
Compound Document Architecture

Digital Technical] ournal

in mosaic
small aba-

.>er of the
:tuare slab,
�enriched.
1are table,
ns, to pro-

�p_er_i!!c_U_!ll_:- __ _

oof. 3. A
1e walls ot
tion; ocea-
n paint.

·chitecture
I rulers of

---------------,--------- -----
I I
I I

architecture : 1. The art and science of <tesigning
I I

and building structures, or large groups of sttr. I I
I I

m keeping wi� aesthetics and functional GOne

Digital Equipment Corporation

----...._:;.....

Voh•.me 2 Number I

Winter 1990

lding con
~h pointed
ch side. at

--

l

--- -- --

- ~;.Y

\~,~~
>Y 4 ',,/ '/'-- v ~::.::, .. ·

<<'~ i) \ (\,~ , , ... ·,, ~ ,,' . ,., .. -.~:,f ~,~Q·""''' •.. ,. ,,;;_'. ~ _,, -" ,:, ' ... , ,,,,, .. ·,

~~~f~~~~:t~c:~:~~;~::~:_'··,f itil: i . : ~ A ~c.::":~ .. ,,,0n s c~" '°' :\~··•· ~~\. o 



Cover Design 
This issue features products specified in Digital's compound 
document architecture, the CDA architecture. The design on our 
cover takes a page from classical architecture to evoke the concepts 
of structured architecture and creation of compound documents. 
Like the blueprint shown in the background, the CDA architecture 
provides a structure for applications to seamlessly integrate text 

and graphics into pages such as those displayed in the foreground. 

Tbe cover was designed by David Com berg and David Shepherd 
of the Corporate Design Group. 

Editorial 
jane C. Blake, Edi!Or 
Barbara Lindmark, Associate Ediwr 
Richard W. Beane, Managing Edi!Or 

Circulation 
Catherine M. Phillips, Administrawr 
Suzanne). Babineau, Secretary 

Production 
Helen L. Patterson, Production Editor 
Nancy jones, Typographer 
Patrick E. Conte, Designer 
Peter Woodbury, Illustrator 

Advisory Board 
Samuel H. Fuller, Chairman 
Roberr M. Glorioso 
john W .  McCredie 
Mahendra R. Patel 
F. Grant Saviers 
W illiam D. Strecker 
Victor A. Vyssmsky 

The Digital Teclmicaljournal is published quartc:orly by Digital 
Equipment Corporation, 146MainStreet MLO l -3ill68, Maynard, 
Massachusetts 01754-2571 Subscriptions to the journal arc 540.00 
for four issues and must be prepaid in U.S. funds. University and college 
professors and Ph.D. students in the electrical engineering and com
puter science fields receive complimentary subscriptions upon request. 
Orders, inquiries, and address changes should be scm to The: Digital 
Tecbnicaljournalat the published-by address. Inquiries can also be sent 
electronically on NEA RNET to DTJ@CRL.DEC.COM. Single copies and 
back issues are available for S 16.00 each from Digital Press of Digital 
Equipment Corporation, 12 Crosby Drive, Bedford, MA 01730-1493. 

Digual employees may send subscription orders on the ENET to 
RDVAX::)OURNAL orby interoffice maii!O mailstop MLO 1-3/868. 
Orders should include badge number, cost center, site location code, 
and group name. U.S. engineers in Engineering and Manufacturing 
receive complimentary subscriptions; engineers in these organizations 
in countries outside the U.S. should contact the journal office to receive 
their complimentary subscriptions. All employees must advise of 
changes of address. 

Comments Go the content of any paper are welcomed and may be sent 
to the edi!Or at the published-by or network address . 
Copyrightt• 1990 Digital Equipment Corporation. Copying without fee 
is permi11ed prov ided that such copies are made for use in educational 
institutions by faculty members and are not distributed for commercial 
advantage. Abstracting with credit of Digital Equipment Corporation's 
authorship is permi11ed. All rights reservc:d. 

The information in this journal is subject to change without nmice and 
should not be construed as a commitment by Digital Equipment Corpo
ration. Digital Equipment Corporation assumes no responsibility for 
any errors that may appear in this journal. 

ISSN 0898-90 I X 

Documentation Number EY-C 196E-DP 

The following are rradcmarks of Digital Equipment Corporation: 
BASEVIEW, CDA, DDIF, DDIS, DEC, DECdecision, DECwindows, 
DECwrite, the Digital logo, DTJF, EDT, LiveLink, ReGIS, ULTRIX, VAX, 
VAXcadoc, VAXcadview, VAX DATATRIEVE, VAX DBMS, VAX DECalc, 
VAX DECalc-PLU S, VAX Notes, VAX RMS, VAXstation, VAX TEAMDATA,  
VAX VTX, VAX Xway, VMS, VT240, W PS-PLUS, XI I 
C is a registered trademark of Microsoft Corporation. 

IBM is a registered trademark and DB2 and OS/2 arc trademarks of 
International Business Machines Corporation. 

HPGL is a trademark ofHewleu-Packard Company. 

IOMS/R is a trademark ofCullinet Software, Inc. 

lnterleafis a trademark oflntcrleaf, Inc. 

Lotus 1-2-3 is a trademark and DIF is a registered trademark of lotus 
Development Corporation. 

Macintosh is a registered trademark of Apple Computer, Inc. 

PostScript is a registered trademark of Adobe Systems, 1 nc. 

TEK4014 and Tektronix are registered trademarks of Tektronix, Inc. 

VisiCalc is a trademark of Lotus Development GmbH. 

Book production was done by Digital's Educational Services Media 
Communications Group in Bedford, MA. 



I Contents 

6 Foreword 
Jeffrey H. Rudy 

8 CDA Overview 
Rohen L. Travis Jr. 

16 1be Digital Document Interchange Format 
William R. Laurune and Rohen L. Travis Jr. 

28 lbe Digital Table Interchange Format 
Carol A. Young and Neal F.Jacobson 

38 Development of the CDA Toolkit 
Richard T. Gumbel and Martin L. Jack 

49 Interapplication Access and Integration 
Baldwin K. Cheung and Neal F. Jacobson 

Compound Document Architecture 

60 1be Design and Development of the DECdecision Product 
Alan Sung, Neal F.Jacobson, and Carol A. Young 

73 lbe Relationship between the DECwrite Editor and the 
Digital Document Interchange Format 
Seth S. Cohen and Wm. Eugene Morgan 

83 CDA in Science and Engineering 
Neal B. Appel and Ronald M. Olson 



I Editor's Introduction 

Jane C. Blake 
Editor 

. i.· 

~ 1~i:.iW7[fl;t 

Compound document architecture is the theme of 
this issue of the Digital Technical Joumal. Digital 's 
architecture for compound documents, CDA, 
addresses a need all of us have if we work with text 
files, tabular data, graphics, or images. We want the 
flexibility to easily exchange that data, revise it, or 
combine it into one document, regardless of the appli
cations, operating systems, and hardware involved. 

In the paper that opens the issue, Bob Travis 
recalls Digital Engineering's recognition of this 
need for an overall data interchange environment. 
Bob's paper is an overview of the CDA architecture 
which resulted from this recognition. He intro
duces the syntax and standards that formed the 
basis for development and shows the relationships 
of these to the CDA components and to the goals for 
the architecture. 

Central to the architecture is the revisable form 
of a compound document and its data cross-linkages. 
In the paper following the overview, Bill Laurune 
and Bob Travis discuss the DDIF document intei:
change format which specifies the revisable 
form for text, graphics, and images. The authors 
describe the DDIF design, its relationship to stan
dards, and practical aspects of data interchange. 

A second format, DTIF, is the subject of Carol 
Young's and Neal Jacobson's paper. They open their 
discussion with a description of the types of problems 
designers had to address to allow for the inter
change of revisable tabular data between applica
tions. They then describe how the DTIF format 
meets the goals they set, among which were archi
tecture neutrality, application independence, and 
extensibility. 

For processing DDIF, DTIF, and non-CDA formats, 
the CDA architecture includes a set of services, 
specifically, the CDA Toolkit and the converter 
architecture. Dick Gumbel and Marty Jack relate 

2 

how the toolkit was designed to provide application 
programs access to CDA documents through a pro
cedural interface. They also describe the converter 
architecture which imports and exports documents 
to and from non-CDA formats. 

Two more services are included in the CDA archi
tecture for efficient interapplication integration. In 
their paper, Baldwin Cheung and Neal Jacobson 
give details of the AIL application interface library 
and DECdecision Builder. With AIL, developers can 
build tightly integrated levels of applications. 
DECdecision Builder allows applications to be inte
grated at the user level. 

Al Sung, Neal Jacobson, and Carol Young then 
describe the DECdecision product. Designed for 
end-user decision support, the DECdecision appli
cation's five components provide a high level of 
data integration through database access, spread
sheet, charting, flow control, and management 
functions. DECdecision serves as a model for the 
development of applications that use the features 
of the DECwindows and CDA architectures. 

The DECwrite editor, developed in conjunction 
with the DECwindows and CDA architectures, is 
the topic of our next paper. Seth Cohen and Gene 
Morgan focus on the relationship between this 
DECwindows-based compound document editor and 
the DDIF interchange format. By resolving issues rela
tive to this relationship, designers were able to draw 
on the benefits of the interchange format without 
sacrificing formatting speed and ease of editing. 

The closing paper for this issue, by Neal Appel 
and Ron Olson, features an application that 
extends the CDA architecture to meet scientific and 
engineering requirements. Neal and Ron describe 
the development of the DECview3D application 
which supports interactive two- and three-dimen
sional viewing and annotation of scientific and 
engineering data. 

I thank Bob Travis for not only contributing 
papers to this issue but for his help in developing its 
general content. I would also like to take this 
opportunity to welcome Barbara Lindmark and 
Cathy Phillips to the DlJ office. Barbara is the asso
ciate editor who has helped launch the journal on 
its new quarterly schedule. Cathy is the subscrip
tions administrator who has made journal sub
scriptions available to our readership, beginning 
with this issue. 



Biographies 

Neal B. Appel As a principal software engineer in the CAD/CAM Technology 
Center, Neal Appel is the architect for the DECview3D product and consultant 
for the design of other CAD/CAM products. Before joining Digital in 1987, Neal 
worked at Computervision, where he was a member of the Technical Staff 
Council. In this role, he provided technical direction and consulting for 
Computervision's graphics development. He received a B.Sc. (Honors, 1977) in 
mathematics from Northeastern University, an M.Sc. (1979) in applied mathe
matics, and an M.Sc. ( 1980) in computer science from Michigan State University. 
He is a member of ACM and the SIGGRAPH Special Interest Group. 

Baldwin K. Cheung Baldwin Cheung is a principal software engineer in the 
Core Applications Group. He is a developer of the DECwrite editor, the architect 
for the AIL application interface library, and responsible for developing the 
LiveLink functions. With co-developer Neal Jacobson, he has applied for a 
patent for the Application Interface Library. Since joining Digital in 1982, 
Baldwin has participated in the VT240, PRO/GIDIS, PRO/NAPLPS, PROIVENIX, 
and VS31 graphics development projects. He holds a B.S. (1977, highest honors) 
in mechanical engineering from Northeastern University. Baldwin has taken 
graduate studies at the Massachusetts Institute of Technology. 

Seth S. Cohen A consultant software engineer in the Workgroup Publishing 
Group, Seth Cohen designed the DECwrite compound document editor and led 
its development effort. He also coordinated the use of DECwrite technology 
across different Digital platforms and projects. Since joining Digital in 1973, 
Seth has designed the hard-copy support of UIS workstations, the PRO document 
architecture, and a package to validate RMS files. He has led the development 
projects for his designs, as well as the development teams for the PRO graphics 
arts, RMS-10/RMS-20, DBMS-10/DBMS-20 projects. Seth has an M.S. (1973) in 
computer science from the Massachusetts Institute of Technology. 

Richard T. Gumbel Richard Gumbel joined Digital in 1979. He is currently a 
principal software engineer in the Core Applications Group. Dick is one of the 
developers of the CDA Toolkit and CDA converter architecture. Together with 
his co-developer, MartinJack, he has applied for a patent for the CDA converter 
architecture. He is currently designing more features for the toolkit. Prior to his 
work on CDA projects, Dick was part of the DECforms and RT-11 development 
efforts, and the leader for the VAX FMS project. He has a B.S. ( 1974) in physics 
and an M.S. (1979) in computer science from West Virginia University. Dick is 
a member of ACM and the SIGSOFT Special Interest Group. 

I 

3 



Biographies 

4 

Martin L. Jack One of the developers of the CDA Toolkit and CDA converter 
architecture, Martin Jack is now designing new approaches to simplify software 
product installation and management. He has applied for a patent for the CDA 
converter architecture with his co-developer, Richard Gumbel, and for a patent 
for the DOTS multiple object transport system. Marty is a consultant software 
engineer in the VMS Base Systems Platform Engineering Group. He worked on 
the VAX COBOL compiler project and was a member of the VAX architecture 
review committee. He joined Digital in 1973. Marty has an S.B. (1971) in chem
istry from the Massachusetts Institute of Technology. 

Neal F.Jacobson As the project leader for the DECdecision Builder project, 
Neal Jacobson led the design and development of this component. In his position 
as consulting software engineer in the Core Applications Group, he is currently the 
architect for the Application Control Services project. Neal joined Digital in 1980. 
He received a B.S. (1978) in computer science and mathematics from SUNY at 
Albany. Neal has also worked on VAX DBMS and led the VAX TEAMDATA project. 
He has patent applications pending for the Builder Application Integration Services, 
the DTIF table interchange format, and the Application Interface Library. 

William R. Laurune At the time of his work on the DDIF document interchange 
format, William Laurune was a principal software engineer in the Core Applications 
Group. He is currently a member of the Digital team that is developing factory 
automation software for Boeing Commercial Airline's new sheet metal center. 
Bill joined Digital in 1980. He has a degree in English writing, with a minor in 
computer science, from the University of Pittsburgh. A combination of graduate 
classes in computer graphics and a writing background led to a natural interest 
in Digital's first laser printer support projects and advanced document process
ing technologies. 

Wm. Eugene Morgan Eugene Morgan is the co-developer of the DECwrite 
version 1.0 product and developed the DDIF document interchange format's read 
and write code for that version. As a principal engineer in the Workgroup Publishing 
Group, he is now leading the DECwrite version 1.1 and version 2.0 projects. 
Since joining Digital in 1978, Gene has worked on many projects, including 
support of DECnet-20 and IBM 2780/3780 communications for DECSYSTEM- IO 
and DECsystem-20, and the Printserver 40 Communications Software, for which 
he has a patent application pending. Gene studied mathematics and computer 
science at Old Dominion University, and is a member of ACM and SIGGRAPH. 

Ronald M. Olson As a marketing consultant for the LOP/Science Product 
Marketing Group, Ronald Olson is the project manager for the Scientific Document 
Processing program. One of his major responsibilities is the development of CDA 
architecture support among science market application vendors and customers. 
In 1989, Ron received Digital's Marketing Leadership award. Prior to joining Digital 
in 1974, Ron was employed by Control Data Corporation. He has a B.A. in Math
ematics from St.John's University. In addition to the Digital Tecbnical]ournal, 
Ron has also published in the COll4SYL Systems Committee Technical Report. 



----------

Alan Sung Alan Sung is a principal software engineer in the Core Applications 
Group. In this position he is responsible for the development of decision support 
products. He was the senior technical contributor to the DECdecision Cale project 
and continues to act as a consultant to the project. He was also the principal 
designer and project leader for the VAX Xway project. Prior to that project, Alan 
worked on the VAX DECalc project in the Technical Systems Group. He joined 
Digital in 1982. He has a B.S. (1982) in computer science from Cornell University 
and is a member of ACM. 

Robert L. Travis Jr. Since joining Digital in 1978, Robert Travis has been a 
member of the development teams for many of Digital's major document processing 
products, including WPS-8. He represented Digital on the ANSI and ISO standards 
committees for the development of mail/messaging, SGML, and ODA standards. 
Most recently, as a senior consultant for Software Engineering in the Core 
Applications Group, Bob developed the CDA architecture and started the CDA 
program. Before joining Digital, he managed his own software consulting firm. 
He holds a B.A. (1963)and an M.A. (1%S)in mathematics from Wesleyan University. 

Carol A. Young Carol Young is the architect of the DTIF table interchange 
format and leader of the DECdecision Cale version 1.0 project. She and her 
co-developers have applied for patents for the DTIF format and for asynchro
nous DECalc-PLUS. Carol is currently a principal software engineer in the 
Decision Support Group. Prior to this, as a senior software engineer, she was the 
project leader for the development of DECalc versions 3.0a, 2.2, and 2.1 . She 
was a technical contributor to DECalc-PLUS version 1.0. Carol joined Digital in 
1982 after receiving a B.A. in computer science and French language and litera
ture from the University of Michigan. 

I 

s 



I Foreword 

Jeffrey H. Rudy 
Group Manager 
Core Applications Group 

In the 1970s, word processing systems were the most 
advanced method of document processing. With this 
technology, users could create and revise documents. 
However, there were limitations. Only one user could 
access data at a time. Graphics were not supported, 
and the finished product had the appearance of 
"computer-generated" material. 

In the 1980s, higher performance electronic 
publishing systems began replacing word process
ing systems. Users could now create and revise text 
and graphics, and could produce professional, high
quality printed documents. Electronic publishing 
systems also met a growing demand for more infor
mation-sharing capability. Multiple users could now 
share the data. However, there were still limitations. 
Information could only be shared among users of 
the same operating systems and the same applica
tions. Electronic publishing systems did not address 
the need to integrate and interchange data. 

As we approach the 1990s, the need is growing to 
interchange data across different operating system 
platforms, different applications, and different stan
dards. A principal barrier to this type of information 
sharing is the fact that companies will continue 
to use different systems. Therefore, vendors must 
develop document processing systems that both 
meet these companies needs and accommodate 
existing and future multivendor environments. 

In the early 1980s, Digital recognized that future 
document processing systems would need to sup
port data interchange and integration through a 
compound document architecture. To this end, the 
diverse document processing development projects 
then underway were brought together into one 
body to reach technical agreement on a common 

6 

architecture and standards for data interchange. 
From this effort, an overall design structure for data 
interchange among all developing applications and 
a meta-syntax for that design were defined. 

In 1987, Digital announced its CDA design. The 
first version of the CDA toolkit that incorporates 
this design was distributed in 1988. The design 
comprises three parts: the CDA architecture, CDA
compliant products, and the CDA program. The 
interchange formats in the CDA architecture are, in 
part, an outgrowth of the work done in the 1980s 
by U.S. and international standards bodies. 

The CDA architecture is a comprehensive and 
open interchange standard which enables users 
to easily interchange numerous types of revisable 
information among applications and with each 
other. We refer to this revisable information as 
"compound documents" that can encompass not 
only text, but graphics, images, and numerical 
data, as well as the table-oriented data usually asso
ciated with spreadsheets or database queries. The 
CDA architecture has been further enhanced with 
an Applications Control service that dynamically 
links the files in a CDA document to give users 
access to "live" data in the network. 

Moreover, the CDA architecture is operating 
system-independent and removes the barrier to 
information sharing that has limited previous 
document processing systems. In fact, Digital has 
made the technical specifications for the CDA archi
tecture public to further support the open inter
change of information. 

At the present time, the CDA architecture contains 
four formats that support data interchange. A fifth 
is planned for the near future. The ODIS document 
interchange syntax, which is the meta-syntax, is the 
base encoding system for the interchange formats, 
DDIF and DTIF. DDIF is the CDA document inter
change format for revisable text, graphics, and 
images. DTIF is the CDA table interchange format 
for revisable data tables and spreadsheets. The DOTS 
object transport syntax supports the electronic 
transfer of multiple data elements, in multiple 
interchange formats. 

The CDA architecture goes beyond other data 
interchange formats by providing an integrated 
conversion architecture that supports software 
development for translating existing formats to 
and from CDA documents. In addition, the CDA 
conversion architecture acts as an interchange hub 
among multiple formats. Data can be moved from 



one format to a CDA format and then translated to 
another format. As additional converters become 
available, the conversion architecture will simplify 
data interchange and support of multiple standards 
and application formats for the application devel
oper because separate converters and applications 
will not be necessary. 

CDA-compliant products give users the power 
to implement the CDA architecture and actively 
exchange and share data. 

In the past year, Digital has announced several 
major CDA-compliant products. The DECwrite editor 
is a "what-you-see-is-what-you-get" (WYSIWYG) 
compound document editor that combines word 
processing, desktop publishing, drawing, and busi
ness graphics into one product. The DECdecision 
product is a workstation-based, advanced decision 
support solution for data-dependent professionals. 
Three VAXimage products permit users to include 
images, i.e., nonelectronic, existing objects such as 
photographs, in documents and exchange them as 
if they were text or graphics. 

The scope of CDA-compliant products has been 
extended to meet the unique document processing 
needs of specific industries. In the scientific area, 
the DECview3D product provides graphics transla
tions, two-dimensional and three-dimensional graph
ics manipulation, and annotation of engineering 
and scientific data. 

Digital is as firmly committed to supporting third
party development of CDA-compliant products as it 
is to developing these products itself. Many CDA 
applications have been and will continue to be pro
duced by organizations external to Digital. Third 
parties were actively involved in the design of the 
CDA architecture to ensure that the design included 
what they needed to develop CDA-compliant prod
ucts in the future. The result of that involvement 
was very successful. We now have over 50 key soft
ware companies developing CDA applications. 

The CDA program is a broad set of activities that 
support the implementation of the CDA architec
ture. These activities include: 

• Providing tools, training, and support for CDA
compliant products by independent software 
vendors 

• Making CDA toolkits available for multiple plat
forms and extensions to the CDA architecture 

• Making the Cll4 Manual publicly available 

• Ensuring that all future Digital products support 
the CDA architecture 

Together, the CDA architecture, the CDA-compliant 
products, and the CDA program answer the data 
interchange limitation of past document process
ing systems. 

For the future, the CDA design is open and exten
sible. Already, Digital and third parties are develop
ing more applications to extend the revisability 
capabilities for the data and add more interchange 
methods. 

Although many vendors have recognized the need 
for a compound document architecture, Digital is 
the first to develop and release one. Our success is 
based on many factors. One is our ability to build 
system architectures. Our network, VAX system, and 
DECwindows architectures are successful examples 
of that point. Digital is also a recognized supporter 
of open standards, as proven by its founding mem
bership role in the Open Software Foundation. 
Many of the CDA applications, such as the DDIF and 
DTIF interchange formats, are based in part on 
existing ISO standards. Finally, Digital has proba
bly the broadest and most in-depth expertise and 
experience in building distributed network systems. 
From all of this, we were able to build a single 
system architecture that provides an integrated, 
seamless computing environment across multiven
dor operating platforms. 

In this issue of the Digital Tecbnicaljoumal, you 
will learn in more detail about how the many pieces 
of the CDA design were developed. As you read these 
papers and come to see the CDA design as an inte
grated whole, you will understand how the CDA 
design makes a truly distributed network possible. 

7 

I 



Robert L. Travis]r. I 

CDA Overview 
The C.D4 family of architectures, seroices, and applications is designed to support the 
creation, interchange, and processing of compound documents in a heterogeneous 
network environment. This f amity emerged as the result of a fundamental goal: to 
develop a coherent set of standards and capabilities for data interchange across the 
Digital computing environment. Of the four stages identified by the C.D4 document 
processing model, the central focus is the revisable compound document and its 
logical strnctures and data cross-linkages. Key design decisions for each of the major 
C.D4 components were made with reference to Digital, industry, and international 
standards. The major C.D4 component development efforts are described in more 
detail in this issues succeeding papers. 

Background oftbe CDA Program 
As our society has made the transition from an 
industrial economy to one based on information, 
the role of documents in business has changed. 
Documents are no longer merely for record
keeping - slips of paper that record the transfer or 
status of real goods. Today, documents are often 
the real goods. 

Documents are a fundamental part of the overall 
business information flow. Information flows from 
sensors, such as laboratory instruments, financial 
data acquisition, and processing programs, and is 
incorporated into summaries, reports, and presen
tations. The recipients of the information use it to 
make decisions that, in turn, will affect the infor
mation available to other decision makers. 

In light of the growth of information sharing, 
document preparation and presentation tech
nology is no longer the exclusive province of 
document processing professionals. Workstations, 
color graphics terminals and personal computers, 
laser printers, computer digital-font technology, 
and document preparation software make high
quality document production accessible to all. 

As the amount of data available on-line increases, 
so does the need to create links among the various 
application programs that support the data. Multi
ple workstation and central processing graphics 
and data processing applications need to be able to 
interchange information in a revisable format to 
produce business and technical documents. 

As early as 1983, Digital's Systems Architecture 
and Review Authority (SARA) recognized the need 
for an overall data interchange architecture for 
Digital p roducts and sponsored a task force to 

8 

design it. (SARA was a Digital Central Engineering 
cross-group technical committee that has since 
been superseded by other structures.) 

At that time, a number of separate text and 
graphics projects existed. These projects were 
related to workstation developments and other 
platforms, and each had its own emerging architec
ture and standards. In addition, several database 
and spreadsheet-oriented data table processing 
efforts were underway, all of which clearly needed 
effective data interchange; without it, all the prod
ucts would be "standalone" and unable to work 
cooperatively. The SARA effort brought together 
the representatives of these diverse efforts to reach 
technical agreement on common interchange. 

The first thing the SARA task force did was to 
agree on an overall design structure for data 
interchange among all of the developing applica
tions. This design called for a single, common 
meta-syntax for the data and a number of 
domains; each domain would have its own data 
syntax based on the common model. Some of the 
domains envisioned were compound docu
ments, database tables, scientific arrays, labora
tory data, and CAD/CAM product information. 
The efforts of the SARA task force culminated in 
agreement on a common meta-syntax, DDIS, on 
which each of the separate data domains would 
be based. 

In addition to the definition of the DDIS meta
syntax, small work groups were formed with 
members from existing development efforts to 
address the domain-specific problems. The CDA 

interchange formats are, in part, an outgrowth of 
that work. 

Vol. 2 No. I , Winter 1990 Digital TecbnlcalJournal 



Compound Document Architecture 

Certain additional adjustments were made to 
DDIF to enhance support for SGML. Bit-for-bit 
compatibility with ODA was not a goal for the DDIF 
format, since converters would be needed anyway 
to deal with the required extensions. However, all 
important compatibility functions were consid
ered. Because of its positioning in the CDA model, 
the DDIF format only deals with the elements of 
ODA 's Processible Document Architecture. 

The text content of the DDIF format is derived 
directly from ISO character coding standards. The 
added graphics primitives were designed to be 
compatible with the ANSI/ISO Graphical Kernel 
System (GKS) standards because of their wide use. 
The document imaging model is designed to be 
compatible with Postscript. Image content types 
include the standard CCITT bitonal (FAX) encod
ings, as well as significant extensions to handle 
multispectral images. 

Several non-Digital research groups helped to 
align the DDIF structures and semantics to key 
existing or evolving standards. (The Austrian 
Research Center at Seibersdorf and the AGD/FhG 
group at Darmstadt were among the groups that 
helped.) 

For table data, there are a number of de facto 
industry standards or pseudo-standards. All are 
different, and all are proprietary to one or more 
products. The DTIF format defines a single stan
dard encoding for all the functions that appear 
in all the important industry standards. DTIF may 
not assign a standard treatment for a function or 
feature which is unique to a single industry 
product and not apparently suitable for inter
change with others. However, the DTIF format 
includes a general escape mechanism for private 
encodings in such cases. 

No existing standards are applicable to the 
problem the DOTS syntax set out to address. The 
CCITT X.400 mail and messaging standard, how
ever, is closest to the kind of multiple object 
transport function DOTS provides. Therefore, our 
decision was to design the DOTS system encoding 
to be as compatible as possible with the x .400 stan
dard's treatment of multiple body parts in message 
interchange. 

Unrelated to standards issues, but nonetheless a 
significant decision, was how to couple CDA prod
ucts with the technical and scheduling constraints 
of Digital's base systems and with DECwindows 
software. 

Since the CDA architecture is meant to be an 
enhancement to the overall system infrastructure, 

14 

it affects a number of base system components. 
There is a logical coupling with DECwindows 
software, as well, because much of the benefit from 
the CDA architecture is only realized in a multi
application graphics context. As design projects, 
these components had different technical require
ments and schedules. The impact of these factors 
was felt particularly in the development of the CDA 
Toolkit, because its consistency as a bundled 
product across multiple operating system environ
ments had to be maintained. 

Multiple product development schedules also 
complicated the debugging environment, because 
multiple layers of dependent products were being 
developed and tested at the same time. Fortu
nately, the Digital Easynet provided some very 
effective communications tools to support these 
multiple development groups. These included the 
VAX Notes product and multiple interconnected 
mail systems. We also benefited from an enthusias
tic group of early users, who frequently accepted 
code updates on-line. As a result, the test-fix-retest 
cycle was accomplished very rapidly, even though 
many levels of products had to be tested. 

Summary 
The CDA family of architectures, services, and 
applications form an integrated support environ
ment for compound documents. This support is 
designed and implemented to operate consistently 
on multiple hardware and software platforms. 
Tools for software development, as well as end
user access, are included within the CDA architec
ture. Significant efforts have been undertaken to 
ensure that the CDA benefits are not restricted to 
Digital-produced products. 

There is still much work to do, however, as the 
applications and requirements for compound doc
uments continue to expand into new media 
types - voice, music, and video - and into more 
dynamic relationships, such as hypertext. These 
areas, and others, are now active areas of CDA 
architecture research and development. 

Acknowledgments 
Many people in addition to those recognized else
where in this issue of the Digital Technical journal 
have contributed significantly to the development 
of CDA, and it is only possible to name a few of them 
here. Tom Hastings and Vijay Trehan drove the 
SARA data interchange architecture and vision, and 
developed the first drafts of the ODIS specification 

Vol. 2 No. 1, Winter 1990 Digital Tecbntcal]ournal 



services were also designed in detail and devel
oped. Fortunately, much of the early architecture 
model development and many of the key decisions 
had already been approved. Thus, the devel
opment teams were able to work with a reasonably 
stable base. Even so, a great deal of productive 
feedback from the development process into the 
architecture process still occurred. 

Architecture and Development 
Trade-offs 
Designers looked at a number of alternative tech
nical paths during the CDA development - choices 
that would have led to quite different results. 
Perhaps the most significant of these was the selec
tion of the revisable and final interchange formats. 

The basic question in each case was whether we 
should develop a new Digital standard or adapt 
either an existing internal or an international 
industry standard. 

As discussed in the earlier section Background 
of the CDA Program, DDIS was chosen as the basis 
for the CDA architecture interchange syntaxes, 
based on ISO ASN .1 . Other alternatives had been 
considered. These included a variant ofTLV binary 
encoding used in the VAX workstation (VWS) facil
ity, as well as some plain text encodings. None of 
these alternatives had the combined advantages of 
the chosen DDIS encoding. 

• It was a good match with ISO and Consultative 
Committee on Telephony and Telegraphy (CCITT) 
standards. 

• It could use the same encoding support as in 
other network and data protocols. 

• It was compact and easy to decode. 

• It was extensible. 

• It could easily handle arbitrary embedded data 
syntaxes, including binary. 

The DDIS syntax provides some Digital standard 
private identifiers for convenie~t exchange of pop
ular data types, such as floating point and standard 
character string types. It also defines domain iden
tifiers that are used to uniquely identify data 
streams, which are defined as DDIS syntaxes. 
Some of the more complex features of ASN.1 are 
not included in DDIS - macros, for instance -
because they are not yet needed in the specific data 
syntaxes. This may change in the future, as the 
ODIS specification use continues to broaden. 

Digita l TecbntcalJournal Vol. 2 No. 1, Winter 1990 

CD4 Overview 

The DDIF format had to be highly compatible 
with the existing ISO Standard Generalized Markup 
Language (SGML), ISO 8879, and the emerging ISO 
Office Document Architecture and Interchange 
Format (ODA/ODIF) standard, ISO 8613. Digital's 
customers today require the implementation of 
computing standards that extend beyond the 
boundaries of any single vendor. Even standards 
that are merely national in scope are no longer ade
quate, since electronic communications today 
span the globe to support international commerce. 
Even within the bounds of a single multinational 
corporation, the equipment of many different 
vendors and countries of origin may be repre
sented. For these reasons, Digital is committed to 
the international standards process. 

One option was simply to choose either SGML 
or ODAIODIF and define the DDIF data format 
as its extension or specialization. The apparent 
advantages of this option faded on careful aq~lysis. 

• SGML and ODA are not compatible. Th~r(,'.fqre, 
choosing one makes compatibility with thc;i 
other somewhat problematic. 

• SGML is delimiter based. Moreover, J\9 tech
niques were available for mixing SGML ~lem~nts 
withASN. l elements. 

• SGML 's standard technique for incorporation of 
non text data is by external reference only. 

• The DDIF format required semantics that the 
SGML standards did not contain. 

• ODA was very incomplete in several areas critical 
to CDA. The required extensions would make 
the result nonconforming, since CDA could not 
consider the extensions optional. One example 
of this is the need to handle linkages between 
multiple documents and applications. 

• ODA does not integrate text and nontext (e.g., 
graphics and image) data types very well. It sim
ply combines the existing, nonintegrated stan
dards by layering structuring primitives on top. 

We decided to follow the ODA document model 
very closely, including the treatment of generic and 
specific structure, but to adopt a different treat
ment for combining structure with content. By 
following the ODA model closely, we are able to 
track ODA evolution compatibility, even though 
our philosophy maintains that the relationship 
between structure and content should be more 
highly integrated . 

13 



Compound Document Architecture 

DATABASE 
AND/OR 
SPREADSHEET 

COMPOUND 
DOCUMENT 
EDITOR 

! t ! t 
DTIF 

CHARTER/ 
DDIF DOFF 

PRINTING/ 
DATA REPORT VIEWING 
GENERATOR GENERATOR FOR MATIER SYSTEM 

REVISABLE 
COMPOUND FORMATIED 

TABLE DATA DOCUMENT DOCUMENT 
INTERCHANGE INTERCHANGE INTERCHANGE 
FORMAT FORMAT FORMAT 

COMPOSITE DATA OBJECT MANAGEMENT, 
MAIL INTERCHANGE 

D 
D 
D 
D 

PACK 

DOTS 

DATA 
OBJECT 
TRANSPORT 
SYNTAX 

UNPACK 

D 
D 
D 
D 

Figure 2 CDA Component Architectures 

or implied to the creating application(s) can be 
changed , updated, or recalculated more easily than 
in final form documents. Applications that involve 
processing and data interchange are more easily 
developed and operate more efficiently by dealing 
with revisable rather than final form document data. 

The revisable form for spreadsheet and data 
tables is specified by the DTIF table interchange for
mat. The revisable form for structured text, graph
ics, and image is specified by the DDIF document 
interchange format. Both DTIF and DDIF provide 
for the inclusion of related or underlying data in 
other formats. The CDA Toolkit implements a data 
interchange hub using these two interchange for
mats. The toolkit also provides general processing 
access to in-memory representations of the data. 

The final form of a document represents the 
abstract document component relationships as 
resolved display attributes. These attributes include 
text fonts, character positions, positioned and 
sized graphics frames, and final page layout. Final 
form is produced from revisable form by a format
ting process. A final form document is specifically 
formatted for a panicular class of display. The final 
form for compound documents in the CDA archi-

12 

tecture is the DDFF format described earlier; the 
current version of this is based on PostScript. 

Figure 2 indicates how the CDA architectures 
relate to each other, and which types of applica
tions and services are most concerned with each 
architecture. 

The Interchange Formats and Services 
Within the model, two things could be clearly 
seen. These were the required interchange formats 
and their supporting services, and the key appli
cations that must rely on those services and inter
change formats. Task groups were formed to define 
the interchange formats and their supporting 
services. 

Each task group first abstracted a design model, 
based on the application requirements. The priori
ties for elements within the model were based on 
the actual needs of the specific applications. Each 
format or interface had a responsible architect to 
arbitrate and make final decisions regarding the 
resulting structures. 

As the CDA services such as the CDA Toolkit were 
being defined and built, the applications and bun
dled system components that needed to use the 

Vol. 2 No. 1, Winter 1990 Dtgttal Tecbntcaljournal 



The key Digital-produced applications that form 
the hub of end-user access to the CDA architecture 
facilities are the DECwrite application, a powerful 
compound document editor, and the DEC decision 
application, an integrated table data-handling and 
analysis package. Both are capable of tight integra
tion with other applications, and with each other, 
by means of Live Link connections. 

DECwrite and DECdecision can be used coopera
tively to build decision support applications and 
include the results in reports and other kinds of 
compound documents. The DECchart application 
is included with both DECwrite and DECdecision, 
and its features for dynamic plotting of data tables 
are available through LiveLink connections. The 
other components of DECdecision - Builder, Cale, 
and Access - are all linked together and dynamically 
share data by using the LiveLink facilities. 

The CDA architecture and program comprehen
sively support and encourage non-Digital develop
ment groups to support the CDA architecture in 
their products. The focus of the CDA Toolkit is to 
provide easy access from application code to CDA 
interchange formats and converters. Training is 
available for software developers in the use of the 
toolkit and other CDA components. 

Development of a Compound 
Document Architecture 
The first concrete step in the development of the 
CDA architecture was to establish a model. This 
model would accurately describe the desired result 
and identify the various architectures and other 
necessary components. 

STAGE 1 STAGE 2 

CD4 Overview 

Tbe CDA Architecture Model 
The CDA architecture model identifies a four-stage 
applications pipeline which culminates in the dis
play or printing of a document. (See Figure 1.) The 
first stage encompasses applications that are the 
source of information (tables or graphs) for inclu
sion in documents. The second stage is a revisable 
compound document, where content is added and 
manipulated. This stage is dominated by logical 
structure and data cross-linkages. In the third 
stage, a final compound document results from 
applying formatting rules and layout characteris
tics to a revisable compound document. The fourth 
stage is the transformation of a final document into 
device-specific language for display or printing. 

The processing steps and data formats of the first 
stage are diverse and very domain specific, since 
they are determined by the needs of many different 
processing environments. The first stage is impor
tant to the CDA model because it is the foundation 
for the LiveLink function's access to other applica
tions and data. Application-specific data viewing 
modules (e.g., DECview3D software) provide the 
link between the stage one and stage two functions. 

Data interchange can take place in all four stages, 
but the CDA architecture primarily focuses on the 
second one. Revisable compound documents, their 
processing and interchange, are at the heart of the 
CDA architecture. 

The revisable form of a document contains 
abstract relationships between components of the 
document. Because these relationships are abstract 
(logical) rather than concrete (representational), 
any aspect of the document that the user has stated 

STAGE 3 STAGE 4 

DEC windows PROCESSIBLE 
DATA 
LIBRARIES 

CREATE 

REVISABLE 
FORMAT 
COMPOUND 
DOCUMENTS PUBLISH 

FINAL 
FORMAT 
COMPOUND 
