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I Editor's Introduction 

Jane C. Blake 
Editor 

This issue of the Digital Technical Journal focuses 
on Digital's DECwindows program, its architecture, 
and applications for the window environment. The 
DECwindows program begins with the X Window 
System, which was developed at MIT with the sup
port of Digital and IBM. Papers herein describe how 
Digital's engineers have built on X as well as con
tributed to related industry standards that help to 
ensure compatibility across systems. 

Involved early in both the X Window and the 
DECwindows projects, Scott McGregor describes 
the DECwindows architecture as an upwardly com
patible superset of X. In his overview paper for this 
issue, Scott reviews aspects of the X design and the 
significant enhancements made by Digital in the 
development of its DECwindows program. 

The backbone of this program is the Xll protocol 
for which Digital has developed a sample server 
implementation. In their paper, Susan Angebranndt 
and Todd Newman review the development of the 
Xll server, which is the basis for all Digital product 
servers. Now publicly available, the Xll server is 
also a sample for all developers of X server product 
implementations. 

Several layers above the Xll server is the XUI 
toolkit. Leo Treggiari and Mike Collins discuss this 
set of run-time routines and application develop
ment tools, which is the primary programming 
interface to DECwindows applications. This toolkit 
was chosen as the base programming interface for 
the Open Software Foundation's Motif toolkit. 

The XUI toolkit contains hundreds of attributes, 
actions, and widgets, which can contain thousands 
of lines of code. Steve Greenwood relates how 
the user interface language (UIL) was developed 
to manage the complexity of the toolkit. UIL pre
serves the conceptual simplicity of the toolkit by 
allowing application developers to specify inter
faces without writing the multitude of code lines 
normally required. 
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The style of user interaction with computers is 
then addressed by Tom Spine and Jake VanNoy. As 
they point out, the XUI style represents a change in 
approach for Digital to modem, graphic, direct
manipulation user interfaces and to consistency 
across applications. XUI has evolved to provide a 
consistent means of user interaction for applica
tions across the VMS, ULTRIX, and MS-DOS systems. 

Extensions to the X architecture are the topics of 
two papers. PEX, an extension of X to support the 
PHIGS standard, is the subject of a paper by Randi 
Rost, Jeff Friedberg, and Peter Nishimoto. The 
authors describe some unique features of PEX and 
present the major design decisions made in its 
development. 

Chris Kent is the author of a paper about XDPS, 
another extension supported by DECwindows. 
XDPS was jointly developed by Digital and Adobe 
Systems Inc. to integrate the X imaging model and 
Display Postscript. As Chris explains, XDPS was 
designed to give application programmers the best 
features of the X and Postscript systems. 

Our last two papers address the topics of appli
cation development for the DECwindows environ
ment and explain how the performance of such 
applications can be measured. The implementation 
of DEC windows VMS mail is an example of an appli
cation development effort described here by Mike 
Ryan and Jim VanGilder. Among the develop
ment issues discussed is the coordination needed 
between the VMS and ULTRIX mail applications 
developers to design a common interface for both 
mail applications. 

Dinesh Mirchandani and Prabuddha Biswas then 
present the results of a study made to determine 
whether distributed DECwindows applications 
have an impact on the Ethernet network. The 
authors developed a simulation model running on 
a local area VAXcluster (LAVc) on the Ethernet to 

predict the limiting system configuration in this 
scenario. 

I thank John Hurd of the DECwindows pro
gram and Jesse Grodnik of the Western Software 
Laboratory for their help in preparing this issue. 
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I Foreword 

Richard Treadway 
Director 
Open Software Strategy 

In 1986 Digital's desktop strategy could only be 
described as fragmented. On VMS workstations 
we offered a proprietary windowing system, on 
ULTRIX workstations we offered an early version of 
the X Window System, and on PCs we offered 
MS-Windows. Because of the diversity of systems, it 
was very difficult to convince an application 
builder to support our range of desktop systems. 
Furthermore, this strategy was unsatisfactory to 
customers. Our customers wanted a consistent user 
interface that would allow them to access and 
execute applications on the appropriate processor 
anywhere in the distributed network. 

In January 1987, Digital announced the 
DECwindows system, which was a major design 
change intended to solve these problems. The 
system would provide a single application pro
gramming interface for application builders and 
give users network-wide access to applications 
through a common graphic user interface. The 
DECwindows system also would have the exten
sibility and flexibility to grow into the next decade 
and provide access to not only Digital systems, but 
to any system in a multi vendor network. In essence, 
the DECwindows system would bring the resources 
of the network to a single point on the desk. 

To rally the entire corporation behind such a 
major change in direction, the DECwindows pro
gram put forward a simple vision to Digital's 
engineers and customers. Unified access to the VMS 
and ULTRIX operating systems would be provided 
through a single programming interface for interac
tive graphic applications and a common user inter
face for all the desktop devices we support. This 
simple and concerted focus made it possible 

to manage the complexity involved in delivering 
more than 50 components built by nine separate 
groups located throughout the world in Nashua, 
New Hampshire, Reading, England, Littleton, 
Massachusetts, Palo Alto, California, and Valbonne, 
France. 

Our strategy was to base the DECwindows system 
on standards and enhance that base. Standards 
enable application designers to port applications 
between different hardware and software plat
forms. In late 1986, no standards existed for 
networked windowing systems. Therefore, in 
choosing a basis for the DECwindows program, 
we had to select a technology that not only met 
our requirements but could be put forward to the 
industry as a potential standard. For this reason, we 
chose to base the DECwindows architecture on 
MIT's X Window System. 

After Digital's endorsement of the X Window 
System in January 1987, eight other vendors, includ
ing Apollo and Hewlett-Packard, announced the X 
Window System as the basis for their future 
graphics-based computers. 

Because the X Window System is hardware and 
software platform-independent, we could provide 
it on the VMS, ULTRIX, and MS-DOS operating 
systems. The X architecture allows applications to 
be transparently distributed throughout the net
work. This capability is critical in fulfilling our goal 
to be the leader in distributed computing. The 
X system allows applications executing anywhere 
in the network to be displayed and controlled from 
the user's desktop computer. In addition, the win
dowed computing model offers significant benefits 
over the time-sharing, character-cell terminal 
model. For example, sharing data among simulta
neously executing character-cell applications is 
difficult, but in the X system, data-sharing is a fun
damental property. Finally, the X system protocol 
can be extended to include future subsystems. This 
feature is important in providing a path for the inte
gration of future technologies. As you will read in 
this issue of the Digital Technical]ournal, we used 
this capability to develop Display Postscript as an 
extension to X. 

The value the DECwindows system adds to the X 
system is a consistent user interface, and a high
performance, robust, and flexible toolkit. The XUI 
toolkit and style guide make possible the implemen
tation of applications that offer good interactive 
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performance. Because the same XUI toolkit runs 
on both the VMS and ULTRIX systems, developers 
can provide their applications on both operating 
systems with a single implementation. 

To test the robustness, performance, and usabil
ity of the toolkit and style guide, we committed to 
develop a highly complex interactive application, 
the DECwrite editor, on both the VMS and ULTRIX 

operating systems. We learned a great deal about 
DECwindows performance and quality from that 
project. The ability to test our enabling technology 
while we were building it was fundamental to our 
success. 

In addition to performance and completeness, 
the DECwindows toolkit separates the definition of 
user interfaces from application coding. The user 
interface can be specified with a nonprocedural 
language, called the user interface language (UIL). 

The resultant definition is accessed at run-time by 
the application. Separating form and function in 
the DECwindows system is very imponant for 
the development of international applications and 
for the separation of user interface design from 
application implementation. 

For international applications, the user interface 
can be completely translated without changes to 
application code. This approach significantly 
reduces the cost and complexity of translating 
applications. Since the toolkit supports multiple 
user interfaces, applications can switch languages 
dynamically. 

For user interface design, UIL 's separation of form 
and function allows rapid prototyping in the user 
interface. With UIL the user interface design need 
no longer be entirely the programmer's respon
sibility. User interface design specialists can con
centrate solely on the interactive aspects of the 
application without making programming changes. 
All this can lead to better designed and easier to use 
applications. 

The DECwindows system is very significant to 
Digital in two imponant ways. First, it is our first 
open systems product. We initially thought the 
value added by the DECwindows user interface and 
toolkit would be our competitive advantage. 
However, we came to realize that in a fully dis
tributed computing environment the user really 
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needs that same interface for all applications 
regardless of the vendor's system. Therefore, the 
DECwindows user interface had to support mul
tivendor systems to encourage application builders 
to base their designs on it. That conclusion and the 
opportunity to create a de facto standard led us 
to create the X user interface (XUI) as a separate 
component of the DECwindows system that we 
would license to run on any system. When the 
Open Software Foundation (OSF) announced a 
request for technology to specify the user envi
ronment component, XUI was submitted and 
eventually accepted as OSF/Motif. XUI marked the 
first time Digital released technology that it once 
considered proprietary to the industry. 

Second, the DECwindows system initiated a new 
design center for applications. The system was a 
fundamental change from a time-sharing, character
cell model to a graphic, windowed, distributed 
computing model. In this regard, the DECwindows 
system presented application designers with a 
whole set of opportunities for new application 
capability and an associated set of complex 
problems to solve. 

As with any enabling technology, it takes time 
and creativity to evolve techniques and method
ologies that allow the technology to be used effec
tively. The series of articles in this journal, which 
includes papers on the style guide, toolkit, UIL and 
XUI, will help you better understand how far we 
have come and where we still have to go. 



Scott A. McGregor I 

An Overview of the 
DECwindows Architecture 

The DECwindows architecture builds on industry standards and adds enhancements 
to provide greater perfomumce and reliability in the window environment. The 
architecture is based on the X Window System developed at MIT, which consists 
of three main components - the X seroer, Xlib, and the toolkit intrinsics. The 
DECwindows implementation extends X in several ways. DECwindows uses 
algorithms that expose additional interfaces, supports a broader choice of prrr 
gramming languages, provides a complete set of tools for application development, 
and promotes ease of use and user-interface consistency by means of a style guide. 
In addition, the DECwindows architecture includes industry-standard interfaces 
and extends the seroer to take advantage of Postscript, three-dimensional graphics, 
and imaging. 

The DECwindows architecture provides a complete 
set of mechanisms that control windowing, 
graphics, the user interface, and data interchange 
in order to make easy the task of building high
quality applications that work well together. In this 
role, the DECwindows architecture is a key com
ponent in Digital's Network Application Support 
(NAS) in conjunction with other components such 
as networking and printing. 

It can be argued that the move from character
cell-oriented applications to window-based appli
cations is as significant as the move from batch 
computing to time-sharing. The reasons for choos
ing to adopt the X Window System are as many as 
they are varied; some of the most important are as 
follows: 

• Windowing systems provide a richer computing 
environment that includes detailed graphics art
work and significantly improved ease of use. 

• The direct manipulation of objects on the screen 
is a more intuitive model of computer 
applications. 

• The prevalence of windowing systems has led 
to increased expectations on the part of our 
users. For example, users can start any number 
of applications simultaneously, allow them to 
remain running all day, and shift between them 
by using a pointing device. 

• Window-based applications allow for a natural 
separation of form and function. 
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• Just as time-sharing allowed the creation of 
applications that were inconceivable or impos· 
sible in batch-oriented systems, windowing 
systems support problem-solving approaches 
that cannot be made to fit the time-sharing 
model. For example, sharing data between 
applications has often been cumbersome for 
applications designed to run on character-cell 
terminals. In contrast, the ability to share data 
among cooperating applications is a fundamen
tal property of the X window model. 

The DECwindows theme is to build on standards 
and to add incremental value. Standards make sense 
because application designers want portability 
between hardware platforms. Users of applications 
also want standards because it rarely makes sense to 
learn new interaction techniques that are unique to 
specific applications. The DECwindows architec
ture is built on and compatible with industry stan
dards such as the X Window System from MIT, 
Motif from the Open Software Foundation, and 
Adobe's Postscript page-description language. The 
architecture is designed to allow easy integration 
with various personal computer (PC) systems such 
as those produced by IBM and Apple. The value of 
Digital's offerings is in the performance and reliabil
ity of the implementation, the set of additional lay
ered libraries and services available, and integration 
with other services defined by NAS. 

Prior to the DECwindows "unification," there 
were different windowing and applications solu
tions for each of the operating systems supported 
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by Digital (VMS, ULTRJX, and MS-DOS). A goal of the 
DECwindows architecture is to provide a common 
user interface that spans all three operating 
systems, and a programming interface common 
across VMS and ULTRIX. Although memory limita
tions of the MS-DOS environment prevent us from 
supporting the full DECwindows applications inter
face for current PCs (that is, until OS/2), the intent 
is to make it easy to port DECwindows applications 
between VMS and ULTRJX operating systems, and 
straightforward to port applications that use 
MS-Windows, the Presentation Manager, or Apple's 
Macintosh. 

Although the DECwindows architecture is based 
on the X Window System, DECwindows is an 
upward-compatible superset of that design. This 
means that the DECwindows architecture has all the 
advantages of the X Window System, as well as the 
advantages of the Digital enhancements. The bal
ance of this paper presents a summary of the 
X Window System and the additional components 
and design enhancements that make up the 
DECwindows products. 

The X Window System 
The history of the X Window System seems surpris
ing, given the role it plays today as a workstation 
industry standard . X started out at Stanford 
University as W W became X when it was jointly 
adopted by MIT 's Laboratory for Computer Science 
and Project Athena (an educational program jointly 
funded by Digital and IBM). The first version of X 
to be widely used and shipped as a product 
was version 10 (XIO). X had three important fea
tures that made it popular: it provided a high
performance network protocol for windowing and 
graphics, it was independent of workstation hard
ware, and it was available in source form to anyone 
for the cost of the media. 

Work on X version 11 (XU) began in 1986. This 
effort was a serious attempt to reconsider some of 
the original design ideas in order to make X into a 
more functional system that would meet the needs 
of a larger class of application developers. Graphics 
state was added for performance, and precise 
semantics were defined for the output routines. 
Input events were generalized, and perhaps most 
important, work began on a toolkit for applications 
developers. Digital agreed to implement the sample 
server, Xlib (the library of X routines), and the 
toolkit that are available on the MIT Xll tape. MIT 
has agreed to continue to support X and to control 
the architecture and evolution of the system design. 
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X consists of three main components: the 
X server, Xlib, and the toolkit intrinsics (also 
known as Xt). The substructure of each of these 
components is briefly described in the following 
sections.1•

2 The overall architecture of the 
X Window System, showing the relationship of 
the server, network protocol, Xlib, Xt, and appli
cations is shown in Figure 1. 

The X Server and the X Protocol 
The task of an X server is to implement the 
requests defined in the protocol and encoding 
specifications. 

The X server runs on the hardware where the 
display and keyboard are located and provides low
level graphics, windowing, and user input func
tions. It relies on a very low-level interface that is 
supplied for each type of supported workstation. 
Clients communicate with an X server by means of 
the network or "wire" protocol. This protocol, also 
known as the X protocol, is a very precisely defined 
interface. By tightly defining the semantics of the 
wire protocol, it is made independent of the operat
ing system, the network transport technology, and 
the programming language. 

The X protocol defines the data structures used 
to transmit requests between applications and 
user-interface stations over the network .1 

Applications do not normally generate protocol 
requests themselves, but instead use Xlib or other 
layered libraries. 

Most X requests are asynchronous, meaning that 
a client can send requests without waiting for the 
completion of previous requests. This approach 
allows for fast request processing through the use 
of pipelining techniques in the server implemen
tation and in Xlib, and it means that the application 
usually does not have to wait for the completion of 
an operation. Some X requests (state queries , for 
example) have return values, which the server 

APPLICATION 

::::== =~-x __ T_ (::.IN.:..T __ R:...IN.:..s __ 1c:.:S:.:..) _J EXTENSION CLIENT 

XLIB LIBRARIES 

X PROTOCOL 

X SERVER EXTENSIONS SERVER 

Figure 1 X Architecture 
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handles by generating a reply and sending it to 
the client. Although the protocol does not provide 
any explicit synchronization requests, any request 
that depends on the completion of other requests 
will block, pending execution of those requests. 
(For example, Xlib synthesizes the xsync interface 
by making a XGetlnputFocus request and discard
ing the return value.) Errors are also generated 
asynchronously, and clients must be prepared to 
receive error replies at arbitrary times after the 
offending request. 

The X protocol also describes the following: 

• Connections, which provide the communication 
path between server and client 

• Windows, which provide the mechanism for 
interaction between the user and the application 

• Events, which provide notification of mouse 
and keyboard actions, as well as a mechanism 
for control of (and communication between) 
multiple, simultaneous applications 

• Graphics routines, which provide the mech
anism for an application to draw information on 
a display 

Xlib and the Xt Intrinsics 
Xlib is the basic library of X routines. Xt, or 
intrinsics, is a library of routines that introduces the 
"widget" model and that can be thought of as a 
toolkit for builders of user interfaces. 

The distinction between Xlib and the intrinsics is 
partly architectural and partly due to the incremen
tal evolution of the X standard. Originally, Xlib was 
simply a procedural interface to the X wire proto
col; but it soon became a repository for commonly 
used utility routines as well. During the design 
phase ofX version 11, it made sense to create a sepa
rate "toolkit" library to introduce (1) more con
ventions for windows (that is, "widgets") than were 
originally envisioned in the protocol, and (2) a 
mechanism for dispatching events. 

Because of the difficulty of separating widget 
functionality from the calling interface, a distinc
tion was made between the Xt intrinsics and the 
widget set. The intrinsics supplied a mechanism for 
creating widgets without imposing policy, and 
the widget set (with its associated calling interface) 
defined a particular look and feel. Thus, the 
DECwindows toolkit (now known as XVI) was born, 
consisting of the standard intrinsics library shared 
with MIT and a set of widgets unique to Digital. 
The XVI toolkit is described further below. MIT also 
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provides some sample widgets, known as the 
Athena widgets. 

Xlib Xlib provides a "veneer" library over the wire 
protocol so that applications can use a procedure 
call interface. Xlib converts the parameters passed 
to the procedural interface into the network proto
col format and translates messages from the server 
into return values for the application. Xlib also pro
vides a set of utility routines needed by most 
applications. 

The Xlib interface consists of almost 300 routines 
that either map directly to X protocol requests or 
provide utility functions on the client side. 
DECwindows follows the standard MIT definition of 
Xlib very closely, with a few additions noted below. 

The functions available in Xlib include setting up 
connections with a server, querying the server, cre
ating resources and windows, performing graphics 
output, and obtaining user input events from the 
keyboard and pointing device. 

The Xlib interface is the lowest level interface 
that applications are expected to use; in other 
words, an application should not use the worksta
tion hardware interface directly, nor should it 
directly generate X protocol requests. 

Intrinsics The intrinsics are a set of routines that 
make it easy to create the window types that imple
ment user-interface features such as scroll bars, 
dialog boxes, and editable text fields. Such a win
dow type is called a widget. Since intrinsics aid 
in building widgets, the intrinsics are sometimes 
called a toolkit for builders of toolkits. Although 
the definition of the widget model is the primary 
task of the intrinsics, utility routines are also 
included to handle user input (event management) 
and to provide caching services so that widgets can 
share graphics contexts. 

Like the lower layers of X, the intrinsics layer 
is "policy free" in that it seeks to provide a mech
anism rather than to enforce a particular style 
of user-interface or program interaction. The XVI 
toolkit, described briefly below, is the layer 
that specifies DECwindows user-interface policies 
by providing a common set of widgets layered on 
the intrinsics. 

DECwindows Enhancements to X 
DECwindows extends the X Window System in a 
number of significant ways. 

• Quality of implementation for the standard 
X components - DECwindows enhances the 
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sample MIT implementation by using algorithms 
that expose additional interfaces, or by allowing 
more flexibility. Examples include faster win
dow repositioning algorithms, international key
board support, and font caching. Robustness 
is another important implementation quality; 
Digital has led the effort in developing an 
X validation test suite. 

• A choice of programming languages - MIT 
supports only a C and a Common LISP interface 
for Xlib. DECwindows supports standard UNIX 
C as well as the complete set of VAX stan
dard language bindings, including FORTRAN, 
ADA, and PASCAL. 

• XUI toolkit- The X Window System compo
nents stop short of providing a complete set 
of tools needed for application development. 
DECwindows provides libraries for user 
interface primitives (widgets), resource man
agement, and internationalization. Additional 
development tools are also included. The XUI 
toolkit makes it easy to write applications that 
follow the XUI Style Guide. 

• XUI Style Guide - To promote ease of use and 
user-interface consistency among applications, 
DECwindows includes a set of guidelines for 
application developers. All applications devel
oped by Digital conform to these guidelines. 

• Industry-standard interfaces - In addition to the 
X interfaces, DECwindows includes industry
standard libraries such as PHIGS and GKS. 

• Extension libraries - X provides a mechanism 
for extensions to the server's capabilities. 
The DECwindows architecture takes advantage 
of this feature to provide Postscript, three
dimensional graphics, and imaging capabilities. 

• Base applications - DECwindows includes a 
set of base applications useful to all work
station users, such as window and session 
managers, terminal emulators, and personal 
productivity tools. 

The X architecture (shown in Figure I ) is 
expanded in DECwindows as shown in Figure 2. 

In Figure 2, the Xll wire protocol denotes the 
line between client and server. On the client side, 
the "staircase layering" of the application layer 
shows the ability for applications to intermix calls 
to any of the client-side libraries. In other words, 
the application can use whatever level of abstrac
tion is most appropriate for the job at hand. 
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Figure 2 DECwindows Architecture 

The remaining sections of this paper describe 
DECwindows enhancements to the X server, the 
extension of Xlib, the XUI toolkit and style guide, 
and the extension and industry-standard libraries. 

DECwindows Enhancements to the 
XSeroer 
Although the semantics of the server operations 
are tightly constrained by the X protocol, there 
is a fair degree of freedom in the design and 
implementation of the server itself. The ULTRIX 
implementation has tracked the MIT version quite 
closely, whereas the VMS in1plementation diverged 
early on in an attempt to add value. In both cases, 
there are some significant enhancements that 
Digital has made to the standard MIT server. 

The MIT sample server is divided into two major 
components: device-dependent X (DDX) and 
device-independent X (DIX). The DIX code is highly 
portable and designed to be independent of operat
ing system and hardware. The DDX code contains 
both operating system (e.g. , memory management) 
and display hardware dependencies. The goal for 
the original server design was to maximize the 
portability of the code, making the DIX component 
as large as possible, even at the cost of performance. 
Re-implementing the server to be entirely device
dependent would provide the best performance, 
but would require a major effort to support each 
new workstation product. The goal for the 
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DECwindows server is to seek a compromise that 
provides higher performance without completely 
sacrificing portability. 

The DECwindows X server implementation dif
fers from the MIT X server implementation in the 
following ways: 

• Font and glyph caching- In the MIT X server, 
a font is either in memory or it is not. The 
DECwindows X server provides glyph caching, 
so that a portion of a font may be stored in 
memory. Glyph caching is especially important 
for users of ideographic (e.g., Far Eastern) fonts. 

• Run-time loading of DDX, DIX, transport mecha
nisms, and extensions (on VMS)-The advantage 
of run-time loading is that an application need 
not load code until it is actually needed. Thus the 
apparent performance of an application can 
improve, because it does not need to initialize all 
functions before it invokes any function. 

• Multiple, simultaneous transport mechanisms
The X server can have an arbitrary number of 
open connections at a time, and these connec
tions can use the transport mechanism available 
(e.g., to a given remote node) or most desirable 
(e.g., shared memory for a local client). 

DECwindows Extension to Xlib 
As noted earlier, the DECwindows Xlib implemen
tation follows the standard MIT definition of Xlib 
very closely. Some of the few differences from the 
X implementation are summarized below. 

F.xteru:led Keyboard Support The XLookupString 
routine has been extended to support international 
character sets. The DECwindows Xlib implemen
tation supports the Alt-Space (Compose-Space) 
introducer sequence to enter key sequences that 
generate characters not available on the user's key
board. The intention is to expand these capabilities 
further to support Asian languages and "soft" key
board displays on the user's screen. 

Asynchronous Event Notification Events from the 
X server are synchronous, meaning the events must 
be read from a queue by the application. A 
DECwindows specific enhancement allows for an 
asynchronous notification of the arrival of an event, 
through an AST on the VMS system, and a signal on 
the ULTRIX system. In addition, Xlib may be called 
from this asynchronous event call. 
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VMS-specific Extensions Under the VMS operating 
system, Xlib (along with the other layered libraries) 
is a shareable library. Shareable libraries reduce the 
size of an application's image. 

XUIToolkit 
The XUI toolkit is layered on top of Xlib and the Xt 
intrinsics and is the first layer that defines the user
interface policy of the DECwindows architecture: 
The XUI toolkit consists of three major com
ponents: 

• The XUI toolkit widgets 

• The DECwindows resource management facil
ities 

• The cut-and-paste interfaces 

The goal of the XUI toolkit is to make it easy for 
an application designer to write an application by 
providing the designer with widgets for almost all 
the common user-interface components. Applica
tions are expected to write widgets for their own 
unique function, but functions that are common 
across applications are supported by the XUI 
toolkit. For example, a spreadsheet application 
would likely create its own widget class for the 
cell array, but it would use XUI toolkit widgets to 
display error messages and menus. Although the 
application needs to create its own widgets to 
differentiate it from other applications, sharing 
the commonly used widgets has two advantages: 
the application writer has less code to write and 
maintain, and consistency between application 
is increased. 

To achieve the goal of interapplication consis
tency, the XUI toolkit is closely tied to the XUI Style 
Guide in its selection of widgets to implement, and 
in the functions and visual appearance of those 
widgets. In other words, the XUI toolkit is an imple
mentation of the user interface specified by the 
style guide. 

XU! Style Guide 
The XUI Style Guide is a set of user-interface guide
lines that describe preferred screen appearance, 
types of application/user interactions, proper use 
of keyboard and mouse functions, and so on. In 
human terms, it might be described as a guide to 
effective communication~·5 

The XUI Style Guide has three main areas of 
emphasis: 
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• Use of graphics to present information 

• Use of direct manipulation, in cases in which 
users point at and directly interact with objects 
on the screen 

• User-interface consistency 

The style guide provides enough detail to let 
application designers achieve a high level of consis
tency, but by itself, it cannot guarantee that the 
designer will do a good job. Guiding the creation of 
consistent applications might be compared to guid
ing the creation of musical compositions in a 
specific style, like jazz or the blues. Although a good 
guide might provide the fundamentals, the com
poser still needs to hear examples of the music in 
order to copy the style. And a composer can still 
write bad compositions even if the guide is followed 
to the letter. 

Extension Libraries 
The X architecture supports an extension facility so 
that functions can be added to the core routines. 
Extensions allow support for special workstation 
hardware capabilities as well as for operations that 
are seldom used. 

An extension consists of two components: a 
hardware-dependent extension to the X server, and 
a client-side library that sends requests to the server 
using the extension protocol. Figure 2 illustrates 
the position of the extensions within the X server. 
A routine is provided in Xlib to test whether a par
ticular named extension is supported in a server or 
to query the set of supported extensions. 

Extension libraries supported by DECwindows 
include the following: 

• PEX, a high-performance three-dimensional 
graphics library 

• Display Postscript, a graphics output library that 
uses Adobe's Postscript imaging model 

In addition, some anticipated extension libraries 
include the following: 

• Input, extended support for tablets, dial boxes 
and other user input devices (part of the MIT 
XllR4 release) 

• Nonrectangular windows, which permits win
dows to be defined as arbitrary shapes rather 
than limited to rectangles 
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• Imaging, a library of functions that support oper
ations on scanned images 

• Multimedia, support for sound and video 

/ndustry-standtlrd Libraries 
Industry-standard libraries are either officially sanc
tioned or de facto standards that enjoy wide popu
larity in the industry. Application developers use 
these interfaces when they want to minimize the 
cost of supporting multiple graphics and/or win
dowing environments (including DECwindows) 
from a single application. 

DECwindows implements GKS, PHIGS, and other 
industry-standard programming interfaces by: (1) 
providing shells on top of Xlib and other standard 
X libraries, (2) by extending the Xll wire protocol 
and using it directly, or (3) by some combination of 
the two. 

Since GKS is a two-dimensional interface, it is 
strictly layered on top of Xlib and the XUI toolkit . 

Since PHIGS seeks to take advantage of three
dimensional hardware capabilities not exposed by 
Xlib, PHIGS uses a combination of the PEX three
dimensional extension to Xll and the existing pro
gramming libraries. 

Summary 
The DECwindows architecture offers significant 
new technology for building applications; it is 
based on the graphical user interface and the use 
of an operating-system-independent "client-server" 
model to distinguish between where an application 
is run versus where it appears to the user. The archi
tecture also provides a high degree of source-level 
compatibility between ULTRIX and VMS, which per
mits applications to be easily ported between the 
two operating systems. 

DECwindows is based on the industry-standard 
X Window System, including the X server, the 
X wire protocol, Xlib, and the Xt intrinsics. It offers 
value beyond these standards through improved 
implementation as well as by incremental func
tionality. The architecture has proven both robust 
and extensible, making it the preferred base for 
new applications created by Digital and by our 
software partners. 

A Postscript 
Since the original creation of the DECwindows 
product, a new organization came into being to 

drive convergence of open systems standards. The 
Open Software Foundation (OSF) evaluated tech-
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nology from a number of companies and created a 
toolkit called Motif that combines XUI from Digital 
and the visual appearance from Microsoft and 
Hewlett-Packard. In 1990, Motif will replace XUI as 
the toolkit in Digital's DECwindows architecture. 

Given the wide acceptance of X and Motif, the 
DECwindows architecture has truly become an 
industry standard, much to the credit of the many 
Digital engineers who put in their imagination and 
hard work. 
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The Sample Xll Server 
Architecture 

1be XII protocol is the backbone of Digitals DECwindows program. 1be sample 
seroer is an implementation of the protocol. 1be seroer was developed by Digital and 
has become the basis for all Digital product seroers. As part of Digitals commitment 
to support open system standards within the industry, the seroer code was donated to 
MIT. Because the software is now publicly available, the seroer is the starting point 
for the X seroer product implementations for all other vendors. This paper describes 
the architecture of the sample seroer and comments on the implementation. 

The Need for a Sample Server 
The X Window System protocol was developed 
jointly by MIT and Digital.1 The protocol permits 
network-transparent access to the input, window
ing, and two-dimensional graphics capabilities 
of workstations and display systems. Further, the 
protocol presents a high-performance, device 
independent graphics model. As such, it provides 
a hierarchy of resizable, overlapping windows, 
which support the easy building of a wide variety 
of applications and user interface styles. 

The server is an implementation of the 
X protocol. Its job is to arbitrate access to the 
display and to the keyboard and pointing device, 
generally a mouse. Applications that use the 
X protocol are called clients. Clients communi
cate with a server through an 8-bit byte stream. 
A simple packet stream protocol is layered on top 
of the byte stream. For example, a packet of com
mands might create a window and draw an arc. 

Our goal was to design and implement a sample 
server based on the X Window System version II 
(X 11) protocol. By sample we mean an example 
implementation of the protocol that other devel
opers can use to implement the X protocol on 
their workstations. When we began, there was a 
sample implementation of version 10 (XlO) of the 
X Window System already in use on UNIX system
based products. This XIO sample server had been 
ported to Digital, Sun, Apollo, and IBM PC/RT 
workstations, among others. But the XlO protocol 
was not suited to advanced graphics devices. The 
XlO implementation was based on the VAXstation 
100 graphics primitives and architecture. There
fore, it was difficult to make performance enhance
ments on hardware other than the VAXstation 100 
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workstation because of assumptions in the XlO 
protocol and its sample code. 

Xll was more advanced that Xl0.2 Xll com
pletely overhauled the XlO protocol. It considered 
the needs of operating systems other than the UNIX 
system, as well as graphics devices other than the 
VAXstation 100. Because of the massive changes 
from XlO to XII, the sample server had to be 
reimplemented from scratch. It was important 
that this implementation not depend on a specific 
device but apply to a wide range of workstations. 

Digital wanted to develop and promote XII as a 
de facto standard in the workstation market, just as 
we promote the UNIX system (in the form of 
Digital's ULTRIX system) as a standard. We felt a 
common, open windowing environment was as 
important as a common, open operating system 
environment. XlO was too limited in scope and 
capabilities to become popular on workstations 
with advanced graphics. By making the sample 
implementation publicly available, other vendors 
would be more likely to adopt XII as a standard. 

Digital receives several direct benefits from 
making the sample server publicly available. It is 
the basis for all current Digital server implementa
tions on the VMS, ULTRIX, and PC systems. MIT 
maintains the bulk of the source code. Therefore, 
Digital benefits from the changes, enhancements, 
and bug fixes done not only by MIT but by other 
companies that use the server. Also, we can easily 
incorporate server extensions, such as Hewlett
Packard's input extension. Over 75 percent of the 
code in the ULTRIX system-based DECstation 3100 
color server is from MIT. Therefore, this server can 
be ported easily to new graphics devices because 
few lines of code need to be modified. 
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Design Goals and Constraints 
Designing and writing software to be used on a 
wide class of machines is a lesson in compromises. 
In this section, we list our goals and constraints. In 
the sections following, we give an overview of the 
server architecture and some porting concerns. 
Finally, we evaluate our end result. 

Tailorabk 
The primary technical goal of the project was to 
provide code that would remain useful on current 
and future operating systems and graphics devices. 
Writing portable code is not new. Software is often 
ported. Just as often, performance is decreased in 
favor of the increased portability. For example, the 
UNIX operating system has been ported often, but 
the system's performance is diminished on all but a 
few architectures.3 Customization is needed to 
regain the speed lost in favor of generality. There
fore, our server design had to emphasize portability 
and customization in equal measure. We term the 
software design using this approach as tailorable. 
Almost every other design consideration or con
straint grew out of the requirement tailorability. 

