPSContext

400
10
360/STEP

*dpy ;
lll j

ctx;

I* had better divide 360 evenly! */

Pixmap maps CHSTEPJ, *pMap ;
int i j

GC gc ;

dpy XOpenDisplayC"") ;
111 = XCreateSimpleWindo111Cdpy 1 RootWindo111Cdpy, 0), 0, 0, SIZE, SIZE,

1, BlackPixelCdpy, 0), WhitePixelCdpy, 0)) ;
XMapWindo111Cdpy, 111) ;
gc • DefaultGCCdpy, 0) ;
XSetGraphicsExposuresCdpy, gc, False) ;
ctx. XDPSCreateSimpleContextCdpy, HULL, HULL, 0, 0,

DPSSetContextCctx);

forCi • O; i < HSTEP; i++> {
pMap • &maps[il ;

HULL, DPSDefaultErrorProc, HULL) ;

*pMap = XCreatePixmapCdpy , 111, SIZE, SIZE, XDefaultDepthCdpy, 0))
PSsetXgcdrawableCXGContextFromGCCgc), *pMap, SIZE/2, SIZE/2) ;
PSselectfontC"Helvetica-Bold", 12 . 0 + Ci• 0 . 5)) ;
PSera!epageC) ;
PSsetrgbcolorC1 . 0 - i*STEP/360 . 0 , 0 ., i*STEP/360 . 0) ;
PSrotat e C(float) STEP • i);
PSmovetoCO . O, 0 . 0) ;
PSsho111C"Display Postscript");

DPSWaitContextCctx) ;
for Ci s O; ;) {

XCopyArea Cdpy, mapsCil, 111, gc, 0 , 0 , SIZE, SIZE , 0, 0) ;
i ++ j

i X. HSTEP ;
XFlush(dpy> ;

Figure 5 A Simple Program Using Core Graphics Requests

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

XDPS: A Display Postscript System Extension far DECwindows

Acknowledgments
XDPS is the result of work by many people. The
original protocol definition is the work of Susan
Angebranndt, Phil Karlton, and Terry Weissman of
Digital, and Ramin Behtash, Ivor Durham, and Jim
Sandman of Adobe. Perry Caro and Joe Pasqua of
Adobe have done further work with Bums Fisher,
Terry Weissman, and the author to nail down the
final protocol. All of us at Digital have had a hand in
the implementation. Erik Fortune added the font
support we needed to the server.

References

1. Adobe Systems Inc., Postscript Language
Reference Manual (Reading: Addison-Wesley
Publishing Company, Inc., 1985).

2. PostScript Language Extensions far the Display
PostScript System (Mountain View, CA: Adobe
Systems, Inc., 1988, 1989).

3. PostScript Language Color Extensions
(Mountain View, CA: Adobe Systems, Inc.,
1988, 1989).

4. B. Fisher, Xll Seroer Extensions Engineering
Specification Xll R3 edition (Cambridge:

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

Massachusetts Institute of Technology, 1987).

5. R. Scheifler, J. Gettys, and R. Newman,
X Window System C Library and Protocol
Reference (Bedford: Digital Press, 1988).

6. R. Ulichney, Digital Halftoning (Cambridge:
The MIT Press, 1987).

General References

The Display PostScript System: Perspective far
Software Developers (Mountain View, CA: Adobe
Systems, Inc., 1988).

pswrap Reference Manual (Mountain View, CA:
Adobe Systems, Inc., 1988).

Client Library Reference Manual (Mountain View,
CA: Adobe Systems, Inc., 1988, 1989).

X Window System Programmer's Supplement to
the Client Library Reference Manual (Mountain
View, CA: Adobe Systems, Inc., 1990).

ULTRIX Wark.rystem Software Guide to Developing
Applications far the Display Postscript System,
UWS2.2 edition (Maynard: Digital Equipment
Corporation, 1989).

73

Micha.el R. Ryan I
JamesH. VanGilder

The Development of
DECwindows VMS Mail

In the DECwindows program, the windowing interface to the VMS mail utility
demonstrates the power of window-based user interfaces. Users can access mail from
either character-cell terminals or workstations, exchange mail between all Digital
systems, and exchange compound documents. DECwindows VMS mail also supports
a common user interface with its counterpart on the ULTRIX system. 1be develop
ment of DECwindows VMS mail illustrates many of the issues faced in developing
DECwindows applications of moderate size. Further, the development exemplifies
the more general problems encountered by developers who must integrate applica
tions with components which are themselves in initial development stages.

Project Start-up
When Digital began the DECwindows engineering
effort, a number of applications were identified as
being critical to its success. One of these applica
tions was electronic mail, which is one of the most
widely used system utilities. A windowing interface
to an electronic mail application would be very
beneficial to the DECwindows program because it
would help demonstrate the power of window
based user interfaces.

The Business and Office Systems Engineering
(BOSE) Group, in conjunction with the Telecom
munications and Networks (TaN) Group, was
responsible for Digital 's corporate mail strategy.
Therefore, BOSE was assigned responsibility to
deliver the DECwindows mail interface. The engi
neering team within BOSE that produced the inter
face is called the Electronic Mail Engineering (EME)
Group.

EME began the project by evaluating three exist
ing Digital mail technologies: the ALL-IN-I mail
component, the PC ALL-IN- I mail component,
and the VMS mail utility. After carefully studying
each technology for potential adaptability to the
DECwindows system, the group opted to produce
an interface that was compatible with the VMS mail
utility for several reasons. First, the interface could
be developed in a relatively short time frame.
Second, VMS mail is the most widely used mail
system on VMS systems and the only mail system
bundled with the VMS operating system. Therefore,
a DECwindows interface to VMS mail would receive
the most exposure and would not require addi-

74

tional products to be bundled with the VMS system.
Third, the VMS mail callable interface would pro
vide the necessary electronic mail functionality
needed and be compatible with the existing
character-cell terminal interface. Thus, the develop
ers would have to concentrate only on implement
ing the DECwindows user interface.

Finally, an interface based on VMS mail would
not be an obstruction to Digital's long-term mail
strategy. It is the corporate plan to have all of
Digital's mail systems conform to the Consultative
Committee on International Telephony and Teleg
raphy (CCITT) X.400 recommendations for mes
sage handling systems.1 Therefore, the code
developed for this interface would also serve as the
basis for the strategic layered product to be built on
top of the Message Router and the X. 400 standards. 2

Design Goals and Trade-offs
First and foremost among the design goals was to
enable users to access mail either through the
DECwindows interface or from a character-cell
terminal. Although we wanted DECwindows to

be the interface of choice for the workstation
user, we also acknowledged that sometimes users
were away from their workstations. The VMS mail
callable interface ensured that this goal would be
met. A second goal was to enable users to exchange
mail between all of Digital's systems, from per
sonal computers to ULTRIX systems to ALL-IN-1
office systems. The third goal was support in the
DECwindows VMS mail interface for Digital's
emerging CDA architecture by allowing users to

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

exchange compound documents. Fourth, we had to
provide a user interface on VMS systems that was
consistent with the user interface on ULTRIX
systems.

The major constraint of the DECwindows VMS
mail project was the time available for develop
ment. DECwindows ULTRIX mail and some-of the
other bundled applications started as applications
built on X widgets and X Window System version 10
(XIO). However, the DECwindows VMS mail system
was developed from scratch. The initial field test of
the DECwindows system was scheduled for less
than nine months after the start of the mail project.
Because of this short time frame, we opted for a
compromise implementation approach. We used
the standard features and widgets of the XUI toolkit
as they became available. We also shared other soft
ware to the greatest extent possible rather than
develop custom software. This compromise meant
that the user interface might not be as ideal as we
would have preferred, however, the mail
application is consistent with other DECwindows
applications and conforms to the XUI Style Guide.3

This paper discusses the development process of
the DECwindows VMS mail application, hereafter
referred to as DECwindows mail, in its first two
functional releases. Version 1 was shipped with
version 5.1 of the VMS system, and version 2 was
shipped with the VMS system version 5. 3. The first
part of the paper focuses on the project definition
and development. The second part discusses some
of the specific implementation details.

Project Definition and Development
Once the project goals were defined, the next step
was to assemble a development team. The team
consisted of a manager, a supervisor, and engineers
who could work well together and who were will
ing to put in the extra effort and hours that would
be required. In addition, the BOSE user interface
{UI) group dedicated the services of one of their
engineers to help in the design and specification of
the user interface.

The next step was to begin training. The
DECwindows system is based on MIT's X Window
System version 11 (XU) and X toolkit (Xt) intrinsics
library, which are written in the C programming
language.4

VAX language bindings to these libraries would
be provided as part of the DECwindows program.
However, the bindings were not available early
in our development schedule and were not the
most natural interface. As a result, we chose to use

Digital Technical]ournal Vol. 2 No. 3 Summer 1990

1be Development of DEC windows VMS Mail

C as our implementation language, although only
a few engineers on the team had experience
programming with C. A course on C programming
and hands-on experience with initial XU-based
prototypes helped us become more familiar with
the language.

We also assessed computer-aided software engi
neering {CASE) tools that we hoped would help
speed the development of DECwindows mail. We
analyzed the tools commonly used in Digital,
including the language sensitive editor {LSE), code
management system {CMS), and module manage
ment system {MMS), as well as design tools from
outside vendors. We chose not to use the external
tools for a number of reasons. We were not con
vinced that they were applicable to the project. The
tools were also expensive. Further, we had a short
schedule and could not afford the time required to
learn to use the tools.

When the project began, the XUI toolkit was
still under development and not available for use.
Therefore, our early prototypes were based on
MIT's widget set. The prototypes primarily gave us a
basic understanding of the XII programming inter
face and Xt intrinsics widget architecture. The early
prototypes also allowed us to become more pro
ficient in coding in C. In addition, we studied the
user interfaces of mail products on other window
ing systems, including Apple Macintosh products,
Vsmail (an internal tool layered on VMS mail), as
well as xmh, an ULTRIX system-based mail handler
that uses the XIO toolkit.