DOCUMENTS 

(APPLICATIONS, 
TABLES, TEXT, 
GRAPHICS, 
IMAGES, ... ) 

MANY DATA FORMATS 
(APPLICATION-SPECIFIC) 

SUPPORTED VIA 
Livelink CONNECTIONS 
FROM DDIF/DTIF; 
INTERCHANGED WITHIN 
SPECIFIC APPLICATION 
DOMAINS 

(LOGICAL 
STRUCTURES, 
DATA LINKAGES) 

DDIF 
DTIF 

SUPPORTED BY TOOLKIT 
AND BY CONVERTERS; 
INTERCHANGED BY KEY 
CDA APPLICATIONS 

(LAYOUT 
STRUCTURES, 
PAGES, LINES) 

DDFF/PostScript 

PRODUCED BY KEY 
APPLICATIONS AND 
BY TOOLKIT; SUPPORTED 
BY DEVICE DRIVERS 

Figure I Compound Document Processing Model 

Digital TecbnicalJournal Vol. 2 No. 1, Winter 1990 

300-DPI LASER 

HOLOGRAMS? 

MANY PROTOCOLS 
(DEVICE-SPECIFIC) 

PRODUCED BY 
DEVICE DRIVERS; 
SUPPORTED BY 
DEVICES 

11 



Compound Document Architecture 

There are currently three interchange formats and 
two related encoding standards that are managed 
as part of CDA. 

• As noted above, the ODIS data interchange syn
tax is the base encoding standard for inter
change formats. These formats include the 
DOTS data object transport syntax, the DDIF 
document interchange format, and the DTIF 
table interchange format. 

• DOTS is a general encoding for multiple data 
elements, in multiple interchange formats, and 
the network of cross-relationships that might 
exist among them. It is used by the mail program 
to interchange multifile documents, maintain
ing the links among them. 

• DDIF is the CDA interchange format for revisable 
compound documents. It is supported by the 
CDA Toolkit, read and created by multiple prod
ucts, and edited by the DECwrite editor. 

• DTIF is the CDA interchange format for revisable 
data tables and spreadsheets. It is supported 
by the CDA Toolkit and edited by DECdecision 
components. 

• DOFF is the name given to the CDA interchange 
format for final form compound documents, 
but DOFF itselfis not yet defined. We have hopes 
that the ISO SPDL (Standard Page Description 
Language) effort will be able to meet the CDA 
requirements in this area, when its specification 
is available. In the meantime, CDA applications 
use Structured Postscript as the canonical final 
form for compound documents. It is created by 
document formatting applications and by con
verters within the CDA Toolkit and consumed by 
output handlers. It can become a part of other 
revisable or final compound documents by 
means of links. 

The DDIF and DTIF formats share many important 
characteristics, as can be seen from the associated 
descriptions elsewhere in this issue. Perhaps chief 
among these are a common approach to external 
file linkage to support application integration and 
to aid cross-system transport, and common features 
to support future extensions of the standards as well 
as ad hoc extensions to meet user- and application
specific needs. 

Services and Application Program Interfaces 
Services and their associated application program 
interfaces (APis) are used by application developers 

10 

to include CDA functions within applications. Stan
dard APis for the CDA bundled services are provided 
on all system types, which enhances the portability 
of applications by removing any potential system 
dependency. 

The revisable interchange formats (DDIF and 
DTIF) both have associated in-memory formats 
that can be manipulated by using the CDA Toolkit. 
The toolkit also serves as the hub for the CDA con
verter architecture, which provides some convert
ers that are bundled with the base operating 
systems and others that are optionally available 
with applications or in the CDA converter library. 
The CDA Toolkit also has a core DDIF layout capa
bility, which forms the basis for the CDA viewers 
that are bundled with the operating systems. 

The LiveLink services support cross-application 
integration within the CDA model. Currently, these 
services are bundled with the DECwrite editor and 
DECdecision tool applications. 

On the VMS operating system, the record man
agement services (RMS) have been enhanced to sup
port automatic filtering of the CDA architecture 
data types into plain text streams. This enhance
ment allows existing non-CDA applications to have 
appropriate read access to CDA data types. CDA 
data streams that exist as RMS files are all specially 
marked as to data type by the new RMS semantics 
tag feature. This tag drives the selection of an 
appropriate filter when needed. 

The corresponding facilities on the ULTRIX oper
ating system are available as standard filters and 
utilities. Since semantics tagging is not possible on 
the ULTRIX operating system, the ULTRIX file utility 
has been enhanced to recognize the CDA architec
ture file types. 

Mail and print utilities on the operating systems 
automatically deal with the CDA architecture file 
formats. The DECwindows mail interface can 
invoke the appropriate CDA architecture viewer on 
receipt of a mail message containing CDA architec
ture data types. 

Applications 
Digital has produced a few key applications as part 
of the CDA program. These applications provide a 
showcase for the CDA facilities and a focus for 
application integration, and also deliver some 
key end-user services. The bulk of the applications 
supporting CDA, however, will certainly come 
from Digital's customers and from other software 
producers. 

Vol. 2 No. 1, Winter 1990 Digital Tecbntcaljournal 



DDIS Overview 
The ODIS meta-syntax is based on the International 
Standards Organization (ISO) standards for the 
Abstract Syntax Notation; ISO standards 8824 and 
8825 are collectively called ASN .1. ISO 8824 
describes a notation for describing a data syntax, 
and ISO 8825 describes the method of physically 
encoding a given element of the notation. ISO 8825 
prescribes a method of defining private data 
elements. We used this method in ODIS to define a 
floating point data type, which was missing from 
ASN .1. Also missing from ASN .1 was a means of 
representing the ISO 8859 character sets, such as 
Latin 1, now in standard use in Digital products. 

The ODIS syntax is Digital's standard data def
inition and encoding method for the central COA 
data formats. From the outset, we wanted a com
mon data access method for COA data formats so 
we could build a common data access layer, use 
a common notation, and build a common set of 
development tools such as analyzer utilities. 

The ODIS standard notation can be compiled to 
create a parse table, symbol table, and symbolic 
definitions in the form of include files. These tools 
make software development faster and simpler. 

The ODIS encoding has a number of desirable 
characteristics for encoding COA data. 

• ODIS is a tag-length-value (TLV) encoding. This 
method allows unused data elements to be omit
ted, thus producing a more compact encoding. 
Such elements are described in the notation as 
being "optional." Alternatively, the notation 
may specify a "default" value, which the ODIS 
data access layer used by the receiver supplies to 
the receiving process. 

• The ODIS access layer converts the ODIS encod
ing to and from the native format of the CPU on 
which the process is running. The layer accom
plishes this conversion by locating a given tag 
in a parse table that contains the data type of 
each tag. Thus, for example, ODIS-encoded mail 
delivered on a node is converted by low-level 
access routines to the system's native format at 
the time the mail is read. 

• The ODIS encoding has no special delimiting bit 
sequences; it makes use of a full eight bits per 
byte. Thus the encoding can represent scanned 
images, arrays of floating point numbers, and 
integers more efficiently than an ASCII encod
ing, which would reserve certain bit sequences. 

Digital Tecbntcal]ournal Vol. 2 No. I, Winter 1990 

CD4 Overoiew 

CDA Program Goals 
Consequent to the efforts of the SARA task force to 
define the overall data interchange environment, 
Digital created the COA program. The program 
would pull together the development and architec
ture resources needed for the full support of a 
robust compound document environment. 

It soon became clear this effort would require a 
system-wide infrastructure upgrade. We realized 
that an architecture was needed to cover the data 
and function integration requirements of com
pound documents. As a result of that need, all 
relevant parts of the software system environment 
potentially would need enhancement to handle 
compound documents. In particular, those stan
dard system utilities on which users depend for 
normal everyday tasks had to be enhanced. Such 
utilities as mail and printing would need to deal 
with complex data types as gracefully as they did 
simple ASCII text. 

The technical goals adopted for the COA archi
tecture were to 

• Provide seamless handling of text, tables, graph-
ics, and image document content 

• Be extensible to new media/data types 

• Incorporate support for linked applications 

• Deal with data and documents at the end-user 
(application) level 

• Provide layered services for document handling 

• Incorporate support for key industry and inter
national standards 

• Support heterogeneous systems 

Elements of Digital-s Compound 
Document Architecture 
The COA architecture is a composite architecture, 
comprising multiple interchange formats, services, 
and applications. All of the key components of the 
COA architecture are described in detail in other 
papers in this issue of the Digital Tecbnicalfournal . 
These components are also described briefly here, 
with particular emphasis on their relationships to 
each other and to the COA architecture as a whole. 

Interchange Formats and Related Standards 
Interchange formats and encoding standards enable 
COA applications and services to interoperate in a 
distributed heterogeneous environment. 

9 



and carried it along until the CDA program was able 
to take it over. Mahendra Patel saw the necessity of 
a corporate CDA architecture and provided the 
senior technical guidance to give it the appropriate 
urgency. Andy Wilson and Alan Hasham were key 
members of the original technical team that 
worked with me to define the key elements of the 
CDA architecture, and helped to educate other 
engineering groups about CDA requirements. 
Butler Lampson provided critical help in the early 
days of CDA to set DDIF development on the right 
course. Bob Ayers helped to clarify our thinking 
about the proper relationship of CDA with the 
ODA/ODIF standard under development. Leszek 
Kotsch provided us with his own valuable tech
nical insights as well as the contacts with external 
research and standards people we needed for early 
external technical review. Finally, there are the 
literally dozens of immensely bright and com
mitted engineers who reviewed all the early drafts 
of specifications, found problems and suggested 
solutions, built baselevels of their products to use 

Dig ital Tecbnicaljournal Vol. 2 No. 1, Winter 1990 

aJ4 Overview 

early CDA support implementations, and suffered 
all the pain of having to redo things that already 
worked, in order to track the evolving specifica
tions and make interchange a reality; thank you! 

General References 

International Standard ISO 7942 for Information 
Processing Systems, Graphical Kernel System, Interna
tional Standards Organization (1985). 

International Standard ISO 8879-1986(£) Infomza
tion Processing, Text and Office Systems, Standard 
Generalized Markup Ltmguage (SGML). 

International Standard ISO 8613 /nfomzation Pro
cessing, Text and Office Systems, Office Document 
Architecture (ODA) and Interchange Fomzat (1989). 

CCITT x .400 standards for mail and messaging 
(1988). 

CDAReferenceManual, vols. 1 and2(Maynard: Digital 
Equipment Corporation, Order Nos. AA-PABUA-TE 
andAA-PABVA-TE, 1989). 

15 



William R. Laurune I 
Robert L. Travis Jr. 

The Digital Document 
Interchange Format 

1be DDIF document interchange forma.t is one of the central data formats of tbe Cll4 

architecture. 1be design of tbe format was driven by the user demand for increased 
data portability and s;stem support for more sophisticated document processing 
capabilities. 1be DDIF format supports highly integrated text, graphics, images, and 
application data. A major goal was to design tbe DDIF format for acceptance as 
a standard document format. 1be design includes easy and speedy data access, 
minimal storage size, high-quality data representation, revisability, and format 
extensibility. 1be extensibility of tbe format makes it easy for users to accommodate 
individual and future needs. 

This paper presents an overview of the CDA ar~hitec
ture data format, the DDIF document intc;!r~hRnge 
format. Since the DDIF format is des~ribed in grc;!at 

_ detail in the CDA manual, this pap~r provjd~ the 
Digital Technical Journal audien~~ witb jpsight 
into the concepts and motivatiOOli b~bind the devel
opment and implementation of th(l POJF f9rmilt,1 It 
also presents an overview of the defiiBP of the DDIF 
format in a less formal manner thaP eitber the DDIF 

standard or the CDA manual. 

Motivation for DDIF Development 
Looking back to the mid-1980s, we can readily see 
that the computer hardware being produced by 
Digital was changing in a number of ways. The simul
taneous increase in processor speed and decrease 
in the size and cost of memory made a computer of a 
given capacity less expensive and more widely 
available, especially in the form of personal wor~
stations. Equally significant for document processing, 
cheaper memory and QJ.icroprocessors made it econo
mical to build display devices in which each bit of 
memory was mapp~~ !<? ~ pixel on a video display 
pr to a dot on ~ print~g p;ige. 

A display devke that is driven from such a mapping 
of bits to pixels has a tremendous advantage over a 
device that can only display a limited set of characters 
on a fixed grid. A pixel-addressable device, like a mod
em laser printer, can display complex graphics, 
text of any size and style, and, of course, scanned 
images. The utility of bitmapped displays to convey 
information is a quantum leap from character-cell 
devices like the video terminals and impact printers of 
the early 1980s. 

16 

Still, the potential power of a bitmapped display 
was not immediately available to computer users, 
who cannot reasonably assemble bitmapped pixel 
displays bit by bit. What was clearly needed was a 
host of applications that allowed users to transform 
their ideas into pixel images that could be displayed 
on the new devices. 

As bitmapped devices began to grow in popu
larity, several groups within Digital began to plan 
the next generation of office software to take 
advantage of these new workstations and display 
devices. To the authors and their management, it 
was clear that the new hardware and software 
would gradually replace the previous generation. It 
was equally clear that the forthcoming software 
would create a host of new problems if no stan
dardization of data representations was in place. 

In particular, data portability, one great advantage 
of the existing software, was threatened by the explo
sion in the number of office applications. At the time, 
hardware and software alike generally accepted 
ASCII. A user could cr~ate a gocu~ent in ASCII, 

distribute it by means qf electronic mail, and print 
it without special conversion or processing. ASCII 

text files could also be used as data files for software 
applications, including operating system utilities. 

The software applications in existence for more 
advanced devices already suffered noticeably from 
an inability to interchange data and from a lack of 
operating system support. Users could not change 
editors, mail their documents, or submit them to 
conventional print queues. The foreseeable boom 
in graphics, image processing, and advanced text 

Vol. 2 No. 1, Winter 1990 Digital Tecbnlcal]ournal 



applications threatened to compound the data 
portability problem by introducing a host of new 
data formats. 

The solution to many of the data portability and 
system support problems was to find or develop a 
standard data format for high-quality text, graph
ics, and scanned images. The Digital standard for 
document interchange ultimately became known 
as the DDIF document interchange format. This 
paper presents some of our goals for the DDIF for
mat, describes the basic design of the DDIF format, 
and highlights some of the design decisions we 
made along the way. Other papers in this journal 
describe some of the facilities provided by the CDA 
architecture that allow much of the ease of use and 
data portability formerly provided only by simple 
ASCII text files. 

Goals 
From the outset, our goal for the DDIF format was 
that it eventually serve as the common currency of 
document processing, just as the ASCII text file 
does on Digital systems today. Moreover, the DDIF 
format would have expanded capabilities that 
included graphics, sophisticated text, and relation
ships to external data. 

As a common coin of the realm, the DDIF format 
would offer users tremendous power and flexibil
ity. The 1980s computer user could create, edit, 
mail, print, view, search, and compile text files. We 
wanted the 1990s user to be able to create complex 
documents for which the same set of basic services 
was available. 

For the DDIF format to be acceptable as a stan
dard document format, a number of challenging 
goals had to be met. 

Speedy access - Reading a DDIF file could not 
require so much memory or CPU time that users 
would not accept the DDIF format as a natural 
storage format for their data. Stated otherwise, 
after allowing for expected near-term increase in 
processor speed, we wanted processing of DDIF 
documents to take about the same amount of time 
(or less) as processing a simple text format on the 
early 1980s generation of computer hardware. 

Minimal size - Relative to the kind of data being 
stored, the storage overhead of using the DDIF 
format could not rule out its use by many of the 
products used on Digital platforms. 

Ease-of-access - Unless application developers 
could call a set of toolkit routines to read and write 
the DDIF files, it was not likely that the format 
would become popular. The design of such soft-

Digital TecbnicalJournal Vol. 2 No. I , Winter 1990 

1be Digital Document Interchange Format 

ware layers required a clear division of function 
between application and toolkit. 

Highly representative - To serve adequately as 
a document storage format, the DDIF format had 
to be able to represent the data each application 
would need. 

To some extent, the vast number of features that 
users of high-end document processing systems 
expect pushes the DDIF format away from its goals 
for easy and speedy access and more toward com
plexity. Many of these features are based on the 
traditions of the publishing industry and do not 
necessarily fall into the boundaries of any formal 
scheme or theory of document processing. The 
way to keep the DDIF format representation small 
was to seek the smallest basic units of document 
representation that could be combined to build the 
more complex units. Later in this paper, we 
explore how the various elements of the DDIF for
mat are combined like atoms to create the complex 
molecules of documents. 

Another set of goals for the DDIF format is related 
to the success of products that rely on the format 
for representing documents. For products based 
on DDIF to be competitive with similar products in 
the market, the format had to 

• Be highly revisable. The native format for docu
ments must support document editor features 
that make revising a document as easy as possi
ble. A revisable document contains many inter
element relationships that allow revision. For 
example, a printer protocol might describe text 
as being fixed on specific pages, but a revisable 
document format describes the rules for the 
flow of text. 

• Provide a modem imaging model to display 
complex pictures. The conceptual basis for 
describing a picture is an imaging model, which 
describes the operations that can be performed 
on a video display or laser printer page under 
formation. Applications use the basic operations 
provided in the imaging model to build complex 
pictures. Imaging models vary in the number of 
operations required to build complex pictures. 
Imaging models can also be deficient. For exam
ple, some older imaging models failed to allow 
for the compact description of curves. 

As a revisable document format, the DDIF format 
is necessarily influenced by the prevailing capa
bility of printers and video displays. It would 
hardly be a service to users to allow them to cre
ate documents they cannot accurately view or 

17 



Compound Document Architecture 

print. On the other hand, a document storage 
format that does not provide the user with access 
to the most useful features of modem laser 
printers can hardly hope to form the basis for 
competitive products in today's market, much 
less in tomorrow's market. 

• Provide an application integration capability. 
For a document interchange format, application 
integration support encompasses the ability to 
represent references to external data sources, 
and applications to invoke to process such 
external data. For example, a chart in a docu
ment might be produced by a charting appli
cation that converts user-supplied parameters 
and a designated spreadsheet into a chart that is 
ultimately represented in the document inter
change format's native graphics primitives. 

• Provide extensibility for future needs. Two 
forms of extensibility are needed in a format 
used for both data interchange and storage of 
user data. The first form is the ability to extend a 
format in a standard way to represent new 
semantics for interchange. The second form of 
extensibility is the ability to allow individual 
applications to represent private semantics that 
must be retained from one session of the applica
tion to the next. 

DDIFDesign 
Each DDIF encoded document consists of three 
variable-length elements: the document descrip
tor, the document header, and the document con
tent. (See Figure 1.) 

DESCRIPTOR: 
DATA SYNTAX VERSION, APPLICATION IDENTIFICATION 

HEADER: 
AUTHORS, REVISION DATES, ... 

LANGUAGE REFS, EXTERNAL REFS, ... 

CONTENT: 
CONTENT PRIMITIVES ARRANGED TO FORM 
SEGMENTS CONTAINING TEXT, GRAPHICS, IMAGES, 
NESTED SEGMENTS. 

SEGMENT ATIRIBUTES CONTROL APPEARANCE AND 
PROCESSING 

SEGMENTS CAN REFER TO EXTERNAL APPLICATIONS 
AND DATA 

Figure 1 Tojr/evel Structure of a DDIF Document 

18 

The descriptor contains information about the 
revision level of the data syntax and the name of the 
application that created the document. The docu
ment header contains global document-specific 
information such as time and date of creation and a 
list of authors. The document content generally 
contains the largest quantity of data, and describes 
the part of the document that is displayed, printed, 
and edited. 

As shown in Figure 2, the content of a document 
is organized in the DDIF format as a hierarchy of 
bounded document content portions, called seg
ments.2 Each DDIF segment may be text, graphics, 
image, and/or nested segments. Additionally, a seg
ment's content may be computed by a standard or 
application-defined function. 

Each segment represents document content that 
is distinguished from its surrounding content by a 
difference in its presentation or processing. As a 
result, each segment has a unique set of attributes 
that apply to the presentation and processing of the 
content. Attributes not declared for a given seg
ment are generally inherited from the segment that 
encompasses that segment. The values of attributes 
bound to a segment override the value of the same 
attribute bound to an outer-level segment. 

The DDIF standard prescribes initial values for 
each presentation attribute. These are supplied by 
each receiving application or by the CDA Toolkit on 
behalf of the application. The fact that each seg
ment declares only the difference between its 
attributes and its parent segment's attributes keeps 
document size minimal. 

The nesting of segments and the declaration of seg
ment attributes can be compared to the use of 
begin-end program segments in a structured pro
gramming language. In a structured language, 
variables can be declared for each segment. When 
a programming language allows nested declara
tion of variables of a given name, then variables of 
innermost scope take precedence when that name 
is referenced. 

The scoped method of structuring document 
content was chosen for the DDIF format in prefer
ence to the alternative "modal" form, where an 
attribute remains in effect until explicitly 
changed. For revisable documents, the scoped 
approach allows a segment to be skipped entirely 
without rendering the attribute state ambiguous. 
Conversely, a segment can be inserted into the 
document without resetting the previous state. 

An application can maintain the current state of 
the segment attributes by pushing all the changed 

Vol. 2 No. 1, Winter 1990 Digital TedmlcalJournal 



The Digital Document Interchange Format 

begin-segment { segment-type "Section"} 

[

begin-segment { segment-type "Header"} 
latin1-content "Introduction" 
end-segment NULL 

begin-segment { segment-type "Paragraph"} 
latin1-content "Italics indicates that the feature is demon" 
soft-directive hyphen-new-line 
latin1-content "st ra t ed in this document." 
hard-directive new-l i ne 
end-segment NULL 

begin-segment { segment-type "Paragraph"} 
latin1-content "Many other benefits of document structure" 
soft-directive new-line 
latin1-content "are not immediately apparent." 
hard-directive new-line 
end-segment NULL 

end-segment NULL 

Figure 2 A DDIF Document Segment Hierarchy 

attributes on a stack at the beginning of the segment 
and popping the stack at the end of the segment. 
The CDA Toolkit performs this service on behalf of 
the application when such a processing mode is 
selected. Such a service is useful when converting 
to modal form, as is required when preparing a 
DDIF format document for printing or display. 

Individual units of document content - text 
strings, curves, images, and so on - are represented 
by content primitives. Content primitives are gen
erally displayable, but the primitives themselves do 
not entirely describe the presentation of the con
tent. Each content primitive is presented according 
to the applicable presentation attributes declared 
for, or inherited by, the segment that contains the 
content. The importance of separating the con
tent's shape from the content's processing and pre
sentation attributes will become apparent in the 
discussion of the more advanced attribute inheri
tance mechanisms later in this paper. 

Content primitives are displayed in the order in 
which they are stored in the DDIF format, with the 
caveat that complicated layout scenarios like foot
notes might force the content to be displayed on 
other parts of the current page, or even on another 

Digital Tecbnical]ournal Vol. 2 No. I, Winter 1990 

page. However, if all the pages of a document were 
simultaneously displayed, content would appear 
to be written in the order in which it is stored in the 
DDIF document. In general, the order of storage of 
content in a DDIF document is the same as the order 
in which the document would be read. 

The DDIF format's imaging model was formu
lated based on the results of a survey of modem 
page description languages, graphics metafiles, and 
image transmission formats. Most of the DDIF imag
ing operators, and all of those being used at 
present, are at least compatible with the more 
capable page description languages processed by 
laser printers. The general model is that of writing 
on a display surface through a mask. The mask 
blocks writing where it is solid and allows writing 
where it is open. The use of the mask permits text 
and graphics operators to appear in various patterns. 
The mask model does not provide for comple
menting an existing pattern, which is common in 
video display protocols. But complement mode is 
unnecessary when creating a series of pages with 
static displays. Editing applications can, of course, 
use complement mode during the interactive 
editing process. 

19 



Compound Document Architecture 

Text and Layout 
The DDIF text-content primitives can represent 
text in such alphabets as Cyrillic, Greek, Arabic, 
Hebrew, and others defined by the International 
Standards Organization (ISO) in ISO Standard 88 5 9. 
Ideographic languages such as Chinese are also 
supported. Digital's worldwide engineering orga
nizations contributed to the internationalization of 
DDIF text support. 

Like all displayable DDIF content primitives, 
text-content primitives are displayed using the 
applicable presentation attributes. These include 
typeface, size, color, and rendition, among others. 
Text rendition includes such familiar variations on 
text presentation as underlining and highlighting. 

Traditionally, graphics applications and docu
ment processing programs have taken different 
approaches to the display of text. To unify the DDIF 

format's treatment of text as much as possible, for
matting is determined by a special set of attributes, 
called the layout attributes. Text that behaves as an 
object in a graphics context differs from conven
tional document text primarily in the way it is posi
tioned, rather than in the way it is represented or in 
its rendering attributes. Graphics text is positioned 
along a finite path - defined in terms of one or more 
lines, arcs, or curves - along which the characters 
of the text are arranged. Document text is laid out 
along a series of paths determined by a formatting 
function built into the receiving application. 

Formatting columnar text can best be envisioned 
as a process of pouring relatively flexible strings of 
text into molds formed by the columns of the pages. 
The creator of a document may provide a set of 
templates for formatting the content of the docu
ment. Formatting templates are described page by 
page. Each page template contains a set of galleys 
into which the content of the document is format
ted. Galleys are usually rectangular and form the 
columns, footnote regions, and running header 
regions of the page. In addition to galleys, graphics 
may be placed on page templates to serve as logos 
or page background. 

A document's creator may provide a template for 
each page in the document. Alternatively, one or 
more generic templates may be specified to be used 
under described circumstances. Interactive docu
ment editing programs often store generic tem
plates for use in creating new pages during editing. 

Graphics 
The DDIF format provides a set of graphics content 
primitives that are similar to those commonly used 

20 

in modern graphics metafiles and page description 
languages. The basic set of graphics primitives 
includes polylines, arcs, and curves. Each graphic 
primitive defines, or contributes to, a path that can 
be drawn, filled with a pattern, or both. Paths com
posed of lines, arcs, and curves can also be defined 
for the layout of text. 

The presentation attributes of graphic primi
tives, such as line-width and fill pattern, are deter
mined by the line attributes in effect for that 
segment. Attributes that apply to graphics objects 
include color, line width, line pattern (dash-dot, 
etc.), as well as parameters for the line-drawing 
algorithm that affects line-end shape and corner 
clipping. 

Graphics primitives are constrained to occur in a 
frame. A frame is described as a segment that has 
frame attributes, which include a coordinate 
system and a background color. The natural nest
ing ability of segments allows frames to be nested 
within other frames. Frame attributes may also 
describe a "clipping" region that allows frames to 
provide a window on a graphic picture that hides 
graphic objects outside the window. Clipping 
regions need not be rectangular. They are defined 
in terms of arcs, curves, and lines. A frame's 
attributes may also define a shape to be used for 
formatting when text flows around the frame. 

A frame may be positioned relative to the text 
content in which it is embedded. For example, this 
can occur in a margin at the same vertical position, 
or below the current line. Alternatively, a frame 
may be placed at an absolute position on a page. A 
frame can also behave like a character in text and 
take part in the flow of text during formatting. 

Because video displays and printed pages are two 
dimensional, the DDIF format's graphics primitives 
are two dimensional. An application that processes 
three-dimensional graphics, such as a CAD/CAM 

system, may create a document that includes a two
dimensional rendering of the three-dimensional 
object from a given perspective. The DDIF applica
tion integration capabilities may be used to store 
the name of the application or function, along with 
a pointer to the original three-dimensional data. 

DDIF/mages 
The trends toward faster processors and lower 
storage costs that have made bitmapped output 
devices economical have also made image process
ing technology available to more users. As a result, 
the use of images is rapidly becoming a normal part 
of office document processing. 

Vol. 2 No. 1, Winter 1990 D igital Tecbnicaljourna l 



The DDIF format provides means to store many 
types of images, including a variety of storage and 
compression techniques, bit-plane organizations, 
and color mappings. The more commonly used 
image storage mechanisms are very much like and, 
in fact, derived from, the various image compres
sion techniques used for FAX transmissions. 

The image services library (ISL), a shareable run
time library of image processing routines, allows 
otherwise limited applications to display and process 
most of the variations on image storage. For exam
ple, an eight-bit-per-pixel image can be displayed 
on a four-bit-per-pixel workstation. ISL routines 
also support the creation of DDIF format-encoded 
images from in-memory image formats. 

Images are stored in frames, which provide a 
reference frame, clipping region, and positioning 
information. Like graphics, scanned images may flow 
with text or assume an absolute position on the page. 

Revisability Support 
This section discusses some of the major ways the 
DDIF format supports the creation of highly revis
able documents. 

Catalogs of element definitions are one of the most 
significant ways to provide powerful labor-saving 
features in document processing applications. Two 
major definitional elements provided by the DDIF 
format are the segment-type definition and the 
content definition. Respectively, these provide for 
the definition of collections of attributes and col
lections of content primitives. These definition 
methods are described in the subsections that follow. 

Both segment-type and content definitions are 
declared as segment attributes and are available for 
reference from nested segments. Segment-type 
and content definitions can be stored in DDIF docu
ments that serve as libraries of such definitions. 
This allows any number of users to share document 
styles and/or commonly used illustrations, logos, 
copyright notices, and so on. When used as a style, 
the definitions must be declared on the document's 
root segment that serves as a style. 

The CDA Toolkit will, on request, resolve refer
ences to segment-type definitions and content 
definitions. The toolkit applies the attributes of 
segment types and expands content definitions on 
behalf of the calling application. 

Segment-type Definitions 
A DDIF segment-type definition is a set of segment 
attributes that is assigned a label for reference from 

Digital TecbnicalJournal Vol. 2 No. 1, Winter 1990 

Tbe Digital. Document Interchange Fonnat 

a segment. A segment that references a segment type 
acquires the attributes defined for the segment 
type. If a segment declares different values for 
attributes defined for a referenced segment type, 
the local attributes override those of the definition. 

Segment-type definitions are declared at the 
beginning of a segment. In fact, they are one of the 
attributes of a segment. As such, they go out of 
scope when a segment is ended. 

A set of segment-type definitions bound to the 
root segment of a document can serve as the "style" 
for other documents. Such a definition set provides 
a means for all the elements of a document to share 
a common appearance, and for a set of documents 
to share appearances. 

A segment-type definition may also reference 
a previously declared segment-type definition, 
which allows users to create local variations on a 
common style. 

Content Definitions 
A content definition plays much the same role as 
the macro facility supported by most program
ming languages in the sense that the definition is 
copied directly into the point of reference. 

A content definition can be a single content 
primitive, such as a text string or curve. Or it can 
consist of a segment that contains multiple content 
primitives and segments to any level of nesting. 

Using content definitions to define and share 
common data elements reduces data entry. In addi
tion, content definitions can provide a single point 
of maintenance for data that may change. 

External References 
An external reference represents data that is required 
for complete processing of the document in hand. 
A common use of external references in a docu
ment is to include text and other data from another 
document, either for the purpose of acquiring data 
from a common source or as a means of breaking a 
large document into manageable pieces. 

The DDIF format's basic external reference 
mechanism supports several different forms of 
data sharing. This permits high revisability and 
information sharing among documents, as well as 
referencing nondocument data formats for parts of 
a document. 

Externally referenced data may be stored in a file, a 
library, or other storage mechanisms. Files are the 
most common storage mechanism today, but docu
ment databases are a likely future storage means. 

21 



Compound Document Architecture 

Externally referenced data may be either in DDIF 
format or in another format. When the externally 
referenced data is not in DDIF format, a function is 
usually applied that produces results in DDIF format. 
A document may be included as a whole, or a single 
segment may be selected. 

All externally referenced document content 
sources are listed in the document header portion 
of a DDIF format-encoded document. By listing the 
external references in the header, all external refer
ences can be found without processing the entire 
document. For example, the DOTS data object 
transport syntax uses this feature to create a mail
ing envelope that includes the mailed document 
and the content of all the designated external refer
ences. Each external reference description in the 

SegTypeDe fn { 
type-label "Paragraph" 
type-attributes { 

document header specifies the format of the data, 
the storage system that holds the data (such as RMS), 
and whether the externally referenced data should 
be included as the document is transmitted. 

External references provide users with a number 
of very powerful document processing features. 
These include the ability to share a set of graphics, 
present a chart generated by a function on a spread
sheet, and break a large document into a number of 
files while retaining the option to process it as one 
document. 

Computed Content 
As was mentioned earlier, the content of a segment 
may be computed. That is, the content primitives that 
make up the displayable and processable elements 

segment-tags { SegmentTag "SP"} 
layout-attributes { 

} 

22 

} 

gall ey-based-1 ayou t { 
wrap-attributes { 
WrapAttributes { 

wrap-format flush-path-both 
quad-format flush-path-begin 
maximum-orphan-size 2 
maximum-widow-size 2 
} 

} 
galley-layout { 

} 

LayoutAttr i butes { 
space-before { integer-constant 6} 
space-after { integer-constant 18} 
leading { escapement - constant { integer-constant 2}} 
} 

} 

text-attributes { 
text-font 6 

} 
} 

text-rendition { Rendi tionCode default} 
text-height { integer-constant 12} 

Figure 3 Example of Segment-type Definition 

Vol. 2 No. 1, Winter 1990 Dlg'1al Tecbnkaljournal 



Tbe Digital Document Interchange Fonnat 

begin-segment { segment-type "Paragraph"} 
latin1 -content "Italics indicates that the feature is demon" 
s oft-directive hyphen-new-li ne 
latin1-content "strated in this document." 
hard-directive new-line 
end-segment HULL 

Figure 4 Actual Paragraph Example 

of a segment can be derived by executing a function 
that accepts defined parameters and returns the 
DDIF format content primitives. 

The computed content parameters are an attribute 
of a segment. When a document processor receives a 
document with computed-content segments, it 
may recompute the content of the segment or use 
the current content primitives. 

The computed content capability is used for many 
situations in which document processors perform 
content calculation and insertion on behalf of the 
user. Simple examples of computed content include 
the numbering of pages, list elements, section num
bers, and footnote markers. More complex exam
ples of computed content are cross-references, 
tables of contents, and indexes. 

Computed content is most often text content. 
However, graphic and image frames can result 
from computing content, especially if the comput
ing function is an external application. 

Examples of Definitions and Content 
The examples presented in this section show how 
complex document elements are built up from very 
fundamental document-processing concepts, and 
how a high degree of revisability is introduced into 
a document. 

Figure 3 shows the definition of a segment type 
labeled for reference as "Paragraph." The sub
elements of the segment-type attributes data ele
ment serve as a style for any segment that 
references the Paragraph type, as follows: 

• The $ P segment tag declares that the segment 
type obeys a set of rules defined for paragraphs. 
For example, paragraphs cannot contain chap
ters. The DDIF standard defines the allowable 
structure, in terms of other segment tags, for 
tags like $P. Receiving applications can use these 
tags to allocate data structures during internal
ization of the document. 

Digital TecbntcalJournal Vol. 2 No. 1, Winter 1990 

• The layout attributes describe how this parti
cular paragraph is to be fitted into the galleys 
(columns) into which it is formatted. Wrap 
attributes describe how text is broken into lines. 
The galley/layout attributes describe the spacing 
of the paragraph as a whole. 

• The text attributes describe the size, rendering, 
and typeface to be used. Many text attributes, 
including text color, are acquired by default 
from the parent of the segment referencing the 
Paragraph segment type. The ability to acquire 
default attributes from the environment is a use
ful feature because it allows the type to fit the 
surroundings. 

Figure 4 is an example of how an actual paragraph 
is formed. It references the Paragraph segment type 
defined in Figure 3. 

The various data elements of the paragraph serve 
to define the paragraph as follows: 

• The segment type is a reference to a segment
type definition, such as the Paragraph defined in 
Figure 3. 

• The latin I -content data elements contain the 
text of the paragraph. The character set is defined 
by the ISO Latin 1 standard, and contains ASCII as 
a subset. 

• Soft directives are formatting and processing 
commands that represent the line breaks and 
hyphenations that resulted when the document 
was formatted. Soft directives can obviate refor
matting the document when they are known to 
be valid, e.g., if the application reading the doc
ument was the one that created the document. 
However, the receiver of the document can 
ignore soft directives at its discretion. For exam
ple, the document may need to be reformatted 
for display on the intended display device. 

23 



Compound Document Architecture 

• Hard directives convey the same commands as 
soft directives but are considered mandatory for 
receivers. The hard new-line directive at the end 
of this paragraph indicates that the last line of 
text is to be isolated rather than merged with the 
first line of the next paragraph. Hard directives 
usually represent commands inserted at the 
direction of the human user, such as absolute 
line or page breaks. 

Related Standards 
Prior to discussing standards that are related to 
DDIF, we must establish that standards exist for dif
ferent aspects of document processing. We can 
identify the following as playing a role in document 
processing and information display: 

• A markup language permits the insertion of 
commands or tags into a document that delineate 
the intended formatting and/or structuring of the 
document. With markup languages, users can 
create complex documents at a character-cell 
terminal. Examples of markup languages 
include Runoff and various standard generalized 
markup language (SGML )-based document types. 

• A page description language is used to describe 
the final-form appearance of the pages of a docu
ment in a manner suited for transmission to a 
printer or other display device. Postscript is an 
example of a page description language. 

• A device independent, or DVI, format describes 
a video or hardcopy display that is not depen
dent on, or directly supported by, a specific 
device. Subsequent processing is required to 
produce a device-specific protocol or a page 
description language. 