Standards 
The sample server is used by a wide audience, on 
a variety of workstations. Our implementation was 
constrained by some of the "least common denomi
nator" features found on most workstations. We 
wanted to be assured that most vendors would be 
able to use our implementation. 

An example of such a constraint was in the choice 
of language used for the server. We preferred to 
implement the X protocol in a multithreaded, 
object-oriented language. However, the implemen
tation is in the C language because most other 
vendors provide C compilers. Therefore, the C 
language would provide a more universal· stan
dard. The problems with using the C language are 
discussed in more detail in the Sample Server in 
Retrospect section of this paper. 

Firewalls and !Ayering 
Modularity makes software easier to maintain and 
modify. Whole modules can be reimplemented 
with different internal data structures and proce
dures. As long as interfaces and firewalls are main
tained, the rest of the system will continue to 
function. 

We also chose to use modularity because we 
could reuse software by partitioning the software 
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into layers. Layers that were machine-independent 
could be completely portable. Machine-defined 
layers required modification to port to a new archi
tecture. Therefore, our goal was to provide as much 
machine-independent code as possible. 

Simplicity 
Because of our time constraints, we opted to keep 
our approach simple. Simplicity meant adding an 
extra level of indirection or an extra procedure call 
in some cases. However, it is easier to optimize the 
code later by deletion than by addition. 

Simplicity was also achieved by setting restric
tions and understanding limits. The bitmap 
graphics workstations that might run the 
X protocol currently range from the 8-bit Apple II 
through the 16-bit IBM PC to Digital 's 32-bit 
VAXstation 3520 workstation. Frame buffers range 
from the I-bit-deep VAXstation 2000 workstation to 
the 24-bit-deep frame buffer of the VAXstation 3520 
workstation. The X protocol supports frame buffers 
up to 32 bits deep. As a practical observation, no 
machines with 8-bit integers would have enough 
performance to run the X protocol. 

Although the X protocol supports many different 
graphics devices, we had to implement for only 
one device for practical purposes. We chose the 
most general device, one with no graphics hard
ware, which would enable us to write all the 
drawing algorithms in software. When other 
developers use the sample code, they can replace 
our software algorithms with calls to their hard
ware graphics routines. We selected the mono
chrome VAXstation 2000, running the ULTRIX 
operating system. The frame buffer is treated as 
main memory. However, it is impossible to gen
eralize from one example. Therefore, as we were 
writing the sample, we had two other development 
engineers port it to the VAXstation 8000 and 
VAXstation 11-GPX workstations. 

Architecture 
The server architecture reflects our perception of 
how the code would be ported to new machines 
and operating systems. The architecture has three 
major layers: device-independent X (DIX), operat
ing system (OS), and device-dependent X (DDX). 

The DIX layer contains device-independent 
routines, OS contains operating system-specific 
routines, and oox contains device-specific rou
tines. The operating system interface insulates 
DIX from the details of file access, network com-
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munication, and the keyboard and mouse. DDX is 
the graphics interface, which is a virtual interface to 
the painting routines. 

Procedures in DIX should rarely require changes, 
OS should be written once per operating system 
(or version of the UNIX operating system), and DDX 

should be modified for each graphics platform. 
For example, when porting from one ULTRIX 

graphics subsystem to another, the only layer to 
be modified would be DDX. However, some rou
tines in DDX will be shared across different ULTRIX 

graphics subsystems. 

Shared Data Structure 
Firewalls are created by strictly defining the 
exported routines and the data structures that are 
shared by the layers. Although the C language does 
not explicitly support objects, we treated the 
shared data structures as objects, which let us 
hide information between any two layers. Each 
structure contains state variables, i.e., attributes, 
and procedure vectors, i.e., methods. DIX writes 
the state and calls the methods. DDX and os read 
the state and set the methods. In addition, each 
structure has an opaque pointer, which is usually an 
implementation-specific structure that belongs to 
either DDX or OS. Screens, drawables, and graphics 
contexts are the primary data structures shared 
between the different layers in the server. 

The X protocol supports multiple screens that are 
connected to the same server. In other words, one 
workstation can have multiple displays connected 
to the same keyboard and pointer. Therefore, all 
information about a particular screen is bundled 
into one data structure of attributes and proce
dures. Resources that are defined per screen are 
color maps, cursors, and fonts. 

Windows and pixmaps are considered draw
ables. Windows are rectangular graphic areas on 
the screen into which graphics routines can be 
drawn. Pixmaps are graphics drawing areas located 
off-screen. All graphics operations work on draw
ables, and operations can copy areas from one 
drawable to another. 

Graphics contexts contain state variables, such as 
foreground and background pixel value (i.e., color); 
the current line style and width; the current tile 
or stipple for pattern generation; and the current 
font for text generation. Graphics contexts also 
include functions that support fundamental paint
ing operations, e.g., drawing lines, polygons, arcs, 
text, and copying areas of drawables. 
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Device-independent X 
DIX dispatches requests to either DDX or OS, 
manipulates a tree of windows and their associated 
properties, maintains the input focus, and sends 
mouse and keyboard events to the appropriate 
clients. In addition, DDX checks client requests for 
the correct length and maps identifiers created by 
a client to the server's internal data structures. 

The core of DIX is a loop, called the dispatch 
loop. Each time around the loop, DIX sends the 
accumulated input events and processes requests 
from the clients to DDX or OS. The loop, shown 
below, is the most organized way for the server to 
process the asynchronous client requests. 

while (true) { 
if (inputPending) 

Process inputEvents(); 
nextRequest = WaitForSomething(); 
if (newConnection) 

lnitializeConnection(); 
if (Connect ionDied) 

CleanUpConnection(); 
DispatchRequest (nextRequest); 

Requests fall into three categories: 

• Edits to internal data structures, e.g., setting the 
keyboard click on or off 

• Queries on internal resources, e.g., asking the 
placement of a window on the display 

• Drawing requests, which are handled by calls to 
DDX 

Edit requests usually set some state shared by DIX 

and either DDX or OS. A side effect of the edit is a 
bear trap set by DIX. When a painting request 
occurs, the bear trap is triggered. DDX notices the 
state change and sets the method associated with 
the new attribute values. 

Keyboard and Mouse Handling 
Input events from the keyboard and mouse travel 
in the reverse direction of requests, that is, from the 
workstation to the client application. 

Some examples of synchronous events are grabs 
and input focus change. Synchronous events are 
initiated by clients or the window manager and are 
very similar to requests. These events result in state 
changes, some of which are visible on the screen. 
However, whereas requests generate at most one 
reply or error, events may cause the creation of 
more events. 
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A linked list of clients and the interest the clients 
have expressed in an event or events is stored in the 
window. The direct path in the window hierarchy 
is cached. The path extends from the root window 
down to the window containing the mouse (i.e., 
pointer focus) and from the root to the window 
where the keyboard events are sent (i.e., keyboard 
focus). This method makes it easier to generate 
events, such as notification that the pointer has 
crossed a window boundary, which are then passed 
to all the windows in the chain. 

Asynchronous events occur outside the server's 
control. The events include button presses, key
board events, and mouse motion events. Once 
started, many server operations must be performed 
to completion. However, the asynchronous events 
continue to occur while the server is busy process
ing requests. Even if the server itself is synchro
nous, it must look to the clients as though events 
are occurring asynchronously. The C language 
does not support interrupt handling. Therefore, 
the server cannot handle the events while perform
ing a client request. The device driver notes new 
input events. The server then attempts to simulate 
an asynchronous response by polling for events 
between each request the server processes. 

We learned from the XlO implementation that a 
rapid response to new input events was required 
to achieve the responsiveness necessary for good 
user interaction. Copying data from one layer to 
another would degrade response time substantially. 
Because of this need, DIX and DDX had to use the 
same physical memory location and data structure 
to represent the event state. 

A problem existed in that different devices want 
to represent their input queue differently. For 
example, some may want head and tail pointers, 
a single or double linked list, or a circular buffer. 
Further, some may want a list and a count, whereas 
others might use a null-terminated list and not need 
a second value at all. The server solves the problem 
by representing the input stream by two 32-bit 
words. The two words are not required to be 
adjacent because they are pointed to by a two-entry 
array. If the values in the words are different, there 
is keyboard or mouse input. The DDX implemen
tation decides which representation for the input 
queue is best-suited to its hardware. 

The relative sequence between keyboard and 
mouse events must be maintained to implement the 
X protocol properly. Clients must be able to deter
mine the order that the user pressed the keys or 
moved the mouse. All Digital workstations merge 
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these input streams at the device driver level, which 
makes event processing easy for the server. If 
merging were not done at the device driver level, 
DDX would need to ensure that each event was 
time-stamped very accurately in order to tell if a 
mouse event occurred before a keyboard event. 

Operating System wyer 
The X protocol is operating system-independent. A 
few operating system functions are provided, such 
as file access. In keeping with the operating system 
independence, our server implementation design 
hides the specific details of the operating system 
from DIX as much as possible. A narrow OS layer 
ensures that our code is more portable. Below are 
two examples of operating system independence: 
the font interface and the scheduler that determines 
which client request to service next. 

Font Interface If the client wishes to open a font 
by name, the server must find the font. The 
X protocol does not dictate how or where the font 
is stored. For example, there might be a file per 
font, or fonts may be stored in read-only memory 
(ROM). Our interface provides only one routine to 
translate from the name the client gives to the oper
ating system-specific name. We allow the developer 
to provide the most appropriate implementation. 

Scheduler Interface The OS interface hides client 
communication and scheduling from DIX. The 
specific policy and details for deciding which client 
should be serviced next is hidden in the OS layer. 
Again, one basic routine is provided in the interface 
to the scheduler. 

Our implementation of the sample server sched
uler was based on the XlO code. The XlO version 
had performed fairly well. Still, we felt that on dif
ferent operating systems or after the sample server 
had been tuned, the XlO scheduler performance 
might not be sufficient. To allow for tailoring, we 
put the scheduling decisions in the OS implemen
tation. Thus, tuning the scheduler policy for a 
specific operating system would not necessitate 
changes to the DIX layer. 

Device-dependent X 
The DDX interface was the most difficult interface 
to design because it is the interface to the painting 
routines. The two goals for the interface were to 
provide enough flexibility for easy adaptation to 
different graphics devices and to provide a fast path 
between DIX and DDX for painting requests. 
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The goal of the DDX implementation was to pro
vide enough code to enable developers to quickly 
port our sample to their hardware. In line with our 
goal to provide as much device-independent code 
as possible, we wrote general-purpose routines, 
called machine-independent (MI) routines, for each 
routine in DDX. These routines make minimal 
assumptions about the underlying graphics device. 
The server is ported to a new device by writing 
painting methods that take advantage of that dev
ice's particular graphics capabilities and by using 
the general-purpose (i.e., software-only) methods 
for operations the device does not support. 

In what follows, the software graphics algo
rithms that we provide in the sample server are 
called device and machine-independent algorithms. 
When a developer ports our server to a device, the 
implementation of these algorithms is called device
dependent. 

DDX and DIX share two main data structures: 
windows and graphics state. A window describes a 
painting surface and the painting that may have 
already been done on it. A graphics state describes 
the painting process. In other words, a window is 
similar to a canvas, and a graphics state is similar to 
a paintbrush. 

The key to our design is to allow each implemen
tation of DDX to select the appropriate painting 
method based on the graphics attributes at runtime. 
The DDX implementation updates the general
purpose methods by marking the graphics state 
dirty whenever an attribute changes. However, 
DDX does not change any of the procedures until 
a graphics request actually occurs. This process is 
called validation. When DIX receives a painting 
request, only one comparison is needed to validate 
that the graphics state is consistent. If it is, the 
correct method can immediately be used. This pro
cess provides a fast path between DIX and DDX. 
If the methods are not set correctly, DIX first calls 
the more time-consuming process of updating the 
methods. 

For example, on Digital's VAXstation 11-GPX 
workstations, lines can be drawn using hardware 
assist. However, the method used to draw thin solid 
lines, i.e. , width equals zero, differs from the 
one used to draw line widths greater than zero. 
On-off dashed lines are also separate routines, 
depending on the line width. The developer must 
write four special-purpose routines for the cases 
the hardware can handle: GPXZerolineSolid, 
GPXZerolineDashed, GPXWideLlneSolid, and 
GPXWidelineDashed. A sample of the code to 
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set the line routine in the graphics state is shown in 
Figure I. 

When DIX receives a line drawing request, part of 
the code in Figure I would become 

if(gc.dirty> 
C • gc. validate) Cgc) ; 

c• gc . line>Cgc , window, data) ; 

Each X protocol graphics request encapsulates 
substantial functionality. Some vendors' devices 
provide hardware assistance for all functions 
specified by the X protocol, whereas others 
provide only a subset or none at all. However, the 
X protocol states that any server implementation 
must be able to paint in all possible styles on 
any drawable. To make compliance easier, we pro
vided machine-independent implementations of 
the painting code to supplement the hardware. 

Because of machine differences, we could 
not provide a completely generic, machine
independent server. As a result, we designed the 
MI routines to assume three bootstrapping pro
cedures. Developers must write these routines to 
port our server to their machines. (Note: A span is 
a row of pixels and a region is a column of spans.) 

• FillSpans fills a region with the texture specified 
in the current graphics state. 

• SetSpans copies the contents of a source region 
to a destination window using the bitwise com
position function from the current graphics 
state. 

• GetSpans reads a region from the current 
contents of a window. 

These bootstrapping procedures must be written 
for each port and turn the bits in the frame buffer 
on or off. Our sample server provides an example 
software implementation of the bootstrap routines 
for a frame buffer with no hardware-assist. 

Fonts 
Another important function of the X server is the 
ability to paint text on the display. A font is stored i,n 
a file and contains the character bitmaps (i.e., the 
glyphs), information about each character (e.g.', 
bounding box or kerning data), and information 
about the overall font (e.g., family or number of 
characters). 

Text must be painted quickly and efficiently. 
Users also want to share fonts with each other, 
for example, through electronic mail. Thus, easy 
exchange requires a portable, ASCII format. How-
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if Cgc.lineWidth =z 0) { 

switch Cgc . lineStyle> { 

case Solid : gc.line GPXZerolineSolid ; 
break; 

case DnOffDash : gc . line GPXZerolineDashed ; 
break; 

else 
switch Cgc.lineStyle) 

case Solid : gc . line = GPXWidelineSolid; 
break; 

case OnDffDash: gc.line = GPXWidelineDashed; 
break; 

Figure 1 Sample Line Drawing Routine 

ever, different graphics devices represent their font 
data in a variety of ways. The VAXstation 11-GPX
workstation stores fonts in off-screen memory and 
expects a specific format defined by the hardware. 
On the other hand, the DECstation 3100 worksta
tion is a main memory frame buffer, and the font 
format is more flexible because it is defined by soft
ware. On the VAXstation 11-GPX workstation, an 
ASCII format would require a translation. ASCII 
formats are not generally compact and would 
require extra performance overhead to be read 
and accessed. 

An alternative to the ASCII format was to use a 
binary font format. Such a format would allow 
quick access, and the ASCII fonts could be converted 
from a general format to a device-specific format. 
However, this alternative would lead to a prolif
eration of on-disk font files, one for each device. 
For example, ULTRIX systems would need three 
separate formats: one for the VAXstation 3540/3520 
workstation, one for the VAXstation 11-GPX and the 
VAXstation 3100 workstations, and one for the 
DECstation 3100 workstation. Therefore, a binary 
format alone was not the solution. 

As a compromise, we provided an ASCII format 
and a binary format. We expect each vendor to use 
one binary format, regardless of operating system 
or machine architecture. Thus, our ULTRIX imple
mentation uses the same binary format on both the 
VAX system-based workstations and the RISC based 
systems. Because the VAXstation 11-GPX servers have 
hardware-assist for font drawing and require a spe-
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cial format, these servers must translate when ini
tializing a font; but the performance impact is small. 

The ASCII format we chose was a modification of 
the Adobe bitmap distribution format. The format 
required a few enhancements for information that 
X required but Adobe had not provided. 

Tailoring Strategies 
Many workstations have their own graphics proces
sors that can substantially increase drawing per
formance. Because of this, developers frequently 
want to implement DDX on top of these graphics 
subsystems. However, many X clients only draw 
small objects or a few objects ar a time. Also, the 
semantics of the graphics primitives might not 
match the definitions in the X protocol. The 
overhead for translating X requests into graphics 
system primitives may dominate the drawing time. 
As a result, the server is slower than a simple main 
memory frame buffer system. 

Because dedicated graphics hardware usually 
performs high-level operations, e.g., line and text 
drawing, a port begins by replacing the drawing 
methods in the graphics state to routines that sup
port the graphics subsystem. However, a graphics 
processor might not support the full generality 
of the X protocol. One typical situation in older 
hardware is text drawing that can only be drawn as 
the bitwise composite function OR, whereas the 
X routines require more sophisticated text-drawing 
capabilities. 

The strategy is to use the hardware capabilities 
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when they match the X protocol specification. If 
the hardware does not match, then the MI routines 
are used. The correct drawing methods, based on 
the current graphics attributes, are selected by the 
graphics state validate routine. 

The following two examples describe what a 
developer might do when porting the sample server 
to hardware that does not comply with the 
Xprotocol. 

Hardwired Fonts The X protocol allows the glyph 
in a single font to vary in width. However, some 
graphics processors can draw only glyphs with a 
fixed width. During validation, the text-painting 
method is changed in the graphics state, depending 
upon whether the font is fixed or variable width. 
Fixed-width fonts go directly to the graphics pro
cessor. Variable-width fonts are drawn in software, 
using routines based upon MI routines. Validation 
works in this example because the font is an 
attribute of the graphics state. 

Hardware Clipping Restrictions The capability to 
clip graphics requests to an irregular region is a 
requirement of the X protocol. However, some 
graphics processors have clipping restrictions. For 
example, the VAXstation II-GPX workstation cannot 
paint some text strings that are clipped on the left. 
Unlike the hardwired font example above, the 
string is not an attribute of the graphics state. At 
validation, the DDX layer cannot tell whether a 
string will be clipped to the left, it only knows the 
font . Therefore, the actual painting routine must 
check if the string is clipped to the left. If so, the 
painting is executed by the graphics processor. 
If any part is clipped, the entire operation is done 
by MI code. This restriction cannot be handled in 
the same manner as font widths because it is impos
sible to know in advance if the drawing request will 
be clipped. 

Sample Server in Retrospect 
As noted earlier, designing software to be used on 
a wide variety of devices requires making many 
compromises. Some of our decisions were good, 
and some could have been better. 

Problem Areas 
Some areas of the sample server implementation 
could have been improved. For example, we 
learned a valuable lesson from using the ULTRIX 
system-based VAX.station workstations as our devel
opment environment. A machine that tolerates 
NULL pointer access will not discover when code 
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is written carelessly. Many errors were found only 
after the system was ported to Sun workstations. 
Other problems were the result of design con
straints over which we had no control. Also, we 
could have improved the tuning we did for small 
memory machines. There is little hope of 
recovering if the server runs out of memory. 

The C Ltmguage The C language caused many 
problems. Although the language is relatively stan
dardized, it has many drawbacks. For our purposes, 
the major deficiency was a lack of support for infor
mation hiding. The language provides no support 
for hiding data structures defined in DDX or OS 

from the DIX layer. 
Another problem with the C language is the 

ambiguous representation of int. The only certain 
fact about int is that short is no longer than long.• 
Given our time constraints and the class of 
machines we planned to support, we had to assume 
that C type long is at least 32 bits and the C type 
short is at least 16, which was a bad assumption. 
Machines with 16-bit words were not addressed 
adequately because the sample assumes that the C 
type int is a 32-bit integer. Therefore, our server 
must be substantially reworked for 16-bit machines. 

We also had C compiler problems. We tried not to 
rely on the implementation of the portable C com
piler that comes with the ULTRIX system because 
not every vendor supports this compiler. 

MI Routines The MI painting methods are useful 
for quick bootstrapping. However, by designing MI 
routines to support generality, we sacrificed per
formance. Writing general-purpose code requires 
care and diligent adherence to the rules for writing 
portable code. The rules include not relying on 
machine instructions, compiler idiosyncrasies, or 
knowledge of the hardware. No assembly language 
was allowed. The MI wide-line code is an example 
of a feature in which performance was severely 
affected by these constraints because we had to use 
floating point arithmetic rather than write a 
machine-independent, fixed-point math package. 

The Best of the Server 
The biggest issue raised by our design was the 
potential performance degradation that could 
result from the inclusion of so much device
independent software. Was the cost of a common 
code base and device independence too great? 
We estimated the impact to be 5 percent for the 
simplest request and even less for more com-
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plicated, time-consuming rendering requests. We 
felt this performance impact was relatively small 
and worth the time saved in future software 
development and maintenance. 

Our server can be ported to a new device in a few 
days, simply by writing the bootstrapping routines. 
An undergraduate at MIT ported the server to a 
UNIX system-based IBM PC/RT in three days. 

To test our server ideas, we chose to implement 
our sample to run on a monochrome VAXstation 
2000 workstation, where the frame buffer is treated 
as main memory. Our DDX implementation 
includes the MI routines. Also, we included some 
examples of less general, device-specific, faster 
procedures that can be plugged in, such as thin 
lines, terminal emulator text, and bitblt. These less 
general routines are called monochrome frame 
buffers (MFB) and are the device-specific routines 
that most implementers will rewrite for their 
graphics hardware. 

As shown in Figure 2, 45 percent of the server's 
code resides in DIX. If MI routines are included as 
part of DIX, then 67 percent of the code is device
independent. Therefore, we believe we met our 
original goal to provide as much device 
independent code as possible. We provided a fast 
path between DDX and DIX. Approximately 25 lines 
of C code-90 percent of which is error-checking 
on the request packet-exist between the points at 
which DIX receives a request and then sends it on to 
DDX. 

The DDX interface is moderately large, i.e., 102 
routines, but contains well-defined, completely 
separate functions. The ability to customize the 
DDX implementation provides flexibility. Although 
we cannot predict what display capabilities will 
be available in the future, we did provide the ability 
to easily patch in unforeseen functions as they 
develop. 

Of the 102 routines in the interface, 29 are paint
ing methods in the graphics state. Another 8 are 
routines to update and validate the graphics state. 
In our implementation, some of the 29 painting 
methods are broken down further into special cases 
that are selected at validation time. For example, the 
line-painting method has 5 routines, but the arc
painting method has only 1 MI routine. 

Our sample server's speed had to be at least as 
good as the XlO implementation to entice XlO users 
to switch to Xll. Overall, our implementation 
running on the VAXstation 2000 runs about 25 per
cent faster than the XlO implementation on the 
same machine. 
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OPERATING 
SYSTEM 
CODE (7%) 

MONOCHROME FRAME 
BUFFER (26%) 

DEVICE-INDEPENDENT 
CODE (45%) 

MACHINE-INDEPENDENT 
ROUTINES (22%) 

Figure 2 Implementation Sizes 

Writing software that is portable to a wide range 
of operating systems, compilers, and graphics 
devices requires many design trade-offs. Our 
implementation of the Xll protocol is tailorable 
to other systems, without a loss of performance 
or generality. 
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Michael D. Collins 

Development of the XU/ 
Toolkit 

The XU/ toolkit is a set of run-time routines and application development tools based 
upon the X Window System version 11 (XJJ). A programmer can use these tools to 
create application programs that implement the user interface techniques and 
appearance guidelines used by a DECwindows system. The toolkit was developed in 
parallel with the X toolkit intrinsics and is layered on top of the intrinsics. Within the 
architecture, no layer is hidden from another layer. Programmers can mix calls to 
all layers. BeCtluse of the toolkit's maturity, performance, and adherence to stan
dards in its design, XU/ was chosen as the base programming interface for the Open 
Software Foundation's Motif toolkit. 

The XUI toolkit consists of a set of user interface 
objects, called widgets and gadgets. It is layered on 
top of the MIT X Window System toolkit intrinsics, 
which provides routines for manipulating widgets. 
The XUI toolkit also contains a number of utility 
routines, including compound string manipulation, 
cut and paste, and a resource manager used in con
junction with the user interface language {UIL).1'

2 

Figure 1 illustrates the toolkit and its relationship 
to the other layers of the OECwindows architecture. 
As stated, the XUI toolkit is layered upon the 
X toolkit intrinsics which, in tum, is layered upon 
Xlib. The architectural design of these layers is such 
that no layer masks the other layers. An application 
can mix and match calls to all three libraries. For 
example, Xlib provides the basic graphic primitives 
to draw items, such as lines or arcs. Therefore, 
neither the intrinsics nor toolkit libraries attempts 
to provide that functionality. If the application 
needs to perform low-level graphics drawing, it 
uses Xlib. 

Genesis of the Toolkit 
In 1985, our group perceived the need for a 
graphical user interface toolkit for Digital's work
stations. At that time, we were part of the Software 
Development Technologies (SDT) organization and 
were developing layered software and run-time 
libraries for the VMS operating system. Initially, 
our goal was to build a toolkit for use within 
SOT. However, when we learned that the VMS 
Engineering Group was in the early stages of design
ing a toolkit for the VAX Workstation Software 
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(VWS), which was the windowing system on the 
VMS system, we began working with them. At the 
same time, engineers from the ULTRIX Engineering 
Group were working with MIT to design and 
implement the X Window System. In late 1986, 
Digital evaluated the VMS and X windowing sys
tems and selected the MIT X 11 Window System as 
its strategic windowing system. Once this decision 
was made, the VMS, ULTRIX, and SOT groups all 
began working together towards a common goal. 

The goal was twofold: work with MIT to define a 
standard set of X toolkit intrinsics, and define for 
Digital a widget set layered on top of these stan
dard intrinsics. Separating the intrinsic or generic 
support facilities from the actual widget set being 
implemented meant that Digital's user interface 
policy could be embedded only in the widgets, 
which increased the probability that the intrinsics 
would become standardized. 

APPLICATIONS 

XUI TOOLKIT 

X TOOLKIT INTRINSICS 

XLIB 

X PROTOCOL 

X SERVER 

Figure 1 DEC windows Architecture 
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Therefore, we did not define the intrinsics to 
support any particular user interface style. The 
intrinsics try to support any possible X system
based user interface style, and the widget set 
implements a particular user interface style. 

Design Goals 
As the primary programming interface to 
DECwindows applications, the XUI toolkit had 
many design goals: 

• Programming ease for application developers to 
support a windowing environment 

• Conformance to the XUI Style Guide 

• Conversion ease to a foreign language for an 
application built using the toolkit 

• Performance suitability for a direct manipulation 
user interface 

• Portability to all Digital development platforms 

• Increased application interoperability between 
the VMS and ULTRIX operating systems 

• Optimization of the network transparency pro
vided by the underlying windowing system 

Programming Ease 
Applications developers first had to learn to design 
and program a direct manipulation user interface 
before building a DECwindows application. To 
make this learning easier, the XUI Style Guide 
was developed as an aid to designing user inter
faces.3 A number of decisions were made during 
the design of the intrinsics and the toolkit that 
aided programming. 

Object-oriented Method Early in the design of the 
X toolkit intrinsics, we decided to use an object
oriented approach for programming simplicity and 
more flexibility in sharing data and functionality. 
The basic object of the intrinsics is a widget, which 
is a combination of an X window and particular 
input and output semantics. Examples of widgets 
are menus, push-buttons, and scroll bars. 

Object-oriented programming provides a level of 
data abstraction that helps manage the complexity 
of direct manipulation user interfaces. Widgets can 
be manipulated generically, regardless of the type of 
widget. For example, any widget can be destroyed 
by calling the intrinsics routine XtDestroyWidget. 
Therefore, the number of programming calls 
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that an application developer must remember is 
reduced. Also, it is easier to write tools that do not 
need a specific knowledge of any widget. 

Object-oriented programming uses the concept 
of classes and inheritance. A class is a type of 
widget. All widgets of a particular class share a 
certain amount of commonality. The widgets have 
the same set of resources that can be set to modify 
appearance and function. Widgets also share many 
methods or procedures. For example, the same 
routine is used to draw the contents of any label 
widget. By using classes, the toolkit can define the 
attributes that are common to a widget type once in 
the application, rather than store attributes in every 
widget in a class (i.e., a widget instance). Thus, 
classes reduce the amount of memory needed by 
widget instances. Widget classes in the XUI toolkit 
are arranged in a class hierarchy as illustrated in 
Figure 2. 

In this hierarchy, a widget class can inherit func
tionality from its superclasses. As shown in Fig
ure 2, the push-button widget class is a subclass of 
the label widget class. As such, it can inherit all of 
the label widget's functionality to perform layout, 
and display pixmaps and strings. The functionality 
need only be rewritten if the push-button needs to 
operate _in a manner different from the label. Inheri
tance makes it easier for the widget developer to 
create new widget classes and add functionality to 
the existing classes. 

The object orientation of the intrinsics and the 
toolkit are implemented using programming con
ventions of the C programming language rather 
than directly in an object-oriented language, such as 
C++. When we made this decision, C was already 
the implementation language for all X Window 
System base components and neither C++ nor any 
other object-oriented programming language was 
widely available or used. Relying on object-oriented 
conventions rather than language features did, how
ever, make it more awkward to create a new widget 
class than would have been the case with C++. 

Separation of Form and Function A major goal in 
designing any user interface programming software 
package is the separation of form, i.e., user interface 
and function. The advantages of this separation are 

• The user interface can be designed separately 
from the application functions. 

• The user interface can be tested and iteratively 
modified based upon user feedback, without 
affecting the rest of the application. 
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• An application can support more than one user 
interface that is using the same application code. 
This feature is especially useful for changing the 
language and other aspects of an application for 
a user in another culture. Multiple interfaces can 
also be used to tailor a single application to sup
port different classes of users. 

The OECwindows user interface language (UIL) 
and resource manager (ORM) are the tools which 
allow form and function to be separated. Ull is 
a specification language that describes the initial 
state of a user interface, i.e., it describes the objects 
used in the interface and the application callbacks 
to be invoked when the interface changes state.4 

ORM provides the application with a run-time 
library for accessing the compiled Ull descriptions. 
ORM, therefore, builds the run-time structures nec
essary to actually create the user interface during 
execution of the application. 

Conformance to the XU/ Style The toolkit had to 
support XUI style at a detail level in both look and 
feel. Supporting the look primarily meant setting 
default values for the many graphic aspects of a 
widget, such as the border width of a push-button. 
Supporting the feel meant establishing tables that 
translate user events, such as button press, into 
a widget action, such as highlight. Defining the 
widgets that compose the toolkit was based on 
partitioning the XUI style look and feel demands 
into logical pieces and on predicting application 
needs. 

Although a widget would have many customiz
able attributes, all of which could be controlled by 
the application, we wanted to make it easy for an 
application developer to design and implement a 
OECwindows application that conformed to the 
XUI style. A widget should, by default, select 
conforming values for any attribute the application 
could have but did not set. Therefore, we imple
mented a default look and feel that matched the 
precise user interactions defined in the style guide 
and the precise graphic design that was defined 
for XUI by our graphic artists. However, we also 
made the widgets as flexible as possible. Although 
widgets defaulted to the XUI style, the custom
ization methods inherent in the intrinsics, e.g. , 
resource and translation management, could be 
used to customize a widget to another style. This 
design philosophy helped give applications a con
sistent look and feel but did not constrain user 
interface innovation. 
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Further, we decided to structure the set of 
widgets based upon the object's function as seen by 
the application's developer rather than as seen 
by the application's user. An example is the use 
of buttons in menus and dialog boxes. Both 
menus and dialog boxes contain buttons that 
directly invoke application actions (i.e., push
buttons). However, the graphical appearance and 
user invocation syntax of the buttons is different 
depending upon whether the button is placed 
within a menu or a dialog box. The toolkit, 
however, presents only one push-button class 
to the application programmer. The buttons are 
dynamically configured based upon the environ
ment in which they are placed. Thus, an application 
developer can change the environment of a widget 
without changing any other code. 

Conformance to Standards The OECwindows 
program was intended to be based on MIT's 
X Window System standard. Therefore, the tool
kit had to be based upon the standard X toolkit 
intrinsics. It was a challenge to do so because the 
toolkit and the intrinsics were designed, imple
mented, and standardized in parallel. 

The standard language bindings for the intrinsics 
were designed for the C language. However, 
we were mindful of the requirements of other 
languages and attempted not to prohibit other 
language bindings from being possible. It is a well
known technology to provide multiple language 
bindings, in the form of header file definitions 
and entry point names, for a single set of run-time 
routines. Digital used this approach in providing 
VAX procedure calling standard bindings for Xlib, 
the intrinsics, and the toolkit. 

A special problem arose in defining the bindings 
for the intrinsics because the intrinsics would call 
back into the application code to provide noti
fication of a user action such as a button press. The 
intrinsics, however, has no knowledge of the 
language used in the called procedure. Therefore, 
we had to restrict the parameter passing mech
anism in callbacks to the set that could be under
stood by most languages. Parameters to callbacks 
are passed by a reference mechanism as opposed to 
a value mechanism that is commonly used when 
calling C procedures. 

Performance 
From the beginning of the OECwindows program 
development, a team of Digital software usability 
engineers worked closely with the OECwindows 
developers to design the XUI style and define user 
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interaction performance goals for the DECwindows 
interface. The DECwindows environment uses a 
direct manipulation user interface model that 
requires real-time responses to user actions. The 
success of direct manipulation is dependent upon 
creating the illusion that objects are being phys
ically manipulated. For example, if the interface 
is sufficiently slow, the user fails to perceive a 
cause-and-effect relationship between a button 
press and a push-button highlighting. Once such a 
relationship is lost, much of the interface illusion 
breaks down. 