1be Initial Interface
The initial design of the DECwindows mail applica
tion user interface was based on the ideas we gath
ered from other applications, our own experience
using VMS mail, and suggestions from the BOSE UI
group. This interface was repeatedly revised as we
learned more about the capabilities of XU and the
XUI toolkit. At first, our early screen designs were
created using the internal Sight tool under the VAX
workstation software {VWS). However, our UI engi
neer soon took advantage of the tools available on
the Apple Macintosh to create screen designs using
SuperPaint and HyperCard. These tools allowed us
to generate Postscript images of the screens, which
could then be transferred to the VMS system for
inclusion in specifications and documentation using
VAX Document.

The design of the user interface had progressed
substantially when management decided that the
DECwindows interfaces to ULTRIX mail and VMS

75

DECwindows Program

mail should be identical. We realized immediately
that it was impractical to develop both interfaces
from common code because of the completely dif
ferent underlying mail systems. However, the
abstract functionality provided by both systems
was close, which would make it possible to pro
duce nearly identical interfaces. Developers and
managers from both the ULTRIX and VMS develop
ment groups met to design a common interface. We
all soon learned that the only way that both systems
could look and behave as identically as possible
would be to compromise some of the functionality
in each interface.

The compromise that caused the most trouble for
DECwindows VMS mail was delivery of mail. When
new mail arrives in VMS mail, it is inserted directly
into the NEWMAIL folder of the user's primary mail
file, i.e., MAIL. When new mail is read, it is auto
matically refiled to the MAIL folder. However, when
new mail arrives on the ULTRIX system, the mail
is held in a system area. To read new mail, users
type the "inc" (i.e., incorporate) command, which
moves the new mail into the INBOX folder. Mail
read from INBOX is not automatically refiled to
another folder.

The abstraction for mail delivery chosen for
the common user interface specification was the
ULTRIX model. New mail for the user would not
be visible in the DECwindows user interface until
the user delivered it. Delivery could be done
explicitly by using the "Deliver Mail" push button,
or implicitly by executing "Read New Mail" or at
application start-up. Mail would be delivered by
default to the INBOX, and read mail would not be
automatically refiled.

In VMS mail, new mail is initially delivered to the
NEWMAIL folder. To implement the ULTRIX model,
we had to move new messages from the NEWMAIL
folder to the INBOX folder. At the same time, we
had to be careful to preserve the NEWMAIL state of
each message and prevent messages from being
automatically refiled as they were read.

Moving the messages had a negative impact on
performance. How to keep track of the number of
remaining new messages was a problem well into
development for version 2 of DECwindows mail.
However, the greatest resistance to this process
came from VMS mail users who did not like having
messages delivered to the INBOX. If a user accessed
mail using character-cell VMS mail, new messages
were not in the expected folders, i.e., NEWMAIL and
MAIL. In response to this feedback, we made the
name of the folder to which new mail would be

76

delivered and the automatic refiling of a message to
the MAIL folder customizable options. In addition,
we made the default values for these options depen
dent on the presence of a MAIL file. Thus, users who
already have a MAIL file are presumed to be exper
ienced VMS mail users and are given values consis
tent with VMS mail behavior. Users who do not have
a MAIL file are presumed to be new DECwindows
users and are given INBOX as a delivery folder and
messages are not refiled, which is consistent with
the ULTRIX interface.

While EME was working on the common inter
face problem, the BOSE UI group was evaluating the
use of a hierarchical display as the user interface
for structured data, such as mail messages within
mail folders within mail drawers. This hierarchical
display eventually became known as structured
visual navigation (SVN). SVN had the potential to be
used in a wide range of applications and could
be developed as a general X user interface (XUI)
widget that could be incorporated wherever useful.
SVN's first test in a real application would be on
DECwindows VMS mail. To do the test without jeop
ardizing the delivery of a mail interface on schedule,
one engineer from the BOSE group was assigned to
the design and development of SVN. In addition,
two engineers were assigned to integrate SVN into
the mail interface, in parallel with the already
planned interface. Software Design Tools' (SDT)
Software Usability Engineering (SUE) Group agreed
to evaluate the completed interface.

Once both the SVN interface and the ULTRIX
system-compatible interface were completed, the
SUE group interviewed and videotaped users for
reactions to each. From these videotaped inter
views, the group produced a set of recommenda
tions for improving both interfaces and a survey of
preferences about the two interfaces. Based on this
evaluation and other factors, we decided to inte
grate the SVN interface into the existing interface. A
single version would be produced that could be
switched from one interface to the other.

Because this integration had not been designed
into the code from the beginning, the integrating
process was more difficult than we had first
thought. As a result, we chose not to incorporate
the ability to switch interfaces at run-time but to
start-up one interface or the other through a cus
tomization option. The decision to produce a single
executable image that supported both interfaces
became significant when the DECwindows VMS
group later decided that the SVN interface should be
the default interface on the VMS system.

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

User Feedback
Because many different groups were developing
many DECwindows applications in parallel, it
was decided to hold a DECwindows Trade Fair in
November 1987, two months prior to the scheduled
initial field test of the product. The trade fair pro
vided a centralized location for developers to show
their development designs and to learn from other
developers. At this time, the DECwindows VMS mail
application was not yet a finished product. How
ever, our design was far enough developed that
we were able to demonstrate how the finished
product would work. The SYN developers also ran
HyperCard prototypes of SYN and demonstrated
how it would work within DECwindows VMS mail.
Reactions were positive, and other development
groups began seeking ways to use the SYN widget
within other products.

At the trade fair, with the exclusion of the
DECwindows terminal emulator (DECterm), the
mail application was the first DECwindows appli
cation to be demonstrated as actually running on
the VMS system. It was also one of the first applica
tions running on either the VMS or ULTRIX systems
to use the newly available XUI toolkit. Because
DECwindows VMS mail was still in its fundamental
design stage, we did have some stability problems
in demonstrating the application. However, the
ability to demonstrate a working application, even
in a fundamental state, was a major step for the
development team.

The remaining engineering effort for the initial
release covered several areas, including

• Finishing the planned functionality

• Improving performance

• Supporting the CDA program by providing the
ability to read and send Digital Data Interchange
Syntax (ODIS) encoded messages 5·

6

• Supporting the evolving Interclient Com
munications Conventions Manual (ICCCM) global
selection standards 7

• Dealing with changes to all the system compo
nents that are used by DECwindows VMS mail

Besides the various components of DECwindows
architecture, the system components include the
DECwindows print widget, the CDA library and
CDA viewer, the VMS mail callable interface, the
application interface library (AIL), and DECterm.8

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

The Development of DECwindows VMS Mail

The dependencies for building mail made it
one of the most complex applications in the
DECwindows VMS system builds. Therefore, it was
also one of the most vulnerable to changes in other
components. For example, one DECwindows base
level changed the X toolkit intrinsics calling
sequences, added toolkit support for global select
and accelerator keys, and changed all widget label
strings from simple ASCII text strings to compound
strings. By the time these changes had rippled
through all the layers up to DECwindows VMS mail,
the ripple resembled a tidal wave.

DECwindows mail version 1 was submitted to
Digital's Software Distribution Center in December
1988. Planning for version 2 began shortly there
after. Approximately half the EME engineers
involved in version 1 began working on the major
tasks for version 2: using the user interface language
(UIL) compiler and supporting internationalization.
The remaining engineers transferred to the related
product development project for X.400-based mail.
Much of the code developed for DECwindows mail
application was being used in this project.

UIL was available too late to use in version 1.
Usability enhancements, particularly new custom
ization features, continue to be made as more user
feedback is received, and new requirements are
incorporated, such as support for the OSF/Motif
toolkit.

Figure 1 shows the DECwindows Mail Main
(index) window using the SYN interface. Figures 2
and 3 show the Read and Send windows.

Implementation Issues
As with any programming project, there were some
unexpected complications. Most of the complica
tions centered around working in the unfamiliar

Pl !\lcul
-~:I

Fil e Edit Pick Create-Send Read Maintenance Customize Help

El Non-Mail Projects
4

~ Personal
6

e, Computers

~
e, Fitness

e, Miscellaneous

le,

18 1 6-APR-1990 KOALA: : JAC~ON Statu., Report - 6 April

18 2 6-APR-1990 J::.OALA: JACllON Teu Beeting Nonday, 9 April

Ill WASTEBASKET
':2.

<i (>

j Deliver Mail 11 Read New Mail 11 Create-Send . I~ j Forwant I~ j Mnve I
I n,~h~te I

Figure 1 DECwindows VMS Mail Main Window

77

DECwindows Program

;iJI Mail: Read l[D] rersonal Team Information 12

File Edit Create- Send Read Help

Date 6- APR-1990 11 14 -22 43 6
Fro• KOALA: · Ji'r.CKSOH
Sub] · Teea Meeting Nonday, 9 April
To Jackson
cc 0

There 11111 be a teaa 11.eet1ng 1n the Jones Confe r ence Center on Monday at 1 JO O

Agenda

1: 30 - 2: 00 Code Reviev - Send Nodule
2: 00 - 2: 15 Statu:, of defect:,
2:15 - 2:30 Vork plans for the veek

_Plea,e infora 11e if you cannot attend.

0

Figure 2 DECwindows VMS Mail Read Window

environment of the X Window System and the need
to interface with other DECwindows components.
Also, as is inevitable with any realistic project, the
off-the-shelf components did not always meet our
needs. Some of the more interesting problems we
faced are discussed below.

Events
One issue faced by the developers was the paradigm
of event-driven programming. In our experiences
with nonwindowed systems, a program needs only
to wait for user input. Once the input was received,
the program progresses in a straight line until it is
completed. However, when using the X Window
System, events may be generated at any time and in
an unpredictable order. Learning to think asyn
chronously was a major hurdle for the developers.

File Edit Change Editor Help

, CC:

Subject: ITeaa Meeting Monday, 9 Aprq

: There v1ll be a teaa 11.eet1ng m the Jones Conf e rence Center on Monday- at 1 30 O

: Agenda

1 : 30 - 2: 00 Code Reviev - Send Nodule
2: 00 - 2: 15 Status of defects
2: 15 - 2: 30 lork plans for the veek

· Plea~e infora 111.e if you cMnot attend

0

Figure 3 DECwindows VMS Mail Send Window

78

Two particular aspects of event handling that were
especially difficult were keeping the event queue
clear and handling keyboard input focus.