• A metafile is a log of calls to a subroutine inter
face, or a set of commands that can be interpreted 
to drive calls to a set of subroutines that creates 
a display. CGM, the Computer Graphics Metafile, is 
an example of a graphics metaftle format. 

• A device-independent interface is a subroutine 
package that allows applications to create displays 
without depending on the device protocols. The 
Graphical Kernel System (GKS) is an ISO stan
dard for a device-independent subroutine inter
face to create graphical displays. 

• An interchange format is a data format sup
ported by multiple applications as opposed to a 
private format supported by only one. 

24 

• A conversion hub is a highly representative data 
format used as an intermediate during conver
sion from one format to another. Use of a conver
sion hub allows conversion between N formats 
using 2 x N converters rather than N -squared 
converters. 

Not all document formats fit neatly into one cate
gory. For example, the DDIF format is used both as 
a conversion hub and as an interchange format. 

Two document formats deserve special mention, 
since they are international standards that will 
become increasingly important for document pro
cessing in the years just ahead. These are the ISO 
standards Office Document Architecture and 
Interchange Format ( ODA/ODIF) and SGML.3•

4 

Office Document Architecture and 
Interchange Fomzat 
ODA/ODIF is an ISO standard intended for much the 
same purpose as the CDA/DDIF format. It serves as a 
conversion hub and interchange format. From a 
distance, the ISO ODIF standard and the DDIF format 
appear to be very similar. The basic encoding is 
almost identical. In fact, the DDIS data interchange 
syntax is based on the ISO ASN .1 standard used to 
encode the ODIF standard. Both the DDIF format 
and the ISO ODIF standard provide a number of 
revisability features. 

To the application developer, and ultimately to 
the application user, important differences exist 
between the ISO ODIF standard and the DDIF format. 
Many of the goals we set for the DDIF format were 
not set for ISO's ODIF standard, especially applica
tion integration support. The ISO ODIF standard 
also makes literal use of existing ISO standards for 
text and graphics content. ISO is only now starting 
to adopt many of the recent advances in imaging 
models. Also, ODIF defines a means of describing 
the final format of a document in conjunction with 
its revisable form. We chose to rely on page 
description languages and other existing final-form 
document formats to make the DDIF format revis
able form more robust. 

Digital's use of the DDIF format does not prevent 
our support of the ODIF standard in any way. ODIF 
will eventually be accessible through the DDIF format 
converter library. 

Standard Generalized Marku.p Language 
SGML is primarily a syntax for describing document 
markup languages. It does not define attributes or 

Vol. 2 No. 1, Winter 199{) Dtgttal Tec:bntcal]ournal 



layout mechanisms for text, nor does it provide a 
standard for graphics or images. 

The recommended use of the SGML syntax is to 
define a document type, which describes the hier
archy of markup tags in conforming documents. 
Users of the document type then use tags, typically 
of the form <TAG>, to delineate the structure of a 
document in terms of chapters, sections, paragraphs, 
or other elements appropriate to the document 
type. To display a marked-up document, an appli
cation is invoked that parses the markup, applies 
uniform style to tagged elements, and displays a 
formatted document. Of course, a structured doc
ument can be processed for purposes other than 
formatting, such as extraction of specially tagged 
elements. 

A document encoded using SGML can be con
verted to the ODIF format; and, indeed, such a con
verter is already available in the converter library. 

Pragmatics of Document Interchange 
This section describes some practical matters of 
interchanging documents, including how the ODIF 
documents are represented and interpreted. 

Data Encoding 
When stored as files on a disk, ODIF documents are 
encoded according to the rules defined by the ODIS 
data interchange syntax. The ODIS syntax has a num
ber of advantages over other encoding mechanisms in 
storing and transmitting compound documents. 

• The ODIS syntax encoding takes advantage of a 
full eight bits-per-byte which allows compact 
representation of scanned images and other non
textual data. The ODIS syntax encoding method 
uses tags to identify data elements. 

• The encoding method itself does not use relative 
pointers or offsets. Data elements are located by 
parsing the tagged data elements. Each element 
that contains data has a length, so there is no 
need to reserve special characters as delimiters. 
ODIS-encoded data is stored in files as a byte
stream without record boundaries. The length 
fields of individual data elements eliminate the 
need for file-level record lengths. 

• Because each data element is tagged, an applica
tion parsing the data encoding can detect miss
ing elements, and unused fields can be omitted 
from the encoding. By carefully using such 
optional data fields in the design of ODIF, we 

Dtgttal Tecbntcaljournal Vol. 2 No. I, Winter 1990 

The Digital Document Interchange Fonnat 

made the fundamental overhead of encoding 
document data in ODIF very small - normally 
about 50 bytes. The overhead occurs primarily 
in the document descriptor field and takes the 
form of the name of the application that created 
the document and the ODIF version being used. 
After the overhead of describing the document, 
the ODIF encoding size for simple text would 
compare favorably with text file stored as 
variable-length records. Thus the ODIF format 
can serve as the standard encoding format for 
documents of a wide range of complexity. 

• The data type of each data element is known to 
the receiving application by virtue of its tag. 
Low-level data access services used by the COA 
Toolkit perform conversion of data types like 
integers and floating point numbers. Thus, the 
oms syntax serves as a computer-architecture
independent encoding. 

The ODIS syntax's data encoding is not appro
priate to in-memory manipulation by document 
processing applications or the COA Toolkit. When 
the toolkit reads a ODIF document from a file, the 
ODIS syntax's encoding is efficiently changed to an 
in-memory representation that contains the same 
information. An application that retrieves ODIF 
document data from the COA Toolkit may further 
change the representation of the data to an internal 
format that is optimized for the kind of processing 
it performs. 

Document Interchange and Conversion 
If the ODIF format only provided a common format 
for document storage, it would still be useful. Doc
ument processing applications that use the ODIF 
format could share access routines and documenta
tions. And, system support and development tools 
would be widely available. However, the ODIF format 
does more. It is intended for interchange between 
document processors of various types, including 
viewers, formatters, and document editors. 

Given a mutually supported document format, a 
document processing application can accept a doc
ument produced by another application. Such a 
document format is called an interchange format. 
Alternatively, a document format can be converted 
to a common representation and converted again 
to the format required by the intended receiver. 
The intermediate format is called a conversion 
hub. Since both formats need a high ability to rep
resent documents, a single format can serve both 

25 



Compound Document Architecture 

uses, as long as it meets the higher efficiency 
requirements of interchange. From a user's per
spective, a commonly supported interchange for
mat is more convenient because the conversion 
time and resource expense are absent. Native CDA 
program applications support the DDIF format as 
the interchange format. To allow users to access 
formats created by applications that do not directly 
support the CDA architecture, the architecture pro
vides converters. 

Document interchange can take place by a variety 
of mechanisms, including shared memory, file inter
change, and even subroutine calls. Anytime one 
document processing application reads a docu
ment that another has written, interchange occurs. 

The mutual support of an interchange format, 
however, does not magically make every appli
cation consistent with another. Some applications 
will be unable to represent the full semantics of the 
interchange format internally. Even those appli
cations that can, may be unable to process the 
information in a meaningful way. The interchange 
format does provide, however, a single, consistent 
way for the applications to exchange those elements 
that they do share. For example, an application 
that processes text but not graphics can exchange 
text with a text and graphics application. However, 
the application will obviously not become a pro
cessor of graphics merely by reading a DDIF file. 

One generic feature that an application can 
provide is to store DDIF segments that it cannot 
process and later re-insert them into the document 
at the same relative position. For example, a docu
ment processing application that supports text but 
not graphics can set aside graphics frames, either in 
memory or in a temporary file. Similarly, a DDIF 
encoded document can be converted to many dif
ferent formats. However, most existing document 
processors will probably not be modified for the 
maximum support of the DDIF format, because it is 
impractical to change software that is becoming 
obsolete. 

The probable future of document interchange is 
that Digital and many third parties will evolve new 
applications to support the DDIF format . For some, 
the DDIF format will be an output format. For others, 
such as viewers, the DDIF format will be the native 
input format. Document editing tools will either 
support most of the DDIF format or adapt to editing 
only certain segments, while preserving those they 
cannot. Over a period of many years, users will 
convert their existing documents to the DDIF format 
in order to migrate to newer applications. 

26 

Extensibility 
The DDIF data format is extensible at three levels: 
User, Application, and New Versions. Users extend 
the format by defining new styles (segment types) 
that combine existing features in new ways, creat
ing new document types. Applications extend the 
format by adding new processing tags denoting 
segments with special properties and by supporting 
computed-content expressions to incorporate new 
external data types. New versions extend the speci
fication itself, by adding new content primitives (to 
accommodate such things as sound) or by extend
ing the layout model, for example. Applications 
also have access to opportunities for encoding private 
data elements at key points in the DDIF syntax, to 
accommodate special needs, or which anticipate 
expected enhancements to the basic syntax. These 
extension capabilities were designed in from the 
start, to not conflict with each other, and to ensure 
the capability for upward-compatible enhance
ment over time. 

Foreseeable Extensions 
The expression "a picture is worth a thousand words" 
is commonly quoted because some ways of con
veying information are more powerful than others. 
Similarly, various means of expression - voice, 
pictures, motion pictures, printed words, diagrams, 
and even touch - are more appropriate to convey 
certain types of information. 

The DDIF format is a means of storing and inter
changing data intended for presentation to people. 
Hence, the work of extending the DDIF format will 
probably go on for years. It may continue until soft
ware and hardware technologies have changed so 
completely that an entirely new concept in docu
ment processing is needed. Advances in optical fibers, 
optical disks, optical switches, and microminiature 
lasers may very well result in a technology in which 
color holographic displays with voice input and 
output are the norm. 

In the meantime, CDA applications are already 
pushing the DDIF format to display color pictures 
on paper, store synchronized voice, and represent 
images and graphics that can be set in motion. We 
should expect to see (and hear) these new techno
logies in the near future. 

Acknowledgments 
The individuals who reviewed and contributed to 
the DDIF format constitute too large a group to be 
listed here. However, we should especially note the 

Vol. 2 No. I , Winter 1990 Dlgttal TecbntcalJournal 



work of other organizations that worked with the 
Core Applications Group to make the DDIF format 
a success. The Image Program Office not only pro
vided the image content and attributes for the DDIF 
format, but wrote software that made everyday 
image processing a reality. And the International 
Products Group defined clearly the requirements 
for the support of the world's major markets for 
document processing. 

References 

1. Cll4 Reference Manual, vols. 1 and 2 (Maynard: 
Digital Equipment Corporation, Order Nos. 
AA-PABUA-TEandAA-PABVA-TE, 1989). 

Digital Tecbnical]ournal Vol. 2 No. 1, Winter 1990 

Tbe Digital Document Interchange Format 

2. The DDIF format segments should not be confused 
with the construct called a segment in the graphical 
kernel system (GKS). A GKS segment is roughly 
equivalent to the DDIF content definition, as 
described in this paper. 

3. International Standard ISO 8613 Infonnation 
Processing, Text and Office Systems, Office 
Document Architecture (ODA.) and Interchange 
Fonnat(1989). 

4. International Standard ISO 8879-1986(E), Infor
mation Processing, Text and Office Systems, 
Standard Generalized Markup Language (SGML). 

27 



The Digital Table 
Interchange Format 

CarolA. Young I 
Neal F.Jacobson 

The recent information explosion has created a multitude of end-user data 
table processi.ng applications, including database access tools, spreadsheets, 
charting packages, laboratory automation s:,stems, and electronic business docu
ments. As the amount and popularity of tabular data increases, so does the need to 
share or interchange tabular data 'between applications. Within t'be Cll4 archi
tecture, the DTIF table interchange fonnat defines an application-independent and 
architecture-neutral fonnat for the interchange and storage of revisable data tables. 
The DTIF fonnat uses the DDIS data interchange syntax as t'be basis for a three-part 
architecture that defines the syntax and encoding for documents containing revis
able data tables, the formula for expressions defining relationships 'between table 
elements, and the presentation and ot'ber processing characteristics of a data table. 

Users have benefited from the recent information 
explosion in many ways. 

Advances in database storage and retrieval technol
ogy provide access to increasingly larger and more 
up-to-date pieces of information. Spreadsheets, 
charting packages, and decision-support systems 
help users visualize and analyze this information. 
Laboratory automation equipment helps scientists 
capture and analyze data to repeat experiments 
reliably. Even the "business of business" is becoming 
automated with the advent of electronic document 
interchange (EDI) and electronic business docu
ments. Graphical compound document editors 
enable users to create presentation-quality docu
ments that contain input from these diverse infor
mation sources. 

However, these specialized data access, analysis, 
and presentation tools make data sharing between 
applications increasingly important and more com
plex. The CDA architecture, the DDIF document 
interchange format, and the DTIF table interchange 
format help solve data-sharing and interchange 
problems. 

The CDA architecture facilitates the interchange 
of revisable compound documents. These docu
ments may contain text, graphics, and data - both 
internally stored or externally generated. The DDIF 

format is the storage and interchange format of 
compound documents. The DTIF format is the storage 
and interchange format of tabular data (i.e. , rows 
and columns). The CDA architecture also includes a 

28 

set of services and applications for processing these 
interchange formats, such as the CDA Toolkit and 
CDA converter architecture. 

The CDA architecture addresses data sharing as a 
function broader than simply accessing data in a 
common way. Data sharing in this larger sense is the 

• Exchange of data between different applications 
(e.g., a spreadsheet and a charting package) 

• Use of data by different users and across different 
organizations 

• Data representation and exchange between dif
ferent operating systems and across heteroge
neous networks 

This paper focuses on the design goals used in 
the development of the DTIF format, and the struc
ture and type of data contained in DTIF documents 
and data tables. 

Background of DTIF Development 
Historically, individual data storage formats have 
been developed that are specifically tailored to the 
needs of each application. As such, these formats 
may not be easily adapted to the requirements of 
another application. Further, rather than adapt an 
existing format, application developers often prefer 
to define another data format . As a result, these 
specialized formats complicate data interchange. 
To share data, an application must explicitly pro
gram support for another application's format. 

Vol. 2 No. J, Winter 1990 Digital TecbnlcalJournal 



Therefore, as the number of applications that need 
to share data increases, the code needed also 
increases. 

A more efficient approach is to have each appli
cation use a common data format. Common data 
formats are becoming more available, but there are 
still some problems. 

For example, in the spreadsheet application 
domain, various data formats are commonly used 
and thus become de facto standards. These include 
applications that provide direct support for read
ing or writing to the standardized format. Another 
common approach provides conversion utilities to 
translate the application's native format to the stan
dardized format. Conversion can be costly, however. 

Moreover, a de facto standard is originally devel
oped for a particular application. If a feature is not 
present in the original standardized format, it cannot 
be represented there. Such features can become 
lost in the translation from one format to another, 
and the intent of the original data may be lost. 

Finally, these more commonly used applications 
have no single encoding format, or methodology, 
that addresses database applications as well as 
spreadsheet applications. 

We wanted the DTIF format to resolve these 
types of problems, not perpetuate them. There
fore, we built the format from the basic elements 
common to all data tables and processors. Tables 
contain columns, rows, and cells. Cells contain 
values, and values are usually numeric or textual. 
These common elements form the least common 
denominator for all data tables. This basic infor
mation describes a data table for inclusion within a 
report or mail message. However, this approach does 
not address the issue of revisability. Additional 
issues had to be addressed for the DTIF format to 
support a high level of revisable data interchange. 

• Are certain values in the table computed? 

• Which formulas were used in the calculations? 

• Are table values constrained to a certain type 
(e.g., thevaluemustbeaninteger)? 

• Which section( s) of the table is to be displayed or 
printed? 

• Do table values represent a particular kind of 
value (e.g., currency or percentages)? 

• How should these values be displayed? 

• Which currency symbol or radix point is 
appropriate? 

Digital TecbntcalJournal Vol. 2 No. 1, Winter 1990 

1be Digital Table Interchange Format 

• Are certain values hidden or unmodifiable? 

• What is the default value to be used in place of a 
blank cell? 

By addressing these issues during the design, we 
developed the DTIF format to specifically facilitate 
the interchange of revisable tabular data between 
applications. Typical tabular data examples include 
results from database queries, spreadsheets, and 
input to charting packages. Other possible sources 
include laboratory equipment, EDI documents, or 
almost any application generating data structured 
in tabular form. 

Relationship to the DDIS Syntax 
Data interchange can take various forms. It can occur 
between applications, across operating systems, 
and across hardware architectures. To facilitate all 
three forms required defining a format that was 
independent of any particular application, file system, 
or hardware architecture. To meet these needs, the 
DDIS data interchange syntax was developed. 

The DDIS syntax defines the set of conventions 
for the use of ASN .1, a standardized method for 
defining and encoding syntaxes used for data 
interchange.1 The DDIS syntax provides an archi
tecture-neutral method to define data syntaxes and 
encode the syntactic elements as a self-describing 
byte stream. 

The DDIS syntax uses tag, length, and value fields 
to describe the values within an encoding. Each 
element is uniquely tagged within its context 
and is self-describing. Both primitive and con
structed element types can be combined to create a 
grammar that describes the order and type of 
information that may be present in an encoding. 
Therefore, a grammar describes the syntax and 
encoding for a particular data class, which is called a 
domain. Since a grammar is defined as a set of self
describing elements, generic processors can be 
constructed to handle all grammars without being 
tied to any one in particular. The CDA Toolkit is an 
example of a generic processor that handles encod
ings from both the document and data table 
domains. 

The DTIF format uses the DDIS syntax to define a 
syntax and the encoding for revisable data tables, 
including the order and type of information which 
can appear in a data table. The encoding defines the 
method for writing this information to an output 
stream. An instance of a syntactically valid DTIF 
encoding is called a DTIF document. 

29 



Compound Document Architecture 

The following information may be included in a 
DTIF document: 

• The logical structure of one or more tables 
(dimensions and definitions for the table 
columns, rows, and cells) 

• The formulas defining the relationships between 
table elements 

• The last computed cell values when the table 
was encoded 

• The presentation characteristics, including sup
port for international applications and for multi
ple views of the table data 

• The constraints that apply to various table values, 
such as data typing or size restrictions 

• The generic columns, or column attribute type 
definitions. Generic columns may be referenced 
by table columns to provide the default attri
butes for a column. 

The DTIF format supports efficient encoding for 
both densely populated and sparsely populated 
data tables. Sparsely populated tables contain 
blank or missing values. 

Attributes applicable to certain table elements, 
such as all cells in the table, may be defined and 
inherited hierarchically. Attributes defined at one 
level of the hierarchy provide the defaults for 
attributes at lower levels. Redefining an attribute 
at a lower level overrides the default. Generic 
columns and the inheritance mechanism allow 
efficient encoding of commonly used data table 
attributes. 

Interrelated Architecture 
The DTIF format is composed of three interrelated 
architectures. 

• Part I defines the syntax and encoding of revis
able data tables. 

• Part II defines the syntax and encoding of 
expressions. 

• Part III defines the syntax and encoding of edit 
strings. 

Part I references Parts II and III. Cell and column 
expressions are defined using Part II, and format 
information is defined using Part III. Parts II and III 
were also designed to be used independently. All 
three parts are discussed in more detail in the 
section Tables . 

30 

Implementation 
Digital's precursor of the DTIF format was generic 
table encoding in the 1985 release of the VAX 
TEAMDATA product. Generic table encoding sup
ported data exchange between the VAX TEAMDATA 
spreadsheets and data table editors. This imple
mentation included many of the same features or 
features similar to those in the DTIF format, such as 
metadata support, formulas, inheritance, and sparse 
encoding. The implementation was even based on 
a precursor of the ODIS syntax. 

A more robust generic table encoding design was 
developed in 1987 and used in VAX DECalc version 
3.0a, a Digital spreadsheet processor. This imple
mentation became the native storage format for 
VAX DEcalc version 3.0a spreadsheets. 

The DTIF format offers major improvements 
over both of the previous generic table encoding 
designs. It permits data sharing among the spread
sheet, database access, and business graphics com
ponents ofDECdecision software.2 

Design Goals 
In this section, we discuss the design goals achieved 
in the development of the DTIF format. These goals 
included: 

• Application-independent interchange 

• Revisability 

• Internationalization 

• Modularity 

• Compact data representation 

• Sequential processing 

• Extensibility 

• Support for private extensions 

• A robust feature set 

First, a DTIF document is application-independent. 
An application reading a DTIF document need not 
know anything about the application that created 
the document. The converse is also true: an appli
cation creating a DTIF document need not know 
anything about the application that reads the 
document. 

A DTIF document is self-contained. The tabular 
data and the semantics needed to process it are 
included in, or defined by, the DTIF document 
itself. A DTIF document is also self-describing. Each 
element describes itself in terms of its ODIS syntax 

Vol. 2 No. I, Winter 1990 Dtgttal Tecbntcaljournal 



domain. An application can, therefore, process 
DTIF documents created by a multitude of applica
tions without having any special programming 
knowledge about any one. 

To support revisability, the DTIF design allows 
revisable data to be encoded as well as the final 
form data. Formulas and relationships, as well as 
the data values, are captured in the encoding. 
Applications that understand these relationships 
can re-derive the data values and allow the user 
to explore the implications of changing certain 
values. This revisability is especially beneficial 
in supporting document interchange among 
scientific and laboratory users, where experi
mental, test, and formulaic data may need to be 
revalued. 

The DTIF format also facilitates interchange 
between international applications. The document 
header contains a list of languages used in the 
document. Languages are identified by a language 
symbol and country code from Annex B and 
Annex D of the ISO standards 639 and 3166. In 
addition, a DTIF document may contain one or 
more language preference tables that define infor
mation particular to a country, language, or user. A 
single document or table can contain multiple 
country or language support. Language preference 
tables are described in more detail in the Document 
Structure section later in this paper. 

In addition to language preference tables, the 
DTIF format supports strings that contain text 
from multiple character sets (8-bit, 16-bit, or 
32-bit). Such strings can be stored in table cells 
as the title of a document, or as descriptive infor
mation attached to tables, rows, columns, cells 
or windows. 

We needed to build into the DTIF format a set 
of hierarchical relationships between layers, and 
to provide a scheme for inheritance of attributes. 
The hierarchical design reinforces or models the 
logical structure and revisable nature of a data 
table and helps modularize processing. The inheri
tance mechanism reduces encoding space. The 
same attribute need not be encoded at each level 
in the hierarchy, and the logical table structure 
(analogous to variable scoping in a programming 
language) is reinforced. Thus, the DTIF format is 
a modular design, with distinct logical layers. 

Related data items, such as column attributes or 
cell data, are grouped together. Outer layers of the 
document structure contain global and generic 
information. Inner layers refer to more specific 
information, such as cell values. 

Digital TecbnlcalJournal Vol. 2 No. 1, Winter 1990 

The Digital Table Interchange Format 

As noted earlier, the DTIF design accommodates 
applications that deal with sparsely populated and 
densely populated data. To do this, individual 
cells, groups of cells, and entire rows or columns 
that are not specified may be omitted from the 
encoding. Data representation is more compact 
and efficient, and data organization is not lost. 

Through the use of inheritance, creators of DTIF 
tables may define commonly used attributes at 
higher levels of the hierarchy. Default definitions 
can exist at various levels, with overrides specified 
only when necessary. 

In addition, generic columns and named edit 
strings may be used to share cell types and format
ting types within a document. For example, an edit 
string named ZipCode might contain standard 
formatting attributes for the display of zip codes. 
Changing the attributes of all zip codes involves 
only changing a single edit string, which further 
reduces the size of data encoding. 

Although some features of table processing may 
require multiple passes over the data, DTIF encod
ing does not require nonsequential access. Process
ing proceeds sequentially, using less memory and 
CPU time. Sequential processing also ensures that 
the DTIF format is generally usable on smaller 
systems. 

Because extensibility was a major goal, the entire 
DTIF domain may be extended to support new fea
tures and capabilities. The DTIF grammar can be 
extended upward over time. Many elements can 
also be extended without grammar changes. New 
preference table items, collating sequence names, 
and edit string names may be named and used by 
groups of applications. To avoid conflicts with 
other applications, certain naming conventions 
should be used. 

Preference item names include an application 
prefix, a dollar sign (for Digital applications) or an 
underscore (for non-Digital applications), and the 
item name, e.g., ECALCSITEM orXYZCORP_ITEM. 

Private extensions of applications can also be 
added to the basic DTIF structure. Some uses of 
private extensions include: 

• Specialized display attributes, such as fonts and 
color 

• Support for data types not included in the DTIF 
format or specialized semantics for a given data 
type or table 

• Printing information, such as report layout or 
printer settings 

31 



Compound Document Architecture 

Private extensions are defined by an individual 
application or by a set of cooperating applications. 
They are used to store information that is not 
defined by the DTIF format. Examples of private 
extensions include editing context data, report lay
out semantics, and format attributes for color. 
Private extensions may also be used to enhance 
DTIF semantics. For example, a format type may be 
set to currency, with a private extension indicating 
that negative values are to be displayed in red. 

Private extensions are defined as a sequence of 
name/value pairs. The name is an ASCII character 
string which uniquely defines the data value. Its 
format includes an application prefix and a data 
item name, separated by an underscore (e.g. , 
XYZCORP_XXX). The data value can take a 
variety of forms: 

• A single, structured value (e.g., an integer) 

• A sequence of structured values (e.g., a list of 
integers) 

• An unstructured value (e.g., a byte stream) 

• An externally defined value (e.g. , a DDIF 
document) 

Private extensions may be added at most levels 
within the DTIF domain. While private extensions 
may be included in a DTIF document, an applica
tion must not require that the private extension be 
present in order to process the document. 

The DTIF format is intended to encompass a wide 
range of data-processing requirements, from rela
tively simple, to highly sophisticated and interre
lated. However, the DTIF format is not designed to 
serve as the standard for all enumerable table features. 

In general, we looked toward spreadsheets, data
base products and tools, and dictionaries to develop 
the DTIF feature list. In choosing features, we tried 
to avoid those that were too specialized and those 
that could not be generalized to a larger set of appli
cations. This is not as restrictive as it sounds, 
because applications can still encode specialized 
features using private extensions. 

Another criterion used in choosing features for 
the DTIF format was their relevance to most, if not 
all, applications. For example, window information is 
not considered interesting by some applications. 
Windows are used by spreadsheet applications to 
define one or more visual views into a table. Data
base access applications have their own concept 
of a view based upon a selection criterion that 
is very different from that of a window. Window 

32 

information is, therefore, not really useful for 
interchange between database and spreadsheet 
applications since neither supports this feature in 
the same way. Early DTIF designs did not include 
windows. However, when interchange between 
spreadsheet applications was considered, window 
information became relevant and was added to the 
DTIF format. 

The remainder of this paper discusses the syntax 
and semantics of a DTIF document. Some of the 
items discussed are required in every DTIF docu
ment, and others are optional. The CDA Toolkit 
provides a design center for creating and processing 
DTIF documents for four reasons.3 First, the toolkit 
enforces and guarantees the creation of correct 
documents. Second, it controls versions by checking 
for obsolete versions and automatically upgrading 
documents to newer versions. Third, the toolkit 
provides a level of abstraction between the details 
of syntax/encoding and the document semantics. 
The application developer can concentrate on seman
tics rather than encoding/syntax issues. Fourth, 
the CDA Toolkit facilitates application develop
ment by providing standardized access and storage 
ofDTIF document elements and constructs. 

Document Structure 
A DTIF document consists of three sections: the 
document descriptor, the document header, and 
the document tables. The document descriptor 
identifies the DTIF version used to encode the table 
and the application which created the encoding. 
The document header contains the document title, 
creation date, and the resources used in processing 
the table. Resources include a list of external refer
ences, a list of languages used in the document 
( defined according to ISO standards 639 and 3166), 
language preference tables, and generic column 
attributes. Document tables are discussed in detail 
in the Tables section. 

Resources 
External references define the source for any exter
nally defined content contained in the document 
tables. This information is included in the docu
ment header to inform an application early in the 
document's processing that the document contains 
externally defined data. This notification permits 
the application to act or prepare itself accordingly 
(allocate memory buffers, alert user to external 
content, etc.). 

Vol. 2 No. I, Winter 1990 Digital Tecbntcal]ournal 



External references are defined by the data 
type of the external content as an object identifier 
(e.g. , DTIF, DDIF), a description of the data type 
(e.g. , human-readable), a label used to locate the 
external content (e.g., file name), and a copy-on
reference flag. 

The copy-on-reference flag indicates whether or 
not an external reference is copied when its root or 
parent document is mailed. The DOTS data object 
transport syntax within DECwindows Mail reads 
the DTIF documents and processes external refer
ence tags. Root documents and their copy-on
reference external documents are packaged into a 
single message and then unpacked on the receiving 
end. This packaging is really a recursive procedure 
that extends to all child documents. 

Language preference tables define table-process
ing information that is specific to a particular 
language, country, application, and/or user. A pref
erence table includes display formats for particu
lar data values, collating sequences, the language 
to use when processing the table, and other 
language-specific items, such as the names of 
months. A preference table may also contain a 
sequence of edit strings that are used throughout 
a document. 

A DTIF document may contain more than one 
language preference table. Each language prefer
ence table is assigned an index number, which 
identifies its position within an array of preference 
tables. The first preference table has an index of 1, 
and subsequent preference tables are numbered 
sequentially. Within a DTIF document, a language 
preference table may be referenced by its index 
wherever format information is stored. 

A good example of how language preference 
tables can be used to extend tabular data inter
change capabilities is monetary values. 

The currency symbol, radix point, and digit sep
arator character(s) used in one country may not 
match those used in another country. In this case, if 
a table created by an application in one country is 
processed or displayed by an application in another 
country, the results might be very misleading. One 
application might encode the amount one dollar 
and 20 cents, as $1.20. Another application may 
decode and display this value as francs and cen
times (e.g., 1,20Fr). Since the exchange rates are 
not equal, this value is incorrect. To ensure correct 
interpretation of currency values, a language 
preference table defines the currency symbol, 
radix point, and digit separator for use with 
the table. 

Digital Tecbnkal]oufflal Vol. 2 No. 1, Winter 1990 

The Digital Tab/.e Interchange FonnaJ 

Generic columns are another resource used by 
the DTIF format, because data tables often contain 
columns with similar or identical attributes. In 
database applications, a global field defines attri
butes for column types. The global field is refer
enced for attributes by one or more table columns. 
Global fields help reduce storage space, because 
common attributes are stored only once. They also 
provide a convenient way to indicate that these 
fields have related data types and attributes. A 
change to the global field affects all columns that 
reference it. Global fields are encoded in the DTIF 
format as generic column attributes that define 
attributes' column types. For example, a money 
column type may be defined to contain numeric 
values with two fractional digits and a particular 
display format. The attributes for a generic column 
are the same as those for a table column. 

A table column explicitly references a generic 
column to become a specific instance of that 
generic type. It then inherits all attributes associ
ated with that type. These inherited attributes 
apply to all cells in the table column. If an attribute 
is specified in both the referenced generic column 
and the table column, the specific attributes over
ride generic attributes. 

More than one table column may reference a 
generic column, and each inherits the generic 
attributes. For example, in a seven-column table, 
each column can contain floating point values rep
resenting currency, and each can have a specific 
display width. The values in the first six columns 
can be left-justified within the column, and the sev
enth column's can be right-justified. A generic 
column type could be defined with the attributes 
floating point, currency format, left-justified, and 
display width. All seven table columns would refer
ence the generic column attributes, thus inheriting 
all the attributes. The seventh column, however, 
would also access a specific format attribute for 
right justification. In this case, the specific right
justification format attribute would override the 
generic left-justification attribute. 

Tables 
The structure of a DTIF table is shown in Figure 1 
and described more fully below. 

Table Metadata 
Column Attributes Table column attributes define 
the number of and the attributes for each column 
within a table. A table column is identified by a 

33 



Compound Document Architecture 

DIMENSIONS 
PRIVATE 
METADATA 

DEFAULT FORMATS 

SYMBOLS 

COLUMNS ] 
RANGES 

,.........I ~---r----r--i ~: ------,-------, 
WINDOWS 

\ . . . . . 
ROWS \j : 

' 
I 

I I 
I I I I 

[\ I I I I 
I I I I I 

I I I I I I l I I I 

I I I I I 
I I I I I I 

I 
I 

I I I I 
I I I I I 

I I I I I 
I I I I I I I I I 

I I I I I I : I I 
I I 

KEY: 

D = CELL 

D = CELL WITHIN A WINDOW 

Figure 1 DTIF Table Strncture 

name and an integer value. Descriptive informa
tion can be used to record the column's revision 
history or other explanatory information. The 
header text and query string can be used for report 
headers and shorthand references to the column. 
Other attributes include 

• The formatting information to be applied when 
displaying cells within the column 

• The type of data values the column is expected 
to contain 

• A scale factor applied to each value in the column 

• An expression to compute values in the column 

• A value denoting null or missing values in the 
column 

A column attributes element must be defined for 
each column in the table containing cell data. The 
DTIF format does not support implied columns 
where the definition of a column is derived from 
the existence of a cell stored within the column. 
In other words, there must be a table column 
attributes definition in order for cells to occupy a 

34 

given column. Every column attributes definition, 
however, need not have cell data associated with it, 
e.g., empty columns. In this case, the column 
attributes definition is used to hold a place for the 
column within the table. 

Windows, Ranges, Symbols A window identifies a 
particular view of a table. It is used primarily by 
spreadsheet applications to define display-specific 
information pertinent to a table. Each view refer
ences a set of cells that is part of the window, and 
describes which cells are scrollable and which cells 
are fixed or locked in place. Cells may also have 
specific window format information, which gives a 
truly separate view. 

A cell coordinate identifies a particular cell in the 
table. A cell coordinate is defined by a column iden
tifier plus a row identifier. The coordinate is used 
in range definitions and formulas to indicate a posi
tion within a table or window. 

A range is a logically related set of cells, rows, 
and columns, or any combination of these. Ranges 
are defined as one or more pairs (start-position, 
end-position) where each value is a cell coordinate, 
column identifier, or row identifier. The end
position may be omitted if the two positions are the 
same. This allows a simple and compact encoding 
for ranges consisting of a single cell, column, or row. 
A range can be named, and the name can be used 
when referring to the range in expressions or other 
range definitions. The DTIF format supports range 
names composed from multiple character sets. A 
range may also be tagged to further indicate its use 
as a titled or scrolling section of a window, or as a 
sort range. The range definition syntax is used in 
DTIF Parts I and II, which were defined earlier in 
the Background section of this paper. Expression 
ranges are encoded in the same manner as table 
ranges. 

A symbol is like a named global value that can be 
used similarly to a cell or range reference. It may be 
a primitive value, a list of values, an expression, or 
an external variable. As an external variable, appli
cations may use it to reference a variable name or 
some externally named value. Symbols are used in 
DTIF Part I and Part II. 

Table Rows and Cetls 
The data portion of a table consists of a sequence of 
rows, each of which contains a sequence of cells. 

The contents of a cell correspond to the inter
section of a particular row and column within a table. 
Any column with cells must have a corresponding 

Vol. 2 No. 1, Winter 1990 Digital TecbnicalJounral 



column attributes definition defined in the table 
metadata. A cell is identified by an integer value 
that corresponds to the integer value of the column 
containing the cell. Cells are stored in increasing 
order within a row. Empty cells may be omitted 
from the table. 

A cell may contain the following information: 

• A state indicating whether the cell contains a 
value, is empty, or contains an error value 

• The last computed value stored, for example, 
integer, floating point, text, date/time, scaled 
integer, and complex 

• An expression used to compute the value. (Note: 
Expressions are defined using DTIF Part II, 

canonical form expression (CFE), described in 
more detail in the next section.) 

• The formatting information defining presenta
tion characteristics. (Note: Some formatting 
information is defined using DTIF Part III, edit 
string format (ESF), which is described in more 
detail in the Edit Strings section.) 

• A description 

• The application-private data 

Formulas 
Canonical form expression ( CFE) is defined in Part II of 
the DTIF format to describe the syntax for encoding 
expressions stored within or outside a DTIF docu
ment. CFE is also based on the DDIS standard for 