To test the interface's performance, the software 
usability engineers defined a number of scenarios 
that consisted of test scripts and covered six major 
functional areas: 

• Menu manipulation 

• Dialog box manipulation 

• Window manager operations 

• Text operations 

• Dragging graphics objects within a window 

• Application start-up and shutdown 

Each test was described in enough detail to sup
port designing a simple DECwindows application 
that would measure the system performance. Our 
goal was to use a small number of tests to cover the 
most critical areas of user interface performance. 
For each test, performance numbers were given in 
terms of worst case, planned level, best case, and 
competitive level. The worst case defined the worst 
acceptable level. The planned level represented 
success. Once the planned level was attained for 
an attribute, further resources would be focused on 
those attributes that did not yet meet the planned 
level. The best case was a state-of-the-art limit for 
the test. The competitive level was the average 
performance seen on competitive systems. 

Obviously, the design of the intrinsics and the 
toolkit played a major role in our ability to meet 
these goals. The problems we encountered are 
included in the performance discussion in the Initial 
Implementation section of this paper. 

Internationalization 
UIL and ORM are major components of the inter
nationalization of DECwindows applications. The 
majority of an application's culture-specific infor
mation can be separated from the executable image 
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by putting text strings and other culturally variant 
data into UIL files rather than the application code. 
Because an application is bound to a UIL description 
at run-time as opposed to compilation or link time, 
an application can be moved from one country to 
another without a different application executable 
image. 

Compound strings are another major internation
alization component. The initial design of the tool
kit was based upon ASCII null-terminated strings, 
which acted as the data representation for text 
strings passed between the application and the 
widgets. However, based on input from engineering 
groups around the world, we decided that ASCII was 
not sufficient. A simple example demonstrates why 
this is true. The Digital corporate name in Japan was 
Nihon Digital in English, in Japanese it is B * 
Digital. To display this name as the title of 
a window, the application must pass a widget a 
single string with characters in Japanese Kanji and 
Latin fonts. 

Compound strings allow a single text object to be 
composed of multiple segments. Each segment has 
its own character set and characters. Thus, Nihon 
Digital is a compound string with two segments. 
The first segment is in the Japanese Kanji character 
set, with the characters B *, and the second seg
ment is in a Latin character set, with the characters 
Digital. 

We implemented a compound string library that 
provided applications with basic string manipu
lation facilities. The toolkit was revised to enable 
application-widget interfaces to use compound 
strings rather than ASCII strings. As the 
DECwindows program and the Open Software 
Foundation's (OSF) Motif evolved, the actual data 
representation also evolved. Currently, both sys
tems use the International Standards Organaation's 
(ISO) Abstract Syntax Notation (ASN.l) encoding 
that is compatible with Digital's document inter
change syntax, DDIS.5 

The toolkit also provides a mechanism that 
dynamically selects the appropriate UIL description 
based on a run-time determination of the user's 
cultural preference. This mechanism further capi
talizes on the run-time binding of UIL descriptions 
and application code. The mechanism was designed 
as a logical extension to the X/Open portability 
guide native language switching mechanism (XPG 
NLS).6 The XPG NLS is a de facto standard supported 
by OSF that is primarily targeted at character-cell 
environments. We extended the XPG NLS model to 
encompass run-time selection of cultural databases 
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that affect such things as UIL descriptions and HELP 
databases. 

Resource and schedule pressures precluded 
changing the text widget from ASCII to compound 
strings in conjunction with the rest of the toolkit. 
As a result, we had to build a non-ASCII text widget 
for the Asian and Hebrew markets. The second 
major release of the toolkit included a compound 
string text widget and an ASCII text widget. 

Portability and Interoperability 
A goal of the entire DECwindows program was to 
define an application programming environment 
that would be the same for the VMS and ULTRIX 
operating systems. If the VMS and ULTRIX engineers 
worked together to design and implement the base 
software, expenses would be reduced. Therefore, 
the toolkit and the intrinsics were written simul
taneously in the C language for the VMS and ULTRIX 
systems. 

We wanted all DECwindows components to 
capitalize on the network transparency provided 
by the underlying windowing system. That is, the 
DECwindows components should interoperate 
with other systems that supported the X protocol 
in a heterogeneous networked environment. 
Therefore, we were careful not to build specific 
DECwindows features into the toolkit. 

Initial Implementation 
The initial development of the toolkit presented 
the software engineers with a number of challenges. 
The major challenge was to develop several differ
ent layers · of the architecture at the same time. 
Further, none of the layers had proven suitable 
for their designed task. Therefore, it was difficult 
to predict the performance characteristics of the 
layers. 

To reduce the inherent risks of this situation, 
we established a development plan that allowed 
major functionality to become available for serious 
application development early in the product devel
opment cycle. We then used the applications to 
determine whether the goals of the DECwindows 
program, in general, and the toolkit, in particular, 
were being met. 

Intrinsics and Toolkit Codevelopment 
Our plan to design and implement the toolkit and 
the intrinsics simultaneously was further com
plicated by the fact that the layers below the intrin
sics, i.e., Xlib and the X protocol, also were being 
changed. Some of the changes were driven by the 
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needs of the toolkit and intrinsics. Others were due 
to the lack of maturity of the XU protocol. Because 
of these changes, we had to respond to a number of 
releases of the lower layers of the architecture. 

The intrinsics design was changed several times 
during the first year of development as a result of 
two major factors. First, the problems and defi
ciencies of the intrinsics and the toolkit became 
apparent when we began to write serious appli
cations. Second, other companies became more 
involved in the definition of the intrinsics standard. 
Therefore, we had to work with a formal process of 
proposing and reviewing changes to the standard 
and negotiating the inclusion of those changes with 
engineers from MIT and other companies. As each 
of these changes then became standardized, each 
would, in turn, cause changes in widget code, 
which caused changes in application code. 

Each time a significant change in a layer of the 
architecture occurred, all of the layers above it had 
to change in a coordinated manner to provide a 
consistent development environment. Much time 
was spent in planning the management of these 
changes. Also, the changes necessitated rewriting 
code that had already been completed. We had not 
accounted for the time taken by these unanticipated 
changes in our original development plans. 

Distributed Engineering/or 
Multiple Platforms 
The development of the toolkit involved Digital 
engineering teams worldwide. The intrinsics were 
developed in California, primarily on ULTRIX 
system-based workstations, by a team of engineers 
familiar with the ULTRIX system. The toolkit was 
developed in New Hampshire, primarily on VMS 
system-based workstations, by a team of engineers 
familiar with the VMS system. As a result, some 
problems occurred at software integration points. 
However, the codevelopment effort ensured that 
the final software provided the same programming 
interface, with the same quality, on multiple operat
ing system platforms. 

Performance 
Performance was the most serious problem encoun
tered during early implementation. The first inter
nal field test of the DECwindows software provided 
fairly complete functionality for the toolkit and the 
layers below it. However, the DECwindows devel
opers, including the toolkit team, had devoted 
nearly all their efforts toward developing the func
tionality and postponed measuring, examining, and 
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improving performance. Now that we had an exist
ing collection of applications, serious work could 
begin on performance. 

In the initial measurements of the system's per
formance against the goals described earlier, even 
the worst-case goal was missed in many areas. Early 
investigation also indicated that the performance 
problem did not seem to be localized. That is, the 
problems could not be isolated to a single compo
nent in the architecture. With this information, a 
task force with members from most DECwindows 
development groups was convened to determine 
where the performance problems were and what 
could be done about them. 

We quickly learned that we could not determine 
where the performance problems were as easily 
as we could have in the typical engineering 
environment to which we were accustomed. 
Our experience was in evaluating isolated layered 
applications, such as compilers, and individual 
primitive operations, such as system calls. How
ever, the user interface actions that were being 
measured involved the issuance of possibly hun
dreds of X primitives, and the interaction of up to 
three separate processes (i.e., the application, the 
X server, and the window manager). Although the 
usual evaluation tools were of some help, additional 
tools were needed. 

Existing tools, such as the VAX performance and 
coverage analyzer on the VMS system, were used to 
locate performance bottlenecks. These tools helped 
but did not provide the level of improvements that 
were necessary. A number of internal tools to aid in 
X performance analysis were used to supplement 
the traditional tools. These X performance tools 
included: 

• An instrumented X server that counted the 
resources an application requested, such as 
graphic contexts, windows, and pixmaps 

• A set of tests that measured the performance of 
Xlib primitive calls 

• A protocol monitor that recorded the inter
actions between an application and the X server 

• A tool that recorded the dynamic memory 
allocation of an application 

By using these tools on the applications, a large 
amount of data was collected and evaluated. Some 
of the more important observations were: 
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• Applications were using more server resources 
than anticipated. The most common overuse 
was windows because each user interface object 
had its own X window. However, application use 
of other resources, such as graphic contexts, 
pixmaps, and fonts was also at a higher level than 
anticipated. 

• Applications were using too much memory. The 
object-oriented design of the toolkit and the XUI 
Style Guide encouraged applications to use hun
dreds or thousands of widgets, and each widget 
was then using about 600 bytes of memory. A 
number of X toolkit intrinsics features, such as 
resource management and translation manage
ment, also used a large amount of memory. 

• Application start-up was slow. Loading the 
large programming libraries, connecting to the 
X server, and creating widgets were some of 
the principal functions that slowed application 
start-up. 

• The Digital Xll server design was optimized for 
graphic primitives, e.g., line and text drawing. 
The performance of these operations was very 
good. However, in optimizing the graphics 
aspect, the design had traded performance in 
windowing operations, for example, window 
creation and mapping. The analysis showed that 
windowing operation performance was impor
tant throughout much of the direct manipulation 
style user interface. 

• Many context switches existed between the 
server and the application during time-critical 
operations. Even simple applications required 
the coordinated efforts of the application, a 
window manager, and a server. Careful analysis 
and planning were needed to minimize the 
communication traffic and switching among the 
processes. 

• The basic round-trip time between the server 
and the application using the DECnet transport 
was higher than anticipated. This factor 
increased the need to reduce the amount of com
munication traffic between the application and 
the server. 

Solutions were designed and tasks defined to help 
fix the problems. Steps were taken in all layers of 
the architecture to reduce CPU utilization, memory 
utilization, and communication traffic. The two 
most radical design changes were the design and 
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implementation of both a shared memory transport 
and gadgets. 

Shared memory transports were implemented 
by the server groups. The transports significantly 
lowered the basic round-trip communication time 
between the application and the server. The toolkit 
group led the design of gadgets. 

Gadgets Given the results of the performance 
analysis, it became clear that the performance goals 
would never be met if every user interface object 
required its own X window. We had to significantly 
reduce the number of windows without substan
tially redesigning the application programming 
interfaces of the intrinsics or toolkit. The perfor
mance data showed that at least 50 percent of the 
widgets created by a typical application consisted 
of labels, push-buttons, and toggle buttons used in 
menus and dialog boxes. If we could eliminate the 
windows for these objects, we would significantly 
reduce the number of X windows. The intrinsics 
developers proposed a solution that was not a 
radical departure from the existing widget model, 
could be implemented quickly in the intrinsics, and 
could be taken advantage of easily in applications. 
The answer was gadgets. 

Gadgets are windowless widgets. Prior to 
gadgets, the lowest level class in the intrinsics 
was the core class, which contained all the fields 
necessary to support a windowed widget. Because 
the toolkit was object-oriented, the intrinsics 
developers suggested that we break the core class 
into smaller subclasses that could support generic 
objects, as well as windowless user interface 
objects. We defined three classes above the core 
class: 

• The object class contains the base information 
required to define any type of object in the 
intrinsics object mechanism, which eliminates 
the user interface objects restriction. 

• The rectangle object class contains the infor
mation necessary to define a rectangular user 
interface object, and is used as the superclass for 
gadgets. 

• The window object class contains the remaining 
fields from the core class, which are the fields 
necessary for a windowed user interface object. 

As a result of these classes, gadgets for labels, 
push buttons, toggle buttons, and separators were 
implemented in the toolkit and used by the 
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applications. The XUI toolkit gadget class hierarchy 
is shown in Figure 3. 

LABEL GADGET 

PULL DOWN MENU 
ENTRY GADGET 

PUSH BUTTON 
GADGET 

TOGGLE BUTTON 
GADGET 

SEPARATOR 
GADGET 

Figure 3 XU/ Toolkit Gadget Class Hierarchy 

Gadgets reduced the number of X windows, 
reduced the use of application memory, and 
reduced application start-up time. Although we 
provided gadget support in the sample X toolkit 
intrinsics release 3 implementation, the capability 
was not documented in the specification because 
of time constraints. Gadget support is included in 
the X toolkit intrinsics release 4 specification, the 
current X Window System release. 

Retrospective 
Much of the design and implementation of the XUI 

toolkit was accurate, and some of it could have been 
improved. 

What Worked Well 
Some of the things that worked exceptionally well 
during the toolkit's design were 

• The VAX notes conferencing system provided 
a high-speed communication channel between 
the toolkit developers and users. It proved 
invaluable in facilitating the development and 
usage of the toolkit. 
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• Developing the toolkit simultaneously on the 
VMS and ULTRIX systems was easier than antici
pated. We were able to limit ourselves to the use 
of standard C language and X Window System 
features. The amount of operating system depen
dent code in the toolkit is very small. 

• Distributed development worked fairly well. 
At times there might have been too many 
developers involved, but published schedules 
and extensive use of electronic mail allowed 
us to integrate pieces being simultaneously 
developed in Israel, France, New Hampshire, 
California, and Japan. We believe the history of 
the DECwindows program shows that it is 
possible to do large-scale distributed software 
development. 

Improvement Areas 
The text widget was designed with more function
ality than was required for most usage. If we had 
recognized earlier that not as much design intricacy 
was needed, we could have devoted more time and 
resources to addressing the issue of a compound 
string text widget. 

The intrinsics were designed around a single 
thread of execution. There is considerable pressure 
from applications that are multithreaded to allow 
use of the toolkit from multiple simultaneous 
threads of execution. Currently, this is not possible. 

Documentation was started early and proved 
invaluable, but we did not have sufficient resources 
to produce less formal, "how-to" manuals. The 
scope and scale of the DECwindows programming 
environment is quite large. Some basic but com
prehensive manuals on how to get started would 
have complemented the documentation we did 
produce and made programming much easier for 
application developers. 

Tbe XU/ Toolkit as tbe Basts for 
OSFIMOTIF 
Early in the DECwindows program development, 
Digital and several other companies founded the 
Open Software Foundation (OSF}. Towards the end 
of DECwindows version I development, OSF issued 
a request for technology to become OSF's User 
Environment Component. In response, Digital 
submitted the XUI Style Guide, XUI toolkit, and 
window manager as a package. Altogether, OSF 
received a total of 38 submissions. 
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OSF chose the XUI toolkit as the base application 
programming interface and implementation for the 
Motif toolkit? Because of the OSF's members desire 
for Presentation Manager compatibility, the XUI 
toolkit was modified to use Hewlett-Packard's 
three-dimensional appearance and be compatible 
with Microsoft's Presentation Manager behavior. 

Digital is currently transitioning from the XUI 
toolkit to the Motif toolkit for the DECwindows 
program. Although the transition for an application 
requires some changes, most of the XUI toolkit 
programming concepts remain. The group that 
designed and implemented the XUI toolkit is now 
focused on delivering the Digital implementation 
of the OSF/Motif toolkit. We are working closely 
with OSF on the evolution of the toolkit through 
specification and design reviews. We are also work
ing with other Digital groups to make the transition 
as smooth as possible. 

Tbe Future and Standards 
In summary, the XUI toolkit provided a success
ful user interface programming toolkit for the 
DECwindows program and provided the basis for 
OSF's graphical user interface toolkit, OSF/Motif. 
For the future, the definition of the OSF/Motif tool
kit belongs to OSF and its member companies, 
which is a major benefit for application developers. 
The user interface component of an application can 
now be ported to many different systems. End users 
also benefit because a consistent user interface will 
exist on many different systems. 

We will remain heavily involved in the evolution 
of the Motif toolkit to help ensure that it maintains 
the quality required of it as the user interface toolkit 
for the DECwindows programming environment. 
However, now that the toolkit is an OSF standard 
rather than a Digital proprietary interface, we are 
faced with some new challenges. 

We can no longer change (or not change) the 
Motif toolkit to fit our proprietary needs. If we 
want to make changes, we must propose the 
changes through the OSF process. Also, we must 
accept changes made by OSF, even if those changes 
create rather than solve problems for us. 

For example, the XUI toolkit, as with all other 
VMS run-time libraries, is packaged as a shareable 
image. One of the goals of VMS shareable images is 
binary-upward compatibility. This compatibility 
allows the VMS system to ship new versions of a 
shareable image, which may fix bugs or improve 
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performance, without requiring the application to 
be relinked. However, with OSF-defined changes, 
we cannot ensure binary-upward compatibility 
between releases of Motif. At present, we are work
ing on how to solve these problems. 
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Stephen R. Greenwood I 

The DECwindows User 
Interface Language 

A key theme of the DECwindows program is to improve productivity for both the 
end user and the developer of an application. End user productivity can improve 
through the use of a windowing environment; the developers' productivity is 
improved by the the availability of a high-level set of constructs for building a win
dowing application. The user interface language (UIL) plays an important role in 
enhancing productivity. UIL significantly reduces the cost to build and maintain 
DECwindows applications by providing a specification language for describing an 
application interface. This paper analyzes the motivation for developing UJL, its key 
features, several interesting implementation issues, and possible future directions 
for the language and the product. 

The DECwindows user interface language (UIL) 
aids application developers in managing the com
plexity of DECwindows interfaces. This paper 
investigates UIL 's relationship to the other 
DECwindows program components and how UIL 
deals with managing interface complexity. Speci
fically, the paper discusses the history ofUIL, its key 
concepts, major implementation issues, and the 
future of the language. 

History of the User Interface 
Language 
January 1988 was the target date for the first inter
nal release of the DECwindows program. To meet 
that deadline, much of the high-level strategy for 
the DECwindows program had been set by August 
1987. Digital was making a major move into the 
workstation market with products built around the 
X windows protocol developed at MIT.1 Both the 
ULTRIX and VMS system development groups were 
producing servers and host libraries that conformed 
to the X standard. The object-oriented XUI toolkit 
was under development. It would implement the 
standard set of objects and operations ( often called 
the "look and feel" or style) of the DECwindows 
program. The toolkit would layer on top of the 
X windows platform being developed on both 
operating systems. 

To be viable in the marketplace, the DECwindows 
program had to be more than a toolkit based on the 
X Window System. Applications had to illustrate 
the DECwindows style, capture the growing seg-
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ment of the market that had no interest in typing a 
command line, and show Digital's commitment to 
the workstation market through the DECwindows 
program. 

The XUI toolkit was, and still is, the key to 
leveraging applications. It presents DECwindows 
concepts at a high level and still allows substantial 
flexibility in controlling those concepts. Widgets 
are the high-level abstractions that map one-to-one 
with the graphic components of an interface. If a 
dialog box that contains a set of toggle buttons is 
needed, a dialog box widget that contains a set of 
toggle button widgets is created. Widgets provide 
flexibility through their attributes. Each attribute 
controls some visual aspect of the widget's appear
ance on the screen. By giving most attributes a 
default setting that conforms to the DECwindows 
style, applications can look similar but have the 
power to be different. 

A DECwindows interface can be created by 
invoking procedures in the XUI toolkit. These 
procedures create widgets, specify the widgets' 
attributes, specify the actions to be invoked when 
the widgets are manipulated, and control when 
widgets should be displayed or hidden from view. 
Attributes and their corresponding values are 
passed to a creation routine, using a variable length 
array. If one widget will contain other widgets, as 
in the case of a dialog box, the container is created 
first. Each of the widgets contained within the 
dialog box is then created by designating the dialog 
box as its parent. Once the entire structure has been 
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constructed, another call is made to an XUI toolkit 
routine to display the dialog box and its contents on 
the screen. 

Although the toolkit made the process of 
mapping Widgets to screen artifacts conceptually 
simple, the coordination and sheer number of arti
facts made the process complex. An application's 
attributes, actions, and contained widgets, which 
could number in the hundreds, might require 
several thousand lines of code to construct. To see 
the structure of the application interface within that 
code required discipline. 

UIL was the tool developed to manage the 
complexity of the interface. UIL preserves the 
simple conceptual model established by the tool
kit. Through the UIL specification language, an 
application developer states the widgets that com
pose the interface, their attributes, and the relation
ships among them. Missing from a UIL-specified 
interface are the thousands of lines of code to 
construct the interface. 

Range of Solutions 
Several approaches to the problem of managing a 
large number of windows exist in the industry. 

One approach is Microsoft's Resource Script File, 
which contains ASCII descriptions of user interface 
components.2 The resource script file gives textual 
descriptions of fonts and windows. For dialog 
boxes, the attributes of the box and the objects that 
are within the box are specified. An application 
uses the information in the script file to create its 
interface. The application controls the degree to 
which the application interface is described by a 
script file versus being described in the code of the 
application. 

Another approach is to build interfaces through 
direct manipulation.3 With this approach, the inter
face designer uses a workstation to construct the 
interface as it will appear to the user of the 
application. The interface is built by selecting the 
appropriate components from a palette or list and 
placing them on the screen. For example, if the 
designer chooses a dialog box, a default dialog box 
is displayed on the screen. The designer can then 
manipulate the borders of the box until it is the 
correct size. Toggle buttons and list boxes can be 
selected from a palette and placed wherever desired 
within the dialog box. Each graphical artifact has 
a list of attributes that can be displayed and mod
ified by the designer. The effects of the changes 
to the attributes are displayed immediately. The 
Macintosh resource editor and SuperCard are 
examples of this approach~·5 
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Graphical solutions are the best method for a 
designer to see how each window will look. The 
designer receives an immediate picture of the place
ment, size, and visual characteristics of each 
graphic component. To build such a system, a 
working toolkit with dialog boxes, list boxes, 
labels, and toggles is necessary. In fact, the toolkit 
had best be quite mature. The XUI toolkit was not 
ready in August 1987. Therefore, despite the many 
advantages of graphical solutions, a specification 
language was the correct solution to support inter
face building in the DECwindows program at that 
time. The language could be constructed and ready 
to leverage building DECwindows interfaces by the 
target date of}anuary 1988. 

UIL Constructs 
The user interface language (UIL) is a simple, text
based language. Its objective is to specify the 

• Graphical objects in a DECwindows interface 

• Attributes of each graphical object 

• Actions each graphical object can trigger 

• Relationships among these graphical objects 

The code fragment in Figure 1 illustrates the 
specification of two widgets using UIL.6 Widgets 
are the most common graphical objects in the XUI 
toolkit. (Note: The XUI toolkit supports both 
widgets and gadgets, the latter being a restrictive 
form of widget. UIL defines objects that may be 
either widgets or gadgets. A more detailed explana
tion is provided in the Support for Defining UIL 
Objects section of this paper.) 

The first declaration in Figure 1 defines a popup 
dialog box, called OPEN_LIBRARY This declaration 
contains two subparts that specify the attributes for 
the dialog box and also the other widgets that the 
dialog box contains. The attributes listed are 
specific to the popup_dialog_box widget. Each 
attribute also has a type, such as integer, string, 
Boolean, or another object. All of the attributes of a 
popup_dialog_box widget need not be listed. Each 
attribute has a default value that is used when a 
value is not specified for that attribute. 

The OPEN_LIBRARY widget contains six other 
objects listed in its controls clause, which specifies 
the objects contained within the object being 
defined. Both the XUI toolkit and the X Window 
System use a tree to describe the relationships 
between objects, i.e., widgets in the case of the 
toolkit, and windows in the case of the X Window 
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! + + 

l Dialog box for determining the library to open 
! --
object OPEN_LIBRARY 
{ arguments 

{ title 

popup_d i alog_box widget 

"Open Library" ; 
DWHC _MODELESS ; 
TRUE ; 

style 
default_po5 i tion 
defaul Lbut ton 
take_focu5 
height 

push_button OK _PUSHBUTTON ; 
TRUE ; 

width 
} ; 

control5 
5imple_text 
label 
li5Lbox 
toggle_button 
pu5h_button 
pu5h_button 

} ; 
} ; 

z 400 ; 
350 ; 

LIBRARY_ TEXT ; 
LIBRARY _LABEL ; 
LIBRARY _LI ST ; 
ADD_TO_LIST ; 
OK_PUSHBUTTON ; 
DISMISS_PUSHBUTTON ; 

object OK_PUSHBUTTON : pu5h_button widget 
arguments 
{ label_label "OK" ; 

x 

y 
} ; 

100 ; 
s 300 ; 

text field 
label for text field 
existing library li5t 
add text field to list 
do the open 
can ce 1 the open 

cal lback5 
{ activate 

help 
} ; 

s procedure CLICKCLIBRARY_OK_PUSHBUTTON> ; 
procedure HELPCLIBRARY _OK _PUSHBUTTON) ; 

} ; 

Figure 1 UIL Specification of Two Widgets 

System. The object that controls or contains all 
other objects is at the root of the tree. Each child of 
the root lists the objects that the child controls. This 
paradigm is represented in UIL with the controls 
clause. In the example illustrated in Figure 1, the 
popup_dialog_box widget controls a 

• Push button to start the open library operation 

• Dismiss button to cancel the open library 
operation 

The second object definition describes the third 
property of a widget, called callbacks. Callbacks 
are DECwindows terminology for actions that 
the widget can trigger. The term callback is used 
because the widget is calling the creator of the 
widget back to react to an event defined by that 
widget. The widget OK_PUSHBUTTON states that 
for the activate action, the procedure CLICK should 
be called; for the help action, the procedure HELP 
should be called. 

• Text object for soliciting the name of the library 

• Label for the text object just described 

• List box with the names of existing libraries 

• Toggle button that will cause the library named 
in the text object to be placed in the list 

36 Vol. 2 No. 3 Summer 1990 Digital Tecbnicaljournal 



Each widget has a specific set of callbacks that it 
makes. Many of the callbacks, such as help and 
activate, are common to more than one widget. 
The sequence of actions performed by the user to 
trigger the callback can also be programmed by the 
application through its translation table attribute. 
Most applications, however, accept the defaults for 
these sequences since the defaults are programmed 
to conform to the DECwindows style. For example, 
activate is a down click on mouse button (MB) 1. 

By convention, a procedure invoked as a call 
back has three arguments. One of these arguments 
is the widget identifier, a unique value used to 
distinguish one widget from another. Using this 
identifier, a callback can inquire about any of the 
widget's attributes at run-time. The second argu
ment is application-defined information that can 
be designated in UIL. The value of this second argu
ment is often used to distinguish which widget has 
initiated the callback. In the example in Figure 1, 
all help callbacks may invoke the HELP procedure. 
The HELP procedure determines the information 
to be displayed based on the value of the 
application-defined argument. The third argument 
varies widely from one type of widget to another. 
It normally contains useful state information about 
the widget, such as the state of a toggle button. 

The concepts covered so far in this section are 
the core of a UIL specification. UIL is a declarative 
language. It contains no constructs that specify 
flow of control, such as the if-then-else or loop 
constructs found in programming languages like C 
or FORTRAN. The language simply states the objects 
in an interface, the attributes of each object, the 
procedures to invoke when an object is manipu
lated, which objects are contained within other 
objects, and what those other objects are. 

Creating an Interface with UIL 
To create an interface for an application, the infor
mation in a UIL specification must be transformed 
into a series of calls that will invoke the necessary 
XUI toolkit routines to create that interface. 

This transformation can be implemented in 
many ways. The Challenges in Implementing UIL 
section of this paper discusses a few of those possi
bilities. Digital's solution consists of compiling the 
UIL specification into a binary format that resides 
on disk, called a user interface description (Um) 
file. The XUI toolkit includes routines that can cre
ate all or part of an interface from the description in 
a um file. The steps to create an interface using UIL 
are discussed in more detail below. 
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Step 1: Creating a UJL Specification File The UIL 
specifications are ASCII files that contain the defini
tions of the widgets in the interface, the widgets' 
attributes, and actions that result in callbacks to the 
application. The order of the widget definitions in a 
UIL specification is irrelevant. The controls clause 
indicates the parent-child relationship between the 
widgets. The MANAGED attribute controls whether 
a child is visible when its parent is visible. The 
MANAGED attribute is also the default attribute 
in UIL. If a child widget is attributed as being 
MANAGED, it will be visible when the parent 
widget is visible. 

Step 2: Compiling the UJL Specification Two pur
poses are served by compiling the specification. 
First, the compiler checks the specification to 
ensure that the attributes, callbacks, and children 
described for a widget are valid for that widget. 
Furthermore, for attributes, the compiler checks 
that the type of value for that attribute is correct. 
Checking is very important and is done before the 
application is run. The checks need not be per
formed by the XUI toolkit creation routines and 
actually are not. Attributes or callbacks not sup
ported by a widget are simply ignored at run-time. 
Attribute values of the wrong type cause the 
application to misbehave. The second purpose of 
«ompilation is to produce the um file. 

Step 3: Creating the Callback and Driving Routines 
An application is a program written in a program
ming language, such as the C language. The applica
tion must call several XUI toolkit routines to create 
the interface: 

• Call A initializes the toolkit 

• Call B registers the um files that describe the 
interface 

• Call C designates addresses of callback routines 

• Call D builds the interface 

• Call E starts delivering events to the application 

Calls A and E are standard to all DECwindows 
applications. Calls B, C, and D are unique to UIL and 
take the place of the thousands of lines of code 
described earlier. 

The callback routines listed in the UIL specifi
cation must also be a part of the application pro
gram. um files are not object files. Therefore, the 
addresses in the application that correspond to the 
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callbacks listed in the UID file must be registered 
with the toolkit. This is call C in the list above. 

Call D in the list above is the subject of the next 
step. 

Step 4: Building the Interface To create and display 
a part of the interface, the application program 
must fetch that part of the interface using a routine 
in the toolkit. The fetch operation specifies an 
object in the interface. The toolkit then creates 
that object with the specified attributes and call
backs. Furthermore, the fetch call fetches any 
child of the object and creates the child object 
as well. In fact, the entire tree of objects con
tained within the original object is created. In the 
case shown in Figure 1, if the popup_dialog_box 
OPEN_LIBRARY were fetched, the widgets for the 
popup_dialog_box, the six children of the box, and 
the children's children would be created. 

The fetch routine returns the widget identifier of 
the widget the routine created. The tree of widgets 
is displayed by calling the toolkit routine to manage 
that widget. Because the UIL specification listed the 
containing widgets to be displayed, the single call to 
manage the fetched widget displays both the widget 
and the containing widgets. 

UID files actually hold a template of each tree 
of widgets. Consequently, a tree of widgets can 
be fetched as many times as needed. Each fetch 
produces a new set of widgets. 

UIL Hierarchies 
Customization is another important facet of an 
interface. Users of a tool prefer that the tool's inter
face be tailored for the user's environment. 
Customi7..ation can involve such things as changing 
all text to a foreign language, omitting advanced 
features, or changing the default settings of toggle 
buttons and text fields. Separating the interface 
from the functions that implement the interface, as 
is the case with UIL, inherently provides some 
degree of customization capability. However, UIL 
also provides hierarchies of interfaces that simplify 
customization. 

A UIL hierarchy is a list of UID files. The XUI 
toolkit receives the UID list when a user declares an 
intent to use UIL (call Bin the last section). When an 
application directs the XUI toolkit to fetch a widget, 
the toolkit initially searches for the widget in the 
first UID file on the list. If the widget is not found, 
the toolkit continues to search down the list until it 
finds the widget. In this hierarchy, parts of an inter
face can be overridden by redefining the interface 

38 

in another file that is located earlier in the hierarchy 
list. The balance of the interface is located in 
another UID file later in the list. 

UIL further supports the hierarchy concept by 
permitting every named resource to have one of 
three attributes: exported, imported, or private. An 
exported resource is visible outside the UID file. 
Thus, an exported resource is a value or widget that 
can be fetched at run-time. An imported resource is 
not defined in the UID file. The resource is expected 
to be supplied by a corresponding exported 
resource in another UID file in the hierarchy. Private 
resources are local to a UID file and cannot be 
overridden by another definition of the same name 
in the hierarchy list. 

With these attributes and the hierarchy, UIL 
allows a designer considerable control in tailoring 
an application. Those parts of the application that 
can be tailored without breaking the application 
can be exported. The names of buttons, labels, and 
titles are commonly exported resources where a 
user can supply alternate definitions. On the other 
hand, the designer may designate that a button 
widget, e.g., the buttons used to insert the control 
rods, may not be altered. In this case, the button 
widget is designated private, and the button cannot 
be customized. 

Support for Defining UIL Objects 
UIL is not a large language. However, it extensively 
supports widget definition. 

The values of toolkit attributes include strings, 
compound strings (e.g., non-Latin text, such as 
Kanji and Hebrew), icons, integers, widgets, 
Booleans, and fonts. UIL contains primitives to 
express these values. Arithmetic operations are 
provided for integers and concatenation for string,. 
UIL also provides lists for common sets of attributes, 
callbacks, and controls. The list can be defined once 
and subsequently used in multiple places. 

Combining the widgets in the toolkit to build 
more specialized or complex widgets is an impor
tant part of the XUI toolkit. UIL supports this con
cept in two ways. First , UIL contains constructs for 
defining new attributes and callbacks. These can be 
used in conjunction with a user-defined widget to 
specify widgets for which the compiler has no 
knowledge. The second technique is to reconfigure 
the compiler to understand the new widget. The 
Challenges in Implementing UIL section of this 
paper discusses this technique in more detail. 