Keeping the Event Queue Clear In event-driven
programming, the event queue must not be allowed
to fill up. Thus, events must be processed in a timely
fashion. In the initial design of the DECwindows
server, the queue could easily fill and cause the
server to hang until the queue was processed,
which prevents any further work from being done
on the workstation. A hung client could perma
nently hang the server in early DECwindows base
levels. The server design was subsequently
enhanced to recognize the hung state and abort the
connection after a specified period. However,
because the workstation would be hung during this
period, it was still important for applications to try
to prevent hanging from happening at all. Further
work on the DECwindows server and transports
eventually eliminated most occurrences of the
problem, but the applications still had to minimize
the possibility of hanging.

One possible solution was to support multi
threading, which allows the event queue to be pro
cessed in one thread and callbacks to be processed
in one or more other threads. True multithreading
was impractical, however, because there was no
underlying support for it in the system and the Xt
intrinsics-based DECwindows library was not
reentrant. That is, we could not safely interrupt one
toolkit routine, execute another toolkit routine, and
then return to the first one.

Another possibility was to use the toolkit work
procedure mechanism. Rather than doing the
actual application's tasks, each callback would reg
ister a work procedure that would be called by the
event loop the next time the loop had no events to
process. This solution was not available in early
DECwindows base levels. Also, it required that func
tions be substantially redesigned and broken down
into small parts, because work procedures had to
exit quickly to keep the event queue clear. Finally,
this solution did not address one of the major
impediments to keeping the event queue clear: the
inability to process events while in a call to the VMS
mail callable interface.

The solution we chose to implement was a macro
which we referred to as the mini-XtMainLoop, or
FlushEvents. This macro basically duplicates the
XtMainLoop function of retrieving and dispatching
events, with the notable difference that it returns
when there are no more events in the queue. Plac
ing calls to FlushEvents at regular intervals in our

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

callbacks solved the problem of keeping the event
queue clear, except while in lengthy calls to VMS
mail. This problem will require true multithreading
support to solve completely. Fortunately, the s~rver
and transport improvements mentioned earlier
have limited the consequences to occasional delays
in repainting areas of the screen rather than tempo
rary workstation hangs.

The FlushEvents macro introduced other prob
lems, however. One problem was a tendency for the
macro to hang until events were generated, which
was caused when a text widget with a blinking cur
sor was mapped. The timer event used by the text
widget would cause the loop test to always return
TRUE, but XtNextEvent would block waiting for a
true X event. The problem was solved by adding a
clause to explicitly process timer events.

A more serious problem occurred when the
events dispatched within a callback resulted in
other callbacks. The other callbacks may have oper
ated on internal data structures or widgets used by
the initial callback. As a result, the initial callback
became confused when it regained control. To pro
cess callbacks within callbacks, a major redesign of
the callback mechanism was required. However,
the time and resources needed to do such a redesign
were not available. Therefore, we tried to deal with
these types of problems on a case-by-case basis, but
this approach was impractical because there were
too many cases that could occur.

The handling of callbacks within callbacks is
perceived by the user as mouse-ahead. Allowing
mouse-ahead raises several questions that do not
exist for the analogous case of type-ahead. For
example, should the recursive events be processed
immediately upon receipt or queued in order; or
does it depend on the specific event? When events
that result in application functions are queued, the
best solution might be to process resize and scroll
ing events immediately. However, would such
processing confuse users as an apparent incon
sistency? What if the push button that is clicked
on is subsequently removed from the screen by a
previous as-yet-unprocessed event?

We asked the SUE group, which had more
experience than we did in user interface design, to
help us resolve these questions. We developed a
simple prototype as an example of one way in
which mouse-ahead might be reliably supported,
and we demonstrated this prototype to members of
the SUE group. Based on their feedback that the
mouse-ahead feature in a window environment was
not desirable, we disallowed mouse-ahead in the

Digital Tecbnicaljournal Vol. 2 No. 3 Summer 1990

1be Development of DECwindows VMS Mail

FlushEvents macro by ignoring all button and key
events. The final version of the FlushEvents macro
is shown in Figure 4. However, this version was gen
erated late in the development schedule. As a result,
many nonreproducible bug reports generated by
this problem obscured some bugs with other, simi
lar subtle causes.

Input Focus In the X Window System, only one
window may have input focus at a time and the
window must be viewable to receive focus. (Note:
Viewable does not necessarily mean visible. A win
dow that is completely obscured is still considered
viewable, although an iconified window is not.)
An attempt to set focus to a window that is not
viewable results in a BadMatch error event, which
in turn results in a bug report. For example, setting
focus to a window as soon as it is mapped generates
this error. By the time all subwindows, including
the one that actually takes focus, are mapped by the
server, the set input focus event most likely has
already been processed and rejected.

It is impossible to prevent BadMatch errors. It is
always possible that the window may be unmapped
between an application's call to set input focus and
the server's receipt of the event. This situation can
occur even if the application first ensures that the
window is viewable.

To solve this problem, the application must set
up an X error handler that will ignore BadMatch
errors associated with set input focus events. The
most reliable prevention method is to implement a
map notify event handler that contains the actual
call to XtCallAcceptFocus, which ultimately calls
the XSetlnputFocus routine. However, there were
several problems with this solution. We did not
have the time needed to make all the necessary
changes. Also, we were concerned about interac
tions between our event handlers and those of the
widgets, and had to solve the problem of how to
pass the original event time to the map event
handler. Therefore, we had to find an alternative
solution. We opted to use a call to FlushEvents at a
point between the mapping of the window and the
setting of input focus. Although this solution does
not guarantee that the window is mapped when it
returns, it has so far proven to be effective.

Input focus handling also requires a valid
time stamp. When the server receives an
X_SetlnputFocus event, it compares the time
stamp with the time of the last such event it
accepted. If the time stamp is not more recent, the
request is ignored. There is a special time stamp

79

DECwindows Program

#define Flu5hEvent5 \
{\
XEvent event ;\
XtlnputMask eventtype; \
while ((eventtype = XtAppPendingCAppContext)) != 0) \

{\
if Ceventtype == XtIMTimer) \

{\
XtAppProce5sEventCAppContext, XtlMAll); \
}\

else\
{\
XtAppHextEventCAppContext, &event) ;\
if (event . type != ButtonPress && even t.type != ButtonRelea5e &&\

event . type != KeyPress && event.type != KeyRelease) \
{\
XtDis pa tchEven tC&event);\
}\

}\
} ; \

Figure 4 FlusbEvents Macro

(CurrentTime) that will always succeed, but its use
is discouraged.

To illustrate the problem encountered when
using CurrentTime, consider the case in which a
user initiates a long operation that will eventually
generate a new window that should receive input
focus. While waiting for the new window, the user
sets focus to another window and begins typing. If
the first application uses CurrentTime, it takes the
focus when it completes and generates a set input
focus event. The user's typing in progress in the sec
ond window then enters the window generated by
the input focus event first set.

In the same example, if each application uses the
time stamp of the event that triggered its request for
focus, the first event is rejected because the time
stamp is earlier than that of the second application.
In this case, the user may continue typing undis
turbed. In early versions of the toolkit, the time
stamp of the triggering event was not directly
available. However, a pointer to the event structure,
which contains the time stamp, was added to the
standard widget callback structure in time for the
initial DECwindows release.

80

Debugging
The debugging process for the DECwindows
mail application was complicated by two things:
reproducing bugs and the interaction among the
DECwindows components. The first problem was
improved in the second functional release. The sec
ond problem is dealt with on a case-by-case basis,
but the general problem of dealing with complex
cross-application integration remains unsolved.

Reproducing Bugs The best way to find the
cause of a bug is to reproduce the sequence of
events that produced the bug. Unfortunately, bugs
in DECwindows applications can often trigger
access violations deep within the DECwindows
libraries. Also, incorrect behavior is usually caused
by an inconsistent internal state that may have been
triggered by some event long before anything
wrong was apparent to the user.

As a result, a major problem in handling bug
reports for the DECwindows VMS mail application
was the lack of useful information accompanying
the reports. Many bugs are triggered by subtle inter
actions in a very specific sequence of events. It is

Vol. 2 No. 3 Summer 1990 Digital TecbntcalJournal

unrealistic to expect users to recall every detail of
the sequence leading to the appearance of the bug,
particularly after a few days have passed. Further
more, when trying to recount actions, users often
skip those that appear to be too trivial to have
affected the application. For example, resizing win
dows might appear to the user to only affect the
appearance of the display and not any internal state.
However, we did find one bug in which resizing
under particular circumstances caused the wrong
messages to be associated with the visible index
lines, resulting in access violations at a later time.

To aid in tracing a bug-generation sequence,
macros were defined in version 2 to log all
DECwindows callbacks, user customizations, and
certain other information to a special file. This
method was helpful in tracking down bugs because
it is quicker to follow a step-by-step log to repro
duce the problem. Some bugs that were fixed
would otherwise have been closed as not repro
ducible without this process. When trace support is
disabled at compilation time, the macros do not
generate any code. This disabling feature was
included in the external field test update and final
releases to maximize performance.

The trace log was also used by the SUE group to
help improve usability. By examining the log, SUE
engineers determined which features were used
frequently, which features were seldom used, and
which actions were used in combinations.

Interaction among Components The effects that
DECwindows applications can have on each other
also make it difficult to find and resolve bugs. For
example, when spawning several DECwindows
applications from the same parent, job-wide quotas
may quickly run out. Component interaction
through the global selection mechanism causes
more subtle problems. A bug in one application
may crash another application. A specific example
that occurred was a user report of a crash in
the FileView application caused by a memory
allocation failure in the XUI toolkit.

The true source of the problem was only
discovered when the user noted that the crash
happened following the deselection of a folder in
DECwindows VMS mail. When the global selec
tion was requested, DECwindows VMS mail would
accept the request rather than reject it and return
a length of- I. The toolkit routine would receive the
length and attempt to allocate 4,294,967,295
(i.e., the unsigned value of -1) bytes to hold the
selection value and fail. As cross-application

Digital Technical journal Vol. 2 No. 3 Summer 1990

1be Development of DECwindows Vi11S Mail

integration increases using X global selections,
client messages, and other means, for example,
LiveLink connections, these problems can be
expected to become more and more frequent. Test
ing and debugging tools suitable for these multiple
application interactions are needed.