encoding, but it is a separate domain from that of 
the DTIF format. This separation enables CFE to be 
used independently of a DTIF document and to be 
used by applications that need a common way to 
specify expressions, e.g., database query tools and 
dictionary tools. 

Expressions are used to calculate a value for a 
particular cell or all values within a column. 
Expressions are also used in symbols. CFE is based 
on several expression architectures including the 
following: 

• IREP - An internal representation format that 
expresses spreadsheet formulas and is used in 
VAX Xway. IREP uses an infix notation for 
describing tokenized expressions. 

• VBLR - The VAX Information Architecture 
binary language representation that expresses 
relational database requests. VBLR uses a tag
length-value prefix notation scheme to describe 
expressions. 

Dtgttal TecbntcalJournal Vol. 2 No. 1, Winter 1990 

The Digital, Table Interchange Fonnat 

All CFE expressions are defined using function 
notation. Each function is defined as a DDIS tag
length-value item. The tag field identifies the function 
and the value field identifies the function argu
ments, if any. A function argument may itself be an 
expression or a recursive definition that provides 
support for simple or complex nested expressions. 
Function notation was selected over other poten
tial representations such as prefix, infix, or postfix, 
for a number of reasons. 

• Applications can easily identify and process the 
expressions. Each tag identifies the function and 
each value identifies the arguments. All arguments 
are explicitly scoped within the function. No 
counting or fixed argument mechanism is needed 
as in prefix, infix, or postfix representations. 

• Applications can easily identify those functions 
(subexpressions) that they cannot evaluate. 

• The function notation provides a straight
forward mapping into a DDIS grammar, and the 
grammar can be used to check the expression 
syntax. 

CFE contains a comprehensive set of features 
found in the above architectures and others. These 
features include commonly available functions 
found in most spreadsheets, as well as some esoteric 
functions. The actual features are too numerous to 
mention; however, their categories include literals 
and variables, basic arithmetic functions, Boolean 
and relational expressions, statistical functions, 
conversion functions, character string manipulation 
functions, choose and lookup functions, date/time 
functions, cell-related functions, financial func
tions, series functions, trigonometric functions, 
transcendental functions, binary functions, miscel
laneous functions, and private functions. 

Private functions allow an application, or group 
of applications, to extend the CFE encoding to sup
port private encodings. A private function may 
either refer to an external function or a function 
internal to the application. 

Applications are not expected to support all CFE 
functions. However, when an application finds a 
CFE function it does not support or cannot under
stand, it is expected to flag the problem to the user. 
Under such circumstances, certain applications 
also display the formula as a text string. 

Fonnat Infonnation 
Format information defines presentation charac
teristics for a table value. 

35 



Compound Document Architecture 

Format attributes may be defined as specific to a 
particular data type (numeric, text, date/time), or 
as applying to a value of any data type. The DTIF 

format defines a number of standard format types 
(such as $MONEY, $PHONE, $FLOAT, or $INTEGER) 

and also includes a mechanism for storing application
or user-defined edit string formats (ESF). Other format 
attributes include display width, alignment, and 
rendition information (e.g. , italicized, bordered, 
hidden). Some format attributes are relevant only 
in conjunction with other attributes, and some 
attributes have no significance if other attributes 
are present. 

Format information can be specified at, or inherited 
from, several levels within a DTIF document. 
Although each attribute is inherited indepen
dently, format attributes are grouped together at 
each level of the document. If an attribute is not 
specified at a given level, it is inherited from the 
next higher level. If an attribute is not specified at 
all, the application must select an appropriate 
default. In order of decreasing precedence, the levels 
are as follows: 

• Cell format attributes apply to the particular cell 
in which they are stored. Cell attributes override 
any attributes inherited from the column, row, 
window, or table. 

• Column format attributes ar row format attri
butes apply to all cells in the column or row of 
the table. Either column or row attributes take 
precedence as indicated by a flag in the table 
metadata section. The default value for the flag 
is format-by-column, chosen because most data
base applications are column-oriented. 

Table columns may reference generic column 
attributes and inherit all those attributes. If the 
table column explicitly defines an attribute 
already defined in the generic column, the table 
column attribute takes precedence. 

• Window format attributes, if specified , apply to 
all columns, rows, and cells displayed in a par
ticular window. Each format attribute element 
includes an optional window identifier that 
indicates the window to which the format 
attribute applies. 

• Table format attributes define format attributes 
that apply to all columns, rows, windows, and 
cells of a table. 

Figure 2 illustrates attribute inheritance. 

36 

Edit Strings 
Edit string format (ESF) is defined in Part III of the 
DTIF format and describes the syntax for encoding 
user-defined edit strings stored within or outside a 
DTIF document. ESF is also based on the ODIS stan
dard for encoding, and is a separate domain, for the 
same reasons as CFE. The requirements for ESF 

were based on features taken from COBOL picture 
strings, VAXTEAMDATA, VAXDATATRIEVE, and sev
eral spreadsheet products. 

While the DTIF format provides edit strings for 
predefined numeric, date, and text data type formats, 
ESF allows applications to extend this capability to 
define and apply their own formats. Edit strings are 
used to define format information that is specific 
to a particular language, country, application, or a 
particular user's preferences. Within a DTIF docu
ment, the language preference tables provide this 
level of specification. Edit strings may be included 
within a DTIF document at the table, window, row, 
column, or cell level. 

The edit strings for standard format types or other 
format-related information may be defined in a lan
guage preference table. The language preference 
table can be referenced by its index in a format 
attributes element. 

An ESF edit string pattern is defined by a 
sequence of one or more edit string tags, each of 

TABLE 

WINDOW 

COLUMN OR ROW' 

CELL 

• COLUMN MAY REFERENCE GENERIC ATIRIBUTES. 
COLUMN OR ROW TAKES PRECEDENCE ACCORDING 
TO TableMD/tmd-flags VALUE. 

Figure 2 Attribute Inheritance 

Vol. 2 No. 1, Winter 1990 Digital TedmlcalJournal 



Edit String 
{ 
str-literal "Profit was :" 
minus-literal-begin"(", 
decima l-digit, 
decimal-di g it, 
decima l-di g it, 
minus-litera l-end")" 
str-literal "dollars" 
} 

The Digital Table Interchange Fonnat 

Data Value Edited Value 

150 Profit was 150 dollars 
-150 Profit was (150) dollars 

Figure 3 ESF Edit String Example 

which applies to a particular data type. Each tag 
specifies the format of the next insertion character 
or sets a mode on further formatting. Some example 
tags include decimal/octal/binary/hex digit, digit 
separator, radix point, sign, exponent, currency 
symbol, month, day, year, weekday, and reverse. 
(Note: The digit separator, radix point, and cur
rency tags each have two variants. One is sensitive 
to the language preference table, and one takes an 
explicit literal.) 

ESF provides edit strings for special sequences as 
well. These include minus literal insertion charac
ters for negative values, replacement characters, 
floating characters, and repeat sequences. The ESF 
can also be further extended by use of application
private data. 

Figure 3 illustrates an ESF edit string. 

Summary 
The DTIF format defines the syntax and encoding 
for documents containing revisable data tables, 
such as database query results, spreadsheets, and 
scientific experimental data. The DTIF format 
enables application-independent data tables to be 
interchanged through a high degree of revisability, 
support for international applications, and compact 
representation of commonly used table attributes 
and densely and sparsely packed data tables. The 
three-part DTIF architecture defines a robust set of 
data table attributes, and includes support for 
application-defined extensions. 

Acknowledgments 
The authors wish to acknowledge Mark Anderson, 
Linda Busdiecker, Michael Glantz, Scott Kardon, 
Paul Reilly, and Tony Vlatas for their technical con-

Dtgttal Tec:bnicaljournal Vol. 2 No. I, Winter 19')0 

tributions to the design and testing of the architec
ture, and Leanne Olson and Dan Laukaitis for their 
contributions to the DTIF architecture specification. 

References 

1. ISO DIS 8824 Information Processing - Open 
System Interconnection - Specification of Abstract 
Syntax Notation One (ASN.1), Ouly 10, 1986), 
ISO DIS 8825 Information Processing - Open 
System Interconnedion - Specification of Basic 
Encoding Rules for Abstract Syntax Notation 
One(ASN.l), Ouly 10, 1986). 

2. Several CDA converters are used in conjunction 
with the DECdecision software: front-end 
converters translate WK 1, CALCGRD, ASCII, and 
DIF to the DTIF format. Back-end converters 
translate the DTIF format to ASCII and WK 1. 
WKl is the storage format for Lotus 1-2-3 
Release 2.01 spreadsheets. CALCGRD is the stor
age format for VAX DECalc version 3.0a and 
VAX DECalc-PLUS version 1.0 spreadsheets. DIF 
is the storage format for Software Arts Visicalc 
spreadsheets. DIF is also supported by other 
applications. 

3. R. Gumbel and M. Jack, "Development of the 
CDA Toolkit," Digital Technical journal , vol. 2, 
no. 1 (Winter 1990, this issue): 38-48. 

37 



Development of the 
CDAToolkit 

Richard T. Gumbel I 
Martin L.Jack 

Application program access to Clli documents is complex because of the many types 
of dala these documents contain and their complex internal structures. The Clli 

Toolkit addresses the problem of access by providing a portable procedure library. 
The toolkit's primary feature is a procedural interface that enables applications to 
create, modify, read, and write compound documents. Designers of the toolkit's inter
face focused on the definition of the mapping between the stored document content 
and the document content in memory. 1be basic unit of interaction between the 
toolkit and the application is an in-memory dala structure, tenned an aggregate. 
Layered above the toolkit is a converter architecture that imports and exports docu
ments to and from non-Clli forma,ts. 1be converter makes available a variety of 
document sources and destinations to application programs. 

The CDA Toolkit is a portable, efficient, extensible, 
procedure library. Using a single in-memory docu
ment format, the toolkit supports a wide range of 
document access and conversion services. 

This paper describes the development of the 
toolkit's primary features, including the proce
dural interface, converter architecture, and toolkit 
internals. Then, it describes additional software 
within the operating system that allows existing 
applications to access CDA documents without 
reprogramming. The paper begins with an over
view of the CDA characteristics that shaped the 
development of the toolkit software. 

Compound Document Requirements 
and Toolkit Goals 
The CDA environment provides users with a com
mon way to store and exchange data, including line 
art, images, and text. 1 As such, the products in this 
environment have many of the same properties users 
expect of traditional text-based storage systems. 

• The encoding mechanism is efficient. 

• Applications can support CDA data formats as a 
matter of course for data storage and data inter
change. 

However, access to stored compound documents is 
much more complex than is access to traditional 
text documents. Compound documents 

• Contain many types of data 

• Have complex internal structures 

38 

• Must be computer architecture independent 

To address this complexity, CDA designers built a 
limited number of standard document formats. 
This approach allows applications and support 
software to be developed once and then shared by 
all conforming applications. Examples of support 
software are document editors, conversion mod
ules, and printing system interfaces. 

In addition, CDA designers selected a standard 
encoding to be used throughout the environment, 
called the DDIS syntax (Digital data interchange 
syntax). The DDIS syntax conforms to Abstract 
Syntax Notation One (ASN. 1 ), which is defined 
by the international standards ISO 8824 and 
ISO 8825.2'

3 For implementation economy, DDIS 
syntax excludes a few ASN.1-defined constructs. It 
also defines a set of additional constructs by using 
the extension mechanisms available in ASN .1. 

The following data formats and syntax were 
developed as components of the CDA environment: 

• DDIF document interchange format for text, 
graphics, images, and page layout 

• DTIF table interchange format for spreadsheets, 
databases, and charts 

• DOTS data object transport syntax to support 
the packing, mailing, and unpacking of multiple, 
related files 

With these parts of the CDA environment out
lined, several goals for the toolkit development 
were established. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnicaljournal 



• Provide a procedural interface for document 
access by application programs 

• Support CDA data syntaxes 

• Support all features of each data syntax 

• Support encoding and decoding of files using 
the ODIS syntax 

• Operate on VMS, ULTRIX, and possibly other 
operating systems 

• Allow existing applications to coexist within the 
CDA environment 

An aggressive schedule called for the release of the 
toolkit simultaneously with DECwindows version 1.0. 
This schedule was met. The project started in mid
June 1987; we completed a version for internal use 
by other developers that supported DDIF document 
access and conversion in late October; and we sub
mitted the final version for DECwindows external 
field testing in early December. 

The CDA Toolkit is a procedure library accessed 
by applications in order to create, modify, read, and 
write compound documents. The toolkit is used by 
numerous DECwindows applications that use CDA 
formats for file storage and for the exchange of data 
in interprocess communication. The CDA converter 
architecture, discussed in a later section, is layered 
upon the CDA Toolkit. The converter imports and 
exports documents to and from non-CDA formats . 

The Procedural Interface 
The toolkit's fundamental function is to present an 
application program with a procedural interface to 
read or create, edit, and write compound documents. 

The decisions for the procedural interface 
design center around the definition of the mapping 
between the data elements in the stored document 
and the document's content as it is made accessible 
to a processing application in main memory. 

The standard method for application access to 
documents is insufficient for accessing compound 
documents. Standard text files can be transferred 
as a sequence of character strings to or from the 
calling application program. Simple buffering and 
processing techniques can be used, because each 
element of the document has a simple structure. In 
comparison, a compound document is a complex 
data structure that is encoded into a byte stream for 
storage. More complex abstractions are needed 
that draw on dynamic storage allocation and list 
processing techniques. 

Dtgttal TecbntcalJournal Vol. 2 No. 1, Winter 1990 

Development of the CDA Toolkit 

In the following sections, we describe these 
abstractions, including a brief summary of ASN.1, 
the critical role of data structures in modeling com
posite data elements, mapping of primitive data 
elements, two modes for document transfer, and 
the design of the data path and toolkit options. 

Document Data Structures: 
ASN.1 Fundamentals 
ASN. 1 specifies both a description language for data 
syntaxes and rules for encoding the data syntax 
into a byte stream in a way that is independent of 
specific computer storage formats. 

An encoding consists of many elements, each 
having a type, length, and value. Primitive ele
ments contain a single value of a data type specified 
by the data syntax. Constructed elements contain a 
number of nested primitive or other constructed 
elements as their value. The type field labels each 
element with a specified code that identifies the 
element in context. A specification that defines the 
meaning of each instance of an element must 
accompany the written data syntax. 

ASN . 1 defines several types of structured ele
ments used in the CDA environment. The 
"sequence" structure contains a list of nested 
required or optional elements, each with a defined 
data type. The "sequence-of' structure contains a 
list of zero or more nested elements, all of the same 
defined data type. Lastly, the "choice" structure 
specifies the occurrence of one element selected 
from a defined list of possibilities. In each case, the 
nested elements can themselves be primitive or 
structured. 

Document Data Structures: Aggregates 
We designed the toolkit to provide a thin veneer 
over the data syntax and to deal only limitedly with 
document semantics. Another approach would 
have been to completely hide the data syntax. For 
example, the toolkit could operate on abstract doc
ument objects such as footnotes, rather than 
exposing the detailed DDIF structures that store the 
text content and layout information that make up 
the footnote. We took the simpler approach to 
minimize development time. 

The basic unit of interaction between the appli
cation program and the toolkit is an in-memory 
data structure termed an aggregate. The purpose of 
each aggregate is to contain document data that 
corresponds to a particular area of a given ASN .1 
data syntax, usually a "sequence" type. Thus, the 

39 



Compound Document Architecture 

toolkit defines many aggregate types for each sup
ported data syntax (DDIF' DTIF' and DOTS) that 
break the document data into manageable units. 

The aggregate type that models the outermost 
structure of each data syntax is called the root 
aggregate. It does double duty in that it represents 
the document as a whole and the data path associ
ated with the document encoding. It contains hid
den toolkit context that is needed to manage the 
data path. 

Each aggregate contains a defined list of items, 
from one to fifty or more, that are specific to the 
aggregate type. The purpose of each item is to 
provide a storage cell for a subsection of the data 
syntax that the aggregate models. Each item has a 
predefined data type that can be a scalar type (such 
as integer or floating point), a single-dimensioned 
array (such as integer array), or variable, where the 
value of a second integer item is used to select from 
several predefined data types for the primary item. 

The variety of data syntax structures has a com
mensurate number of aggregate representations. 
Table 1 details typical cases. Since aggregates can 
contain items that reference subordinate aggre
gates or aggregate sequences, tree and list struc
tures that represent the ASN .1 structural elements 
"sequence" and "sequence-of' can be formed. The 
ASN. l "choice" structure can be modeled by defin
ing two or more sets of mutually exclusive items 
within an aggregate - where each set models one 
element of the choice - and then by defining an 
integer item in the same aggregate whose value 
determines which choice has been selected. Ulti
mately, primitive elements of the ASN .1 data syntax 
map to primitive items within aggregates. 

Table 1 Mapping of ASN.1 Elements 
to Aggregate Representations 

ASN.1 Element 

Primitive 
Sequence 
Sequence of primitives 
Sequence of sequence 

Choice of primitives 
Choice of sequences 
Sequence of choice 
of primitives 
Sequence of choice 
of sequences 

40 

Aggregate 
Representation 

Scalar 
Aggregate 
Array 

Sequence of same 
aggregate type 

Variant scalar 
Variant item subrange 
Variant array 

Sequence of different 
aggregate types 

A unique 32-bit handle identifies each instance 
of an aggregate. This handle is returned to the 
application upon creation of an aggregate and is 
used in subsequent operations on the aggregate. 

Toolkit procedures allocate and deallocate 
aggregates, store and fetch the values of aggregate 
items, sequentially read aggregates from and write 
aggregates to documents , and create and traverse 
aggregate sequences. The toolkit provides public 
interface files that define numeric equivalents for 
aggregate type codes, aggregate item codes, and 
aggregate value enumerations, together with docu
mentation of the data type of each item. 

During decoding of an input document, the toolkit 
creates aggregates, stores document data into the 
items, and returns the handle of each aggregate to the 
application. The application examines the document 
data and later destroys the aggregate. On output, 
the application creates and populates aggregates, 
and passes them to the toolkit for encoding. 

To allow the document data to be broken into 
small units for transfer to and from applications, 
we identified a fixed subset of the aggregate 
types for each data syntax that models the outer 
elements of the data syntax. Known as top-level 
content, this subset passes to and from the applica
tion during encoding and decoding. As we have 
seen, however, a complex tree of substructures 
may be present in subordinate aggregates linked to 
top-level content. 

Representation of Primitive Data Elements 
As we have noted, ASN .1 primitive elements are 
encoded in an architecturally neutral manner. To 
allow applications to manipulate primitive ele
ments directly using native programming lan
guages, the toolkit converts ASN .1 encodings to 
and from storage representations supported by the 
target computer hardware. In many cases, the 
mapping varies depending upon the intended 
application of the value. For example, the toolkit 
maps ASN .1 Boolean values to single bits and trans
fers ASN .1 octet string elements unmodified. 

Where the values are suitably constrained, ASN .1 
integer values are represented as signed 32-bit 
integers. However, in the numeric applications 
within the DTIF format , they are represented as 
integers of arbitrary length so that no loss of signifi
cance can occur. Similarly, ODIS-defined floating 
point elements are converted to single-precision 
floating point in the DDIF format , where precision 
is not an issue. However, the same type is maintained 

Vol. 2 No. 1, Winter 1990 Dtgttal Tecbnlcaljournal 



internally as a 128-bit value in the numerically criti
cal areas of the DTIF format. As a service to the 
application, the toolkit can convert these general 
floating-point values to any hardware-defined pre
cision or transfer the internal 128-bit value. 

Incremental Mode and Document Mode 
The toolkit provides the application designer with 
two modes of document transfer: incremental and 
document. The incremental mode is somewhat 
more difficult to program, but consumes less 
dynamic memory. The document mode provides 
an easy-to-use interface, but requires that the 
entire document reside in memory. 

In incremental mode, one aggregate of content 
per toolkit call flows to or from the application. 
Aggregates processed in this way represent the 
highest level of document content. For example, a 
segment header or an element of text content 
might be transferred to or from a DDIF document. 
In the case of the segment header, aggregates that 
specify segment attributes, such as font selection 
and type definitions, are attached to the segment 
aggregate as substructure. 

The document mode is internally layered on the 
incremental mode. In document mode, the toolkit 
reads or writes the entire document to or from the 
in-memory structure. The root aggregate forms the 
root node of the document tree. 

In incremental output mode, the application 
must invoke scope control procedures at known 
points to encode ASN .1 constructor elements sur
rounding defined portions of the document con
tent. In document mode, the toolkit produces 
these elements without additional programming in 
the application. 

Input and Output Data Paths 
The toolkit supports a rich variety of data sources 
and destinations. We wanted to enable the com
pound document formats to pervade data inter
change within the system in the same way that 
ASCII historically has. We therefore took care to 
design input and output data paths that were com
plete, general, system independent, and easy to 
use. 

We defined a data path, which we call a stream, 
that offers the application complete control over 
data buffering. On input, an application-specified 
callback procedure returns the address and length 
of each new input buffer. On output, the applica
tion specifies the address and length of the initial 
output buffer when the stream is created. An 

Digital Tecbnkal]ournal Vol. 2 No. 1, Winter 1990 

Development of the CDA Toolki.t 

application-specified callback procedure disposes 
of each full output buffer, and specifies the address 
and length of the next successive output buffer. 
When the stream is closed, the toolkit invokes the 
callback procedure to dispose of the last partially 
filled buffer. 

File support is layered on stream support. For 
ease of use, a single procedure provides system
specific assistance in opening or creating a file with 
the proper file system attributes, buffer allocation, 
and toolkit-supplied input-output services. 

As we noted earlier, the source or destination of a 
document file can be an entire hierarchy of aggre
gates linked from the document root aggregate. 

Multiple Data Syntax Support 
When the DOTS data syntax was defined and imple
mented, the toolkit design was extended to sup
port multiple data syntaxes and document nesting. 
Because the data syntax definition itself was only a 
few lines, the implementation effort was relatively 
simple. The implementation was focused on syn
tax and nesting, rather than on the work of map
ping the ASN .1 data syntax to aggregates. 

The starting point for document nesting is the 
ASN. l "external" data type. It is a constructor that 
specifies the "object identifier" and other descrip
tions of a nested data syntax. The receiver is thus 
able to determine the data syntax in advance and 
prepare to process the data. The data follows in one 
of three representations: an ASN. l data syntax, a 
string of bytes, or a string of bits. Meaningful com
munication, as always, depends upon agreement 
between the sending and receiving application on 
the interpretation of the data. 

In the applications of this feature envisioned for 
the initial release, the nested documents were CDA 
data syntaxes that could be interpreted by the 
toolkit. Thus, the items in the "external" aggregate, 
which specify the representation choice and its 
value, identify the data syntax as ASN .1. They also 
reference the root aggregate of a nested compound 
document. 

However, it was critical to lay adequate ground
work for the full generality of the ASN. 1 "external" 
type. Future uses were unquantified. We could not 
assume that a nested ASN .1 data syntax would be 
implemented in the toolkit. Moreover, we could 
not assume that the byte and bit string data types 
would be completely available in memory at the 
time the "external" element was being encoded or 
decoded. At the same time, we needed to provide 
an easy-to-use access path for CDA formats. 

41 



Compound Document Architecture 

The key to the design was a mechanism to read 
or write the ASN .1 encoding to the point where the 
nested encoding actually begins and then return 
control to the application. The application must 
then read or write the nested encoding, and call the 
toolkit to finish processing the "external" type. 

On output, the application has two options: 
(1) to store the nested encoding in the "external" 
aggregate before writing it, or (2) to use incremen
tal or document mode output on the same stream 
to write the nested document. On input, the toolkit 
provides a procedure to read and store the encod
ing completely. 

In the future, the toolkit ASN .1 encoding and 
decoding services layer could be exposed and new 
functions added. An application would be able to 
incrementally read or write a string encoding, or to 
process nested ASN .1 data syntaxes not imple
mented by the toolkit. 

Limited Semantic Processing 
We wanted to simplify the development of applica
tions that access compound documents, such as 
document viewers or page description language con
verters. Thus, we provided a general mechanism to 
specify semantic processing of input documents. 
We also added a few toolkit options to enable very 
limited processing of common document seman
tics. In this mode, the toolkit can resolve references 
made to content in external documents, to type 
definitions, or to generic content; and it can apply 
attribute inheritance rules. 

Converter Architecture 
As noted earlier, the CDA converter architecture 
comprises a layer on the toolkit that supports non
CDA formats. The goals for the converter architec
ture project were as follows: 

• Provide a procedural interface for data format 
conversion 

• Support many document formats 

• Incorporate non-Digital conversion modules 

• Select conversion modules dynamically 

• Build on existing CDA Toolkit services 

The converter architecture is based on a conversion 
hub model. A front-end module converts an input 
document to a hub format. A back-end module 
then converts the hub format to an output format. 
The hub format can be in either DDIF or DTIF format. 

42 

The hub model has the significant advantage that 
the number of conversion modules increases rela
tive to the sum, rather than the product, of the 
number of input and output document formats 
supported. However, the model can be used only 
when the hub format can fully express the seman
tics of input documents; otherwise, loss occurs on 
conversion to the hub format. The CDA formats 
were designed to avoid this problem. 

The in-memory aggregate structures defined for 
document transfer to and from encodings are the 
same structures used for document transfer through 
the conversion modules. Thus, the converter archi
tecture is an extension of the toolkit procedural 
interface. 

As in the case of the CDA encoding and decoding 
interface, a variety of document sources and desti
nations are available. Files and streams must be 
supported by conversion modules. In-memory 
aggregate trees are supported when the source or 
destination format is a CDA format. 

The following sections present more details 
about the document conversion procedure within 
the model and the translation that occurs from one 
hub format to another, also called domain crossing. 
Front- and back-end interfaces are also discussed 
further. 

Conversion Control Procedure 
A single control procedure that is packaged with 
the toolkit initiates a document conversion. The 
application provides 

• The name of the source and destination docu
ment format 

• Identification of the data source and destination 

• Parameters that are ultimately passed through 
to the specific conversion modules to control 
their operation 

The control procedure prepares for conversion 
by determining the location of the requested front 
and back end. Three means of determining the 
location are possible. First, the toolkit contains a 
CDA front end and CDA back end for use with DDIF 

or DTIF source or destination formats. The toolkit's 
function is only to encode or decode the aggregate 
stream. Second, the application can specify the 
address of a procedure to act as the front end or 
back end. Third, the control procedure uses the 
specified format name to locate and activate an 
external program image that contains the front end 
or back end. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnicaljournal 



Thus, as illustrated in Figure 1, the converter 
control procedure assembles the complete conver
sion program at execution time based on the con
version modules installed and available at the time 
they are referenced. Figure 2 shows document data 
flow through the conversion. 

CONVERTER CONTROL 
PROCEDURE 
(CDA TOOLKIT) 

Figure 1 Complete Document Conversion 
Program 

Each operating system includes a small number 
of essential conversion modules as standard equip
ment. Because the procedural interface is published 
and the binding of conversion modules is dynamic, 
Digital and other vendors can easily make available 
an unlimited range of optional conversion modules 
that increase the value of their products. Many appli
cation developers who use CDA conversion services 
have added logic that scans for all available conversion 
modules and displays a conversion format menu 
dynamically tailored to the actual environment. 

Domain Crossing 
As we have seen, the toolkit supports both DDIF 
and DTIF conversion hub formats. Stated differ
ently, a front-end or back-end module operates in 
either the DDIF domain or DTIF domain, depending 
upon which hub format the module produces or 
consumes. 

In many cases, the front end and back end operate 
in the same domain. For example, in a word process
ing document conversion, the front and back ends 
both operate in the DDIF domain. In a spreadsheet 
conversion, both operate in the DTIF domain. Clearly, 
however, a user might wish to print a spreadsheet 
or incorporate it into a memorandum. In this case, 

Development of the CDA Toolkit 

the front-end module produces DTIF format, and 
the back-end module expects DDIF format. 

We added additional logic to the converter control 
procedure to permit such domain-crossing conver
sions. We also developed a DTIF-to-DDIF conversion 
module. A domain conversion module receives 
aggregates from one domain and translates them to 
aggregates of another domain. A domain conver
sion module does not process files; its inputs and 
outputs are in-memory aggregates. 

If the converter control procedure determines 
that the front and back ends operate in different 
domains, it attempts to locate a domain conversion 
module that converts the input domain to the out
put domain. 

If one is available, the control procedure alters 
the conversion data flow such that aggregates flow 
from the front end into the domain conversion 
module, and from the domain conversion module 
into the back end. The invocation of a domain conver
sion is transparent to the front end, the back end, 
and the application requesting the conversion service. 
Again, the control procedure makes a dynamic 
search with a stylized name so that the set of 
available domain conversion modules is extensible. 

The DTIF-to-DDIF domain conversion module is 
thus the single point that performs report writing 
and formatting operations for tabular data. Thus, 
as DTIF-compliant applications rely on the con
verter architecture for the interchange of tables 
with other formats, so they can rely on this module 
for printing or document viewing requirements. 
Each application need not contain this logic. 

Front-end Procedural Interface 
The primary function of a front end is to read the 
input document format that it supports, translate the 
document semantics to the hub format, and return 
content aggregates one by one upon demand. 
Therefore, a front end must present a defined inter
face to the converter control procedure. Front 
ends must define four procedures: initialize, get
aggregate, terminate, and get position. 

The initialize procedure initializes the front end 
for the conversion. Because the procedure has a 

INPUT 
· DOCUMENT 

FRONT 
END 

DDIF/DTIF , 
IN-MEMORY 

BACK 
END 

OUTPUT 
DOCUMENT 

Figure 2 Data Flow in Conversion 

Digital TecbntcalJournal Vol. 2 No. 1, Winter 1990 43 



Compound Document Architecture 

known name, it can be located by the control proce
dure. Typically, this procedure opens an input file, 
allocates and initializes a context block, and pro
cesses options passed to it by the control procedure. 
The context block is used to maintain current state 
information about the conversion. The initialize 
procedure must also return the addresses of the 
get-aggregate, terminate, and position procedures 
to the control procedure. 

The get-aggregate procedure performs most of the 
conversion. It reads from the input file and produces 
DDIF or DTIF aggregates. This procedure does not 
convert the entire input document in a single call; 
rather, it reads from the input document until it is 
able to produce the next sequential top-level con
tent aggregate. This aggregate is then returned to 
the control procedure. Subsequent calls to this pro
cedure continue to build top-level aggregates until 
the end of document is reached. 

The control procedure calls the terminate proce
dure when an end-of-document is returned from 
the get-aggregate procedure or when an error has 
occurred. The terminate procedure typically closes 
the input file and deallocates its context block. 

Finally, the get-position procedure is used by 
applications that must report the progress of a con
version. For example, a document viewer can use 
this information to position a scroll bar within the 
document window. 

Back-end Procedural Interface 
The function of a back end is to receive content 
aggregates from a front end, translate the hub 
domain document semantics to the output docu
ment format that it supports, and write the output 
document. A back end must also present a defined 
interface to the converter control procedure. Back 
ends must define a single procedure analogous to 
the initialize procedure of a front end. This proce
dure can be located by the control procedure 
because it has a known name. Back ends run to 
completion rather than operate on one aggregate at 
a time as front ends must. 

The back end calls a toolkit procedure to return 
the next sequential content aggregate to the con
trol procedure, just as if it were reading from a file. 
The control procedure, in tum, calls the front-end 
procedure to return the aggregate. The back end 
then translates these aggregates to its output for
mat. This process is repeated until the end of the 
input document is reached. The back end closes its 
output file, deallocates other resources, and 
returns control to the control procedure. 

44 

Conversion Moduk Packaging/or 
VMS and UU'RIX Systems 
Conversion modules are built and packaged differ
ently for each operating system, based on the features 
of that system. On the VMS system, conversion 
modules are shareable images that are dynamically 
activated. Because the application, the front-end 
module, the domain conversion module (if used), 
and the back-end module share a single address 
space, aggregate data passes directly through these 
components. On ULTRIX platforms, conversion 
modules execute in child processes. The control 
procedure creates pipes to transfer aggregate data 
from the front to the back end. However, the 
toolkit masks these differences, and the program 
code can be identical on the two operating systems. 
Only the linking procedure varies. 

Conversion modules are located in a known 
directory. Each has a stylized file name that allows 
the control procedure to locate the module for a 
desired format. For example, the name of a front 
end on a VMS system is domain$READ_format and 
the name of a back end is domain$WRITLformat. 
The domain variable is the DDIF or DTIF format, 
and the format name is specified by the user. 
The file name of a domain conversion module 
is CDA$in-domain_ TO_out-domain, for example, 
CDASDTILTO_DDIF.EXE. In all three cases, the ini
tialization procedure has the same name as the file . 

Document Viewers in the Converter 
Architecture 
This section illustrates how an application can 
exploit the power of the CDA converter architec
ture to provide seamless access to documents from 
a variety of sources. 

Two compound document viewer applications 
are packaged with the VMS and ULTRIX operating 
systems. One is designed to display a faithful rendi
tion of the document in a DECwindows display; the 
other does a conversion for character-cell output 
within the stricter limits of that display technology. 

The viewers are callable and can in turn be used 
by a higher level application. For example, the 
DECwindows Mail, videotex (VTX), and electronic 
conferencing (NOTES) applications provide CDA 
document viewing capability. 

To access the input document, the viewers call 
the converter control procedure, specifying that 
the viewer is the back-end conversion module. All 
of the usual front-end selection and domain 
evaluation mechanisms come into play. Thus, any 
document format that can be converted to CDA 

Vol. 2 No. 1, Winter 1990 Digital TecbnlcalJournal 



aggregates can be viewed. A DDIF document pro
duced by the DDIF document editor is a simple 
case, flowing through the internal CDA front end 
directly to the viewer. A non-Digital spreadsheet 
format for which the vendor supplied a conversion 
module flows through the non-Digital front-end 
module, and then through the DTIF-to-DDIF 
domain conversion module to the viewer. The end 
user may be completely unaware that different 
internal processing has occurred. 

We had to provide just two additional mecha
nisms for the document viewer. The first is support 
throughout the architecture for document position 
sensing, which is needed to draw document scroll 
bars correctly. The second is the ability to suspend 
and then transparently resume a conversion opera
tion, an ability which users need during document 
viewing. 

Toolkit Internals 
Thus far, we have described the architecture and 
design of the procedural interface to the toolkit, as 
visible from an application. We now examine 
aspects of the implementation of that interface that 
are not visible from outside the toolkit. 

Several factors made it clear to us that elegance 
of expression was essential in implementing the 
basic toolkit. 

• The size of the document data syntaxes (several 
hundreds of lines each) 

• The need to have the toolkit support the entirety 
of each data syntax 

• The changeable state of the data syntaxes while 
still under active development 

We had to design mechanisms that were eco
nomical to implement, easy to modify, and easy to 
verify. Thus, the low-level design for the toolkit 
focused on encoding as much information as possi
ble in tables and then writing simple interpreters 
for the tables, rather than writing code to deal with 
each construction. 

Because so much of the toolkit operation depends 
upon access to tables, we needed to design efficient 
ways to check the validity of an operation and access 
the relevant data. The solution was to partition the 
integer codes that identify aggregate types and 
items into subfields, as shown in Figures 3 and 4. 
Simple extraction of bit fields then yields the data 
syntax, aggregate index, and item index values. 

Digital Tecbnicaljounial Vol. 2 No. 1, Winter 1990 

Developmen,t of the CDA Toolkit 

0 I DATA SYNTAX I INDEX 

Figure 3 Bit-encoding of Aggregate Code 

0 AGGREGATE CODE INDEX 

Figure 4 Bit-encoding of Item Code 

Each of the four major subsections of the toolkit 
follows the table-driven interpretive model. We 
will examine aggregate and item access, document 
encoding, and document decoding in tum. 

Aggregate and Item Access 
The procedures that create and destroy aggregates, 
and those that store and fetch aggregate items, 
operate from two sets of tables. Aggregate descrip
tion tables encode all aggregate-specific informa
tion: the length of the aggregate storage and the 
number of defined items. Item description tables 
encode item-specific information: the item data type, 
the item input semantic processing algorithm, and 
the offset to the item's storage area. 

Encoding and Decoding Interpreter 
The fundamental function of the encoding and 
decoding interpreters is to translate the standard 
in-memory representation to and from the ASN. 1 
encoding. The interpreters are each implemented 
in two layers. The lower layer is oriented toward 
ASN. 1, and the upper layer is oriented toward appli
cation data syntax. 

As described below, the ASN. 1 encoding and 
decoding layers share many lower level utility 
services and design characteristics. The upper 
encoding and decoding layers are quite different in 
concept, as will be seen in subsequent sections. 

ASN.1 Encoding and Decoding wyer 
The ASN.1 layer has four main functions. First, it 
performs translations between the interchange
oriented ASN.1 type, length, and value encodings 
and the hardware-oriented representations present 
in memory. For example, this layer on a VAX pro
cessor must reverse the bits within each byte of a bit 

45 



Compound Document Architecture 

string to translate between the natural VAX bit and 
the ASN. I -specified ordering. Second, it checks the 
syntax of the encoding according to parse tables 