A UIL specification defines objects. The XUI 
toolkit creates widgets. We use two different terms 
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because the toolkit creates two kinds of objects: 
widgets and gadgets. A gadget is a more efficient 
and more restricted form of widget. An application 
that does not need all the capabilities of a label or 
push-button widget may use a label or push-button 
gadget. In general, gadgets use less time and mem
ory than the corresponding widget. UIL supports 
gadgets and widgets, but calls them both objects. 
Users can change from one to the other in the UIL 

specification. Thus, it is simple to develop an appli
cation by using widgets and then converting parts 
to gadgets during the tuning of the application. 

The Challenges in Implementing UIL 
The challenges in implementing UIL are typical of 
the constraints that most software projects face in 
the 1990s. Resources are limited, and the product 
has to have the vision to last a decade. 

Time and personnel were at the top of the 
resources list. In September 1987, UIL was a thought 
with no concrete language specification. By January 
1988, it was in field test. The project started with 
one engineer; it was staffed with two engineers by 
the end of September. Engineering resources 
equivalent to the time of 1.5 engineers were added 
to perform the run-time fetching of widgets in 
October. Thus, by the field test date, the equivalent 
of 3.5 engineers was assigned to the UIL project. 

Neither of the starting engineers had any 
experience in developing an application in the C 
language. The C language was, however, the logical 
choice for an implementation language because 
UIL needed to run on both the VMS and ULTRIX 

operating systems, and both systems had reason
ably compatible C compilers and run-time libraries. 

The principles of the XUI toolkit were in place. 
However, the list of widgets to be implemented and 
their attributes and supported callbacks continually 
changed up until the last field test update. 

Thus, in addition to the personnel and time 
constraints, the team was forced to deal with a new 
implementation language and a toolkit whose 
specification was in flux. 

Careful planning of the parts and interfaces of the 
compiler was the key to delivering the product on 
schedule. To be ready in January, it was essential 
that communications among the developers be 
frequent and thorough because there was no time in 
the schedule to redesign parts. To make the project 
simpler, the compiler was separated into operating 
system specific parts (those that needed to be 
recoded for each operating system) and operating 
system-independent parts (portable code that 
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would run on all systems). The operating system
specific sections were the command line parsing, 
and within the I/0: reading the source, writing the 
listing file, issuing diagnostics, and writing the um 
file. The remaining parts were common code. 

Changes in the Widgets 
The compiler group worked closely with the XUI 

toolkit group. Therefore, we knew early that the 
specification of the widgets would change during 
the implementation of the compiler. As a result, 
we developed a small specification language for 
describing the widgets, their attributes, their call
backs, and the kinds of widgets that could act as 
children. A program was written in VAX SCAN to 
read the widget specifications and create tables that 
the compiler could use to validate widgets.7 Once 
this mechanism was in place, the XUI toolkit 
developers could provide the compiler group with 
a new specification for a widget, and, within a few 
hours, the compiler could be regenerated to include 
the new specification. 

The specification language aided the develop
ment of UIL in several ways. First, the compiler 
group could concentrate more on the development 
of the compiler and less on the validation of current 
widgets in the toolkit. Second, communication 
between the toolkit and the compiler groups was 
enhanced. The toolkit group better understood the 
impact of changes. The group recognized that new 
widgets with attributes similar to those already 
developed could be added to the compiler easily. 
However, new types of arguments and new types of 
relationships between widgets required more work 
in the compiler. 

The Open Systems Foundation (OSF) recognized 
the advantage of a configurable compiler. The con
figurable compiler was one of the reasons OSF chose 
the XUI toolkit as the basis for its windowing star.
dard. OSF envisioned that each of its members 
might want a different set of widgets in their indi
vidual toolkits. The UIL compiler could be altered to 
support each vendor without each vendor having 
its own version of the source. Therefore, bugs fixes 
and enhancements could be made to the base com
piler. Each vendor need only regenerate its version 
of the compiler to incorporate the changes. The 
vendor need not apply the set of changes to its 
version of the compiler sources. 

OSF was less impressed with the implementation 
technique for configuring the compiler. VAX SCAN 

is a Digital product that runs on VAX computers 
supporting VMS systems. In accepting UIL, OSF 
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stipulated that the table generators be recoded in 
a portable language. Due to time constraints, the 
first version of Motif VIL emulated the work of the 
VAX SCAN program in the C language. 

Version 2 provided a better solution. A formal 
language was devised for specifying widgets, and a 
compiler was built to produce the tables needed by 
the VIL compiler to perform its validations. These 
tables also could be used by other tools, such as the 
direct manipulation version of VIL or even the 
toolkit, for a formal definition of a widget. 

Determining the Form of a UID File 
Several requirements were placed on the imple
mentation of VIL interfaces. First, the interface 
needed to be created efficiently. If VIL-based inter
faces made the application run appreciably slower, 
application developers would not use VIL for per
formance reasons. Second, an interface that used 
VIL could not significantly increase the memory 
requirements of the application. Third, operating 
system independence was important to minimize 
the additional work needed to port VIL to another 
platform. Finally, the technique had to support the 
hierarchy concept discussed in the last section. 

We explored two designs for the form of UID 
files. The first design was to produce an object file, 
i.e. , .o files for ULTRIX systems and .obj files for VMS 
systems. The second design was to encode VIL using 
the X resource manager (XRM}, a database already 
used in the XVI toolkit to retrieve user preferences. 

Object files were appealing since they already 
are a standard component of an application and 
programmers have experience with using them. 
With object files, the VIL compiler might be able to 
produce the XVI toolkit's internal structures for 
widgets. If it could, the creation of interfaces coded 
using VIL would be even faster than using the 
creation routines supplied by the toolkit. We opted, 
however, not to use object files because they made 
the compiler too dependent on the internal struc
ture of the toolkit. Each time the toolkit's internal 
structures changed, the compiler would need to be 
modified. We would also need to establish mech
anisms to handle the inevitable changes to the 
toolkit in subsequent releases. If we did not, appli
cations that used VIL would need to be recompiled 
for each subsequent release of the toolkit. This 
violates the VAX and VMS systems convention of 
upward compatibility, i.e., old programs continue 
to run with newer versions of the operating system. 

The second difficulty with object files was their 
portability. Object files are different for each operat-
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ing system, and storage allocation varies with each 
hardware platform. The logistics of creating a new 
object file emitter for each operating system and 
hardware platform involved a considerable amount 
of work, especially in an environment such as OSF. 

XRM, the second potential solution, is an in
memory database that has a rather elegant retrieval 
mechanism. Arbitrary values can be stored in the 
database. Each value is associated with a key in the 
form of: 

string1. string2 .... stringM 

where stringl through stringN are ASCII strings. To 
retrieve a value from the database, the user provides 
the retrieval key for that value, such as 

CMS .OPEM_LIBRARY . OK_PUSHBUTTOM . COLOR 

XRM then matches the key in the database that most 
exactly matches the retrieval key. All of the database 
keys in Figure 2, except the second and sixth keys, 
match the retrieval key in some form. 

XRM returns the fourth key because it most 
exactly matches the start of the retrieval key and 
does not contain any string not found in the 
retrieval key. 

The XVI toolkit includes routines to read an ASCII 
file containing records, such as those shown in 
Figure 2, and to create an XRM database. Routines 
also exist to merge XRM databases. Given a retrieval 
key, routines exist to find the value whose key best 
matches the retrieval key. 

The XRM database was already an integral part 
of the toolkit. On creation, a widget determines the 
value of its attributes by first looking at the attri
butes passed on the creation call. If the attributes 
are not found in that list, the widget checks the XRM 
database for a value for the attribute. The key used 
to retrieve the value consists of the names of the 
widgets from the root of the widget tree to the 
widget interested in retrieving the value. Thus, 

CMS . OPEM_LJBRARY . OK_PUSHBUTTOM . COLOR 

is the retrieval key for the color attribute con
tained within the OK_PUSHBUTTON widget, within 
the OPEN_LIBRARY widget, and within the CMS root 
widget. If XRM does not find a match, the widget 
uses a default value for the attribute. 

To use XRM databases for UID files, the VIL com
piler emits an ASCII XRM file containing records that 
encode the widgets described in a VIL specification. 
However, the primitive parser for reading key-value 
pairs into an XRM database could understand only 
string and integer values. New types of values 
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1. COLOR • "black" 
2. DI SMI SS_PUSHBUTTON.COLOR = "mauve" 
3 . CMS.COLOR= "cian" 
'I . CMS.OPEILLIBRARY.COLOR = "orange" 
5 . OK_PUSHBUTTON.COLOR = "pink" 
6 . CMS.OPEILLIBRARY.OK_PUSHBUTTON.LABEL.COLOR = "blue" 

Figure 2 XRM Database Keys and Values 

were needed to represent widgets and their call
backs. These minor problems would be easy to 
overcome. Overall, this plan seemed to provide a 
portable solution. 

Unfortunately, one major problem that could not 
be surmounted was performance in both the time 
and space dimensions. The routines to create XRM 
databases took 12 seconds to load 2000 values. 
(Note: Measurements were taken on a standalone 
VAXstation 2000 with 6 megabytes [MB] of mem
ory and one RD 32 disk drive.) 

An object, such as the popup_dialog_box 
OPEN_UBRARY, consisted of 1 widget, 7 attributes, 
and 6 controls, for a total of 14 items. Each of these 
items needed to be a value. If the average were 10 
values per object, 2000 values only represented 200 
objects. A system that could handle 10,000 objects 
was needed. 

Customization hierarchies also presented a 
resource problem using XRM. Each of the files in 
the hierarchy had to be initially loaded into its 
own XRM database. These databases could then be 
merged one at a time into the first database of the 
hierarchy. Merging 2000 values into an XRM data
base took 10 seconds. 

Memory was also an issue with XRM databases, 
which are memory resident. Testing showed that 
memory usage of 250 to 500 bytes per value was 
common. A small to moderate application with 
200 objects, each having 10 values, would produce 
a 0.5 to lMB database. Once the XRM database was 
built, the XUI toolkit would create another copy of 
much of this information in its widget data struc
tures. Deleting the XRM database after it had been 
used was a possibility. However, to follow that solu
tion required being able to predict when the last 
request to fetch a widget tree had taken place. 

Based on these problems, we determined that 
storing UID files in XRM databases was not the 
right solution. XRM is targeted at customizing attri-
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butes of specific widgets or classes of widgets and 
not at creating entire interfaces. UIL needed its own 
specialized database. 

UID files and the software that retrieves data from 
the files are designed to best fit all the requirements 
stated at the start of this subsection. In the balance 
of this section, the techniques used to meet the 
requirements are discussed briefly. 

Memory Usage 
To meet the memory objective, only the part of a 
UID file needed at the current time is kept in mem
ory. The rest of the interface description remains on 
disk. The UID file is structured as a sequence of 
blocks. Fetching a widget requires fetching the 
block or blocks that hold that widget's description. 
Once the description is fetched and used to create 
the widget, the memory blocks can be released to 
be used to read yet another widget description. 

Performance 
To meet the performance objective, a resource in 
a UID file is located in one of two ways: by using 
its ASCII name or by using an offset into the UID 

file. The name mechanism is used for exported 
resources, and the offset mechanism is employed 
for private resources. The ASCII names are kept in 
an index and mapped to their UID file offset by 
using a B-tree algorithm.8 

This scheme is a good compromise between the 
requirements for efficiency and those for support
ing the hierarchy. The B-tree algorithm lets the 
toolkit find a named resource with a minimum 
number of reads from the UID files in the hierarchy. 
Private resources can be addressed directly in the 
UID file. The compiler attempts to write trees of 
widgets in the order that the widgets will be 
fetched. This decreases the number of disk reads 
needed to fetch the interface from the UID file by 
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increasing the probability that the next widget 
needed is in blocks currently in memory. 

Operating System Independence 
Operating system independence is addressed by 
dividing the system into two layers. Only the lower 
level has system-dependent routines for reading 
blocks of the UID file into memory. The majority of 
the code resides in the higher level of the system 
and is operating system independent. This layer 
interfaces with the XUI toolkit. It implements rou
tines to fetch a tree of widgets or fetch a value from 
the UID file. The raw data kept in the UID file is simi
lar in structure to the data structures needed to call 
the widget creation routines. 

To create a widget, the higher level first loads 
the description for this widget. It next builds the 
argument list for the creation routine for this 
widget. This list specifies the attributes and call
backs for the widget. Any of these arguments may 
reference another named resource that needs to be 
found in the hierarchy. Once the argument list is 
built, the widget is created. The children of the 
widget are built by using a recursive algorithm. The 
final step is to manage the widget if that was 
requested in the UID file . 

The system works well. Most widgets are only 
created once and in a serial order. The system can 
read thousands of widget specifications through 
a 4 kilobyte (KB) buffer without thrashing. The 
system also allows the flexibility to resolve any 
resource at run-time by looking through the hier
archy. At the same time, the system provides a much 
faster mechanism for the private resources that are 
more common. 

Conclusions and the Future 
The initial goal of the UIL project was to reduce the 
burden of building DECwindows application inter
faces. The suite of DECwindows tools announced 
with DECwindows version 1.0 impressed the indus
try. VAXSet, the VMS Debugger, DECwrite, and 
many other products were all available shortly after 
the DECwindows software was released. Almost all 
of the products had UIL-based interfaces. 

UIL offers many advantages. First, the user inter
face is extracted from the application. The many 
objects used by an application are not mixed with 
the other code of the application. The objects, their 
attributes, and their relationships are clearly visible 
in the specification and not subject to studying the 
flow of control within the application. Because 
the interface has been extracted into a specifica-
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tion, its complexity is managed more easily. For 
example, searching to see where an attribute is used 
or if there is already a button that can be reused are 
simple tasks. 

Another advantage of UIL is the checking per
formed by the compiler. The compiler understands 
the constraints posed by each widget. It will diag
nose many common construction errors when 
describing or combining widgets. These are all 
checks that can be made before an application is run 
to ensure that the XUI toolkit's widgets are used 
correctly. The toolkit, in fact , does not make many 
of these checks. Invalid attributes, attribute values, 
and relationships between widgets are sometimes 
ignored and sometimes result in unpredictable 
behavior. The toolkit is coded in this fashion for 
two reasons. First, if an attribute does not apply to a 
widget, the widget assumes it applies to its parent, 
which may not be true. Second, each check made 
decreases the efficiency of the toolkit. Therefore, 
the toolkit relies on tools, such as UIL, to catch 
construction errors. 

UIL helped improve the XUI toolkit. Because it is 
a language with a formal grammar, UIL provides an 
excellent method to monitor the regularity of the 
interfaces to the toolkit. Extensions to the toolkit 
often require extensions to UIL. Therefore, in mak
ing a change, UIL makes it easier to understand how 
the change will affect the entire toolkit. 

UIL allowed the toolkit to grow. For example, 
compound strings and gadgets were not part of the 
January 1988 version of the toolkit. In the case of 
compound strings, many text arguments changed 
to require a compound string rather than an ASCII 
string. Applications using UIL made very few 
adjustments as a result of the compound string 
changes. The UIL compiler allowed the designer 
to continue to think in terms of strings. The com
piler, knowing the type of each attribute value, 
determines whether an ASCII or compound string is 
needed. Non-UIL-based applications had to be 
edited wherever an ASCII string was replaced with a 
compound string. 

Gadgets require changes in a UIL specification. 
An application developer can specify a particular 
object or a class of objects to be gadgets. The com
piler supports experimenting with gadgets. First, it 
tells the developer if a widget does not have a corre
sponding gadget form. Changing between widgets 
and gadgets is performed simply by changing an 
attribute. Because UID files are separate from the 
application itself (i.e., not object modules), a new 
UID file can be created and tried with the existing 
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application. Non-UIL-based solutions are forced to 
edit the application at each call site. The application 
then needs to be recompiled and relinked. 

Areas to Improve UIL 
UIL is not the perfect solution to creating 
DECwindows application interfaces. Trying to 
adjust the geometry of an application, e.g., the size 
and location of widgets, in a specification language 
can be difficult. It may require fine-tuning and 
rerunning programs several times before the solu
tion is found. Direct manipulation tools are far 
superior in this area. 

This is not to say that a specification language is 
always inferior to direct manipulation. Changing an 
interface from English to another language is easier 
with a specification. The translator can read the 
specification and be assured that all cases were 
seen. If the need for multiple languages is antici
pated, all text strings can be isolated into a separate 
area of the specification. With direct manipulation, 
the entire application must be manipulated and 
every piece of that application must be examined. 
Maintaining a history of changes to an interface or 
ensuring that a part of an interface is the same 
in two applications is also difficult with direct 
manipulation but does not present problems in a 
specification. 

Digital's UIL implementation also has areas that 
can be improved. UIL attempted to support both 
case-sensitive and case-insensitive names for both 
C and non-C programmers. The toolkit attempted 
to do the same thing. The intent was to make some 
of the nuances of C programming less of an issue 
to non-C programmers. Many C constructs 
remained, and the programmer needed to remem
ber which interfaces adhered to C rules and which 
did not. Motif wisely chose to use only one con
sistent interface. 

Another area for improvement is the mapping 
of callback names in UIL to the corresponding call
back procedures in an application. The application 
developer must specify the mapping. The UIL com
piler can and should emit a segment of code that 
will build the map. 

User-defined widgets are another weak point of 
the language. Although a vendor with access to 
the sources of the compiler can add widgets to the 
compiler, an application developer cannot. By 
using the mechanism in the language, the developer 
can define new attributes, callbacks, and widgets. 
However, in doing so, the developer sacrifices the 
normal error-checking performed by the compiler. 
UIL needs a mechanism that allows the developer to 
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define new widgets and ensure that uses of the new 
widgets are consistent with the definition. 

Future Development 
The future of UIL is bright. OSF has adopted UIL 
as part of its Motif offering. Consequently, UIL 
will be available on many Motif platforms. UIL will 
also continue to mature within Digital by address
ing many of the weaknesses listed above and 
continuing to support changes in the XUI toolkit. 

Direct manipulation tools that support the XUI 
toolkit will emerge in the not too distant future and 
will play an important role in managing interfaces. 
In fact, the coexistence of UIL and direct manipula
tion tools will be an interesting topic to monitor. 
Vendors that combine the two ideas should do well 
because they will be providing the best set of tools 
to aid application developers in managing the com
plexity of their interfaces. 
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The Evolution of the 
X User Interface Style 

The X user interface (XU/} was a key element of the DECwindows program, version 
1.0. XU/ changed Digital's approach to modern, graphic, direct-manipulation user 
interfaces and consistency across applications. The XU/ style provides a consistent 
means of user interaction across the VMS, ULTRIX, and MS-DOS operating systems 
and the applications available on these operating system platfonns. The design was 
used by the developers of the XU/ toolkit, as well as application designers. Further, 
detailed attention to the iterative development of an application's graphic user 
interface is now a standard aspect of the software development process. 

In September 1986, Digital began work on a new 
workstation software project, the DECwindows 
architecture. Publicly announced in January 1987, 
customers began receiving the first version of 
the DECwindows base system and applications 
inJanuary 1989. 

The DECwindows architecture integrates the 
user and graphical programming interfaces for the 
MS-DOS, ULTRIX, and VMS operating systems. This 
integration was accomplished in three ways. First, 
the architecture offers network transparent win
dowing and interoperability between operating 
systems by using the X Window System. Second, 
it provides a common application development 
environment with a Digital proprietary toolkit. 
Third, a common workstation user interface 
supports a consistent style of user-computer inter
action across the operating systems. 

The X user interface (XUI) style fulfills the 
requirements of the third component. The XUI style 
is a consistent method of user-computer interaction 
across operating systems and between applications. 
Regardless of the operating system or application 
used, common operations are performed by con
sistent actions. For example, resizing a window, 
choosing a menu item, and selecting a file name are 
all common operations that are independent of the 
operating system or application being used. 

Articulating an Interface Style 
An interface style is sometimes called the look and 
feel of an interface. The first part of this term, the 
look, refers to the graphic or visual appearance of 
the interface. The second part, the feel, refers to the 
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interface's interactive behavior. The look and the 
feel of an interface are not independent. In response 
to a user's input, for example, clicking a mouse but
ton, the interface's appearance will change. The 
interface's behavior is indicated by this changing 
appearance in direct response to a user's action. 

Having gained experience with using a particular 
computer system, most users tend to be quite good 
at recognizing its look and feel. An analogy can be 
drawn between interface styles and art styles. Given 
a certain level of familiarity with an art style, many 
people can easily categorize a painting that they 
have never seen before. Thus, one can view a paint -
ing by Monet never seen before, yet automatically 
know that the painting belongs to the Impressionist 
style of art. Similarly, a user may have gained 
enough experience with the DECwindows system 
to be able to automatically categorize a new appli
cation as belonging to the XUI style the first time 
they see it. 

Although most people tend to be fairly good at 
recognizing styles, articulating the characteristics of 
a style tends to be a more difficult task. What are the 
characteristics of a painting by Monet that make it 
an example of Impressionist art? What are the char
acteristics of an XUI application that make it an 
example of the XUI style? It is often easier to cate
gorize an example as belonging to a style than it is 
to explain the characteristics that form the essence 
of the style. 

One of the challenges in the development of the 
DECwindows architecture was to find ways to 
describe the characteristics of the XUI style. This 
articulation of the XUI look and feel was accom-
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plished by using many different approaches. These 
approaches can be categorized as either describing 
the style by analysis or by synthesis. 

A style can be separated into parts, and the 
functions and relationships of the parts can be 
explained. Such an approach is description by 
analysis. For example, a painting by Monet might 
be analyzed by separating it into color and brush 
strokes and explaining the relationship of these 
components. In the development of the XUI style, 
we used this approach in writing a technical speci
fication for the design. The XUI Style Guide was 
then derived from this specification.1 

Both the specification and the style guide provide 
analytical descriptions of the XUI style. The inter
face style is separated into its parts, and the function 
and relationship of the parts is explained. For exam
ple, the style guide specifies that a window consists 
of a title bar, an optional menu bar, and a work area. 
The relationship of these areas is explained and, 
in tum, each area is then separated into its constit
uent parts. In this way, the XUI style is articulated by 
successive decomposition and analysis. 

An alternative way to describe a style is by syn
thesis. A synthetic approach to describing a style 
relies on experiencing the coherent whole. For 
example, the synthetic experience of Impression
ism can be obtained by viewing several paintings by 
Impressionist artists. The most complete way to 
accomplish a synthetic experience with computers 
is through using the working system and its appli
cations. However, a working system did not exist 
when the DECwindows architecture was being 
developed. Therefore, we had to create alternative 
ways to articulate a synthetic experience of the 
style. The most common method was to use com
puter graphics programs to draw static pictures of 
the interface design. We also used a computer pro
gram that would link static pictures together to 
form facade prototypes. In fact, the entire XUI style 
and many application interfaces were prototyped 
in this fashion. These pictures and prototypes 
articulated the XUI style by showing the interface's 
composition as the component parts come together 
to form the whole. 

Styles Evolve Over Time 
Interface styles, like most art styles, are not created 
in a single moment of inspiration and design. 
Rather, they are designed and developed over a 
period of time. The XUI style is the result of an 
evolutionary design process. 
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The XUI style evolved over a period of more than 
two years. The style has its roots in an advanced 
development project that was underway prior to 
the DECwindows program. During the two years of 
the DECwindows program, the XUI style underwent 
hundreds of updates, with each update evolving 
from its predecessor. 

This paper illustrates the evolution of the XUI 
style from an exploratory advanced development 
project to a finished product. We use five figures 
from our design archives to show this evolution. 
These figures show a sample text-editing applica
tion that we used to approximate understanding 
the XUI style during its development. By illustrating 
the XUI style through a sample application, this 
paper attempts to describe the style through syn
thesis. However, we also describe the style through 
analysis by explaining the nature and relationship of 
many of the style's features. 

Early Style Design 
As early as 1984, customers were giving Digital a 
clear message that they wanted consistency among 
Digital applications. One customer noted that no 
two Digital applications looked like they came from 
the same company. Digital did not have a consistent 
interface style among its workstation software 
environments and applications. Clearly, a new and 
better interface style was needed. 

In response to the customer feedback, Digital's 
VMS and Software Usability Engineering (SUE) 
groups began to improve the interface to the VMS 
workstation software (VWS). Incremental usability 
improvements were used to influence the user 
interface of vws versions 2 and 3. By early 1986, 
the scope of these vws usability efforts had evolved 
into designing a new full-scale user interface design 
(UID) for workstation products. Although never 
implemented in production software, the UID work 
was the starting point for the development of the 
XUistyle. 

Characteristics of the UID 
Figure 1 shows an example text editor design that 
was produced for the UID project in 1986. This 
figure is representative of the design work that pre
ceded the development of the XUI style. The design 
in Figure 1 shows two primary characteristics of the 
um effort. One characteristic is the influence of 
the existing VWS software. The other is an emphasis 
on innovation and exploration of new methods of 
user-computer interaction. 
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From top to bottom the text editor window con
tains a title region, a button region, a work region, 
a command region, and a message region. The 
entire window's border was taken directly from the 
current vws software. 

The title region was also heavily influenced by 
the then current VWS software. As in the vws 
software, the application's name is horizontally 
centered. A menu icon is on the left. Clicking the 
primary mouse button on this icon would display a 
menu of window manager operations. A keyboard 
icon is on the right. When highlighted, as shown in 
Figure I , this icon would indicate that the window 
would receive input from the keyboard. These 
aspects of the title region were taken directly from 
the existing VWS interface. 

To the left of the keyboard icon is a button 
labeled "KNOB." This button illustrates the explor
atory nature of the UID effort. At the time, we 
thought that workstations might be outfitted with a 
knob similar to the knob attached to typewriter 
platens. Users could click the primary mouse button 
on this button and then tum the physical knob to 
scroll the display backwards or forwards. The knob 
idea was short-lived and was never documented in 
any of the UID specifications. However, it is an 
example of how we were trying to develop inno
vative ideas that went beyond the capabilities of 
existing computer hardware and software. 

The button bar is another exploratory feature of 
the design. At the time, pull-down menus were 
becoming a common feature in personal computer 
and direct manipulation interfaces. One disadvan
tage of pull-down menus is that the menu items they 
contain are hidden until the pull-down menu is 
activated. This design used a button bar instead of 
pull-down menus to ensure that all choices were 
always visible to the user. 

Another innovative aspect of the design is that 
there are also no scroll bars. Instead, scroll borders 
provide the primary navigation device. These bor
ders are depicted as a cross-hatch pattern in the 
editing buffer, the command region, and the mes
sage region. When the mouse cursor is positioned 
over these borders, the cursor shape would change 
to a scroll cursor shape. Pressing or clicking the 
primary mouse button on these borders would then 
cause the file to scroll. 

The Position button in the button region was 
intended as a secondary, long-range navigation 
device. Clicking the primary mouse button on the 
Position button would result in a navigation win
dow. This window would represent the entire file 
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and contain an outline of what is currently being 
viewed. This outline could then be moved by drag
ging it with the mouse to navigate to other parts of 
the file. The navigation window was not described 
in the style guide because it was not implemented in 
the XUI toolkit. However, it was implemented in the 
structured visual navigation (SVN) and graphical 
object editor (GObE) widgets. This is an example of 
how the DECwindows style is defined by more than 
just the XUI style. 

The dark horizontal regions separating the sub
areas of the window were intended to be window
pane borders, which could be dragged with the 
mouse to increase or decrease the area devoted to a 
given subarea. 

Another prominent feature of the design is the 
command line. We wanted to provide command 
line equivalents for all direct manipulation com
mands. Users would have more flexibility because 
they could choose their own input method, i.e., 
command line or direct manipulation. Also, macros 
and initialization files could be created more easily 
because there would be a language for all direct 
manipulation commands. 

The design in Figure 1 is a mixture of the existing 
vws software and our initial attempt at creating a 
new interface style that empowered users with new 
methods of user-computer interaction. 

Tbe First XU/ Style Design 
In September 1986, Digital redefined its desktop 
strategy and started developing the DECwindows 
architecture. This new program ended the UID 
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Figure 1 UID for an Example Text Editor 
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project, but Digital still needed a user interface 
design that specified the look and feel of its appli
cations. Because the DECwindows architecture 
was bridging three operating systems, it was more 
important than ever that applications be consistent 
with each other. 

Because the um project had already produced a 
good start on a user interface design that promoted 
interapplication consistency, the VMS and SUE 
groups saw the DECwindows program as an oppor
tunity to expand the um effort. Within three 
months of the start of the DECwindows program, 
we had revised the um specification to meet the 
requirements of the DECwindows effort. The new 
design was the starting point for the XUI style, i.e., 
the user interface look and feel for the DEC windows 
architecture. 

Initial XU/ Style Characteristics 
Figure 2 shows the initial design for the XUI style. 
As with Figure 1, we used an example text editor 
to show the synthesis of the design. Evolved from 
the um work, this design reflects some of the 
influences of the earlier design, particularly the 
influence of the vws software and the emphasis on 
innovation. There are two other strong features of 
this design. One is that compatibility with other 
workstation and personal computer software was 
more important than innovation. The other feature 
is minimalist design. 

The minimalist design influence is the strongest 
aspect of the design shown in Figure 2, particularly 
in contrast to Figure 1. The source of this influence 
was Tufte's The Visual Display of Quantitative 
Information, which calls for a minimum of clutter 
in visual displays.2 All of the complex lines and pat
terns of the earlier um design have been replaced 
by simpler lines. A thin, solid line outlines the entire 
window and its title bar. Dotted lines separate the 
subareas within the window. The visual effect of 
these design changes is much lighter than the earlier 
design. 

Tufte also advocates the use of graphic and not 
text representations to convey meaning. The key
board icon shown in Figure 1 has been replaced by 
a graphic representation of a keyboard. The title bar 
menu icon is still in the design. However, the word 
"MENU" has been removed from the icon, leaving 
just a series of horizontal lines to suggest visually a 
menu. 

Tufte's influence can also be seen in the modified 
Digital logo to the right of the title bar menu icon. 
By providing a stylized Digital logo, we were giving 
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the design a Digital corporate identity that would be 
quickly recognized by users. This logo also had a 
utilitarian purpose, however. A user customization 
menu was generated by clicking the primary mouse 
button on the logo. 

One other graphic representation is included in 
the title bar. This is the window resize icon shown 
at the far right. By drawing a square within a square, 
this icon was designed to suggest visually the 
changing size of an application window. As subse
quent figures will show, the use of squares, and 
squares within squares, became a central character
istic of the XUI design. 

The um scroll border feature was removed to 
improve compatibility with other workstation and 
personal computer software. Scroll bars, a naviga
tion feature of several other interface styles, were 
used instead. One innovative aspect of the design of 
the scroll bars is that the slider size represents the 
proportion of the file currently visible. In Figure 2, 
the size of the horizontal slider is approximately 90 
percent of the size of the scrolling region. This rep
resentation means that approximately 90 percent 
of the horizontal width of the file is being viewed. 
The vertical slider shows that approximately 20 
percent of the vertical portion of the document is 
being viewed. This proportional aspect of the scroll 
bar design remains a feature of the current XUI style. 

The um button bar was replaced by a region that 
contains both pull-down menus and buttons. Pull
down menus were added because using buttons for 
all of an application's functions required too much 
screen real estate. The use of pull-down menus also 
helped to promote industry compatibility. Several 
other personal computer and workstation interface 
styles were already using this feature. Industry 
compatibility was further enhanced by using File 
and Edit menus. 

However, the pull-down menu and button region 
does contain some innovative features. Vertical 
lines were used to partition the region into several 
sections. The first section contains the File and Edit 
menus. The second contains application-specific 
pull-down menus, for example, Commands and 
Fonts. The arrow pointing to the right indicates 
that there are more application-specific pull-down 
menus. Clicking the primary mouse button on this 
arrow would scroll the application-specific menus 
to reveal the other menus. This design also required 
an arrow pointed to the left, to scroll the menus 
in the other direction. However, the left-pointing 
arrow is not depicted in Figure 2. The region 
contains both pull-down menus and direct-action 
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buttons. Help and Undo buttons were intended to 
be standard parts of application interfaces. The use 
of partitions, scrolling menus, and direct-action 
buttons in this region are unique aspects of this 
design. 

The command and message regions from the 
earlier UID project are still a part of this design. 
They have been moved, however, to the top of the 
window, just below the title region. Human factors 
studies of the earlier design indicated that these 
regions were often overlooked by users, and, there
fore, important messages might not be seen. The 
regions were moved from the bottom to the top of 
the window to increase their visibility. The two 
regions were placed above the pull-down menu 
region to ensure that the pull-down menus, when 
activated, would not obscure them. 

The initial XVI style design was derived from the 
earlier design work of the UID project. It contains 
features that were influenced by the VWS software 
and the UID emphasis on innovation. The design in 
Figure 2 reflects a minimal use of complex patterns 
and a reliance on graphic representations. The 
design also contains features designed to promote 
industry compatibility. 

Design Iterations 
Because the DECwindows architecture was a 
corporate-wide effort, it was important that a wide 
range of development groups participate in the 
design of the XVI style. Besides the SUE and VMS 
groups, representatives from the ULTRIX, High
Performance Workstations, Software Development 
Technologies, and the Personal Computer Systems 
groups were key participants in the design effort. 
A software engineer with training in both film and 
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design was also recruited to assume primary 
responsibility for the visual aspects of the design. 