CDASupport
In order to support the interchange of compound
documents across the network, DECwindows VMS
mail incorporates a number of compound docu
ment functions. Messages received in compound
document format are stored as files with a special
tag indicating the format . The compound docu
ment viewer widget replaces the text widget to
display these messages when read. By using the
compound document converters, DECwindows
VMS mail can convert these messages to other
formats such as plain text or Postscript.

To deal with documents that contain references
to other documents, the Digital Object Transport
Syntax (oars) was developed in conjunction with
the CDA group. The oars syntax allows us to
incorporate the primary document and all of its
references into a single file that can then be mailed.
When a oars message is received and read, the
message is split back into its multiple components
for use by the viewer. Testing the exchange of
messages in various formats between the VMS and
ULTRIX systems involved the use of several differ
ent mail applications, and required cooperation
among mail groups from Palo Alto, California,
Nashua, New Hampshire, and Reading, England, as
well as the CDA architecture and ULTRIX DECnet
developers.

Context-sensitive Help
One aspect of the DECwindows style is context
sensitive help. By clicking mouse button 1 while
holding the Help key, a user should be able to point
at any screen artifact and view a help frame on that
object. The implication is that each object must
have a help topic associated with it. Therefore,
a certain amount of coordination between the
developers and the help library writer is essential.

To be able to change the help frames associated
with each widget, the writer must be kept informed
of changes in the widget hierarchy and any changes
in functionality or the user interface. Therefore, the
method of associating widgets with help topics
must be reasonably straightforward.

Our initial approach to this problem was to docu
ment the widget hierarchy in a text file and organize

81

DECwindows Program

the hierarchy of the help library to match. The
writer periodically would fetch the hierarchy file,
check for any changes, and alter the help library
hierarchy to match the changes. The help callback
would proceed up the widget hierarchy, using the
widget names to build the topic string.

This approach introduced significant problems.
The method of forcing the help library structure to
reflect the widget structure seemed intuitive to the
developers. However, a task-oriented structure is
better suited to end users, who rely most heavily on
the online help utility. Another problem was the
need to specify a help frame for each and every
widget, when, in many cases, one help frame could
serve the purpose for several widgets. To address
these problems, we borrowed a design from the
developers of the DEC windows calendar. We added
a help frame resource to each widget. Each widget
was assigned a full help topic name by a resource
line, which eliminated the dependence on the
widget hierarchy.

Through the use of resource wildcards, one
resource line could assign the same topic string to
several widgets at once. The developers added a line
to the resource table whenever the hierarchy was
changed. Initially, the resources were specified in
the system resource file. Later, resources were hard
coded in an internal table to improve performance.

Dununy topic strings were inserted, which the
writer would later edit to the correct topic strings.
The help callback would then find the help frame
resource associated with the widget. This process
was an improvement, but it still required that the
developers add a line to the table for new widgets,
and required the writer to edit C code.

An easier method was implemented as part of the
DECwindows VMS mail conversion to UIL. The help
topic string is now passed as an argument to the
help callback when the widget is defined. The help
topic strings are kept in a separate file where they
are defined by the developers and later edited by
the writer.

Toolkit Restrictions
At times, the default behavior of toolkit widgets was
not the best user interface behavior in the specific
context of our application. Sometimes no existing
widgets provided the functionality we needed.
Thus, in certain cases, we had to write our own
widgets or borrow widgets from other develop
ment groups. In other cases, we had to find ways to
override the toolkit widgets' default behavior. Two
particular cases of this were in the text widget's

82

handling of word wrapping, and the dialog box
widget's handling of navigation with the Tab key.

Line Wrapping The DEC windows text widget sup
ports automatic wrapping of lines when the cursor
reaches the right edge if the word wrap resource is
set. Because this setting eliminates the need for the
user to hit a return at the end of each line, it was
enabled as a default for the Create-Send window
in DECwindows mail. However, the wrapping
was done on the screen only. The text sent by the
mail application only contained the hard returns
entered by the user. In general, there was no
problem as long as the mail message was read with
DECwindows VMS mail. The word wrap is set in the
Read window as well, and the lines are wrapped
to fit the reader's window width. However, if the
reader were using VMS mail, the paragraph would
be displayed as a single line with only the first
80 characters visible. Also, if the paragraph was
very long, the VMS mail protocol record length
restrictions would prevent transmission of the
message.

We considered two options to solve the word
wrapping problem because we did not have a direct
way to obtain the wrapped text from the text
widget. First, we could eliminate the default word
wrap and require users to enter a return at the end
of each line. The other possibility was to insert
returns at an arbitrary point near the end of each
line, e.g. , the last white space previous to the 80th
character of each line. However, in reading the
sources for the text widget, we found that it might
be possible to query the text widget indirectly to
find where it had wrapped the text on the screen.
Word wrapping was achieved by using undocu
mented text widget calls and data structures and
forcing the text widget to move through the entire
message text one screen at a time.

Tab Navigation According to the XUI Style Guide,
the Tab key navigates from one text field to the next
one within the same window and selects the field's
entire contents for pending delete. In other words,
the next keystroke automatically inserts itself after
deleting the selected text. This feature was designed
for dialog boxes containing several short text fields,
but was less appropriate for DECwindows VMS mail
Create-Send window's message area. In fact, it cre
ated problems. For example, if a user pressed the
Tab key while in the message area, the cursor would
move to the personal name field, which is the first
text field in the window. A tab character could not

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcal]ournal

be inserted into a text widget, even a widget being
used more as a text editor than a text field.

A more serious problem was that of selection
for pending delete. When users would tab to the
message area and begin typing, the first keystroke
would wipe out the previous contents. Since the
text widget provides no practical way to undo such
changes, the user could not recover from a simple
and common error. We had to override the dialog
box's translation for tab and reimplement the nor
mal processing to fix the problem. In this case,
normal processing means process as normal for
envelope text widgets and insert the tab for the mes
sage area.

Summary
DECwindows VMS mail was one component in the
integrated development effort of the DECwindows
system. The problems we faced and solved and
those which still need to be addressed, reflect many
of the problems of developing integrated systems
in an environment in which some components are
constrained by external standards, the compo
nents interact in potentially complex ways, and
many components are under active development.
Our experiences in developing DECwindows VMS
mail have left us better prepared to deal with the
continuing trends toward software integration.

Acknowledgments
We would like to thank everyone who has worked
on and helped with DECwindows VMS mail during
its development. This includes the members of the
XUI toolkit team, the VMS DECwindows team, as
well as the many people throughout Digital who
used and helped test mail. In particular we would
like to thank Terry Weissman, the ULTRIX system
based DECwindows mail developer, for his help and
cooperation throughout the project, and the engi
neers, writers, and managers who were directly
involved in the development of DECwindows VMS
mail: Pam Bantis, Roger Brinkley, Mike Daugherty,
Elaine Egolf, Eric Hansen, Gerry Hornik, Debbie
Huffman, Craig Jackson, Lorri Menard, Cheryl
Mrozienski, Linda Nallett, Kelly Solinas, and Duane
Smith.

References

1. CC/TT Data Communication Networks Message
Handling Systems Recommendations x. 400-
X. 430, Volume VIII - Fascicle VIII.7, CCITT,
ISBN 92-61-02361-4.

D igital Tecbntcaljournal Vol. 2 No. 3 Summer 1990

The Development of DECwindows VMS Mail

2. P. Mierswa, "The Evolution of the MAILbus,"
Digital Technical Journal, vol. 1, no. 9 Oune
1989): 37-43.

3. XUI Style Guide (Maynard: Digital Equipment
Corporation, Order No. AA-MG20A-TE, 1988).

4. R. Scheifler et al., "Introduction" and "Introduc
tion to Xlib," X Window System, C Library and
Protocol Reference (Bedford: Digital Press,
Order No. EY-6737E-DP, 1988).

5. R. Travis, "CDA Overview," Digital Technical
Journal, vol. 2, no. 1 (Winter 1990): 8-15.

6. W. Laurune and R. Travis, "The Digital Docu
ment Interchange Format," Digital Technical
Journal, vol. 2, no. 1 (Winter 1990): 16-27.

7. D. Rosenthal, X Window System, Version 11-
lnterclient Communication Conventions Man
ual Version 1.0.

8. B. Cheung and N. Jacobson, "Interapplication
Access and Integration," Digital Technical Jour
nal, vol. 2, no. 1 (Winter 1990): 49-59.

83

Dinesb Mirchandani I
Prabuddba Biswas

Ethernet Performance of
Remote DECwindows
Applications

In Digitals windowed computing system, the Ethernet is the communication
medium for both DECwindows traffic and remote disk I/0 traffic. Ibis level of traffic
prompted a study to investigate whether or not the Ethernet would be a system-level
bottleneck for DECwindows applications. lbe methodology developed characterizes
the Ethernet traffic generated by a DECwindows application executing remotely on
the workstations in a local area VAXcluster. A simulation model was used to predict
the Ethernet perfonnance of a large cluster running this application and a range of
other hypothetical remote DECwindows applications. 1be results of this study can be
extended in many ways and should be of interest to those involved in sizing local
area clusters running remote DECwindows applications.

In the past few years, we have seen a proliferation in
the number of local area networks (LANs) installed
worldwide. This development largely results from
advances in workstation technology and inno
vations in the design and performance of various
communication protocols. These protocols are
now the building blocks of distributed computing
environments.

These advances also have affected the ways in
which LANs are used. Initial applications of LANs
were for remote terminal access and file transfer.
Diskless workstations and distributed processing
came next. Today's environment is a network
oriented, windowed user interface standard: the
X Window System! DECwindows is Digital's imple
mentation of the X Window System. As each of
these networking environments was developed,
researchers reviewed the performance implica
tions of the new environment on the network.2•3•

4

Following in that tradition, the study presented
in this paper investigates the impact of the distri
buted DECwindows computing environment on the
performance of the Ethernet.

The study was based on a distributed comput
ing model using Digital's local area VAXcluster
(LAVc)systems in which a few large systems are con
nected to several workstations over an Ethernet seg
ment.5 These larger systems provide distri
buted file services and the resources to run many

84

DECwindows clients (or applications) that present
their user interfaces remotely on the workstations.

This paper is organized into four sections. The
first section describes the methodology and tools
used in the characterization of Ethernet traffic
generated by a DECwindows workload. The next
section analyzes the traffic both at the application
level and at the Ethernet level. The third section pre
sents the results of a modeling study that extended
the measurement data to predict Ethernet perfor
mance in large configurations. The paper concludes
with a brief discussion of areas to which this study
may be extended in the future.