for the CDA data syntaxes contained within the 
toolkit. These tables are produced by a parser gen
erator that processes ASN. I data syntax descrip
tions. Third, the layer checks the encoding for 
conformance to ASN. l encoding rules. Fourth, it 
returns the parse table entry number on input, so 
that the input decoding interpreter can access the 
parallel table that controls its processing. 

Document Encoding Layer 
The document encoding layer is an interpreter that 
executes a per-aggregate program encoded in the 
toolkit 's static tables. The interpreter has only a 
handful of operators, which are about evenly 
divided between performing data output and con
trol operations. We reduced the number of cases the 
interpreter had to handle by choosing consistent 
representational mappings between ASN. I elements 
and in-memory aggregate items. Table 2 describes 
the operations that the encoding interpreter supports. 

The interpreter must support a nonsequential 
execution model because of the existence of the 
ASN. l optional and choice constructions, which 
denote portions of the encoding that may or may 
not be present in a particular document. To sup
port this model, we included operators to test 
aggregate item presence, and an operator to test 
the contents of an aggregate item for a given value. 

CDA data syntaxes often employ a given ASN .1-
constructed type in a variety of contexts that generate 
different encodings. Consequently, we had to model 
this usage in the encoding layer by passing context 
information to a recursive call of the encoding 
interpreter. The layer includes conditional flow 
operators to test this context information. 

Document Decoding Layer 
The document decoding layer also consists of an 
interpreter that executes a static table within the 
toolkit. First, the ASN. l level returns an element 
and its parse table entry number. The CDA level 
then indexes the parallel "get-descriptor" entry to 
obtain processing instructions for the element. 
Because the single entry must embody the com
plete element semantics, the table entry is quite 
large; it contains 112 bits divided into six fields, as 
shown in Figure 5. The table entry resembles a typi
cal control word for a hardware microengine. 

46 

Table 2 Output Machine Operat ions 

Operation Description 

HALT Terminate processing of 
the current aggregate and 
advance to the next aggregate 
in sequence; if none, return. 

TAG(t) Write the ASN.1 type t with a 
zero or indefinite length; the 
element has no value. 

EOC Write an ASN.1 end of 
constructor. 

VAL(t,i,f,c) If the item i is present, write 
its value with the ASN.1 type t. 
The value f selects from one 
or more available standard 
representations. The value c 
specifies a data type specific 
constant. For example, in an 
array-of-string type, it specifies 
the ASN.1 type of the primitive 
octet-string elements; in an 
aggregate-valued type, it speci
fies the context value for the 
recursive output machine call. 

CON(t,c) Write the ASN.1 type t and 
value c; the element is of type 
"integer." 

EXT(i) Write the introducer for the 
"external" encoding corre
sponding to item i. 

BR(b) Skip b instructions. 
IFNONE(b,ia,iz) If every item in the range ia 

through iz is absent, skip b 
instructions. 

CTXLBNE(b,c) If the aggregate context is not 
equal to c, skip b instructions. 

CTXL_BEO(b,c) If the aggregate context is 
equal to c, skip b instructions. 

CMPL_BNE(b,i,c) If item i is absent or its value 
is not equal to c, skip b 
instructions. 

Table 3 describes the operations that the decod
ing interpreter supports, with reference to the field 
names shown in Figure 5. They are executed in the 
order shown, so that an operation that requires sev
eral steps can be predictably formulated. Table 3 
references three registers that can be set and used 
by microoperations: VIC, the value item code; CIC, 

the constant item code; and AGG, the current 
aggregate pointer. 

Because ASN. I structures can be nested, the 
interpreter maintains an aggregate stack to create 
the corresponding tree and list structures. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnical]ournal 



Testing and Performance Methodology 
A thorough verification of the toolkit required the 
development of specialized testing machinery. The 
amount of program code in the toolkit is not large, 
and thus program flows were relatively easy to test. 
However, the definition tables that make up the 
item access, input, and output machines are large; 
and it was critical for the product's success that 
every detail be correct. 

We first developed a back-end conversion module 
that could produce a low-level textual dump of any 
CDA document. This module, the analysis back 
end, is a part of the released product. We also devel
oped a front-end converter that could accept 
directly the output of the back-end converter. We 
could also create input files with a text editor. 

Thus, we were able to write input scripts, pass them 
through the converter to produce an encoded file, 
and pass the resulting file through the converter to 
produce a file dump. We could then repeat the pro
cess with the file dump as input to complete a 
"round trip." Comparisons of the encoded files and 
the file dumps with the original input scripts then 
revealed errors. 

We instrumented the input machine to detect 
elements of the parse table that were not reached in 
a group of test runs. Using this information, we 
added elements to the input scripts to achieve 
exhaustive coverage of each data syntax. 

Finally, we used the Performance and Coverage 
Analyzer product to ensure that all code paths 
were exercised, and to make local coding changes 
to improve performance. 

Toolkit Portability 
Today, the toolkit operates on three platforms: VAX 

with VMS, VAX with ULTRIX, and RISC with ULTRIX 
systems. This wide range of support across multi
ple hardware architectures and multiple operating 
systems was a significant goal for the initial soft
ware design project. 

OP I EAGTYP I AGGTYP I VALITM 

16 16 16 24 

BITS PER FIELD 

CONITM 

24 

CON 

16 

Figure 5 Bit-encoding of Get-description 
Entry 

Digital Tecbnlcal]ournal Vol. 2 No. I, Winter 1990 

Development of the CDA Toolkit 

Table 3 Input Machine Operations 

Operation 

SPC(conitm) 

EAG(eagtyp) 

SCl(conitm) 

SVl(valitm) 

AVI 

STC(con) 

STD(con) 

PSH 

AGG(aggtyp) 

STV 

HLD 
REL 

POP 

Description 

Special case: dispatch to code 
identified by conitm. 
Create early aggregate of type 
eagtyp, set AGG. 
Set constant item: CIC 
receives conitm. 
Set value item: VIC receives 
valitm. 
Add value item: VIC receives 
VIC plus the saved VIC of the 
aggregate stack entry. This 
operation is used when parse 
tables merge to get relative 
item addressing. 
Store constant: Item CIC in 
AGG receives con. 
Store discriminant: Item VIC-1 
in AGG receives con. 
Push aggregate stack, save 
VIC and AGG, enable POP. 
Create aggregate of type 
aggtyp, set AGG. 
Store value: Item VIC in AGG 
receives data from ASN.1 
encoding. 

Hold: Disable POP operation. 

Release: Enable POP 
operation. 

If stack is empty, return 
AGG as top-level content. 
If enabled, restore VIC and 
AGG, pop aggregate stack. 

A large part of the toolkit is system independent. 
With careful type casting, the code compiles and runs 
on all platforms. There is, of course, some operat
ing-system-specific code. We have isolated most of 
this code to a few modules; of the 70 modules that 
make up the toolkit, only three are system-specific. 
In a few cases, we have used conditional code to 
deal with architectural and system dependencies. 

The two biggest problems we encountered in port
ing to new platforms were word length depen
dency and bit-within-byte ordering. We have carefully 
used variable declarations and casting to circum
vent the word size problems. The bit ordering 
problem affects a small amount of code that has 
been assigned conditions to support either order
ing. A compile-time switch selects the appropriate 
ordering. 

47 



Compound Document Architecture 

Related Operating System Support 
The success of the CDA program has been due in 
part to its seamless integration with the VMS and 
ULTRIX operating systems. Components of both 
systems have been modified to effect integration 
with CDA files and utilities. 

Data Syntax Recognition 
On the VMS system, a new file attribute, termed 
stored semantics, was added to the RMS software (a 
record management system). The attribute identifies 
the data syntax of a file and is the same as the ASN .1 
Object Identifier assigned to the data syntax. The 
directory utility was enhanced to display the stored 
semantics value as a string. Further, the SET FILE com
mand now sets or clears the stored semantics value. 

On an ULTRIX system, the FILE command was 
enhanced to recognize the initial ASN .1 type field 
assigned to CDA files. 

To copy CDA files across systems in a network, a 
new VMS utility, exchange/network, has been added. 
With this utility, semantically tagged files can be 
copied to non-VMS operating systems, and non-VMS 
system files can be copied into VMS-tagged files. 

Traditional Application Access to CDA Files 
The customer's investment in existing software 
must be protected, even as new compound docu
ment applications are being developed. We there
fore sought to allow compilers to process source 
programs written with the compound document 
editor without forcing the modification of the 
many available compilers. Many of these compilers 
are supplied by other companies. 

The answer was to use the stored-semantics tag 
of the VMS system to transparently invoke a conver
sion. During the file-open sequence, the system makes 
the file's semantic tag available to the application. 
The application can then declare a desired seman
tic tag. If these are different, the system attempts to 
locate and connect a translator, referred to as an 
RMS extension. A program without the logic neces
sary to employ the new mechanism invokes a trans
lator that makes the file appear to be an ordinary 
text file. 

As part of the toolkit project, we developed an RMS 
extension for the DDIF data format. The extension 
performs syntax analysis of the DDIF format that 
requires only a small finite-state machine, rather 
than a full parse. The analysis returns only the text 
content of the DDIF file. 

48 

The output of the RMS extension is designed to be 
identical to that of the DDIF text back-end converter. 
On an ULTRIX system, a user achieves the same 
effect by constructing a pipeline of the text con
verter and the desired utility. 

Conclusion 
The CDA Toolkit provides a set of data access and 
conversion services used by numerous applications. A 
consistent, general, layered approach to document 
format conversion has been effective in achieving a 
high level of application interoperation. 

Acknowledgments 
The authors wish to acknowledge the contri
butions of the CDA Toolkit development team: 
Linda Busdiecker, Regina Collins, PatJustus,John 
Middleton, Leanne Olson, Lauren Sacco, Roy Stone, 
Jeff Tancill, and Tony Vlatas. Bill Laurune devel
oped the ASN .1 parser generator. Gary Allison and 
Stu Davidson provided VMS Engineering support. 

We would also like to thank Mark Bramhall and 
Bob Travis for their invaluable technical guidance. 

References 

1. R. Travis, "CDA Overview," Digital Technical 
Journal, vol. 2, no. 1 (Winter 1990, this issue): 
8-15. 

2. Information Processing Systems, Open Systems 
Interconnection, specification of Abstract Syntax 
Notation One (ASN.1) (International Standards 
Organization, reference no. ISO 8824:1987(E), 
May 1987). 

3. Information Processing Systems, Open Systems 
Interconnection, specification of Basic Encoding 
Rules/or Abstract Syntax Notation One (ASN.1) 
(International Standards Organization, refer
ence no. ISO 8825: 1987(E), May 1987). 

Vol. 2 No. 1, Winter 1990 Digital TecbntcalJournal 



Baldwin K. Cheung I 
Neal F.Jacobson 

Interapplication Access 
and Integration 

Applications within the Cll4 architecture can share and interchange data through the 
DECwrite and UCdecision Livelink connection. Applications developers can build 
more tightly integrated levels of applications with the AIL lilJrary, while DECdecision s 
Builder allows application integration at the user-interaction level. AIL is a platform
independent subroutine library that provides application invocation, data exchange 
and flow control sermces for interacting applications. Builder can be used as either a 
conforming LiveLink application or stand on its oum. Together, these tools form an 
interapplication architecture that permits easy application access and integration. 

A primary goal for the DECwrite and DECdecision 
software developers was to design a family of prod
ucts that would work closely together. Specifically, 
we wanted to be able to call an application, use its 
application features, and incorporate the result in 
an automated fashion. To achieve these goals, we 
needed to be able to do application invocation and 
interapplication communication. 

This paper describes two services that address 
interapplication integration. The first is the AIL appli
cation interface library that allows application 
developers to build sets of applications with tighter 
levels of integration. The second is the DECdecision 
Builder tool (herein referred to as Builder).1 Builder 
allows applications to be integrated at the user
interaction level. 

We begin with an overview of the LiveLink func
tion that AIL supports. 

Data Access through LiveLink 
Connections 
The DECwrite and DECdecision Livelink functions 
automate the processing of external information 
and free the user from these manual application 
transfer chores. 

Simply put, LiveLink software is a connection to 
external data that is stored independently from a 
document. This external data can be stored locally 
or distributed over a network. LiveLink software 
provides the mechanism to streamline accessing 
and managing this information. The LiveLink con
nection can also be used to share information in a 
work group in an orderly and managed way. 

Digital recbnlcalJournal Vol. 2 No. I, Wtnter 1990 

There are two types of connections: data link and 
application link. A data link is a direct link to some 
external data. The data, in this case, is in final form 
format (e.g., an illustration) that is usable directly 
by a document processing application. An applica
tion link is a link that involves an external application, 
referred to as a LiveLink application. The applica
tion link is responsible for performing appropriate 
manipulations on the external data, which is nor
mally revisable form data. It then converts this data 
to final form result for inclusion into a document. 

Conceptually, the data used in a LiveLink con
nection is point to information. This approach is 
unlike the DECwrite menu feature include, where 
data (text and/or graphics) is included and becomes 
a permanent part of the document. 

One advantage of the Livelink connection is that 
it uses the latest information without requiring a 
manual user update. By definition, data links are 
always up-to-date because they are direct links to 
the current final form data. 

There are some complications with application 
links because the referenced data is revisable data 
for another application. To solve this problem, we 
implemented an automatic update feature in the 
DECwrite editor, to maintain the latest information 
characteristic offered by LiveLink connection. This 
feature tracks the revision time of the external data 
(the revisable data, in this case), and, upon user 
consent, updates the data when the source data has 
been revised. The update process is automatic and 
requires no user intervention. The Livelink appli
cation to which the data belongs regenerates the 
final form result for use in the document. 

49 



Compound Document ArchJtecture 

The Livelink connection in the DECwrite editor 
uses a special object called a data block as a con
tainer for LiveLink information.2 To the user, a data 
block is a rectangular region on a page which is used 
to display information (such as a picture, table, or 
flow diagram) from an external source. It can be 
manipulated just like other document objects. 

AIL Library 
As noted earlier, the purpose of AIL is to support 
the implementation of the Live Link function. AIL is 
a subroutine library that contains a standard set of 
functions. It defines a set of rules for application 
interactions and provides a common interface for 
integrating applications. 

Following are some basic design considerations: 

• Subroutine interface. The AIL library provides a 
simple-to-use interface. Although a message
based service might be more flexible and exten
sible, it requires more programming effort. A 
subroutine interface tends to be more conven
ient to the programmer and easier to use. 

• Operating system independence. The AIL inter
face is designed to be operating system-indepen
dent in order to be more portable. It hides all the 
operating system-specific features, such as low
level communication services, within its imple
mentation. 

• Reusable application. The startup time for some 
applications can be quite time-consuming. The 
AIL library has an operation model which allows 
an application to be reused to perform multiple 
application sessions. In between sessions, an 
application remains in the system in a clean state 
and waits for reuse. A reuse session can typically 
come up in one-third the time of image startup. 

• Single library for parent and child. Both the AIL 
library parent and child functions are combined 
into one library, which makes it more convenient 
for those applications that want to support both 
parent and child functions. 

• Single application image. For maintenance and 
packaging issues, it is desirable to minimize the 
number of image versions released for a particu
lar application. An application built with the AIL 
library can be run as a stand-alone image and as a 
child application. 

• Asynchronous environment. Target applications 
are supposed to operate under an asynchro
nous or event-driven environment, such as the 

50 

DECwindows environment. In an event-driven 
environment, an application is required to service 
multiple activities at the same time. In particu
lar, it is not acceptable for an application or a ser
vice to engage in a time-consuming task. To suit 
this environment, the AIL library is designed 
with nonblocking calls. 

Application Interaction Model 
We adopted a parent and child model for applica
tion interaction under the AIL library. Because of 
this model's simplicity and conceptual cleanliness, 
we could accomplish what we wanted to do for 
the current functionalities in the DECwrite and 
DECdecision products. 

As shown in Figure 1, a parent application can 
have one or more child applications. A child appli
cation can itself be a parent application to other 
child applications. Generally, a user starts with one 
application. From this application, the user can 
invoke another application to perform functions 
that are not available in the first application. 
Depending on the nature of the first application, 
the invocation of the second application can be ini
tiated either explicitly by the user or transparently 
by the first application. Expanding the hierarchy 
further, the second application can, in turn, invoke 
some other applications. 

In theory, the invocations follow a simple tree 
structure that can be extended to many layers. 
However, in practice, the number of application 
layers will generally not get higher than two. 

Data /Jxchange between Applications 
The ability to exchange data is an important part of 
application integration. Depending on the nature 
and capability of participating applications, the 

APPLICATION 
B 

APPLICATION 
A 

APPLICATION 
c 

APPLICATION 
D 

APPLICATION 
E 

APPLICATION 
F 

Figure 1 Parent and Child Application 
Interaction Model 

Vol. 2 No. I, Winter 1990 Digital TecbnlcalJournal 



requirements for data exchange can range from a 
simple input/output black box level to an ongoing 
dynamic data dialog level. 

Input/output Black Box Model We believe that the 
classic input/output black box model can satisfy a 
large class of data exchange situations between 
applications. In this model, a child application is 
treated as a black box in which input data is sup
plied at the beginning of a session, and output data 
is produced at the end of the session. The input 
data to the child application is the child applica
tion's own input data, normally in revisable form 
or in a command script. 

The output data consists of final form data and 
possibly updated revisable data. The parent appli
cation would be interested in the end result only 
(i.e., the final form data). An advantage of this 
model is that all child applications interact the 
same way with a parent application, and the parent 
application does not need special programming to 
deal differently with each child application. It also 
enables conforming applications, present and future, 
to be easily adapted to work with one another. 

Dynamic Data Dialog Model Although the input/ 
output black box model is simple and universal, it 
has limitations. Applications that wish to work 
closely with each other need more flexible and 
more efficient ways to exchange data. Just as the 
more two people know about each other, the more 
topics of interest they find to discuss, the more 
details applications know about each other, the 
more specific they can request and provide needs 
to each other. The dynamic dialog model supports 
applications that communicate with each other 
with frequent dialog and numerous topics identi
fied as items. 

AIL Routines and Operations 
The AIL library is designed as a procedural inter
face. Conceptually, applications are connected and 
interfaced to each other only through the AIL layer. 

Figure 2 shows the logical layers within a typical 
application that incorporates AIL. AIL is either an 
image that can be shared or an object library that is 
linked into application programs. To work with 
AIL, an application must supply a set of action and 
callback routines. 

AIL Routine Types 
There are three types of AIL library routines: func
tion, action, and callback. 

Digital Tecbnlcal}ournal Vol. 2 No. 1, Winter 1990 

Interapplication Access and Integration 

APPLICATION LAYERS 

APPLICATION-SPECIFIC CODE 

ACTION AND CALLBACK ROUTINES 

AIL MANAGEMENT LAYER 

AIL TRANSPORT LAYER 

} 

} 

APPLICATION 
CODE 

AIL 

Figure 2 Logical Application Program layers 
with AIL 

Function routines are the AIL functions supplied 
in the AIL shareable image or object library. An 
application calls a function routine to perform or 
initiate a particular function. Some of these rou
tines only interact with AIL to set up internal states 
or to ask for information. Others cause action rou
tines in other applications to be invoked. 

Action routines are supplied by an application_ 
They are used to trap functional requests that come 
from other applications. An action routine is called 
as a result of an AIL function being called in another 
application. An application is responsible to provide 
and declare appropriate action routines to work 
with the AIL function. 

Callback routines are also supplied by an applica
tion. They enable an application to operate smoothly 
in a single-threaded, event-driven environment. All 
AIL functions that are potentially time-consuming 
accept callback routines as part of their subroutine 
calling parameters. For these AIL functions, AIL 
returns control to the application without waiting 
for the request to complete. AIL notifies the appli
cation through the appropriate callback routine 
when a request is completed. 

Figure 3 illustrates a typical calling cycle involving a 
function routine, an action routine, and a callback 
routine. Applications A and Bare separate applica
tions interacting with each other through the AIL 
library. The following steps occur in the calling cycle. 

I. Application A issues a function routine call to the 
AIL at the Application A side to request Applica
tion B to perform a task. 

2. If there is no obvious calling error, Application 
A's AIL transfers the request to Application B's 
AIL and gives control back to Application A. 

51 



Compound Document Architecture 

3. The Application B's AIL calls the appropriate 
action routine in Application B, which services 
the request and acknowledges its completion by 
returning control to its AIL. 

4. Application B's AIL then hands over the acknow
ledgment to Application A's AIL, which calls the 
callback routine in Application A to report the 
completion status. 

APPLICATION A 

FUNCTION 
ROUTINE 

CALLBACK 
ROUTINE 

AIL APPLICATION B 

ACTION 
ROUTINE 

Figure 3 Interaction Cycle Involving 
Various Types of AIL Routines 

Basic AIL Usage Sequence 
Figure 4 depicts the basic calling sequence between 
a parent application and a child application in the 
DECwindows environment. Note that this figure 
includes only the routine calls related to the basic 
control flow. Other calls, such as those for data 
exchange, are excluded for the sake of simplicity. 

Also, only the arrows showing the directions of 
the function calls are shown. The arrows for rou
tine returns and callback routine calls are omitted. 

The following steps outline the basic sequence 
in which a parent application executes a child 
application. 

1. The parent application is started. It first calls the 
AiStartup routine to initialize the AIL environment 
and then the AiSetActions routine. The latter sets 
up a set of action routines to handle interactions 
from child applications. 

2. When a parent application is ready to access a 
child application, it calls the AilnvokeAppl rou
tine to load and invoke the child application. 
The AilnvokeAppl routine uses an appropriate 
system mechanism and brings up the specified 
child application. 

3. If the child application is started successfully, 
the parent application can begin an application 
session. It calls the AilnitializeSession routine to 

52 

tell the child application to prepare for a new 
application session. At that point, the parent 
application also passes input data to the child 
application and sets up execution attributes. 

4. To start the child application session, the parent 
application calls the AiExecuteSession routine. 
The child application then brings up its user 
interface and starts processing input from the 
user. 

5. An application session can be terminated by 
either the child or the parent application. If a child 
application initiates the termination, the parent 
application receives a call to its AppSessionExit 
action routine. If a parent application wants to 
terminate a child application, it can call the 
AiTerminateSession routine. As part of a normal 
session termination, the parent application 
expects the child application to call the appro
priate parent action routines to save all its exist
ing work and pass the presentation result back. 
At this point, a conforming child application 
should hide its user interface, free all unneces
sary resources, and wait for the parent to start 
another application session. This enables a faster 
restart when the child application is reused. 

6. When the parent application no longer needs 
the child application, the parent application 
calls the AiTerminateAppl routine to disconnect 
the child application. 

The following steps outline the basic sequence in 
which a child application is executed when it is 
called by a parent application. 

1. The child application is started and calls the 
AiStartup routine to initialize the AIL environ
ment. As a return status, AIL informs the pro
cessing application whether it is invoked as a 
child application. 

2. If an application is invoked as a child applica
tion, it calls the AiSetActions routine to set up 
action routines to handle interactions from the 
parent application. 

3. The child application enters an event processing 
loop to wait for instructions from the parent 
application. In the event processing loop, the 
instructions or interactions from the parent 
application come through as calls to the action 
routines that the child application has established. 

The parent instructions include starting and 
stopping application sessions, setting attributes, 
exchanging data and shutting down the application. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnlcal]ournal 



PARENT APPLICATION 

PROGRAM STARTS: 
Xtlnitialize 
Ai Startup 
AiSetActions 

ENTER EVENT LOOP: 
XtMainLoop 

START CHILD: 
AilnvokeAppl 

AIL 

Interapplication Access and Integration 

CHILD APPLICATION 

PROGRAM STARTS: 
Xtlnitialize 
AiStartup 
AiSetActions 

ENTER EVENT LOOP: 
XtMainLoop 

(START OF SESSION LOOP) 

START SESSION: 
AilnitializeSession 
AiExecuteSession 

AppSessionExit 

TERMINATE SESSION: 
AiTerminateSession 

(OR) 

SESSION STARTS: 
ApplnitializeSession 
AppExecuteSession 

CHILD END SESSION: 
AiSessionExit 

AppTerminateSession 

(DO NEW SESSIONS AS NEEDED) 

TERMINATE APPLICATION: 
AiTerminateAppl AppTerminateAppl 

(OR) 

CHILD END APPLICATION: 
AppApplExit AiApplExit 

Figure 4 Basic AIL Routine Usage Sequence 

As responses to user actions or as consequences 
to other events (including parent instructions), the 
child application can also call AIL functions to ini
tiate various functions such as exiting the current 
application session or delivering data to the parent 
application. 

Builder 
Builder is a variation on the application link theme. 
Its revisable data is a script, or blueprint, that allows 
applications to be integrated at the user-interaction 
level. In addition to being a conforming LiveLink 
application, it can also stand by itself. In fact, 
Builder is also a component of the DECdecision family 
of applications. 

The remainder of this paper presents an overview 
of Builder and its design and infrastructure. 

Dtgltal Tedmlcal]ounral Vol. 2 No. I , Winter 1990 

Builder Overoiew 
A user typically performs a series of steps to accom
plish a logical task or, in Builder's terminology, a 
blueprint. Each blueprint may entail invoking 
many different applications and dealing with an 
equal or greater number of files or data objects. 
Builder uses a tape recorder paradigm as a model 
for describing application integration. The user 
turns on Builder to start a task, and applications are 
transparently recorded as they are used. This 
blueprint recording may be played back to repro
duce the task. 

Builder is one of five DECdecision components 
that run on the DECwindows platform. The others 
are as follows: 

• Access - a table-oriented, database access tool 

53 



Compound Document Architecture 

Data Link 

1~1 

Gulde 

ff=1l 
~ 

ACCESS 
GET CUSTOMERS 

ACCESS 
HARDWARE DIST 

CALC 
ACTUAL SALES 

CALC CHART 
ACTUAL VS EST GRAPH RESULTS 

Figure 5 Sample Blueprint Diagram 

• Cale - a spreadsheet package 

• DECchart - a charting package 

• Control - themanagerfortheothercomponents 

Builder ties together one or more of these compo
nents into a single task. 

As applications are recorded, Builder graphically 
represents their activity with a series of boxes and 
arrows as shown in Figure 5. Each box represents an 
application instance; and each arrow, or data link, 
represents the flow of data (e.g., cut and paste) 
between a pair of applications. The user may select 
and display the contents of an object to see the 
operations that correspond to it, as shown in Figure 6. 

Data Link 

FROM: APPLICATION: ACCESS 
SUBTITLE: UNIT_REVENUE 

~ T 
lsELECT ROWS 1 OF COLUMNS R [3] 

TO: APPLICATION : CALC 
SUBTITLE: DECISION$YEARL y_REV 

~ N I ESP _READ_GLQBAL_DATA("A2 [12] 

OK !I Cancel 

Figure 6 Sample Data Link 

54 

Early in the project, we decided that a record of 
keystrokes and mouse tracks was of limited use 
and could not always be counted on to reproduce 
the intended task. For example, if the application 
was run on a workstation with a different display 
size, or the menu choices were rearranged, many 
such recordings would be invalidated. We found 
that a functional record of operations, that is, a 
description of the intended operations, was much 
more useful and could be relied upon to represent 
user tasks. 

The record and playback mechanism is therefore 
a cooperative effort between Builder and inte
grated applications. Applications that understand 
Builder are referred to as client applications. In 
record mode, a client application provides Builder 
with a functional representation of each user-level 
operation, which is recorded in the blueprint. 
Since only the application knows what a series of 
keystrokes and mouse tracks means, this coopera
tion is essential. 

In addition to the basic record and playback 
capabilities, Builder also allows users to debug a 
blueprint during playback (e.g., single stepping), 
and to splice new operations into existing blueprints 
(a combined record and playback mode for modi
fying a blueprint). 

Goals and Considerations 
Besides the end-user goals, we designed Builder to 
meet key integration goals. 

Vol. 2 No. 1, Winter 1990 Digital Tecbntcal]ournal 



The main goal of Builder was to provide a facility 
for the recording and playback of operations that span 
more than one application. This included maintaining 
a record of the ordering of operations to account 
for concurrent applications. 

Another goal was to support both procedural and 
nonprocedural applications. Many applications are 
process-oriented and are only controllable in a 
procedural or command-oriented way. Others are 
nonprocedural in nature or deal with objects, not 
commands. Both types of applications are sup
ported. (Note: This paper refers to any operation 
that is recorded as a command, even if that opera
tion was produced by a nonprocedural application.) 

Further, we felt that introducing yet another 
command language would be detrimental to appli
cation integration and would discourage support 
for existing and future applications. Instead, 
Builder adopted an ecumenical doctrine with 
respect to command languages - any one is just as 
good as any other. With this method, application 
developers do not need to recode applications and 
cultural bias in command languages is avoided. 

A prime goal for Builder was to support interna
tional applications. We had to recognize that appli
cations can be translated to various degrees. Some 
areas that we addressed were as follows: 

• Character set support: 8-bitstrings, 16-bitstrings, 
ISO Latin 1, etc. Blueprints are files encoded in 
the DDIF document interchange format. Com
mands can be recorded as compound strings to 
support a wide variety of character sets. 

• Translatable and nontranslatable command lan
guages. Applications may record a translatable 
and/or a nontranslatable command string for 
every operation, corresponding to the type(s) of 
language interfaces they support. If both string 
types are specified, they are treated as a logical 
entity. A scheme is provided for language
independent command execution that does not 
sacrifice the native language command interface. 

• Language environment verification. Builder and 
client applications can verify that the record 
mode language is compatible with that of play
back. For example, a blueprint recorded in 
German is meant to be played back using the 
German language version of an application. 

Another goal was to ensure reusability. To mini-
mize the impact of process startup and application 
initialization, Builder supports a mode of reusabil
ity whereby application processes are reused after 
task completion. 

Digital TecbntcalJournal Vol. 2 No. 1, Winter 1990 

Interapplication Access and Integration 

Builder also allows blueprints to be shared. 
Blueprints must be able to be mailed and used by 
other users. Since blueprints may contain refer
ences to other, embedded, blueprints, it was highly 
desirable for them to be shared as a whole. The 
DDIF data format encoding made this goal 
achievable. Embedded blueprints are named as 
external references in the DDIF data format file . 
The DOTS data object transport syntax packages 
and unpackages the resulting encapsulation. 

Two final considerations shaped the design. One 
is support for nonintegrated applications. An appli
cation that does not support Builder may still be 
incorporated into a blueprint in a limited way by 
using it as a black box. The application is invoked 
and run to completion without the benefit of a con
tinuous dialog with Builder. 

The second consideration is coexistence with 
event-driven environments. Increasingly, applica
tion environments are centered around event
driven mechanisms that handle asynchronous events 
in an operating system-independent manner. Call
backs seem to be the most common and good solution 
to support this environment. Builder provides a 
callback registry for dispatching of operations. 
This mechanism also works well in a non-event
driven environment. 

Design and Implementation of Builder 

Sessions 
When a blueprint is recorded or played back, Builder 
creates a new session. A session logically contains 
all information pertaining to the task at hand. 

• Application ordering 

• Blueprint commands 

• Command sequencing 

• State (record, playback, paused, etc.) 

• Options (slow-motion speed, debug break
points, etc.) 

Sessions are unique and are guaranteed not to 
conflict with other Builder users. Multiple sessions 
may be active simultaneously. Associated with 
every command is a unique sequence identifier 
(similar to a time stamp) that determines command 
ordering during playback. 

When an application starts executing, it queries 
the Builder runtime services to determine whether 
Builder is active. If it is, the application joins the 
session and follows further instructions. 

SS 



Compound Document Architecture 

BUILDER 
USER INTERFACE 

BUILDER 
EXECUTIVE 

- RECORD, PLAYBACK 
- PAUSE, STOP 
- DEBUG, SPLICE 

CLIENT APPLICATION 
USER INTERFACE 

BUILDER CLIENT 
/ EXECUTIVE 

/1----------J 

~ BLUEPRINT 

~ILE 

8 
Figure 7 Builder Communication Model 

An application may be instructed to process 
commands directly from the user, from Builder, or 
both. The Builder executive, in conjunction with 
the client executive, coordinates the switching of 
command focus. During record mode, applica
tions process commands directly from the user, 
and during playback directly from Builder. Splice 
mode entails a bit of both. 

1be Builder Communication Model 
The Builder communication model is basically a 
classic client-server model. The server is the 
Builder process, and the client is the client applica
tion. In Figure 7, the Server is labeled as Builder 
executive and the client as Builder client executive. 

Builder F.xecutive The Builder executive acts as a 
central dispatcher for sessions, handles all session
level operations, and communicates session infor
mation (updates) to client applications. Some 
examples of this include: 

• Identifying which application starts next 

• Invoking applications (and processing startup 
and termination information) 

• Synchronizing cross-application events (e.g., 
which command executes next?) 

• Handling errors during playback 

The Builder executive can also start, stop, and 
pause a session, and reuse applications. However, it 
has absolutely no user interface. Instead, Builder 
uses the Builder executive as a session manager to 
derive the information needed to maintain the 
blueprint diagram. This is done by means of a call 
interface and callbacks, which are triggered when 

56 

the Builder executive processes certain session 
events. These are separate and distinct layers, as 
depicted in Figure 7. 

The Builder executive communicates with all 
client applications through a communication layer 
in the Builder client executive. (See Figure 8.) 

Builder Client F.xecutive The Builder client execu
tive maintains the Builder context for applications, 
and does the actual communication between the 
client application and Builder. Client applications 
use Builder's runtime services as the interface to 
join a session, record commands, and indirectly 
communicate with Builder. 

During record mode, the client application 
translates user operations into a command which it 
then passes to the client executive through the 
runtime services. The client executive assigns a 
unique, ordered sequence identifier, and records 
the result. These sequence identifiers represent the 
order in which the blueprint was recorded. 

During playback, the client executive either 
determines or is notified when the next command 
in its command cache may be executed. When this 
occurs, the command callback registered by the 
client code is invoked and given the cached com
mand. The application then parses and executes 
the command. 

Blueprint File Blueprints are recorded on disk as a 
DDIF-encoded file . The blueprint file has a table of 
contents section and an application command table 
section. Figure 9 shows the file 's logical layout. 

APPLICATION 
PROGRAM 
AND 
USER INTERFACE 

r---------- ------, 
I BUILDER COMMAND I 
I RUN-TIME CALLBACKS I 
I SERVICES I 

I I 
1
1 I CLIENT TO BUILDER CONTROL 

COMMUNICATION AND DISPATCH I 
I INTERFACE 

I I 
I I 
I I 
I COMMAND I 

CACHE 
I I 
L----------------~ 

CLIENT EXECUTIVE 

Figure 8 Builder Client F.xecutive 

Vol. 2 No. 1, Winter 1990 Digital Tecbnlcal]oumal 



Interapplication Access and Integration 

APPLICATIONS 

APPLICATION INVOCATION NATURAL 
NAME STRING LANGUAGE SUBTITLE 

EVENTS 

COMMAND 

TABLE 
OF 
CONTENTS 

EVENT 
TYPE 

APPLICATION SEQUENCE 
IDENTIFIER IDENTIFIER 

COMMAND TABLE A 

GLOBAL 
SEQUENCE 
IDENTIFIER 

COMMAND 
CODE 

COMMAND 
STRING(S) 

APPLICATION 
COMMAND 
TABLES 

COMMAND TABLE Z 

GLOBAL 
SEQUENCE 
IDENTIFIER 

COMMAND 
CODE 

COMMAND 
STRING(S) 

Figure 9 Blueprint File Layout 

The table of contents section describes the appli
cations that comprise the blueprint and their inter
relationship. Included are application name 
invocation strings, and native language identifiers, 
among other application instance attributes. This 
information provides a framework description 
from which the user interface constructs a dia
gram. The table of contents also describes the 
cross-application events within the blueprint. The 
Builder executive uses these events when calculat
ing application ordering. 

One command table for each application is listed 
in the table of contents. All commands associated 
with a given application instance are grouped 
together. This grouping makes it easy to select and 
process all commands for a given application 
instance. 

Dtg ltal Tedmlcal]ournal Vol. 2 No. 1, Winter 1990 

Transla.tability Applications may record one or 
two variants of command syntaxes: 

• A native language-oriented and translatable 
syntax 

• A common and nontranslatable syntax (which 
may or may not be culturally biased) 

The advantage of supporting a native language 
interface is that the command language always 
addresses the end user in the local language. The 
disadvantage is that a series of commands recorded 
by an application in one country may not be under
stood by the same application in another country 
(assuming the product and command language 
have been translated). 

The advantage of supporting a common com
mand language syntax is that the same syntax is 

57 



Compound Document Architecture 

understood across all application variants. The dis
advantage is that common command languages 
tend to be heavily, culturally biased and, as a result, 
are only understood by a subset of users. 

If an application supports a common and a native 
language interface, then the disadvantages of either 
in isolation are eliminated. This support also avoids 
the necessity of understanding all language variants 
of a command syntax. In essence, commands will 
execute regardless of application variant and with
out sacrificing the native language interface. 

When an application supports both language 
syntaxes, Builder displays the native language com
mands but gives client applications the common 
language to execute. In addition, a degree of auto
matic translation may be achieved. 

Trade-offs and Optimizations 
In this section we address some of the design trade
offs and optimizations made during the develop
ment of Builder. 

Communication Protocol Builder's communica
tion and notification protocol is designed to be toler
ant of slow-responding applications. For instance, 
a client executive always has full access to the ses
sion state information, in case an application is in 
the middle of a long operation when a session 
update notification arrives. The client executive 
can reflect the current session state immediately 
instead of trying to process obsolete information. 

Update Notification All communication can be 
handled in a straightforward manner between the 
Builder executive and client code through a bidi
rectional communication mechanism. The Builder 
design also allows certain communication opera
tions to be implemented in a distributed manner, 
including 

• Updating session information 

• Updating sequencing/synchronization 

Session and sequencing information needs to be 
updated and distributed quickly to all client appli
cations. If distribution is not quick enough, play
back especially will not appear to be responsive to 
the Builder user interface. 

On the VMS system, session and sequencing 
information is maintained in locks, using the VMS 