From the starting point shown in Figure 2 to the 
beta test of the DECwindows system, the XVI style 
underwent dozens of revisions and updates. There 
were five corporate-wide design reviews for the 
style guide. The DECwindows interface designer 
produced over 600 sketches of the style. Many of 
these sketches were iterations and refinements 
of previous sketches. Dozens, if not hundreds, of 
sketches were also produced by application devel
opment groups as application-specific XVI style 
interfaces were designed. Many of the development 
groups also produced facade prototypes of their 
application interfaces. Using these facade proto
types and early base levels of the DECwindows 
system, the SUE group conducted human factors 
studies with over 300 participants. All of these 
activities were used to influence the further refine
ment of the XVI style. 

The XU/ Style Takes Shape 
One of the first designs resulting from this wider 
sphere of influence is shown in Figure 3. In terms of 
characteristics of the style, this design represents an 
intermediate step between the initial XVI style 
design shown in Figure 2 and the style at the end of 
the development cycle. 

One aspect of Figure 3 that is unrelated to the 
design of the XVI style but very noticeable in the 
figure is the use of vertical lines in place of text. We 
made this change because we found that partici
pants in design studies and reviews were concen
trating on reading the illustrative text rather than 
on the elements of the design. We changed later 
designs to English letters arranged in random pat
terns, which gave reviewers a feel for how text 
would appear in the design but which did not 
distract their attention. 

The minimalist design influence shown in Fig
ure 2 has been tempered in this design. Although 
the previous design was an improvement over the 
complex lines and patterns of the UID work, we had 
taken too much away. From a visual standpoint, 
the design in Figure 2 has very little definition. 
In Figure 3, there are no dotted lines, only solid 
lines. The design now has visual weight, yet it is 
not too heavy. 

The title bar has been simplified. In the previous 
design, it had four different icons. Because we 
were concerned that we were overloading the title 
bar with functions, only the window menu icon 
remains in this area. 
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The graphic design of the window menu icon 
has been changed to resemble a miniature window. 
The icon design now indicates visually that the 
menu is related to window-specific functions. The 
previous design, a series of parallel lines, only 
suggested the existence of a menu rather than what 
the menu might contain. 

The modified Digital logo has been eliminated. 
Because the XUI toolkit, which implements the 
XUI style, would be used by both Digital and third
party application developers, a Digital-specific logo 
would have been inappropriate. With this change, 
the style guide specified that application custom
ization functions should be placed in a Customize 
pull-down menu. 

The keyboard representation also has been elimi
nated. The window that is receiving keyboard 
input is now indicated by highlighting the entire 
title bar (not shown in Figure 3). This change makes 
the indicator physically larger to enable users to tell 
quickly which window is receiving keyboard input 
without searching for the small keyboard indicator. 

The resize icon has been moved from the title 
bar to the intersection of the vertical and horizontal 
scroll bars. One reason for this change was to put 
a useful function in the empty space at this inter
section. This design change gave application win
dows some diagonal balance, with the window 
menu icon in the upper left and the resize icon in 
the lower right. 

An additional square has also been added to the 
resize icon. Instead of just a square within a square, 
it is now composed of three squares. This change 
helped to suggest variable-sized windows, where 
the previous design might have been interpreted 
as suggesting only minimum and maximum-sized 
windows. 

The menu bar has been simplified and moved 
to below the title bar, which increases standard
ization with the industry and decreases the com
plexity of the earlier design. The vertical partitions 
and scrolling the application-specific menus have 
been removed. These ideas were too complex to 
promote usability and ease-of-learning. 

On the right of the menu bar are a Hints pull
down menu and a Help icon, shown as a question 
mark in Figure 3. These were placed at the right, 
away from the other pull-down menus, to give users 
a standard place to find functions pertaining to user 
assistance. 

Below the menu bar is a hints bar. In the previous 
designs, this area was called the message region. We 
changed the name from message to hints to obtain a 
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Figure 3 Intermediate XU/ Style Design 

better association with the Hints pull-down menu, 
which contains functions pertaining to the hints 
bar. These functions include the level of detail for 
the hints, and turning hints on and off. The hints are 
right-justified to be physically close to the hints 
menu and ensure that they would not be obscured 
by the other pull-down menus. 

The visual appearance of the scroll bars has been 
modified. By adding a line to the scrolling region, 
the new design is intended to suggest physical 
sliders similar to those found on modern stereo 
equipment. The stepping arrows have also been 
redesigned as double arrow heads. This change was 
simply an attempt to design a more interesting and 
distinct arrow. 

The command line has been moved to the 
bottom of the window to place less emphasis on the 
command line equivalents of direct manipulation 
actions. From a competitive viewpoint, command 
line equivalents were viewed as less important than 
the direct manipulation aspects of the XUI style. 

The use of squares as a familiar building block in 
the XUI style started to emerge in this design. The 
window menu icon, the help icon, the scroll bar 
stepping arrows, and the resize icon are all squares 
of equal size. Squares are pleasing to the eye, and 
they provide a visual symmetry and regularity to 
much of the design. 

The Beta Test XU/ Style 
Figure 4 shows the XUI style as it appeared in the 
beta test of the DECwindows system. 

In a reversal of the title bar simplification shown 
in Figure 3, three icons are now in the title bar. On 
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the left is the shrink-to-icon icon. On the right are 
the push-to-back and resize icons. These icons are 
located in the title bar to provide the user with 
window manager functions. In the DECwindows 
architecture, the window manager controls title 
bars and window borders and applications control 
everything in the window. Thus, window manager 
functions could be placed only in the title bar. 

The window menu from the previous designs 
has been eliminated completely. Once the spec
ification of the DECwindows window manager 
was completed, it was clear that this menu was not 
necessary. The functions from this menu are now 
provided by the three title bar icons or by direct 
manipulation actions. 

Each of the three title bar icons is constructed of 
squares, and squares within squares. The square 
subsequently became a strong characteristic of the 
XUI style. The shrink-to-icon icon is composed of 
four squares set within a square and is designed to 
resemble a real window. Although applications are 
encouraged to design their own shrink-to-icon 
icons, this design is used as a default design. The 
push-to-back icon is designed as two overlapping 
squares set within a square that suggest overlapping 
window corners. 

There are two changes to the menu bar. One is 
that the font used for the menu names has been 
finalized. This font, Pellucida San Serif 12 point, 
was chosen because it was designed specifically for 
screen readability. This font is also used for the 
application name in the title bar. The other change 
is the specification of a Help pull-down menu rather 
than the Hints menu and Help icon from the 
previous design. The hints region and menu were 
removed from the design because the constantly 
changing hints were more distracting than useful. 
The word "Help" was chosen to provide a consis
tency in the menu bar. Pull-down menus are all 
indicated by words rather than a mixture of words 
and graphic representations. 

The visual appearance of the scroll bars' scrolling 
regions has been modified again. The single line 
shown in Figure 3 did not provide enough visibility. 
It was lost in the context of an entire application 
window. To increase the visual contrast, a series of 
parallel lines were used to add darkness to the 
appearance of this region. 

When the design in Figure 3 was reviewed within 
Digital, a comment consistently made was that the 
stepping arrows were very similar to the stripes 
worn by a sergeant in the U.S. Army. We were 
searching for an arrow design that evoked a feeling 
of direction not a feeling of military regimentation. 

so 

The design of the stepping arrows was changed to a 
simple, triangular arrowhead. The intent of the new 
design is to suggest visually the essence of direction 
through the tip of an arrow. 

The intersection of the two scroll bars contained 
the resize icon in the previous design. When the 
icon was moved to the title bar, the area had no 
utilitarian function. The area is decorated with a 
square so that it is not vacant, and an empty square 
has been chosen to reinforce further the design 
characteristic of squares as XUI style building 
blocks. 

The concept of a standard command region and 
semantic equivalence of direct manipulation com
mands was removed. The debate over the syntax of 
command lines never reached consensus within the 
Digital review community. Some favored a new, 
common syntax. Others favored a user-selectable 
(i.e. , VMS versus ULTRIX operating system) syntax. 
Others felt that a common syntax was not at all nec
essary. Ultimately, the idea was removed because 
there was no apparent good solution to the problem 
in a heterogeneous environment. 

Figure 4 shows a clean and well-defined left 
margin. The application name, which was centered 
in the previous designs, has been moved to the left . 
The first menu item, File, is positioned below and 
flush left with the application name. The left margin 
is further strengthened by the placement of the text 
in the application's work area. This left margin, 
however, is a failed aspect of the XUI style as 
intended by the style guide versus what was imple
mented by the XUI toolkit. Although the left margin 
was intended to be a feature of the XUI style, it was 
specified in the style guide figures but not the text. 
The toolkit developers did not notice this aspect 
of the figures, and, therefore, did not implement a 
left margin. This example highlights the difficulty 
of specifying an interface style with the hundreds of 
details that make up a style. 

The design shown in Figure 4 virtually com
pleted the basis of the XUI style. One by one, the 
influences of the earlier VWS software and the UID 
project were all removed or highly modified. 
Design reviews within Digital, human factors 
studies, and the influence of a dedicated inter
face designer were the primary forces behind the 
evolution of the style. 

Final Style Details 
The XUI style was nearly complete in the beta test 
design shown in Figure 4. Human factors studies 
and customer interviews during the beta test were 
used to identify any serious problems that might 
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Figure 4 XU/ Style during Beta Test 

exist in the design and to gather input for require
ments for subsequent releases of the DECwindows 
base system. 

Figure 5 shows the final XUI style design for the 
first release of the DECwindows system. We found 
only one significant design problem with the XUI 
style during the beta test: the visual design of the 
scroll bars. 

During the DECwindows system beta test, many 
users complained of a figure-ground disorientation 
with the scroll bars. They could not tell if the white 
area was the scroll bar slider or the scrolling region. 
This effect can be seen by examining the horizontal 
scroll bar in Figure 4. The design change can be seen 
in Figure 5. The parallel lines were removed from 
the scrolling region and the width of the area was 
reduced. Since the slider is now wider than the 
scrolling region, there is no visual confusion about 
which part is the slider. This design change also 
required modification of the scroll bar arrows to 
make the base of the arrows the same width as the 
scrolling region. 

Summary 
The DECwindows XUI style development repre
sents a breakthrough in user interface development 
for Digital. Before the project, little attention was 
given to modern, graphic, direct-manipulation user 
interfaces. Also, little attention was given to consis
tency across applications. With the DECwindows 
XUI style, we now have a consistent means of user 
interaction across the VMS, ULTRIX, and MS-DOS 
operating systems and the applications available on 
these operating system platforms. Further, detailed 
attention to the iterative development of an applica-
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Figure 5 Completed XU/ Style Design 

tion 's graphic user interface is now a standard 
aspect of the software development process. 
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PEX: A Network-transparent 
Three-dimensional 
Graphics System 

PEX is an extension to the X Window System that is designed to efficiently support 
PH/GS and much of the functionality in the proposed PH/GS+ extension to PH/GS. 
PEX allows each window on the screen display to act as a complete, independent, 
virtual three-dimensional graphics workstation. This paper presents a brief over
view of PEX and describes how it fits into the network environment of X. In addition, 
the paper gives some details about X and PH/GS and discusses the major design 
decisions made during the PEX design, as well as the ramifications of those decisions. 
7be intent of this paper is to share some of the things designers learned in their efforts 
to unify the different environments of X and PH/GS. 

The X Window System is a network-transparent 
windowing system developed at the Massachusetts 
Institute of Technology. X contains support for win
dow management operations, input, and simple 
two-dimensional graphics operations. X has rapidly 
become a de facto industry standard in today's 
raster graphics workstation marketplace because it 
works well in the increasingly common computing 
environment that consists of a network of dissimilar 
workstations. Despite its popularity, X still has 
some shortcomings. Its developers deliberately con
centrated on solving the problems of supporting 
windowing, input, and simple graphics output 
operations in the heterogeneous network environ
ment, and deferred other difficult problems, such 
as providing direct support for three-dimensional 
graphics and image processing! 

This paper provides a brief overview of PEX 
(PHIGS/PHIGS+ extension to X), which is an exten
sion to the core X Window System that provides 
three-dimensional graphics support in the X envi
ronment .2·3·4 PEX is designed to efficiently support 
three-dimensional graphics standards (PHIGS, 
GKS-30, and the majority of the proposed PHIGS+ 
extension to PHIGS) in a standard network window
ing environment (the X Window System).~·6·

7 This 
paper describes the overall architecture of PEX, 
with emphasis on the features that make it unique. 

© 1989-IEEE. Reprinted, with permission, from IEEE 
Computer Graphics and Applications Magazine, Volume 9 , 
Numher4,July 1989. 
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The first two sections describe the history of the 
PEX effort, and the problems and requirements that 
motivated it. Subsequent sections describe the 
major features of PEX and contain discussions of the 
trade-offs that were evaluated during the design 
process. Finally, the remaining open issues and their 
current status are described. 

History 
Development of the X Window System began at MIT 
in 1984. By 1986, X had evolved to the point that 
it was receiving widespread use, had been ported 
to many different workstation architectures, and 
was supported as a product by some workstation 
vendors. The version that was in use at that time 
was known as X Version 10, or X 10. 

In the spring of 1986, Digital 's Workstation 
Systems Engineering Group began looking at ways 
to support three-dimensional graphics applications 
using XlO. A four-month project was launched 
to define and implement an extension to the 
XlO server and a client-side programming interface 
that would provide efficient support for inter
active three-dimensional graphics applications. A 
programming interface library called X31ib was 
written. It contained routines to perform trans
formation, clipping, and light-source shading com
putations on primitives. The X 10 server was 
extended to include support for two-dimensional 
scan-conversion operations. Thus, the traditional 
rendering pipeline was broken into two parts, with 
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floating point intensive operations occurring on the 
client side of the network interface and pixel
intensive operations carried out within the server 
extension. A solid modeling application, called 
XModel, was developed to run on top of X3lib. 
Considering the hardware capabilities of the target 
device, the overall level of interactivity that was 
achieved with XModel was quite acceptable. 

During this time, a public effort was underway to 
redesign X to make it a more commercially viable 
product. The mechanism we designed for our pro
totype extension to X 10 became the basis for the 
general extension mechanism for X version 11. The 
specification for X 11 was largely completed by 
November 1986, at which time a sample implemen
tation of the server and a rewrite of the X client-side 
library interface (Xlib) were begun. (Throughout 
the remainder of this paper the terms "X" and "X 
Window System" are meant to imply X version 11 .) 

In November 1986, an architecture group was 
formed within Digital to design a three-dimensional 
extension to X that could form the basis for a cor
porate three-dimensional graphics interface. The 
major goals of this extension would be to extend 
X gracefully to support three-dimensional graphics 
in a windowing environment, to achieve good per
formance on a range of raster graphics devices in a 
network environment, to support graphics stan
dards products, such as PHIGS and GKS-3D, and to 
incorporate support for features, such as light 
sources and reflection models, that were not found 
in the current graphics standards. Timeliness was 
also a key goal, since customers were demanding 
access to the three-dimensional capabilities of the 
hardware that were not accessible through X or the 
current standards products. A first draft of the 
specification was completed in January 1987, and 
was revised several times before it was made 
publicly available in May 1987 as X3D. 

The PHIGS+ effort began in a public forum in 
November 1986. Its goal was to extend PHIGS to 
include more advanced rendering capabilities (light 
sources, depth cuing, reflection models) and more 
advanced primitives (parametric curves and sur
faces, meshes). In one respect, the goals of this 
group and the Digital design team were similar: to 
come up with ways to provide the advanced three
dimensional graphics capabilities that users were 
demanding. The results of these two parallel efforts 
(which started out being unrelated) were function
ally identical in many areas. 

At a meeting at MIT in June 1987, representa
tives from Digital Equipment Corporation and 
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Sun Microsystems jointly presented the X3D speci
fication and recommended that it be used as the 
basis for defining an industry-standard three
dimensional extension to the X Window System. 
At this meeting, an architecture team was formed 
and chartered to revise and finalize the speci
fication. A series of three public reviews was held, 
and the architecture team released a completed 
version of the specification, now called PEX in 
December 1987. Changes to the specification dur
ing this time were primarily aimed at providing 
even better support for PHIGS and at supporting 
more of the PHIGs+ functionality. A public 
implementation of the PEX extension and a PHIGS/ 
PHIGS+ client interface library is now underway. 
The software, when complete, will be freely 
distributed in the same manner in which the 
X software is currently available. 

PEX Requirements 
PEX had five major design requirements: 

• Extend X in a graceful fashion to support three
dimensional graphics 

• Support a performance range ofX platforms 

• Provide efficient support for PHIGS and the sta
ble portions of PHIGS+ 

• Establish the definition of the PEX protocol in a 
timely fashion 

• Acceptance by the X community 

Extend X to Support Three-dimensional Graphics 
PEX was required to support three-dimensional 
graphics in windows efficiently across a network 
interface. Furthermore, it was important to provide 
an extension to X that supported three-dimensional 
graphics but did not violate any of the requirements 
or philosophy that made X popular in the first 
place. Central to the X philosophy is that the proto
col and the server support mechanism, not policy. 
Therefore, it was a requirement that PEX provide 
the mechanism to support three-dimensional 
graphics, but defer policy to clients. 

Support a Perjonnance Range of X Platforms 
Part of the appeal of the X Window System was 
that it would soon be available on a wide variety 
of raster graphics workstation products. PEX had 
to be designed for the same class of worksta
tion devices as X-those with keyboard, pointing 
device, and raster graphics display. Consequently, 
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consideration had to be given to supporting render
ing computations on devices with little or no color 
capability and to supporting display list traversal 
on devices with little or no available display list 
memory. 

ProvideSupportforPHIGSandPH/GS+ Many end 
users have committed themselves to applications 
development using PHIGS, an emerging three
dimensional graphics standard, and many vendors 
are trying to provide efficient PHIGS implemen
tations. To be widely accepted and used, PEX had 
to support PHIGS very efficiently. Many customers 
were demanding at least some additional attributes 
to control lighting and depth-cuing operations and 
higher order drawing primitives such as polygon 
meshes and parametric curves and surfaces. 
Supporting PHIGS+ features was desirable; but since 
PHIGS+ was still under development, it was neces
sary only to incorporate functionality that was 
considered to be stable. We had also convinced 
ourselves that by supporting PHIGS efficiently, we 
would automatically provide efficient support for 
GKS-3D~ It was not a goal that the PEX protocol 
map one-to-one with the PHIGS functional speci
fication. Had this been a goal, we would have been 
incapable of meeting our first two requirements. 

Establish the Definition of the PEX Protocol Like 
any development project, PEX had time· pressure. 
The group that met at MIT in June 1987 decided on 
an aggressive six-month schedule that would see 
the PEX protocol finalized by December 1987. In an 
effort to avoid large committee involvement that 
would slow down development, a small working 
group, the PEX architecture team, was chosen to 
complete the PEX protocol specification. This 
group, with representatives in Massachusetts, New 
Hampshire, Colorado, and Northern California met 
several times during the revision period and con
ducted most discussions through electronic mail 
or by telephone. Without the ability to com
municate efficiently by electronic mail, the revision 
process undoubtedly would have taken much 
longer than it did. Through the use of electronic 
mail, it was possible to formulate, discuss, and 
resolve issues without the need for continual face
to-face meetings. 

Acceptance by the X Community Rather than 
develop still another proprietary three-dimensional 
interface, it was a goal that we achieve consensus 
within the X community for a three-dimensional 
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extension that would be widely supported and 
available. Due to the network transparent nature of 
X, this extension would provide customers with 
true binary portability for their three-dimensional 
applications. Such portability was not currently 
possible (nor will it be possible) solely with graphics 
standards such as PHIGS. 

As in most software projects, extensibility, 
ease of use, simplicity, and consistency of the net
work interface were also considered important 
architectural goals. 

PEX System Model 

Data Flow 
X is designed as a client/server system, as shown in 
Figure 1. An X server process, containing the core 
X server and any extensions, runs continuously on 
each display system in a network. The server is 
responsible for receiving and executing requests 
from all clients and for reporting asynchronous 
events back to any interested clients. Application 
processes (clients) can establish a connection and 
send requests to any device on the network that 
is executing an X server process. Communication 
between client and server is carried out using some 
form of existing interprocess communication 
protocol, such as TCP/IP, DECnet, or UNIX sockets. 
The nature of the information that is passed 
between X clients and servers is strictly defined 
by the X protocol specification and the protocol 
specifications for any extensions.9 

The strict definition of the X communication 
protocol provides the concept of network transpar-
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Figure 1 XIPEX System Model 
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ency. If all client and server processes strictly 
adhere to the protocol, a client process on one 
machine can send requests to a server process on 
any machine on the network, regardless of the CPU, 
operating system, or architecture of either of the 
two machines. Similarly, a server process can exe
cute requests issued by any client on the network, 
as long as the requests conform to the X protocol. 
This capability can make the fact that the two 
machines are connected through a network trans
parent to the end user. Client applications can be 
written in such a way that they can access any 
X server on the network without being rewritten, 
recompiled, or even relinked. 

Figure 1 also shows how data flows from 
applications down to the target display device. It is 
possible to build either PHIGS/PHIGS+ or GKS-30 
programming interface libraries on top of PEX. 
An application can make calls to PHIGS/PHIGS+, 
GKS-30, Xlib, and X Toolkit libraries.Kl·11

•
12 These 

libraries, in turn, format PEX and X protocol 
request packets and send them to the designated 
server process to be executed. The core X server 
receives all incoming requests and hands PEX 
requests over to the PEX server extension to be pro
cessed. The X server and the PEX server extension 
are capable of issuing commands that cause primi
tives to be drawn on the display screen. Part of the 
difficulty in designing PEX was in optimizing this 
flow of data from the application, across the net
work interface, and down to the hardware for a per
formance range of devices. 

Several problems arise in passing data in a hetero
geneous network environment. The first, handled 
by X itself, is the potential discrepancy in the byte
ordering technique that is used on client and server 
CPUs. In X, the server performs byte swapping, if 
necessary, on incoming client data. Thus the byte 
swapping problem is solved by definition, and the 
PEX server extension must perform byte swapping 
on PEX requests as necessary. One of the issues on 
which we wavered considerably during the course 
of designing PEX was the method to be used to 
overcome potential differences in floating point 
format between client and server CPUs, a problem 
that X successfully avoided. It was clearly impor
tant to allow clients and servers to send floating 
point values back and forth, but it was unclear as to 
the most efficient mechanism to support this capa
bility. This problem did not seem to be identical to 
the byte swapping problem since it was conceivable 
that a device might be capable of dealing efficiently 
with more than one floating point format. Conse-
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quently, we included a PEX request that reports the 
floating point types that are supported by the 
server. Clients are expected to send floating point 
data to the server in one of the formats supported 
by the server and to perform a translation them
selves, if necessary. Color formats are treated 
similarly. A server may be efficient at dealing with 
color values that are defined as RGB floating point 
values, RGB short integers, RGB bytes, HLS float
ing point values, HSV floating point values, or CIE 
floating point values. The client may query the 
color formats that are supported by the server, 
and convert color values (if necessary) to one of the 
supported types. 

Execution Semantics 
PEX operations obey the execution semantics 
defined by X. These state that: 

• Each request is considered to be atomic 
(indivisible) 

• There is no implied scheduling between requests 
received over separate connections 

• Requests received over a single connection are 
executed in the order they are received 

Most X server implementations (including the 
sample server from MIT) are single-threaded and, 
thus, follow the X execution semantics by defini
tion. The semantics of various PEX operations have 
been carefully defined to allow servers to be imple
mented with internal concurrency and yet preserve 
the X execution semantics. 

PEX operations, such as structure traversal and 
rendering, may take considerable time to complete 
that can lead to unacceptable behavior from a 
client's point of view. For example, a client that 
initiates a structure traversal can monopolize the 
server's ability to process requests, effectively 
preventing another client from doing simple text 
editing in another window. Multithreaded or 
yielding servers may avoid this behavior by allow
ing other requests to be processed while lengthy 
operations are occurring. A connection blocks if a 
request requires access to a resource that is already 
engaged in a lengthy operation. After the lengthy 
operation is completed, the connection unblocks 
and the request is processed. For instance, if a client 
initiates a structure traversal and then reads back 
the pixels using a core X request, the "read pixels" 
operation does not occur until the traversal has 
completed. On the other hand, an application 
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performing lengthy rendering operations and a 
text editing application may be supported simul
taneously if they are operating in independent 
windows on the display. 

Resources 
Like X itself, the PEX architecture is object-oriented, 
creating an environment that is flexible as well as 
extensible. Clients can create, free, and manipulate 
objects called resources. Partitioning the desired 
functionality into resource types was a difficult 
task. Earlier versions of PEX attempted to embed 
some of the functionality into existing X resource 
types. For example, we proposed adding three
dimensional rendering capability to X window 
and pixmap resources. We ultimately decided that 
it was better to create PEX-specific resource 
types than to burden X resources with additional 
attributes and semantics. The resources defined for 
PEXare 

• Lookup tables 

• Pipeline contexts 

• Renderers 

• Namesets 

• Structures 

• Search contexts 

• PHIGS workstations 

• Pick measures 

• PEXfonts 

Lookup table resources are used to maintain lists 
of attributes, such as those used for viewing, depth 
cuing, illumination computations, and defining the 
appearance of output primitives. A few generic PEX 
requests are used to support the numerous table and 
bundle functions defined in the PHIGS and PHIGS+ 
interfaces. 

Pipeline contexts are used to provide the initial 
state for the PEX rendering pipeline. Every attribute 
that affects the behavior of the rendering pipeline is 
defined as an attribute of the pipeline context. 

Renderers encapsulate the functionality of a 
structure traverser and a rendering pipeline. 
Renderers are responsible for converting output 
primitive commands into raster information that 
can be displayed. 

Name set resources contain arbitrary length lists 
of identifiers that can be used to provide condi-
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tional control over operations, such as highlighting, 
visibility, structure searching, and detectability for 
picking purposes. 

Structures are simply lists of PEX output com
mands whose execution has been deferred. 
PEX supports hierarchical display lists, since PEX 
structures can call other structures. 

Search context resources allow clients to estab
lish the parameters for performing an incremental 
spatial search in world coordinates on output 
primitives stored in a structure hierarchy. 

The PHIGS abstraction of a workstation is sup
ported by the PHIGS workstation resource. These 
resources conceptually have a built-in renderer and 
implement the PHIGS notions of pick devices, 
picture correctness, deferral modes, posted struc
tures and priorities, and view priorities. 

The pick measure resource assists the PHIGS 
workstation resource in implementing PHIGS pick
ing (hit-testing) semantics. Clients are allowed to 
establish the parameters of the picking operation by 
modifying the initial state of a pick measure 
resource, and pick results are obtained by querying 
the attributes of the pick measure. 

Finally, PEX fonts have been defined to facili
tate three-dimensional transformations on text 
primitives. 

Rendering 
The ability to transform geometric and color infor
mation into raster information (pixel locations and 
pixel values) is embodied in a PEX resource called a 
renderer, as shown in Figure 2. Conceptually, ren
derers contain a structure traverser (discussed in a 
subsequent section), a state block that defines an 
instance of a rendering pipeline, the resource iden
tification of the drawable element (window or 
pixmap) to which raster data will be directed, and 
an associated buffer of some sort for doing visible 
surface computations. Clients may associate various 
lookup table resources with a renderer. Certain 
attributes that define the rendering pipeline (e.g., 
viewing, depth cuing, light source information) 
may be obtained indirectly from these lookup 
tables. Name set resources may also be associated 
with renderers in order to provide control over 
those output primitives that are to be highlighted or 
treated as invisible. 

A rendering pipeline can process output com
mands. Output commands consist of: commands 
that modify attributes that affect all primitives (e.g. , 
set view index), commands that modify attributes 
of a certain class of output primitive (e.g., set line 
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Figure 2 Renderer Resource 

color), and commands that contain geometric 
information that is to be rendered (e.g., draw poly
line). Output primitives in PEX include the PHIGS 

primitives marker, polyline, text, annotation text, 
fill area (polygon), fill area set (polygon with holes), 
cell array, and the PHIGS+ extensions to these 
primitives; plus the PHIGS+ primitives polyhedron 
(indexed polygons), triangle strip, quadrilateral 
mesh, parametric polynomial curves and surfaces, 
and trimmed nonuniform B-spline curves and 
surfaces. 

A renderer is made ready for rendering by an 
explicit "begin rendering" command. This com
mand provides an opportunity for the renderer 
to allocate and initialize hidden surface buffers 
depending on the hidden surface algorithm to be 
used, to copy initial rendering pipeline attributes 
from a pipeline context, and to create a procedure 
vector based on the root and depth of the target 
drawable for efficient processing of output com
mands. An "end rendering" request causes any 
buffered primitives to be rendered. A renderer 
immediately processes any output commands it 
receives. Clients that maintain their own display 
lists may send output commands to a PEX renderer 
for immediate execution. Alternatively, clients can 
build up lists of output commands in structure 
resources for later execution by a renderer. 

Vertices, control points, and normals that pass 
through the PEX rendering pipeline are transformed 
by the stages defined in Figure 3. These stages are 
identical to the PHIGS transformation pipeline. 
First, geometry is transformed according to the 
current composite modeling transformation and 
clipped according to the modeling clipping volume. 
Geometry is then further transformed by the view 
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orientation (viewing) and view mapping (projec
tion) transformations. Finally, clipping is performed 
and the resulting geometry is transformed into win
dow coordinates, and then into physical device 
coordinates. 

PEX greatly expands the capabilities of the PHIGS 

rendering pipeline by defining a series of color 
transformations that must also occur. Just as geo
metry information is ultimately transformed to 
pixel positions, colors must also be transformed 
into physically realizable pixel values. A color that is 
passed to PEX as part of a request consists of a color 
type/color value pair. There are two fundamental 
color types in PEX: direct and indexed. If the color 
type is direct, the color value may be in one of a 
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Figure 3 Geometry Transformation Stages of the 
Rendering Pipeline 
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number of supported color formats (e.g., RGB float
ing point, HLS floating point, etc.). If the color type 
is indexed, the color value is a 16-bit integer value. 
As shown in Figure 4, the first step of the color 
transformation pipeline is to dereference indexed 
colors using the color lookup table associated with 
the renderer. Within the rendering pipeline, all 
color computations (e.g., illumination, depth cuing, 
clipping) are carried out in an implementation
dependent true color space, even for devices that 
have a monochromic display. 

After dereferencing, color values and geometry 
are clipped together during the modeling clipping 
stage. Light sources, geometry, the object's intrinsic 
color, and the current reflection model are used to 
compute the color of the illuminated object. The 
result is further modified according to the current 
depth-cuing parameters. Colors and geometry are 
then simultaneously clipped to a three-dimensional 
volume for display purposes. Color approximation, 
the final color transformation step, converts color 

INPUT COLOR 

COLOR 
DEREFERENCING 

INTRINSIC COLOR 

MODELING 
CLIPPING 

CLIPPED INTRINSIC COLOR 

LIGHT SOURCE SHADING 
COMPUTATION 

SHADED COLOR 

DEPTH-CUING 
COMPUTATION 

DEPTH-CUED COLOR 

CLIPPING 

CLIPPED COLOR 

COLOR 
APPROXIMATION 

PHYSICAL DEVICE COLOR 

Figure 4 Color Tra-nsformation Stages of the 
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values from the true color, rendering pipeline for
mat into pixel values that the device is capable of 
displaying. Clients must provide renderers with 
information on how to perform the quantization 
through the use of a color approximation table. This 
table contains information to compensate for the 
drawable element's visual type and for the contents 
of the color map associated with the device. At this 
step dithering or conversion to monochromic 
intensity values can be performed to produce out
put onto drawable elements with limited color 
capabilities. 

Except for the addition of color, there were few 
issues surrounding the design of the rendering 
pipeline since it was based on the transformation 
pipeline contained in PHIGS. The major decision, 
whether the majority of the rendering pipeline 
was above the network interface or below it, was 
made early in the project. Our first prototype, 
X3lib, partitioned the problem so that all floating 
point intensive transformation, shading, and three
dimensional clipping operations were performed 
by the client CPU , and scan conversion and pixel 
copy operations were performed by the server CPU. 

This partitioning was ideal for our development 
environment, which consisted of a VAX 8650 
system as our main development machine and 
MicroVAX GPX workstations acting as display 
servers. Since the GPX workstation has no built-in 
hardware to support structure traversal or floating 
point intensive three-dimensional graphics opera
tions, and since we were dealing with fairly simple 
models, it made sense to do these things on the 
faster machine. A proposal calls for partitioning the 
problem in a fashion very similar to that of the 
X3lib project, since such a panitioning also works 
well in an environment where the client and server 
processes are closely coupled using a high band
width connection, as would be possible on the 
Titan superworkstation. 

PEX supports the entire rendering pipeline in the 
server extension for two major reasons: to reduce 
the amount of data flowing back and forth across 
the network interface and to allow server extension 
implementers to take advantage of any built-in 
rendering hardware support that may exist in the 
target device. The connection bandwidth assump
tion is a critical one. The attempt was to design 
PEX so that it would perform reasonably well in 
an environment where the client/server communi
cation occurs over a (comparatively) slow network 
connection. Since the network connection can 
form the performance bottleneck in such an 
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environment, it is important to reduce the amount 
of data that must be transmitted. As an illustra
tion, transferring the control points of a B-spline 
surface would be faster than transferring the list of 
polygons generated by tessellating the surface. 