Methodology
Our preliminary monitoring of network traffic
indicated that the network would not be a perfor
mance bottleneck for small LAN configurations.
Therefore, our goal was to investigate what would
happen when hundreds of workstations simultane
ously ran DECwindows applications remotely over
the network. To set up and execute a workload on
a large network of workstations is a difficult
task. We had to carefully characterize the network
traffic generated by one workstation and, through
modeling, extend this characterization to a large
network of workstations. This approach is similar
to a study that was successfully done for terminal
environments.2

Vol. 2 No. 3 Summer 1990 Digital Tecbnical]ournal

Ethernet Performance of Remote DECwindows Applications

In this distributed environment, the DECnet
protocol is used as a transport for X protocol
communication between remote clients and the
DECwindows server on each workstation. The
DECnet protocol can run on different base net
working technologies, one of which is the Ethernet
for LANs. VAXcluster software provides distributed
disk services. The VAXcluster software is also used
by the VMS distributed lock manager to execute
remote lock operations. Therefore, there are three
components of data traffic on the Ethernet:
X protocol messages, remote disk accesses, and
remote lock traffic. Measurement data for these
components was collected using Digital's tracing
and monitoring tools. The performance impact of
the data collection tools was closely examined and
found to be minimal.

The traces and counters from these tools were
postprocessed to extract the relevant information,
which was then input to a program that emulates
the DECnet and VAXcluster protocols. The program
transformed the input data into packet size and
interarrival time distributions that would be seen
on the Ethernet. The emulator also added packet
headers, segmented larger data messages, and
inserted DECnet and VAXcluster protocol messages
appropriately. The protocol emulations were care
fully validated for each component of Ethernet
traffic , using data collected with a LAN analyzer.
The entire process is shown in Figure 1.

The workload used was a relatively intense user
activity session on DECwrite, a "what you see is
what you get" (WYSIWYG) compound document
editor. The session involved extensive manipula
tion of text and graphics in a large (i.e., 65-page)
document. Procedures included opening windows,
pulling down menus, cutting and pasting, refresh
ing the screen, searching and replacing text strings,
accessing online help, and creating several new
pages that consisted of multiple font text and two
dimensional graphics. The duration of the work
load was about 22 minutes. The workload emulated
a very confident user traversing the document and
making changes with minimal time between
actions. The workload was driven by an internally
developed workstation user emulation package.

The test configuration was an LAVc system that
consisted of two VAXstation 2000 workstations
each with 6 megabytes (MB) of memory. One work:
station acted as a disk server and the other as a
satellite connected by an isolated Ethernet segment.
The disk server had a system disk and a paging disk.
The satellite was equipped with a local paging disk.

Digital Tecbnlcal}ournal Vol. 2 No. 3 Summer 1990

DECWINDOWS WORKLOAD

X PROTOCOL
COLLECTOR

REMOTE LOCK
COUNTERS

REMOTE DISK 1/0
COLLECTOR

X PROTOCOL TRACE
POSTPROCESSOR

REMOTE DISK 1/0 TRACE
POSTPROCESSOR

DECNET/VAXCLUSTER EMULATOR

PACKET SIZE/INTERARRIVAL TIME DISTRIBUTIONS

SIMULATION MODEL

Figure 1 Workload Characterization
Methodology

Data Analysis
In this section, we analyze remote DECwindows
client-server communication, remote disk I/0, and
remote lock requests done by the LAVc work
stations, at the application level and at the Ethernet
level. We were also interested in the impact, if any,
in LAVc environments on the Ethernet utilization of
remote paging done by diskless workstations. This
issue is addressed in the following analysis.

DECwindows Traffic
Table 1 presents the DECwindows traffic generated
by the DECwindows server and the DECwrite client
in terms of X protocol activity and DECnet mes
sages. Analysis of these distributions revealed the
following information.

• The server generates more than twice as many
DECnet buffers than the client. The server trans
mits 9164 events and replies in 6816 packets,
which is a message to packet ratio of 1.3 to I.
The client transmits 16232 requests in 2864
packets, which is a ratio of 5.7 to I. The server
is unable to build larger network buffers
because certain events and most replies require
immediate delivery.

• The average server DECnet buffer is almost four
times smaller than the average client buffer. The

85

DECwindows Program

data shown in Table 1 indicates that buffer sizes
vary greatly. This variation is also reflected in the
high standard deviations in buffer size. The
median server and client message sizes are much
lower than the mean. The size distributions have
a large peak (many small messages) and a long tail
(fewer large messages).

• X protocol message transmission occurs in
bursts. The server transmits in more bursts than
the client, as indicated by the larger coefficient
of variation (ratio of the standard deviation to the
mean) in interarrival times for the server. Nearly
90 percent of the server message interarrival
times are less than the mean. Hence, the curve
has a large peak (many messages arriving in
bursts) and a long tail (a few periods of silence).

These observations regarding X protocol mes
sage distributions are intuitive because the server
communicates with the user, who typically
generates input events (for example, KeyPress,
KeyRelease) in random bursts. When a client needs
information from the server or wishes to write
text and graphics objects to the display, it issues
one or more requests to the server (for example,
XPolytext, xcopyplane). The server only responds
to the synchronous client requests with replies (for
example, XGetProperty, XGetGeometry).1

The server almost immediately transmits events
and replies. Events are typically a few bytes long,
and replies are slightly larger. However, the client
tends to aggregate multiple requests into larger
messages before dispatching them to the server.

Table 1 DECwindows Traffic Profile

Metric Server Client Total

X protocol traffic
Events and replies 9154 NA 9154
Requests NA 16232 16232

DECnet packets 6816 2864 9680
Size (bytes)

Mean 64 246 118
Standard deviation 213 468 322
Median 32 184 32
Minimum 32 4 4
Maximum 3148 8184 8184

lnterarrival (milliseconds)
Mean 417 124
Standard deviation 2286 251 1263
Median 28 126 1

86

Remote Disk I/0 and Lock Traffic
Table 2 shows the distribution of the remote disk
accesses, as well as the remote lock operations per
formed by the system. Data reads are used for initial
image activation and for accessing resources, such
as font files. Data writes are usually made to system
log files. Paging reads and paging writes are done on
demand to the system paging file. In addition, we
noted the following results.

• Read requests by the workstation outnumbered
write requests by an order of magnitude. The
average disk request is much larger than the aver
age DECwindows message because a disk request
is done at block granularity (i.e., 1 block equals
512 bytes), whereas the average DECwindows
message is only a few bytes.

• Average disk request interarrival times are an
order of magnitude higher than DECwindows
messages. Disk request interarrival times are
about 36 percent lower when remote paging is
included with local paging because of the
increased packet arrival rate.

• Paging requests are about 50 percent more fre
quent than regular disk requests. The frequency
varies with total system memory size, process
working-set size, and page-reference patterns.
The average request size with remote paging
is much higher because paging write requests
are much larger. The VMS modified page writer
typically flushes modified pages to disk in 96-
block chunks.

• The number of remote lock operations is the
same for both the local and remote paging case
because VMS process paging does not use the dis
tributed lock manager. The average remote lock
operation rate was 1 every 2 .6 seconds.

Ethernet Traffic
Table 3 shows Ethernet traffic statistics for local and
remote paging scenarios. This data was generated
by running the DECwindows and disk I/0 traffic
data through the DECnet/VAXcluster protocol emu
lator. Figures 2 and 3 show the frequency distribu
tions for Ethernet packet size for local and remote
paging cases, respectively. Figures 4 and 5 show the
frequency distributions for Ethernet packet inter
arrival times for local and remote paging cases,
respectively.

Vol. 2 No. 3 Summer 1990 Digital Tecbnlcaljournal

Ethernet Performance of Remote DECwindows Applications

Table 2 Remote Disk and Lock Traffic
Profile

Local Remote
Metric Paging Paging

Number 435 686
Data reads 423 423
Data writes 12 12
Paging reads NA 226
Paging writes NA 23
Remote lock operations 502 502

Disk 1/0 size (bytes)
Mean 1180 2838
Standard deviation 1766 8290
Median 512 512
Minimum 512 512
Maximum 8192 49152

Disk 1/0 interarrival time
(milliseconds)

Mean 3240 2060
Standard deviation 16360 11880
Median 61 43

Packet Size Distributions
The Ethernet packet size distributions appear to be
trimodal, that is, there are three separate peaks. The
wider, more dominant peak is in the 100 byte range.
This peak is caused by the DECnet and VAXcluster
protocol messages and the DECwindows server
messages. The other two peaks are at 600 and
1350 bytes. They are a result of the single block
(577 byte) and 2.5 block (1345 byte) segments gen
erated by the cluster software. The packet size dis
tributions for local and remote paging are almost
identical. With remote paging, boosts occur in the
first (100 byte) and third (2.5 blocks) peaks. That is,
the frequency of VAXcluster protocol messages and

Table 3 Ethernet Packet Size and
lnterarrival Time Distributions

Local Remote
Metric Paging Paging

Ethernet packets
Number 14711 16902

Size (bytes)
Mean 175 246
Standard deviation 249 368
Median 79 79
Minimum 64 64
Maximum 1505 1505

lnterarrival time (milliseconds)
Mean 96 84
Standard deviation 235 220
Median 23 19
Minimum 0 0
Maximum 1500 1500

Dtgttal Tecbntcal}ournal Vol. 2 No. 3 Summer 1990

Cl)
t-w
~
(.)
<(
Cl.
u..
0
a:
w
CD
::::;
::>
z

9000

8000

7000

6000

5000

4000

3000

2000

1000
ETHERNET PACKET SIZE (BYTES)

KEY:

• DECNET PROTOCOL
D LAVC PROTOCOL

Figure 2 Ethernet Packet Size Distribution
for Local Paging

1500

2.5 block packets is higher because of the greater
segmentation that results from larger disk requests.
The median packet size is 79 bytes, which is much
lower than the mean, in both scenarios. The trimo
dality of the packet size distribution tends to skew
the mean higher than the median for local paging
and remote paging scenarios.