S ENQ and S DEQ services. Notification of asynchro
nous behavior, such as changes to the playback 
speed, is handled using a technique called blocking 
Asynchronous System Traps. 

58 

The current sequence identifier and general ses
sion information are maintained in separate locks. 
They can be modified independently, and applica
tions are notified of the updates. The lock protocol 
is designed so that the Builder executive can trigger 
callbacks in all client executives that are part of the 
session by simply seizing and updating a lock. This 
optimization obviously can only be used when 
Builder and the client are on the same VAX system 
cluster. 

Local Command Caching The client executive can 
send commands directly to the Builder executive 
during recording, or it can record commands 
locally and have them merged into a master 
blueprint later. These two methods are function
ally equivalent. 

However, the latter is more efficient and is used 
during normal record mode. The former is used 
only when the Builder user interface wants to 
maintain an up-to-date display of commands, such 
as during splice mode. 

During playback, rather than send application 
commands to the client executive one at a time, the 
Builder executive either ships them all at once 
when the application starts up or points the client 
executive to a local file. This is more efficient and 
does not introduce any playback latency due to 
temporarily slow communication conditions. 

The goals in these optimizations were to keep 
communication between Builder and client at a 
minimum and to distribute as much work as possi
ble. Any potential bottleneck in the processing of 
communication messages that would have made 
the Builder user interface seem unresponsive was 
avoided. 

The client executive only notifies the Builder 
Executive when the following events occur: 

• An application joins the session 

• A cut or paste operation is encountered 

• The application is synchronizing on another 
(application's) command 

• An error is detected 

• The application exits the session 

These events might require the user interface to be 
notified or some interapplication synchronization. 

Command Synchronization In keeping with our 
desire to minimize communication with Builder , 
the client executive only requests command synchro
nization if it cannot proceed on its own. Because 

Vol. 2 No. 1, Winter 1990 Digital Tecbnica/Journal 



all commands are sequentially numbered, the client 
executive can examine the next command in its 
cache to determine whether it will execute next. 

Parallel Playback The current implementation 
supports only single-threaded execution. However, 
the design does allow Builder to relax this con
straint and execute playback in parallel. The design 
identifies certain operations that would require 
synchronization even while in parallel playback, 
including application startup, application termina
tion, cut, paste, etc. These operations constitute 
hard synchronization points that must be obeyed 
for playback to perform properly. 

This feature was not made available through the 
user interface because of possible situations unique 
to the user's environment. 

For instance, a user may have a blueprint in which 
one application updates a personal customization 
file (operation A) and then relies on that within 
another application (operation B) in the same 
blueprint. Since the relationship between the two 
operations lies in the user 's mind, Builder cannot 
synchronize them. In parallel playback, sometimes 
operation A would execute first and other times 
operation B. 

Summary 
The AIL library and DECdecision Builder meet the 
goals we initially established. Primarily, the soft
ware was to provide the capability to perform 
application invocation and interapplication com
munication, thus enabling the DECwrite and 
DECdecision products to work closely together. 

Digital Tecbnicaljournal Vol. 2 No. I, Winter 1990 

Interapplication Access and Integration 

We used the same project approach for each. We 
began with an initial basic design on which we 
layered components for more sophisticated pro
cessing operations. As we progressed, we made 
design trade-offs and optimizations that resulted in 
an effective and efficient implementation. In the 
end, we delivered interapplication access and inte
gration support that enables an application to be 
called, its features used, and the result incorpo
rated automatically. 

Acknowledgments 
The authors wish to thank the many individuals 
who have participated in the design and review 
efforts. Special acknowledgments are given to Seth 
Cohen, Carol Young, Peter Savage, Peter Bower, 
Ann Wong, and Brian Simons who contributed to 
the initial design and led the DECwrite and 
DECdecision products in incorporating AIL and 
Builder supports. We would also like to thank our 
managers Shapoor Shayan, Dennis Saloky, and 
Steve Baron who encouraged and drove the appli
cation integration effort. 

References 

1. A. Sung, N. Jacobson, and C. Young, "The Design 
and Development of the DECdecision Product," 
Digital Technical]ournal, vol. 2, no. 1 (Winter 
1990, this issue): 60-72. 

2. S. Cohen and W. E. Morgan, "The Relationship 
between the DECwrite Editor and the Digital 
Document Interchange Format," Digital 
Technical Journal, vol. 2, no. 1 (Winter 1990, 
this issue): 73-82. 

59 



Alan Sung 
Neal F.Jacobson 

Carol A. Young 

The Design and Development 
of the DECdecision Product 

The UJCdecision product is an end-user decision support application composed of 
five components that perform database access, spreadsheet, charting, flow control, 
and management functions. Each component presents a consistent, rich, graphical 
UJCwindows user interface. Users can easily share data between the components, or 
with other applications, using the UJCwindows QuickCopy and clipboard facilities. 
The Cll4 architecture supplies the foundation for this data interchange, as well as sup
port for reading or writing UJCdecision data in a variety of formats. The IEdecision 
product provides a level of sophistication and seamless data integration not found in 
many products. The UJCdecision product is one of the first, large-scale applications to 
showcase the capabilities of UJCwindows and the Cll4 architecture. 

Introduction 
The DECdecision application provides an end-user 
decision support environment for data-dependent 
professionals. Its target audience includes both 
novice and expert users in any profession that 
relies on data (e.g., finance, marketing, sales, engi
neering). The DECdecision product is composed of 
five integrated components: 

• Access, a table-oriented database access and 
query package 

• Cale, a programmable spreadsheet package 

• DECchart, a business charting package 

• Builder, a flow control facility 

• Control, the manager for the other four 
components 

Access provides an end-user view into a rela
tional database through sophisticated ad hoc 
query and reporting features. Cale provides ana
lytical and "what-if' spreadsheet capabilities, includ
ing remote grid consolidation and linking, charting, 
and a procedural macro language. DECchart supports 
business charting and annotation, including standard 
and user-defined charting styles. Builder brings 
the actions in these three DECdecision components 
together into a blueprint that can be replayed at a 
later time.1 Control manages the components. It 
serves as a single point from which each compo
nent can be invoked and a central point from 
which customization features can be controlled. 

60 

The DECdecision product showcases the capa
bilities and features of two major Digital architec
tures: DECwindows and the CDA architecture.2

'
3 

The DECdecision product is one of Digital's first, 
large-scale applications to demonstrate in a single 
product the power of the graphical, mouse-based, 
DECwindows user interface, and the data inter
change and conversion capabilities of CDA. 

DECdecision's user interface highlights the wide 
range of graphical building blocks (i.e., widgets) 
available to a DECwindows application developer. 
These widgets include dialog box, list box, scroll 
bar, push button, text entry, and file selection 
widgets. Each of these widgets is supplied with the 
XUI toolkit. When used in conjunction with the 
recommendations defined in the XU/ Style Guide 
and the User lnterfac<; Definitions Language (a 
utility to define and build user interfaces), the 
DECwindows widgets make it easy to create appli
cations that have a consistent look and feel.4 

The DECdecision product also demonstrates the 
interactive data interchange capabilities provided 
by the DECwindows clipboard and QuickCopy 
mechanisms. The clipboard provides a system
wide repository for application data. It stores or 
retrieves data passed by or requested by applica
tions. As opposed to the clipboard, QuickCopy 
uses a direct connection for data transfer between 
applications. 

The CDA architecture provides the underlying 
data interchange format that the DECdecision 
product uses in both the clipboard and QuickCopy 

Vol. 2 No. 1, Winter 1990 Digital Tecbnical]ournal 



lbe Design and Development of the DECdecision Product 

operations. The CDA architecture supplies a set of 
services that facilitate data interchange between 
applications, including services to convert data to 
and from the CDA formats. With the CDA services, 
the DECdecision components can easily share data 
among themselves or with other CDA-compliant 
applications. The CDA converter architecture allows 
DECdecision components to read and write data in 
a number of data formats, such as WK 1, DEC ale, ASCII 
or Postscript. 

Through the DECdecision product, we hope to 
encourage additional application development 
based on DECwindows and the CDA architecture, 
both within Digital and by third parties. The 
DECdecision product demonstrates that a consistent 
and flexible DECwindows user interface combined 
with the CDA data interchange and conversion 
architectures can provide a powerful base for 
application developers to build sophisticated, 
state-of-the-art applications. 

DECdecisian Product Background 
A major schedule goal for the DEC decision product 
was to release it very soon after the release of the 
DECwindows system. To meet this goal, we re-used 
code from existing Digital products where possible 
to reduce development time. 

The DECdecision components Access and Cale 
were developed from the existing Digital products 
VAX TEAMDATA and VAX DECalc, respectively. 
These existing products have a character-cell ter
minal user interface. This user interface was 
replaced with a DECwindows graphical, mouse
oriented user interface, which was layered on to 
the processing engines of each component. New 
functionality was also added to each component 
that was not present in the existing products. 

The DECdecision DEC chart, Builder, and Control 
components were developed from scratch because 
there were no existing Digital products that pro
vided the functionality these components needed. 

The DECdecision product development project 
presented some interesting engineering challenges. 
The two existing products had been developed as 
standalone applications. Each had its own particular 
look and feel as well as its own particular user com
munity accustomed to operating in a particular 
way. In merging these two products and the new 
components into the single DECdecision product, 
we placed particular emphasis on the integration 
points between the components: user interface, 
data interchange, and Builder interaction. 

Digital Tecbnical]ournal Vol. 2 No. 1, Winter 1990 

This paper focuses on some of the more impor
tant DECdecision design and development goals 
and decisions. This discussion highlights how 
DECwindows and the CDA architecture were used 
to develop the DECdecision components. In some 
cases, the DECdecision development actually 
enhanced the DECwindows product. This paper 
also discusses the above-mentioned integration 
points, some of the more interesting component 
designs, and some of the optimizations built into 
the DECdecision product. 

Integration 

User Inteiface 
User interface consistency is very important in the 
DEC decision product because the product includes 
three data access and analysis components, each of 
which has specialized capabilities. While some 
capabilities and features of each component are 
quite different, the components also share many 
similarities. We felt it was important that similar or 
identical commands and operations be consistent 
across each component. Consistency reduces the 
time it takes a new user to learn the system because 
it is easier to transfer knowledge learned in one 
component to another. 

We concentrated on consistency of menus, dialog 
boxes, selection operations, and keyboard acceler
ators. Similar or identical menu commands in each 
component have the same names; where appro
priate, dialog boxes have similar or identical 
options and layout. Selection within the table 
work areas of each component is identical, and 
the same keyboard accelerators are used across 
components. 

The DECdecision product conforms to the 
XU/ Style Guide and uses the XUI toolkit widgets 
and User Interface Definition Language (UILIUID). 
Through internal reviews, we were able to achieve 
a high degree of user interface consistency among 
the DECdecision components and between the 
DECdecision product and other DECwindows 
applications. 

Data Integration 
The second DECdecision integration area is data 
integration. While each DECdecision component 
alone can be used for many useful functions, the 
real power of the DECdecision product lies in its 
ability to integrate data from a variety of sources 
and to interchange data between the components. 

61 



Compowid Document Architecture 

Data interchange allows the DECdecision compo
nents to communicate with each other as well as 
with other applications. 

Results from an Access query can be moved to 
a Cale spreadsheet for analysis. Charts can be 
created from database or spreadsheet data, and 
the chart can be updated as the data changes. 
Data tables and spreadsheets created by exter
nal applications can be imported into the 
DECdecision product. These imported data tables 
retain most, if not all, of their revisable data 
(e.g., formulas, data typing, formats). Conversely, 
DECdecision data tables and spreadsheets can be 
exported (written) to externally defined formats. 
Even text which looks like a data table, such as a 
mail message, can be easily read into the 
DECdecision product for analysis or computation. 
Finally, data tables or charts can be linked to com
pound documents using the DECwrite editor's 
LiveLink mechanism. 5 

This flexible data-sharing is accomplished using 
the CDA architecture and the DECwindows clip
board and QuickCopy mechanisms. 

CDA Architecture Support 
The CDA architecture is a set of architectures and 
services which facilitate the interchange of com
pound documents. The CDA architecture has three 
main component architectures that are relevant 
to the DECdecision product - the DTIF table inter
change format, the DDIF document interchange for
mat, and the CDA converter architecture. The DTIF 
table interchange format defines a format for the 
interchange of revisable data tables.6 The DDIF 
document interchange format defines a format 
for the interchange of compound documents 
containing text, graphics, and images.7 The con
verter architecture defines a mechanism to convert 
document data to and from the CDA formats. The 
CDA toolkit provides services to create, process, 
or view CDA documents and to invoke document 
converters.8 

Each DECdecision component supports the 
CDA architecture. Data interchange between 
DECdecision components uses the DTIF format, 
since the DECdecision components are primarily 
data table-oriented. Data interchange between 
DECdecision and other applications, such as the 
DECwrite editor or the Mail utility, uses the DDIF 
format, since communication and data exchange 
outside the DECdecision components are often in 
the form of a report or chart. 

62 

The DTIF format is the native storage format for 
Cale spreadsheet and DECchart worksheet files. 
DTIF format data tables may be read or written by 
Access, which uses Rdb/VMS as its native storage 
format. 

Data transfer between components using 
DECwindows QuickCopy or the clipboard also 
uses the DTIF format. (This is discussed in more 
detail in the QuickCopy section below.) Access and 
Cale send DTIF-formatted data to DECchart when 
creating or updating charts. 

The DDIF format is the native storage format for 
DECchart chart, style, and overlay files. Printed 
output from Access, Cale, and DECchart, such as 
reports and charts, is written in the DDIF format. 
LiveLink data, sent when a DECdecision compo
nent is linked to a DECwrite data block, is encoded 
as a DDIF document. 

Access also allows those compound document 
references that are stored within a table cell to be 
displayed using the CDA viewer. 

For example, a real estate database might store 
references to house pictures or a parts database 
may store references to schematics. 

CDA Converter Support 
The CDA converter architecture provides a mecha
nism to convert document data to and from CDA 
formats, using programs called converter modules. 
Modules that convert data from a non-CDA format 
to a CDA format (DTIF or DDIF) are called front-end 
converters. Modules that convert data from a CDA 
format to some other data format are called back
end converters. In this model, the DTIF and DDIF 
data formats are conversion hubs. Each front-end 
or back-end converter module connects to the hub. 
The architecture also allows new converter modules 
to be easily added to the system. The CDA toolkit 
includes the routines to initiate a front-end or back
end conversion. (See Figure 1.) 

The DECdecision Access, Cale, and DECchart 
components all use the CDA toolkit to read and 
write DTIF or DDIF data. In addition, we wanted 
each component to be able to read or write non
CDA data formats, such as WK 1, DECalc, DIF, or 
ASCII. Using the CDA converter architecture helped 
us solve this problem in two ways: 

• The conversion hub model enabled each compo
nent to support a single format (DTIF). The con
verter architecture manages the translations to and 
from the hub format at the component's request. 

Vol 2 No. I, Winter 1990 Digital Tecbnlcal]ournal 



7be Design and Development of the DECdecision Product 

DECalc 

WK1 

(OTHER 
NON-CD A 
DATA 
FORMATS) 

FRONT-END 
CONVERTERS 

DECdecision 

DTIF / 
/ 

/ 
CONVERSION 
HUB 

/ 

/ 
/ DDIF 

CDA TOOLKIT 

ASCII 

WK1 

(OTHER 
NON-CDA 
DATA 
FORMATS) 

BACK-END 
CONVERTERS 

Figure 1 Conversion Hub Model 

A considerable amount of coding and testing 
work was eliminated because each component 
already included support for the hub format. 

• The actual conversion process is de-coupled 
from the application requesting the conversion. 
This de-coupling means the application needs 
no direct knowledge of the available converters, 
and converters can be added to or subtracted 
from a system without requiring any modifica
tion to the DEC decision application. 

We designed a dynamic scheme to display the list 
of converters currently installed on a system each 
time the DECdecision product displays an import 
or export dialog box. DECdecision contains no 
hard-coded information about the converters 
available on any given system. The converter archi
tecture simplified this task for the DECdecision 
product to the point where import and export 
operations became primarily a user interface issue. 

Each time the user selects an import or export 
operation, the DECdecision product displays a list 
box that contains the names of all converters 
available on the system at the time. This list is created 
by searching the CDA converter library directory for 
files that match the CDA converter naming rules. 

For import operations, the DECdecision product 
searches for DTIF front-end converters using a wild
card file specification. All files matching this speci
fication are assumed to be valid CDA converters. 
The format name is extracted from the expanded 
file specification and added to the format choice 
list box. When a format choice is selected, its format 
name string is passed to the CDA converter kernel to 

Digital TecbntcalJournal Vol. 2 No. 1, Winter 1990 

indicate which converter is requested. The con
verter kernel invokes the appropriate converter, 
and the requested format data is converted to a DTIF 
in-memory structure. The DECdecision product 
then processes the DTIF in-memory structure as if 
the data had been originally entered in the DTIF 
format. 

Export operations are similar to import opera
tions. However, the DECdecision product searches 
for back-end converters whose hub is either DTIF 
format or DDIF format. The DDIF hub format is 
available to the DECdecision product because the 
DTIF-to-DDIF domain converter creates a bridge 
between the two hub formats. The domain con
verter transforms DTIF tabular data into a DDIF 
document, applying information included in the 
table such as column widths, value formatting, line 
and page breaks. Once the table has been converted 
to a DDIF document, it can then be converted 
into any format for which there is a DDIF back
end converter, such as Postscript or ASCII. The 
DECdecision components Access and Cale use the 
domain converter for print and report operations 
as well. 

DECwindows Data Interchange 
The DECdecision product utilizes two techniques 
for interactive data interchange between its compo
nents and other DECwindows applications. These 
techniques are QuickCopy and the clipboard. 
Using these techniques, DTIF data is interchanged 
between the DECdecision components to preserve 
as much tabular information as possible, and ASCII 
data is interchanged with other applications that 
do not support the DTIF format. 

QuickCopy 
The DECwindows QuickCopy feature is a highly 
efficient method to transfer data between applica
tions. The DECdecision components use QuickCopy 
to exchange tabular data among themselves. The 
user initiates QuickCopy by selecting one or more 
sections of data to be transferred. The user then moves 
the mouse to the data's target location and transfers 
the data by pressing the third mouse button. 

The Access, Cale, and DECchart components 
support two data formats, STRING and DTIF. 
STRING identifies ASCII-encoded data, and DTIF 
refers to the DTIF table data format. 

DTIF-encoded data may be quite extensive. It 
can range from a single cell value to an entire 
spreadsheet or data table. Because of memory and 

63 



Compound Document Architecture 

other application resource restrictions, it would be 
unwise to transfer this data all at one time. Instead, 
the DECdecision components use incremental 
QuickCopy to transfer DTIF data in manageable 
units. The size of STRING data, on the other hand, is 
usually quite small (e.g. , data obtained from a 
screen window). Therefore, the nonincremental 
QuickCopy mechanism is used. 

The incremental QuickCopy protocol was not 
initially part of the XUI toolkit. The DECdecision 
product defined the protocol and call interface 
and was the primary tester and consumer of this 
functionality. These routines are now part of the 
XUI toolkit and can be used by any two cooperating 
applications. The following is an example of how 
two applications exchange data through the incre
mental QuickCopy mechanism. 

The sending application, in response to the user 
selecting a data range, exerts ownership of the pri
mary selection by making a call to the routine 
XtOwnSelectionlncremental. It also registers a 
callback routine name, which will be called when 
data is requested by the receiving application. 

When the receiving application wants the 
DTIF-encoded data, it calls the routine XtGet
Selection Valueincremental. It also registers a 
callback routine, which is called when the data 
actually arrives at the receiver's end. This starts the 
send and receive communication between the two 
applications. 

The first time the sender's XtConvertSelection
IncrProc callback routine is called, it encodes the 
selected region of the table into DTIF data. The data 
is actually written to a temporary file to make the 
data processing more manageable. 

The first data increment is read from the tempo
rary file and returned, along with its length, to 
the XUI toolkit. The size of the data buffer is based 
on the optimal network packet size, which the 
XUI toolkit passes to the sender's callback routine. 
The XUI toolkit subsequently sends the data to the 
receiving application. 

On the receiver's end, its XtSelectionCallbackProc 
routine is invoked when a data increment is 
received. The receiver writes this data to its own 
temporary file, which it maintains as long as the 
data transfer is active. 

These sending and receiving operations continue 
until all the data has been transferred. The sender 
indicates this by returning a "null" data increment, 
that is, one whose length is zero. At this time, the 
sender may choose to delete its temporary DTIF 
data file. 

64 

When the receiver sees a null data increment, it 
realizes the entire data transfer has completed and 
closes its temporary DTIF data file. Then, it reads 
the DTIF-encoded data and decodes the data into 
its own internal form. After the DTIF data has been 
processed, the receiver may choose to delete the 
DTIFfile. 

Temporary files are not strictly necessary in this 
operation, but we chose this approach for several 
reasons. First, the total size of the transferred 
data cannot be known in advance. In fact, it is not 
always possible to allocate sufficient memory to 
hold all the data. Second, storing the entire data 
segment in memory reduces the amount of mem
ory available for other uses, such as cell data 
storage. Figure 2 provides a detailed example of 
the incremental QuickCopy procedure in the 
DECdecision product. 

In some cases, the sending application 's 
XtConvertSelectionincrProc cannot convert the 
data in its internal form to DTIF format. When this 
happens, the sender indicates to the DECwindows 
toolkit that the sender is not able to provide the 
data in the requested format. The receiving appli
cation has two options when the sender has not 
provided the data. Either it can abort the data 
transfer and display the appropriate message, or 
it can retry the data transfer in another format. 
The Access, Cale, and DECchart components all 
retry the data transfer operation utilizing non
incremental QuickCopy with the STRING data 
type. This operation is simpler since the receiving 
application will receive only one buffer of data 
and no handshaking is necessary. The Cale and 
DECchart components process this buffer of 
STRING data directly into their internal form. The 
Access component writes the buffer to a temporary 
file and imports this file as an ASCII tabular file 
into its internal form. 

Clipboard 
An alternate method of transferring DTIF data to and 
from the DECdecision product is the DECwindows 
clipboard. The main reason to use the clipboard 
instead of QuickCopy is that the clipboard has some 
semblance of permanence. In a QuickCopy opera
tion, both applications must be active to interchange 
data. With the clipboard, the sending application 
can place data on the clipboard and then terminate. 
At a future point, the receiving application can 
retrieve the data from the clipboard without the 
sending application being active. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnlcal]ournal 



The Design and Development of the DEQtecision Product 

XUI TOOLKIT 

SENDING APPLICATION RECEIVING APPLICATION 

GRABS SELECTION OWNERSHIP 
XtOwnSelectionlncremental -

CONVERT SELECTION ROUTINE CALLED 
XtConvertSelectionlncrProc -

IF FIRST TIME, THEN CREATE DTIF 
DATA FILE AND OPEN IT FOR READING 

READ BLOCK FROM DTIF DATA FILE 
AND RETURN IT TO THE TOOLKIT -

CONVERT SELECTION ROUTINE CALLED 
XtConvertSelectionlncrProc -

IF EOF ON DTIF DATA FILE, CLOSE 
IT, DELETE IT, RETURN NULL 
BUFFER ELSE REPEAT READ BLOCK -

OPEN DTIF DATA FILE FOR WRITING 
REQUEST GLOBAL SELECT DATA 

- XtGetSelectionValuelncremental 

INCREMENTAL SELECT CALLBACK ROUTINE 
CALLED 

- XtSelectionCallbackProc 

WRITE THE DATA BLOCK TO THE FILE 
-WAIT FOR NEXT DATA BLOCK 

INCREMENTAL SELECT CALLBACK ROUTINE 
CALLED 

- XtSelectionCallbackProc 

IF NULL BUFFER, THEN CLOSE DTIF DATA 
FILE, PROCESS ENTIRE DTIF DATA FILE 
AND DELETE THE FILE. 

Figure 2 Incremental QuickCopy 

The DECdecision components place data on the 
clipboard using the pass by name method, whereas 
other applications might use pass by value. In pass 
by name, when a cut or copy operation takes place, 
a snapshot of the data is placed in a holding spot 
within the component. A named reference is then 
placed on the clipboard rather than the actual DTIF 
data. The rationale for this is that a cut or copy 
operation does not necessarily imply data inter
change between applications. Therefore, with the 
clipboard we could defer the transfer of the actual 
data until the data is really needed. For example, a 
cut operation on a table might be simply to clear 
the contents of some cells. The user does not intend 
to pass data to another application. By using the 
pass by name reference, we avoid encoding the 
data into DTIF format, transferring the data to the 
clipboard, and consuming excess server memory 
in this type of situation. 

Dtgttal Tec:bntcalJournal Vol. 2 No. 1, Winter 1990 

Because the clipboard can only transfer a limited 
amount of data and does not provide any incremental 
data transfer method as does the QuickCopy opera
tion, QuickCopy is the preferred method on the 
DECdecision product for data interchange between 
active applications. 

Charting Using the DECchart 
Component 
The Access and Cale components utilize DECchart 
for charting functionality. Access charts statically, 
meaning that the user explicitly initiates the draw 
chart operation. Cale can also chart statically, but has 
the unique ability to chart dynamically. Dynamic 
charting means that charts are redrawn automati
cally as the values within the worksheet that affect 
the chart change. 

A component is responsible for maintaining the 
information necessary to control and communicate 

65 



Compound Document Architecture 

with the DECchart process. This includes collecting 
the data to be graphed from Access or Cale, along 
with any annotation, such as titles, subtitles, and 
axis labels. This information is then sent to DECchart 
using the dynamic data exchange feature of AIL. 

Dynamic charting from Cale is handled as functions 
within cells. These functions include some prede
fined chart style functions PIE(), LINE(), BAR(), etc., 
including a general purpose CHART() function. 

This process allows Cale's internal calculator to 
track the dependent values in the worksheet that 
comprise the chart. When the internal calculator 
recalculates a spreadsheet and detects that the 
dependent values have changed, it automatically 
sends the necessary data to DECchart through the 
same basic mechanism as in static charting. 

For charting functionality, both Access and Cale 
control and communicate with DECchart using 
the Application Interface Library (AIL) rather 
than a standard call interface. AIL provides an 
easy and extensible method for passing data 
and commands to DECchart. Since DECchart occu
pies its own process space, AIL allows chart drawing 
operations to be done in parallel with Access and 
Cale operations. The three main requirements for 
the interface were: 

• Use the existing DTIF architecture to pass data 

• Provide a means to pass pieces of data as logical 
entities 

• Provide a means to pass action command 

Drawing a chart consists mainly of building an 
item list of logical entities (each logical entity in 
the list contains a value, a command, and a format 
code), and calling the AiSendData routine. When 
the sending application has sent all relevant infor
mation, it instructs DECchart to draw the chart. 
DECchart then synthesizes all the information 
stored internally, including any information passed 
to it, to create the chart to be displayed. 

Logical entities are divided into two categories. 
The first category is comprised of descriptive enti
ties and the second is comprised of data entities. All 
entities can be sent in any order and can be received 
in any order. 

In addition to logical entities, commands to control 
charting operations can be sent through the inter
face. The most commonly used command is the 
draw chart command. When DECchart receives this 
command, it opens and reads all received files . All 
descriptive entities received, such as title and subtitle, 

66 

are merged internally. The DTIF data is processed, 
and the final chart is displayed to the user. 

The following steps outline the basic sequence of 
displaying a static chart: 

1. The information about the chart to be drawn 
must first be collected. Typically, a dialog box is 
used to gather the data, although the informa
tion can be specified on a command line or from 
within a macro. 

2. The information from the dialog box or com
mand line representing descriptive entities is 
then processed into an AIL send data item list. 

3. The data range or series specified must then be 
encoded as a DTIF document. Both Cale and 
Access encode the DTIF document directly into 
dynamic memory to avoid any file input/output 
overhead. A pointer to this memory is appended 
as a data entity to the send data item list. 

4. The entire send data item list is communicated 
to DECchart. 

5. After DECchart receives the descriptive and data 
entities, a control command is sent to generate 
and display the final chart. 

Access and CALC Components 
This section briefly describes the internal design of 
the DECdecision Cale and Access components and 
provides some insight into the engines beneath the 
graphical user interface. 

DECdecision Cale Design 
The Cale component was designed in conjunction 
with the DECwindows VAXTPU text processing util
ity. With a spreadsheet capability layered over a 
text processing utility, Cale has more power and 
functionality than the majority of other commer
cial spreadsheet packages. 

From the outset of the DECdecision Cale design 
effort, it was a requirement that to be competitive 
the component must have some macro language 
capability. DECdecision Cale's spreadsheet engine, 
the subsystem within a spreadsheet responsible for 
internal calculations and matrix management, was 
derived from that of the DECalc product. However, 
at the time, DECalc did not have any macro language. 
To retrofit the DECalc product's spreadsheet engine 
with a powerful and flexible language would have 
required many man-years of effort. While our 
development team had considerable expertise in 
spreadsheet operations, we had little expertise in 

Vol. 2 No. I, Winter 1990 Digital Tecbntcal]ournal 



lbe Design and Development of the DECdecision Product 

the development of third-generation languages, 
such as compilers and interpreters. 

The search for a high-level, procedural language 
subsystem led to the VAXTPU utility. VAXTPU is a 
high-performance text processing utility that had a 
complete, extensible, well-tested and mature lan
guage. We decided to use the VAXTPU language as 
the basis for the DECdecision Cale language. This 
decision solved the problem of learning another 
programming language and environment. If a user 
understood the fundamentals of the VAXTPU lan
guage for text processing, then the learning curve 
to use the language in a spreadsheet processing 
environment would be minimized. 

Another benefit of using the VAXTPU utility as 
the basis for our new design was that the VAXTPU 
utility adhered strictly to the separation of form 
and function. VAXTPU provides only the function, 
or the raw text processing primitives. It contains 
no user interface. The user interface, known as the 
form, is provided separately. We wanted to have a 
similar model. That is, we wanted a spreadsheet 
processing utility that provided only the function, 
with a separate user interface package layered on 
this newly created spreadsheet processing utility. 
The major development tasks to develop this for 
DECdecision Cale were to: 

• Build a layer around the existing DEC ale product's 
spreadsheet engine. This layer, when combined 
with the VAXTPU utility, enabled the VAXTPU 
utility to understand and manipulate spreadsheet 
functionality. 

• Create a new spreadsheet user interface using 
the design of EVE as the basis for the design of the 
new user interface. The EVE extensible video 
editor was the textual user interface layered 
upon the VAXTPU utility. 

Access to the functionality and display of spread
sheets was accomplished through the VAXTPU 
extension mechanism. This extension consisted of 
creating: 

• A set of four new VAXTPU data types to enable 
VAXTPU's interpreter to understand and manip
ulate spreadsheet entities 

• A new, additional screen update mechanism to 
handle the display of tabular data 

• An environment in which the VAXTPU base sys
tem could operate 

Digital Tecbntcal]ournal Vol. 2 No. 1, Winter 1990 

• A set of built-in procedures and keywords which 
would allow the VAXTPU programming lan
guage access to the low-level callable interface 
of the spreadsheet engine 

A single VAXTPU data structure, known as the 
extension table descriptor, pulls together the 
various modules described above. This extension 
table descriptor is registered with the VAXTPU base 
system during the VAXTPU initialization phase. 

There are many similarities between a text editor 
and a spreadsheet since a spreadsheet can be con
strued as a tabular data editor. Operations such as 
entering, inserting, moving, deleting data, and file 
operations are analogous. The basic difference is 
the primitive data types that are manipulated. Text 
editors process on a character-by-character basis 
and have an inherent understanding of words, sen
tences, and paragraphs. The spreadsheet operates 
on a cell level and processes data in rows, columns, 
and rectangular regions. In order for VAXTPU to 
understand these new primitives, four new data 
types were introduced. Each new data type was 
modeled after an analogous entity in the text 
paradigm. These entities included: 

• A grid which is a collection of cells in a tabular 
form. The grid is analogous to the text buffer, 
which is a collection of a stream of characters. 

• A view, which is a tabular viewing area for the 
display of a grid. A viewer is analogous to a text 
window, which is used to display a buffer. 

• A grid marker, which marks a point on a grid. A 
grid marker is analogous to a text marker, which 
marks a point on a buffer. 

• A grid range, which marks a rectangular area of 
a grid. A grid range is analogous to a text range, 
which marks the beginning and end of a 
sequence of characters in a text buffer. 

The creation of the view data type required an 
additional mechanism to display tabular data. The 
existing VAXTPU display mechanism could display 
individual characters on a terminal output device. 
To display tabular data, the table widget was devel
oped. The table widget is basically a display for 
tabular data that handles cell storage, alignment, 
borders, rendition, etc. It can only store those cells 
that are currently visible. Therefore, cell data must 
be provided for the widget when the table is scrolled 
or increased in size. The screen updater controls 

67 



Compound Document Architecture 

the table widget. A minimal update algorithm 
maintains a list of cells that change values as the 
internal spreadsheet engine computes. When no 
further calculations are necessary and there are no 
user events or requests to process, the screen 
updater is run. VAXTPU can invoke screen updaters 
that have been specified in any of the registered 
extension table descriptors. When Cale's screen 
updater is called, any cell that is on the modified 
list and visible is retrieved from the grid, formatted , 
and sent to the table widget for display. 

A set of built-in procedures that permitted the 
language system to access the actual spreadsheet 
functionality were then created. The base VAXTPU 
system provides built-in procedures for text 
manipulation, such as moving text, copying text, 
text insertion and deletion, and window control. 
The Cale built-in procedures operate on the newly 
created data types and provide analogous function
ality to the VAXTPU built-in procedures for cell 
level manipulation, such as, moving cells, copying 
cells, entering and clearing data from cells, and 
view control. 

The Cale built-in procedures are grouped into 
several different categories. These categories include 
screen layout, cursor movement, editing position 
movement, text and data manipulation, file pro
cessing, spreadsheet calculation, pattern matching, 
editing context status, defining keys, multiple pro
cessing, program execution, DECwindows process
ing, DECdecision Builder recording and playback, 
and AIL processing. 

Each built-in procedure and variable is described 
in the DECdecision Cale Macro Guide and the 
VAX Text Processing Utility Reference Manual. 9• 1° 

With all these components in place, one can 
think of Cale as an erector set of spreadsheet parts. 
The Cale language uses the spreadsheet parts as the 
building blocks to create a worksheet user inter
face. The flexible combination and use of the built· 
in procedures, even at run-time, make the Cale 
component a unique spreadsheet application. 

The Cale user interface was developed by both 
layering upon EVE and by utilizing the newly cre
ated spreadsheet-specific data types, keywords, 
and built-in procedures. In parallel to our design 
project, the VAXTPU group was working to add 
DECwindows support to the base VAXTPU system. 
The DECwindows VAXTPU project gave the newly 
created Cale user interface access to a subset of the 
DECwindows functionality . This access included 
creating and managing widgets and widget call
backs, and access to the ORM (Digital Resource 

68 

Manager) database. This support in the base 
VAXTPU system significantly reduced the time and 
effort necessary on our part to create a robust Cale 
user interface. The new user interface, called ESP 
or extensible spreadsheet package, is completely 
customizable and extensible. Few DECwindows 
applications possess the customization features 
available in Cale. 

The majority of ESP is stored in the DECdecision 
product on a permanent basis in a VAXTPU section 
file. Widget definitions and intemationalizable text 
strings are stored in a UIL/UID file. ESP can be 
changed through the textual processing portion of 
the user interface or EVE . Users can either create 
new or modify existing macros and procedures, 
key and mouse button definitions, and widget defi
nitions. These changes are made known to the 
system by compiling the language statements, a 
process known as extending. Once in a compiled 
form, the VAXTPU interpreter can easily process 
the new or altered functionality. If any run-time 
alteration is made to ESP, the altered user interface 
can be saved to a new section file. If a different 
section file is specified when the Cale component is 
invoked, a different user interface appears. By using 
section files, users can fine-tune their own spread
sheet operating environment, in the same way text 
editors can be fine-tuned. This flexibility has 
proven highly successful and desirable in both EVE 
andEDT. 11 

Figure 3 illustrates the resulting design of the 
combinationofVAXTPU, EVE, Cale, and ESP. 

ESP INTERFACE 

EVE INTERFACE 

TPU BASE SYSTEM. TPU SCREEN 
UPDATER, DECterm WIDGETS 

CALC EXTENSION, BUILT-INS, & 
GRID SUBSYSTEM; CALC SCREEN 
UPDATER; TABLE WIDGETS 

Figure 3 Picture of Resulting 
VAXTPUIEVE!Calc!ESP Design 

Vol. 2 No. 1, Winter 1990 Digital TecbnlcalJournal 



The Design and Development of the DECdecision Product 

DECdecision Access Design 
Access provides DECdecision's database manage
ment capabilities. Data tables may be either private 
to a particular user or shared throughout a depart
ment or a corporation. Access presents all data in a 
tabular format . A row in the table corresponds to a 
record in the database, a column corresponds to a 
field . Access supports several different database 
formats: Rdb/VMS relational database, IDMS/R and 
082 databases, RMS files, and VAX DBMS CODASYL
compliant databases. Access uses the VAX to IBM 
data access connection and VAX DATATRIEVE 
domains to support some of these databases. 
Regardless of the database format, Access presents 
data in the same tabular form and users interact 
with the database through a single user interface. 
DECdecision Access manages the details of map
ping user requests or queries into each individual 
database's proper language. 

Access uses a collection approach to handling 
data. All queries and modifications operate on the 
current collection. Users can express complicated 
queries in steps, which eliminates the need to learn 
a cumbersome data manipulation language (DML ). 

Internally, Access is divided into three subsystems: 
user interface, collection manager, and query emu
lator. Figure 4 shows their interrelationship. 

The Access user interface subsystem handles all 
screen and user interaction. This interaction 
includes gathering query or other command infor
mation from the user and displaying a formatted 