Structures 
A structure resource consists of a list of output 
commands whose execution has been deferred. 
PEX structures are hierarchical, in that a structure 
may include commands to execute other struc
tures. Structure resources are intended to be device
independent, allowing the same structure to be 
displayed on screens with very different character
istics (e.g., monochrome versus color), albeit with a 
very different appearance. Unlike PHIGS, which 
maintains the concept of a single open structure for 
the purposes of adding, deleting, or changing struc
ture elements, PEX structures each contain an ele
ment pointer, making each structure available for 
editing at any time. In PEX, nonexistent structures 
are not created automatically as in PHIGS. PEX struc
ture resources must be created explicitly, implying 
that it is left to the PHIGS client library to detect ref
erences to nonexistent structures and explicitly cre
ate the PEX structures. This requirement is not 
considered a problem since the PHIGS library must 
maintain a list of created structure resources to 
perform the application name-to-resource iden
tification mapping. like any X resource, structure 
resources may be shared by cooperating clients. 
For example, a library of machine parts can be 
downloaded into the server and accessed by several 
clients. 

Structure Traversal 
Structure traversal is the process of flattening a 
hierarchical database into a single stream of ren
dering requests. PEX has several different ways to 
support structure traversal. To reduce network 
traffic and to allow implementers to take advantage 
of any built-in hardware support for structure 
traversal, PEX provides support for structures on 
the server side of the network interface, as shown in 
Figure 5a. To perform a traversal of a server-side 
structure network, the client sends a "render net
work" request. A renderer resource then traverses 
the specified structure network and internally gen
erates a stream of output commands for processing 
by the rendering pipeline. As a result, a client may 
convert its database into PEX structure resources to 
regenerate the displayed image at any time without 
retransmitting the entire database. 
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While many graphics devices contain built-in 
support for display lists, many other devices have 
extremely limited capability to support structures 
in the server. Serious main-memory constraints in a 
system without dedicated structure memory could 
cripple performance if the only way to do graphics 
through PEX was to create structures and traverse 
them. Therefore, as shown in Figure 5b, PEX pro
vides immediate mode, or client-side traversal 
support. Here, the client has the responsibility of 
maintaining its own database and issuing output 
commands directly to a renderer to regenerate the 
image. The client is also provided with hooks to 
save and restore the state of the rendering pipeline 
during the traversal of the database. An additional 
benefit of immediate mode capability is that it may 
be used to support the GKS and GKS-30 notion 
of unretained segments. Furthermore, since the 
capability to create user-defined data structures in 
the server is not provided, immediate mode is 
beneficial to applications that cannot take advan
tage of PEX structures. Immediate mode capability 
allows such applications to maintain their unique 
data structures themselves and issue immediate 
mode requests to perform output. 

Since structures may also be executed with an 
immediate mode execute structure output com
mand, a client may choose to keep part of its data
base in server-side structure resources and retain 
part on the client side, as shown in Figure 5c. This 
allows a client to cache large or frequently used 
structures in the server. 

Figure 5d illustrates the final option for structure 
traversal, which is provided by the PHIGS work
station resource. While the other methods attempt 
to provide a mechanism for assisting with the 
traversal of an application's graphical database, this 
method provides a way for applications to relin
quish direct control of the traversal operation to the 
server. It is possible to designate a list of structure 
networks asposted to (associated with) a PHIGS 

workstation resource. PEX includes requests that 
can be used to explicitly retraverse a PHIGS work
station's list of posted structure networks to regen
erate a displayed image. Furthermore, requests that 
affect the picture's correctness (e.g., modifications 
to a posted structure) may cause the displayed 
image to be regenerated implicitly 

Supporting PH/GS 
Providing a rich, flexible environment to support 
PHIGS was an important goal of PEX. However, 
PHIGS and X have fundamentally different design 
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philosophies, and resolving these differences in the 
PEX design was not always easy. The fundamental 
tenet of X is that the system must provide hooks 
(mechanisms) rather than religion (policy).1 The 
goal was to design PEX so that it provided hooks 
to support PHIGS, but PHIGS defines functionality 
that is not easily decomposed into modular build
ing blocks. A further complication is that certain 
capabilities (e.g., highlighting) are very hardware
specific, and it is impossible to define a general 
mechanism that will address all of the methods that 
are in use in the industry. For such things, there was 
no alternative to leaving the PEX specification as 
general as the PHIGS specification to allow clients to 
take advantage of the various hardware-assisted 
methods that have been developed. 

PHIGS is based on the concepts of the workstation 
and the central structure store, both of which are 
defined in a way that is less than ideally suited to the 
network windowing environment of X. The PHIGS 
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concept of structures maps rather readily into the 
X concept of resources that can be created, manipu
lated, and deleted. However, the possibility that an 
application may be separated from the structures it 
has created by a slow network connection is not 
explicitly addressed in the PHIGS model. Using PEX, 

the PHIGS central structure store is implemented as 
a collection of client-side or server-side structures 
that the PHIGS client library manages. In this 
respect, PEX follows the lead of X by providing 
mechanism, and leaves it to the PHIGS client library 
to map its abstraction of a central structure store 
onto the capabilities provided by PEX. 

The component that caused the most difficulty 
was the PHIGS abstraction of a workstation, which 
is defined as a device with a single, static-sized 
display and one or more input devices. The PHIGS 

interface does not address the possibility of outside 
agents (such as window managers) that may alter 
the size or position of an application's windows, but 
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it is possible for the PHIGS client library to handle 
the dynamics of windows in X without reporting 
such occurrences back to PHIGS applications. The 
PHIGS workstation abstraction also states that the 
workstation has the ability to control when and 
how picture changes are visualized. For example, a 
PHIGS application can suggest that the workstation 
simulate changes when possible rather than per
form another rendering of the entire picture. PHIGS 
does not specify how these changes should be 
simulated, only that they can be simulated if and 
when the workstation finds it convenient to do so. 
This PHIGS attitude of let the workstation decide is 
exactly the opposite of the X philosophy of let the 
client decide. 

Rather than completely discard the philosophy 
ofX in order to support PHIGS, the compromise that 
was reached was to provide a resource devoted to 
supporting all of the attributes and state of the 
PHIGS workstation abstraction. The PHIGS work
station resource has the same functionality as a 
renderer resource, but also supports the PHIGS 
workstation abstraction's concepts of posted struc
tures, picture correctness, deferral and modifica
tion modes, view priorities, and picking. 

This resource requires additional bookkeeping to 
determine whether or not the displayed image is 
correct. Because it has a built-in renderer and struc
ture traverser, it can automatically regenerate the 
image when changes have been made to resources 
that affect the displayed image. Since the PHIGS 
workstation resource is capable of regenerating 
the image implicitly, it must also maintain a list 
of structures that are to be traversed whenever 
regeneration occurs. 

Supporting PHIGS virtual input devices also 
involved some trade-offs. In X, all input events 
are sent up to the clients for processing. In PHIGS, 
the workstation handles all input. Due to general 
experience with X and our work with the proto
type three-dimensional extension, it was believed 
that most PHIGS input capabilities could be layered 
on top of existing X input mechanisms. PHIGS 
"locator" and "stroke" input may be implemented 
using the X pointing device, but need to map device 
coordinates to world coordinates. The PHIGS work
station supports a request to do such a mapping. 
PEX includes support for picking operations, since 
preselection and selection highlighting are usually 
hardware-dependent and must be performed 
efficiently to be useful. The PEX pick measure 
resource is used to measure output primitives to 
determine which ones satisfy a specific set of selec-
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tion criteria. A device-dependent input record that 
is passed to a pick measure initiates the picking 
operation. It is hoped that at least one common 
input record will be supported by all PEX imple
mentations (implementations are free to support 
others as well) so that PEX clients may avoid one 
of the portability problems that plague PHIGS 
applications. 

Open Issues 

Lengthy Operations 
Certain PEX requests, such as a complete structure 
traversal, initiate operations that can take a long 
time, particularly on devices with little or no hard
ware support for three-dimensional graphics 
operations. However, this problem is not unique to 
PEX. Certain core X requests (get/put pixmaps, 
draw many polylines/polygons) and requests from 
other X extensions can also take considerable time. 
Although the ability to execute these types of 
requests is useful, it is also desirable to execute 
requests on other connections while the lengthy 
operations are occurring. Furthermore, it is often 
necessary to terminate (abort) a lengthy operation 
that has been started. 

Whether or not a server supports concurrency is 
an implementation detail that should not be visible 
to clients above the network interface. Conse
quently, the design of the PEX protocol does not 
prohibit either single threaded or multithreaded 
server implementations. How well PEX supports 
multithreaded implementations cannot accurately 
be gauged until a multithreaded X server proposal 
(or implementation) is publicly available. The addi
tion of an "abort operation" request that is specific 
to PEX is currently under consideration. If an abort 
mechanism is designed that works across X and all 
extensions, it can be considered in a future revision 
ofPEX. 

Input 
There is still some question as to whether the use 
of the X input mechanisms will be sufficient to 
meet three-dimensional interactivity requirements. 
Obtaining the mouse position from X and using it 
as input to a PEX picking request requires a net
work round trip. The possibility of defining tightly 
coupled input loops within the server has been 
briefly explored. Interest has also been expressed in 
supporting input devices other than the standard 
X pointing device. It seems likely that these issues 
will be investigated as part of a general effort to 
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extend the input capabilities of X. Until then, 
because of general experience with X and with the 
three-dimensional prototype extension, we believe 
the X input mechanisms will suffice. 

Fonts 
The type of font required for PHIGS text support 
requires more information than is present in 
X fonts. PHIGS text fonts must be fully transform
able, hence they require a representation in some 
normalized coordinate space. Although the type of 
fonts that are required for PHIGS support may be 
useful to other extensions, such fonts were defined 
only within the aegis of PEX. This definition made it 
possible to control the design of the font support 
for PEX and the schedule for such support indepen
dently of other extension efforts. If PEX fonts prove 
to be generally useful, a separate extension could be 
defined to support them in the future. 

Double Buffering 
Certain applications find the use of double buffer
ing, or multibuffering, to be necessary to hide the 
construction of displayed images or to produce 
flicker-free animation. Neither PHIGS nor PHIGS+ 
explicitly includes double-buffering capabilities, 
although some implementations of these stan
dards include double buffering implicitly or as an 
extension. X itself does not include support for dou
ble buffering beyond drawing to an offscreen pix 
map and copying the pixmap to a visible window. 
Double buffering in PEX has been deferred as a 
general X problem. Several proposals for double 
buffering in X already exist, and work is underway 
to establish a general solution, which may also 
include accessing overlay planes and stereoscopic 
viewing.13 

Z-buffers 
Most (but not all) of today's high-performance 
rendering systems are based on some form of hard
ware 2-buffer support. Consequently, there has 
been a strong temptation to expose 2-buffer capa
bilities to clients. This temptation has been resisted, 
mostly on the grounds that exposing such capabil
ities would lead to a great many device-dependent 
applications. However, as proposals for including 
double-buffering support in X are firmed up, it may 
be advantageous to incorporate additional 2-buffer 
semantics and capabilities, such as defining initial Z 
values and reading them back. 
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Conclusion 
PEX is an extension to the X Window System that 
has been designed to provide the capabilities of 
PHIGS and other three-dimensional graphics stan
dards in the X environment. We consider the origi
nal design goals of PEX to have been well met. With 
PEX, it is possible to create windows on the display 
that function exactly as independent, three-dimen
sional workstations. A single workstation device 
supporting PEX can maintain several virtual three
dimensional workstations on its screen simulta
neously, and resources can be shared among these 
virtual workstations to reduce overall server load. 
PEX can be implemented, with varying levels of per
formance, on a wide range of raster graphics work
stations. Client applications communicate with the 
PEX server extension through a network connec
tion, which makes the fact that a network separates 
the client and server CPUs transparent to the end 
user. This network transparency provides the possi
bility of true applications portability within the 
X environment. Application code need not be 
rewritten, recompiled, or even relinked to take 
advantage of a new workstation that supports X 
andPEX. 

The length of time between initial proposal and 
public acceptance (six months) is unprecedented in 
the computer graphics industry. With a public 
implementation effort in progress, it is anticipated 
that PEX will become widely available, thus giving 
users windowing support and three-dimensional 
graphics capability in a well-integrated, industry
standard environment for the first time. 
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Christopher A. Kent I 

XDPS: A Display 
Postscript System 
Extension for DECwindows 

XDPS extends the Display Postscript System into the DECwindows environment. 
1be extension integrates the capabilities of both the X imaging model within 
DECwindows and the Postscript language for screen display-Display Postscript. 
Designers resolved differences between X and Postscript systems in order to add 
a complete Postscript interpreter to the DECwindows seroer and a protocol that 
defines application access. Most significant among the differences encountered was 
each systems approach to graphical attributes, coordinate systems, color strategies, 
and communications models. In their implementation of the extension protocol 
and merger of the two graphics systems, the designers' overall goal was to provide 
applications programmers the best features of each system without imposing 
constraints on their use. 

The Display Postscript System is Adobe Systems 
Incorporated's implementation of the Postscript 
language for workstations. The subject of this 
paper, XDPS, is an extension to the X protocol 
that brings the Display Postscript system to the 
DECwindows program. (The DECwindows pro
gram is Digital's implementation of the X Window 
System.) The extension is the result of a joint effort 
by Digital and Adobe. 

XDPS makes available the full capabilities of the 
Postscript language and adapts these capabilities 
for screen display, as opposed to printed pages. Fur
ther, XDPS fully integrates the Postscript imaging 
model with the basic X imaging model. Applica
tions can freely mix standard X graphics requests 
with XDPS requests. Thus the application pro
grammer can use either X graphics commands or 
Postscript programs as appropriate. 

XDPS is designed to be complementary to X. It 
provides new capabilities that are missing from the 
basic X imaging model. With XDPS, applications 
can show text with arbitrarily rotated and scaled 
fonts, ignore resolution and color model differ
ences, manipulate the coordinate system to be the 
most convenient one, and deal more easily with 
complex curves and shapes. Applications have 
access to the entire Adobe font library. Application 
writers can use Postscript for all graphics and be 
assured that what is seen on the screen is exactly 
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what will be seen when the same graphics are 
printed on a Postscript printer. 

This paper discusses the design decisions made in 
the development of XDPS and describes the major 
features of the final extension. An overview of the 
Display Postscript System's features is presented 
as a preface to the main discussion. (All instances 
of the name Postscript in this paper are references 
to the Postscript language as defined by Adobe 
Systems Incorporated, unless otherwise stated.) 

Features of the Display Postscript 
System 
PostScript is the de facto industry standard page
description language. Unlike most of its predeces
sors, a PostScript file does not describe a set of bits 
on a page. Rather, it is a program that is interpreted 
in the printer. The effect of this interpretation is 
that some bits get "painted" on the page. In this 
manner, the interpreter, rather than the program, 
can handle details concerning the device, such as 
output resolution, spot size, and color model. The 
same program can be used to describe a page on a 
300 dpi (dot per inch) bitonal printer and a 1200 dpi 
full-color film recorder. Each device's interpreter 
can be tuned to make the output look as good as 
possible. 

The basic concept of the Postscript imaging 
model is called "stencil and paint." The program-
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mer constructs an arbitrarily complex stencil 
(known as a path) and then squeezes paint through 
it. Paint can be a single color, a pattern, or a scanned 
image. It is the interpreter's job to decide exactly 
which bits get painted. The programmer can con
centrate on describing the desired image, rather 
than on the details of the device. 

The Display PostScript System (DPS} is an imple
mentation of Postscript for workstation displays. 
It retains all the features of the PostScript language, 
but serves an environment quite different from 
that of printers. Screen displays require interactive 
manipulation of graphics, frequent redisplays, com
plicated clipping and repainting to accommodate 
overlapping, movable and resizable windows, and 
simultaneous display of complex images in multiple 
windows. 

The Display Postscript System adds a number of 
features to the Postscript language.1•

2
•3 The major 

new features are as follows: 

• Multiple execution contexts. A context can be 
thought of as a virtual printer, or a separate pro
cess. A context is an instance of the interpreter 
with its own input stream and output device. 
Several contexts can share the same output 
device. In its most simple usage, several appli
cations can simultaneously draw to the work
station display. In a more complicated usage, 
several contexts can draw to the same window, 
and each context is responsible for managing a 
portion of the window's appearance. 

• Multiprocessing support. Given multiple con
texts, application programmers need mecha
nisms to control them. DPS provides a range 
of mechanisms, including fork, join, detach, 
and monitor. 

• Shared program memory (VM}. Shared VM is 
an implementation of shared memory for the 
multiple contexts. One context can define a 
variable, procedure, or resource (such as a font) 
in shared VM and allow it to be used by other 
contexts in the system. 

• Garbage collection. In the Display Postscript 
System, programs are long lived in comparison 
to the duration of Postscript print jobs. Conse
quently, the system requires more dynamic 
memory management. DPS provides a garbage 
collector that runs automatically and can be 
activated at any time by programs. 

• Graphics state objects. The Display Postscript 
System adds the ability to encapsulate the 

D igital Tecbnicaljournal Vol. 2 No. 3 Summer 1990 

Postscript graphics state in an object. With this 
mechanism, application programs can switch 
between several graphics states with a single 
command, rather than rebuilding the graphics 
state every time it is needed or using the standard 
graphics state stack mechanism. 

• Screen fonts. PostScript allows the user to paint 
text with fonts at any size or orientation. Fonts 
are described in terms of outlines, and the inter
preter scan converts these outlines into rasters of 
the appropriate size and orientation. At large 
point sizes and printer resolutions, this tech
nique works very well. At smaller point sizes 
on low-resolution devices, the output is not as 
clearly defined as one would like. To enhance the 
readability of the resulting text in such cases, the 
Display PostScript System provides a mechanism 
to use tuned bitmaps for characters at certain 
sizes and orientations instead of the output of the 
scan converter. 

• Optimized rendering operators. Many of the 
operations in window system applications 
involve operations on rectangles. The Display 
Postscript System provides optimized versions 
of several operators (such as fill and stroke) 
that execute more quickly on rectangles than on 
general paths. 

• User paths. DPS provides a mechanism for the 
user to cache paths that are to be used more than 
once, and several operators for working with 
these user paths. 

Relationship oftbe Display Postscript 
System and DECwindows 
The Display Postscript System, described above, is 
not a window system. Instead, it is a component 
that can be integrated into any window system. 
Vendors that license the Display PostScript System 
from Adobe Systems must decide how best to inte
grate it into their window system offerings. Our 
decision was to use the X protocol extension mech
anism to add the Postscript imaging model to the 
DECwindows served 

X applications (also known as clients) commun
icate with the server by sending a stream of asyn
chronous requests and receiving back a stream of 
results and events. The core set of requests covers 
all facets of window manipulation (geometry, loca
tion, visibility) and provides a simple, pixel-based 
graphical model.5 

Extensions add to the requests in the protocol, 
and therefore add to the functionality available to 
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applications. XDPS adds a complete Postscript 
interpreter to the DECwindows server, and the 
extension's protocol defines how applications can 
access and control the interpreter's operation. 

In particular, applications can send PostScript 
programs to the server and have the output appear 
in a window or a pixmap. Core X requests and DPS 
painting requests can be intermixed in the same 
communications stream. Our task was to define the 
semantics of the extension to the protocol to 
provide the best interplay between the two sets of 
requests. 

X and Postscript have some similarities and dif
ferences that we had to consider when designing 
the protocol. Table 1 compares characteristics of 
X and Postscript. 

The most significant difference between the two 
models is that Postscript is a programming language 
that produces graphical output as a side effect of 
interpretation, whereas X is a window system pro
tocol with explicit graphics requests. In Postscript, 
applications can define procedures to be invoked 
later and can declare variables that have persistent 
values. When invoked, these procedures can take 
an arbitrary amount of time to execute. In X, all 
graphics operations are immediate, and there is 
very little persistent state. 

Further, X has an input model, as well as a 
graphical output model. Applications may elect to 
be notified when certain input events occur or may 
prescribe actions that the server should take on their 
behalf (such as changing cursor shape on window 
boundary crossings). The Display Postscript System 
was not designed to handle input. In designing 
the extension, we had to decide if it was important 
to expose the input processing to the PostScript 
programs running in the server. 

Postscript allows users access to the file system 
for purposes of file storage and retrieval, whereas 
the X protocol allows no such access. We had to 
decide how to trade off the convenience that file 
access provides with file security. 

X is pixel based; in Postscript, the user can define 
the coordinate system that is most convenient. The 
interpreter then translates to the device. In X, the 
upper left corner of a drawable is always the origin 
of its coordinate system. In PostScript, the user can 
define the origin to be anywhere. As described fur
ther in the Coordinate Systems section, our task was 
to determine how the two coordinate systems 
would interact, which of the models are application 
programs most likely to be used, and which model 
is the least restrictive. 
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Table 1 The Postscript and X Models 

Postscript 

Programming language 
with graphics as a side 
effect 

Page description 
language 
Display output only 

User access to file 
system 

Resolution independent, 
user-defined coordinate 
system 

Coordinate transforms 

Fonts are scalable 

Abstract, "true" color 
model 

Arbitrary execution times 

x 
Window system with 
explicit graphics 
requests 

Windowing interface to 
bitmap graphics device 
Display output and 
input devices 

No explicit access to 
file system 
Resolution-dependent, 
pixel-based system 

No coordinate 
transforms 

Fonts are discrete 

Many device-specific 
color models 
Discrete, fixed-length 
requests 

Postscript is based on a true color model: it 
always attempts to give the user the best color the 
device can provide, using halftone approximations 
(dithering) if necessary.6 X makes no decisions 
about colors and gives little help about colormap 
and color strategies. Instead, X exposes the display 
hardware's color model and forces the application 
to handle the details of rendering colors across dif
ferent display hardware. On most displays, cells in 
the colormap are a scarce resource. The XDPS team 
therefore had to determine how to provide good 
color rendition for Postscript programs while not 
restricting the operation of other applications. Does 
this mean that the PostScript interpreter needs to 
preallocate a colormap for its own use? How can 
the XDPS extension coexist with non-XDPS pro
grams that want to allocate many colors or use the 
plane mask? A discussion of our solution is given 
below in the section Color. 

Finally, X has discrete requests of fixed length. 
All the requests are atomic, and synchronization has 
an exact meaning. The Postscript interpreter com
municates data to the application by means of a 
readable/writable continuous stream of characters. 

Figure 1 shows an example Postscript language 
procedure. When invoked, it reads 10 lines (termi
nated by newlines) from the standard input stream 
currentfile and prints them up the page (initiated by 
show). All the text is painted red (initiated by 1 O O 
setrgbcolor in the example). An application defines 
this procedure, and the Postscript interpreter stores 
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/print10Line5QfText{ %def 
/y 10 def 
1 0 0 5etrgbcolor 
1 1 10 { %for 

def 

currentfil e 5tr readline 
/y y 10 add def 
10 exch moveto 
pop 5how 
for 

Figure I A Simple Postscript Program 

it. Later, the user can invoke the procedure and send 
the 10 lines of text. The server cannot determine, by 
simply examining the input stream, how long the 
lines of text are, because it does not parse the 
incoming Postscript language stream. Contrast this 
procedure with the X protocol mechanism for the 
same task. Each line is displayed by sending an 
explicit PolyText request. The length of each line is 
encoded in the request. The color for each line is 
stored in the X graphics context that is passed with 
each PolyText request . Again, the XDPS team had to 
decide what mechanisms were needed to synchro
nize the applications and the server. Also, how 
would we ensure fair scheduling of all applications? 
These conununications models are quite different. 
How can an application synchronize the X and 
PostScript streams? 

Implementation 
Figure 2 illustrates the integration of the Display 
Postscript System into the DECwindows environ
ment. The portions labeled in italics are the com
ponents that we added. 

In the following sections, we discuss how the 
design questions outlined above were resolved 
in the XDPS system. We begin with the Graphics 
Attributes section to address the most significant 
point of difference between X and Postscript. 

Graphics Attributes 
One goal of the XDPS project was to integrate 
Postscript with the core protocol and preserve the 
principal X tenet: offer mechanism but do not 
impose policy. We wanted applications to be able to 
render into a drawable (a window or a pixmap) 
with both X graphics requests and Postscript pro
grams. What ramifications would this place on the 
protocol? For example, should every XDPS request 
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require an explicit drawable and graphics context? 
First with reference to the X attributes, recall 

that we did not want to enforce policy, but rather 
give the application the tools needed to do the job 
without constraints on how the tools are used. For 
example, an application should be able to draw 
rotated text using DPS and also draw lines using 
X requests. 

Postscript has a graphics state that defines the 
coordinate system, current drawing color, position, 
path, clipping path, font, line style, halftone screen, 
and transfer function. X also has a graphics context 
(known as the Ge). We looked at those attributes of 
the X GC that are not d uplicated by the PostScript 
graphics state. Everything was covered except the 
attributes controlling the clipping area in a window 
(the client clip) and the plane mask. We therefore 
decided to statically associate a GC with each 
Postscript context. When imaging Postscript 
graphics, the extension uses only the following 
X attributes. 

• Clipmask 

• Clip x origin 

• Clip y origin 

• Subwindow mode 

• Planemask 

APPLICATION 

XUI TOOLKIT I I 
I 

DPSL/B 
XT (INTRINSICS) 

XLIB XDPSL/8 

; 
X SERVER 

DPS KERNEL OS 
ADAPTER 

DEV/CE-DEPENDENT DPS 

DEVICE 

Figure 2 1be Extension and the Display 
Postscript System 

OS 
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Everything else comes from the Postscript 
graphics state. This approach allows the application 
to use the same GC for X or Postscript graphics. The 
X requests use all the attributes, e.g., foreground 
and background colors, line style, and join style. 

Coordinate Systems 
The PostScript language, unlike X, allows an appli
cation to specify the drawing origin of the window. 
When a Postscript context is created in XDPS, 

the application specifies the origin relative to 
the X coordinate system in the window. If the win
dow's size is changed, should the extension move 
the Postscript origin, and if so, where? 

We decided that it was most important to keep 
the origin in the same position relative to any 
graphics that the PostScript context has already 
displayed. Graphics created at a later time will then 
line up with any existing graphics. X provides a 
mechanism called bit gravity for this operation. 
We were able to exploit bit gravity without any 
explicit work by the extension. 

Figure 3 shows the effect of resizing a window 
with northwest and southwest window gravity. 
For example, in the first picture in the upper left, 
there is a window with the PostScript context's 
user coordinate origin at the lower left corner. The 
window is resized to be taller and thinner. Since 
the window has northwest gravity (the default 
X origin is northwest), the graphics that already 
appear in the window stay in the same position 
relative to the upper left corner of the window. The 
user coordinate origin stays in the same position 
relative to the upper left corner. In this way, the 
graphics stay in the same position relative to the 
user coordinate origin. 

The second example shows southwest gravity 
set. In this case, the user coordinate origin stays in 
the lower left corner, and the graphic moves lower 
in the window so that it remains the same distance 
from the bottom edge. Again, the graphic retains 
the same position relative to the context's origin. 

Since Postscript programs usually keep the origin 
at the lower left corner of the drawing space, most 
users of XDPS will want to set up their windows to 
use southwest bit gravity. Note that the extension 
does not force this origin. Also, the user's Postscript 
transformation matrix is not changed in any way on 
resize; the resize is seen as a change in clip, not a 
scaling operation. 

Color · 
Our primary decisions relative to color were 
whether the application or the extension would 
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Figure 3 Bit Gravity 

allocate color cells, and what the allocation policy 
would be. The Display PostScript System tries to 
paint with the "best" color available, using a true 
color model. It chooses colors from a smoothly 
shaded cube of RGB colors, or ramp of gray shades, 
stored in a colonnap. When possible, XDPS matches 
actual RGB values if they are already associated with 
a pixel in the colonnap. If an exact match is not 
available, XDPS dithers to approximate the color. 

The default colonnap is a scarce resource and 
must be shared by multiple applications and 
windows. We had to decide how to manage the 
color cells used by the extension. To get high color 
fidelity, we could use many cells. But if the exten
sion fills in most or all of the default colonnap with 
its ramp and cube, the other, non-Postscript appli
cations are not able to allocate from the default 
map. These applications have to allocate out 
of private colonnaps. On displays with only one 
colonnap, the screen become technicolor while 
applications switch between different colonnaps. 

On the other hand, some Postscript applications 
use only a few colors. Filling in the map to get those 
colors exactly right without dithering might be 
wasteful. 

Our solution is to use the standard colonnap 
mechanism described in the Xlib manual.5 The 
intention of the standard colonnap mechanism is to 
provide a shared, filled-in color cube for appli
cations that want to use the true color model. 
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Sharing is the key; multiple applications use the 
same colormap entries to avoid turning the screen 
technicolor. The cells in the map are allocated and 
filled in with the cube; then a property is placed on 
the root window that describes the color cube and 
to which map it corresponds. XDPS applications 
pass this information to the extension when a con
text is created. They can use the standard map 
or create their own, and any visual can be used. 
By default, on an eight-plane display, the exten
sion client library uses a standard colormap of 64 
colors: four colors along each of the red, green, and 
blue axes. 

An XDPS application might know that it only uses 
a few colors and does not want dithering. When it 
draws in orange, for instance, it wants the exact 
RGB values and not a halftone approximation. In 
this case, the application can ask the extension to 
allocate the colors when needed. When creating a 
context, the application specifies a color cube 
(which can be two entries-black and white) and 
indicates that the extension should try to allocate 
colormap cells with the actual RGB values and not 
dither. If the extension tries to allocate a cell and the 
colormap is full, the extension falls back and uses 
the supplied color cube to dither. 

Communication and Synchronization 
As noted earlier, we had to determine how the 
extension protocol would provide synchronization 
between clients and the server. Also, we had to 
ensure fair scheduling of all clients, whether or not 
they use XDPS. This section discusses how we 
layered Postscript's stream-based communication 
model on top of the X request/reply/event model, 
and how the extension protocol resolves these two 
problems. 

The Postscript communication model is a contin
uous stream of bytes. PostScript programs not only 
read but also write a stream to the user. A program 
can write data back. The program 

SharedFontDirectory 
{pop dup == findfont begin Unique!D u end} 
forall 

prints to the standard output stream the name and 
unique identifier (ID) for all fonts known to the 
PostScript interpreter. In contrast, X replies have a 
well-known length. 

The extension layers the PostScript standard out
put stream on top of X events. These events are 32 
bytes long, with the first 5 bytes taken up with 
overhead information which allows events to be 
dispatched by a toolkit. The client library merges 
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these events into the event stream that an XDPS 

program expects. 
Following is a summary of the available protocol 

requests: 

• Initialize (indicate floating point format) 

• Create a context (and specify color cube and 
ramp) 

• Give input (ASCII or binary) 

• Get status of a context 
- Running or needs input 

- Notify when next state change occurs 

• Destroy or interrupt a context 

• Reset a context 

At initialization, the server tells the application 
which floating point representation it prefers, such 
as the IEEE or the VAX format, and the expected byte 
ordering. (All servers must support IEEE.) 

Context creation requires a drawable, a GC (for 
the client clip and plane mask), and the color 
cube and gray ramp required for rendering colors. 
These requests start another thread of execution in 
the server and associate the new context with the 
specified drawable. 

Givelnput, the main request, provides data to the 
standard input stream of the PostScript interpreter. 

GetStatus and Destroy are nonsynchronous, out
of-band requests used to control contexts. 

ResetContext allows the application to handle 
Postscript language exceptions and return the 
interpreter to a known state. 

Given the two different communication models 
for PostScript and X, what does it mean to synchro
nize the PostScript stream and the X request 
stream? The Xlib routine xsync() is a handy tool 
for debugging programs, and has a well-known 
meaning. We wanted to provide the same sort of 
capability for the Postscript stream. 

Suppose the application sends the set of requests 
shown in Figure 4. First, the client creates a 
context, then maps two windows. Next, an XDPS 

request defines the Postscript procedure 
printlOLinesOfText (see Figure I), which reads 
10 newline-terminated strings from the standard 
input stream and prints them up the page. These 
strings are only the definition, so the interpreter just 
saves them and does not execute anything. The 
next request is xsync. Since the Postscript inter
preter is not active, the X request buffer in the 
server is empty, and both streams are synchronized. 
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P1 

X2 

X3 

P4 

XS 

P6 

X7 

Create PS context 

MapWindow 

MapWindow 

Givelnput (define print1 OlinesOfText) 

XSync 

invoke print1 OLinesOfText 

XSync 

Figure 4 Synchronizing X and Postscript 
Request Streams 

At P6, the application invokes printlOLinesOfText. 
The Giveinput requests that follow are interpreted 
as strings to be printed. If the next request is XSync, 
it is not considered a string because it is not an 
extension request. XSync has a different meaning to 
the application at this point. The X request buffer is 
empty; the Postscript interpreter neither has input 
to process nor is it in a "done" state. 

Requests must continue to be processed for this 
application in order for the strings to be displayed. 
Further, XDPS and X requests must be allowed to be 
intermingled. 

We defined the "done" state to mean that the 
interpreter has been given input but has not neces
sarily executed it or finished a loop. In this state, the 
two streams must be synchronized separately
with different requests. In practice, this synchro
nization is not difficult. It allows the application 
to send X requests that monitor and control 
(destroy, reset, interrupt) a context using only 
one connection. We did not want to require an 
application to start a new connection to control 
the context, because this would require too much 
communication overhead. 

The GetStatus request is used to determine the 
state of the interpreter. DPSWaitContext(), a client 
routine, waits for the interpreter to finish execution 
and return a value. The application then knows that 
the interpreter is completely finished processing 
all input. 

Custom X Operators 
We added several operators to the language that the 
PostScript interpreter understands. These operators 
supply the functionality that applications need. 

• clientsync - The clientsync operator causes the 
current context to pause and sends an event 
to the application program. The context stays 
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frozen until the application sends a request to 
resume the context. This operator complements 
DPSWaitContext() in that it allows the Postscript 
program executing in the server to wait for the 
application program. 