Packet Interarrival Time Distributions
A curve-fitting exercise showed that the interarrival
time distributions for both local and remote paging
could be accurately represented by the GAMMA
probability distribution.6 The GAMMA distribution
has two parameters: the shape parameter and the
scale parameter. The mean is the product of the

Cl)
t-
w
~
(.)
<(
Cl.
u..
0
a:
w
CD
::::;
::>
z

10000
9000

8000

7000

6000
5000
4000

3000

2000

1000

0 500 1000

ETHERNET PACKET SIZE (BYTES)

KEY:

• DECNET PROTOCOL
D LAVC PROTOCOL

Figure 3 Ethernet Packet Size Distribution
for Remote Paging

1500

87

DECwindows Program

en
I-
w
:.::
(.J
<
!l.
u.
0
a:
w
CD
~
::i
z

8000

7000

6000

5000

4000

3000

2000

1000

0 500 1000

ETHERNET PACKET INTERARRIVAL
TIME (MILLISECONDS)

1500

Figure 4 Ethernet Packet Interarrival Time
Distribution for Local Paging

shape parameter and the scale parameter, and the
variance is the product of the shape parameter and
the square of the scale parameter. The shape
parameter was found to be nearly 0.17 for both
local paging and remote paging interarrival time
distributions for this workload. We are not sure at
this time whether this is a property of all DECwrite
workloads or whether it holds true across all
DECwindows applications.

The interarrival time distributions peak in the
O to 50 millisecond range and decay rapidly there
after. Closer examination of the data shows that a
spike of approximately 2 milliseconds is produced
by the intersegment latency for large packets and
mass storage control protocol (MSCP) messages.5

Because the median is again much lower than the
mean, this indicates a skew, i.e. , a long tail as a result
of a few large interarrival times.

Traffic Analysis
Table 4 presents the DECnet and VA.Xcluster com
ponents of Ethernet traffic in tenns of total packets
and total bytes transferred. DECnet traffic is a
greater percentage of total packets than VAX cluster
traffic for local and remote paging scenarios.

en
I-
w
:.::
(.J
<
!l.
u.
0
a:
w
CD
~
::i
z

10000

9000
8000

7000

6000

5000

4000

3000

2000

0 500 1000

ETHERNET PACKET INTERARRIVAL
TIME (MILLISECONDS)

1500

Figure 5 Ethernet Packet Interarrival Time
Distribution for Remote Paging

DECnet software transfers twice as many bytes as
the VA.Xcluster software. However, this ratio is
inverted with remote paging.

Table 5 presents the data and protocol compo
nents of DECnet and VA.Xcluster traffic. The terms
data and protocol are defined in relation to the
DECnet and VA.Xcluster software. The messages
passed by the applications to these protocol layers
are called data. The control messages generated by
these layers are designated protocol overhead. Our
objective was to integrate and present the traffic at a
common level (i.e., the Ethernet) and examine the
data and protocol components of the total traffic at
that level. For this workload, data packets and bytes
are approximately three times more numerous than
protocol packets and bytes.

Discussion
Table 6 shows that the average Ethernet utilization
of a single VA.Xstation 2000 workstation running a
typical remote DECwindows application in a cluster
is 0.16 percent with local paging, and 0.25 percent
with remote paging. To verify the accuracy of the
numbers, we measured Ethernet utilization with a
LAN analyzer for the local paging scenario and

Table 4 Ethernet Traffic: DECnet and Local Area VAXcluster Components

Local Paging Remote Paging
Metric (Number) (Percent) (Number) (Percent)

Ethernet packets (total) 14711 100 16902 100
DECnet component 10712 73 10712 63
VAXcluster component 3999 27 6190 37

Ethernet bytes (total) 2570772 100 4152742 100
DECnet component 1660353 65 1660353 40
VAXcluster component 910412 35 2492404 60

88 Vol. 2 No. 3 Summer 1990 Digital Tecbntcal]ournal

Ethernet Performance of Remote DECwindows Applications

Table 5 Ethernet Traffic: Data and Protocol Components

Local Paging Remote Paging
Metric (Number) (Percent) (Number) (Percent)

Ethernet packets (total)
Data component
Protocol component

Ethernet bytes (total)
Data component
Protocol component

14711
11558
3153

2570765
1761156
809609

found average Ethernet utilization to be 0.13 per
cent, as compared to the 0.16 percent predicted
by the DECnet/VAXcluster emulator. For remote
paging, average Ethernet utilization was measured
at 0.23 percent, as compared to the 0.25 percent
shown with the DECnet/VAXcluster emulator.
These comparisons indicate that the protocol
emulation, with all its inherent assumptions, was
reasonably successful in measuring performance
impact.

Measurements also were collected from an LAVc
located in a software group within Digital. The
workgroup had nearly 40 workstations connected
to two VAX 8000 disk servers on a single Ethernet
segment. These were monochrome or color
VAXstation 2000 models, equipped with local
paging disks and at least 6MB of memory. This was
a software development environment where, the
activities were primarily interactive computing
with some batch jobs running on the disk servers.
All workstations ran DECwindows applications
under the VMS operating system. The most popular
DECnet applications were electronic mail, compu
ter conferencing, and other remote DECwindows
clients. Some VAXcluster traffic existed, as well as
local area transport (LAT) traffic from a number of
terminals connected to a terminal server.

On a typical day, the average Ethernet utilization
was about 4 percent. This is 0.10 percent on average

Table 6 Average Ethernet Utilization of an
LAVc Node Running DECwrite
Remotely

Local Remote
Paging Paging

Metric (Percent) (Percent)

Ethernet utilization 0.15 0.25
DECnet component 0.10 0.10
LAVc component 0.05 0.15
Data component 0.10 0.19
Protocol component o:os 0.06

Digital Tecbntcal}ournal Vol. 2 No. 3 Summer 1990

100
79
21

100
69
31

16902
12795
4107

4152757
3188564
964193

100
76
24

100
77
23

per workstation, compared to 0.16 percent in our
modeled DECwrite environment. Although the data
in Table 6 shows that the average network use of a
single workstation running DECwindows in a clus
ter is low, a large cluster of workstations can pro
duce peaks that are an order of magnitude higher
than the average. For instance, the peak Ethernet
utilization observed was 38 percent. Reasons for
these peaks include large files being copied over the
network or workstations entering or leaving the
cluster. A detailed analysis of peaks in Ethernet use
in actual LANs was not done but should be consid
ered when applying the results presented in this
paper to a network capacity planning exercise.

Modeling Study
In a previous section, we presented data that char
acterized the Ethernet bandwidth requirements of a
single workstation running a typical DECwindows
application executing remotely. Through the use
of a packet-level Ethernet simulation model, this
data can be used to predict network performance
when many workstations are clustered on the same
Ethernet segment.7 For the DECwrite workload, we
drove the simulation model to the point of satura
tion of the Ethernet to investigate the theoretical
maximum number of workstations that a single
Ethernet segment could support. We investigated
whether the Ethernet adapter at the disk server(s)
could become a bottleneck, and if so, at what load
the bottleneck would happen. Finally, by vary
ing a few selected input parameters, we used the
model to comment on the performance of different
hypothetical remote DECwindows environments.

In an interactive computing environment similar
to the one provided by the DECwindows software,
it may be desirable to predict the end-to-end or
user-perceived response times to perform various
functions, such as menu pulldown, window
deiconification, or mouse movement. Such an anal
ysis would capture the effect of network utilization
at the user level. To build and validate a model at

89

DECwindows Program

this level was beyond the scope of our study. How
ever, we do include some information on the degra
dation in the overall elapsed time of the workload
that results from contention at the Ethernet, assum
ing that none of the other resources is a bottleneck.

Modeling Methodology
The most important characteristics of Ethernet
traffic are the packet size and packet interarrival
time distributions. This model accepts the cumula
tive distributions for packet size and interarrival
time that are generated by the DECnet/VAXcluster
emulator and uses these distributions to drive the
simulation. The model itself is a closed queuing
model in which each workstation is represented
by a transaction that circulates through the model
for the duration of the simulation. With each pass
through the Ethernet model, the packet size and
arrival time are assigned to the transaction from
the distributions that characterize the traffic of
the DEC write workload. The advantage of using the
cumulative distribution technique is that no
assumptions are made about the Ethernet packet
size and interarrival time distributions. This model
allowed us to use separate distributions for different
classes of workloads and simulate a user performing
different workload sessions.

The Ethernet simulation model developed for
this project captures the functionality and physical
principles of the Ethernet. The model was carefully
validated against published measurement results
and also against network data collected for the
DECwrite workload.11

Performance Metrics
The following metrics were used in this study.

• Load. The load variable in the simulation is
the number of DECwindows workstations that
are actively executing the remote DECwrite
workload. For simplicity, we assumed that the
workstations were all similar.

(Note: Ethernet load, packet size, and interarrival
time distributions are the input variables to the
simulation model. The following are all outputs
from the simulation.)

• Utilization. Ethernet utilization is computed by
dividing the total number of bits transferred
per second by the theoretical maximum
bandwidth of the Ethernet (10 megabits per sec
ond) for the duration of the simulation. Unless

90

otherwise specified, this metric refers to average
utilization.

• Packet delay. The packet delay consists of the
waiting time to acquire the channel and the
actual transmission time of the packet. Packet
delay is usually measured in microseconds as
opposed to disk access or processor service
times that are measured in milliseconds. As
the load increases, packet delay through the
Ethernet degrades dramatically at a particular
point that we refer to as the knee of the curve.

• Adapter saturation. The throughput at which the
Ethernet adapter at the disk server or computing
system saturates is a critical performance metric
in this environment. We consider only one adap
ter in this study, the DEBNI, which is available
on the high-end VAX computers. Extending the
analysis to other adapters is easily done. The sat
uration threshold is represented in terms of the
Ethernet utilization level at which the adapter
saturates for a given mean packet size rather than
the usual packets or megabytes per second.

Modeling Results: DECwrite Workload
We first addressed the question of how many
workstations actively running DECwrite applica
tions remotely on a client computing system can be
supported on a single Ethernet segment.

We assumed that the system on which these
DECwrite client processes would execute had an
infinite capacity. In other words, contention for
system resources (e.g., CPU, memory and disk
I/0) among the DECwrite clients was not incorpo
rated in the model. Because any such contention
would reduce network traffic intensity, we pre
sented an upper-bound or worst-case analysis. We
also assumed that there was no communication
among the workstations, which would be true
when all applications were run remotely. The sim
ulation was run for both local paging and remote
paging scenarios.