representation of the current collection. The user 
interface also processes DECwindows events such 
as exposure, selection, or QuickCopy data requests. 
The user interface component has no direct knowl
edge of the database underlying the Access system. 
Database manipulation operations, such as queries, 
record modification, or column creation opera
tions are handled by the user interface generically. 
Generic requests are sent to the collection man
ager, which either performs the operation directly 
or translates the request into operations that the 
underlying database understands. 

The collection manager subsystem maintains 
knowledge about the currently active database 
connections, as well as the functions supported by 
each database system. Generic requests received 
from the user interface are translated into the 
specific syntax used by a particular database. The 
collection manager can receive a request for an 
operation that is not supported by the database. In 
this case, the collection manager will attempt to 
emulate the operation to provide the requested 

Dtgttal Tecbntcal]ournal Vol. 2 No. J, Winter I<)<}() 

Rdb 

USER 
INTERFACE 

QUERY 
EMULATOR 

OTA ••• OTHER DATABASES 

ACCESS 
SUBSYSTEMS 

} 

SPECIFIC 
DATABASES 

Figure 4 Access Subsystems 

information to the end user. Database operations, 
such as table joins, are emulated by the collection 
manager itself. Query evaluation and aggregation, 
such as computed columns, are emulated by the 
query emulator. 

For example, for a database system that does not 
support queries based on partial string matches 
(e.g., find states which start with N), the query 
emulator will emulate the operation itself. The 
query emulator also performs operations on tem
porary columns, which are not actually stored in 
the database. Temporary columns may be created 
as the result of a table join or an aggregation com
mand (such as TOTAL). Table join operations are 
discussed in more detail below. 

The collection manager maintains a list of unique 
keys, one for each record in the current collection. 
A key is returned by the database after a query, and 
may be subsequently used to directly access the 
record. The collection manager maintains a cache 
of records from the current collection in memory 
to minimize database access requests. It does, how
ever, limit the amount of cached data stored to 
avoid consuming large amounts of memory. 

The collection manager also maintains a list of 
the queries used to form the current collection. As 
subsequent queries are requested, the collection 
manager attempts to combine the queries to form a 
single new query. The single query is then sent to 
the database. For example, the initial query is "Find 
employees where salary >$40,000." The database 
returns a sequence of records matching the query. 
These records become the current collection. The 
next query is "Find employees where age <35." 
The collection manager combines this query with 
the previous query to form the new query, "Find 
employees where salary >S40,000 AND age <35." 

As noted above, the collection manager emulates 
table joins (e.g., across different database systems). 



Compound Document Architecture 

The current collection can be joined over common 
columns with another database relation, which 
results in a new collection that contains columns 
from each relation. For example, the current col
lection could contain employee salary data 
indexed by employee identification. A second table 
could contain employee benefit information, also 
indexed by employee identification. The collection 
manager joins the benefits table with the salary 
table by using the common field, employee identi
fication. The result is a single table that displays 
both salary and benefit information. While the user 
interface believes it is displaying a single data table, 
the join is, in fact, being emulated by the collection 
manager. 

Builder Integration 
In order to accomplish a task, a user typically invokes 
the DECdecision components, incorporates data 
from one component to another, and possibly pro
cesses it further in another. 

Builder is a flow control facility that enables users 
to record operations from the DECdecision compo
nents, including their interactions. These recordings 
are called "blueprints" and can be played back to 
automate a desired task. 

Builder uses a tape recorder paradigm as a model 
for describing component interaction. The user turns 
on Builder to start a task, and components are 
transparently "recorded" as they are used. As com
ponents are recorded, the Builder diagram is updated 
to reflect the task. 

Boxes within the diagram represent component 
instances, and arrows, or data links, represent the 
interaction between applications. 

Other Builder features include a debug mode 
(e.g., single stepping through playback), and a splice 
mode, which combines record and playback capa
bilities for modifying a blueprint. 

How Builder Works 
The Builder component is divided into several 
pieces, including the user interface, a session man
ager, and a run-time library component interface. 

The session manager is a separate code layer that 
allows the user interface to control a session and 
the components participating within that session. 
This control includes the ability to start, stop, and 
pause a session. 

When a component starts, it registers itself with 
Builder. This registration enables Builder to deter
mine, at any point, which components understand 

70 

Builder. If a record or playback session is active, the 
component may be instructed to join the session. If 
a session is not active, this registry leaves enough 
information for Builder to contact the component 
if a session is started. 

While a session is active, Builder communicates 
with components and instructs and coordinates 
their activities. A component may be instructed to 
process commands directly from the user, from 
Builder, or both. A component calls Builder when 
there is an operation to be recorded. Builder con
tacts the component to play back an operation. 

Since Builder and the other DECdecision compo
nents are in separate processes, Builder does not 
directly call components. Actually, most of the record 
and playback logic is distributed between the 
Builder process and the Builder run-time library. 
Components link with the Builder run-time library, 
which does the actual callbacks to the component. 
The two Builder interfaces conduct a communica
tion dialog, when necessary. 

For additional information, the Interapplication 
Access and Integration paper in this issue explores 
the design, architecture, and communication of 
Builder in more detail. 

Record Mode 
A DECdecision component joins the session when it 
is notified that a record mode session is active. As 
part of the join session process, the component 
tells Builder its name, invocation string (i.e., how 
to run the component), and the native language 
it understands (e.g. , French). These component 
attributes are saved with the blueprint, and are 
used to identify the component and activate it dur
ing playback. 

When a component joins a record session, 
Builder draws a box within the its diagram region 
to represent the component. This region is high
lighted to show that it is active. Builder also allows 
the user to incorporate a component into a record 
session, even if the session was started after the 
component started. This late session entry is called 
post start-up record mode. 

As the component is used, it translates the opera
tions into command strings which are passed to 
Builder for recording. Builder attaches sequence 
numbers to the command strings to order these 
operations not just within the given component 
but across components. 

Builder never interprets a command string 
because the syntax of commands is private to a 

Vol. 2 No. I, Winter 1990 Digital TecbnlcalJournal 



The Design and Development of the DECdecision Product 

component. However, Builder needs the informa
tion that certain commands have occurred. The 
component flags these commands to Builder. 
Examples of these command types are: 

• Open and close(e.g., file open/close) 

• Cut-and-paste (i.e., clipboard and QuickCopy) 

• Exit(e.g., file quit/exit) 

Cut-and-paste commands are flagged to enable 
Builder to know which components are exchanging 
information. Builder needs this information to draw 
data link arrows within its diagram region. Informa
tion about the other commands is used primarily 
for user feedback, when Builder displays commands 
through its command browser and editor. 

When a component is finished, it notifies Builder 
and exits the session. After doing some additional 
bookkeeping, Builder removes the highlight for 
the component from the appropriate box within 
Builder's diagram region. The recording process 
continues until the user stops the record session. At 
this point, Builder merges all operations into a single 
master blueprint file. 

Playback Mode 
During playback, Builder invokes applications with 
instructions to execute operations in the same order 
in which they were recorded. 

After an application is started and registered, the 
Builder registry code determines what session to 
join and what set of commands Builder expects the 
component to execute. The component joins the 
playback session and waits for further instructions. 
At this point, Builder highlights the component 
box associated with the component to indicate that 
it is active. 

Part of the join session procedure includes an 
execution registry callback. Builder calls this rou
tine when there is a command for the component 
to execute. The Builder run-time library, which is 
linked with each component, contains playback 
logic, which determines when a command is exe
cutable. Since a blueprint may include operations 
recorded across several simultaneously active com
ponents, the playback logic synchronizes command 
execution across the components. 

When a component's command can be executed, 
the playback logic calls back to the component to 
execute the command. The component parses and 
processes the command using the syntax that was 
recorded. 

Digital TecbnlcalJournal Vol. 2 No. 1, Winter 1990 

If an error is detected during playback, the 
component notifies Builder and the user. Builder 
immediately pauses the session, highlights the com
ponent box of concern, and notifies the user. The 
user is instructed to resolve the problem. When the 
problem is resolved, the session's playback resumes. 

The playback process continues until a quit 
operation is processed by the component, in which 
case, it exits the session. Builder removes the high
light from the component box. If this is the final 
component, the playback session is stopped. 

During playback, Builder supplies components 
with a private global select type for use in 
QuickCopy operations. This guarantees that these 
QuickCopy operations will not conflict with 
either normal QuickCopy operations or those 
QuickCopy operations in process in other play
back sessions. Builder also reuses these atoms 
during subsequent playback sessions, to reduce the 
resource demand on the DECwindows server. 

DECdecision Control Component 
The DECdecision Control component provides a sin
gle, central point from which all the DECdecision 
components can be invoked, and a central point 
from which common customization features can 
be controlled. The command line syntax used to 
invoke the Control component itself is inherited by 
any of the components invoked by this compo
nent. Using the same line syntax maintains a level 
of consistency at the command line interpreter 
level across all components. 

In the DECdecision product each component 
invoked by the Control component can place itself 
into a re-usable state after the component session 
terminates. Once a component is in this re-usable 
state, it can be restarted much faster and with less 
use of system resources than the first time the 
component was invoked. The Control component 
manages the components in their active and re-usable 
states. This management is achieved through a combi
nation of AIL for component invocation and control, 
and an internal list of components and their cur
rent state. The Control component does not place 
itself into a re-usable state since it always takes on 
the role of the invoker (i.e., parent component) 
instead of the invokee (i.e., child component). 

For a component to enter this re-usable state, its 
normal image exit sequence has to be modified. 
First, the component releases whatever resources 
that the current session has acquired (e.g., widgets, 
windows, memory blocks, dynamic strings) and 

71 



Compound Document Architecture 

hides its user interface to give the appearance of a 
normal exit. Second, the component purges its 
working set back to the working set quota. Purging 
releases stale data and code pages from the working 
set. (Note: Neither of these steps is required for 
component re-usability. The steps minimize system 
resources demand, which allows these resources to 
be available to other processes on the system.) 

The component next communicates with the 
invoker (parent image or Control component) that 
the child session is complete. Accompanying the 
message is an implied question of whether the child 
should terminate or enter the re-usable state. The 
component then establishes a time-out period and 
waits for the termination or restart message from 
the parent. If no message is received, the component 
defaults to a re-usable state. The time-out period 
ensures that the component does not stay in the 
reusable state for an indeterminate period of time. 
When either the termination message is received or 
the time-out is triggered, the component performs 
the remainder of its image exit sequence. If a restart 
message is received, the component reinitializes 
and becomes active. 

The benefit of re-usability is quicker start-up time 
on subsequent uses of the component. The second 
initialization of a component does not require the 
entire initialization sequence to be processed. Many 
operations performed during start-up need only be 
done once. For example, the overhead of image 
activation is eliminated. Similarly, the connection 
from the client to the server and the associated 
overhead ofDECwindows initialization, such as the 
loading of the resource database, is only performed 
once. Each component also saves component
specific initialization data. In Cale, loading the 
section file is a once-only operation. In Access, 
attaching to the database and opening of the folder 
of tables is performed only once. 

Summary 
The DECdecision team met its design goal to deliver 
an end-user decision support application based 
upon DECwindows and the CDA architecture. It 
met its schedule goal of release near the time of the 
DECwindows release. It met both these goals by 
extending existing Digital products where possible 
and by developing new applications and utilities 
where necessary. As such, the DECdecision product 
provides a level of sophistication and seamless data 
integration not found in many products. The design 
and development of the DEC decision product serve 

72 

as models for future applications development 
using the features of DECwindows and the 
Compound Document Architecture. 

Acknowledgments 
The authors wish to acknowledge Peter Savage and 
Peter Bower for their technical contributions. 
They would also like to acknowledge and thank 
each DECdecision developer for the hard work and 
long hours spent on this project. 

References 

1. 8. Cheung and N. Jacobson "lnterapplication 
Access and Integration," Digital Technical 
Journal, vol. 2, no. 1 (Winter 1990, this issue): 
49-59. 

2. R. Travis, "CDA Overview," Digital Technical 
journal, vol. 2, no. 1 (Winter 1990, this issue): 
8-15. 

3. CD4 Reference Manual, vols. 1 and 2 (Maynard: 
Digital Equipment Corporation, Order 
Nos. AA-PABUA-TEandAA-PABVA-TE, 1989). 

4. XU/ Style Guide (Maynard: Digital Equipment 
Corporation, Order No. AA-MG20A-TE, Decem
ber, 1988). 

5. S. Cohen and W. E. Morgan, "The Relationship 
between the DECwrite Editor and the Digital 
Document Interchange Format," Digital 
Technica/Journal, vol. 2, no. 1 (Winter 1990, 
this issue): 73-82. 

6. C. Young and N.Jacobson, "The Digital Table 
Interchange Format," Digital Technical 
Journal, vol. 2, no. 1 (Winter 1990, this issue): 
28-37. 

7. W. Laurune and R. Travis, "The Digital 
Document Interchange Format," Digital 
Technica/Journal, vol. 2, no. 1 (Winter 1990, 
this issue): 16-27. 

8 . M. Jack and R. Gumbel, "The CDA Toolkit," 
Digital Technica/Journal, vol. 2, no. 1 (Winter 
1990, this issue): 38-48. 

9. DECdecision Cale Macro Guide (Maynard: 
Digital Equipment Corporation, Order No.: 
AA-ML44A-TE,July, 1989). 

10. VAX Text Processing Utility Manual (Maynard: 
Digital Equipment Corporation, Order No.: 
AA-LA14B-TE,June, 1989). 

11. VAX EDT Reference Manual (Maynard: 
Digital Equipment Corporation, Order No.: 
AA-LA16A-TE, April, 1988). 

Vol. 2 No. 1, Winter 1990 Dtgttal Tecbnicaljournal 



Seth S. Cohen I 
Wm. Eugene Morgan 

The Relationship between the 
DECwrite Editor and the Digital 
Document Interchange Format 

The DECwrite editor is Digital's new DECwindows-based compound document editor. 
It is also the first compound document editor to implement the CD4 architecture. The 
DECwrite editor supports the creation, editing, formatting, and printing of com
pound documents across multiple computing environments. DECwrite uses the DDIF 
document interchange format to support the editing of both CD4 documents and 
those based on other formats, including SGML and GKS. One of the design issues faced 
by the DECwrite editor was how to fully conform to the DDIF format's interchange 
goals without compromising formatting speed and ease of editing. The DECwrite 
editor overcomes these conflicting needs by isolating their side effects to the DECwrite 
editor's read and write code. 

Businesses are learning that documents are rarely 
created and controlled by one author or even one 
group. Information is contributed, shared, accessed, 
and revised by multiple users. Organizations must 
be able to create documents that combine informa
tion, in forms such as text, graphics, images, and 
spreadsheets. These documents must be kept up
to-date with the most current information until the 
moment of distribution. 

Together, the CDA architecture and DECwrite 
editor meet these needs. The CDA architecture is an 
open, integrated architecture that facilitates creat
ing, publishing, storing, and retrieving compound 
documents throughout a networked, heterogeneous 
computing environment. The DECwrite editor is a 
compound document editor that allows businesses 
to create and edit documents in this environment. 

In designing a compound document editor to 
support the CDA architecture, a choice had to be 
made. We could work with an independent soft
ware vendor and have it adapt an existing product 
to support CDA documents, or we could develop a 
new product for this purpose. 

The decision to develop a new compound docu
ment editor was based on several factors. The CDA 
architecture and the DECwindows architecture are 
Digital-developed architectures. In many ways, it was 
easier to develop a new product in conjunction with 
developing these architectures than it would have 
been to coordinate development with an independent 

Digital TecbnlcalJounial Vol. 2 No. 1, Winter 1990 

software vendor. Second, such an editing system 
could include more features that directly sup
ported the CDA architecture. Third, since the CDA 
architecture is an open architecture, an editing 
system developed for that architecture can be more 
easily extended as the architecture is extended. 

The DECwrite editor combines "what you see is 
what you get," or WYSIWYG, text processing with 
graphics creation. The DECwrite editor runs under 
the DECwindows graphic user interface, on work
stations running either the VMS or ULTRIX operating 
system. The DECwrite editor supports keyboard 
interfaces for the WPS-PLUS, EDT, EVE, and EMACS 
editors, as well as its own keyboard interface. 

In addition, through the LiveLink feature, the 
DECwrite editor permits users to incorporate busi
ness graphics and data from other supported appli
cations directly into documents. The LiveLink 
connection ensures that documents contain the most 
timely and accurate information. It also allows the 
user to update the data while they are editing the 
document. 

This paper focuses on the relationship between 
the DECwrite editor and the DDIF document inter
change format. 1 DECwrite uses the DDIF format as its 
file format. The DDIF format is suitable for several 
reasons. First, it is interchangeable. For example, 
the same DDIF file can be read on a VMS system, 
VAX ULTRIX system, or RISC ULTRIX system. Second, 
the DDIF format provides a way to represent all the 

73 



Compound Document Architecture 

features that the DECwrite editor offers. The DDIF 
format can represent all of the document's raw 
content, as well as all the descriptive information 
needed to tell a formatter how to visually present 
the document. For example, the DDIF format stores 
with each paragraph whether it should be pre
sented centered, left-aligned, right-aligned, or jus
tified. Because the DDIF format is extensible, we 
can ensure that it supports new DECwrite features 
in the future. Finally, the CDA converter architec
ture supports the translation of documents to and 
from the DDIF format. Thus, the DECwrite editor 
can work with any format that can be converted to 
and from the DDIF format. 

When a user running the DECwrite editor wants 
to edit a document, the open function is used. This 
function causes DECwrite's read code to read the 
DDIF file containing the document into DECwrite's 
address space. We call the DDIF file our on-disk 
document format. We call the result after reading it 
our in-memory document format. The job of the 
read code is to convert the interchangeable on-disk 
representation of a document into the editable in
memory representation of the document. 

Conversely, the save function is used when a user 
is finished editing a document. This function causes 
DECwrite's write code to convert the editable in
memory representation back to the DDIF represen
tation and write the result to disk. Therefore, using 
the read and write codes means the bulk of the 
DECwrite editor does not need any knowledge of 
the DDIF format. (See Figure 1.) 

Because of their difference in goals, interchange
ability versus editability, the DDIF format and the 
in-memory format differ in some ways. Data on disk 
only needs to describe what is in the document, 
whereas data in memory also needs to tell an appli
cation bow to process what is in the document. An on 
disk format is optimized for interchange. It repre
sents data in a system-independent fashion and has 
an explicit self-describing structure. An in-memory 
format is optimized for editability to provide good 
performance and easy data manipulation. For 
example, system-dependent data is preferred in 
memory because less system time is required to 
access system-dependent data. These differences 
account for the general activities required to con
vert the DDIF format into the in-memory format, 
and vice versa. 

The next section of the paper summarizes the 
general activities required during conversion. The 
remainder of the paper describes the details of 

74 

OLD 
DDIF 
FILE 

OPEN 

READ CODE 

BALANCE OF 
DECwrite CODE 

WRITE CODE 

SAVE 

NEW 
DDIF 
FI LE 

IN-MEMORY 
DOCUMENT 

DECwrite 
EDITOR 

Figure I DECwrite Document Processing 

converting the major entities in a document: text, 
elements, objects, layout, LiveLink connections, 
and styles. 

General Conversion.Activities 
After a document is read into memory, it contains 
most of the same data items as it did on disk. For 
example, a graphic object has the same attributes 
on disk and in memory, such as fill pattern, outline 
width, and color. However, a simple mechanical 
conversion still has to occur as all data items are read 
or written, because the data on disk is in tag-length
value (TLV) octets, whereas the data in memory is a 
collection of binary structures that are intercon
nected by address pointers. The DDIF format uses 
the TL V coding format to permit binary data to be 
represented in a system-independent form. The TLV 
format also allows upwardly compatible exten
sions to be made to the DDIF format. The TL v format 
is not suitable in-memory because it is not compact 
and it is slower to access. 

Some of the other general conversion activities 
also relate to performance and easy manipulation 
of the data. 

• Changing how structure is represented. In the 
DDIF format, structure is explicit. For example, 

Vol. 2 No. 1, Winter 1990 Digital Tecbntc:al]ournal 



The Relationship between the DECwrite Editor and the Digital Document Interchange Fonnat 

a subsection segment is physically embedded 
with the segment of its section. In memory, the 
DECwrite editor often represents structure as an 
attribute value. This representation simplifies 
the code that allows users to edit structure. For 
example, if a user wants to change part of a list 
into a sublist, the use of an attribute value makes 
this easier to manage. 

• Changing how attributes are organized. In the 
DDIF format, an embedded segment may inherit 
some of its attributes from the outer segment 
when an attribute of the outer segment is not 
present on the inner segment. For example, if a 
bold piece of text contains some bold italic text, 
the DECwrite editor represents this in the DDIF 
format as bold on the outer segment and italic on 
the inner segment. However, if there were plain 
italic text embedded in the bold text, the inner 
segment would have an explicit no-bold attribute 
to override the setting on the outer segment. 

The DECwrite write code uses inheritance as much 
as possible to reduce the size of the DDIF files it 
creates. For in-memory data, all attributes are 
always explicitly present with each piece of con
tent. This simplifies the data structures needed 
to represent the attributes and data structures 
needed to represent the attributes and reduces 
the system time required to access them. 

• Changing how logical connections are repre
sented. In memory, the relationships among 
objects are represented almost exclusively by 
address pointers. This representation is the most 
efficient mechanism for navigating document 
data structures. The alternatives to using address 
pointers to represent logical structures are physical 
adjacency of objects, which requires much shift
ing of objects during editing; or tagging each 
object with a unique label, which requires signi
ficant overhead to maintain the currency of labels 
and references and perform lookups. On the other 
hand, these addresses cannot be stored on disk, 
because address pointers are system-dependent. 
Therefore, in the DDIF format, relationships 
between objects are maintained in one of two 
ways. Relationships can be either structural (i.e., 
nesting of elements or physical adjacency) or 
symbolic (i.e., referencing an object by name). 

• Creating symbol tables for user-specified names. 
The user can create various named entities in the 
DECwrite editor, such as the document's styles 
and reference identifications. In memory, the 

Dig ita l Tecbnicaljournal Vol. 2 No. I , Win ter 1990 

DECwrite editor maintains symbol tables, repre
sented as binary trees, in order to quickly find 
entities from their names. Because the on-disk 
document is used for storage only, the need for 
fast access to named entities does not exist. Thus, 
these symbol tables are not written from the 
document when is returned to the on-disk state. 

The other general conversion activities required 
were: 

• Binding to external resources 

• Processing non-DECwrite constructs 

• Reading old documents 

• Preserving the current formatting of the 
document 

Binding is the process of accessing an actual 
entity. For example, to bind to a style in a style file, 
the DECwrite editor must read the styles from the 
document's style file and then access the desired 
style from the style symbol table so created. When a 
document is read into memory, it is necessary to bind 
to all referenced entities so that the document can 
be displayed and revised. For example, on disk, it is 
of no immediate consequent if a paragraph refers to a 
style that does not exist. In memory, however, the 
absence of the style becomes critical. It is the style's 
attributes that allow the DEC write editor to display 
the document with the proper formatting. When 
the DECwrite editor cannot bind to the style, it must 
use default formatting for the paragraph in question. 

Processing the DDIF constructs is generally not a 
problem for the DECwrite editor. However, there 
are three cases in which the editor does not fully 
understand a construct in a DDIF file. 

The first is unsupported constructs, which are DDIF 
constructs that have no analog in the DECwrite edi
tor, e .g., bezier curves or markers as line attributes. 
If it can, the DECwrite editor uses a fallback repre
sentation for the construct. For example, DEC write 
version 1 does not support color processing. When 
the DECwrite editor reads a color, it converts the 
color to the gray-scale fill pattern that the color would 
have on a black and white TV screen. If it cannot 
generate a fallback for a construct, the data is lost. 

The second is private data, which is content that 
is meaningful to a single application ( or a number of 
cooperating applications). For example, on disk, 
an application might store a where-it-left-off value. 
The next time the application is started, it can re
establish the left-off state for the user. In DECwrite 
version 1, private data is lost. The third case is a 

75 



Compound Document Architecture 

supported construct in an unexpected context, 
e.g., text attributes on an object. If the construct 
makes no sense at all, as with text attributes on an 
object, the editor discards the data. Otherwise, the 
DECwrite editor creates a suitable context. For 
example, if a polyline object is encountered in the 
middle of a text segment, the DECwrite editor 
creates and inserts a default floating frame to hold 
the object. 

Although the DDIF format and DECwrite editor 
are enhanced from time-to-time, the DEC write editor 
must always be able to read old documents. To do 
this, the system writes out a version number in the 
DDIF file. The read code checks the version number 
of the file and, when necessary, does special pro
cessing to correctly read obsolete constructs. 

The DECwrite editor saves the current formatting 
of the document for two reasons : 

• Performance. When a document is opened, the 
DEC write editor checks if it created the document. 
If the editor did, the incoming data is already 
properly formatted. Since formatting an entire 
document takes much system time, this check 
speeds the process of opening a document. 

• Maximizing interchangeability. One of the CDA 
architecture's goals is to be able to print and display 
revisable documents from different formatting 
products. Because it is not technically feasible 
for a viewer to replicate the formatting decisions 
of an arbitrary formatter, those decisions must 
be made available to the viewer. Thus, as a CDA 
architecture-compliant formatter, the DECwrite 
editor must write out its formatting decisions 
when it creates a DDIF file. These formatting 
decisions are captured in the DDIF file as soft line 
breaks, galley breaks, and word hyphenations. 

Processing Text 
The DECwrite editor reads and writes text a line at a 
time. If the line just contains text, there are only 
two points to note. First, the read code allocates 
extra memory per line to efficiently process docu
ment changes. Second, the read code computes the 
vertical position of a line of text because this infor
mation is not stored in the DDIF file . 

When a line of text contains control information, 
additional conversion activities must be performed. 
A line of text may contain the following types of 
control information: 

• Text attributes 
• Font bindings 
• Language bindings 

76 

• Character sets 
• Embedded markers 

Text Attributes 
Text attributes specify the appearance of text, such 
as whether it is bold, italic, or underlined. 

When the DEC write editor writes a document, lines 
of text are separated into pieces that share common 
text attributes. One DDIF segment is generated for 
each such piece. Also the DECwrite write code uses 
inheritance to minimize the number of attribute 
changes and the number of segments that need to 
be written. 

As a document is read, all inherited attributes are 
made explicit. The end result is that each piece of text 
on a line is stored with all its attributes. Forcing fully 
explicit attributes serves two purposes. It facili
tates the display of the text pieces, because their 
font and rendering attributes are self-contained. 
Also, the attributes of a text piece can be main
tained during a cut -and-paste operation. 

Font Bindings 
The first and simpler aspect of font binding is the 
correspondence table that the editor must place at 
the beginning of a DDIF file. This table allows indi
vidual font references to be compactly represented 
as indices into the table. It also declares what fonts 
are used in a document. 

When writing a document, the DECwrite editor 
builds the table and generates reference indices from 
the font names in that table. When reading a docu
ment, the process is reversed. The DECwrite editor 
derives a reference's font family by accessing a font 
name from the table index. The read code normally 
requires only the font family, because the write 
code saves text attributes explicitly rather than as 
part of the font name. This approach is required to 
keep attributes independent of one another, and is 
discussed further in the Processing Styles section. 

The second and more complex aspect of font 
binding relates to reading non-DECwrite documents. 
The complexity arises as a result of the use of wild
card characters in a font name. A font name consists of 
several fields, and a field may be a wildcard charac
ter. Wildcards exist because some fields are device
dependent. Since it would be inappropriate to store 
device-dependent data in a DDIF file, applications 
that create DDIF files must place the wild card char
acter in each device-dependent field . Unfortunately, 
different products do not use wildcards in the same 
fields. Thus, the DECwrite editor must match a 
font name against its list of known fonts by doing 

Vol. 2 No. I, Winter 1990 Digital Tecbnlcal]ournal 



The Relationship between the DECwrite Editor and the Digital Document Interchange Fonnat 

field-by-field wildcard matching. If the specified 
font cannot be found, the editor uses its default font. 

A font is an external resource. To reduce startup 
time, the DECwrite editor does not try to locate the 
actual font until the page is displayed. For example, 
if a document references 30 fonts, but its first page 
only references 7 of them, this approach reduces 
start-up time by 23 font bindings. 

.language Bindings 
As with font bindings, a correspondence table is used 
to refer to languages. Since the DDIF format and the 
DECwrite editor allow language to be changed at the 
word level, the language table also aids in achieving 
compact DDIF files. Matching language names in 
the table is simple because the names that may 
appear in the table are governed by ISO standards 
639and 3116. 

Character Sets 
DECwrite version I does not support arbitrary 
character sets. The primary character set it supports 
is ISO Latin 1. Users may also enter certain special 
characters that are non-ISO Latin I characters. When 
the user enters such characters into a document, 
the DECwrite write code enters the proper character 
set change into the text attributes for the segment. 

When non-ISO Latin I text is read into the 
DECwrite editor, the editor checks the character 
set and character codes to determine if any of them 
are special characters known to the editor. If the 
characters are known, special memory codes exist 
for them in the system, and the character codes are 
mapped to those codes. If the character set and 
codes are not known, the DECwrite editor stores 
the codes as if they were from ISO Latin I and pre
serves their character set identification. Even 
though the text will be imaged incorrectly, its char
acter set is preserved when the text is written back 
to the DDIF format. 

Embedded Markers 
In-memory text can contain markers for floating 
frames, cross-references, index items, and running 
values. A marker is treated in a similar manner to text. 
The marker is stored in a line of text along with nor
mal text. Markers are used in memory because it is 
unwieldly to manipulate in-line representations of 
entire entities. 

The types of markers and their special process
ing needs are described below. 

• Floating frame. This marker points to a frame 
object and serves as the anchor point for the frame 

Digital Tecbntcal]ournal Vol. 2 No. 1, Winter 1990 

within the flow. The frame object is kept in a 
chain of floating frames, and this chain is associ
ated with the text block in which the frame 
resides. When the DECwrite editor writes the 
document, the frame object is written as a DDIF 
segment in the text stream where its in-memory 
marker is located. When the DECwrite editor 
reads the document, the frame is created and 
chained to the current text block. The marker to 
maintain the frame's position is created and 
inserted in the text stream. 

• Running value. On disk, a running value is rep
resented as a segment that contains a reference 
to a variable or counter. The definition of the 
variable or counter resides with the referenced 
entity. For example, each segment that repre
sents a section will have variables declared for 
the title's name, number, and page number. Also 
the current value of the entity is stored as the 
content of the reference's segment. A running 
value contains a variable reference as well as a 
current value to facilitate interchange. The 
variable tells other applications what the cur
rent value represents, and therefore how to 
recompute the running value when needed. 

The in-memory marker contains a field that indi
cates the running value type, e.g. , current page 
number or current title name. Because the value 
of the entity depends on context, the value is 
always dynamically computed rather than 
pointed to by the marker. 

• Index item. The marker for an index item points 
to a specific entry in the symbol table for the 
entire index hierarchy. On disk, an index item is 
represented as a DDIF function link. The read 
code is responsible for incrementally rebuilding 
the symbol table (as each index function link is 
encountered) each time the document is read. 

• Cross-reference. The marker for a cross-refer
ence contains a reference type (e.g. , a title or 
footnote) and a pointer into a symbol table of 
reference identifications. On writing the DDIF 
document, the DECwrite editor stores the refer
ence as a DDIF variable reference to a named 
segment. The cross-reference's reference iden
tification is used as the segment identification 
of this named segment. On read, the DECwrite 
editor makes the appropriate symbol table entry 
when it encounters either the referenced object, 
which has a segment identification, or the refer
ence. When the other part of the reference is 

77 



Compound Document Architecture 

encountered, the symbol table connections are 
completed. More information about the handling 
of cross-references is provided in the Processing 
Elements section. 

• Footnote reference. The marker for a footnote 
reference is identical to a cross-reference marker. 
The DDIF representation for the reference is also 
the same, but the footnote itself immediately 
follows the first reference to it on a given page. 
The handling of footnotes is described in the 
Processing Elements section. 

Processing Elements 
The DECwrite editor supports a number of structural 
document elements. In memory, these elements 
are represented as a sequence of data structures, 
and pointers are used to maintain the relationships 
among the data structures. For example, a list is 
composed of a sequence of paragraphs, each of 
which, in turn, is composed of a sequence of lines 
of text. To capture this hierarchy, the list points 
to its first and last paragraphs, and each para
graph points to its first and last lines. Each data 
structure also has a back-pointer to its encompass
ing data structure. In this example, the paragraphs 
would have a back-pointer to the list. In the DDIF 
format, these elements are represented as seg
ments. Each segment has a segment tag that indi
cates the type of element it represents. The 
hierarchy of elements is captured by the nesting of 
the segments. 

When writing a document, the DECwrite editor 
checks each line as it writes the line to determine 
if the line is in a different DDIF element than the 
previous line. If it is, the segment for the previous 
element is ended and a new segment is started. 
Starting and ending of nested elements is handled 
by the DEC write editor in an analogous fashion. For 
example, if a paragraph is in a list, and the previous 
paragraph is either not in a list or in a different list 
(or other type of element), then a new segment 
must be started for that list. The previous segment 
is ended, if necessary. 

The element types supported in this fashion are 
paragraphs, section heads, lists, footnotes, tables 
of contents, and indices. The DECwrite editor also 
has a cross-reference element that supports cross
references to list items, section heads, and footnotes. 
These element types, and how the DECwrite editor 
represents them on disk and in memory are dis
cussed below. 

78 

Lists and Section Heads 
To the DDIF format, lists and sections are explicit 
hierarchies. A section contains subsections. A list 
contains list items which in tum contain paragraphs. 
Paragraphs are represented by nested segments. 
For example, a section containing a subsection would 
look like the following: 

<Start Section> 

Content if any 

< Start Section> 

Content if any 

<End Section> 

<End Section> 

For in-memory data, the hierarchy level for a list 
and section is encoded as an attribute on the para
graphs within the list and on the title within a section. 
Because of this difference between in-memory and 
on-disk data, the DECwrite editor must analyze the 
paragraph attributes it is writing and build the 
appropriate hierarchy. When a document is read, 
the reverse process occurs. The explicit hierarchy 
is converted back to attributes. 

Cross-references 
There are two sides to a cross-reference: the site of 
the reference and the construct being referenced. 
These two sides are connected by the reference 
identification, which is the symbol created by the 
user to uniquely identify this cross-reference. To 
process reference identifications efficiently, the 
DECwrite read code inserts each reference into a 
symbol table. 

The references and the construct can appear in 
any order in a document. It is also possible to have a 
construct that has no references, and vice versa. 

When the first reference identification appears, 
the editor makes the proper symbol table entry. 
The symbol table connections are completed when 
the other half of the cross-reference is read. 

The current value of the construct is stored in the 
symbol table entry. If the referenced construct 
appears first, the DECwrite read code sets the cur
rent value of the cross-reference from the current 
value of the construct. If a reference appears first, 
the same rule can be applied because the DECwrite 
write code always stores the current value of the 
reference at each reference site. However, there are 
some interesting subtleties related to this situa
tion when the referenced construct is in another 

Vol. 2 No. I, Winter 1990 Digital Tecbnicaljournal 



Tbe Rela.tionsbip between the DECwrite Editor and the Digital Document Interchange Format 

document. This is possible if both documents are 
part of a larger document. 

• If the larger document is not opened at the same 
time as the smaller document, the value stored 
at the reference site is the DEC write editor's only 
clue to the reference's current value. (Note: This 
point also applies to numbered section heads 
that are at the start of a linked-to document.) 

• If the larger document is opened at the same time 
as the smaller document, then the DECwrite editor 
sets the current value of the reference again 
when the construct is seen. The DECwrite editor 
does this because the reference site can be out-of
date if the construct's document was saved since 
the last time the larger document was saved. 

Footnotes 
Footnotes in the DECwrite editor always appear at 
the bottom of the page containing the footnote ref
erence. A footnote text block is placed on each such 
page to hold the footnotes. Footnotes and their 
contents are linked by the editor to this text block. 
The relationship between a footnote and its refer
ence is treated the same as other cross-references. 
A footnote has a symbolic identification that is used 
as the key in a symbol table. This connection 
ensures that the footnote moves with the reference 
in cut-and-paste operations, as well as from page