• setXgcdrawable, currentXgcdrawable-Applica
tions may wish to switch the output of a single 
XDPS context among several drawables, or 
change the GC. These operators allow Postscript 
programs to set the GC and drawable associated 
with a context and to query the current values. 

• setXgcdrawablecolor, currentXgcdrawablecolor 
- These operators are extended versions of 
setXgcdrawable and currentXgcdrawable, 
respectively. They additionally address color 
rendering parameters in use by the current 
context. 

• setXoffset, currentXoffset- The origin of a con
text's device coordinate system is movable. 
These operators allow the current origin to be 
set or queried. 

• setXrgbactual - The setXrgbactual operator tries 
to allocate a new colormap entry that stores 
the specified color. This allows applications 
that need precise control over colors (that is, 
they never want to dither) to always allocate 
"exact" colors. 

Scheduling 
A user can define a Postscript program of arbitrary 
length, that is, long in length or long in running 
time. X requests, on the other hand, are more 
predictable. The server schedules X requests only if 
all the data is available (i.e., there is a length field at 
the beginning of each packet), and the server knows 
that a client has to be scheduled only when input is 
available. As a result, X requests are always com
pleted before returning to the scheduler. 

The Postscript interpreter in a context is never 
really done, which conflicted with our goal to make 
the scheduling fair. So each context is allowed to 
run for 50 operators, and then returns to the sched
uler. In addition, there is a mechanism that forces 
the interpreter to yield if there is any user input. 
As a result, a client using the extension might be 
rescheduled even when there are no requests in the 
request buffer. 

Therefore, we added yielding to the server sched
uler, as well as the ability to schedule an extension 
application when there is no input pending. The 
Giveinput extension request yields when conven-
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ient (as described above); X requests yield when 
completed, just as before. 

File System Access 
The Postscript language defines file system opera
tors, but allows each device to define access restric
tions. In devices without file systems, for example, 
the LaserWriter and the LPS40, these file system 
operators do not work. 

The X protocol does not provide for explicit 
access to the file system of the machine on which 
the server is running. Access is not allowed both 
because the application's file system might reside 
on another machine and because the server might 
be running with higher access permissions than 
the application. 

We felt that completely disallowing access was 
too restrictive. A balance between open access and 
no access was needed. We allowed access to 
restricted directories, based on the file name. This 
approach lets Postscript programs share image 
data, libraries of procedures, or user-defined fonts, 
but does not allow arbitrary access. There are 
two directories: %tempdir% and %permdir%. 
%tempdir% is emptied every time the server is 
reset (when the user logs out or the machine is 
rebooted), but % permdir% persists. 

The Application Programmer 
Perspective 
For the application programmer, XDPS supplies a 
library layered on top of the protocol. The library 
provides mechanisms for creating, destroying, and 
manipulating contexts. The library is responsible 
for folding extension events into the normal X 
event stream. 

In addition, a utility, pswrap, allows program
mers to define C interfaces to arbitrary Postscript 
language routines. Such an interface is called a 
wrap. We also provide wraps for all the Postscript 
operators. 

Figure 5 is a simple example of a working applica
tion using XDPS. The application opens the display, 
creates a window, creates a Postscript context, 
associates the context with the window, executes 
Postscript code in the context, and manipulates 
the resulting output. 

(Note Figure 5 is a complete working program, 
not a pseudo-code example. As such, some details 
are important to its execution but not to the discus
sion at hand. Also, the program is an example of 
several bad programming practices: it ignores possi-
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ble errors and is not event driven. Again, these 
details are not relevant to this discussion and are 
therefore ignored.) 

This program builds a simple animation. It 
creates 36 frames, each of which contains the string 
"Display Postscript" in a different size, orientation, 
and color. Each of these frames is rendered with 
Postscript operators and saved in an X pixmap. 
After all the rendering is complete, the program 
loops through the 36 frames and copies them to the 
screen without any delay between frames. 

The program begins by opening the display, cre
ating a simple window, and causing the window to 
appear on the screen. The program then creates a 
DPS context; it does not associate the output with 
any drawable. Then the program begins the loop to 
create frames. 

Each time through the loop, the program creates 
a pixmap and attaches the output of the context 
to the pixmap, with the user coordinate system 
origin at the center of the pixmap. The program 
then chooses and scales the Helvetica-bold font, 
clears the pixmap to white, sets the drawing color, 
and paints the text. Finally, when all the frames 
have been created, the program goes into a tight 
display loop. 

The performance of this example program is 
not greatly improved by the combination of 
xcopy Area() and Postscript wraps. The same effect 
could have been achieved by writing a simple 
Postscript program and downloading it into the 
server. A Postscript program can draw text in XDPS 
relatively quickly. Most notable here is that the loop 
that created the frames could have executed any 
PostScript program - even one read from a file. The 
final rate of display would be the same no matter 
which Postscript program were used; only the 
delay between program execution and the display 
of the first frame would vary. A programmer work
ing only with X could not draw rotated text; and a 
programmer using DPS could not write flip-book
style animation. The extension combines these 
capabilities so the bes, features of each system can 
be used. 

Summary 
It has been said that X is a window system, not 
a graphics system. The XDPS extension for the 
DECwindows program provides applications with a 
rich graphical model that can be freely intermixed 
with the core protocol. XDPS provides all the mech
anisms available in the Display Postscript System, 
without imposing constraints on their use. 
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#include <X11/Xlib . h> 
'include <DPS/dpsXclient . h> 
'include <stdio . h> 

'define SIZE 
#define STEP 
#define HSTEP 

mainCargc, argv) 
char ••argv ; 

Display 
Window 
DPSContext 

400 
10 
360/STEP 

*dpy ; 
lll j 

ctx; 

I* had better divide 360 evenly! */ 

Pixmap maps CHSTEPJ, *pMap ; 
int i j 

GC gc ; 

dpy XOpenDisplayC"") ; 
111 = XCreateSimpleWindo111Cdpy 1 RootWindo111Cdpy, 0), 0, 0, SIZE, SIZE, 

1, BlackPixelCdpy, 0), WhitePixelCdpy, 0)) ; 
XMapWindo111Cdpy, 111) ; 
gc • DefaultGCCdpy, 0) ; 
XSetGraphicsExposuresCdpy, gc, False) ; 
ctx. XDPSCreateSimpleContextCdpy, HULL, HULL, 0, 0, 

DPSSetContextCctx); 

forCi • O; i < HSTEP; i++> { 
pMap • &maps[il ; 

HULL, DPSDefaultErrorProc, HULL) ; 

*pMap = XCreatePixmapCdpy , 111, SIZE, SIZE, XDefaultDepthCdpy, 0)) 
PSsetXgcdrawableCXGContextFromGCCgc), *pMap, SIZE/2, SIZE/2) ; 
PSselectfontC"Helvetica-Bold", 12 . 0 + Ci• 0 . 5)) ; 
PSera!epageC) ; 
PSsetrgbcolorC1 . 0 - i*STEP/360 . 0 , 0 ., i*STEP/360 . 0) ; 
PSrotat e C(float) STEP • i); 
PSmovetoCO . O, 0 . 0) ; 
PSsho111C"Display Postscript"); 

DPSWaitContextCctx) ; 
for Ci s O; ; ) { 

XCopyArea Cdpy, mapsCil, 111, gc, 0 , 0 , SIZE, SIZE , 0, 0) ; 
i ++ j 

i X. HSTEP ; 
XFlush(dpy> ; 

Figure 5 A Simple Program Using Core Graphics Requests 
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The Development of 
DECwindows VMS Mail 

In the DECwindows program, the windowing interface to the VMS mail utility 
demonstrates the power of window-based user interfaces. Users can access mail from 
either character-cell terminals or workstations, exchange mail between all Digital 
systems, and exchange compound documents. DECwindows VMS mail also supports 
a common user interface with its counterpart on the ULTRIX system. 1be develop
ment of DECwindows VMS mail illustrates many of the issues faced in developing 
DECwindows applications of moderate size. Further, the development exemplifies 
the more general problems encountered by developers who must integrate applica
tions with components which are themselves in initial development stages. 

Project Start-up 
When Digital began the DECwindows engineering 
effort, a number of applications were identified as 
being critical to its success. One of these applica
tions was electronic mail, which is one of the most 
widely used system utilities. A windowing interface 
to an electronic mail application would be very 
beneficial to the DECwindows program because it 
would help demonstrate the power of window
based user interfaces. 

The Business and Office Systems Engineering 
(BOSE) Group, in conjunction with the Telecom
munications and Networks (TaN) Group, was 
responsible for Digital 's corporate mail strategy. 
Therefore, BOSE was assigned responsibility to 
deliver the DECwindows mail interface. The engi
neering team within BOSE that produced the inter
face is called the Electronic Mail Engineering (EME) 
Group. 

EME began the project by evaluating three exist
ing Digital mail technologies: the ALL-IN-I mail 
component, the PC ALL-IN- I mail component, 
and the VMS mail utility. After carefully studying 
each technology for potential adaptability to the 
DECwindows system, the group opted to produce 
an interface that was compatible with the VMS mail 
utility for several reasons. First, the interface could 
be developed in a relatively short time frame. 
Second, VMS mail is the most widely used mail 
system on VMS systems and the only mail system 
bundled with the VMS operating system. Therefore, 
a DECwindows interface to VMS mail would receive 
the most exposure and would not require addi-
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tional products to be bundled with the VMS system. 
Third, the VMS mail callable interface would pro
vide the necessary electronic mail functionality 
needed and be compatible with the existing 
character-cell terminal interface. Thus, the develop
ers would have to concentrate only on implement
ing the DECwindows user interface. 

Finally, an interface based on VMS mail would 
not be an obstruction to Digital's long-term mail 
strategy. It is the corporate plan to have all of 
Digital's mail systems conform to the Consultative 
Committee on International Telephony and Teleg
raphy ( CCITT) X.400 recommendations for mes
sage handling systems.1 Therefore, the code 
developed for this interface would also serve as the 
basis for the strategic layered product to be built on 
top of the Message Router and the X. 400 standards. 2 

Design Goals and Trade-offs 
First and foremost among the design goals was to 
enable users to access mail either through the 
DECwindows interface or from a character-cell 
terminal. Although we wanted DECwindows to 

be the interface of choice for the workstation 
user, we also acknowledged that sometimes users 
were away from their workstations. The VMS mail 
callable interface ensured that this goal would be 
met. A second goal was to enable users to exchange 
mail between all of Digital's systems, from per
sonal computers to ULTRIX systems to ALL-IN-1 
office systems. The third goal was support in the 
DECwindows VMS mail interface for Digital's 
emerging CDA architecture by allowing users to 
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exchange compound documents. Fourth, we had to 
provide a user interface on VMS systems that was 
consistent with the user interface on ULTRIX 
systems. 

The major constraint of the DECwindows VMS 
mail project was the time available for develop
ment. DECwindows ULTRIX mail and some-of the 
other bundled applications started as applications 
built on X widgets and X Window System version 10 
(XIO). However, the DECwindows VMS mail system 
was developed from scratch. The initial field test of 
the DECwindows system was scheduled for less 
than nine months after the start of the mail project. 
Because of this short time frame, we opted for a 
compromise implementation approach. We used 
the standard features and widgets of the XUI toolkit 
as they became available. We also shared other soft
ware to the greatest extent possible rather than 
develop custom software. This compromise meant 
that the user interface might not be as ideal as we 
would have preferred, however, the mail 
application is consistent with other DECwindows 
applications and conforms to the XUI Style Guide.3 

This paper discusses the development process of 
the DECwindows VMS mail application, hereafter 
referred to as DECwindows mail, in its first two 
functional releases. Version 1 was shipped with 
version 5.1 of the VMS system, and version 2 was 
shipped with the VMS system version 5. 3. The first 
part of the paper focuses on the project definition 
and development. The second part discusses some 
of the specific implementation details. 

Project Definition and Development 
Once the project goals were defined, the next step 
was to assemble a development team. The team 
consisted of a manager, a supervisor, and engineers 
who could work well together and who were will
ing to put in the extra effort and hours that would 
be required. In addition, the BOSE user interface 
{UI) group dedicated the services of one of their 
engineers to help in the design and specification of 
the user interface. 

The next step was to begin training. The 
DECwindows system is based on MIT's X Window 
System version 11 (XU) and X toolkit (Xt) intrinsics 
library, which are written in the C programming 
language.4 

VAX language bindings to these libraries would 
be provided as part of the DECwindows program. 
However, the bindings were not available early 
in our development schedule and were not the 
most natural interface. As a result, we chose to use 

Digital Technical]ournal Vol. 2 No. 3 Summer 1990 

1be Development of DEC windows VMS Mail 

C as our implementation language, although only 
a few engineers on the team had experience 
programming with C. A course on C programming 
and hands-on experience with initial XU-based 
prototypes helped us become more familiar with 
the language. 

We also assessed computer-aided software engi
neering {CASE) tools that we hoped would help 
speed the development of DECwindows mail. We 
analyzed the tools commonly used in Digital, 
including the language sensitive editor {LSE), code 
management system {CMS), and module manage
ment system {MMS), as well as design tools from 
outside vendors. We chose not to use the external 
tools for a number of reasons. We were not con
vinced that they were applicable to the project. The 
tools were also expensive. Further, we had a short 
schedule and could not afford the time required to 
learn to use the tools. 

When the project began, the XUI toolkit was 
still under development and not available for use. 
Therefore, our early prototypes were based on 
MIT's widget set. The prototypes primarily gave us a 
basic understanding of the XII programming inter
face and Xt intrinsics widget architecture. The early 
prototypes also allowed us to become more pro
ficient in coding in C. In addition, we studied the 
user interfaces of mail products on other window
ing systems, including Apple Macintosh products, 
Vsmail (an internal tool layered on VMS mail), as 
well as xmh, an ULTRIX system-based mail handler 
that uses the XIO toolkit. 

1be Initial Interface 
The initial design of the DECwindows mail applica
tion user interface was based on the ideas we gath
ered from other applications, our own experience 
using VMS mail, and suggestions from the BOSE UI 
group. This interface was repeatedly revised as we 
learned more about the capabilities of XU and the 
XUI toolkit. At first, our early screen designs were 
created using the internal Sight tool under the VAX 
workstation software {VWS). However, our UI engi
neer soon took advantage of the tools available on 
the Apple Macintosh to create screen designs using 
SuperPaint and HyperCard. These tools allowed us 
to generate Postscript images of the screens, which 
could then be transferred to the VMS system for 
inclusion in specifications and documentation using 
VAX Document. 

The design of the user interface had progressed 
substantially when management decided that the 
DECwindows interfaces to ULTRIX mail and VMS 
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mail should be identical. We realized immediately 
that it was impractical to develop both interfaces 
from common code because of the completely dif
ferent underlying mail systems. However, the 
abstract functionality provided by both systems 
was close, which would make it possible to pro
duce nearly identical interfaces. Developers and 
managers from both the ULTRIX and VMS develop
ment groups met to design a common interface. We 
all soon learned that the only way that both systems 
could look and behave as identically as possible 
would be to compromise some of the functionality 
in each interface. 

The compromise that caused the most trouble for 
DECwindows VMS mail was delivery of mail. When 
new mail arrives in VMS mail, it is inserted directly 
into the NEWMAIL folder of the user's primary mail 
file, i.e., MAIL. When new mail is read, it is auto
matically refiled to the MAIL folder. However, when 
new mail arrives on the ULTRIX system, the mail 
is held in a system area. To read new mail, users 
type the "inc" (i.e., incorporate) command, which 
moves the new mail into the INBOX folder. Mail 
read from INBOX is not automatically refiled to 
another folder. 

The abstraction for mail delivery chosen for 
the common user interface specification was the 
ULTRIX model. New mail for the user would not 
be visible in the DECwindows user interface until 
the user delivered it. Delivery could be done 
explicitly by using the "Deliver Mail" push button, 
or implicitly by executing "Read New Mail" or at 
application start-up. Mail would be delivered by 
default to the INBOX, and read mail would not be 
automatically refiled. 

In VMS mail, new mail is initially delivered to the 
NEWMAIL folder. To implement the ULTRIX model, 
we had to move new messages from the NEWMAIL 
folder to the INBOX folder. At the same time, we 
had to be careful to preserve the NEWMAIL state of 
each message and prevent messages from being 
automatically refiled as they were read. 

Moving the messages had a negative impact on 
performance. How to keep track of the number of 
remaining new messages was a problem well into 
development for version 2 of DECwindows mail. 
However, the greatest resistance to this process 
came from VMS mail users who did not like having 
messages delivered to the INBOX. If a user accessed 
mail using character-cell VMS mail, new messages 
were not in the expected folders, i.e., NEWMAIL and 
MAIL. In response to this feedback, we made the 
name of the folder to which new mail would be 
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delivered and the automatic refiling of a message to 
the MAIL folder customizable options. In addition, 
we made the default values for these options depen
dent on the presence of a MAIL file. Thus, users who 
already have a MAIL file are presumed to be exper
ienced VMS mail users and are given values consis
tent with VMS mail behavior. Users who do not have 
a MAIL file are presumed to be new DECwindows 
users and are given INBOX as a delivery folder and 
messages are not refiled, which is consistent with 
the ULTRIX interface. 

While EME was working on the common inter
face problem, the BOSE UI group was evaluating the 
use of a hierarchical display as the user interface 
for structured data, such as mail messages within 
mail folders within mail drawers. This hierarchical 
display eventually became known as structured 
visual navigation (SVN). SVN had the potential to be 
used in a wide range of applications and could 
be developed as a general X user interface (XUI) 
widget that could be incorporated wherever useful. 
SVN's first test in a real application would be on 
DECwindows VMS mail. To do the test without jeop
ardizing the delivery of a mail interface on schedule, 
one engineer from the BOSE group was assigned to 
the design and development of SVN. In addition, 
two engineers were assigned to integrate SVN into 
the mail interface, in parallel with the already 
planned interface. Software Design Tools' (SDT) 
Software Usability Engineering (SUE) Group agreed 
to evaluate the completed interface. 

Once both the SVN interface and the ULTRIX 
system-compatible interface were completed, the 
SUE group interviewed and videotaped users for 
reactions to each. From these videotaped inter
views, the group produced a set of recommenda
tions for improving both interfaces and a survey of 
preferences about the two interfaces. Based on this 
evaluation and other factors, we decided to inte
grate the SVN interface into the existing interface. A 
single version would be produced that could be 
switched from one interface to the other. 

Because this integration had not been designed 
into the code from the beginning, the integrating 
process was more difficult than we had first 
thought. As a result, we chose not to incorporate 
the ability to switch interfaces at run-time but to 
start-up one interface or the other through a cus
tomization option. The decision to produce a single 
executable image that supported both interfaces 
became significant when the DECwindows VMS 
group later decided that the SVN interface should be 
the default interface on the VMS system. 
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User Feedback 
Because many different groups were developing 
many DECwindows applications in parallel, it 
was decided to hold a DECwindows Trade Fair in 
November 1987, two months prior to the scheduled 
initial field test of the product. The trade fair pro
vided a centralized location for developers to show 
their development designs and to learn from other 
developers. At this time, the DECwindows VMS mail 
application was not yet a finished product. How
ever, our design was far enough developed that 
we were able to demonstrate how the finished 
product would work. The SYN developers also ran 
HyperCard prototypes of SYN and demonstrated 
how it would work within DECwindows VMS mail. 
Reactions were positive, and other development 
groups began seeking ways to use the SYN widget 
within other products. 

At the trade fair, with the exclusion of the 
DECwindows terminal emulator (DECterm), the 
mail application was the first DECwindows appli
cation to be demonstrated as actually running on 
the VMS system. It was also one of the first applica
tions running on either the VMS or ULTRIX systems 
to use the newly available XUI toolkit. Because 
DECwindows VMS mail was still in its fundamental 
design stage, we did have some stability problems 
in demonstrating the application. However, the 
ability to demonstrate a working application, even 
in a fundamental state, was a major step for the 
development team. 

The remaining engineering effort for the initial 
release covered several areas, including 

• Finishing the planned functionality 

• Improving performance 

• Supporting the CDA program by providing the 
ability to read and send Digital Data Interchange 
Syntax (ODIS) encoded messages 5·

6 

• Supporting the evolving Interclient Com
munications Conventions Manual (ICCCM) global 
selection standards 7 

• Dealing with changes to all the system compo
nents that are used by DECwindows VMS mail 

Besides the various components of DECwindows 
architecture, the system components include the 
DECwindows print widget, the CDA library and 
CDA viewer, the VMS mail callable interface, the 
application interface library (AIL), and DECterm.8 
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The dependencies for building mail made it 
one of the most complex applications in the 
DECwindows VMS system builds. Therefore, it was 
also one of the most vulnerable to changes in other 
components. For example, one DECwindows base 
level changed the X toolkit intrinsics calling 
sequences, added toolkit support for global select 
and accelerator keys, and changed all widget label 
strings from simple ASCII text strings to compound 
strings. By the time these changes had rippled 
through all the layers up to DECwindows VMS mail, 
the ripple resembled a tidal wave. 

DECwindows mail version 1 was submitted to 
Digital's Software Distribution Center in December 
1988. Planning for version 2 began shortly there
after. Approximately half the EME engineers 
involved in version 1 began working on the major 
tasks for version 2: using the user interface language 
(UIL) compiler and supporting internationalization. 
The remaining engineers transferred to the related 
product development project for X.400-based mail. 
Much of the code developed for DECwindows mail 
application was being used in this project. 

UIL was available too late to use in version 1. 
Usability enhancements, particularly new custom
ization features, continue to be made as more user 
feedback is received, and new requirements are 
incorporated, such as support for the OSF/Motif 
toolkit. 

Figure 1 shows the DECwindows Mail Main 
(index) window using the SYN interface. Figures 2 
and 3 show the Read and Send windows. 

Implementation Issues 
As with any programming project, there were some 
unexpected complications. Most of the complica
tions centered around working in the unfamiliar 
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Figure 2 DECwindows VMS Mail Read Window 

environment of the X Window System and the need 
to interface with other DECwindows components. 
Also, as is inevitable with any realistic project, the 
off-the-shelf components did not always meet our 
needs. Some of the more interesting problems we 
faced are discussed below. 

Events 
One issue faced by the developers was the paradigm 
of event-driven programming. In our experiences 
with nonwindowed systems, a program needs only 
to wait for user input. Once the input was received, 
the program progresses in a straight line until it is 
completed. However, when using the X Window 
System, events may be generated at any time and in 
an unpredictable order. Learning to think asyn
chronously was a major hurdle for the developers. 
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Figure 3 DECwindows VMS Mail Send Window 
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Two particular aspects of event handling that were 
especially difficult were keeping the event queue 
clear and handling keyboard input focus. 

Keeping the Event Queue Clear In event-driven 
programming, the event queue must not be allowed 
to fill up. Thus, events must be processed in a timely 
fashion. In the initial design of the DECwindows 
server, the queue could easily fill and cause the 
server to hang until the queue was processed, 
which prevents any further work from being done 
on the workstation. A hung client could perma
nently hang the server in early DECwindows base 
levels. The server design was subsequently 
enhanced to recognize the hung state and abort the 
connection after a specified period. However, 
because the workstation would be hung during this 
period, it was still important for applications to try 
to prevent hanging from happening at all. Further 
work on the DECwindows server and transports 
eventually eliminated most occurrences of the 
problem, but the applications still had to minimize 
the possibility of hanging. 

One possible solution was to support multi
threading, which allows the event queue to be pro
cessed in one thread and callbacks to be processed 
in one or more other threads. True multithreading 
was impractical, however, because there was no 
underlying support for it in the system and the Xt 
intrinsics-based DECwindows library was not 
reentrant. That is, we could not safely interrupt one 
toolkit routine, execute another toolkit routine, and 
then return to the first one. 

Another possibility was to use the toolkit work 
procedure mechanism. Rather than doing the 
actual application's tasks, each callback would reg
ister a work procedure that would be called by the 
event loop the next time the loop had no events to 
process. This solution was not available in early 
DECwindows base levels. Also, it required that func
tions be substantially redesigned and broken down 
into small parts, because work procedures had to 
exit quickly to keep the event queue clear. Finally, 
this solution did not address one of the major 
impediments to keeping the event queue clear: the 
inability to process events while in a call to the VMS 
mail callable interface. 

The solution we chose to implement was a macro 
which we referred to as the mini-XtMainLoop, or 
FlushEvents. This macro basically duplicates the 
XtMainLoop function of retrieving and dispatching 
events, with the notable difference that it returns 
when there are no more events in the queue. Plac
ing calls to FlushEvents at regular intervals in our 
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callbacks solved the problem of keeping the event 
queue clear, except while in lengthy calls to VMS 
mail. This problem will require true multithreading 
support to solve completely. Fortunately, the s~rver 
and transport improvements mentioned earlier 
have limited the consequences to occasional delays 
in repainting areas of the screen rather than tempo
rary workstation hangs. 

The FlushEvents macro introduced other prob
lems, however. One problem was a tendency for the 
macro to hang until events were generated, which 
was caused when a text widget with a blinking cur
sor was mapped. The timer event used by the text 
widget would cause the loop test to always return 
TRUE, but XtNextEvent would block waiting for a 
true X event. The problem was solved by adding a 
clause to explicitly process timer events. 

A more serious problem occurred when the 
events dispatched within a callback resulted in 
other callbacks. The other callbacks may have oper
ated on internal data structures or widgets used by 
the initial callback. As a result, the initial callback 
became confused when it regained control. To pro
cess callbacks within callbacks, a major redesign of 
the callback mechanism was required. However, 
the time and resources needed to do such a redesign 
were not available. Therefore, we tried to deal with 
these types of problems on a case-by-case basis, but 
this approach was impractical because there were 
too many cases that could occur. 

The handling of callbacks within callbacks is 
perceived by the user as mouse-ahead. Allowing 
mouse-ahead raises several questions that do not 
exist for the analogous case of type-ahead. For 
example, should the recursive events be processed 
immediately upon receipt or queued in order; or 
does it depend on the specific event? When events 
that result in application functions are queued, the 
best solution might be to process resize and scroll
ing events immediately. However, would such 
processing confuse users as an apparent incon
sistency? What if the push button that is clicked 
on is subsequently removed from the screen by a 
previous as-yet-unprocessed event? 

We asked the SUE group, which had more 
experience than we did in user interface design, to 
help us resolve these questions. We developed a 
simple prototype as an example of one way in 
which mouse-ahead might be reliably supported, 
and we demonstrated this prototype to members of 
the SUE group. Based on their feedback that the 
mouse-ahead feature in a window environment was 
not desirable, we disallowed mouse-ahead in the 
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FlushEvents macro by ignoring all button and key 
events. The final version of the FlushEvents macro 
is shown in Figure 4. However, this version was gen
erated late in the development schedule. As a result, 
many nonreproducible bug reports generated by 
this problem obscured some bugs with other, simi
lar subtle causes. 

Input Focus In the X Window System, only one 
window may have input focus at a time and the 
window must be viewable to receive focus. (Note: 
Viewable does not necessarily mean visible. A win
dow that is completely obscured is still considered 
viewable, although an iconified window is not.) 
An attempt to set focus to a window that is not 
viewable results in a BadMatch error event, which 
in turn results in a bug report. For example, setting 
focus to a window as soon as it is mapped generates 
this error. By the time all subwindows, including 
the one that actually takes focus, are mapped by the 
server, the set input focus event most likely has 
already been processed and rejected. 

It is impossible to prevent BadMatch errors. It is 
always possible that the window may be unmapped 
between an application's call to set input focus and 
the server's receipt of the event. This situation can 
occur even if the application first ensures that the 
window is viewable. 

To solve this problem, the application must set 
up an X error handler that will ignore BadMatch 
errors associated with set input focus events. The 
most reliable prevention method is to implement a 
map notify event handler that contains the actual 
call to XtCallAcceptFocus, which ultimately calls 
the XSetlnputFocus routine. However, there were 
several problems with this solution. We did not 
have the time needed to make all the necessary 
changes. Also, we were concerned about interac
tions between our event handlers and those of the 
widgets, and had to solve the problem of how to 
pass the original event time to the map event 
handler. Therefore, we had to find an alternative 
solution. We opted to use a call to FlushEvents at a 
point between the mapping of the window and the 
setting of input focus. Although this solution does 
not guarantee that the window is mapped when it 
returns, it has so far proven to be effective. 

Input focus handling also requires a valid 
time stamp. When the server receives an 
X_SetlnputFocus event, it compares the time 
stamp with the time of the last such event it 
accepted. If the time stamp is not more recent, the 
request is ignored. There is a special time stamp 
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#define Flu5hEvent5 \ 
{\ 
XEvent event ;\ 
XtlnputMask eventtype; \ 
while ((eventtype = XtAppPendingCAppContext)) != 0) \ 

{\ 
if Ceventtype == XtIMTimer) \ 

{\ 
XtAppProce5sEventCAppContext, XtlMAll); \ 
}\ 

else\ 
{\ 
XtAppHextEventCAppContext, &event) ;\ 
if (event . type != ButtonPress && even t.type != ButtonRelea5e &&\ 

event . type != KeyPress && event.type != KeyRelease) \ 
{\ 
XtDis pa tchEven tC&event);\ 
}\ 

}\ 
} ; \ 

Figure 4 FlusbEvents Macro 

(CurrentTime) that will always succeed, but its use 
is discouraged. 

To illustrate the problem encountered when 
using CurrentTime, consider the case in which a 
user initiates a long operation that will eventually 
generate a new window that should receive input 
focus. While waiting for the new window, the user 
sets focus to another window and begins typing. If 
the first application uses CurrentTime, it takes the 
focus when it completes and generates a set input 
focus event. The user's typing in progress in the sec
ond window then enters the window generated by 
the input focus event first set. 

In the same example, if each application uses the 
time stamp of the event that triggered its request for 
focus, the first event is rejected because the time 
stamp is earlier than that of the second application. 
In this case, the user may continue typing undis
turbed. In early versions of the toolkit, the time 
stamp of the triggering event was not directly 
available. However, a pointer to the event structure, 
which contains the time stamp, was added to the 
standard widget callback structure in time for the 
initial DECwindows release. 
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Debugging 
The debugging process for the DECwindows 
mail application was complicated by two things: 
reproducing bugs and the interaction among the 
DECwindows components. The first problem was 
improved in the second functional release. The sec
ond problem is dealt with on a case-by-case basis, 
but the general problem of dealing with complex 
cross-application integration remains unsolved. 

Reproducing Bugs The best way to find the 
cause of a bug is to reproduce the sequence of 
events that produced the bug. Unfortunately, bugs 
in DECwindows applications can often trigger 
access violations deep within the DECwindows 
libraries. Also, incorrect behavior is usually caused 
by an inconsistent internal state that may have been 
triggered by some event long before anything 
wrong was apparent to the user. 

As a result, a major problem in handling bug 
reports for the DECwindows VMS mail application 
was the lack of useful information accompanying 
the reports. Many bugs are triggered by subtle inter
actions in a very specific sequence of events. It is 
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unrealistic to expect users to recall every detail of 
the sequence leading to the appearance of the bug, 
particularly after a few days have passed. Further
more, when trying to recount actions, users often 
skip those that appear to be too trivial to have 
affected the application. For example, resizing win
dows might appear to the user to only affect the 
appearance of the display and not any internal state. 
However, we did find one bug in which resizing 
under particular circumstances caused the wrong 
messages to be associated with the visible index 
lines, resulting in access violations at a later time. 

To aid in tracing a bug-generation sequence, 
macros were defined in version 2 to log all 
DECwindows callbacks, user customizations, and 
certain other information to a special file. This 
method was helpful in tracking down bugs because 
it is quicker to follow a step-by-step log to repro
duce the problem. Some bugs that were fixed 
would otherwise have been closed as not repro
ducible without this process. When trace support is 
disabled at compilation time, the macros do not 
generate any code. This disabling feature was 
included in the external field test update and final 
releases to maximize performance. 

The trace log was also used by the SUE group to 
help improve usability. By examining the log, SUE 
engineers determined which features were used 
frequently, which features were seldom used, and 
which actions were used in combinations. 

Interaction among Components The effects that 
DECwindows applications can have on each other 
also make it difficult to find and resolve bugs. For 
example, when spawning several DECwindows 
applications from the same parent, job-wide quotas 
may quickly run out. Component interaction 
through the global selection mechanism causes 
more subtle problems. A bug in one application 
may crash another application. A specific example 
that occurred was a user report of a crash in 
the FileView application caused by a memory 
allocation failure in the XUI toolkit. 

The true source of the problem was only 
discovered when the user noted that the crash 
happened following the deselection of a folder in 
DECwindows VMS mail. When the global selec
tion was requested, DECwindows VMS mail would 
accept the request rather than reject it and return 
a length of- I. The toolkit routine would receive the 
length and attempt to allocate 4,294,967,295 
(i.e., the unsigned value of -1) bytes to hold the 
selection value and fail. As cross-application 
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integration increases using X global selections, 
client messages, and other means, for example, 
LiveLink connections, these problems can be 
expected to become more and more frequent. Test
ing and debugging tools suitable for these multiple 
application interactions are needed. 

CDASupport 
In order to support the interchange of compound 
documents across the network, DECwindows VMS 
mail incorporates a number of compound docu
ment functions. Messages received in compound 
document format are stored as files with a special 
tag indicating the format . The compound docu
ment viewer widget replaces the text widget to 
display these messages when read. By using the 
compound document converters, DECwindows 
VMS mail can convert these messages to other 
formats such as plain text or Postscript. 