Figure 6 shows that the average Ethernet utiliza
tion curves increase with load and then level off at
600 workstations (60 percent utilization) with local
paging and 400 workstations (69 percent utiliza
tion) with remote paging. The DEBNI threshold in
Figure 6 also shows that the Ethernet adapter would
saturate at 350 workstations with local paging and
at 300 workstations with remote paging. In Fig
ure 7, the average packet delay curves indicate that
the knee in the curve is at a much lower load of 300

Vol . 2 No. 3 Summer 1990 Digital Technical Journal

Ethernet Performance of Remote DECwindows Applications

workstations with local paging and 200 work
stations with remote paging. Also indicated in this
figure are the points at which network congestion
causes the elapsed time for the workload to degrade
by 10 percent and 100 percent.

We used the point at which packet delay started
to degrade, in Figure 7, as the limiting factor. With
this criterion, the theoretical size of an LAVc system
in a typical remote DECwindows environment
would be about 300 active workstations, assuming
all of the satellites have local paging disks and
steady-state operation. Further, the disk server and
DECwrite clients might need to be distributed over
multiple systems to obtain the required processing
power especially if lower capacity Ethernet adap
ters are being used. (Note: These are average num
bers and the user-perceived response time might
degrade if large amounts of data are transferred
often or if many nodes frequently transition in and
out of the cluster.)

Modeling Results: Performance Predictions
We used the simulation model to predict Ethernet
performance over a range of DECwindows environ
ments by varying DECwrite client packet size and
Ethernet packet interarrival time individually and
together. The analysis was done for the local paging
case only. The two assumptions made in the previ
ous section were used here also. We replaced the
cumulative frequency distribution tables with the
GAMMA distribution to generate packet interarrival
time samples in the simulation. The mean and stan
dard deviation of packet interarrival time, which
are direct functions of the input parameters of
the GAMMA distribution, could be varied more

KEY:

200 400 600 800

LOAD (NUMBER OF WORKSTATIONS)

1000

O LOCAL PAGING
O REMOTE PAGING
6 DEBNI: LOCAL PAGING
'il DEBNI: REMOTE PAGING

Figure 6 Average Ethernet Utiliza.tion
versus Load

Dig ital Tecbnlcaljo u rnal Vol. 2 No. 3 Summer 199()

LOAD (NUMBER OF WORKSTATIONS)

KEY:

D LOCAL PAGING
O REMOTE PAGING
6 10 PERCENT DEGRADATION
'il 100 PERCENT DEGRADATION, LOCAL PAGING
e 100 PERCENT DEGRADATION, REMOTE PAGING

1000

Figure 7 Average Packet Delay versus Load

conveniently than with the distribution tables. A
calibration exercise showed that this method did
not affect accuracy.

Varying Client Packet Size
We assumed that if we replaced the DEC write client
with another similar DECwindows application, the
DECwindows client packet size distribution would
change. However, the server packet size distribution
would not because user activity would be similar.
We also assumed that the remote I/0 size distribu
tion was the same as for DECwrite. This is a valid
assumption because the remote I/0 traffic gener
ated by the processes on the workstations is not
strongly correlated to the remote DECwindows
client activity.

We varied DECwrite client packet size by twice
and four times as much and regenerated the Ether
net packet size distributions with the DECnet and
VAXcluster emulator. However, we did not alter the
overall packet interarrival time distribution. As a
result, we captured the effects of the additional
segmentation and protocol messages generated by
the larger client packets in the new overall traffic
size distributions.

Figure 8 shows average Ethernet utilization.
Figure 9 illustrates average packet delay against
increasing load for this workload and workloads
that were two and four times larger than the original
DECwrite client packet sizes. The Ethernet utiliza
tion leveled at higher values as the packet size
increased. Degradation in average packet delay is
the limiting criterion in this scenario, since it occurs
before other metrics start to degrade. Average
packet delay begins to degrade at approximately

91

DECwindows Program

200 workstations at twice the size and 160 work
stations at four times the size. Ethernet and adapter
saturation occurs at much higher loads.

Varying Overall Packet lnterarrival Time at the
Ethernet We wanted to know what the perfor
mance impact would be if we executed multiple
remote DECwindows applications simultaneously
on the same workstation. For example, a user could
be switching frequently between two open
DECwrite documents or between VMS mail and
notes applications active on the same workstation.
The model was used to predict the impact on net
work utilization and packet delay of the increased
traffic intensity from this activity.

We simulated the effect of multiple active clients
by using smaller interarrival times. GAMMA distribu
tions of the same shape but with 50 percent and
25 percent of the mean interarrival time for the base
workload were used. We also assumed that the
coefficient of variance of packet interarrival time
remained constant across environments. We com
puted this factor for the DECwrite workload and
scaled the standard deviations that were input to
the GAMMA distributions for the simulated multiple
active clients.

Figure 10 depicts average Ethernet utilization.
The DECwrite packet interarrival time is assumed to
be the base. The average packet delay against num
ber of workstations and hypothetical workloads
with 50 percent and 25 percent of the DECwrite
packet interarrival time is shown in Figure 11.

Degradation in average packet delay is again the
limiting criterion in this scenario because it occurs
before the other metrics start to degrade. Average

z 100
0
~ 80
N
::J 60
~
:)

1jj 40
z
ffi 20
:i:
ljj

0

LOAD (NUMBER OF WORKSTATIONS)

KEY:

O BASE SIZE, DECWRITE
O BASE SIZE x 2
6 BASE SIZE x 4

1000

Figure 8 Varying Client Packet Size -Average
Ethernet Utilization versus Load

92

gf 200
z
0
u
w 150 en
::J
...J

~ 100

;
w 50
0
f-
w
:.:

~ 0 200

LOAD (NUMBER OF WORKSTATIONS)

KEY:

O BASE SIZE, DECWRITE
O BASE SIZE x 2
6 BASE SIZE x 4

1000

Figure 9 Varying Client Packet Size-Average
Packet Delay versus Load

packet delay begins to degrade at about 300 work
stations for the base DECwrite workload. Degrada
tion begins at 100 and 50 workstations for the
50 percent and 25 percent cases, respectively.
Ethernet saturation occurs at much higher loads.
Because the packet size is held constant in this exer
cise, the Ethernet saturates at the same level of use,
nearly 60 percent. However, that level is reached
with fewer workstations as interarrival time is
decreased. We found the Ethernet adapter capacity
at the disk server not to be a performance bottle
neck across all variations in the packet interarrival
times considered.

Varying Client Packet Size and Interarrival Time
We combined the variations in client packet size and
interarrival time from the base DECwrite case to

z 100
0
~ 80
N

::J 60
~
:)

1jj 40
z
ffi 20
:i:
ljj

0 200 400 600

LOAD (NUMBER OF WORKSTATIONS)

KEY:

O BASE INTERARRIVAL TIME, DECWRITE
0 50 PERCENT OF BASE INTERARRIVAL TIME
6 25 PERCENT OF BASE INTERARRIVAL TIME

800

Figure 10 Varying Ethernet Packet Interarrival
Time -Average Ethernet
Utilization versus Load

Vol. 2 No. 3 Summer 1990 Digital Tecbntcaljournal

Ethernet Performance of Remote DECwindows Applications

~ 120
z
8 100
w

~ 80
...J

~ 60

~
...J 40
w
c 20
f-
w
:.::
(.)

it O
LOAD (NUMBER OF WORKSTATIONS)

KEY:

D BASE INTERARRIVAL TIME, DECWRITE
O 50 PERCENT OF BASE INTERARRIVAL TIME
t:,, 25 PERCENT OF BASE INTERARRIVAL TIME

700 800

Figure 11 Varying Packet Interarrival Time -
Average Packet Delay versus Load

synthesize four more hypothetical workloads. Fig
ure 12 shows the average Ethernet utilization, and
Figure 13 shows the average packet delay against
increasing load. Once again, degradation in average
overall packet delay is the limiting criterion.

The results of the modeling study presented
in this section could be used by an experienced
network consultant to size local area VAXcluster
systems running a range of different remote
DECwindows applications.

Conclusions
We have presented a methodology that allows us
to characterize the Ethernet traffic generated by

~ 100

~ 80
N
:J
i= 60
::>
f-w
z
rr

20 w
J:
f-w

0

KEY:

200 400 600 800

LOAD (NUMBER OF WORKSTATIONS)

D BASE SIZE AND INTERARRIVAL TIME, DECWRITE
t:,, BASE SIZE x 2 AT 25 PERCENT OF BASE INTERARRIVAL TfME
O BASE SIZE x 2 AT 50 PERCENT OF BASE INTERARRIVAL TIME
e BASE SIZE x 4 AT 25 PERCENT OF BASE INTERARRIVAL TIME
'v BASE SIZE x 4 AT 50 PERCENT OF BASE INTERARRIVAL TIME

Figure 12 Varying Client Packet Size and
Ethernet Interarrival Time -
Average Ethernet Utilimtion
versus Load

D igital Tecbntcaljournal Vol. 2 No. 3 Summer 1990

cii
c 200

~
(.)

~ 150
:J
...J

~ 100

~
...J

~ 50

Iii
:.::

~

KEY:

600

LOAD (NUMBER OF WORKSTATIONS)

D BASE SIZE AND INTERARRIVAL TIME, DECWRITE

800

t:,, BASE SIZE x 2 AT 25 PERCENT OF BASE INTERARRIVAL TIME
O BASE SIZE x 2 AT 50 PERCENT OF BASE INTERARRIVAL TIME
e BASE SIZE x 4 AT 25 PERCENT OF BASE INTERARRIVAL TIME
'v BASE SIZE x 4 AT 50 PERCENT OF BASE INTERARRIVAL TIME

Figure 13 Varying Client Packet Size and
Ethernet Interarrival Time -
Average Packet Delay versus Load

remote DECwindows applications executing on
workstations in a local area VAXcluster system. The
traffic generated by a typical DECwindows applica
tion was analyzed in detail, with some interesting
preliminary results. Our modeling study allowed us
to predict the limiting system configurations and
extend the analysis to other workloads by varying
some of the input traffic parameters. We concluded
that the Ethernet can support large configurations
running DECwindows applications without average
performance degrading significantly.