to-page during text editing operations. 

In the DDIF format, the footnote text blocks are 
written as part of the document layout. The foot
note is written in-line, immediately following the first 
reference to it. The connection between the foot
note and the in-memory text block is maintained 
by tagging the footnote segment and the text block 
with a stream tag that indicates that each of these 
holds footnote content. The stream tag also sepa
rates the footnote from the surrounding document 
content. This separation enables an application that 
cannot handle layout to still recognize and handle 
footnotes when it reads the document. 

On read, the DEC write editor collects and inserts 
the footnote content into the current page's foot
note text block. It then links the footnote to the 
reference that immediately preceded it. The seg
ment identification provides the linkage. If a foot
note does not have a segment identification, or if 
there is no reference to the segment, the DECwrite 
editor automatically creates a footnote reference. 
As long as a footnote in a DDIF file contains the 
proper stream tag, the DECwrite editor recognizes 
the footnote and creates all the requisite support
ing structures, including the reference. 

Digital TecbnlcalJournal Vol. 2 No. I, Winter 1990 

Tables of Conterzts and Indices 
Indices and table of contents are generated ele
ments. The user tells the DECwrite editor what data 
belongs in them and how they should look. The 
DECwrite editor then builds them by scanning the 
document. For a table of contents, it scans title 
elements. For an index, it scans index items. For 
example, for each title in a table of contents, the 
user can tell the DECwrite editor to generate one or 
more of the title's name, label, page number, or any 
combination of these three. 

The DECwrite editor builds a table of contents or 
an index out of paragraphs. Thus, reading and writ
ing a table of contents or index is similar to reading 
and writing regular paragraphs in a document with 
two exceptions: 

• On disk, the paragraphs are nested within a seg
ment that identifies the whole collection of 
paragraphs as a table of contents or index. In 
memory, the first and last paragraphs of an index 
are pointed to by an index or table of contents 
element. 

• The paragraph styles used by the DECwrite 
editor in a table of contents or index are not the 
standard user-created paragraph styles. There
fore, they cannot be stored with the standard 
styles. On disk, the nonstandard paragraph 
styles are nested within the segment of the table 
of contents or index. In memory, they are repre
sented as local attributes on each paragraph. 

The paragraphs the DECwrite editor places in a 
table of contents do not contain text. Rather than 
simply copying the data for building a table of 
contents entry, the DECwrite editor inserts cross
references to the title's name, the title's label, and 
the title's page number. These cross-references 
keep the table of contents entries up-to-date while 
the user is editing the document. 

Processing Objects 
The DECwrite editor supports various kinds of 
objects: geometric shapes (e.g., circles and lines), 
graphic text, layout elements (e.g., text block and 
frame), and Live Link data blocks. 

Objects participate in two kinds of connections, 
groups and frames. A user can create compound 
objects, which are called groups. A group is itself an 
object and may consist of any number of objects 
and nested groups. A user can create a coordinate 
space and clipping boundary, which is called a 
frame. A user can then put any number of objects 
within the frame. If the user moves the frame, all 

79 



Compound Document Architecture 

the objects move as well. The order in which objects 
in a frame are drawn is determined by their cre
ation order within the frame. 

Because an object can belong to both a frame and 
a group, nesting alone does not suffice for repre
senting the object on disk. Objects in a given frame 
are contained within the frame segment. The draw 
order is indicated by the order of the objects within 
the frame. All objects within a group have a special 
segment tag. This segment tag indicates that the object 
is in a group and in which group the object resides. 
The use of a segment tag eliminates the need to write 
any additional data for the group object, which acts as 
the parent for all the objects in a given group. How
ever, if an object group becomes part of another 
object group, a new segment tag must be written. 
This segment tag contains a group tag that indicates 
both the parent group object and the group to 
which the parent group object belongs. 

In memory, membership in both a frame and a 
group is easy to represent. First, the object is on the 
list owned by its frame. If the object is a member of 
a group, it is part of a similar list owned by the group 
object. Because a group is itself an object, the group 
will itself also be on the list owned by the frame. 

The DECwrite editor processes graphics attributes 
in much the same way as it processes text attributes, 
which are discussed in the Processing Text section. 
In memory, a complete description of the attributes 
for each object is saved. The DECwrite write process 
uses inheritance to minimize the size of segments 
containing graphics. 

Processing Layout 
Layout and content are stored separately in the 
DDIF format. The DDIF layout design consists of a 
series of pages that contains the graphic and textual 
elements which describe the appearance of each 
page. Content can later be placed into that layout, 
in much the some way concrete is poured into a 
form. Thus a document's content and layout can be 
changed independently of each other. 

Content is organized into flows. A flow is a logi
cal stream of text and floating frames. Therefore, 
pouring content actually consists of one pouring 
action per flow. 

In memory, the content is merged into the layout. 
This is what WYSIWYG means, enabling a user to 
see the content on the page where the user wants it 
to appear when the document is printed. 

Page layout on disk directly corresponds to page 
layout in memory. However in memory, the layout 
of a page in a two-sided document can change if an 

80 

earlier page is inserted or deleted. Therefore, in
memory representation of two-sided page styles 
must be such that it is easy to dynamically associate 
the proper side of the page style with each indi
vidual page. 

In the DECwrite editor, the layout elements into 
which flows are poured are called text blocks. Text 
can flow across pages because the user can connect 
text blocks together. Text blocks directly corre
spond to galleys in the DDIF format. 

When the DECwrite editor writes a document, it 
gives each text block a symbolic name. To connect 
one text block to another, the system symbolically 
declares the next text block as the successor for the 
previous text block. No successor is declared for a 
chain's final text block. To link a flow to a chain of 
text blocks, the name of the first text block is 
declared in the most outer segment of the flow. 

When the DECwrite editor reads a document, it 
checks to see if each text block processed is the 
target of any successor links. If the text block has a 
successor link, the system checks that a successor 
exists. If this check finds a successor match, the 
system immediately connects the two text blocks. 
If a text block and a successor cannot be matched, 
the system enters the text block's name or the name 
of its successor, and the text block's address in a 
table for future checks. As the DECwrite editor 
encounters each flow, it checks the table to locate 
the first text block of the flow. If the system cannot 
find the flow in the table, or if the flow does not ref
erence a text block, the DEC write read code creates 
a default text block and a default page. In either 
case, the read code places all the content of the 
flow in the chain of text blocks. (Note: There is one 
limitation of this algorithm. On disk, the galleys of a 
flow must precede the flow. If not, the document 
will not be read correctly.) 

Because connections are made as soon as both 
objects are in memory, the editor never needs to 
re-scan the table. The table deletes information as 
connections are made because text blocks do not 
have multiple predecessors or successors. There
fore, the table remains small and efficient. 

As lines of text are placed into a text block, the 
DECwrite read code calculates the vertical position 
of each line. The horizontal and vertical positions 
of the frame are calculated when a floating frame is 
anchored to a line. 

When writing a document, the DECwrite editor 
inserts a new galley directive after the last line in 
each text block. When the document is read, these 
directives ensure that lines of text return to the proper 
text blocks. 

Vol. 2 No. I, Winter 1990 Digital Tecbnlc:al]ounuu 



The Relationship between the DECwrite Editor and the Digital Document Intercha.nge Format 

Processing LiveLink Connections 
The DECwrite editor uses three kinds of LiveLink 
connections: 

• Link to picture. The LiveLinkfunctionreferences 
a data file that is imaged on the page, either a 
DDIF file or an encapsulated Postscript file. 

• Link to application. The LiveLink function refer
ences a data file and names an application. The 
application can be invoked to process the data 
and deliver DDIF content to the DECwrite editor 
for presentation on the page. 

• Link to document. The LiveLink function refer
ences a document, whose pages are merged with 
those of the referencing document. This linkage 
permits a document to be compounded from a 
number of smaller documents. 

Except for links to documents, in-memory 
LiveLink connections are represented as data block 
objects. The data block identifies the data file, the 
application if any, and the position and size of the 
final result. On disk, the data block is represented 
as a DDIF segment that contains frame parameters 
(for size and position information) and a function 
link to hold the file and application names. 

In memory, a link to document is represented in 
a subdocument structure that holds all the pages of 
the subdocument. All subdocument pages and the 
pages of the root document are connected into a 
single chain. Their primary back-pointer is to the 
root document. This arrangement ensures that the 
documents appear as a single document to the user. 

As a document is written, the DECwrite write 
code checks for any transitions from a root docu
ment to a subdocument. At each transition, the 
editor writes an external reference to name the 
subdocument. The external reference location 
indicates the subdocument's proper location in the 
root document. After writing the external refer
ence, the write code moves to the end of the sub
document and resumes writing the root document. 
When an external reference is encountered in the 
read code, the referenced file is read into a sub
document. A pointer to this subdocument is kept 
in a temporary structure within the read code, as 
well as the pages that mark where to insert the sub
document in the root document. When the new docu
ment is completed, the pages of all subdocuments 
are merged, and the flows between the documents 
are joined. 

Digital Tecbntcal]ournal Vol. 2 No. I , Winter 1990 

Binding to Livelink Connections 
LiveLink data is stored outside the document. The 
location of the data is specified by a file specifica
tion. On disk, this specification is simply a string. In 
memory, the DECwrite editor must identify the file 
behind the string. Finding this file usually involves 
transforming the file specification string because 
the DECwrite editor supports four file location types: 

• With document. The file specification string is 
combined with the location of the document. 

• Private library. The file specification string is 
combined with the current node. 

• System library. The file specification string is 
combined with the current node's CDA system 
area. 

• Network library. The file specification string is 
used as is. 

As with fonts, the DECwrite editor does not pro
cess an external reference until necessary. This is 
done for performance reasons. In particular, a large 
amount of system time can be required to read an 
image. For picture links and image links, the link 
data is the data displayed on the page for the link. 
Such links require binding when the page is dis
played or printed. For application links, the exter
nal reference is to the application's input data, not 
its display data. Application links display data is 
stored inside the document itself. Thus, binding only 
needs to occur if the user invokes the application 
and the DECwrite editor must pass the file to the 
application. 

Links to Images 
Although an image is stored and edited at its full 
resolution, it must be transformed to screen resolu
tion to be displayed. Therefore, the DECwrite editor 
maintains two copies of each bound image: a revis
able full-resolution copy and a screen-resolution 
display copy. 

Processing Styles 
Every element in a DECwrite document references 
a style. A style is a collection of attributes that govern 
the overall appearance of an element. In memory, 
the styles are collected into a table called a style 
catalog. On disk, each style is represented as a type 
definition within the root segment of the DDIF 
document. 

81 



Compound Document Architecture 

The DECwrite editor supports nine element/ 
style classes: paragraph, title, list, footnote, page, 
text block, frame, table of contents, and index. 

Biruling to Styles 
Every style has a user-created name, but in memory 
the DECwrite editor uses a pointer rather than a 
name to connect an element to its style. In addition 
to elements pointing to styles, there are also cases 
where styles point to each other. For example, a title 
style can point to the page style that a title element 
must appear on. 

When writing a style reference, the write code 
uses the pointer to locate the style name and that 
name is written to the DDIF file. Conversely the 
DECwrite read code uses the style name to find the 
style in the style symbol table and re-establish the 
pointer. If a style name is not found, the read code 
creates a style that uses the default attributes of the 
element's class. 

Style Files 
A style file is a document whose styles are referenced 
by a second document. As with LiveLink connec
tions, the reference is a file specification. The speci
fication must be transformed according to the file 
location type specified in the referencing document. 

The DECwrite editor must read a document's 
style file before it can read the document's layout 
and content. If the specified file does not exist, the 
DECwrite editor displays a file selection box for the 
user to specify a new style file. This same process 
occurs if the system encounters a circular style file 
reference. A circular style file reference occurs 
when a style file refers to one of the files that was 
processed earlier in the reference chain. 

Styles from a style file should not be saved with 
a document. Therefore, each style in memory iden
tifies whether it is local to the document or was 
acquired from a style file. 

Style Precedence 
A document may contain both local styles and a ref
erence to a style file. A local style takes precedence 
over a style of the same name from a style file. This 
style precedence allows users to tailor a generic 
document style for the current document. 

This feature also creates the reverse possibility. A 
user must be able to change a style back to the generic 
document style. Therefore, the DECwrite read code 
stores both the local style and the style from the 

82 

style file when both styles exist. In effect, the 
DECwrite editor stores the style file's style under
neath the local style. If the user deletes the local 
style, the style file's style becomes visible again. 

Local Style Attributes 
A full copy of an element's style attributes is stored 
with the element in memory for the same reasons text 
attributes are stored. (See Processing Text section.) 
The mechanism by which this is done is also 
analogous. The attributes inherited from the ele
ment's style are combined with the local attributes 
of the element. An element's local attributes are 
those style attributes that the user has changed for 
that element alone. 

When a document is read in, the DECwrite editor 
checks whether the document's style file has been 
modified since the last time the document was 
modified. If so, the editor reformats the document. 

The DECwrite editor writes out attributes locally 
only when they differ from the attributes in the 
element's style. This process guarantees that all new 
attributes in the style file are not obscured by local 
attributes. Thus, when the user changes a style file, 
the desired result occurs for each element. No local 
attributes are lost, and all the element's other 
attributes are updated. 

Summary 
The goals of the DDIF format and a running applica
tion like the DECwrite editor are different. The 
DECwrite editor handles this difference by isolat
ing the side effects to DECwrite's read and write 
codes. The preceding sections have illustrated how 
the DECwrite editor does this. We believe this 
approach has enabled the DECwrite editor to fully 
conform to the DDIF format's interchange goals 
without compromising formatting speed and ease 
of editing. 

Reference 

1. W. Laurune and R. Travis, ''The Digital 
Document Interchange Format, " Digital 
Technical Journal, vol. 2, no. 1 (Winter 
1990, this issue): 16-27. 

Vol. 2 No. I, Winter 1990 Digttal TecbntcalJournal 



CDA in Science and 
Engineering 

Neal B. Appel I 
RonaldM. Olson 

1be CDA architecture is being extended to support the specifzc requirements of the sci
entific and engineering communities. 1be DECview3D application is part of the CDA 
tools suite that enables science and engineering users to integrate two-dimensional 
and three-dimensional graphics into compound documents. Graphics can be trans
lated into various formats, including the DDIF interchange format, and engineering 
and scientific data can be viewed and annotated. 

The CDA architecture supports a revisable-form 
data interchange that is both open and extensible. 
A major benefit of this architectural design is that it 
can be extended to support specific industry and 
application needs, such as those within the science 
and engineering communities. The need for more 
sophisticated scientific and engineering electronic 
document processing and data interchange has 
grown increasingly in these communities in the last 
few years. 

In response to this need, Digital 's Engineering 
Systems Group (ESG) and CAD/CAM Technology Cen
ter (CTC} have jointly developed the DECview3D 
application. 

The DECview3D application provides graphics 
translations, two-dimensional and three-dimensional 
graphics manipulation, and annotation of engineering 
and scientific data. The user can integrate this data 
into the CDA architecture. The application reads 
and translates engineering and scientific data files 
from many formats, including the Initial Graphics 
Exchange Specification (IGES}, the Hewlett-Packard 
Graphics Language (HPGL), and other formats. Its 
IGES translator conforms to the MIL-D-28000 speci
fication. MIL-D-28000 describes the IGES application 
subset of the Federal government's Computer-aided 
Acquisition and Logistics System ( CALS ).1 

The DECview3D application includes a set of 
three-dimensional display and manipulation oper
ations to mark up and prepare data for integration 
with other applications. These applications can then 
be used to create manufacturing process plans, 
engineering and scientific reports, and other 
technical compound documents. The DECview3D 
software operates as a standalone system or as a 
LiveLink application within the CDA architecture. 

Digital Tecbnlcal]ournal Vol. 2 No. 1, Winter 1990 

With the DECview3D application, users can easily 
share and integrate engineering and scientific 
data files. 

The DECview3D Application 
To support engineering and scientific graphics, the 
CDA tools suite must provide for the inclusion of two
dimensional and three-dimensional graphics in 
compound documents. This support must include 
the translation of engineering and scientific graph
ics into various formats, including the DDIF document 
interchange format. The DECview3D application is 
the CDA tool that meets these needs. Further, the 
DECview3D application allows engineering and 
scientific data to be viewed and annotated, either 
by itself or in conjunction with a CDA compound 
document. Expensive computer-aided design (CAD) 
tools are not required. 

The DECview3D application combines the func
tionality ofVAXcadoc, VAXcadview, and BASEVIEW 
software with the benefits of the CDA architecture. 
VAXcadoc and VAXcadview are used within Digital 
to view and annotate engineering data; BASEVIEW 
software is Digital's VMS workstation software (VWS} 
product for viewing and annotating engineering data. 
The DECview3D application draws upon these for 
several useful functions: 

• Translation of different engineering and scien
tific data formats, including IGES, into a single 
data structure 

• The ability to view, zoom, pan, rotate, annotate, 
query, and print engineering and scientific data 
from different sources in a single, easy-to-use 
system that runs on both workstations and graph
ics terminals 

83 



Compound Document Architecture 

• Inclusion of engineering and scientific graphics 
in technical compound documents through a 
Live Link connection (See Figure 1.) 

DECview3D Design Decisions 
Our initial design decision was to build the 
DECview3D code on the existing VAXcadoc code. 
Not only did this give us an established body of 
code to work with, but it also provided compo
nents needed in the DECview3D code, including 
the following: 

• Two-dimensional and three-dimensional graph
ics display, with zoom, pan, and rotation 
capabilities 

Olt"viewlD v2.o BL4 

ldil Oi<piay Layout Annotate Anaty,e cu,tomi,e 

\ 
\ 
\ 

O With Document 
O Private Library 
(I) System Library 
O Network Library 

I Automatic 

Application 

Name ~lo_E_CV_IEW~ J_D~~~~-

Parameten L 

• A run-time data structure for graphics (RDSG) 
that is extensible and has an archival format 

• A device-independent, three-dimensional graph
ics subsystem composed of the Common Graphics 
Interface (CGI), which performs three-dimen
sional transformations and entity selection; and 
Digital's implementation of the Graphics Kernel 
System, the DEC GKS product, for two-dimen
sional, device-independent output2 

• A common user interface ( CUI) which allows the 
same user interface on a workstation windowing 
system and on graphics terminals that can run 
under the VMS screen management facility (SMG )3 

Figure 2 illustrates the VAXcadoc architecture. 

81.lJE STAR FMGINEERING CORP . 

.. 
Terhrw::al fli1cumentaton br serv.-::e Planning 

n"'" tulown;J ~am, t-.gtwght the mvice rKf'll"ement, for A:h tf"'9l!'ffnQ pa, I · 
m¥JUt.lctwtd bi,' Blut Star Engineering Corp 111t,e ~ be uX'd .u 3. refer-l!'f'lee 
whm hanrlng any ru,tc:imet" prol:dt1M. lffviee cal.s, e~t.s. or (p.le:3tiom M . 
JnYKI!' ,_.,, re-ferenced bi,' a cu,I~ runl:Jef, rnu,.t be noted on the }JJ)f)l'Ofll'llle ". 
...-ork~I 

0 

Figure 1 Livelink Connection between DECview3D and DECwrite Software Products 

84 Vol. 2 No. 1, Winter 1990 Digital Tecbnicaljournal 



The decision to use the VAXcadoc code set the stage 
for our subsequent design decisions. These decisions 
were based on major product goals: 

• Inclusion of engineering and scientific graphics 
into compound documents created by the 
DEC write editor using the LiveLink mechanism 

• Translation of engineering and scientific graph
ics into numerous formats , including the DDIF 
document interchange format 

• Support of non-DEC windows terminals for view
ing and translating engineering and scientific 
graphics 

The DECview3D application became a LiveLink 
child application to the DECwrite editor to support 
the inclusion of engineering and scientific graphics 
directly in CDA compound documents. Being a 
LiveLink child application means that, through 
LiveLink facilities, the DECwrite editor can directly 
invoke the DECview3D application to translate, view, 
and annotate engineering and scientific graphics . 
The user of the DECwrite editor indicates that a 
LiveLink connection with the DECview3D applica
tion is desired, and specifies an area within the 
DECwrite compound document in which to place 
the DECview3D graphics. The DECwrite editor then 
invokes the DECview3D application through the CDA 
application control services (ACS), thus bringing up 
the DECview3D user interface. When the user exits 
the DECview3D application, a DDIF data stream is 
returned for inclusion in the DECwrite compound 
document. The DECwrite editor automatically for
mats this data into the area the user has specified. 

Translating engineering and scientific data into 
the DDIF format gives DECview3D the means to 
integrate three-dimensional graphics with the CDA 
architecture. The DECview3D application creates 
DDIF data through the DEC GKS product. The RDSG 
data is passed to CGI, which transforms the data 
into GKS format and then makes DEC GKS calls to 
create a DDIF format file. The first accomplishment 
after the DECview3D software was linked with 
DEC GKS version 4.0 was to create a DDIF format 
file of engineering data that could be read and dis
played by the DECwrite editor. 

Because of varying needs, users of the DECview3D 
application require a very flexible translator archi
tecture. For example, some users have engineering 
graphics in proprietary data formats that they would 
like to bring into compound documents , whereas 
others have special-purpose output formats that they 

Digital Tecbnlcal]ournal Vol. 2 No. 1, Winter 1990 

CDA in Science and Engineering 

FUNCTION 
CODE 

RDSG 

CGI 

MENU CODE (CUI BASED) 

COMMAND LINE INTERPRETER 

FUNCTION 
CODE 

FUNCTION 
CODE 

CUI 

DEC GKS 

vws 

DEVICE 

FUNCTION 
CODE 

SMG 

Figure 2 VAXcadocArchitecture 

would like to create. To address these individual 
needs, the translator design allows input and out
put translators to be added to the product without 
relinking the DECview3D software. 

To provide this flexibility, the DECview3D 
software uses VMS shareable images and a single
interface binding for both input and output trans
lators. Any translator that is built as a shareable 
image and that conforms to the interface binding 
can run with the DECview3D application. Each 
input translator creates RDSG run-time data, and each 
output translator· starts with the RDSG run-time 
data. Thus, mixing and matching of translators is 
possible. The DECview3D software allows the 
name of the input or output translator shareable 
image to be specified in the DECwindows user
interface definition (UID) file as one of the parame
ters of the callback routine for the menu event. As a 
result, any translator can be integrated into the 
product. Figure 3 shows the data flow and control 
flow for the translation process. 

For the DECview3D application to work smoothly 
as the integrator of three-dimensional data from 
within the DECwrite editing environment, user 
interface compatibility had to be achieved. The 

85 



Compound Document Architecture 

TRANSLATOR FUNCTION CODE 

TRANSLATOR 
SHAREABLE 
(FROM FOREIGN 
DATA TO RDSG) 

FOREIGN FORMAT 
DATA FILE 

- - - • CONTROL FLOW 

DATA FLOW 

RDSG 

RDSG 
FILE 

TRANSLATOR 
SHAREABLE 
(FROM RDSG TO 
FOREIGN DATA) 

FOREIGN FORMAT 
DATA FILE 

Figure 3 Data and Control Flow for Translation 

DECwrite editor is a DECwindows application; 
the DECview3D application would run in con
junction with the DECwrite editor. Therefore, the 
DECview3D user interface had to conform to the 
XU/ Style Guide and conform as close as possible to 
the DECwrite editor user interface as well.4•

5 

To conform with the XU/ Style Guide and be com
patible with the DECwrite editor, the DECview3D 
code had to support an object/action user-interac
tion style in which the user indicates the objects on 
which to act before indicating the action. The code 
also had to support an event-driven style in which 
each single user action is an event, and the appli
cation reacts appropriately to all events at any 
given time. In addition to these CDA requirements, 
the DECview3D application had to run not only on 
DECwindows devices but also on ReGIS-based 
graphics terminals such as the VT240 terminal. 

Although the use of VAXcadoc code would expe
dite the DECview3D design process, it presented 
us with a problem in terms of the DECview3D inter
active style as outlined above. VAXcadoc code 
implements an action/object user-interaction style 
in which the user indicates the desired action 
before selecting the objects on which to act. In 
addition, the code uses a request-driven style in 
which the application controls which single 
user-interaction may be processed at any give 
time. Also, VAXcadoc runs only on the VWS 

86 

workstation windowing system, not on the 
DECwindows system. 

We solved the conflict in styles by making an 
adaptation to the VAXcadoc code. In VAXcadoc, 
each function code makes its own entity selection 
in a request-driven manner. For DECview3D code, 
we separated the entity selection code from the 
function code and placed it in one location. The user
interaction style then became event driven, and the 
object/action style was possible. The function code 
in DECview3D software now receives identifiers of 
objects - mainly geometric entities - that have 
already been selected. 

To make the change to an event-driven graphics 
interaction, the DECview3D software uses DEC GKS 
software in event mode on graphics terminals and 
the GKS widget on terminals using the DECwindows 
system. (Widget is a term used in relation to the 
DECwindows system to refer to user-interface 
items, such as pull-down menus, icons, and 
dialog boxes.) Thus the graphics user-interaction 
style is event-driven, and the amount of device
specific code in the graphics area is reduced to a 
minimum. 

To complete the change to an event-driven and 
object/action user-interaction style, the DECview3D 
software uses a Digital internal user-interface util
ity ( CIMI) for the user interface on graphics terminals. 
CIMI gives the DECview3D application the same 
window-oriented user interface and user-interaction 
style on both DECwindows devices and graphics 
terminals. CIMI supports a subset of DECwindows 
menu and dialog boxes on graphics terminals. It 
also emulates the DECwindows event-driven and 
object/action user-interaction style. How CIMI 
operates within the DECview3D application is 
discussed in more detail in the section CIMI User 
Interface. 

DECviewJD Architecture 
The DECview3D architecture represents a combina
tion ofVAXcadoc components and new components. 
Each component discussed below refers to the block 
diagram in Figure 4. 

DECview3D Initializa,tion/J'ermination Code When 
the user invokes the DECview3D application either 
as a standalone application or through a LiveLink 
connection, control is first given to the DECview3D 
initialization/termination code. This code 

• Initializes the application and session 

Vol. 2 No. 1, Winter 1990 Digital TecbnicalJournal 



• Shuts down the application and session 

• Brings up and shuts down the user interface 

When the DECview3D application is invoked by 
means of a LiveLink connection, the initialization/ 
termination code also 

• Processes all LiveLink connections and commu
nication through application control services 
(ACS) routines 

• Creates snapshots by producing two-dimen
sional projections of three-dimensional data in 
the DDIF data format for inclusion in a parent 
application, such as the DECwrite editor 

CIMI User Interface CIMI allows applications to use 
the same user interface to run on both DECwindows 
devices and graphics terminals. When an applica
tion is running on a DECwindows device, CIMI passes 
all calls directly to the DECwindows interface. On a 
graphics terminal, CIMI uses SMG to emulate the 
DECwindows widgets. CIMI can also use the same 
UID file that the DECwindows system uses. 

For graphics terminals support within the 
DECview3D application, modifications were made 
to both CIMI and the DEC GKS ReGIS device handler. 
These modifications provided a consistent user inter
face and smooth transition of cursor control from 
the CIMI widgets to and from the GKS graphics area. 

Normally, both CIMI and DEC GKS control their 
own keyboard-based cursors, and each assigns its 
own meanings to keyboard input. In addition, GKS 
interacts directly with a graphics terminal for both 
input and output. With the DECview3D modifica
tions, CIMI can now receive all keyboard input, 
even if GKS is running on the graphics terminal. 

When the user moves the cursor to the GKS 
screen area, CIMI sends the keyboard input to the 
DEC GKS ReGIS device handler. This action allows 
CIMI to exercise complete control over the user 
input. In turn, CIMI's complete control makes the 
user interface consistent and smoothes the transi
tion of cursor control from CIMI to GKS and back. 
While in the GKS screen area, the modified DEC 
GKS ReGIS device handler receives the keyboard 
input from CIMI. However, the device handler 
treats the data in the same fashion as it did before 
the device handler was modified. 

General Widget Callbacks and Graphical Input 
Management Whenever the user initiates an event, 
CIMI or the DECwindows system calls the general 

Digital Tecbnkal] ournal Vol. 2 No. 1, Winter 1990 

CDA in Sdence and Engineering 

DECwrite DCL 

DECview3D INITIALIZATION/TERMINATION CODE 

CIMI/DECwindows OR SMG 

GRAPHICS INPUT GENERAL WIDGET 
MANAGEMENT CALLBACKS 

ENTITY SELECTION I DISPATCHER 

CGI 

DEC GKS 

FUNCTION 
CODE 

Figure 4 The DECview3D Architecture 

widget callbacks or the graphical input management 
code. There is one logical interface for each event, 
although the same actual callback routine may han
dle a number of different events. 

The callback routine puts the information about 
the event into a data structure called an input packet. 
This packet is then passed to the dispatcher for fur
ther processing. 

Dispatcher The dispatcher receives all the input 
packets from the graphics input management and 
the general widget callback routines. Its place in the 
architecture makes the dispatcher a focal point for 
all user input and positions it as a location for any 
future journaling capabilities. 

When the dispatcher receives an input packet, it 
calls either the specific function code or the entity 
selection code. The code selected is based both on 
the content of the input packet and on the current 
application state. The default state for graphics input 
is select entity, and the default state for function code 
is initialize function. Many functions are done in 

87 



Compound Document Architecture 

separate pieces and need a different interpretation 
of the graphics input. For this reason, the applica
tion state is set and changed by the function code. 

Entity Selection The entity selection code controls 
the list of currently selected entities. This list is 
used by subsequently selected functions. When a 
select entity event occurs, the entity selection code 
calls CGI with the cursor location of the event. CGI 
returns an entity identifier to the entity selection 
code based on the proximity of the entity to the 
cursor location. The entity selection code then 
either adds it to or removes it from the list of cur
rently selected entities. The entity selection code 
then calls RDSG to change the display of the entity. 

RDSG The RDSG run-time structure contains all the 
internal entity data for the DECview3D applica
tion, including lines, splines, arcs, text, surfaces, 
views, and transformations. The DECview3D appli
cation uses the RDSG archival format for its native 
file format. All DECview3D translators use RDSG as 
their intermediate structure. During entity selection, 
the entity selection code calls RDSG to display the 
entity as highlighted and marks the entity in the 
RDSG data structure as selected. If the entity is already 
selected, RDSG is called to display the entity, and the 
entity is marked as not selected. In general, RDSG 
calls CGI for all entity display formats, including 
repainting, zooming, scrolling, and rotation. Thus, 
the geometric information may be transformed into 
two-dimensional graphic information. 

CG/ CGI transforms all three-dimensional RDSG data 
into two-dimensional graphic information for out
put through DEC GKS. This transformation allows 
graphics to be displayed on any device that DEC 
GKS supports. CGI supports multiple simultaneous 
displays of the same engineering and scientific data, 
each with a different three-dimensional transfor
mation. CGI also permits engineering and scientific 
data to be simultaneously displayed from more than 
one source. 

In addition to the display of entities, CGI contains a 
list of the geometry of selectable entities based on 
what has been displayed. When called by the entity 
selection code, CGI calls GKS to obtain an entity's 
input location by sampling the current cursor loca
tion. CGI then uses the list of selectable entities to 
determine which entity is closest. 

The DEC GKS Product The DECview3D application 
can potentially display graphics on any display device 

88 

with a DEC GKS device handler. GKS event mode 
allows the same user-interaction methodology on 
both DECwindows devices and graphics terminals. 
The DECview3D application supports output on 
multiple devices through the CDA architecture by 
creating DDIF format snapshots. In addition, the 
DECview3D application can also create snapshots 
in many formats, including the following: 

• ReGIS 

• Interleaf 

• Postscript 

• Sixel 

• Hewlett-Packard Graphics Language (HPGL) 

• Tektronix 4014 

Function Code The function code controls the pro
cessing of all user requests, including view manipu
lation, annotation using text or simple graphics, 
translation, and creation of snapshots. Through the 
function code the DECview3D application brings 
engineering and scientific graphics into compound 
documents by translating data files into RDSG and 
creating DDIF snapshots from the RDSG data.6 

DECview3D Summary 
By making good use of existing software, the 
DECview3D design requirements were met and the 
product was delivered quickly. The DECview3D 
application provides a dynamic link between engi
neering and scientific graphics and compound doc
uments. The application supports interactive 
two-dimensional and three-dimensional viewing 
of engineering and scientific data, data file trans
lation, and graphics display on DECwindows 
devices and graphics terminals. The DECview3D 
product is a good example ofDigital's use of Digital 
products. 

Acknowledgments 
The authors would like to acknowledge the contri
butions to the DECview3D architecture by team 
members Bill Carr (DECview3D project leader), 
William Hsu, and Jim Roth; and the help of Fiona 
Sanderson, DECview3D product manager, on the 
product description. We especially acknowledge the 
contributions of Barbara Higgins, the DECview3D 
technical writer, for improving the readability and 
organization of this and other DECview3D papers. 

Vol. 2 No. 1, Winter 1990 Digital Tecbnicaljournal 



References 

1. MIL-D-28000 Military Specification, "Digital 
Representation for Communication of Product 
Data: IGES Application Subsets" (Philadelphia: 
Navy Publications and Forms Center). 

2. VAX GKS User Manual (Maynard: Digital Equip
ment Corporation, Order No. AI-HW45B-TE, 
February 1988). 

3. VM5 RTL Screen Management (SMGS) Manual 
(Maynard: Digital Equipment Corporation, 
OrderNo.AA-LA77A-TE, April 1988). 

Digital TecbnlcalJournal Vol. 2 No. I, Winter 1990 

CDA in Science and Engineering 

4. XU/ Style Guide (Maynard: Digital Equipment 
Corporation, Order No. AA-MG20A-TE, 
December 1988). 

5. S. Cohen and E. Morgan, "The Relationship 
between the DECwrite Editor and the Digital 
Document Interchange Format," Digital Technical 
Journal, vol. 2, no. 1 (Winter 1990, this issue): 
73-82. 

6. W. Laurune and R. Travis, "The Digital Docu
ment Interchange Format," Digital Technical 
Journal, vol. 2, no. 1 (Winter 1990, this issue): 
16-27. 

89 



I Further Readings 

The Digital Technical Journal 
publishes papers that expl-Ore 
the tecbnol-Ogical foundations 
of Digital's major products. 
Each journal focuses on at least 
one product area and presents 
a compilation of papers written 
by the engineers who developed 
the product. The content for the 
Journal is selected by the journal 
Advisory Board, which includes 
four Digital vice presidents and 
three senior engineering managers. 

Topics covered in previous issues of the Digital 
Technical Journal are as follows: 

VAX 86o0 Processor 
Vol. 1, No. 1, August 1985 
The design of a pipelined architecture and emitter
coupled logic 

MicroVAX II System 
Vol. 1, No. 2, Ma.rch 1986 
The implementation of the VAX architecture on 
a single CPU chip 

Networking Products 
Vol. 1, No. 3, September 1986 
The Digital Network Architecture (DNA), and 
network management 

VAX 8800 Family 
Vol. 1, No. 4, February 198'7 
Products that support the VAX 8800 high-end 
multiprocessor and its family members 

VAXduster Systems 
Vol. 1, No. 5, September 1987 
Key hardware and software features ofVAXcluster 
systems, and performance measurements 

Digital Tecbnicaljournal Vol. 2 No. 1, Winter 1990 

Software Productivity Tools 
Vol. 1, No. 6, February 1988 
Tools that assist programmers in the development 
of high-quality, reliable software 

CVAX-based Systems 
Vol. 1, No. 7, August 1988 
CVAX chip set design and multiprocessing architec
ture of the mid-range VAX 6200 family of systems 

Storage Technology 
Vol. 1, No. 8, February 1989 
Engineering technologies used in the design, manu
facture, and maintenance of Digital 's storage and 
information management products 

Distributed Systems 
Vol. 1, No. 9, June 1989 
Products that allow system resource sharing 
throughout a network, the methods and tools to 
evaluate product and system performance 

Subscriptions to the Digital Tecbnicaljournal are 
available on a yearly, prepaid basis. The subscrip
tion rate is $40. 00 per year (four issues). Requests 
should be sent to Cathy Phillips, Digital Equipment 
Corporation, ML01-3/B68, 146 Main Street, Maynard, 
MA 01754, U.S.A. Subscriptions must be paid in U.S. 
dollars, and checks should be made payable to Digital 
Equipment Corporation. 

Single copies and past issues of the Digital Technical 
Journal can be ordered from Digital Press at a cost 
of $16.00 per copy. 

Digital Press is Digital Equipment Corporation's 
international publisher of books for computer pro
fessionals who specialize in the areas of networking 
and data communication, artificial intelligence, 
computer-integrated manufacturing, windowing 
systems, and the VMS operating systems. Copies of 
the new titles now available from Digital Press that 
are listed below can be ordered by writing to Digital 
Press, DepartmentDl), 12 Crosby Drive, Bedford, 
MA01730, U.S.A. 

91 



Further Readings 

COMMON LISP: The Language 
Guy SteeleJr., Second Edition, 1990 
($38.95 in softcover, $44.95 inclothcover) 

The Matrix: Computer Networks and 
Conferencing Systems \lbrldwide 
JohnQuarterman, 1990($49.95) 

UNIX for VMS Users 
Philip Bourne, 1990 ($28.95) 

The VMS User's Guide 
James Peters and Patrick Holntay, 1990 ($23.00) 

A Beginner's Guide to VAX VMS Utilities 
and Applications 
Ronald Sawey and Troy Stokes, 1989 ($23.00) 

VMS Internals and Data Structures: 
Version 5 Update Xpress 
Ruth Goldenberg and Lawrence Kenah, 
Volumes 1, 2, and 3, 1989 ($ 35 .00) 

92 

VAX/VMS Internals and Data Structures: 
Version4.4 
Lawrence Kenah, Ruth Goldenberg, and 
SimonBate, 1988($75.00) 

Digital Guide to Software Development 
Corporate User Publications Group of Digital 
Equipment Corporation, 1990 ($27 .95) 

Technical Aspects of Data Communication 
John McNamara, Third Edition, 1988 (542.00) 

Information Technology Standardization: 
Theory, Practice, and Organizations 
Carl Cargill, 1989 (524.95) 

Computer Programming and Architecture: 
The VAX 
Henry Levy and Richard Eckhouse, 
Second Edition, 1989 ($24.95) 

ABCs of MUMPS: An Introduction for Novice 
and Intermediate Programmers 
Richard Walters, 1989 ($24.95) 

Vol. 2 No. 1, Winter 1990 Digital Tecbnical]ournal 



ISSN 0898-90 1 X

l'rim�d i n  I I·YCI\It>E-OPI90 0 1 1ll W ( )  B l 'O Copyn!(ht 1\I<Xl l>i!litll l'quipnt�nt C.orp<>ntion All Ri)lhll> R »<:rwd 

1 An 0 
sisting of a straight ro 
leaves or scrob work e 
regular interv;Us. 

abaciscus 1 .1 A tesse11 
I 

work. A l so qlled abac• 
CUS, I .  I 

abaculus Sea abaciscus. 

abac us I .  The uppen 

ca pital of a cqlumn oftt

but sometimes molded < 
2. I n  ancient : const rue

placed on t he 1 head of '.l 
vide a broad surfac1 

.. 


	Front cover
	Contents
	Editor's introduction
	Biographies
	Foreword
	CDA Overview
	The Digital Document Interchange Format
	The Digital Table Interchange Format
	Development of the CDA Toolkit
	Interapplication Access and Integration
	The Design and Development of the DECdecision Product
	The Relationship between the DECwrite Editor and the Digital Document Interchange Format
	CDA in Science and Engineering
	Further Readings
	Back cover