To deal with documents that contain references 
to other documents, the Digital Object Transport 
Syntax (oars) was developed in conjunction with 
the CDA group. The oars syntax allows us to 
incorporate the primary document and all of its 
references into a single file that can then be mailed. 
When a oars message is received and read, the 
message is split back into its multiple components 
for use by the viewer. Testing the exchange of 
messages in various formats between the VMS and 
ULTRIX systems involved the use of several differ
ent mail applications, and required cooperation 
among mail groups from Palo Alto, California, 
Nashua, New Hampshire, and Reading, England, as 
well as the CDA architecture and ULTRIX DECnet 
developers. 

Context-sensitive Help 
One aspect of the DECwindows style is context
sensitive help. By clicking mouse button 1 while 
holding the Help key, a user should be able to point 
at any screen artifact and view a help frame on that 
object. The implication is that each object must 
have a help topic associated with it. Therefore, 
a certain amount of coordination between the 
developers and the help library writer is essential. 

To be able to change the help frames associated 
with each widget, the writer must be kept informed 
of changes in the widget hierarchy and any changes 
in functionality or the user interface. Therefore, the 
method of associating widgets with help topics 
must be reasonably straightforward. 

Our initial approach to this problem was to docu
ment the widget hierarchy in a text file and organize 
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the hierarchy of the help library to match. The 
writer periodically would fetch the hierarchy file, 
check for any changes, and alter the help library 
hierarchy to match the changes. The help callback 
would proceed up the widget hierarchy, using the 
widget names to build the topic string. 

This approach introduced significant problems. 
The method of forcing the help library structure to 
reflect the widget structure seemed intuitive to the 
developers. However, a task-oriented structure is 
better suited to end users, who rely most heavily on 
the online help utility. Another problem was the 
need to specify a help frame for each and every 
widget, when, in many cases, one help frame could 
serve the purpose for several widgets. To address 
these problems, we borrowed a design from the 
developers of the DEC windows calendar. We added 
a help frame resource to each widget. Each widget 
was assigned a full help topic name by a resource 
line, which eliminated the dependence on the 
widget hierarchy. 

Through the use of resource wildcards, one 
resource line could assign the same topic string to 
several widgets at once. The developers added a line 
to the resource table whenever the hierarchy was 
changed. Initially, the resources were specified in 
the system resource file. Later, resources were hard
coded in an internal table to improve performance. 

Dununy topic strings were inserted, which the 
writer would later edit to the correct topic strings. 
The help callback would then find the help frame 
resource associated with the widget. This process 
was an improvement, but it still required that the 
developers add a line to the table for new widgets, 
and required the writer to edit C code. 

An easier method was implemented as part of the 
DECwindows VMS mail conversion to UIL. The help 
topic string is now passed as an argument to the 
help callback when the widget is defined. The help 
topic strings are kept in a separate file where they 
are defined by the developers and later edited by 
the writer. 

Toolkit Restrictions 
At times, the default behavior of toolkit widgets was 
not the best user interface behavior in the specific 
context of our application. Sometimes no existing 
widgets provided the functionality we needed. 
Thus, in certain cases, we had to write our own 
widgets or borrow widgets from other develop
ment groups. In other cases, we had to find ways to 
override the toolkit widgets' default behavior. Two 
particular cases of this were in the text widget's 
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handling of word wrapping, and the dialog box 
widget's handling of navigation with the Tab key. 

Line Wrapping The DEC windows text widget sup
ports automatic wrapping of lines when the cursor 
reaches the right edge if the word wrap resource is 
set. Because this setting eliminates the need for the 
user to hit a return at the end of each line, it was 
enabled as a default for the Create-Send window 
in DECwindows mail. However, the wrapping 
was done on the screen only. The text sent by the 
mail application only contained the hard returns 
entered by the user. In general, there was no 
problem as long as the mail message was read with 
DECwindows VMS mail. The word wrap is set in the 
Read window as well, and the lines are wrapped 
to fit the reader's window width. However, if the 
reader were using VMS mail, the paragraph would 
be displayed as a single line with only the first 
80 characters visible. Also, if the paragraph was 
very long, the VMS mail protocol record length 
restrictions would prevent transmission of the 
message. 

We considered two options to solve the word 
wrapping problem because we did not have a direct 
way to obtain the wrapped text from the text 
widget. First, we could eliminate the default word 
wrap and require users to enter a return at the end 
of each line. The other possibility was to insert 
returns at an arbitrary point near the end of each 
line, e.g. , the last white space previous to the 80th 
character of each line. However, in reading the 
sources for the text widget, we found that it might 
be possible to query the text widget indirectly to 
find where it had wrapped the text on the screen. 
Word wrapping was achieved by using undocu
mented text widget calls and data structures and 
forcing the text widget to move through the entire 
message text one screen at a time. 

Tab Navigation According to the XUI Style Guide, 
the Tab key navigates from one text field to the next 
one within the same window and selects the field's 
entire contents for pending delete. In other words, 
the next keystroke automatically inserts itself after 
deleting the selected text. This feature was designed 
for dialog boxes containing several short text fields, 
but was less appropriate for DECwindows VMS mail 
Create-Send window's message area. In fact, it cre
ated problems. For example, if a user pressed the 
Tab key while in the message area, the cursor would 
move to the personal name field, which is the first 
text field in the window. A tab character could not 
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be inserted into a text widget, even a widget being 
used more as a text editor than a text field. 

A more serious problem was that of selection 
for pending delete. When users would tab to the 
message area and begin typing, the first keystroke 
would wipe out the previous contents. Since the 
text widget provides no practical way to undo such 
changes, the user could not recover from a simple 
and common error. We had to override the dialog 
box's translation for tab and reimplement the nor
mal processing to fix the problem. In this case, 
normal processing means process as normal for 
envelope text widgets and insert the tab for the mes
sage area. 

Summary 
DECwindows VMS mail was one component in the 
integrated development effort of the DECwindows 
system. The problems we faced and solved and 
those which still need to be addressed, reflect many 
of the problems of developing integrated systems 
in an environment in which some components are 
constrained by external standards, the compo
nents interact in potentially complex ways, and 
many components are under active development. 
Our experiences in developing DECwindows VMS 
mail have left us better prepared to deal with the 
continuing trends toward software integration. 
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Ethernet Performance of 
Remote DECwindows 
Applications 

In Digitals windowed computing system, the Ethernet is the communication 
medium for both DECwindows traffic and remote disk I/0 traffic. Ibis level of traffic 
prompted a study to investigate whether or not the Ethernet would be a system-level 
bottleneck for DECwindows applications. lbe methodology developed characterizes 
the Ethernet traffic generated by a DECwindows application executing remotely on 
the workstations in a local area VAXcluster. A simulation model was used to predict 
the Ethernet perfonnance of a large cluster running this application and a range of 
other hypothetical remote DECwindows applications. 1be results of this study can be 
extended in many ways and should be of interest to those involved in sizing local 
area clusters running remote DECwindows applications. 

In the past few years, we have seen a proliferation in 
the number of local area networks (LANs) installed 
worldwide. This development largely results from 
advances in workstation technology and inno
vations in the design and performance of various 
communication protocols. These protocols are 
now the building blocks of distributed computing 
environments. 

These advances also have affected the ways in 
which LANs are used. Initial applications of LANs 
were for remote terminal access and file transfer. 
Diskless workstations and distributed processing 
came next. Today's environment is a network
oriented, windowed user interface standard: the 
X Window System! DECwindows is Digital's imple
mentation of the X Window System. As each of 
these networking environments was developed, 
researchers reviewed the performance implica
tions of the new environment on the network.2•3•

4 

Following in that tradition, the study presented 
in this paper investigates the impact of the distri
buted DECwindows computing environment on the 
performance of the Ethernet. 

The study was based on a distributed comput
ing model using Digital's local area VAXcluster 
(LAVc)systems in which a few large systems are con
nected to several workstations over an Ethernet seg
ment.5 These larger systems provide distri
buted file services and the resources to run many 
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DECwindows clients (or applications) that present 
their user interfaces remotely on the workstations. 

This paper is organized into four sections. The 
first section describes the methodology and tools 
used in the characterization of Ethernet traffic 
generated by a DECwindows workload. The next 
section analyzes the traffic both at the application 
level and at the Ethernet level. The third section pre
sents the results of a modeling study that extended 
the measurement data to predict Ethernet perfor
mance in large configurations. The paper concludes 
with a brief discussion of areas to which this study 
may be extended in the future. 

Methodology 
Our preliminary monitoring of network traffic 
indicated that the network would not be a perfor
mance bottleneck for small LAN configurations. 
Therefore, our goal was to investigate what would 
happen when hundreds of workstations simultane
ously ran DECwindows applications remotely over 
the network. To set up and execute a workload on 
a large network of workstations is a difficult 
task. We had to carefully characterize the network 
traffic generated by one workstation and, through 
modeling, extend this characterization to a large 
network of workstations. This approach is similar 
to a study that was successfully done for terminal 
environments.2 
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In this distributed environment, the DECnet 
protocol is used as a transport for X protocol 
communication between remote clients and the 
DECwindows server on each workstation. The 
DECnet protocol can run on different base net
working technologies, one of which is the Ethernet 
for LANs. VAXcluster software provides distributed 
disk services. The VAXcluster software is also used 
by the VMS distributed lock manager to execute 
remote lock operations. Therefore, there are three 
components of data traffic on the Ethernet: 
X protocol messages, remote disk accesses, and 
remote lock traffic. Measurement data for these 
components was collected using Digital's tracing 
and monitoring tools. The performance impact of 
the data collection tools was closely examined and 
found to be minimal. 

The traces and counters from these tools were 
postprocessed to extract the relevant information, 
which was then input to a program that emulates 
the DECnet and VAXcluster protocols. The program 
transformed the input data into packet size and 
interarrival time distributions that would be seen 
on the Ethernet. The emulator also added packet 
headers, segmented larger data messages, and 
inserted DECnet and VAXcluster protocol messages 
appropriately. The protocol emulations were care
fully validated for each component of Ethernet 
traffic , using data collected with a LAN analyzer. 
The entire process is shown in Figure 1. 

The workload used was a relatively intense user 
activity session on DECwrite, a "what you see is 
what you get" (WYSIWYG) compound document 
editor. The session involved extensive manipula
tion of text and graphics in a large (i.e., 65-page) 
document. Procedures included opening windows, 
pulling down menus, cutting and pasting, refresh
ing the screen, searching and replacing text strings, 
accessing online help, and creating several new 
pages that consisted of multiple font text and two
dimensional graphics. The duration of the work
load was about 22 minutes. The workload emulated 
a very confident user traversing the document and 
making changes with minimal time between 
actions. The workload was driven by an internally 
developed workstation user emulation package. 

The test configuration was an LAVc system that 
consisted of two VAXstation 2000 workstations 
each with 6 megabytes (MB) of memory. One work: 
station acted as a disk server and the other as a 
satellite connected by an isolated Ethernet segment. 
The disk server had a system disk and a paging disk. 
The satellite was equipped with a local paging disk. 
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Figure 1 Workload Characterization 
Methodology 

Data Analysis 
In this section, we analyze remote DECwindows 
client-server communication, remote disk I/0, and 
remote lock requests done by the LAVc work
stations, at the application level and at the Ethernet 
level. We were also interested in the impact, if any, 
in LAVc environments on the Ethernet utilization of 
remote paging done by diskless workstations. This 
issue is addressed in the following analysis. 

DECwindows Traffic 
Table 1 presents the DECwindows traffic generated 
by the DECwindows server and the DECwrite client 
in terms of X protocol activity and DECnet mes
sages. Analysis of these distributions revealed the 
following information. 

• The server generates more than twice as many 
DECnet buffers than the client. The server trans
mits 9164 events and replies in 6816 packets, 
which is a message to packet ratio of 1.3 to I. 
The client transmits 16232 requests in 2864 
packets, which is a ratio of 5.7 to I. The server 
is unable to build larger network buffers 
because certain events and most replies require 
immediate delivery. 

• The average server DECnet buffer is almost four 
times smaller than the average client buffer. The 
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data shown in Table 1 indicates that buffer sizes 
vary greatly. This variation is also reflected in the 
high standard deviations in buffer size. The 
median server and client message sizes are much 
lower than the mean. The size distributions have 
a large peak (many small messages) and a long tail 
(fewer large messages). 

• X protocol message transmission occurs in 
bursts. The server transmits in more bursts than 
the client, as indicated by the larger coefficient 
of variation (ratio of the standard deviation to the 
mean) in interarrival times for the server. Nearly 
90 percent of the server message interarrival 
times are less than the mean. Hence, the curve 
has a large peak (many messages arriving in 
bursts) and a long tail (a few periods of silence). 

These observations regarding X protocol mes
sage distributions are intuitive because the server 
communicates with the user, who typically 
generates input events (for example, KeyPress, 
KeyRelease) in random bursts. When a client needs 
information from the server or wishes to write 
text and graphics objects to the display, it issues 
one or more requests to the server (for example, 
XPolytext, xcopyplane). The server only responds 
to the synchronous client requests with replies (for 
example, XGetProperty, XGetGeometry).1 

The server almost immediately transmits events 
and replies. Events are typically a few bytes long, 
and replies are slightly larger. However, the client 
tends to aggregate multiple requests into larger 
messages before dispatching them to the server. 

Table 1 DECwindows Traffic Profile 

Metric Server Client Total 

X protocol traffic 
Events and replies 9154 NA 9154 
Requests NA 16232 16232 

DECnet packets 6816 2864 9680 
Size (bytes) 

Mean 64 246 118 
Standard deviation 213 468 322 
Median 32 184 32 
Minimum 32 4 4 
Maximum 3148 8184 8184 

lnterarrival (milliseconds) 
Mean 417 124 
Standard deviation 2286 251 1263 
Median 28 126 1 
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Remote Disk I/0 and Lock Traffic 
Table 2 shows the distribution of the remote disk 
accesses, as well as the remote lock operations per
formed by the system. Data reads are used for initial 
image activation and for accessing resources, such 
as font files. Data writes are usually made to system 
log files. Paging reads and paging writes are done on 
demand to the system paging file. In addition, we 
noted the following results. 

• Read requests by the workstation outnumbered 
write requests by an order of magnitude. The 
average disk request is much larger than the aver
age DECwindows message because a disk request 
is done at block granularity (i.e., 1 block equals 
512 bytes), whereas the average DECwindows 
message is only a few bytes. 

• Average disk request interarrival times are an 
order of magnitude higher than DECwindows 
messages. Disk request interarrival times are 
about 36 percent lower when remote paging is 
included with local paging because of the 
increased packet arrival rate. 

• Paging requests are about 50 percent more fre
quent than regular disk requests. The frequency 
varies with total system memory size, process 
working-set size, and page-reference patterns. 
The average request size with remote paging 
is much higher because paging write requests 
are much larger. The VMS modified page writer 
typically flushes modified pages to disk in 96-
block chunks. 

• The number of remote lock operations is the 
same for both the local and remote paging case 
because VMS process paging does not use the dis
tributed lock manager. The average remote lock 
operation rate was 1 every 2 .6 seconds. 

Ethernet Traffic 
Table 3 shows Ethernet traffic statistics for local and 
remote paging scenarios. This data was generated 
by running the DECwindows and disk I/0 traffic 
data through the DECnet/VAXcluster protocol emu
lator. Figures 2 and 3 show the frequency distribu
tions for Ethernet packet size for local and remote 
paging cases, respectively. Figures 4 and 5 show the 
frequency distributions for Ethernet packet inter
arrival times for local and remote paging cases, 
respectively. 
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Table 2 Remote Disk and Lock Traffic 
Profile 

Local Remote 
Metric Paging Paging 

Number 435 686 
Data reads 423 423 
Data writes 12 12 
Paging reads NA 226 
Paging writes NA 23 
Remote lock operations 502 502 

Disk 1/0 size (bytes) 
Mean 1180 2838 
Standard deviation 1766 8290 
Median 512 512 
Minimum 512 512 
Maximum 8192 49152 

Disk 1/0 interarrival time 
(milliseconds) 

Mean 3240 2060 
Standard deviation 16360 11880 
Median 61 43 

Packet Size Distributions 
The Ethernet packet size distributions appear to be 
trimodal, that is, there are three separate peaks. The 
wider, more dominant peak is in the 100 byte range. 
This peak is caused by the DECnet and VAXcluster 
protocol messages and the DECwindows server 
messages. The other two peaks are at 600 and 
1350 bytes. They are a result of the single block 
(577 byte) and 2.5 block (1345 byte) segments gen
erated by the cluster software. The packet size dis
tributions for local and remote paging are almost 
identical. With remote paging, boosts occur in the 
first (100 byte) and third (2.5 blocks) peaks. That is, 
the frequency of VAXcluster protocol messages and 

Table 3 Ethernet Packet Size and 
lnterarrival Time Distributions 

Local Remote 
Metric Paging Paging 

Ethernet packets 
Number 14711 16902 

Size (bytes) 
Mean 175 246 
Standard deviation 249 368 
Median 79 79 
Minimum 64 64 
Maximum 1505 1505 

lnterarrival time (milliseconds) 
Mean 96 84 
Standard deviation 235 220 
Median 23 19 
Minimum 0 0 
Maximum 1500 1500 
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2.5 block packets is higher because of the greater 
segmentation that results from larger disk requests. 
The median packet size is 79 bytes, which is much 
lower than the mean, in both scenarios. The trimo
dality of the packet size distribution tends to skew 
the mean higher than the median for local paging 
and remote paging scenarios. 

Packet Interarrival Time Distributions 
A curve-fitting exercise showed that the interarrival 
time distributions for both local and remote paging 
could be accurately represented by the GAMMA 
probability distribution.6 The GAMMA distribution 
has two parameters: the shape parameter and the 
scale parameter. The mean is the product of the 
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shape parameter and the scale parameter, and the 
variance is the product of the shape parameter and 
the square of the scale parameter. The shape 
parameter was found to be nearly 0.17 for both 
local paging and remote paging interarrival time 
distributions for this workload. We are not sure at 
this time whether this is a property of all DECwrite 
workloads or whether it holds true across all 
DECwindows applications. 

The interarrival time distributions peak in the 
O to 50 millisecond range and decay rapidly there
after. Closer examination of the data shows that a 
spike of approximately 2 milliseconds is produced 
by the intersegment latency for large packets and 
mass storage control protocol (MSCP) messages.5 

Because the median is again much lower than the 
mean, this indicates a skew, i.e. , a long tail as a result 
of a few large interarrival times. 

Traffic Analysis 
Table 4 presents the DECnet and VA.Xcluster com
ponents of Ethernet traffic in tenns of total packets 
and total bytes transferred. DECnet traffic is a 
greater percentage of total packets than VAX cluster 
traffic for local and remote paging scenarios. 
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DECnet software transfers twice as many bytes as 
the VA.Xcluster software. However, this ratio is 
inverted with remote paging. 

Table 5 presents the data and protocol compo
nents of DECnet and VA.Xcluster traffic. The terms 
data and protocol are defined in relation to the 
DECnet and VA.Xcluster software. The messages 
passed by the applications to these protocol layers 
are called data. The control messages generated by 
these layers are designated protocol overhead. Our 
objective was to integrate and present the traffic at a 
common level (i.e., the Ethernet) and examine the 
data and protocol components of the total traffic at 
that level. For this workload, data packets and bytes 
are approximately three times more numerous than 
protocol packets and bytes. 

Discussion 
Table 6 shows that the average Ethernet utilization 
of a single VA.Xstation 2000 workstation running a 
typical remote DECwindows application in a cluster 
is 0.16 percent with local paging, and 0.25 percent 
with remote paging. To verify the accuracy of the 
numbers, we measured Ethernet utilization with a 
LAN analyzer for the local paging scenario and 

Table 4 Ethernet Traffic: DECnet and Local Area VAXcluster Components 

Local Paging Remote Paging 
Metric (Number) (Percent) (Number) (Percent) 

Ethernet packets (total) 14711 100 16902 100 
DECnet component 10712 73 10712 63 
VAXcluster component 3999 27 6190 37 

Ethernet bytes (total) 2570772 100 4152742 100 
DECnet component 1660353 65 1660353 40 
VAXcluster component 910412 35 2492404 60 
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Table 5 Ethernet Traffic: Data and Protocol Components 

Local Paging Remote Paging 
Metric (Number) (Percent) (Number) (Percent) 

Ethernet packets (total) 
Data component 
Protocol component 

Ethernet bytes (total) 
Data component 
Protocol component 

14711 
11558 
3153 

2570765 
1761156 
809609 

found average Ethernet utilization to be 0.13 per
cent, as compared to the 0.16 percent predicted 
by the DECnet/VAXcluster emulator. For remote 
paging, average Ethernet utilization was measured 
at 0.23 percent, as compared to the 0.25 percent 
shown with the DECnet/VAXcluster emulator. 
These comparisons indicate that the protocol 
emulation, with all its inherent assumptions, was 
reasonably successful in measuring performance 
impact. 

Measurements also were collected from an LAVc 
located in a software group within Digital. The 
workgroup had nearly 40 workstations connected 
to two VAX 8000 disk servers on a single Ethernet 
segment. These were monochrome or color 
VAXstation 2000 models, equipped with local 
paging disks and at least 6MB of memory. This was 
a software development environment where, the 
activities were primarily interactive computing 
with some batch jobs running on the disk servers. 
All workstations ran DECwindows applications 
under the VMS operating system. The most popular 
DECnet applications were electronic mail, compu
ter conferencing, and other remote DECwindows 
clients. Some VAXcluster traffic existed, as well as 
local area transport (LAT) traffic from a number of 
terminals connected to a terminal server. 

On a typical day, the average Ethernet utilization 
was about 4 percent. This is 0.10 percent on average 

Table 6 Average Ethernet Utilization of an 
LAVc Node Running DECwrite 
Remotely 

Local Remote 
Paging Paging 

Metric (Percent) (Percent) 

Ethernet utilization 0.15 0.25 
DECnet component 0.10 0.10 
LAVc component 0.05 0.15 
Data component 0.10 0.19 
Protocol component o:os 0.06 
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per workstation, compared to 0.16 percent in our 
modeled DECwrite environment. Although the data 
in Table 6 shows that the average network use of a 
single workstation running DECwindows in a clus
ter is low, a large cluster of workstations can pro
duce peaks that are an order of magnitude higher 
than the average. For instance, the peak Ethernet 
utilization observed was 38 percent. Reasons for 
these peaks include large files being copied over the 
network or workstations entering or leaving the 
cluster. A detailed analysis of peaks in Ethernet use 
in actual LANs was not done but should be consid
ered when applying the results presented in this 
paper to a network capacity planning exercise. 

Modeling Study 
In a previous section, we presented data that char
acterized the Ethernet bandwidth requirements of a 
single workstation running a typical DECwindows 
application executing remotely. Through the use 
of a packet-level Ethernet simulation model, this 
data can be used to predict network performance 
when many workstations are clustered on the same 
Ethernet segment.7 For the DECwrite workload, we 
drove the simulation model to the point of satura
tion of the Ethernet to investigate the theoretical 
maximum number of workstations that a single 
Ethernet segment could support. We investigated 
whether the Ethernet adapter at the disk server(s) 
could become a bottleneck, and if so, at what load 
the bottleneck would happen. Finally, by vary
ing a few selected input parameters, we used the 
model to comment on the performance of different 
hypothetical remote DECwindows environments. 

In an interactive computing environment similar 
to the one provided by the DECwindows software, 
it may be desirable to predict the end-to-end or 
user-perceived response times to perform various 
functions, such as menu pulldown, window 
deiconification, or mouse movement. Such an anal
ysis would capture the effect of network utilization 
at the user level. To build and validate a model at 
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this level was beyond the scope of our study. How
ever, we do include some information on the degra
dation in the overall elapsed time of the workload 
that results from contention at the Ethernet, assum
ing that none of the other resources is a bottleneck. 

Modeling Methodology 
The most important characteristics of Ethernet 
traffic are the packet size and packet interarrival 
time distributions. This model accepts the cumula
tive distributions for packet size and interarrival 
time that are generated by the DECnet/VAXcluster 
emulator and uses these distributions to drive the 
simulation. The model itself is a closed queuing 
model in which each workstation is represented 
by a transaction that circulates through the model 
for the duration of the simulation. With each pass 
through the Ethernet model, the packet size and 
arrival time are assigned to the transaction from 
the distributions that characterize the traffic of 
the DEC write workload. The advantage of using the 
cumulative distribution technique is that no 
assumptions are made about the Ethernet packet 
size and interarrival time distributions. This model 
allowed us to use separate distributions for different 
classes of workloads and simulate a user performing 
different workload sessions. 

The Ethernet simulation model developed for 
this project captures the functionality and physical 
principles of the Ethernet. The model was carefully 
validated against published measurement results 
and also against network data collected for the 
DECwrite workload.11 

Performance Metrics 
The following metrics were used in this study. 

• Load. The load variable in the simulation is 
the number of DECwindows workstations that 
are actively executing the remote DECwrite 
workload. For simplicity, we assumed that the 
workstations were all similar. 

(Note: Ethernet load, packet size, and interarrival 
time distributions are the input variables to the 
simulation model. The following are all outputs 
from the simulation.) 

• Utilization. Ethernet utilization is computed by 
dividing the total number of bits transferred 
per second by the theoretical maximum 
bandwidth of the Ethernet (10 megabits per sec
ond) for the duration of the simulation. Unless 
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otherwise specified, this metric refers to average 
utilization. 

• Packet delay. The packet delay consists of the 
waiting time to acquire the channel and the 
actual transmission time of the packet. Packet 
delay is usually measured in microseconds as 
opposed to disk access or processor service 
times that are measured in milliseconds. As 
the load increases, packet delay through the 
Ethernet degrades dramatically at a particular 
point that we refer to as the knee of the curve. 

• Adapter saturation. The throughput at which the 
Ethernet adapter at the disk server or computing 
system saturates is a critical performance metric 
in this environment. We consider only one adap
ter in this study, the DEBNI, which is available 
on the high-end VAX computers. Extending the 
analysis to other adapters is easily done. The sat
uration threshold is represented in terms of the 
Ethernet utilization level at which the adapter 
saturates for a given mean packet size rather than 
the usual packets or megabytes per second. 

Modeling Results: DECwrite Workload 
We first addressed the question of how many 
workstations actively running DECwrite applica
tions remotely on a client computing system can be 
supported on a single Ethernet segment. 

We assumed that the system on which these 
DECwrite client processes would execute had an 
infinite capacity. In other words, contention for 
system resources (e.g., CPU, memory and disk 
I/0) among the DECwrite clients was not incorpo
rated in the model. Because any such contention 
would reduce network traffic intensity, we pre
sented an upper-bound or worst-case analysis. We 
also assumed that there was no communication 
among the workstations, which would be true 
when all applications were run remotely. The sim
ulation was run for both local paging and remote 
paging scenarios. 

Figure 6 shows that the average Ethernet utiliza
tion curves increase with load and then level off at 
600 workstations (60 percent utilization) with local 
paging and 400 workstations (69 percent utiliza
tion) with remote paging. The DEBNI threshold in 
Figure 6 also shows that the Ethernet adapter would 
saturate at 350 workstations with local paging and 
at 300 workstations with remote paging. In Fig
ure 7, the average packet delay curves indicate that 
the knee in the curve is at a much lower load of 300 
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workstations with local paging and 200 work
stations with remote paging. Also indicated in this 
figure are the points at which network congestion 
causes the elapsed time for the workload to degrade 
by 10 percent and 100 percent. 

We used the point at which packet delay started 
to degrade, in Figure 7, as the limiting factor. With 
this criterion, the theoretical size of an LAVc system 
in a typical remote DECwindows environment 
would be about 300 active workstations, assuming 
all of the satellites have local paging disks and 
steady-state operation. Further, the disk server and 
DECwrite clients might need to be distributed over 
multiple systems to obtain the required processing 
power especially if lower capacity Ethernet adap
ters are being used. (Note: These are average num
bers and the user-perceived response time might 
degrade if large amounts of data are transferred 
often or if many nodes frequently transition in and 
out of the cluster.) 

Modeling Results: Performance Predictions 
We used the simulation model to predict Ethernet 
performance over a range of DECwindows environ
ments by varying DECwrite client packet size and 
Ethernet packet interarrival time individually and 
together. The analysis was done for the local paging 
case only. The two assumptions made in the previ
ous section were used here also. We replaced the 
cumulative frequency distribution tables with the 
GAMMA distribution to generate packet interarrival 
time samples in the simulation. The mean and stan
dard deviation of packet interarrival time, which 
are direct functions of the input parameters of 
the GAMMA distribution, could be varied more 
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conveniently than with the distribution tables. A 
calibration exercise showed that this method did 
not affect accuracy. 

Varying Client Packet Size 
We assumed that if we replaced the DEC write client 
with another similar DECwindows application, the 
DECwindows client packet size distribution would 
change. However, the server packet size distribution 
would not because user activity would be similar. 
We also assumed that the remote I/0 size distribu
tion was the same as for DECwrite. This is a valid 
assumption because the remote I/0 traffic gener
ated by the processes on the workstations is not 
strongly correlated to the remote DECwindows 
client activity. 

We varied DECwrite client packet size by twice 
and four times as much and regenerated the Ether
net packet size distributions with the DECnet and 
VAXcluster emulator. However, we did not alter the 
overall packet interarrival time distribution. As a 
result, we captured the effects of the additional 
segmentation and protocol messages generated by 
the larger client packets in the new overall traffic 
size distributions. 

Figure 8 shows average Ethernet utilization. 
Figure 9 illustrates average packet delay against 
increasing load for this workload and workloads 
that were two and four times larger than the original 
DECwrite client packet sizes. The Ethernet utiliza
tion leveled at higher values as the packet size 
increased. Degradation in average packet delay is 
the limiting criterion in this scenario, since it occurs 
before other metrics start to degrade. Average 
packet delay begins to degrade at approximately 
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200 workstations at twice the size and 160 work
stations at four times the size. Ethernet and adapter 
saturation occurs at much higher loads. 

Varying Overall Packet lnterarrival Time at the 
Ethernet We wanted to know what the perfor
mance impact would be if we executed multiple 
remote DECwindows applications simultaneously 
on the same workstation. For example, a user could 
be switching frequently between two open 
DECwrite documents or between VMS mail and 
notes applications active on the same workstation. 
The model was used to predict the impact on net
work utilization and packet delay of the increased 
traffic intensity from this activity. 

We simulated the effect of multiple active clients 
by using smaller interarrival times. GAMMA distribu
tions of the same shape but with 50 percent and 
25 percent of the mean interarrival time for the base 
workload were used. We also assumed that the 
coefficient of variance of packet interarrival time 
remained constant across environments. We com
puted this factor for the DECwrite workload and 
scaled the standard deviations that were input to 
the GAMMA distributions for the simulated multiple 
active clients. 

Figure 10 depicts average Ethernet utilization. 
The DECwrite packet interarrival time is assumed to 
be the base. The average packet delay against num
ber of workstations and hypothetical workloads 
with 50 percent and 25 percent of the DECwrite 
packet interarrival time is shown in Figure 11. 

Degradation in average packet delay is again the 
limiting criterion in this scenario because it occurs 
before the other metrics start to degrade. Average 
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packet delay begins to degrade at about 300 work
stations for the base DECwrite workload. Degrada
tion begins at 100 and 50 workstations for the 
50 percent and 25 percent cases, respectively. 
Ethernet saturation occurs at much higher loads. 
Because the packet size is held constant in this exer
cise, the Ethernet saturates at the same level of use, 
nearly 60 percent. However, that level is reached 
with fewer workstations as interarrival time is 
decreased. We found the Ethernet adapter capacity 
at the disk server not to be a performance bottle
neck across all variations in the packet interarrival 
times considered. 

Varying Client Packet Size and Interarrival Time 
We combined the variations in client packet size and 
interarrival time from the base DECwrite case to 
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synthesize four more hypothetical workloads. Fig
ure 12 shows the average Ethernet utilization, and 
Figure 13 shows the average packet delay against 
increasing load. Once again, degradation in average 
overall packet delay is the limiting criterion. 

The results of the modeling study presented 
in this section could be used by an experienced 
network consultant to size local area VAXcluster 
systems running a range of different remote 
DECwindows applications. 

Conclusions 
We have presented a methodology that allows us 
to characterize the Ethernet traffic generated by 
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remote DECwindows applications executing on 
workstations in a local area VAXcluster system. The 
traffic generated by a typical DECwindows applica
tion was analyzed in detail, with some interesting 
preliminary results. Our modeling study allowed us 
to predict the limiting system configurations and 
extend the analysis to other workloads by varying 
some of the input traffic parameters. We concluded 
that the Ethernet can support large configurations 
running DECwindows applications without average 
performance degrading significantly. 

A detailed performance evaluation of any com
plex system invariably produces new insights about 
the way the system behaves and performs. Some of 
these insights may be ancillary to the main goals of 
the study. For example, this project discovered a 
performance improvement to the DECwindows 
systems software that significantly decreases the 
number of disk I/Os required for font file access. 
The effect of specific system tuning parameters on 
remote locking traffic was also calibrated, and the 
performance of the recently introduced and more 
powerful DEBNI Ethernet adapter was examined in 
system environments. 

This study could be extended in several ways. 
Other DECwindows applications, such as electronic 
mail and computer conferencing, could be charac
terized using the methodology discussed in this 
paper. Bursts in DECwindows traffic patterns could 
be further investigated through analytic techniques, 
for example, packet train models. Finally, the tools 
and protocol emulation suite could be extended to 
include Digital's distributed file service (VAX DFS), 
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and local area transport (LAT), as well as other 
network protocols. 

This paper presents a checkpointing study of a 
new technology. By extending this work in some of 
the directions proposed, we would increase our 
understanding of the network performance issues 
associated with the X Window System computing 
paradigm. 
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