A detailed performance evaluation of any com
plex system invariably produces new insights about
the way the system behaves and performs. Some of
these insights may be ancillary to the main goals of
the study. For example, this project discovered a
performance improvement to the DECwindows
systems software that significantly decreases the
number of disk I/Os required for font file access.
The effect of specific system tuning parameters on
remote locking traffic was also calibrated, and the
performance of the recently introduced and more
powerful DEBNI Ethernet adapter was examined in
system environments.

This study could be extended in several ways.
Other DECwindows applications, such as electronic
mail and computer conferencing, could be charac
terized using the methodology discussed in this
paper. Bursts in DECwindows traffic patterns could
be further investigated through analytic techniques,
for example, packet train models. Finally, the tools
and protocol emulation suite could be extended to
include Digital's distributed file service (VAX DFS),

93

DECwindows Program

and local area transport (LAT), as well as other
network protocols.

This paper presents a checkpointing study of a
new technology. By extending this work in some of
the directions proposed, we would increase our
understanding of the network performance issues
associated with the X Window System computing
paradigm.

Acknowledgments
We wish to thank all those who made valuable
contributions to this project. We would particularly
like to acknowledge Mike Fox, VMS VAXcluster
Systems Engineering Manager, for sponsoring this
study; Ken Miller, formerly of BOSE Performance
Engineering, for developing the DECwrite work
load used in this project; K. K. Ramakrishnan,
Distributed Systems Architecture and Performance,
for providing information regarding Ethernet per
formance; and our colleagues in the VMS Systems
Analysis and Availability Engineering and BOSE
Functional Analysis Groups for providing useful
suggestions at different stages of the project.

References
1. R. Scheifler et al., X Window System C Library

and Protocol Reference (Bedford: Digital Press,
1988).

94

2. M. Marathe and W. Hawe, "Predicting Ethernet
Capacity-A Case Study," Proceedings of the
Computer Perfomiance Evaluation User's
Group (1982): 375-387.

3. W. Adams, "LAN Performance for Distributed
Manufacturing Applications," ISA '89 Trade
Conference Paper (October 22-27, 1989):
693-702.

4. R. Gussella, "The Analysis of Disk.less Worksta
tion Traffic on an Ethernet," Report No. UCB/
CSD 87/379 Computer Sciences Division (EECS)
(Berkeley: University of California, November
1987).

5. M. Fox and). Ywoskus, "Local Area VAXcluster
Systems," Digital Technical]oumal, vol. 1, no. 5
(September 1987): 56-68.

6. A. Law and D. Kelton, Simulation Modeling
and Analysis (New York: McGraw-Hill Book
Company, 1982).

7. V. Fernandes et al. , "Some Performance Models
of Distributed Systems," Proceedings of the CMG
xv International Conference (December, 1984):
30-37.

8. D. Boggs et al. , "Measured Capacity of an
Ethernet: Myths and Reality," Proceedings of
SIGCOMM'BB(ACMSIGCOMM, 1988): 222-234.

Vol. 2 No. 3 Summer 1990 Dtgttal Tecbntcaljournal

I Further Readings

The Digital Technical Journal
publishes papers that explore
the technological foundations
of Digitals major products.
Each Journal focuses on at least
one product area and presents
a compilation of papers written
by the engineers who developed
the product. The content for the
Journal is selected by the Journal
Advisory Board.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

VAX 8600 Processor
Vol. 1, No. 1, August 1985

MicroVAX II System
Vol. 1, No. 2, March 1986

Networking Products
Vol. 1, No. 3, September 1986

VAX 8800 Family
Vol. 1, No. 4, February 198'7

VAXcluster Systems
Vol. 1, No. 5, September 1987

Software Productivity Tools
Vol. 1, No. 6, February 1988

CVAX-based Systems
Vol. 1, No. 7, August 1988

Storage Technology
Vol. 1, No. 8, February 1989

Distributed Systems
Vol. 1, No. 9, June 1989

Compound Document Architecture
Vol. 2, No. 1, Winter 1990

VAX 6000 Model 400 System
Vol. 2, No. 2, spring 1990

Digital Tecbnical]ournal Vol. 2 No. 3 Summer 1990

Subscriptions to the Digital Technical Journal are
available on a yearly, prepaid basis. The subscrip
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, MLOl-3/868, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.

dollars, and checks should be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Digital
Technical Journal can be ordered from Digital Press
at a cost of $16.00 per copy.

Readings Related to lbis Issue
Listed below are articles and books that provide
further reading on some of the topics covered in
this issue. In addition, three books on related topics
will be available from Digital Press in the near
future. (See Digital Press section.)

"Adding a Dimension to X"
Randi). Rost, UNIX Review, vol. 6, no. IO (October
1988): 50-59

"PEX Brings Networking to 3-D Graphics"
Randi). Rost and Jeffrey D. Friedberg, Computer
Graphics Review, vol. 3, no. 5 (September/October
1988): 13-16

"The Development of PEX, a 3D Graphics Exten
sion to Xll "
William H. Clifford, Jr., John I. McConnell, and
Jeffrey S. Saltz, Proceedings of EUROGRAPHICS
'88, Elseviers Science Publishing Co. (New York:
September 1988): 21-29

"User Interface Consistency in the DECwindows
Program"
Michael Good, Proceedings of the Human Factors
Society, 32nd Annual Meeting, Vol. 1 (Santa Monica:
1988): 259-263

"Developing the XUI Style"
Michael Good, Coordinating User Interfaces for
Consistency(Academic Press, 1989): 75-78

"User-derived Impact Analysis as a Tool for
Useability Engineering"
Michael Good et al. , Proceedings CHI '86 Human
Factors in Computing Systems (New York: 1986):
241- 246

95

Further Readings

OSF/Motif Style Guide
Open Software Foundation (Prentice Hall,
ISBN 0-13-640491-X)

OSF/Motif User's Guide
Open Software Foundation (Prentice Hall,
ISBN 0-13-640509-6)

OSF/Motif Programmer's Reference
Open Software Foundation (Prentice Hall,
ISBN 0-13-640517-7)

OSF!Motif Programmer's Guide
Open Software Foundation (Prentice Hall,
ISBN 0-13-640525-8)

OSF/Motif Application Environment Specifications
(AES)
Open Software Foundation (Prentice Hall,
ISBN 0-13-640483-9)

The X Window System, Programming with Xt
Douglas A. Young, OSF/Motif edition (Prentice
Hall, ISBN 0-13-497074-8)

Digital Press
Digital Press is the book publishing group of Digital
Equipment Corporation. Digital Press publishes
books internationally for computer professionals
who specialize in the areas of networking and data
communication, artificial intelligence, computer
integrated manufacturing, windowing systems, and
the VMS operating system. Copies of the new titles
now available from Digital Press that are listed below
can be ordered by writing to Digital Press, Depart
ment DTJ, 12 Crosby Drive, Bedford, MA 01730, U.S.A.

UNIX for VMS Users
Philip E. Bourne, 1990 ($28. 95)

The VMS User's Guide
James F. Peters III and Patrick J. Holmay, 1990
($28.95)

A Beginner's Guide to VAX/VMS Utilities and
Applications
Ronald M. Sawey and Troy T. Stokes, 1989 ($26.95)

\lorking with WPS-PLUS
Charlotte Temple and Dolores Cordeiro, 1990
($24 .95)

Information Technology Standardization:
Theory, Practice, and Organizations
Carl F. Cargill, 1989 ($24.95)

The Digital Guide to Software Development
Corporate User Publication Group of Digital Equip
ment Corporation, 1990 ($27.95)

VMS Internals and Data Structures: Version 5
Update Xpress
Ruth E. Goldenberg and Lawrence J. Kenah, Vol
umes 1, 2, 3, 4, 5, 1989, 1990, 1991 ($35.00 each)

VAX/VMS Internals and Data Structures:
Version4.4
Lawrence J. Kenah, Ruth E. Goldenberg, and Simon

· F. Bate, 1988 ($75.00)

Computer Programming and Architecture:
The VAX, Second Edition
Henry M. Levy and Richard H. Eckhouse, Jr., 1989
($38.00)

Using MS-DOS Kermit: Connecting Your PC to
the Electronic World
Christine M. Gianone, 1990 ($29.95 with Kermit
diskette)

Technical Aspects of Data Communication,
lbird Edition
John E. McNamara, 1988 ($42.00)

The Matrix: Computer Networks and
Conferencing Systems Worldwide
John S. Quarterman, 1990 ($49.95)

The User's Directory of Computer Networks
Tracy L. LaQuey, February 1990($34.95)

Fifth Generation Management: Integrating
Enterprises Through Human Networking
Charles M. Savage, 1990 ($28.95)

Common LISP: The Language, Second Edition
Guy L. Steele Jr., 1990 ($38.95 in soft cover, $46.95
in cloth cover)

LISP Style and Design
Molly M. Miller and Eric Benson, 1990 ($26.95)

ABCs of MUMPS: An Introduction for Novice
and Intermediate Programmers
Richard F. Walters, 1989 ($25.95)

Forthcoming from Digital Press in the near future are

X Window System, Second Edition
Robert Scheller and James Gettys (due July 1990,
$49.95)

X Window System Toolkit: The Complete
Programmer's Guide and Specification
Paul Asente and Ralph Swick (due August 1990,
$44 .95)

X/MOTIF Quick Reference Guide
Randi Rost (due October 1990, $24 .95)

Software Design Techniques for Large Ada
Systems
William Byrne (due September 1990, $44.95 hard
cover)

Vol. 2 No. 3 Summer 1990 Digital TecbnicalJournal

DECWrlttt V1 .0: likertSdub1

Fit dit rth Typ

. ·-........... · .

ISSN 0898-90 1 X

Printed in U.S.A. EY-E756E-DP/90 06 02 26.0 BUO Copyright 1990 Digital Equipment Corporation All Rights Reserved

•

•

..

;

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the DECwindows Architecture
	The Sample X11 Server Architecture
	Development of the XUI Toolkit
	The DECwindows User Interface Language
	The Evolution of the X User Interface Style
	PEX: A Network-transparent Three-dimensional Graphics System
	XDPS: A Display Postscript System Extension for DECwindows
	The Development of DECwindows VMS Mail
	Ethernet Performance of Remote DECwindows Applications
	Further Readings
	Back cover

